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Preface

The 11th International ISAAC Congress was held on 14–18 August 2017 at Linnæus
University, Växjö, Sweden. The congress continued the successful series of biennial
meetings previously held in the USA (1997), Japan (1999), Germany (2001),
Canada (2003), Italy (2005), Turkey (2007), the UK (2009), Russia (2011), Poland
(2013) and P. R. China (2015). The total number of participants of the congress
was 304 coming from 43 countries, including the special guests and the organizing
committee from Växjö. There were 12 plenary speakers. Totally, the congress had 17
sessions spanning 5 working days. One afternoon was assigned to excursions. The
congress was sponsored by academic institutions, local municipality and the host
university. One of the features of the congress was the invitation of applied subjects
like electrical engineering and mathematics in biology. The 11th International
ISAAC Congress was an important scientific event during which mathematicians
from different parts of the world had an opportunity to present new results and
ideas. It was also a great possibility for young mathematicians to contact experts in
a variety of fields.

The atmosphere during the congress was warm and friendly. The social events
included a banquet at Glass country (Glasriket) and excursions with a steam boat to
the largest lake near Växjö.

It is a well-established tradition within the community to award one or several
outstanding young researchers during the ISAAC Congress. The ISAAC award of
the 11th International ISAAC Congress was presented to

Tuomas Hytönen (University of Helsinki, Finland)

for his strong contributions to harmonic analysis, geometric analysis, functional
analysis and singular integral operators. Though he is a young scientist, he has
already achieved several results of high quality, published in top journals. One of
his major achievements is the proof of the A2 conjecture for Calderón–Zygmund
operators, published in Annals of Mathematics 2012. He was also an invited speaker
at ICM 2014.

At the ISAAC board meeting during the congress, several decisions of funda-
mental importance for the organization were taken:
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vi Preface

1. Professor Michael Reissig of Freiberg University of Mining and Technology,
Germany, was elected as the new ISAAC president; Professor Joachim Toft
at Linnæus University, Sweden, as the vice-president; and Professor Irene
Sabadini at Politecnico di Milano, Italy, as the new secretary and treasurer.
Professor Reissig succeeded Professor Luigi Rodino of Turin University, Italy,
who finished his 4-year service, and Professor Sabadini succeeded Professor
Heinrich Begehr, Freie Universität Berlin, Germany. The board expressed their
gratitude to Professors Heinrich Begehr and Luigi Rodino for all their efforts and
contributions for ISAAC over the last years.

2. The decisions from the board meeting at the 10th ISAAC Congress in Macao,
China, concerning organizations of accounts were renewed. At the same time, it
was decided that a reregistration of ISAAC should be performed. (The decisions
were implemented shortly after the congress.)

3. The decision from the board meeting at the 9th ISAAC Congress in Krakow,
Poland, on modernizing the home page was renewed. (The decision was imple-
mented shortly after the congress.)

4. The venue for the following 12th International ISAAC Congress in 2019 was
decided to be at the University of Aveiro, Portugal.

The plenary lectures given at the congress appear not here but in the independent
volume:
L. Rodino, J. Toft (Eds.) Mathematical Analysis and Applications - Plenary
Lectures, ISAAC 2017, Växjö, Sweden Springer Proceedings in Mathematics &
Statistics, Springer, to appear 2018 or 2019.

This volume contains the texts of a selection of talks delivered at the congress.
As in the previous years, some of the sessions or interest groups decided to publish
independently their own volumes of proceedings and are therefore excluded from
the present collection. The work of the congress was spread over the following
sessions:

• Applications of dynamical systems theory in biology, organized by Torsten
Lindström, Amira Asta, Lucia Tamburino

• Approximation theory and special functions, organized by Oktay Duman, Esra
Erkus-Duman

• Complex analysis and convex optimization and their applications in wave
physics, organized by Sven Nordebo, Yevhen Ivanenko

• Complex and functional analytic methods for differential equations, organized
by Heinrich Begehr, Okay Celebi, J.Y. Du

• Complex-analytic and Wiener-Hopf methods in the applied sciences, organized
by Gennady Mishuris, Sergei Rogosin

• Special interest group: IGCVPT, Complex variables and potential theory, orga-
nized by Tahir Aliyev Azeroglu, Anatoly Golberg, Massimo Lanza de Cristo-
foris, Sergiy Plaksa

• Fixed point theory and its applications, organized by Erdal Karapinar
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• Special interest group: IGPDE, Harmonic analysis and partial differential
equations, organized by Michael Ruzhansky, Jens Wirth

• Special interest group: IGPDE, Nonlinear PDE, organized by Vladimir
Georgiev, Tohru Ozawa

• P -adic analysis, organized by Alain Escassut, Andrei Khrennikov, Karl-Olof
Lindahl

• Special interest group: IGPDO, Pseudo-differential operators, organized by
Shahla Molahajloo, Patrik Wahlberg, M. W. Wong

• Special interest group: IGCQA, Quaternionic and Clifford analysis, organized
by Swanhild Bernstein, Uwe Kähler, Irene Sabadini, Franciscus Sommen

• Special interest group: IGPDE, Recent progress in evolution equations, orga-
nized by Marcello D’Abbicco, Marcelo Rempel Ebert, Michael Reissig

• Special interest group: IGGF, Generalized functions and applications, organized
by Michael Kunzinger, Michael Oberguggenberger, Stevan Pilipović

• Theory and applications of boundary-domain integral and pseudodifferential
operators, organized by Sergey E. Mikhailov, David Natroshvili

• Wavelet theory and its related topics, organized by Keiko Fujita, Akira Morimoto
• Contributed talks, organized by Jonas Fransson, Joachim Toft

We thank the organizers of all the sessions of the congress for their work.
They spent an enormous amount of time inviting participants, arranging their
sessions, providing chairmen and creating a familiar and workshop-like atmosphere
within their meetings. The session organizers were also responsible for collecting
contributions to this proceedings volume and for the refereeing process of the
papers. Finally, we would like to thank Dr. Elmira Nabizadeh for all her unselfish
efforts on this volume as well as during the congress.

Växjö, Sweden Karl-Olof Lindahl
Torsten Lindström

Joachim Toft
Patrik Wahlberg

Turin, Italy Luigi G. Rodino
October 2018
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Part I
Applications of Dynamical Systems Theory

in Biology

Session Organizers: Torsten Lindström, Amira Asta, and Lucia Tamburino

The session was primarily aimed for talks that are using dynamical systems
theory in order to analyze various models that arise in biological applications. The
models analyzed may be mechanistically formulated, fitted to data, deterministic, or
stochastic. Various relations between such models that arise in different modeling
approaches and under different simplifying assumptions can be analyzed. Possible
biological applications can include ecology, epidemiology, pharmacokinetics, evo-
lution, physiology, pattern formation, and resource distribution, but are not limited
to these topics. A part of the session was reserved for stakeholders with rich contact
networks outside academia.



Analysis of State-Control Optimality
System for Invasive Species Management

Angela Martiradonna, Fasma Diele, and Carmela Marangi

Abstract Mathematical modeling and optimization provide decision-support tools
of increasing popularity to the management of invasive species. In this chapter,
we investigate problems formulated in terms of optimal control theory. A free
terminal time optimal control problem is considered for minimizing the costs and
the duration of an abatement program. Here, we introduce a discount term in the
objective function that destroys the nonautonomous nature of the state–costate
system. We show that the alternative state-control optimality system is autonomous
and its analysis provides the complete qualitative description of the dynamics of
the discounted optimal control problem. By using the expression of its invariant,
we deduce several insights for detecting the optimal control solution for an invasive
species obeying a logistic growth.

1 Introduction

At least 12 billion of euros per year are spent by the countries of the European
Union for the management of invasive species [11]. This figure includes costs
for key economic sectors, such as agriculture, fisheries, aquaculture, forestry, and
health sectors as well as damages and management costs. Moreover, invasive
species are commonly deemed as responsible of global biodiversity loss [15]. The
human element affects invasive species in many different ways: by inadvertently
introducing alien species in ecosystems or when they disrupt a territory with the
result of a possible response growth in invasive species. Recently, some aspects of
the problem have become controversial: both the identification of invasive species
with no-native ones and the negative impact on the hosting habitat are currently
debated in the scientific community [9]. There are cases of native species which
become invasive due to environmental changes, either due to anthropic pressures or

A. Martiradonna (�) · F. Diele · C. Marangi
Istituto per Applicazioni del Calcolo “M.Picone”, Bari, Italy
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4 A. Martiradonna et al.

to climate changes, and cases of alien species used to restore a somehow perturbed
ecosystem equilibrium of the hosting environment [14], like feral cats, an alien
species which has been introduced in Australia for keeping in control other invasive
species (rodents) [12]. Despite the changing perspective of the role of invasive
species, in protected areas with severe conservation issues, the total eradication
is still an objective to be perceived. We are not entering here the debate on the
soundness of the approach to invasive species from an ecological point of view,
since it is out of the purpose of the present chapter. We will focus instead on the
mathematical tools that may provide a solution to the management issue of the
containment of those species which halter the ecosystem and the ecosystem services
of a protected area because of their fast spread, regardless of their origin. Many
studies [3, 6–8, 16] have indicated that, despite their high costs, intensive control
strategies can be optimal since they are capable of minimizing the infestation area,
halting future spread and associated damages.

In [13], an in-depth overview about the link between the optimal control theory
and biology can be found. Therein, a discrete time model has been described as an
example of optimal control approach to the management of invasive plant species.
In this chapter, we follow the continuous dynamical approach contained in many
papers by C. Baker and his coauthors on the specific topic of management of inva-
sive species [1–5]. More specifically, we suppose that the dynamics of the invasive
species population is described by the following ordinary differential equation:

u̇(t) = r u(t)

(
1 − u(t)

k

)
− u (μE(t))q , (1)

where u(t) represents the population density at time t ∈ [0, T ] and u̇ = du/dt .

The term r u(t)

(
1 − u(t)

k

)
describes the logistic population growth, with intrinsic

growth rate r > 0 and carrying capacity k > 0. The effect of the control actions
on the population is modeled by the term −u (μE(t))q , where E(t) is the control
function, μ > 0 is a scaling parameter, accounting for the control effectiveness, and

q ∈ Q ∩
[

1
2 , 1
)

is a diminishing return parameter in the set of rational numbers.

Low values of the parameter q indicate control actions that are not cost effective at
high intensity, since the related marginal returns decrease very quickly.

We require that the invasive population has to be reduced from the initial density
value u(0) = u0 to the threshold density u(T ) = uT < u0 at exactly T units of
time, where T > 0 represents the program length.

We assume that the allocation of resources for the abatement is evaluated by the
objective functional:

J (E, T ) =
∫ T

0
e−δ t E(t) dt,
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where δ ∈ (0, 1) represents the discount factor. We define the set of positive
bounded Lebesgue integrable control functions as:

U =
{
E ∈ L1(0, T ) : 0 ≤ E ≤ b

}
,

with b > 0 a fixed constant. We also fix the constant T̄ and seek for an optimal
control pair (E∗, T ∗) ∈ U × [0, T̄ ] such that

J (E∗, T ∗) = min
E∈U, T ∈[0,T̄ ]

J (E, T ). (2)

The invasive species dynamics governed by the model (1) and a nondiscounted
version of the objective functional (2) have been introduced in [3], for the manage-
ment of feral cats in Australia semiarid ecosystems. In [4], a theoretical analysis has
been performed for the nondiscounted model in [3], by means of a dynamical system
approach. Moreover, in that paper the authors provide the theoretical expression for
the optimal control values as well as for the optimal abatement program length when
the objective function does not depend explicitly on time. Here, we make a further
step by introducing a discount factor for the abatement cost. This introduction has
the effect of destroying the autonomous nature of the (Hamiltonian) optimality
system describing first-order necessary equations. As a consequence, the tool of
phase-plane analysis cannot be used to achieve theoretical results for the optimal
solution. In this chapter, following the approach in [4], we deduce the alternative
optimality system that describes the invasive density evolution in conjunction with
the control effort. The state-control system results to be autonomous and can be
analyzed by means of phase-space analysis. In so doing, we are able to provide
some qualitative characterizations of the solution of the discounted optimal control
problem (1)–(2).

The chapter is structured as follows: In Sect. 2, we apply the Pontryagin’s
Maximum Principle to set the necessary conditions for the optimal solution and
we introduce the time as additional variable to build a new conserved quantity
on the Hamiltonian of the original nonautonomous system. Then, in Sect. 3 we
move from a state–costate representation to a state-control one and analyze the
dynamics of resulting autonomous system. From the phase diagram generated with
the parameters of the feral cats example and the properties of the invariant, we derive
useful insights into the optimal solution in Sect. 4. Finally, in Sect. 5 we draw our
conclusions.

2 Necessary Conditions for Optimality

To characterize the optimal solution, the following necessary conditions are standard
results from Pontryagin’s Maximum Principle as stated in [17].
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Theorem 1 Let (E∗, T ∗) ∈ U×[0, T̄ ] be a solution of the optimal control problem
(2), with density u∗ satisfying the state equation:

u̇ = r u
(

1 − u

k

)
− uμq E∗q, (3)

with constraints:

u(0) = u0, u(T ) = uT . (4)

Then, there exists a piecewise differentiable adjoint variable λ(t) such that

H(t, u∗(t), E∗(t), λ(t)) ≤ H(t, u∗(t), E(t), λ(t))

for all the admissible controls E at each time t , where the Hamiltonian H is

H(t, u,E, λ) = e−δt E + r λ u
(

1 − u

k

)
− λuμq Eq (5)

and

λ̇ = −r λ

(
1 − 2 u∗

k

)
+ λμq E∗q . (6)

Furthermore,

H(T ∗, u∗(T ∗), E∗(T ∗), λ(T ∗)) = 0. (7)

Let us check the concavity conditions of the Hamiltonian function at E∗ to
characterize controls that minimize the objective function [13]. Let E∗ ∈ U

be a solution of the optimal control problem (2) with density u∗ satisfying the
state Eq. (3), and λ a piecewise differentiable function with λ > 0 for all t .
Then,

∂2H

∂E2

(
t, u∗(t), E∗(t), λ(t)

) = (1 − q) q μq λ(t) u∗(t) > 0.

Therefore, whenever the existence of the optimal solution is guaranteed, necessary
conditions stated in Theorem 1 can be applied to solve the optimal control (2)
subject to (3) with constraints (4). Let the triplet (u(t), λ(t), E(t)), with E(t) > 0,
solve the equation:

∂H

∂E
(t, u(t), E(t), λ(t)) = e−δt − λ(t) u(t) μq q E(t)q−1 = 0, (8)
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at t ∈ [0, T ]. The solution is given by:

E(t) = ϕ(t, u(t), λ(t)) = (q μq λ(t) u(t))
1

1−q e
δ t

1−q .

We search for those u(t) and λ(t) which satisfy the following state–costate problem:

u̇ = r u
(

1 − u

k

)
− uμq

(
E∗

u,λ

)q
, (9)

λ̇ = − λ r

(
1 − 2 u

k

)
+ λμq

(
E∗

u,λ

)q
, (10)

for 0 ≤ t ≤ T and u(0) = u0, u(T ) = uT , where E∗
u,λ(t) =

min{ϕ(t, u(t), λ(t)), b}. Notice that, since ϕ(t, u(t), λ(t)) depends explicitly on
t , the previous system is not autonomous and a phase-space analysis cannot be
performed.

The system (9)–(10) is a time-dependent Hamiltonian system which does not
preserve the Hamiltonian function:

H(t, u, ϕ(t, u, λ), λ) = q − 1

q
e

δq
1−q t (

q μq λ u
) 1

1−q + r λ u
(

1 − u

k

)
. (11)

In this case, a different conserved quantity Ĥ can be identified, as in [10], by
considering the time as an additional variable:

Ĥ (t, u, λ) = H(t, u, ϕ(t, u, λ), λ)+δ

∫ t

0
e

δq
1−q

s (
q μq λ(s) u(s)

) 1
1−q ds. (12)

3 Analysis of the State-Control Optimality System

Following the approach in [4], a system of differential equations given in terms of
the population density u(t) and the control E(t) can be considered. From (8), it
results that

λ(t) u(t) = 1

q μq
E1−q(t) e−δt , (13)

is well defined for all E(t) ≥ 0. Moreover, by totally differentiating the condition
(13) with respect to time, we get

q (1 − q) μq λ uEq−2 Ė =− δ e−δ t +
(
q μq λEq−1

)
u̇+ q μq uEq−1 λ̇.

(14)
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Then, accounting for Eqs. (3)–(6) and plugging (13) into (17) we obtain the
following set of differential equations:

u̇ = r u
(

1 − u

k

)
− uμq E∗q,

Ė = r u + δk

k (1 − q)
E.

To localize the optimal solution, we observe that for all t such that
∂H

∂E
(t, u(t), b,

λ(t)) is strictly negative, then E∗(t) = b. By using (13), let us evaluate

∂H

∂E
(t, u(t), b, λ(t)) = e−δt (1 − E1−q(t) bq−1). (15)

It is easy to see that for all t such that
∂H

∂E
(t, u(t), b, λ(t)) < 0 it results E(t) >

b. Hence, we will refer to the following system as to the state-control optimality
system:

u̇ = r u
(

1 − u

k

)
− uμq min(Eq, bq),

(16)

Ė = r u + δk

k (1 − q)
E. (17)

Differently from the state–costate system, the state-control system is autonomous
and can be analyzed by means of the phase-space analysis for 0 ≤ u ≤ k and E ≥ 0.
As the bound of the effort is here introduced only to guarantee the existence of an
optimal solution, we limit our dynamical considerations to trajectories for which the
constraint E(t) < b is always verified. We hence focus on the following model:

u̇ = r u
(

1 − u

k

)
− uμq Eq, (18)

Ė = r u + δk

k (1 − q)
E. (19)

We start the analysis of the state-control system (18)–(19) by observing that the first
quadrant is an invariant set for the dynamics since system trajectories never cross
the u and E axis. By looking at the zero-growth isoclines, we observe that u̇ = 0 on
the axis u = 0 and along the curve:

E(u) = r1/q

μ

(
1 − u

k

) 1
q
. (20)
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On the other hand, in the first quadrant, the equation Ė = 0 defines the zero-
growth isoclines E = 0. Consequently, the system admits as equilibria the points
Pk = (k, 0) and P0 = (0, 0). The Jacobian matrix of the state-control model
(18)–(19):

J (u,E) =

⎡
⎢⎢⎢⎢⎣
r

(
1 − 2u

k

)
− μq Eq −uμq q Eq−1

r

k (1 − q)
E

r u+ δk

k (1 − q)

⎤
⎥⎥⎥⎥⎦ , (21)

evaluated at P0 has eigenvalues r and
δ

1 − q
both positive, this implying that the

origin is a repulsive node. The eigenvalues of the Jacobian matrix (21) evaluated

at the equilibrium Pk are −r < 0 and
r + δ

1 − q
> 0, and hence Pk turns out to

be a saddle. The loci u̇ = 0, defined by (20), intersect the E axis at the point

P1 =
(

0,
r1/q

μ

)
and the u axis at the saddle point Pk = (k, 0). For value of u

below the carrying capacity k, it results that isocline E = E(u) defined in (20) lies
in the first quadrant. Consequently, it partitions the (u, E) positive plane into two
regions, labeled I and II, lying below or above the curve, respectively. In Region I,
the trajectories are featured by values of u̇ > 0, while in Region II it results u̇ < 0.
Moreover, from (17), it can be checked that Ė > 0 for positive values of E. As
consequence in Region I, the solution trajectories are increasing in both u and E

direction. After crossing the curve u̇ = 0, they enter into Region II, decrease in the
u direction, and finally approach the increasing exponential dynamics on the E axis,

described by Ė = δ

1 − q
E.

The above phase-plane analysis is a useful tool to provide some qualitative
characterizations of the optimal solution, as we show in the following section. In
Fig. 1, for illustrative purpose, we draw the phase diagram in correspondence to
parameters related to the case study of feral cats analyzed in [3], i.e., r = 0.55,
k = 100, μ = 2.21, and q = 0.64; moreover, we set δ = 0.005.

4 Optimal Paths for the State-Control Model

In order to detect the optimal solution, we notice that the function Ĥ , written in
terms of the state-control variables:

H (t, u,E) = e−δ t

q

[
(q − 1) E + r

μq

(
1 − u

k

)
E1−q

]
+ δ

∫ t

0
e−δ s E(s) ds,

(22)
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k

E

u

Pk

P0

Region I

r1/q

µ

Region II

u̇ = 0

Fig. 1 System trajectories in the (u,E) plane for a variety of initial conditions in the interior of
the first quadrant. Parameters: r = 0.55, k = 100, μ = 2.21, q = 0.64, and δ = 0.005

is an invariant for the state-control dynamics. The final optimal control value
E∗(T ∗) is uniquely determined by the necessary condition (7):

e−δ T ∗

q

[
(q − 1) E∗(T ∗)+ r

μq

(
1 − uT

k

)
E∗(T ∗)1−q

]
= 0.

It follows that E∗(T ∗) = 0 or

E∗(T ∗) = 1

μ

(
r

1 − q

) 1
q (

1 − uT

k

) 1
q
. (23)

As in [4], we call curve of minimal effort the curve in the plane (u, E):

E(u) = 1

μ

(
r

1 − q

) 1
q (

1 − u

k

) 1
q
. (24)

With the above notations, Eq. (23) ensures that the final optimal control value
E∗(T ∗) lies on the curve of minimal effort. Moreover, by imposing

H (T ∗, uT ,E
∗(T ∗)) = H (0, u0, E

∗
0 )

we have

δ

∫ T ∗

0
e−δ s E∗(s) ds = 1

q

[
(q − 1) E∗

0 + r

μq

(
1 − u0

k

)
E∗

0
1−q

]
(25)

From the above relation, we have several insights about the optimal solution. Firstly,
observe that if δ = 0, then E∗

0 lies on the curve of minimal effort defined in (24).
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For δ > 0 (apart from the trivial case when uT = u0, corresponding to T ∗ = 0), the
integral term is strictly positive, and hence E∗

0 should lie below the curve of minimal
effort (25).

The left-hand term represents the objective function to be minimized, up to the
positive multiplicative constant δ > 0. By dividing both terms in (25) by δ, we
obtain an equivalent relation that can be written as follows:

J (E∗, T ∗) = 1

δ q

[
q E∗

0 − E∗
0

1−q

(
E∗

0
q − r

μq

(
1 − u0

k

))]
. (26)

By using both (26) and the qualitative behavior of the dynamics resulting from
the phase-space analysis in Sect. 3, we are able to characterize and localize the
optimal control solution. To this aim, let us consider the values spanned by the
following parametrization:

E (ε) = r1/q

μ (1 − ε)1/q

(
1 − u0

k

)1/q
0 ≤ ε ≤ q. (27)

Taking into account that the final optimal control value E∗(T ∗) must lie on the
curve of minimal effort, we detect the optimal trajectories starting form (u0, E∗

0 )

with E∗
0 = E (ε), as follows:

• If E∗
0 = E (q), then E∗

0 lies on the curve of minimal effort (24). In this case,
relation (25) is satisfied with T ∗ = 0 and the optimal control E∗ = E∗

0
corresponds to the largest density target value u∗(T ∗) = u0. The objective
function assumes the minimum value Jq = J (E (q), 0) = 0, as can be
deduced from (26);

• If E∗
0 = E (0), then E∗

0 lies on the isocline defined in (20). From (26), the

objective value is J0 = E (0)

δ
. The trajectory is optimal for the density target

value u∗(T ∗) = umin
T , where umin

T is the intersection between the trajectory
starting from (u0,E (0)) and the curve of minimal effort (24);

• If E∗
0 = E (ε), with 0 < ε < q , then E0 lies between the curve of minimal effort

(24) and the isocline defined in (20). The trajectory is optimal for a target value
uT s.t. umin

T < uT < u0 and the objective value is

Jε = 1

δq

[
(q − 1) E (ε)+ r

μq

(
1 − u0

k

)
E (ε)1−q

]

= 1

δ

[
q − 1

q(1 − ε)1/q E (0)+ r

μq

(
1 − u0

k

) E (0)1−q

q(1 − ε)(1−q)/q

]

= E (0)

δ

[
q − 1

q(1 − ε)1/q + r

μq

(
1 − u0

k

) E (0)−q

q(1 − ε)(1−q)/q

]

= E (0)

δ

[
q − 1

q(1 − ε)1/q + 1

q(1 − ε)(1−q)/q

]
= J0

(q − ε)

q(1 − ε)1/q .
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k

E

u

Pk

u
0
=80P0

r1/q
µ

curve of
minimal effort

E∗(T∗)

E∗
0

u
T

=10umin
T

u̇ = 0

Fig. 2 System trajectories in the (u,E) plane starting from u0 = 80 and reaching uT = 10 (dotted
black lines). Parameters: r = 0.55, k = 100, μ = 2.21, q = 0.64, and δ = 0.005. The optimal
solution (red continuous line) is achieved in correspondence to T ∗ ≈ 3.972, E∗(T ∗) ≈ 0.7442, and
E∗

0 ≈ 0.0495. The dash-dotted black curve represents the optimal solution reaching the threshold
value of the final density umin

T ≈ 1.856

Denoting with s(ε) = (q − ε)

q(1 − ε)1/q , we have that s(0) = 1, s(q) = 0, and ṡ(ε) <

0, hence we deduce that Jq < Jε < J0 .
In conclusion, if umin

T ≤ uT ≤ u0, the initial point of the optimal solution will
belong to the interval [E (0),E (q)]. As a consequence, the optimal trajectory will
lie between the trajectory starting from (u0,E (0)) and the curve of minimal effort.
In Fig. 2, for illustrative purposes, the resulting optimal trajectory for u0 = 80 and
uT = 10 is shown.

5 Conclusions

We considered an optimal control problem with free terminal time for the manage-
ment of invasive species. With respect to recent literature, we made the model more
realistic by introducing a discount term in the objective function. We showed that
the alternative state-control optimality system, defined as in [4], is autonomous and
can be analyzed with a dynamical system approach. We deduced the expression of
its invariant that suggested several insights on the optimal solution. Further work
will be devoted to theoretically establishing ranges of parameters that guarantee
existence and uniqueness results for the optimal control solution.
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Part II
Approximation Theory and Special

Functions: Fourth Series

Session Organizers: Oktay Duman and Esra Erkus-Duman

This session was the fourth edition of a series of mini-symposia which bring
together researchers from all areas of Approximation Theory and Special Functions.
The first one was organized within the international conference ICNAAM 2013 in
Greece, the second one in MDS 2014 in Bulgaria, and the third one in ETAMM
2016 in France.

The highlighted topics (but not limited to) were: Classical approximation,
Korovkin-type approximation, Statistical approximation, Interpolation, Fuzzy
approximation, Summability, Timescales, Constructive approximation, Orthogonal
polynomials, Generating functions, Matrix-valued polynomials, q-Analysis,
Fractional analysis, General orthogonal systems, and Fourier analysis.



Extended Multivariable Hypergeometric
Functions

Duriye Korkmaz-Duzgun and Esra Erkuş-Duman

Abstract In this chapter, we define an extension of multivariable hypergeometric
functions. We obtain a generating function for these functions. Furthermore, we
derive a family of multilinear and multilateral generating functions for these
extended multivariable hypergeometric functions.

1 Introduction

Nowadays, there is a growing interest in extensions, including new extra parameter,
of some special functions especially hypergeometric and multivariable hypergeo-
metric functions [1, 11].

In this study, the extended beta, hypergeometric, Appell, Lauricella, Horn, and
multivariable Horn functions, which are introduced below, have been used for
defining a new extension of multivariable hypergeometric functions.

Definition 1 Let a function Θ({κl}l∈N0
; z) be analytic within the disk |z| < R

(0 < R < ∞) and let its Taylor–Maclaurin coefficients be explicitly denoted by the
sequence {κl}l∈N0

. Suppose also that the function Θ({κl}l∈N0
; z) can be continued

analytically in the right half-plane Re(z) > 0 with the asymptotic property given as
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follows [11]:

Θ(κl; z) ≡ Θ( {κl}l∈N0
; z)

=
{∑

κl
zl

l! (|z| < R; 0 < R < ∞; κ0 = 1)

M0z
w exp(z)

[
1 +O

(
1
z

)]
(Re(z) → ∞; M0 > 0; w ∈ C)

(1)

for some suitable constants M0 and w depending essentially on the sequence
{κl}l∈N0 .

By means of the function Θ({κl}l∈N0
; z) defined by (1), Srivastava et al. defined

the following extended beta function B

(
{Kl}l∈N0

)
p,q (α, β) [11]:

B

(
{Kl}l∈N0

)
p,q (α, β) =

1∫
0
tα−1(1 − t)β−1 Θ

(
κl; −p

t
− q

(t−1)

)
dt,

( min {Re(α),Re(β)} > 0, min {Re(p),Re(q)} ≥ 0 ).

(2)

If we set κl = (ρ)l
(σ )l

, ρ = σ , and p = q = 0 in (2), then (2) becomes the classical
beta function [10].

By a similar idea, they had extended hypergeometric and confluent hypergeomet-
ric functions, respectively, as follows [11]:

F

(
{Kl}l∈N0

)
p,q (α, β; γ ; x) =

∞∑
n=0

(α)n
B

({Kl}l∈N0

)
p,q (β+n,γ−β)

B(β,γ−β)
xn

n! ,

(|t| < 1, Re(γ ) > Re(β) > 0, min {Re(p),Re(q)} ≥ 0)

(3)

and

Φ

(
{Kl}l∈N0

)
p,q (β; γ ; x) =

∞∑
n=0

B

({Kl }l∈N0

)
p,q (β+n,γ−β)

B(β,γ−β)
xn

n! ,

(Re(γ ) > Re(β) > 0, min {Re(p),Re(q)} ≥ 0) .

(4)

If we set κl = (ρ)l
(σ )l

, ρ = σ , and p = q = 0 in (3), (4) then (3) and (4) become
classical hypergeometric and confluent hypergeometric functions, respectively (see
[10]).
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On the other hand, they defined the following extended second kind Appell
functions [11]:

F

(
{Kl}l∈N0

;p,q
)

2 (α, β1, β2; γ1, γ2; x1, x2)

=
∞∑

m,r=0
(α)m+r

B

({Kl}l∈N0

)
p,q (β1+m,γ1−β1)

B(β1,γ1−β1)

B

({Kl }l∈N0

)
p,q (β2+r,γ2−β2)

B(β2,γ2−β2)

xm
1
m!

xn
2
n! ,

(|x1| + |x2| < 1, min {Re(p),Re(q)} ≥ 0) .

(5)

If we set κl = (ρ)l
(σ )l

, ρ = σ ,and p = q = 0 in (5), then (5) becomes the second
kind Appell functions [2].

After short period of time by using a similar method, Minjie defined the extended
Lauricella functions [8]:

F
(r)

A,
(
{Kl}l∈N0

;p,q
) (α, β1, . . . , βr ; γ1, . . . , γr ; x1, . . . , xr )

=
∞∑

m1,...,mr=0
(α)m1+...+mr

r∏
j=1

B

({Kl }l∈N0

)
p,q (βj+mj ,γj−βj )

B(βj ,γj−βj )

x
m1
1
m1! . . .

xmr
r

mr ! ,

(6)

where |x1| + . . .+ |xr | < 1 and min {Re(p),Re(q)} ≥ 0.
If we set κl = (ρ)l

(σ )l
, ρ = σ ,and p = q = 0 in (6), then (6) becomes Lauricella

functions [4].
Extended fourth kind Horn functions are defined by [6]:

H

(
{Kl}l∈N0

;p,q
)

4 (α, β; γ1, γ2; x1, x2) (7)

: =
∞∑

m,r=0

(α)2m+r

(γ1)m

B

(
{Kl}l∈N0

)
p,q (β + r, γ2 − β)

B(β, γ2 − β)

xm
1

m!
xr

2

r! .

where 2
√|x| + |y| < 1 and min {Re(p),Re(q)} ≥ 0.

When κl = (ρ)l
(σ )l

, ρ = σ , and p = q = 0 in (7), then function (7) reduces to the
fourth kind Horn functions [5].
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The extension of multivariable fourth kind Horn functions was defined by [6]:

(k)H
(r)

4,
(
{Kl}l∈N0

;p,q
) (α, βk+1, . . . , βr; γ1, . . . , γr; x1, . . . , xk, xk+1, . . . , xr )

:=
∞∑

m1,...,mr=0

(α)2(m1+...+mk)+mk+1+...+mr

(γ1)m1 ...(γk)mk

×
r∏

j=k+1

B

({Kl }l∈N0

)
p,q (βj+mj ,γj−βj )

B(βj ,γj−βj )

x
m1
1
m1! . . .

x
mr
r

mr ! ,

(8)

where
(
2(
√|x1| + . . .+√|xk|)+ . . .+ |xr | < 1

)
and min {Re(p),Re(q)} ≥ 0.

When κl = (ρ)l
(σ )l

, ρ = σ , and p = q = 0 in (8), then (8) reduces to the
multivariable Horn functions [4].

Finally, the multivariable hypergeometric functions are defined by [7]:

(k)E(r) (α, βk+1, . . . , βr; γ1, . . . , γr; x1, . . . , xr )

=
∞∑

m1,...,mr=0
(α)ρ(m1+...+mk)+mk+1+...+mr

(βk+1)mk+1 ...(βr )mr

(γ1)m1 ...(γr )mr

x
m1
1
m1! . . .

x
mr
r

mr ! ,

ρ
(

2
√|x1| + . . .+ 2

√|xk|
)+ |xk+1| + . . .+ |xr | < 1.

(9)

The aim of this chapter is to define an extension of multivariable hypergeometric
functions. We obtain a generating function for these functions. Then, we derive
a family of multilinear and multilateral generating functions for these extended
multivariable hypergeometric functions.

2 Generating Function

In this section, we define an extension of multivariable hypergeometric functions
given in (9). Then, we obtain a generating function for these functions.

Definition 2 We define an extension of the multivariable hypergeometric functions
by:

(k)E
(r)(
{Kl}l∈N0

;p,q
) (α, βk+1, . . . , βr ; γ1, . . . , γr ; x1, . . . , xr) (10)

=
∞∑

m1,...,mr=0

(α)ρ(m1+...+mk)+mk+1+...+mr

(γ1)m1 . . . (γk)mk
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×
r∏

j=k+1

B

(
{Kl}l∈N0

)
p,q (βj +mj, γj − βj )

B(βj , γj − βj )

x
m1
1

m1! . . .
x
mr
r

mr ! ,

where ρ
(√|x1| + . . .+√|xk|

)+|xk+1|+ . . .+|xr | < 1, min {Re(p),Re(q)} ≥ 0,

and ρ ≥ 0. If κl = (ρ)l
(σ )l

, ρ = σ , and p = q = 0 in (10), then function (10) reduces
to multivariable hypergeometric functions given by (9).

Theorem 1 We have the following generating function for the extended multivari-
able hypergeometric functions defined by (10):

∞∑
n=0

(λ)n
n!

(k)E
(r)(
{Kl}l∈N0

;p,q
) (λ+ n, βk+1, . . . , βr ; γ1, . . . , γr ; x1, . . . , xr ) t

n

= (1 − t)−λ

× (k)E
(r)(
{Kl}l∈N0

;p,q
)
(
λ, βk+1, . . . , βr ; γ1, . . . , γr ; x1

(1−t)ρ
, . . . ,

xk
(1−t)ρ

,
xk+1
(1−t)

, . . . , xr
(1−t)

)
,

(11)

where λ ∈ C and |t| < 1.

Proof Let T denote the first member of assertion (11). From properties of Pochham-
mer symbol, we have

T =
∞∑

m1,...,mr=0

(λ)ρ(m1+...+mk)+...+mk+1+...+mr

(γ1)m1 . . . (γk)mk

r∏
j=k+1

B

(
{Kl}l∈N0

)
p,q (βj +mj , γj − βj )

B(βj , γj − βj )

× (x1)
m1

m1! . . .
(xr )

mr

mr !
∞∑
n=0

(λ+ ρ(m1 + . . .+mk)+mk+1 + . . .+mr)n tn

(n)!

= (1 − t)−λ
∞∑

m1,...,mr=0

(λ)ρ(m1+...+mk)+...+mk+1+...+mr

(γ1)m1 ...(γk)mk

r∏
j=k+1

B

({Kl }l∈N0

)
p,q (βj+mj ,γj−βj )

B(βj ,γj−βj )

×
(

x1
(1−t)ρ

)m1
. . .
(

xk
(1−t)ρ

)mk
(

xk+1
(1−t)

)mk+1
. . .
(

xr
(1−t)

)mr 1
m1 ! . . .

1
mr !

= (1 − t)−λ

× (k)E
(r)(
{Kl}l∈N0

;p,q
)
(
λ, βk+1, . . . , βr ; γ1, . . . , γr ; x1

(1−t)ρ
, . . . ,

xk
(1−t)ρ

,
xk+1
(1−t)

, . . . , xr
(1−t)

)
,

which completes the proof.
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If we take ρ = 2 in Theorem 1, we have the following conclusion for the
extended multivariable fourth kind Horn functions defined by (8):

Corollary 1 We have the following relation for the extended multivariable fourth
kind Horn functions:

∞∑
n=0

(λ)n
n!

(k)H
(r)

4,
(
{Kl }l∈N0

;p,q
) (λ+ n, βk+1, . . . , βr ; γ1, . . . , γr ; x1, . . . , xr ) t

n

= (1 − t)−λ

× (k)H
(r)

4,
(
{Kl }l∈N0

;p,q
)
(
λ, βk+1, . . . , βr ; γ1, . . . , γr ; x1

(1−t)2 , . . . ,
xk

(1−t)2 ,
xk+1
(1−t)

, . . . , xr
(1−t)

)
,

where λ ∈ C and |t| < 1.

If we choose ρ = 2, k = 1, and r = 2 in Theorem 1, we immediately have the
following conclusion for the extended fourth kind Horn functions defined by (7):

Corollary 2 We have the following generating function for the extended fourth kind
Horn functions:

∞∑
n=0

(λ)n
n! H

(
{Kl}l∈N0

;p,q
)

4 (λ+ n, β; γ1, γ2; x1, x2) t
n

= (1 − t)−λ H

(
{Kl}l∈N0

;p,q
)

4

(
λ, β; γ1, γ2; x1

(1−t )2 ,
x2

(1−t )

)
,

where λ ∈ C and |t| < 1.

If we set ρ = 2 and k = 0 in Theorem 1, we have the following conclusion for
the extended Lauricella functions given by (6):

Corollary 3 We have

∞∑
n=0

(λ)n
n! F

(r)

A,
(
{Kl}l∈N0

;p,q
) (λ+ n, β1, . . . , βr ; γ1, . . . , γr ; x1, . . . , xr ) t

n

= (1 − t)−λ F
(r)

A,
(
{Kl}l∈N0

;p,q
)
(
λ, β1, . . . , βr ; γ1, . . . , γr ; x1

(1−t )
, . . . , xr

(1−t )

)
,

where λ ∈ C and |t| < 1.

If we choose ρ = 2, k = 0, and r = 2 in Theorem 1, we have the following
conclusion for the extended second kind Appell functions given by (5):
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Corollary 4 We have the following generating function for the extended second
kind Appell functions:

∞∑
n=0

(λ)n
n! F

(
{Kl}l∈N0

;p,q
)

2 (λ+ n, β1, β2; γ1, γ2; x1, x2) t
n

= (1 − t)−λ F

(
{Kl}l∈N0

;p,q
)

2

(
λ, β1, β2; γ1, γ2; x1

(1−t )
, x2
(1−t )

)
,

where λ ∈ C and |t| < 1.

3 Multilinear and Multilateral Generating Functions

In this section, we derive a family of multilinear and multilateral generating
functions for the extended multivariable hypergeometric functions defined by (10),
by using the similar method considered in [3, 9].

Theorem 2 Corresponding to an identically nonvanishing function Ωμ(y1, . . . , ys )

of s complex variables y1, . . . , ys (s ∈ N) and of complex order μ, let

Λμ,ψ(y1, . . . , ys; ζ ) :=
∞∑
k=0

akΩμ+ψk(y1, . . . , ys)ζ
k,

where ak �= 0 , μ,ψ ∈ C and

Θ
μ,ψ

n,b (x1, x2; y1, . . . , ys; ξ)

:=
[n/b]∑
k=0

ak (λ)n−bk
(k)E

(r)(
{Kl}l∈N0

;p,q
)

× (λ+ n− bk, βk+1, . . . , βr; γ1, . . . , γr; x1, . . . , xr )

×Ωμ+ψk(y1, . . . , ys)
ξk

(n−bk)! .

Then, for b ∈ N, we have

∞∑
n=0

Θ
μ,ψ
n,b

(
x1, x2; y1, . . . , ys ; η

tb

)
tn = Λμ,ψ (y1, . . . , ys ; η)(1 − t)−λ

× (k)E
(r)(
{Kl}l∈N0

;p,q
) (λ, βk+1, . . . , βr ; γ1, . . . , γr ; x1

(1−t )ρ
, . . .

xk
(1−t )ρ

,
xk+1
(1−t )

. . . , xr
(1−t )

)

(12)

provided that each member of (12) exists.
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Proof For convenience, let S denote the first member of the assertion (12). Then,

S =
∞∑
n=0

[n/b]∑
k=0

ak (λ)n−bk

×(k)E
(r)(
{Kl }l∈N0

;p,q
) (λ+ n− bk, βk+1, . . . , βr ; γ1, . . . , γr ; x1, . . . , xr )

×Ωμ+ψk(y1, . . . , ys)η
k tn−bk

(n− bk)! .

Replacing n by n+ bk, we may write that

S =
∞∑
n=0

∞∑
k=0

ak (λ)n
(k)E

(r)(
{Kl}l∈N0

;p,q
) (λ+ n, βk+1, . . . , βr ; γ1, . . . , γr ; x1, . . . , xr )

×Ωμ+ψk(y1, . . . , ys)η
k t

n

n! .

Using Theorem 1 on the last equality, one can get the desired result.

Furthermore, for every suitable choice of the coefficients ak (k ∈ N0), if the
multivariable functions Ωμ+ψk(y1, . . . , yr ), r ∈ N, are expressed as an appropriate
product of several simpler functions, the assertions of Theorem 2 can be applied in
order to derive various families of multilinear and multilateral generating functions
for the extended multivariable hypergeometric functions defined by (10).
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Cubature of Multidimensional
Schrödinger Potential Based
on Approximate Approximations

Flavia Lanzara

Abstract We report here on some recent results obtained in collaboration with
Maz’ya and Schmidt (Appl Anal 98:408–429, 2019). We derive semi-analytic
cubature formulas for the solution of the Cauchy problem for the Schrödinger
equation which are fast and accurate also if the space dimension is greater than
or equal to 3. We follow ideas of the method of approximate approximations, which
provides high-order semi-analytic cubature formulas for many important integral
operators of mathematical physics. The proposed method is very efficient in high
dimensions if the data allow separated representations.

1 Introduction

In this chapter, we propose a numerical method, both fast and precise, for solving the
following time-dependent multi-dimensional Schrödinger equation of free particles:

i
∂u

∂t
+�xu = f (x, t), (x, t) ∈ R

n ×R+ (1)

u(x, 0) = g(x), x = (x1, , . . . , xn) ∈ R
n, (2)

with u = u(x, t) the wave function depending on the spatial variables x ∈ Rn and
the time t ∈ R+, and �x the usual Laplacian with respect to the variables x.
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We suppose that g and f are supported with respect to x in a hyper-rectangle
[P,Q] = {x = (x1, . . . , xn) ∈ Rn : Pj ≤ xj ≤ Qj, j = 1, . . . , n}, supp g ⊆
[P,Q], supp f ⊆ [P,Q] × R+. Under suitable integrability conditions on g and f ,
the solution of (1)–(2) is given by:

u(x, t) = S g(x, t)+Πf (x, t)

S g(x, t) = 1

(4πit)n/2

∫
[P,Q]

e i |x−y|2/(4t ) g(y) dy , (3)

Πf (x, t) = −i

∫ t

0

ds

(4πis)n/2

∫
[P,Q]

ei|x−y|2/(4 s)f (y, t − s)dy . (4)

Our goal is to derive semi-analytic cubature formulas for S g and Πf of an
arbitrary high-order which are fast and accurate also if the space dimension n ≥ 3.
We follow ideas of the method of approximate approximations, which provides
high-order semi-analytic cubature formulas for many important integral operators
of mathematical physics (cf.[15] and the reference therein). They are based on
the use of approximating functions with the property that, on one hand, simple
linear combinations provide high-order approximations up to a small negligible
saturation error and, on the other hand, the action of the integral operators on
these functions can be taken analytically. Examples of those cubature formulas
for volume potentials over Rn and on bounded domains have been studied in [14]
and [9]. We combine this approach with the strategy of tensor decomposition. The
representation of data in tensor product form is a fundamental tool for managing the
dimensionality issue [5], and methods based on tensor decompositions have become
well established in a wide range of applications (cf. e.g. [3] and [2]). The aim is the
separation of dimensions, which implies that expensive high-dimensional operations
are decomposed into a series of one-dimensional operations. As a consequence, the
complexity scales linearly in the dimension rather than exponentially.

In [7, 8], we applied this procedure for the cubature of high-dimensional Newton
potential over the full space and over half-spaces. The new approach was extended
to stationary advection–diffusion operators −� + 2b · ∇ + c with b ∈ Cn and
c ∈ C in [10] and [6], and to parabolic problems in [11]. For the Schrödinger
equation, the situation is more difficult because the fundamental solution does
not decay exponentially, and numerical approaches to solving (1)–(2) are very
expensive due to the oscillatory solutions, especially in multi-dimensional case.
The application of approximate approximations to this equation, combined with
separated representations, reduces these problems and provides new very efficient
semi-analytic cubature formulas [13]. In [12], we show that this approach is
successful also for the diffraction potential.
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2 Approximate Quasi-Interpolants

Our method uses quasi-interpolation formulas of the type:

(M
h
√
D g)(x) = D−n/2

∑
m∈Zn

g(hm)η
(x − hm

h
√
D

)
, (5)

where η is a sufficiently smooth and rapidly decaying function, and h and D are
positive fixed parameters. Under the assumption that

∫
Rn

η(x) xαdx = δ0,α, 0 ≤ |α| < N (6)

the following error estimate was proved.

Theorem 1 ([15, Theorem 2.28]) Let g ∈ WN
p (Rn) with N > n/p, 1 ≤ p ≤ ∞.

For any ε > 0, there exists D > 0 such that

‖g −M
h
√
D g‖Lp ≤c(h

√
D)N+ ε

N−1∑
k=0

(h
√
D)k

(2π)k
‖∇kg‖Lp ,

where the constant c depends only on η and ‖∇kg‖Lp =
∑
|α|=k

‖∂αg‖Lp

α! .

Here, we use the standard multi-index notations for α = (α1, . . . , αn) ∈ Z
n
≥0, and

we write ‖g‖Lp the Lebesgue norm of a function g in Lp = Lp(Rn). Thus, the
error consists of a term ensuring O(hN) convergence and of the so-called saturation
error, which in general does not converge to zero as h goes to 0 but it can be made
arbitrarily small if D is sufficiently large.

For the approximation of f ∈ Lp(Rn+1), we use the approximate quasi-
interpolant:

(
N

h
√
D ,τ

√
D0

)
f (x, t) = D

−1/2
0 D−n/2

∑
�∈Z

m∈Zn

f (hm, τ�) ψ
( t − τ�

τ
√
D0

)
η
(x − hm

h
√
D

)

(7)

where h, τ,D, and D0 are positive fixed parameters, and ψ and η are sufficiently
smooth and rapidly decaying functions. If also ψ fulfils the moment conditions (6),
then N

h
√
D ,τ

√
D0

f approximates f with order O((h
√
D + τ

√
D0)

N ) up to the

saturation error in Lp(Rn+1) if N > (n+ 1)/p.
In order to construct a cubature for S g and Πf , we approximate g and f such

that S and P applied to it can be computed, analytically or at least efficiently.
The error estimates for M

h
√
Dg and N

h
√
D ,τ

√
D0

f are proved for functions on
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R
n and R

n+1, respectively, whereas g is given only on [P,Q] and f on [P,Q] ×
R+. If we extend g and f equal to zero, we don’t obtain good approximations
because M

h
√
Dg approximates g only in a subdomain of [P,Q] and N

h
√
D,τ

√
D0

f

approximates f only in a subdomain of [P,Q] × R+. To avoid this difficulty, we
extend g and f with preserved smoothness, such that the extensions g̃ and f̃ satisfy

‖g̃‖WN∞(Rn) ≤ C‖g‖WN∞([P,Q]) , ‖f̃ ‖WN∞(Rn×R) ≤ C‖f ‖WN∞([P,Q]×R+), C > 0 .

These extensions can be obtained, for example, by using Hestenes reflection
principle (cf. [4] and [13]). Since η and ψ are smooth and of rapid decay, for any
ε > 0 one can fix r > 0 , r0 > 0 and positive parameters D , D0 such that the
quasi-interpolant:

(
M (r)

h
√
D
g
)
(x) = D−n/2

∑
hm∈Ωrh

g̃(hm) η

(
x − hm

h
√
D

)

approximates g for all x ∈ [P,Q] with the same error estimate of (5), and

(
N

(r,r0)

h
√
D,τ

√
D0

f
)
(x, t) = D

−1/2
0 D−n/2

∑
hm∈Ωrh

τ�∈Ω̃r0τ

f̃ (hm, τ�)ψ

(
t − τ�

τ
√
D0

)
η

(
x − hm

h
√
D

)

approximates f for all x ∈ [P,Q] and for all t ∈ [−T , T ], T > 0 with the same
error estimate of (7). Here Ω̃r0τ = (−r0τ

√
D0 − T , T + r0τ

√
D0) and Ωrh =∏n

j=1 Ij with Ij = (Pj − rh
√
D,Qj + rh

√
D).

3 Approximation of S g

Cubature formula for (3) is derived by replacing the density g with the quasi-
interpolant M (r)

h
√
D

g with appropriately chosen function η. For different basis

functions η, the integrals S η allow analytic representations. Here, we assume that
η is the product of univariate basis functions of the form Gaussians times special
polynomials:

η(x) =
n∏

j=1

χ2M(xj ), χ2M(x) = (−1)M−1

22M−1
√
π(M − 1)!

H2M−1(x)e−x2

x
, N = 2M,

(8)

where Hk are the Hermite polynomials Hk(x) = (−1)kex
2
( d

dx

)k
e−x2

. Then, the
sum:

(Shg)(x, t) := D−n/2
∑

hm∈Ωrh

g̃(hm)Φ
[Pm,Qm]
2M

(
x − hm

h
√
D

,
4 t

h2D

)
, t �= 0



Cubature of Multidimensional Schrödinger Potential 31

with Pm = (P − hm)/(h
√
D), Qm = (Q − hm)/(h

√
D), and

Φ
[P,Q]
2M (x, t) =

n∏
j=1

1

(π i t)1/2

∫ Qj

Pj

ei (yj−xj )
2/tχ2M(yj)dyj ,

provides an approximation of S g. The function Φ
[P,Q]
2M (x, 4 t) gives the solution of

the initial problem:

i∂tv +�xv = 0, v(x, 0) =
n∏

j=1

I(Pj ,Qj )(xj )χ2M(xj ), x ∈ R
n, t ∈ R.

(9)

Here, I(Pj ,Qj ) is the characteristic function of the interval (Pj ,Qj ).

Theorem 2 ([11, Theorem 3.1]) The solution of the initial value problem (9) can
be expressed by the tensor product:

v(x, t) =
n∏

j=1

(
ΨM(xj , 4 t, Pj )− ΨM(xj , 4 t,Qj )

)
,

ΨM(x, t, y) = 1

2
√
π

e−x2/(1+it)

(
erfc(F (x, it, y))PM(x, it)− e−F 2(x,it,y)

√
π

QM(x, it, y)

)

with the complementary error function erfc, the argument function:

F(x, t, y) =
√

t + 1

t

(
y − x

t + 1

)
, (10)

and PM , QM are polynomials in x of degree 2M − 2 and 2M − 3, respectively:

PM(x, t) =
M−1∑
s=0

(−1)s

s!4s

1

(1 + t)s+1/2 H2s

(
x√

1 + t

)
; Q1(x, t, y) = 0,

QM(x, t, y) = 2
M−1∑
k=1

(−1)k

k! 4k

2k∑
�=1

(−1)�

t�/2

(
H2k−�(y)H�−1

(y − x√
t

)

−
(2k
�

)
H2k−�

( x√
1 + t

)H�−1
(
F(t, x, y)

)
(1 + t)k+1/2

)
, M > 1.
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From Theorem 2, we deduce the following semi-analytic cubature formula for S g:

(Shg)(x, t) = D−n/2
∑

hm∈Ωrh

g̃(hm)×

n∏
j=1

(
ΨM

(
xj − hmj

h
√
D

,
4 t

h2D
,
Pj − hmj

h
√
D

)
− ΨM

(
xj − hmj

h
√
D

,
4 t

h2D
,
Qj − hmj

h
√
D

))
.

The cubature error follows immediately from the quasi-interpolation error due to
the relation:

S g(·, t) −Shg(·, t) = S (I −M (r)

h
√
D
) g(·, t),

and Strichartz-type estimates valid for any Schrödinger-admissible pairs (q, r):

‖S g‖Lr,q (R+) ≤ C‖g‖L2

with constant C independent of g ∈ L2(Rn). We recall that the exponent pair (q, r)
is called Schrödinger admissible if q, r ≥ 2, (q, r) �= (2,∞) and 2/q+n/r = n/2.
By Lr,q(I), we denote the Banach space of Lr(Rn)-valued q-summable functions
over an interval I with the norm:

‖u‖Lr,q (I ) =
(∫

I

( ∫
Rn

|u(x, t)|rdx
)q/r

dt

)1/q

.

Theorem 3 ([13, Theorem 2.1]) Let g ∈ WN
p (Rn), 1 ≤ p ≤ 2, N > n/p, be the

initial value for the homogeneous Schrödinger equation. For any ε > 0, there exists
D > 0 such that for t > 0 the cubature formula Shg approximates S g in Lp′

(Rn),
p′ = p/(p − 1), with

‖S g(·, t) −Shg(·, t)‖Lp′ ≤ C

tn(1/2−1/p′)

(
(h
√
D)N |g|WN

p
+ ε

N−1∑
k=0

(h
√
D)k

(2π)k
‖∇kg‖Lp

)
.

Here, |g|WN
p
=
∑
|α|=N

‖∂αg‖Lp .

If g ∈ WN
2 (Rn), then the approximation on Rn × R with Shg can be estimated

in the mixed Lebesgue spaces Lr,q(R+) for any Schrödinger-admissible pairs (q, r)
by:

‖S g −Shg‖Lr,q (R+) ≤ C
(
(h
√
D)N |g|WN

2
+ ε

N−1∑
k=0

(h
√
D)k

(2π)k
‖∇kg‖L2

)
.
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4 Approximation of Πf

We construct an approximation for Πf using the quasi-interpolant N (r,r0)

h
√
D ,τ

√
D0

f .

We assume the function η in (8) and ψ(t) = χ2M(t). Then, Πf is approximated by:

Πh,τ f (x, t) :=
(
ΠN (r,r0)

h
√
D,τ

√
D0

f

)
(x, t) = −i

D1/2
0 Dn/2

∑
hm∈Ωrh

τ�∈Ω̃r0τ

f̃ (hm, τ �)K2M(x, t, hm, τ �)

with

K2M(x, t, hm, τ�) =
∫ t

0
χ2M

( t − s − τ�

τ
√
D0

)
Φ

[Pm,Qm]
2M

(x − hm

h
√
D

,
4 s

h2D

)
ds (11)

and, keeping in mind Theorem 2,

Φ
[P,Q]
2M (x, t) =

n∏
j=1

(
ΨM(xj , t, Pj )− ΨM(xj , t,Qj )

)
.

The sum Πh,τ f provides an approximation for the solution of (1) with null initial
data. The cubature error follows from the quasi-interpolation error:

Πf (x, t) −Πh,τ f (x, t) = Π(I −N
h
√
D ,τ

√
D0

)f (x, t)

and Strichartz-type estimate:

‖Πf ‖Lr,q(R+) ≤ C‖f ‖
Lr′,q′ (R+)

for any Schrödinger-admissible pairs (q, r) .

Theorem 4 ([13, Theorem 2.2]) Let (q, r) be a Schrödinger-admissible pair and
N >

(n+1)
min(q ′,r ′) , q ′ = q/(q − 1), r ′ = r/(r − 1). Suppose that the right-hand side

f of the inhomogeneous Schrödinger equation satisfies ∂k
t ∂

α
x f ∈ Lr ′,q ′(R+) for all

0 ≤ k + |α| ≤ N . Then, there exist a constant C and for any ε > 0 parameters
D0,D > 0, not depending on f , such that the cubature formula Πh,τ f provides the
approximation estimate:

‖Πf −Πh,τ f ‖Lr,q (R+) ≤ C

N∑
k=0

∑
|α|=N−k

(τ
√
D0)

k(h
√
D)N−k‖∂k

t ∂
α
x f ‖Lr′,q′ (R+)

+ ε

N−1∑
k=0

N−1−k∑
j=0

(τ
√
D0)

k(h
√
D)j

(2π)k+j

∑
|α|=j

‖∂k
t ∂

α
x f ‖

Lr′,q′ (R+)
.
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We note that K2M(x, t, hm, τ�) in (11) involves additionally an integration and it
cannot be taken analytically. Therefore, we use an efficient quadrature based on the
classical trapezoidal rule which is exponentially converging for rapidly decaying
smooth functions on the real line. In particular, a “double exponential” rate of decay
on R yields a more rapidly approximation of the trapezoidal rule. First, we make the
substitution introduced in [16]:

s = tϕ(ξ), ϕ(ξ) = 1

2

(
1 + tanh

(aπ
2

sinh ξ
)) = 1

1 + e−aπ sinh ξ
,

with certain positive constant a, which transforms to an integral over R with doubly
exponentially decaying integrand (|f (s)| ≤ C exp(−aeb|s|)). Then, we apply the
classical trapezoidal rule with step κ and sufficiently large R ∈ N

K2M(x, t, hm, τ�) ≈
πatκ

2

R∑
r=−R

χ2M

( t (1 − ϕ(κr))− τ�

τ
√
D0

)
Φ

[Pm,Qm]
2M

(x − hm

h
√
D

,
4 tϕ(κr)

h2D

)
ω(κr),

where we denote ω(ξ) = cosh ξ

1 + cosh(aπ sinh ξ)
. Then, Πh,τ f is explicitly com-

putable.

5 Tensor Product Formulas

The computation of the approximate solution Shg is very efficient if the function
g(x) allows a separated representation; that is, within a prescribed accuracy, it can
be represented as sum of products of univariate functions:

g(x) =
P∑

p=1

αp

n∏
j=1

g
(p)
j (xj )+O(ε)

with suitable functions g
(p)
j chosen such that the separation rank P is small. The

advantage of separated representation is that algebraic operations on g can be
separated into one-dimensional operations. We derive that, at the points of the
uniform grid {(hk, τ s)}, the n-dimensional integral (3) is approximated by the
product of one-dimensional sums:

(S g)(hk, τ s) ≈ D−n/2
P∑

p=1

αp

n∏
j=1

S
(p)
j,h (kj , τ s),
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where

S
(p)

j,h (k, t) =
∑

hm∈Ij
g
(p)

j (hm)
(
ΨM

(
k −m√

D
,

4 t

h2D
,
Pj − hm

h
√
D

)
− ΨM

(
k −m√

D
,

4 t

h2D
,
Qj − hm

h
√
D

))
.

Suppose that also f (x, t) allows a separated representation; that is, within a
prescribed accuracy ε:

f (x, t) =
P∑

p=1

βp

n∏
j=1

f
(p)
j (xj , t)+O(ε).

Thus, we get, at the points of the uniform grid {(hk, τ s)}, the following efficiently
computable high-order approximation formula for Πf :

Πh,τ f (hk, τ s) ≈ −i πaτsκ

2D1/2
0 Dn/2

R∑
r=−R

ω(κr)

×
∑

τ�∈Ω̃r0τ

χ2M

( s(1 − ϕ(κr))− �√
D0

) P∑
p=1

βp

n∏
j=1

T
(p)
j (kj , τ s, τ�, κr) ,

where

T
(p)
j (k, τ s, τ�, κr) =

∑
hm∈Ij

f
(p)
j (hm, τ�)

(
ΨM

(k −m√
D

,
4τ sϕ(κr)

h2D
,
Pj − hm√

D

)

−ΨM

(k −m√
D

,
4 τ sϕ(κr)

h2D
,
Qj − hm√

D

))
.

In [13], we verified numerically the convergence order and the accuracy of the
proposed method on different examples, up to approximation order 6 and space
dimension 200. We remark that, for an efficient implementation of ΨM , we express
erfc with the Faddeeva function W(z) = e−z2

erfc(−iz) (see [1, 7.1.3]) and write

ΨM(x, t, y) = e−y2+i(y−x)2/t

2
√
π

(
W
(
iF (x, it, y)

)
PM(x, it)− QM(x, it, y)√

π

)
,
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where F(x, it, y) is defined by (10). Efficient implementations of double precision
computations of W(z) are available if Im z ≥ 0. For Im z < 0, overflow problems
can occur. To derive a stable formula also for Imz < 0, we used the relation W(z) =
2e−z2 −W(−z) and we get the efficient formula:

ΨM(x, t, y) = −e−y2+i(y−x)2/t

2
√
π

QM(x, it, y)√
π

+
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e−y2+i(y−x)2/t W
(
iF (x, it, y)

)PM(x, it)

2
√
π

ReF(x, it, y) ≥ 0,

(
2 e−x2/(1+it) − e−y2+i(y−x)2/t W

(− iF (x, it, y)
))PM(x, it)

2
√
π

ReF(x, it, y) < 0.
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Generalized Kantorovich Operators
on Convex Compact Subsets and Their
Application to Evolution Problems

Vita Leonessa

Abstract In this short survey paper, we review some of recent results contained in
Altomare et al. (Banach J Math Anal 11:591–614, 2017; J Math Anal Appl 458:153–
173, 2018) and concerning with the generalized Kantorovich operators Cn defined
on convex compact subsets of Rd (d ≥ 1). Such operators constitute a positive
approximation process for continuous functions and, in some cases, for integrable
functions. Moreover, an asymptotic formula for such approximating operators leads
to a differential operator which pregenerates a Markov semigroup on C(K) for
which we obtain an approximation formula, in terms of suitable powers of Cn,
useful to infer some preservation properties of it and, as a consequence, of solutions
to evolution problems associated with the generators.

1 Introduction

In this short survey paper, we review some of recent results concerning with a new
class of positive linear operators defined on a convex compact subset K of Rd (d ≥
1), and their useful connection with approximation problems, not only for functions
defined on such sets, but also for solutions to some classes of differential problems.

These studies fall within the scope of a research project, developed in the last 20
years, which combines methods from Real Analysis, Operator Theory, and Approx-
imation Theory, in order to study some degenerate second-order elliptic–parabolic
differential problems furnishing constructive approximations of the relevant solu-
tions in terms of iterates of positive linear operators. In this direction, the monograph
[9] provides a rather complete overview on the main results regarding the Bernstein–
Schnabl operators Bn generated by a Markov operator T on the space C(K) of all
continuous functions on K (i.e. a positive linear operator T on C(K) such that
T (1) = 1, 1 being the constant function of value 1 on K). For fixed K and T , the
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Bn’s are defined by setting, for every n ≥ 1, x ∈ K and f ∈ C(K),

Bn(f )(x) :=
∫
K

. . .

∫
K

f

(
x1 + . . .+ xn

n

)
μ̃T

x (x1) · · · μ̃T
x (xn),

where (μ̃T
x )x∈K is the continuous selection of Borel probability measures on K

associated with T via the Riesz representation theorem, that is:

∫
K

f dμ̃T
x = T (f )(x) (f ∈ C(K), x ∈ K).

For each n ≥ 1, Bn are linear, positive, map C(K) into C(K) and ‖Bn‖ = 1. For
all properties shared by the Bn operators, we refer the reader to [9] (see also [8]).
Here, we limit us to recall that the class of differential operators to which they are
connected has the following aspect:

WT (u) = 1

2

d∑
i,j=1

(T (priprj )− priprj )
∂2u

∂xi∂xj
(u ∈ C2(K)), (1)

where, for every i = 1, . . . , d , pri denotes the i-th coordinate function on K , i.e.
pri(x) = xi .

Subsequently, in [10] we introduce a new sequence of positive linear operators
acting on C(K) and, in some particular cases, also in other larger function spaces,
for instance Lp-spaces, 1 ≤ p < +∞. Their construction depends not only on a
Markov operator T but also on a real parameter a ≥ 0 and a sequence (μn)n≥1
in M+

1 (K) (i.e. in the set of all Borel probability measures on K). Namely, for
every n ≥ 1, the generalized Kantorovich operator Cn is the positive linear operator
defined by setting, for every f ∈ C(K) and x = (x1, . . . , xn) ∈ K ,

Cn(f )(x)

=
∫
K

∫
K

· · ·
∫
K

f

(
x1 + . . .+ xn + axn+1

n+ a

)
dμ̃T

x (x1) · · · dμ̃T
x (xn)dμn(xn+1).

Note that, if a = 0, then Cn = Bn (n ≥ 1). Therefore, Cn(f ) ∈ C(K) and the
operator Cn : C(K) → C(K), being linear and positive, is continuous with norm
equal to 1, because Cn(1) = 1. In fact, a relation between Cn and Bn holds for every
a ≥ 0. Namely, for every n ≥ 1 and f ∈ C(K),

Cn(f ) = Bn(In(f )) with In(f )(x) =
∫
K

f

(
nx + at

n+ a

)
dμn(t). (2)

The class of operators Cn contains several approximation processes, in both
univariate and multivariate settings, present in the literature, as well as new ones.
For examples, in the case of the unit interval or the multidimensional hypercube and
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simplex, the operators Cn turn into the classical Kantorovich operators defined on
these settings (see the examples below), together with several other wide-ranging
generalizations (see [3, 5, 14–17, 20, 22, 23]).

In what follows, we briefly present the approximation and preservation properties
of operators Cn. Subsequently, we establish an asymptotic formula for them, which
leads to a class of differential operators of the form:

VT (u) = WT (u)+
d∑

i=1

a(bi − pri)
∂u

∂xi
(u ∈ C2(K)), (3)

where b = (b1, . . . , bd) ∈ K is the barycentre of the weak limit of (μn)n≥1, i.e. bi =∫
K
pridμ for every i = 1, . . . , d , where μ ∈ M+

1 (K) verifies limn→∞
∫
K
f dμn =∫

K
f dμ for every f ∈ C(K). Specializing the convex compact set K and the other

parameters, we obtain several classes of differential operators which are of current
interest in the research area of evolution equations (see, e.g., examples in Sect. 2).

The couple (VT , C
2(K)) is the pregenerator of a Markov semigroup on C(K)

which is approximated in terms of suitable iterates of the Cn’s. Moreover, in the
particular case of the hypercube [0, 1]d , the above semigroup can be extended to a
contraction semigroup on Lp([0, 1]d) which in turn is approximated by the powers
of the natural extension of the operators Cn to Lp([0, 1]d). All results are taken from
[10] and [11].

We want to point out that the present exposition is limited to the framework of
Rd for the sake of simplicity, but the above questions have been investigated also in
the infinite-dimensional setting (see [10, 12] for all the details).

2 The Operators Cn: Examples and Properties

We begin to showing some examples of the Cn’s constructed by specifying all the
parameters and using (2). Other examples may be found in [10].

Example 1 Assume K = [0, 1] and consider the Markov operator T1 defined, for
every f ∈ C([0, 1]) and 0 ≤ x ≤ 1, by T1(f )(x) := (1 − x)f (0) + xf (1). Then,
for n ≥ 1, f ∈ C([0, 1]) and x ∈ [0, 1], the operators Cn are

Cn(f )(x) =
n∑

k=0

(
n

k

)
xk(1 − x)n−k

∫ 1

0
f

(
k + as

n+ a

)
dμn(s). (4)

In particular, assume that all the μn are equal to the Borel–Lebesgue measure λ1
on [0, 1]. Then, if a = 0, we obtain the Bernstein operators, whereas for a = 1,
formula (4) gives the classical Kantorovich operators [16, 17]. Thus, (4) represents
a link between these fundamental sequences of approximating operators in terms
of a continuous parameter a ∈ [0, 1]. Special cases of operators (4) have been also
considered in [3] and [15].
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Example 2 Let Qd := [0, 1]d , d ≥ 1, and consider the Markov operator Sd defined
by setting, for every f ∈ C(Qd) and x ∈ Qd ,

Sd(f )(x) :=
1∑

h1,...,hd=0

f (δh11, . . . , δhd1)x
h1
1 (1 − x1)

1−h1 · · · xhd

d (1 − xd)
1−hd

(δij being the Kronecker symbol). Then, for any n ≥ 1, f ∈ C(Qd), x ∈ Qd ,

Cn(f )(x) =
n∑

h1,...,hd=0

d∏
i=1

(
n

hi

)
x
hi

i (1 − xi)
n−hi

×
∫
Qd

f

(
h1 + as1

n+ a
, . . . ,

hd + asd

n+ a

)
dμn(s1, . . . , sd ) .

(5)

When all the μn coincide with the Borel–Lebesgue measure λd on Qd and a = 1,
the operators Cn turn into a generalization of Kantorovich operators introduced in
[23]. Another special case of (5) has been studied in [5].

Example 3 Let Kd be the canonical simplex in Rd , d ≥ 1, and consider the
canonical Markov operator Td defined, for each f ∈ C(Kd), x ∈ Kd , as:

Td(f )(x) :=
(

1 −
d∑

i=1

xi

)
f (0)+

d∑
i=1

xif (ei),

where, for every i = 1, . . . , d, ei := (δij )1≤j≤d . In this case,

Cn(f )(x) =
∑

h1,...,hd=0,...,n
h1+...+hd≤n

n!xh1
1 · · · xhd

d

h1! · · ·hd !(n− h1 − . . .− hd)!

(
1 −

d∑
i=1

xi

)n−
d∑

i=1
hi

×
∫
Kd

f

(
h1 + as1

n+ a
,
h2 + as2

n+ a
, . . . ,

hd + asd

n+ a

)
dμn(s1, . . . , sd ) (6)

(n ≥ 1, f ∈ C(Kd), x ∈ Kd ). When all the μn are equal to the Borel–Lebesgue
measure λd on Kd and a = 1, these operators are referred to as the Kantorovich
operators on C(Kd) and were introduced in [23]. Another particular case of (6) has
been investigated in [5, Section 3].

From now on, assume that the Markov operator T satisfies the following
condition:

T (h) = h for every h ∈ {pr1, . . . , prd } . (Hp1)
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For every n ≥ 1 and i = 1, . . . , d , we have

Cn(pri ) = 1

n+ a

{
a

(∫
K

pri dμn

)
1 + npri

}
(7)

and

Cn(pr
2
i ) =

1

(n+ a)2

{
a2
(∫

K

pr2
i dμn

)
1 + 2na

(∫
K

pri dμn

)
pri

+n(n− 1)pr2
i + nT (pr2

i )
}
.

(8)

Therefore, applying a Korovkin-type result, formulas (7)–(8), and observing that
the sequences

(∫
K pri dμn

)
n≥1 and

(∫
K pr2

i dμn

)
n≥1 are bounded for every

i = 1, . . . , d , we have the following approximation property in C(K) (see [10,
Theorem 4.2]).

Theorem 1 Assume that the Markov operator T satisfies condition (Hp1). Then,
for every f ∈ C(K), lim

n→∞Cn(f ) = f uniformly on K .

From the previous theorem, and thanks to the fact that the sequence (Cn)n≥1 is
equibounded from Lp(K) into Lp(K) when K = Qd or K = Kd (see Examples 2
and 3 above), we get the following approximation result in Lp-spaces, 1 ≤ p <

+∞ (see [10, Theorems 5.1 and 5.4]).

Theorem 2 Assume that a > 0 and T satisfies (Hp1). If f ∈ Lp(Qd) (resp. f ∈
Lp(Kd)), then limn→∞ Cn(f ) = f in Lp(Qd) (resp. in Lp(Kd)).

Remark 1 Consider the sequence (Cn)n≥1 of operators defined on C([0, 1]) by
formula (4) with a = 1, and call Kn the classical Kantorovich operators on [0, 1].
Since Cn(1) = 1, we know that, for every n ≥ 1, f ∈ C([0, 1]), x ∈ [0, 1] and
δ > 0, the following pointwise estimate holds (see [18]):

|Cn(f )(x)− f (x)| ≤ (1 + δ−2Cn(ψ
2
x )(x))ω(f, δ),

where, for a fixed 0 ≤ x ≤ 1, ψx(t) = t − x for any t ∈ [0, 1]. Note that, for
f ∈ C([0, 1]) fixed, if we consider (μn)n≥1 in M+

1 [0, 1]) and the points x ∈ [0, 1]
such that

Cn(ψ
2
x )(x) < Kn(ψ

2
x )(x), (9)

then the order of approximation to f (x) by means of operators Cn and Kn may be
compared (see, e.g. [21]). It is easy to show that (9) is equivalent to

x(1−2bn) <
1

3
−cn with bn :=

∫ 1

0
e1 dμn and cn :=

∫ 1

0
e2 dμn . (10)
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For instance, (10) holds for all x ∈ [0, 1] in one of the following cases: bn = 1
2 and

1
4 ≤ cn < 1

3 , or 1
2 < bn ≤ 1 and 1

4 < cn ≤ 1
3 , or 0 ≤ bn < 1

2 , 0 ≤ cn < 1
3 and

3cn−6bn+2 ≤ 0. In such cases, the order of approximation of Cn(f )(x) is at least
as good as that of Kn(f )(x) in the whole [0, 1].

Among other things, in [10, Sec. 6] it is showed that the operators Cn preserve
Lipschitz continuity and convexity. Given M ≥ 0, consider the space of all Lipschitz
continuous functions with Lipschitz constant M:

Lip(M, 1) = {f ∈ C(K) : |f (x)− f (y)| ≤ M‖x − y‖ for every x, y ∈ K}

(‖ · ‖ denotes an arbitrary norm on Rd ). First, we have that

Proposition 1 Suppose that there exists c ≥ 1 such that T (Lip(1, 1)) ⊂ Lip(c, 1).
Then, for every n ≥ 1 and M > 0, Cn(Lip(M, 1)) ⊂ Lip(cM, 1).

Note that the Markov operators T1, Sd and Td in Examples 1–3 satisfy Proposition 1
with c = 1, by considering on [0, 1] the usual metric, and on Qd and Kd the l1-
metric (see [9, p. 124]).

As far as the convexity is concerned, for a given f ∈ C(K), set

Δ(f ; x, y) := B2(f )(x)+B2(f )(y)−2
∫∫

K2
f

(
s + t

2

)
dμ̃T

x (s)dμ̃
T
y (t) (x, y ∈ K).

Proposition 2 Suppose that T satisfies the following hypotheses:

1. T maps continuous convex functions into (continuous) convex functions;
2. Δ(f ; x, y) ≥ 0 for every convex function f ∈ C(K) and x, y ∈ K .

Then, each Cn maps continuous convex functions into (continuous) convex func-
tions.

Also in this case, the operators of Examples 1–3 satisfy Proposition 2. Other type of
convexity may be also investigated (see [10, Prop. 6.3]).

3 Evolution Problems Associated with Operators Cn

The asymptotic formula for operators Cn, which leads to the class of differential
operators VT given in (3), is contained in the next result (see [9]).

Theorem 3 Under assumptions (Hp1), for every u ∈ C2(K), we have

lim
n→∞ n(Cn(u)− u) = VT (u) uniformly on K.
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The operator VT associated with the particular parameters considered in Exam-
ples 1–3, are, resp.,

VT1(u)(x) =
α(x)

2
u′′(x)+ a(b− x)u′(x) with a ≥ 0, b ∈ [0, 1] ,

VSd (u)(x) =
1

2

d∑
i=1

xi(1−xi)
∂2u

∂x2
i

(x)+a

d∑
i=1

(bi −xi)
∂u

∂xi
(x) with a ≥ 0, b ∈ Qd ,

VTd (u)(x) =
1

2

d∑
i=1

xi(1 − xi)
∂2u

∂x2
i

(x)−
∑

1≤i<j≤d

xixj
∂2u

∂xi∂xj
(x)

+ a

d∑
i=1

(bi − xi)
∂u

∂xi
(x) with b ∈ Kd, a ≥ 0 .

Such differential operators are the Fleming–Viot-type operators on the unit
interval and on the multidimensional hypercube and simplex (see, e.g. [1, 2, 4, 6,
7, 9, 13, 19]).

In order to get that the desired generation/approximation result for (VT , C
2(K)),

we need to require that T satisfies also the following condition:

T (Pm(K)) ⊂ Pm(K) for every m ≥ 1, (Hp2)

Pm(K) being the space of (restriction to K of all) polynomials of degree at most m.

Theorem 4 Assume that T satisfies conditions (Hp1) and (Hp2). Then, the oper-
ator (VT , C

2(K)) is closable and its closure (AT ,D(AT )) generates a Markov
semigroup (S(t))t≥0 on C(K) such that if t ≥ 0, f ∈ C(K) and (kn)n≥1 is a
sequence of positive integers satisfying limn→∞ kn/n = t , then

S(t)(f ) = lim
n→∞Ckn

n (f ) uniformly on K, (11)

where each C
kn
n denotes the iterate of Cn of order kn.

Moreover, P∞(K) := ⋃
m≥1 Pm(K), and hence C2(K), is a core for

(AT ,D(AT )) and S(t)(Pm(K)) ⊂ Pm(K) for every t ≥ 0 and m ≥ 1.

Theorem 4 allows us to represent the (unique) solution of the initial-boundary
value evolution problem governed by such a semigroup:

⎧⎨
⎩

∂u

∂t
(x, t) = AT (u(·, t))(x) x ∈ K, t ≥ 0,

u(x, 0) = u0(x) u0 ∈ D(AT ), x ∈ K ,
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in terms of the Cn’s, i.e. u(x, t) = T (t)(u0)(x) = limn→∞ C
kn
n (u0)(x) uniformly

w.r.t. x ∈ K , and to deduce some spatial regularity properties of the relevant
solutions by means of similar ones held for the Cn’s (see [11, Section 3]).

Let us end this section by noting that, if a = 1 and K = Qd , the semigroup
(S(t))t≥0 may be extended to a positive contraction semigroup on Lp(Qd), and the
representation formula (11) extends to Lp(Qd) [11, Section 4].

Also, the differential operator VTd for the simplex Kd generates a contraction
semigroup on Lp(Kd) which extends the semigroup (S(t))t≥0 on C(Kd) given by
Theorem 4 to Lp(Kd). Unfortunately,Cn operators are not able to approximate such
semigroup on Lp(Kd), essentially because they are not contractive on Lp(Kd). This
important question is still open.
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Semigroups and Approximation Processes, de Gruyter Studies in Mathematics, vol. 61 (Walter
de Gruyter GmbH, Berlin, 2014)

10. F. Altomare, M. Cappelletti Montano, V. Leonessa, I. Raşa, A generalization of Kantorovich
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On the Generalized Sylvester
Polynomials

Nejla Özmen and Esra Erkuş-Duman

Abstract In this study, we give some new properties for the generalized Sylvester
polynomials. The results obtained here include various families of multilinear and
multilateral generating functions and miscellaneous properties. In addition, we
derive a theorem giving certain families of bilateral generating functions for the
generalized Sylvester polynomials and the Lauricella functions. Finally, we get
several results of this theorem.

1 Introduction

The generalized Sylvester polynomials φn(x; c) are defined by the generating
relation [1]:

∞∑
n=0

φn(x; c)tn = (1 − t)−xecxt . (1)

The following generating function also holds true for these polynomials [1]:

∞∑
n=0

(
n+m

n

)
φn+m(x; c)tn = (1 − t)−x−mecxtφm(x; c− ct). (2)
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It follows from (1) that

φn(x; c) = (cx)n

n! 2F0

[
−n, x; −;−(cx)−1

]
, (3)

where 2F0 denotes the Gauss hypergeometric series. It is noted that the special case
c = 1 of (3) reduces immediately to the Sylvester polynomials [2].

The main object of this study is to derive several properties of the generalized
Sylvester polynomials. Various families of multilinear and multilateral generating
functions, integral representation and recurrence relations are obtained for these
polynomials. In addition, we derive a theorem giving certain families of bilateral
generating functions for the generalized Sylvester polynomials and the Lauricella
functions.

2 Generating Functions and Miscellaneous Properties

In this section, we derive several families of bilinear and bilateral generating
functions for the generalized Sylvester polynomials φn(x; c) given by (3).

Lemma 1 The following addition formula holds for the generalized Sylvester
polynomials:

φn(x1 + x2; c) =
n∑

m=0

φn−m(x1; c)φm(x2; c). (4)

Proof Replacing x by x1 + x2 in (1), we obtain

∞∑
n=0

φn(x1 + x2; c)tn = (1 − t)−x1−x2e(x1+x2)ct

=
∞∑
n=0

φn(x1; c)tn
∞∑

m=0

φm(x2; c)tm

=
∞∑
n=0

n∑
m=0

φn−m(x1; c)φm(x2; c)tn.

From the coefficients of tn on the both sides of the last equality, one can get the
desired result.

Theorem 1 Corresponding to an identically non-vanishing function Ωμ(y1, . . . ,

yr ) of r complex variables y1, . . . , yr (r ∈ N) and of complex order μ,ψ , let

Λμ,ψ(y1, . . . , yr; ζ ) :=
∞∑
k=0

akΩμ+ψk(y1, . . . , yr)ζ
k
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and

Θμ,ψ
n,p (x; c; y1, . . . , yr ; ξ) :=

[n/p]∑
k=0

akφn−pk(x; c)Ωμ+ψk(y1, . . . , yr)ξ
k,

where ak �= 0 , n, p ∈ N and the notation [n/p] means the greatest integer less
than or equal n/p.

Then, we have

∞∑
n=0

Θμ,ψ
n,p

(
x; c; y1, . . . , yr; η

tp

)
tn = (1 − t)−xecxtΛμ,ψ(y1, . . . , yr ; η) (5)

provided that each member of (5) exists.

Proof For convenience, let S denote the first member of the assertion (5) of
Theorem 1. Then,

S =
∞∑
n=0

[n/p]∑
k=0

akφn−pk(x; c)Ωμ+ψk(y1, . . . , yr )η
ktn−pk.

Replacing n by n+ pk, we may write that

S =
∞∑
n=0

∞∑
k=0

ak φn(x; c)Ωμ+ψk(y1, . . . , yr)η
ktn

=
∞∑
n=0

φn(x; c)tn
∞∑
k=0

akΩμ+ψk(y1, . . . , yr)η
k

= (1 − t)−xecxtΛμ,ψ(y1, . . . , yr ; η)

which completes the proof.

By using a similar idea, we also get the next results immediately.

Theorem 2 Corresponding to an identically non-vanishing function Ωμ(y1, . . . ,

yr ) of r complex variables y1, . . . , yr (r ∈ N) and of complex order μ,ψ , let

Λ
n,p
μ,ψ(x1 + x2; c; y1, . . . , yr ; t) :=

[n/p]∑
k=0

akφn−pk(x1 + x2; c)Ωμ+ψk(y1, . . . , yr)t
k .
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Then, for ak �= 0, n, p ∈ N, we have

n∑
k=0

[k/p]∑
l=0

alφn−k(x1, c)φk−pl (x2, c)Ωμ+ψl (y1, . . . , yr )t
l = Λ

n,p
μ,ψ (x1 + x2; c; y1, . . . , yr ; t)

(6)

provided that each member of (6) exists.

Theorem 3 Corresponding to an identically non-vanishing function Ωμ(y1, . . . ,

yr ) of r complex variables y1, . . . , yr (r ∈ N) and of complex order μ, let

Λμ,p,q (x; c; y1, . . . , yr; t) :=
∞∑
n=0

anφm+qn(x; c)Ωμ+pn(y1, . . . , yr)t
n

where an �= 0 and

θn,p,q(y1, . . . , yr ; z) :=
[n/q]∑
k=0

(
m+ n

n− qk

)
akΩμ+pk(y1, . . . , yr )z

k.

Then, for p, q ∈ N, we have

∞∑
n=0

φm+n(x; c)θn,p,q(y1, . . . , yr ; z)tn

= (1 − t)−x−mecxtΛμ,p,q

(
x; c− ct; y1, . . . , yr; z( t

1 − t
)q
)

(7)

provided that each member of (7) exists.

For every suitable choice of the coefficients ak (k ∈ N0), if the multivariable
functions Ωμ+ψk(y1, . . . , yr ), r ∈ N, are expressed as an appropriate product of
several simpler functions, the assertions of Theorems 1–3 can be applied in order to
derive various families of multilinear and multilateral generating functions for the
generalized Sylvester polynomials.

Now, we give an integral representation and several recurrence relations for the
generalized Sylvester polynomials.

Theorem 4 The generalized Sylvester polynomials φn(x; c) have the following
integral representation:

φn(x; c) = 1

n!Γ (x)

∞∫
0

e−uux−1(cx + u)ndu, (Re(x) > 0) .
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Proof If we use the identity

a−v = 1

Γ (v)

∞∫
0

e−at tv−1dt, (Re(v) > 0)

on the left-hand side of the generating function (1), we have

∞∑
n=0

φn(x; c)tn = 1

Γ (x)

∞∫
0

e−(1−t )uux−1ecxtdu

= 1

Γ (x)

∞∫
0

e−uux−1e(cx+u)tdu

=
∞∑
n=0

⎛
⎝ 1

n!Γ (x)

∞∫
0

e−uux−1(cx + u)ndu

⎞
⎠ tn.

From the coefficients of tn on the both sides of the last equality, we get the desired
result.

On the other hand, by differentiating each member of the generating function
relation (1) with respect to x and using

∞∑
n=0

∞∑
k=0

A(k, n) =
∞∑
n=0

n∑
k=0

A(k, n− k),

we have the differential recurrence relation for the generalized Sylvester polynomi-
als as follows:

∂

∂x
φn(x; c) = xφn(x; c)+

n−1∑
m=0

1

(m+ 1)
φn−m−1(x; c).

Besides, by differentiating each member of the generating function relation
(1) with respect to t , we have the following another recurrence relation for these
polynomials:

(n+ 1)φn+1(x; c) = x

(
cφn(x; c)+

n∑
m=0

φn−m(x; c)
)
.
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3 A Bilateral Generating Function Involving the Lauricella
Functions

In the present section, we derive various families of bilateral generating functions
for the generalized Sylvester polynomials and the Lauricella functions [7] by using
the similar method in [3–5].

For a suitable bounded non-vanishing multiple sequence {Ω(m1, . . . ,

ms)}m1,...,ms∈N0
of real or complex parameters, let ϕn(u1; u2, . . . , us) of s (real

or complex) variables u1, . . . , us be defined by:

ϕn(u1; u2, . . . , us) : =
n∑

m1=0

∞∑
m2,...,ms=0

(−n)m1((b))m1φ

((d))m1δ

×Ω (f (m1, . . . ,ms),m2, . . . ,ms)
u
m1
1

m1! . . .
u
ms
s

ms !
where, for convenience,

((b))m1φ =
B∏

j=1

(bj )m1φj and ((d))m1δ =
D∏

j=1

(dj )m1δj .

Theorem 5 The following bilateral generating function holds true:

∞∑
n=0

φn(x; c)ϕn(u1; u2, . . . , us)t
n

= (1 − t)−xecxt
∞∑

k,m1,...,ms=0

((b))(m1+k)φ(x)k

((d))(m1+k)δ

×Ω(f (m1 + k) ,m2, . . . ,ms)
(−u1cxt)

m1

m1!
( u1t
t−1 )

k

k!
u
m2
2

m2! . . .
u
ms
s

ms ! .

Proof By using the relation (2), it is easily observed that

∞∑
n=0

φn(x; c)ϕn(u1; u2, . . . , us)t
n

=
∞∑
n=0

φn(x; c)
n∑

m1=0

∞∑
m2,...,ms=0

(−n)m1((b))m1φ

((d))m1δ

×Ω (f (m1, . . . ,ms),m2, . . . ,ms)
u
m1
1

m1! . . .
u
ms
s

ms ! t
n
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= (1 − t)−xecxt
∞∑

m1,m2,...,ms=0

((b))m1φ

((d))m1δ

Ω (f (m1, . . . ,ms),m2, . . . ,ms)

×(− u1t

1 − t
)m1

u
m2
2

m2! . . .
u
ms
s

ms !
(x(c − ct))m1

m1!
m1∑
k=0

(−m1)k(x)k
−(cx − cxt)−k

k!
= (1 − t)−xecxt

×
∞∑

k,m1,...,ms=0

((b))(m1+k)φ

((d))(m1+k)δ

Ω (f (m1 + k) ,m2, . . . ,ms) (x)k

× (−u1cxt)
m1

m1!
( u1t
t−1 )

k

k!
u
m2
2

m2! . . .
u
ms
s

ms ! .

By appropriately choosing the multiple sequence Ω(m1, . . . ,ms) in Theorem 5, we
obtain several interesting results as follows which give bilateral generating functions
for the generalized Sylvester polynomials and the Lauricella functions.

By letting

Ω (f (m1, . . . ,ms),m2, . . . ,ms) = (a)m1+...+ms (b2)m2 . . . (bs)ms

(c1)m1 . . . (cs)ms

and

φ = δ = 0 (that is, φ1 = . . . = φB = δ1 = . . . = δD = 0)

in Theorem 5, we obtain the following result:

Corollary 1 The following bilateral generating function holds true:

∞∑
n=0

φn(x; c)F (s)
A [a,−n, b2, . . . , bs; c1, . . . , cs; u1, u2, . . . , us] tn

= (1 − t)−xecxt

×F
1:0;1;1;...;1
1:0;0;1;...;1

⎛
⎝ [(a) : 1, . . . , 1] : −; [x : 1] ; [b2 : 1] ; . . . ; [bs : 1] ;
[
(c1) : ψ(1), . . . , ψ(s+1)

] : −; −; [c2 : 1] ; . . . ; [cs : 1] ;

(−u1cxt), (
u1t
t−1 ), u2, . . . , us

)
,
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where F
(s)
A is the Lauricella function, F

1:0;1;1;...;1
1:0;0;1;...;1 is the generalized Lauricella

function [6, 7] and the coefficients ψ(η) are given by:

ψ(η) =
{

1, (1 ≤ η ≤ 2)
0, (2 < η ≤ s + 1)

.

If we put

Ω (f (m1, . . . ,ms),m2, . . . ,ms) = (a
(1)
1 )m2 . . . (a

(s−1)
1 )ms (a

(1)
2 )m2 . . . (a

(s−1)
2 )ms

(c)m1+...+ms

and

B = 1, b1 = b, φ1 = 1 and δ = 0

in Theorem 5, we obtain the next corollary.

Corollary 2 The following bilateral generating function holds true:

∞∑
n=0

φn(x; c)F (s)
B

[
−n, a

(1)
1 , . . . , a

(s−1)
1 , b, a

(1)
2 , . . . , a

(s−1)
2 ; c; u1, u2, . . . , us

]
tn

= (1 − t)−xecxt

×F
1:0;1;2;...;2
1:0;0;0;...;0

⎛
⎜⎜⎝
[
(b) : θ(1), . . . , θ(s+1)

]
: −; [x : 1] ;

[
a(1) : 1

]
; . . . ;

[
a(s−1) : 1

]
;

[(c) : 1, . . . , 1] : −; −; −; . . . ; −;

(−u1cxt), (
u1t
t−1 ), u2, . . . , us

)
,

where F
(s)
B is the Lauricella function and the coefficients θ(η) are given by:

θ(η) =
{

1, (1 ≤ η ≤ 2)
0, (2 < η ≤ s + 1)

.

By letting

Ω (f (m1, . . . ,ms),m2, . . . ,ms) = (a)m1+...+ms (b2)m2 . . . (bs)ms

(c)m1+...+ms

and

φ = δ = 0,

in Theorem 5,we obtain the following result.
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Corollary 3 The following bilateral generating function holds true:

∞∑
n=0

φn(x; c)F (s)
D [a,−n, b2, . . . , bs; c; u1, u2, . . . , us ] tn

= (1 − t)−xecxtF
(s+1)
D

[
a, 0, x, b2, . . . , bs; c; (−u1cxt), (

u1t

t − 1
), u2, . . . , us

]
,

where F
(s)
D is the Lauricella function.
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Durrmeyer-Type Bernstein Operators
Based on (p, q)-Integers
with Two Variables

Tuba Vedi-Dilek

Abstract The purpose of this study is to introduce the Durrmeyer-type Bernstein
operators based on (p, q)-integers with two variables. Then, we compute the error
of approximation by using modulus of continuity and the degree of approximation
by means of Lipschitz class. Finally, we obtain the numerical results in detail.

1 Introduction

Recently, one of the most interesting areas of research in approximation theory is
the application of (p, q)-calculus. Mursaleen et al. initiated the (p, q)-type gener-
alisation of linear positive operators, describing the (p, q)-analogue of Bernstein
operators [8] as:

Bn,p,q (f ; x)= 1

p
n(n−1)

2

n∑
k=0

[
n

k

]
p,q

p
k(k−1)

2 xk
n−k−1∏
s=0

(
ps − qsx

)
f

(
[k]p,q

pk−n [n]p,q

)
,

where x ∈ [0, 1], 0 < q < p ≤ 1, the (p, q)-integers are given as [5]:

[k]p,q = pk − qk

p − q
.

For each k ∈ N0, the (p, q)-factorial is represented by:

[k]p,q ! =
{

[k]p,q [k − 1]p,q . . . [1]p,q , k = 1, 2, 3, . . . ,
1 , k = 0
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and (p, q)-binomial coefficients are defined as:

[
n

k

]
p,q

= [n]p,q !
[n− k]p,q ! [k]p,q !

where n ≥ k ≥ 0.
Then, Sidharth and Agrawal [12] introduced the (p, q)-analogue of Bernstein–

Schurer operators as:

B̄n,s (f ;p, q; x) =
n+s∑
k=0

p
k(k−1)

2 − (n+s)(n+s−1)
2

[
n+ s

k

]
p,q

xk (1 − x)n+s−k
p,q f

(
pn−k

[k]p,q
[n]p,q

)

where x ∈ [0, 1 + s], s ∈ N0, 0 < q ≤ p < 1 and n ∈ N.
Then, Gemikonakli and Vedi-Dilek constructed the Chlodowsky variant of

Bernstein–Schurer operators based on (p, q)-integers in [4] as:

C̄n,s (f ;p, q; x)=
n+s∑
k=0

f

(
pn−k

[k]p,q
[n]p,q

bn

)
p

k(k−1)
2 − (n+s−1)(n+s)

2

[
n+ s

k

]

p,q

(
x

bn

)k

(1−x)n+s−k
p,q

where x ∈ [0, bn], n, s ∈ N, 0 < q < p ≤ 1 and (bn) is the positive increasing
sequence with bn → ∞ and bn

n
→ 0 as n → ∞.

Over the past 2 years, there has been a considerable amount of research on the
(p, q)-analogue of Bernstein operators (see [1–3, 5–7, 9–12, 14]).

In 2016, Durrmeyer-type generalisation of (p, q)-Bernstein operators was
defined by Sharma in [13] as:

D
(p,q)
n (f ; x) = [n+ 1]p,q p−n2

n∑
k=0

b
(p,q)
n,k (x)

(
q

p

)−k
1∫

0

b
(p,q)
n,k (qt) f (t) dp,qt , x ∈ [0, 1]

where b
(p,q)
n,k (x) = pk(k−1)/2

[
n+ s

k

]
p,q

xk (1 − x)n−k
p,q and 0 < q < p ≤ 1,

n ∈ N.
To giving the estimations, Sharma proved Lemmas 1 and 2, respectively:

Lemma 1 For s = 0, 1, 2, 3, . . ., we have

1∫
0

b
(p,q)

n,k (qt) tsdp,qt =
(
q

p

)k

p−kspn(n+2s+1)/2 [n]p,q ! [k + s]p,q !
[k]p,q ! [n+ s + 1]p,q ! .
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Lemma 2 Let D(p,q)
n (f ; x) be given in Lemma 1 in [13]. Then,

(i) D
(p,q)
n (1; x) = 1,

(ii) D
(p,q)
n (t; x) = 1

[n+2]p,q

(
pn + q [n]p,q x

)
,

(iii) D
(p,q)
n

(
t2; x) = (p+q)p2n+(p+q)2qpn−1[n]p,qx+q4[n]p,q [n−1]p,q x

2

[n+2]p,q [n+3]p,q
.

Obtaining the proof of Lemmas 1 and 2, we need the following definition and
corollary:

Definition 1 Let s,t ∈ R and for 0 < q < p ≤ 1, (p, q)-beta integral is defined by

1∫
0

xt−1 (1 − qx)s−1
p,q dp,qx.

Corollary 1 For 0 ≤ k ≤ n and 0 < q < p ≤ 1, we have relation between
(p, q)-integers and q-integers:

[n]p,q = pn−1 [n]q/p

and

[
n

k

]
p,q

= pk(n−k)

[
n

k

]
q/p

.

This chapter is structured in the following way:
Section 2 introduces the Durrmeyer-type Bernstein operators based on (p, q)-

integers with two variables and investigates the moments of the operator. In Sect. 3,
we obtain the order of convergence of the Durrmeyer-type Bernstein operators based
on (p, q)-integers with two variables by means of Lipschitz class functions and
the full and partial modulus of continuities. Finally, in Sect. 4, numerical results
to illustrate the contribution of the Durrmeyer-type Bernstein operators based on
(p, q)-integers with two variables are presented.

2 Construction of the Operators

In this section, we introduce Durrmeyer-type Bernstein operators based on (p, q)-
integers with two variables. Henceforth, let I = [0, 1] and for I 2 = I × I , let
C
(
I 2
)

denote the space of all real-valued functions on I 2 endowed with the norm
‖f ‖I = sup

(x,y)∈I 2
|f (x, y)|. Now, if f ∈ C

(
I 2
)

and 0 < q1,q2 < p1, p2 ≤ 1, then

we construct Durrmeyer-type Bernstein operators based on (p, q)-integers with two
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variables by:

Dn,m

(
f ; (p1,q1

)
, (p2, q2) ; x, y

)
(2.1)

:= [n+1]pn,qn [m+ 1]pm,qm p−n2

1 p−m2

2

n∑
k=0

m∑
l=0

(
q1

p1

)−k (
q2

p2

)−l

Rn,k(p1, q1; x)

×Rm,l(p2, q2; y)
1∫

0

1∫
0

Rn,k(p1, q1; qt)Rm,l(p2, q2; qs)f (t, s) dp1,q1 tdp2,q2s,

where n, m∈N, (x, y) ∈ I 2, andRn,k(p1, q1; x) = p
k(k−1)

2
1

[
n

k

]
p1,q1

xk (1−x)n−k
p1,q1

.

Now, for giving our estimations we need that the following equalities hold for
Eq. (2.1):

Lemma 3 Using the Lemma 2, directly, we have

Dn,m

(
1; (p1,q1

)
, (p2, q2) ; x, y

) = 1,

Dn,m

(
t; (p1,q1

)
, (p2, q2) ; x, y

) = 1

[n+ 2]pn,qn

(
pn
n + qn [n]p1,q1 x

)
,

Dn,m

(
s; (p1,q1

)
, (p2, q2) ; x, y

) = 1

[m+ 2]p2,q2

(
pm

2 + q2 [m]p2,q2 y
)
,

Dn,m

(
t2; (p1,q1

)
, (p2, q2) ; x, y

)

= (p1 + q1) p
2n
1 + (p1 + q1)

2 q1p
n−1
1 [n]p1,q1 x + q4

1 [n]p1,q1 [n− 1]p1,q1 x
2

[n+ 2]p1,q1 [n+ 3]p1,q1

,

Dn,m

(
s2; (p1,q1

)
, (p2, q2) ; x, y

)

= (p2 + q2) p
2m
2 + (p2 + q2)

2 q2p
m−1
2 [m]p2,q2 y + q4

2 [m]p,q [m− 1]p,q y2

[m+ 2]p2,q2 [m+ 3]p2,q2

Dn,m

(
t2 + s2; (p1,q1

)
, (p2, q2) ; x, y

)

= (p1 + q1) p
2n
1 + (p1 + q1)

2 q1p
n−1
1 [n]p1,q1 x + q4

1 [n]p1,q1 [n− 1]p1,q1 x
2

[n+ 2]p1,q1 [n+ 3]p1,q1

+ (p2 + q2) p
2m
2 + (p2 + q2)

2 q2p
m−1
2 [m]p2,q2 y + q4

2 [m]p,q [m− 1]p,q y2

[m+ 2]p2,q2 [m+ 3]p2,q2

.

Using the Korovkin’s theorem, we can obtain the following theorem.
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Theorem 1 For all f ∈ C
(
I 2
)

and assuming that q1 : (qn), q2 : (qm); p1 : (pn),
p2 : (pm) with 0 < qn,qm < pn, pm ≤ 1 such that qn → 1 and qm → 1 as
n,m → ∞, we get

lim
n,m→∞

∥∥Dn,m

(
f ; (pn,qn

)
, (pm, qm) ; ·, ·)− f (·, ·)∥∥

I
= 0.

3 Order of Convergence

In this section, we compute the rate of convergence of the operators in terms of the
modulus of continuity and then the degree of approximation in terms of Lipschitz-
type space.

Let f ∈ C
(
I 2
)

and x, y ∈ I . Then, the definition of the modulus of continuity
of f is given by:

ω(f ; δ) = max√
(x1−x2)

2+(y1−y2)
2≤δ

x,y∈C(I)

|f (x1, y1)− f (x2, y2)| . (3.1)

It is known that for any δ > 0

|f (x1, y1)− f (x2, y2)| ≤ ω(f ; δ)
⎛
⎝
√
(x1 − x2)

2 + (y1 − y2)
2

δ
+ 1

⎞
⎠ .

Theorem 2 For any f ∈ C
(
I 2
)

and let the following inequalities

∣∣Dn,m

(
f ; (p1,q1

)
, (p2, q2) ; x, y

)− f (x, y)
∣∣ ≤ 2

[
ω(1) (f ; δn (x))+ ω(2) (f ; δm (y))

]
(3.2)

∣∣Dn,m

(
f ; (p1,q1

)
, (p2, q2) ; x, y

)− f (x, y)
∣∣ ≤ 2ω

(
f ;
√
δ2
n + δ2

m

)
(3.3)

be satisfied where

δ2
n (x) := (p1 + q1) p

2n
1 + (p1 + q1)

2 q1p
n−1
1 [n]p1,q1

x + q4
1 [n]p1,q1 [n− 1]p1,q1

x2

[n+ 2]p1,q1 [n+ 3]p1,q1

(3.4)

and

δ2
m (y) := (p2 + q2) p

2m
2 + (p2 + q2)

2 q2p
m−1
2 [m]p2,q2

y + q4
2 [m]p,q [m− 1]p,q y2

[m+ 2]p2,q2 [m+ 3]p2,q2

.

(3.5)
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Proof We directly have

Dn,m

(
f ; (p1,q1

)
, (p2, q2) ; x, y

)− f (x, y)

= [n+ 1]p1,q1 [m+ 1]p2,q2 p
−n2

1 p
−m2

1

n∑
k=0

m∑
l=0

(
q1

p1

)−k ( q2

p2

)−l

Rn,k(p1, q1; x)Rm,l (p2, q2; y)

×
1∫

0

1∫
0

Rn,k(p1, q1; qt)Rm,l (p2, q2; qs) [f (t, s)− f (x, y)] dp1,q1 tdp2,q2 s

= [n+ 1]p1,q1 [m+ 1]p2,q2 p−n2

1 p−m2

1

n∑
k=0

m∑
l=0

(
q1

p1

)−k ( q2

p2

)−l

Rn,k(p1, q1; x)Rm,l (p2, q2; y)

×
1∫

0

1∫
0

Rn,k(p1, q1; qt)Rm,l (p2, q2; qs) [f (t, s)− f (x, s)+ f (x, s)− f (x, y)] dp1,q1 tdp2,q2 s

By linearity and positivity of the operators, we get

∣∣Dn,m

(
f ; (p1,q1

)
, (p2, q2) ; x, y

) − f (x, y)
∣∣

≤ [n+ 1]p1,q1 [m+ 1]p2,q2
p−n2

1 p−m2

2

n∑
k=0

m∑
l=0

(
q1

p1

)−k (
q2

p2

)−l

Rn,k(p1, q1; x)Rm,l(p2, q2; y)

×
1∫

0

1∫
0

Rn,k(p1, q1; qt)Rm,l(p2, q2; qs) |f (t, s)− f (x, s)| dp1,q1 tdp2,q2 s

+ [n+ 1]p1,q1 [m+ 1]p2,q2
p−n2

1 p−m2

2

n∑
k=0

m∑
l=0

(
q1

p1

)k (
q2

p2

)−l

Rn,k(p1, q1; x)Rm,l(p2, q2; y)

×
1∫

0

1∫
0

Rn,k(p1, q1; qt)Rm,l(p2, q2; qs) |f (t, s)− f (x, y)| dp1,q1 tdp2,q2 s

≤ [n+ 1]p1,q1 [m+ 1]p2,q2
p−n2

1 p−m2

1

n∑
k=0

m∑
l=0

(
q1

p1

)−k (
q2

p2

)−l

Rn,k(p1, q1; x)Rm,l(p2, q2; y)

×
1∫

0

1∫
0

Rn,k(p1, q1; qt)Rm,l(p2, q2; qs)ω(1) (f ; |t − x|) dp1,q1 tdp2,q2s

+ [n+ 1]p1,q1 [m+ 1]p2,q2
p−n2

1 p−m2

1

n∑
k=0

m∑
l=0

(
q1

p1

)−k (
q2

p2

)l

Rn,k(p1, q1; x)Rm,l(p2, q2; y)

×
1∫

0

1∫
0

Rn,k(p1, q1; qt)Rm,l(p2, q2; qs)ω(2) (f ; |s − y|) dp1,q1 tdp2,q2s

= Ω1 (x, y) +Ω2 (x, y) .
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Using Lemma 1, we have

Ω1 (x, y)

= [n+ 1]p1,q1 [m+1]p2,q2
p−n2

1 p−m2

1

n∑
k=0

m∑
l=0

(
q1

p1

)−k (
q2

p2

)−l

Rn,k(p1, q1; x)Rm,l (p2, q2; y)

×
1∫

0

1∫
0

Rn,k(p1, q1; qt)Rm,l(p2, q2; qs)ω(1) (f ; |t − x|) dp1,q1 tdp2,q2s

≤ ω(1)
(
f ; δ2

n (x)
)

×
⎡
⎣1 + [n+ 1]p1,q1

δ2
n (x)

p−n2

1

n∑
k=0

(
q1

p1

)k

Rn,k(p1, q1; x)
1∫

0

Rn,k(p1, q1; qt) (f ; |t − x|) dp1,q1 t

⎤
⎦ .

Using the Cauchy–Schwarz inequality, we get

Ω1 (x, y) ≤ 2ω(1)
(
f ; δ2

n (x)

)
(3.6)

where we chose δ2
n (x) as in Eq. (3.4).

In the same way, we obtain

Ω2 (x, y) ≤ 2ω(2)
(
f ; δ2

m (y)

)
(3.7)

where δ2
m (y) is given in Eq. (3.5). Combining Eqs. (3.6) and (3.7), we get Eq. (3.2).

Now, by using linearity and the monotonicity of the operators, and taking into
account Eq. (3.3), we have

∣∣Dn,m

(
f ; (p1,q1

)
, (p2, q2) ; x, y

) − f (x, y)
∣∣

≤ [n+1]p1,q1 [m+ 1]p2,q2
p−n2

1 p−m2

1

n∑
k=0

m∑
l=0

(
q1

p1

)−k (
q2

p2

)−l

Rn,k(p1, q1; x)Rm,l (p2, q2; y)

×
1∫

0

1∫
0

Rn,k(p1, q1; qt)Rm,l(p2, q2; qs)ω
(
f ;
√
(t − x)2 + (s − y)2

)
dp1,q1 tdp2,q2s

≤ [n+1]p1,q1 [m+ 1]p2,q2
p−n2

1 p−m2

1

n∑
k=0

m∑
l=0

(
q1

p1

)−k (
q2

p2

)−l

Rn,k(p1, q1; x)Rm,l (p2, q2; y)

×
1∫

0

1∫
0

Rn,k(p1, q1; qt)Rm,l(p2, q2; qs)ω
(
f ;
√
(t − x)2 + (s − y)2

)
dp1,q1 tdp2,q2s



64 T. Vedi-Dilek

≤ [n+ 1]p1,q1 [m+ 1]p2,q2
p−n2

1 p−m2

1

n∑
k=0

m∑
l=0

(
q1

p1

)−k (
q2

p2

)−l

Rn,k(p1, q1; x)Rm,l(p2, q2; y)

×
1∫

0

1∫
0

Rn,k(p1, q1; qt)Rm,l(p2, q2; qs) |f (t, s)− f (x, y)| dp1,q1 tdp2,q2s

≤ 1 + 1

δn (x)
[n+ 1]p1,q1 [m+ 1]p2,q2

p−n2

1 p−m2

1

n∑
k=0

m∑
l=0

(
q1

p1

)−k

×
(
q2

p2

)−l

Rn,k(p1, q1; x)Rm,l (p2, q2; y)

×
1∫

0

1∫
0

Rn,k(p1, q1; qt)Rm,l(p2, q2; qs)ω
(
f ;
√
(t − x)2 + (s − y)2

)
dp1,q1 tdp2,q2s.

Using Lemma 1 and Cauchy–Schwartz inequality, we have Eq. (3.3). ��
Now, for 0 < μ1 ≤ 1 and 0 < μ2 ≤ 1, we give the Lipschitz class

LipM (μ1, μ2) for the bivariate case as follows:

|f (t, s)− f (x, y)| ≤ M |t − x|μ1 |s − y|μ2

where (t, s) , (x, y) ∈ I 2.

Theorem 3 Let f ∈ LipM (μ1, μ2) and (qn, qm) ∈ (0, 1) such that lim
n→∞ qn = 1

and lim
m→∞ qm = 1. Then for all (x, y) ∈ I 2 , we get

∣∣Dn,m

(
f ; (p1,q1

)
, (p2, q2) ; x, y

)− f (x, y)
∣∣ ≤ Mδ

μ1/2
n (x) δ

μ2/2
m (y) ,

where δn (x) and δm (x) are defined as in Theorem 2.

Proof Because f ∈ LipM (μ1, μ2), we can write

∣∣Dn,m

(
f ; (pn,qn

)
, (pm, qm) ; x, y)− f (x, y)

∣∣
≤ Dn,m

(|f (t, s)− f (x, y)| ; (pn,qn
)
, (pm, qm) ; x, y)

≤ MDn,m

(|t − x|μ1 |s − y|μ2 ; (pn,qn
)
, (pm, qm) ; x, y)

≤ MDn

(|t − x|μ1 ; (pn,qn
) ; x)Dm

(|s − y|μ2 ; (pm,qm
) ; y) .
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Now, by the Hölder’s inequality with p̄ = 2

μ1
, q̄ = 2

2−μ1
and p̄ = 2

μ2
, q̄ = 2

2−μ2
,

respectively, we have

∣∣Dn,m

(
f ; (pn,qn

)
, (pm, qm) ; x, y)− f (x, y)

∣∣
≤ M

{
Dn

(
(t − x)2 ; (pn,qn

) ; x)}μ1 {
Dn

(
1; (pn,qn

) ; x)} 2−μ1
2

×
{
Dm

(
(s − y)2 ; (pm,qm

) ; y)}μ2 {
Dm

(
1; (pm,qm

) ; y)} 2−μ2
2 .

This completes the proof. ��

4 Numerical Results

In order to show the effectiveness and accuracy of Dn,m

(
f ; (p1,q1

)
, (p2, q2) ; x, y

)
to f (x, y) with different values of parameters, numerical results are presented in this
section. Sensitivity analysis is carried out to minimise the error of approximation
of Dn,m

(
f ; (p1,q1

)
, (p2, q2) ; x, y

)
to the function f (x, y) = cos

(
x2 + y2

)
for

minimum n and m values by taking into account different q1 and q2 values.
In Fig. 1, Dn,m

(
f ; (p1,q1

)
, (p2, q2) ; x, y

)
results are given as a function of

f (x, y) = cos
(
x2 + y2

)
for different q1 and q2 values. Figure 2 demonstrates

the convergence of Dn,m

(
f ; (p1,q1

)
, (p2, q2) ; x, y

)
to f (x, y) but this time

considering different n and m values, when q1 = q2 = 0.1 and p1 = p2 = 0.9.
In Fig. 2a, b, as n and m values are increased, the error of the approximation of

Dn,m

(
f ; (p1,q1

)
, (p2, q2) ; x, y

)
to f (x, y) is minimised given q1 = 0.2, q2 = 0.5

and p1 = 0.9, p2 = 0.9 values.
On the other hand, comparative results are given in Tables 1 and 2, for

the errors of the approximation of Dn,m

(
f ; (p1,q1

)
, (p2, q2) ; x, y

)
, consider-

ing each for different n, m values. However, using n = 20, m = 15 for

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0

0.2

0.4

0.6

0.8

1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

operator
f(x)

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1
0

0.2

0.4

0.6

0.8

1

f(x,y)
operator

(b)

Fig. 1 Convergence of Dn,m

(
f ; (p1,q1

)
, (p2, q2) ; x, y

)
for different q1 and q2 values. (a) q1 =

0.2, q2 = 0.5, p1 = 0.9, p2 = 0.9. (b) q1 = 0.8, q2 = 0.8, p1 = 0.9, p2 = 0.9
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Fig. 2 Convergence of Dn,m
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)
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for different n and m values. (a) n =

20,m = 15. (b) n = 1,m = 1

Table 1 Errors of approximation Dn,m

(
f ; (p1,q1

)
, (p2, q2) ; x, y

)
to f (x, y)

x y f (x, y)

|f (x, y) −D20,15(f ; (p1,q1),

(p2, q2); x, y)
|f (x, y) −D1,1(f ; (p1,q1),

(p2, q2); x, y)
0.1 0.1 0.98346 0.0310 0.0150

0.2 0.2 0.98300 0.0432 0.0098

0.3 0.3 0.97653 0.0200 0.0049

0.4 0.4 0.87522 0.0411 0.0504

0.5 0.5 0.87100 0.1224 0.1052

0.6 0.6 0.67491 0.1998 0.0992

0.7 0.7 0.55902 0.2723 0.0632

0.8 0.8 0.28672 0.3627 0.0041

Table 2 Errors of approximation Dn,m

(
f ; (p1,q1

)
, (p2, q2) ; x, y

)
to f (x, y)

x y f (x, y)

|f (x, y) −D20,15(f ; (p1,q1),

(p2, q2); x, y)
|f (x, y) −D1,1(f ; (p1,q1),

(p2, q2); x, y)
0.1 0.1 0.99396 0.0190 0.0460

0.2 0.2 0.9968 0.0207 0.0720

0.3 0.3 0.98384 0.0049 0.0543

0.4 0.4 0.94924 0.0544 0.0180

0.5 0.5 0.87758 0.1050 0.1369

0.6 0.6 0.75181 0.1280 0.2913

0.7 0.7 0.55702 0.1210 0.4942

0.8 0.8 0.28672 0.1242 0.7627

Dn,m

(
f ; (p1,q1

)
, (p2, q2) ; x, y

)
rather than n = 1, m = 1 gives better approx-

imation results. Therefore, the effect of increasing n and m values further than
n = 20 and m = 15 is less evident for x < 0.5 and y < 0.5 for the convergence of
Dn,m

(
f ; (p1,q1

)
, (p2, q2) ; x, y

)
to the function f (x, y).
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On the other hand, it is required to increase the values of n and m further than
n = 20 and m = 15 for x > 0.5 and y > 0.5 in order to have more accurate results.
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Part III
Complex Analysis and Convex

Optimization and Their Applications
in Wave Physics

Session Organizers: Sven Nordebo and Yevhen Ivanenko

The session focused primarily on theory of complex analysis and convex optimiza-
tion, and their applications in wave physics. Complex analysis in one or several
variables was considered as well as convex or nonconvex optimization. Typical
research areas include various representation theorems and moment problems
involving Herglotz–Nevanlinna and Stieltjes functions and their applications to lin-
ear, time translational invariant, causal, and passive systems to derive performance
bounds in wave physics. Optimization can be used to analyze the realizability of
performance bounds, as well as for automated design of acoustic or electromagnetic
structures. Other research areas involving complex analysis and convex or noncon-
vex optimization were also highly appreciated in the session.



On the Passivity of the Delay-Rational
Green’s-Function-Based Model for
Transmission Lines

Giulio Antonini, Maria De Lauretis, Jonas Ekman, and Elena Miroshnikova

Abstract In this paper, we study the delay-rational Green’s-function-based
(DeRaG) model for transmission lines. This model is described in terms of
impedance representation and it contains a rational and a hyperbolic part. The
crucial property of transmission lines models is to be passive. The passivity of the
rational part has been studied by the authors in a previous work. Here, we extend the
results to the rational part of the DeRaG model. Moreover, we prove the passivity
of the hyperbolic part.

1 Introduction

Transmission lines (TLs) are of main interest in electrical engineering. They are
mainly used for signal transmission, as interconnects in printed circuit boards
(PCBs) and for energy distribution, as power transmission lines. Several port models
exist for TLs in which only the terminal currents and voltage are related [1].
Among these models, the authors have recently proposed an improved version of
the rational Green’s-function-based model (RaG) presented in [2] called delay-RaG
or “DeRaG” [5], where the line delay is explicitly included in the model. The
DeRaG model is expressed by using the impedance representation Z. In fact, the Z
representation allows an easy computation of the Green’s function since a boundary
value problem is solved by virtually enforcing the port currents at the ends of the
line. This makes simple to compute the eigenfunctions and eigenvalues of the 1D
propagation problem and the Green’s function of the problem is identified as a series
rational form. All the details can be found in [2]. Other well-known representations,
such as the ABCD-matrix or cascade representation, can be obtained from the
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impedance representation by virtue of transformation formulas [13]. TLs are passive
circuit elements and their mathematical model should retain this essential property.
However, it is not uncommon to find in literature TLs models that are not passive by
construction and that, therefore, require a posteriori passivity enforcement. There
is a vast literature devoted to the passivity of electrical models, and many articles
have been written. The most interested reader can find more on [14–16], and the
references therein. In this paper, we prove that the DeRaG model is passive by
construction. The DeRaG model is described in terms of impedance representation
and can be written as a finite sum of poles and residues, referred to as rational
(delayless) part, and a hyperbolic matrix that accounts for the delay of the line. The
rational delayless part contains asymptotic poles and residues that do not modify the
positive-realness property of the impedance, as proved in [2]. In this paper, we check
the passivity of the impedance matrix for single-conductor TLs, and the main result
of the paper is the theorem about the positive realness of the hyperbolic matrix. The
hyperbolic part consists of the asymptotic residue matrix, which is positive-definite,
and the hyperbolic function matrix, which is proved to be passive.

2 Preliminaries

The notation used to describe the DeRaG model is summarized in Table 1. Matrices
and vectors are written in bold. In the following, we review some basic definitions
and properties of matrices that are important for our purposes; more can be found in
the relevant literature (see, for example, [8]).

Table 1 Table of notation

� Length of conductors (m)

N Number of conductors

x Axis of the line in a rectangular coordinate system

p.u.l. or superscript ′ Per-unit-length quantities

R′, L′,G′, C′ p.u.l. resistance ("/m), inductance (H/m), conductance (S/m), and
capacitance (F/m)

γ Propagation constant

Z Impedance matrix (")

V Voltage port vector (V)

I Current port vector (A)

R Residue matrix ("Hz)

p = α + iβ Complex pole (Hz)

Am Positive coefficients equal to
√

1/� for m = 0 and
√

2/� for m > 0

� Matrix of hyperbolic functions

T Lossless propagation delay (s)

ˆ Asymptotic quantities
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Let s = x + iy ∈ C be any complex number, where x ∈ R and y ∈ R are its
real �(s) and imaginary �(s) parts correspondingly. By s̄ we denote the conjugate
number, i.e., s̄ = x − iy. Given a complex matrix M = {Mij }ni,j=1 ∈ C2n, the M#

defines its conjugate transpose M# = MT and M−1 its inverse—if exists. Mh =
1
2 (M + M#) denotes the Hermitian part of M (Mh = (Mh)#), and |M| = det(M).
‖M‖ = ‖M‖max is the max-norm of M, and I and 1 are the identity and all-ones
n× n matrices.

Definition 1 A n× n complex matrix M is positive-(semi)definite if

�(s̄Ms) > 0 (�(s̄Ms) ≥ 0) for any s ∈ C
n\ {0} .

Theorem 1 The following statements are equivalent:

1. M is positive-definite;
2. Mh is positive-definite;
3. all leading principal minors of Mh are positive-definite (Silvester’s criterion).

In the present paper we deal with 2 × 2 matrices.

3 The DeRaG Model for Transmission Lines: Background
Formulation

In the following, we review some basic properties of TLs and we refer the more
interested reader to the relevant literature [11, 13]. In the general case, TLs consist
of N + 1 conductors (N conductor plus the ground conductor) of length � that can
transmit electrical signals. In this paper, we focus on the case N = 1, normally
referred to as single-conductor transmission lines. Figure 1 represents a single-
conductor transmission line as a system with input and output ports. The x value
refers to the position along the axis of the line in a rectangular coordinate system.
We consider that the line is excited by the port currents I (0, s) and I (�, s). The
excitation manifests as port voltages V (0, s) and V (�, s). The TL can be described

I1(0,s) I1(�,s)

V1(0,s) V1(�,s)

x

y

�

Fig. 1 Single-conductor transmission line. The axis of the line is the x axis of a rectangular
coordinate system
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in terms of the so-called per-unit-length (p.u.l.) parameters, namely, the resistance
(R′), inductance (L′), capacitance (C′), and conductance (G′), which can be either
dependent on or independent of the frequency. The superscript ′ is used to be
consistent with the notation found in literature for per-unit-length parameters. The
p.u.l. parameters are positive for both homogeneous and inhomogeneous medium
[13]. R′ = 0 for perfect conductors, whereas G′ = 0 if the surrounding medium is
lossless. If the conductors and the medium are both lossless, then R′ = G′ = 0,
which in the following is referred to as lossless case; otherwise, we talk about
lossy case. The voltages and the currents along a transmission line can be uniquely
defined only for a transverse electromagnetic (TEM) field structure, where the
electric and magnetic fields are transverse to the line axis. However, non-ideal
aspects of TLs can invalidate the TEM mode assumption, for example in case
of inhomogeneous surrounding medium. The case of non-TEM modes that are
negligible is referred to as the quasi-TEM mode assumption [13]. In [2], the
telegraph equations, which describe the voltages and currents in a TL in terms of
p.u.l. parameters, are formulated under the quasi-TEM mode assumption. Given the
frequency-independentp.u.l. parameters, the impedance matrix representation in the
Laplace domain reads as described in [2]

[
V (0, s)
V (�, s)

]
=
[
Z11(s) Z12(s)

Z21(s) Z22(s)

]
︸ ︷︷ ︸

Z(s)

[
I (0, s)
I (�, s)

]
, (1)

where s is the complex variable of the Laplace transform, and Z(s) is the 2 ×
2 matrix-valued transfer function between the input (currents) and the output
(voltages) and is symmetric. In [2], it was proven that the matrix Z(s) can be
computed as

Z(s) =
+∞∑
m=0

[
Zm (−1)mZm

(−1)mZm Zm

]
, Zm =

[
γ 2 +

(mπ
�

)2
]−1

A2
m(R′ + sL′) ,

(2)

where γ2 = (R′ + sL′)(G′ + sC′) is the squared propagation constant γ, and Am are
positive coefficients defined as

Am =
{√

1/�, m = 0√
2/�, m > 0 .

The impedance was proved to be passive by construction (no passivity enforce-
ment) by resorting to the theorem for passive impedance matrices as given in
Theorem 2, page 77. Equation (2) can be rewritten in a rational form as an infinite
sum of the poles and residue matrices of Z(s), as explained in [2]. Specifically, each
summation mode m generates a number of residues and poles equal to N for m = 0
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and equal to 2N for m > 0 because poles and residues are in complex-conjugate
pairs. In case of N = 1, we have

Z(s) = R0

s − p0
+

m̂−1∑
m=1

(
Rm

s − pm

+ Rm

s − p̄m

)
. (3)

pm are the poles defined as

pm =
{

α0, m = 0
αm ± iβm, m > 0 ,

(4)

αm ∈ (−∞, 0], βm ∈ (0,+∞), where the real parts are zero in the lossless case.
The generic residue matrix corresponding to a mode m reads as

Rm =
[
R11,m R12,m

R21,m R22,m

]
=
[

R11,m (−1)mR11,m

(−1)mR11,m R11,m

]
. (5)

In the rest of the paper, we will avoid to use the subscript 11 for the elements
of the residue matrix, i.e., Rm = R11,m. The residues are real for m = 0 and
complex for m > 0. Notice that the corresponding impedance elements Zij (s)

share the same poles. The sum in (3) is infinite and, in practice, a reasonable
accuracy can be achieved only by using a large number of rational functions.
Consequently, the method is computationally ineffective and the accuracy is limited
because the propagation delay—the time that a signal spends in order to travel along
the line, from the input to the output—is merely approximated. Additionally, if the
delay is not properly considered but merely approximated, the causality condition
is intrinsically violated [14]. Passive systems are causal systems [15]. Therefore,
a model that intrinsically violates the causality condition cannot be passive. To
overcome this limitation, in [5] the authors have proposed the DeRag model that
reads as in Eq. (1) but it has an explicit delay extraction that modifies the rational
sum in (3). The DeRaG model and its improved accuracy have been extensively
studied in [3, 5, 6], and the reader is encouraged to read the aforementioned citations
to gain a full understanding of the model. Here, we review the basic properties and
expressions that allow to prove the passivity of the hyperbolic part. We proved that
the sum can be truncated by introducing suitable tolerances to an optimal index m̂,
whereas the infinite behavior of (3) is retained by means of hyperbolic functions
that account for the propagation delays and for the asymptotic values of residues
and poles. In particular, for m → ∞, the residues become asymptotically constant
and real. At m̂, we assume that the asymptotic behavior is fully established, and the
asymptotic residue matrix, of dimension 2 × 2 (case N = 1), is real, R̂ = R̂1,
R̂ > 0. Notice that it is independent from the summation mode because it is
computed for the optimal index m̂. Similarly, for m → ∞, the real part of the
complex poles becomes constant, and the imaginary part shows a periodicity that
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allows us to extract the propagation delays, i.e., the following representation is valid:

p̂m = α̂ + i
(
mβ̂
)

for m ≥ m̂ , (6)

where β̂ = βm̂/m̂ and αm −→
m→∞ α̂. The asymptotic real part α̂ of the poles can be

either zero (lossless case) or negative (lossy case), e.g., α̂ ∈ (−∞, 0]. In [4] it is
shown that the time delays can be computed as

T = 2π
β̂

and they correspond the well-known lossless delays. In [5], we proved that the
asymptotic behavior of the model can be expressed with hyperbolic functions in
the frequency domain and that the impedance in (3) can be expressed as a sum of a
rational delayless part and a hyperbolic part as

Z(s) = R0

s − p0
+

m̂−1∑
m=1

(
Rm

s − pm

+ Rm

s − p̄m

)
(7)

− R̂

s − α̂
−

m̂−1∑
m=1

(
R̂

s − p̂m

+ R̂

s − ˆ̄pm

)
+ H(s)︸︷︷︸

Hyperbolic part

, (8)

where the asymptotic poles and residues appear also for the modes m < m̂ by means
of mathematical manipulations necessary for the delay extraction. The asymptotic
poles are properly adjusted such that they are periodic in the imaginary part starting
from the mode m = 1. H(s) denotes the following matrix-valued function:

H(s) = R̂T

2
�

(
(s − α̂)

T

2

)
, (9)

where α̂ < 0 and

�(s) =
[

coth s csch s

csch s coth s

]
, s ∈ C, (10)

accounts for the asymptotic delays. In [7, 10] it is proven that H represents a
distortionless line. In particular, the term

R̂T

2
=
√

L′
C′ (11)
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and it corresponds to the characteristic impedance matrix of the distortionless
line associated to the original TL. Therefore, it is positive real, because the p.u.l.
parameters are positive.

4 The Passivity Theorem

The passivity condition can be studied in both the time and frequency domain.
In the Laplace domain, the following well-known theorem is valid for impedance
representations [14]:

Theorem 2 An impedance matrix Z = Z(s), s ∈ C, represents a passive linear
system if and only if:

1. each element of Z(s) is defined and analytic in �(s) > 0;
2. Z is positive-semidefinite for s, �(s) > 0;
3. Z(s̄) = Z̄(s) for any s ∈ C.

The first requirement means that there are no unstable poles in the system, and is
related to both causality and stability. The second condition requires that the real
part of the impedance must be positive, which is equivalent of saying that there are
no negative resistors. The last one ensures that the associated impulse response is
real. For systems with impedance matrix representation, the passivity is equivalent
to the positive-realness of the transfer function, see [9] and the references therein.

5 Discussion on the Passivity of the DeRaG Model

5.1 Passivity of the Rational Part

We can start by considering the rational delayless part, which is the difference
between the truncated sum of the original model and its asymptotic tail:

Zdl(s) = R0

s − p0
+

m̂−1∑
m=1

(
Rm

s − pm

+ Rm

s − p̄m

)
− R̂

s − α̂
−

m̂−1∑
m=1

(
R̂

s − p̂m

+ R̂

s − ˆ̄pm

)
,

(12)

where the subscript dl is for “delayless.” It satisfies the points 1 and 3 of the theorem
as proved in [2]. Here, we show that it satisfies the second condition as well. The
first (non-asymptotic) part is positive-semidefinite. In fact, it corresponds to (3)
truncated to m̂−1. As proved in [2], Eq. (3) is positive real and it retains this property
also when truncated to a generic summation mode. The second (asymptotic) sum is
equivalent to considering the Z matrix for m → +∞. As we have seen in Sect. 3,
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the asymptotic residues have imaginary part equal to zero. Additionally, the real part
is the asymptotic one that converges to a value smaller than the initial one, such that

‖R̂‖ < ‖Rm‖, ∀m < m̂ . (13)

In respect to the poles, they have the same properties as the poles of the original line,
but the real part is negative and fixed among the families, and their imaginary part is
equally spaced. Therefore, the rational delayless part is still positive-semidefinite.

5.2 Passivity of the Hyperbolic Part

The following theorem holds:

Theorem 3 The matrix H = H(s) defined by (9) is a positive-real matrix.

Proof

1. As it was mentioned before (see (11)), H(s) can be written as

H(s) =
√

L′
C′ �

(
(s − α̂)

T

2

)
,

where � is as in (10). Since L′/C′ > 0 and α̂ < 0, it is sufficient to prove the
theorem only for �.

2. By standard techniques of complex analysis one can show that

Lemma 1 The complex-valued functions coth and csch allow the following �−
� representations:

coth(s) =
(
e2x − e−2x

)− 4i sin y cos y

cos2 y
(
ex − e−x

)2 + sin2 y
(
ex + e−x

)2 (14)

and

csch(s) = 2 cos y
(
ex − e−x

)− 2i sin y
(
ex + e−x

)
cos2 y

(
ex − e−x

)2 + sin2 y
(
ex + e−x

)2 , s = x + iy ∈ C ,

(15)

correspondingly.

Corollary 1 The matrix � (10) satisfies �(s̄) = �(s) = �#(s) for all s ∈ C.

3. The functions coth and csch satisfy the first condition of Theorem 2.
The third one follows directly from Corollary 1. In order to complete the proof
of Theorem 3, we need to prove that � = �(s) is positive-semidefinite for
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�(s) > 0. We will show that it is positive-definite by using the Sylvester’s
criterion (see Theorem 1). Due to Corollary 1, the Hermitian part �h of the
matrix � has the form

$h
ij (s) =

$ij (s)+$ji(s)

2
= $ij (s)+$ij (s̄)

2
= � ($ij (s)

)
, i, j = 1, 2,

where according to (14) and (15)

�($ij )(s) =

⎧⎪⎨
⎪⎩

(
e2x−e−2x)

cos2 y(ex−e−x)
2+sin2 y(ex+e−x)

2 , i = j

2 cosy(ex−e−x)
cos2 y(ex−e−x)

2+sin2 y(ex+e−x)
2 , i �= j

, s = x + iy ∈ C .

(16)

In order to use the Silvester’s criterion (see Theorem 1), we check that

$h
11 > 0 and |�h| > 0, whenever x = �(s) > 0 .

The first part $h
11 > 0 follows directly from (16). The second one reads as

|�h(s)| = �($11)
2 −�($12)

2 (17)

=
(

e2x − e−2x

cos2 y
(
ex − e−x

)2 + sin2 y
(
ex + e−x

)2
)2

−
(

2 cos y
(
ex − e−x

)
cos2 y

(
ex − e−x

)2 + sin2 y
(
ex + e−x

)2
)2

. (18)

Since | cos y| ≤ 1, it is sufficient to analyze the function

f (x) = (e2x − e−2x)2 − 2(ex − e−x)2.

The derivative reads as

f ′(x) =
(
(e2x − e−2x)2 − 4(ex − e−x)2

)′ = 4(e2x − e−2x)
(
(e2x + e−2x)− 1

)

and has only one zero:

f ′(0) = 0, f ′(x) < 0, x < 0, f ′(x) > 0, x > 0 .

Since f (0) = 0, we can conclude that |�h| > 0 for all s, �(s) > 0 and therefore
� is proved to be positive-definite for all s ∈ C, �(s) > 0. It completes the proof
of Theorem 3.
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Remark 1 The term Φ11(s) = coth(s) can be as well analyzed by means of
Herglotz–Nevanlinna functions, which are analytic functions g(s), s ∈ C, with the
property �(g(s)) ≥ 0 for s ∈ C, �(s) > 0 (see [12]). The connection between the
positive-real function f and the Herglotz–Nevanlinna function g is provided by the
following formula:

f (s) = −ig(is).

In [12], it was shown that g(s) = tan s is a Herglotz–Nevanlinna function. Using the
formula above, we compute that f (s) = tanh s is a positive-real function. In fact,

−i tan(is) = −i
ei(is) − e−i(is)

i(ei(is) + e−i(is))
= es − e−s

es + e−s
= tanh s.

Since coth s = tanh−1 s, �(s) > 0, it is also positive for s ∈ C, �(s) > 0.

6 Conclusion and Future Work

In this paper, we have discussed the passivity properties of the DeRaG model for
single-conductor transmission lines. In particular, the passivity of the hyperbolic
part is analytically proved. However, the generalization to multiconductor case
(N > 1) is not straightforward. In this case, the impedance matrix becomes a block
matrix and therefore different techniques are required. It is the subject of interest for
future works.
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Passive Approximation with High-Order
B-Splines

Yevhen Ivanenko and Sven Nordebo

Abstract Convex optimization has emerged as a well-suited tool for passive
approximation. Here, it is desired to approximate some pre-defined non-trivial
system response over a given finite frequency band by using a passive system.
This paper summarizes some explicit results concerning the Hilbert transform of
general B-splines of arbitrary order and arbitrary partitions that can be useful with
the convex optimization formulation. A numerical example in power engineering
is included concerning the identification of some model parameters based on
measurements on high-voltage insulation materials.

1 Introduction

Herglotz–Nevanlinna functions (also known as Nevanlinna, Herglotz, Pick, R-, and
positive real (PR) functions) [1, 8, 17, 21, 27] can be used to represent admittance
passive [4, 27] and scattering passive systems [4] with many applications in physics
and engineering. In particular, moment relations for the generating measures (sum
rules) can be used to derive physical bounds in electromagnetic applications such
as with radar absorbers [22], high-impedance surfaces [12], passive metamaterials
[11], scattering [4, 25], antennas [13], waveguides [26], etc., see also [4] for a
general overview and an in-depth derivation of related sum rules. However, the
application of sum rules is limited to some special cases where moment relations
can be analyzed in detail and in some other applications the required sum rules
may not even exist. This is typically the situation when it is desired to approximate
some specific non-trivial system response over a given finite frequency band (such
as with a general metamaterial, etc.) by using an admittance passive system. In this
case, a numerical convex optimization approach provides an alternative tool which
does not depend on the asymptotic expansion of the Herglotz–Nevanlinna functions.
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This approach has been used, e.g., with dispersion compensation for waveguides,
passive metamaterials, passive radar absorbers in [19], and with optimal plasmonic
resonances in [20]. A rigorous mathematical interpretation of the approach has
been given in [16] showing that the convex cone of Herglotz–Nevanlinna functions
generated by B-splines of any order and defined on uniform partitions is dense (in
the sense of a weighted Lp-norm) in the larger cone generated by positive measures
having Hölder continuous densities in a neighborhood of the approximation domain.
In this paper, the convex optimization approach is complemented with some explicit
results concerning the use of general B-splines of arbitrary order and arbitrary
partitions. A numerical example in system identification is used to illustrate the
theory.

2 Herglotz–Nevanlinna Functions

A Herglotz–Nevanlinna function h(z) is a holomorphic function with the property
�{h(z)} ≥ 0 for z ∈ C

+ = {z ∈ C|�{z} > 0}, where z = x + iy for x, y ∈ R.
It can be shown that the Herglotz–Nevanlinna functions have the following integral
representation:

h(z) = b1z+ c +
∫ ∞

−∞

(
1

ξ − z
− ξ

1 + ξ2

)
dβ(ξ), (1)

for z ∈ C
+ and where b1 ≥ 0, c = �{h(i)}, and β is the corresponding positive

Borel measure with
∫
R

dβ(ξ)/(1 + ξ2) < ∞, see, e.g., [1, 3, 8, 17, 21]. When the
measure β is absolutely continuous with density β ′, the differential can be expressed
as dβ(x) = β ′(x)dx = 1

π
�{h(x + i0)}dx, where dx is the Lebesgue measure and

the last expression indicates that the limit is taken from the upper half-plane, cf.
[8, 17]. In the general case, the positive measure β is uniquely determined by the
Herglotz function h(z) from the Stieltjes inversion formula [17].

A symmetric Herglotz–Nevanlinna function satisfies the symmetry requirement
h(z) = −h(−z∗)∗ for z ∈ C

+ and where β is an even measure, i.e., dβ(ξ) =
dβ(−ξ). The integral representation (1) can then be simplified as

h(z) = b1z +
∫ ∞

−∞
1

ξ − z
dβ(ξ), (2)

for z ∈ C+ and where the integral is taken as a symmetric limit at infinity.
Suppose that a symmetric Herglotz–Nevanlinna function has the following

asymptotic expansions:

h(z) =
{
a−1z

−1 + a1z+ . . .+ a2N0−1z
2N0−1 + o(z2N0−1) z→̂0,

b1z+ b−1z
−1 + . . .+ b1−2N∞z1−2N∞ + o(z1−2N∞) z→̂∞,

(3)
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where the expansion coefficients are real valued, a−1 ≤ 0, b1 ≥ 0, and N0 and N∞
are non-negative integers where 1 − N∞ ≤ N0. Here, z→̂0 and z→̂∞ mean that
|z| → 0 and |z| → ∞ in the Stolz cone φ ≤ arg z ≤ π − φ, respectively, for any
φ ∈ (0, π/2], see [4]. It is then possible to derive the following integral identities
(sum rules) based on the representation (2):

2

π

∫ ∞

0+
�{h(ξ)}

ξ2k dξ
def= lim

ε→0+ lim
y→0+

2

π

∫ 1/ε

ε

�{h(ξ + iy)}
ξ2k dξ = a2k−1 − b2k−1,

(4)

for k = 1 −N∞, . . . , N0, see, e.g., [4, 8].

3 Passive Approximation

Passive approximation based on the symmetric Herglotz–Nevanlinna function
representation (2) can be used to approximate an arbitrary linear system function
with a real-valued time convolution kernel, see [16, 19]. However, to formulate a
well-defined convex optimization problem [5], it is necessary to first impose some
a priori constraints on the target function as well as on the class of approximating
Herglotz–Nevanlinna functions. In particular, we are interested here in Herglotz–
Nevanlinna functions that are known to be locally Hölder continuous on some given
intervals on the real line. Hence, a passive approximation problem is considered
where the target function F is an arbitrary complex valued continuous function
defined on an approximation domain Ω ⊂ R consisting of a finite union of closed
and bounded intervals of the real axis. The norms used, denoted by ‖ · ‖Lp(w,Ω), are
weighted Lp(Ω)-norms [23] which are defined here by using a positive continuous
weight function w on Ω , and where 1 ≤ p ≤ ∞.

Let O denote an arbitrary neighborhood of the approximation domain Ω .
Consider a Herglotz function h generated by a measure β which is absolutely
continuous on O with Hölder continuous density β ′ on O (outside O the measure
is arbitrary). In this case, the Herglotz–Nevanlinna function h can be Hölder
continuously extended (with Hölder exponent 0 < α < 1) from C+ to C+ ∪ Ω

with boundary values

h(x) = b1x +−
∫
R

1

ξ − x
dβ(ξ)+ iπβ ′(x), (5)

for x ∈ Ω , and where the integral is taken as a Cauchy principal value, see [16,
Theorem 2.2]. This result is readily obtained from the Sokhotski–Plemelj theorem
[18, Theorem 7.6, p. 101] or the Plemelj–Privalov theorem [24, Theorem 5.7.21,
p. 484] which is formulated for a bounded and simply connected domain in the
complex plane.
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The continuity of h on Ω implies that the norm ‖h‖Lp(w,Ω) is well-defined for
1 ≤ p ≤ ∞. An approximation problem of interest can now be formulated in terms
of the greatest lower bound on the approximation error, defined by

d := inf
h
‖h− F‖Lp(w,Ω), (6)

where the infimum is taken over all functions h with measures having Hölder
continuous densities on O as represented in (5). In general, a best approximation
achieving the bound d in (6) does not exist. In practice, however, the problem can
be approached by using numerical algorithms such as CVX [10], solving finite-
dimensional approximation problems where B-splines [6] are used to represent the
generating measure β and where the number of basis functions N is fixed during
the optimization, cf. [16, 19]. Moreover in [16, Theorems 3.2 and 3.3] it has been
shown that the approximation error d defined in (6) can be achieved in the limit
as N → ∞ by using B-splines of arbitrary order (linear, quadratic, cubic, etc.) on
uniform partitions. In the next sections are given some explicit results concerning
the Hilbert transform of general B-splines of arbitrary order and arbitrary partitions
which is useful in a formulation based on convex optimization.

4 B-Splines and Their Hilbert Transforms

The normalized B-spline N0,m(x) of order m ≥ 2 consists of piecewise polynomial
functions of orderm−1, and is defined for x0 ≤ x < xm, where x0 < x1 < · · · < xm
are called knots, or break-points. The B-spline N0,m(x) is uniquely defined by the
formulas

Ni,1(x) =
{

1 xi ≤ x < xi+1,

0 otherwise,
(7)

where i = 0, 1, . . . ,m− 1 and

Ni,k(x) = x − xi

xi+k−1 − xi
Ni,k−1(x)+ xi+k − x

xi+k − xi+1
Ni+1,k−1(x), (8)

where k = 2, . . . ,m and i = 0, . . . ,m − k and which is defined for xi ≤ x <

xi+k , cf. [6]. The B-spline N0,m(x) is a strictly positive function in the interval
x0 < x < xm and is defined to be zero elsewhere. The function N0,m(x) is m − 2
times continuously differentiable and has piecewise constant derivatives of order
m − 1 with discontinuities at the knots [6]. An alternative way to define B-splines
is by m− 1 times repeated convolution of (7) with the normalized square pulse, see
for details [16].
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Let pn(x) denote a basis (B-spline) function N0,m(x) with distinct knots {xi}mi=0
which depend on the finite index n = 1, . . . , N . The (negative) Hilbert transform of
the B-spline pulse function pn(x) is defined by

p̂n(x) = 1

π
−
∫ ∞

−∞
1

ξ − x
pn(ξ)dξ, (9)

for x ∈ R and where the integral is a Cauchy principal value. The result is most
conveniently obtained by first calculating the corresponding Herglotz–Nevanlinna
function hn(z) for z ∈ C+. A repeated integration by parts yields the following
explicit formula for m ≥ 2:

hn(z) = 1

π

∫ ∞

−∞
1

ξ − z
pn(ξ)dξ = (−1)m−1 1

π

m−1∑
i=0

p(m−1)
n (xi+)

×
[
(xi+1 − z)m−1(ln(xi+1 − z)− Cm)

(m− 1)! − (xi − z)m−1(ln(xi − z)− Cm)

(m− 1)!
]
, (10)

where the constant Cm is given recursively by

Cm = Cm−1 + 1

m− 1
, (11)

and where C1 = 0. Hence, the sequence {C2, C3, C4, . . .} = {1, 3/2, 11/6, . . .}
corresponds to linear, quadratic, and cubic B-splines, etc. It is observed that the
result in (10) can be obtained by employing the following formula:

dm

dζm

ζm−1

(m− 1)! (ln ζ − Cm) = 1

ζ
, (12)

which can be proved by induction for m ≥ 2 and where Cm is given by (11).
In (10), the terms p(m−1)

n (xi+) denote the right limits of the discontinuous (m−1)th
derivative of pn(x) at the knots xi . The discontinuity behavior of the linear,
quadratic, and cubic B-splines is summarized in Appendix. Note that the polynomial
zeros cancel the logarithmic singularities at the knots xi in (10), where i =
0, 1, . . . ,m and m ≥ 2. In fact, since the B-spline functions are Hölder continuous
on R (with exponent 0 < α < 1), it can be shown that the Herglotz–Nevanlinna
function hn(z) in (10) can be Hölder continuously extended to C+ ∪ R, cf. [16,
Theorem 2.2]. The (negative) Hilbert transform in (9) is finally obtained by taking
the real part of (10) for x ∈ R, i.e., by replacing ln(xi − z) for ln |xi − x|.

In Fig. 1 are illustrated linear (l), quadratic (q) and cubic (c) B-splines over
an interval x ∈ [−0.5, 4], and their Hilbert transforms. Here, the dashed lines
correspond to B-spline functions of order m = 2, 3, 4 with circles indicat-
ing their respective knots xl ∈ {0, 0.5, 1}, xq ∈ {0, 0.33, 0.67, 1}, and xc ∈
{0, 0.25, 0.5, 0.75, 1}, and the solid lines the corresponding Hilbert transforms.
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Fig. 1 Illustration of linear, quadratic, and cubic B-spline basis functions, pl(x), pq(x), and pc(x),
their knots xl, xq, and xc, and corresponding (negative) Hilbert transforms p̂l(x), p̂q(x), and p̂c(x),
respectively. (a) Linear B-spline. (b) Quadratic B-spline. (c) Cubic B-spline

5 Convex Optimization

Consider a discretization of the problem expressed in (6), which is based on an
arbitrary, finite partition of the approximation domain Ω . Let

�{h(x)} =
N∑

n=1

cn (pn(x)+ pn(−x)) , (13)

for x ∈ R be a finite B-spline expansion of �{h(x)} = πβ ′(x), where cn are
optimization variables for n = 1, . . . , N , and pn(x) are the B-spline basis functions
of fixed order m which have been defined on the given partition. The real part
�{h(x)} for x ∈ Ω is then given by (5), and can be expressed as

�{h(x)} = b1x +
N∑

n=1

cn
(
p̂n(x)− p̂n(−x)

)
, (14)

for x ∈ Ω and where p̂n(x) is the (negative) Hilbert transform of the B-spline
function pn(x). Consider now the following convex optimization problem:

minimize ‖h− F‖Lp(w,Ω)

subject to cn ≥ 0, for n = 1, . . . N,

b1 ≥ 0,
(15)

where the optimization is over the variables (c1, . . . , cN , b1). As mentioned above,
the minimum approximation error obtained from (15) will approach the same
minimum as defined in (6) in the limit as N → ∞, cf. [16, Theorems 3.2 and
3.3].

The uniform continuity of all functions involved implies that the solution to (15)
can be approximated within an arbitrary accuracy by discretizing the approximation
domain Ω (and the computation of the norm) using only a finite number of sample
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points. The corresponding numerical problem (15) can now be solved efficiently by
using the CVX Matlab software for disciplined convex programming [10].

When there is a priori information available regarding the asymptotic properties
of the system to be approximated, the sum rules (4) can sometimes be used as convex
constraints to supplement (15).

Another situation is when the large argument asymptotic coefficient b2k−1 is a
priori known or estimated, and it is required to estimate the corresponding small
argument asymptotic coefficient a2k−1 based on the solution to (15). In this case,
the estimated coefficient a2k−1 can be calculated from

a2k−1 = b2k−1 + 2

π

∫ ∞

0+
�{h(ξ)}

ξ2k dξ = b2k−1 + 2

π

N∑
n=1

cn

∫ ∞

0+
pn(ξ)

ξ2k dξ, (16)

where the last equality is due to the finite-dimensional approximation (13). Explicit
formulas for the last integral can be readily obtained, similarly as in Sect. 4, and as
exemplified in Sect. 6 below.

6 Numerical Example

As an engineering application example, we consider the problem to estimate the
conductivity parameter of high-voltage insulation materials based on its dielectric
response in the range of very low frequencies. To measure such responses, a
dielectric spectroscopy measurement technique has been developed [7, 9] and
the Havriliak–Negami (HN) model [2, 14] is commonly used to identify the
conductivity parameter. However, the HN-models only constitute a certain subclass
of dispersion models which have been chosen on empirical grounds. Moreover,
to identify the parameters of the HN-model, one must in general solve a non-
convex optimization problem which requires an exhaustive global search, and which
becomes particularly cumbersome if several resonances are involved. In contrast, the
modeling based on B-splines and their Hilbert transforms provides a general passive
dispersion model, and a convex optimization problem that can be solved efficiently
using, e.g., the CVX Matlab software for disciplined convex programming [10].

Here, the dielectric spectroscopy data is simulated by using the following
Havriliak–Negami (HN) model:

εHN(x) = ε∞ + Δε

(1 + (−ixτ)α)β
+ i

σHN

xε0
, (17)

where Δε = εs − ε∞ > 0 and where εs and ε∞ ≥ 1 are the static and
the instantaneous dielectric responses, respectively, the parameters α, β ∈ (0, 1],
τ > 0 the relaxation coefficient, σHN > 0 the static conductivity, and ε0 the
permittivity of free space. In the numerical example below, the HN-model has been
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generated with ε∞ = 2.227, Δε = 0.0267, α = 0.68, β = 0.5, τ = 59.99, and
σHN = 8.9616 · 10−2 fS/m based on a global optimization with respect to some
given measurement data, see [15]. Here, the frequency f (in units Hz) is defined by
x = 2πf and the approximation domain is given by Ω = 2π[fL, fU], where fL
and fU are the corresponding lower and upper frequency limits, respectively.

The convex optimization formulation for this problem is given by

minimize ‖h− hHN‖L2(w,Ω)

subject to cn ≥ 0, n = 1, . . . , N,

ε∞ ≥ 1,
σ ≥ 0,

(18)

where w(x) = 1/x is the weight function, hHN(x) = xεHN(x), and the approximat-
ing Herglotz function h(x) = xε(x) is given by

h(x) = h1(x)+ i
σ

ε0
, (19)

for x ∈ Ω and where h1(x) is represented as in (13) and (14) with b1 = ε∞. The
parameters to be estimated by using (18) are denoted σ̂ and ε̂∞, etc.

The low-frequency behavior of the passive material is estimated using the
expression (16) based on the sum rule (4) for k = 1

ε̂s = ε̂∞ + 2

π

∫ ∞

0+
�{h(ξ)}

ξ2
dξ = ε̂∞ + 2

π

N∑
n=1

cn

n+m/2∑
i=n−m/2

p(m−1)
n (xi+)

×
[
xm−2
i+1 (ln xi+1 − Cm−1)

(m− 2)! − xm−2
i (ln xi − Cm−1)

(m− 2)!
]
, (20)

where a1 = ε̂s and b1 = ε̂∞ are the estimated static and instantaneous responses,
respectively, m is even and corresponds to the order of the B-splines used, and Cm

is defined in (11).
As an example, the objective here is to determine a sufficient frequency

bandwidth based on the lower frequency limit fL to reach some predetermined
relative error on the estimation of conductivity σ . The upper limit fU = 10 Hz is
fixed, and the approximation domain is non-uniformly sampled with a logarithmic
step Δ log f = 1/3. After the optimization (18), the error norm E = ‖ε(x) −
εHN(x)‖L2(Ω) and the interpolated and extrapolated parameter ε(x) = h(x)/x are
evaluated on a grid that is ten times denser than the one used for optimization
(Δ logf = 1/30).
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Fig. 2 Interpolation and extrapolation of the generated dielectric spectroscopy data. Dashed
and dotted lines are plotted in the order of increasing the bandwidth parameter fL, where the
approximation domain is Ω = [fL, 10]Hz. (a) Real part of ε(f ). (b) Imaginary part of ε(f )
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Fig. 3 (a) Approximation error E as a function of the lower frequency limit fL. (b) Relative error
on the estimation of conductivity σ̂ . The approximation domain is Ω = [fL, 10]Hz

In Fig. 2a, b are illustrated interpolation and extrapolation of the generated
dielectric spectroscopy data. Here, the solid lines correspond to the target data gen-
erated via the HN-model (17), and the dashed lines correspond to interpolation and
extrapolation based on optimized high-order (cubic) B-spline approximation (18)
on Ω = [fL, fU], where fL ∈ {10, 2.2, 1}mHz and fU = 10 Hz. The lower and
upper bounds of the approximation domain are illustrated via the vertical dotted and
dash-dotted lines, respectively.

The investigation on the sufficient frequency bandwidth for an accurate estima-
tion of conductivity σ is illustrated in Fig. 3a, b. Figure 3a shows the approximation
error E and Fig. 3b the relative error of the conductivity estimate σ̂ , where the solid
and the dash-dotted lines correspond to cubic and linear B-spline approximations,
respectively. It can be concluded, e.g., that an accurate estimation of σHN within
1% error requires that fL < 0.03 mHz. It is also seen that the approximation based
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on high-order B-splines can provide a more accurate solution in comparison to the
linear B-splines in this example.

7 Summary

A convex optimization approach for passive approximation of electromagnetic
systems based on Herglotz functions, general B-splines, and sum rules has been
developed. A numerical example based on an approximation of the Havriliak–
Negami dispersion model over a large frequency bandwidth has been studied.
It is found that the data can be better represented using high-order B-splines in
comparison to the linear B-splines. Moreover, the cubic B-splines provide a better
estimator of the conductivity parameter which in general is very difficult to estimate
based on finite bandwidth data.

Acknowledgements This work was supported by the Swedish Foundation for Strategic Research
(SSF) under the program Applied Mathematics and the project Complex analysis and convex
optimization for EM design.

Appendix

The discontinuity behavior of linear B-splines N0,2(x) with knot values N0,2(x1)=1
and N0,2(x0) = N0,2(x2) = 0 is given by

N
(1)
0,2(x0+) = 1

x1 − x0
, (21)

N
(1)
0,2(x1+) = − 1

x2 − x1
. (22)

The discontinuity behavior of quadratic B-splines N0,3(x) with knot values
N0,3(x1) = (x1 − x0)/(x2 − x0), N0,3(x2) = (x3 − x2)/(x3 − x1), and N0,3(x0) =
N0,3(x3) = 0 is given by

N
(2)
0,3(x0+) = 2

(x2 − x0)(x1 − x0)
, (23)

N
(2)
0,3(x1+) = − 2

(x2 − x0)(x2 − x1)
− 2

(x3 − x1)(x2 − x1)
, (24)

N
(2)
0,3(x2+) = 2

(x3 − x1)(x3 − x2)
. (25)

http://www.stratresearch.se/
http://www.eit.lth.se/index.php?puid=175&projectpage=projektfakta


Passive Approximation with High-Order B-Splines 93

The discontinuity behavior of cubic B-splines N0,4(x) with knot values

N0,4(x1) = (x1 − x0)
2

(x3 − x0)(x2 − x0)
, (26)

N0,4(x2) = (x2 − x0)(x3 − x2)

(x3 − x0)(x3 − x1)
+ (x4 − x2)(x2 − x1)

(x4 − x1)(x3 − x1)
, (27)

N0,4(x3) = (x4 − x3)
2

(x4 − x1)(x4 − x2)
, (28)

and N0,4(x0) = N0,4(x4) = 0 is given by

N
(3)
0,4(x0+) = 6

(x3 − x0)(x2 − x0)(x1 − x0)
, (29)

N
(3)
0,4(x1+) = − 6

(x3 − x0)(x2 − x0)(x2 − x1)

− 6

(x3 − x0)(x3 − x1)(x2 − x1)
− 6

(x4 − x1)(x3 − x1)(x2 − x1)
, (30)

N
(3)
0,4(x2+) = 6

(x3 − x0)(x3 − x1)(x3 − x2)

+ 6

(x4 − x1)(x3 − x1)(x3 − x2)
+ 6

(x4 − x1)(x4 − x2)(x3 − x2)
, (31)

N
(3)
0,4(x3+) = − 6

(x4 − x1)(x4 − x2)(x4 − x3)
. (32)
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Part IV
Complex and Functional Analytic Methods

for Differential Equations

Session Organizers: Heinrich Begehr, A. Okay Çelebi, and J.Y. Du

This session was organized at all the ISAAC congresses since the first one in 1997 at
the University of Delaware. It was always well accepted and had many participants.
However, it became obvious that the session was more frequented when the site of
the congress was in the eastern hemisphere due to the fact that complex analysis
is nowadays more studied and applied there. Also scientists from the east are less
able to afford expensive travel and lodging costs while western scientists have easier
access to financial support. ISAAC is therefore well advised to held its congresses
consecutively in eastern and western counties.

After Växyö there was the chance to have the 2019 congress in Novosibirsk,
even in conjunction with a celebration of the 130th anniversary of the famous
mathematician S.L. Sobolev at this place. Unfortunately this chance was not chosen.
As in Växyö also in Avairo our session will be small again. If not the colleagues
from Kazakhstan would come only very few will be participating again. In 2017
there were only 5 colleagues from western countries among altogether 12 members,
mainly from former SU. No one from China did make it. From the 2019 congress
on H. Begehr will not co-organize the session further on.

From the contributions to the session just some were chosen for publication in
this proceeding volume. Cialdea’s study on conjugate differential forms is a rich
and promising theory, where complex concepts are transferred to higher dimensions
avoiding Clifford analysis. Differential and difference operators of second order
with unbounded coefficients are investigated by Ospanov. Nino Manjavidze and
collaborators are working on uniqueness results in complex analysis. Dirichlet
boundary value problems in polydiscs are treated from Çelebi and Begehr’s reports
on a proper formulation of the Robin problem.



Some New Applications of the Theory
of Conjugate Differential Forms

Alberto Cialdea

Abstract In this survey we describe two applications of the concept of conjugate
differential forms. Namely, after describing the concept of conjugate and self-
conjugate differential forms, we consider an extension of the Brothers Riesz theorem
to higher real dimension and Riesz-type inequalities for differential forms.

1 Introduction

Many years ago, looking for a generalization of the Brothers Riesz theorem in higher
real dimension, I was led to consider the concept of conjugate differential forms
[5]. Such concept has been already used in the previous paper [4], in which I had
to construct a reducing operator for a particular singular integral operator. This is
why I began to study in detail conjugate differential forms and self-conjugate (non-
homogeneous) differential forms [7].

Later on I have used such forms in several different problems. They concern,
besides the extension of the Brothers Riesz theorem in higher real dimension,
the concept of conjugate Laplace series in Rn [2, 3, 6, 9], potential theory with
applications to several BVPs for different PDEs [1, 11, 13–20], and Riesz-type
inequalities for differential forms [12].

In this brief survey I will just consider the Brothers Riesz theorem and Riesz-
type inequalities. The first section is devoted to the concept of conjugate and self-
conjugate differential forms.

For a survey on the applications in potential theory connected to BVPs I refer to
[10].
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2 Self-Conjugate Differential Forms

The idea of considering conjugate differential forms in order to extend the concept
of conjugate harmonic functions dates back to Volterra [31]. Following this order of
ideas, we say that a k-form u (i.e., a differential form of degree k) and a (k+2)-form
v are conjugate in Ω ⊂ R

n if

du = δv, δu = 0, dv = 0, (1)

where d is the differential operator and δ is the co-differential (actually this concept
is slightly different from the one given by Volterra: in fact u and v are conjugate in
the sense of Volterra if du = δv, see [31], pp. 87–90). If n = 2, f (z) = u(x, y)+
iv(x, y) is a holomorphic function and we identify v with a 2-form, then du = δv

is just the Cauchy–Riemann equation, while δu = 0 and dv = 0 are automatically
satisfied.

The system (1) includes several real generalizations of the Cauchy system.
For example, this concept of conjugate forms is more general than the concept

of harmonic vectors considered by Stein and Weiss in the paper [28], i.e., of vectors
(w1, . . . , wn) satisfying the system

n∑
i=1

∂wi

∂xi
= 0,

∂wi

∂xj
= ∂wj

∂xi
(i �= j) . (2)

In fact, if we identify (w1, . . . , wn) with the 1-form u = whdx
h, the system (2)

is nothing but du = 0, δu = 0. In other words Stein and Weiss have considered only
the forms which are of degree 1 and conjugate to v = 0.

More generally, the k-form

uk = 1

k! ws1 . . .sk dx
s1 . . . dxsk

is conjugate to uk+2 ≡ 0 if, and only if, duk = 0 and δuk = 0. These are the
so-called harmonic forms.

If we consider n = 3 and u0 ≡ u, u2 = v1dx
2dx3 + v2dx

3dx1 + v3dx
1dx2,

we have that u0 and u2 are conjugate if, and only if div(v1, v2, v3) = 0, gradu =
curl(v1, v2, v3), i.e., if, and only if, the vector (u, v1, v2, v3) satisfies the Moisil-
Theodorescu system.

The concept of conjugate differential forms can be further generalized. Let us
consider a non-homogeneous differential form belonging to C1

0 (Ω)⊕ . . .⊕C1
n(Ω)

U =
n∑

k=0

uk
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where uk is a differential form of degree k. We say that U is self-conjugate if dU =
δU, i.e., if δu1 = 0, duk = δuk+2 (k = 0, . . . , n− 2), and dun−1 = 0.

It is clear that if U = uk + uk+2, then U is self-conjugate if and only if uk and
uk+2 are conjugate in the sense of (1).

If n = 4 and U = u0 + u2 + u4, where

u0 = f0, u4 = f0dx
0dx1dx2dx3

u2 = f1(dx
0dx1 − dx2dx3)+ f2(dx

0dx2 − dx3dx1)+ f3(dx
0dx3 − dx1dx2),

the non-homogeneous form U is self-conjugate if, and only if,

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂f0
∂x0

− ∂f1
∂x1

− ∂f2
∂x2

− ∂f3
∂x3

= 0
∂f0
∂x1

+ ∂f1
∂x0

− ∂f2
∂x3

+ ∂f3
∂x2

= 0
∂f0
∂x2

+ ∂f1
∂x3

+ ∂f2
∂x0

− ∂f3
∂x1

= 0
∂f0
∂x3

− ∂f1
∂x2

+ ∂f2
∂x1

+ ∂f3
∂x0

= 0 .

This shows that U is self-conjugate if, and only if, the vector (f0, f1, f2, f3)

satisfies the Fueter system.
A similar computation shows that the form U = u0 + u2 + u4, where

u0 = f0, u4 = −f0dx
0dx1dx2dx3

u2 = f1(dx
0dx1 + dx2dx3)− f2(dx

0dx2 + dx3dx1)+ f3(dx
0dx3 + dx1dx2),

is self-conjugate if and only if the vector (f0, f1, f2, f3) satisfies the Cimmino
system (see [1]).

In what follows we shall use also the concept of k-measure, which was
introduced by Fichera (see [22, 23]). Roughly speaking a k-measure is a differential
form whose coefficients are measures and we refer to Fichera’s papers for the precise
definition and for several properties.

3 The Brothers Riesz Theorem

In their only joint paper [26] F. Riesz and M. Riesz proved this famous result:

Theorem 1 If a trigonometric series and its conjugate series

a0

2
+

∞∑
k=1

(ak cos kϑ + bk sin kϑ) ,

∞∑
k=1

(ak sin kϑ − bk cos kϑ)

are both Fourier–Stieltjes series, then they are ordinary Fourier series.
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In other words, if we have two real measures α, β defined on the Borel sets of
[0, 2π] such that

∫ 2π

0
cos kϑ dα =

∫ 2π

0
sin kϑ dβ,

∫ 2π

0
sin kϑ dα = −

∫ 2π

0
cos kϑ dβ

(k = 1, 2, . . .),
(3)

then these measures have to be absolutely continuous, i.e., there exist two real valued
L1 functions f and g such that

α(E) =
∫
E

f (ϑ) dϑ, β(E) =
∫
E

g(ϑ) dϑ

for any Borel set E ⊂ [0, 2π]. The interest of this result in the theory of Fourier
series is evident. Theorem 1 can be easily rewritten in a “complex” form:

Theorem 2 If μ is a complex measure defined on the Borel sets of the unit circle
C = {z ∈ C | |z| = 1} such that

∫
C

eikϑdμ = 0 k = 1, 2, . . . ,

then μ is absolutely continuous, i.e., there exists a function f ∈ L1(C) such that

μ(E) =
∫
E

f (ϑ)dϑ

for any Borel set E of C.

This beautiful theorem gave rise to a long series of papers and “in its direct
applications as well as the generalizations it has inspired, this has proved to be
one of the more important theorems of the century” (R. B. Burckel, Math. Rev.,
96k:43009). For a survey of several results connected to the Brothers Riesz theorem,
see [8] and the references therein.

The classical Brothers Riesz theorem can be stated also in the following way: if
u(x, y) and v(x, y) are two conjugate real harmonic functions in a domain Ω and
both of them have traces on ∂Ω in the sense of measures, then these measures have
to be absolutely continuous.

Such a result was proved for conjugate differential forms and—more generally—
for non-homogeneous self-conjugate differential forms in [5]. The result is the
following. Here Ω is a bounded domain in R

n with a Lyapunov boundary and
Mk(Σ) denotes the space of k-measures defined on the Borel sets of Σ .
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Theorem 3 If U ∈ C1
0 (Ω)⊕ . . .⊕ C1

n(Ω) is self-conjugate and U and ∗U admit
traces on Σ = ∂Ω in the sense of k-measures:

{
U
∣∣
Σ

= α ∈ M0(Σ)⊕ . . .⊕Mn−1(Σ)

∗U ∣∣
Σ
= α̃ ∈ M0(Σ) ⊕ . . .⊕Mn−1(Σ),

then the k-measures α and α̃ have to be absolutely continuous.

4 Conjugate Laplace Series

Given a trigonometric series, the conjugate trigonometric series can be considered
as the “trace” of the harmonic function conjugate to the harmonic function whose
trace is the given trigonometric series. Following this definition and hinging on the
theory of conjugate differential forms, a new definition of conjugate Laplace series
was given in [6].

Let us recall it. Consider a harmonic function u defined in the unit ball B =
{x ∈ Rn

∣∣ |x| < 1}, it is well known that it can be expanded by means of harmonic
polynomials:

u(x) =
∞∑
h=0

|x|h
pnh∑
k=1

ahkYhk

(
x

|x|
)
, (4)

where pnh = (2h+n− 2) (h+n−3)!
(n−2)!h! and {Yhk} is a complete system of ultraspherical

harmonics. We suppose {Yhk} orthonormal, i.e.,

∫
Σ

YhkYrs dσ

{
= 1 if h = r and k = s

= 0 otherwise.

The “trace” of u on Σ = {x ∈ Rn
∣∣ |x| = 1} is given by the expansion

∞∑
h=0

pnh∑
k=1

ahkYhk(x) (|x| = 1). (5)

Let us consider the 2-form

v =
∞∑
h=0

pnh∑
k=1

ahk

(h+ 2)(n+ h− 2)
dYhk

(
x

|x|
)
∧ d(|x|h+2) (6)
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and its adjoint

∗ v =
∞∑
h=0

pnh∑
k=1

ahk

(h+ 2)(n+ h− 2)
∗
(
dYhk

(
x

|x|
)
∧ d(|x|h+2)

)
. (7)

It is possible to show that dv = 0 and δv = du in B, i.e., the non-homogeneous
form u+ v is self-conjugate.

If n = 2 the series which is obtained by taking |x| = 1 in (7) is just the
trigonometric series conjugate to (5). In general, for any n, we say that

∞∑
h=0

pnh∑
k=1

ahk

(h+ 2)(n+ h− 2)
∗
(
dYhk

(
x

|x|
)
∧ d(|x|h+2)

) ∣∣∣∣
|x|=1

(8)

is the series conjugate to (4); it represents the “restriction” of ∗v on Σ , while the
“restriction” of v, provided it does exist, is equal to 0, as it follows immediately
from (6).

Several properties of the conjugate Laplace series (8) have been obtained (see
[2, 3, 9]). They concern the Abel convergence, the pointwise convergence, and the
convergence in Lp norm.

Here we mention a result (see [6]) which extends the original Brothers Riesz
Theorem 1 to Laplace series and which is a consequence of Theorem 3:

Theorem 4 Let (5) be a Laplace series of a measure μ ∈ M(Σ), i.e.,

ahk =
∫
Σ

Yhk dμ .

If there exists an (n− 2)-measure β ∈ Mn−2(Σ) such that

∫
+Σ

Yhk dμ = 1

h

∫
+Σ

β ∧ dYhk (h = 1, 2, . . . ; k = 1, . . . , pnh) (9)

and
∫
+Σ

β ∧ ∗
Σ
γ = 0 (10)

for any γ ∈ C∞
n−2(R

n) such that dγ = 0 on Σ , then μ and β are absolutely
continuous.

We remark that in the case n = 2, conditions (9) are nothing but (3), while
(10) is not restrictive (the only closed 0-forms on the unit circle are the constants).
However, if n ≥ 3 condition (10) cannot be omitted.
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5 Riesz-Type Inequalities

The classical Riesz inequality is well known:

‖g‖Lp(S) ≤ C‖f ‖Lp(S), (11)

the function f + ig being holomorphic in the unit disc D, continuous up to the
boundary S = ∂D, and g(0) = 0 (1 < p < ∞).

Another inequality, which—as we shall see—is related to (11), concerns normal
derivative ∂

∂ν
and tangential gradient grad∂Ω of a harmonic function defined on a

sufficiently smooth bounded domain Ω ⊂ Rn. Namely, we have

∥∥∥∥∂ω∂ν
∥∥∥∥
Lp(∂Ω)

≤ C‖grad∂Ω ω‖Lp(∂Ω), (12)

for any harmonic function ω ∈ C1(Ω) ∩ C2(Ω). Inequality (12) was proved by
Vishik [30] for p = 2 when ∂Ω is a sphere, conjectured by Mikhlin in [24, p. 210]
for 1 < p < ∞, and established by De Vito [21] in the general case 1 < p < ∞
when ∂Ω is the boundary of a C2,λ-domain. Later Verchota [29] proved (12) on
Lipschitz domains (1 < p ≤ 2).

In [12] inequalities of this type have been obtained in the frame of conjugate
differential forms. Namely, let Ω ⊂ Rn be a bounded C1 domain and let uk and
vk+2 be two C1 conjugate differential forms defined in Ω , continuous up to the
boundary Σ . The following inequalities hold:

inf
α∈N +

k

‖uk + α‖Lp

k (Σ) ≤ C
{
‖ ∗ uk‖Lp

n−k(Σ) + ‖ ∗ vk+2‖Lp

n−k−2(Σ)

}
,

inf
β∈N +

k+2

‖vk+2 + β‖Lp
k+2(Σ) ≤ C

{
‖uk‖Lp

k (Σ) + ‖ ∗ vk+2‖Lp
n−k−2(Σ)

}
,

inf
α∈N +

n−k

‖ ∗ uk + α‖Lp
n−k(Σ) ≤ C

{
‖uk‖Lp

k (Σ) + ‖ ∗ vk+2‖Lp
n−k−2(Σ)

}
,

inf
β∈N +

n−k−2

‖ ∗ vk+2 + β‖Lp
n−k−2(Σ) ≤ C

{
‖uk‖Lp

k (Σ) + ‖vk+2‖Lp
k+2(Σ)

}
.

Here N +
k is the kernel of the singular integral equation:

−1

2
φk(x)+

∫
Σ

φk(y) ∧ ∗
y
dysk(x, y) = 0, a.e. x ∈ Σ ,
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where sk(x, y) is the Hodge double form

sk(x, y) =
∑

j1<...<jk

s(x, y)dxj1 . . . dxjkdyj1 . . . dyjk .

As proved in [25, 27], the dimension of N +
k is equal to b−k , the kth Betti number

of Ω . It is clear that such inequalities generalize (11).
If ω is an harmonic k-form, we have that δω and −dω are conjugate. Therefore

the inequalities we have obtained for conjugate differential forms lead to

inf
α∈N +

k−1

‖δωk + α‖Lp
k−1(Σ) ≤ C

{
‖d ∗ ωk‖Lp

n−k+1(Σ) + ‖ ∗ dωk‖Lp
n−k−1(Σ)

}
,

inf
β∈N +

k+1

‖dωk + β‖Lp
k+1(Σ) ≤ C

{
‖δωk‖Lp

k−1(Σ) + ‖ ∗ dωk‖Lp
n−k−1(Σ)

}
,

inf
η∈N +

n−k+1

‖d ∗ ωk + η‖Lp
n−k+1(Σ) ≤ C

{
‖ ∗ dωk‖Lp

n−k−1(Σ) + ‖δωk‖Lp
k−1(Σ)

}
,

inf
γ∈N +

n−k−1

‖ ∗ dωk + γ ‖Lp
n−k−1(Σ) ≤ C

{
‖dωk‖Lp

k+1(Σ) + ‖δωk‖Lp
k−1(Σ)

}
.

Suppose b−n−1 = 0; the last inequality for k = 0 reads as follows:

‖ ∗ dω0‖Lp

n−1(Σ) ≤ C‖dω0‖Lp

1 (Σ) (13)

for any scalar harmonic function ω0. This is nothing but the Vishik–Mikhlin–De
Vito formula (12).

We remark that, if b−n−1 �= 0, inequality (13) does not hold. Consider Ω = {x ∈
Rn : r < |x| < R} and take

ω0(x) =
{

log |x| if n = 2 ,

|x|2−n if n ≥ 3 .
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On Maximal Regularity of Differential
and Difference Operators

Kordan N. Ospanov

Abstract In this paper we investigate a linear degenerate second-order difference
operator and we find conditions that are sufficient for its bounded invertibility and
separability in Hilbert space. We apply these results to prove the solvability of an
infinite quasilinear difference system. We also give one result on the separability
of its continuous analogue (a degenerate differential operator of second order)
and show that the second-order discrete operator is separable under much weaker
conditions.

1 Introduction

Let h ∈ (0, h0) (h0 is a fixed positive number). We put Zh=
{
xj : xj=jh, ∀j∈Z}.

In what follows, instead of axj = ajh we briefly write aj . That is, for example,{
aj
}+∞
j=−∞ := {ajh}+∞

j=−∞.
Let us consider the following operator:

l0(h)y = −h−2Δ
(2)
h y + h−1rΔh,−y

acting on the space l2(h), where

l2(h) =

⎧⎪⎨
⎪⎩y = {yj}+∞

j=−∞ : ‖y‖2, h =
⎛
⎝ +∞∑

j=−∞

∣∣yj ∣∣2 h
⎞
⎠

1
2

< ∞

⎫⎪⎬
⎪⎭ ,
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and y = {yj}+∞
j=−∞ , Δh,−y = {Δh,−yj

}+∞
j=−∞ = {yj − yj−1

}+∞
j=−∞ ,

Δ
(2)
h y=

{
Δ

(2)
h yj

}+∞
j=−∞= {yj+h−2yj+yj+h

}+∞
j=−∞ , and r = diag

{
rj , j ∈ Z

}
is

a diagonal matrix.
l0 is an unbounded operator. For l0 we study such problems as the bounded

invertibility of l0, compactness and other spectral properties of l−1
0 , and the weighted

estimates for the norms of elements of the domain D(l0).
The operator l0 is the discrete analogue of the following differential operator:

l̃ : L2(R) → L2(R), l̃y = −y ′′ + r(x)y ′, R = (−∞,+∞).

So, l0y = f and l̃y = f̃ are discrete and continuous representations, respectively,
of one and the same mathematical model. The continuous model l̃y = f̃ and its
three-member generalisation

Ay = −y ′′ + r(x)y ′ + q(x)y = F

have been mainly studied for a long time.
The operator A appears in the theory of stochastic processes and stochastic

differential equations, in the study of the dynamics of a stratified compressible fluid
and of the vibrational motion in media with resistance proportional to the velocity.
The relevant information can be found in the works [1–7] and references therein.

Properties of the operator Ay = −y ′′ + r(x)y ′ + q(x)y differ from the known
ones of the Sturm–Liouville operator−y ′′+q(x)y. For the operator A the growth of
the function |r| at infinity is important. If the growth of |r| is weaker than the growth
of some power of |q|, then the properties of A are the properties of the known cases
of the Sturm–Liouville operator (see [8]).

Our purpose is to study another case: the case of A where |r| is a fast increasing
function. This case was studied relatively rarely.

The invertibility properties of the second-order degenerate differential operator
A with unbounded intermediate coefficient r were studied in the papers [9] (the case
q = 0) and [10] (the case of the space L1(R)). The symmetric second- and higher-
order differential operators without lower-order terms were investigated by A.G.
Kostyuchenko, M.G. Gasymov, B.Ya. Skachek, M. Otelbaev, and O.D. Apyshev.
The Sturm–Liouville difference operator was studied for several years (see, for
example, [11, 12] and others).

The operator l0y = −h−2Δ
(2)
h y+h−1rΔh,−y studied by us does not contain the

free term. In addition, since the matrix r is not bounded, so the operator h−1rΔh,−
does not obey to −h−2Δ

(2)
h in the operator sense. So, there are new difficulties in

the study of l0. One of them is that if the matrix r is bounded, then the domain D(l0)

of l0 may not belong to l2(h).
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2 Main Results

We consider the operator l0y = −h−2Δ
(2)
h y + h−1rΔh,−y defined in D(l0) =

Φ, where Φ =
{{

wjh

}+∞
j=−∞ : ∃N, wjh = 0, |j | ≥ N

}
is the set of the finite

sequences.

Theorem 1 Let rj = rjh be the elements of the matrix r . Assume that rjh ≥ 1
(j ∈ Z) and the following conditions hold:

F ∗ := sup
n=0, 1, 2, ...

⎡
⎣n

+∞∑
j=n

r−1
jh

⎤
⎦ < ∞, F ∗∗ := sup

k=−1,−2, ...

⎡
⎣(−k)

k∑
j=−∞

r−1
jh

⎤
⎦ < ∞,

then the operator l0 is closable in l2(h).

We prove Theorem 1 by a standard method: for any sequence {vn}∞n=1 ⊂ Φ such
that ‖vn‖2,h → 0 and ‖l0vn − w‖2,h → 0 as n → +∞, we show that w = 0.

We denote by l the closure of l0 in l2(h).

Theorem 2 Let the matrix r satisfy the conditions of Theorem 1. Then the operator
l is invertible, and its inverse l−1 is defined on all of l2(h). Furthermore, for any
y ∈ D(l) the following inequality holds:

∥∥∥−Δ
(2)
h y

∥∥∥
2,h

+ ∥∥rΔh,−y
∥∥

2,h + ‖y‖2,h ≤ C(h) ‖ly‖2,h . (1)

Sketch of Proof

(a) We transform the scalar product 〈l0y,Δh,−y〉, where y = {yj }+∞
j=−∞ ∈ Φ,

obtaining the following inequality:

‖ −Δ
(2)
h y‖2

2,h =
+∞∑

j=−∞
(−Δ

(2)
h yj )

2h ≤ C2
1 (h)‖l0y‖2

2,h.

From this estimate by presentation of ly, we obtain that

+∞∑
j=−∞

r2
j (Δh,−yj )2h ≤ C2

2 (h)‖l0y‖2
2,h.

And using conditions of Theorem 1, by some weighted Hardy type inequality,
we receive the estimate ‖y‖2,h ≤ C3(h)‖l0y‖2,h.

By the definition of l, from last inequalities it follows (1) for any y ∈ D(l).
(b) From the estimate (1) follows that there exists the inverse l−1 of l.
(c) We prove the boundedness of l−1 using the definition of l and the general theory

of linear operators. The theorem is proved.
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The estimate (1) is exact. Indeed, if (1) holds, then y ∈ D(l) is an element of the
discrete Sobolev space w2

2,h(r) with the norm

‖y‖w = ‖Δ(2)
h y‖2,h + ‖rΔh,−y‖2,h + ‖y‖2,h.

Then D(l) ⊂ w2
2,h(r). On the other hand, it is clear that w2

2,h(r) ⊂ D(l). So,

D(l) = w2
2,h(r).

The inequality (1) is called the coercive estimate, or the separability estimate
for l.

Theorem 3 Let r satisfy the conditions of Theorem 1 and the following conditions:

lim
n→+∞

⎡
⎣n

+∞∑
j=n

r−2
jh

⎤
⎦ = 0, lim

k→−∞

⎡
⎣(−k)

k∑
j=−∞

r−2
jh

⎤
⎦ = 0.

Then the resolvent l−1 is a completely continuous operator in l2(h).

Proof By Theorem 2, D(l) = w2
2,h(r). So, l−1 is a continuous operator from l2,h

to w2
2,h(r). By the conditions of Theorem 3 and the results of the paper [13], we

obtain that the space w2
2,h(r) is compactly embedded in l2(h). It means that l−1 is a

compact operator. The theorem is proved.

Remark 1 The statements of Theorems 1–3 are fulfilled if rj = rjh ≤ −1 ∀j ∈ Z.

Example 1 Let h = 1. We consider the operator

l̃0y = −Δ(2)y + rΔ−y,

where y = {yj }∞j=−∞ ∈ Φ, r = diag{rj = √1 + j2, j ∈ Z}, Δ(2) = Δ
(2)
1 , and

Δ− = Δ1,−.
It is easy to see that the conditions of Theorem 1 are fulfilled. Then by

Theorems 1 and 2, the operator l̃0 is closable in the space l2, and its closure, which
we denote by l̃, is bounded invertible. Moreover, for any y = {yj }∞j=−∞ ∈ D(l̃) the
following estimate holds:

⎧⎨
⎩

+∞∑
j=−∞

∣∣∣Δ(2)yj

∣∣∣2
⎫⎬
⎭

1/2

+
⎧⎨
⎩

+∞∑
j=−∞

∣∣∣∣
√

1 + j2Δ−yj
∣∣∣∣
2
⎫⎬
⎭

1/2

+

+
⎧⎨
⎩

+∞∑
j=−∞

∣∣yj ∣∣2
⎫⎬
⎭

1/2

≤ C4

⎧⎨
⎩

+∞∑
j=−∞

∣∣∣(l̃y)j
∣∣∣2
⎫⎬
⎭

1/2

.

So, the operator l̃ is separable.
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Example 2 Let us consider the operator m0y = {(m0y)j }∞j=−∞, where y =
{yj }∞j=−∞ ∈ Φ and (m0y)j = Δ(2)yj + (1 + j2)Δ−yj , j ∈ Z.

We see that here h = 1, and r is the diagonal matrix with elements rj = 1+ j2.
Then it is easy to show that the conditions of Theorem 1 hold. So, the operator m0
is closable in l2, and if we denote by m its closure, then m is bounded invertible. For
y = {yj }∞j=−∞ ∈ D(m) the following estimate holds:

‖Δ(2)y‖2 + ‖(1 + j2)Δ−y‖2 + ‖y‖2 ≤ C5‖my‖2.

Here ‖ · ‖2 = ‖ · ‖2,1, moreover

lim
s→+∞

⎡
⎣n

+∞∑
j=n

(
1 + j2

)−2

⎤
⎦ = 0, lim

k→−∞

⎡
⎣(−k)

k∑
j=−∞

(
1 + j2

)−2

⎤
⎦ = 0.

So, by Theorem 3, the resolvent m−1 of m is a compact operator in l2.

3 Some Applications

Now, we give some statements, which are proved using Theorems 1–3.
First we consider the following “three-member operator”:

L0y = −h−2Δ
(2)
h y + h−1rΔh,−y + qy, y ∈ Φ,

where q = diag
{
qj : qj = qjh, j ∈ Z

}
is a diagonal matrix. We denote

Aq,r(s) =
(

s∑
k=0

q2
kh

) 1
2
(+∞∑

k=s

r−2
kh

) 1
2

, s = 0, 1, 2, . . . ,

Bq,r (τ ) =
⎛
⎝ −1∑

j=τ

q2
jh

⎞
⎠

1
2
⎛
⎝ τ∑

j=−∞
r−2
jh

⎞
⎠

1
2

, τ = −1, −2, . . . .

Theorem 4 Let r satisfy the conditions of Theorem 1 and the matrix q be such that

max

[
sup

s=0, 1, 2, ...
Aq,r (s), sup

τ=−1,−2, ...
Bq,r (τ )

]
< ∞.
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Then

(a) L0 is a closable operator in l2(h);
(b) the closure L of L0 is bounded invertible (i.e. L is invertible and its inverse L−1

is defined on all of l2(h));
(c) for any y ∈ D(L) the following estimate holds:

∥∥∥−Δ
(2)
h y

∥∥∥
2,h

+ ∥∥rΔh,−y
∥∥

2,h + ‖qy‖2,h ≤ C6(h) ‖Ly‖2,h ,

i.e. L is a separable operator.

To prove Theorem 4 we use Theorems 1 and 2, a weighted Hardy type inequality,
and known results on the perturbations of linear operators (see, in addition, [14]).

Theorem 5 Assume that r and q satisfy the conditions of Theorem 4. Let one of the
following conditions (2) and (3) hold:

lim
s→+∞Aq,r (s) = 0, lim

τ→−∞Bq,r (τ ) = 0, (2)

lim|m|→+∞ qm = +∞. (3)

Then the resolvent L−1 is a completely continuous operator in l2(h).

This theorem follows from Theorem 4 by results of [15].
Now we consider the following nonlinear system:

L̃0y = −Δ
(2)
h y + r(y)Δh,−y = f, (4)

where r(y) = diag
{
rjh(y), j ∈ Z

}
is a diagonal matrix, which depends on the

unknown element y, and f = {fjh}+∞
j=−∞ ∈ l2(h).

Definition 1 y ∈ l2(h) is called a solution of equation (4), if there exists a sequence
{wn}+∞

n=1 ⊂ Φ such that ‖ψ(wn − y)‖2 → 0, ‖ψ(L̃0wn − f )‖2,h → 0 (n → +∞)

for any ψ = diag{ψjh, j ∈ Z} ({ψjh}+∞
j=−∞ ∈ Φ).

Theorem 6 Let rjh(v) (j ∈ Z) be continuous with respect to v and satisfy the
following inequality:

rjh(v) ≥ 1 + j2.

Then for any f ∈ l2(h) there exists a solution y of the nonlinear system (4) such
that

‖ −Δ
(2)
h y‖2,h + ‖r(y)Δh,−y‖2,h + ‖y‖2,h < +∞. (5)

Proof We consider the following linearised system:

Mvy = −Δ
(2)
h y + r(v)Δh,−y = f, f ∈ l2(h),
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where v belongs to some closed ball T in the space of bounded sequences with a
specially selected radius. By Theorem 2 for any f ∈ l2(h) there exists a unique
solution of this equation. We introduce the operator P putting Pv = M−1

v f, where
f is fixed. By Theorem 6, we obtain that P is a compact operator in the Banach
space of bounded sequences and P(T ) ⊂ T . Then by the known Schauder theorem
there exists a fixed point u of P , Pu = u. We show that u is a solution of the
system (4) and for u holds (5). The theorem is proved.

Example 3 Let h = 1. We consider the following nonlinear system:

−Δ(2)yj +
⎛
⎝3 + j4 +

j+5∑
k=j−5

y2
k

⎞
⎠Δ−yj = fj (j ∈ Z).

It is easy to see that for this system the conditions of Theorem 6 are fulfilled. So, for
any f = {fj

}+∞
j=−∞ ∈ l2 there exists a solution y = {yj}+∞

j=−∞ of this system and

+∞∑
j=−∞

(
−Δ(2)yj

)2 +
+∞∑

j=−∞

⎡
⎣
⎛
⎝3 + j4 +

j+5∑
k=j−5

y2
k

⎞
⎠Δ−yj

⎤
⎦

2

+ ‖y‖2 < +∞.

Now we give the separability condition for the differential operator
Ay = −y ′′ + r(x)y ′ + q(x)y. We assume that D(A) is the set C

(2)
0 (R) of twice

continuously differentiable functions with compact support.
For given g(x) and h(x), we put

αg,h(t) := ‖g‖L2(0, t )

∥∥∥h−1
∥∥∥
L2( t,+∞)

(t > 0),

βg,h(τ ) := ‖g‖L2(τ, 0)

∥∥∥h−1
∥∥∥
L2(−∞, τ )

(τ < 0),

γg,h := max

(
sup
t>0

αg,h(t), sup
τ<0

βg,h(τ )

)
.

The following theorem was proved in the work [16].

Theorem 7 Let r be a continuously differentiable function, and q be a continuous
function satisfying the following conditions:

i) |r| ≥ 1, γ1+|q|,√|r | < ∞,

ii)

sup
x,z∈R:|x−z|≤1

r(x)

r(z)
< +∞. (6)
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Then

(a) the operator A is closable in L2(R);
(b) the closure Ā of A is invertible and its inverse Ā−1 is defined on the whole

space L2(R). Moreover, for any y ∈ D(Ā) the following coercive estimate
holds:

‖ − y ′′‖2 + ‖ry ′‖2 + ‖qy‖2 ≤ C0‖Āy‖2,

where ‖ · ‖2 is the norm in L2(R).

We see that there is a difference between Theorems 7 and 4. The difference is that
Theorem 7 has an additional condition (6) on r . The expression (6) is a condition
on the oscillation of r . In addition, the condition (6) holds for the function r1(x) =
(1 + x2)s (s > 0). Note that the following strongly oscillating function r2(x) =
(1 + x2sin2x) does not satisfy the condition (6).

The main result of this work is Theorem 4 on the operator Ly = −Δ
(2)
h y +

rΔh,−y + qy. With respect to this theorem we add some comments.

1. Everitt, Giertz, and Waidmann in 1976 gave an example of a strongly oscillating
function q(x) ≥ 1, such that the Sturm–Liouville operator Sy = −y ′′ + q(x)y

is not separable, i.e. there is no C such that the estimate ‖ − y ′′‖2 + ‖qy‖2 ≤
C(‖Sy‖2+‖y‖2) holds. Later a number of works were published, where different
sufficient conditions are imposed on the oscillation of the function q(x) such that
S is a separable operator in L2(R).

If r(x) is a rapidly increasing function, then by Theorem 7, the three-member
operator Ay = −y ′′ + r(x)y ′ + q(x)y also is separable in L2(R), only if some
conditions on the oscillation of r(x) hold.

2. In 1984, Otelbaev and Grinshpun showed that, for the separability of the
Sturm–Liouville operator Sy = −y ′′ + q(x)y in the space L1(R) only the
following natural condition q(x) ≥ 1 is sufficient. In this case we say that S

is an unconditionally separable operator. The discrete Sturm–Liouville operator
SDy = −Δ

(2)
h y+ ry, where r = diag{rj , j ∈ Z}, rj ≥ 1, is a diagonal matrix

and also is an unconditionally separable operator in the space l1 [17].
3. At the same time, Theorem 4 shows that the difference operator Ly = −Δ

(2)
h y+

rΔh,−y + qy is a separable operator, already in the space l2(h), if the drift
coefficient r is increasing and can strongly fluctuate, and q obey to them by
the condition

max

[
sup

s=0, 1, 2, ...
Aq,r(s), sup

τ=−1,−2, ...
Bq,r (τ )

]
< ∞.
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On the Generalized Liouville Theorem

Nino Manjavidze, George Makatsaria, Tamaz Vekua, and George Akhalaia

Abstract In this paper a generalization of the classical Liouville theorem for the
solutions of special type elliptic systems and some nonclassical interpretations of
this theorem are obtained.

1 Introduction

It is well known that the study of the real-world physical, technical, biological,
and economical processes is actually reduced to the finding and investigation of
the relations between given and desired functional values. These connections are
often expressed by (ordinary as well as partial) differential equations and systems.
The most important direction of investigation of the obtained differential equations
is the construction of their solutions. It should be mentioned that the effective
construction of the general solution in most cases is not possible and if possible,
then the obtained results are less valuable in view of the investigation of the original
problem. Therefore for the obtained equations the problem of the construction of
the solutions, directly describing the studied processes, becomes actual. As it is well
known in order to single out the concrete solution from the general class of solutions
the so-called initial-boundary conditions are used, and if the mentioned additional
conditions play the role of natural filters, then we get correctly posed boundary
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problem. In purely theoretical (and also practical) view it is undoubtedly interesting
to investigate the intrinsic qualitative and quantitative relation between the equations
(systems of equations) and additional initial-boundary conditions, which constitute
correctly posed boundary problems. It is evident that the mentioned intrinsic
quantitative relation, in contrast to the qualitative, always exists. To illustrate this,
note that in the classical Dirichlet problem there is a deep connection between
the Laplace equation and the Dirichlet boundary condition, while the quantitative
relation cannot be observed, because the Laplace equation has got no quantitative
(numerical) parameters at all. Our work deals with the generalization of the classical
Liouville theorem of complex analysis for a sufficiently wide class of elliptic
systems. The most important result is the solution of the abovementioned problem.
More precisely, the classical Liouville theorem can be interpreted in a somewhat
specific way: all solutions of the classical Cauchy–Riemann system (1) satisfying
the asymptotic condition (2) have the form (3) (see below). It is clear that there is no
quantitative relation between the system (1) and the boundary condition (2), while
the essential qualitative relation is evident (compare with the classical Dirichlet
problem). One of the obtained results is that for a sufficiently wide generalization
of the system (1) a generalization of the boundary condition (2) was found such
that, on the one hand, we get a complete analogy of the classical Liouville theorem,
and on the other, what is more important, the rigid quantitative connection between
the generalized elliptic system and additional boundary condition is clearly visible.
The following question is quite natural: why is the relation between the elliptic
system (the Cauchy–Riemann system) and the corresponding boundary condition
in case of the classical Liouville theorem not explicit? That is our point: that in this
important theorem this relation is hidden. It appears in our generalization of the
mentioned theorem. This work consists of two sections. In the first section a brief
historical overview of the issue, some well-known facts, formulation of the problem,
and some theorems, a priori related to Liouville type theorems are presented. In the
second section the analogues of the Liouville type theorems and their proofs are
studied.

2 Background

10 In 1847 Cauchy proved one of the fundamental regularities of complex
analysis—every non-constant entire function is unbounded. This most important
characteristic property of entire functions is referred in the literature as classical
Liouville theorem (the only bounded entire functions are the constant functions).
The most important applications of this theory (from purely theoretical as well as
from practical point of view) in order to investigate actual problems of mathematical
analysis are well known. From this theorem directly follows that an entire function
u + iv = f (z) of the complex variable z = x + iy, i.e., if the solution in classical
sense of the first order differential system (Cauchy–Riemann system) on the whole
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complex plane C

∂u

∂x
− ∂v

∂y
= 0,

∂v

∂x
+ ∂u

∂y
= 0

(1)

satisfies the asymptotic condition

f (z) = O(zN), z → ∞, (2)

for some non-negative number N , then it is a polynomial of the variable z at most
of order N

f (z) = a0z
N + a1z

N−1 + · · · + aN, (3)

where a0, a1, . . . , aN are complex constants. This result is sometimes referred to
as Liouville theorem also. In other words the general solution of problem (1), (2) is
given by formula (3). More significant is the fact that there is no connection between
the parameter N , mentioned in the theorem and the system (1).

As we will see below, a somewhat unexpectedly important role plays the
following trivial conclusion ensuing from Liouville theorem: an entire (analytic)
bounded function of a complex variable is either nowhere equal to zero or identically
equal to zero.

20 The abovementioned theorems for analytical functions are enhanced and gen-
eralized by different authors in different directions. One of them is the most
important direction of contemporary complex analysis, the theory of generalized
analytic functions. In the classical monograph [1] of the Georgian founder of this
theory, I. Vekua, are collected results of systematized authors, his disciples, and
followers during many years of their investigations. One of them is the analogue of
classical Liouville theorem for generalized analytic functions. Let some notations
be introduced before formulating the corresponding result.

30 Let us fix on the complex C plane a pair of regular coefficients (functions) A, B
from the Lp,2, p > 2, class (by definition the class Lp,2 consists of all functions U ,
defined on the entire plane, satisfying the conditions

∫∫
G

|U(ξ)|p dG < ∞,

∫∫
G

1

|z|2p
∣∣∣U(1

z

)∣∣∣p dG < ∞,

where G = {|z| < 1} is a unit disc) and consider the Carleman–Vekua equation

∂zω + Aω + Bω = 0, (C–V)
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where the operator ∂z = 1
2

(
∂
∂x

+ i ∂
∂y

)
is understood in generalized (Sobolev)

sense. The generalized solutions of this equation are called generalized analytic
functions [1].

The general representation of generalized analytic functions through analytic
functions is the strongest tool in order to investigate the solutions of the equation
(C–V). In particular, there exists the formula

ω = f exp{T }, (4)

where f is an arbitrary entire function and the function T = T (z) is evaluated by
the formula

T (z) = − 1

π

∫ ∫
C

(
A(ξ)+ B(ξ)

ω(ξ)

ω(ξ)

)
1

ξ − z
dCξ .

The obtained representation of the solutions by means of entire functions is
crucial for the solutions of (C–V) in order to get the analogue of the classical
Liouville theorem. By the regularity of the coefficients of the equation, the factor
exp{T } is continuous on the whole plane, never equals zero and exp{T } → 1 as
z → ∞.

Respectively, if the coefficients of equation (C–V) are regular, if the solution
ω is bounded, and if it is zero at some point of the plane, then it is identically
zero (in the abovementioned monograph [1] this statement is called as analogue of
the classical Liouville theorem; besides, in the same monograph a very interesting
geometric interpretation of this result is given). Thus, every bounded solution of
the equation (C–V) with regular coefficients has exactly the same property as an
entire function of a complex variable, in particular there is an alternative: a solution
is not zero anywhere or identically equal to zero. At the same time one principal
difference should be mentioned. A bounded entire function is constant, whereas a
bounded solution of the (C–V) equation does not need to be constant. This makes it
complicated to describe effectively the solutions of the equation (C–V) with O(zN)

asymptotic at infinity, in particular to obtain a representation of type (3).
As was mentioned above for the solution of the equation (C–V) an obtained

analogue of the classical Liouville theorem is essentially based on the principal
limitation for the coefficients A and B of the equation (C–V)—they must be regular.
Theoretically (and also very important for the analysis of applied problematics) the
largest interest is attracted to find analogues of the classical Liouville theorem for
the equation (C–V) when these coefficients are not regular. The most notable seems
to be the simplest case of the coefficients

A = const �= 0, B = const �= 0.
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Exactly for these coefficients V. Vinogradov has obtained (probably for the first
time in the literature in this direction) the most important results related with
the Liouville type theorem (see [2]). For the equations (C–V) with non-regular
coefficients the Liouville type theorems are obtained in the works of several authors,
among them are the works [3, 4].

Note that for the Liouville theorem the fact that the parameter n is equal to 1 or is
greater than 1, i.e., (4) for one complex equation or a system of complex equations is
essential. In particular, K. Habetha (see [5]) has constructed a system for which the
Liouville theorem is violated because it has a solution that is non-trivial, continuous
on whole plane and is zero at infinity.

In the present paper (see Sect. 3 below) sufficiently wide classes of elliptic
singular (with irregular-coefficients) systems (the number of equations and unknown
functions is an arbitrary natural number n) are also studied and for them the
generalizations of the classical Liouville type theorem are obtained.

3 Generalized Liouville Theorem

10 Consider the following system of first order differential equations of the
complex variable z = x + iy on C

∂zω1 = α11ω1 + α12ω2 + · · · + α1nωn,

∂zω2 = α21ω1 + α22ω2 + · · · + α2nωn,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂zωn = αn1ω1 + αn2ω2 + · · · + αnnωn,

(5)

where ∂z ≡ 1
2

(
∂
∂x

+ i ∂
∂y

)
, n is a natural number,

αkp = ρ(z)αk,p, 1 ≤ k, p ≤ n,

where αk,p are complex numbers; ρ(z) is a given function

ρ(z) = |z|ν exp{im arg z}, (6)

m is an integer and ν > 0 is a real number; ωk(z), 1 ≤ k ≤ n, are unknown
functions.

Obviously, the system of equations (5) is elliptic and under a solution we mean a
system of functions ω1, ω2, . . . , ωn of the class C1(C) satisfying the equalities (5)
for every finite point on the complex plane C.

Rewrite the system (5) in the following matrix form:

∂zW = ρ(z)AW, (7)
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where

A = (αi,k

)
n×n

, W =

⎛
⎜⎜⎜⎝

ω1

ω2
...

ωn

⎞
⎟⎟⎟⎠ . (8)

Everywhere below we assume that

detA �= 0, (9)

and the numerical parameters m and ν satisfy the condition

m �= 1, |m− 1| �= ν + 1. (10)

Denote by T a nondegenerate matrix, for which the matrix B = T −1AT has the
following Jordan canonical form:

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ1 0 0 · · · · · · 0 0 0
b1 λ2 0 · · · · · · 0 0 0
0 b2 λ3 · · · · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 · · · · · · bn−2 λn−1 0
0 · · · · · · · · · · · · 0 bn−1 λn

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

The diagonal elements of the matrix B are the eigenvalues λ1, λ2, . . . , λ3 of the
matrix A (it is possible that some of them are equal). All the remained (non-
diagonal) elements of the matrix B are equal to zero, perhaps except of those
elements that are located left to the diagonal elements. Assume also that the
following inequalities are fulfilled:

|λn| ≤ |λn−1| ≤ · · · ≤ |λ1|. (12)

From the conditions (10) it follows that ν−m+2 �= 0, correspondingly by virtue
of condition (9) and by means of the following formulas:

τ = 2|λn|
|ν −m+ 2| , δk = 2λk

ν −m+ 2
, k = 1, 2, . . . , n, (13)

non-zero numbers are defined. Consider the system of functions

ωk = δk|z|ν+1 exp{i(m− 1) arg z}, k = 1, 2, . . . , n. (14)
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Denote by Ω(N, δ, σ ) the set of all vector-functions W(z) representing the
solutions of the system (7) and satisfying the asymptotic conditions at infinity

max
1≤k≤n

|Wk(z)| = O
(
|z|N exp

{
δ|z|σ}), z → ∞. (15)

Here N is a non-negative integer, δ and σ are non-negative real numbers. It
is clear that for each fixed numbers N , δ, and σ , Ω(N, δ, σ ) represents a linear
vector space over the complex numbers field. The dimension of this vector space is
investigated below.

For arbitrary non-negative integer N the following theorems are valid:

Theorem 1 dimΩ(N, δ, ν + 1) = 0 if δ < τ .

Theorem 2 dimΩ(N, δ, σ ) = 0 if σ < ν + 1, δ ≥ 0.

Theorem 3 dimΩ(N, δ, ν + 1) = ∞ if σ > τ .

Theorem 4 dimΩ(N, δ, σ ) = ∞ if σ > ν + 1, δ > 0.

Proof Let W(z) ∈ Ω(N, δ, ν + 1) for some number δ < τ then the vector-function

Y ≡

⎛
⎜⎜⎜⎝

Y1

Y2
...

Yn

⎞
⎟⎟⎟⎠ = T −1W (16)

(T −1 is the matrix that transforms the matrix A in its canonical Jordan form) is the
solution of the system

∂zY1 = λ1ρ(z)Y1,

∂zY2 = λ2ρ(z)Y2 + b1ρ(z)Y1,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∂zYn = λnρ(z)Yn + bn−1ρ(z)Yn−1,

(17)

satisfying the asymptotic condition

max
1≤k≤n

|Yk(z)| = O
(
|z|N exp

{
δ|z|ν+1}), z → ∞. (18)

Direct checking shows that the following equality takes place

∂zω1 = λ1ρ(z),
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by virtue of which the general solution of the first equation of the system (15) is
given by the formula

Y1(z) = Φ1 exp{ω1(z)}, (19)

where Φ1(z) is an entire function.
Using (16) we get the following estimation for the entire function Φ1(z):

Φ1(z) = O
(
|z|N exp

{
δ|z|ν+1 − Reω1(z)

})
, z → ∞. (20)

From (18) it is clear that Φ1(z)

zN
satisfies the conditions

Φ1(z)

zN
= O

(
exp
{
2|δ1| |z|ν+1}), z → ∞, (21)

and is bounded on every ray

{
z : arg z = ψ, |z| ≥ r0

}
, (22)

where ψ is an arbitrary solution of the equation

cos
[
(m− 1)ψ + arg δ1

]− δ

|δ1| = 0 (23)

and r0 is a sufficiently large number.
By virtue of the conditions δ < τ ≤ |δ1|, m �= 1, |m − 1| �= ν + 1 and the

abovementioned facts we obtain that Φ1 ≡ 0 and therefore Y1 ≡ 0. Hence from the
second equation of system (15) (similarly to the above considerations) we conclude
that Φ2 ≡ 0, etc. So finally we obtain Y1 ≡ Y2 ≡ · · · ≡ Yn ≡ 0 and thus W(z) ≡ 0,
i.e., Theorem 1 is proved.

Proof of Theorem 2 It follows directly from Theorem 1 by taking into account that
under the conditions of Theorem 2 the following inclusion:

Ω(N, δ, σ ) ⊂ Ω(N, δ, ν + 1)

holds.
To prove Theorem 3 it is sufficient to construct a linearly independent system

of vector-functions of the space Ω(N, δ, ν + 1), δ > τ . For this purpose take the
following system of vector-functions:

W(k)(z) = T −1Y (k)(z), k = 0, 1, 2, . . . , (24)
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where

Y (k)(z) =

⎛
⎜⎜⎜⎝

0
0
...

zk exp{ωn(z)}

⎞
⎟⎟⎟⎠ .

It is obvious that any arbitrary finite subsystem of the constructed system of
functions is linearly independent and therefore the theorem is proved.

The proof of Theorem 4 directly follows from Theorem 3 by taking into account
that under the conditions of Theorem 3 the following inclusion:

Ω(N, δ, ν + 1) ⊂ Ω(N, δ, σ )

holds.
From the above obtained results it follows that the system (5) has only the trivial

solution satisfying

max
1≤k≤n

|Wk(z)| = O(|z|N), z → ∞, (25)

for an arbitrary real number N .

20 In this subsection for one of the classes of systems of type (5) explicit values
of parameters δ and σ , for which the solutions space Ω(N, δ, σ ) is non-trivial and
finite-dimensional are obtained.

For this the inequality

|m− 1| > 2(ν + 1), (26)

instead of conditions (9) should be fulfilled and all eigenvalues of the matrix A

should have one and the same modulus. In addition, we demand that the matrix
A should have a so-called simple structure, i.e., A is similar to a diagonal matrix.
Various criteria which guarantee simple structure for the matrix A are well known, in
particular an n-dimensional square matrix is similar to a diagonal matrix if and only
if it has n numbers of linearly independent eigenvectors. Besides, it is known that the
matrix A has a simple structure if and only if the algebraic multiplicity of every of its
eigenvalues (i.e., the multiplicity of the root of the characteristic equation det[A −
λE] = 0, where E is the unit matrix of the corresponding dimension) coincides with
the geometric multiplicity of the same eigenvalue (i.e., with the number of linearly
independent eigenvectors corresponding to the eigenvalue of the matrix A).
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The following theorem holds.

Theorem 5 If the condition (24) is satisfied and the matrix A has a simple structure,
then for any integer non-negative number N

dimΩ(N, τ, ν + 1) = n(N + 1); (27)

besides, the following system of vector-functions

W(k,i)(z) = T −1Y (k,i)(z), k = 0, 1, 2, . . . , N; i = 1, 2, . . . , n, (28)

is a basis for the space Ω(N, δ, ν + 1), where T −1 is matrix that transforms the
matrix A into a diagonal type matrix and

Y (k,1)(z) =

⎛
⎜⎜⎜⎝

zk exp{ωn(z)}
0
...

0

⎞
⎟⎟⎟⎠ , Y (k,2)(z) =

⎛
⎜⎜⎜⎝

0
zk exp{ωn(z)}

...

0

⎞
⎟⎟⎟⎠ , . . . ,

Y (k,n)(z) =

⎛
⎜⎜⎜⎝

0
0
...

zk exp{ωn(z)}

⎞
⎟⎟⎟⎠ , (29)

where k = 0, 1, 2, . . . , N .

The proof is similar to the proof of Theorem 1 with the difference that according
to the conditions of Theorem 5, the relation (18) does not provide the triviality of
the entire functions Φ1(z), Φ2(z), . . . , Φn(z). They are polynomials of the complex
variable z at most of order N .

Note that if the inequality (26) is not fulfilled, then in general the equality (25) is
not valid, in particular if

|m− 1| < ν + 1, (30)

then

dimΩ(N, τ, ν + 1) = ∞. (31)
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Neumann Problem in Polydomains

A. Okay Çelebi

Abstract In this presentation, we will discuss the Neumann problem for higher-
order model equations in the unit polydisc of C2. We derive the integral representa-
tions of the functions defined in the unit polydisc of C2 which may particularly be
suitable for Neumann problems.

1 Introduction

Boundary value problems in Cn, n ≥ 1, attracted many researchers in the last several
decades. Riemann and Riemann–Hilbert problems and their particular cases known
as Schwarz, Dirichlet, Neumann, and Robin problems have been investigated by
many researchers in the case of n = 1 [1, 3–7, 9–11, 13, 14, 21, 22] and n ≥ 2
[8, 16–20].

In this presentation we will concentrate on Neumann problems in C2 which can
be easily generalized into Cn, n ≥ 2. In the case of n = 1, Neumann problem is
discussed for the model equations, that is, for the equations having the leading parts
with holomorphic and harmonic operators in several different types of domains.

In the next section of this paper, we summarize some relevant information for the
problems in C. The last section is reserved for integral representations of functions
in C2.

2 Preliminaries

In this section we collect results obtained previously for the Neumann function in C

[3, 12, 15, 22, 23].
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The Neumann function for the unit disc D is given by

N1(z, ζ ) = − log |(ζ − z)(1 − zζ̄ ) |2 (1)

for z, ζ ∈ D, z �= ζ , [12] which is slightly different from the one given previously
[15, 22, 23]. (1) satisfies

∂νzN1(z, ζ ) = (z∂z + z̄∂z̄)N1(z, ζ ) = −2 (2)

for z ∈ ∂D, ζ ∈ D. A second order Neumann function [5, 7] for z and ζ in D̄ with
z �= ζ is given by

N2(z, ζ ) =|ζ − z |2
[

log |(ζ − z)(1 − zζ̄ ) |2 −4 + 4
∞∑
k=2

1

k2
[(zζ̄ )k + (z̄ζ )k]

]

+2(zζ̄ + z̄ζ ) log(1 − zζ̄ )2 + (1 + |z|2)(1 + |ζ |2)
[

log(1 − zζ̄ )

zζ̄
+ log(1 − z̄ζ )

z̄ζ

]
.

Nevertheless, the higher-order Neumann functions are not easy to derive in their
explicit forms but they may be defined iteratively for n ∈ N where n ≥ 2, as

Nn(z, ζ ) = − 1

π

∫∫
D

N1(z, ζ̃ )Nn−1(ζ̃ , ζ )dξ̃dη̃ . (3)

These functions satisfy

∂z∂z̄Nn(z, ζ ) = Nn−1(z, ζ ) (4)

in D,

∂νzNn(z, ζ ) = 2

(n− 1)!2 (|ζ |
2 −1)n−1

−
n−2∑

μ=[ n
2 ]

μ!2
(n− 1)!(n− 1 − μ)!2(2μ− n+ 1)!∂νzNμ+1(z, ζ )

on ∂D and the normalization condition

1

2πi

∫
∂D

Nn(z, ζ )
dz

z
= 0 ,

see [12, Theorem 4.5]. Using the higher-order Neumann functions and higher-order
Cauchy–Pompeiu representations, Neumann problems for Poisson and n-Poisson
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equations are solved uniquely under some normalization and solvability conditions
[5, 7, 12].

It is known that [12]

w(z)= −
n−1∑
μ=0

{
cμpμ+1(z)− 1

4πi

∫
∂D

Nμ+1(z, ζ )γμ(ζ )
dζ

ζ

}
(5)

− 1

π

∫∫
D

Nn(z, ζ )g(ζ )dξdη (6)

is the unique solution of the Neumann-n problem

(∂z∂z̄)
nw = g in D , g ∈ Lp(D) for 1 < p < +∞ ,

∂ν(∂z∂z̄)
σw = γσ on ∂D , γσ ∈ C(∂D) for 0 ≤ σ ≤ n− 1

satisfying

1

2πi

∫
∂D

(∂ζ ∂ζ̄ )
σw(ζ )

dζ

ζ
= cσ , cσ ∈ C for 0 ≤ σ ≤ n− 1

iff for |z| = 1

1

2πi

∫
∂D

γσ (ζ )
dζ

ζ
=

n−1∑
μ=σ+1

αμ−σ cμ + 1

π

∫∫
D

∂νzNn−σ (z, ζ )g(ζ )dξdη (7)

for α1 = 2 and for 3 ≤ k

αk−1 = −
k−2∑

μ=[ k2 ]

μ!2
(k − 1)!(k − 1 − μ)!2(2μ− k + 1)! αμ (8)

where ζ ∈ ∂D

pμ(z) = 1

2
∂νζ Nμ(z, ζ ) for 1 ≤ μ ≤ n and z ∈ D.

In the article [3], a particular solution of the above problem and its derivatives
are defined as an integral operator family:

Definition 1 For n ∈ N, k, l ∈ N0 with (k, l) �= (n, n) and k + l ≤ 2n, we define

(Sn,k,lF )(z) := Sn,k,lF (z) = 1

π

∫∫
D

∂k
z ∂

l
z̄Nn(z, ζ )F (ζ )dξdη

for a suitable complex valued function F given in D.
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Let us note that the operators Sn,k,l are weakly singular for k + l < 2n and strongly
singular for k + l = 2n. Particularly, S1,0,0 and S1,1,0 are modified forms of the
operators Π̂0, Π̂1 and S1,2,0 is the operator Π̂2 and all three operators are given
by Vinogradov [23] and Vekua [22]. Besides, the properties of S2,k,l = Pk,l are
investigated in [2, 3]. The boundedness, continuity of the operators Sn,k,l in the case
of k+ l < 2n, and Lp boundedness of them in the case of k+ l = 2n are also proved
in [3].

Using the integral representation formula related to the Neumann-n problem
given by Begehr and Vanegas in [12], we can write any w ∈ C2n(D) as:

w(z) = PD,n(w)+ ∂ÑD,n(w)+ ÑD,n(w)

where

PD,n(w) = −
n−1∑
μ=0

pμ+1(z)

⎡
⎣ 1

2πi

∫
∂D

(∂ζ ∂ζ̄ )
μw(ζ )

dζ

ζ

⎤
⎦

∂ÑD,n(w) = 1

4πi

n−1∑
μ=0

∫
∂D

Nμ+1(z, ζ )∂νζ (∂ζ ∂ζ̄ )
μw(ζ )

dζ

ζ

Sn,0,0((∂ζ ∂ζ̄ )
nw)(z) = ÑD,n(w) = − 1

π

∫∫
D

Nn(z, ζ )(∂ζ ∂ζ̄ )
nw(ζ )dξdη.

3 Integral Representations in C2

This section is devoted to the study of the integral representations of functions in
C2 which is suitable to discuss the solutions of Neumann problems. We will employ
the unit polydisc D2 of C2, which is the Cartesian product of two unit discs in C:

D
2 := {z = (z1, z2) : |zk| < 1, k = 1, 2} = D1 ×D2

with the corresponding distinguished boundary

∂D2 := {z = (z1, z2) : |zk| = 1, k = 1, 2} = ∂D1 × ∂D2

where Dk = {zk : |zk| < 1} and ∂Dk = {zk : |zk| = 1}, k = 1, 2.
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We will start with the integral representation defined above for the variable ẑk
in C.

w(ẑk) = −
n−1∑
μ=0

pμ+1(ẑk)

⎡
⎢⎣ 1

2πi

∫
∂Dk

(∂
ζ̂k
∂ ¯̂
ζk
)μw(ζ̂k)

dζ̂k

ζ̂k

⎤
⎥⎦

− 1

4πi

n−1∑
μ=0

∫
∂Dk

Nμ+1(zk, ζ̂k)∂ν
ζ̂k
(∂

ζ̂k
∂ ¯̂
ζk
)μw(ζ̂k)

dζ̂k

ζ̂k

− 1

π

∫∫
Dk

Nn(zk, ζ̂k)(∂ζ̂k
∂ ¯̂
ζk
)nw(ζ̂k)dξ̂kdη̂k.

Using the above notations we have

w(ẑk) = PD,n(w(ẑk))+ ∂ÑD,n(w(ẑk))+ ÑD,n((∂ẑk ∂ ¯̂zk )
nw(ẑk)).

In the rest of the article we will concentrate on the problems in C2. Thus we get

w(ẑ1, z2) = PD1,n(w(ẑ1, z2))+ ∂ÑD1,n(w(ẑ1, z2))

+ÑD1,n((∂ẑ1∂ ¯̂z1
)nw(ẑ1, z2)) (9)

w(z1, ẑ2) = PD2,n(w(z1, ẑ2))+ ∂ÑD2,n(w(z1, ẑ2))

+ÑD2,n((∂ẑ2∂ ¯̂z2
)nw(z1, ẑ2)). (10)

Substituting (10) in (9) gives

w(z1, z2) = PD1,n(PD2,n(w(z1, z2))+ ∂ÑD2,n(w(z1, z2))+ ÑD2,n((∂z1∂z̄1)
nw(z1, z2)))

+∂ÑD1,n(PD2,n(w(z1, z2))+ ∂ÑD2,n(w(z1, z2))+ ÑD2,n((∂z1∂z̄1 )
nw(z1, z2)))

+ÑD1,n(PD2,n(w(z1, z2))+ ∂ÑD2,n(w(z1, z2))+ ÑD2,n((∂z1∂z̄1 )
nw(z1, z2)))

= PD1,nw(z1, z2)+ PD2,nw(z1, z2)− PD1,n(PD2,nw(z1, z2))

+∂ÑD1,n(w(z1, z2))+ ∂ÑD2,n(w(z1, z2))− PD1,n(∂ÑD2,n(w(z1, z2)))

−PD2,n(∂ÑD1,n(w(z1, z2)))− ∂ÑD1,n(∂ÑD2,n(w(z1, z2)))

+ÑD1,n(ÑD2,n(∂z1∂z̄1 )
n(∂z2∂z̄2 )

nw(z1, z2)). (11)
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Now we may give the explicit forms of the abbreviations in (11). We already
know the representation of the notations PD,n(w(ẑk)), ∂ÑD,n(w(ẑk)), and
ÑD,n((∂ẑk ∂ ¯̂zk )

nw(ẑk)). Let us compute the others:

(i)

PD1,n(PD2,nw(z1, z2)) =
n−1∑
μ1=0

pμ1+1(z1)

⎡
⎢⎣ 1

2πi

∫
∂D1

(∂ζ1∂ζ̄1
)μ1

×

⎧⎪⎨
⎪⎩

n−1∑
μ2=0

pμ2+1(z2)

⎡
⎢⎣ 1

2πi

∫
∂D2

(∂ζ2∂ζ̄2
)μ2w(ζ1, ζ2)

dζ2

ζ2

⎤
⎥⎦
⎫⎪⎬
⎪⎭

dζ1

ζ1

⎤
⎥⎦

=
(

1

2πi

)2 n−1∑
μ1,μ2=0

pμ1+1(z1)pμ2+1(z2)

×
∫

∂D1×∂D2

(∂ζ1∂ζ̄1
)μ1(∂ζ2∂ζ̄2

)μ2w(ζ1, ζ2)
dζ2

ζ2

dζ1

ζ1
.

Using the notation

cμ1μ2 =
(

1

2πi

)2 ∫
∂D1×∂D2

(∂ζ1∂ζ̄1
)μ1(∂ζ2∂ζ̄2

)μ2w(ζ1, ζ2)
dζ2

ζ2

dζ1

ζ1

we get

PD1,n(PD2,nw(z1, z2)) =
n−1∑

μ1,μ2=0

cμ1μ2pμ1+1(z1)pμ2+1(z2).

(ii)

PDj ,n(∂ÑDk,n(w(z1, z2))) = −
n−1∑
μj=0

pμj+1(zj )

⎡
⎢⎣ 1

2πi

∫
∂D1

(∂ζj ∂ζ̄j )
μj

×

⎧⎪⎨
⎪⎩

1

4πi

n−1∑
μk=0

∫
∂Dk

Nμk+1(zk, ζk)∂νζk (∂ζk ∂ζ̄k )
μkw(ζ1, ζ2)

dζk

ζk

⎫⎪⎬
⎪⎭

⎤
⎥⎦ dζj

ζj
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=
(
− 1

4πi

)
1

2πi

n−1∑
μj ,μk=0

pμj+1(zj )

×
∫

∂D1×∂D2

Nμk+1(zk, ζk)∂ν
ζ̂k
(∂ζk ∂ζ̄k )

μk (∂ζj ∂ζ̄j )
μj w(ζ1, ζ2)

dζk

ζk

dζj

ζj

for j, k ∈ {1, 2} and j �= k.
(iii)

∂ÑD1,n(∂ÑD2,n(w(z1, z2))) = 1

4πi

n−1∑
μ1=0

∫
∂D1

Nμ1+1(z1, ζ1)∂νζ1 (∂ζ1∂ζ̄1
)μ1

(12)

×
⎡
⎢⎣ 1

4πi

n−1∑
μ2=0

∫
∂D2

Nμ2+1(z2, ζ2)∂νζ2 (∂ζ2∂ζ̄2
)μ2w(ζ1, ζ2)

dζ2

ζ2

⎤
⎥⎦ dζ1

ζ1
(13)

=
(

1

4πi

)2 n−1∑
μ1,μ2=0

∫
∂D1×∂D2

Nμ1+1(z1, ζ1)Nμ2+1(z2, ζ2) (14)

×∂νζ1 (∂ζ1∂ζ̄1
)μ1∂νζ2 (∂ζ2∂ζ̄2

)μ2w(ζ1, ζ2)
dζ2

ζ2

dζ1

ζ1
. (15)

(iv)

ÑD1,n(ÑD2,n(∂z1∂z̄1)
n(∂z2∂z̄2)

nw(z1, ẑ2)w(z1, z2)) = 1

π

∫∫
D1

Nn(z1, ζ1)(∂ζ̂1
∂ ¯̂
ζ1
)n

×
⎡
⎢⎣ 1

π

∫∫
D2

Nn(z2, ζ2)(∂ζ̂2
∂ ¯̂
ζ2
)nw(ζ )dξ2dη2

⎤
⎥⎦ dξ1dη1

=
(

1

π

)2 ∫∫

D2

Nn(z1, ζ1)Nn(z2, ζ2)(∂ζ̂1
∂ ¯̂
ζ1
)n(∂

ζ̂2
∂ ¯̂
ζ2
)nw(ζ1, ζ2)dξ2dη2dξ1dη1.

Let us call

ND2,n(z1, z2; ζ1, ζ2) =
2∏

j=1

Nn(zj , ζj )
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as the Neumann function for the problem. Hence combining the above results we
obtain the following formula:

w(z1, z2) =
2∑

j=1

n−1∑
μj=0

pμj+1(zj )

⎡
⎢⎣ 1

2πi

∫
∂Dj

(∂ζj ∂ζ̄j )
μj w(ζ1, ζ2)

dζj

ζj

⎤
⎥⎦

−
n−1∑

μ1,μ2=0

cμ1μ2pμ1+1(z1)pμ2+1(z2)

− 1

4πi

2∑
j=1

n−1∑
μj=0

∫
∂Dj

Nμj+1(zj , ζj )∂νζj
(∂ζj ∂ζ̄j )

μj w(ζ1, ζ2)
dζj

ζj

+ 1

4πi

1

2πi

n−1∑
μj ,μk=0

pμj+1(zj )

∫

∂D2

Nμk+1(zk, ζk)∂νζk
(∂ζk ∂ζ̄k )

μk (∂ζj ∂ζ̄j )
μj w(ζ1, ζ2)

dζk

ζk

dζj

ζj

+
(

1

4πi

)2 n−1∑
μ1,μ2=0

∫
∂D1×∂D2

Nμ1+1(z1, ζ1)Nμ2+1(z2, ζ2)

×∂νζ1
(∂ζ1∂ζ̄1

)μ1∂νζ2
(∂ζ2∂ζ̄2

)μ2w(ζ1, ζ2)
dζ2

ζ2

dζ1

ζ1

+
(

1

π

)2 ∫∫

D2

ND2,n(z1, z2; ζ1, ζ2)(∂ζ̂1
∂ζ̄1

)n(∂ζ2∂ζ̄2
)nw(ζ1, ζ2)dξ2dη2dξ1dη1. (16)

4 Neumann-n Problem in C2

Firstly we state the Neumann-n problem for the model equation in C2.

Statement of the Problem
Find a function in the Sobolev space W 2n,p(D

2
) satisfying

(∂z1∂z̄1)
n(∂z2∂z̄2)

nw(z1, z2) = f (z1, z2) in D
2 (17)

satisfying the boundary conditions

∂νz1
(∂z1∂z̄1)

μ1w(z1, z2) = γμ1(z1, z2) on ∂D1, 0 ≤ μ1 ≤ n− 1 (18)

∂νz2
(∂z2∂z̄2)

μ2w(z1, z2) = γμ2(z1, z2) on ∂D2, 0 ≤ μ2 ≤ n− 1 (19)

subject to the compatibility conditions

∂νz2
(∂z2∂z̄2)

μ2γμ1(z1, z2) = ∂νz1
(∂z1∂z̄1)

μ1γμ2(z1, z2) = γμ1μ2(z1, z2) (20)
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on the distinguished boundary. The corresponding normalization conditions are

(
1

2πi

)2 ∫
∂D1

∫
∂D2

(∂ζ1∂ζ̄1
)μ1(∂ζ2∂ζ̄2

)μ2w(ζ1, ζ2)
dζ2

ζ2

dζ1

ζ1

= 1

2πi

∫
∂D1

(∂ζ1∂ζ̄1
)μ1

⎡
⎢⎣ 1

2πi

∫
∂D2

((∂ζ2∂ζ̄2
)μ2w(ζ1, ζ2)

dζ2

ζ2

⎤
⎥⎦ dζ1

ζ1
= cμ1μ2 (21)

for 0 ≤ μ1, μ2 ≤ n− 1.
We employ the integral representation (16) given in the previous section to derive

the solution of this problem. To simplify the notations we assume homogeneous
normalization conditions.

Theorem 1 The Neumann-n problem in C2 given by Eq. (17) with the Neumann
conditions (18)–(20) subject to the homogeneous normalization conditions is
uniquely solvable if and only if

2γσ1σ2(z1, z2)− 1

πi

∫
∂D1

γσ1σ2(ζ1, z2)
dζ1

ζ1
− 1

πi

∫
∂D2

γσ1σ2(z1, ζ2)
dζ2

ζ2

+ 1

(2πi)2

∫

∂D2

γσ1σ2(ζ1, ζ2)
dζ1

ζ1

dζ2

ζ2

+ 1

π2

∫
D2

∂νz1
Nn−σ1(z1, ζ1)∂νz2

Nn−σ2(z2, ζ2)f (ζ1, ζ2)dξ1dη1dξ2dη2 = 0

on the distinguished boundary for every 0 ≤ σ1 ≤ n− 1 and 0 ≤ σ2 ≤ n− 1.

Proof Using Eq. (16) with homogeneous normalization conditions we easily get the
following form of the solution:

w(z1, z2) = 1

4πi

n−1∑
μ1=0

∫
∂D1

Nμ1+1(z1, ζ1)γμ1(ζ1, z2)
dζ1

ζ1

+ 1

4πi

n−1∑
μ2=0

∫
∂D2

Nμ2+1(z2, ζ2)γμ2(z1, ζ2)
dζ2

ζ2

−
(

1

4πi

)2 n−1∑
μ1,μ2=0

∫

∂D2

Nμ1+1(z1, ζ1)Nμ2+1(z2, ζ2)γμ1μ2(ζ1, ζ2)
dζ1

ζ1

dζ2

ζ2

+ 1

π2

∫∫

D2

ND2,n(z1, z2; ζ1, ζ2)f (ζ1, ζ2)dξ1dη1dξ2dη2. (22)
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Now we need to find the solvability condition in order to complete the proof of
the theorem. Thus we want to see under which relations the function given by (22)
satisfies the boundary conditions. We apply the differential operator

∂νz1
(∂z1∂z̄1)

σ1∂νz2
(∂z2∂z̄2)

σ2 0 ≤ σ1 ≤ n− 1, 0 ≤ σ2 ≤ n− 1

to (22), keeping in mind the results given by Begehr and Vanegas [12], afterwards
restricting it to the distinguished boundary, that is substituting |z1| = 1 and |z2| = 1,
we get

∂νz1
(∂z1∂z̄1)

σ1∂νz2
(∂z2∂z̄2)

σ2w(z1, z2) = 3γσ1σ2(z1, z2)− 1

πi

∫
∂D1

γσ1σ2(ζ1, z2)
dζ1

ζ1

− 1

πi

∫
∂D2

γσ1σ2(z1, ζ2)
dζ2

ζ2

+ 1

(2πi)2

∫

∂D2

γσ1σ2(ζ1, ζ2)
dζ1

ζ1

dζ2

ζ2

+ 1

π2

∫
D2

∂νz1
Nn−σ1(z1, ζ1)∂νz2

Nn−σ2(z2, ζ2)f (ζ1, ζ2)dξ1dη1dξ2dη2.

The solvability condition is evaluated as

2γσ1σ2(z1, z2)− 1

πi

∫
∂D1

γσ1σ2(ζ1, z2)
dζ1

ζ1
− 1

πi

∫
∂D2

γσ1σ2(z1, ζ2)
dζ2

ζ2

+ 1

(2πi)2

∫

∂D2

γσ1σ2(ζ1, ζ2)
dζ1

ζ1

dζ2

ζ2

+ 1

π2

∫
D2

∂νz1
Nn−σ1(z1, ζ1)∂νz2

Nn−σ2(z2, ζ2)f (ζ1, ζ2)dξ1dη1dξ2dη2 = 0

on the distinguished boundary for every 0 ≤ σ1 ≤ n− 1 and 0 ≤ σ2 ≤ n− 1 .

Remarks

1. The results we have obtained may be extended to the Neumann problems for
model equations in Cn.

2. All the above discussions may be extended to linear elliptic differential equations
in Cn.
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Green and Neumann Functions
for a Plane Degenerate Circular Domain

H. Begehr , S. Burgumbayeva, and B. Shupeyeva

Abstract Harmonic Green and Neumann functions are constructed using the
parqueting-reflection principle for a simply connected domain in the complex plane
with two touching circles as the boundary.

1 Introduction

The parqueting-reflection principle serves to determine explicit formulas for har-
monic Green and Neumann functions for certain plane domains D the boundary
∂D of which are composed by segments of circles and lines such that the repeated
reflections of the domain at these segments provide a parqueting of the entire
complex plane C. The principle is described in detail in [8, 11]. Examples for such
domains are plane and disc sectors [3, 7, 11, 12, 15, 23], triangles [8, 9, 24], hexagons
[18], some domains in hyperbolic geometry [2, 4, 6], lens and lune [1, 10, 11, 19],
circular rings [17, 20–22], etc. The principle, however, does not work for any such
domain [5, 13].
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It is used in [14] to construct in an explicit way the harmonic Green and Neumann
functions for a certain degenerate ring domain

D0 = D = {1

2
<
∣∣z− 1

2

∣∣, |z| < 1
} = {1 < |2z− 1|, |z| < 1

}
,

the boundary of which consists of two touching circles

∣∣z− 1

2

∣∣ = 1

2
and |z| = 1.

As this domain is simply connected in principle the Green and Neumann functions
can be found by their conformal invariance. But constructing the Riemann mapping
function of D onto the unit disc or the upper half plane [16] seems more involved
than just applying the parqueting-reflection principle.

2 Green Function for D

Reflecting the domain D at the inner boundary circle
∣∣z − 1

2

∣∣ = 1
2 repeatedly

produces a parqueting of the unit disc D = {|z| < 1} by the image domains

Dk = { 1

k + 2
< |z− k + 1

k + 2
|, |z− k

k + 1
| < 1

k + 1

}
, k ∈ N0.

The Dk
′s shrink to the point z = 1 and the parqueting for the unit disc is D =⋃

k∈N0
Dk. Reflecting D at the unit circle |z| = 1 produces

D̃0 = {1

2
< | 1

zre
− 1

2
|, 1

|zre| < 1
} = {1 < |z|, z+ z < 2

}

as the image. It is the complement of the closure of the unit disc with respect to the

half plane z+ z < 2. Moreover, the half plane
{
z+ z ≤ 2

} = D̃0
⋃

D. To complete
the parqueting for the plane C reflection at the line z + z = 2 is used mapping the
domains Dk onto

D̂k = { 1

k + 2
< |z− k + 3

k + 2
|, |z− k + 2

k + 1
| < 1

k + 1

}
, k ∈ N0,

while D̃0 is reflected onto

̂̃D0 = {1 < |z− 2|, 2 < z+ z
}
.
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Hence,

C = D̃0 ∪ ̂̃D0 ∪k∈N0

(
Dk ∪ D̂k

)

is the parqueting of the complex plane.
Tracing now the orbit of a point z ∈ D during this procedure leads to the

sequence

z2k = (k − 1)z− k

kz− (k + 1)
∈ D2k = { 1

2k + 2
<
∣∣z− 2k + 1

2k + 2

∣∣, ∣∣z− 2k

2k + 1

∣∣ < 1

2k + 1

}

which reflected at
{∣∣z− 2k+1

2k+2

∣∣ = 1
2k+2

}
is mapped onto

z2k+1 = (k + 1)z− k

(k + 2)z− (k + 1)
∈ D2k+1,

D2k+1 = { 1

2k + 3
<
∣∣z− 2k + 2

2k + 3

∣∣, ∣∣z− 2k + 1

2k + 2

∣∣ < 1

2k + 2

}
.

Also z ∈ D reflected at |z| = 1 gives z̃0 = 1
z
∈ D̃0.

Finally reflection at the vertical line z + z = 2 is required. The original point
z ∈ D0 is mapped onto ẑ = 2 − z and z̃ = 1

z
∈ D̃0 onto ̂̃z = 2z−1

z
∈ ̂̃D0, similarly,

z2k ∈ D2k and z2k+1 ∈ D2k+1, k ∈ N0, onto

ẑ2k = (k + 1)z− (k + 2)

kz− (k + 1)
= 1

z2k+2
∈ D̂2k,

ẑ2k+1 = (k + 3)z− (k + 2)

(k + 2)z− (k + 1)
= 1

z2k+3
∈ D̂2k+1.

The parqueting-reflection principle requires to choose z ∈ D as a simple pole
of a meromorphic function P1(z, ·) to be constructed and to determine the direct
reflection of a pole to become a simple zero and the direct reflection of a zero to
become a simple pole of P1. Hence,

P1(z, ζ ) = z

z

1 − zζ

ζ − z

ζ + z− 2

zζ + 1 − 2z

∞∏
k=0

ζ − z2k+1

ζ − z2k+2

ζ − ẑ2k+2

ζ − ẑ2k+1
. (2.1)

Lemma 1 The infinite product P1 from (2.1) converges for z, ζ ∈ D, ζ �= z.

For a proof see [14], where also the symmetry |P1(z, ζ )| = |P1(ζ, z)| for z, ζ ∈
D, ζ �= z, is shown.
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Theorem 1 The function G1(z, ζ ) = log |P1(z, ζ )|2, z, ζ ∈ D, ζ �= z, is the
harmonic Green function for the domain D.

Proof Because P1(z, ·) is meromorphic in D with a simple pole at the point z,
the function G1(z, ·) is harmonic in D \ {z}. Moreover, G1(z, ζ ) + log |ζ − z|2 is
harmonic in D. To check its boundary behavior one observes for |z| = 1

P1(z, ζ ) = z

z

z− ζ

zζ − 1

zζ + 1 − 2z

2 − z− ζ

∞∏
k=0

ζ − z2k+2

ζ − z2k+1

ζ − ẑ2k+1

ζ − ẑ2k+2
= 1

P1(z, ζ )
,

i.e., |P1(z, ζ )| = 1, as for |z| = 1 the relations z2k+2 = z2k+1, ẑ2k+1 = ẑ2k+2 hold.
Inserting |z− 1

2 | = 1
2 , i.e., 2|z|2 = z+z or z = z1 into the expression for P1(z, ζ )

and observing z2k+1 = z2k, ẑ2k+1 = ẑ2k shows P1(z1, ζ ) = 1
P1(z,ζ )

, so that again
|P1(z, ζ )| = 1.

3 Poisson Kernel for D

The Green function G1(z, ζ ) provides the Poisson kernel as

g1(z, ζ ) = −1

2
∂νζ G1(z, ζ ), z ∈ D, ζ ∈ ∂D,

where ∂νζ is the outward normal derivative on ∂D. On |ζ | = 1 it is given by ∂νζ =
ζ ∂ζ + ζ ∂ζ , so that applied to real functions ∂νζ = 2Reζ ∂ζ . On the part |ζ − 1

2 |
= 1

2 similarly ∂νζ = −(2ζ − 1)∂ζ − (2ζ − 1)∂ζ , so that for real functions ∂νζ =
−2Re(2ζ − 1)∂ζ .

Besides the above representation the Green function can also be rewritten as

G1(z, ζ ) = log
∣∣z
z

1 − zζ

ζ − z

ζ + z− 2

zζ + 1 − 2z

ζ − z1

ζ − ẑ1

∞∏
k=1

ζ − z2k+1

ζ − z2k

ζ − ẑ2k

ζ − ẑ2k+1

∣∣2.
(3.1)

Thus either

∂ζG1(z, ζ ) = − 1

ζ − z
− z

1 − zζ
− z

zζ + 1 − 2z
+ 1

ζ + z− 2

+
∞∑
k=0

[ 1

ζ − z2k+1
− 1

ζ − z2k+2
+ 1

ζ − ẑ2k+2
− 1

ζ − ẑ2k+1

] (3.2)
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or

∂ζG1(z, ζ ) = − 1

ζ − z
+ 1

ζ − z1
− z

1 − zζ
− z

zζ + 1 − 2z
+ 1

ζ + z− 2
− 1

ζ − ẑ1

+
∞∑
k=1

[ 1

ζ − z2k+1
− 1

ζ − z2k
+ 1

ζ − ẑ2k
− 1

ζ − ẑ2k+1

]
.

(3.3)

Theorem 2 The Poisson kernel satisfies on |ζ | = 1

g1(z, ζ ) = ζ

ζ − z
+ ζ

ζ − z
− 1 +O(1 − |z|2) f or |z| → 1,

g1(z, ζ ) = O(2|z|2 − z − z) f or |z− 1

2
| → 1

2
.

For |ζ − 1
2 | = 1

2

g1(z, ζ ) = O(1 − |z|2) f or |z| → 1,

g1(z, ζ ) = −2ζ − 1

ζ − z
− 2ζ − 1

ζ − z
+ 2 +O(2|z|2 − z− z) f or |z− 1

2
| → 1

2
.

As well for |ζ | = 1 as for |ζ − 1
2 | = 1

2 one part of the proof is based on (3.2) and
the relations

1

ζ + z− 2
− z

zζ + 1 − 2z
= 1 − |z|2

(ζ + z − 2)(zζ + 1 − 2z)
,

1

ζ + z − 2
− z

zζ + 1 − 2z
= 0 f or z = 1,

(3.4)

z2k+1 − z2k+2 = |z|2 − 1

[(k + 1)z− (k + 2)][(k + 2)z− (k + 1)] , (3.5)

ẑ2k+2 − ẑ2k+1 = 4(|z|2 − 1)

[(k + 2)z− (k + 1)][(k + 1)z− (k + 2)] , (3.6)

and when |ζ | �= 1 also

1

ζ − z
+ z

1 − zζ
= 1 − |z|2

(ζ − z)(1 − zζ )
. (3.7)
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Similarly, for both boundary parts |ζ | = 1 and |ζ − 1
2 | = 1

2 the remaining parts
are deduced from (3.3) together with

1

ζ − z1
− 1

ζ − z
= z+ z − 2|z|2

(2zζ − ζ − z)(ζ − z)
, (3.8)

z

1 − zζ
+ z

zζ + 1 − 2z
= z + z− 2|z|2

(1 − zζ )(2zζ + 1 − 2z)
, (3.9)

1

ζ + z− 2
− 1

ζ − ẑ1
= z+ z− 2|z|2

(ζ + z− 2)(2zζ + 2 − 2z− ζ )
, (3.10)

z2k+1 − z2k = 2|z|2 − z− z

[(k + 2)z− (k + 1)][kz− (k + 1)] , (3.11)

ẑ2k − ẑ2k+1 = 2|z|2 − z− z

[kz− (k + 1)][(k + 2)z− (k + 1)] , (3.12)

where for |ζ − 1
2 | = 1

2 also

2ζ − 1

ζ − z1
= 2 + 1

2zζ − z − ζ
= 2 − 2ζ − 1

ζ − z
(3.13)

is used. Also all the denominators appearing are not vanishing at the boundary. In
particular the following lemma is proved in [14].

Lemma 2

1. For |ζ | = 1, |z| = 1 but z �= 1 then

ζ + z − 2 �= 0, zζ + 1 − 2z �= 0.

2. For |ζ − 1
2 | = 1

2 , |z − 1
2 | = 1

2 but z �= 1 then

ζ + z − 2 �= 0, zζ + 1 − 2z �= 0.

4 Neumann Function for D

The parqueting-reflection principle suggests to introduce the infinite product

Q1(z, ζ ) = zz
ζ − z

ζ − 1

1 − zζ

1 − ζ

zζ + 1 − 2z

ζ − 1

ζ + z− 2

ζ − 1

×
∞∏
k=0

[ζ − z2k+1

ζ − 1

ζ − z2k+2

ζ − 1

ζ − ẑ2k+1

ζ − 1

ζ − ẑ2k+2

ζ − 1

]
, z, ζ ∈ D .

(4.1)



Green and Neumann Functions for a Plane Degenerate Circular Domain 147

Lemma 3 The infinite product Q1 from (4.1) converges for z, ζ ∈ D.

For details compare [14].

Theorem 3 The function N1(z, ζ ) = − log |Q1(z, ζ )|2, z, ζ ∈ D, ζ �= z, is a
harmonic Neumann function for D satisfying, in particular ∂νζ N1(z, ζ ) = 0 for
ζ ∈ ∂D \ {1}, z ∈ D.

Proof As Q1(z, ·) is analytic in D with a simple zero at the point z the function
N1(z, ζ ) is harmonic in D \ {z} and continuously differentiable on D up to the point
ζ = 1. Moreover, N1(z, ζ )+ log |ζ − z|2 is harmonic in D.

∂ζN1(z, ζ ) = − 1

ζ − z
+ z

1 − zζ
− z

zζ + 1 − 2z
− 1

ζ + z − 2
+ 4

ζ − 1

−
∞∑
k=0

[ 1

ζ − z2k+1
+ 1

ζ − z2k+2
+ 1

ζ − ẑ2k+1
+ 1

ζ − ẑ2k+2
− 4

ζ − 1

]

= − 1

ζ − z
+ z

1 − zζ
+ 2

ζ − 1
+ 1

ζ − 1

[ 1 − z

zζ + 1 − 2z
− 1 − z

ζ + z− 2

]

− 1

ζ − 1

∞∑
k=0

[ 1 − z

[(k + 2)z− (k + 1)]ζ − [(k + 1)z− k]

+ 1 − z

[(k + 1)z− (k + 2)]ζ − [kz− (k + 1)] −
1 − z

[(k + 2)z − (k + 1)]ζ − [(k + 3)z − (k + 2)]

− 1 − z

[(k + 1)z− (k + 2)]ζ − [(k + 2)z− (k + 3)]
]
,

so that for |ζ | = 1, ζ �= 1

Reζ ∂ζN1(z, ζ ) = Re
ζ + 1

ζ − 1
= |ζ |2 − 1

|ζ − 1|2 .

Inserting for 2|ζ |2 = ζ + ζ the relations

|ζ |2 − ζ = ζ − |ζ |2, ζ (2ζ − 1) = ζ,
ζ

ζ − 1
= ζ

1 − ζ
,

into

∂ζN1(z, ζ ) = 1 − z

ζ − 1

1

ζ − z
+ 1 − z

ζ − 1

1

1 − zζ
+ z− 1

ζ − 1

1

2z− zζ − 1
+ z − 1

ζ − 1

1

ζ + z− 2

− 1

ζ − 1

∞∑
k=0

[ z2k+1 − 1

ζ − z2k+1
+ z2k+2 − 1

ζ − z2k+2
+ ẑ2k+1 − 1

ζ − ẑ2k+1
+ ẑ2k+2 − 1

ζ − ẑ2k+2

]
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shows for 2|ζ |2 = ζ + ζ

Re(2ζ − 1)∂ζN1(z, ζ ) = 0

as long as ζ �= 1. See for details [14].
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Biharmonic Monogenic Functions and
Biharmonic Boundary Value Problems

Serhii V. Gryshchuk and Sergiy A. Plaksa

Abstract We consider a commutative algebra B over the field of complex numbers
with a basis {e1, e2} satisfying the conditions (e2

1 + e2
2)

2 = 0, e2
1 + e2

2 �= 0. We
consider a Schwarz-type boundary value problem for “analytic” B-valued functions
in a simply connected domain. This problem is associated with BVPs for biharmonic
functions. Using a hypercomplex analog of the Cauchy type integral, we reduce
these BVPs to a system of integral equations on the real axes. We establish sufficient
conditions under which this system has the Fredholm property.

1 Biharmonic Monogenic Functions

An associative commutative two-dimensional algebra B with the unit 1 over the field
of complex numbers C is called biharmonic (see [8, 10]) if in B there exists a basis
{e1, e2} satisfying the conditions

(e2
1 + e2

2)
2 = 0, e2

1 + e2
2 �= 0 . (1)

In the paper [10] Mel’nichenko proved that there exists the unique biharmonic
algebra B. Note that the algebra B is isomorphic to four-dimensional over the field
of real numbers R algebras considered by Douglis [1] and Sobrero [14].

In what follows, we consider a basis {e1, e2} of the type (1) with the following
multiplication table (see [8]):

e1 = 1, e2
2 = e1 + 2ie2 ,

where i is the imaginary complex unit.
Henceforth we assumed that ζ = x e1 + y e2, z = x + iy, and x, y are real.
Consider the biharmonic plane μ := {ζ = x e1 + y e2 : (x, y) ∈ R2}.
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For a domain D ⊂ R2 consider the corresponding domains Dζ := {ζ = xe1 +
ye2 : (x, y) ∈ D} ⊂ μ and Dz := {z = x + iy : (x, y) ∈ D} ⊂ C. We will assume
by default that the domain D is bounded and simply connected.

We use the Euclidian norm ‖a‖ := √|z1|2 + |z2|2 in the algebra B, where a =
z1e1 + z2e2 and z1, z2 ∈ C.

We say that a function Φ : Dζ −→ B is monogenic in a domain Dζ and denote
as Φ ∈ M (Dζ ), if the derivative Φ ′(ζ ) ∈ B exists at every point ζ ∈ Dζ :

Φ ′(ζ ) := lim
h→0, h∈μ

(
Φ(ζ + h)− Φ(ζ )

)
h−1.

It is proved in [8] that a function Φ : Dζ −→ B is monogenic in Dζ if and only if
its each real-valued component-function Uk : D −→ B, k = 1, 4, in the expansion

Φ(ζ ) = U1(x, y) e1 + U2(x, y) ie1 + U3(x, y) e2 + U4(x, y) ie2 (2)

is differentiable in the domain D and the following analogue of Cauchy–Riemann’s
conditions is fulfilled:

∂Φ(ζ )

∂y
e1 = ∂Φ(ζ )

∂x
e2 ∀ ζ ∈ Dζ .

Every Φ ∈ M (Dζ ) has the derivative of any order in Dζ (cf., e.g., [2, 4]) and
satisfies the equalities

(
∂4

∂x4 + 2
∂4

∂x2∂y2 + ∂4

∂y4

)
Φ(ζ ) = Φ(4)(ζ ) (e2

1 + e2
2)

2 = 0 ∀ ζ ∈ Dζ .

due to the conditions (1). Therefore, we shall also term such a function Φ by
biharmonic monogenic function in Dζ .

Every biharmonic in D function U(x, y) is the first component U1 ≡ U in the
expression (2) of a certain function Φ ∈ M (Dζ ) and, moreover, all such functions
Φ are found in an explicit form (cf., e.g., [2, 4]).

2 BVPs for Biharmonic Monogenic Functions
and Biharmonic Functions

Consider the following boundary value problem: to find a function Φ ∈ M (Dζ )

which is continuously extended on the boundary ∂Dζ of domain Dζ when values
of the first and the third component-functions in (2) are given on ∂Dζ , i.e., the
following boundary conditions are satisfied:

U1(x, y) = u1(ζ ) , U3(x, y) = u3(ζ ) ∀ ζ ∈ ∂Dζ , (3)
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where uk : ∂Dζ −→ R, k ∈ {1, 3} are given real-valued continuous functions. We
call this problem as (1-3)-problem (cf., e.g., [5, 6]).

The principal biharmonic problem (cf., e.g., [15, p. 194] and [11, p. 13]) consists
of finding a function W : D −→ R which is continuous together with partial
derivatives of the first order in the closure D of domain D and is biharmonic in
D, when its values and values of its outward normal derivative are given on the
boundary ∂D:

W(x0, y0) = ω0(s),
∂W

∂n
(x0, y0) = ω2(s) ∀ (x0, y0) ∈ ∂D , (4)

where s is an arc coordinate of the point (x0, y0) ∈ ∂D.
In the case where ω1 is a continuously differentiable function, the principal

biharmonic problem is equivalent to the following biharmonic problem (cf., e.g.,
[15, p. 194] and [11, p. 13]) on finding a biharmonic function V : D −→ R with the
following boundary conditions:

lim
(x,y)→(x0,y0), (x,y)∈D

∂V (x, y)

∂x
= ω1(s) ,

lim
(x,y)→(x0,y0), (x,y)∈D

∂V (x, y)

∂y
= ω3(s) ∀ (x0, y0) ∈ ∂D .

(5)

Let s and n denote unit vectors of the tangent and the outward normal to the
boundary ∂D, respectively, and � (·, ·) denotes an angle between an appropriate
vector (s or n) and the positive direction of coordinate axis (x or y) indicated in
the parenthesis.

A necessary condition for solving the biharmonic problem (5) is the following
(cf., e.g., [15]):

∫
∂D

(
ω1(s) cos � (s, x)+ ω3(s) cos � (s, y)

)
ds = 0 . (6)

The (6) is rewriting in the form:

∫
∂D

v1(x, y) dx + v3(x, y) dy = 0, (7)

where vk(x, y) := ωk(s), x = x(s), y = y(s), k ∈ {1, 3}.
Boundary functions ω1, ω3 have relations with given functions ω0, ω2 of the

problem (4) (cf., e.g., [7, p. 554]), viz.,

ω1(s) = ω′
0(s) cos � (s, x)+ ω2(s) cos � (n, x) ,

ω3(s) = ω′
0(s) cos � (s, y)+ ω2(s) cos � (n, y).
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Furthermore, solutions of the problems (4) and (5) are related by the equality
V (x, y) = W(x, y)+ c , where c ∈ R .

For finding a solution V of the biharmonic problem in D it is enough to know
derivatives ∂V

∂x
and ∂V

∂y
in D, which we can find by solving (1-3)-problem with the

boundary data: uk := ωk , k ∈ {1, 3}, (cf., e.g., [6]). Therefore, the biharmonic
problem is reduced to this (1-3)-problem and we focus our attention to the latter
problem.

A technique of using analytic functions of the complex variable for solving
the biharmonic problem is based on an expression of biharmonic functions by the
Goursat formula. This expression allows to reduce the biharmonic problem to a
certain boundary value problem for a pair of analytic functions. In the case where
the boundary ∂D is a Lyapunov curve, the mentioned system can be reduced to a
system of Fredholm equations. Such a scheme is developed (cf., e.g., [9, 12, 13]) for
solving the main problems of the plane elasticity theory using a special biharmonic
function which is called the Airy stress function.

Our alternative approach is based on expressions of monogenic functions via
biharmonic Cauchy type integrals. Using their relations to the boundary value
problems for biharmonic functions, we obtain a system of integral equations in the
general case and establish the Fredholm property of this system in the case where
the boundary of domain belongs to a class being wider than the class of Lyapunov
curves.

3 Biharmonic Cauchy Type Integral

Let the boundary ∂Dζ be a closed smooth Jordan curve, and

ϕ(ζ ) = ϕ1(ζ ) e1 + ϕ3(ζ ) e2 ∀ ζ ∈ ∂Dζ , (8)

where ϕk : ∂Dζ −→ R, k ∈ {1, 3} are continuous real-valued functions.
We use the modulus of continuity of the function ϕ:

ω(ϕ, ε) := sup
τ1,τ2∈∂Dζ , ‖τ1−τ2‖≤ε

‖ϕ(τ1)− ϕ(τ2)‖ .

We assume that ω(ϕ, ε) satisfies the Dini condition

∫ 1

0

ω(ϕ, η)

η
d η < ∞ . (9)

Consider the biharmonic Cauchy type integral

B [ϕ] (ζ ) := 1

2πi

∫
∂Dζ

ϕ(τ )(τ − ζ )−1 dτ ∀ ζ ∈ μ \ ∂Dζ .
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For every ζ0 ∈ ∂Dζ , a singular integral is understood in the sense of its Cauchy
principal value:

B0 [ϕ] (ζ0) ≡
∫
∂Dζ

ϕ(τ )(τ − ζ0)
−1dτ := lim

ε→0

∫
{τ∈∂Dζ :‖τ−ζ0‖≥ε}

ϕ(τ)(τ − ζ0)
−1dτ.

Let us compactify the biharmonic plane μ by means of addition of an infinite
point ∞ . Denote D+

ζ := Dζ , D−
ζ := μ \ (Dζ ∪ ∂Dζ ).

Theorem 1 (cf., e.g., [3, 6]) If a function ϕ satisfies the condition (9), then B [ϕ]
is a monogenic function in D+

ζ and D−
ζ , separately, and

B [ϕ] (∞) = 0.

Moreover, the limiting values

B± [ϕ] (ζ0) := lim
τ→ζ0,τ∈D±

ζ

B [ϕ] (τ )

exist at every point ζ0 ∈ ∂Dζ and are represented by the Sokhotski–Plemelj
formulas:

Φ+(ζ0) = 1

2
ϕ(ζ0)+B0 [ϕ] (ζ0) ,

Φ−(ζ0) = −1

2
ϕ(ζ0)+B0 [ϕ] (ζ0) .

If ϕ has the integrable contour derivative ϕ′, then the following equality is fulfilled:

d

dζ
(B [ϕ] (ζ )) = B

[
ϕ′] (ζ ) ∀ ζ ∈ μ \ ∂Dζ .

4 Reducing the (1-3)-Problem to a System of Fredholm
Integral Equations

We assume that the boundary functions uk , k ∈ {1, 3}, satisfy conditions of the type
(9). We seek solutions of (1-3)-problem in a class of functions represented in the
form Φ(ζ ) = B [ϕ] (ζ ) with a function (8) satisfying the condition (9).

We use a conformal mapping z = τ (t) of the upper half-plane {t ∈ C : Im t > 0}
onto the domain Dz. Denote τ1(t) := Re τ (t), τ2(t) := Im τ (t).
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Inasmuch as the mentioned conformal mapping is continued to a homeomor-
phism between the closures of corresponding domains, the function

τ̃ (s) := τ1(s)e1 + τ2(s)e2 ∀ s ∈ R

generates a homeomorphic mapping of the extended real axis R := R ∪ {∞} onto
the curve ∂Dζ .

Using Theorem 1, we rewrite the boundary data (3) in the form (cf. [6]) of the
following system of integral equations:

1

2
g1(t)+ 1

2π

∞∫
−∞

g1(s)
(

Im k1(t, s)+ 2Re k2(t, s)
)
ds−

− 1

π

∞∫
−∞

g3(s)Im k2(t, s) ds = ũ1(t),

1

2
g3(t)+ 1

2π

∞∫
−∞

g3(s)
(

Im k1(t, s)− 2Re k2(t, s)
)
ds−

− 1

π

∞∫
−∞

g1(s)Im k2(t, s) ds = ũ3(t) ∀ t ∈ R ,

(10)

where gk(s) := ϕk (̃τ (s)), ũk(t) := uk

(̃
τ (t)

)
, k ∈ {1, 3} , k1(t, s) := τ ′(s)

τ (s)−τ (t)
−

− 1+st

(s−t )(s2+1)
, k2(t, s) := τ ′(s)

(
τ2(s)−τ2(t)

)
2
(
τ (s)−τ (t)

)2 − τ ′2(s)
2
(
τ (s)−τ (t)

) .
Consider the conformal mapping σ(T ) of the unit disk Γ := {T ∈ C : |T | < 1}

onto the domain Dz such that τ (t) = σ
(
t−i
t+i

)
for all t ∈ {t ∈ C : Im t > 0}.

For a function g : γ −→ C which is continuous on the curve γ ⊂ C, a modulus
of continuity is defined by the equality

ωγ (g, ε) := sup
t1,t2∈γ, |t1−t2|≤ε

|g(t1)− g(t2)| .

Let C(R ) denote the Banach space of functions g : R −→ C that are continuous
on the extended real axis R with the norm ‖g‖C(R ) := supt∈R |g(t)|.

For any function g ∈ C(R ) we use the local centered (with respect to the
infinitely remote point) modulus of continuity

ωR,∞(g, ε) := sup
t∈R : |t |≥1/ε

|g(t)− g(∞)| .
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Let D(R) denote the class of functions g ∈ C(R ) whose moduli of continuity
satisfy the Dini conditions

∫ 1

0

ωR(g, η)

η
dη < ∞,

∫ 1

0

ωR,∞(g, η)

η
dη < ∞ .

We use the notations Uk [a] := ak , k = 1, 4, where ak ∈ R is the coefficient in
the decomposition of element a = a1e1 + a2ie1 + a3e2 + a4ie2 ∈ B with respect to
the basis {e1, e2}.

Let the next functions are well defined:

Ψ+ [ϕ] (ζ ) := U1
[
B
[
ϕ′] (ζ )]− U4

[
B
[
ϕ′] (ζ )] ∀ζ ∈ D+

ζ , (11)

Ψ− [ϕ] (ζ ) := U2
[
B
[
ϕ′] (ζ )]+ U3

[
B
[
ϕ′] (ζ )] ∀ζ ∈ D−

ζ , (12)

ϕ(τ) := g1(s) e1 + g3(s) e2, τ = τ̃ (s), ∀ s ∈ R, (13)

Theorem 2 Let the functions u1 : ∂Dζ −→ R, u3 : ∂Dζ −→ R satisfy conditions
of the type (9). Let the conformal mapping σ(T ) have the nonvanishing continuous
contour derivative σ ′(T ) on the circle Γ , and its modulus of continuity ωΓ (σ ′, ε)
satisfies the condition

∫ 2

0

ωΓ (σ ′, η)
η

ln
3

η
dη < ∞.

Then all functions g1, g3 ∈ C(R ) satisfying the system of Fredholm integral
equations (10) belong to the class D(R), and the corresponding functions ϕ in (13)
satisfy the condition (9).

Let B
[
ϕ′] exist in D+

ζ and D−
ζ separately, the functions (11), (12) are bounded,

and, in addition, all solutions (g1, g3) ∈ C(R )×C(R ) of the homogeneous system
of equations (10) (with ũk ≡ 0 for k ∈ {1, 3}) are differentiable on R. Then the
following assertions are true:

(i) the number of linearly independent solutions of the homogeneous system of
equations (10) is equal to 1;

(ii) the non-homogeneous system of equations (10) is solvable if and only if the
condition (7) with vk := uk , k ∈ {1, 3}, is satisfied.

Theorem 2 generalizes Theorem 6.13 [6]. It proves similar to the latter with the
use of Theorem 1.
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Composition Operators of α-Bloch
Spaces on Bounded Symmetric Domains
in Cn

Hidetaka Hamada and Gabriela Kohr

Abstract Let BX be a bounded symmetric domain realized as the open unit ball
BX of a finite dimensional JB*-triple X. In this paper, we continue the work related
to α-Bloch mappings on BX. We first show that α-Bloch spaces on BX are complex
Banach spaces. Next, we give sufficient conditions for the composition operator
from the α-Bloch space into the β-Bloch space to be bounded or compact. In
the case that the α-Bloch space is a Bloch space, then these conditions are also
necessary. Particular cases of interest will also be mentioned.

1 Introduction

Let U = {ζ ∈ C : |ζ | < 1} be the unit disc in C. A holomorphic function f : U →
C is said to belong to the Bloch space B if supζ∈U(1 − |ζ |2)|f ′(ζ )| < ∞.

For Bloch functions f ∈ B with normalization f ′(0) = 1, Ahlfors [1] , Bonk
[4], Chen and Gauthier [5], Liu and Minda [18], Minda [24], and others studied the
distortion theorem and the estimation for the Bloch constant. The distortion theorem
and the estimation for the Bloch constant have been generalized to Bloch mappings
on the Euclidean unit ball Bn in Cn by Liu [17] and on the unit polydisc in Cn by
Wang and Liu [30]. Chen et al. [6] proved the distortion theorem and the estimation
of the Bloch constant for α-Bloch mappings fromBn intoCn. Hamada [11], Hamada
and Kohr [13] generalized these results to Bloch mappings or α-Bloch mappings on
bounded symmetric domains in Cn.

From the point of view of the Riemann mapping theorem, a homogeneous unit
ball of a complex Banach space is a natural generalization of the open unit disc.
Every bounded symmetric domain in a complex Banach space is biholomorphically
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equivalent to a homogeneous unit ball (see [15]). A complex Banach space X

is a JB∗-triple iff the open unit ball of X is homogeneous. These arguments
give the motivation for studying the Bloch mappings on the unit balls of JB∗-
triples.

Another interesting study on the Bloch space or α-Bloch space is that on the
composition operators between these spaces. In this paper we continue the work
started in [13] related to α-Bloch mappings on the open unit ball BX of a finite
dimensional JB∗-triple X. We first show that α-Bloch spaces on BX are complex
Banach spaces (Proposition 1). Next, we obtain a boundedness result (Theorem 1)
and a compactness result (Theorem 2) for composition operators between α-Bloch
type spaces on the unit balls BX and BY of finite dimensional JB∗-triples X and
Y , respectively. On the unit disc in C, Ohno et al. [25] studied this problem (cf.
Madigan and Matheson [21]). On the Euclidean unit ball Bn, this problem was
studied by Zhang and Xu [31] (cf. Shi and Luo [28]). Note that their definition
of α-Bloch functions on Bn is different from ours. This is one of the motivations
for the study of α-Bloch mappings and compact composition operators on α-Bloch
type spaces on the unit balls of finite dimensional JB∗-triples. The main results of
this paper are generalizations of these results to the unit balls BX and BY of any
finite dimensional JB∗-triple X and Y , respectively.

Composition operators from H∞ to Bloch spaces of infinite dimensional
bounded symmetric domains have been studied in [10]. Other recent contributions
related to composition operators between Bloch spaces on the Euclidean unit ball
in Cn and in infinite dimensional spaces may be found in [3] and [9] (see also [23]
and [32]).

2 Preliminaries

Let BX be the unit ball of a complex Banach space X. Let Y be a complex Banach
space. Let H(BX, Y ) denote the set of holomorphic mappings from BX to Y . A
holomorphic mapping f ∈ H(BX, Y ) is said to be biholomorphic if f (BX) is a
domain in Y , f−1 exists and is holomorphic on f (BX). Let L(X, Y ) denote the set
of continuous linear operators from X into Y . Let IX be the identity in L(X) =
L(X,X). For a linear operator A ∈ L(X, Y ), let

‖A‖X,Y = sup {‖Az‖Y : ‖z‖X = 1} ,

where ‖ · ‖X and ‖ · ‖Y are the norms on X and Y , respectively. In the case Y = Cn

is the Euclidean space, we write ‖A‖X,e for A ∈ L(X,Cn). For x ∈ X \ {0}, the set

T (x) = {�x ∈ X∗ : �x(x) = ‖x‖X, ‖�x‖X∗ = 1}

of support functionals of x is nonempty by the Hahn–Banach theorem.
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A complex Banach space X is called a JB∗-triple (see, e.g., [7]), if it is a complex
Banach space equipped with a continuous Jordan triple product

X ×X ×X → X (x, y, z)  → {x, y, z}

satisfying

(J1) {x, y, z} is symmetric bilinear in the outer variables, but conjugate linear in
the middle variable,

(J2) {a, b, {x, y, z}} = {{a, b, x}, y, z} − {x, {b, a, y}, z} + {x, y, {a, b, z}},
(J3) x�x ∈ L(X,X) is a Hermitian operator with spectrum � 0,
(J4) ‖{x, x, x}‖ = ‖x‖3

for a, b, x, y, z ∈ X, where the box operator x�y : X → X is defined by x�y(·) =
{x, y, ·} and ‖ · ‖ is the norm on X.

Example 1 (see, e.g., [7])

(i) A complex Hilbert space H with inner product 〈·, ·〉 is a JB*-triple with the
triple product {x, y, z} = 1

2 (〈x, y〉z+ 〈z, y〉x).
(ii) The unit polydisc Un is the unit ball of the JB∗-triple Cn with the triple product

{x, y, z} = (xiyizi )1≤i≤n, x = (xi)1≤i≤n, y = (yi)1≤i≤n, z = (zi)1≤i≤n ∈ Cn.

We refer to [7, 19] and [27] for relevant details of JB∗-triples and references. We
recall some of them which will be needed later.

For every x, y ∈ X, let

BX(x, y) = IX − 2x�y +QxQy

be the Bergman operator BX(x, y) ∈ L(X), where Qa : X → X is the conjugate
linear operator defined by Qa(x) = {a, x, a}. Throughout this section, we write
B(x, y) instead of BX(x, y) for simplicity. When ‖x�y‖ < 1, the fractional power
B(x, y)r ∈ L(X) exists for every r ∈ R, since the spectrum of B(x, y) lies in
{ζ ∈ C : |ζ − 1| < 1} (cf. [15, p.517]).

Let BX be the unit ball of a JB∗-triple X. For each a ∈ BX, let

ga(x) = a + B(a, a)1/2(IX + x�a)−1x

be the Möbius transformation. Then ga is a biholomorphic mapping of BX onto
itself with ga(0) = a, ga(−a) = 0 and g−a = g−1

a .
In the rest of this paper, we assume that dimX < ∞. The authors [13, Lemma

2.2] obtained the following estimate for ‖B(a, a)−α/2‖ on the unit ball of a finite
dimensional JB∗-triple (see [16, Corollary 3.6] and [14], in the case α = 1).

Lemma 1 Let BX be the unit ball of a finite dimensional JB∗-triple X. Then, for
any α > 0, we have ‖B(a, a)−α/2‖ = 1

(1−‖a‖2)α
, a ∈ BX .
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Definition 1 (see [13]) Let BX be the unit ball of a finite dimensional JB∗-triple X

and let α > 0. A function f ∈ H(BX,C) is called an α-Bloch function if

‖f ‖α + |f (0)| < +∞,

where ‖f ‖α = supz∈BX
‖Df (z)B(z, z)α/2‖X,e is the α-Bloch semi-norm of f .

The following lemma was proved in [13, Lemma 2.6]. This result is a generaliza-
tion of [11, Lemma 2.8] to the case of α-Bloch functions. For bounded holomorphic
functions on BX , see also [12, Theorem 4.6] and [9, Lemma 3.12].

Lemma 2 Let BX be the unit ball of a finite dimensional JB∗-triple X and let α >

0. If f ∈ H(BX,C) is an α-Bloch function, then ‖Df (z)‖X,e ≤ ‖f ‖α
(1−‖z‖2)α

, z ∈ BX.

Remark 1 (see [13])

(i) Any α-Bloch function on BX is also a β-Bloch function on BX for α ≤ β.
Since 1-Bloch functions are equivalent to Bloch functions [11], cf. [29], it
follows that any Bloch function is also an α-Bloch function, for α ≥ 1.

(ii) Taking into account the Cauchy integral formula for holomorphic functions, it
is not difficult to deduce that the bounded functions in H(BX,C) are Bloch
functions, so they are also α-Bloch functions for α ≥ 1.

(iii) In view of Lemma 2, α-Bloch functions are bounded on BX for α ∈ (0, 1).

Definition 2 Let BX be the unit ball of a finite dimensional JB∗-triple X and let
α > 0. Let f ∈ H(BX,Cn). The mapping f is called an α-Bloch mapping in the
sense of Chen et al. [6] if ‖f (0)‖e + supz∈Bn(1 − ‖z‖2)α‖Df (z)‖X,e < ∞.

Remark 2 Let BX be the unit ball of a finite dimensional JB∗-triple X and let α > 0.
Let f ∈ H(BX,C) be an α-Bloch function in the sense of Definition 1. Then, by
Lemma 2, f is also an α-Bloch function in the sense of Definition 2 (see also [13]).

Let Bα
X be the space of α-Bloch functions f : BX → C. We obtain the following

result (see [2, 9] and [29] in the case α = 1).

Proposition 1 Let α > 0 and BX be the unit ball of a finite dimensional JB∗-triple
X. Then, Bα

X is a complex Banach space with respect to the norm ‖ · ‖Bα
X

given by

‖f ‖Bα
X
= |f (0)| + ‖f ‖α, f ∈ Bα

X.

Proof Let (fk) be a Cauchy sequence in Bα
X . By using Lemma 2, we deduce that

|fk(z)− fp(z)| ≤ |fk(0)− fp(0)| +
∫ 1

0
‖Dfk(tz)−Dfp(tz)‖X,e‖z‖dt

≤ |fk(0)− fp(0)| + ‖fk − fp‖α
(1 − ‖z‖2)α

,
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for all z ∈ BX and k, p ∈ N. Then, (fk) is a Cauchy sequence in H(BX,C). Hence
there is a function f ∈ H(BX,C) such that fk → f locally uniformly on BX as
k → ∞.

Next, we prove that ‖fk − f ‖Bα
X
→ 0 as k → ∞. To this end, fix ε > 0. Since

(fk) is a Cauchy sequence in Bα
X , there is k0 ∈ N such that |fk(0)−fp(0)|+‖fk −

fp‖α < ε, for k, p ≥ k0. Then

|fk(0)− fp(0)| + ‖(Dfk(z)−Dfp(z))B(z, z)α/2‖X,e < ε, z ∈ BX, k, p ≥ k0.

On the other hand, since fk → f locally uniformly on BX as k → ∞, letting
k → ∞ in the above inequality, we have

|f (0)− fp(0)| + ‖(Df (z)−Dfp(z))B(z, z)α/2‖X,e ≤ ε, p ≥ k0, z ∈ BX.

Consequently, ‖fp − f ‖Bα
X
≤ ε, p ≥ k0, and thus limp→∞ ‖fp − f ‖Bα

X
= 0.

Finally, if p ≥ k0, then

‖f ‖Bα
X
≤ ‖f − fp‖Bα

X
+ ‖fp‖Bα

X
≤ ε + ‖fp‖Bα

X
< ∞.

Therefore, we have proved that f ∈ Bα
X and fk → f in the α-Bloch norm. Hence

Bα
X is a complex Banach space, as desired. This completes the proof. ��

3 Composition Operators

In this section we are concerned with composition operators associated with α-
Bloch functions on the unit ball BX of a finite dimensional JB∗-triple X. The
problem related to the preservation of boundedness or compactness in the case of
composition operators between Bloch type spaces on the unit disc in C has been
intensively studied by many authors [21, 25] and [22]. On the unit ball in Cn, this
problem has been investigated in [28] and [31] (cf. [32]). We shall obtain sufficient
conditions for a composition operator to be bounded or compact between Bloch
type spaces on the unit balls BX and BY of finite dimensional JB∗-triples X and Y ,
respectively.

For a holomorphic mapping ϕ : BX → BY , we define the composition operator
Cϕ , induced by ϕ, by

Cϕ(f ) = f ◦ ϕ, f ∈ H(BY ,C).

We first obtain the following result related to the boundedness of the operator
Cϕ . In the case BX = BY = U ⊂ C, we have BC(z, z) = (1 − ‖z‖2)2. Therefore,
the following theorem reduces to the corresponding results in [20, 25] and [26].
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Theorem 1 Let BX and BY be the unit balls of finite dimensional JB∗-triples X

and Y , respectively. Let ϕ : BX → BY be a holomorphic mapping and let α > 0,
β > 0.

(i) If

sup
z∈BX

∥∥∥BY (ϕ(z), ϕ(z))
−α/2Dϕ(z)BX(z, z)β/2

∥∥∥
X,Y

= M < +∞, (1)

then Cϕ maps Bα
Y boundedly into B

β
X.

(ii) If Cϕ maps B1
Y boundedly into B

β
X, then

sup
z∈BX

∥∥∥BY (ϕ(z), ϕ(z))
−1/2Dϕ(z)BX(z, z)β/2

∥∥∥
X,Y

= M < +∞. (2)

Proof First, assume that the relation (1) holds. Let f ∈ Bα
Y . By Lemma 2, we have

|f (ϕ(0))| ≤ |f (0)| +
∫ 1

0
|Df (tϕ(0))ϕ(0)|dt ≤ |f (0)| + Aϕ‖f ‖α,

where Aϕ = ∫ 1
0

‖ϕ(0)‖Y
(1−t2‖ϕ(0)‖2

Y )
α
dt. Also, we have

‖f ◦ ϕ‖β = sup
z∈BX

‖Df (ϕ(z))Dϕ(z)BX(z, z)β/2‖X,e

≤ M sup
z∈BX

‖Df (ϕ(z))BY (ϕ(z), ϕ(z))
α/2‖Y,e ≤ M‖f ‖α.

Thus, Cϕ : Bα
Y → B

β

X is bounded.

Next, assume that Cϕ : B1
Y → B

β

X is bounded. Let z ∈ BX \ {0} be fixed
and let g−a = g−1

a be the Möbius transformation of BY such that Dg−a(a) =
BY (a, a)

−1/2, where a = ϕ(z). Let F = g−a − g−a(0). Since

‖DF(w)BY (w,w)1/2‖Y,Y = ‖D(F ◦ gw)(0)‖Y,Y ≤ 2, w ∈ BY ,

by the Schwarz lemma, �b ◦ F belongs to B1
Y for all �b ∈ T (b) and all b ∈ Y \ {0}.

Since Cϕ : B1
Y → B

β
X is bounded, there exists a constant c > 0 such that ‖lb ◦ F ◦

ϕ‖β ≤ c‖lb ◦ F‖1 ≤ 2c for all �b ∈ T (b) and all b ∈ Y \ {0}. Therefore, we have

∥∥∥lb ◦ BY (a, a)
−1/2Dϕ(z)BX(z, z)β/2

∥∥∥
X,e

=
∥∥∥D(lb ◦ F ◦ ϕ)(z)BX(z, z)β/2

∥∥∥
X,e

≤ 2c.

Since �b ∈ T (b), b ∈ Y \ {0} and z ∈ BX are arbitrary and c is independent from
�b ∈ T (b), b ∈ Y \{0} and z ∈ BX, we obtain (2), as desired. The proof is complete.

��
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Remark 3 Let ϕ : BX → BY be a holomorphic mapping with L =
supz∈BX

‖ϕ(z)‖Y < 1. Also, let α > 0 and β ≥ 1. Then the condition (1)
holds. Especially, if f is an α-Bloch function on BY , then Cϕ(f ) is also an α-Bloch
function on BX for α ≥ 1 by Theorem 1.

Proof Since β ≥ 1, by Chu et al. [9, Proposition 3.14] and Remark 1(i), if
follows that lb ◦ ϕ is a β-Bloch function on BX such that ‖lb ◦ ϕ‖β ≤ L for any
�b ∈ T (b), b ∈ Y \ {0}. Since �b ∈ T (b) and b ∈ Y \ {0} are arbitrary, we have
‖Dϕ(z)BX(z, z)β/2‖X,Y ≤ L. Taking into account Lemma 1, we obtain that

‖BY (ϕ(z), ϕ(z))
−α/2Dϕ(z)BX(z, z)β/2‖X,Y

≤ ‖BY (ϕ(z), ϕ(z))
−α/2‖ · ‖Dϕ(z)BX(z, z)β/2‖X,Y ≤ L

(1 − L2)α
.

Hence, supz∈BX
‖BY (ϕ(z), ϕ(z))

−α/2Dϕ(z)BX(z, z)β/2‖ ≤ L
(1−L2)α

, as desired.
��

Next, we consider the compactness of the composition operator Cϕ . In the case
BX = BY = U ⊂ C, the following theorem reduces to the corresponding results in
[21] and [25].

Theorem 2 Let BX and BY be the unit balls of finite dimensional JB∗-triples X

and Y , respectively. Let ϕ : BX → BY be a holomorphic mapping and let β > 0.

(i) If α > 0 and the condition (1) holds, and if

∥∥∥BY (ϕ(z), ϕ(z))
−α/2Dϕ(z)BX(z, z)β/2

∥∥∥
X,Y

→ 0 as ϕ(z) → ∂BY , (3)

then Cϕ is a compact operator of Bα
Y into B

β
X.

(ii) If BY = Bn and Cϕ is a compact operator of B1 = B1
Cn into B

β
X , then

∥∥∥B(ϕ(z), ϕ(z))−1/2Dϕ(z)BX(z, z)β/2
∥∥∥
X,e

→ 0 as ϕ(z) → ∂Bn. (4)

Proof First, assume that the conditions (1) and (3) hold. Let fk ∈ Bα
Y be such that

‖fk‖Bα
Y
= 1 for k = 1, 2, . . . . By Lemma 2 and Montel’s theorem, by choosing

a subsequence, we may assume that the sequence (fk) converges to a holomorphic
function f locally uniformly on BY . Then hk = fk − f → 0 locally uniformly on
BY and

‖hk‖Bα
Y
≤ 2 for k = 1, 2, . . . . (5)

Let ε > 0 be given. By the assumption (3), there exists an r0 ∈ (0, 1) such that

∥∥∥BY (ϕ(z), ϕ(z))
−α/2Dϕ(z)BX(z, z)β/2

∥∥∥
X,Y

< ε if ‖ϕ(z)‖Y > r0. (6)
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Since hk(w) → 0 uniformly for ‖w‖Y ≤ (r0 + 1)/2, there exists a K such that

‖Dhk(w)BY (w,w)α/2‖Y,e < ε for k > K, ‖w‖Y ≤ r0. (7)

If ‖ϕ(z)‖Y > r0, then we obtain from (5) and (6) that

‖Dhk(ϕ(z))Dϕ(z)BX(z, z)β/2‖X,e ≤ ε‖hk‖Bα
Y
≤ 2ε.

If ‖ϕ(z)‖Y ≤ r0, then, from (1) and (7), for k > K , we have

‖Dhk(ϕ(z))Dϕ(z)BX(z, z)β/2‖X,e ≤ M‖Dhk(ϕ(z))BY (ϕ(z), ϕ(z))
α/2‖Y,e ≤ Mε.

Therefore, ‖hk ◦ ϕ‖
Bβ

X

= |hk(ϕ(0))| + ‖hk ◦ ϕ‖β → 0 as k → ∞. Thus Cϕ is
compact.

Next, assume that Cϕ : B1 → B
β
X is compact. Suppose the condition (4) does

not hold. Then there exist δ > 0 and zk ∈ BX such that ak = ϕ(zk) → ∂Bn as
k → ∞ and
∥∥∥B(ϕ(zk), ϕ(zk))

−1/2Dϕ(zk)BX(zk, zk)
β/2
∥∥∥
X,e

> δ for k = 1, 2, . . . . (8)

Let Fk = g−ak − g−ak (0), where g−ak is the Möbius transformation of Bn. Then,
Fk(z) = B(−ak,−ak)

1/2(In − z�ak)
−1z. Since ‖B(−ak,−ak)

1/2‖ ≤ √1 − ‖ak‖2

by Chu et al. [8, Lemma 2.3], the sequence (Fk) converges to 0 locally uniformly
on Bn and thus, (Fk ◦ ϕ) converges to 0 locally uniformly on BX. Let Fk =
(F 1

k , . . . , F
n
k ). Since Cϕ is compact and (F

j

k ) is a bounded sequence in B1, by

choosing a subsequence, there exists f j ∈ B
β
X such that (F j

k ◦ ϕ) converges to f j

in B
β
X for each 1 ≤ j ≤ n. Then f j must be identically equal to 0 because the

sequence (Fk ◦ ϕ) converges to 0 locally uniformly on BX. Thus, ‖Fj
k ◦ ϕ‖

Bβ
X

→ 0

as k → ∞. Therefore, we have

∥∥∥B(ϕ(zk), ϕ(zk))
−1/2Dϕ(zk)BX(zk, zk)

β/2
∥∥∥
X,e

=
∥∥∥D(Fk ◦ ϕ)(zk)BX(zk, zk)

β/2
∥∥∥
X,e

→ 0 as k → ∞.

This is a contradiction. The proof is complete. ��
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Monogenic Functions in Commutative
Algebras

Vitalii Shpakivskyi

Abstract Let An be an arbitrary n-dimensional commutative associative algebra
over the field of complex numbers. Let e1 = 1, e2, e3 be elements of An which
are linearly independent over the field of real numbers. We consider monogenic
(i.e., continuous and differentiable in the sense of Gateaux) functions of the variable
xe1 + ye2 + ze3, where x, y, z are real, and obtain a constructive description of
all mentioned monogenic functions by means of holomorphic functions of complex
variables. It follows from this description that monogenic functions have Gateaux
derivatives of all orders. The relations between monogenic functions and partial
differential equations are investigated.

1 Introduction

Probably, Ketchum (see [1]) made the first attempt to use analytic functions in
commutative algebras for constructing solutions of the three-dimensional Laplace
equation

∂2U

∂x2 + ∂2U

∂y2 + ∂2U

∂z2 = 0 . (1)

He showed that every analytic function Φ(ζ ) of the variable ζ = xe1+ye2+ze3
satisfies Eq. (1) in the case where the elements e1, e2, e3 of the commutative algebra
satisfy the condition

e2
1 + e2

2 + e2
3 = 0 , (2)
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because

∂2Φ

∂x2 + ∂2Φ

∂y2 + ∂2Φ

∂z2 ≡ Φ ′′(ζ ) (e2
1 + e2

2 + e2
3) = 0 , (3)

where Φ ′′ := (Φ ′)′ and Φ ′(ζ ) is defined by the equality dΦ = Φ ′(ζ )dζ .
Generalized by Ketchum, Roşculeţ (see [2, 3]) used analytic functions in

commutative algebras for investigating the equations of the form

LNU(x, y, z) :=
∑

α+β+γ=N

Cα,β,γ
∂NU

∂xα ∂yβ ∂zγ
= 0, Cα,β,γ ∈ R. (4)

For a mixed derivative the following equality is true:

∂α+β+γΦ

∂xα ∂yβ ∂zγ
= eα1 e

β

2 e
γ

3 Φ(α+β+γ )(ζ ) = eα1 e
β

2 e
γ

3 Φ(N)(ζ ), (5)

ζ = xe1 + ye2 + ze3 .

Substituting (5) into Eq. (4), we have

LNΦ(ζ ) = Φ(N)(ζ )
∑

α+β+γ=N

Cα,β,γ eα1 e
β
2 e

γ

3

and for satisfying the equality LNΦ(ζ ) = 0, we have the condition:

∑
α+β+γ=N

Cα,β,γ eα1 e
β
2 e

γ

3 = 0 . (6)

Thus, under the condition (6) every analytic function Φ with values in an
arbitrary commutative associative algebra satisfies Eq. (4), and, respectively, all real-
valued components of the function Φ are solutions of Eq. (4).

Problem Which form has analytic functions in an arbitrary commutative algebra?
How to describe it constructively?

What means a constructive description of analytic functions?

2 Examples

Example 1 Let P := {x + jy : j2 := 1, x, y ∈ R} be the algebra of double (or
hyperbolic) numbers over the field R. In the algebra P there exists a basis {I1, I2}
such that I 2

1 = I1, I 2
2 = I2, I1I2 = 0 and I1 + I1 = 1. In this case, z = x + jy =

(x + y)I1 + (x − y)I2.
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The following result is known (see [4–6]):
Every analytic function Φ : D → P of the form Φ(z) = u(x, y)+ jv(x, y) with

analytic in D components u, v can be represented in the form

Φ(z) = F1(x − y)I2 + F2(x + y)I1, (7)

where F1(x − y) and F2(x + y) are certain real analytic functions on the intervals
Δ1 := {x−y ∈ R : x+jy ∈ D} and Δ2 = {x+y ∈ R : x+jy ∈ D}, respectively.

The formula (7) is a constructive description of analytic function in the algebra P.

Corollary 1 If a domain D is convex in the direction of the straight lines y = x,
y = −x, then every analytic function Φ : D → P can be continued to a function
analytic in the domain

Π := {x + jy ∈ P : x − y ∈ Δ1} ∩ {x + jy ∈ P : x + y ∈ Δ2}.

Example 2 Let D := {z := x + δy : δ2 := 0, x, y ∈ R} be the algebra of dual
numbers over the field R. The following result is known (see, e.g., [7]):

Every analytic function Φ : Ω → D of the form Φ(z) = u(x, y)+ δv(x, y) with
analytic in Ω components u, v can be represented in the form

Φ(z) = u(x)+ (yu′(x)+ k(x)
)
δ , (8)

where u(x) and k(x) are certain real analytic functions on the interval Δ := {x ∈
R : x + δy ∈ Ω}.

The formula (8) is a constructive description of analytic function in the algebra D.

Corollary 2 If a domain Ω is convex in the direction of the axis Oy, then every
analytic function Φ : Ω → D can be continued to a function analytic in the domain
Π := {x + δy ∈ D : x ∈ Δ}.

Now, we consider the same algebras over the field C.

Example 3 Let BC := {ζ := z1I1 + z2I2 : z1, z2 ∈ C} be the algebra of bicomplex
numbers (or commutative Segre’s quaternions):

· I1 I2

I1 I1 0
I2 0 I2

It is known (see, e.g., [8]) that every analytic function Φ : Ω → BC can be
represented in the form

Φ(ζ ) = F1(z1) I1 + F2(z2) I2 , (9)

where Fk are holomorphic functions in certain domains Dk ⊂ C.
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The formula (9) is a constructive description of analytic function in the algebra
BC.

This result is generalized in the paper [9] for the n-dimensional semi-simple
algebra An:

· I1 I2 . . . In

I1 I1 0 . . . 0
I2 0 I2 . . . 0
...

...
...

. . .
...

In 0 0 . . . In

In An every analytic function Φ is of the form

Φ(ζ ) = F1(ξ1)I1 + F2(ξ2)I2 + · · · + Fn(ξn)In ,

where Fk are holomorphic functions in certain domains Dk ⊂ C, and ζ = ξ1 I1 +
ξ2 I2 + · · · ξn In, ξk ∈ C, k = 1, 2, . . . , n.

Example 4 Consider the algebra B over the field C with the following multiplica-
tion table:

· 1 ρ

1 1 ρ

ρ ρ 0

In this algebra every analytic function Φ is of the form (see [10]):

Φ(ζ ) = F(ξ1)+
[
ξ2F

′(ξ1)+ F0(ξ1)
]
ρ,

where F,F0 are holomorphic functions in a certain domain in C, and where ζ =
ξ1 + ξ2 ρ, ξ1, ξ2 ∈ C. This result was established in relation with two-dimensional
biharmonic equation

∂4Φ

∂x4 + 2
∂4Φ

∂x2∂y2 + ∂4Φ

∂y4 = 0.

Example 5 Consider the algebra A3 over the field C with the following multiplica-
tion table:

· 1 ρ1 ρ2

1 1 ρ1 ρ2

ρ1 ρ1 ρ2 0
ρ2 ρ2 0 0
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In this algebra every analytic function Φ is of the form (see [11]):

Φ(ζ ) = F(ξ1)+
[
ξ2F

′(ξ)+ F1(ξ1)
]
ρ1+

+
[
ξ3F

′(ξ1)+ ξ2
1

2
F ′′(ξ1)+ ξ2F

′
1(ξ1)+ F2(ξ1)

]
ρ2,

where F,F1, F2 are holomorphic functions in a certain domain in C, and ζ = ξ1 +
ξ2 ρ1 + ξ3 ρ2, ξ1, ξ2, ξ3 ∈ C.

Example 6 Consider the following algebra over the field C:

· I1 I2 ρ

I1 I1 0 0
I2 0 I2 ρ

ρ 0 ρ 0

In this algebra every analytic function Φ is of the form (see [12]):

Φ(ζ ) = F1(ξ1)I1 + F2(ξ2)I2 +
[
ξ3F

′
2(ξ2)+ F0(ξ2)

]
ρ,

where F0, F1, F2 are holomorphic functions in certain domains in C, and ζ =
ξ1 I1 + ξ2 I2 + ξ3 ρ, ξ1, ξ2, ξ3 ∈ C.

3 Main Result

Mel’nichenko [13] proposed for describing solutions of Eq. (4) to use hypercomplex
functions differentiable in the sense of Gateaux. Such functions will be called
monogenic. We obtain a constructive description of all monogenic functions in an
arbitrary commutative associative algebra.

Now we will give an exact definition of monogenic function.

3.1 Monogenic Function

Let A be an arbitrary n-dimensional (2 ≤ n < ∞) commutative associative algebra
with unit over the field of complex number C. By Cartan’s theorem [14] in A there
exist the basis {Ik}nk=1 such that first m vectors {Iu}mu=1 are idempotents and form a
semi-simple subalgebra of A, and the vectors {Ir }nr=m+1 are nilpotents and form a
nilpotent subalgebra of A.
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The algebra A contains m maximal ideals

Iu :=
{ n∑

k=1, k �=u

λkIk : λk ∈ C
}
, u = 1, 2, . . . ,m.

We define m linear functionals fu : A → C by the equalities

fu(Iu) = 1, fu(ω) = 0 ∀ω ∈ Iu , u = 1, 2, . . . ,m.

Inasmuch as the kernel of functional fu is the maximal ideal Iu, this functional
is also continuous and multiplicative.

Now we consider in the algebra A a triple of vectors e1 = 1, e2, e3 which are
linearly independent over the field of real numbers R. Let

e1 = 1, e2 =
n∑

r=1

arIr , e3 =
n∑

r=1

brIr

where ar , br ∈ C.
Consider a linear span E3 := {ζ = x + ye2 + ze3 : x, y, z ∈ R} over the field R,

generated by the vectors 1, e2, e3.
Let Ω be a domain in R3. Associate with Ω the domain Ωζ := {ζ = xe1+ye2+

ze3 : (x, y, z) ∈ Ω} in E3.

Definition 1 The continuous function Φ : Ωζ → A is monogenic in Ωζ if Φ is
differentiable in the sense of Gateaux in every point of Ωζ , i. e. if for every ζ ∈ Ωζ

there exists an element Φ ′(ζ ) ∈ A such that

lim
ε→0+0

Φ(ζ + εh)− Φ(ζ )

ε
= hΦ ′(ζ ) ∀h ∈ E3 . (10)

Φ ′(ζ ) is the Gateaux derivative of Φ at the point ζ .

3.2 Constructive Description of Monogenic Functions

Consider the decomposition of a function Φ : Ωζ → A with respect to the basis
{Ik}nk=1:

Φ(ζ ) =
n∑

k=1

Uk(x, y, z) Ik .
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In the case where the components Uk : Ω → C are R-differentiable in Ω , the
function Φ is monogenic in the domain Ωζ if and only if the following Cauchy –
Riemann conditions are satisfied:

∂Φ

∂y
= ∂Φ

∂x
e2 ,

∂Φ

∂z
= ∂Φ

∂x
e3 .

We note that the points (x, y, z) ∈ R3 corresponding to the noninvertible
elements ζ = xe1 + ye2 + ze3 form the straight lines in R3:

Lu : x + y Re au + zRe bu = 0, y Im au + z Im bu = 0.

Let a domain Ω ⊂ R3 be convex in the direction of the straight lines Lu,
u = 1, 2, . . . ,m. By Du we denote that domain in C onto which the domain Ωζ

is mapped by the functional fu.

Theorem 1 (cf., e.g., [15, 16]) Let a domain Ω ⊂ R3 be convex in the direction
of the straight lines Lu and fu(E3) = C for all u = 1, 2, . . . ,m. Then every
monogenic function Φ : Ωζ → A can be expressed in the form

Φ(ζ ) =
m∑

u=1

Iu
1

2πi

∫
Γu

Fu(t)(te1−ζ )−1 dt+
n∑

s=m+1

Is
1

2πi

∫
Γus

Gs(t)(te1−ζ )−1 dt,

where Fu and Gs are certain holomorphic functions in the domains Du and Dus ,
respectively, and Γq is a closed Jordan rectifiable curve in Dq which surrounds the
point ξq and contains no points ξ�, �, q = 1, 2, . . . ,m, � �= q .

Thus, Theorem 1 specifies method to construct explicitly any monogenic func-
tion Φ : Ωζ → A using n corresponding holomorphic functions of complex
variables.

Remark All constructive descriptions that were considered in Examples are partial
cases of Theorem 1.

The following statement follows immediately from Theorem 1.

Corollary 3 Let a domain Ω be convex in the directions of the straight lines Lu and
fu(E3) = C for all u = 1, 2, . . . ,m. Then every monogenic function Φ : Ωζ → A
can be continued to a function monogenic in the domain

Πζ := {ζ ∈ E3 : fu(ζ ) = Du , u = 1, 2, . . . ,m}.

The next statement is true for an arbitrary domain Ωζ .

Corollary 4 Let fu(E3) = C for all u = 1, 2, . . . ,m. Then for every monogenic
function Φ : Ωζ → A in an arbitrary domain Ωζ , the Gateaux r-th derivatives
Φ(r) are monogenic functions in Ωζ for all r .
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In the case where a domain Ω is convex in the directions of the straight lines
Lu , u = 1, 2, . . . ,m, we obtain the following expression for the Gateaux r-th
derivative Φ(r):

Φ(r)(ζ ) =
m∑

u=1

Iu
r!

2πi

∫
Γu

Fu(t)
(
(te1 − ζ )−1

)r+1
dt+

+
n∑

s=m+1

Is
r!

2πi

∫
Γus

Gs(t)
(
(te1 − ζ )−1

)r+1
dt ∀ζ ∈ Ωζ .
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On the Solvability of Tracking Problem
with Nonlinearly Distributed Control
for the Oscillation Process

Elmira Abdyldaeva

Abstract In the paper we investigate the unique solvability of the tracking problem
with the distributed optimal control for the elastic oscillations described by Fred-
holm integro-differential equations. The sufficient conditions are found for existence
of a unique solution to the boundary value problem, also the class of functions of
external influence for which the optimization problem has a solution. The algorithm
was developed for constructing the complete solution of the tracking problem of
nonlinear optimization.

1 Introduction

There are many applied problems described by integro-differential equations [1–3].
The work of Egorov [4] made it possible to investigate the optimal control prob-
lems for the systems with distributed parameters described by integro-differential
equations. Later A. Kerimbekov has developed the method of solving the nonlinear
optimization problem [5]. The solvability of the tracking problem of nonlinear
optimization is investigated with the distributed optimal control for the elastic
oscillations described by Fredholm integro-differential equations in this paper.

2 Formulation of the Optimal Control Problem
and Optimality Conditions

We consider the optimization problem in which it is required to minimize the
integral functional

J [u(t, x)] = ∫ T

0

∫
Q [V (t, x)− ξ(t, x)]2 dxdt + β

∫ T

0

∫
Q M2[t, x, u(t, x)]dxdt, β > 0,

(1)
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on the set of solutions to the boundary value problem

Vtt − AV = λ

∫ T

0
K(t, τ )V (τ, x)dτ + f (t, x, u(t, x)), x ∈ Q ⊂ Rn, 0 < t ≤ T ,

(2)

V (0, x) = ψ1(x), Vt (0, x) = ψ2(x), x ∈ Q, (3)

Γ V (t, x) =
n∑

i,j=1

aij (x)Vx(t, x) cos(δ, xi)+ a(x)V (t, x) = 0, x ∈ γ, 0 < t ≤ T .

(4)

Here A is an elliptic operator defined by the formula

AV (t, x) =
n∑

i,j=1

(aij (x)Vxj (t, x))xi − c(x)V (t, x), aij (x) = aji(x),

n∑
i,j=1

aij (x)αiαj ≥ c0

n∑
i=1

α2
i , c0 > 0,

δ is the normal vector, outgoing from the point x ∈ γ ; K(t, τ ) is a given function
with domain D = {0 ≤ t ≤ T , 0 ≤ τ ≤ T } and satisfying the condition

∫ T

0

∫ T

0
K2(t, τ )dtdτ = K0 < ∞,

i.e., K(t, s) is element of Hilbert space H(D);

ψ1(x) ∈ H1(Q), ψ2(x) ∈ H(Q), fu[t, x, u(t, x)] �= 0,∀t ∈ (0, T ), x ∈ Q,

(5)

are given functions, a(x) ≥ 0, c(x) ≥ 0 are known measurable functions; H(Q) is
the Hilbert space of square integrable functions defined on the set Q; H1(Q) is the
Sobolev space of first-order; f [t, x, u(t, x)] is the boundary source function which
varies nonlinearly depending on the control functions u(t, x) ∈ H(QT ) and is an
element of H(0, T ); λ is a parameter, T is a fixed moment of time; and α > 0 is
a constant. ξ(t, x) ∈ H(QT ), QT = Q × (0, T ); M[t, x, u(t, x)] ∈ H(QT ) is a
given function satisfying the Lipschitz condition with respect to functional argument
u(t, x) ∈ H(QT ) and Mu[t, x, u(t, x)] �= 0.

In this problem we need to find a control u0(t, x) ∈ H(QT ) for which the
corresponding solution V 0(t, x) to the boundary value problem (2)–(4) deviates
little from the given trajectory ξ(t, x) ∈ H(QT ) during the entire control time t ∈
[0, T ]. Here u0(t, x) is called optimal control, and V 0(t, x) is an optimal process.
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We will seek the solution to problem (2)–(4) in the form

V (t, x) =
∞∑
n=1

Vn(t)zn(x), (6)

where Vn(t) = 〈V (t, x), zn(x)〉 are Fourier coefficients system of eigenfunctions
zn(x), where zn(x) are eigenfunctions of boundary value problem Azn(x) =
−λ2

nzn(x), x ∈ Q, Γ zn(x) = 0, x ∈ γ . Following [6], they form a complete
orthonormal system in the Hilbert space H(Q), and the corresponding eigenvalues
λn satisfy λn ≤ λn+1,∀n = 1, 2, 3, . . . , and lim

n→∞ λn = ∞.

Definition 1 A generalized solution of problem (2)–(4) is a function V (t, x) ∈
H(QT ) that satisfies the initial condition in a weak sense i.e., for any function
φ0(x) ∈ H(Q), φ1(x) ∈ H(Q) we have the equalities

lim
t→+0

∫
Q

V (t, x)φ0(x)dx =
∫
Q

ψ1(x)φ0(x)dx,

lim
t→+0

∫
Q

Vt(t, x)φ1(x)dx =
∫
Q

ψ2(x)φ1(x)dx,

and the Fourier coefficients Vn(t) satisfy the linear Fredholm integral equation of
the second type

Vn(t) = ψ1n cosλnt + 1

λn

ψ2n sinλnt+

+ 1

λn

∫ t

0
sin λn(t − τ )

(
λ

∫ T

0
K(τ, s)Vn(s)ds + fn(τ, u)

)
dτ, (7)

whereψ1n, ψ2n, and gn(t) are the Fourier coefficients of the functionsψ1(x), ψ2(x),
f (t, x, u(t, x)), respectively.

To determine the Fourier coefficients Vn(t) Eq. (7) can be rewritten as

Vn(t) = λ

∫ T

0
Kn(t, s)Vn(s)ds + an(t), (8)

where

Kn(t, s) = 1

λn

∫ t

0
sin λn(t − τ )K(τ, s)dτ, Kn(0, s) = 0, (9)

an(t) = ψ1n cosλnt + 1

λn
ψ2n sin λnt + 1

λn

∫ t

0
sin λn(t − τ )fn[τ, u]dτ. (10)
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We will find the solution of the integral equation (8) by the formula [7, 8]:

Vn(t) = λ

∫ T

0
Rn(t, s, λ)an(s)ds + an(t), (11)

where

Rn(t, s, λ) =
∞∑
i=1

λi−1Kn,i(t, s), n = 1, 2, 3, . . . , (12)

is the resolvent of the kernel Kn(t, s) ≡ Kn,1(t, s), and the iterated kernels
Kn,i(t, s) are defined by the formula

Kn,i+1(t, s) =
∫ T

0
Kn(t, η)Kn,i (η, s)dη, i = 1, 2, 3, . . . , Kn,1(t, s) = Kn(t, s),

(13)

for each n = 1, 2, 3, . . .. We investigate the convergence of Neumann series (12).
According to (9) and (13) by direct calculation the following estimates are estab-
lished:

|Kn,i(t, s)|2 ≤ T 2i−1

(λ2
n)

i
Ki−1

0

∫ T

0
K2(τ, s)dτ, i = 1, 2, 3, . . . . (14)

Convergence of the Neumann series (12) follows from the inequality

|Rn(t, s, λ)| ≤
∞∑
i=1

|λ|i−1|Kn,i(t, s)| ≤
√
T

(∫ T

0
K2(y, s)ds

)1/2
1

λn − |λ|T√K0
,

which converges for the values of the parameter that satisfy |λ| T
λn

√
K0 < 1. By

direct calculation we establish the following inequality:

∫ T

0
|Rn(t, s, λ)|2ds ≤

∫ T

0

∫ T

0
K2(y, s)dyds

1

(λn − |λ|T√
K0)

2
= K0T

(λn − |λ|T√
K0)

2
,

which is later used repeatedly. Note that the Neumann series for values of the

parameter λ satisfying |λ| <
√

2√
K0T

λn
n→∞−−−→ ∞ converges absolutely for each

n = 1, 2, 3, . . . , i.e., the radius of convergence increases when n is growing. In this
case, as the sum of an absolutely convergent series, the resolvent Rn(t, s, λ) is a
continuous function and satisfies the following estimates:

|Rn(t, s, λ)| ≤ TK0

(λn − |λ|T√K0)2
, n = 1, 2, 3, . . . . (15)
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Thus, we find the solution to problem (2)–(4) by formula (6), where Vn(t) is
defined by (11) as the unique solution of integral equation (8). It is easy to verify
that this solution satisfies initial condition (2) and it is an element of Hilbert space
H(QT ).

According to the condition (5), each control u(t) uniquely defines the controlled
process V (t, x). And so the control u(t) + Δu(t) corresponds to the solution
V (t, x) + ΔV (t, x) of the boundary value problem (2)–(4), where ΔV (t, x) is the
increment corresponding to increment Δu(t). By the maximum principle [9, 10] the
increment of functional (1) can be written as

ΔJ = J [u+Δu] − J [u]

= −
∫ T

0

∫
Q

ΔΠ[t, x, V (t, x), ω(t, x), u(t, x)]dxdt+
∫ T

0

∫
Q

ΔV 2(t, x)dxdt,

(16)

where

Π[t, x, V (t, x), ω(t, x), u(t, x)] = f [t, x, u(t, x)]ω(t, x)− βM2[t, x, u(t, x)],
(17)

and the function ω(t, x) is the solution of the adjoint boundary value problem

ωtt − Aω = λ

∫ T

0
K(t, τ )ω(τ, x)dτ − 2 [V (t, x)− ξ(t, x)] ,

ω(T , x) = 0, ωt (T , x) = 0, x ∈ Q,

Γ ω(t, x) = 0, x ∈ γ, 0 < t < T .

(18)

According to the maximum principle for systems with distributed parameters [9],
the optimal control is determined by the relations

ω(t, x) = 2βM(t, x, u(t, x))Mu(t, x, u(t, x))

fu(t, x, u(t, x))
, (19)

fu(t, x, u(t, x))

(
M(t, x, u(t, x))Mu(t, x, u(t, x))

fu(t, x, u(t, x))

)
u

> 0, (20)

which are called optimality conditions.
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3 Solution of the Adjoint Boundary Value Problem

We are looking for a solution of the adjoint boundary value problem (18) in the form
of the series

ω(t, x) =
∞∑
n=1

ωn(t)zn(x). (21)

The Fourier coefficients ωn(t) for each fixed n = 1, 2, 3, . . . , satisfy the linear
nonhomogeneous Fredholm integral equation of the second type

ωn(t) = λ

∫ T

0
Bn(s, t)ωn(s)ds− 2

λn

∫ T

t

sinλn(τ − t)[Vn(τ)− ξn(τ )]dτ, (22)

where

Bn(s, t) = 1

λn

∫ T

t

sinλn(τ − t)K(s, τ )dτ. (23)

We find [3] the solution to Eq. (22) using the following formulas:

ωn(t) = λ

∫ T

0
Pn(s, t, λ)

(
− 2

λn

∫ T

s

sin λn(τ − s)[Vn(τ)− ξn(τ )]dτ
)
ds−

− 2

λn

∫ T

t

sin λn(τ − t)[Vn(τ)− ξn(τ )]dτ,
(24)

where the resolvent Pn(s, t, λ) of the kernel Bn(s, t) is given by

Pn(s, t, λ) =
∞∑
i=1

λi−1Bn,i(s, t), Bn,1(s, t) = Bn(s, t),

Bn,i+1(s, t) =
∫ t

0
Bn(η, t)Bn,i (s, η)dη, i = 1, 2, 3, . . . ,

(25)

and it is continuous function when |λ| < λ1
T
√
K0

, n = 1, 2, 3, . . ., and satisfies

∫ T

0
P 2
n (t, τ, λ)dτ ≤ TK0

(λn − |λ|T√K0)2
. (26)



On the Solvability of Tracking Problem 187

Further, taking into account (18) and (24) the solution of the adjoint boundary value
problem can be written as

ωn(t) = 2
∫ T

0
En(η, t, λ)ln(η)dη−

− 2
∫ T

0

(∫ T

0
En(η, t, λ)εn(η, τ, λ)dη

)
fn(τ, u)dτ, (27)

where

En(η, t, λ) =

⎧⎪⎨
⎪⎩

λ
∫ η

0 Pn(s, t, λ)
1
λn

sin λn(η − s)ds, 0 ≤ η ≤ t,

1
λn

sin λn(η − t)+ λ
∫ η

0 Pn(s, t, λ)
1
λn

sin λn(η − s)ds, t ≤ η ≤ T ,

(28)

ln(t) = ξn(t)− ψ1n[cos λnt + λ

∫ T

0
Rn(t, s, λ) cos λnsds]−

−ψ2n

λn

[sin λnt − λ

∫ T

0
Rn(t, s, λ) sin λnsds],

(29)

εn(t, τ, λ) =

⎧⎪⎨
⎪⎩

sinλn(t−τ )
λn

+ λ
∫ T

τ Rn(t, sλ)
sinλn(s−τ )

λn
ds, 0 ≤ τ ≤ t,

λ
∫ T

τ
Rn(t, sλ)

sin λn(s−τ )
λn

ds, t ≤ τ ≤ T .

(30)

By means of direct calculations we have proved the following lemma.

Lemma 1 The solution to adjoint boundary value problem (18) is an element of the
space H(QT ).

4 Nonlinear Integral Equation of Optimal Control

We find the optimal control according to optimality conditions (19) and (20). We
substitute into (19) the solution to the adjoint boundary value problem (18) defined
by (27)

β
M(t, x, u(t, x))Mu(t, x, u(t, x))

fu(t, x, u(t, x))
=

∞∑
n=1

{∫ T

0
En(η, t, λ)ln(η)dη−

−
∫ T

0

(∫ T

0
En(η, t, λ)ε(η, τ, λ)dη

)
fn(τ, u)dτ

}
zn(x), (31)
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where

fn(τ, u) =
∫
Q f (t, x, u(t, x))zn(x)dx. (32)

Thus, the optimal control is defined as the solution of a nonlinear integral equa-
tion (31). Condition (20) restricts the class of functions f [t, x, u(t, x)] of external
influences. Therefore, we assume that the function f [t, x, u(t, x)] satisfies (20) for
any control u(t, x) ∈ H(QT ), i.e., the optimization problem is considered in class
{f (t, x, u(t, x))} of functions satisfying (20).

Nonlinear integral equation (31) is solved according to [5]. We set

β
M(t, x, u(t, x))Mu(t, x, u(t, x))

fu(t, x, u(t, x))
= p(t, x). (33)

According to condition (20) the control function u(t, x) is uniquely determined
from equality (31), i.e., there is a function ϕ such that

u(t, x) = ϕ(t, p(t, x), β). (34)

By (33) and (34) we rewrite Eq. (32) in the operator form

p(t, x)+G[p(t, x), λ] = h(t, x, λ), (35)

where

G[p(t, x), λ] =
∞∑
n=1

∫ T

0

{∫ T

0
En(η, t, λ)εn(η, τ, λ)dη

}
·

·
∫
Q

f [τ, y, ϕ(τ, y, p(τ, y), β)]zn(y)dyzn(x), (36)

h(t, x, λ) =
∞∑
n=1

∫ T

0
En(η, t, λ)ln(η)dηzn(x). (37)

Now we investigate the questions of unique solvability of the operator equation (35).
By means of the direct calculations we have proved the following lemmas.

Lemma 2 The operator G[p(t, x), λ] defined by the formula (36) maps the space
H(QT ) into itself, i.e., it is an element of the space H(QT ).

Lemma 3 Suppose that the conditions

‖f [t, u(t, x)] − f [t, ū(t, x)]‖H(QT ) ≤ f0‖u(t, x)− ū(t, x)‖H(QT ), f0 > 0 (38)

‖ϕ[t, p(t, x), β] − ϕ[t, p̄(t, x), β]‖H(QT ) ≤ ϕ0(β)‖p(t, x) − p̄(t, x)‖H(QT ), ϕ0(β) > 0
(39)
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are satisfied. Then if the condition

γ = C0f0ϕ0(β) < 1 (40)

is met, the operator G[p(t, x), λ] is contracting.

Here C0 = const > 0, f0 > 0, ϕ0(β) > 0.

Proof The proof of this theorem follows from Lemma 2 by the following inequality,
i.e., the following inequality is fulfilled:

‖G[p(t, x), λ]−G[p̃(t, x), λ]‖2
H(QT ) ≤ C2

0‖f (t, x, u(t, x))−f (t, x, ũ(t, x))‖2
H(QT ) ≤

≤ C2
0f

2
0 ‖ϕ(t, x, p(t, x), β)−ϕ(t, x, p̃(t, x), β)‖2

H(QT ) ≤ C2
0f

2
0 ‖p̄(t, x)−p̃(t, x)‖2

H(QT ).

Theorem 1 Suppose that conditions (5), (19), (20), and equations (38)–(40) are
satisfied. Then operator equation (35) has a unique solution in the space H(QT ).

Proof According to Lemma 2, operator equation (35) can be considered in the space
H(QT ). According to Lemma 3 operator G(p(t, x), λ) is contracting. Since the
Hilbert space H(QT ) is a complete metric space, by the theorem on principle of
contracting mappings [11] the operator G(p(t, x), λ) has a unique fixed point, i.e.,
operator equation (35) has unique solution.

The solution of operator equation (35) can be found by the method of successive
approximations, i.e., nth approximation of the solution is found by the formula:

pk(t, x) = h−G[pk−1(t, x), λ], k = 1, 2, 3, . . . ,

where p0(t, x) is an arbitrary element of the space H(QT ). For the exact solution
p̄(t, x) = lim

n→∞pn(t, x) we have the following estimate:

‖p̄(t, x)−pn(t, x)‖H(QT ) ≤
γ n

1 − γ
‖h−G[p0(t, x), λ]−p0(t, x)‖H(QT ), (41)

or when h = p0(t, x)

‖p̄(t, x)− pk(t, x)‖H(QT ) ≤
γ k

1 − γ
‖G[p0(t, x), λ]‖H(QT ),

where 0 < γ < 1 is the contraction constant.
The exact solution p̄(t, x) can be found as the limit of the approximate solutions,

i.e., substituting this solution into (36) we find the required optimal control

u0(t, x) = ϕ[t, x, p̄(t, x), β]. (42)
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We find the optimal process V 0(t, x), i.e., the solution of boundary value prob-
lem (2)–(4), corresponding to the optimal control u0(t, x), according to (6) by the
formula

V 0(t, x) =
∞∑
n=1

(
λ

∫ T

0
Rn(t, s, λ)an(s)ds + an(t)

)
zn(x). (43)

The minimum value of the functional (1) is calculated by the formula

J [u0(t, x)] =
∫ T

0

∫
Q

[V 0(T , x)− ξ(t, x)]2dx + β

∫ T

0

∫
Q

M2(t, x, u0(t, x))dxdt.

(44)

The found triple (u0(t, x), V 0(t, x), J [u0(t, x)]) is a complete solution of the
nonlinear optimization problem.
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On a Class of Solutions of the Nonlinear
Integral Fredholm Equation

Akylbek Kerimbekov

Abstract Sufficient conditions for the existence and uniqueness of a new class of
solutions are found for the nonlinear integral Fredholm equation, and an algorithm
for their construction has been developed.

1 The Method of Constructing the Solution of the Nonlinear
Integral Fredholm Equation

The theory of nonlinear integral equations is much less developed than the theory
of linear integral equations. There are only a small number of nonlinear integral
equations that have been more or less fully investigated [1–4]. Among them, the
most studied equation is Hammerstein equation

ϕ(t) =
∫ b

a

K(t, s)F (s, ϕ(s))ds,

which was investigated under the following assumptions:

1. For the linear integral equation with kernel K(t, s) , Fredholm theorems hold and
the iterated kernel K2(t, s) is continuous function;

2. Kernel function K(t, s) is symmetric, i.e., K(t, s) = K(s, t);
3. The kernel K(t, s) is positive definite kernel, i.e., all its characteristic numbers

are positive;
4. F(s, z) is a continuous function of arguments a ≤ s ≤ b, |z| ≤ M , where M is a

sufficiently large constant.
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Another example is the Urysohn equation

ϕ(t) =
∫ b

a

K(t, s, ϕ(s), λ)ds,

with one parameter λ. If we assume that this equation has a solution ϕ0(t)

with parameter λ = λ0 and one isn’t a characteristic number of the kernel
Kϕ(t, s, ϕ0(s), λ0), then the solution to Urysohn equation can be constructed by
the method of the small parameter, representing it in the form of an expansion

ϕ(t, λ) = ϕ0(t)+ (λ− λ0)ϕ1(t)+ ..+ (λ− λ0)
kϕk(t)+ o(|λ− λ0|k),

where the function ϕk(t), for each k = 1, 2, 3, . . . ,, is defined as the solution to the
linear Fredholm integral equation of the second kind with kernel Kϕ(t, s, ϕ0(s), λ0).
In practice, this method leads to rather complex calculations.

Other nonlinear integral equations were studied by such mathematicians as
R. Iglish, J. Leray, E. Holder, V. Nemytskii, E. Schmidt, A. Hammerstein, L.
Lichtenstein, and the others until the mid-1930s.

However, up to the present time, constructive methods for solving nonlinear
integral equations have not been sufficiently developed.

In Ref. [5], based on Lagrange finite-increments formula, a method is given that
makes it possible to find solutions of nonlinear integral Fredholm equations in the
form of a sum of two functions.

In this paper we consider the nonlinear integral Fredholm equation of the form

ϕ(x) = λ

∫ b

a

K(x, t, ϕ(t))dt + f (x), (1)

where a and b are given numbers, λ ∈ (−∞,+∞) is a parameter, f (x) is a given
continuous function defined on the interval [a, b], K(x, t, ϕ(t)) is a given continuous
function with respect to the set of arguments in the domain Q = {a ≤ x ≤ b; a ≤
t ≤ b; ϕ1 ≤ ϕ ≤ ϕ2}, and this function has the continuous derivativeKϕ(x, t, ϕ(t)),

where ϕ1 and ϕ2 are constants.
In the paper we suggest the method that makes it possible to find solutions to

Eq. (1) in the form of the sum

ϕ(x) = ϕ0(x)+ λu(x), (2)

where ϕ0(x) and u(x) are the functions to be determined.
To find necessary and sufficient conditions for which Eq. (1) has solutions of the

form (2), we substitute function (2) in (1) and we obtain the identity

ϕ0(x)+ λu(x) = λ

∫ b

a

K(x, t, ϕ0(t)+ λu(t))dt + f (x). (3)
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Suppose that function K(x, t, ϕ(t)) as the function of ϕ, ϕ1 ≤ ϕ ≤ ϕ2 satisfies
the Lagrange finite-increments formula for each fixed (x, t) [6] and the following
equality holds:

K[x, t, ϕ0(t)+ λu(t)] = K[x, t, ϕ0(t)] +Kϕ[x, t, ϕ(t)]λu(t), (4)

where ϕ(t) is an unknown function satisfying condition

ϕ1 ≤ ϕ0(t) < ϕ(t) < ϕ0(t)+ λu(t) ≤ ϕ2,

ϕ1 ≥ ϕ0(t) > ϕ(t) > ϕ0(t)+ λu(t) ≥ ϕ2,∀t ∈ [a, b]. (5)

Taking into account (4), we rewrite identity (3) in the form

ϕ0(x)+ λu(x) = λ

∫ b

a

K(x, t, ϕ0(t))dt − λ2
∫ b

a

Kϕ(x, t, ϕ(t))u(t)dt + f (x),

(6)

from which we obtain the following identities:

ϕ0(x) ≡ f (x), (61)

u(x) ≡
∫ b

a

K(x, t, ϕ0(t))dt ≡
∫ b

a

K(x, t, f (t))dt, (62)

0 ≡
∫ b

a

Kϕ[x, t, ϕ(t)]u(t)dt. (63)

From the relations (61) and (62) we find the functions ϕ0(x) and u(x). However,
identity (6) is satisfied only when identity (63) is satisfied, and (63) contains an
unknown function ϕ(t).

An unknown function ϕ(t) can be found from relation

Kϕ[x, t, ϕ(t)]λu(t) = K[x, t, f (t)+ λu(t)] −K[x, t, f (t)], (7)

which according to Lagrange’s theorem has at least one solution, for each value of
the parameter. The solution to Eq. (7) we denote by function ψ(t, λ) , i.e., ϕ(t) =
ψ(t, λ) . Then the identity (63) has the following form:

∫ b

a

Kϕ[x, t, ψ(t, λ)]u(t)dt ≡ 0, (8)
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where ψ(t, λ) is known function. Identity (8) takes place when the following
conditions are fulfilled:

1. Kϕ[x, t, ψ(t, λ)] and u(t) are orthogonal functions for ∀x and ∀λ;
2. λ is the root of equation

∫ b

a

Kϕ[x, t, ψ(t, λ)]u(t)dt = 0,

for any x ∈ [a, b].
These conditions are sufficient for the existence of the solution to Eq. (1) in

the form (2). Then we consider the condition for the uniqueness of this solution.
Suppose that Eq. (1) is different from each other ϕ1(t) and ϕ2(t). Then, for their
difference, we have a linear integral equation of a Fredholm type

ϕ1(t)− ϕ2(t) = λ

∫ b

a

Kϕ(x, t, ψ(t))(ϕ1(t)− ϕ2(t))dt,

which has a trivial solution for any ϕ1(t) and ϕ2(t) when the kernel Kϕ(x, t, ψ(t))

has no characteristic numbers. This condition ensures the uniqueness of the solution
in the form of the sum (2).

2 Solution of the Nonlinear Integral Fredholm Equation
with a Polynomial Nonlinearity

We consider the nonlinear integral Fredholm equation with a polynomial nonlinear-
ity of the form

ϕ(x) = λ

∫ b

a

n∑
i=0

αi(x)bi(t)ϕ
n−i (t)dt + f (x), (9)

and we seek its solution as the sum

ϕ(x) = ϕ0(x)+ λu(x). (10)

By substituting the function (10) into Eq. (9), we obtain the identity

ϕ0(x)+ λu(x) = λ

∫ b

a

(
α0(x)b0(t)

[
ϕ0(t)+ λu(t)

]n + . . .+

αn−1(x)bn−1(t)
[
ϕ0(t)+ λu(t)

]
+ αn(x)bn(t)

)
dt + f (x)
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= λ

∫ b

a

({
α0(x)b0(t)

[
ϕn

0 (t)+ nϕn−1
0 λu(t)+ . . .+

nϕ0(t)
(
λu(t)

)n−1 + (λu(t))n}+ . . .

+α1(x)b1(t)
[
ϕn−1

0 (t)+ (n− 1)ϕn−2
0 λu(t)+ . . .+

(n− 1)ϕ0(t)
(
λu(t)

)n−2 + (λu(t))n−1
}
+ . . .+

+αk(x)bk(t)
[
ϕn−k

0 (t)+ (n− k)ϕn−k−1
0 λu(t)+ . . .+

(n− k)ϕ0(t)
(
λu(t)

)n−k−1 + (λu(t))n−k
}
+ . . .+

+αn−2(x)bn−2(t)
[
ϕ2

0(t)+ 2ϕ0λu(t) +
(
λu(t)

)2]+
+αn−1(x)bn−1(t)

[
ϕ0(t)+ 1λu(t)

]
+ αn(x)bn(t)

}
dt + f (x),

thence

ϕ0(x) = f (x),

u(x) =
∫ b

a

{
α0(x)b0(t)ϕ

n
0 (t)

+ α1(x)b1(t)ϕ
(n−1)
0 (t)+ . . .+

+ αk(x)bk(t)ϕ
n−k
0 (t)+ . . .+

+ αn−2(x)bn−2(t)ϕ
2
0(t)+

+ αn−1(x)bk−1(t)ϕ0(t)+
+ αn(x)bn(t)

}
dt =

= P0,nα0(x)+ P1,n−1α1(x)+ . . .+
+ Pk,n−kαk(x)+ . . .+
+ Pn−1,1αn−1(x)+ Pn,0αn(x), (11)

where

Pi,n−i =
∫ b

a

bi(t)ϕ
n−i
0 (t)dt =

∫ b

a

bi(t)f
n−i (t)dt < ∞, i = 0, 1, . . . , n,
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and we have the identity

α0(x)P0,n−1(λ)+ α1(x)P1,n−2(λ)+ . . .+ αk(x)Pk,n−(k+1)(λ)+ . . .

+αn−2(x)Pn−2,1(λ)+ αn−1(x)Pn−1,0(λ) = 0, (12)

where

Pk,n−(k+1)(λ) =
∫ b

a

bk(t)u(t)
[
(n− k)f n−k−1(t)+ . . .+

+(n− k)f (t)λn−k−2un−k−2(t)+ λn−k−1un−k−1(t)
]
dt.

Linear independence of the systems α0(x), . . . , αn−1(x) plays an important role
in the solvability of Eq. (9).

Theorem 1 Let α0(x), α1(x), . . . , αn−1(x)be linearly independent functions on the
interval [a, b]. If the intersection of the sets of roots of equations

pk,n−k−1(λ) = 0, k = 0, 1, . . . , n− 1,

is not empty, then Eq. (9) has at least one solution in the form of sum (10).

Theorem 2 Let αk(x), αk+1(x), . . . , αn−1(x) be linearly dependent functions on
the interval [a, b]. Then Eq. (9) has as many solutions as sum (10), how many roots
of the algebraic equation

βkpk,n−(k+1)(λ)+ . . .+ βn−1pn−1,0(λ) = 0, βk = const,

satisfy the system of equations

pj,n−(j+1)(λ) = 0, j = 0, 1, . . . , k − 1.

The proofs of the theorems are verified by direct computations.

Corollary 1 Let α0(x), α1(x), . . . , αn−1(x) be linearly dependent functions on the
interval [a, b]. Then Eq. (9) has n−1 solutions in the form of sum (10), where λ are
the roots of the algebraic equation degree n− 1 p(λ) = 0.

Corollary 2 Let α0(x), α1(x), . . . , αn−1(x) be linearly independent functions on
the interval [a, b] and

pn−1,0 =
∫ b

a

bn−1(t)u(t)dt = 0.
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Then Eq. (9) has a unique solution in the form of sum (10) when the root λ∗ of
equation

pn−2,1(λ) = 0

is a root of equations

pj,n−(j+1)(λ) = 0, j = 0, 1, . . . , n− 3.
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On Conditional Stability of Inverse
Scattering Problem on a Lasso-Shaped
Graph

Kiyoshi Mochizuki and Igor Trooshin

Abstract We investigate the conditional stability of the inverse scattering problem
on a lasso-shaped graph using the fundamental equation of inverse scattering theory.

1 Introduction

Time-dependent and stationary equations on graphs arise as simplified models
in mathematics, physics, chemistry, and engineering (nanotechnology), when one
considers the propagation of waves of different natures in thin, tube-like domains
(for details see books of Pokornyi et al. [16], Berkolaiko and Kuchment [1], and the
references therein).

Among several problems in this field, the scattering problems have been studied
by many authors (e.g., Gerasimenko and Pavlov [6], Exner and Seba [3], Gerasi-
menko [5], Kostrykin and Schrader [8], Harmer [7], Kurasov and Stenberg [9],
Boman and Kurasov [2], Pivovarchik [15], Latushkin and Pivovarchik [10], and
Freiling and Ignatyev [4]) because of the general importance of their applications.

In this paper we investigate the case of a “lasso-shaped” graph, i.e., a graph Γ

which consists of a half line γ = {x | 0 < x < ∞} and a loop κ = {z | 0 <

z < 2π}, joined at the point {x = 0} = {z = 0} = {z = 2π}. We consider on Γ
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the following spectral problem describing one-dimensional scattering of a quantum
particle:

−u′′ +
{
q(X)− λ2

}
u = 0, X ∈ Γ, (1)

u(x = 0) = u(z = 0) = u(z = 2π), (2)

u′(x = 0 + 0)+ u′(z = 0 + 0)− u′(z = 2π − 0) = 0. (3)

Here differentiation with respect to the variable X is understood as differentiation
with respect to x, when X ∈ γ , and as differentiation with respect to z, when X ∈ κ .
Differentiation is not defined at the vertex. The potential q(X) is real-valued, and is
required to satisfy q(x) ∈ L1

loc(Γ ), (1+x)q(x) ∈ L1(γ ). Parameter λ is a complex
number such that Im λ ≥ 0.

For any real λ �= 0 there exists a solution Φ(X, λ) of problem (1)–(3) which is
represented on γ uniquely as

Φ(x, λ) = e(x,−λ)− S(λ)e(x, λ).

Here e(x, λ) are so-called Jost functions, which behave on the closed upper half-
plane of the spectral parameter λ as

e(x, λ) = eiλx{1 + o(1)}.

The function S(λ) is the scattering function for the boundary value problem (1)–(3).
There are two types of eigenvalues of problem (1)–(3): “visible at infinity” if

there exist corresponding eigenfunctions which are not identically vanishing on γ

and “invisible at infinity” otherwise. Problem (1)–(3) possess at most a finite number
of “visible at infinity” eigenvalues −λ2

j , 0 < λ1 < λ2 < . . . < λn, which are all
negative and simple.

We call

mj = ‖E(·, iλj )‖−1
L2(Γ )

, j = 1, . . . , n

the “weight numbers” of problem (1)–(3). Here E(X, iλj ) is an eigenfunction of
operator L, corresponding to the eigenvalue “visible at infinity” −λ2

j , which is
normalized as E(x, iλj ) = e(x, iλj ) for x ∈ γ .

The scattering data is then given by {S(λ), λj , mj | λ ∈ � j = 1, . . . , n}, where
−λ2

j , j = 1, . . . , n, are the eigenvalues “visible at infinity,” and mj, j = 1, . . . , n,
are the corresponding “weight numbers.”

Our inverse scattering problem is the following:

IScP: Given the scattering data {S(λ), λj , mj | λ ∈ � \ {0}, j = 1, . . . , n},
recover the potential q(X) on γ .
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We have proved (see [12–14]) that scattering data defines q(X) on γ uniquely
and provided the reconstruction procedure. Now we investigate the stability of such
an inverse scattering problem.

2 Conditional Stability

Let α(x) ∈ C([0,∞)) ∩ L1([0,∞)) be a non-increasing function.
We denote by V 1

0 (α) the set of potentials q(X) such that q(z) ≡ 0, z ∈ κ ,
q(x) ∈ C1(Γ ), and (1 + | · |)q(·)) ∈ L1(γ ),

∫
t∈γ,t≥x q(t)dt ≤ α(x). Let us

mention that for every potential q(x) under consideration such function α(x) exists.
We introduce the following notations:

α1(x) =
∫ ∞

x

α(t)dt, Δ(x) =
∫ x−1

0
α(t)dt, x > 0,

σ = min
0≤λ≤2

|2 sinλπ + i cos λπ |,

δ(λ) = 1

|λ|α(0)e
α1(0) + 2Δ(|λ|)

1 −Δ(|λ|) for |λ| > 0, Δ(|λ|) < 1. (4)

Theorem 1 Let q1(X), q2(X) ∈ V 1
0 (α) and λ1

j = λ2
j , m1

j = m2
j , for j =

1, . . . , n, and S1(λ) = S2(λ), λ ∈ (−N,N), where
{
λi
j , mi

j , Si(λ)
}

denotes the

corresponding scattering data and N is a fixed number.
For any N and h > N−1 such that Δ(N) < 1/2 and δ(N) < σ the following

estimate holds:

|q1(x)− q2(x)| ≤ 2πhD(x, h)+
16(1 + 9hα(x))

3h2π(σ − δ(N))N

[
α(0)+ πNΔ(N))

1 −Δ(N)
+ α(0)eα1(0)

]
, (5)

where

D(x, h) = max
k=1,2

sup
x≤y≤x+πh

∣∣∣∣ ddy qk(y)

∣∣∣∣ .

Proof It is well known (see [11]) that the solution e(x, λ) of Eq. (1) on γ can be
represented as

e(x, λ) = eiλx +
∫ ∞

x

K(x, t)eiλtdt, (6)
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where the kernel K(x, t) is differentiable with respect to both variables on 0 ≤ x ≤
t < ∞ and satisfies the equation

K(x, x) = 1

2

∫ ∞

x

q(t)dt, x > 0. (7)

|Kx(x, t)+ 1

4
q(

x + t

2
)| ≤ 1

2
σ(x)σ (

x + t)

2
) exp

{
σ1(x)− σ1(

x + t)

2
)

}
, (8)

with

σ(x) =
∫ ∞

x

|q(t)|dt, σ1(x) =
∫ ∞

x

σ (t)dt, x > 0.

For every fixed x ∈ γ the kernel K(x, t) of transformation operator (6) satisfies the
fundamental equation of inverse scattering theory (for its derivation in the case of
the lasso-shaped graph see [12–14]):

F(x + t)+K(x, t)+
∫ ∞

x

K(x, y)F (t + y)dy = 0, 0 < x < t < ∞,

where

F(x) =
n∑

k=1

m2
ke

−λkx + FS(x),

FS(x) = 1

2π

∫ ∞

−∞
(S0(λ)− S(λ))eiλxdλ.

Function S0(λ) is the scattering function of (1)–(3) in the case q(X) ≡ 0, X ∈ Γ

and function FS(x) is understood as the Fourier transform of the function from
L2(−∞,∞).

In the case q(z) ≡ 0, z ∈ κ scattering functions S(λ) and S0(λ) have
representations (see [14])

S(λ) = n(λ)

n(λ)
, n(λ) = 2 sin λπe(0, λ)+ 1

λ
cosλπe′(0, λ),

S0(λ) = n0(λ)

n0(λ)
, n0(λ) = 2 sinλπ + i cosλπ.
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To estimate |S(λ)− S0(λ)| we remark that

n(λ) = n0(λ)+ ε(λ), ε(λ) = ε1(λ)+ ε2(λ),

ε1(λ) = 2 sinλπ[e(0, λ)− 1],

ε2(λ) = 1

λ
cosλπ[e′(0, λ)− iλ].

It is proved (see [11, pp. 374–375]) that

|e(0, λ)− 1| ≤ Δ(|λ|)
1 −Δ(|λ|) ,

and consequently

|ε1(λ)| ≤ 2Δ(|λ|)
1 −Δ(|λ|) .

It follows from (6) and (7) that

ε2(λ) = 1

λ
cos λπ[−1

2

∫ ∞

0
q(t)dt +

∫ ∞

0
Kx(0, t)eiλtdt].

So estimate (8) gives us

|ε2(λ)| ≤ 1

|λ|σ(0)eσ1(0) ≤ 1

|λ|α(0)e
α1(0). (9)

As a result

|ε(λ)| ≤ δ(λ)

with δ(λ) defined by formula (4).
The function n0(λ) is a 2−periodic continuous which does not vanish on the real

axis function. So we have the following formula:

S(λ)− S0(λ) = ε(λ)n0(λ)− ε(λ)n0(λ)

(n0(λ)+ ε(λ))n0(λ)

and the estimate

|S(λ)− S0(λ)| ≤ 2

σ − δ(λ)
|ε(λ)|.
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Then we follow the arguments ([11, pp. 374–375]) to come to

∫
|λ|≥N

∣∣∣∣ε1(λ)

λ

∣∣∣∣ dλ ≤ 2

1 −Δ(N)

[
α(0)

N
+ πΔ(N)

]
.

Estimate (9) allows us to obtain the following estimate:

∫
|λ|≥N

∣∣∣∣ε2(λ)

λ

∣∣∣∣ dλ ≤ 2

N
α(0)eα1(0),

and consequently

∫
|λ|≥N

∣∣∣∣S(λ)− S0(λ)

λ

∣∣∣∣ dλ ≤ 4

(σ − δ(N))N

[
α(0)+ πNΔ(N)

1 −Δ(N)
+ α(0)eα1(0)

]
.

(10)

We repeat the arguments ([11, pp. 364–380]) to prove

|q1(x)− q2(x)| ≤ 2πhD(x, h)+ 2(1 + 9hα(x))

3h2π
×

∫
|λ|≥N

(∣∣∣∣S
1(λ)− S0(λ)

λ

∣∣∣∣+
∣∣∣∣S

2(λ)− S0(λ)

λ

∣∣∣∣
)
dλ. (11)

Combining this estimate with (10) we obtain the desired estimate (5).

References

1. G. Berkolaiko, P. Kuchment, Introduction to Quantum Graphs (American Mathematical
Society, Providence, 2013)

2. J. Boman, P. Kurasov, Symmetries of quantum graphs and the inverse scattering problem. Adv.
Appl. Math. 32, 58–70 (2005)

3. P. Exner, P. Seba, Free quantum motion on a branching graph. Rep. Math. Phys. 28, 7–26
(1989)

4. G. Freiling, M. Ignatyev, Spectral analysis for the Sturm-Liouville operator on sun-type graphs.
Inverse Prob. 27, 095003 (2011)

5. N.I. Gerasimenko, Inverse scattering problem on a noncompact graphs. Theor. Math Phys. 75,
460–470 (1988)

6. N.I. Gerasimenko, B.S Pavlov, Scattering problems on noncompact graphs Theor. Math. Phys.
74, 230–240 (1988)

7. M. Harmer, Inverse scattering for the matrix Schrodinger operator and Schrodinger operator
on graphs with general self-adjoint boundary conditions. ANZIAM J. 44 161–168 (2002)

8. V. Kostrykin, R. Schrader, Kirchhoff’s rule for quantum wires II: the inverse problem with
possible applications to quantum computers. Fortschr. Phys. 48, 703–716 (2000)

9. P. Kurasov, F. Stenberg, On the inverse scattering problem on branching graphs J. Phys. A 35,
101–121 (2002)



On Conditional Stability of Inverse Scattering Problem on a Lasso-Shaped Graph 205

10. Y. Latushkin, V. Pivovarchik, Scattering in a forked-shaped waveguide. Integr. Equ. Oper.
Theory 61(3), 365–399 (2008)

11. V.A. Marchenko, Sturm-Liouville Operators and Applications, rev. edn. (AMS Chelsea
Publishing, 2011)

12. V. Marchenko, K. Mochizuki, I. Trooshin, Inverse scattering on a graph containing circle, in
Analytic Methods of Analysis and Differential Equations: AMADE 2006 (Cambridge Scientific
Publishers, Cambridge, 2008), pp. 237–243

13. K. Mochizuki, I. Trooshin, Inverse scattering problem for Schrodinger operator on graph
containing loop, in Seminar Notes of Mathematical Sciences, Ibaraki University (in Japanese),
vol. 13 (2011), pp. 113–127

14. K. Mochizuki, I. Trooshin, On the scattering on a loop-shaped graph, in Evolution Equations of
Hyperbolic and Schrodinger Type. Progress in Mathematics, vol. 301 (Springer, Berlin, 2012),
pp. 227–245

15. V. Pivovarchik, Scattering in a loop-shaped waveguide, in Recent Advances in Operator Theory
(Groningen, 1998). Operator Theory Advances and Applications, vol. 124 (Birkhauser, Basel,
2001)

16. V.Y. Pokornyi, O.M. Penkin, V.I. Pryadiev, A.V.Borovskikh, K.P. Lazarev, S.A. Shabrov, Dif-
ferential Equations on Geometric Graphs (in Russian). (Fiziko-Matematicheskaya Literatura,
Moscow, 2004)



On Solvability of Tracking Problem
Under Nonlinear Boundary Control

Erkeaim Seidakmat Kyzy and Akylbek Kerimbekov

Abstract In the paper a nonlinear boundary optimal control problem is investigated
for thermal process described by Volterra integro-differential equation. Sufficient
conditions are established for unique solvability of a nonlinear optimization prob-
lem. An algorithm is developed for constructing a complete solution of the nonlinear
optimization problem.

1 Introduction

Applied problems described by integro-differential equations are often use in
practice [1–3]. Optimal control problems were widely investigated for processes
described by integro-differential equations in partial derivatives of parabolic or
hyperbolic types when control is linearly included in the equation [4–7].

Many applied problems are usually nonlinear. The unique solvability of the
tracking problem for nonlinear boundary control of a thermal process described by
the Volterra integro-differential equation is investigated when the control function
nonlinearly enters into boundary condition. A quadratic functional is the optimality
criterion.

In the research process:

• a weak generalized solution of the boundary-value problem was constructed for
control process, in which Fourier coefficients are defined as the solution of a
linear inhomogeneous Volterra integral equation;

• optimality conditions are found by the maximum principle for systems with
distributed parameters [3] and they contained a weak generalized solution of the
adjoint boundary-value problem;

• nonlinear integral equation of optimal control was obtained with the additional
condition in the form of a differential inequality with respect to the functions of
a boundary source, and unique solvability of this problem is studied;
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• a sufficient condition was found for the unique solvability of the nonlinear opti-
mization problem, and an algorithm for constructing its solution was developed
in the form of a triple, consisting of an optimal control, an optimal process, and
a minimum value of the functional.

Optimal control problem under consideration for Volterra operator possesses
some specific properties which are not fulfilled when Volterra operator is replaced
by Fredholm operator. For example,

• if solutions of both basic and adjoint boundary-value problems for the Volterra
operator exist for any parameter λ, then solution of the boundary-value problems
for Fredholm operator exists only for values of parameter λ varied only on a finite
interval;

• boundary-value problems for the Volterra operator have the property of continu-
ability with respect to the time variable t , whereas boundary-value problems for
the Fredholm operator does not have this property, and it significantly affects the
solvability of the optimal control problem.

Therefore, boundary optimal control problem under consideration for a thermal
process is of theoretical and practical interest.

2 Formulation of the Optimal Control Problem:
Optimality Conditions

Consider an optimization problem in which it is required to find the minimum value
of the integral quadratic functional

J [u(t)] =
∫ T

0

∫ 1

0
[V (t, x)− ξ(t, x)]2dxdt + β

∫ T

0
u2(t)dt, β > 0. (1)

Here V (t, x) characterizes the state of the controlled process, ξ(t, x) describes the
desired state of the controlled process for a given time, and u(t) is the control
function. Optimal control problem is in the definition of the control function u0(t),
for which together with the corresponding to its solution V 0(t, x) of following
boundary-value problem:

Vt = Vxx + λ

∫ t

0
K(t, τ )V (τ, x)dτ, 0 < x < 1, 0 < t ≤ T ,

V (0, x) = ψ(x), 0 < x < 1, (2)

Vx(t, 0) = 0, Vx(t, 1)+ αV (t, 1) = p[t, u(t)], 0 < t ≤ T ,
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which it minimizes the functional (1). Here K(t, τ ) is a given function defined in
region D = {0 ≤ t ≤ T , 0 ≤ τ ≤ T } and satisfies the condition

sup
(t,τ )∈D

|K(t, τ )| = K0,

ξ(t, x) ∈ H(Q), Q = {0 < x < 1, 0 < t ≤ T }, ψ(t, x) ∈ H(0, 1), p[t, u(t)] ∈ H(0, T )

(3)

are given functions and function p[t, u(t)] is nonlinearly dependent on control
function u(t) ∈ H(0, T ) and satisfies the condition, i.e.,

pu[t, u(t)] �= 0, ∀t ∈ (0, T ), (4)

λ is a parameter, T is fixed time moment, α > 0, and H(X) is a Hilbert space of
quadratically summable functions defined on the set X.

Control u0(t) is called an optimal control, and the corresponding to its solution
V 0(t, x) is an optimal process. Note condition (4) ensures a one-to-one correspon-
dence between elements of space {u(t)} of controls and space {V (t, x)} of solutions
of the boundary-value problem (2).

To determine the optimal control we calculate the increment of functional (1).
Since to each control u(t) ∈ H(0, T ) corresponds uniquely a unique solution
V (t, x) ∈ H(Q) of the boundary-value problem, the control u(t) + Δu(t) ∈
H(0, T ) corresponds to the solution of the boundary-value problem (2) of form
V (t, x) + ΔV (t, x) ∈ H(Q), where Δu(t) is increment, i.e., the solution of the
boundary-value problem has an increment ΔV (t, x) corresponding to the increment
Δu(t). Similar to [3], by means of the direct calculations the increment of the
functional can be represented in the form

ΔJ [u(t)] = J [u(t)+Δu(t)] − J [u(t)] =

= −
∫ T

0
ΔΠ[t, V (t, x), ω(t, x), u(t)]dt +

∫ T

0

∫ 1

0
ΔV 2(t, x)dxdt,

where

ΔΠ[t, ·, u(t)] = Π[t, ·, u(t)+Δu(t)] −Π[t, ·, u(t)],

Π[t, V (t, x), ω(t, x), u(t)] = p[t, u(t)]ω(t, 1)− βu2(t), (5)
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and ω(t, x) ∈ H(Q) is the unique weak generalized solution (the corresponding
control u(t) ∈ H(0, T )) of boundary-value problem of the form

ωt + ωxx + λ

∫ T

t

K(τ, t)ω(τ, x)dτ = 2[V (t, x)− ξ(t, x)],
0 < x < 1, 0 ≤ t < T ,

ω(T , x) = 0, 0 < x < 1, (6)

ωx(t, 0) = 0, ωx(t, 1)+ αω(t, 1) = 0, 0 ≤ t < T .

(6) is called adjoint boundary-value problem.
As

∫ T

0

∫ 1

0
ΔV 2(t, x)dxdt

is nonnegative, the following relations hold:

1. If

ΔJ [u(t)] = J [u(t)+Δu(t)] − J [u(t)] ≥ 0, (7)

then function Π[t, V (t, x), ω(t, x), u(t)] must satisfy inequality

ΔΠ[t, ·, u(t)] = Π[t, ·, u(t)+Δu(t)] −Π[t, ·, u(t)] ≤ 0. (8)

2. If conditions (8) hold, then the functional satisfies condition (7).

On basis of these relations we obtain the maximum principle for function
Π[t, V (t, x), ω(t, x), u0(t)], the essence of which lies in the fact that for optimality
of control it is necessary and sufficient that condition

Π[t, V (t, x), ω(t, x), u0(t)](=) sup
u∈Z

Π[t, V (t, x), ω(t, x), u]

is satisfied almost everywhere on interval [0, T ], where Z is acceptable values set
of function u(t) for each fixed T .

Solving for function (5) the extremal problem for the unconstrained maximum
we obtain necessary conditions in the form of the following relations:

Πu[t, V (t, x), ω(t, x), u(t)] = pu[t, u(t)]ω(t, 1)− 2βu(t) = 0, (9)

Πuu[t, V (t, x), ω(t, x), u(t)] = puu[t, u(t)]ω(t, 1)− 2β < 0, (10)

which are called optimality conditions.
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The optimality conditions contain solution ω(t, x) of the adjoint boundary-
value problem, which make difficult the verification of condition (10). However,
eliminating the function ω(t, x) from (10), we obtain the following optimality
condition:

pu[t, u(t)]
(

u

pu[t, u(t)]
)

u

> 0. (11)

Thus, we find optimal control according to conditions (9) and (11). We note that
condition (11) restricts the class of given functions {p[t, u(t)]}, which essentially
affects the solvability of the nonlinear optimization problem. Therefore, in the
subsequent arguments it is assumed that condition (11) is satisfied for ∀u(t) ∈
H(0, T ). Then, to find the optimal control it suffices to consider only relation

2βu(t)

pu[t, u(t)] = ω(t, 1). (12)

We note that the solution of the adjoint boundary-value problem ω(t, x) can be
found only after determining the function V (t, x) according to (6), i.e., solution of
the basic boundary-value problem.

3 Solution of the Basic Boundary-Value Problem

We consider the boundary-value problem (2), where the function p[t, u(t)] satisfies
conditions (4) and (11) for any control u(t) ∈ H(0, T ).

We are looking for a solution of problem (2) in the form

V (t, x) =
∞∑
n=1

Vn(t)zn(x), Vn(t) =
∫ 1

0
V (t, x), zn(x)dx, (13)

where

zn(x) =
√

2(λ2
n + α2)

λ2
n + α2 + α

cos λnx, n = 1, 2, 3, . . . ,

are the eigenfunctions of the boundary-value problem

z′′(x)+ λ2
0z(x) = 0, z′(0) = 0, z′(1)+ αz(1) = 0,

and the corresponding eigenvalues λn are defined as the positive roots of the
transcendental equation λ tanλ = α and satisfy the conditions

(n− 1)π < λn <
π

2
(2n− 1), λn < λn+1, n = 1, 2, 3, . . . , lim

n→∞ λn = ∞.
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Further, by means of the direct calculations we established that the Fourier
coefficients Vn(t) are defined as the solution of the linear inhomogeneous Volterra
integral equation of the second type

Vn(t) =
∫ t

0
Kn(t, s)Vn(s)ds + an(t) (14)

for each fixed n = 1, 2, 3, . . ., where the function

Kn(t, s) =
∫ t

s

e−λ2
n(t−τ )K(τ, s)dτ

is a kernel, and the function

an(t) = e−λ2
ntψn +

∫ t

0
e−λ2

n(t−τ )zn(1)p[τ, u(τ )]dτ

is a free term of the integral equation.
Similar to [8], we find the solution of Eq. (14) by formula

Vn(t) = λ

∫ t

0
Rn(t, s, λ)an(s)ds + an(t), (15)

where the resolvent Rn(t, s, λ) of the kernel Kn(t, s) is determined by Neumann
series

Rn(t, s, λ) =
∞∑
i=1

λi−1Kn,i(t, s), n = 1, 2, 3, . . . . (16)

The iterated kernels Kn,i(t, s) are found by formulas

Kn,i+1(t, s) =
∫ t

s

Kn(t, η)Kn,i (η, s)dη, Kn,1(t, s) ≡ Kn(t, s), i = 1, 2, 3, . . . ,

and satisfy inequalities
∣∣Kn,i(t, s)

∣∣ ≤
(

K0
λ2
n

)i
(t−s)i−1

(i−1)! . According to the estimate

∣∣Rn(t, s, λ)
∣∣ ≤

∞∑
i=1

∣∣λ∣∣i−1∣∣Kn,i(t, s)
∣∣ ≤

∞∑
i=1

∣∣λ∣∣i−1
(
K0

λ2
n

)i
(t − s)i−1

(i − 1)! ≤

≤ K0

λ2
n

∞∑
i=1

1

(i − 1)!
(∣∣λ∣∣K0(t − s)

λ2
n

)i−1

= K0

λ2
n

e

|λ|K0(t−s)

λ2
n , n = 1, 2, 3, . . . , 0 ≤ s ≤ t ≤ T ,

Rn(t, s, λ) is a continuous function for any value of the parameter λ for each n =
1, 2, 3, . . ..
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Taking into account (13) and (15), we find the solution of boundary-value
problem (2) by formula

V (t, x) =
∞∑
n=1

{
ψn(t, λ)+

∫ t

0
Sn(t, τ, λ)zn(1)p[τ, u(τ )]dτ

}
zn(x), (17)

where

ψn(t, λ) = ψn

[
e−λ2

nt + λ

∫ t

0
Rn(t, s, λ)e

−λ2
nt ds

]
,

Sn(t, τ, λ) = e−λ2
n(t−τ ) + λ

∫ t

τ

Rn(t, s, λ)e
−λ2

n(s−τ )ds.

Further, by means of the direct calculations we have proved that the function
V (t, x) is an element of the space H(Q) and this function is called a weak
generalized solution of the boundary-value problem (2).

4 Solution of the Adjoint Boundary-Value Problem

We are looking for a solution of the adjoint boundary-value problem (6) in the form

ω(t, x) =
∞∑
n=1

ωn(t)zn(x), ωn(t) =
∫ 1

0
ω(t, x), zn(x)dx. (18)

Fourier coefficients ωn(t) are defined as solution of linear inhomogeneous Volterra
integral equation of the second type

ωn(t) = λ

∫ T

t

Bn(s, t)ωn(s)ds − 2
∫ T

t

e−λ2
n(τ−t )[Vn(τ)− ξn(τ )]dτ, (19)

n = 1, 2, 3, . . . ,

where

Bn(s, t) =
∫ s

t

e−λ2
n(τ−t )K(s, τ )dτ.

Here Vn(t) and ξn(t) are the Fourier coefficients of functions V (t, x) and ξ(t, x).
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The solution of Eq. (19) is determined by the formula

ωn(t) = −2λ
∫ T

t

Ln(s, t, λ)

(
2
∫ T

s

e−λ2
n(τ−s)[Vn(τ)− ξn(τ )]dτ

)
ds −

−2
∫ T

t

e−λ2
n(τ−t )[Vn(τ)− ξn(τ )]dτ, (20)

where resolvent Ln(s, t, λ) is a continuous function, as the sum of an absolutely
convergent Neumann series of the form

Ln(t, s, λ) =
∞∑
i=1

λi−1Bn,i (s, t). (21)

For iterated kernels Bn,i(s, t)

Bn,i+1(s, t) =
∫ t

s

Bn(s, η)Bn,i (η, t)dη, Bn(s, t) ≡ Bn,1(s, t), i = 1, 2, 3, . . . ,

estimates
∣∣Bn,i(s, t)

∣∣ ≤
(

K0
λ2
n

)i
(s−t )i−1

(i−1)! , i = 1, 2, 3, . . . , are established. It ensures

the convergence of the Neumann series (21) for any value of the parameter λ for
each n = 1, 2, 3, . . ..

Taking into account (15), (18), and (20) we find the solution of adjoint boundary-
value problem by formula

ω(t, x) = −2
∞∑
n=1

(∫ T

0

∫ T

t

En(t, τ, λ)Sn(τ, y, λ)dτzn(1)p[y, u(y)]dy − (22)

−
∫ T

t

En(t, τ, λ)bn(τ, λ)dτ

)
zn(x),

where

En(t, τ, λ) = λ

∫ τ

t

Ln(t, s, λ)e
−λ2

n(τ−s)ds + e−λ2
n(τ−t ),

bn(τ, λ) =
(
ξn(t)− ψn(τ, λ)

)
.

Taking into account the inequalities

|Ln(t, s, λ)| ≤ K0

λ2
n

e

|λ|K0(s−t)

λ2
n ,
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it is not difficult to prove that function ω(t, x) is an element of the space H(Q)

and this function is called a weak generalized solution of adjoint boundary-value
problem (6).

5 Nonlinear Integral Equation of Optimal Control

In the optimality condition (12) substituting the function (22), we obtain the relation

βu(t)

pu[t, u(t)] +
∞∑
n=1

zn(1)
∫ T

0

(∫ T

t

En(t, τ, λ)Sn(τ, y, λ)dτ

)
zn(1)p[y, u(y)]dy =

=
∞∑
n=1

zn(1)
∫ T

t

En(t, τ, λ)bn(τ, λ)dτ, (23)

where only control function u(t) is unknown. This relation is called the nonlinear
integral equation of optimal control.

Unique solvability of nonlinear integral equation (23) is investigated according
to the procedure of work [9] tested in several studies of nonlinear optimal control
problems [10–12]. Let’s assume that

βu(t)

pu[t, u(t)] = ν(t). (24)

We consider this equality as implicit function with respect to control function
u(t). Then, according to the optimality condition (11), Eq. (24) is uniquely resolved
with respect to the function u(t), i.e., there is such a function μ(·) that

u(t) = μ[t, ν(t), β]. (25)

According to (24)–(25), we reduce Eq. (23) to the following form:

ν(t)+
∞∑
n=1

zn(1)
∫ T

0

(∫ T

t

En(t, τ, λ)Sn(τ, y, λ)dτ

)
zn(1)p

[
y,μ[y, ν(y), β]] =

=
∞∑
n=1

zn(1)
∫ T

t

En(t, τ, λ)bn(τ, λ)dτ. (26)
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We introduce the notation

L[ν(t)] =
∞∑
n=1

zn(1)
∫ T

0

(∫ T

t

En(t, τ, λ)Sn(τ, y, λ)dτ

)
zn(1)p

[
y,μ[y, ν(y), β]]dy,

h = h(t, 1) =
∞∑
n=1

zn(1)
∫ T

t

En(t, τ, λ)bn(τ, λ)dτ,

and we rewrite Eq. (26) in the operator form

ν + L[ν] = h. (27)

Further, by means of the direct calculations we have proved the following
lemmas:

Lemma 1 The function ν(t) is an element of Hilbert space H(0, T ).

Lemma 2 The function h(t, 1) is an element of Hilbert space H(0, T ).

Lemma 3 The operator L[ν] maps spaces H(0, T ) into itself, i.e., it is an element
of Hilbert space H(0, T ) for any ν(t) ∈ H(0, T ).

Lemma 4 Suppose that for the function p[t, u(t)] the Lipschitz condition is
satisfied with respect to functional variable u, i.e.,

∣∣p[t, u(t)] − p[t, u(t)]∣∣ ≤ p0
∣∣u(t)− u(t)

∣∣, p0 > 0,

and for the function μ[t, ν(t), β] it is satisfied with respect to the functional variable
ν, i.e.,

∣∣μ[t, ν(t), β] − μ[t, ν(t), β]∣∣ ≤ μ0(β)
∣∣ν(t)− ν(t)

∣∣, μ0(β) > 0.

Then if the condition

γ = C0p0μ0(β) < 1

is met, operator L[ν] is a contracting operator. Here constants C0, p0, μ0(β) are
positive numbers.

Theorem 1 Suppose that (4) and (11) and the conditions of Lemma 1–4 are
satisfied. Then operator equation (27) has a unique solution in the Hilbert space
H(0, T ).

Proof Under the conditions of Lemmas 1–4 the contracting mapping principle is
valid, i.e., the operator L[ν] maps a complete metric space H(0, T ) into itself and
it is the contracting operator. Therefore, by the theorem on the contracting mapping
principle [13] there exists a unique fixed point for the operator L[ν], which is a
solution of operator equation (27). ��
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Approximate solutions of operator equation (27) are constructed by the method
of successive approximations

νk = L[νk−1] + h, k = 1, 2, 3, . . . .

The exact solution ν(t) of the operator equation (27) is defined as the limit of the
sequence {ν(t)}, i.e., ν(t) = lim

k→∞ νk(t) and it satisfies the estimate [13]

‖ν(t)− νk(t)‖H(0,T ) ≤ γ k

1 − γ
‖L[ν0(t)] + h(t, 1)− ν0(t)‖H(0,T ),

where ν0(t) is an arbitrary element of space H(0, T ).
Substituting the found solution ν(t) into (27) we find the required optimal control

u0(t) = μ[t, ν(t), β], (28)

which is a solution of the nonlinear integral equation (23).

6 Construction of the Complete Solution to the Nonlinear
Optimization Problem

Substituting the optimal control (28) in (17) instead of the control u(t) we obtain
the optimal process

V 0(t, x) =
∞∑
n=1

{
ψn(t, λ)+

∫ T

0
Sn(t, τ, λ)zn(1)p[τ, u0(τ )]dτ

}
zn(x),

i.e., the solution of the boundary-value problem (2) corresponding to the optimal
control u0(t).

After determining the optimal control and the optimal process, we calculate the
minimum value of the functional (1) by the formula

J [u0(t)] =
∫ T

0

∫ 1

0
[V 0(t, x)− ξ(t, x)]2dxdt + β

∫ T

0
[u0(t)]2dt.

Thus, the found triple
(
u0(t), V 0(t, x), J [u0(t)]) is called a complete solution

to nonlinear optimization problem (1)–(4).
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Part VII
Nonlinear PDE

Session Organizers: Vladimir Georgiev and Tohru Ozawa

In this session, various nonlinear partial differential equations in mathematical
physics were considered. Among possible arguments the following ones were
discussed: existence and qualitative properties of the solutions, existence of wave
operators and scattering for these problems, stability of solitary waves, and other
special solutions.



Exponential Mixing and Ergodic
Theorems for a Damped Nonlinear
Wave Equation with Space-Time
Localised Noise

Ridha Selmi and Rim Nasfi

Abstract This paper is devoted to study a damped nonlinear wave equation driven
by a space-time localised noise, in a bounded domain with a smooth boundary.
The equation is supplemented with the Dirichlet boundary conditions. It is assumed
that the random perturbation is non-degenerate. We prove that the Markov process
generated by the solution possesses a unique stationary distribution which is
exponentially mixing. A strong law of large numbers and the central limit theorem
are derived for this Markov process and used to estimate the corresponding rates of
convergence.

1 Introduction

We consider the following damped nonlinear wave equation perturbed by a random
force, in a bounded domain D ⊂ R3 with a smooth (e.g. class C2) boundary ∂D:

∂2
t v + γ ∂t v −Δv + f (v) = h(x)+ η(t, x), (t, x) ∈ R+ ×D, (1)

supplemented with the Dirichlet boundary condition

v |∂D= 0 (2)

and the initial conditions

v(0, x) = v0(x), ∂tv(0, x) = v1(x), x ∈ D. (3)
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Here, t is the time variable, x is the spatial variable, v = v(t, x) is the unknown
real valued scalar function at the point (t, x), γ > 0 is the dissipation parameter
and f : R → R is a nonlinear function having a quintic growth rate as v goes to
+∞ (f (v) ∼ v5) and satisfying conditions given in Sect. 3. The functions h and
η are scalar real valued, respectively, deterministic and stochastic external forces.
We shall assume that h ∈ H 1

0 (D) and η is sufficiently smooth and bounded, and its
restriction to any cylinder of the form [k − 1, k] × D, k ∈ N∗, is localised in both
space and time. The initial data (v0, v1) belongs to the phase space H = H 1

0 (D) ×
L2(D), endowed with the norm ‖u‖2

H = ‖∇u1‖2 +‖u2‖2 = ‖u1‖2
1 +‖u2‖2, where

u = (u1, u2) ∈ H. The Cauchy problem for (1)–(3) is well posed (see [6]), for
any u0 = (v0, v1) ∈ H there is a unique stochastic process u = (v, ∂t v) whose
almost every trajectory coincides with u0 for t = 0. The ergodicity of the stochastic
nonlinear PDEs with a random external force was studied by many researchers (see
[5] and [7]). The problem of ergodicity of a nonlinear wave equation driven by a
white noise was studied by Barbu and Da Prato in [3] and by Martirosyan in [8].

In this work, we show that the coupling approach from [7] applies to the damped
nonlinear wave equation (1) driven by the space-time localised noise, whenever the
nonlinear function f satisfies the dissipative conditions (5) and (6), and the growth
assumptions (4). The main result of this article is: when η is a non-degenerate
random force with a space-time localised support and under suitable controllability
properties of the nonlinear wave equation (see [1]), the discrete-time Markov
process associated with our problem has a unique stationary measure μ in P(H),
and the law of any solution converges exponentially fast to μ in the Kantorovich-
Wasserstein (Lipschitz-dual) metric. An exact formulation of this result is given
in Sect. 3. The proof of the existence of a stationary measure is related to the
Bogolyubov–Krylov argument, which ensures the existence, under the condition
that the process u(t) = (v(t), ∂v(t)) has a uniformly bounded moment in some H-
compact space. To achieve such a bound, we follow an argument of the theory of
attractors (see [2]). The proof of the exponential mixing is based on a property of
stabilisation to a non-stationary solution of problem (1–3) and a general criterion for
mixing of Markov chains that provided a coupling approach relies on Theorem 3.1.7
in [7]. Furthermore, we show that the uniformly mixing Markov processes satisfy
the strong law of large numbers (SLLN) and the central limit theorem (CLT) for a
large class of Hölder continuous functionals with polynomial growth at infinity.

2 Notation

For an open set D of an Euclidean space, a closed interval J ⊂ R and Banach
separable spaces X and Y , we introduce the following functional spaces:

• For 1 < p < ∞, Lp(D) is the Lebesgue space of measurable functions on D

whose pth power is Lebesgue integrable. If p = 2, we denote the corresponding
norm by ‖.‖ and the corresponding scalar product by (., .).
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• Hs(D) is the Sobolev space of order s with the usual norm ‖.‖s .
• Hs

0 (D) is the closure in Hs of infinitely smooth functions with compact support.
• Lp(J,X) is the space of Borel-measurable functions f : J → X, such that

‖f ‖Lp(J,X) = ( ∫
J ‖f (t)‖pXdt

) 1
p < ∞. In the case p = ∞, this norm is

‖f ‖∞ = ess sup ‖f (t)‖X.

• Cb(X) denotes the space of continuous bounded functions f : X → R endowed
with the norm of uniform convergence: ‖f ‖∞ = sup

u∈X
|f (u)|.

• Lb(X) is the space of bounded Lipschitz functions f : X → R, i.e. of functions

f ∈ Cb(X), such that ‖f ‖L := ‖f ‖∞ + sup
u �=v

|f (u)− f (v)|
‖u− v‖X < ∞.

• C0,α(X) is the space of locally Hölder continuous functions f : X → R, for
α ∈]0, 1] there is Cα ≥ 0, such that |f (u)− f (v)| ≤ Cα‖u− v‖αX, u, v ∈ X.

• W is the space of increasing continuous functions w such that w(r) > 0, r ≥ 0.
For the next definitions, we fix an arbitrary weight function w ∈ W .

• C0,α(X,w) is the space of functions f ∈ C0,α(X), such that

‖f ‖w := sup
u∈X

|f (u)|
w(‖u‖X)

< ∞

‖f ‖w,α := ‖f ‖w + sup
u �=v

|f (u)− f (v)|
‖u− v‖αX(w(‖u‖X)+w(‖v‖X))

< ∞.

• B(X) is the Borel σ -algebra in X and P(X) denotes the space of probability
measures on B(X). If f : X → R is a B(X)-measurable function and μ ∈ P(X),
then 〈f,μ〉 = ∫

X
f (x)μ(dx).

• The space P(X) is endowed with the topology of weak convergence, which is
generated by the Kantorovich-Wasserstein (dual Lipschitz) metric,

‖μ1 − μ2‖∗L := sup
‖f ‖L≤1

|〈f,μ1〉 − 〈f,μ2〉|, μ1, μ2 ∈ P(X).

• For T > 0, we set JT = [0, T ] and DT = JT ×D.

3 Main Results and Scheme of Their Proofs

In what follows, we suppose that the nonlinear function f ∈ C2(R), such that
f (0) = 0, satisfies

|f ′(v)| ≤ C(1 + |v|4), and |f ′′(v)| ≤ C(1 + |v|3), v ∈ R, (4)



224 R. Selmi and R. Nasfi

where C is a positive constant, and the dissipativity conditions

F(v) ≥ −C + κ |v|6, v ∈ R, κ > 0, (5)

f (v)v − 4F(v) ≥ −C, f (v)v ≥ −C, v ∈ R, (6)

where F(w) := ∫ w

0 f (v)dv. Also, we assume that η is a stochastic process of the
form

η(t, x) =
∞∑
k=1

Ik(t)ηk(t − k + 1, x), t ≥ 0, (7)

where Ik is the characteristic function of [k − 1, k], for k ≥ 1, and {ηk} is
a sequence of independent and identically distributed (i.i.d) random variables in
L2(D1), defined by (9), with zero value if t /∈ J1. Let V0 be the support of η and
we shall always assume that there is x0 ∈ R3 \ D̄ and δ > 0 such that Dδ(x0) ={
x ∈ D and there is x ′ ∈ ∂D(x0) such that |x − x ′| < δ

} ⊂ V0, where ∂D(x0) ={
x ′ ∈ ∂D, 〈x ′ − x0,nx ′ 〉 > 0

}
and nx ′ is the outward unit normal to ∂D at the point

x ′. Namely, we assume that the above conditions hold. Thus, for any initial data
u0 = (v0, v1) ∈ H, there exists a unique process v satisfying Eq. (1) and the initial
conditions (3) such that v ∈ C(R+,H 1

0 (D))∩C1(R+, L2(D)) ∩L4(R+, L12(D)),
and

‖v(t)‖L4([0,1],L12(D)) + ‖v(t)‖1 + ‖∂t v(t)‖
≤ Θ((v0, v1))e

−αt +Θ(‖h+ η(t)‖), t ∈ J1,

where the monotone function Θ and the positive constant α are independent of
(v0, v1) and t . The well-posedness of the initial boundary value problem (1) and the
regularity of solutions are proved in Section 3 of [6]. For the proof of the global
solvability, we repeat exactly the arguments in [4] of the particular case f (v) = v5

and γ = h = η = 0. Let us denote by S : H × L2(D1) → H a continuous
operator that takes (u0, h + η) to u(1), where u(t) = (v(t), ∂t v(t)) and v is the
solution of (1)–(3). We denote u(k) by uk and we consider the discrete-time random
dynamical system (RDS) in H:

uk = S(uk−1, h+ ηk), k ≥ 1. (8)

Since ηk are i.i.d random variables in L2(D1), Eq. (8) defines a homogeneous family
of Markov chains in H, denoted by (uk,Pu).

Let Q be an open set of D1 and {ϕj } ⊂ H 1(Q) an orthonormal basis in L2(Q).
Let χ ∈ C∞

0 (D1) such that suppχ ∩ Q ⊂ V0 and χ(t, x) = 1 if (t, x) ∈ J1 ×
Dδ/2(x0) and we set ψj = χϕj . We shall always assume that {ψj } are linearly
independent and the process η satisfies the following hypotheses:
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• (H1) Structure of the noise: The i.i.d random variables ηk can be represented in
the form

ηk(t, x) =
∞∑
j=1

bjξjkψj (t, x), (9)

where ξjk are independent scalar random variables, such that |ξjk| ≤ 1 with
probability 1 and {bj } ⊂ R is a non-negative sequence, such that B :=
∞∑
j=1

bj‖ψj‖1 < ∞. Let J ⊂ L2(Q) be the support of the law of ηk .

• (H2) Approximate controllability: There is ũ ∈ H, such that for any R, ε ≥ 0,
an integer l ≥ 1 exists and verifies that for a given ρ0 in BH(R), there exists
ζ1, . . . , ζl ∈ J , such that ‖ul − ũ‖H ≤ ε, where ul = Sl(ρ0, ζ1, . . . , ζl) defined
by (8), with ηk = ζk and u0 = ρ0.

Theorem 1 Under conditions (H1) and (H2), there is an integer N ≥ 1, depending
on ‖h‖1, B and ρ0, such that if

bj �= 0, for j = 1, . . . ..N, (10)

then the following assertions hold:

• Existence and uniqueness: The Markov family (uk,Pu) generated by (8) has a
unique stationary measure μ ∈ P(H).

• Exponential mixing: There are positive constants C and *, such that

‖Pk(u, .)− μ‖∗L ≤ C(1 + ‖u‖H)e−*k, for u ∈ H, k ≥ 0. (11)

Here, Pk(u, Γ ), Γ ∈ B(X) is the transition function associated with (uk,Pu) and
the constant C does not depend on u and k. We recall that μ is stationary measure
for (uk,Pu) if μ = ∫X Pk(u, .)μ(du). Condition (10) implies the space-time non-
degeneracy of the noise. For the condition (H2) to be checked, it is sufficient that J
contains the zero element and problem (1) and (2) with η = 0 has a globally stable
stationary solution.

In what follows, we outline the proof of Theorem 1. It will be based on two key
ingredients: a coupling approach developed in [7] in the context of stochastic PDEs
and a property of stabilisation to a non-stationary solution of a NLW equation in [1].
First, we recall an abstract result established in [7] (see Theorem 3.1.7). We assume
here that X is a separable Banach space with a norm ‖.‖X and let (uk,Pu) be a
family of Markov chains in X parameterised by the initial point u ∈ X. We denote
by Pk(u, .) its transition function. Let (Uk,PU) be another family of Markov family
chains in the extended phase space X = X ×X, such that

{
Π∗Pk(U, .) = Pk(u, .), for U = (u, u′) ∈ X, k ≥ 0,

Π
′
∗Pk(U, .) = Pk(u

′, .), for U = (u, u′) ∈ X, k ≥ 0,
(12)
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where Π,Π
′ : X → X stand for the natural projections to the components of

U = (u, u′) and Pk(U,�) denotes the transition function for (Uk,PU).
In other words, relations (12) mean that, for any integer k ≥ 0, the random

variable Uk considered under the law PU is a coupling for the pair of measures
(Pk(u, .), Pk(u

′, .)). We shall say that (uk,Pu) satisfies the mixing hypothesis if
there are a closed subset G ⊂ X and C, * ≥ 0 such that it has an extension (Uk,PU)

possessing the following properties:
• Recurrence: Let τ (G) be the first hitting time of the set G, such that τ (G) =

min{k ≥ 0 : Uk ∈ G}. Then, τ (G) is PU a.s. finite for any U ∈ X, and there are
C1, δ1 ≥ 0, such that

EU exp(δ1τ (G)) ≤ C1, for U ∈ X, (13)

where EU is the expectation with respect to PU.
• Exponential squeezing: We set σ = min{k ≥ 0, ‖uk − u′k‖X > Ce−*k}. So,

there are C2, δ2, δ3 ≥ 0, such that for any U ∈ G we have

PU{σ = ∞} ≥ δ3, (14)

EU(I{σ<∞} exp(δ2σ)) ≤ C2. (15)

The following proposition is a particular case of a more general result established
in [7] (see Theorem 3.1.7).

Proposition 1 Let (uk,Pu) be a family of the Markov chains for which there exists
another Markov family (Uk,PU) in extended space X that satisfies relation (12)
and the mixing hypothesis. Then, (uk,Pu) has a unique stationary distribution μ ∈
P(X), and there are positive constants C and *, such that

‖Pk(u, .)− μ‖∗L ≤ Ce−*k, for all u ∈ X, k ≥ 0. (16)

To prove Theorem 1, we first observe that the RDS defined by (8) possesses a
compact absorbing invariant set X ⊂ H. So, it suffices to prove the uniqueness
of an invariant measure and the property of exponential mixing for the restriction of
(uk,Pu) to X, for which we maintain the same notation. We shall prove that (uk,Pu)

satisfies the hypotheses of Proposition 1. The recurrence property follows from the
approximate controllability (hypothesis (H2)), while the exponential squeezing is
established by the following result.

Proposition 2 Under the hypothesis of Theorem 1, there exists d > 0, such that
for any points u, u′ ∈ X satisfying the inequality ‖u − u′‖H ≤ d , the pair
(P1(u, .), P1(u

′, .)) admits a coupling (V (u, u′), V ′(u, u′)) verifying

P

{
‖V (u, u′)− V ′(u, u′)‖H >

1

2
‖u− u′‖H

}
≤ C‖u− u′‖H ≤ Cd, (17)

where C > 0 is a constant independent of u, u′ ∈ X.
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For the proof of this proposition, we used controllability property for the NLW
equation and an approach of an optimal coupling introduced in the Appendix of
[10]. Now, we define a coupling operator R = (R,R′

) by

R(u, u′;ω) =
{
(V (u, u′), (V ′(u, u′)), for ‖u− u′‖H ≤ d,

(S(u, h + ζ ), S(u′, h+ ζ ′)), for ‖u− u′‖H > d,
(18)

where ζ and ζ ′ are independent random variables defined on the same probability
space as V and V ′. The required Markov family (Uk,PU) is constructed by
iterations of R. Let (Ωk,Fk,Pk), k ≥ 1, be countably many copies of the
probability space, where R is defined and let (Ω,F ,P) be the direct product of
these spaces. We set U0 = (u, u′), Uk = R(Uk−1, ωk), k ≥ 1. Thus, we defined
a Markov chain (Uk,PU) in the extended phase space X = X × X. This Markov
chain is an extension of (uk,Pu) and possesses the recurrence and the exponential
squeezing properties and therefore the hypotheses of Proposition 1 are satisfied.
This will complete the proof of Theorem 1.

4 Ergodic Theorems

Let (Ω,F ,P) be a probability space and (uk,Pu) the Markov process associated
with the RDS (8). We denote by Pk(u, .) the corresponding transition function and
by Pk and P∗

k the Markov semi-groups defined by the formulas

Pk : Cb(H) → Cb(H), Pkf(u) =
∫
H

Pk(u, dv)f(v),

P∗
k : P(H) → P(H), P∗

kμ(Γ ) =
∫
H

Pk(u, Γ )μ(du).

Recall that a measure μ is stationary for the family (uk,Pu) if P∗
t μ = μ, t ≤ 0.

Definition 1 We shall say that the family (uk,Pu) is uniformly mixing if it has a
unique stationary measure μ ∈ P(H) and there exists a continuous function ρ :
R+ → R+ and a sequence {γk} of positive numbers, such that γk → 0 as k → ∞,
and for α ∈ (0, 1], w ∈ W and f ∈ C0,α(H, w), we have

|Pkf(u)− 〈f, μ〉| ≤ γkρ(‖u‖H)‖f‖w,α, for k ≥ 0, u ∈ H. (19)

Let us fix an arbitrary constant p > 0 and set wp(r) = (1 + r)p, r ≥ 0. For
any f ∈ C0,α(H, wp) such that 〈f, μ〉 = 0, we set a positive constant σf, such that

σ 2
f = 2〈

∞∑
k=0

Pkf(u), μ〉. The following theorem describes the ergodic theorems for

the family (uk,Pu) with an estimate of the rate of convergence.
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Theorem 2 Under the above hypotheses, we assume that (uk,Pu) is uniformly

mixing, and γ̄ :=
∞∑
k=0

γk < ∞. If there is a continuous function ψ : R+ → R+,

such that Pkρ(u) := Euρ(‖uk‖H) ≤ ψ(‖u‖H), for all k ≥ 0. Then, the following
statements hold:
(i) Strong law of large numbers. There exists D > 0, such that for any f ∈

C0,α(H, w0) and δ > 0, where w0 ∈ W and lim
r→+∞w0(r)e

δr2 = 0, there is

a Pu-a.s. finite random integer K(ω), for any u ∈ H, such that

∣∣∣∣∣
1

k

k−1∑
l=0

f(ul)− 〈f, μ〉
∣∣∣∣∣ ≤ D‖f‖wk

− 1
3 + δ

, for k ≥ K(ω).

(ii) Central limit theorem. For any ε ∈ (0,
1

4
) and σ̄ ≥ 0 there exists a positive

function Υσ̄,ε defined on R+ × R+ and increasing in both arguments, such
that for any function f ∈ C0,α(H, wp) satisfying the conditions σf ≥ σ̄ and
〈f, μ〉 = 0, we have

sup
z∈R

∣∣∣Pu{k−
1
2

k−1∑
l=0

f(ul) ≤ z} −Φσf(z)

∣∣∣ ≤ Υσ̄,ε(‖u‖H, ‖f‖wp,α)k
− 1

4 + ε
,

where k ≥ 1, u ∈ H and Φσ (r) = 1

σ
√

2π

∫ r

−∞
exp(− s2

2σ 2
)ds, σ > 0. For

σ = 0, we set Φ0 = 1[0,+∞[.

The proof of this theorem repeats essentially the argument used in [9].
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On the Injective Embedding of p-Adic
Integers in the Cartesian Product of p
Copies of Sets of 2-Adic Integers

Ekaterina Yurova Axelsson

Abstract We study an injective embedding of p-adic integers in the Cartesian prod-
uct of p copies of sets of 2-adic integers. This embedding allows to explicitly specify
any p-adic integer through p specially selected 2-adic numbers. This representation
can be used in p-adic mathematical physics, for example, in justifying choice of the
parameter p.

1 Introduction

In this paper we establish the possibility of injective embedding of p-adic integers
(p is a prime and p ≥ 3) in the Cartesian product of p copies of sets of the 2-adic
numbers. Injective image of p-adic integers is a subset of the hyperplane from a
Cartesian product of the p copies of sets of the 2-adic numbers. We show that it
is possible to explicitly introduce arbitrary p-adic integer through suitable 2-adic
numbers, using constructed injective embedding. The main results are presented in
Proposition 1. We also present the numerical illustrative example.

The possibility of an injective embedding of p-adic integers into the Cartesian
product p copies of sets of the 2-adic numbers has already been indirectly used in
the description of ergodic p-adic functions, see, for example [8]. In addition, the
representation of p-adic integers through 2-adic numbers can be used to study p-
adic models in mathematical physics in order to support the choice of the number p
for these models, see [1, 3–7, 11, 12].

We recall some definitions related to the p-adic numbers and introduce the
necessary notations. For any prime number p the p-adic norm | · |p is defined in
the following way. For every nonzero integer n let ordp(n) be the highest power
of p which divides n, i.e., n ≡ 0 (mod pordp(n)), n �≡ 0 (mod pordp(n)+1).
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Then we define |n|p = p−ordp(n), |0|p = 0. For rationals n
m

∈ Q we set
| n
m
|p = p−ordp(n)+ordp(m).
The completion of Q with respect to the p-adic metric ρp(x, y) = |x − y|p is

called the field of p-adic numbers Qp. The metric ρp is the so-called strong triangle
inequality |x ± y|p ≤ max (|x|p; |y|p) where equality holds if |x|p �= |y|p. The set
{x ∈ Qp : |x|p ≤ 1} is called the set of p-adic integers. It is denoted by Zp. In some
sense, the set of p-adic integers is an analogue of the interval [0, 1] for real numbers.
More detailed information about p-adic numbers can be found, for example, in the
works [2, 9, 10].

Hereinafter, we will consider only the p-adic integers Zp .
Every x ∈ Zp can be expanded in canonical form, namely in the form of a series

which converges with respect to the p-adic norm:

x = x0 + px1 + . . .+ pkxk + . . . , xk ∈ {0, 1, . . . , p − 1}, k ≥ 0.

We denote by δk(x) the value of p-ary digit from the canonical representation of the
number x ∈ Zp with the number k, i.e., δk(x) = xk, k ≥ 0.

If necessary, we can identify every p-adic integer with a sequence of digits
(x0, x1, . . . , xk, . . .).

Let Z2 × . . .× Z2︸ ︷︷ ︸
p

= Z
p
2 be a Cartesian product of p copies of sets of the 2-adic

numbers. In Zp we allocate a hyperplane S2(p):

S2(p)=
{(

A(0), A(1), . . . , A(p−1)
)
∈ Z

p

2 : A(0) + A(1) + . . .+ A(p−1) + 1 = 0
}

(1)

The set Zp is embedded in this hyperplane.
Let us define the following functions:

Λ : Z2 → Zp, Λ(x)=Λ(x0 + 2x1+. . .+ 2kxk + . . .)=
∞∑
k=0

pkxk xk ∈ {0, 1};
(2)

and ψs : Zp → Z2, s = 0, 1, 2, . . . , p − 1

ψs(x) =
∞∑
k=0

2kus,k (3)

with us,k(x) = 1 whenever δk(x) = s and us,k(x) = 0 whenever δk(x) �= s.
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2 An Injective Embedding of Zp in Z
p

2

In this section, we establish the fact of an injective embedding of Zp in the
hyperplane S2(p) of the Cartesian product of p copies of sets of the 2-adic numbers
Z
p

2 . The injective image Z(p) of Zp coincides with some subset S2(p). Using the
embedding Zp in Z

p

2 , explicit expressions are obtained for the representation of
p-adic numbers in terms of the sum of 2-adic numbers that are represented in the
form (6). The values of the p-adic norm of the whole p-adic number in terms of the
norms of 2-adic numbers in Z(p) are also calculated explicitly, see second statement
in Proposition 1. Proposition 1 also shows that the rationality property of a number
from Zp is preserved under its injective embedding in Z

p

2 , see third statement in
Proposition 1. At the end of the section, numerical examples of the representation
of p-adic numbers in terms of 2-adic numbers are given.

We define the set Z(p) ⊂ Z
p

2 in the following way. Let

A(s) = A
(s)
0 + 2A(s)

1 + 22A
(s)
2 + . . .+ 2kA

(s)
k + . . . , s = 0, 1, . . . p − 1

be a canonical representation of 2-adic numbers A(0), A(1), . . . , A(p−1), A
(s)
k ∈

{0, 1}, k ≥ 0. An element
(
A(0), A(1), . . . , A(p−1)

)
from the Cartesian product Zp

2
belongs to Z(p) if and only if

A
(0)
k + A

(1)
k + A

(2)
k + . . . A

(p−1)
k = 1, k ≥ 0. (4)

In other words,
(
A(0), A(1), . . . , A(p−1)

) ∈ Z(p) is determined by the fact that for
all k ≥ 0 among the binary coordinates with the number k from the canonical
representation of these 2-adic numbers there is exactly one unit.

Note that the set Z(p) and the hyperplane S2(p) ⊂ Z
p
2 are given in a similar

way, but here Z(p) � S2(p). Indeed, if

Ω =
(
A(0), A(1), . . . , A(p−1)

)
∈ Z(p),

then A(0)+A(1)+ . . .+A(p−1) = −1 and Ω ∈ S2(p). Let us consider the collection
of 2-adic numbers A(0), A(1), . . . , A(p−1) for some r ≥ 0 such, that

A
(0)
k + A

(1)
k + A

(2)
k + . . .+ A

(p−1)
k =

⎧⎪⎪⎨
⎪⎪⎩

3, if k = r;
0, if k = r + 1;
1, for other k ≥ 0.
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It is clear that
(
A(0), A(1), . . . , A(p−1)

) �∈ Z(p), but

A(0) + A(1) + . . .+ A(p−1) =

=
r−1∑
k=0

2k

p−1∑
s=0

A
(s)
k + 2r

p−1∑
s=0

A(s)
r + 2r+1

p−1∑
s=0

A
(s)
r+1 +

∞∑
k=r+2

2k

p−1∑
s=0

A
(s)
k =

=
r−1∑
k=0

2k + 2r · 3 +
∞∑

k=r+2

2k = −1,

that is,
(
A(0), A(1), . . . , A(p−1)

) ∈ S2(p), then Z(p) � S2(p).

Proposition 1 Let p ≥ 3 and Z(p) ⊂ Z
p

2 be the subset of the Cartesian product of
p copies of sets of the 2-adic numbers defined by the relations (4). Then

1. there exists an injective mapping Ψ : Zp → Z(p), that is, the set of p-adic
integers Zp is injective embedded in the Cartesian productZp

2 of p-adic integers;
2. if A ∈ Zp and Ψ (A) = (A(0), A(1), . . . , A(p−1)

) ∈ Z(p), then

ordpA = min
s=1,2,··· ,p−1

ord2A
(s) = ord2(1 + A(0)),

that is, |A|p = p−ord2(1+A(0));
3. A ∈ Zp is a rational integer if and only if every 2-adic number

A(0), A(1), . . . , A(p−1)

is rational.

Proof Let us consider the map

Ψ : Zp → Z(p), Ψ (A) = (ψ0(A),ψ1(A), · · · , ψp−1(A)
)
,

where ψs : Zp → Z2, s = 0, 1, . . . , p − 1 are given by relations (3).
We show that the mapping Ψ is injective.
Let
(
B(0), B(1), . . . , B(p−1)

) ∈ Z(p). We consider B ∈ Zp, such that

B = Λ(B(1))+ 2Λ(B(2))+ . . .+ (p − 1)Λ(B(p−1)), (5)

where Λ : Z2 → Zp is defined in (2). Then

ψs(B) = ψs(Λ(B(1))+ 2 ·Λ(B(2))+ . . .+ s ·Λ(B(s))+ . . .+
+ (p − 1) ·Λ(B(p−1))) = B(s), s = 1, 2, . . . , p − 1.
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By definition of the set Z(p), we have δk(B
(0)) = 1 if and only if δk(B

(s)) = 0
for s = 1, 2, . . . , p − 1 taking into account the canonical representation of the
corresponding 2-adic numbers. Then from (5), it follows that δk(B(0)) = 1 as soon
as δk(B) = 0, i.e., ψ0(B) = B(0) and Ψ (B) = (B(0), B(1), . . . , B(p−1)

)
.

Suppose that there exist A,B ∈ Zp such that Ψ (A) = Ψ (B). Then ψs(A) =
ψs(B), s = 0, 1, . . . , p − 1 and

A =
p−1∑
s=1

ψs(A) =
p−1∑
s=1

ψs(B) = B.

This contradiction shows that Ψ is injective.
The inverse mapping Ψ (−1) : Ψ (Zp) → Zp is defined as follows:

Ψ (−1)
(
A(0), A(2), . . . , A(p−1)

)
=

= Λ(A(1))+ 2Λ(A(2))+ . . .+ (p − 1)Λ(A(p−1)) (6)

Let us prove the second statement. Let A ∈ Zp and

A = Λ(A(1))+ 2Λ(A(2))+ . . .+ (p − 1)Λ(A(p−1)),

where Ψ (A) = (A(0), A(2), . . . , A(p−1)
)
. Then

|A|p = max
(
|Λ(A(1))|p, . . . , |Λ(A(p−1))|p

)
.

From (2) it follows that ordp
(
Λ(A(s))

) = ord2
(
A(s)

)
, s = 1, 2, . . . , p − 1, i.e.,

ordpA = min
s=1,2,··· ,p−1

ord2A
(s).

Since δk
(
A(0)

) = 1, k ≥ 0 as soon as δk
(
A(s)

) = 0, s = 1, 2, . . . , p − 1 by the
method of construction of the set Z(p). Therefore,

ord2(1 + A(0)) = min
s=1,2,··· ,p−1

ord2A
(s) = ordpA or |A|p = p−ord2(1+A(0)).

Let us prove the third statement.
Let A = A0+pA1+. . .+pkAk+. . . ∈ Zp be a rational number, i.e., the sequence

{Ak}∞k=0 has a certain period T (so Ak+T = Ak for any k > N). Then, by the method
of construction the mapping Ψ, the sequences {δk(ψs(A))}∞k=0, s ∈ 0, 1, . . . , p − 1
are also periodic, i.e., 2-adic numbers ψs(A) are rational.
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Let us prove the assertion in the opposite direction. Let

Ψ (A) =
(
A(0), A(1), . . . , A(p−1)

)
∈ Z(p)

and A(s), s = 0, 1, . . . , p−1 be rational numbers given by the periodical sequences
{δk(A(s))}∞k=0 with the period length Ts , respectively. Since

A = Λ(A(1))+ 2Λ(A(2))+ . . .+ (p − 1)Λ(A(p−1)),

then the sequence {δk(A)}∞k=0 has a period T = LCM(T1, T2, . . . , Tp−1), i.e., A
is a rational number. Note that due to the method of setting the set Z(p) in (4), T0
divides T .

To illustrate the results of Proposition 1, we give a numerical example.

Example 1 Let p = 5. We define 5-adic number A = − 73250
624 and we define by a

periodic sequence of 5-ary coordinates with a period length of 4 (that is, we consider
a rational 5-adic integer)

(000 1234 1234 1234 . . .).

Then

ψ0(A) = 7; ψ1(A) = − 8

15
; ψ2(A) = −16

15
; ψ3(A) = −32

15
; ψ4(A) = −64

15

and 2-adic numbers ψ0(A), ψ1(A), ψ2(A), ψ3(A), ψ4(A) are given by the
following periodic sequences with a length of period 4:

ψ0(A) : (111 0000 0000 0000 . . .);
ψ1(A) : (000 1000 1000 1000 . . .);
ψ2(A) : (000 0100 0100 0100 . . .);
ψ3(A) : (000 0010 0010 0010 . . .);
ψ4(A) : (000 0001 0001 0001 . . .).

Note that

Λ(ψ1(A)) = − 53

54 − 1
= −125

624
; Λ(ψ2(A)) = − 54

54 − 1
= −625

624

Λ(ψ3(A)) = − 55

54 − 1
= −3125

624
; Λ(ψ4(A)) = − 56

54 − 1
= −15625

624
.
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Then

A = Λ(ψ1(A))+ 2 ·Λ(ψ2(A))+ 3 ·Λ(ψ3(A))+ 4 ·Λ(ψ4(A)) =

= −
(

125

624
+ 2 · 625

624
+ 3 · 3125

624
+ 4 · 15625

624

)
= −73250

624
.

Since ord2(1 + ψ0(A)) = 3, then |A|5 =
∣∣∣− 73250

624

∣∣∣
5
= 5−3.

Also note that Ψ (A) = (ψ0(A),ψ1(A),ψ2(A),ψ3(A),ψ4(A)) ∈ Z
p
2 is

contained in the hyperplane S2(p), see (1). Indeed,

ψ0(A)+ ψ1(A)+ ψ2(A)+ ψ3(A)+ ψ4(A)+ 1 =

= 7 +
(
− 8

15

)
+
(
−16

15

)
+
(
−32

15

)
+
(
−64

15

)
+ 1 = 0.
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Description of (Fully) Homomorphic
Cryptographic Primitives Within
the p-Adic Model of Encryption

Ekaterina Yurova Axelsson and Andrei Khrennikov

Abstract In this paper we consider a description of homomorphic and fully
homomorphic cryptographic primitives in the p-adic model. This model describes a
wide class of ciphers (including substitution ciphers, substitution ciphers streaming,
keystream ciphers in the alphabet of p elements), but certainly not all. Homo-
morphic and fully homomorphic ciphers are used to ensure the credibility of
remote computing, including cloud technology. Within considered p-adic model
we describe all homomorphic cryptographic primitives with respect to arithmetic
and coordinate-wise logical operations in the ring of p-adic integers Zp. We show
that there are no fully homomorphic cryptographic primitives for each pair of the
considered set of arithmetic and coordinate-wise logical operations on Zp .

1 Introduction

Our novel approach to cloud computing is based on the use of p-adic numbers [12,
20] and it was motivated by our previous works on p-adic dynamical systems [6, 13,
14] especially connection of measure-preserving of dynamics with the possibility to
use such dynamics as the basis for ciphers, see also for pioneer papers of Anashin
[1, 2, 4] and monograph [3] (see also works [5, 9, 10, 15, 18] on general theory of
p-adic dynamical system and more generally interrelation between number theory
and dynamical systems).

Cloud computing and storage solutions provide users and enterprises with
various capabilities to store and process their data in third-party data centers,
see [11]. Homomorphic encryption is a form of encryption that allows computa-
tions to be carried out on ciphertext, thus generating an encrypted result which,
when decrypted, matches the result of operations performed on the plaintext. A
cryptosystem that supports arbitrary computation on ciphertexts is known as fully
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homomorphic encryption (FHE). The existence of an efficient and fully homomor-
phic cryptosystem would have great practical implications in the outsourcing of
private computations, for instance, in the context of cloud computing, see [16].

A brief review of the known homomorphic encryption algorithms is presented in
[17]. Examples of fully homomorphic ciphers one can see in, for instance, [21].

The general idea of fully homomorphic encryption is as follows (see, for
example, [19]). Suppose we have a set of data M . The operations g1 : M×M → M,

g2 : M × M → M are defined on the set M . It is necessary to find the value of an
expression W(d1, . . . , dn), which is defined through the operations g1 and g2 on the
data d1, . . . , dn ∈ M.

We understand a cipher as a family of bijective transformations fa of the set M,

where each transformation is identified by a certain parameter a—the encryption
key. Suppose that fa is a homomorphism with respect to the operations g1 and g2.

Then, fa(W(d1, . . . , dn)) = W(fa(d1), . . . , fa(dn)). This means that the remote
computations are performed on encrypted data fa(d1), . . . , fa(dn) and the result of
calculations W(d1, . . . , dn) is obtained in encrypted form fa(W). That is, only the
user has access to the data d1, . . . , dn. In general, this approach provides complete
trust in remote computing.

In this paper, we consider a p-adic cryptographic primitives which can be used
for the construction of encryption functions for ciphers in the usual sense. P -adic
cryptographic primitives consists of a family of p-adic functions that map a set
of p-adic integers into itself. On the other hand, a p-adic cryptographic primitives
is a “continuous” analogue of the family of ciphers Cp. For such ciphers Cp, the
sets of plain and cipher texts are words of a finite length in the alphabet with p

elements {0, 1, . . . , p − 1}. Note that this family of ciphers includes: substitution
ciphers, substitution ciphers streaming, and keystream ciphers (in the alphabet with
p elements).

Moreover, we present a description of all homomorphic and fully homomorphic
cryptographic primitives with respect to a given set of operations, namely arithmetic
(“+” and “·”) and coordinate-wise logical (“XOR” and “AND”), defined on the set
of p-adic integers Zp .

In Sect. 2, we describe a p-adic model of ciphers from the family Cp (p-adic
cryptographic primitives correspond to ciphers from Cp within the framework of
this model). Moreover, we show that the problem of description of homomorphic
(fully homomorphic) cryptographic primitives is reduced to the description of
the measure-preserving 1-Lipschitz functions f : Zp → Zp, which defines a
homomorphism with respect to a given operation (relatively, to a given pair of
operations) on Zp.

In Theorems 1 and 2, we describe all homomorphic cryptographic primitives with
respect to arithmetic operations “+”, “·” and coordinate-wise logical operations
“XOR” and “AND” on Zp . Using these results, we show that the p-adic fully
homomorphic cryptographic primitives with respect to any pair of the operations
{“+”, “·”, “XOR”, “AND”} do not exist (see Proposition 1). And, therefore,
there are no fully homomorphic ciphers in the family of ciphers Cp. Thus, using
the apparatus of p-adic analysis, we were able to show the absence of fully
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homomorphic ciphers in a certain family of ciphers. The proofs of presented
Theorems are given in the paper [8].

We start our paper by recalling definitions that are related to the p-adic analysis,
as well as introducing the necessary notations.

1.1 P -adic Dynamical Systems

For any prime number p the p-adic norm | · |p is defined on Q in the following way.
For every nonzero integer n let ordp(n) be the highest power of p which divides n.
Then we define |n|p = p−ordp(n), |0|p = 0, and | n

m
|p = p−ordp(n)+ordp(m).

The completion of Q with respect to the p-adic metric ρp(x, y) = |x − y|p is
called the field of p-adic numbers Qp. The metric ρp satisfies the so-called strong
triangle inequality |x ± y|p ≤ max (|x|p; |y|p). The set Zp = {x ∈ Qp : |x|p ≤ 1}
is called the set of p-adic integers.

Hereinafter, we will consider only the p-adic integers. Every x ∈ Zp can be
expanded in canonical form, namely in the form of a series that converges for the
p-adic norm: x = x0 + px1 + . . .+ pkxk + . . . , xk ∈ {0, 1, . . . , p − 1}, k ≥ 0.

In this paper, we consider functions f : Zp → Zp, which satisfy the Lipschitz
condition with constant 1 (i.e., 1-Lipschitz functions). Recall that f : Zp → Zp

is a 1-Lipschitz function if |f (x) − f (y)|p ≤ |x − y|p, for all x, y ∈ Zp. This
condition is equivalent to the following: x ≡ y (mod pk) follows f (x) ≡ f (y)

(mod p k) for all k ≥ 1.
Let functions δk(x), k = 0, 1, 2, . . . be k-th digit in a p-base expansion of the

number x ∈ Zp, i.e., δk : Zp → {0, 1, . . . , p − 1} , δk(x) = xk. Any map f :
Zp → Zp can be represented in the form:

f (x) = δ0(f (x))+ pδ1(f (x))+ . . .+ pkδk(f (x))+ . . . .

According to Proposition 3.33 in [3], f is a 1-Lipschitz function if and only if
for every k ≥ 1 the k-th coordinate function δk(f (x)) does not depend on δk+s(x)

for all s ≥ 1, i.e., δk(f (x + pk+1Zp)) = δk(f (x)) for all x ∈ {0, 1, . . . , pk+1 − 1}.
We consider the following functions of p-valued logic

ϕk : {0, . . . , p − 1} × . . .× {0, . . . , p − 1}︸ ︷︷ ︸
k+1

→ {0, . . . , p − 1},

and ϕk : (x0, x1, . . . , xk)  → δk(f (x)). Then any 1-Lipschitz function f : Zp → Zp

can be represented as

f (x) = f (x0 + . . .+ pkxk + . . .) =
∞∑
k=0

pkϕk(x0, . . . , xk).



244 E. Y. Axelsson and A. Khrennikov

Dynamical system theory studies trajectories (orbits), i.e., sequences of itera-
tions: x0, x1 = f (x0), . . . , xi+1 = f (xi) = f (i+1)(x0), . . . ,

f (s)(x) = f (f (. . . f (x)) . . .)︸ ︷︷ ︸
s

.

We consider a p-adic autonomous dynamical system
〈
Zp,μp, f

〉
(for more details

see, for example, [1–7, 9, 10, 13, 14, 18]). The space Zp is equipped with a natural
probability measure, namely the Haar measure μp normalized so that μp(Zp) = 1.
Balls Bp−r (a) = {x ∈ Zp : |x−a|p ≤ p−r } = a+prZp of nonzero radii constitute
the base of the corresponding σ -algebra of measurable subsets, μp(Bp−r (a)) =
p−r . The function f : Zp → Zp is continuous on Zp. A measurable mapping
f : Zp → Zp is called measure-preserving if

μp(f
−1(U)) = μp(U)

for each measurable subset U ⊂ Zp. In accordance with Corollary 3.4. from [7], a
1-Lipschitz function f is measure-preserving if and only if f is bijective on Zp.

2 Model

Let us remind that a cipher is a set 〈X,R, Y, hr , r ∈ R〉, where X is a set of plain
texts, Y is a set of ciphertexts, R is a set of keys, encryption functions hr are defined
by the parameter r ∈ R and define an injective map X → Y. Here we assume that
all map hr are surjective.

A family of ciphers Cp = 〈X,R, Y, hr , r ∈ R〉 we set in the following way:

1. X = Y be a set of all words (as sequence of finite length) in the alphabet Ω =
{0, 1, . . . , p − 1} for prime number p;

2. let X(k) be a set of all words of the length k in the alphabet Ω. Then hr : X(k) →
X(k) and hr are bijective on X(k) for any r ∈ R, k ≥ 1;

3. if hr ({x0, x1, . . . , xs, xs+1, . . . , xk}) = {y0, y1, . . . , ys, ys+1, . . . , yk},
then hr ({x0, x1, . . . , xs}) = {y0, y1, . . . , ys} for any 1 ≤ s ≤ k, k ≥ 1 and
r ∈ R.

Note that the family Cp contains substitution ciphers, substitution ciphers
streaming, keystream ciphers (in the alphabet of p elements). On the other hand,
there are no ciphers in Cp with different parameters of the sets of plaintext and
ciphertext (for example, when the number of elements in the alphabet is a composite
integer).

For ciphers from the family Cp, we define operations on the set X(∞). Let x =
{x0, x1, . . . , xk−1}, y = {y0, y1, . . . , yk−1} ∈ X(∞), k ≥ 1

τk : X(k) → {0, 1, . . . , pk − 1}, τk(x) = x0 + px1 + . . .+ pk−1xk−1



Description of (Fully) Homomorphic Cryptographic Primitives 245

The following operations are defined on the set X(k), k ≥ 1:

x + y =τ−1
k

(
τk(x)+ τk(y)(modpk)

)
;

x · y =τ−1
k

(
τk(x) · τk(y)(modpk)

)
;

xANDy =τ−1
k

(
τk(x)ANDτk(y)(modpk)

)
;

xXORy =τ−1
k

(
τk(x)XORτk(y)(modpk)

)
.

The set of such operations we denote as Op.
A family of ciphers Cp is embedded in the “continuous” p-adic model Mp =

〈Zp, f
r , r ∈ R〉, where f r : Zp → Zp is a 1-Lipschitz measure-preserving

function. The functions fr we will call cryptographic primitives for the family
of ciphers Cp. The choice of such a model is determined by the following
circumstances:

1. The set ∪k≥1X
(k) we, naturally, associate with the projective limit of residue

rings Z/pkZ with respect to the natural projections Z/pk+1Z → Z/pkZ. Since
lim←−Z/pkZ = Zp, then the set ∪k≥1X

(k) is associated with the ring of p-adic
integers Zp (in particular, Zp corresponds to the sets of plain and encrypted text
for Cp).

2. A function hr is modeled by a function f r : Zp → Zp that is defined in the
following way. Let hr({x0, x1, . . . , xk}) = {y0, y1, . . . , yk}, k ≥ 1 and

f
(r)
k (x0 + px1 + . . .+ pkxk−1) ≡ y0 + py1 + . . .+ pk−1yk−1(modpk).

The functions f
(r)
k : Z/pkZ → Z/pkZ, k ≥ 1 are bijective and, by

Theorem 4.23 [3], define 1-Lipschitz measure-preserving function f r : Zp →
Zp.

3. It is clear that operations from Op can be extended by continuity on Zp,

and these extensions correspond to the arithmetic and coordinate-wise logical
operations on Zp - Op ={“+,” “·,” “XOR,” “AND”}.

We say that some cipher from Cp be a homomorphic cipher with respect to the
operation “g” on the sets of plain and encrypted text (for Cp these sets coincide),
if hr(g(x, y)) = g(hr(x), hr (y)) for any pair of plain text x, y and r ∈ R.
If this property holds for the two operations, then such a cipher is called fully
homomorphic cipher.

It is clear that for p-adic model of ciphers Mp, a homomorphism condition for
the ciphers from Cp corresponds to the fact that the functions fr , r ∈ R define
homomorphisms but already on Zp with respect to operations from the set Op.

In this way, the problem of describing homomorphic (fully homomorphic)
ciphers from Cp with respect to operations from Op is reduced to the description of
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all functions f : Zp → Zp such that f is a 1-Lipschitz function, f preserves the
measure and f defines a homomorphism with respect operations from Op.

3 Homomorphic Cryptographic Primitives

In this section we give a description of 1-Lipschitz functions f : Zp → Zp, which
preserve the measure, and define the homomorphism relative to a binary operation
on Zp from the set Op.

Theorem 1 (Arithmetic Operations) Let f : Zp → Zp be a 1-Lipschitz function.
Then

1. f defines a homomorphism with respect to the operation “+” if and only if
f (x) = Ax, A ∈ Zp. Such a function preserves the measure if and only if
A �≡ 0 (mod p);

2. f defines a homomorphism with respect to the operation “·” if and only if

f (x) =
{
pkAkθs(1 + p t)a, if x = pkθ(1 + tp),

0, if x = 0,

where k ≥ 0, t, a,A ∈ Zp, s ∈ {1, . . . , p − 1} and θ ∈ Zp, θp−1 = 1. Such a
function preserves the measure if and only if A �≡ 0 (mod p), a �≡ 0 (mod p),
GCD (s, p − 1) = 1.

Remark 1 If in 2 we set a = n, s = n, A = pn−1 for some n ∈ N, then f (x) = xn.

That is, all such polynomials define a homomorphism with respect to multiplication
on Zp. Functions of the form f (x) = xn for n > 1 do not preserve the measure.

Theorem 2 (Logical Operations) Let f : Zp → Zp be a 1-Lipschitz function
defined in the coordinate form, i.e.,

f (x) = f (x0 + . . .+ pkxk + . . .) =
∞∑
k=0

pkϕk(x0, . . . , xk),

where ϕk(x0, . . . , xk) are p-valued logical functions. Then

1. f defines a homomorphism with respect to the operation “XOR” if and only if

ϕk(x0, . . . , xk) = α
(k)
0 x0 + α

(k)
1 x1 + . . .+ α

(k)
k xk,

where α
(k)
i ∈ {0, . . . , p − 1}, 0 ≤ i ≤ k, k ≥ 0. Such functions preserve the

measure if and only if α(k)
k �≡ 0 (mod p), k ≥ 0;
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2. f defines a homomorphism with respect to the operation “AND” if and only if

ϕk(x0, . . . , xk) = x
s
(k)
0

0 ·xs
(k)
1

1 · · · xs
(k)
k

k , where s
(k)
i ∈ {0, 1, . . . , p−1}, 0 ≤ i ≤ k,

k ≥ 0. Such functions preserve the measure if and only if s(k)i = 0 for 0 ≤ i ≤
k − 1 and GCD (s

(k)
k , p − 1) = 1, k ≥ 0.

Now let us describe fully homomorphic cryptographic primitives with respect to
each pair of operations from the set Op.

Let H(∗) be the set of all 1-Lipschitz functions, which define a homomorphism
with respect to the operation “∗” on Zp and preserve the measure, “∗”∈ Op.

The set of functions, consisting of identical function f (x) = x, is denoted by I.

Proposition 1 The following relations hold:

H(+) ∩H(·) = H(+) ∩H(XOR) =
= H(+) ∩H(AND) = H(·) ∩H(XOR) =

= H(·) ∩H(AND) = H(XOR) ∩H(AND) = I.

Proposition 1 shows that there are no non-trivial (different from identical) fully
homomorphic cryptographic primitives for operations from Op. It means that in the
family of ciphers Cp there are no fully homomorphic with respect to the operations
from Op.
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Spectrum of Ultrametric Banach
Algebras of Strictly Differentiable
Functions

Alain Escassut and Nicolas Maïnetti

Abstract Let K be an ultrametric complete field and let E be an open subset of
K. Let D(E) be the Banach K-algebra of bounded strictly differentiable functions
from E to K. It is shown that each element of D(E) has a continuous derivative and
that all functions that are bounded and analytic in all open disks of diameter r are
strictly differentiable. Maximal ideals and continuous multiplicative semi-norms on
D(E) are studied by recalling the relation of contiguity on ultrafilters. Every prime
ideal of D(E) is included in a unique maximal ideal and every prime closed ideal
of D(E) is a maximal ideal, hence every continuous multiplicative semi-norm on
D(E) has a kernel that is a maximal ideal. Every maximal ideal of D(E) of finite
codimension is of codimension 1. Every maximal ideal of D(E) is the kernel of
a unique continuous multiplicative semi-norm and every continuous multiplicative
semi-norm is the limit along an ultrafilter on E. The Shilov boundary of D(E) is
equal to the whole set of continuous multiplicative semi-norms.

1 Introduction and Preliminaries

Let K be a field which is complete with respect to an ultrametric absolute value that
will be denoted by | . |.

Consider a Banach K-algebra T . Many studies were made on continuous
multiplicative semi-norms on algebras of analytic functions, analytic elements,
and their applications to holomorphic functional calculus [1, 3, 4]. Continuous
multiplicative semi-norms of the Banach algebras of bounded continuous functions
and those of bounded uniformly continuous functions were studied in [2, 7]. After
these studies, it seems interesting to consider strictly differentiable functions.
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Definitions and Notations Throughout the paper, we denote by E an open subset
of K. Given a ∈ K and r > 0, we set d(a, r) = {x ∈ K | |x − a| ≤ r}, d(a, r−) =
{x ∈ K | |x − a| < r}, dE(a, r) = {x ∈ E | |x − a| ≤ r}, and dE(a, r

−) = {x ∈
E | |x − a| < r}.

We denote by δ the distance between two subsets of K: given two subsets B1, B2
of K, we set δ(B1, B2) = inf{|x − y| | x ∈ B1, y ∈ B2}. We denote by diam the
diameter of a subset B of K and we set codiam(B) = δ(B,K \B). Similarly, given
a subset B of E, we set codiamE(B) = δ(B,E \ B). A subset B of E will be said
to be uniformly open in E or uniformly open subset of E if codiamE(B) > 0.

Given a bounded function f from E to K, we put ‖f ‖0 = supx∈E |f (x)|.
Let D = {(x, x) | x ∈ E} and let D(E) be the K-vector space of bounded

functions f from E to K such that the mapping φ defined in (E × E) \ D

into K as φ(x, y) = f (x)− f (y)

x − y
is bounded by a bound Mf and expands

to a continuous function from E × E to K. The functions f ∈ D(E) will be
called the strictly differentiable functions from E to K. Given f ∈ D(E), we put
‖f ‖1 = sup

(x,y)∈(E×E)\D
φ(x, y) and we check that ‖ . ‖1 is another K-vector space

norm on D(E). Finally we put ‖f ‖ = max(‖f ‖0, ‖f ‖1).

Remark 1 Suppose K is algebraically closed and let E = d(0, 1). For every r ∈
[0, 1]∩ |K|, we denote by ξ(r) an element b of E such that |b|2 = r . The set E \ {0}
obviously admits a partition of the form {d(aj , |aj |−)j∈I }.

Now, let f be the function defined in E in the following way. Given x ∈
d(aj , |aj |−), we put f (x) = ξ(|aj |) and f (0) = 0. In this way, f is constant
in each disk d(aj , |aj |−), a ∈ E and therefore f has a derivative equal to 0 at each
point a ∈ E \ {0} but f has no derivative at 0 because

lim
x→0

∣∣∣f (x)

x

∣∣∣ = lim
x→0

√|x|
|x| = +∞.

Now, let us take a decreasing sequence (rn)n∈N in |K|, of limit 0 and for each n ∈
N, let fn be the function defined in E by fn(x) = f (x) for every x ∈ E \ d(0, rn)
and fn(x) = ξ(aj ) for every x ∈ d(0, rn), with aj ∈ d(0, rn). Thus, we can check
that fn has a derivative equal to 0 in all E. Therefore, the sequence (f ′

n)n∈N trivially
is uniformly convergent to the function that is identically zero in all E.

On the other hand, consider ‖fn−f ‖0. By construction, we check |f (x)| ≤ √
rn

for every x ∈ d(0, rn) and hence |f (x)− fn(x)| ≤ √
rn for every x ∈ d(0, rn). But

since fn(x) = f (x) for every x ∈ E \ d(0, rn), we derive ‖fn − f ‖0 ≤ √
rn.

Consequently, the sequence (fn)n∈N is uniformly convergent in E to f . And f is
not derivable at 0, although the sequence (f ′

n)n∈N is also uniformly convergent in E.
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Theorems 1 and 2 are designed to recall classical properties.

Theorem 1 Every function f ∈ D(E) is uniformly continuous, derivable in E and
f ′ is bounded and continuous in E. Moreover, if E is compact, then a function from

E to K belongs to D(E) if and only if for every a ∈ E,
f (x)− f (y)

x − y
has a limit

when x and y tend to a separately while being distinct.

Remark 2 A function f from E to K which is derivable with a continuous
derivative is not automatically strictly differentiable. Indeed, suppose E has an
infinite residue class field. We can find a sequence (an)n∈N such that |an| =
|an − am| = 1 for all n �= m. Now take a sequence (rn)n∈N of R+ with

lim
n→+∞ rn = 0. Then the set E \

∞⋃
n=0

d(an, r
−
n ) is open. Now, take bn ∈ d(an, rn)

such that |an − bn| = rn for every n ∈ N.

We can define a function f from E to K such that f (x) = 0 for all x ∈⋃∞
n=0 d(an, r

−
n ) and f (x) = 1 for every x ∈ E \⋃∞

n=0 d(an, r
−
n ). Of course, f is

derivable and f ′ is continuous in E. However,
∣∣∣f (an)− f (bn)

an − bn

∣∣∣ = 1

rn
and therefore

∣∣∣f (x)− f (y)

x − y

∣∣∣ is not bounded in E.

Theorem 2 ‖ . ‖ is a norm of K-vector space on D(E) and D(E) is complete for
that norm.

Theorem 3 D(E) is a K-algebra and ‖ . ‖ is a norm of K-algebra.

Corollary 3a D(E) is a Banach K-algebra.

Theorem 4 Let r ∈]0, s]. Suppose E is uniformly open in K of codiameter s and
let r ∈]0, s]. Then Ab(E, r) provided with the norm ‖ . ‖E is a Banach K-algebra
included in D(E).

The role of ultrafilters here is essential as in a few previous works [6].

Notations and Definitions Let F be a filter on E. Given a function f from E to
K admitting a limit along F , we will denote by lim

F
f (x) that limit.

Let Ul(E) be the set of ultrafilters on E. Two filters F , G on E will be said to
be contiguous if for every H ∈ F , L ∈ G , we have δ(H,L) = 0. We shall denote
by (T ) the relation defined on Ul(E) as U (T )V if U and V are contiguous.

An ultrafilter U on the set E is said to be principal if it converges to a point
a ∈ E.

Remark 3 Let U ,V be contiguous ultrafilters on E and assume U is convergent.
Then V is convergent and has the same limit as U .

Theorem 5 Let X ⊂ E be uniformly open in E and let u be defined as u(x) = 1
for every x ∈ X and u(x) = 0 for every x /∈ X. Then u belongs to D(E).
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Notation Let f1, . . . , fq ∈ D(E) and let ε > 0. We set W(f1, . . . , fq , ε) = {x ∈
E | |f (x)| ≤ ε}.
Theorem 6 Let f1, . . . , fq ∈ D(E), let ε > 0. Then if W(f1, . . . , fq , ε) is not
empty, it is uniformly open in E.

Theorems 7 and 8 were proven in [6].

Theorem 7 Let U , V be two ultrafilters on E that are not contiguous. There exist
uniformly open subsets H ∈ U , L ∈ V of E and f ∈ D(E) such that f (x) = 1
for every x ∈ H, f (x) = 0 for every x ∈ L.

Notation We denote by E′ another open subset of K. Let f be a mapping from E

to E′ and let U be an ultrafilter on E. We denote by f (U ) the ultrafilter admitting
the basis f (U ).

Notation Given a uniformly continuous mapping f from E to E′ and a class
of contiguity H on E, we will denote by f (H) the class of contiguity on E′:
{f (U ) | U ∈ H }.

Given a filter F on E, we will denote by I (F ) the ideal of the f ∈ D(E) such
that lim

F
f (x) = 0. We will denote by I ∗(F ) the ideal of the f ∈ D(E) such that

there exists a subset L ∈ F such that f (x) = 0 for every x ∈ L. Given a ∈ E we
will denote by I (a) the ideal of the f ∈ D(E) such that f (a) = 0.

We will denote by Max(D(E)) the set of maximal ideals of D(E) and by
MaxE(D(E)) the set of maximal ideals of the form I (a), a ∈ E.

The proof of Theorem 8 is easy and is not specific to the algebra D(E) [6].

Theorem 8 Given an ultrafilter U on E, I (U ), I ∗(U ) are prime ideals of
D(E).

Notation We will denote by | · |∞ the Archimedean absolute value of R.

Theorem 9 Let U , V be two ultrafilters on E. Then I (U ) = I (V ) if and only
if U and V are contiguous.

Corollary 9a Given an ultrafilter U on E, I (U ) is a maximal ideal of D(E).

Remark 4 As noticed in [6], relation (T ) is not transitive in the case of the set
of all filters on E. However, given a topological space X satisfying the normality
axiom, particularly, given a metric space X, then (T ) is transitive for ultrafilters
and therefore is an equivalence relation on Ul(X) [6].

Notation We will denote by Y(T )(E) the set of equivalence classes on Ul(E) with
respect to relation (T ). Given H ∈ Y(T )(E), we will denote by I (H) the ideal
I (U ), U ∈ H .

Let f ∈ D(E) and let ε be > 0. We set B(f, ε) = {x ∈ E | |f (x)| ≤ ε}.
Theorem 10 looks like certain Bezout–Corona statements [5, 6]. The proof is

close to that given in [6] but here the functions in D(E) have more properties,
allowing for a more specific proof.
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Theorem 10 Let f1, . . . , fq ∈ D(E) satisfying inf
x∈E( max

1≤j≤q
|fj (x)|) > 0. Then

there exist

g1, . . . , gq ∈ D(E) such that
q∑

j=1

fj (x)gj (x) = 1 for all x ∈ E.

Corollary 10a Let I be an ideal of D(E) different from D(E). The family
B(f, ε), f ∈ I, ε > 0, generates a filter FI on E such that I ⊂ I (FI ).

2 Main Results

Theorem 11 Let M be a maximal ideal of D(E). There exists an ultrafilter U on
E such that M = I (U ) .

Corollary 11a For every maximal ideal M of D(E) there exists a unique H ∈
Y(T )(E) such that M = I (U ) for every U ∈ H .

Moreover, the mapping Ψ that associates with each M ∈ Max(D(E)) the
unique H ∈ Y(T )(E) such that M = I (U ) for every U ∈ H , is a bijection
from Max(D(E)) onto Y(T )(E).

Theorem 12 Let U be an ultrafilter on E such that, for every f ∈ D(E), f (x)

converges on U in K. Then I (U ) is of codimension 1.

Corollary 12a Let U be a Cauchy ultrafilter on E. Then I (U ) is of codimen-
sion 1.

Corollary 12b Let K be a locally compact field. Then every maximal ideal of D(E)

is of codimension 1.

We will now examine prime closed ideals of D(E).

Theorem 13 Let U be an ultrafilter on E and let P be a prime ideal included in
I (U ). Let L ∈ U be uniformly open in E and let H = E \L. Let u be the function
defined on E by u(x) = 1 for every x ∈ H, u(x) = 0 for every x ∈ L. Then u

belongs to P .

Corollary 13a Let U be an ultrafilter on E. The ideal of the f ∈ D(E) such that
there exists a uniformly open subset H ∈ U of E such that f (x) = 0 for every
x ∈ H is included in every prime ideal P ⊂ I (U ).

Theorem 14 The closure of a prime ideal of D(E) with respect to the norm ‖ . ‖0
is a maximal ideal.

Corollary 14a Let P be a prime ideal of D(E). There exists a unique maximal
ideal M of D(E) containing P .

Corollary 14b Every prime closed ideal of D(E) with respect to the norm ‖ . ‖0 is
a maximal ideal.
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Let us recall the main definitions concerning multiplicative semi-norms [2, 6, 7].

Notation and Definition We denote by Mult (D(E), ‖ . ‖) the set of multiplicative
semi-norms of D(E) provided with the topology of pointwise convergence. Given
φ ∈ Mult (D(E), ‖ . ‖), the set of the f ∈ D(E) such that φ(f ) = 0 is a closed
prime ideal called the kernel of φ. It is denoted by Ker(φ).

We denote by Multm(D(E), ‖ . ‖) the set of multiplicative semi-norms of D(E)

whose kernel is a maximal ideal and by Mult1(D(E), ‖ . ‖) the set of multiplicative
semi-norms of D(E) whose kernel is a maximal ideal of codimension 1.

Let a ∈ E. The mapping ϕa from D(E) to R defined by ϕa(f ) = |f (a)| belongs
to Mult (D(E), ‖ . ‖). Let U be an ultrafilter on E. By Urysohn’s theorem, given
f ∈ D(E), the mapping from E to R that sends x to |f (x)| admits a limit along
U . We set ϕU (f ) = lim

U
|f (x)|. Moreover, we denote by MultE(D(E), ‖ . ‖) the

set of multiplicative semi-norms of D(E) of the form ϕa, a ∈ E. Consequently, by
definition, MultE(D(E), ‖ . ‖) is a subset of Mult1(D(E), ‖ . ‖).

The following Theorems 15 and 16 are immediate and well known:

Theorem 15 Let a ∈ E. Then I (a) is a maximal ideal of D(E) of codimension 1
and ϕa belongs to Mult1(D(E), ‖ . ‖).
Corollary 15a MultE(D(E), ‖ . ‖) is included in Mult1(D(E), ‖ . ‖).
Theorem 16 Let U be an ultrafilter on E. Then ϕU belongs to the closure of
MultE(D(E), ‖ . ‖).
Corollary 16a Mult (D(E), ‖ . ‖) = Multm(D(E), ‖ . ‖). Furthermore, if K is
locally compact, then Mult (D(E), ‖ . ‖) = Mult1(D(E), ‖ . ‖).
Remark 5 Suppose K is locally compact and E is a disk in an algebraically closed
complete ultrametric field. There do exist ultrafilters on E that do not converge.
Let U be such an ultrafilter. Then ϕU belongs to Mult1(D(E), ‖ . ‖) but does not
belong to MultE(D(E), ‖ . ‖).
Remark 6 In H ∈ Y(T )(E) the various ultrafilters U ∈ H ∈ Y(T )(E) define
various prime ideals of D(E) and it is not clear whether these ideals are minimal
among the set of prime ideals of D(E).

Theorem 17 The topology induced on E by the one of MultE(D(E), ‖ . ‖) is
equivalent to the metric topology induced on E by the field K.

Theorem 18 was proven in [6] for the algebra of bounded continuous functions.
Here we adapt that proof to the algebra D(E).

Theorem 18 Let M be a maximal ideal of D(E). Let T be the field
D(E)

M
and let

θ be the canonical surjection from D(E) onto T . Given any ultrafilter U such that
I (U ) = M , the quotient norm ‖ . ‖′ on T is defined by ‖θ(f )‖′ = lim

U
|f (s)| and

hence is multiplicative.
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Definition Recall that given a commutative Banach K-algebra T with unity, every
maximal ideal of T is the kernel of at least one continuous multiplicative semi-norm
[2, 3]. The algebra T is said to be multbijective if every maximal ideal is the kernel
of only one continuous multiplicative semi-norm. (There exist ultrametric Banach
K-algebras that are not multbijective [1, 2].)

Theorem 19 D(E) is multbijective.

By Theorem 19 and Corollary 14b, we can now state Corollary 19a:

Corollary 19a The mapping that associates with each φ ∈ Mult (D(E), ‖ . ‖) its
kernel Ker(φ) is a bijection from Mult (D(E), ‖ . ‖) onto Max(D(E)).

By Theorem 11, Corollary 11a, and Theorem 19, we have Corollary 19b:

Corollary 19b For every φ ∈ Mult (D(E), ‖ . ‖) there exists a unique H ∈
Y(T )(E) such that φ(f ) = lim

U
|f (x)| for every f ∈ D(E), for every U ∈ H .

Moreover, the mapping Ψ̃ that associates with each φ ∈ Mult (D(E), ‖ . ‖) the
unique H ∈ Y(T )(E) such that φ(f ) = lim

U
|f (x)| for every f ∈ D(E), for every

U ∈ H , is a bijection from Mult (D(E), ‖ . ‖) onto Y(T )(E).

Now, by Theorems 15 and 16, we have Corollary 19c:

Corollary 19c MultE(D(E), ‖ . ‖) is dense in Mult (D(E), ‖ . ‖).
Theorem 20 For every φ ∈ Mult (D(E), ‖ . ‖), φ satisfies φ(f ) ≤ ‖f ‖0 for
every f ∈ D(E).

Notation On D(E) we denote by ‖ . ‖si the semi-norm ofD(E) defined as ‖f ‖si =
lim

n→+∞
n
√‖f n‖. Then we can state Theorem 21:

Theorem 21 ‖f ‖si = ‖f ‖0 for every f ∈ D(E).

Theorem 22 Suppose K is algebraically closed. Let U be an ultrafilter on K and
suppose there exists P ∈ K[x], P �= 0 satisfying lim

U
P(x) = 0. Then U is a

principal ultrafilter.

As a consequence, we have Theorem 23:

Theorem 23 Suppose thatK is algebraically closed and that E is a closed bounded
subset of K with infinitely many points and let M be a maximal ideal of D(E) of
the form I (U ) where U is not principal. Then M is of infinite codimension.

Theorem 24 Let Ł be an algebraic extension of K of degree t of the form K[a]
provided with the absolute value which expands that of K. Let f be a strictly
differentiable function from E to Ł. There exists f0, . . . , ft−1 ∈ D(E) such that

f =
t−1∑
j=0

ajfj .
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We can now prove Theorem 25 that will let us show Theorem 26:

Theorem 25 Let Ł be a finite algebraic extension of K provided with the absolute
value which expands that of K. Suppose there exists a morphism of K-algebra, χ ,
from D(E) onto Ł. Let D̂(E) be the Ł-algebra of strictly differentiable functions
from E to Ł. Then χ has continuation to a morphism of Ł-algebra χ̂ from D̂(E)

to Ł.

Theorem 26 Every maximal ideal of finite codimension of D(E) is of codimen-
sion 1.

By Theorem 26 and Corollary 12a, we can state this corollary:

Corollary 26a Let U be an ultrafilter on E. The following 3 statements are
equivalent:

(i) I (U ) is of codimension 1,
(ii) I (U ) is of finite codimension,

(iii) for every f ∈ D(E), the filter generated by f (U ) converges in K.

Theorem 27 Suppose that E is separable and that K is not locally compact. Let
U be a non-convergent ultrafilter on E. Then I (U ) is of infinite codimension.

Theorem 28 The algebra D(E) admits maximal ideals of infinite codimension if
and only if K is not locally compact.

Given a norm of K-algebra, we call Shilov boundary of T a closed subset S of
Mult (T , ‖ . ‖) that is minimum with respect to inclusion, such that, for every x ∈ T ,
there exists φ ∈ S such that φ(x) = ‖x‖si . By Escassut and Maïnetti [4] it is known
that every normed K-algebra admits a Shilov boundary.

Theorem 29 The Shilov boundary S of D(E) is equal to Mult (D(E), ‖ . ‖).
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p-Adic Nevanlinna Theory

Alain Escassut and Ta Thi Hoai An

Abstract After recalling the classical p-adic Nevanlinna theory, we describe the
same theory in the complement of an open disk and examine various immediate
applications: uniqueness, Picard’s values, branched values, small functions.

1 Meromorphic Functions

Let K be a complete ultrametric algebraically closed field of characteristic 0 whose
ultrametric absolute value is denoted by | . |. The Nevanlinna theory was examined
over K by Ha [9] and was finally constructed by Boutabaa [3]. Next, in [4] a similar
theory was developed for unbounded meromorphic functions in an “open” disk
of K, taking into account Lazard’s problem [6]. In [10], Hanyak and Kondratyuk
constructed a Nevanlinna theory for meromorphic functions in a punctured complex
plane, i.e., in the set C \ {a1, . . . , am}, where we understand that the meromorphic
functions can admit essential singularities at a1, . . . , am [10].

Here we describe a Nevanlinna theory for meromorphic functions in the com-
plement of an open disk [7] by using the Motzkin factorization [13]. Once the
Nevanlinna theory is established for such functions, we can obtain applications.

Notations Given r > 0, a ∈ K we denote by d(a, r) the disk {x ∈ K | |x−a| ≤ r},
by d(a, r−) the disk {x ∈ K | |x − a| < r}, and by C(a, r) the circle {x ∈ K |
|x − a| = r}. Given r ′′ > r ′, we put Δ(0, r ′, r ′′) = d(0, r ′′) \ d(0, r ′−).

Henceforth, we fix R > 0. We denote by S the disk d(0, R−) and put D = K\S.
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Given a bounded function f in D, we put ‖f ‖ = supD |f (x)|. Given a subset
E of K having infinitely many points, we denote by R(E) the K-algebra of rational
functions h ∈ K(x) having no pole in E. We then denote by H(E) the K-vector
space of analytic elements on E [12], i.e., the completion of R(E) with respect to
the topology of uniform convergence on E. We know that given a circle C(a, r)

and an element f of H(C(a, r)), i.e., a Laurent series f (x) =
+∞∑
−∞

cn(x − a)n

converging whenever |x| = r , then |f (x)| is equal to sup
n∈ZZ

|cn|rn in all classes of

the circle C(a, r) except maybe in finitely many. When a = 0, we put |f |(r) =
sup
n∈ZZ

|cn|rn. Then |f |(r) is a multiplicative norm on H(C(0, r)) (Chapters 13 and 19,

Proposition 19.1 [6]).
We denote by A (K) the K-algebra of entire functions in K, by A (d(a,R−)) the

K-algebra of power series
∞∑
n=0

cn(x − a)n converging in all d(a,R−), and by A (D)

the K-algebra of Laurent series
∞∑
−∞

cn(x − a)n converging in D. Similarly, we will

denote by M (K) the field of meromorphic functions in K, i.e., the field of fractions
of A (K), by M (d(a,R−)) the field of meromorphic functions in d(a,R−), i.e., the
field of fractions of A (d(a,R−)), and by M (D) the field of meromorphic functions
in D, i.e., the field of fractions of A (D).

Next, we will denote by Ab(d(a,R
−)) the set of f ∈ A (d(a,R−)) that are

bounded in d(a,R−) and we put Au(d(a,R
−)) = A (d(a,R−)) \ Ab(d(a,R

−)).
We will denote by A w(D) the set of f ∈ A (D) admitting finitely many zeros in
D and we put A ∗(D) = A (D) \A w(D) and similarly, we denote by Mw(D) the
field of fraction of A w(D) and we put M ∗(D) = M (D) \Mw(D). So, M ∗(D)

is the set of meromorphic functions in D having at least infinitely many zeros or
infinitely many poles in D.

Let f ∈ M (d(0, R−)) (resp. f ∈ M (D)). Given r < R (resp. r > R), we know
that |f (x)| admits a limit denoted by |f |(r) when |x| tends to r while remaining
different from r .

Let f ∈ M (d(0, R−)) (resp. f ∈ M (D)) and let α ∈ d(a,R−), (resp. α ∈ D).
If f admits a zero of order q at α, we set ωα(f ) = q and if f (α) �= 0, we set
ωα(f ) = 0.

Let f = h

l
∈ M (d(a,R−)), (resp. f ∈ M (D)). For each α ∈ K (resp.

α ∈ d(a,R−), resp. α ∈ D) the number ωα(h) − ωα(l) does not depend on the

functions h, l chosen to make f = h

l
. Thus, we can generalize the notation by

setting ωα(f ) = ωα(h)− ωα(l).
If ωα(f ) is an integer q > 0, α is called a zero of f of order q.
If ωα(f ) is an integer q < 0, α is called a pole of f of order -q.
If ωα(f ) ≥ 0, f will be said to be holomorphic at α.
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Definitions Let f ∈ M (K) (resp. f ∈ Mu(d(a,R
−)), resp. f ∈ M (D)) and let

b ∈ K. Then b will be said to be an exceptional value for f if f − b has no zero
in K (resp. in d(a,R−), resp. in D)). Moreover, if f ∈ M (K) \ K(x) (resp. if
f ∈ Mu(d(a,R

−)), resp. f ∈ M (D))), b will be said to be a quasi-exceptional
value for f if f − b has finitely many zeros in K (resp. in d(a,R−), resp in D).

Theorem 1.1 Let f ∈ M (K) \K, (resp. f ∈ Mu(d(a,R
−)), resp. f ∈ M ∗(D)).

Then f admits at most one quasi-exceptional value. Moreover, if f has finitely many
poles in K (resp. in d(a,R−), resp. in D), then f has no quasi-exceptional value.

Definitions and Notations Let f ∈ M (K) (resp. f ∈ M (d(0, R−)) have a pole

α of order q and let f (x) =
−1∑

k=−q

ak(x − α)k + h(x) with a−q �= 0 and h ∈ M (K)

(resp. h ∈ M (d(0, R−)) and h holomorphic at α. According to usual notations the
coefficient a−1 is called residue of f at α and denoted by res(f, α).

Theorem 1.2 Let f ∈ M (K) (resp. f ∈ M (d(0, R−), resp. f ∈ M (D)). Then f

admits primitives if and only if all residues of f are null.

Conjecture Let f ∈ M (K). Then f ′ has no quasi-exceptional value.

Theorem 1.3 ([2]) Let f ∈ M (K) and for each r > 0, let γ (f, r) be the number
of multiple poles of f in d(0, r). If there exists c > 0 and s ∈ N such that γ (r, f ) ≤
crs ∀r > 1, then f ′ admits no quasi-exceptional value.

2 Nevanlinna Theory in the Classical p-Adic Context

The Nevanlinna theory was developed by Rolf Nevanlinna on complex functions
in the 1920s. It consists of defining counting functions of zeros and poles of a
meromorphic function f and giving an upper bound for multiple zeros and poles
of various functions f − b, b ∈ C.

A similar theory for functions in a p-adic field was constructed by Boutabaa [3].
Throughout the next paragraphs, we denote by I the interval [t,+∞[, by J an

interval of the form [t, R[ with t > 0, and by L the interval [R,+∞[. We denote by
f a function that belongs either to M (K) or to M (S).

Definitions We denote by Z(r, f ) the counting function of zeros of f in d(0, r) in
the following way.

Let (an), 1 ≤ n ≤ σ(r) be the finite sequence of zeros of f such that 0 < |an| ≤
r , of respective order sn.

We set Z(r, f ) = max(ω0(f ), 0) log r +
σ(r)∑
n=1

sn(log r − log |an|) and so, Z(r, f ) is

called the counting function of zeros of f in d(0, r), counting multiplicity.
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In order to define the counting function of zeros of f without multiplicity, we
put ω0(f ) = 0 if ω0(f ) ≤ 0 and ω0(f ) = 1 if ω0(f ) ≥ 1.

Now, we denote by Z(r, f ) the counting function of zeros of f without
multiplicity:

Z(r, f ) = ω0(f ) log r+
σ(r)∑
n=1

(log r − log |an|) and so, Z(r, f ) is called the counting

function of zeros of f in d(0, r) ignoring multiplicity.

In the same way, considering the finite sequence (bn), 1 ≤ n ≤ τ (r) of poles of
f such that 0 < |bn| ≤ r , with respective multiplicity order tn, we put

N(r, f ) = max(−ω0(f ), 0) log r +
τ (r)∑
n=1

tn(log r − log |bn|) and then N(r, f ) is

called the counting function of the poles of f, counting multiplicity.
Next, in order to define the counting function of poles of f without multiplicity,

we put ω0(f ) = 0 if ω0(f ) ≥ 0 and ω0(f ) = 1 if ω0(f ) ≤ −1 and we set

N(r, f ) = ω0(f ) log r +
τ (r)∑
n=1

(log r − log |bn|) and then N(r, f ) is called the

counting function of the poles of f, ignoring multiplicity.
Now, we can define the Nevanlinna function T (r, f ) in I or J as T (r, f ) =

max(Z(r, f ),N(r, f )) and the function T (r, f ) is called characteristic function of
f or Nevanlinna function of f.

Finally, if Y is a subset of K we will denote by ZY (r, f ′) the counting function
of zeros of f ′, excluding those which are zeros of f − a for any a ∈ Y .

Remark If we change the origin, the functions Z, N, T are not changed, up to an
additive constant.

Theorem 2.1 Let f ∈ M (K) (resp. f ∈ M (d(0, R−))) have no zero and no pole
at 0. Then

log(|f |(r)) = log(|f (0)|)+ Z(r, f )−N(r, f ).

Theorem 2.2 (First Main Theorem) Let f, g ∈ M (K) (resp. f, g ∈ M (S)).
Then

Z(r, fg) ≤ Z(r, f )+ Z(r, g), N(r, fg) ≤ N(r, f )+N(r, g),

T (r, f + b) = T (r, f ) + O(1), T (r, fg) ≤ T (r, f ) + T (r, g), T (r, f + g) ≤
T (r, f )+ T (r, g)+O(1), T (r, cf ) = T (r, f ) ∀c ∈ K∗, T (r,

1

f
) = T (r, f ),

T (r,
f

g
) ≤ T (r, f ))+ T (r, g).
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Let P(X) ∈ K[X]. Then T (r, P (f )) = deg(P )T (r, f )+O(1) and T (r, f ′P(f )) ≥
T (r, P (f )).

Suppose now f, g ∈ A (K) (resp. f, g ∈ A (S)). Then Z(r, fg) = Z(r, f ) +
Z(r, g), T (r, f ) = Z(r, f ) T (r, fg) = T (r, f )+ T (r, g)+O(1) and
T (r, f + g) ≤ max(T (r, f ), T (r, g)).

Moreover, if lim
r→+∞(T (r, f )− T (r, g)) = +∞ then T (r, f +g) = T (r, f ) when

r is big enough.

Theorem 2.3 Let f ∈ M (K). Then f belongs to K(x) if and only if T (r, f ) =
O(log r).

Theorem 2.4 Let f ∈ M (S). Then f belongs to Mb(S) if and only if T (r, f ) is
bounded in [0, R[.
Theorem 2.5 Let f ∈ M (K) (resp. f ∈ M (S)). Then for all k ∈ N∗, we have
N(r, f (k)) = N(r, f )+ kN(r, f ) and Z(r, f (k)) ≤ Z(r, f )+ kN(r, f )+O(1).

Theorem 2.6 Let f ∈ M (K) (resp. f ∈ M (S)) and let a1, . . . , aq ∈ K be
distinct. Then

(q − 1)T (r, f ) ≤ max
1≤k≤q

( q∑
j=1,j �=k

Z(r, f − aj )
)
+O(1).

Theorem 2.7 (Second Main Theorem) Let α1, . . . , αq ∈ K, with q ≥ 2, let
Y = {α1, . . . , αq } and let f ∈ M (K) (resp. f ∈ Mu(S)). Then

(q − 1)T (r, f ) ≤
q∑

j=1

Z(r, f − αj )+N(r, f )−ZY
0 (r, f ′)− log r +O(1) ∀r ∈ I

(resp. ∀r ∈ J ).
Moreover, if f ∈ A (K) (resp. f ∈ A (S)), then

(q − 1)T (r, f ) ≤
q∑

j=1

Z(r, f − αj )− ZS
0 (r, f

′)+O(1) ∀r ∈ I (resp. ∀r ∈ J ).

3 Nevanlinna Theory Out of a Hole

A Nevanlinna theory was made by Hanyak and Kondratyuk in 2007 for meromor-
phic functions in the complex plane except at finitely many points where they can
have an essential singularity.

In this part, we will give some relations between the characteristic function and
Motzkin factors.
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Definition Let f ∈ H(D) have no zero in D, f (x) =
q∑

−∞
anx

n with |aq |Rq >

|an|Rn for all n < q and aq = 1. Then f will be called a Motzkin factor associated
with S and the integer q will be called the Motzkin index of f and will be denoted
by m(f, S) (see [6, 8, 13]).

Theorem 3.1 Let f ∈ M (D). We can write f in a unique way in the form f Sf 0

with f S ∈ H(D) a Motzkin factor associated with S and f 0 ∈ M (K), having no
zero and no pole in S.

Given f ∈ M (D), for r > R. If α1, . . . , αm are the distinct zeros of f in
Δ(0, R, r), with respective multiplicity uj , 1 ≤ j ≤ m, then the counting function
of zeros ZR(r, f ) of f between R and r will be denoted by

ZR(r, f ) =
m∑

j=1

uj (log(r)− log(|αj |)).

Similarly, if β1, . . . , βn are the distinct poles of f in Δ(0, R, r), with respective
multiplicity vj , 1 ≤ j ≤ m, then the counting function of poles NR(r, f ) of f

between R and r is denoted by

NR(r, f ) =
n∑

j=1

vj (log(r)− log(|βj |)).

We put

TR(r, f ) = max
(
ZR(r, f ),NR(r, f )

)
.

The counting function of zeros without counting multiplicity ZR(r, f ) is defined
as:

ZR(r, f ) =
m∑

j=1

(log(r)− log(|αj |)),

where α1, . . . , αm are the distinct zeros of f in Δ(0, R, r). Similarly, the counting
function of poles without counting multiplicity NR(r, f ) is defined as:

NR(r, f ) =
n∑

j=1

(log(r)− log(|βj |)),

where β1, . . . , βn are the distinct poles of f in Δ(0, R, r).
Finally, putting Y = {a1, . . . , aq}, we denote by ZY

R(r, f
′) the counting function

of zeros of f ′ on points x where f (x) /∈ Y .
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In the following, we denote by L the interval [R,+∞[.
Theorem 3.2 Let f ∈ M (D). Then, for all r ∈ L,

log(|f |(r))− log(|f |(R)) = ZR(r, f )− NR(r, f )+m(f, S)(log r − logR).

Theorem 3.3 Let f ∈ A (D). Then, for r ∈ L,

ZR(r, f
′) ≤ ZR(r, f )− log(r)+O(1).

Theorem 3.4 Let f ∈ M (D). The three following statements are equivalent:

(i) lim
r→+∞

TR(r, f )

log(r)
= +∞ for r ∈ L,

(ii)
TR(r, f )

log(r)
is unbounded,

(iii) f belongs to M ∗(D).

Properties in M (D) are similar to those on M (K) and we get again a second
main theorem:

Theorem 3.5 (Second Main Theorem) Let f ∈ M (D), let α1, . . . , αq ∈ K, with
q ≥ 2 and let W = {α1, . . . , αq }. Then, for r ∈ L,

(q − 1)TR(r, f ) ≤
q∑

j=1

ZR(r, f − αj )+NR(r, f )− ZW
R (r, f ′)+O(log(r)).

4 Applications

Theorem 4.1 Let a1, a2 ∈ K (with a1 �= a2 ) and let f, g ∈ A ∗(K) satisfy
f−1({ai}) = g−1({ai}) (i = 1, 2). Then f = g.

Theorem 4.2 Let a1, a2, a3 ∈ K (with ai �= aj ∀i �= j ) and let f, g ∈
Au(d(0, R−)) (resp. f, g ∈ A ∗(D)) satisfy f−1({ai}) = g−1({ai}) (i = 1, 2, 3).
Then f = g.

Theorem 4.3 Let a1, a2, a3, a4 ∈ K (with ai �= aj ∀i �= j ) and let f, g ∈ M ∗(K)

satisfy f−1({ai}) = g−1({ai}) (i = 1, 2, 3, 4). Then f = g.

Theorem 4.4 Let a1, a2, a3, a4, a5 ∈ K (with ai �= aj ∀i �= j ) and let
f, g ∈ Mu(d(0, R−)) (resp. f, g ∈ M ∗(D)) satisfy f−1({ai}) = g−1({ai})
(i = 1, 2, 3, 4, 5). Then f = g.

Theorem 4.5 Let Λ be a non-degenerate elliptic curve of equation
y2 = (x − a1)(x − a2)(x − a3).

There do not exist g, f ∈ M (K) such that g(t) = y, f (t) = x, t ∈ K.



264 A. Escassut and T. T. H. An

There do not exist g, f ∈ Au(d(0, R−)) such that g(t) = y, f (t) = x, t ∈
d(0, R−).

There do not exist g, f ∈ A ∗(D) such that g(t) = y, f (t) = x, t ∈ D.

Theorem 4.6 Let Λ be a curve of equation yq = P(x), q ≥ 2, with P ∈ K[x]
admitting n distinct zeros of order 1 with n ≥ 4. There do not exist g, f ∈ M (K)

such that g(t) = y, f (t) = x, t ∈ K. Moreover, if n ≥ 5, there do not exist
g, f ∈ Mu(d(0, R−)) (resp. g, f ∈ M ∗(D)) such that g(t) = y, f (t) = x, t ∈
d(0, R−) (resp. t ∈ D).

Theorem 4.7 Let f, g ∈ M (K) satisfy gm + f n = 1, with min(m, n) ≥ 2 and
max(m, n) ≥ 3. Then f and g are constant.

Theorem 4.8 Let f, g ∈ M (d(0, R−)) (resp. f, g ∈ M (D)) satisfy gm+f n = 1,
with min(m, n) ≥ 3 and max(m, n) ≥ 4). Then f and g belong to Mb(d(0, R−))

(resp. to Mw(D)). Moreover, if f, g ∈ A (d(0, R−)) (resp. if f, g ∈ A (D)) satisfy
gm + f n = 1, with min(m, n) ≥ 2 and (m, n) �= (2, 2), then f and g belong to
Ab(d(0, R−), (resp to A w(D)).

Concerning the famous Hayman conjecture completely proven for complex
meromorphic functions [1, 11], we have a similar conjecture on K:

Theorem 4.9 ([8, 14]) Let f ∈ M ∗(K), (resp. f ∈ Mu(S), resp. f ∈ M ∗(D).
Then for every n ≥ 3, f nf ′ takes every value b ∈ K infinitely many times.
Moreover, if f ∈ M ∗(K), then f 2f ′ takes every value b ∈ K infinitely many
times.

5 Small Functions

Definitions For each f ∈ M (K), (resp. f ∈ M (S), resp. f ∈ M (D)), we will
denote by Mf (K) (resp. Mf (S), Mf (D)) the set of functions h ∈ M (K) (resp.
h ∈ M (S), h ∈ M (D)) such that TR(r, h) = o(TR(r, f )), r ∈ I , (resp. r ∈ J ,
resp. r ∈ L). Similarly, if f ∈ A (K) (resp. f ∈ A (S), resp. f ∈ A (D)) we
will denote by Af (K) (resp. Af (S), resp. Af (D)) the set Mf (K) ∩ A (K) (resp.
Mf (S) ∩A (S), resp.Mf (D) ∩A (D)).

The elements ofMf (K) (resp.Mf (S), resp. Mf (D)) are called small meromor-
phic functions with respect to f, small functions in brief. Similarly, if f ∈ A (K)

(resp. f ∈ A (S), resp. f ∈ A (D)), these functions are called small analytic
functions with respect to f, small functions in brief.

A value b ∈ K will be called a quasi-exceptional value for a function f ∈ M (K)

(resp. f ∈ M (S), resp. f ∈ M (D)) if f − b has finitely many zeros. In the same
way, a small function w with respect to a function f ∈ M (K) (resp. f ∈ M (S),
f ∈ M (D)) will be called a quasi-exceptional small function for f if f − w has
finitely many zeros in D.
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Theorem 5.1 Let f ∈ M ∗(K) (resp. f ∈ Mu(S), resp. f ∈ M ∗(D)). Then
f admits at most one quasi-exceptional small function. Moreover, if f has finitely
many poles, then f admits no quasi-exceptional small function.

Corollary 5.1a Let f ∈ A ∗(K) (resp. f ∈ Au(S), resp. f ∈ A ∗(D)). Then f

has no quasi-exceptional small function.

Theorem 5.2 Let f ∈ M ∗(K), (resp. f ∈ Mu(S), resp. f ∈ M ∗(D) and let
w1, w2, w3 ∈ Mf (K) (resp. ∈ Mf (d(0, R−)), resp. ∈ Mf (D)) be pairwise
distinct. Then:

T (r, f ) ≤∑3
j=1 Z(r, f −wj )+ o(T (r, f ))

(resp. T (r, f ) ≤∑3
j=1 Z(r, f −wj )+ o(T (r, f )),

resp. TR(r, f ) ≤∑3
j=1 ZR(r, f −wj)+ o(TR(r, f )).

Corollary 5.2a Let f ∈ M ∗(K) (resp. f ∈ Mu(S) resp. f ∈ M ∗(D)) and let
w1, w2 ∈ Af (K) (resp. w1, w2 ∈ Af (S) resp. w1, w2 ∈ Af (D) ) be distinct.
Then

T (r, f ) ≤ Z(r, f −w1)+ Z(r, f −w2)+N(r, f )+ o(T (r, f ))

(resp. T (r, f ) ≤ Z(r, f −w1)+ Z(r, f −w2)+N(r, f )+ o(TR(r, f )),

resp. TR(r, f ) ≤ ZR(r, f −w1)+ ZR(r, f −w2)+NR(r, f )+ o(TR(r, f ))).

Definitions Let f ∈ M ∗(K) (resp. f ∈ Mu(d(0, R−)), resp. f ∈ M ∗(D)) and
let w ∈ Mf (K) (resp. w ∈ Mf (d(0, R−)), resp. w ∈ Mf (D)). Then w is called
a perfectly branched function with respect to f if all zeros of f − w are multiple
except maybe finitely many. Particularly, the definition applies to constants [5].

Theorem 5.3 Let f ∈ M ∗(K) (resp. f ∈ Mu(d(0, R−)), resp. f ∈ M ∗(D)).
Then f admits at most four perfectly branched values. Moreover, if f has finitely
many poles and if f ∈ M ∗(K) (resp. f ∈ M ∗(D)), then f admits at most one
perfectly branched rational function.

Theorem 5.4 Let f ∈ Mu(d(0, R−)), having finitely many poles. Then f admits
at most two perfectly branched rational functions.

Corollary 5.3a Let f ∈ Au(d(0, R−)). Then f admits at most two perfectly
branched rational functions.
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Abstract This paper is a survey of the results in Aguayo et al. (J Math Phys 54(2),
2013; Indag Math (N.S.) 26(1):191–205, 2015; p-Adic Num Ultrametr Anal Appl
9(2):122–137, 2017) but generalized to the case when the complex Levi-Civita field
C is replaced by a Hahn field K((G)) for particular choices of the field K and the
abelian group G. In particular, we consider the Banach space of countable type c0
consisting of all null sequences of K((G)), equipped with the supremum norm ‖·‖∞
and we define a natural inner product on c0 which induces the norm of c0. Then
we present characterizations of normal projections and of compact and self-adjoint
operators on c0. As a new result in this paper, we apply the Hahn–Banach theorem
to show the existence of the dual operator of a given continuous linear operator on
c0 and to show that the dual operator and the adjoint operator coincide.

We present some B∗-algebras of operators, including those mentioned above,
then we define an inner product on such algebras which induces the usual norm of
operators. Finally, we present a study of positive operators on c0 and use that to
introduce a partial order on the set of compact and self-adjoint operators on c0.

1 Introduction

Throughout this paper, K((G)) will denote the Hahn field defined as follows.

Definition 1 Let G be a subgroup of (R,+), let F be a formally real field, and let
K = F(i), where i2 = −1. The Hahn field K((G)) is

K((G)) := {z : G → K|supp(z) is well-ordered}
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with the addition and multiplication defined as follows: for every z,w ∈ K((G))

and x ∈ G,

(1) (z+ w)(x) = z(x)+w(x), and
(2) (zw)(x) = ∑

a+b=x

z(a)w(b).

Given z ∈ K((G)), we define

λ(z) =
{

min{supp(z)} if z �= 0
∞ if z = 0.

Moreover, we can define an ultrametric absolute value on the field K((G)), | · | :
K((G)) → R as follows:

|z| =
{
e−λ(z) if z �= 0
0 if z = 0

which makes K((G)) into a spherically complete (and hence Cauchy complete) non-
Archimedean valued field [8, A.9 pp. 288–292].

Note that every z ∈ K((G)) can be written as z = x + iy, where x, y ∈ F((G)),
and consequently |z| = max{|x|, |y|}.

The space c0 := {z = {zn}∞n=1 : zn ∈ K((G)), lim
n→∞ zn = 0K((G))} equipped

with the natural norm ‖z‖∞ := sup
n∈N

|zn| is a Banach space of countable type over

K((G)) (see page 28 in [7]).

2 Characterization of Compact and Self-adjoint Operators
on c0

In this section we generalize the results of [2] when the complex Levi-Civita field is
replaced by a Hahn field.

2.1 An Inner Product on c0

We consider the following form 〈·, ·〉 : c0 × c0 → K((G)) given by

〈z,w〉 =
∞∑
n=1

znwn,
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where wn = xn − iyn is the complex conjugate of wn = xn + iyn. This form is well
defined since lim

n→∞ znwn = 0 and satisfies Definition 2.4.1 for an inner product on

page 38 in [7].
Let ‖z‖ = √|〈z, z〉| be the norm induced by the above inner product. Since 1,

the multiplicative identity in K((G)), has the property that |1 + 1| = |2| = 1,
Theorem 2.4.2 in [7] entails that ‖ · ‖ is a non-Archimedean norm on c0. It follows
easily that if 〈z,w〉 = 0 for all z ∈ c0, then w = 0, which is referred to as the
non-degeneracy condition.

The next theorem was proved in [6] and tells us when the non-Archimedean norm
in a Banach space is induced by an inner product.

Theorem 1 Let (E, ‖ · ‖) be a K-Banach space. Then if ‖E‖ ⊂ |K|1/2 and if every
one-dimensional subspace of E admits a normal complement, then E has at least
one inner product that induces the norm ‖ · ‖.

The above conditions are satisfied for the K((G))-Banach space E = c0. In fact,
for z ∈ c0, z �= 0, there exists n0 ∈ N such that

‖z‖∞ = sup
n∈N

|zn| = max
n∈N

|zn| = |zn0 | ∈ |K((G))|.

Note that for any z ∈ K((G)), |K((G))| ⊂ |K((G))|1/2 is guaranteed by the fact
that λ(z) ∈ G implies that 2λ(z) ∈ G, and consequently ‖c0‖ ⊂ |K((G))|1/2. The
other condition is guaranteed by Lemma 2.3.19 on page 34 in [7].

Since F is formally real, the conclusion that ‖ · ‖∞ is induced by 〈·, ·〉 could be
obtained in a similar way as in [2] by using the following lemma, and we omit the
proof here.

Lemma 1 If {z1, . . . , zn} ⊂ K((G)), then |z1z1 + . . .+ znzn| = max1≤j≤n |zj zj |.
Definition 2 A subset D of c0 such that for all x, y ∈ D, x �= y ⇒ 〈x, y〉 = 0, is
called a normal family. A countable normal family {xn : n ∈ N} of unit vectors is
called an orthonormal sequence.

If A ⊂ c0, then [A] and cl[A] will denote the linear span and the closed linear
span of A, respectively. If M is a subspace of c0, then Mp will denote the subspace
of all y ∈ c0 such that 〈y, x〉 = 0, for all x ∈ M . Since the definition of the inner
product given in [7], page 38, is implied by the definition of the inner product given
here, the Gram–Schmidt procedure can be applied.

Theorem 2 If {zn} is a sequence of linearly independent vectors in c0, then there
exists an orthonormal sequence {yn} such that [{z1, . . . , zj }] = [{y1, . . . , yj }] for
every j ∈ N.

Definition 3 A sequence {zn}∞n=1 of non-null vectors of c0 is said to have the
Riemann–Lebesgue property (RLP) if for all z ∈ c0 lim

n→∞〈zn, z〉 = 0.
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It follows immediately that any orthonormal basis of c0 has this property. The
following theorem has been proved in [6].

Theorem 3 If S ⊂ c0 is a finite orthonormal subset, say {z1, . . . , zn}, or is an
orthonormal sequence {zn}∞n=1 which satisfies the RLP, then S can be extended to
an orthonormal basis for c0: that is, there exists a countable orthonormal sequence
{wn}∞n=1 (possibly finite) such that S

⋃{wn : n ∈ N} is an orthonormal basis for c0.

The next lemma, which could be obtained by using Lemma 1, shows that a
normal sequence in c0 is also an orthogonal sequence in the van Rooij’s sense (see
[9], page 57).

Lemma 2 Let {xn}∞n=1 be a normal sequence in c0. Then, for all k ∈ N, we have
that

∥∥∥∥∥∥
k∑

j=1

αj xnj

∥∥∥∥∥∥
2

= max
1≤j≤k

∥∥αj xnj

∥∥2

Using the Gram–Schmidt process, we have the following theorem which was
proved in [1].

Theorem 4 Every closed subspace D of c0 admits a countable orthonormal basis,
that is, an orthonormal sequence {yn} such that D = cl[{yn : n ∈ N}].

If E and F are normed spaces over K, then L(E, F ) will be the normed space
consisting of all continuous linear maps from E into F . L(E,K) will be denoted by
E∗ and L(E,E) will be denoted simply by L(E). For an operator T ∈ L(E, F ),
KerT and ImT will denote the kernel and the image of T , respectively. It is well
known that c∗0 ∼= �∞, where c∗0 is the dual of c0. Moreover, it was proved in [9]
that if E and F are Banach spaces, then T is compact if and only if for each ε > 0,
there exists a continuous linear operator S with finite-dimensional Im S such that
‖T − S‖ ≤ ε.

Definition 4 A functional f ∈ c∗0 is called a Riesz functional if there exists z ∈ c0
such that f = 〈·, z〉. The space of all Riesz functionals of c∗0 will be denoted by
(c0)RF , that is

(c0)RF = {f ∈ c∗0 : f = 〈·, z〉 for some z ∈ c0}

The following proposition is an immediate consequence of the definition of the
inner product 〈·, ·〉 and of the Riemann–Lebesgue property of {en}∞n=1, where ej is
the element of c0 whose j th entry is equal to 1 and with the rest of the entries all
equal to zero.

Proposition 1 Let f ∈ c∗0 . Then f ∈ (c0)RF if and only if lim
n→∞ f (en) = 0.

Moreover, in this case, f = 〈·, z〉 where z = {f (en)}∞n=1.
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It is worth noting that for a given f ∈ (c0)RF , there is a corresponding element
in c0, say Φ(f ) = {f (en)}∞n=1 = z ∈ c0. Moreover, for any x �= 0 in c0, we have
that

|f (x)|
‖x‖ = |〈x, z〉|

‖x‖ ≤ ‖x‖‖z‖
‖x‖ = ‖z‖ = ‖Φ(f )‖

from which we infer that

‖f ‖ ≤ ‖Φ(f )‖.

On the other hand, we have that

‖Φ(f )‖ = ‖z‖ = |〈z, z〉|
‖z‖ = |f (z)|

‖z‖ ≤ ‖f ‖.

Thus, ‖Φ(f )‖ = ‖f ‖ and hence Φ is a linear norm-preserving bijection.

2.2 Normal Projections and Self-adjoint Operators

Definition 5 An operator P ∈ L(c0) is said to be a normal projection if P 2 = P

and 〈z,w〉 = 0 for all z ∈ KerP and all w ∈ ImP .

Using the Cauchy–Schwarz inequality, we obtain that ‖Px‖ ≤ ‖x‖ for all x ∈ c0,
which implies that P is an orthoprojection in the van Rooij sense (see [9], page 63),
while ‖Py‖ = ‖y‖ for all y ∈ ImP . It follows that ‖P‖ = 1.

Theorem 5 Let P be a normal projection. If {zn}∞n=1 is an orthonormal basis of
KerP , then it has the Riemann–Lebesgue property.

Proof It suffices to prove that lim
n→∞〈z, zn〉 = 0 for any z /∈ KerP . Recall that P is a

normal projection, which implies that z− Pz ∈ Ker P and 〈Pz, zn〉 = 0. It follows
that

〈z, zn〉 = 〈z− Pz, zn〉 + 〈Pz, zn〉 = 〈z− Pz, zn〉 → 0 as n → ∞.

We can prove the following proposition using Corollary 8.2 in [6].

Proposition 2 Let M be a closed subspace of c0. If M has an orthonormal basis
with the Riemann–Lebesgue property, then there exists a normal projection P such
that M = Ker P .
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For i, j ∈ N, we define e∗j ⊗ ei ∈ L(c0) by e∗j ⊗ ei(z) = 〈z, ej 〉ei , and it can be
shown easily that ‖e∗j ⊗ ei‖ = 1. Diarra in [5] proved the following lemma.

Lemma 3 Suppose that {αij }i,j≥1 is a bounded sequence of elements in K((G))

such that lim
i→∞ αij = 0, for each j ∈ N. Then the operator T : c0 → c0 defined

by T = ∑
i,j≥1

αij e
∗
j ⊗ ei is a continuous linear operator. Conversely, if T ∈ L(c0),

then T = ∑
i,j≥1

αij e
∗
j ⊗ei for some bounded sequence {αij }i,j≥1 in K((G)) such that

αij → 0 as i → ∞, for each j ∈ N. Therefore, any T ∈ L(c0) can be identified
with the following matrix whose columns converge to 0:

(T ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α11 α12 . . . α1j . . .

α21 α22 . . . α2j . . .
...

...
. . .

...

αi1 αi2 . . . αij . . .

↓ ↓ ↓ . . .

0 0 . . . 0 . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Definition 6 A linear operator T † : c0 → c0 is said to be an adjoint of a given
operator T ∈ L(c0) if 〈T x, y〉 = 〈x, T †y〉, for all x, y ∈ c0. We also say T is
self-adjoint if T = T †.

As in the classical case, the adjoint operator of a continuous linear operator, if it
exists, is unique and continuous.

Proposition 3 If a continuous linear operator T has an adjoint, then it is unique
and continuous.

Proof First, assume that T † and T̃ † are adjoint operators of T . Then by the
definition of an adjoint operator, we have that 〈x, T †y− T̃ †y〉 = 0 for all x, y ∈ c0.
The non-degeneracy condition of 〈·, ·〉 then implies that T † = T̃ †.

Now let y ∈ c0, y �= 0, be given. Then we have that

‖T †y‖2 = |〈T †y, T †y〉| = |〈T (T †y), y〉| ≤ ‖T (T †y)‖‖y‖ ≤ ‖T ‖‖T †y‖‖y‖,

which implies that ‖T †y‖ ≤ ‖T ‖‖y‖ for all y �= 0 in c0 and hence ‖T †‖ ≤ ‖T ‖.
Therefore, T † ∈ L(c0).

We can check whether an operator has an adjoint or not by looking at its
associated matrix.
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Lemma 4 Let T ∈ L(c0) with associated matrix (T ) = (αij ). Then T admits an
adjoint operator T † if and only if lim

j→∞ αij = 0 for each i ∈ N, i.e.,

(T ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α11 α12 . . . α1j → 0
α21 α22 . . . α2j → 0
...

...
. . .

...

αi1 αi2 . . . αij → 0

↓ ↓ ↓ . . .

0 0 . . . 0 . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

However, unlike in the classical Hilbert space theory, not every continuous linear
operator admits an adjoint, for example, see [2].

The next theorem shows the connection between self-adjoint operators and
normal projections.

Theorem 6 Let P ∈ L(c0). If P is a normal projection, then P is self-adjoint.
Conversely if P is self-adjoint and P 2 = P , then it is a normal projection.

Proof First suppose P is a normal projection. Then for any x, y ∈ c0, we have
that x − Px, y − Py ∈ Ker P . Consequently, 〈x, Py〉 = 〈Px, Py〉 and 〈y, Px〉 =
〈Py, Px〉. By conjugate symmetry, it follows that

〈Px, y〉 = 〈y, Px〉 = 〈Py, Px〉 = 〈Px, Py〉 = 〈x, Py〉.

Therefore P is self-adjoint.
Now suppose that P 2 = P and 〈x, Py〉 = 〈Px, y〉 for any x, y ∈ c0. Let

x ∈ KerP and y ∈ ImP and let z ∈ c0 be such that Pz = y. Then 〈x, y〉 =
〈x, Pz〉 = 〈Px, z〉 = 〈0, z〉 = 0, and hence P is a normal projection.

The next result provides a characterization for normal projections.

Theorem 7 If P ∈ L(c0) is a normal projection with ImP = cl[{y1, y2, . . .}],
where {y1, y2, . . .} is either an orthonormal finite subset of c0 or an orthonormal
sequence with the Riemann–Lebesgue property, then

Px =
∞∑
n=1

〈x, yn〉yn/〈yn, yn〉.

Proof let x ∈ c0 be given. Then P(x) = ∑∞
n=1 αn(x)yn, where αn ∈ c∗0 for

each n ∈ N. Now for this x, we have that 〈x, yj 〉 = 〈x, Pyj 〉 = 〈Px, yj 〉 =
〈∑∞

n=1 αn(x)yn, yj 〉 = αj (x)〈yj , yj 〉. Thus αj (x) = 〈x, yj 〉/〈yj , yj 〉.
Besides the connection between self-adjoint operators and normal projections

that makes it possible to characterize all normal projections, for each T ∈ L(c0) we
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can define T ∗, the dual operator of T , which, as we will see below, coincides with
T †, the adjoint operator of T .

The following theorem, proved in [7] page 171, guarantees the existence of dual
operators of L(c0). Note that the K((G))-Banach space c0 that we are considering
in this paper meets all the conditions of the theorem.

Theorem 8 (Hahn–Banach Theorem) Let E be a vector space over a spherically
complete field K, let p be a seminorm on E. Then for every subspace D of E and
every f0 ∈ D∗ with |f0| ≤ p on D, there is an extension f ∈ E∗ of f0 such that
|f | ≤ p on E.

We now discuss duality of linear operators. In particular, given a linear operator
T : c0 → c0, it induces a dual operator T ∗ : c∗0 → c∗0 that can be defined as follows.

Suppose f2 ∈ c∗0, then f1 = T ∗(f2) ∈ c∗0, is defined by f1(x1) = f2(T (x1)),
whenever x1 ∈ c0. More succinctly

T ∗(f2)(x1) = f2(T (x1)).

The following proposition is crucial to prove that the dual operator T ∗ has the
same norm as T .

Proposition 4 Let x0 ∈ c0 be given with ‖x0‖ = M ∈ R. Then there exists f ∈ c∗0
such that |f (x0)| = M and ‖f ‖ = 1.

Proof First, note that if we write x0 = {x0,n}∞n=1, then we have ‖x0‖ = M =
‖x0‖∞ = |x0,N | for some N ∈ N.

Define f0 on the one-dimensional subspace D := {αx0 : α ∈ K((G))} by
f0(αx0) = αx0,N , for each α ∈ K((G)). Note that if we set p(x) = ‖x‖ for
every x ∈ c0, the function p clearly satisfies the basic sub-linear property, that is, p
is a seminorm. We also observe that

|f0(αx0)| = |α||x0,N | = |α|‖x0‖ = p(αx0),

and hence |f0(x)| ≤ p(x) on the subspace D. By the Hahn–Banach theorem, we
can extend f0 to an f defined on c0 with |f (x)| ≤ p(x) = ‖x‖, for all x ∈ c0,
and thus ‖f ‖ ≤ 1. The fact that ‖f ‖ ≥ 1 then follows from the defining property
f (x0) = ‖x0‖, thereby proving the proposition.

Theorem 9 For a given T ∈ L(c0), the dual operator T ∗ defined above is a
bounded linear operator, and hence it is in L(c∗0). Furthermore, we have ‖T ∗‖ =
‖T ‖.

Proof First, if ‖x1‖ ≤ 1, we have that

|T ∗(f2)(x1)| = |f1(x1)| = |f2(T (x1))| ≤ ‖f2‖‖T (x1)‖ ≤ ‖f2‖‖T ‖.

Thus taking the supremum over all x1 ∈ c0 with ‖x1‖ ≤ 1, we see that ‖T ∗‖ ≤ ‖T ‖.
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To prove the other inequality, let ε > 0 in R be given, then we can find x1 ∈ c0
with ‖x1‖ = 1 and ‖T (x1)‖ ≥ ‖T ‖−ε. Let x2 = T (x1) ∈ c0. Then by Proposition 4
there is an f2 in c∗0 so that ‖f2‖ = 1 and |f2(x2)| = ‖x2‖ ≥ ‖T ‖ − ε. Thus by
the definition of dual operator, we have that |T ∗(f2)(x1)| ≥ ‖T ‖ − ε; and since
‖x1‖ = 1, we conclude ‖T ∗(f2)‖ ≥ ‖T ‖ − ε. This shows that ‖T ∗‖ ≥ ‖T ‖ − ε.
Since this holds for every ε > 0, it follows that ‖T ∗‖ ≥ ‖T ‖.

The next commutative diagram, where T † denotes the adjoint operator of T and
Φ is given in Proposition 1, shows that the adjoint operator actually coincides with
the dual operator.

c0 c0

(c0)RF (c0)RF

T

Φ

T †

Φ

T ∗

To elaborate further on this, we observe that

T ∗(Φ(x2))(x1) = Φ(x2)(T (x1)) = 〈T (x1), x2〉 = 〈x1, T
†(x2)〉 = Φ(T †(x2))(x1),

for every x1, x2 ∈ c0. Thus, T ∗ ◦Φ = Φ ◦ T †.

2.3 Characterization of Compact Operators

Recall that a continuous linear operator T is compact if and only if T is the
uniform limit of continuous linear operators of finite-dimensional range (see
[9]). Unfortunately, as the argument in [2] shows, a normal projection P is not
compact if dim(ImP) = ∞, and it follows that the convergence of P(·) =∑∞

n=1〈·, yn〉yn/〈yn, yn〉 is only pointwise.
The following theorem provides a way to construct compact operators starting

from an orthonormal sequence.

Theorem 10 Let {yn}∞n=1 be an orthonormal sequence in c0. Then for any α =
{αn}∞n=1 ∈ c0 such that αn ∈ F((G)), the operator T : c0 → c0 defined by

T =
∞∑
n=1

αn〈·, yn〉yn/〈yn, yn〉 =
∞∑
n=1

αnPn(·)

is a compact and self-adjoint operator.
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Proof It is clear that T is linear. Note that for x ∈ c0, we have that
∥∥∥∥∥∥T x −

n∑
j=1

αjPj x

∥∥∥∥∥∥ =
∥∥∥∥∥∥

∞∑
j=n+1

αj

〈x, yj 〉
〈yj , yj 〉yj

∥∥∥∥∥∥
≤ max

j≥n+1
|αj |

∣∣∣∣ 〈x, yj 〉〈yj , yj 〉
∣∣∣∣ ‖yj‖ (strong triangle inequality)

≤ ( max
j≥n+1

|αj |)‖x‖,

and therefore

‖T −
n∑

i=1

αiPi‖ ≤ max
j≥n+1

|αj | → 0 as n → ∞.

Since ImPj is finite-dimensional for each j ∈ N, it follows that T is compact. The
self-adjoint condition follows easily from the fact that αn ∈ F((G)) for each n ∈ N.

The converse is also true, as stated in the next theorem whose proof is the same
as that of the corresponding result (Theorem 10) in [2].

Theorem 11 Let T : c0 → c0 be a compact and self-adjoint linear operator. Then
there exist an element α = {αn}∞n=1 ∈ c0, where αn ∈ F((G)) for each n ∈ N, and
an orthonormal sequence {yn}∞n=1 in c0 such that

T =
∞∑
n=1

αnPn,

where Pn = 〈·,yn〉
〈yn,yn〉yn is the normal projection defined by yn.

The uniqueness of α is shown in the following proposition whose proof is the
same as that of Proposition 6 in [2].

Proposition 5 Let T =∑ αn
〈·,yn〉
〈yn,yn〉yn be a compact and self-adjoint operator and

let μ �= 0 in K((G)) be an eigenvalue of T . Then μ = αn for some n.

3 B∗-algebras of Operators on c0

In this section we generalize the results of [3], replacing the complex Levi-Civita
field by K((G)). Recall that in Lemma 3 we show that each T ∈ L(c0) has an
associated matrix (αij ) such that

(1) sup
i,j∈N

|αij | < ∞;

(2) lim
i→∞ αij = 0 for each j ∈ N;
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(3) T = ∑
i,j∈N

αij e
∗
j ⊗ ei ;

(4) ‖T ‖ = sup
i,j∈N

|αij | = sup
n∈N

‖T en‖.

If we let

M(c0) = {(αij ) : sup
i,j∈N

|αij | < ∞; lim
i→∞αij = 0 for each j ∈ N}

equipped with the natural supremum norm, then L(c0) and M(c0) are isometrically
isomorphic.

Lemma 5 Let T ∈ L(c0). Then for a given y ∈ c0, the following conditions are
equivalent:

(1) There exists y† ∈ c0 such that 〈T x, y〉 = 〈x, y†〉, for any x ∈ c0;
(2) lim

n→∞〈T en, y〉 = 0.

Proof First, we assume that there exists y† ∈ c0 such that 〈T x, y〉 = 〈x, y†〉, for any
x ∈ c0. Then 〈T en, y〉 = 〈en, y†〉 → 0 as n → ∞ since {en}n∈N is an orthonormal
basis.

Now assume lim
n→∞〈T en, y〉 = 0, then {〈T en, y〉}∞n=1 ∈ c0. Let y† =∑∞

n=1 〈T en, y〉en. Then a straightforward computation leads to 〈x, y†〉 = 〈T x, y〉
for any x ∈ c0.

Let us denote by A0(c0), or simply A0, the set of all T ∈ L(c0) such that
lim

n→∞〈T en, y〉 = 0 for all y ∈ c0. It is not hard to show, as was done in [3], that A0 is

the set of all continuous linear operators which admit adjoints and consequently A0
contains normal projections. Moreover, if we define T † : c0 → c0 by T †(y) = y†

for T ∈ A0, then 〈T x, y〉 = 〈x, y†〉 = 〈x, T †(y)〉, for any x, y ∈ c0, and
hence T † is exactly the adjoint operator we have already defined in Sect. 2.2. Since
(T †)† = T , it follows that T ∈ A0 if and only if T † ∈ A0.

Let A1 := {T ∈ L(c0) : lim
n→∞ T en = 0}. Then it follows that ∅ �= A1 � A0 (see

[3]).
Theorem 12 below gives a characterization of the elements of A1 and, for its

proof, we need the following result given in [5].

Proposition 6 A continuous linear operator T = ∑
i,j∈N

αij e
∗
j ⊗ ei is compact if and

only if lim
i→∞ sup

j∈N
|αij | = 0.

Theorem 12 T ∈ A1 if and only if T is compact and T ∈ A0.

Proof First, suppose T ∈ A1. For each j ∈ N, we define Tj : c0 → c0 by Tjx =
j∑

i=1
xiT ei . Clearly Tj is a continuous linear operator and Im Tj is finite-dimensional,

and hence it is compact. Moreover, it could be easily verified that Tj ∈ A0. Note
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that

‖T x − Tjx‖ =
∥∥∥∥∥∥

∞∑
i=j+1

xiT ei

∥∥∥∥∥∥ ≤ max
i≥j+1

‖xiT ei‖ ≤ ‖x‖ max
i≥j+1

‖T ei‖,

and lim
i→∞ T ei = 0 by the definition of A1. It follows that T is compact.

Conversely, let T = ∑
i,j∈N

αij e
∗
j ⊗ ei ∈ A0 be a compact operator. Then

T † ∈ A0. Since T is compact, we have that lim
i→∞ supj∈N |αij | = 0. Note that

‖T †ei‖ = sup
j∈N

|αij | → 0 as i → ∞ and hence T † ∈ A1. Applying the first part

of the proof, we conclude that T † is also compact. Thus, lim
i→∞ sup

j∈N
|βij | = 0, where

T † = ∑
i,j∈N

βij e
∗
j ⊗ ei , with βij = αji . Using the fact that

‖T ei‖ = sup
j∈N

|αji | = sup
j∈N

|βij | → 0 as i → ∞,

we conclude that T ∈ A1.

An immediate consequence of this theorem is that for T ∈ A1, the associated
matrix (αij ) satisfies lim

(i,j)∈N2
αij = 0 and that every compact and self-adjoint

operator is in A1. To be precise,

A2 := {T ∈ A1 : T = T †} � A1.

Moreover, as was shown in [3], we can show that A1 is a closed subalgebra of A0
and A2 is a closed subset of A1.

3.1 Inner Product inA1

Since T en, Sen → 0 ∈ c0 as n → ∞ for T , S ∈ A1, the mapping

〈·, ·〉 :A1 ×A1 → K((G))

(S, T )  →
∞∑
i=1

〈Sei, T ei〉

is well defined, linear in the first variable and linear conjugate in the second variable,
and 〈S, T 〉 = 〈T , S〉 for all S, T ∈ A1.
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It is clear that if w ∈ c0 then 〈w,w〉 ∈ F((G)), and since F is formally real, we
have that

|〈w1, w1〉 + 〈w2, w2〉 + . . .+ 〈wn,wn〉| = max
1≤i≤n

|〈wi,wi〉|.

We can then use the above equation to prove that 〈·, ·〉 is an inner product in A1
according to Definition 2.4.1 in [7]. Moreover,

√〈S, S〉 is a norm on A1 and

|〈S, T 〉|2 ≤ |〈S, S〉||〈T , T 〉| for all S, T ∈ A1.

The next proposition shows that the norm ‖ · ‖ on A1 is induced by the above inner
product.

Proposition 7 Let T ∈ A1, T �= 0. Then |〈T , T 〉| = ‖T ‖2.

Proof Since T ∈ A1, there exists N ∈ N such that ‖T ei‖2 < ‖T ‖2 for i ≥ N . It
follows that
∣∣∣∣∣
∞∑

i=N

〈T ei, T ei〉
∣∣∣∣∣ ≤ max

i≥N
|〈T ei, T ei〉|

< ‖T ‖2 = max
i∈N

|〈T ei, T ei〉| = max
i≤N−1

|〈T ei, T ei〉| =
∣∣∣∣∣
N−1∑
i=1

〈T ei, T ei〉
∣∣∣∣∣ .

Therefore,

|〈T , T 〉| =
∣∣∣∣∣
∞∑
i=1

〈T ei, T ei〉
∣∣∣∣∣ =

∣∣∣∣∣
N−1∑
i=1

〈T ei, T ei〉 +
∞∑

i=N

〈T ei, T ei〉
∣∣∣∣∣

=
∣∣∣∣∣
N−1∑
i=1

〈T ei, T ei〉
∣∣∣∣∣ = ‖T ‖2.

The proof of the next theorem in [3] still works in the context of this paper, and
we omit the proof here.

Theorem 13 c0 is isometrically isomorphic to a closed subspace of A1. Moreover,
the restriction of the inner product on A1 to this closed subspace coincides with the
inner product defined in c0.

Observe that if T ∈ A1, then 〈·, T 〉 : A1 → K((G)), S  → 〈S, T 〉 is a continuous
linear functional, i.e., 〈·, T 〉 ∈ A∗

1 and such functionals are called Riesz functionals.
However, not all functionals in A∗

1 are Riesz functionals. For example, see [3]. The
next proposition proved in [3] gives a necessary and sufficient condition for Riesz
functionals.
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Proposition 8 For f ∈ A∗
1, f is a Riesz functional if and only if the double

sequence {f (e∗j ⊗ ei)}(i,j)∈N2 is convergent to 0.

Definition 7 Let M be a closed subspace of A1. We shall say that M admits a
normal complement if A1 = M ⊕ Mp, where Mp = {S ∈ A1 : 〈S, T 〉 =
0 for all T ∈ M}.

We have the following result which has the same proof as that of the correspond-
ing one in [3].

Theorem 14 If M is an infinite-dimensional closed subspace of A1, then the
following statements are equivalent:

(1) M has a normal complement;
(2) M has an orthonormal basis with the Riemann–Lebesgue property;
(3) There exists a normal projection P such that KerP = M .

Finally, we note that although (A1, 〈·, ·〉) is not orthomodular, there exist closed
subspaces of A1 which admit normal complements, for example, see [3].

4 Positive Operators on c0

So far we have only required F to be formally real. In order to work on positive
operators on the Banach space c0 over K((G)), we will assume in this section that
F is a totally ordered field.

For x, y ∈ F((G)), we say x ≥ y if x = y or x �= y and (x−y)(λ(x−y)) > 0F.
Then F((G)) with ≥ is a totally ordered field. It is clear that F((G)) is a subfield of
K((G)).

Definition 8 For T ∈ A1, we say that T is positive and write T ≥ 0 if 〈T x, x〉 ∈
F((G)) and 〈T x, x〉 ≥ 0 for all x ∈ c0.

We have the following lemmas which have similar proofs to those of the correspond-
ing ones in [4].

Lemma 6 Let T ∈ A1 be positive. Then T is self-adjoint, that is, T ∈ A2.
Moreover, all eigenvalues of T are in F((G)) and non-negative.

Lemma 7 Let S, T ≥ 0 in A1 and α ≥ 0 in F((G)) be given. Then αS + T ≥ 0.

Lemma 8 For all T ∈ A1, both T †T and T T † are positive.

In order to obtain a fundamental property of the inner product and be able to
generalize the results on positive operators in [4], we now restrict our attention to the
case that F is real closed and G is divisible so that K and K((G)) are algebraically
closed and thus the proofs could be carried over without any changes.

Proposition 9 Let T ∈ A1 be positive. Then |〈T x, y〉|2 ≤ |〈T x, x〉||〈Ty, y〉| for
all x, y ∈ c0, where | · | denotes the ultrametric absolute value on K((G)).
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Theorem 15 For T ∈ A1, the following are equivalent:

(1) T ≥ 0;
(2) T is self-adjoint and all of its eigenvalues are in F((G)) and non-negative;
(3) There exists S ≥ 0 in A1 such that T = S2;
(4) There exists S ∈ A1 such that T = SS†;
(5) There exists M ∈ A1 such that T = M†M .

Remark 1 Let T and S be as in Theorem 15: T ≥ 0 and S ≥ 0 in A1 such that
T = S2. Then S is unique. We say that S is the positive square root of T and
write S = √

T . Moreover, if T = ∑∞
n=1 αnPn, then S = ∑∞

n=1
√
αnPn where

αn ∈ F((G)) and αn ≥ 0, for each n ∈ N. It follows that ‖S‖ = ‖T ‖1/2.

Following are results proved in [4] and we verified that the proofs are still valid
in the context of this paper.

Proposition 10 Let S, T ∈ A1 be positive. Then ST ≥ 0 if and only if ST = T S.

Proposition 11 Let T ∈ A2 be given. Then there exist unique positive operators
A,B ∈ A2 such that T = A − B and AB = BA = 0. Moreover, we have that
‖T ‖ = max{‖A‖, ‖B‖}.
Proposition 12 The set P = {T ∈ A2 : T ≥ 0} is closed in A2.

4.1 Partial Order onA2

In this section we introduce a relation on A2, which is a partial order, and some of
its properties are presented.

Definition 9 For S, T ∈ A2, we say that S ≥ T if S − T ≥ 0.

This defines a partial order on A2: the reflexivity, antisymmetry and transitivity
of ≥ can be easily verified, and Example 3.3 in [4] shows that it is not a total order.

Proposition 13 Let S, T ∈ A2 be given. Then S ≥ T if and only if 〈Sx, x〉 ≥
〈T x, x〉 for all x ∈ c0.

Proof First note that since S, T , S − T are in A2 and hence self-adjoint, we have
that 〈Sx, x〉, 〈T x, x〉 and 〈(S − T )x, x〉 are all in F((G)) for all x ∈ c0. Therefore

S ≥ T ⇔ S − T ≥ 0 ⇔ 〈(S − T )x, x〉 ≥ 0 ⇔ 〈Sx, x〉 ≥ 〈T x, x〉.

Moreover, we have the following result.

Proposition 14 Let S, T ∈ A2 be such that S ≥ T ≥ 0. Then ‖S‖ ≥ ‖T ‖.

We finish this paper with the following result (for the proof see [4]) which gives
equivalent conditions for two normal projections P1, P2 ∈ A2 to be related by the
order relation defined above.
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Theorem 16 Let P1, P2 ∈ A2 be normal projections and let M1 = ImP1 and
M2 = ImP2. Then the following are equivalent.

(1) P2 ≥ P1;
(2) M2 ⊇ M1;
(3) P2P1 = P1;
(4) P1P2 = P1.
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Conditional Stability for Backward
Parabolic Equations with Osgood
Coefficients

Daniele Casagrande, Daniele Del Santo, and Martino Prizzi

Abstract The interest of the scientific community for the existence, uniqueness
and stability of solutions to PDEs is testified by the numerous works available in
the literature. In particular, in some recent publications on the subject (Del Santo et
al. Nonlinear Anal 121:101–122, 2015; Del Santo and Prizzi, Math Ann 345:213–
243, 2009) an inequality guaranteeing stability is shown to hold provided that
the coefficients of the principal part of the differential operator are Log-Lipschitz
continuous. Herein this result is improved along two directions. First, we describe
how to construct an operator, whose coefficients in the principal part are not Log-
Lipschitz continuous, for which the above-mentioned inequality does not hold.
Second, we show that the stability of the solution is guaranteed, in a suitable
functional space, if the coefficients of the principal part are Osgood-continuous.

1 Introduction

Backward parabolic equations are known to generate ill-posed (in the sense of
Hadamard [6, 7]) Cauchy problems. Due to the smoothing effects of the parabolic
operator, in fact, it is not possible, in general, to guarantee existence of the solution
for initial data in any reasonable function space. In addition, even when solutions
possibly exist, uniqueness does not hold without additional assumptions on the
operator. Nevertheless, also for problems which are not well-posed the study of
the conditional stability of the solution—the surrogate of the notion of “continuous
dependence” when existence of a solution is not guaranteed—is interesting. Such
kind of study can be performed by resorting to the notion of well behaving
introduced by John [9]: a problem is well-behaved if “only a fixed percentage of the
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significant digits need be lost in determining the solution from the data”. In other
words, a problem is well behaved if its solutions in a space H depend continuously
on the data belonging to a space K , provided they satisfy a prescribed bound in a
space H ′ (possibly different from H ). In this paper we give a contribution to the
study of the (well) behaviour of the Cauchy problem associated with a backward
parabolic operator. In particular, we consider the operator L defined, on the strip
[0, T ] × Rn, by

L u = ∂tu+
n∑

i,j=1

∂xi
(
ai,j (t, x)∂xj u

)+
n∑

j=1

bj (t, x)∂xj u+ c(t, x)u , (1)

where all the coefficients are bounded. We suppose that ai,j (t, x) = aj,i (t, x) for all
i, j = 1, . . . , n and for all (t, x) ∈ [0, T ]×Rn. We also suppose that L is backward
parabolic, i.e. there exists kA ∈]0, 1[ such that, for all (t, x, ξ) ∈ [0, T ] ×Rn ×Rn,

kA|ξ |2 ≤
n∑

i,j=1

ai,j (t, x)ξiξj ≤ k−1
A |ξ |2 . (2)

We show that if the coefficients of the principal part of L are at least Osgood
regular, then there exists a function space in which the associated Cauchy problem

{
L u = f , in (0, T )×Rn ,

u|t=0 = u0 , in R
n ,

(3)

has a stability property.
To collocate the new result in the framework of the existing literature, we first

recall the contents of some interesting publications on the subject which show that,
as one could expect, the function space in which the stability property holds is
related to the degree of regularity of the coefficients of L . Weaker requirements on
the regularity of the coefficients must be balanced, for the stability property to hold,
by stronger a priori requirements on the regularity of the solution, hence stability
holds in a smaller function space.

The overview on available works helps to lead the reader to the new result,
claimed in the final part of the paper, concerning operators with Osgood-continuous
coefficients. This kind of regularity is critical since it is the minimum required
regularity that guarantees uniqueness of the solution and can therefore be considered
as a sort of lower limit. The complete proof of the claim is rather cumbersome and is
not reported here; instead, we provide a detailed discussion on the fact that, although
the core reasoning is based on the theoretical scheme followed to achieve previous
results [3], the modifications needed to obtain an analogous proof in the case of
Osgood coefficients are by no means trivial.
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2 Uniqueness and Non-uniqueness Results

We begin by recalling some results on the uniqueness and non-uniqueness of the
solution of the problem (3). Consider the space

H0 = C([0, T ], L2) ∩ C([0, T [,H 1) ∩ C1([0, T [, L2) . (4)

One of the first results concerning uniqueness is due to Lions and Malgrange [10].
They achieve a uniqueness result for an equation associated with a sesquilinear
operator defined in a Hilbert space. With respect to the space (4), this result can
be read as follows.

Theorem 21 If the coefficients of the principal part of L are Lipschitz continuous
with respect to t and x, if u ∈ H0 and if u0 = 0, then L u = 0 implies u ≡ 0. �
The Lipschitz continuity of the coefficients is a crucial requirement for the claim, as
shown some years later by Pliś [11] in the following theorem.

Theorem 22 There exist u, b1, b2 and c ∈ C∞(R3), bounded with bounded
derivatives and periodic in the space variables and there exist l : [0, T ] → R,
Hölder-continuous of order δ for all δ < 1 but not Lipschitz continuous, such that
1/2 ≤ l(t) ≤ 3/2 and the support of the solution u of the Cauchy problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2
t u(t, x1, x2)+ ∂2

x1
u(t, x1, x2)+ l(t)∂2

x2
u(t, x1, x2)+

+b1(t, x1, x2)∂x1u(t, x1, x2)+ b2(t, x1, x2)∂x2u(t, x1, x2)+
+c(t, x1, x2)u(t, x1, x2) = 0 in R3 ,

u(t, x1, x2)|t=0 = 0 in R

(5)

is the set R×R× {t ≥ 0}. �
Note that the differential operator in (5) is elliptic. However, the same idea
developed by Pliś to prove the claim can be exploited to obtain a counterexample
for the backward parabolic operator

LP = ∂t + ∂2
x1
+ l(t)∂2

x2
+ b1(t, x1, x2)∂x1 + b2(t, x1, x2)∂x2 + c(t, x1, x2) .

Moreover, the result can be extended to the operator L in (1) by considering the
problem solved by u(t, x1, x2)e

−x2
1−x2

2 , thus obtaining the following theorem.

Theorem 23 There exist coefficients ai,j , depending only on t , which are Hölder
continuous of every order but not Lipschitz continuous and there exist u ∈ H0 such
that the solution of problem (3) with u0 = 0 and f = 0 is not identically zero. �
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In view of the previous results, a question naturally arises: which is the minimal
regularity with respect to t (between Lipschitz continuity and Hölder continuity) of
the coefficients of the principal part of L guaranteeing uniqueness of the solution
of (3)? To answer to this question, we recall the definition of modulus of continuity
that can be exploited to measure the degree of regularity of a function.

Definition 24 A modulus of continuity is a function μ : [0, 1] → [0, 1] which is
continuous, increasing, concave and such that μ(0) = 0. A function f : R → R

has regularity μ if

sup
0<|t−s|<1

|f (t)− f (s)|
μ(|t − s|) < +∞ .

The set of all functions having regularity μ is denoted by Cμ.

As particular cases, the Lipschitz continuity, the τ -Hölder continuity (τ ∈]0, 1[)
and the logarithmic Lipschitz (in short Log-Lipschitz) continuity are obtained for
μ(s) = s, μ(s) = sτ and μ(s) = s log(1 + 1/s), respectively.

A further characterization of the modulus of continuity is the Osgood condition
which is crucial in most of the results on uniqueness and continuity that are
described in the rest of the article. A modulus of continuity μ satisfies the Osgood
condition if

∫ 1

0

1

μ(s)
ds = +∞ .

This characterization is used, for instance, in [2] to obtain the following result.

Theorem 25 Le μ be a modulus of continuity that satisfies the Osgood condition.
Let

H1 � H 1([0, T ], L2(Rn)) ∩ L2([0, T ],H 2(Rn)) (6)

and let the coefficients ai,j in (1) be such that, for all i, j = 1, . . . , n,

ai,j ∈ Cμ([0, T ],Cb(R
n)) ∩ C ([0, T ],C 2

b (R
n)) ,

where C 2
b is the space of the bounded functions whose first and second derivatives

are bounded. If u ∈ H1, if L u = 0 on [0, T ] × Rn and if u(0, x) = 0 on Rn, then
u ≡ 0 on [0, T ] ×Rn.

More recently, by using Bony’s para-multiplication, the result has been improved
as far as the regularity with respect to x is concerned, i.e. replacing C 2 regularity
with Lipschitz regularity [4].

Note that the claim of Theorem 25 refers to the function space defined by (6),
however, it is not difficult to extend it to the function space H0 defined by (4).
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3 Conditional Stability Results

As mentioned in the introduction, for Cauchy problems related to the backward
parabolic differential operators, which in general are not well posed, the notion of
continuous dependence from initial data is replaced by the notion of (conditional)
stability which is associated with the property of a problem to be well behaved, as
defined by John [9]. The question about the conditional stability can be stated as
follows. Suppose that two functions u and v, defined in [0, T ] × R

n, are solutions
of the same equation; suppose, in addition, that u and v satisfy a fixed bound in
a space K and that ‖u(0, ·) − v(0, ·)‖H is small (less than some ε). Given these
assumptions can we say something on the quantity supt∈[0,T ′] ‖u(t, ·) − v(t, ·)‖K
for some T ′ < T ? Does it remain small as well (e.g. less than a value related to ε)?
In this section we report some results that give an answer to the above questions.

3.1 Stability with Lipschitz-Continuous (with Respect to t)
Coefficients

One of the first results on conditional stability has been proven by Hurd [8] in the
same theoretical framework considered by Lions and Malgrange.

Theorem 31 Suppose that the coefficients ai,j are Lipschitz continuous in t and in
x. For every T ′ ∈]0, T [ and for every D > 0 there exist ρ > 0, δ ∈]0, 1[ and M > 0
such that if u ∈ H0 is a solution of L u = 0 on [0, T ] with ‖u(t, ·)‖L2 < D on
[0, T ] and ‖u(0, ·)‖L2 < ρ, then

sup
t∈[0,T ′]

‖u(t, ·)‖L2 ≤ M‖u(0, ·)‖δ
L2 . (7)

The constants ρ, δ and M depend only on T ′ and D, on the ellipticity constant of
L , on the L∞ norms of the coefficients ai,j , bj , c and of their spatial derivatives,
and on the Lipschitz constant of the coefficients ai,j with respect to time. �

The result expressed by Eq. (7) implies uniqueness of the solution to the Cauchy
problem, so that a necessary condition to this kind of conditional stability is that the
coefficients ai,j fulfil the Osgood condition with respect to time. Hence a natural
question arises: is Osgood condition also a sufficient condition? Del Santo and
Prizzi [3] have given a negative answer to this question. In particular, mimicking
Pliś counterexample, they have shown that if the coefficients ai,j are not Lipschitz
continuous but only Log-Lipschitz continuous then Hurd’s result does not hold.
Moreover, they have proven that if the coefficients are Log-Lipschitz continuous
then a conditional stability property, although weaker than (7), does hold. More
recently, the result has been further improved [5].
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3.2 Stability with Log-Lipschitz-Continuous (with Respect to t)
Coefficients

As mentioned above, Osgood condition is not a sufficient condition for conditional
stability of the solution. The following paragraph specifies this claim.

3.2.1 Counterexample for the Lipschitz Continuity Case

The counterexample relies on the fact that it is possible [3] to construct

• a sequence {Lk}k∈N of backward uniformly parabolic operators with uniformly
Log-Lipschitz-continuous coefficients (not depending on the space variables) in
the principal part and space-periodic uniformly bounded smooth coefficients in
the lower order terms,

• a sequence {uk}k∈N of space-periodic smooth uniformly bounded solutions of
Lkuk = 0 on [0, 1] ×R2,

• a sequence {tk}k∈N of real numbers, with tk → 0 as k → ∞,

such that

lim
k→∞‖uk(0, ·, ·)‖L2([0,2π]×[0,2π]) = 0

and

lim
k→∞

‖uk(tk, ·, ·)‖L2([0,2π]×[0,2π])
‖uk(0, ·, ·)‖δL2([0,2π]×[0,2π])

= +∞

for every δ > 0. We remark that this situation is exactly what is needed to show that
for backward operators with Log-Lipschitz continuous coefficient a result similar to
Theorem 31 cannot hold.

3.2.2 Stability Result in the Log-Lipschitz Case

In the case of Log-Lipschitz coefficients a result weaker than (7) is valid.
Consider the equation L u = 0 on [0, T ] × Rn and suppose that

1. for all (t, x) ∈ [0, T ] ×R
n and for all i, j = 1, . . . , n, ai,j (t, x) = aj,i (t, x);

2. there exists k > 0 such that, for all (t, x, ξ) ∈ [0, T ] ×R
n × R

n,

k|ξ |2 ≤
n∑

i,j=1

ai,j (t, x)ξiξj ≤ k−1|ξ |2 ;
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3. for all i, j = 1, . . . , n, ai,j ∈ LogLip([0, T ], L∞(Rn)) ∩ L∞([0, T ],C 2
b (R

n)),
in particular

sup
x∈Rn,0<|τ |<1

|ai,j (t + τ, x)− ai,j (t, x)|
|τ |
(

log
(

1 + 1
|τ |
)) < +∞;

4. for all j = 1, . . . , n, bj ∈ L∞([0, T ],C 2
b (R

n));
5. c ∈ L∞([0, T ],C 2

b (R
n)).

Theorem 32 ([3]) Suppose that the above hypotheses 1–5 hold. For all T ′ ∈]0, T [
and for all D > 0 there exist ρ > 0, M > 0, N > 0 and 0 < β < 1 such that, if
u ∈ H0 is a solution of L u = 0 on [0, T ] with

sup
t∈[0,T ]

‖u(t, ·)‖L2 ≤ D

and ‖u(0, ·)‖L2 ≤ ρ, then

sup
t∈[0,T ′]

‖u(t, ·)‖L2 ≤ Me−N | log ‖u(0,·)‖
L2 |β , (8)

where the constants ρ, β, M and N depend only on T ′, on D, on the ellipticity
constant of L , on the L∞ norms of the coefficients ai,j and of their spatial first
derivatives, and on the Log-Lipschitz constant of the coefficients ai,j with respect to
time.

Using Bony’s para-product the result can be extended to the case in which
the coefficients are not necessarily C 2

b -continuous with respect to x but only
Lipschitz [5].

3.3 Stability with Osgood-Continuous (with Respect to Time)
Coefficients

Let us finally come to the new result contained in this paper. As in the previous
section we first present a counterexample to the stability condition (8) and then a
new weaker stability result.

3.3.1 Counterexample for the Log-Lipschitz Case

Consider the modulus of continuity ω defined by

ω(s) = s log

(
1 + 1

s

)
log

(
log

(
1 + 1

s

))
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and note that ω satisfies the Osgood condition but is not Log-Lipschitz continuous.
Analogously to Sect. 3.2.1, it is possible to construct (see [1])

• a sequence {Pk}k∈N of backward uniformly parabolic operators with uniformly
C ω-continuous coefficients (not depending on the space variables) in the princi-
pal part and space-periodic uniformly bounded smooth coefficients in the lower
order terms,

• a sequence {uk}k∈N of space-periodic smooth uniformly bounded solutions of
Lkuk = 0 on [0, 1] ×R2,

• a sequence {tk}k∈N of real numbers, with tk → 0 as k → ∞,

such that

lim
k→∞‖uk(0, ·, ·)‖L2([0,2π]×[0,2π]) = 0

but (8) does not hold for all k; more precisely

lim
k→∞

‖uk(tk, ·, ·)‖L2([0,2π]×[0,2π])
e
−N | log ‖uk(0,·,·)‖L2([0,2π ]×[0,2π ])|δ

= +∞

for every δ > 0.

3.3.2 Stability Result in the Osgood-Continuous Case

Let L be a backward parabolic operator whose coefficients depend only on t , i.e.
let

L u = ∂tu+
n∑

i,j=1

ai,j (t)∂xi ∂xj u+
n∑

j=1

bj (t)∂xj u+ c(t)u

on the strip [0, T ] × Rn. Suppose that ai,j (t) = aj,i (t) for all i, j = 1, . . . , n and
for all t ∈ [0, T ]. Let ai,j , bj , c ∈ L∞([0, T ]), for all i, j = 1, . . . , n. Let μ be a
modulus of continuity satisfying the Osgood condition. Let ai,j C μ-continuous, i.e.

sup
0<|τ |<1

|ai,j (t + τ )− ai,j (t)|
μ(|τ |) < +∞ .

Theorem 33 For all T ′ ∈]0, T [ and for all D > 0 there exist ρ > 0, and there
exists an increasing continuous function Ψ : [0,+∞) → [0,+∞), with Ψ (0) = 0
such that, if u ∈ H0 is a solution of L u = 0 on [0, T ] with ‖u(t, ·)‖L2 ≤ D on
[0, T ] and ‖u(0, ·)‖L2 ≤ ρ, then

sup
t∈[0,T ′]

‖u(t, ·)‖L2 ≤ Ψ (‖u(0, ·)‖L2) . (9)
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The constant ρ and the function Ψ depend only on T ′, on D, on the ellipticity
constant of L , on the L∞ norms of the coefficients ai,j and of their spatial first
derivatives, and on the Osgood constant of the coefficients ai,j . �

3.3.3 Comments on the Result and Its Proof

The complete proof of Theorem 33 is beyond the aims of this paper and is not
reported here. However, to provide the reader with some insights about the proof,
in the following we comment on the analogies and the differences between the new
result and the previous ones [3, 5]. We begin by recalling that Theorem 32 is a
consequence of the “energy” estimate (see Proposition 1 in [3])

∫ s

0
e2γ te−2βφλ((t+τ )/β)‖u(t, ·)‖2

H 1−αt dt ≤

≤ M
(
(s + τ )e2γ se2βφλ((s+τ )/β)‖u(s, ·)‖2

H 1−αs+

+ τφ′
λ(τ/β)e

−2βφλ(τ/β)‖u(0, ·)‖2
L2

)
, (10)

where φλ is the solution of the differential equation

yφ′′
λ(y) = −λφ′

λ(y)(1 + | logφ′(y)|) . (11)

and the constants depend, in particular1 on the Log-Lipschitz constant of the
coefficients ai,j with respect to time. Now, the novelty of Theorem 33 is that the
coefficients ai,j are supposed to be only Osgood-continuous, hence there is no Log-
Lipschitz constant to be taken as a reference. On the other hand, the energy estimate
will necessarily contain information on the modulus of continuity (which is assumed
to verify the Osgood condition). Indeed, the energy estimate is

1

4

(
kA|ξ |2 + γ

) ∫ σ

0
e
(1−αt)|ξ |2ω

(
1

|ξ |2+1

)
e2γ te

−2βφλ

(
t+τ
β

)
|û(t, ξ)|2dt ≤

≤ φ′
λ

(
τ

β

)
τe

|ξ |2ω
(

1
|ξ |2+1

)
e
−2βφλ

(
τ
β

)
|û(0, ξ)|2+

+ (σ + τ )(γ + k−1
A |ξ |2)e2γ σ e

−2βφλ

(
σ+τ
β

)
|û(σ, ξ)|2 , (12)

1They also depend, as specified in the claim of the theorem, on T ′, on D, on the ellipticity constant
of L , on the L∞ norms of the coefficients ai,j and of their spatial first derivatives. The parameter
λ also depends on these quantities.
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where, in particular, û denotes the Fourier transform of u with respect to x, ω is the
modulus of continuity of the coefficients ai,j , kA is the ellipticity constant of the
principal part of L and φλ is now the solution of the differential equation

yφ′′
λ(y) = −λ(φ′

λ(y))
2ω

(
kA

φ′
λ(y)

)
, (13)

where, again, the modulus of continuity appears. By comparing (10)–(11) with (12)–
(13) one can see that Theorem 33 is not a trivial generalization of Theorem 32. In
addition, (12) leads by integrating in ξ to the estimate

sup
z∈[0,σ̄ ]

‖u(z, ·)‖2
H 1

1
2 ,ω

≤ Ce
−σφ′

λ

(
σ+τ
β

) [
φ′
λ

(
τ

β

)
e
−2βφλ

(
τ
β

)
‖u(0, ·)‖2

H 0
1,ω

+ ‖u(σ, ·)‖H 1

]
,

(14)

where, in particular, the function spaces H 1
1
2 ,ω

and H 0
1,ω come into the scene. These

spaces, defined by

‖u‖2
Hd

a,ω
�
∫
Rn

(
1 + |ξ |2

)d
e
a|ξ |2ω

(
1

|ξ |2+1

)
|û(ξ)|2dξ < +∞ ,

are tailored on the modulus of continuity ω and, although comparable with Gevrey–
Sobolev spaces, they do not coincide with any of them.

The final estimate (9), which is written with respect to the L2 norm, can
be obtained from (14) by exploiting the regularizing properties of the (forward)
parabolic operator.
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Self-similar Asymptotic Profile
for a Damped Evolution Equation

Marcello D’Abbicco

Abstract In this note, we describe the self-similar asymptotic profile for evolution
equations with strong, effective damping. We assume that initial data are in weighted
Sobolev spaces, and the second data verifies suitable moment conditions. The
asymptotic profile is obtained by means of the application of a differential operator
given by a linear combination of Riesz potentials to the fundamental solution of a
(polyharmonic) diffusive problem.

1 Introduction

In this note, we consider the Cauchy problem for the strongly damped polyharmonic
evolution equation:

{
utt + (−Δ)m+1u−Δut = 0, t ≥ 0, x ∈ Rn,

(u, ut )(0, x) = (u0, u1)(x), x ∈ Rn,
(1)

with m > 1, in space dimension n ≥ 1, assuming u0 ∈ L1,1 and u1 ∈ L1,3,
where L1,γ is the weighted space defined by:

L1,γ .= L1((1 + |x|)γ dx).

We assume that u1 verifies the moment conditions:

∫
Rn

u1(x) dx = 0,
∫
Rn

xju1(x) dx = 0, j = 1, . . . , n. (2)
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We denote by P0 the moment of u0 and by Pjk the second-order moments of u1:

P0 =
∫
Rn

u0(x) dx, Pjk =
∫
Rn

xjxku1(x) dx, j = 1, . . . , n. (3)

We will show that the asymptotic profile of the solution to (1) is described by:

ϕ(t, x) =
(
P0 + 1

2

n∑
j,k=1

Pjk Rj Rk

)
Gm(t, x), (4)

where Gm is the fundamental solution to the polyharmonic diffusive equation:

{
vt + (−Δ)mv = 0, t ≥ 0, x ∈ Rn,

v(0, x) = v0(x), x ∈ Rn,
(5)

and the operators Rj denote the j -th Riesz transform, that is:

Rjf = −iF−1(|ξ |−1ξj f̂
)
.

Our main result is the following.

Theorem 1 Let u0 ∈ L1,1 ∩ L2 and u1 ∈ L1,3 ∩ L2. Assume that u1 verifies (2).
Then, the solution to (1) satisfies

‖u(t, ·)− ϕ(t, ·)‖L2 ≤ C (1 + t)−
n+2
4m
(‖u0‖L1,1∩L2 + ‖u1‖L1,3∩L2

)
, (6)

for any t ≥ 0, where ϕ is as in (4), exception given for the case n = 1 and m = 2.
In this latter case, (6) is replaced by:

‖u(t, ·)− ϕ(t, ·)‖L2 ≤ C (1 + t)−
1
4
(‖u0‖L1,1∩L2 + ‖u1‖L1,3∩L2

)
. (7)

By Theorem 1, it follows that u(t, ·) ∼ ϕ(t, ·) in L2, provided that ϕ(1, ·) is
nontrivial, due to

‖ϕ(t, ·)‖L2 = t−
n

4m ‖ϕ(1, ·)‖L1 .

Indeed, ϕ(t, x) = t− n
2m ϕ(1, t− 1

2m x). We also recall that the Riesz transform is a
bounded operator in L2.

In order to prove Theorem 1, we will first prove the diffusion phenomenon; that
is, the asymptotic profile of the solution to (1) is described by the solution to (5),
with initial data:

v0 = u0 + I2u1, (8)
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where I2 = (−Δ)−1 is the Riesz potential defined by:

I2f = F−1(|ξ |−2 f̂
)
.

Theorem 2 Let u0 ∈ L1 ∩ L2 and u1 ∈ L1,2 ∩ L2. Assume (2). Then, the solution
to (1) satisfies

‖u(t, ·)− v(t, ·)‖L2 ≤ C (1 + t)−
n−4
4m −1(‖u0‖L1∩L2 + ‖u1‖L1,2∩L2

)
, (9)

for n ≥ 4, or

‖u(t, ·)− v(t, ·)‖L2 ≤ C (1 + t)−
n
4
(‖u0‖L1∩L2 + ‖u1‖L1,2∩L2

)
, (10)

in space dimension n = 1, 2, 3, for any t ≥ 0, where v is the solution to (5) with
initial data as in (8).

The diffusion phenomenon for evolution equations with structural damping, the
asymptotic profile of the solution and the applications of the estimates to study
nonlinear problems have been investigated in a recent series of paper [1–10, 13].
For corresponding results in the case of classical damping, we address the interested
reader to [11, 12, 14, 15].

The novelty of this chapter is that assuming suitable moment conditions for initial
data in weighted L1 spaces, we describe the asymptotic profile of the solution by
means of the application of a differential operator given by a linear combination of
Riesz potentials to the fundamental solution of a (polyharmonic) diffusive problem.

2 Diffusion Phenomenon

We first present a useful lemma.

Lemma 1 Let f ∈ L1,γ , for some positive integer γ . Then,

∣∣∣f̂ (ξ)−
∑

|α|≤γ−1

(−i)|α|
1

α! ξ
α Pα(f )

∣∣∣ ≤ C |ξ |γ ‖f ‖L1,γ ,

where

Pα =
∫
Rn

xαf (x) dx.
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Proof The proof of this lemma follows by the Taylor expansion:

f̂ (ξ) = f̂ (0)+
∑

|α|≤γ−1

1

α! ξ
α(∂α

ξ f̂ )(0)+
∑
|α|=γ

1

α!ξ
α(∂α

ξ f̂ )(η)

=
∑

|α|≤γ−1

(−i)|α| 1

α!ξ
αPα(f )+

∑
|α|=γ

1

α! ξ
α(∂α

ξ f̂ )(η)

for some η with |η| ≤ |ξ |. This concludes the proof. ��
We are now ready to prove Theorem 2.

Proof After applying the Fourier transform with respect to x to (1), we obtain

{
utt + |ξ |2m+2û+ |ξ |2ût = 0, t ≥ 0,

(û, ût )(0, x) = (û0, û1)(ξ).
(11)

For any |ξ | < 4−2m+4, the solution to (11) is given by:

û(t, ξ) = K̂0(t, ξ) û0 + K̂1(t, ξ)û1

where

K̂0 = λ+eλ−t − λ−eλ+t

λ+ − λ−
, K̂1 = eλ+t − eλ−t

λ+ − λ−
, λ± = −|ξ |2 ± |ξ |2

√
1 − 4|ξ |2m−2

2
.

In particular,

λ− = −|ξ |2 + |ξ |2m + |ξ |4m−2 + O(|ξ |6m−4), as ξ → 0,

λ+ = −|ξ |2m − |ξ |4m−2 + O(|ξ |6m−4), as ξ → 0.

Let |ξ | < δ, for a sufficiently small δ > 0. Then,

∣∣∣ eλ+t

λ+ − λ−
− e−|ξ |2mt

|ξ |2
∣∣∣ ≤
∣∣∣eλ+t − e−|ξ |2mt

λ+ − λ−

∣∣∣+
∣∣∣e−|ξ |2mt

( 1

λ+ − λ−
− 1

|ξ |2
)∣∣∣

� e−|ξ |2mt
∣∣∣ t (λ+ − |ξ |2m)

λ+ − λ−

∣∣∣+ e−|ξ |2mt
∣∣∣ 1

λ+ − λ−
− 1

|ξ |2
∣∣∣

� e−|ξ |2mt
(
t|ξ |4m−4 + |ξ |2m−4) � |ξ |2m−4 e−|ξ |2mt .
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On the other hand,

∣∣∣ eλ−t

λ+ − λ−

∣∣∣ ≤
∣∣∣eλ−t − e−t|ξ |2

λ+ − λ−

∣∣∣+ e−t|ξ |2

|λ+ − λ−| � |ξ |−2e−|ξ |2t (t|ξ |2m + 1) � |ξ |−2 e−|ξ |2t .

Similarly, we obtain

∣∣∣−λ−eλ+t

λ+ − λ−
− e−|ξ |2mt

∣∣∣ � |ξ |2m−2 e−|ξ |2mt ,

∣∣∣ λ+eλ−t

λ+ − λ−

∣∣∣ � |ξ |2m−2 e−|ξ |2t

By applying Lemma 1 to f = u1 with γ = 2, we derive

|û(t, ξ)− v̂(t, ξ)| � (|ξ |2m−2 e−|ξ |2mt + e−|ξ |2t)(‖u0‖L1 + ‖u1‖L1,2

)
,

for any |ξ | < δ, with a suitable small δ > 0. By Plancherel’s theorem, using the

change of variable η = t
1

2m ξ , or η = t
1
2 ξ , for t ≥ 1, we obtain

(∫
|ξ |<δ

|û(t, ξ)− v̂(t, ξ)|2 dξ
) 1

2 �
(
t−

n−4
4m −1 + t−

n
4
) (‖u0‖L1 + ‖u1‖L1,2

)
.

On the other hand, for t ∈ [0, 1], we trivially obtain

(∫
|ξ |<δ

|û(t, ξ)− v̂(t, ξ)|2 dξ
) 1

2 �
(‖u0‖L1 + ‖u1‖L1,2

)
.

For |ξ | > δ, it is sufficient to employ

|û(t, ξ)| + |v̂(t, ξ)| � e−ct
(|û0(ξ)| + |û1(ξ)|

)

for some c = c(δ) > 0, together with Plancherel’s theorem, to derive

(∫
|ξ |>δ

(|û(t, ξ)| + |v̂(t, ξ)|)2 dξ) 1
2 � e−ct

(‖u0‖L2 + ‖u1‖L2

)
.

This concludes the proof. ��

3 Asymptotic Profile

In view of Theorem 2, the proof of Theorem 1 follows from

‖v(t, ·) − ϕ(t, ·)‖L2 ≤ C (1 + t)−
n+2
4m
(‖u0‖L1,1∩L2 + ‖u1‖L1,3∩L2

)
. (12)
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Proof Let P0, Pjk be as in (3). We notice that

ϕ̂(t, ξ) = e−t |ξ |2m(P0 − 1

2|ξ |2
∑
j,k

ξj ξk Pjk

)
.

By applying Lemma 1 with f = u0 and γ = 1, and with f = u1 and γ = 3, we
derive

|v̂(t, ξ)− ϕ̂(t, ξ)| � |ξ | e−t |ξ |2m (‖u0‖L1,1 + ‖u1‖L1,3

)
.

By Plancherel’s theorem, using the change of variable η = t
1

2m ξ for t ≥ 1, we
obtain

(∫
Rn

|v̂(t, ξ)− ϕ̂(t, ξ)|2 dξ
) 1

2 � t−
n+2
4m
(‖u0‖L1,1∩L2 + ‖u1‖L1,3∩L2

)
.

On the other hand, for t ∈ [0, 1], we estimate

(∫
|ξ |<1

|v̂(t, ξ)− ϕ̂(t, ξ)|2 dξ
) 1

2 � ‖u0‖L1,1 + ‖u1‖L1,3 ,

and

(∫
|ξ |>1

(|v̂(t, ξ)| + |ϕ̂(t, ξ)|)2 dξ) 1
2 � ‖u0‖L2 + ‖u1‖L2 .

This concludes the proof. ��
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On One Control Problem
for Zakharov–Kuznetsov Equation

Andrei V. Faminskii

Abstract An initial-boundary value problem for Zakharov–Kuznetsov equation
ut +bux+uxxx+uxyy+uux = f0(t)g(t, x, y) posed on a rectangle (0, R)×(0, L)

for t ∈ (0, T ) under certain initial and boundary conditions is considered. Here,
the function f0 is unknown and is referred as a control, and the function g is
given. The problem is to find a pair (f0, u), satisfying the additional condition∫ T

0 u(t, x, y)ω(x, y) dxdy = ϕ(t), where the functions ω, ϕ are given and u is
the solution to the corresponding initial-boundary value problem. It is shown that
under certain smallness assumptions on input data such a pair exists and is unique.
For the corresponding linearized equation, a similar result is obtained without any
smallness assumptions.

In the present chapter, we study control properties of an initial-boundary value
problem for two-dimensional Zakharov–Kuznetsov equation with a special right
side:

ut + bux + uxxx + uxyy + uux = f0(t)g(t, x, y), (1)

u = u(t, x, y), b ∈ R, g is a given function, f0 is an unknown control function,
posed on a rectangle Ω = (0, R) × (0, L) for t ∈ (0, T ) (R, L and T are arbitrary
positive numbers) with an initial condition:

u(0, x, y) = u0(x, y), (x, y) ∈ Ω, (2)

boundary conditions for (t, y) ∈ (0, T )× (0, L):

u(t, 0, y) = u(t, R, y) = ux(t, R, y) = 0 (3)
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and boundary conditions for (t, x) ∈ (0, T ) × (0, R) of one of the following four
types:

whether a) u(t, x, 0) = u(t, x, L) = 0,

or b) uy(t, x, 0) = uy(t, x, L) = 0,

or c) u(t, x, 0) = uy(t, x, L) = 0,

or d) u is an L-periodic function with respect to y.

(4)

We use the notation “problem (1)–(4)” for each of these four cases. The problem is to
find a pair (f0, u), satisfying the additional condition of integral overdetermination:

∫
Ω

u(t, x, y)ω(x, y) dxdy = ϕ(t), (5)

where the functions ω, ϕ are given and u is the solution to the corresponding
problem (1)–(4). The main result of the chapter is that under certain assumptions
(in particular, u0 and ϕ are small) such a pair exists and is unique.

Zakharov–Kuznetsov equation is one of the variants of multi-dimensional gener-
alizations of Korteweg–de Vries equation ut + bux + uxxx + uux = f (t, x) and for
the first time was derived in [1] for description of ion-acoustic waves in magnetized
plasma. Results on global solubility and well-posedness of initial-boundary value
problems, posed on a rectangle, for this equation were established in [2–4].

In [4], a result on boundary controllability for Zakharov–Kuznetsov equation,
posed on a rectangle Ω , with the condition of final overdetermination u(T , x, y) =
uT (x, y) similar to the one for Korteweg–de Vries equation from [5] was obtained.
At the same time, it is shown in the book [6] that control problems with conditions
of integral overdetermination, in particular of the type (5), are also very important
and deserve investigation.

Let Lp = Lp(Ω). In accordance with boundary conditions (3) and (4) for j = 1
and j = 2, introduce special functional spaces H̃ j = H̃ j (Ω) as subspaces of
Hj(Ω), consisting of functions ψ , such that ψ|x=0 = ψ|x=R = 0 in all cases,
ψ|y=0 = ψ|y=L = 0 in the case a), ψy |y=0 = ψy |y=L = 0 for j = 2 in the case
b), ψ|y=0 = 0 and ψy |y=L = 0 for j = 2 in the case c) and ψ|y=0 = ψ|y=L and
ψy |y=0 = ψy |y=L for j = 2 in the case d).

Let QT = (0, T ) × Ω . We consider weak solutions to problem (1)–(4) in the
space:

X(QT ) = C([0, T ];L2) ∩ L2(0, T ; H̃ 1)

(equipped with the natural norm) in the following sense.
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Definition 1 Let u0 ∈ L2, f0g ∈ L1(0, T ;L2). A function u ∈ X(QT ) is called a
weak solution to problem (1)–(4) if for any function φ ∈ L2(0, T ; H̃ 2), such that
φt , φxxx, φxyy ∈ L2(QT ), φ

∣∣
t=T

≡ 0, φx

∣∣
x=0 ≡ 0, the following equality holds:

∫∫∫
QT

[
u(φt+bφx+φxxx+φxyy)+ 1

2
u2φx+f0gφ

]
dxdydt+

∫∫
Ω

u0φ
∣∣
t=0 dxdy = 0.

(6)

In the sequel, we need the following result from [4] on solubility of the initial-
boundary value problem in QT with initial and boundary conditions (2)–(4) for a
linear equation:

ut + bux + uxxx + uxyy = f1(t, x, y)+ f2x(t, x, y). (7)

The notion of a weak solution here is similar to Definition 1.

Theorem 1 Let u0 ∈ L2, f1 ∈ L1(0, T ;L2), f2 ∈ L2(QT ). Then, there exists a
unique solution to problem (7), (2)–(4) u ∈ X(QT ). Moreover, the operator S :
(u0, f1, f2)  → u is continuous in corresponding norms.

Introduce the particular cases of the operator S, defined in the hypothesis of
Theorem 1 and related to solutions of linear equation (7):

S0u0 = S(u0, 0, 0), S1f1 = S(0, f1, 0), S2f2 = S(0, 0, f2).

Remark 1 It is proved in [4] that the initial-boundary value problem for Zakharov–
Kuznetsov equation itself

ut + bux + uxxx + uxyy + uux = f (t, x, y) (8)

with initial and boundary conditions (2)–(4) for u0 ∈ L2, f ∈ L1(0, T ;L2) is
globally well-posed in the space X(QT ). Moreover, such a result is established there
in the case of non-homogeneous boundary conditions (3). In this chapter, we use this
result further only in the part concerning continuous dependence of solutions.

Further, we always assume that

ω ∈ H̃ 2, ωxxx, ωxyy ∈ L2, ωx

∣∣
x=0 ≡ 0 (9)

and

g ∈ C([0, T ];L2),

∣∣∣
∫∫

Ω

g(t, x, y)ω(x, y) dxdy

∣∣∣ ≥ g0 = const > 0 ∀t ∈ [0, T ].
(10)

The main result of the chapter is the following theorem.
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Theorem 2 Let assumptions (9), (10) be satisfied, u0 ∈ L2, ϕ ∈ W 1
p(0, T ) for

certain p ∈ [1,+∞] and

ϕ(0) =
∫∫

Ω

u0(x, y)ω(x, y) dxdy. (11)

Let

c0 = ‖u0‖L2 + ‖ϕ′‖L1(0,T ). (12)

Then, there exists δ > 0, such that if c0 ≤ δ there exist a unique function f0 ∈
Lp(0, T ) and the corresponding unique solution u ∈ X(QT ) to problem (1)–(4),
verifying (5).

The proof of this result is presented further. First of all, we establish certain
auxiliary linear results.

For p ∈ [1,+∞], let W̃ 1
p(0, T ) = {ϕ ∈ W 1

p(0, T ) : ϕ(0) = 0} (obviously the

equivalent norm in W̃ 1
p(0, T ) is ‖ϕ′‖Lp(0,T )). On the space of functions u(t, x, y) ∈

L1(Ω) ∀t ∈ [0, T ], define the following linear operator Q:

(Qu)(t) = q(t) ≡
∫∫

Ω

u(t, x, y)ω(x, y) dxdy, t ∈ [0, T ].

Lemma 1 Let the hypothesis of Theorem 1 be satisfied and, in addition, f1 ∈
Lp(0, T ;L2), f2 ∈ Lp(0, T ;L1) for certain p ∈ [1,+∞]. Then for the function
u = S(u0, f1, f2) and the function ω, satisfying (9), the corresponding function
q = Qu ∈ W 1

p(0, T ) and for a.e. t ∈ (0, T ):

q ′(t) =
∫∫

Ω

[
u(bωx + ωxxx + ωxyy)+ f1ω − f2ωx

]
dxdy. (13)

Moreover,

‖q ′‖Lp(0,T ) ≤ c(T )
(‖u0‖L2 + ‖f1‖Lp(0,T ;L2) + ‖f2‖L2(QT ) + ‖f2‖Lp(0,T ;L1)

)
.

(14)

Proof For an arbitrary function ν ∈ C∞
0 (0, T ), let φ(t, x, y) ≡ ν(t)ω(x, y). This

function verifies the hypothesis of Definition 1 and according to the corresponding
analog of (6):

∫ T

0
ν′(t)q(t) dt = −

∫ T

0
ν(t)r(t) dt
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for r(t) equal to the right side of (13). In particular, q ′(t) = r(t) (in the sense of
distributions). Note that ωx ∈ L∞. Therefore,

|r(t)| ≤ c
(‖u(t, ·, ·)‖L2 + ‖f1(t, ·, ·)‖L2 + ‖f2(t, ·, ·)‖L1

)
.

Theorem 1 yields that

‖u‖C([0,T ];L2) ≤ c
(‖u0‖L2 + ‖f1‖L1(0,T ;L2) + ‖f2‖L2(QT )

)
.

As a result, r ∈ Lp(0, T ) and can be estimated by the right side of (14). ��
Lemma 2 Let u = S1f1 for f1 ∈ L1(0, T ;L2), then for t ∈ [0, T ]:

∫∫
Ω

u2(t, x, y) dxdy ≤ 2
∫ t

0

∫∫
Ω

f1u dxdydτ. (15)

Proof For smooth solutions (see [4]), multiplying the corresponding Eq. (7) by
2u(t, x, y) and integrating yield:

d

dt

∫∫
Ω

u2 dxdy +
∫ L

0
u2
x

∣∣
x=0 dy = 2

∫∫
Ω

f1u dxdy,

whence (15) obviously follows. The general case is obtained via closure. ��
The next assertion is crucial for our study.

Lemma 3 Let assumptions (9), (10) be satisfied, ϕ ∈ W̃ 1
p(0, T ) for certain p ∈

[1,+∞]. Then, there exists a unique function f0 = Γ ϕ, such that the function
u = S1(f0g) verifies (5). Moreover, the linear operator Γ : W̃ 1

p(0, T ) → Lp(0, T )

is bounded.

Proof For any function f0, defined on (0, T ), we set Gf0 ≡ f0g. On the space
Lp(0, T ), we define a linear operator Λ = Q ◦ S1 ◦G. Then according to Lemma 1
and continuity of the operator S1 (in particular, as the operator from L1(0, T ;L2)

into C([0, T ];L2)), the operator Λ maps Lp(0, T ) into W̃ 1
p(0, T ) and is bounded.

Note that an equality ϕ = Λf0 for f0 ∈ Lp(0, T ) is obviously equal to the fact
that the function f0 is the desired control function. Let

g1(t) ≡
∫∫

Ω

g(t, x, y)ω(x, y) dxdy, |g1(t)| ≥ g0. (16)

Following the ideas from [6], introduce an operator A : Lp(0, T ) → Lp(0, T ) in
the following way:

(Af0)(t) ≡ ϕ′(t)
g1(t)

− 1

g1(t)

∫∫
Ω

u(t, x, y)(bωx+ωxxx+ωxyy) dxdy, u = (S1◦G)f0.
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It is easy to see that equality (13) ensures that ϕ = Λf0 iff f0 = Af0. Now, we show
that the operator A is a contraction in Lp(0, T ), if we choose a special norm in this
space.

Let f01, f02 ∈ Lp(0, T ), uj = (S1◦G)f0j , then according to (15) for t ∈ [0, T ]:

‖u1(t, ·, ·)− u2(t, ·, ·)‖L2 ≤ 2‖g‖C([0,T ];L2)‖f01 − f02‖L1(0,t ).

Let γ > 0, then for p < +∞:

‖e−γ t (Af01 − Af02)‖Lp(0,T )

≤ 1

g0

(|b|‖ωx‖L2 + ‖ωxxx‖L2 + ‖ωxyy‖L2

)(∫ T

0
e−pγ t‖u1 − u2‖pL2

dt
)1/p

≤ c
[∫ T

0
e−pγ t

∫ t

0
|f01(τ )− f02(τ )|p dτdt

]1/p

≤ c

(pγ )1/p
‖e−γ t (f01 − f02)‖Lp(0,T ),

while for p = +∞:

‖e−γ t (Af01 − Af02)‖L∞(0,T )

≤ 1

g0

(|b|‖ωx‖L2 + ‖ωxxx‖L2 + ‖ωxyy‖L2

)
sup

t∈[0,T ]
e−γ t‖u1 − u2‖L2

≤ c sup
t∈[0,T ]

e−γ t‖f01 − f02‖L1(0,t ) ≤
c

γ
‖e−γ t (f01 − f02)‖L∞(0,T ),

where the constants c are independent on γ . Thus, in both cases for sufficiently large
γ the operator A is a contraction and, therefore, for any function ϕ ∈ W̃ 1

p(0, T ) there
exists a unique function f0 ∈ Lp(0, T ), verifying f0 = Af0, that is ϕ = Λf0. It
means that the operator Λ is invertible; moreover according to Banach theorem, the
inverse operator Γ = Λ−1 : W̃ 1

p(0, T ) → Lp(0, T ) is bounded. In particular,

‖Γ ϕ‖Lp(0,T ) ≤ c(T )‖ϕ′‖Lp(0,T ). (17)

��
Now, we can formulate a result on control properties in the linear case.

Theorem 3 Let assumptions (9), (10) be satisfied, u0 ∈ L2, f2 ∈ Lp(0, T ;L1) ∩
L2(QT ), ϕ ∈ W 1

p(0, T ) for certain p ∈ [1,+∞] and equality (11) holds true.
Then, there exists a unique function f0 ∈ Lp(0, T ), such that the function u =
S(u0, f0g, f2) verifies (5).
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Proof Let

ϕ̃ ≡ ϕ −Q(S0u0 + S2f2).

By virtue of Lemma 1 and equality (11), the function ϕ̃ ∈ W̃ 1
p(0, T ). Then,

Lemma 3 provides that f0 = Γ ϕ̃ is the desired control. In particular, note that
the function u = S(u0, f0g, f2) can be expressed by the formula:

u = S0u0 + (S1 ◦G ◦ Γ )(ϕ −Q(S0u0 + S2f2))+ S2f2. (18)

Uniqueness of the function f0 also follows from Lemma 3. ��
Now, we can pass to the proof of the main result.

Proof (Proof of Theorem 2) For an arbitrary function v ∈ X(QT ), let f2 ≡ −v2/2.
It is obvious that f2 ∈ C([0, T ], L1). Next, the following interpolating inequality
from [7]: for ψ ∈ H 1

‖ψ‖L4 ≤ c‖ψ‖1/2
H 1 ‖ψ‖1/2

L2
,

provides that

‖v2‖L2(QT ) ≤ c‖v‖C([0,T ];L2)‖v‖L2(0,T ;H 1) ≤ c‖v‖2
X(QT )

. (19)

In particular, the hypothesis of Theorem 3 (for such function f2) is satisfied.
On the space X(QT ), consider a map:

u = Θv ≡ S0u0 + (S1 ◦G ◦ Γ )
(
ϕ −Q(S0u0 − S2(v

2/2))
)− S2(v

2/2).

Note that if q(t) ≡ Q(S0u0 − S2(v
2/2)), then according to Lemma 1 and (19):

‖q ′‖L∞(0,T ) ≤ c(T )
(‖u0‖L2 + ‖v‖2

X(QT )

)
.

Moreover, q(0) = ϕ(0). Therefore, the map Θ is well-defined and by virtue of
Theorem 1 and Lemma 3:

‖Θv‖X(QT ) ≤ c(T )
(
c0 + ‖v‖2

X(QT )

)
,

‖Θv1 −Θv2‖X(QT ) ≤ c(T )
(‖v1‖X(QT ) + ‖v2‖X(QT )

)‖v1 − v2‖X(QT ).

Choose

r = 1

4c(T )
, δ = 1

8c2(T )
,
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then c(T )δ ≤ r/2, c(T )r ≤ 1/4 and for c0 ≤ δ the map Θ is a contraction on the
ball Ur(0) in X(QT ). Theorem 3 provides that the unique fixed point u = Θu ∈
X(QT ) verifies (1)–(5) for f0 ≡ Γ

(
ϕ −Q(S0u0 − S2(u

2/2))
) ∈ Lp(0, T ).

In order to prove global uniqueness, we apply the following continuous depen-
dence result from [4]: if u, ũ ∈ X(QT ) are weak solutions to initial-boundary value
problems for Eq. (8) with right sides f, f̃ ∈ L1(0, T ;L2) and the same initial-
boundary conditions (2)–(4), then

‖u− ũ‖X(QT ) ≤ c‖f − f̃ ‖L1(0,T ;L2), (20)

where the constant c depends on T and the norms of u, ũ in X(QT ) and does not
decrease with respect to them.

Let two pairs (f01, u1), (f02, u2) ∈ L1(0, T ) × X(QT ) solve the same prob-
lem (1)–(5). Applying Lemma 1 for u ≡ u1 − u2, f1 ≡ (f01 − f02)g, f2 ≡
−(u2

1 − u2
2)/2, we derive from (13), that for t ∈ [0, T ]:

∫∫
Ω

[
(u1 −u2)(bωx +ωxxx +ωxyy)+ (f01 −f02)gω+ (u2

1 −u2
2)ωx/2

]
dxdy = 0.

With the use of (16) and (20), this equality yields that

(
f01(t)−f02(t)

)
g1(t) = −

∫∫
Ω

(u1−u2)
(
bωx+ωxxx+ωxyy+(u1+u2)ωx/2

)
dxdy

and so,

∣∣f01(t)− f02(t)
∣∣ ≤ c

g0
‖u1(t, ·, ·)− u1(t, ·, ·)‖L2 ≤ c1‖f01 − f02‖L1(0,t ),

where the constant c1 is uniform with respect to t . Therefore, for any t0 ∈ (0, T ]:

‖f01 − f02‖L1(0,t0) ≤ c1t0‖f01 − f02‖L1(0,t0).

As a result, f01(t) = f02(t) for t ∈ [0, 1/(2c1)] and, therefore, u1 = u2 in Qt0 .
Transferring the time origin to the point t0, we obtain the same result for t ∈ [t0, 2t0]
and so on. ��
Remark 2 In the case p = +∞ in Theorems 2 and 3, the spaces Lp(0, T ;L1),
W

p

1 (0, T ) and Lp(0, T ) can be simultaneously substituted by C([0, T ];L1),
C1[0, T ] and C[0, T ].
Remark 3 The corresponding control results, similar to Theorems 2 and 3, can be
obtained also under non-homogeneous boundary data (3).
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The Self-interacting Scalar Field
Propagating in FLRW Model
of the Contracting Universe

Anahit Galstian and Karen Yagdjian

Abstract We present a condition on the self-interaction term that guaranties the
existence of the global-in-time solution of the Cauchy problem for the semilinear
Klein–Gordon equation in the FLRW model of the contracting universe. For the
equation with the Higgs potential, we give an estimate for the lifespan of solution.

1 Introduction and Statement of Results

In the present chapter, we prove the global-in-time existence of the solutions of
the Cauchy problem for the semilinear Klein–Gordon equation in the FLRW
(Friedmann–Lemaître–Robertson–Walker) space–time of the contracting universe
for the self-interacting scalar field.

The metric g in the FLRW space–time of the contracting universe in the
Lamaître–Robertson coordinates (see, e.g., [10]) is defined as follows, g00 =
g00 = −1, g0j = g0j = 0, gij (x, t) = e−2tσij (x), i, j = 1, 2, . . . , n, where∑n

j=1 σ
ij (x)σjk(x) = δik , and δij is Kronecker’s delta. The metric σ ij (x) describes

the time slices. The covariant Klein–Gordon equation in that space–time in the
coordinates is

ψtt − e2t

√| detσ(x)|
n∑

i,j=1

∂

∂xi

(√| detσ(x)|σ ij (x)
∂

∂xj
ψ

)
− nψt +m2ψ = F(ψ) .

(1.1)

It is obvious that the properties of this equation and of its solutions are not time
invertible. In the present chapter, we are interested in the Cauchy problem, which,
in fact, is not equivalent to the time backward problem for the equation with the
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reflected time t → −t:

ψtt − e−2t

√| detσ(x)|
n∑

i,j=1

∂

∂xi

(√| detσ(x)|σ ij (x)
∂

∂xj
ψ

)
+ nψt +m2ψ = F(ψ) .

(1.2)

The last equation is the semilinear Klein–Gordon equation in the de Sitter space–
time. Equation (1.2) is well investigated, and the conditions for the existence of
small data global-in-time solutions for some important σ are discovered [1, 2, 5–
8, 11, 18, 19].

Equation (1.1) is a special case of the equation:

ψtt − e2tA(x, ∂x)ψ − nψt +m2ψ = F(ψ) , (1.3)

where A(x, ∂x) = ∑
|α|≤2 aα(x)∂

α
x is a second-order elliptic partial differential

operator. We also assume that the mass m can be a complex number, m2 ∈ C.
In the present chapter, we study also the class of equations containing, in

particular, the Higgs boson equation with the Higgs potential, that is the equation:

ψtt − e2tA(x,D)ψ − nψt = μ2ψ − λψ3, (1.4)

with λ > 0 and μ > 0, while n = 3.
To formulate the main theorem of this chapter, we need a characterization of the

nonlinear term F . We want to stress here that the explicit form of F is not used
merely. There are estimates of the form ‖F(ψ)‖X < C‖ψ‖α

X′ ‖ψ‖X′ ′ , for some
function spaces X, X′, and X′′. Furthermore, since we prove that for small data the
solution is bounded in Lp′

-norm, we are only concerned with the behavior of F at
the origin. Let Bs,q

p denote the Besov space.

Condition (L ) The smooth in x function F = F(x,ψ) is said to be Lipschitz
continuous with exponent α ≥ 0 in the space B

s,q
p if there is a constant C ≥ 0

such that

‖F(x,ψ1(x))− F(x,ψ2(x))‖Bs,q
p

≤ C‖ψ1 − ψ2‖Bs,q

p′

(
‖ψ1‖αBs,q

p′
+ ‖ψ2‖αBs,q

p′

)

for all ψ1, ψ2 ∈ B
s,q

p′ , where 1/p + 1/p′ = 1.

The polynomial in ψ functions F(x,ψ) = ±|ψ|α+1 and F(ψ) = ±|ψ|αψ
are important examples of the Lipschitz continuous with exponent α > 0 in the
Lebesgue spaces Lp(Rn) and the Sobolev space H(s)(R

n), s > n/2, functions.
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Define also the metric space:

X(R,B
s,q
p , γ ) :=

{
ψ ∈ C([0,∞);Bs,q

p

∣∣∣ ‖ ψ ‖X:= sup
t∈[0,∞)

eγ t ‖ ψ(x, t) ‖Bs,q
p

≤ R

}
,

where γ ∈ R, with the metric d(ψ1, ψ2) := supt∈[0,∞) e
γ t ‖ ψ1(x, t) −

ψ2(x, t) ‖Bs,q
p

.
We study the Cauchy problem through the integral equation. To determine that

integral equation, we appeal to the operator:

G := K ◦ E E

(E E stands for the evolution equation) that is designed as follows. For the function
f (x, t), we define

v(x, t; b) := E E [f ](x, t; b) ,

where the function v(x, t; b) is a solution to the Cauchy problem:

∂2
t v − A(x,D)v = 0, x ∈ R

n, t ≥ 0, (1.5)

v(x, 0; b) = f (x, b) , vt (x, 0; b) = 0 , x ∈ R
n , (1.6)

while the integral transform K is introduced by:

K [v](x, t) := 2e
n
2 t

∫ t

0
db

∫ et−eb

0
dr e−

n
2 bv(x, r; b)E(r, t; 0, b;M) .

Here, the principal square root M := (n2/4 − m2)
1
2 is the main parameter that

controls estimates and solvability of the integral equation. The last will be obtained
by means of the integral transform. The kernel E(r, t; 0, b;M) was introduced in
[16, 20] (see also (2.2)). Hence,

G[f ](x, t) = 2e
n
2 t

∫ t

0
db

∫ et−eb

0
dr e−

n
2 b E E [f ](x, r; b)E(r, t; 0, b;M) .

Obviously, the Cauchy problem for Eq. (1.3) leads to the following integral equa-
tion:

Φ(x, t) = Φ0(x, t)+G[e−Γ ·F(·,Φ)](x, t) (1.7)

where Γ = 0. Φ0 is generated by the initial value problem (1.8), (1.9) with F ≡ 0 .
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We define the solution of the Cauchy problem through the last integral equation.
For the real numbers γ and Γ , we define

I (t) := et(
n
2 +�M+γ )

∫ t

0
e−( n2 +�M+γ (α+1)+Γ )b db .

The main result of this chapter is the following theorem. The next theorem states
the existence of global-in-time solution for small initial data in Sobolev spaces.

Theorem 1 Assume that A(x, ∂x) is the Laplace operator on Rn, and the nonlinear
term F(Φ) is Lipschitz continuous in the space H(s)(R

n), s > n/2 ≥ 1,
F(x, 0) ≡ 0, and α > 0.
(GS) Assume also that �M > 0 and that M = �M if �M = 1/2, one of the
following three conditions is fulfilled:

(i)
n

2
+�M + γ (α + 1)+ Γ > 0,

n

2
+ max{1

2
,�M} + γ ≤ 0,

(ii)
n

2
+�M + γ (α + 1)+ Γ = 0,

n

2
+ max{1

2
,�M} + γ < 0,

(iii)
n

2
+�M + γ (α + 1)+ Γ < 0,

n

2
+ max{1

2
,�M} + γ ≤ 0, γ α + Γ ≥ 0.

Then, there exists ε0 > 0 such that, for every given functions ϕ0, ϕ1 ∈ H(s)(R
n),

satisfying estimate:

‖ϕ0‖H(s)(R
n) + ‖ϕ1‖H(s)(R

n) ≤ ε, ε < ε0 ,

there exists a solution Φ ∈ C([0,∞);H(s)(R
n)) of the Cauchy problem:

Φtt − nΦt − e2tA(x, ∂x)Φ +m2Φ = e−Γ tF (x,Φ) , (1.8)

Φ(x, 0) = ϕ0(x) , Φt (x, 0) = ϕ1(x) . (1.9)

The solution Φ(x, t) belongs to the space X(2ε,H(s)(R
n), γ ), that is:

sup
t∈[0,∞)

eγ t‖Φ(·, t)‖H(s)(R
n) ≤ 2ε .

(LS) If �M > 0, n
2 + max{ 1

2 ,�M} + γ ≤ 0, and neither of the three conditions
(i)–(iii) is fulfilled, then the lifespan Tls of the solution can be estimated from below
as follows:

Tls ≥ I
(
C0(M, n, α, γ, Γ )−1 (‖ϕ0‖H(s)(R

n) + ‖ϕ1‖H(s)(R
n)

)−α
)
.

with some constant C0(M, n, α, γ, Γ ) when ‖ϕ0‖H(s)(R
n) + ‖ϕ1‖H(s)(R

n) is suffi-
ciently small. Here, I is the function inverse to I = I (t).
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The theorem covers the equations with F(Φ) = ±|Φ|α+1 and F(Φ) = ±|Φ|αΦ.
The last theorem implies also the existence of the energy class solution. The
sharpness of the condition on α is an interesting open problem that will not be
discussed here. In particular, the theorem states an estimate for the lifespan Tls of
the solution of the Higgs boson equation (1.4) in the contracting universe.

In order to prove theorem, we establish the estimates in the Besov spaces for the
linear equation. For the equation without source term, these estimates for large time
t imply the limitation for the rate of growth as follows:

‖Φ(x, t)‖X′ ≤ ‖ϕ0‖Xe(
n
2 +a+�M)t

{
1 if �M > 1/2

tsgn|�M| + e(
1
2−�M)t if �M ≤ 1/2

+‖ϕ1‖Xe(
n
2 +a+�M)t ,

where if X = B
s,q
p , then X′ = B

s ′,q
p′ , a := s−s′ −2n (1/p − 1/2), 1/p+1/p′ = 1,

while X′ = Lp′
if X = Lp. In the case of Sobolev spaces, X = X′ = H(s)(R

n),
p = 2.

The integral transform K allows us to avoid consideration in the phase space
and to apply immediately the well-known decay estimates for the solution of the
wave equation (operator E E ) (see, e.g., [3]).

Ebert and do Nascimento [4] study the long-time behavior of the energy of
solutions for a class of linear equations with time-dependent mass and speed of
propagation. They introduce a classification of the potential term, which clarifies
whether the solution behaves like the solution to the wave equation or Klein–Gordon
equation. For the equation:

utt − e2tΔu+m2u = |u|p,

with n ≤ 4, m > 0, 2 ≤ p ≤ n
[n−2]+ they establish the existence of energy class

solution for small data. Their proof is based on the splitting of the phase space into
pseudo-differential and hyperbolic zones. That method of zones was invented for the
hyperbolic operators with multiple characteristics (see [15]) and then modified and
successfully used to study equations in the unbounded time domain (see [9, 12–14],
and references therein).

In the next section, we will give outline of the proof of Theorem 1. The complete
proof and sharpness of the obtained results will be published in the forthcoming
paper.
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2 Outline of the Proof of Theorem 1

The following partial Liouville transform (change of unknown function) u =
e− n

2 tψ , ψ = e
n
2 tu, eliminates the term with time derivative of Eq. (1.8). We obtain

utt − e2tA(x, ∂x)u+
(
m2 − n2

4

)
u = e(−

n
2 −Γ )tF (e

n
2 tu) ,

which can be written as follows:

utt − e2tA(x, ∂x)u−M2u = e(−
n
2 −Γ )tF (e

n
2 tu) ,

where M = (n2 − 4m2
) 1

2 /2. We consider the linear part of the equation:

utt − e2tA(x,D)u−M2u = −e−
n
2 tV ′(e

n
2 tu), (2.1)

with M ∈ C. Equation (2.1) covers two important cases. The first one is the Higgs
boson equation, which has V ′(φ) = λφ3 and M2 = n2/4 + μ2 with λ > 0, μ > 0,
and n = 3. This includes also equation of tachyonic scalar fields living on the
de Sitter universe. The second case is the case of the small physical mass (the light
scalar field), that is 0 ≤ m ≤ n

2 . For the last case, M = √
n2 − 4m2/2.

We introduce the kernel functions E(x, t; x0, t0;M), K0(z, t;M), and
K1(z, t;M) (see also [16, 20]). First, for M ∈ C we define the function:

E(x, t; x0, t0;M) = 4−Me−M(t0+t )
(
(et + et0)2 − (x − x0)

2
)− 1

2+M

(2.2)

×F
(1

2
−M,

1

2
−M; 1; (e

t − et0)2 − (x − x0)
2

(et + et0)2 − (x − x0)2

)
.

Next, we define also the kernels K0(z, t;M) and K1(z, t;M) by:

K0(z, t;M) := −
[

∂

∂b
E(z, t; 0, b;M)

]
b=0

and K1(z, t;M) := E(z, t; 0, 0;M) .

The solution u = u(x, t) to the Cauchy problem:

utt − e2tA(x,D)u−M2u = f, u(x, 0) = ϕ0(x) , ut (x, 0) = ϕ1(x) ,
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with f ∈ C∞(Rn+1) and with ϕ0, ϕ1 ∈ C∞
0 (Rn), n ≥ 2, is given in [17] by the

next expression:

u(x, t) = 2
∫ t

0
db

∫ et−eb

0
dr v(x, r; b)E(r, t; 0, b;M) (2.3)

+e−
t
2 vϕ0(x, φ(t))+ 2

∫ 1

0
vϕ0(x, φ(t)s)K0(φ(t)s, t;M)φ(t) ds

+ 2
∫ 1

0
vϕ1(x, φ(t)s)K1(φ(t)s, t;M)φ(t) ds, x ∈ R

n, t > 0 ,

where the function v(x, t; b) is a solution to the Cauchy problem (1.5) and (1.6),
while φ(t) := et − 1. Here, for ϕ ∈ C∞

0 (Rn) and for x ∈ Rn, the function
vϕ(x, φ(t)s) coincides with the value v(x, φ(t)s) of the solution v(x, t) of the
Cauchy problem for Eq. (1.5) with the first initial datum ϕ(x), while the second
datum is zero. Thus, for the solution Φ of the Cauchy problem:

Φtt − nΦt − e2t *Φ +m2Φ = f, Φ(x, 0) = ϕ0(x), Φt (x, 0) = ϕ1(x),

due to the relation u = e− n
2 tΦ, we obtain from (2.3)

Φ(x, t) = 2e
n
2 t

∫ t

0
db

∫ et−eb

0
dr e− n

2 bv(x, r; b)E(r, t; 0, b;M)+ e
n−1

2 t vϕ0 (x, φ(t))

+ e
n
2 t

∫ 1

0
vϕ0 (x, φ(t)s)

(
2K0(φ(t)s, t;M)− nK1(φ(t)s, t;M)

)
φ(t) ds

+ 2e
n
2 t
∫ 1

0
vϕ1 (x, φ(t)s)K1(φ(t)s, t;M)φ(t) ds, x ∈ R

n, t > 0 ,

where the function v(x, t; b) is a solution to the Cauchy problem (1.5) and (1.6),
while the function vϕ(x, φ(t)s) coincides with the value v(x, φ(t)s) of the solution
v(x, t) of the Cauchy problem for Eq. (1.5) with the initial datum ϕ(x), while the
second datum is zero.

B
s,q
p − B

s ′,q
p′ Estimates for Equation Without Source Let ϕj = ϕ(2−j ξ), j > 0,

and ϕ0 = 1 −∑∞
j=1 ϕj , where ϕ ∈ C∞

0 (Rn) with ϕ ≥ 0 and supp ϕ ⊆ {ξ ∈
Rn ; 1/2 < |ξ | < 2}, is that

∑∞
−∞ ϕ(2−j ξ) = 1, ξ �= 0 . The norm ‖g‖Bs,q

p
of the

Besov space B
s,q
p is defined as follows

‖v‖Bs,q
p

=
(∑∞

j=0

(
2js‖F−1

(
ϕj v̂
) ‖p)q

)1/q
, where v̂ is the Fourier transform of v.

Theorem 2 Assume that A(x, ∂x) is the Laplace operator on Rn and that s, s′ ≥ 0,
q ≥ 1, 1 ≤ p ≤ 2, 1/p + 1/p′ = 1, and δ = 1/p − 1/2, (n + 1)δ ≤ s − s′,
−1 < s − s′ − 2nδ. Denote a := s − s′ − 2nδ. The solution Φ = Φ(x, t) of the
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Cauchy problem:

Φtt − nΦt − e2tA(x,D)Φ +m2Φ = 0 , Φ(x, 0) = ϕ0(x) , Φt (x, 0) = ϕ1(x) ,

(2.4)

with �M > 0 satisfies the following estimate:

‖Φ(x, t)‖
B

s′ ,q
p′

� ‖ϕ0‖Bs,q
p

e
n
2 t

(
e−

1
2 t (et − 1)a + (et − 1)a+1

[
e−�Mt(et + 1)2�M−1

+(et + 1)�M−1

{
1 if �M > 1/2

t1−sgn| 1
2−�M| + e(

1
2−�M)t if �M ≤ 1/2

])

+‖ϕ1‖Bs,q
p

e
n
2 t e−�Mt(et − 1)a+1(et + 1)2�M−1, for all t > 0.

Corollary 1 For large t , the solution Φ = Φ(x, t) of the Cauchy problem (2.4)
satisfies the following estimate:

‖Φ(x, t)‖
B

s′ ,q
p′

� ‖ϕ0‖Bs,q
p

e(
n
2 +a+�M)t

{
1 if �M > 1/2

t1−sgn| 1
2−�M| + e(

1
2−�M)t if �M ≤ 1/2

+‖ϕ1‖Bs,q
p

e(
n
2 +a+�M)t , for all t ∈ (1,∞),

‖Φ(x, t)‖
B

s′ ,q
p′

� ta‖ϕ0‖Bs,q
p

+ ta+1‖ϕ1‖Bs,q
p

for all t ∈ (0, 1) .

B
s,q
p − B

s ′,q
p′ Estimates for Equation with Source

Theorem 3 Let Φ = Φ(x, t) be a solution of the Cauchy problem:

Φtt + nΦt − e2t *Φ +m2Φ = f , Φ(x, 0) = 0 , Φt (x, 0) = 0 .

Then, solution Φ = Φ(x, t) for �M > 0 satisfies the following estimate:

‖Φ(x, t)‖
B

s′ ,q
p′

≤ CMe
t
(
n
2 +�M+s−s ′−n

(
1
p− 1

p′
))

×
∫ t

0
e−( n2 +�M)b‖f (x, b)‖Bs,q

p
db .

for all t > 0, provided that s, s′ ≥ 0, q ≥ 1, 1 ≤ p ≤ 2, 1/p + 1/p′ = 1, and
δ = 1/p − 1/2, (n+ 1)δ ≤ s − s′, −1 < s − s′ − 2nδ.

In order to complete the proof of Theorem 1, we appeal to the integral
equation (1.7). Using Theorems 2 and 3 and Banach fixed-point theorem, we prove
the existence of a unique solution of the integral equation (1.7) and obtain an
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estimate of the lifespan. Assumptions (i)–(iii) imply that corresponding operator
is a contraction, and thus Banach fixed-point theorem is applicable.
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On the Energy Estimate
for Klein–Gordon-Type Equations
with Time-Dependent Singular Mass

Fumihiko Hirosawa

Abstract We consider the energy estimate of the solution to the Cauchy problem
of Klein–Gordon-type equation with time-dependent mass M(t), in particular M(t)

has a singularity. The main purpose of this chapter is to give sufficient conditions to
M(t) for the energy to be asymptotically stable.

1 Introduction

The energy conservation is a typical property for the wave equation, and it is a
natural question whether a similar kind of property holds or not for some perturbed
equations. We consider the following backward Cauchy problem of the wave
equation with a mass term; we shall call such an equation Klein–Gordon-type
equation:

{
∂2
t u−Δu+M(t)u = 0, (t, x) ∈ (0, T )× Rn,

u(T , x) = u0(x), ∂tu(T , x) = u1(x), x ∈ Rn,
(1)

where T is a positive constant, Δ = ∑n
j=1 ∂2

xj
, and M(t) is a real-valued function

defined on (0, T ].
For μ ∈ L∞((0, T )) ∩ C1((0, T ]), we define V = V (t, ξ;μ(t)) by:

V (t, ξ;μ(t)) := t
(
i|ξ |μ(t)û(t, ξ), ∂t (μ(t)û(t, ξ))

)
, (2)

where f̂ (ξ) denotes the partial Fourier transform of f (x) with respect to x. Let
E(t, ξ) be the operator providing

E(t, ξ)V (T , ξ;μ(T )) = V (t, ξ;μ(t)). (3)
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If M(t) ≡ 0, then E(t, ξ) is a unitary matrix on C
2 with μ(t) ≡ 1; hence, the energy

conservation ‖V (T , ·; 1)‖L2 ≡ ‖V (t, ·; 1)‖L2 is established by Parseval’s theorem.
If M(t) �≡ 0, then one cannot expect the unitarity of E(t, ξ) in general, but some
estimates which ensure an equivalence of V (t, ξ;μ(t)) and V (T , ξ;μ(T )), such as
the generalized energy conservation (cf. [1, 5]), are possible to be established. In
this chapter, we shall consider the following estimates:

0 < inf
Y∈C2\{0}

(t,ξ)∈(0,T ]×Rn

{‖E(t, ξ)Y‖C2

‖Y‖C2

}
and sup

Y∈C2\{0}
(t,ξ)∈(0,T ]×Rn

{‖E(t, ξ)Y‖C2

‖Y‖C2

}
< ∞

(4)

with a suitable choice of μ(t) satisfying μ(t) , 1. Here, f � g with nonnegative
functions f and g denotes that there exists a positive constant C such that f ≤ Cg,
and f , g denotes that both estimates f � g and g � f hold.

One can prove the estimate (4) without difficulty if M(t) satisfies

∫ T

t

|M(s)| ds ∈ L1((0, T )), (5)

hence we focus in the case that (5) does not hold. In [3], the concrete model
M(t) = M0t

−2β with β ≥ 1 and M0 ∈ R is studied precisely by applying
the estimates of special functions. Actually, the conclusions imply that one cannot
expect (4) in general if (5) does not hold. However, (5) is not a necessary condition
for (4); indeed, there exists M(t) which does not satisfy (5) but (4) is valid. The aim
of this chapter is to determine some sufficient conditions to M(t) which provide (4)
without assuming (5), especially focusing on the oscillating properties of M(t).

2 Main Theorem

Let M ∈ C((0, T ]) satisfy the following conditions for some positive constants α

and β:

|M(t)| � t−2β, (6)

∣∣∣∣
∫ T

t

M(s) ds

∣∣∣∣ � t−β (7)

and

∣∣∣∣
∫ t

0

∫ T

s

M(τ) dτ ds

∣∣∣∣ � tα . (8)
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Then, our main theorem is represented as follows:

Theorem 1 If M(t) satisfies (6), (7), and (8) for

β < 1 + α

2
, (9)

then there exists μ ∈ C2((0, T ]) satisfying μ(t) , 1 such that (4) is established.

We observe from Theorem 1 the following:

(i) If M(t) = M0t
−2β , then (8) requires β < 1, hence (5) is valid.

(ii) Theorem 1 does not require the positivity of M(t), hence the estimate:

lim sup
t→+0

∫ T

t
M(s) ds∫ T

t
|M(s)| ds

= 0

is possible if M(t) is changing its sign infinitely many times as t → 0.
(iii) The estimate (8) with α = −β + 1 is trivial by (7), but α > 0 requires β < 1;

hence, (8) is a nontrivial condition.

There are many results which study the influence of the mass M(t) to the stability
of the solution on Klein–Gordon-type equations, but not many results are known
for time-dependent and singular mass, in particular M(t) is oscillating infinitely
many times by changing its sign. However, Theorem 1 gives us a new point of view
because of such a singular behavior of M(t). The method on the analysis of our
problem is similar to the problems for the stability of the energy as t → ∞ with the
mass M ∈ C([T ,∞)) oscillating infinity many times as t → ∞. In [6], it is studied
some sufficient conditions to the error term δ(t) that the asymptotic behaviors of the
both energies with the masses M(t) = M0(1+ t)−2 and M(t) = M0(1+ t)−2+δ(t)

with M0 > 0 are the same. Briefly, this problem is corresponding to the conditions
to δ̃(t) that the asymptotic behaviors of the both energies with the masses M(t) =
M0t

−2 and M(t) = M0t
−2 + δ̃(t) are the same as t → 0. However, the proof of [6]

requires the condition α ≥ −β + 1 instead of (8), which corresponds to the trivial
assumption in (iii).

Example 1 Let p and q satisfy 2 < p < q + 1. Then, the following M(t) is
applicable to Theorem 1:

M(t) = t−p sin t−q+1. (10)

Indeed, noting that q > 1 and p ≤ 2q are valid, we can prove the following
estimates:

∣∣∣∣
∫ t

0

∫ T

s

M(τ) dτ ds

∣∣∣∣ � t2q−p,

∣∣∣∣
∫ T

t

M(s) ds

∣∣∣∣ � t−(p−q) (11)
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and |M(t)| � t−p. Here, we observe that the singularity of M(t) as t → 0 can be
higher as q becomes larger. Indeed, setting α = 2q − p(> 0) and β = p/2(> 1),
we have

p − q = β − 2q − p

2
< β and β = 1 + α

2
− (q + 1 − p) < 1 + α

2
,

thus (6), (7), (8), and (9) are valid. Here, we remark that the method of [6] requires
the stronger restriction 2 < p < (q + 3)/2 for (4).

3 Reduction to a Dissipative Wave Equation

Klein–Gordon-type equation with time-dependent mass can be reduced to the
following dissipative wave equation with time-dependent dissipation:

∂2
t w −Δw + 2b(t)∂tw = 0 (12)

by the transformation:

w := exp

(∫ T

t

b(s) ds

)
u, (13)

where b(t) is a solution of

b′(t)+ b(t)2 +M(t) = 0. (14)

Moreover, the dissipative wave equation (12) can be reduced to the wave equation
with time-dependent propagation speed:

∂2
t y − a(t)2Δy = 0. (15)

The conditions to the coefficients a(t) and b(t) for the stabilities of the energies
have been studied well, for instance in [2, 5, 7]; hence, we may expect that our main
theorem follows immediately from the previous results for (12) and (15). However, it
is not really trivial what conditions to M(t) provide the corresponding conditions to
b(t) which are required in the previous papers, because b(t) is given as a solution to
the nonlinear equation (14). In this chapter, we overcome this problem to introduce
an explicit representation of the solution b(t) of (14), which is introduced in [4, 6],
with more precise estimates.
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The following proposition is essential for the proof of our main theorem:

Proposition 1 Let M(t) satisfy the conditions of Theorem 1. Then,
∫ t

0 b(s) ds ∈
C([0, T ]) ∩ C2((0, T ]) and the following estimates are established:

|b(t)| � t−β and
∣∣b′(t)∣∣ � t−2β . (16)

Moreover, there exists λ ∈ C1([0, T ]) satisfying λ(0) > 0 and λ′(t) ≥ 0 such that

b(t) = λ′(t)
λ(t)

−
∫ T

t

M(s) ds. (17)

Remark 1 For any T0 ∈ (0, T ] and t ∈ [T0, T ], the estimates of Proposition 1
are trivial. Therefore, we can suppose that T is small from now on without loss of
generality.

Let η = η(t) be the solution to the following equation:

η′′ +M(t)η = 0 (18)

on (0, T ] with the initial data (η(T ), η′(T )) = (1, 0). Then, a solution of (14) is
represented by:

b(t) = η′(t)
η(t)

.

For k = 1, 2, . . ., we define Qk(t) and qk(t) on (0, T ] by Qk(t) := − ∫ T

t qk(s) ds

and

q1(t) := M(t), qk(t) :=
k−1∑
j=1

Qj(t)Qk−j (t) (k ≥ 2).

Then, we have the following lemmas:

Lemma 1 η(t) is represented by the following convergent series on (0, T ]:

η(t) = exp

( ∞∑
k=1

∫ T

t

Qk(s) ds

)
.

Proof The proof is straightforward. For the convergence of η(t), refer to [6]. ��
Lemma 2 Let γk be the k-th Catalan number defined by γk := (2k)!/(k!(k + 1)!)
for k = 0, 1, . . .. For any δ > 0, there exist positive constants C1,2 and T such that

|Q2(t)| ≤ C1,2 t
α−2β+1 (19)
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and

|Qk(t)| ≤ γk−1δ
k−2|Q2(t)| (20)

for any 0 < t ≤ T and k ≥ 2.

Proof We note that the following inequalities are valid:

α−β+1 > α−2β+2 > 0 and α−2β+1 = −1+2
(

1 + α

2
− β
)
< 0 (21)

choosing β near to 1 + α/2 without loss of generality. For a given δ > 0, we shall
show that (20) is valid by choosing T small enough. By (7) and (8), there exist
positive constants C1 and C2 such that |Q1(t)| ≤ C1t

−β and | ∫ t

0 Q1(s) ds| ≤ C2t
α .

Here, (20) is trivial for k = 2 and −Q2(t) = |Q2(t)| is monotone decreasing since
q2(t) = Q1(t)

2. By integration by parts, for k ≥ 1 we have

∫ T

t

Q1(s)Qk(s) ds = −
∫ t

0
Q1(s) ds Qk(t)−

∫ T

t

(∫ s

0
Q1(τ ) dτ

)
qk(s) ds.

Therefore, we have
∣∣∣∣
∫ T

t

Q1(s)Qk(s) ds

∣∣∣∣ ≤ C2

(
tα|Qk(t)| +

∫ T

t

sα|qk(s)| ds
)
. (22)

If k = 1, then there exists a positive constant C0,0 such that

∫ T

t

Q1(s)
2 ds ≤ C2

(
C1t

α−β + C0,0

∫ T

t

sα−2β ds

)
≤ C1,2t

α−2β+1,

where C1,2 = C2(C1 + C0,0/(−α + 2β − 1)). It follows that (19) holds. Here, we
suppose that (20) is valid for j = 2, . . . , k. Noting the formula

∑k
j=0 γjγk−j =

γk+1, we have the following estimates by choosing T small such that T α−β+1 ≤
C1δ/C1,2:

|ql+1(t)| =
∣∣∣∣∣∣

l∑
j=1

Qj(t)Ql+1−j (t)

∣∣∣∣∣∣ ≤ 2|Q1(t)Ql(t)| +
l−1∑
j=2

|Qj(t)Ql+1−j (t)|

≤2C1γ0γl−1δ
l−2t−β |Q2(t)| +

l−1∑
j=2

γj−1γl−j δ
l−3Q2(t)

2

≤
(

2C1γ0γl−1 + C1,2 (γl − 2γ0γl−1) δ
−1tα−β+1

)
δl−2 t−β |Q2(t)|

≤
(

2C1γ0γl−1 + C1,2 (γl − 2γ0γl−1) δ
−1T α−β+1

)
δl−2 t−β |Q2(t)|

≤C1γlδ
l−2 t−β |Q2(t)|
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for any 2 ≤ l ≤ k. Therefore, by (22), noting the inequalities C1C2 ≤ C1,2 and
T α ≤ T α−β+1 ≤ T α−2β+2 since T ≤ 1, we have

|Qk+1(t)| ≤2

∣∣∣∣
∫ T

t

Q1(s)Qk(s) ds

∣∣∣∣+
k−1∑
j=2

∣∣∣∣
∫ T

t

Qj (s)Qk+1−j (s) ds

∣∣∣∣

≤2C2

(
tα|Qk(t)| +

∫ T

t

sα |qk(s)| ds
)
+ δk−3

k−1∑
j=2

γj−1γk−j

∫ T

t

Q2(s)
2 ds

≤2C2γk−1δ
k−2tα|Q2(t)| + 2C1C2γk−1δ

k−3
∫ T

t

sα−β |Q2(s)| ds

+ C1,2 (γk − 2γ0γk−1) δ
k−3|Q2(t)|

∫ T

t

sα−2β+1 ds

≤2C2γ0γk−1δ
k−2tα|Q2(t)| + 2C1,2

α − β + 1
γ0γk−1δ

k−3T α−β+1|Q2(t)|

+ C1,2

α − 2β + 2
(γk − 2γ0γk−1) δ

k−3T α−2β+2|Q2(t)|

≤
(

2C2γ0γk−1

δ
+ 2C1,2γ0γk−1

δ2(α − β + 1)
+ C1,2 (γk − 2γ0γk−1)

δ2(α − 2β + 2)

)
T α−2β+2δk−1|Q2(t)|

≤
(
C1,2

C1δ
+ C1,2

δ2(α − 2β + 2)

)
T α−2β+2γkδ

k−1|Q2(t)|

≤γkδ
k−1|Q2(t)|

for any 0 < t ≤ T with

T ≤ min

{(
C1,2

C1δ
+ C1,2

δ2(α − 2β + 2)

)− 1
α−2β+2

,

(
C1δ

C1,2

) 1
α−β+1

}
.

Thus, the estimate (20) holds for any k ≥ 2. ��
Lemma 3 For any 0 < ε < 1, there exists a positive constant T such that the
following estimate is established:

∞∑
k=3

|Qk(t)| ≤ ε|Q2(t)|

for any 0 < t ≤ T .

Proof We note that for 0 ≤ δ < 1/4, the following estimates are established:

∞∑
k=0

γkδ
k = 1 −√

1 − 4δ

2δ
≤ 1 + δ + 4δ2.
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By applying Lemma 2 with δ = ε/4, there exists a positive constant T such that

∞∑
k=3

|Qk(t)| ≤
∞∑
k=3

γk−1δ
k−2|Q2(t)| = δ−1

( ∞∑
k=0

γkδ
k − δ − 1

)
|Q2(t)|

≤4δ|Q2(t)| = ε|Q2(t)|

for any 0 < t ≤ T . ��
Proof of Proposition 1 We note that b(t) = −∑∞

k=1 Qk(t). Then,
∫ t

0 b(s) ds ∈
C2((0, T ]) is trivial by (14). By (8), (19), (21), and Lemma 3, we have

∣∣∣∣
∫ t

0
b(s) ds

∣∣∣∣ =
∣∣∣∣∣
∞∑
k=1

∫ t

0
Qk(s) ds

∣∣∣∣∣ ≤ C2t
α + C1,2(1 + ε)

∫ t

0
sα−2β+1 ds

≤
(
C2 + C1,2(1 + ε)

α − 2β + 2

)
tα−2β+2 → 0 (t → 0),

hence
∫ t

0 b(s) ds ∈ C([0, T ]). Moreover, by (6), (7), and (14) we have (16) for any
0 < t ≤ T . We define λ(t) by:

λ(t) := exp

⎛
⎝∫ T

0
Q1(s) ds +

∞∑
j=2

∫ T

t

Qj (s) ds

⎞
⎠ . (23)

Then, we have (17), and thus λ ∈ C1([0, T ]) is valid. By (19), Lemmas 2, and 3
with 0 < ε < 1, we have

λ′(t)
λ(t)

= −
∞∑
j=2

Qj(t) = |Q2(t)| −
∞∑
j=3

Qj(t) ≥ (1 − ε)|Q2(t)| ≥ 0,

it follows that λ′(t) ≥ 0. ��

4 Proof of Theorem 1

By partial Fourier transform with respect to x, (12) is reduced to the following
equation:

∂2
t ŵ + |ξ |2ŵ + 2b(t)∂t ŵ = 0. (24)
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For a large constant N , we define the hypersurface tξ in [0, T ] × Rn by:

tξ = min

{(
N〈ξ〉−1

) 1
α+1

, T

}
, 〈ξ〉 =

√
1 + |ξ |2.

Then, we separate the phase space [0, T ] ×R
n
ξ by tξ into two zones ZΨ and ZH :

ZΨ := {(t, ξ) ; 0 ≤ t ≤ tξ
}

and ZH := {(t, ξ) ; tξ ≤ t ≤ T
}
. (25)

Let E0 = E0(t, s, ξ) be the fundamental solution of

∂tE0 = A0(t, ξ)E0, E0(s, s, ξ) = I, A0(t, ξ) =
(

0 i|ξ |
i|ξ | −2b(t)

)
.

Then, E0(t, s, ξ) provides

E0(t, s, ξ)W(s, ξ) = W(t, ξ), W(t, ξ) =
(
i|ξ |ŵ(t, ξ)

∂t ŵ(t, ξ)

)
= V

(
t, ξ; η(t)−1

)
,

where V is defined by (2). Then, we have the following proposition:

Proposition 2 The following estimates are established uniformly with respect to
Y ∈ C2:

‖E0(t, s, ξ)Y‖C2 , ‖Y‖C2 for 0 ≤ s ≤ t ≤ tξ (26)

and

‖E0(T , t, ξ)Y‖C2 , ‖Y‖C2 for tξ ≤ t ≤ T . (27)

If Proposition 2 is proved, then we immediately conclude Theorem 1 by setting

E(t, ξ) :=
{
E0(T , tξ , ξ)E0(tξ , t, ξ) in ZΨ ,

E0(T , t, ξ) in ZH .

If b(t) = λ′(t)/λ(t), where λ(t) given in Proposition 1, then (4) can be proved
by using standard arguments for the proof of energy estimates with noneffective
and monotone dissipation (cf. [7]). Thus, we introduce the following lemma without
proof.

Lemma 4 Let η1(t) = exp(2
∫ T

t
Q1(s) ds) and E0 = E0(t, s, ξ) be the fundamen-

tal solution of

∂tE0 = A0(t, ξ)E0, E0(s, s, ξ) = I, A0(t, ξ) =
(

0 iη1(0)−1|ξ |
iη1(0)|ξ | − 2λ′(t)

λ(t)

)
.
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Then, the following estimates are established uniformly with respect to 0 < s ≤ t ≤
T , ξ ∈ Rn, and Y ∈ C2:

‖E0(t, s, ξ)Y‖C2 , ‖Y‖C2 , ‖E −1
0 (t, s, ξ)Y‖C2 . (28)

Proof of Proposition 2 Let 0 ≤ s ≤ t ≤ tξ We define Λ0(t) = diag{1, η1(t)
−1}

and E1 = E1(t, s, ξ) = E0(t, s, ξ)
−1Λ0(t)

−1E0(t, s, ξ). By Proposition 1, E1 is a
solution of the following equation:

∂tE1 = A1(t, s, ξ)E1,

A1 = E0(t, s, ξ)
−1
(

0 i
(
η1(t)

−1 − η1(0)−1
) |ξ |

i (η1(t)− η1(0)) |ξ | 0

)
E0(t, s, ξ).

Noting

∣∣∣η1(t)
±1 − η1(0)

±1
∣∣∣ = η1(0)

±1
∣∣∣∣exp

(
±2
∫ t

0
Q1(s) ds

)
− 1

∣∣∣∣ ,
∣∣∣∣
∫ t

0
Q1(s) ds

∣∣∣∣ ,
there exists a positive constant C0 such that

∂t‖E1Y‖2
C2 =2� (A1E1Y,E1Y )C2 ≤ 2‖A1E1Y‖C2‖E1Y‖C2

≤C0〈ξ〉
∣∣∣∣
∫ t

0
Q1(s) ds

∣∣∣∣ ‖E1Y‖2
C2

for any Y ∈ C2. Therefore, by (8) and Gronwall’s inequality, we have

‖E1(t, s, ξ )Y‖2
C2 ≤ exp

(
C0〈ξ 〉

∫ t

s

∣∣∣∣
∫ τ

0
Q1(σ ) dσ

∣∣∣∣ dτ
)
‖E1(s, s, ξ )Y‖2

C2

≤ exp
(
C0C2〈ξ 〉

∫ tξ

0
τα dτ

)
‖E1(s, s, ξ )Y‖2

C2

= exp

(
C0C2

α + 1
〈ξ 〉tα+1

ξ

)
‖E1(s, s, ξ )Y‖2

C2 ≤ e
C0C2N
α+1 ‖E1(s, s, ξ )Y‖2

C2 .

Analogously, we have

‖E1(t, s, ξ)Y‖2
C2 ≥ e−

C0C2N
α+1 ‖E1(s, s, ξ)Y‖2

C2 .

Consequently, by Lemma 4, and noting E1(s, s, ξ) = Λ−1
0 (s)E0(s, s, ξ) = Λ−1

0 (s)

and η1(t) , 1, we have

‖E1(t, s, ξ)Y‖C2 , ‖Y‖C2 . (29)
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By using Lemma 4 again, we obtain

‖E0(t, s, ξ)Y‖C2 , ‖E0(t, s, ξ)E1(t, s, ξ)Y‖C2 , ‖E1(t, s, ξ)Y‖C2 , ‖Y‖C2 .

Thus, the proof of (26) is concluded. The estimate (27) can be proved by applying
standard technique of diagonalization (see [6, 7]), thus we omit the proof. ��
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Nonlinear Evolution Equations and Their
Application to Chemotaxis Models

Akisato Kubo and Hiroki Hoshino

Abstract Recently, we have investigated the global existence in time and asymp-
totic profile of solutions of some nonlinear evolution equations with strong dissipa-
tion and proliferation arising in mathematical biology. In this chapter, we improve
the asymptotic behaviour of the solution to a simpler equation so that its derivative
with respect to t converges exponentially to a constant steady state. We apply
our result to a chemotaxis model and show the global existence in time and such
exponential convergence property of the solution.

1 Introduction

We begin with a chemotaxis model proposed by Kubo and Tello in [7]:

(CM)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ut −Δu = −∇ · (χu∇w)+ μ1u(1 − u− a1w), (1.1)

wt = μ2w(1 − a2u−w) in Ω × (0, T ), (1.2)

(∂νu− χu∂νw) |∂Ω = 0 on ∂Ω × (0, T ),

u(x, 0) = u1(x) > 0, w(x, 0) = w0(x) > 0 in Ω ,

where Ω is a bounded domain in Rn with a smooth boundary ∂Ω , ν is a unit outer
normal vector on ∂Ω , χ > 0, μi > 0 and ai, for i = 1, 2 are constants. In (CM),
a competitive system with respect to u and w is considered so that it describes the
behaviour of two biological species. They obtain the existence and the asymptotic
behaviour of the solution for |ai | < 1, i = 1, 2.
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In order to investigate (CM) in other cases, we consider the initial and Neumann-
boundary value problem of nonlinear evolution equations with a logistic term:

(NE)

⎧⎪⎪⎨
⎪⎪⎩

utt −D*ut +∇ · (κut e
−εu∇u)− μ(1 − ut )ut = 0 in Ω × (0, T ), (1.3)

∂νu|∂Ω = 0 on ∂Ω × (0, T ),

u(x, 0) = u0(x), ut (x, 0) = u1(x) in Ω,

where D > 0, μ ≥ 0, ε > 0 and κ are constants. In fact, we show a simple
example that (1.1)–(1.2), so-called parabolic-ODE system, are transformed into the
same type of equation as (1.3) for a2 = 2 and μ1 = 0. From (1.2), it follows that

w(x, t) = w(x, 0) exp(μ2

∫ t

0
(1 − 2u−w)ds).

Put
∫ t

0 uds = ũ + t and Θ = exp(−μ2(t + ũ+ (ũ+ ∫ t

0 wds))), then (1.1) is
rewritten as:

ũt t −Δũt −∇ ·
(
χ(1 + ũt )Θ

(
w(x, 0)μ2(2∇ũ+

∫ t

0
∇wds)−∇w(x, 0)

))
= 0.

Since the main term of Θ and the above equation are exp(−μ2(t + ũ)) and ũ,
respectively, omitting ũ + ∫ t

0 wds,
∫ t

0 ∇wds and putting w(x, 0) = 1 for our
convenience, the reduced equation is the same as (1.3) for μ = 0 replacing ũ + t

by u again. Without such restriction and omission, this process shall be discussed in
detail in Sect. 3.

In the present chapter, we obtain the solution of (NE) with the exponential
convergence property as t → ∞. For this purpose, we seek the solution in the
form:

u = t + U(x, t), U(x, t) =
∫ t

0
e−δsvs(x, s)ds + v0(x)+ a, (1.4)

where a and δ are positive parameters and v0(x) is specified later. Hence, (1.3) is
written as:

Utt −DΔUt +∇ · (κ(1 + Ut)e
−εu∇u)+ μUt(Ut + 1) = 0.

Multiplying both sides of the above equation by eδt , we have for ut = 1 + e−δtvt

Q[v] := vtt−δvt−DΔvt+∇·(κ(eδt+vt )e
−εu∇u)+μvt(1+e−δtvt ) = 0. (1.5)
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Then, (NE) is reduced to the problem:

(RP)

⎧⎨
⎩

Q[v] = 0 in Ω × [0, T ),

∂νv|∂Ω = 0 on ∂Ω × [0, T ),

v(x, 0) = v0(x), vt (x, 0) = v1(x) := u1(x)− 1 in Ω.

On the other hand, in [4, 9] we established global existence in time and
asymptotic behaviour of solutions to the problem replaced by the following (1.6),
including (1.3) in (NE), which is denoted by ˜(NE) in the below:

utt = D*ut + ∇ · (χ(ut , e
−u)e−u∇u)+ μ(1 − ut )ut , (1.6)

where χ(·, ·) satisfies for a constant r > 0 and any integer m ≥ [n/2] + 3,

χ(s1, s2) ∈ Cm(Br+), (s1, s2) ∈ Br+,

Br+ = Br ∩ (R × R+) and Br is a ball of radius r at 0 in R2.
The eigenvalues of −* with the homogeneous Neumann boundary condition on

∂Ω are denoted by {λi |i = 0, 1, 2, · · ·} with 0 = λ0 < λ1 ≤ · · · → +∞, and
ϕi = ϕi(x) indicates the L2 normalized eigenfunction corresponding to λi . Then,
we put for functions h(x), k(x) ∈ Hl(Ω) and non-negative integer l:

(h, k)(t) =
∫
Ω

h(x, t)k(x, t)dx, ‖h‖2
l (t) =

∑
|β|≤l

‖∂β
x h(·, t)‖2(t),

(h, k)l = (h, k)+ (D lh,D l k), |h|2l = (h, h)l,

where we write ‖h‖0(t) by ‖h‖(t) for simplicity, β is a multi-index for β = (β1, · ·
·, βn), and D l = Δj (l = 2j ), D l = ∇ · Δj (l = 2j + 1) for a non-negative
integer j .

We set Wl(Ω) as a closure of {ϕ1, ϕ2, · · ·ϕn, · · ·} in Hl(Ω). It holds that∫
Ω

h(x) = 0 for h(x) ∈ Wl(Ω), which enables us to use the Poincarè inequality.
The equivalence of norms | · |l, || · ||l shall be used frequently.

In [4, 9], we obtain the result for ˜(NE) by following the same reduction process
from (NE) to (RP) for δ = 0.

Theorem 1 ([4, 9]) Assume (v0(x), v1(x)) ∈ Wm+1(Ω) × Wm(Ω) for v0(x) =
u0(x) − a, v1(x) = u1(x) − 1, and that ‖v1‖2

m+1 is sufficiently small, a and
r are sufficiently large. Then, there is a solution u(x, t) = a + t + v(x, t) ∈⋂1

i=0 Ci([0,∞); Wm−i (Ω)) to (̃NE) such that

lim
t→∞||vt ||m−1 = 0, lim

t→∞||ut (x, t)− 1||m−1 = 0. (1.7)

Levine and Sleeman [10] obtained explicit solutions of the form: u = γ t + v

(γ > 0) of the same type of equation of (1.3) for ε = μ = 0 and n = 1, which is
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applied to a parabolic-ODE system arising from a mathematical model of biology.
In this line, [5, 6, 8] showed the existence of solutions of a special case of ˜(NE)
without the logistic term for n ≥ 1, which arises from mathematical biology and
biomedicine (see [1, 10–12]). In [3, 4, 9], we can get the solution in more general
form u(x, t) = a + bt + v(x, t) for any b > 0, which enables us to deal with (1.6)
for b = 1. In case δ = 0, u satisfying (1.4) coincides with the solution for b = 1
obtained in [3, 4, 9].

In Theorem 1, we obtain the asymptotic behaviour (1.7) of the solution to (NE).
However, the decay rate of (1.7) is unknown. In this chapter, we show that for the
solution u of (NE) ut converges exponentially to the constant steady state. Also
in [4, 9], Theorem 1 was applied to the mathematical model of tumour invasion
by Chaplain and Lolas [2], and the full proof was given in [9]. In order to obtain
the solution of their model, we consider the initial and boundary value problem
that required zero-Neumann boundary condition instead of no-flux condition for the
following equations:

⎧⎪⎪⎨
⎪⎪⎩

∂tn = dn∂
2
xn− γ ∂x (n∂xf )+ μ1n(1 − n− f ), (1.8)

∂tf = −ηmf + μ2f (1 − n− f ), (1.9)

∂tm = dm∂2
xm+ αn − βm in Ω × (0, T ), (1.10)

where for (x, t) ∈ Ω × (0, T ) n := n(x, t) is the density of tumour cells, m :=
m(x, t) is the concentration of degradation enzymes and f := f (x, t) is the density
of the extracellular matrix and dn, γ , μ1, η, μ2, dm, α and β are positive constants.

One of the interesting problems in ecology and biology is the coexistence of
species or the extinction. Kubo and Tello obtain the coexistence of species in (CM)
for |ai | < 1, i = 1, 2, so-called weak coupled conditions, under the additional
conditions (see [7]). In the present chapter, we study other cases, i.e. a1 ∈ R, a2 > 1
and a1 < 1, a2 = 0, and then the problem for |a1| ≥ 1, a2 ≤ 1 remains open except
for the case of a1 ≤ −1, a2 = 0. It is remarked that in case of a1 = 1, a2 > 1 the
system of (1.1) and (1.2) is the same as that of (1.8) and (1.9) with m(x, t) ≡ n(x, t)

and dn = 1.
In Sect. 2, based on Theorem 1 we obtain the existence theorem and exponential

convergence property of the solution to (NE) by making use of the energy estimates
of (RP). In Sect. 3, applying this result to (CM) we have our desired results for
a1 ∈ R, a2 > 1 and a1 < 1, a2 = 0.

Remark 1 We can apply Theorem 1 with μ = 0 to mathematical models of tumour
angiogenesis proposed by Anderson and Chaplain [1] and Othmer and Stevens [11]
(see [3–6, 8, 9]), which are in the form of parabolic-ODE system.
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2 Existence and Asymptotic Behaviour of Solutions

In this section, we derive the energy estimate of (RP) and show the existence and
asymptotic profile of the solution to (RP) which leads us to the desired result for
(NE) going back through the reduction process.

Assume that

h(x, t) ∈
2⋂

i=0

Ci([0,∞);Wm+1−i (Ω)), ‖ht‖m ≤ r. (2.1)

The following two estimates are obtained in [3, 4, 9]. For h satisfying (2.1) with
m ≥ M ≥ [n/2] + 1, and

∫∞
0 ‖ht‖2

M(s)ds < rM , then it holds that

||h||M(t) ≤ C0
√
t + C′

0, (2.2)

where C0 depends on rM and C′
0 depends on h(x, 0). Also, it holds that for a

constant b > 0 and i = 1, 2, · · ·, n:

||e−bthxi ||2(t)+
∫ t

0
e−2bs ||hxi ||2(s)ds ≤ C(

∫ t

0
e−2bs ||hxis ||2(s)ds + ||hxi ||2(0)).

(2.3)

Lemma 1 Assume that u(x, t) is defined by (1.4) with v(x, t) satisfying (2.1), then
it holds that

‖e−εu‖L∞(Ω) ≤ Cae
−ε′t ,

where Ca → 0 as t → ∞.

Proof By (1.4), we get for v satisfying (2.1):

e−εu = exp (−ε(a + t + v0(x))) exp (−ε

∫ t

0
e−δsvsds),

using the same way as derived (2.2) for
∫ t

0 e−δsvsds with application of Sobolev’s
inequality to vs :

≤ Cae
−εt+C0

√
t ≤ Cae

−ε′t ,

where 0 < ε′ < ε and Ca → 0 as t → ∞, which ends the proof. ��
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Lemma 2 (Basic Estimate of (RP)) We have a basic energy estimate of (RP) for
v(x, t) satisfying (2.1), sufficiently large a and ε > δ

||vt ||2(t)+
∫ t

0
||∇vs ||2ds ≤ CE[v](0),

where E[v](t) = ||vt ||2(t)+ ||∇v||2(t).
Sketch of the Proof We consider (Q[v], vt )

= (vtt − δvt −DΔvt + ∇ · κ(eδt + vt )e
−εu∇u, vt )+ μ(vt (1 + e−δt vt ), vt ) = 0.

By the integration by parts, we have

1

2
∂t‖vt‖2+D‖∇vt‖2+μ(vt (1+e−δtvt ), vt ) = δ‖vt‖2+(κ(eδt+vt )e

−εu∇u,∇vt ).

If ‖vt‖L∞ - 1 holds, then integrating the both sides of the above quality over (0, t)
shows

‖vt‖2(t)+
∫ t

0
‖∇vs‖2(s)(s)ds +

∫ t

0
‖vs‖2(s)ds

≤ C‖vt‖2(0)+ Ce−a

(∫ t

0
e2δse−2εu‖∇u‖2(s)ds +

∫ t

0
‖∇vs‖2(s)ds

)
, (2.4)

by means of Lemma 1 and (2.3) for the second term of (2.4) with ε′ > δ

≤ CE[v](0)+ Ca

∫ t

0
‖∇vs‖2(s)ds. (2.5)

Since the last term of the right-hand side of (2.5) is negligible for sufficiently large
a, we obtain a basic energy estimate of (RP). ��

Considering ∇kv, k ≤ M for a positive integer M ≥ [n/2] + 1, instead of v in
the above procedure, in the same way as in Lemma 2, we obtain the higher-order
estimate.

Lemma 3 (Higher-Order Estimate for (RP)) For v(x, t) satisfying (2.1), suffi-
ciently large a and ε > δ, the following higher-order energy estimate (RP) holds
for Ek[v](t) = E[∇kv]:

M∑
j=0

||∇jvt ||2(t)+
M+1∑
j=0

∫ t

0
||∇j vs ||2(s)ds ≤ CEM [v](0). (2.6)



Nonlinear Evolution Equations and Their Application to Chemotaxis Models 343

Remark 2 Lemma 1 implies that for δ < ε′ < ε the coefficient e−εueδt of the
quadratic nonlinear term of (1.5) decays exponentially. Thus, Theorem 1 holds for
the solution in the form of (1.4) to (NE) even though δ > 0.

Now, we state the result of (RP) which gives our main result of (NE).

Theorem 2 Assume that (v0(x), v1(x)) ∈ Wm+1(Ω) × Wm(Ω) for v0(x) =
u0(x) − a and v1(x) = u1(x) − 1, and that ‖v1‖2

m is sufficiently small and a is
large enough. Then for ε > δ > 0, there is a solution v(x, t) ∈ ⋂1

i=0 Ci([0,∞);
Wm−i (Ω)) to (RP) such that u(x, t) = a + t + ∫ t

0 e−δsvsds + v0(x) ∈
C1([0,∞);Wm−1(Ω)) is the solution to (NE) satisfying

lim
t→0

||vt ||m−1 = 0, ||ut − 1||m−1 ≤ Ce−δt . (2.7)

Sketch of the Proof The proof is given by the same way as used in [4, 9]. We
consider the following iteration scheme and derive the energy estimate of it by the
use of Lemma 3:

(i+1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Qi [vi+1] = ∂2
t vi+1 − δ∂t vi+1 −D∂tΔvi+1

+∇ · (κeδt e−εui∇ui+1)+∇ · (κ∂tvi+1e
−εui∇ui)+ μ∂tvi+1(1 + eδt ∂t vi+1) = 0,

∂νvi+1|∂Ω = 0,

vi+1(x, 0) = v0(x), ∂tvi+1(x, 0) = v1(x),

where vi = ∑∞
j=1 fij (t)ϕj (x), v0(x) = ∑∞

j=1 hjϕj (x), v1(x) = ∑∞
j=1 h′j ϕj (x).

The energy estimate (2.6) guarantees the uniform estimate of each (i+1) for i =
1, 2, · · · . We determine fij (t) by the solution of the following system of ordinary
differential equation with initial data for j = 1, 2, · · ·:

{
(Qi [vi+1], ϕj ) = 0,
fi+1j (0) = hi+1, fi+1j t (0) = h′i+1.

Thanks to the energy estimates, we can obtain the global existence in time of the
solution vi of (i) satisfying (2.1) and justification of the limiting process of vi as
i → ∞ that converges strongly to the desired solution v by the standard method
(see [5]). Since we have the asymptotic behaviour of v, which is the same as (1.7)
due to Remark 2, we arrive at (2.7). ��

3 Application to a Chemotaxis Model

Now, we apply Theorem 2 to (CM). We deal with (CM), first in Sect. 3.1 for a1 ∈ R
and a2 > 1, next in Sect. 3.2 for a1 < 1 and a2 = 0. Also in [7] χ > 0 is required;
however, in this chapter χ is allowed to be any constant. In order to seek the solution
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of (CM), we imposed zero-Neumann boundary condition on u and w instead of no-
flux condition: ∂νu− χu∂νw = 0 on the boundary.

3.1 The Case −∞ < a1 < ∞, a2 > 1

Put a2 = 1 + ε > 1 for a positive constant ε > 0, then by dividing the both sides
of (1.2) by w and integrating it over (0, t) we get

w(x, t) = w(x, 0)e
μ2

∫ t

0
(1 − (1 + ε)u− w)ds

. (3.1)

We consider here that u has a form of u = 1 + Ut with

U(x, t) = a + v0(x)+
∫ t

0
e−δsvs(x, s)ds,

then we have

w(x, t) = w̃0(x)e
−μ2εtΘ, Θ := e

−μ2((1 + ε)U +
∫ t

0
wds)

, (3.2)

where w̃0(x) ∈ Wm+1(Ω) and

w̃0(x) = w0(x)e
μ2(1 + ε)(a + v0(x)), (3.3)

so that we find that (3.1) is reduced to

Utt = *Ut −∇ · (χ(1 + Ut )∇w)− μ1Ut(1 + Ut + a1w)− μ1a1w. (3.4)

Multiplying the both sides of (3.4) by eδt , we see that (3.4) is rewritten as:

Q1[v] := vtt − δvt −Δvt +∇ · (χeδt (1 + Ut )∇w)+ μ1vt (1 + Ut + a1w)+ μ1a1w = 0.
(3.5)

Hence, (CM) is reduced to the problem considering U(x, 0) = v0(x) + a and
Ut(x, 0) = vt (x, 0):

(CM)1

⎧⎨
⎩

Q1[v] = 0 in Ω × (0, T ),

∂νu|∂Ω = ∂νw|∂Ω = 0 on ∂Ω × (0, T ),

v(x, 0) = v0(x), vt (x, 0) = v1(x) := u1(x)− 1 in Ω.
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Since we can easily see by (3.2) that w decreases exponentially for w and v

satisfying (2.1), taking δ so small that μ2ε > δ, Eq. (3.5) can be essentially regarded
as the same type of equation as (1.5). Therefore, w appeared in (3.5) is harmless
for derivation of our desired estimate of (CM)1 by the same argument as obtained
in (2.6). In fact, we can derive the following same type of estimate as (2.6):

M∑
j=0

||∇j vt ||2(t)+
M+1∑
j=0

∫ t

0
||∇jvs ||2(s)ds ≤ CEM [v](0)+ Ca,

where Ca → 0(a → ∞). Applying the same argument as used for Theorem 2 to
(CM) and considering an appropriate iteration scheme of (3.2) and (3.5), we can
show that Theorem 2 holds for (CM)1. For more details of this procedure, refer to
section 4 in [9]. Hence, we find the solution of (CM) as follows, going back through
the reduction process.

Theorem 3 Assume that a2 > 1, a1 ∈ R, v0(x) ∈ Wm+1(Ω), v1(x) ∈ Wm(Ω)

and w0(x) satisfies (3.3) for m ≥ [n/2] + 3. Moreover, assume that ‖u1 −
1‖m+1 is sufficiently small and a is large enough. Then, for ε > δ > 0 there
exists the solution (u(x, t) w(x, t)) of (CM) such that u(x, t), w(x, t) belong to
C1([0,∞);Wm−1(Ω)) and

‖u(x, t)− 1‖m−1 ≤ Ce−δt , ‖w(x, t)‖m−1 ≤ Ce−μ2εt .

Remark 3 For a2 = 1+ε, (1.2) is written as wt = −μ2εwu+μ2(1−u−w), which
is the same as (1.9) for η = μ2ε,m(x, t) ≡ n(x, t) and a2 = 1. Hence, in this case
it implies that we can deal with (CM) in the same way as used for the mathematical
model in [4, 9].

3.2 The Case a1 < 1, a2 = 0

We divide the both sides of (1.2) with a2 = 0 by (1 − w) and by the same way as
obtained in (3.1), so that

w(x, t) = 1 + (w(x, 0)− 1)e
−μ2

∫ t

0
wds

.

We consider that

w(x, t) = 1 + ˜̃w0(x)e
−μ2(

∫ t

0
wds + a)

:= 1 + f (w),
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where ˜̃w0(x) ∈ Wm+1(Ω) and

˜̃w0(x) = eμ2a(w0(x)− 1). (3.6)

Furthermore, we consider u = b + Ut for U =
∫ t

0
e−δsvs(x, s)ds + v0(x) with

b > 0, so as to find that (3.1) is reduced to the following for b = 1 − a1 > 0.

Utt = D*Ut−∇·(χ(b+Ut)∇w)−μ1Ut(b+Ut+a1f (w))−μ1a1bf (w). (3.7)

Multiplying the both sides of (3.7) by eδt and taking account of Ut = e−δt vt ,
from (3.7) it follows that

Q2[v] := vtt − δvt −D*vt + χ∇ · (eδt (b + e−δtvt )∇w)

+μ1vt (b + e−δvt + a1f (w))+ μ1a1bf (w) = 0. (3.8)

The problem (CM) is reduced to the following:

(CM)2

⎧⎨
⎩

Q2[v] = 0 in Ω × (0, T ),

∂νu|∂Ω = ∂νw|∂Ω = 0 on ∂Ω × (0, T ),

v(x, 0) = v0(x), vt (x, 0) = v1(x) := u1(x)− 1 in Ω.

We see that for w satisfying (2.1)

exp(−μ2

∫ t

0
wds) = exp(−μ2

∫ t

0
(1 + f (w))ds) ≤ Ca exp(−μ2t), (3.9)

which means that w and f (w) converge exponentially. Hence, applying the same
argument as used for Theorem 3 to (CM)2, we can show that global existence in
time of the solution to (CM)2 such that Ut and w converge exponentially to 0 and
1, respectively. Going back through the reduction process, we obtain the following
result for (CM).

Theorem 4 Assume that a1 < 1, a2 = 0, v0(x) ∈ Wm+1(Ω), v1(x) ∈ Wm(Ω)

and w0(x) satisfies (3.6) for m ≥ [n/2] + 3. Moreover, assume that ‖u1 − 1‖2
m is

sufficiently small and a is large enough. Then for a positive constant b = 1 − a1
and sufficiently small δ > 0, there is the solution (u(x, t) w(x, t)) of (CM) such that
u(x, t), w(x, t) belong to C1([0,∞);Wm−1(Ω)) and

‖u(x, t)− b‖m−1 ≤ Ce−δt , ‖w(x, t)− 1‖m−1 ≤ Ce−μ2t .

Remark 4 The full proofs of our results obtained in this chapter shall be published
elsewhere later.
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A Toy Model of 4D Semilinear Weakly
Hyperbolic Wave Equations

Sandra Lucente and Emanuele Marrone

Abstract In this chapter, we prove the large data almost global existence of the
4-dimensional weakly hyperbolic equation:

utt − (t0 − t)2Δu = −(t0 − t)4|u|u .

1 Introduction

Let us consider the semilinear wave equation:

∂2
t tu(t, x)− |t0 − t|λ1Δu(t, x) = −|t0 − t|λ2 |u(t, x)|p−1u(t, x) (1)

where (t, x) ∈ R+ × Rn, with t0 > 0, λ1, λ2 ≥ 0, and p > 1. According to the
heuristic argument in [9], the critical exponent of this equation with large data is

pc(λ1, λ2, n) = 1 + 4(λ2 + 2)/(n(λ1 + 2)− 4) (2)

with n = 4, this means

pc(λ1, λ2, 4) = 1 + (λ2 + 2)/(λ1 + 1). (3)

In particular for λ1 = 0, one has pc(0, λ2, 4) = 3 + λ2. In turn for λ2 = 0, this
gives the classical exponent pc(0, 0, 4) = 3. The case λ1 = λ2 = 0 has a long
history: starting from 1961 with the case p < pc(0, 0, 3) = 5 studied in [7], this
result was extended in higher dimensions 20 years later in [1]. The main difference
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between n = 3 and n ≥ 4 is the use of the Lp −Lq estimates. The critical case p =
pc(0, 0, 3) = 5 was completely solved in [6], while in higher dimensions in [12] by
Lp − Lq estimates. An exception is given by the result of Kim Lee in [8], where
n = 4 is covered directly by energy method. Coming back to (1), we recall that
the weakly hyperbolic semilinear results start from the paper [2] where Jorgens’s
theorem is extended. The critical three-dimensional case p = pc(λ1, λ2, 3) has been
studied in [4] and [9] with a smallness assumption on the initial data. In [10], such
smallness assumption is removed, and the radial case is considered. Concerning
other dimensions, we can quote [3] for the case n = 1, 2, though in the 2D case
the exponent does not reach the conjectured critical one. In [5], one can find some
results in one dimension. No result is known in 4D weakly hyperbolic case. To the
best of our knowledge, it depends on the fact that Strichartz estimates for Grushin-
type operator like ∂tt − t�Δ are known only for � ∈ N and t → ∞ (see[11] and
[13]). In this chapter, we will consider a toy model 4D case in which we can avoid
Strichartz estimates: we take integer exponents p = 2, λ1 = 2, and λ2 = 4.

Theorem 1 Let (u0, u1) ∈ C4(R4)×C3(R4) with compact support. For any T > 0,
there exists a unique solution u ∈ C2([0, T ] × R

4) of the Cauchy problem:

⎧⎨
⎩

∂2
t tu− (t0 − t)2Δu = −(t0 − t)4|u|u , (t, x) ∈ R+ ×R4 ,

u(0, x) = u0(x) x ∈ R4 ,

∂tu(0, x) = u1(x) x ∈ R4 .

(4)

In a forthcoming paper, we will consider (1) in subcritical 4D case (3) assuming
λ1 − 1 < λ2 ≤ 2λ1. The critical case is more delicate.

2 Preliminary Results

For a direct proof of the local existence and uniqueness for utt − a(t)Δu =
f (t, x, u) with a(t) ≥ 0 a continuous piecewise C2 function with zeros of finite
order, see [3]. This equation obeys to the finite speed of propagation property (see
[3] again), in particular the solution is compactly supported in space variable.

Let T > 0. If T ∈ [0, t0[, then the equation in (4) is strictly hyperbolic in [0, T ]
and classical theory applies: we are in subcritical p-range and according to [1],
there exists a unique solution u ∈ C2([0, T ] × R4). Suppose we can prolong this
solution up to T = t0, then the strictly hyperbolic argument leads to the solution
in any subinterval [t0, T1] with T1 > t0. In order to prove Theorem 1, it remains to
consider the case T = t0. In particular, for any x ∈ R4, it is enough to prove that

lim
t→t−0

|u(t, x)| < +∞ . (5)
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Our first tool will be the energy estimate. Let

e(u)(t, x) = 1

2
|∂tu(t, x)|2 + (t0 − t)2 |∇u(t, x)|2

2
+ (t0 − t)4 |u(t, x)|3

3
(6)

be the energy density of the solution of (4). Multiplying our equation by ∂tu, we
have

∂te(u)− (t0 − t)2div(∂tu∇u) = −(t0 − t)|∇u|2 − 4

3
(t0 − t)3|u|3 (7)

with negative right side. After integration by parts from (7), we deduce that the
energy is pointwise controlled by the initial energy:

∫
R4

e(u)(t, x)dx := E(u)(t) ≤ E0 := E(u)(0) . (8)

In particular, ut (t, ·) ∈ L2(R4), and u(t, ·) ∈ L3(R4). Due to the finite propagation
speed, having compact supported data, we can deduce that u(t, ·) ∈ L2(R4) .

Combining this information with the Sobolev embedding theorems, the aim (5)
reduces to finding a continuous positive function C(t) defined on [0, t0] such that

||u(t, ·)||Ḣ 3
x (R

4) ≤ C(t). (9)

Let us introduce the s-energy:

Es(t) = 1

2
||∂tu(t, ·)||2Ḣ s

x (R
4)
+ 1

2
(t0 − t)2||∇u(t, ·)||2

Ḣ s
x (R

4)
+ 1

2
||u(t, ·)||2

Ḣ s
x (R

4)
.

Differentiating in time, commuting Δ with |D|s , the formal operator calculus gives

E′
s(t) = −(t0 − t)||∇u(t, ·)||2

Ḣ s
x (R

4)
+
∫
R4

|D|sut

(
|D|su− (t0 − t)4|D|s (|u|u)

)
dx

and finally,

E′
s(t) ≤ ||∂tu(t, ·)||Ḣ s

x (R
4)

(
||u(t, ·)||Ḣ s

x (R
4) + (t0 − t)4|||u(t, ·)|u(t, ·)||Ḣ s

x (R
4)

)
.

We know that |||f |f ||Ḣ 3(R4) ≤ C ||f ||Ḣ 4(R4)||f ||L∞(R4). If for all t ∈ [0, t0[ and

x ∈ R4, it holds

|u(t, x)| � (t0 − t)−β for β < 5 , (10)
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then we get E′
s (t) � Es(t)(1 + (t0 − t)4(t0 − t)−β) . By the Gronwall’s lemma, we

conclude

||u(t, ·)||2
Ḣ s

x (R
4)
≤ Es(t) ≤ Es(0)ete

− (t0−t)5−β

5−β .

This relation implies (9) and hence (5). Our aim is now the pointwise estimate (10).
Next crucial instrument is the Liouville transformation. We associate to a(t) =

(t0 − t)2 the function φ which satisfies

{
φ′(S) = a(φ(S))−1/2 S ∈ [0, T0) T0 = t2

0
2 ,

φ(0) = 0,
.

Hence,

φ(S) = t0 − (2(T0 − S))1/2 φ′(S) = (2(T0 − S))−1/2 . (11)

Following [9], we can check that if u solves (4) in [0, t0), then the function:

w(T , x) = a(φ(T ))1/4u(φ(T ), x) = (2(T0 − T ))1/4 u(φ(T ), x), (12)

defined in [0, T0), solves the equation:

(∂T T −Δ)w(T , x) =

− 3

4
(2(T0 − T ))−2w(T , x)− (2(T0 − T ))3/4 (|w|w)(T , x) . (13)

Concerning the initial data, we have

w(0, x) = t
1
2

0 u0(x), ∂tw(0, x) = −1

2
t
−3/2
0 u0(x)+ t

−1/2
0 u1(x). (14)

Moreover, for any (T , x) ∈ [0, T0[×R4, starting from (10), our aim becomes

|w(T , x)| � (t0 − φ(T ))−β+ 1
2 , (T0 − T )−

2β−1
4 , for β < 5 . (15)

2.1 Representation Formula

Fixed z = (T , x) ∈ [0, T0[×R4, we look for a representation formula of the solution
of (13)–(14). By using the notation of [8], for T ≤ T̄ and y = x − x, we put

[w] = [w](T , y) = w(T − |y|, y + x) .
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Since ∇[w] = [∇w] − [∂T w] y
|y| and ∂T [w] = [∂T w], we have

∇[∂T w] = [∇∂T w] − [∂2
T T w] y

|y| ,

Δ[w] = [Δw] − 2[∇∂T w] · y

|y| −
3

|y| [∂T w] + [∂2
T T w] .

then,

∇ ·
{

1

|y|2 [∇w] + y

|y|3 [∂T w] + 2
y

|y|4 [w]
}
= [Δw]

|y|2 − [∂2
T T w]
|y|2 − 1

|y|3 [∂T w] .

Given ε < T , we integrate this relation, with T = T̄ , on D = {ε ≤ |x − x| ≤ T } .
By using (13), we find

LHS :=
∫
D

∇ ·
{

1

|y|2 [∇w] + y

|y|3 [∂T w] + 2
y

|y|4 [w]
}
dy (16)

=
∫
D

− 1

|y|3 [∂T w] + 1

|y|2
3

4
[(2(T0 − T̄ ))−2w] + 1

|y|2
[(

2(T0 − T̄ )
) 3

4 |w|w
]
dy .

By divergence theorem, we have

LHS =
∫
|y|=T

1

|y|2
{

y

|y| · ∇w(0, y + x)+ ∂T w(0, y + x)+ 2

|y|w(0, y + x)

}
dσy

−
∫
|y|=ε

1

|y|2
{

y

|y| · ∇w(T − ε, y + x)+∂T w(T − ε, y + x)+ 2

|y|w(T − ε, y + x)

}
dσy

= I (T̄ , x̄)+ II (T̄ , x̄)

Since II → −4π2w(T , x) for ε → 0 , from (16), we get

w(T , x) = 1

4π2
I (T , x)+wL(T , x)+wM(T , x)+wN(T , x) . (17)

Here,

I (T , x) = t
1
2

0

∫
|y|=T

y

|y|3 · ∇u0(y + x)+
(
t−2
0
2

+ 2

|y|

)
u0(y + x)

|y|2 + t−1
0 u1(y + x)dσy ;
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the linear part is given by:

wL(T , x) = 1

4π2

∫
|y|≤T

1

|y|3 ∂T w(T − |y|, y + x)dy

= 1

4π2
√

2

∫ T

0

∫
|x−x|=T−R

(T − R)−3∂Rw(R, x)dσxdR ;

the mass term with time-singular coefficient is

wM(T , x) = − 3

64π2

∫
|y|≤T

1

|y|2 (T0 − T + |y|)−2w(T − |y|, y + x)dy

= − 3

16π2
√

2

∫ T

0

∫
|x−x|=T−R

(T0 − R)−2(T − R)−2w(R, x)dσxdR ;

and the nonlinear part is

wN(T , x) = −1

4π2

∫
|y|≤T

1

|y|2
(
2(T0 − T + |y|)) 3

4 |w(T − |y|, y + x)|w(T − |y|, y + x)dy

= −1

4π2
√

2

∫ T

0

∫
|x−x|=T−R

(2(T0 − R))
3
4 (T − R)−2|w(R, x)|w(R, x)dσxdR .

3 Proof of Theorem 1

Main idea is to use the following Euler integral equation (see [2]).

Lemma 1 Let γ > 0 and δ > 1. Considered the integral equation:

y(t) = γ + δ(δ − 1)
∫ t

0
(t − s)(r0 − s)−2y(s)ds ,

its solution satisfies y(t) ≤ C(γ, δ, r0)(r0 − t)1−δ .

In order to prove (15), we set

μ(R) := sup{|w(S, x)| | (S, x) ∈ [0, R] × R
4} .

and prove

μ(T ) ≤ C1(T )+ C2

∫ T

0
(T − R)(T0 − R)−2μ(R) dR (18)
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for a positive function C1(T ) bounded for T̄ → T0, and suitable C2 > 0. Once we
establish this, we have

μ(T ) � (T0 − T )1−δ δ = (1 +√1 + 4C2)/2 .

In order to gain (15), we take (2β − 1)/4 = δ− 1 and check that β < 5; this means
δ < 13/4; that is,

C2 < 117/16. (19)

Let us estimate the single terms in (17).

Step 1: Estimate for Initial Data Term It is trivial to find a continuous function
CI (T̄ ) > 0 on [0, T0] such that

∣∣I (T , x)/(4π2)
∣∣ ≤ CI (T ).

Step 2: The Estimate for the Mass Term Directly, we have

|wM(T , x)| ≤ 3

8
√

2

∫ T

0
(T0 − R)−2(T − R)μ(R)dR .

We will take C2(T̄ ) ≥ CM = 3/(8
√

2) .

Step 3: Estimates for the Nonlinear Part Let z = (t, x) ∈ [0, t0] × R4. Fixed
t1, t2, t ∈ [0, t], we put

K
t1
t2
(z) =

{
z = (t, x) ∈ [t1, t2] ×R

4 | |x − x| ≤ φ−1(t)− φ−1(t)
}

,

M
t1
t2
(z) =

{
z = (t, x) ∈ [t1, t2] ×R

4 | |x − x| = φ−1(t)− φ−1(t)
}
,

D(t : z) = {x ∈ R
4| z = (t, x) ∈ Kt̄

0(z)} .

Let us denote the local energy:

E(u : D(t : z)) :=
∫
D(t :z)

e(u)(t, x)dx

and the flux:

dz(u)(t, x) := 1

2

∣∣∣∣∂tu(t, x)− (t0 − t)
x − x

|x − x| · ∇u(t, x)

∣∣∣∣
2

+ (t0 − t)4 |u(t, x)|3
3

.
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Lemma 2 Fixed z = (t, x) ∈ [0, t0] ×R
4, let u ∈ C2(K(z)) be the solution of (4).

For any 0 ≤ t1 < t2 < t ≤ t0, it holds

E(u : D(t1 : z)) = E(u : D(t2 : z))+
∫
M

t2
t1
(z)

dz(u)√
1 + (t0 − t)−2

dσxdR

+
∫
K

t2
t1
(z)

(t0 − t)|∇u|2 + 4(t0 − t)3 |u|3
3

dxdt . (20)

We can prove this lemma following [9]. We deduce that t ∈ [0, t[→ E(u : D(t : z))
decreases. Recalling (8), we have E(u : D(t : z)) ≤ E0 for any t ∈ [0, t]. Moreover,

∫ 0

φ−1(t̄)

∫
|x−x|=φ−1(t)−R

dz(u)(φ(R), x)dσxdR ≤ E0 . (21)

In particular for T1, T2, T ∈ [0, T0], with t1 = φ(T1) and t2 = φ(T2), it holds

∫ T2

T1

∫
|x−x|=T−R

(2(T0 − R))
5
4 |w(R, x)|3dσxdR

=
∫ φ−1(t2)

φ−1(t1)

∫
|x−x|=φ−1(t)−R

(t0 − φ(R))4|u(φ(R), x)|3dσxdR ≤ 3E0 .

We are ready to estimate wN with Hölder inequality:

|wN(T , x)| ≤ (2π2)
2
3

4π2
√

2
μ(T )

(∫ T

0
(T − R)3−3 (2(T0 − R))1/2 dR

)2/3

×

×
(∫ T

0

∫
|x−x|=T−R

(2(T0 − R))5/4 |w(R, x)|3dσxdR

)1/3

≤ μ(T )

(2π2)
1
3
√

2

(
E0

3

)1/3(
T

3
2

0 − (T0 − T̄ )
3
2

)2/3

.

In the sequel, we will choose 0 < ε < 1 and find T̄ε > 0 such that splitting the
integral domain as [0, T̄ ] = [0, T̄ε] ∪ [T̄ε, T̄ ], it holds

|wN(T , x)| ≤ εμ(T )+ CN(Tε) .

Step 4: The Estimate for the Linear Term First, we change variable setting x =
x̄ + (T̄ − R)z, and then we use

(∂Rw)(R, x̄ + (T̄ −R)z) = ∂R(w(R, x̄ + (T̄ −R)z)− z · ∇w(R, x̄ + (T̄ −R)z) .
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We have

wL(T , x) = 1

4π2
√

2

∫ T̄

0

∫
|z|=1

∂Rw(R, x̄ + (T̄ − R)z)

(T̄ − R)3
(T̄ − R)3 dσz dR

= 1

4π2
√

2

∫ T̄

0

∫
|z|=1

∂R(w(R, x̄ + (T̄ − R)z) d σz dR

− 1

4π2
√

2

∫ T̄

0

∫
|z|=1

z · ∇w(R, x̄ + (T̄ − R)z)dσz dR := I + II.

Changing order of integration, we get

I = 1

4π2
√

2

∫
|z|=1

w(T̄ , x̄)dσz+ 1

4π2
√

2

∫
|z|=1

w(0, T̄ z+ x̄)dσz ≤ μ(T̄ )

2
√

2
+μ(0)

2
√

2
.

We rewrite ∇w = (φ′)− 1
2 ∇u, hence we combine Hölder inequality with (12) and

conservation of energy, and we can conclude that

|II | ≤ 1

4π

∫ T̄

0
a(φ(R))

1
4

∫
|z|=1

z · ∇u(φ(R), x̄ + (T̄ − R)z)dσzdR

≤ 1

4π

(∫ T̄

0

∫
|z|=1

a(φ(R))−
1
2 dσzdR

)1/2

×

×
(∫ T̄

0

∫
|z|=1

a(φ(R))|∇u|2(φ(R), x̄ + (T̄ − R)z)dσzdR

)1/2

≤ 1

4π
E

1
2
0

(
2π2

∫ T̄

0
(2(T̄ − R)−

1
2 dR

) 1
2

.

The last integral converges for T̄ → T0, as a conclusion:

|wL(T̄ , x̄)| ≤ μ(T̄ )

2
√

2
+ CL

with CL depending on the initial data.

Final Step: Proof of Theorem 1 Summarizing for any fixed T̄ < T0 and 0 <

ε < 1 there exists Tε > 0 such that (18) is satisfied with

C1 = (CI (T̄ )+CN(Tε)+CL(T̄ ))/(1− 1/2
√

2− ε) , C2 = 3/(8
√

2(1− (1/2
√

2)− ε)).
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It is possible to choose 0 < ε < 1 such that (19) is satisfied. This concludes the
proof.
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Gevrey Well-Posedness
of the Generalized Goursat–Darboux
Problem for a Linear PDE

Jorge Marques and Jaime Carvalho e Silva

Abstract We consider the generalized Goursat–Darboux problem for a third-order
linear PDE with real coefficients. Our purpose is to find necessary conditions for
the problem to be well-posed in the Gevrey classes Γ s with s > 1. It is proved that
there exists some critical index s0 such that if the Goursat–Darboux problem is well-
posed in Γ s for s > s0, then some conditions should be imposed on the coefficients
of the derivatives with respect to one of the variables. In order to prove our results,
we first construct an explicit solution of a family of problems with data depending
on a parameter η > 0 and then we obtain an asymptotic representation of a solution
as η tends to infinity.

1 Introduction

The simplest generalized Goursat–Darboux problem for a third-order linear PDE
with real constant coefficients in the classes of Gevrey functions was studied in [8].
Given an open set Ω ⊆ R3+m, neighborhood of origin, the problem is defined on
Ω by:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂t∂x∂yu(t, x, y, z) =
∑

0≤|j |≤3

Aj∂
j
z u(t, x, y, z)

u(0, x, y, z) = f1(x, y, z)

u(t, 0, y, z) = f2(t, y, z)

u(t, x, 0, z) = f3(t, x, z)

(1)
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where initial data satisfy necessary compatibility conditions:

⎧⎪⎪⎨
⎪⎪⎩

f1(0, y, z) = f2(0, y, z)
f1(x, 0, z) = f3(0, x, z)
f2(t, 0, z) = f3(t, 0, z)
f1(0, 0, z) = f2(0, 0, z) = f3(0, 0, z) ,

(2)

on three characteristic hyperplanes Σi : t = 0, x = 0 and y = 0. Let us begin by
introducing the Gevrey classes [5] and the concept of the well-posed problem in the
sense of Hadamard [6].

Definition 1 (Gevrey Classes) Let s > 1 be a real number and Ω be an open subset
of Rn. The Gevrey class of index s on Ω , Γ s(Ω), is the space of the all functions
f ∈ C∞(Ω) such that for every compact K ⊂ Ω there exist constants C > 0 and
L > 0 satisfying

sup
x∈K

| ∂αf (x) |≤ CL|α|α!s , for all multi-index α. (3)

We choose a topology for Γ s(Ω) according to Rodino [11].

Definition 2 (Problem Well-Posed in the Gevrey Classes) Let s > 1 be a real
number and Ω be an open subset of Rn, neighborhood of origin. We say that the
problem (1)–(2) is Γ s(Ω) well-posed on Ω if there exists a neighborhood U ⊂ Ω

such that:

• For every data fi ∈ Γ s(Ω ∩Σi), i = 1, 2, 3, the problem (1)–(2) has a solution
u ∈ Γ s(U) and it is unique;

• It depends continuously on the data. It means that for every compact K ⊂ Ω and
every constant L > 0 there exist compacts Ki and constants Li > 0, i = 1, 2, 3,
and C > 0 such that

‖u‖sL,K ≤ C
(
‖f1‖sL1,K1

+ ‖f2‖sL2,K2
+ ‖f3‖sL3,K3

)
. (4)

We are now interested in the so-called case I [2], for a more general class of PDEs.
Our goal is to find necessary conditions for the problem to be well-posed in the
Gevrey classes. We will try to find some critical index s0 such that if the generalized
Goursat–Darboux problem is well-posed in Γ s for s > s0, then some conditions
should be imposed on the coefficients of the derivatives with respect to one of the
variables.
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2 Formulation of the Generalized Goursat–Darboux
Problem

For simplicity, we suppose m = 1 but the formulation and solvability of our problem
can be generalized to m > 1. Let Ω ⊆ R4 be an open set, neighborhood of origin
and let

Pi(∂z) = D2,i∂
2
z+D1,i∂z , i = 1, 2, 3 ∧ Q(∂z) = E3∂

3
z+E2∂

2
z+E1∂z+E0 (5)

be differential operators with real constant coefficients.
We consider the following generalized Goursat–Darboux problem on Ω :

⎧⎪⎪⎨
⎪⎪⎩

∂t∂x∂yu(t, x, y, z) =
(
P1(∂z)∂t + P2(∂z)∂x + P3(∂z)∂y +Q(∂z)

)
u(t, x, y, z)

u(0, x, y, z) = f1(x, y, z)

u(t, 0, y, z) = f2(t, y, z)

u(t, x, 0, z) = f3(t, x, z)

(6)

where the initial data satisfy the necessary compatibility conditions (2) on three
characteristic hyperplanes t = 0, x = 0, and y = 0.

It was showed in [2] that if the problem (2)–(6) is locally C∞ well-posed in the
neighborhood of origin, then the coefficients of the derivatives with respect to z are
zero. So, we expect stronger results in the Gevrey framework.

From now on, we suppose that the problem (6) is Γ s well-posed on Ω . As we
have done in [8], the problem (6) can be reduced to the Cauchy problem following
ideas of Bronshtein [1]. By linearity, if u(t, x, y, z) is a solution of the problem (6)
on Ω , then

v(t, x, y, z) = u(t, x, y, z)+ u(x, y, t, z)+ u(y, t, x, z) (7)

is a solution of the corresponding problem on Ω ′ ⊂ Ω

⎧⎪⎪⎨
⎪⎪⎩

∂t∂x∂yv(t, x, y, z) =
(
P(∂z)∂t + P(∂z)∂x + P(∂z)∂y +Q(∂z)

)
v(t, x, y, z)

v(0, x, y, z) = f1(x, y, z)+ f3(x, y, z)+ f2(y, x, z)

v(t, 0, y, z) = f2(t, y, z)+ f1(y, t, z)+ f3(y, t, z)

v(t, x, 0, z) = f3(t, x, z)+ f2(x, t, z)+ f1(t, x, z) .

(8)

where

P(∂z) = 1

3
(P1(∂z)+ P2(∂z)+ P3(∂z)) . (9)
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We then reduce the number of the independent variables by setting t = x = y. For
every parameter η > 0, taking

v(0, x, y, z) = v(t, 0, y, z) = v(t, x, 0, z) = eiηz

we are looking for a unique solution depending continuously on the data. If vη is the
solution of the problem on Ω ′

{
∂t ∂x∂yv(t, x, y, z) =

(
P(∂z)∂t + P(∂z)∂x + P(∂z)∂y +Q(∂z)

)
v(t, x, y, z)

v(0, x, y, z) = v(t, 0, y, z) = v(t, x, 0, z) = eiηz

(10)

then wη(r, z) = vη(r, r, r, z) is the solution of the Cauchy problem on Ω̃ ⊆ R2

{
∂3
r w(r, z) = 27

(
(D2∂

2
z +D1∂z)∂r + (E3∂

3
z + E2∂

2
z + E1∂z + E0)

)
w(r, z)

w(0, z) = eiηz ,

(11)

where Dj = 1

3

(
Dj,1 +Dj,2 +Dj,3

)
, j = 1, 2. We remark that there are two

arbitrary data ∂rw(0, z) and ∂2
r w(0, z).

3 Solving the Cauchy Problem

If the Cauchy problem (11) is well-posed in the Gevrey classes, then necessarily

E2
3 − 4D3

2 ≥ 0 (12)

by applying the Lax–Mizohata theorem [9].
We determine a unique solution of the problem (11) in the form wη(r, z) =

mη(r)e
iηz, hence mη(r) is the solution of the initial value problem:

⎧⎪⎪⎨
⎪⎪⎩

m′′′(r) = 27(−D2η
2 + iD1η)m

′(r)+ 27(−E3iη
3 − E2η

2 + iE1η + E0)m(r)

m(0) = 1
m′(0) = α

m′′(0) = β

(13)

where α and β are unknown. In order to solve the corresponding linear ODE, we
use its characteristic equation:

λ3 + p(η)λ + q(η) = 0 , (14)
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p(η) = −27(−D2η
2 + iD1η) and q(η) = −27(−E3iη

3 − E2η
2 + iE1η + E0).

That equation has a solution ζη which is given by ζη = zη + ωη. To obtain ζη, we
proceed in three steps (Vieta’s method):

1. Find Aη �= 0 such that A2
η = Δη =

(
q(η)

2

)2 +
(
p(η)

3

)3
;

2. Find a solution zη �= 0 of the equation z3 = − q(η)
2 +Aη by de Moivre’s formula;

3. Calculate ωη = −p(η)

3zη
.

The other two solutions are ζη = γ zη + γωη and ζη = γ zη + γωη.

Lemma 1 Let γ and γ be conjugate complex roots of unity. If ζη = zη+ωη, ζη �= 0,
is a solution of (14), then the solution of the problem (13) is given by:

mη(r) = 1
3 (1 + aη + bη)e

(zη+ωη)r + 1
3

(
1 + γ aη + γ bη

)
e(γ zη+γωη)r+

+ 1
3

(
1 + γ aη + γ bη

)
e(γ zη+γωη)r

(15)

where

aη = αz2
η − (β + 2p(η)/3)ωη

z3
η − ω3

η

∧ bη = −αω2
η + (β + 2p(η)/3)zη

z3
η − ω3

η

. (16)

If ζη is a real root of the (14), we simplify (15) by using the Euler’s formula.

Corollary 1 (Characteristic Equation with One Real Root)
If ζη = zη + ωη ∈ R − {0} and κη = zη − ωη ∈ R − {0}, then

mη(r) = 1
3 (1 − cη)e

ζηr + 1
3

(
2 + cη

)
cos (

√
3κηr/2)e−ζηr/2+

+
√

3
3 dη sin (

√
3κηr/2)e−ζηr/2

(17)

where

cη = −αζη + β + 2p(η)/3

ζ 2
η + p(η)/3

= −aη − bη

and

dη = −i[α(ζ 2
η + κ2

η)/2 − (β + 2p(η)/3)ζη]
(ζ 2

η + p(η)/3)κη
= −i(aη − bη) .

If ζη is a pure imaginary root of the (14), (15) can be written in a simpler expression.
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Corollary 2 (Characteristic Equation with a Pure Imaginary Root)
If ζη = zη + ωη = −iYη and κη = zη − ωη = −iXη with Xη ∈ R − {0} and

Yη ∈ R − {0}, then

mη(r) = 1
3

[
(2 + cη) cosh (

√
3Xηr/2)+√

3dη sinh (
√

3Xηr/2)
]
eiYηr/2+

+ 1
3 (1 − cη)e

−iYηr

(18)

where cη = −aη − bη and dη = −i(aη − bη).

4 Results

In the next asymptotic estimates, we use big O , little o, and ∼ symbols to compare
the growth of functions [10].

Definition 3 Let f and g be complex functions of the real variable η, η > 0. As
η → ∞, we say that

(i) f and g are asymptotically equal, f (η) ∼ g(η), if limη→∞ f (η)
g(η)

= 1;
(ii) f is of order not exceeding g, f (η) = O(g(η)), if there exists a constant k

such that |f (η)| ≤ k|g(η)| for all η > 0;
(iii) f is of order less than g, f (η) = o(g(η)), if limη→∞ f (η)

g(η)
= 0.

In previous works [2, 3, 7], an explicit solution of the generalized Goursat–Darboux
problem involves a hypergeometric function of several variables. However, some
difficulties for obtaining asymptotic representations for these kinds of functions
were pointed out in the paper [4].

In our work, we have a linear combination of complex exponential functions as
solution of the Cauchy problem. In the next propositions, we provide asymptotic
representations, as η tends to infinity, for the absolute value of complex functions
mη on a compact, which depends on η.

Proposition 1 If p(η) = 0, q(η) = −27E1ηi, E1 �= 0, and s > 3, then there exist
a constant c > 0 and a compact Kη, neighborhood of origin, such that

sup
r∈Kη

| mη(r) |∼ ce
3√|E1|η1/s

(19)

as η tends to infinity.
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Proposition 2 If q(η) = O(η), p(η) = −27D1ηi, D1 �= 0, and s > 2, then there
exist a constant c > 0 and a compact Kη, neighborhood of origin, such that

sup
r∈Kη

| mη(r) |∼ ce
3√|D1|η1/s

(20)

as η tends to infinity.

Proposition 3 If p(η) = O(η), q(η) = 27E2η
2, E2 �= 0, and s > 3/2, then there

exist a constant c > 0 and a compact Kη, neighborhood of origin, such that

sup
r∈Kη

| mη(r) |∼ ce
3√|E2|η1/s

(21)

as η tends to infinity.

Proposition 4 Let p(η) = 27D2η
2 + O(η), q(η) = 27E3iη

3 + O(η2) such that
E2

3 − 4D3
2 > 0.

(i) If D2 �= 0 and s > 1, then there exist a constant c > 0 and a compact Kη,
neighborhood of origin, such that

sup
r∈Kη

| mη(r) |∼ ce|
3
√

ρ2−9D2|η1/s
(22)

as η tends to infinity, where ρ = 27
2

(√
E2

3 − 4D3
2 + E3

)
�= 0;

(ii) If D2 = 0∧E3 �= 0 and s > 1, then there exist a constant c > 0 and a compact
Kη, neighborhood of origin, such that

sup
r∈Kη

| mη(r) |∼ ce
3√|E3|η1/s

(23)

as η tends to infinity.

In the proofs of the propositions, our approach is based on asymptotic analysis of
the initial data in order to have only one exponential function as dominant term; that
is, when one exponential function tends to infinity and the others tend to zero.

Finally, we present main results.

Theorem 1 If the problem (2)–(6) is Γ s well-posed on Ω , then:

(i):

s > 1 ⇒ 27E2
3 = 4(D2,1 +D2,2 +D2,3)

3 ; (24)
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(ii):

s >
3

2
⇒ E2 = 0 ; (25)

(iii):

s > 2 ⇒ D1,1 +D1,2 +D1,3 = 0 ; (26)

(iv):

s > 3 ⇒ E1 = 0 . (27)

Proof We suppose that the problem (2)–(6) is Γ s well-posed on Ω with s > 1.
Then for every η > 0, the corresponding problem (10) has a unique solution vη on
Ω ′.

On one hand, we determine a priori an estimate for the Gevrey norm of vη, an
upper bound, from the initial data, ‖eiηz‖sL,K , for every compact K ⊂ Ω ⊆ R3+m

and every constant L > 0. The partial derivatives of eiηz with respect to multi-index
(l, k, j, α), such that l �= 0 or k �= 0 or j �= 0, are zero. Otherwise, it is clear that

∂α
z (e

iηz) = (iη)|α|eiηz ,

it follows that

sup
(t,x,y,z)∈K

| ∂α(eiηz) |= η|α| .

Using | α |! ≤ m|α|α! and | α ||α|≤ e|α| | α |!, we get

‖eiηz‖sL,K ≤ sup
α

(
| α |−s|α| L−|α|(msesη)|α|

)
.

Since the supremum is equal to esmL−1/sη1/s
, there exist constants c1 = smL−1/s

and C > 0 such that

‖vη‖sL,K ≤ C‖eiηz‖sL,K ≤ Cec1η
1/s

(28)

for every η > 0. It is a condition for stability of solution.
On the other hand, let’s see that if we suppose E2

3 − 4D3
2 > 0 in (1), E2 �= 0 in

(2), D1 �= 0 in (3), E1 �= 0 in (4), then we obtain a contradiction with (28). By using
previous propositions, we construct an asymptotic representation of a solution as η

tends to infinity. For every neighborhood of the origin O, there exist a compact Kη,
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Kη ⊂ O, and constants C > 0 and c2 > 0 such that

sup
r∈Kη

| vη(r, r, r, z) |∼ Cec2η
1/s

(29)

Notice that Kη ⊂ O only if s0 = 1 in (1), s0 = 3/2 in (2), s0 = 2 in (3), and s0 = 3
in (4). We have

sup
r∈Kη

| mη(r) |= sup
r∈Kη

| wη(r, z) |= sup
r∈Kη

| vη(r, r, r, z) |

and

‖vη‖sL,Kη
> sup

r∈Kη

| vη(r, r, r, z) | ,

for all L > 0. We can choose L with L >

(
sm

c2

)s

such that

‖vη‖sL,Kη
> Cec2η

1/s
(30)

as η tends to infinity. We conclude that (30) contradicts (28) because c2 > c1.
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On the Regularity of the Semilinear Term
on the Cauchy Problem
for the Schrödinger Equation

Makoto Nakamura

Abstract The regularity assumption on the semilinear term of the Schrödinger
equation is considered in the class of Sobolev spaces. Based on the modification
of the Strichartz estimate, the assumption is improved to the half value from below
compared with the known result for the scaling critical semilinear term.

1 Introduction

In this chapter, we complement and give several comments on the talk by the
author at the session of Special interest group: IGPDE Recent progress in evolution
equations (igpde2), and Nonlinear PDE (nlpde) in the 11th ISAAC congress at
Linnaeus University, Sweden.

Let us consider the Cauchy problem for semilinear Schrödinger equations:

{
∂tu(t, x)+ iΔu(t, x) = f (u)(t, x) for (t, x) ∈ R× Rn,

u(0, ·) = u0(·) ∈ Hs(Rn),
(1)

where n ≥ 1, Δ := ∑n
j=1 ∂2/∂x2

j is the Laplacian, f (u) := λ|u|p−1u or f (u) :=
λ|u|p with λ ∈ C for example, 1 < p < ∞, and u0 is a given initial datum in
the Sobolev space Hs(Rn) for 0 ≤ s < ∞. Cazenave and Weissler [3] proved the
existence of time global solutions of (1) for small data under the conditions:

0 ≤ s <
n

2
, [s] + 1 < p = p(s) := 1 + 4

n− 2s
, (2)

where p(s) is the critical number for (1) by the scaling uR(t, x) = R2/(p−1)u(R2t,

Rx) for any R > 0, and [s] denotes the largest integer less than or equal to s. The
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condition [s] + 1 < p is the required regularity for f (u), and it can be improved to
s < p by the method of Ginibre, Ozawa, and Velo in [8] (see [12]). The aim of this
chapter is mainly to improve this condition to

s

2
< p = p(s), (3)

and to that end, we also aim to refine the modified Strichartz estimate by Pecher [14].
Here, the special case s = 2 was proved in [3, Theorem 1.4]. However, the other
case has been left open for long time.

To describe the corresponding results, we define p0(s) by:

p0(s) :=
⎧⎨
⎩

1 for s ≤ 2,
s − 1 for 2 < s < 4,
s − 2 for 4 ≤ s.

And, we consider the problem (1) under the condition:

0 ≤ s <
n

2
, p0(s) < p < p(s). (4)

The condition p0(s) < p for s ≤ 2 and s ≥ 4 is natural since 1 < p and the
s-derivative of u by the spatial variables requires the (s − 2)-derivative of f (u)

by the first equation in (1). The existence of time local solutions of (1) under (4)
has been shown by Tsutsumi [17] for s = 0, Ginibre and Velo [4, Theorem 3.1]
for s = 1 (see also [5]), and Tsutsumi [16] for s = 2 for f (u) = λ|u|p−1u with
iλ ∈ R mainly by the use of the Lp −Lq estimate and the regularization technique.
Kato [9, 10] used the Strichartz estimate and gave alternative proofs for the cases
s = 0, 1, 2 both for f (u) = λ|u|p−1u and f (u) = λ|u|p with λ ∈ C. Pecher [14]
used the fractional Besov space for the time variable and proved the result when s

is a real number with (4) and s > 1. He has also shown the existence of time global
solutions when the initial data are sufficiently small. The condition p0(s) < p was
improved to s/2 < p for 2 < s < 4 in [18], which seems to be natural since
p0(s) is discontinuous at s = 4 and by the property of the Schrödinger equation
(one time derivative corresponds to two spatial derivatives). However, the methods
in [14] and [18] are not applicable to time global solutions for the critical case
p = p(s) by the technical conditions on the Strichartz estimates there. Especially,
the interpolation argument to construct the Strichartz estimates prevents us from
treating the critical point p(s) in its application to (1). In this chapter, we improve
the Strichartz estimates in [14] and [18] using the auxiliary space �αLq(R, Lr(Rn))

defined by (5) below, and we show the time global solutions for p = p(s). We refer
to [13] for the main theorem and its full proof in this chapter.

To state our theorem, we prepare several function spaces. Let {ϕj }∞j=−∞ be the
Littlewood–Paley decomposition of the unity on R. Namely, let ϕ be a function
whose Fourier transform ϕ̂ is a nonnegative function which satisfies supp ϕ̂ ⊂ {τ ∈
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R; 1/2 ≤ |τ | ≤ 2} and
∑∞

j=−∞ ϕ̂(τ/2j ) = 1 for τ �= 0. We define ψ and ϕj for

j ∈ N by ϕ̂j (·) = ϕ̂(·/2j ), ψ̂ = 1 −∑j≥1 ϕ̂j . We define χj := ∑j+1
k=j−1 ϕk for

j ≥ 1, χ0 := ψ + ϕ1. We put ψ(x) := F−1
ξ ψ̂(|ξ |) and ϕj (x) := F−1

ξ ϕ̂j (|ξ |) for
x ∈ Rn and ξ ∈ Rn. For s ∈ R and 1 ≤ r, α ≤ ∞, the Besov space is defined
by Bs

r,α(R
n) := {u ∈ S ′(Rn); ‖u‖Bs

r,α(R
n) < ∞}, where S ′(Rn) is the space of

tempered distributions on Rn:

‖u‖Bs
r,α (R

n) := ‖ψ ∗x u‖Lr (Rn) +

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎧⎨
⎩
∑
j≥1

(
2sj‖ϕj ∗x u‖Lr(Rn)

)α⎫⎬
⎭

1/α

if α < ∞,

sup
j≥1

2sj‖ϕj ∗x u‖Lr(Rn) if α = ∞,

where ∗x denotes the convolution in the variables in Rn. We prepare the Besov space
of vector-valued functions (see [1, 15]). For functions u = u(t, x) and v = v(t, x),
we denote their convolutions in t and x variables by u ∗t v and u ∗x v, respectively.
For 1 ≤ q, � ≤ ∞, and a Banach space V , we denote the Lebesgue space for
functions on R to V by Lq(R, V ) and the Lorentz space by Lq,�(R, V ). We define
the Sobolev space W 1,q(R, V ) := {u ∈ Lq(R, V ); ∂tu ∈ Lq(R, V )} and the Besov

space Bs
q,α(R, V ) :=

{
u ∈ S ′(R, V ); ‖u‖Bs

q,α (R,V ) < ∞
}

, where

‖u‖Bs
q,α (R,V ) := ‖ψ ∗t u‖Lq(R,V ) +

⎧⎨
⎩
∑
j≥1

(
2sj‖ϕj ∗t u‖Lq(R,V )

)α⎫⎬
⎭

1/α

if α < ∞ with trivial modification if α = ∞. We define the space
�αLq(R, Lr(Rn)) := {u ∈ L1

loc(R, Lr (Rn)); ‖u‖�αLq(R,Lr(Rn)) < ∞}, where

‖u‖�αLq(R,Lr(Rn)) := ‖ψ ∗x u‖Lq(R,Lr(Rn)) +
⎛
⎝∑

j≥1

‖ϕj ∗x u‖αLq(R,Lr(Rn))

⎞
⎠

1/α

(5)

if α < ∞ with trivial modification if α = ∞. We also define �αLq,�(R, Lr(Rn))

similarly.
We show the global well-posedness of the problem (1) for small initial data under

the condition (3). For any function f from C to C, we denote the derivatives ∂f/∂z
and ∂f/∂z̄ by f ′, where z̄ is the complex conjugate of z. For 1 < p < ∞, we say
that f satisfies N(p) if f ∈ C1(C,C) in the sense of the derivatives by z and z̄,
f (0) = f ′(0) = 0, and

|f ′(z1)− f ′(z2)| ≤
{
C max

w=z1,z2
|w|p−2|z1 − z2| if p ≥ 2,

C|z1 − z2|p−1 if 1 < p < 2
(6)
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for any z1, z2 ∈ C. We note that f (z) = λ|z|p−1z and f (z) = λ|z|p with λ ∈ C

satisfy N(p) (see [6, Remark 2.3′]). For s ≥ 0, an admissible pair (according to the
definition given in Sect. 2) (q, r) and 1 ≤ α ≤ ∞, we define a function space Xs

q,r,α

by:

Xs
q,r,α := C(R,H s(Rn))∩C1(R,H s−2(Rn))∩L∞(R,H s(Rn))∩W1,∞(R,H s−2(Rn))

∩ B
s/2
q,2 (R, Lr (Rn)) ∩ Lq(R, Bs

r,α(R
n)) ∩W1,q (R, Bs−2

r,α (Rn))

with the metric in L∞(R, L2(Rn)) ∩ Lq(R, Lr(Rn)), where we remove
C1(R,H s−2(Rn)), W 1,∞(R,H s−2(Rn)), and W 1,q(R, Bs−2

r,α (Rn)) when s < 2.
We have the following result on the Cauchy problem (1).

Theorem 1 Let n ≥ 8. Let 1 < s < 4 with s �= 2, and let s/2 < p = p(s) ≤ s. If
s ≥ 3 with p < 2, or equivalently if 3 ≤ s < (n − 4)/2, we further assume either
of the following:

(i) n = 11,
(ii) n = 12 and 7 −√

15 ≤ s < 5 −√
3.

(7)

Let f satisfy N(p). Then, there exists an admissible pair (q, r) such that if u0 ∈
Hs(Rn) is sufficiently small, then the Cauchy problem (1) has a unique global
solution u in Xs

q,r,α, where we have put α := 2 for s < 3, and α := q for 3 ≤ s.
Moreover, the solutions depend on the initial data continuously, namely, the flow
mapping u0  → u is continuous from Hs(Rn) to Xs

q,r,α.

Throughout the chapter, we denote by A � B the inequality A ≤ CB for some
constant C > 0 which is not essential in our argument. For any function f =
f (t) or f = f (x), its Fourier transform is denoted by f̂ . For any function f =
f (t, x), f̂ and f̃ denote its Fourier transform by x and (t, x) variables, respectively.
We abbreviate Lr(Rn) by Lr , Lq(R, Lr(Rn)) by LqLr , and �αLq(R, Lr (Rn)) by
�αLqLr as long as no fear of confusion. We use the homogeneous Sobolev space
Ḣ s(Rn) and Besov space Ḃs

p,q(R
n) (see [2]).

2 Outline of the Proof of Theorem 1

In this section, we give the outline of the proof of Theorem 1. We only consider the
case 1 < s < 2 since this case is simple compared with other cases and we are able
to show the essential part in it.

Let us recall the Strichartz estimates. For 1 ≤ r ≤ ∞, we put δ(r) := n(1/2 −
1/r). We say that the pair (q, r) is admissible if 2 ≤ q, r ≤ ∞ and 2/q = δ(r) with
(q, r, n) �= (2,∞, 2). For 1 ≤ r ≤ ∞, r ′ denotes its conjugate number defined by
1/r + 1/r ′ = 1. We use the following Strichartz estimates (see, e.g., [7, 11, 13, 14,
18]).
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Lemma 1 Let s ∈ R, and let (q, r) and (γ, ρ) be admissible pairs. Then, the
solution u of

{
∂tu+ iΔu = f on R×Rn,

u(0, ·) = u0(·)

satisfies

‖u‖L∞(R,Hs(Rn))∩Lq(R,Bs
r,2(R

n)) ≤ C‖u0‖Hs(Rn) + C‖f ‖
Lγ ′ (R,Bs

ρ′,2(R
n))

,

where the constant C > 0 is independent of u, f , and u0. Moreover, u ∈
C(R,H s(Rn)).

Lemma 2 Let s > 0, and let (q, r) be an admissible pair with 2 < q < ∞. Then,
the solution u of the problem:

{
∂tu+ iΔu = 0 on R× Rn,

u(0, ·) = u0(·)

satisfies

‖u‖
B

s/2
q,2 (R,Lr(Rn))

≤ C‖u0‖Hs(Rn),

where the constant C > 0 is independent of u and u0.

Lemma 3 Let n ≥ 1, 0 < θ < 1, 2 ≤ α ≤ ∞. Let (q, r) and (γ, ρ) be admissible
pairs. Assume ρ < ∞ when α < ∞. Let 1 ≤ q̄, r̄ ≤ ∞ satisfy 2/q̄ − δ(r̄) =
2(1 − θ). For any fixed function f , let us consider the problem:

{
∂tu+ iΔu = f on R× Rn,

u(0, ·) = 0.
(8)

Then, there exists a constant C > 0 which is independent of u and f such that

(1) ‖u‖Bθ
q,α (R,Lr(Rn)) ≤ C‖f ‖

Bθ
γ ′,α (R,Lρ′(Rn))

+ C‖f ‖�αLq̄(R,Lr̄(Rn)). (9)

Moreover, if max{α, q̄} ≤ q , then

(2) ‖u‖Lq(R,B2θ
r,α(R

n)) ≤ C‖f ‖Bθ
γ ′,α(R,Lρ′(Rn)) + C‖f ‖�αLq̄ (R,Lr̄(Rn)). (10)

We regard the solution of the Cauchy problem (1) as the fixed point of the integral
equation given by:

u(t) = Φ(u)(t) := U(t)u0 +
∫ t

0
U(t − t ′)f (u(t ′))dt ′
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for t ∈ R, where u(t) := u(t, ·) and U(t) := exp(−itΔ). Let n, s, p satisfy the
assumption in the theorem. For any given 2 ≤ γ ≤ ∞, we define ρ, q , and r by:

q := pγ ′, 2

γ
− δ(ρ) = 2

q
− δ(r) = 0. (11)

We note that (γ, ρ) and (q, r) form admissible pairs if 2 ≤ q ≤ ∞. We put

1

m(r, s)
:= 1

r
− s

n
> 0, (12)

where the last inequality holds since 1/m(r, s) = 2(p/(p − 1)− 1/γ ′)/np > 0 by
the assumption p = 1 + 4/(n− 2s). Moreover, m(r, s) satisfies

1

ρ′ =
p − 1

m(r, s)
+ 1

r
. (13)

For any 2 ≤ α ≤ ∞, we put X := Xs
q,r,α and X(R) := {u ∈ X ; u(0) =

u0, ‖u‖X ≤ R} for R > 0. We show that Φ is a contraction mapping on X(R)

for some R > 0. We separate the proof of the theorem into three cases 1 < s < 2,
2 < s < 3, and 3 ≤ s < 4. The case 1 < s < 2 is the simplest case to apply
Lemma 3 to the proof of Theorem 1.

Let 1 < s < 2. We put θ := s/2, γ := 2(n+2)/n, α := 2. Then, ρ = 2(n+2)/n,
2 < q < ∞, where 2 < q holds since it is rewritten as n − 2s < 2(n + 2) by
p = 1 + 4/(n− 2s). So that, 2 < r < 2n/(n− 2).

We have the estimate:

‖Φ(u)‖L∞L2∩LqLr � ‖u0‖L2 + ‖u‖p−1
LqBs

r,m(r,s)
‖u‖LqLr ,

d(Φ(u),Φ(v)) := ‖Φ(u)−Φ(v)‖L∞L2∩LqLr � max
w=u,v

‖w‖p−1
LqBs

r,m(r,s)
d(u, v)

for any u and v. Indeed, by Lemma 1, we have

‖Φ(u)‖L∞L2∩LqLr � ‖u0‖L2 + ‖f (u)‖Lγ ′Lρ′ .

By (13), we have

‖f (u)‖
Lγ ′Lρ′ � ‖u‖p−1

LqLm(r,s)‖u‖LqLr � ‖u‖p−1
LqBs

r,m(r,s)
‖u‖LqLr (14)

by the Hölder inequality and the Sobolev embedding theorem. So that, we obtain
the first inequality. We also obtain the second inequality similarly by:

‖Φ(u)−Φ(v)‖L∞L2∩LqLr � ‖f (u)− f (v)‖
Lγ ′Lρ′ � max

w=u,v
‖w‖p−1

LqBs
r,m(r,s)

‖u− v‖LqLr .
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We put q̄ := γ ′. We define r̄ by the equation 2/q̄ − δ(r̄) = 2(1 − θ). Since
ρ < ∞, 1 < q̄ ≤ α ≤ q , and 1 < r̄ < ∞, we use Lemmas 1–3 to have

‖Φ(u)‖X � ‖u0‖Hs + ‖f (u)‖
Bθ
γ ′,αL

ρ′ + ‖f (u)‖�αLq̄Lr̄ . (15)

We estimate the second and third terms in the right-hand side, respectively.
We have the estimate:

‖f (u)‖�αLq̄Lr̄ � ‖f (u)‖
Lγ ′B0

r̄,α
� ‖u‖pLqBs

r,α
.

Indeed, we have ‖f (u)‖�αLq̄Lr̄ � ‖f (u)‖
Lγ ′B0

r̄,α
by q̄ = γ ′ ≤ α. Let ε > 0

be a sufficiently small number. By the Sobolev embedding Bε
m(r̄,−ε),α ↪→ B0

r̄ ,α ,
the nonlinear estimate in [8, Lemma 3.4] with the equation 1/m(r̄,−ε) = (p −
1)/m(r, s) + 1/m(r, s − ε), and the embedding Bs

r,α ↪→ Lm(r,s) ∩ Bε
m(r,s−ε),α by

α ≤ m(r, s), we have

‖f (u)‖B0
r̄,α

� ‖f (u)‖Bε
m(r̄,−ε),α

� ‖u‖p−1
Lm(r,s)‖u‖Bε

m(r,s−ε),α
� ‖u‖pBs

r,α
.

Since q̄ = γ ′ = q/p, we obtain the required inequality.
We have the estimate:

‖f ‖
Bθ
γ ′,αL

ρ′ � ‖u‖p−1
LqBs

r,α
‖u‖Bθ

q,αL
r .

Indeed, we use the equivalent norm: (see [15] and [18, (2.3)])

‖f (u)‖
Bθ
γ ′,αL

ρ′ = ‖f (u)‖
Lγ ′Lρ′ +

{∫ ∞
0

(
τ−θ ‖f (u(·))− f (u(· + τ))‖

Lγ ′Lρ′
)α dτ

τ

}1/α
.

The first term in the right-hand side is bounded by ‖u‖p−1
LqBs

r,α
‖u‖LqLr by (14). The

second term is bounded by ‖u‖p−1
LqLm(r,s)‖u‖Bθ

q,αL
r by the inequality:

|f (u(·))− f (u(· + τ ))| � (|u(·)| + |u(· + τ )|)p−1 |u(·)− u(· + τ )|.

So that, we obtain the required inequality by the embedding Bs
r,α ↪→ Lm(r,s).

By the above estimates, we have obtained

‖Φ(u)‖X ≤ C‖u0‖Hs + C‖u‖pX ≤ C‖u0‖Hs + CRp,

d(Φ(u),Φ(v)) ≤ C max
w=u,v

‖w‖p−1
X d(u, v) ≤ CRp−1d(u, v)
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for any u, v ∈ X(R) for some constant C > 0. Taking R such that CRp−1 ≤ 1/2
and R ≥ 2C‖u0‖Hs for sufficiently small u0, Φ becomes a contraction mapping on
XR .

The last part of the theorem, the continuous dependence of the solutions to the
initial data, follows easily. Indeed, for any solutions u and v ∈ X for initial data u0
and v0 ∈ Hs(Rn), respectively, we have

d(u, v) � ‖u0−v0‖L2+‖f (u)−f (v)‖
Lγ ′Lρ′ � ‖u0−v0‖L2+ max

w=u,v
‖w‖p−1

X d(u, v),

where the first inequality follows from Lemma 1, and the second inequality follows
similarly to the above argument for d(Φ(u),Φ(v)). So that, the flow mapping u0  →
u is continuous from Hs(Rn) to X.
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The Maximum Principle and
Sign-Changing Solutions of the
Klein–Gordon Equation with the Higgs
Potential in the de Sitter Spacetime

Karen Yagdjian and Andras Balogh

Abstract In this chapter, we discuss the maximum principle for the linear equation
and the sign-changing solutions of the semilinear equation with the Higgs potential.
Numerical simulations indicate that the bubbles for the semilinear Klein–Gordon
equation in the de Sitter spacetime are created and apparently exist for all times.

1 Introduction

The Klein–Gordon equation with the Higgs potential in the de Sitter spacetime is
the equation:

ψtt − e−2tΔψ + nψt = μ2ψ − λψ3, (1)

where Δ is the Laplace operator in x ∈ Rn, n = 3, t > 0, λ > 0, and μ > 0, while
ψ = ψ(x, t) is a real-valued function.

We focus on the zeros of the solutions to the linear and semilinear hyperbolic
equations. One motivation for the study of the zeros of the solutions to the linear and
semilinear hyperbolic equation comes from the cosmological contents and quantum
field theory. It is of considerable interest for particle physics and inflationary
cosmology to study the so-called bubbles [3, 8]. In [3], bubble is defined as a simply
connected domain surrounded by a wall such that the field approaches one of the
vacuums outside of a bubble. The creation and growth of bubbles is an interesting
mathematical problem [3, Chap. 7], [8]. In this paper, for the continuous solution
ψ = ψ(x, t) to the Klein–Gordon equation, for every given positive time t we
define a bubble as a maximal connected set of points x ∈ Rn at which solution
changes its sign.
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2 The Maximum Principle

For hyperbolic equations with variable coefficients, the maximum principle is
known only in 1-dimensional case [10] and for Euler–Poisson–Darboux equation
[13]. We consider the linear part of the equation:

utt − e−2t * u−M2u = −e
n
2 t V ′(e−

n
2 t u), (2)

with M ≥ 0 and the potential function V = V (ψ). If we denote the non-covariant
Klein–Gordon operator in the de Sitter spacetime LKGdS := ∂2

t − e−2t * −M2,
then (2) can be written as follows: LKGdS[u] = −e

n
2 tV ′(e− n

2 tu). Equation (2)
covers two important cases. The first one is the Higgs boson Eq. (1) that leads to (2)
if one applies change of unknown function ψ = e− n

2 tu. Here, V ′(ψ) = λψ3 and
M2 = n2/4 + μ2 with λ > 0 and μ > 0, while n = 3. The second case is the case
of the covariant Klein–Gordon equation ψtt + nψt − e−2t *ψ +m2ψ = −V ′(ψ),
with small physical mass, that is 0 ≤ m ≤ n/2. For the last case, M2 = n2/4 −m2.

It is known that the Klein–Gordon quantum fields whose squared physical masses
are negative (imaginary mass) represent tachyons [2]. The Klein–Gordon quantum
fields on the de Sitter manifold with imaginary mass present scalar tachyonic
quantum fields. Epstein and Moschella [5] give an exhaustive study of scalar
tachyonic quantum fields which are linear Klein–Gordon quantum fields on the de
Sitter manifold whose masses take discrete values m2 = −k(k+n), k = 0, 1, 2, . . ..

The next theorem gives a certain kind of maximum principle for the non-
covariant Klein–Gordon equation in the de Sitter spacetime. Define the “forward
light cone” DdS+ (x0, t0) and the “backward light cone” DdS− (x0, t0), in the de Sitter
spacetime for the point (x0, t0) ∈ Rn+1, as follows:

DdS± (x0, t0) :=
{
(x, t) ∈ Rn+1 ; |x − x0| ≤ ±(e−t0 − e−t )

}
.

For the domain D0 ⊆ Rn, define the dependence domain of D0 as follows:

DdS(D0) :=
⋃

x0∈Rn, t0∈[0,∞)

{
DdS− (x0, t0) ; DdS− (x0, t0)

⋂
{t = 0} ⊂ D0

}
.

Theorem 1 Assume that M > 1 and the function u satisfies

utt − e−2tΔu−M2u ≤ 0 , for all t ≤ T , (3)

and LKGdS[u] ∈ C2 is a superharmonic function in x. Suppose that u(x, 0) and
ut (x, 0) are superharmonic nonpositive functions in D0 ⊆ R3. Then,

u(x, t) ≤ 0 for t ∈ [ln(M/(M − 1)), T ], (4)
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in the domain of dependence of D0. If u(x, 0) ≡ 0, then the statement (4) holds also
for all t ∈ [0, T ] and each M ≥ 0.

Proof We apply the integral transform and the kernel functions E(x, t; x0, t0;M),
K0(z, t;M), and K1(z, t;M) from [16, 17]. First, we introduce the function:

E(x, t; x0, t0;M) = 4−MeM(t0+t )
(
(e−t + e−t0)2 − (x − x0)

2
)− 1

2+M

×F
(1

2
−M,

1

2
−M; 1; (e

−t0 − e−t )2 − (x − x0)
2

(e−t0 + e−t )2 − (x − x0)2

)
.

Here, F
(
a, b; c; ζ ) is the hypergeometric function (see [1]). Next, we define the

kernels:

K0(z, t;M) := −
[

∂

∂b
E(z, t; 0, b;M)

]
b=0

and K1(z, t;M) := E(z, t; 0, 0;M) .

These kernels have been introduced and used in [14, 19]. The positivity of the
kernels E, K0, and K1 is proved in the next section. The solution u = u(x, t) to
the Cauchy problem:

utt − e−2tΔu−M2u = f, u(x, 0) = 0, ut (x, 0) = 0,

with f ∈ C∞(Rn+1) and with vanishing initial data is given in [16] by:

u(x, t) = 2
∫ t

0
db

∫ e−b−e−t

0
dr v(x, r; b)E(r, t; 0, b;M), (5)

where the function v(x, t; b) is a solution to the Cauchy problem for the wave
equation:

vtt −*v = 0 , v(x, 0; b) = f (x, b) , vt (x, 0) = 0 . (6)

If the superharmonic function f is also nonpositive, then due to Theorem 1 from
[11] we conclude v(x, r; b) ≤ f (x, b) ≤ 0 in the domain of dependence of D0. It
follows

∫ t

0
db

∫ e−b−e−t

0
dr v(x, r; b)E(r, t; 0, b;M)

≤
∫ t

0
db

∫ e−b−e−t

0
dr f (x, b)E(r, t; 0, b;M) ≤ 0 ,
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provided that E(r, t; 0, b;M) ≥ 0. The solution u = u(x, t) to the Cauchy problem:

utt − e−2t * u−M2u = 0 , u(x, 0) = u0(x) , ut (x, 0) = u1(x) , (7)

with u0, u1 ∈ C∞
0 (Rn), n ≥ 2, can be represented (see [16]) as follows:

u(x, t) = e
t
2 vu0(x, φ(t))+ 2

∫ 1

0
vu0(x, φ(t)s)K0(φ(t)s, t;M)φ(t) ds

+ 2
∫ 1

0
vu1(x, φ(t)s)K1(φ(t)s, t;M)φ(t) ds, x ∈ Rn, t > 0 ,

where φ(t) := 1 − e−t . Here, for ϕ ∈ C∞
0 (Rn) and for x ∈ Rn, the function

vϕ(x, φ(t)s) coincides with the value v(x, φ(t)s) of the solution v(x, t) of the
Cauchy problem:

vtt −*v = 0 , v(x, 0) = ϕ(x) , vt (x, 0) = 0 .

For the function u1, which is superharmonic, by using Theorem 1 from [11] we
conclude vu1(x, r) ≤ u1(x). It follows

∫ φ(t)

0
vu1(x, r)K1(r, t;M)dr ≤ u1(x)

∫ φ(t)

0
K1(r, t;M)dr = 1

2M
(eMt−e−Mt)u1(x).

since K1(r, t;M) ≥ 0. In particular, if u1(x) ≤ 0, then
∫ φ(t)

0 vu1(x, r)K1(r, t;M)dr

≤ 0.
Further, if u0 ∈ C2 is superharmonic, that is Δu0 ≤ 0, then, according to

Theorem 1 from [11], (∂2
t −Δ)vu0 = 0 implies vu0(x, t) ≤ u0(x). Consequently,

e
t
2 vu0(x, φ(t))+ 2

∫ φ(t)

0
vϕ0(x, r)K0(r, t;M)dr

≤ u0(x)

[
e

t
2 + 2

∫ φ(t)

0
K0(r, t;M)dr

]
= 1

2
(eMt + e−Mt)u0(x) .

In particular, if M > 1, K0(r, t;M) ≥ 0, and u0(x) ≤ 0, then

e
t
2 vu0(x, φ(t)) + 2

∫ φ(t)

0
vu0(x, r)K0(r, t;M)dr ≤ 0

for all t ∈ [ln(M/(M − 1)), T ]. Theorem 1 is proved. ��
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3 The Positivity of the Kernel Functions E, K0, and K1

Proposition 1 Assume that M ≥ 0. Then,

E(r, t; 0, b;M) > 0, for all 0 ≤ b ≤ t, r ≤ e−b − e−t , and for all t ∈ [0,∞) ,

K1(r, t;M) > 0 for all r ≤ 1 − e−t and for all t ∈ [0,∞) .

If we assume M > 1, then

K0(r, t;M) > 0 for all r ≤ 1 − e−t and for all t > ln (M/(M − 1)) .

Proof Indeed, if 0 ≤ b ≤ t and r ≤ e−b − e−t , then we have

E(r, t; 0, b;M) = 4−MeM(b+t )
(
(e−t + e−b)2 − r2

)− 1
2+M

×F
(1

2
−M,

1

2
−M; 1; (e

−b − e−t )2 − r2

(e−b + e−t )2 − r2

)
.

For M ≥ 0, the parameters a = b = 1/2 − M and c = 1 of the hypergeometric
function F(a, b; c; z) satisfy the relation a + b ≤ c. It remains to check the sign of
the hypergeometric function F(a, a; 1; z) with parameter a ≤ 1/2 and z ∈ (0, 1).
If a is not a nonpositive integer, then the series:

F(a, a; 1; x) =
∞∑
n=0

[(a)n]2
[n!]2 xn , (a)n := a(a + 1) · · · (a + n− 1) ,

is a convergent series for all x ∈ [0, 1). If a is negative integer, a = −k, then
F(a, a; 1; x) is a polynomial with positive coefficients. Since K1(z, t;M) :=
E(z, t; 0, 0;M), the first two statements of the proposition are proved.

In order to verify the last statement, it suffices to verify the inequality
K0(r, t;M) > 0, where r ∈ (0, 1). Denote M = (2k + 1)/2. Then,
1/2 − M = −k < 0 and due to the relation (20) from [1, Sect. 2.8] we can
write

4k+1e
−
(
k+ 1

2

)
t(
(1 + e−t )2 − r2)−k+2

K0

(
r, t; 1

2
+ k

)
(8)

= 8k2et
((

r2 + 1
)
e2t − 1

)
F

(
1 − k, 1 − k; 2; (1 − e−t )2 − r2

(1 + e−t )2 − r2

)

+
[
(1 + et )2 − r2

] (
e2t
(

2k
(
r2 + 1

)
+ r2 − 1

)
− 2k − 2et − 1

)

×F

(
−k,−k; 1; (1 − e−t )2 − r2

(1 + e−t )2 − r2

)
.
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Consider the right-hand side of the last expression. The functions F (−k,−k; 1; z)
and F (1 − k, 1 − k; 2; z) are defined as follows:

F (−k,−k; 1; z) =
∞∑
n=0

[(−k)(−k + 1) · · · (−k + n− 1)]2
[n!]2 zn ,

F (1 − k, 1 − k; 2; z) =
∞∑
n=0

[(1 − k)(2 − k) · · · (n− k)]2
[n!]2(n+ 1)

zn .

Here, we have denoted

z := (1 − e−t )2 − r2

(1 + e−t )2 − r2 ∈ [0, 1] for all t ∈ [0,∞), r ∈ (0, 1 − e−t ) .

Thus, F (−k,−k; 1; z) ≥ 1 and F (1 − k, 1 − k; 2; z) ≥ 1 for all z ∈ [0, 1). Then,

8k2et
((

r2 + 1
)
e2t − 1

)
> 1 for all r ∈ [0, 1] and t ≥ M/(M − 1) .

Next, we check the sign of the function:

[
(1 + et )2 − r2

] (
e2t
(

2k
(
r2 + 1

)
+ r2 − 1

)
− 2k − 2et − 1

)
.

Since
[
(1 + et)2 − r2

] ≥ 3, we consider the second factor only. We set x :=
et > 1 and y := r2 ∈ [0, 1], then we have the polynomial P(x, y) =
x2 (2k (y + 1)+ y − 1) − 2k − 2x − 1. It follows ∂yP (x, y) = x2(2k + 1)
= 2x2M > 0. On the other hand, if we set

P(x, 0) = x2 (2k − 1)− 2k − 2x − 1 = 2[x2(M − 1)− x −M] > 0, (9)

then for M = 1 the last inequality becomes false since x > 0. For M > 1, the
inequality (9) holds whenever x > M/(M − 1). It follows

P(et , r2) > const > 0 for all r2 ∈ [0, 1] and for all t ∈ (ln(M/(M − 1)),∞) .

Since all terms of (8) are positive, the proposition is proved. ��
Conjecture 1 Assume that M ∈ [0, 1/2]. Then, K0(r, t;M) ≤ 0 for all r ≤ 1− e−t

and for all t > 0.
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4 Sign-Changing Solutions and Evolution of Bubbles

We are interested in sign-changing solutions of the equation for the Higgs real-
valued scalar field in the de Sitter spacetime:

ψtt + 3ψt − e−2tΔψ = μ2ψ − λψ3 . (10)

Unlike the equation in the Minkowski spacetime, that is, the equation ψtt −Δψ =
μ2ψ −λψ3, Eq. (10) has no time-independent solution. A global in time solvability
of the Cauchy problem for (10) is not known. An estimate for the lifespan is given
by Theorem 0.1 in [18]. The local (in time) solutions exist for every smooth initial
data. A C2 solution of the Cauchy problem for Eq. (10) is unique and obeys the
finite speed of propagation property (see [6]). In order to make our discussion more

transparent, we appeal to the function u = e
3
2 tψ . For u = u(x, t), Eq. (10) implies

utt − e−2t * u−M2u = −λe−3tu3, (11)

where M = √
9 + 4μ2/2 > 0. Next, we use the fundamental solution of the

corresponding linear operator in order to reduce the Cauchy problem for the
semilinear equation to the integral equation and to define a weak solution. We denote
by G the resolving operator of the problem:

utt − e−2t * u−M2u = f, u(x, 0) = 0, ∂tu(x, 0) = 0 .

Thus, u = G[f ]. The operator G is explicitly given in [19] for the case of a real
mass. The analytic continuation with respect to the parameter M of this operator
allows us to use G in the case of an imaginary mass. More precisely, for M ≥ 0
we define the operator G acting on f (x, t) ∈ C∞(R3 × [0,∞)) by (5). Let u0 =
u0(x, t) be a solution of the Cauchy problem:

∂2
t u0−e−2t*u0−M2u0 = 0, u0(x, 0) = ϕ0(x), ∂tu0(x, 0) = ϕ1(x) . (12)

Then, any solution u = u(x, t) of Eq. (11), which takes initial value u(x, 0) =
ϕ0(x), ∂tu(x, 0) = ϕ1(x), solves the integral equation:

u(x, t) = u0(x, t)−G[λe−3·u3](x, t) . (13)

Definition 1 If u0 is a solution of the Cauchy problem (12), then the solution u =
u(x, t) of (13) is said to be a weak solution of the Cauchy problem for Eq. (11) with
the initial conditions u(x, 0) = ϕ0(x), ∂tu(x, 0) = ϕ1(x).
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It is suggested in [15] to measure a variation of the sign of the function ψ by
the deviation from the Hölder inequality

∣∣∫
Rn u(x) dx

∣∣3 ≤ Csupp u

∫
Rn |u(x)|3 dx

of the inequality between the integral
∫

Rn u
3(x) dx �= 0 and the self-interaction

functional:
∣∣∫

Rn u(x) dx
∣∣3 ≤ νu

∣∣∫
Rn u

3(x) dx
∣∣ . The next definition is a particular

case of Definition 1.2 in [15].

Definition 2 The real-valued function ψ ∈ C([0,∞);L1(R3) ∩ L3(R3)) is said
to be asymptotically time-weighted L3-nonpositive (nonnegative), if there exist a
number Cψ > 0 and a positive nondecreasing function νψ ∈ C([0,∞)) such that
with σ = 1 (σ = −1) one has

∣∣∣∣
∫

Rn

ψ(x, t) dx

∣∣∣∣
3

≤ −σCψνψ(t)

∫
Rn

ψ3(x, t) dx for all sufficiently large t .

An application of Theorem 1.3 from [15] to the Higgs real-valued scalar field
Eq. (10) with μ > 0 results in the following statement (see also Corollary 1.4 [15]).
Let ψ = ψ(x, t) ∈ C([0,∞);Lq(R3)), 2 ≤ q < ∞, be a global weak solution of
Eq. (10). Assume also that the initial values of ψ = ψ(x, t) satisfy

σ

(
(

√
9 + 4μ2 + 3)

∫
R3

ψ(x, 0) dx + 2
∫

R3
∂tψ(x, 0) dx

)
> 0 (14)

with σ = 1 (σ = −1), while σ
∫

R3 ψ
3(x, t) dx ≤ 0 is fulfilled for all t

outside of a sufficiently small neighborhood of zero. Then, the global solution
ψ = ψ(x, t) cannot be an asymptotically time-weighted L3-nonpositive (L3-
nonnegative) solution with the weight νψ(t) = eaψ t tbψ , where aψ <

√
9 + 4μ2−3,

bψ ∈ R. A solution ψ = ψ(x, t) ∈ C2(R3 × [0,∞)) with compactly supported
smooth initial data ψ(x, 0), ψt (x, 0), and with μ > 0 has its support in some
cylinder B × [0,∞), and consequently, if it is sign preserving, it is also an
asymptotically time-weighted L3-nonpositive (L3-nonnegative) solution with the
weight νψ(t) ≡ 1. Hence, the global solution with data satisfying (14) and
ψ(x, 0) ≤ 0 must take a positive value at some point and, consequently, must take
the value zero inside of some section t = const > 0. It gives rise to the formation
of a bubble.

Since the issue of global (in time) solutions for Eq. (10) is not resolved, we
present some simulation that shows evolution of the bubbles in time. Our numerical
approach uses a fourth-order finite difference method in space [7] along with
an explicit fourth-order Runge–Kutta method in time [4] for the discretization
of the Higgs boson equation. The numerical code has been programmed using
the Community Edition of PGI CUDA Fortran [9] on NVIDIA Tesla K40c GPU
Accelerators. The grid size in space was n × n × n = 501 × 501 × 501, resulting
in a uniform spatial grid spacing of δx1 = δx2 = δx3 = 2 × 10−3. The time
step δt = 10−4 ensured that the Courant–Friedrichs–Lewy (CFL) condition [12] for
stability, |ψ| < δx/(

√
3δt) ≈ 11.54, was satisfied for all times. As first initial data



Klein–Gordon Equation with Higgs Potential in de Sitter Spacetime 387

ψ0 we choose the combination of two bell-shaped, infinitely smooth exponential
functions ψ0(x) = B1(x)+ B2(x) for all x = (x1, x2, x3) ∈ Ω , where

Bi (x) =
⎧⎨
⎩

exp

(
1
R2

i

− 1
R2

i −|x−Ci |2
)

if |x − Ci | < Ri

0 if |x − Ci | ≥ Ri

, i = 1, 2,

with the center of the bell-shapes at C1 = (0.4, 0.4, 0.4), C2 = (0.6, 0.6, 0.6), and
the radii of the bell-shapes R1 = R2 = 0.2. Note that the initial data is nonnegative
with a compact support. The finite cone of influence enables us to use zero boundary
conditions on the unit box Ω = (0, 1) × (0, 1) × (0, 1) as computational domain,
since the solution’s domain of support stayed inside the unit box. As second initial
data ψ1 we choose a constant multiple of the first initial data ψ1(x) = −5ψ0(x) for
all x ∈ Ω. The parameter values are λ = μ2 = 0.1. Figure 1 shows the formation
and interactions of bubbles. Initially, there is no bubble present. At time t = 0, 2
two bubbles exist, and their size grows continuously in time. Around time t = 0.69
the two bubbles touch, and from that time on they are attached to each other. An
additional bubble is formed inside of each of the new merged bubbles (part (c) of
Fig. 1), and later these inner bubbles disappear. The growth of the larger outer bubble
slows down exponentially and it does not seem to change its shape after time t = 3
(part (d) of Fig. 1).

Fig. 1 Formation and interaction of two bubbles. (a) 3D bubbles at t = 0.2. (b) 3D bubbles at
t = 0.69. (c) 3D bubbles at t = 2. (d) 3D bubbles at t = 3
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A Remark on the Critical Exponent
for the Semilinear Damped Wave
Equation on the Half-Space

Yuta Wakasugi

Abstract In this short notice, we prove the non-existence of global solutions to the
semilinear damped wave equation on the half-space, and we determine the critical
exponent for any space dimension.

1 Introduction

Let n ≥ 1 be an integer and let Rn+ be the n-dimensional half-space, namely,

R
n+ = {x = (x1, . . . , xn) ∈ R

n ; xn > 0} (n ≥ 2), R+ = (0,∞) (n = 1).

We consider the initial-boundary value problem for the semilinear damped wave
equation on the half-space:

⎧⎨
⎩

utt −Δu+ ut = |u|p t > 0, x ∈ R
n+,

u(t, x) = 0, t > 0, x ∈ ∂Rn+,
u(0, x) = u0(x), ut (0, x) = u1(x), x ∈ R

n+.
(1)

Here, u is a real-valued unknown function and u0, u1 are given initial data.
Our aim is to show the non-existence of global solutions and determine the

critical exponent for any space dimension. Here, the critical exponent stands for
the threshold of the exponent of the non-linearity for the global existence and the
finite time blow-up of solution with small data.

For the semilinear heat equation vt − Δv = vp on the whole space, Fujita [1]
discovered that if p > pF (n) := 1 + 2/n, then the unique global solution exists for
every small positive initial data, while the local solution blows up in finite time for
any positive data if 1 < p < pF (n). Namely, the critical exponent of the semilinear
heat equation on the whole space is given by pF (n), which is the so-called Fujita’s
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critical exponent. Later on, Hayakawa [3] and Kobayashi et al. [8] proved that the
case p = pF (n) belongs to the blow-up region. Moreover, the initial-boundary value
problem of the semilinear heat equation on the halved space {x = (x1, . . . , xn) ∈
Rn ; xn−k+1 > 0, . . . , xn > 0} was studied in [9–12] and they determined the
critical exponent as p = pF (n+ k).

The critical exponent for the semilinear damped wave equation on the whole
space was studied by many authors and it is determined as p = pF (n). We refer the
reader to [14, 15] and the references therein.

Ikehata [5–7] studied the semilinear damped wave equation on the half-space (1)
and proved that if pF (n+1) < p < ∞ (n = 1, 2), pF (n+1) < p ≤ n

n−2 (n ≥ 3),

(u0, u1) ∈ H 1
0 (R

n+)×L2(Rn+) have compact support in R
n+ and ‖∇u0‖L2 +‖u1‖L2

is sufficiently small, then the problem (1) admits a unique global solution. When
n = 1, Nishihara and Zhao [13] proved the blow-up of solutions when 1 < p ≤
pF (2), namely, the critical exponent of (1) on the half-line is determined as p =
pF (2). However, there is no blow-up result for (1) when n ≥ 2. We also refer the
reader to [4] for the asymptotic profile of global solutions for a critical absorbing-
type non-linearity in one space dimension.

In this paper, we prove the non-existence of global classical solutions for (1) for
all n ≥ 1, and we determine the critical exponent of (1) as pF (n+ 1).

Theorem 1 Let 1 < p ≤ pF (n + 1) = 1 + 2
n+1 . We assume that the initial data

satisfy xnu0, xnu1 ∈ L1(Rn+) and
∫
R

n+
xn(u0(x)+ u1(x)) dx > 0 (2)

(when n = 1, we interpret xn = x). Then, there is no global classical solution to
(1).

Our proof is based on the test function method by Zhang [15]. To apply it to the
half-space, we employ the technique by Geng et al. [2]. Namely, we use the test
function having the form xnψR(t, x), where ψR(t, x) is a test function supported on
the rectangle {(t, x) ∈ [0,∞)× R

n ; t ≤ R2, |xj | ≤ R (j = 1, . . . , n)}.

2 Proof of Theorem 1

We suppose that the global classical solution u of the problem (1) exists and
derive the contradiction. Let ψ ∈ C∞

0 ([0,∞) × R
n+) be a test function. Using the

integration by parts, we compute
∫ ∞

0

∫
R

n+
|u|pψ dxdt =

∫ ∞

0

∫
R

n+
(utt −Δu+ ut )ψ dxdt

=
∫ ∞

0

∫
Rn−1

∂xnu(t, x
′, 0)ψ(t, x ′, 0) dx ′dt
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+
∫ ∞

0

∫
R

n+
u(ψtt −Δψ − ψt ) dxdt

−
∫
R

n+
((u0(x)+ u1(x))ψ(0, x)− u0(x)ψt (0, x)) dx,

(3)

where we used the notation x ′ = (x1, . . . , xn−1). Now, we choose the test function
ψ as follows. Let η(t) ∈ C∞

0 ([0,∞)) be a non-increasing function satisfying

η(t) = 1 (t ∈ [0, 1/2]), η(t) = 0 (t ∈ [1,∞)).

We also define φ ∈ C∞
0 (Rn) by φ(x) := η(|x1|)η(|x2|) · · · η(|xn|). Let R > 0 be

a parameter and let ψR(t, x) := φ(x/R)η(t/R2). We denote the rectangle DR :=
{x ∈ Rn ; |x1| ≤ R, . . . , |xn| ≤ R} and we put D+

R = DR ∩R
n+. Then, it is obvious

that supp (∂xj φ(·/R)) ⊂ DR \ DR/2. With the above notations, we choose our test
function as ψ(t, x) = xnψR(t, x)

l with sufficiently large integer l.
Let

IR :=
∫ ∞

0

∫
R

n+
|u|pxnψl

R dxdt.

We note that our choice of test function implies xnψR(t, x)
l
∣∣∣
xn=0

= 0 and

xn∂t (ψR(t, x)
l)

∣∣∣
t=0

= 0. Moreover, by the assumption (2), we see that there exists

R0 > 0 such that

∫
R

n+
((u0(x)+ u1(x))xnψR(0, x)l dx > 0

holds for R ≥ R0. Therefore, we deduce from (3) that

IR ≤
∫ ∞

0

∫
R

n+
u(∂2

t (xnψ
l
R)−Δ(xnψ

l
R)− ∂t (xnψ

l
R)) dxdt

=: K1 +K2 +K3

for R ≥ R0. We estimate K1,K2 and K3 individually. First, for K1, we apply the
Hölder inequality to obtain

K1 ≤ CR−4

(∫ R2

R2/2

∫
D+

R

|u|pxnψl
R dxdt

)1/p (∫ R2

R2/2

∫
D+

R

xn dxdt

)1/p′

≤ CR−4+(n+3)/p′
Î

1/p
R ,
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where p′ stands for the Hölder conjugate of p and

ÎR :=
∫ R2

R2/2

∫
D+

R

|u|pxnψl
R dxdt.

Similarly, by using

Δ(xnψ
l
R)

= lR−2xn

(
φ
( x

R

)l−1
(Δφ)

( x
R

)
+ (l − 1)φ

( x
R

)l−2 ∣∣∣(∇φ)
( x
R

)∣∣∣2
)
η

(
t

R2

)l

+ 2lR−1φ
( x

R

)l−1
(∂xnφ)

( x
R

)
η

(
t

R2

)l

,

we estimate K2 as:

K2 ≤ CR−2

(∫ R2

0

∫
D+

R \D+
R/2

|u|pxnψl
R dxdt

)1/p (∫ R2

0

∫
D+

R \D+
R/2

xn dxdt

)1/p′

+ CR−1

(∫ R2

0

∫
D+

R \D+
R/2

|u|pxnψl
R dxdt

)1/p

×
(∫ R2

0

∫
D+

R∩{xn>R/2}
x
−p′/p
n dxdt

)1/p′

≤ CR−2+(n+3)/p′
Ĩ

1/p
R ,

where

ĨR =
∫ R2

0

∫
D+

R \D+
R/2

|u|pxnψl
R dxdt

and we note that (∂xnφ)(x/R) = 0 on the set {xn ≤ R/2}. The term K3 is estimated
in the same way as K1 and we have

K3 ≤ CR−2

(∫ R2

R2/2

∫
D+

R

|u|pxnψl
R dxdt

)1/p (∫ R2

R2/2

∫
D+

R

xn dxdt

)1/p′

≤ CR−2+(n+3)/p′
Î

1/p
R .
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Combining the estimates above, we deduce

IR ≤ C(R−4+(n+3)/p′
Î

1/p
R + R−2+(n+3)/p′

Ĩ
1/p
R + R−2+(n+3)/p′

Î
1/p
R ). (4)

In particular, using ÎR ≤ IR and ĨR ≤ IR , we have

IR ≤ C(R−4+(n+3)/p′ + R−2+(n+3)/p′
)I

1/p
R . (5)

When 1 < p < pF (n + 1), letting R → ∞, we see that IR → 0, which implies
u ≡ 0. However, this contradicts (u0, u1) �≡ 0.

On the other hand, when p = pF (n + 1), we have −2 + (n + 3)/p′ = 0 and
hence, we see from (5) that IR ≤ C with a constant C independent of R. Thus,
letting R → ∞, we have xn|u|p ∈ L1([0,∞)× R

n+). Noting this and the integral
region of ÎR and ĨR , we also deduce

lim
R→∞(ÎR + ĨR) = 0.

This and (4) imply

IR ≤ C(Î
1/p
R + Ĩ

1/p
R ) → 0 (R → ∞),

and hence, u ≡ 0. This again contradicts (u0, u1) �≡ 0 and completes the proof.
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On Microlocal Regularity of Generalized
Linear Partial Differential Operators
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Abstract Given a set R of sequences of positive numbers, a subalgebra GR (Ω)

gives rise to local and microlocal R-regularity of generalized functions, in this
framework we study the microlocal regularity of solutions of linear partial differ-
ential equations with R-regular generalized functions as coefficients.

1 Introduction

Let P (x,D) be a classical linear partial differential operator with coefficients of
C∞ regularity, the first microlocal regularity result in the framework of distribu-
tions, due to L. Hörmander [4], is

WF (u) ⊆ WF (P (x,D)u) ∪ Char (P ) , u ∈ D ′ (Ω) , (1)

where WF (u) denotes the C∞-wave front set of u.
When dealing with linear partial differential operators with discontinuous or even

distributional coefficients, we need a larger context than the space of distributions.
The Colombeau algebra of generalized functions G (Ω) is a possible candidate for
such a situation, as the space D ′ (Ω) is linearly injected into G (Ω) as a subspace
and the space C∞ (Ω) is canonically embedded into G (Ω) as a subalgebra, see
for details [3, 8]. The notion of regularity in G (Ω) is based on the subalgebra
G∞ (Ω) which plays the same role as C∞ (Ω) in D ′ (Ω) , and it is the basis of
the development of local and microlocal analysis within G (Ω) . However, the G∞-
regularity does not exhaust the regularity questions inherent to the algebra G (Ω) .
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Given a set R of sequences of positive numbers, a subalgebra GR (Ω) of
G (Ω) gives rise to a new local and also a microlocal R-regularity for generalized
functions, see [1, 2, 9]. If we take R to be the set of all bounded sequences of
positive numbers, we then obtain the G∞-regularity associated with the subalgebra
G∞ (Ω) .

Linear partial differential equations with generalized coefficients from G∞ (Ω),
see [7], are seen as equivalence classes of operators with regular coefficients that
depend on a parameter ε satisfying a certain rule which is imposed by the studied
problem. When this rule is defined by an asymptotic scale of type R we obtain a
more general problem : an example of such a situation rising from applications to a
concrete context is the subject of the paper [5].

This work aims to study the microlocal regularity of generalized solutions of
linear partial differential equations with R-regular generalized coefficients. In fact,
we prove the following result:

WFR (u) ⊆ WFR (P (x,D)u) ∪Σm′
ρ,δ (P ) , u ∈ G (Ω) ,

where P (x,D) is a generalized linear partial differential operator with R-regular
functions as coefficients and WFR (u) denotes the R-wave front set of u. The set
Σm′

ρ,δ (P ) ⊂ Ω× (Rn \ {0}) characterizes the lack of R-micro-hypoellipticity of the
operator P (x,D) , it is seen as a generalization of its characteristic variety.

2 The R-Regularity

Recall that R+ := ]0,∞[ ,Z+ := {0, 1, 2, . . .} and R
Z++ is the set of all sequences

of positive real numbers.
Let Ω be an open set of Rn, I := ]0, 1] and define

M (Ω) : =
{
(uε)ε ∈ C∞ (Ω)I : ∀K � Ω,∀α ∈ Z

n+, ∃m ∈ R,

sup
x∈K

|∂αuε (x)| = O
(
ε−m

)
, ε −→ 0

}
,

and

N (Ω) : =
{
(uε)ε ∈ C∞ (Ω)I : ∀K � Ω,∀α ∈ Z

n+,∀m ∈ Z+,

sup
x∈K

|∂αuε (x)| = O (εm) , ε −→ 0

}
,

then the Colombeau algebra of generalized functions G (Ω) is by definition the
quotient algebra

G (Ω) := M (Ω)

N (Ω)
.



On Microlocal Regularity of Generalized Linear Partial Differential Operators 399

This algebra has been introduced in order to give a solution to the problem of
multiplication of distributions.

The first regularity notion within G (Ω) is based on the following subalgebra:

G∞ (Ω) := M∞ (Ω)

N (Ω)
,

where

M∞ (Ω) =
{
(uε)ε ∈ C∞ (Ω)I : ∀K � Ω, ∃m ∈ R,∀α ∈ Z

n+,

sup
x∈K

|∂αuε (x)| = O
(
ε−m

)
, ε −→ 0

}
.

The fundamental property of G∞ (Ω) is the following result:

D ′ (Ω) ∩ G∞ (Ω) = C∞ (Ω) ,

which means that G∞ (Ω) plays in G (Ω) the same role as C∞ (Ω) in D ′ (Ω) , see
[3, 8].

Other subalgebras of G (Ω) candidates for the regularity issue in G (Ω) are
introduced.

Definition 1 Let R be a regular subset of RZ++ , we define the algebra of R-regular
generalized functions on the open set Ω as the quotient algebra

GR (Ω) := MR (Ω)

N (Ω)
, (2)

where

MR (Ω) :=
{
(uε)ε ∈ C∞ (Ω)I : ∀K � Ω, ∃N = (Nm)m∈Z+ ∈ R,

∀α ∈ Z
n+, sup

x∈K
|∂αuε (x)| = O

(
ε−N|α|

)
, ε −→ 0

}
. (3)

Remark 1 The subalgebra G∞ corresponds to GB (Ω) , where B is the set of all
bounded sequences of RZ++ .

To be a regular subset of R
Z++ is needed for obtaining the main properties of

GR (Ω) .

Definition 2 A non-void subset R of R
Z++ is called regular if it satisfies the

following properties:
∀ (Nm)m∈Z+ ∈ R,∀ (k, k′) ∈ Z2+, ∃ (N ′

m

)
m∈Z+ ∈ R such that

Nm+k + k′ ≤ N ′
m,∀m ∈ Z+. (R1)
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∀ (Nm)m∈Z+ ,
(
N ′

m

)
m∈Z+ ∈ R, ∃

(
N

′′
m

)
m∈Z+

∈ R such that

max
(
Nm,N ′

m

) ≤ N
′′
m,∀m ∈ Z+. (R2)

∀ (Nm)m∈Z+ ,
(
N ′

m

)
m∈Z+ ∈ R, ∃

(
N

′′
m

)
m∈Z+

∈ R such that

Nl1 +N ′
l2
≤ N

′′
l1+l2

,∀ (l1, l2) ∈ Z
2+. (R3)

The following results give some properties of GR (Ω) .

Proposition 1 Let R be a regular subset of RZ++ , then

(i) MR (Ω) is a subalgebra of M (Ω) .

(ii) N (Ω) is an ideal of MR (Ω) .

(iii) The algebra GR (Ω) is linearly injected into G (Ω) .

Proof For the proof and more study see [1, 2].

The following examples of subsets of RZ++ appeared chronologically in different
works on regularity questions of generalized functions, and they are the motivation
of this work.

Example 1 The subalgebra G∞, introduced by M. Oberguggenberger, corresponds
to the set B of all bounded sequences of RZ++ .

Example 2 The subalgebra GT of regular generalized functions with affine asymp-
totic scale, introduced by T. Tomikawa, corresponds to the set T defined by

T :=
{
(Nm)m∈N ∈ R

Z++ : ∃a ≥ 0, ∃b ∈ R,∀m ∈ Z+, Nm ≤ am+ b
}
.

Example 3 The asymptotic scale defining the Hölder–Zygmund regularity subalge-
bras G s∗ introduced by G. Hörmann.

Example 4 Let a ≥ 0 and define the regular set La by

La :=
{
(Nm)m∈N ∈ R

Z++ : ∃b ∈ R,∀m ∈ Z+, Nm ≤ am+ b
}
,

then we obtain a scale of increasing subalgebras of regular generalized functions(
GLa

)
a≥0

such that

B =
⋂
a≥0

L and T =
⋃
a≥0

La .

In [2], it is stated that the space of distributions D ′ (Ω) is embedded into GL1 (Ω) .
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For every regular subset R, the functor Ω−→GR (Ω) is a sheaf of differential
subalgebras of G (Ω) , so the R-singular support of u ∈ G (Ω) , denoted by
singsuppR (u) , is well defined as the complementary set of the largest open Ω ′ ⊂
Ω such that u/Ω ′ ∈ GR

(
Ω ′) , i.e.,

singsuppR (u) = Ω \ ∪
{
Ω ′ open of Ω, u/Ω ′ ∈ GR (Ω ′)} .

The microlocal aspect of the R-regularity is studied in [1].

Definition 3 Let (x0, ξ0) ∈ Ω × (Rn \ {0}) , the R-wave front set of u ∈ G (Ω)

is defined as follows : (x0, ξ0) /∈ WFR (u) if and only if there exist ϕ ∈ D (Ω) ,

ϕ (x0) �= 0, and a conic neighborhood Γ of ξ0, such that

∃N ∈ R,∀β ∈ Z
n+, sup

ξ∈Γ
∣∣ξβϕ̂uε (ξ)

∣∣ = O
(
ε−N|β|

)
, ε −→ 0. (4)

The main properties of the R-wave front set are summarized in the following
Proposition.

Proposition 2 Let u ∈ G (Ω) , a ∈ GR (Ω), and α ∈ Z
n, then

(i) the projection of WFR (u) on Ω is singsuppR (u) .

(ii) WFR (au) ⊂ WFR (u) .

(iii) WFR (Dαu) ⊂ WFR (u) .

Proof See [1].

3 The R-Microlocal Regularity

We introduce the notion of R-scale net which extends the well-known slow scale
net studied in [6]. Recall the set of nets of numbers of moderate type

M [K] :=
{
(zε)ε ∈ K

I : ∃m ∈ Z+, |zε| = O
(
ε−m

)
, ε −→ 0

}
,

where K = R or = C.

Definition 4 Let R be a regular subset of RZ++ , a net (rε)ε ∈ M [K] satisfying the
following property:

∃N ∈ R, ∃ε0 > 0,∀l ∈ Z+, ∃Cl > 0, |rε|l ≤ Cε−Nl ,∀ε ∈ ]0, ε0[

is called an R-scale net.
A net (rε)ε ∈ M [R] is said an R-positive scale net, if it is an R-scale net

satisfying rε > 0,∀ε ∈ ]0, 1] .
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Example 5 The set of B-scale nets is the set of slow scale nets introduced in [6].

Example 6 Let
(

1
ε

)
ε
∈ M [R] , then

(
1
ε

)
ε

is an L1-positive scale net which is not

a slow scale net.

The proof of the next lemma is obtained directly from Definition 4.

Lemma 1 Let (rε)ε and (sε)ε be R-positive scale nets and λ, a > 0, then

(i) (rε + sε)ε is an R-positive scale net.
(ii) (λrε)ε is an R-positive scale net.

(iii) max
{
(rε)ε , (sε)ε

}
is an R-positive scale net.

(iv) (rεsε)ε is an R-positive scale net.
(v)

(
raε
)
ε

is an R-positive scale net.

A generalized linear differential operator of order m with R-regular generalized
coefficients denoted by

P (x,D) =
∑
|α|≤m

aα(x)D
αu

is an equivalence class of a net of linear partial differential operators

Pε (x,D) =
∑
|α|≤m

aα,ε (x)D
α,

where
(
aα,ε
)
ε
∈ MR (Ω) , see [7].

A consequence of Proposition 2 is that

WFR (P (x,D) u) ⊂ WFR (u) , u ∈ G (Ω) .

The reverse inclusion is an important issue of microlocal regularity problem within
the algebra G (Ω) , it gives information about the localization of generalized
R-microlocal singularities of solutions of generalized linear partial differential
equations with R-regular generalized coefficients.

Definition 5 Let R be a regular subset of RZ++ and P (x,D) a generalized linear
partial differential operator of order m with R-regular generalized coefficients.
Let m′ ∈ R, 0 ≤ δ < ρ ≤ 1, and (x0, ξ0) ∈ Ω × (Rn \ {0}), we define
(x0, ξ0) /∈ Σ

m′,R
ρ,δ (P ) , if there exists an open neighborhood U of x0 in Ω and a

conic neighborhood Γ of ξ0 in Rn \ {0} such that for all K � U, we have
(i) ∃q > 0, ∃ (rε)ε an R-positive scale net, ∃ε0 > 0, such that

|Pε (x, ξ)| ≥ εq (1 + |ξ |)m′
, (5)

∀ (x, ξ) ∈ K × Γ, |ξ | ≥ rε, ∀ε ∈ ]0, ε0[ .
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(ii) ∀α ∈ Z
n+, ∃

(
sα,ε
)
ε
, ∃ (rα,ε)ε two R-positive scale nets, ∃εα > 0,∀β ∈ Z

n+,

∣∣∣∂α
x ∂

β
ξ Pε (x, ξ)

∣∣∣ ≤ sα,ε |Pε (x, ξ)| (1 + |ξ |)−ρ|β|+δ|α| , (6)

∀ (x, ξ) ∈ K × Γ, |ξ | ≥ rα,ε,∀ε ∈ ]0, εα[ .

The main result of this work is the following theorem.

Theorem 1 Let P (x,D) be a generalized linear partial differential operator with
R-regular generalized coefficients of order m, then

WFR (u) ⊆ WFR (P (x,D)u) ∪Σ
m′,R
ρ,δ (P ) , u ∈ G (Ω) . (7)

Proof The transpose tP (x,D) of the operator P (x,D) is given by the representing
net of linear partial differential operators with symbols

tPε (x, ξ) =
∑

0≤|σ |≤m

(−1)|σ |

σ ! ∂σ
ξ ∂

σ
x Pε (x,−ξ) .

We can get the following result:

(x0, ξ0) ∈ Σm′
ρ,δ (P ) if and only if (x0,−ξ0) ∈ Σm′

ρ,δ

(
tP
)
.

Let Ψ ∈ E (Ω) , then it is not difficult, with the help of Leibniz formula, to obtain
that

tPε (x,D)

(
e−ixξ Ψ

tPε (x,−ξ)

)
= e−ixξ (Ψ − Rε (ξ; x,D)Ψ ), (8)

where the net of linear partial differential operators (Rε (ξ; x,D))ε is defined by

Rε (ξ; x,D) = −
∑
|β|≤m

rβ,ε (x, ξ)D
β
x ,

and

rβ,ε (x, ξ) =
∑

0<|γ |+|β|≤m

1

β!γ !∂
β+γ t
ξ Pε (x,−ξ)D

γ
x

1
tPε (x,−ξ)

.

So, we take ϕ ∈ D (Ω) ,L ∈ N, and define the net
(
ψε,L(x, ξ)

)
ε

in the following
form:

ψε,L (x, ξ) = vε,L (x, ξ)
tPε (x,−ξ)

,
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where

vε,L (x, ξ) =
L−1∑
k=0

Rε (ξ; x,D)k ϕ (x) .

Then from (8) we obtain

tPε (x,D)

(
e−ixξψε,L (x, ξ)

)
= e−ixξ

(
ϕ (x)− Rε (ξ; x,D)L ϕ (x)

)
.

Consequently, we have

ϕ̂uε (ξ) = Iε,L (ξ)+ Jε,L (ξ) , (9)

where

Iε,L (ξ) =
∫

uε (x) e
−ixξRL

ε (ξ; x,D) ϕ (x) dx,

Jε,L (ξ) =
∫

ψε,L (x, ξ) e−ixξPε (x,D) uε (x) dx.

What remains to end the proof of the theorem, due to (9), it is sufficient to show that
Iε,L and Jε,L are R-rapidly decreasing on a conic neighborhood of ξ0 (in the sense
of (4)) , and then we obtain

(x0, ξ0) /∈ WFR (P (x,D)u) ∪Σ
m′,R
ρ,δ (P ) ⇒ (x0, ξ0) /∈ WFR (u) .

This will be done by following carefully the steps of the proof of the main result of
[7] in the spirit of the similar result of [4].

As a corollary, we obtain the following result.

Corollary 1 If in the theorem R is the set of all bounded sequences of positive
numbers B, then we obtain the result of [7].
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A Projective Description of Generalized
Gelfand–Shilov Spaces of Roumieu Type

Andreas Debrouwere and Jasson Vindas

Abstract We provide a projective description for a class of generalized Gelfand–
Shilov spaces of Roumieu type. In particular, our results apply to the classical
Gelfand–Shilov spaces and weighted L∞-spaces of ultradifferentiable functions of
Roumieu type.

1 Introduction

In general, there is no canonical way to find an explicit and useful system of
seminorms describing a given inductive limit topology. However, in many concrete
cases this is possible. For weighted (LB)-spaces of continuous and holomorphic
functions, under quite general assumptions, the topology can be described in terms
of weighted sup-seminorms. This problem of projective description goes back to
the pioneer work of Bierstedt et al. [3] and plays an important role in Ehrenpreis’
theory of analytically uniform spaces [2, 9]. On the other hand, an explicit system
of seminorms describing the topology of the space of ultradifferentiable functions
of Roumieu type was first found by Komatsu [12]. His proof was based on a
structural theorem for the dual space and the same method was later employed
by Pilipović [13] to obtain projective descriptions of Gelfand–Shilov spaces of
Roumieu type. Such projective descriptions are indispensable for achieving topo-
logical tensor product representations of various important classes of vector-valued
ultradifferentiable functions of Roumieu type [5, 12, 14].
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The aim of this article is to provide a projective description of a general class of
Gelfand–Shilov spaces of Roumieu type. More precisely, let (Mp)p∈N be a sequence
of positive real numbers and let V = (vn)n∈N be a pointwise decreasing sequence

of positive continuous functions on R
d . We study here the (LB)-space B

{Mp }
V (Rd )

consisting of all those ϕ ∈ C∞(Rd) such that

sup
α∈Nd

sup
x∈Rd

h|α||∂αϕ(x)|vn(x)
M|α|

< ∞

for some h > 0 and n ∈ N. Under rather general assumptions on Mp and V , we

shall give a projective description of the space B
{Mp }
V (Rd ) in terms of Komatsu’s

family R [12] and the maximal Nachbin family associated with V [3]. We mention
that we have already studied the problem in [4, Prop. 4.16], but we will present here
a new approach. Our arguments are based on the mapping properties of the short-

time Fourier transform on B
{Mp }
V (Rd ) and the projective description of weighted

(LB)-spaces of continuous functions. We believe this is a transparent and flexible
method. It has the advantage that one can work under very mild conditions on Mp

and V and that it avoids duality theory; in fact, our result can be employed to more
easily study dual spaces, e.g., one might easily deduce structural theorems from it
without resorting to a rather complicated dual Mittag-Leffler argument.

Our general references are [3] for weighted inductive limits of spaces of
continuous functions, [14] for Gelfand–Shilov spaces, and [10] for the short-time
Fourier transform.

2 Weighted Inductive Limits of Spaces of Continuous
Functions

In this section we recall a result of Bastin [1] concerning the projective description
of weighted (LB)-spaces of continuous functions. This result will play a key role in
the proof of our main theorem.

Let X be a completely regular Hausdorff space. Given a non-negative function v

on X we write Cv(X) for the seminormed space consisting of all f ∈ C(X) such
that ‖f ‖v := supx∈X |f (x)|v(x) < ∞. If v is positive, then ‖ · ‖v is actually a
norm and if, in addition, 1/v is locally bounded, then Cv(X) is complete and hence
a Banach space. These requirements are fulfilled if v is positive and continuous. A
(pointwise) decreasing sequence V := (vn)n∈N of positive continuous functions on
X is called a decreasing weight system on X. We define

V C(X) := lim−→
n∈N

Cvn(X),

a Hausdorff (LB)-space. The maximal Nachbin family associated with V , denoted
by V = V (V ), is given by the space of all non-negative upper semicontinuous
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functions v on X such that supx∈X v(x)/vn(x) < ∞ for all n ∈ N. The projective
hull of V C(X), denoted by CV (X), is defined as the space consisting of all
f ∈ C(X) such that ‖f ‖v < ∞ for all v ∈ V . The space CV (X) is endowed
with the topology generated by the system of seminorms {‖ · ‖v : v ∈ V }. An
elementary argument by contradiction shows that V C(X) and CV (X) coincide
algebraically and that these spaces have the same bounded sets (cf. [4, Lemma
4.11]). The problem of projective description in this context is to characterize the
weight systems V for which the spaces V C(X) and CV (X) are equal as locally
convex spaces. In this regard, there is the following result due to Bastin.

Theorem 1 ([1]) Let V = (vn)n∈N be a decreasing weight system on X satisfying
condition (V ), i.e., for every sequence of positive numbers (λn)n∈N there is v ∈
V such that for every n ∈ N there is N ∈ N such that inf{λ1v1, . . . , λNvN } ≤
sup{vn/n, v}. Then, V C(X) and CV (X) coincide topologically.

Remark 1 Bastin also showed that if for every v ∈ V there is a positive continuous
v ∈ V such that v ≤ v, then condition (V ) is also necessary for the topological
identity V C(X) = CV (X). We mention that if X is a discrete or a locally compact
σ -compact Hausdorff space, then every decreasing weight system V on X satisfies
the above condition [3, p. 112].

Remark 2 A decreasing weight system V = (vn)n∈N is said to satisfy condition
(S) if for every n ∈ N there is m > n such that vm/vn vanishes at ∞. Every weight
system satisfying (S) also satisfies (V ), but the latter property also holds for constant
weight systems (for which (S) obviously fails).

Let X and Y be completely regular Hausdorff spaces and let V = (vn)n∈N and
W = (wn)n∈N be decreasing weight systems on X and Y , respectively. We denote
by V ⊗ W := (vn ⊗ wn)n∈N the decreasing weight system on X × Y given by
vn ⊗ wn(x, y) := vn(x)wn(y), x ∈ X, y ∈ Y .

Remark 3 Let V = (vn)n∈N and W = (wn)n∈N be decreasing weight systems on
X and Y , respectively. If both V and W satisfy (V ), then also V ⊗W satisfies (V ).

Remark 4 Let V = (vn)n∈N and W = (wn)n∈N be decreasing weight systems on
X and Y , respectively. Then, for every u ∈ V (V ⊗ W ) there are v ∈ V (V ) and
w ∈ V (W ) such that u ≤ v ⊗ w.

3 Generalized Gelfand–Shilov Spaces of Roumieu Type

We now introduce the class of Gelfand–Shilov spaces of Roumieu type that we
are interested in. They are defined via a weight sequence and a decreasing weight
system V (on Rd ) and our aim is to give a projective description of these spaces
in terms of Komatsu’s family R (defined below) and the maximal Nachbin family
associated with V .
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Let (Mp)p∈N be a weight sequence, that is, a positive sequence that satisfies
limp→∞ Mp/Mp−1 = ∞. For h > 0 and a non-negative function v on Rd we write

D
Mp,h

L∞
v

(Rd) for the seminormed space consisting of all ϕ ∈ C∞(Rd) such that

‖ϕ‖
D

Mp,h

L∞v
:= sup

α∈Nd

sup
x∈Rd

h|α||∂αϕ(x)|v(x)
Mα

< ∞,

where we write Mα = M|α|, α ∈ Nd . Following Komatsu [12], we denote by R the
set of all positive increasing sequences (rj )j∈N tending to infinity. For rj ∈ R and

a non-negative function v on Rd we write D
Mp,rj
L∞

v
(Rd) for the seminormed space

consisting of all ϕ ∈ C∞(Rd) such that

‖ϕ‖
D

Mp,rj

L∞v
:= sup

α∈Nd

sup
x∈Rd

|∂αϕ(x)|v(x)
Mα

∏|α|
j=0 rj

< ∞.

Similarly as before, ‖ · ‖
D

Mp,h

L∞v
and ‖ · ‖

D
Mp,rj

L∞v
are actually norms if v is

positive, while D
Mp,h

L∞
v

(Rd) and D
Mp,rj
L∞

v
(Rd) are complete and thus Banach spaces

if additionally 1/v is locally bounded. Given a decreasing weight system V =
(vn)n∈N, we define, as in the introduction,

B
{Mp }
V (Rd ) := lim−→

n→∞
D

Mp,1/n
L∞

vn
(Rd),

a Hausdorff (LB)-space. Moreover, we write B̃
{Mp }
V (Rd ) for the space consisting

of all ϕ ∈ C∞(Rd) such that ‖ϕ‖
D

Mp,rj

L∞v
< ∞ for all rj ∈ R and v ∈ V , and endow

it with the topology generated by the system of seminorms {‖ · ‖
D

Mp,rj

L∞v
: rj ∈

R, v ∈ V }.
Lemma 1 Let Mp be a weight sequence and let V = (vn)n∈N be a decreasing

weight system. Then, B
{Mp }
V (Rd ) and B̃

{Mp }
V (Rd ) coincide algebraically and the

inclusion mapping B
{Mp }
V (Rd ) → B̃

{Mp }
V (Rd) is continuous.

Proof It is obvious that B
{Mp}
V (Rd) is continuously included in B̃

{Mp }
V (Rd). For the

converse inclusion, we consider the decreasing weight system W = (wn)n∈N on Nd

(endowed with the discrete topology), given by wn(α) := n−|α|, α ∈ Nd . Now let

ϕ ∈ B̃
{Mp}
V (Rd) be arbitrary and define f (x, α) = ∂αϕ(x)/Mα for x ∈ Rd , α ∈ Nd .

By Remark 4 and [12, Lemma 3.4(ii)] we have that f ∈ CV (V ⊗W )(Rd × Nd ).
Since V ⊗W C(Rd ×Nd ) = CV (V ⊗W )(Rd ×Nd) as sets (cf. Sect. 2), we obtain

that f ∈ V ⊗W C(Rd ×Nd ), which precisely means that ϕ ∈ B
{Mp}
V (Rd). ��
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The rest of this article is devoted to showing that, under mild conditions on Mp

and V , the equality B
{Mp}
V (Rd) = B̃

{Mp }
V (Rd ) also holds topologically.

We will make use of the following two standard conditions for weight sequences:
(M.1) M2

p ≤ Mp−1Mp+1, p ≥ 1, and (M.2)′ Mp+1 ≤ C0H
pMp, p ∈ N, for

some C0,H ≥ 1. We also need the associated function of the sequence Mp in our
considerations, which is given by

M(t) := sup
p∈N

log
tpM0

Mp

, t > 0,

and M(0) := 0. We define M on R
d as the radial function M(x) = M(|x|), x ∈ R

d .
The assumption (M.2)′ implies that M(Hkt) − M(t) ≥ k log(t/C0), t, k ≥ 0 [11,
Prop. 3.4]. In particular, we have that eM(t)−M(Hd+1t ) ≤ (2C0)

d+1(1 + td+1)−1,
t ≥ 0. Given rj ∈ R, we denote by Mrj the associated function of the weight
sequence Mp

∏p

j=0 rj .
As mentioned in the introduction, our arguments will rely on the mapping

properties of the short-time Fourier transform, which we now introduce. The
translation and modulation operators are denoted by Txf = f ( · − x) and
Mξf = e2π iξ ·f , for x, ξ ∈ Rd . The short-time Fourier transform (STFT) of a
function f ∈ L2(Rd ) with respect to a window function ψ ∈ L2(Rd ) is defined as

Vψf (x, ξ) := (f,MξTxψ)L2 =
∫
Rd

f (t)ψ(t − x)e−2π iξ tdt, (x, ξ) ∈ R
2d .

We have that ‖Vψf ‖L2(R2d) = ‖ψ‖L2‖f ‖L2 . In particular, the mapping Vψ :
L2(Rd) → L2(R2d) is continuous. The adjoint of Vψ is given by the weak integral

V ∗
ψF =

∫ ∫
R2d

F (x, ξ)MξTxψdxdξ, F ∈ L2(R2d).

If ψ �= 0 and γ ∈ L2(Rd) is a synthesis window for ψ , that is, (γ,ψ)L2 �= 0, then

1

(γ,ψ)L2
V ∗
γ ◦ Vψ = idL2(Rd) . (1)

We are interested in the STFT on the spaces B
{Mp}
V (Rd) and B̃

{Mp}
V (Rd). This

requires to impose some further conditions on the weight system V . Let Ap be
a weight sequence with associated function A. A decreasing weight system V =
(vn)n∈N is said to be Ap-admissible if there is τ > 0 such that for every n ∈ N there
are m ≥ n and C > 0 such that vm(x + y) ≤ Cvn(x)eA(τy), x, y ∈ Rd . We start
with two lemmas. As customary [14], given two weight sequences Mp and Ap, we

denote by S
(Mp)

(Ap)
(Rd) the Gelfand–Shilov space of Beurling type. For the weight

function v = eA(τ · ), τ > 0, we use the alternative notation ‖ · ‖
S

Mp,h

Ap,τ

= ‖ · ‖
D

Mp,h

L∞v
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so that the Fréchet space structure of S
(Mp)

(Ap)
(Rd) is determined by the family of

norms {‖ · ‖
S

Mp,h

Ap,τ

: h > 0, τ > 0}.

Lemma 2 Let Mp and Ap be weight sequences satisfying (M.1) and (M.2)′, let w
and v be non-negative measurable functions on Rd such that

v(x + y) ≤ Cw(x)eA(τy), x, y ∈ R
d , (2)

for some C, τ > 0, and let ψ ∈ S
(Mp)

(Ap)
(Rd). Then, the mapping Vψ :

D
Mp,h

L∞
w

(Rd) → Cv ⊗ eM(πh · /√d)(R2d
x,ξ ) is well-defined and continuous.

Proof Let ϕ ∈ D
Mp,h

L∞
w

(Rd) be arbitrary. For all α ∈ Nd and (x, ξ) ∈ R2d ,

|ξαVψϕ(x, ξ)|v(x)

≤ C(2π)−|α|∑
β≤α

(
α

β

)∫
Rd

|∂βϕ(t)|w(t)|∂α−βψ(t − x)|eA(τ(t−x))dt

≤ C′‖ϕ‖
D

Mp,h

L∞w
(πh)−|α|Mα.

Hence

|Vψϕ(x, ξ)|v(x)≤C′‖ϕ‖
D

Mp,h

L∞w
inf
p∈N

Mp

(πh|ξ |/√d)p
=C′M0‖ϕ‖DMp,h

L∞w
e−M(πhξ/

√
d).

��
Lemma 3 Let Mp and Ap be weight sequences satisfying (M.1) and (M.2)′, let
w and v be non-negative measurable functions on Rd satisfying (2), and let ψ ∈
S

(Mp)

(Ap)
(Rd ). Then, the mapping V ∗

ψ : Cw ⊗ eM(h · )(R2d
x,ξ ) → D

Mp,h/(4Hd+1π)

L∞
v

(Rd )

is well-defined and continuous.

Proof Let F ∈ Cw⊗eM(h · )(R2d
x,ξ ) be arbitrary and set k = h/(2Hd+1π). For each

α ∈ Nd (we write ‖ · ‖Cw⊗eM(h · ) = ‖ · ‖)

sup
t∈Rd

|∂αV ∗
ψF(t)|v(t)

≤ C
∑
β≤α

(
α

β

)
sup
t∈Rd

∫ ∫
R2d

|F(x, ξ)|w(x)(2π |ξ |)|β||∂α−βψ(t − x)|eA(τ(t−x))dxdξ

≤ CM−1
0 ‖ψ‖

S
Mp,k

Ap ,Hd+1τ

‖F‖ Mα

(k/2)|α|

∫ ∫
R2d

eM(2πkξ)−M(hξ)eA(τx)−A(Hd+1τx)dxdξ

≤ C′‖F‖ Mα

(h/(4Hd+1π))|α|
. ��
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Lemmas 2 and 3 yield the following corollary.

Corollary 1 Let Mp and Ap be weight sequences satisfying (M.1) and (M.2)′ and
denote by X the Fréchet space consisting of all F ∈ C(R2d) such that

sup
(x,ξ)∈R2d

|F(x, ξ)|eA(nx)+M(nξ) < ∞

for all n ∈ N. Let ψ ∈ S
(Mp)

(Ap)
(Rd). Then, the mappings Vψ : S (Mp)

(Ap)
(Rd) → X

and V ∗
ψ : X → S

(Mp)

(Ap)
(Rd) are well-defined and continuous.

We are now able to establish the mapping properties of the STFT on B
{Mp }
V (Rd).

Given a weight sequence Mp with associated function M , we define V{Mp} :=
(eM( · /n))n∈N, a decreasing weight system on Rd .

Proposition 1 Let Mp and Ap be weight sequences satisfying (M.1) and (M.2)′,
let V = (vn)n∈N be an Ap-admissible decreasing weight system, and let ψ ∈
S

(Mp)

(Ap)
(Rd ). Then, the following mappings are continuous:

Vψ : B{Mp }
V (Rd ) → V ⊗ V{Mp}C(R2d

x,ξ )

and

V ∗
ψ : V ⊗ V{Mp}C(R2d

x,ξ ) → B
{Mp }
V (Rd ).

Assume that S
(Mp)

(Ap)
(Rd ) �= {0}. If ψ �= 0 and γ ∈ S

(Mp)

(Ap)
(Rd) is a synthesis

window for ψ , the following reconstruction formula holds

1

(γ,ψ)L2
V ∗
γ ◦ Vψ = id

B
{Mp }
V (Rd)

. (3)

Proof Since V is Ap-admissible, the continuity of Vψ and V ∗
ψ follows directly from

Lemmas 2 and 3, respectively. We now show (3). Let ϕ ∈ B
{Mp}
V (Rd) be arbitrary.

As V ∗
γ (Vψϕ) and ϕ are both O(eA(τ ·))-bounded continuous functions, it suffices to

show that
∫
Rd

V ∗
γ (Vψϕ)(t)χ(t)dt = (γ,ψ)L2

∫
Rd

ϕ(t)χ(t)dt
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for all χ ∈ S
(Mp)

(Ap)
(Rd ). Formula (1) implies that

∫
Rd

V ∗
γ (Vψϕ)(t)χ(t)dt =

∫
Rd

(∫ ∫
R2d

Vψϕ(x, ξ)MξTxγ (t)dxdξ

)
χ(t)dt

=
∫ ∫

R2d

(∫
Rd

ϕ(t)M−ξ Txψ(t)dt

)
Vγχ(x,−ξ)dxdξ

=
∫
Rd

V ∗
ψ
(Vγ χ)(t)ϕ(t)dt

= (γ,ψ)L2

∫
Rd

ϕ(t)χ(t)dt,

where the switching of the integrals is permitted because of Corollary 1 and the first
part of this proposition. ��

In order to show the analogue of Proposition 1 for B̃
{Mp }
V (Rd ), we need the

following technical lemma.

Lemma 4 Let V = (vn)n∈N be an Ap-admissible decreasing weight system. For
every v ∈ V there is v ∈ V such that v(x + y) ≤ v(x)eA(τy), x, y ∈ Rd .

Proof Find a strictly increasing sequence of natural numbers (nj )j∈N such that
vnj+1 (x + y) ≤ Cjvnj (x)e

A(τy), x, y ∈ Rd , for some Cj > 0. Pick C′
j > 0 such

that v ≤ C′
j vnj for all j ∈ N. Set v = infj∈N CjC

′
j+1vnj ∈ V . We have that

v(x+y) ≤ inf
j∈N

C′
j+1vnj+1 (x+y) ≤ eA(τy) inf

j∈N
CjC

′
j+1vnj (x) = v(x)eA(τy). ��

Proposition 2 Let Mp and Ap be weight sequences satisfying (M.1) and (M.2)′,
let V = (vn)n∈N be an Ap-admissible decreasing weight system, and let ψ ∈
S

(Mp)

(Ap)
(Rd ). Then, the following mappings are continuous:

Vψ : B̃{Mp }
V (Rd ) → CV (V ⊗ V{Mp})(R2d

x,ξ )

and

V ∗
ψ : CV (V ⊗ V{Mp})(R2d

x,ξ ) → B̃
{Mp }
V (Rd).

Proof Let u ∈ V (V ⊗V{Mp}) be arbitrary. By Remark 4 and [7, Lemma 4.5(i)] there

is v ∈ V (V ) and rj ∈ R such that u ≤ v⊗eMrj . According to [15, Lemma 2.3] there
is r ′j ∈ R such that r ′j ≤ rj for j large enough and r ′j+1 ≤ 2j+1r ′j for all j ∈ N.

Hence the sequence Mp

∏p

j=0 r ′j satisfies (M.2)′. Next, by Lemma 4 there is v ∈ V

such that v(x + y) ≤ v(x)eA(τy) for all x, y ∈ Rd . Therefore, Lemma 2 implies
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that the mapping Vψ : DMp,πr ′j /
√
d

L∞
v

(Rd ) → Cv ⊗ e
Mr′

j (R2d) is well-defined and

continuous. As the inclusion mapping Cv ⊗ e
Mr′

j (R2d) → Cu(R2d) is continuous,
we may conclude that Vψ is continuous. Similarly, by using Lemma 3, one can show
that V ∗

ψ is continuous. ��
We are ready to prove our main theorem.

Theorem 2 Let Mp and Ap be weight sequences satisfying (M.1) and (M.2)′ such

that S
(Mp)

(Ap)
(Rd) �= {0} and let V = (vn)n∈N be an Ap-admissible decreasing

weight system satisfying (V ). Then, B
{Mp }
V (Rd ) and B̃

{Mp}
V (Rd) coincide topologi-

cally.

Proof By Lemma 1 it suffices to show that the inclusion mapping ι : B̃{Mp}
V (Rd) →

B
{Mp}
V (Rd) is continuous. Since Mp satisfies (M.2)′, the decreasing weight system

V{Mp} satisfies (S) and thus condition (V ) (see Remark 2). Hence Proposition 1 and
Remark 3 imply that V ⊗ V{Mp}C(R2d ) = CV (V ⊗ V{Mp})(R2d) topologically.

Choose ψ, γ ∈ S
{Mp}
{Ap} (Rd ) such that (γ,ψ)L2 = 1. By (3) the following diagram

commutes:

Propositions 1 and 2 imply that Vψ and V ∗
γ are continuous, whence ι is also

continuous. ��
Remark 5 Let Mp and Ap be weight sequences satisfying (M.1) and (M.2)′ such

thatS
(Mp)

(Ap)
(Rd) �= {0}. By applying Theorem 2 to V = V{Ap} (and using [7, Lemma

4.5(i)]), we obtain the well-known projective description of the classical Gelfand–

Shilov space S
{Mp}
{Ap} (Rd) of Roumieu type [13, Lemma 4].

We end this article by stating an important particular case of Theorem 2. Given a
positive function ω on Rd such that 1/ω is locally bounded, we define

D
{Mp}
L∞

ω
(Rd) := lim−→

h→0+
D

Mp,h

L∞
ω

(Rd ),

a Hausdorff (LB)-space. Furthermore, we write D̃
{Mp}
L∞

ω
(Rd) for the space consisting

of all ϕ ∈ C∞(Rd) such that ‖ϕ‖
D

Mp,rj

L∞ω
< ∞ for all rj ∈ R and endow it with the

topology generated by the system of seminorms {‖ · ‖
D

Mp,rj

L∞ω
: rj ∈ R}.
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Theorem 3 Let Mp and Ap be weight sequences satisfying (M.1) and (M.2)′ such

that S
(Mp)

(Ap)
(Rd) �= {0} and let ω be a positive measurable function on Rd such that

ω(x + y) ≤ Cω(x)eA(τy), x, y ∈ Rd , for some C, τ > 0. Then, D
{Mp}
L∞

ω
(Rd) and

D̃
{Mp}
L∞

ω
(Rd ) coincide topologically.

Proof We may assume without loss of generality that ω is continuous (for otherwise
we may replace ω with the continuous weight ω̃ = ω ∗ ϕ, where ϕ ∈ D(Rd) is

non-negative and satisfies
∫
Rd ϕ(t)dt = 1, since D

{Mp}
L∞

ω
(Rd) = D

{Mp}
L∞

ω̃

(Rd) and

D̃
{Mp}
L∞

ω
(Rd ) = D̃

{Mp}
L∞

ω̃

(Rd) topologically). We set V = (ω)n∈N and notice that V

satisfies (V ) (see Remark 2). Hence, by Theorem 2, we find that D
{Mp}
L∞

ω
(Rd ) =

B̃
{Mp}
V (Rd) topologically. The result now follows from the fact that V (V ) = {λω :

λ > 0} and, thus, B̃
{Mp }
V (Rd ) = D̃

{Mp}
L∞

ω
(Rd) topologically. ��

Remark 6 Theorem 3 was already shown in [8, Thm. 4.17] under much more
restrictive conditions on Mp and Ap and with a more complicated proof.

In [6, Thm. 5.9] we have shown that, if Mp satisfies (M.1) and (M.2) (cf. [11]),

the space S
(Mp)

(p!) (Rd ) is non-trivial if and only if (logp)p ≺ Mp (the latter means,

as usual, that M1/p
p / logp → ∞). Hence, we obtain the ensuing corollary.

Corollary 2 Let Mp be a weight sequence satisfying (M.1) and (M.2) such that
(logp)p ≺ Mp and let ω be a positive measurable function on Rd such that ω(x +
y) ≤ Cω(x)eτ |y|, x, y ∈ Rd , for some C, τ > 0. Then, D

{Mp}
L∞

ω
(Rd ) and D̃

{Mp}
L∞

ω
(Rd )

coincide topologically.
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Generalized Solutions and Distributional
Shadows for Dirac Equations

Günther Hörmann and Christian Spreitzer

Abstract We discuss the application of recent results on generalized solutions to
the Cauchy problem for hyperbolic systems to Dirac equations with external fields.
In further analysis we focus on the question of existence of associated distributional
limits and derive their explicit form in case of free Dirac fields with regularizations
of initial values corresponding to point-like probability densities.

1 Introduction

The Dirac equation on Minkowski space M describes a relativistic spin- 1
2 particle

field ψ : M → C4, involving the Dirac 4 × 4-matrices γ α (α = 0, . . . , 3) as
generators of (a representation of) the Clifford algebra. Two prominent examples
of Dirac equations with external fields arise in the following models (cf. [12]):

1. If an electromagnetic potential one-form A (with components Aα) is given on
M , then the action on a particle with charge e and mass m is described by

(∂t − ieA0)ψ +
3∑

j=1

γ 0γ j (∂j − ieAj)ψ + imγ 0ψ = 0. (1)

The distribution theoretic Cauchy problem with compactly supported smooth
A and initial data given on arbitrary Cauchy surfaces is reviewed in detail in [2].

G. Hörmann (�)
Fakultät für Mathematik, Universität Wien, Wien, Austria
e-mail: guenther.hoermann@univie.ac.at

C. Spreitzer
Pädagogische Hochschule Niederösterreich, Baden, Austria
e-mail: christian.spreitzer@ph-noe.ac.at

© Springer Nature Switzerland AG 2019
K.-O. Lindahl et al. (eds.), Analysis, Probability, Applications, and Computation,
Trends in Mathematics, https://doi.org/10.1007/978-3-030-04459-6_40

419

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04459-6_40&domain=pdf
mailto:guenther.hoermann@univie.ac.at
mailto:christian.spreitzer@ph-noe.ac.at
https://doi.org/10.1007/978-3-030-04459-6_40


420 G. Hörmann and C. Spreitzer

2. If F is a given electromagnetic field two-form (with components Fαβ ), then the
action on a neutral particle with magnetic moment μ and mass m is described by

∂tψ +
3∑

j=1

γ 0γ j ∂jψ + μ

2

3∑
α,β=0

γ 0γ αγ βFαβψ + imγ 0ψ = 0. (2)

Both of the above cases will be seen to be combined in Sect. 2 below as
special instances of a symmetric hyperbolic operator with generalized functions
as coefficients. Moreover, this more general setting will enable us to approach
the question of how to describe fields that are initially localized in a point-like
sense. Recall that for a solution ψ of the Dirac equation, the quantity |ψ(t, .)|2 is
interpreted as a spatial probability density at time t. What could we then say about an
initially prescribed probability density |ψ(0, .)|2 modeling a δ-type concentration?

In terms of a representative (ψε)ε>0 of a generalized spinor field, this would
mean that we solve the Dirac equation with an initial condition represented in
the form ψε|t=0 = ϕε , where the regularization family (ϕε)ε>0 has the property
that |ϕε|2 converges to δ in the sense of distributions as ε → 0. In this sense,
(ϕε)ε>0 is a regularization of

√
δ. The corresponding Cauchy problem is well-posed

in spaces of Colombeau generalized functions according to the results presented
in Sect. 2. Moreover, in case of the free Dirac equation we will prove in Sect. 3
that the probability density associated with the generalized solution possesses a
distributional limit and we will determine its explicit shape. Related questions for
the Schrödinger equation have been discussed in [6, 7], where also some details on
choices of regularizations of

√
δ can be found.

Why is it important to allow for a non-smooth potential A and a non-smooth
electromagnetic field F ? Recall that the Maxwell equations in terms of exterior
differentials are dF = 0, ∗d∗ F = J , where J is the current one-form on M and
∗ denotes the Hodge-star operator according to the Lorentz metric g on M . For
the electromagnetic field generated by a particle of charge e and with world line
s  → c(s), we obtain the current J as the distributional one-form on M supported
on c, acting on a compactly supported vector field v by

〈J, v〉 = e

∫ ∞

−∞
g
(
ċ(s), v(c(s))

)
ds.

Remark 1

(i) The distributional nature of J (and hence F ) is well-known to cause serious
mathematical problems with self-interaction due to the non-smooth Lorentz
force L generated in the form 〈L, v〉 = e

∫∞
−∞ F(c(s))

(
ċ(s), v(c(s))

)
ds.

Coupling with the Maxwell equations should include the radiation-reaction
of the electron, but leads to systems of nonlinear differential equations with
distributional data. A rigorous derivation of the Lorentz–Dirac equation in this
context can be found in [4]. The generalized solutions to the coupled field
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equations and the equation of motion have been analyzed in [8, 9], where also
the non-existence of distributional shadows has been shown. These difficulties
do not disappear upon quantization, but some renormalization effects could be
described via generalized numbers in [3, 5]. Discussing instead Dirac equations
with external fields might thus be excused to some extent by the following
folklore wisdom (e.g., from [13]): “A theory of particles in an ‘external’ field
is a first step towards a description of a true interaction.”

(ii) In terms of geometric structures, it is natural to consider the electromagnetic
field as a curvature two-form on a space–time (M, g). The electromagnetic
field F on M then stems from a connection on a principal U(1)-bundle P

over M which is given in terms of a one-form ω on P . If M is contractible
(e.g., Minkowski space), then P = M ×U(1) is trivial and we have the simple
description ω = dz

z
− iA, where z denotes the coordinate on C ⊃ U(1) and A is

a real one-form on M . If V is a complex vector space (with U(1) action) and a
field ψ is (locally) written as a map from M into V , then the covariant derivative
in the direction of the tangent vector field h is Dhψ = dψ(h) − iA(h)ψ . We
obtain the curvature two-form R(h1, h2)(ψ) := Dh1(Dh2ψ) − Dh2(Dh1ψ) −
D[h1,h2]ψ = −idA(h1, h2)ψ , which means F = iR = dA. All these
geometric constructions can be carried out with non-smooth fields in the sense
of generalized connections and curvature as developed in [11], where also an
application to Dirac’s theory of magnetic monopoles and basics of a Yang–
Mills theory are given. A natural next step along these lines would be to discuss
generalized spinor bundles and Dirac operators in this sense as well.

The contents of the remaining parts are as follows: Sect. 2 presents a brief
review of the Cauchy problem and applications to Dirac equations with non-smooth
external fields. Section 3 discusses distributional shadows of free Dirac fields with√
δ as initial data in 1 + 1 dimensions and on Minkowski space.

2 The Cauchy Problem for the Dirac Equation with External
Fields on Minkowski Space

All the results described in this section can be found in [12] or follow directly
from statements proved there. Let T > 0 and ΩT := [0, T ] × R3. The two model
Eqs. (1) and (2) may be combined in the form of the following first-order symmetric
hyperbolic system for a Colombeau generalized spinor field ψ ∈ GL2(ΩT )

4:

∂tψ +
3∑

j=1

γ 0γ j ∂jψ + Bψ = 0, ψ|t=0 = ϕ, (3)

where B is a matrix with components bkl ∈ GL∞(ΩT ), and initial value ϕ ∈
GL2(R3)4.
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Theorem 1 If B+B∗ is of L1,∞-log-type, that is,
∫ T

0 ‖(bkl,ε + blk,ε)(t, .)‖L∞ dt =
O(log( 1

ε
)) as ε → 0, then there exists a unique solution ψ ∈ GL2(ΩT )

4 to (3).

We point out that the theorem applies with B containing the field of a moving
point particle, if logarithmic scaling is used in its regularization. We note in passing
that there is also an intrinsic regularity property phrased in terms of G∞, which
requires uniform asymptotic bounds on all derivatives [10]: If ϕ ∈ G∞(R3)4 and
B is of logarithmic slow scale in the G∞-sense, then the solution satisfies ψ ∈
G∞(ΩT )

4.
Regarding distributional aspects and compatibility with classical spaces, we have

the following results. Recall that u ∈ D′ is said to be a distributional shadow of
ψ ∈ G, in notation ψ ≈ u, if ψε → u (ε → 0) holds in D′ for any (hence every)
representative.

Proposition 1

(i) If ϕ and B are smooth, then ψ equals the unique smooth solution.
(ii) If ϕ has components in Hs and B is smooth, then ψ ≈ v, where v denotes the

unique distributional solution.
(iii) If ϕ ∈ H 1(R3)4 and B has components in L1([0, T ],W 1,∞(R3)), then ψ ≈ u

with u ∈ C([0, T ],H 1(R3))4 ∩W 1,1(ΩT )
4.

(iv) If ϕ ∈ L2(R3)4 and B has components in L1([0, T ],H 2(R3)), then ψ ≈ u

with u ∈ C([0, T ], L2(R3))4.

Unfortunately, none of these convergence results is applicable to the situation of
a coefficient matrix B involving the field of a moving point particle or an initial
value ϕ corresponding to a point-like concentrated field configuration.

3 Distributional Limits for Free Dirac Fields with
√

δ Initial
Data

3.1 The Case of One Spatial Dimension

We consider the Cauchy problem for a free Dirac particle of mass m in 1+1
dimensions with generalized functions as initial data (and physical units with
h̄ = c = 1)

i∂tψ + iσ 1∂xψ −mσ 3ψ = 0,

ψ|t=0 = ϕ,

where ϕ is represented by (ϕε)ε>0, σ 1 = ( 0 1
1 0

)
, and σ 3 = ( 1 0

0 −1

)
. We are interested

in the distributional limit of |ψε|2, where (ψε)ε>0 represents the generalized
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solution, if |ϕε|2 converges to δ. For rapidly decaying initial data we may write

ψε(t, x) =
∫
R

eikx√
2π

(
〈upos(k)|ϕ̂ε(k)〉upos(k)e

−itλ(k) + 〈uneg(k)|ϕ̂ε(k)〉uneg(k)e
itλ(k)

)
dk,

where ϕ̂ denotes the Fourier transform of ϕ and λ(k) := √
k2 +m2. The functions

upos(k) = 1√
2

⎛
⎝

√
1 + m

λ(k)

sgn(k)
√

1 − m
λ(k)

⎞
⎠ , uneg(k) = 1√

2

⎛
⎝−sgn(k)

√
1 − m

λ(k)√
1 + m

λ(k)

⎞
⎠

are normalized eigenvectors of the matrix −ikσ 1 + mσ 3 with eigenvalues ±λ(k),
corresponding to positive and negative energies. To model the initial wave-function
in GL2(R)2, we pick ρ1, ρ2 ∈ S(R) such that ‖ρ1‖2

L2(R)
+ ‖ρ2‖2

L2(R)
= 1 and set

ϕ(x) :=
(

ρ1(x)
ρ2(x)

)
. The scaling ϕε(x) := 1√

ε
ϕ( x

ε
) yields |ϕε|2 → δ as ε → 0.

Interpreting με
t (x) := |ψε(t, x)|2 as a spatial probability density at time t , we

consider its distributional action on a test function h ∈ D(R) and use Fubini’s
theorem and the fact that ϕ̂ε(k) = √

εϕ̂(εk) to obtain

〈με
t , h〉 =

ε

2π

∫
R

∫
R

∫
R

ei(k
′−k)xh(x)dx

(
e−it (λ(k′)−λ(k))〈upos(k)|ϕ̂(εk)〉〈upos(k

′)|ϕ̂(εk′)〉〈upos(k)|upos(k
′)〉

+ 2Re
(
eit (λ(k

′)+λ(k))〈upos(k)|ϕ̂(εk)〉〈uneg(k
′)|ϕ̂(εk′)〉〈upos(k)|uneg(k

′)〉
)

+ eit (λ(k
′)−λ(k))〈uneg(k)|ϕ̂(εk)〉〈uneg(k

′)|ϕ̂(εk′)〉〈uneg(k)|uneg(k
′)〉
)

dk dk′.

By the change of variables (k, k′)  → (η, ξ) := (εk, k′ − k) we may write this as

〈με
t , h〉 =

ε√
2π

∫
R

∫
R

F−1(h)(ξ)

(
e−itΛ−

ε (η,ξ)〈upos(
η
ε
)|ϕ̂(η)〉〈upos(

η
ε
+ ξ)|ϕ̂(η + εξ)〉〈upos(

η
ε
)|upos(

η
ε
+ ξ)〉

+ 2Re
(
eitΛ

+
ε (η,ξ)〈upos(

η
ε
)|ϕ̂(η)〉〈uneg(

η
ε
+ ξ)|ϕ̂(η + εξ)〉〈upos(

η
ε
)|uneg(

η
ε
+ ξ)〉

)

+ eitΛ
−
ε (η,ξ)〈uneg(

η
ε
)|ϕ̂(η)〉〈uneg(

η
ε
+ ξ)|ϕ̂(η+ εξ)〉〈uneg(

η
ε
)|uneg(

η
ε
+ ξ)〉

)
dη dξ
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where Λ∓
ε (η, ξ) := λ(

η
ε
+ ξ) ∓ λ(

η
ε
). The integrand is bounded uniformly in ε by

the integrable function g(η, ξ) := ‖ϕ̂‖L∞(R)|ϕ̂(η)||F−1(h)(ξ)| and thus the limit
ε → 0 commutes with integration by Lebesgue’s dominated convergence. Writing

λ(k) = |k|(1 + m2

k2 )
1/2 = |k| + O(|k|−1) as |k| → ∞ and noting that for all η �= 0,

lim
ε→0

| η
ε
+ ξ | − | η

ε
| = sgn(η)ξ,

it is easy to see that limε→0 e∓it (λ(
η
ε +ξ)−λ(

η
ε )) = e∓itsgn(η)ξ . Moreover we have

upos(
η
ε
) → 1√

2

(
1

sgn(η)

)
and uneg(

η
ε
) → 1√

2

(
−sgn(η)

1

)
as ε → 0. Using these

observations we can write the pointwise limit arranged in terms of ρ̂1 and ρ̂2, thereby
obtaining

lim
ε→0

〈με
t , h〉 =

1

2
√

2π

∫
R

∫
R

F−1(h)(ξ)
(
e−itsgn(η)|ρ̂1(k)+ sgn(η)ρ̂2(k)|2

+ eitsgn(η)|ρ̂1(k)− sgn(η)ρ̂2(k)|2
)

dηdξ,

which upon splitting the integral according to the sign of η and re-combining yields

lim
ε→0

〈με
t , h〉 = 1

2h(t)‖ρ1 + ρ2‖2
L2(R)

+ 1
2h(−t)‖ρ1 − ρ2‖2

L2(R)
,

which by the normalization ‖ρ1‖2
L2 + ‖ρ2‖2

L2 = 1 implies the distributional limit

lim
ε→0

με
t =

(
1
2 +

∫
R

Re(ρ1ρ2)(k)dk
)
δt +

(
1
2 −

∫
R

Re(ρ1ρ2)(k)dk
)
δ−t .

Hence the distributional wave-function of the particle at time t is a convex combi-
nation of δt and δ−t , where the coefficients are determined by Re

∫
(ρ1ρ2)(k)dk. For

example, if Re(ρ1ρ2) = 0, then uε
t → 1

2 (δt + δ−t ) as ε → 0. On the other hand, if
ρ1 = ±ρ2, then uε

t → δ±t as ε → 0.

3.2 Minkowski Space

In physical units with h̄ = c = 1, we may write the Dirac equation in the
“Hamiltonian operator form” (cf. [1, Chapter XIV])

i∂tψ = −i

3∑
j=1

αj ∂xjψ +mβψ,
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where ψ ∈ C(R,S ′(R3))4, and β =
(

I2 0
0 −I2

)
and αj =

(
0 σ j

σ j 0

)
(j =

1, 2, 3) with I2 denoting the (2 × 2)-identity matrix and with the Pauli matrices
σ 1 = (

0 1
1 0

)
, σ 2 = (

0 −i
i 0

)
, and σ 3 = (

1 0
0 −1

)
. Writing u = exp(imβt)ψ we

obtain ∂tu + A(∂x)u = 0 with A(∂x) := ∑3
j=1 αj ∂xj . Given an initial condition

ψ |t=0= ϕ ∈ S ′(R3)4 we obtain the unique solution in the form (cf. [1, Chapter
XIV])

exp(imβt)ψ = u(t) = E0(t) ∗ ϕ − E1(t) ∗A(∂x)ϕ,

where the convolution is spatial componentwise and E0(t) := F−1(cos(t|.|)),
E1(t) := F−1

(
sin(t |.|)

|.|
)

. If ϕ(t) ∈ L2(R3)4, then ‖ψ(t)‖L2 = ‖u(t)‖L2 = ‖ϕ‖L2

for every t by unitarity of the time evolution in L2(R3) and also by unitarity of
exp(imβt) on C4 which implies |ψ(t, x)|2 = |u(t, x)|2.

Let ψε denote the unique solution with initial values ϕε(x) := ε−3/2ϕ(x/ε),
where ϕ ∈ S (R3)4 and ‖ϕ‖L2 = 1. We have |ϕε|2 → δ in S ′(R3) as ε → 0.

Let με
t (x) := |ψε(t, x)|2 denote the spatial probability density at time t

corresponding to the solution ψε . By unitarity of the time evolution, we have in
terms of finite measures 〈με

t , 1〉 = ‖ψε(t, .)‖2
L2 = ‖ϕε‖2

L2 = ‖ϕ‖2
L2 = 1, but in the

sequel we are interested in the convergence properties of με
t in S ′(R3) as ε → 0.

Remark 2

(i) Note that with the initial value ϕε specified above, a simple calculation yields
ϕε → 0 in S ′(R3)4 and therefore ψε(t, .) → 0 in S ′(R3)4 by continuity of
the solution map.

(ii) If instead we consider initial values ϕε(x) = ε−3ϕ(x/ε) as regularizations of
delta in the sense that |ϕε| → δ in S ′ as ε → 0 (recall that ϕ(x) ∈ C4

and that ‖ϕ‖L2 = 1), e.g., with supp(ϕ) compact, and denote again by ψε the
corresponding unique solution, then |ψε(t, .)|2 diverges in S ′(R3) for every t

as ε → 0: We have finite speed of propagation for the Dirac equation, hence
supp(ψε(t, .)) ⊆ supp(ϕ) + Bt (0) =: Kt and picking h ∈ D(R3) such that
h ≥ 0 and h = 1 on Kt we deduce 〈|ψε(t, .)|2, h〉 ≥ ‖ψε(t, .)‖2

L2 = ‖ϕε‖2
L2 =

‖ϕ‖2
L2

ε3 → ∞ as ε → 0.

Addressing now the question of convergence of με
t at fixed t as ε → 0, we

will represent the action of με
t as a distribution on a test function h ∈ D(R3)

by employing the decomposition of the solution ψε in terms of eigenfunctions
corresponding to positive or negative energy, respectively, helicity as in [13, Chapter

1, Appendix 1.F]: Introducing a±(k) := 1√
2

√
1 ± m

λ(k)
, where λ(k) = (k2 +m2)1/2,

h+(k) := 1√
2|k|(|k|−k3)

(
k1−ik2|k|−k3

)
, and h−(k) := 1√

2|k|(|k|−k3)

(
k3−|k|
k1+ik2

)
, we define

ωpos,±(k) :=
(

a+(k)h±(k)

±a−(k)h±(k)

)
, ωneg,±(k) :=

(∓a−(k)h±(k)

a+(k)h±(k)

)
.
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Note that h± is homogeneous of degree 0. Moreover, lim|k|→∞ a±(k) = 1/
√

2 and
thus limε→0 ωpos,±(k/ε) and limε→0 ωneg,±(k/ε) are homogeneous of degree 0 as
well. The four complex-valued vectors ωpos,±(k), ωneg,±(k) form an orthonormal
system with respect to the inner product 〈 | 〉C4 . For initial data ϕε ∈ L2(R3), we
may write

ψε(t, x) =

(2π)−3/2
∫
R3

(
ei〈k|x〉−iλ(k)t

(
〈ω+

pos(k)|ϕ̂ε(k)〉ω+
pos(k)+ 〈ω−

pos(k)|ϕ̂ε(k)〉ω−
pos(k)

)

+ ei〈k|x〉+iλ(k)t
(
〈ω+

neg(k)|ϕ̂ε(k)〉ω+
neg(k)+ 〈ω−

neg(k)|ϕ̂ε(k)〉ω−
neg(k)

))
dk

and obtain

(2π)3〈με
t , h〉 = (2π)3〈|ψε(t, ·)|2, h〉 =

∫

R3×R3×R3

(
ei〈k−k′|x〉

eit(λ(k)−λ(k′))(〈ω+
pos(k)|ϕ̂ε(k)〉〈ω+

pos(k
′)|ϕ̂ε(k′)〉〈ω+

pos(k
′)|ω+

pos(k)〉

+ 〈ω−
pos(k)|ϕ̂ε(k)〉〈ω−

pos(k
′)|ϕ̂ε(k′)〉〈ω−

pos(k
′)|ω−

pos(k)〉
)+

e−it(λ(k)−λ(k′))(〈ω+
neg(k)|ϕ̂ε(k)〉〈ω+

neg(k
′)|ϕ̂ε(k′)〉〈ω+

neg(k
′)|ω+

neg(k)〉

+ 〈ω−
neg(k)|ϕ̂ε(k)〉〈ω−

neg(k
′)|ϕ̂ε(k′)〉〈ω−

neg(k
′)|ω−

neg(k)〉
)+Nε(k, k

′)
)
h(x)d(k, k′, x),

where the symbol Nε(k, k
′) represents all terms involving “mixed” products such

as 〈ω+
pos(k

′)|ω+
neg(k)〉 or 〈ω+

pos(k
′)|ω−

pos(k)〉. Using that ϕ̂ε(k) = ε3/2ϕ̂(εk) and
changing variables according to k  → η

ε
and k′  → η

ε
+ ξ , we find

(2π)3 lim
ε→0

〈με
t , h〉 = lim

ε→0

∫
R3×R3×R3

(
Nε(

η
ε
,
η
ε
+ ξ)+ e−i〈ξ |x〉−it(λ( ηε +ξ)−λ(

η
ε
))

(
〈ω+

pos(
η
ε
)|ϕ̂(η)〉〈ω+

pos(
η
ε
+ ξ)|ϕ̂(η + εξ)〉〈ω+

pos(
η
ε
+ ξ)|ω+

pos(
η
ε
)〉

+ 〈ω−
pos(

η
ε
)|ϕ̂(η)〉〈ω−

pos(
η
ε
+ ξ)|ϕ̂(η + εξ)〉〈ω−

pos(
η
ε
+ ξ)|ω−

pos(
η
ε
)〉
))

h(x)d(η, ξ, x)
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+ lim
ε→0

∫
R3×R3×R3

e−i〈ξ |x〉+it(λ( ηε +ξ)−λ(
η
ε ))

(
〈ω+

neg(
η
ε
)|ϕ̂(η)〉〈ω+

neg(
η
ε
+ ξ)|ϕ̂(η + εξ)〉〈ω+

neg(
η
ε
+ ξ)|ω+

neg(
η
ε
)〉

+〈ω−
neg(

η
ε
)|ϕ̂(η)〉〈ω−

neg(
η
ε
+ ξ)|ϕ̂(η + εξ)〉〈ω−

neg(
η
ε
+ξ)|ω−

neg(
η
ε
)〉
)
h(x)d(η, ξ, x).

The integrand is uniformly dominated in L1 and in the pointwise limit ε → 0, the
inner products of the eigenfunctions simplify by orthonormality and homogeneity
(in particular, Nε(

η
ε
,
η
ε
+ ξ) → 0), and the exponential terms converge thanks to

λ(
η
ε
+ ξ)− λ(

η
ε
) = | η

ε
+ ξ | − | η

ε
| + O(ε) = | η

ε
+ ξ |2 − | η

ε
|2

| η
ε
+ ξ | + | η

ε
| + O(ε)

= 2〈η|ξ〉 + ε|ξ |2
|η| + |η + εξ | + O(ε) → 2〈η|ξ〉

2|η| = 〈η|ξ〉
|η| ,

which implies

lim
ε→0

〈με
t , h〉 =

(2π)−3/2
∫
R3×R3

e
−it

〈η|ξ〉
|η|
(
|〈ω+

pos(η)|ϕ̂(η)〉|2 + |〈ω−
pos(η)|ϕ̂(η)〉|2

)
ĥ(ξ)dηdξ

+ (2π)−3/2
∫
R3×R3

e
it

〈η|ξ〉
|η|
(
|〈ω+

neg(η)|ϕ̂(η)〉|2 + |〈ω−
neg(η)|ϕ̂(η)〉|2

)
ĥ(ξ)dηdξ

=
∫
R3

(
fpos(η)h(−t

η
|η| )+ fneg(η)h(t

η
|η| )
)

dη =
∫
R3

(
fpos(−η)+ fneg(η)

)
h(t

η
|η| )dη,

where fpos/neg(η) := |〈ω+
pos/neg(η)|ϕ̂(η)〉|2 + |〈ω−

pos/neg(η)|ϕ̂(η)〉|2. We finally

obtain the limit as a distribution supported on the 2-sphere of radius t , namely,

lim
ε→0

〈με
t , h〉 =

∫
S2

f (θ)h(tθ)dθ, where f (θ) :=
∫ ∞

0
r2(fpos(−rθ)+ fneg(rθ)

)
dr.
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Modeling Abstract Stochastic Problems
with White Noise Perturbations

Irina V. Melnikova

Abstract We consider construction of a vibrating string model under the influence
of random impulses. The model is obtained in the form of the Cauchy problem for
the second order difference equation with a Brownian sheet. Properties of random
processes that reflect the stochastic influence are investigated. The connection of
the Brownian sheet and its generalized derivative with Hilbert space valued Wiener
processes is shown. As a result, the Cauchy problem for the stochastic equation with
Ito integral with respect to a Wiener process is obtained.

1 Introduction

Study of various processes of the environment in the presence of incomplete
information reduces to mathematical models in the form of stochastic problems.
Among them an important place is occupied by models in the form of the abstract
Cauchy problem with white noise W :

X′(t) = AX(t))+ BW (t), t ∈ [0, T ], X(0) = ζ, (1)

where A is the generator of a semigroup in a Hilbert space H , operator B generally
acts from H1 to H , and ζ is an H -valued random value. For simplicity we consider
H1 = H. Due to irregular properties of W the problem (1) should be understood in
the generalized sense. For the H -valued random process X(t) the problem can be
written in the integral form with infinite-dimensional Ito integral:

X(t)− ζ =
∫ t

0
AX(s)ds +

∫ t

0
BdW(s), t ∈ [0, T ] (2)
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or in the form of differentials:

dX(t) = AX(t)dt + BdW(t), t ∈ [0, T ], X(0) = ζ, (3)

where W = W(t), t ≥ 0, is a Q-Wiener or cylindrical Wiener process. Being
“primitives” of W , Wiener processes are defined algorithmically (see, e.g., [5, 7]).

The challenge is to consider practical models that reduce to stochastic problems
with Wiener processes. Presence of random processes can be considered as the result
of superposition of different unpredictable changes connected with the environment
and physical (economical, biological) nature of the model. The assumption of
randomness of the processes is the way of avoiding unnecessary complication of
the model that occurs when one tries to reject the interaction of different factors
which are often hardly subject to formalization.

The aim of the paper is clarification of this question in order consistent with
properties of the noise affecting the process. We start with a difference equation for
the increment of the position of the string under the influence of random impulses
on small segments Δx during a small period of time Δt . In Sect. 2 we show
that a Brownian sheet naturally arises in modeling the random actuations. Crucial
assumption here is independence between actuations at disjoint segments of the
string and the time line. In Sect. 3 we show that the obstacle connected with non-
differentiability of the Brownian sheet can be overcome with the help of the concept
of cylindrical random variables defined in a generalized (weak) sense in a Hilbert
space. Thus, we obtain a difference equation for the increments of the position of the
string in the space of functions of x in L2[0; l] taken as H . In conclusion we show
that the obtained second order stochastic equation for the string position under the
influence of random impulses can be transformed to the form (3) with an operator-
matrix A in H ×H .

2 Difference Equation with Brownian Sheet

We consider the problem of the position of a string under the influence of a stream
of particles perpendicular to the string transmitting a random impulse of magnitude
±γ

√
Δx to segments of length Δx in time Δt with probability equal to λΔt . Let

T be the modulus of tension and u(x, t) the displacement from the equilibrium
position, then according to the influence of random impulses we have the following
possible momentum changes :

ΔM(x, t) = Δt(Tux(x +Δx, t)− Tux(x, t))+ γ
√
Δx with probability λΔt,

ΔM(x, t) = Δt(Tux(x +Δx, t)− Tux(x, t))− γ
√
Δx with probability λΔt,

ΔM(x, t) = Δt(Tux(x +Δx, t)− Tux(x, t)) with probability 1− 2λΔt.



Modeling Abstract Stochastic Problems 431

According to the assumptions and classical laws of force balance on [x, x+Δx] we
can write the equalities

m(ut(x, t +Δt)− ut (x, t)) = ΔM(x, t) = ΔMd(x, t)+ΔMst(x, t), (4)

where x ∈ [0, l], t ∈ [0, T ], and m = ρΔx is the mass of Δx. The deterministic
part of the momentum changes is

ΔMd = Δt(Tux(x +Δx, t)− Tux(x, t))

and construction of the stochastic part ΔMst is under consideration. Following
the physical principles of the model, we suppose increments on disjoint rectangles
(t; t +Δt] × (x; x +Δx] to be independent random values.

Consider a partition of (x; x + Δx] into n equal parts. Following [1, 2], we
suppose that the momentum changes ξnk , 1 ≤ k ≤ n, obtained in the result of
the partition are random values defined by the following series of distributions:

ξnk = γ

√
Δx

n
with probability λΔt, ξnk = −γ

√
Δx

n
with probability λΔt,

and ξnk = 0 with probability 1− 2λΔt. Then
∑n

k=1 ξnk describes the total number
of impulses arriving at (x; x +Δx] during the time (t; t +Δt]. Supposing

ΔMst = lim
n→∞

n∑
k=1

ξnk,

we study properties of the stochastic part. First, we prove that the random variable
ΔMst has the normal law of distribution, second, that ΔMst , up to a constant, can
be described using a Brownian sheet. Finally, based on the representation of the
Brownian sheet in the form of Fourier series in H = L2[0, l] we show that the
random perturbations in this model can be described by means of a Wiener process.
Due to this plan we begin with properties of ΔMst .

Proposition 1 The random value ΔMst(t, x) has the normal law of distributions
with parameters E[ΔMst(t, x)] = 0 and V ar[ΔMst(t, x)] = 2λγ 2ΔtΔx, that is,

ΔMst(t, x) ∼ N (0;
√

2λγ 2ΔtΔx). (5)

Proof Consider the partition of (x; x + Δx] into n equal parts and corresponding
momentum changes {ξnk}. Due to their distributions and independence in each series
we have

E[ξnk] = 0, V ar[ξnk] = 2

n
λγ 2ΔtΔx, n ∈ N, 1 ≤ k ≤ n.
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We verify that the introduced sequence {ξnk} satisfies conditions of the CLT for
series, formulated as follows [3].

Let {ξnk, n ∈ N, 1 ≤ k ≤ n} be a sequence of random values independent in
each series and Fnk be the distribution function of ξnk . If for any fixed ε > 0 and
some τ > 0 the following conditions are fulfilled:

1.
∑n

k=1 P(|ξnk | ≥ ε) → 0, n → ∞,

2.
∑n

k=1

∫
|y|<τ y dFnk(y) → a, n → ∞,

3.
∑n

k=1

(∫
|y|<τ y

2dFnk(y)−
(∫

|y|<τ y dFnk(y)
)2
)
→ b2, n → ∞,

then
∑n

k=1 ξnk converges in distribution to N (a; b) as n → ∞.

The first condition is fulfilled since for any ε > 0 and n ≥ N(ε) = [ γ 2Δx

ε2 ] + 1,
we have

P(|ξnk | ≥ ε) ≡ 0, k = 1, 2, . . . , n, 1⇒
n∑

k=1

P(|ξnk | ≥ ε) = 0.

Next, fix τ ≥ γ
√
Δx, then for any n

n∑
k=1

∫
|y|<τ

ydFnk(y) =
n∑

k=1

(
γ

√
Δx

n
λΔt − γ

√
Δx

n
λΔt

)
= 0,

and

n∑
k=1

(∫
|y|<τ

y2dFnk(y)−
(∫

|y|<τ

ydFnk(y)

)2
)
=

n∑
k=1

2γ 2 Δx

n
λΔt = 2γ 2ΔxλΔt.

Hence the second and third conditions hold as well. Thus,
∑n

k=1 ξnk converges in
distribution to the normal random value ΔMst(t, x) ∼ N (0; γ√2λΔtΔx).

Now we show that the random value ΔMst(t, x) coincides with increment of
Brownian sheet within a constant. For this we use the following definition [3, 6].

A two-parameter random process W = W(t, x), t, x ≥ 0, is called a Brownian
sheet if it satisfies the conditions:

(W1) W(0, x) = W(t, 0) = 0 a.e.;
(W2) W is a Gaussian process;
(W3) E[W(t1, x1)W(t2, x2)] = (t1 ∧ t2)(x1 ∧ x2), E[W(t, x)] = 0.

There are different approaches to determining increments of the Brownian
sheet. Taking into account the physical model of the process (namely, random
variables ΔMst(t, x) on disjoint rectangles (t; t+Δt]× (x; x+Δx] are considered
independent) we use the definition of increments ΔW(t, x) consistent with the
independence property. Let the increments of the Brownian sheet on the rectangle
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(t; t +Δt] × (x; x +Δx] be defined using the equality:

ΔW(t, x) := W(t+Δt, x+Δx)−W(t, x+Δx)−W(t+Δt, x)+W(t, x). (6)

With this definition we show that ΔW(t, x) ∼ N (0;√ΔtΔx). From properties of
Gaussian processes and (W3) it follows that ΔW is normally distributed and

V ar[ΔW(t, x)] = E[(ΔW(t, x))2] − E2[ΔW(t, x)] = E[(ΔW(t, x))2]

= E[(W(t +Δt, x +Δx)−W(t, x +Δx)−W(t +Δt, x)+W(t, x))2] = ΔtΔx.

In addition, we show that increments defined by (6) are independent on disjoint
rectangles. To prove it, take two disjoint rectangles (t1; t2] × (x1; x2] and (t3; t4] ×
(x3; x4] and show that increments on these rectangles are uncorrelated:

E[ΔW(t1, x1)ΔW(t3, x3)] = E[(W(t2, x2)− W(t2, x1)− W(t1, x2)+ W(t1, x1))

×(W(t4, x4)− W(t4, x3)− W(t3, x4)+ W(t3, x3))] = 0.

Hence, being uncorrelated normal random values ΔW(t1, x1) andΔW(t3, x3) are
independent.

Thus, the Brownian sheet is the process with independent increments ΔW and
ΔW(t, x) ∼ N (0;√ΔtΔx). Comparing with (5) we obtain that ΔMst(t, x)

coincides with ΔW(t, x) within the constant γ
√

2λ and the equality (4) can be
written as the difference equation with the Brownian sheet:

m(ut(x, t +Δt)− ut (x, t))=ΔtT(ux(x+Δx, t)− ux(x, t))+ γ
√

2λΔW(t, x).

(7)

Now studying relations of the Brownian sheet with Wiener processes we trans-
form (7) to a difference equation with a Wiener process.

3 Difference Equation with Cylindrical Wiener Process

Consider an H -valued Q-Wiener process WQ. As is known, in a Hilbert space H

WQ(t) =
∞∑
n=0

√
λnβn(t)en, t ≥ 0, (8)

where {en} form an orthonormal basis in H , βn are independent Brownian motions,
and Q is a self-adjoint trace class operator in H : Qen = λnen,

∑∞
n=0 λn < ∞ (see,

e.g., [4, 8]).
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In H = L2[0, l] any self-adjoint Hilbert–Schmidt operator, in particular a trace
class operator, is an integral one:

Qϕ(x) =
∫ l

0
g(x, y)ϕ(y)dy, ϕ ∈ L2[0, l].

We show that Q is the operator with special kernel g(x1, x2) = x1 ∧ x2. By the
Hilbert–Schmidt theorem, we have

Qϕ(x1)=
∞∑
n=0

λn(ϕ, en)en(x1)=
∞∑
n=0

λnen(x1)

∫ l

0
ϕ(x2)en(x2)dx2 =: λnϕnen(x1).

We formally change the order of summation and integration and consider the series
obtained under the integral:

∑∞
n=0 λnen(x1)en(x2). Here the functions en(x1)en(x2)

form an orthonormal basis in L2(G),where G = [0; l] × [0; l]. Since
∑∞

n=0 λ2
n <

∞, there exists a symmetric function g ∈ L2(G) with the Fourier series

∞∑
n=0

λnen(x1)en(x2) = g(x1, x2).

Moreover, it is proved in [4] that g defines the spatial correlation of the process WQ:

E[WQ(t, x1)WQ(t, x2)] = tg(x1, x2), t ≥ 0, x1, x2 ∈ [0; l].

In its turn spatial correlation of the process W, due to the property (W3), is defined
by the function:

E[W(t, x1)W(t, x2)] = t (x1 ∧ x2), t ≥ 0, x1, x2 ∈ [0; l].

Then, taking into account that a Gaussian process is uniquely defined by its
correlation function and expectation, we conclude that Brownian sheet W coincides
with L2[0; l]-valued Q-Wiener process WQ, where Q is the integral operator with
kernel g(x1, x2) = x1 ∧ x2.

Next, eigenvectors and eigenfunctions in (8) for the integral operator Q with
kernel g(x1, x2) = x1 ∧ x2 can be found as follows:

λn = 4l2

π2(2n+ 1)2 , en(x) =
√

2

l
sin

π(2n+ 1)x

2l
, x ∈ [0; l].

Hence in L2[0, l]

W(t, x) = WQ(t, x) = 2
√

2l

π

∞∑
n=0

βn(t)

2n+ 1
sin

π(2n+ 1)x

2l
, t ≥ 0. (9)
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In addition to (9) for W(t, x), we obtain the formal decomposition for the derivative

∂W(t, x)

∂x
=
√

2

l

∞∑
n=0

βn(t) cos
π(2n+ 1)x

2l
=: W(t, x), (10)

where functions ẽn(x) :=
√

2
l

cos π(2n+1)x
2l form an orthonormal basis in L2[0; l]

and the series converges only weakly, that is, W(t) = ∑∞
n=0 βn(t )̃en weakly

converges in L2[0; l]. By definition of a cylindrical Wiener process, a weakly
convergent series

∑∞
n=0 βn(t )̃en(·) defines an L2[0; l]-valued cylindrical Wiener

process W(t, ·).
Using the equality (6) for ΔW and (10) for ∂W(t,x)

∂x
we obtain the relation

between increments of the Brownian sheet and increments of the cylindrical Wiener
process:

ΔW(t, x) = (W(t +Δt)−W(t)) Δx + o(Δx), t ≥ 0, x ∈ [0; l].

Now using the obtained relations between the increments ΔW(t, x) and
ΔW(t, x) and supposing existence of corresponding derivatives we can write (7) as
difference equations with Q-Wiener and cylindrical Wiener processes:

m(ut(x, t+Δt)−ut (x, t)) = ΔtT (ux(x +Δx, t)− ux(x, t))+γ
√

2λΔWQ(t, x),

ρ (ut (x, t +Δt)− ut (x, t)) = ΔtTuxx(x, t)+ γ
√

2λΔW(t, x). (11)

4 Main Result

Summing increments in (11) and passing to limit as Δt → 0 in L2(Ω,F , P )

weakly in L2[0, l] we arrive at the following result.

Theorem 1 The stochastic Cauchy problem that describes string vibrations by
taking into account the influence of a stream of particles perpendicular to the string
transmitting random impulses of magnitude ±γ

√
Δx to segments of length Δx in

time Δt with probability equal to λΔt is written as follows:

ρ (ut (t, x)− ζ2(x)) =
∫ t

0
Tuxx(s, x)ds+

∫ t

0
γ
√

2λ dW(s), t ∈ [0; T ], u(0, x) = ζ1(x).

By replacing the variables X(t) = (u(t), ut (t))
tr , the problem is reduced to the

form (2) with ζ = (ζ1, ζ2)
tr and operatorA =

(
0 I

a ∂2

∂x2 0

)
(generating an integrated

semigroup in L2[0, l] × L2[0, l] ), with corresponding a and inhomogeneity term.
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On Association in Colombeau Algebras
Without Asymptotics

Eduard A. Nigsch

Abstract A recent variant of Colombeau algebras does not employ asymptotic esti-
mates for its definition. We discuss how the concept of association with distributions
transfers to this setting and why it still needs to be based on asymptotics.

1 Introduction

Colombeau algebras of nonlinear generalized functions are given by factor spaces
of suitable spaces of moderate and negligible functions (we refer to the standard
literature [1, 3, 4, 8, 15, 16]). Usually, whether a function R in a certain basic space is
moderate or negligible is decided by evaluating it on a suitable test object ( 2ϕε)ε∈(0,1]
(essentially an approximate identity) and examining the resulting asymptotic behav-
ior as ε→ 0, see [6] for a unifying discussion. In special Colombeau algebras,
moreover, evaluation on 2ϕε is already built into the basic space in the sense that the
embedded image of a distribution u ∈ D ′ is given by the net 〈u, 2ϕε(x)〉 of smooth
functions in x. Hence, the basic space for the special algebra on an open subset
Ω ⊆Rn is given by all nets (uε)ε ∈ C∞(Ω)(0,1], and the growth or vanishing rate
of derivatives of uε(x) on compact sets determines whether this representative is
moderate or negligible, respectively.

Two observations are in order: first, the properties of a given Colombeau algebra
directly depend on the test objects ( 2ϕε)ε used for its definition. Such properties
are, for example, diffeomorphism invariance (cf. [9, 12]), the possibility to restrict
to subspaces (cf. [15, Ch. III, §11, p. 100]) but also association properties, as we
will see below. Second, so far the choice of test objects had to be made in advance
because the basic definitions depend on it.

Recently, a novel construction of Colombeau algebras was given that is closer in
spirit to the definition of distributions as those linear functionals on test functions
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Wolfgang Pauli Institute, Vienna, Austria
e-mail: eduard.nigsch@univie.ac.at

© Springer Nature Switzerland AG 2019
K.-O. Lindahl et al. (eds.), Analysis, Probability, Applications, and Computation,
Trends in Mathematics, https://doi.org/10.1007/978-3-030-04459-6_42

437

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04459-6_42&domain=pdf
mailto:eduard.nigsch@univie.ac.at
https://doi.org/10.1007/978-3-030-04459-6_42


438 E. A. Nigsch

satisfying appropriate continuous seminorm estimates [14]. Because this change
of perspective is similar to that encountered when switching from the sequential
approach to distribution theory [11] to the classical approach based on the theory of
locally convex spaces [18], these algebras were termed Colombeau algebras without
asymptotics.

This formulation has several pleasing features. Most importantly, it decouples
the definition of the Colombeau algebra itself from the choice of test objects. For
this reason, the resulting space is close to being universal in the sense that one has
canonical mappings into most of the classically used Colombeau algebras.

However, test objects necessarily reappear in the study of association. While
there is no inherent notion of association anymore, we will see that the separation
of association tests from the definition of Colombeau algebras makes them more
flexible and to a certain degree even arbitrary.

After recalling the definition of a Colombeau algebra without asymptotics in
Sect. 2 and previous notions of association in Sect. 3 we will discuss association in
the new setting in Sect. 4.

2 The Colombeau Algebra

In short, the approach of [14] is based on two steps: first, one extends the domain
of distributions from D(Ω) to C∞(Ω,D(Ω)) in a natural way, essentially by
mapping u ∈ D ′(Ω) to idC∞(Ω) ⊗u. One then still has seminorm estimates of
the form p(u( 2ϕ)) ≤ q( 2ϕ), where p and q are continuous seminorms of C∞(Ω)

and C∞(Ω,D(Ω)), respectively. This step amounts to representing distributions
by their regularizations. In a second step one lets go of linearity and replaces the
linear estimates in q( 2ϕ) by polynomial ones. This allows in particular for products
to be formed and gives the space of moderate functions. Similarly, a notion of
negligible function is obtained by noticing that the prototypical negligible functions
ι(f )ι(g) − ι(fg) or ι(f ) − σ(f ) with f, g ∈ C∞(Ω) and ι, σ the canonical
embeddings have a uniformly continuous extension to C∞(Ω,E ′(Ω)) and take the
value 0 if evaluated at the function 2δ : x  → δ(.− x) [13, Lemma 3.1, p. 188].

In the following definition, the sheaves C∞(−,D(Ω)) and C∞(−) are consid-
ered with values in the category of locally convex spaces with smooth mappings in
the sense of convenient calculus [10] as morphisms. The basic space of nonlinear
generalized functions on Ω then is the set of sheaf homomorphisms

B(Ω) := Hom(C∞(−,D(Ω)), C∞(−)).

The embeddings ι : D ′(Ω) → B(Ω) and σ : C∞(Ω) → B(Ω) are given by

(ιu)( 2ϕ)(x) := 〈u, 2ϕ(x)〉 (u ∈ D ′(Ω))

(σf )( 2ϕ)(x) := f (x) (f ∈ C∞(Ω))
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for 2ϕ ∈ C∞(U,D(Ω)) with U ⊆ Ω open and x ∈ U . For the present discussion
we omit the discussion of derivatives [14, Def. 4].

The algebraic structure of moderate and negligible functions is based on the
following semirings of polynomials with non-negative coefficients, k ∈ N0:

Pk := R
+[y0, . . . , yk],

Ik := {λ ∈ R
+[y0, . . . , yk, z0, . . . , zk] | λ(y0, . . . , yk, 0, . . . , 0) = 0}.

For K,L ⊂⊂ Ω , m, l ∈ N0 and B ⊆ C∞(Ω) bounded we set

‖f ‖K,m := sup
x∈K,|α|≤m

|∂αf (x)| (f ∈ C∞(Ω)),

‖2ϕ‖K,m;L,l := sup
x∈K,|α|≤m
y∈L,|β|≤l

|∂α
x ∂

β
y 2ϕ(x)(y)| ( 2ϕ ∈ C∞(Ω,D(Ω))),

‖2ϕ‖K,m;B := sup
x∈K,|α|≤m

f∈B
|〈f (y), ∂α

x 2ϕ(x)(y)〉| ( 2ϕ ∈ C∞(Ω,E ′(Ω))).

In the following definition, Ux denotes the filter base of open neighborhoods of x

in Ω .

Definition 1 An element R ∈ B(Ω) is called moderate if

(∀x ∈ Ω) (∃U ∈ Ux(Ω)) (∀K,L ⊂⊂ U) (∀m, k ∈ N0)

(∃c, l ∈ N0) (∃λ ∈ Pk) (∀2ϕ0, . . . , 2ϕk ∈ C∞(U,DL(U))) :
‖dkR( 2ϕ0)( 2ϕ1, . . . , 2ϕk)‖K,m ≤ λ(‖2ϕ0‖K,c;L,l, . . . , ‖2ϕk‖K,c;L,l).

The subset of all moderate elements of B(Ω) is denoted by M (Ω).
An element R ∈ B(Ω) is called negligible if

(∀x ∈ Ω) (∃U ∈ Ux(Ω)) (∀K,L ⊂⊂ U) (∀m, k ∈ N0) (∃c, l ∈ N0)

(∃λ ∈ Ik) (∃B ⊆ C∞(Ω) bounded) (∀2ϕ0, . . . , 2ϕk ∈ C∞(U,DL(U))) :
‖dkR( 2ϕ0)( 2ϕ1, . . . , 2ϕk)‖K,m

≤ λ(‖2ϕ0‖K,c;L,l, . . . , ‖2ϕk‖K,c;L,l, ‖2ϕ0 − 2δ‖K,c;B, ‖2ϕ1‖K,c;B, . . . , ‖2ϕk‖K,c;B).

The subset of all negligible elements of B(Ω) is denoted by N (Ω).
We set G (Ω) := M (Ω)/N (Ω).

To connect this definition to those of classical Colombeau algebras think of
setting k = 0 and 2ϕ0(x)(y) = ε−nϕ(

y−x
ε

) for a mollifier ϕ ∈ D(Rn). Further
details are given in [14].
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3 Association in Previous Contexts

There are canonical mappings from G (Ω) into the algebras G s (Ω) (the special
algebra, cf. [8, Section 1.2]), G e(Ω) (the elementary full algebra, cf. [8, Section
1.4]), and G d (Ω) (the diffeomorphism invariant algebra, cf. [12, 13]). Because in
each of these there is an intrinsic notion of association we first characterize when
the image of an element of G (Ω) is associated with a distribution there.

For the special algebra, let the canonical mapping Θs : G (Ω) → G s(Ω) be
given by (ΘsR)ε(x) := R( 2ψε)(x), where the mollifier 2ψε used for the embedding
into G s (Ω) is as in [5], i.e., ϕε(x) = χ(x|ln ε|)ε−nρ(x/ε) with a cut-off function χ

and a mollifier ρ and 2ψε = ϕε(x − y).
For the elementary full algebra, the canonical mapping Θe : G (Ω) → G e(Ω) is

given by (ΘeR)(ϕ, x) = R( 2ϕ)(x) for ϕ ∈ D(Ω) and x ∈ Ω with x + suppϕ ⊆ Ω ,
where 2ϕ is any element of C∞(Ω,D(Ω)) such that 2ϕ(x)(y) = ϕ(y − x) for y in
a neighborhood of x. Let Aq(R

n) denote the space of test functions having integral
one and vanishing moments of order up to q .

Finally, for the diffeomorphism invariant algebra we have a canonical mapping
Θd : G (Ω) → G d (Ω) given by Θd(R)(ϕ)(x) := R( 2ϕ)(x) with 2ϕ(x ′) := ϕ for all
x ′ ∈ Ω and ϕ ∈ D . Moreover, S(Ω) denotes the space of test objects for G d(Ω)

[13, p. 189].
From the respective definitions of association we immediately obtain:

Proposition 1 Let R ∈ G (Ω) and u ∈ D ′(Ω). Then

Θs(R) ≈ u ⇐⇒ ∀ψ ∈ D(Ω) : lim
ε→0

〈R( 2ψε),ψ〉 = 〈u,ψ〉,

Θe(R) ≈ u ⇐⇒ ∀ψ ∈ D(Ω) ∃q > 0 ∀ϕ ∈ Aq(R
n) :

lim
ε→0

〈R(Sεϕ, .), ψ〉 = 〈u,ψ〉,

Θd(R) ≈ u ⇐⇒ ∀ψ ∈ D(Ω) ∀( 2ϕε)ε ∈ S(Ω) : lim
ε→0

〈R( 2ϕε), ψ〉 = 〈u,ψ〉.

Here, Sε(ϕ)(x) := ε−nϕ(x/ε). We list some possible generalizations occurring
in the literature:

• Strong association requires convergence of order εβ for some β > 0 uniformly
for all ψ having support in a given compact set [16, Def. 1.38, p. 45].

• Ck-association requires convergence to take place in Ck [8, Def. 3.2.11, p. 287].
• s-association (for s > 0) requires convergence of order o(εs) for all ψ , while for

D-s-association one in addition takes ψ only from a test function space D [16,
Def. 2.1, p. 92].

• Strong average association replaces the limit in strong association by an averaged
limit [17].

Naturally, all of these can be formulated in the spirit of Proposition 1 as well.



On Association in Colombeau Algebras Without Asymptotics 441

4 Association in the Asymptotic-Free Algebra

A sensible notion of association of R ∈ B(Ω) with u ∈ D ′(Ω), written R ≈ u,
requires at least the following properties:

∀u ∈ D ′(Ω) : ι(u) ≈ u, (1)

∀R ∈ N (Ω) : R ≈ 0. (2)

Condition (1), which ensures minimal compatibility with the distributional world,
can be realized by calling R associated to u if R( 2ϕ) → u in D ′(Ω) as 2ϕ converges
to 2δ : x  → δx (i.e., the identity in L (D ′(Ω),D ′(Ω)) if we identify kernels and
their operators here). Similarly, one can have stronger convergence (e.g., as in Ck-
association) of ι(u)( 2ϕ) for u ∈ H if one supposes that 2ϕ converges to the identity
on spaces of distributions H ⊆ D ′(Ω). However, although convergence like 2ϕε →
id in L (H ,H ) gives compatibility with the linear theory, more structure on the
test objects seems to be needed to incorporate certain nonlinear effects related to
association. As an example, consider the property

xkδk ≈ 0 in G s (R), k ∈ N, (3)

which holds due to

〈xkϕε(x)
k, ψ(x)〉 =

∫
xkψ(x)

(
χ(x|ln ε|)1

ε
ρ
(x
ε

))k

dx

= ε

∫
zkψ(εz)χ(εz|ln ε|)kρ(z) dz = O(ε). (4)

A similar calculation holds in the diffeomorphism invariant algebra G d (R) of
[7], where the convolution kernel 2ψε(x)(y) := ϕε(x − y) which is used for the
embedding into G s is replaced by 2ϕε(x)(y) := 1

ε
φ(ε, x)

( y
ε

)
with φ ∈ C∞

b (I ×
R,Aq(R)) (cf. [7, Definition 7.20]).

Relation (3) is crucially based on the fact that these kernels are obtained
by scaling given test functions. Moreover, properties like (4) are essential in
applications for calculating associated distributions, as is seen, for example, in [2],
where it is shown that the curvature of a conical metric is proportional to the delta
distribution at the apex of the cone.

Therefore, we are led to raise the following questions:

Q1. Which (nonlinear) association properties similar to (3) can one expect in
general using the convolution kernels of G s or G d?

Q2. Can the respective association tests be formulated in terms not involving
asymptotics?
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For condition (2), which is needed for association to be independent of represen-
tatives, we would like to use negligibility to show that R( 2ϕ) → 0 in Cm(Ω) (m = 0
is sufficient) and hence in D ′(Ω) if 2ϕ → 2δ suitably. Negligibility as in Definition 1
implies that for given K ⊂⊂ Ω , m ∈ N0, and L ⊃⊃ K we have

‖R( 2ϕε)‖K,m ≤ λ(‖2ϕε‖K,c;L,l, ‖2ϕε − 2δ‖K,c;B) (5)

whenever 2ϕε(x) ∈ DL(Ω) for x ∈ K . Suppose for simplicity that λ(x, y) = Cxayb

for all x, y ∈ R+, some C > 0 and a, b ∈ N. In general, (5) does not necessarily
converge to zero even if 2ϕε → 2δ; take, for example, in dimension n = 1 a model
delta net 2ϕε(x)(y) := ε−1ϕ((y − x)/ε) where ϕ ∈ D(Ω) has integral one and, say,
vanishing moments of order up to q and nonvanishing (q + 1)th moment. Then

‖2ϕε‖K,c;L,l = O(ε−c−l−1)

for some constant c; however, taking B = {f } with f (x) := xq+1 we only obtain

‖2ϕε − 2δ‖K,0;B = εq+1|
∫

zq+1ϕ(z) dz|.

Hence, if a(c+ l+ 1)− b(q + 1) > 0 we cannot conclude that R( 2ϕε) → 0. We can
only do so if sufficiently many moments of ϕ vanish, or more generally, if 2ϕε → δ

fast enough. As above, we ask:

Q3. Can the conditions which ensure that (2) holds be formulated in terms not
involving asymptotics?

5 Conclusion

We have seen that if one wants to formulate useful association tests in the
asymptotic-free Colombeau algebra one still has to resort to the classically used
association tests of full and special Colombeau algebras, which do employ asymp-
totics. On the one hand this is needed to prove that association does not depend on
representatives; on the other hand, this helps in ensuring that association does not
only give compatibility with the linear theory, but also is able to handle nonlinear
effects as illustrated by the property xkδk ≈ 0 (k ∈ N), for example. It will be
object of further research to investigate whether these association tests necessarily
require a formulation in terms of convolution with scaled mollifiers, or whether a
more general formulation is possible.
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Soliton Dynamics for the General
Degasperis–Procesi Equation

Georgy Omel’yanov

Abstract We consider the general Degasperis–Procesi model of shallow water out-
flows. This fife parametric family of conservation laws contains, in particular, KdV,
Camassa–Holm, and Degasperis–Procesi equations. The main result consists of
a criterion which guarantees the existence of a smooth soliton-type solution. We
discuss also the scenario of soliton interaction for this model in the nonintegrable
case.

1 Introduction

The general Degasperis–Procesi model [5] is the fife parametric family of conser-
vation laws

∂

∂t

{
u− α2ε2 ∂

2u

∂x2

}
(1)

+ ∂

∂x

{
c0u+ c1u

2 − c2ε
2
(∂u
∂x

)2 + ε2(γ − c3u
)∂2u

∂x2

}
= 0, x ∈ R

1, t > 0,

which describes, in particular, the dynamics of out-flows of shallow water. Here α,
c0, . . . , c3, γ are real parameters and ε characterizes the dispersion.

It is known (see, e.g., [6]) that the family (1) contains only three special cases
that satisfy the integrability condition. More in detail:

1. Obviously, if we set α = c2 = c3 = 0, then we obtain the KdV equation.
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x

u

10
bb

–10

Fig. 1 Peacon solution of the Camassa–Holm equation for c0 = 0

2. For c1 = 3c3/(2α2), c2 = c3/2, γ = 0, and v = c3u Eq. (1) becomes the
Camassa–Holm equation

∂

∂t

{
v − α2ε2 ∂

2v

∂x2

}
+ ∂

∂x

{
c0v + 3

2α2 v
2 − ε2

(
1

2

( ∂v
∂x

)2 + v
∂2v

∂x2

)}
= 0.

(2)

3. For the special case c1 = 2c3/α
2, c2 = c3, c0 = γ = 0, and v = c3u, Eq. (1) is

called the Degasperis–Procesi equation also,

∂

∂t

{
v − α2ε2 ∂

2v

∂x2

}
+ ∂

∂x

{
2

α2 v
2 − ε2

(( ∂v
∂x

)2 + v
∂2v

∂x2

)}
= 0. (3)

It is known that the KdV equation and the Camassa–Holm equation for c0 > 0
admit smooth soliton solutions. Conversely, the Degasperis–Procesi equation and
the Camassa–Holm equation for c0 = 0 have continuous solitary wave solutions
called “peacons,” see Fig. 1. Moreover, solitary wave solutions of Eqs. (2) and (3)
interact elastically, that is in the same manner as the KdV solitons (see, e.g., [6]).

However, the cases KdV, (2), and (3) exhaust that’s all what is known about
the family (1). So the first step of (1) investigation is the separation of the basic
situations: smooth and non-smooth traveling wave solutions. We will do it in Sect. 2.
The next question about the scenario of the solitary wave interaction we discuss in
Sect. 3 for the case of solitons.

2 Solitary Wave Solution

Let us set the ansatz

u = Aω
(
β(x − V t)/ε

)
, (4)
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where ω(η) is a smooth even function such that

ω(0) = 1, ω(η) → 0 as η → ±∞, (5)

A > 0, β, and V are free parameters. We assume that

γ ≥ 0, c0 ≥ 0, α > 0, ck > 0, k = 1, 2, 3. (6)

Substituting (4) into Eq. (1), integrating, and using (5), we obtain

{1 − p ω} d
2ω

dη2 = p

c4

(
dω

dη

)2

+ V − c0

α2V + γ

ω

β2 − c1p

c3β2 ω
2 (7)

with ω = ω(η), η = β(x − V t)/ε, p = c3A/(γ + α2V ), c4 = c3/c2. Next we set:

r = c3/(c2 + c3), q = c3(V − c0)/
(
c1(α

2V + γ )
)
, (8)

and rescaling the functionω setting W = pω. Now, defining β = √
c1/c3, assuming

V > c0, and using (8) we deduce that W satisfies the equation

(1 −W)
d2W

dη2
= 1 − r

r

(
dW

dη

)2

+ qW −W 2. (9)

The next step is the substitution

W(η) = 1 − g(η)r , (10)

which allows us to eliminate the first derivatives from the model equation (9). Taking
into account the second condition in (5) and the property of being even, g(−η) =
g(η), we pass to the “boundary” problem

r
d2g

dη2 = g − (2 − q)g1−r + (1 − q)g1−2r , η ∈ (0,∞), (11)

gr
∣∣
η=0 = 1 − p, g|η→∞ = 1. (12)

Notice that the correctness of (12) implies the assumption

p < 1. (13)

Now we integrate (11) and pass to the first order ODE

r(g′)2 = F(g), η ∈ (0,∞); g|η=0 = g∗, (14)
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where prime denotes the derivative with respect to η and

F(g) = g2 − 2
2 − q

2 − r
g2−r + 1 − q

1 − r
g2−2r − C, (15)

C = r(r − q)/{(1 − r)(2 − r)}, g∗ = (1 − p)1/r . (16)

Considering η >> 1 we write g = 1 − w and obtain from (14)–(16)

(w′)2 = q w2.

Thus g → 1 − exp{−√
qη} as η → ∞. Therefore, the second condition in (12) is

verified.
We now consider the even continuation g̃(η) of g for negative η. Obviously,

g̃ ∈ C∞(R) if and only if

g′|η=0 = 0. (17)

Furthermore, since F(1) = dF/dg|g=1 = 0 and d2F/dg2|g=1 > 0, the equation

F(g) = 0 (18)

has a solution g∗ ∈ (0, 1) if and only if C > 0. The last inequality is equivalent to
the following assumption:

r > q. (19)

On the other hand, the initial condition in (14) implies the relation

V = α−2(c3A/(1 − gr∗)− γ
)
. (20)

This allows us to rewrite the coefficient q in (15) as a function of A and the
parameters α, c0, . . . , c3, γ ; therefore to find the solution g∗ of Eq. (18) as a function
of A and the parameters of the model (1). Representing (19) in the explicit form we
obtain the conclusion

Theorem 1 Under the assumptions (6), (13) we assume that

c3 − A−1(γ + c0α
2)(1 − gr∗) < c1rα

2. (21)

Then Eq. (1) has the classical soliton-type solution.

Example 1 For the Camassa–Holm equation (2) r = 2/3 and (18) is a cubic
equation. Thus

g∗ = (1 + c3A/(c0α
2)
)−3/2 if c0 > 0 and g∗ = 0 if c0 = 0. (22)
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Fig. 2 Behavior of the
function F(g) for the
Camassa–Holm equation with
c0 = 1

g

F (g)

1

b

o–c

Respectively the condition (21) is satisfied for c0 > 0 and it is broken for c0 = 0. In
the last case ω′|η=0 = −√

2(1 − q)/p �= 0, therefore ω(η) is a continuous function
only. Figure 2 depicts the F(g) graph in the case c0 = 1, A = 2, c3 = 2 and
α = 1. If c0 > 0, then (20) and (22) imply the relation between the velocity and the
amplitude:

V = c0 + c3A/α2.

Example 2 For the Degasperis–Procesi equation (3) the condition (21) is violated
and ω′|η=0 = −√

(1 − q)/p �= 0. Figure 1 demonstrates the graph of the peacon
ω(η) for this equation.

Example 3 Now let c0 = γ = 0 and α2c1 > c2 + c3. Then q = c3/α
2c1 < r and

g∗ doesn’t depend on V . Thus

V = c3A/{(1 − g∗r )α2}. (23)

Example 4 Let c3 = 4c2. Setting z = gr , r = 2/5, we transform Eq. (18) to the
form

F = (1 − z)2f = 0, f = z3 + 2z2 − 1

3
(1 − 5q)z− 4

5
(4 − 5q). (24)

Solving the cubic equation f = 0 we find the root z∗ = z∗(V ). This and (20) imply
the equality

A = A(V ), A = c−1
3 (γ + α2V )

(
1 − z∗(V )

)
. (25)

Simple calculations show that dA/dV |q=0 > 0. Thus, (25) allows us to define the
velocity as a function of the amplitude at least for V − c0 << 1.

Similar result can be obtained in the case c2 = 3c3/2.
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3 Two-Soliton Asymptotic Solution

Nowadays, there is not any tool to construct neither an exact multi-soliton solution
to (1) nor an asymptotics in the classical sense. So, we will treat ε as a small
parameter and construct a weak asymptotic solution. The weak asymptotics method
(see, e.g., [1–4, 7, 8] and references therein) takes into account the fact that soliton-
type solutions which are smooth for ε > 0 become non-smooth in the limit as
ε → 0. Thus, it is possible to treat such solutions as a mapping C∞(0, T ;C∞(R1

x))

for ε = const > 0 and only as C(0, T ;D ′(R1
x)) uniformly in ε ≥ 0. Accordingly,

the remainder should be small in the weak sense. The main advantage of the method
is such that we can ignore the real shape of the colliding waves but look for (and
find) exceptionally their main characteristics. For Eq. (1) they are the amplitudes
and trajectories of the waves.

Originally, such idea had been suggested by Danilov and Shelkovich for shock
wave type solutions [3], and by Danilov and Omel’yanov for soliton-type solutions
[2]. Later the method has been developed and adapted for many other problems (V.
Danilov, G. Omel’yanov, V. Shelkovich, D. Mitrovic, M. Colombeau and others,
see, e.g., [1–4, 7, 8] and references therein).

Notice finally that the treatment (see Omel’yanov [8]) of weak asymptotics as
functions which satisfy some conservation or balance laws takes us back to the
ancient Whitham’s idea to construct one-phase asymptotic solution satisfying a
Lagrangian. Now, for essentially nonintegrable equations and multi-soliton solu-
tions, we use the appropriate number of the laws and satisfy them in the weak sense.

Let us apply these ideas for the problem of two-soliton interaction in the
Degasperis–Procesi model (1). We set initial data

u|t=0 =
2∑

i=1

Aiω
(
β(x − x0

i )/ε
)
, (26)

where A2 > A1 > 0, x0
1 > x0

2 ; β = √
c1/c3, and Vi are defined in the same manner

as in (20); and we assume that the trajectories x = ϕi0(t) = Vit + x0
i have a joint

point x = x∗ at a time instant t = t∗. To construct the weak asymptotic solution we
start with the following definition of the smallness in the weak sense [2, 8]:

Definition 1 A function v(t, x, ε) is said to be of the value OD ′(εκ) if the relation

∫ ∞

−∞
v(t, x, ε)ψ(x)dx = O(εκ)

holds uniformly in t for any test function ψ ∈ D(R1
x). The right-hand side here is a

C∞-function for ε = const > 0 and a piecewise continuous function uniformly in
ε ≥ 0.
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Next we write two associated with (1) conservation and balance laws in the
differential form:

∂Qj

∂t
+ ∂Pj

∂x
+ ε−1Kj = OD ′(ε2), j = 1, 2, (27)

where

Q1 = u, P1 = c0u+ c1u
2 − (c2 − c3)(εux)

2, K1 = 0, (28)

Q2 = u2 + α2(εux)
2, P2 = P2 + 2α2ε2uxut , K2 = (2c2 − c3)(εux)

3,

(29)

P2 = c0u
2 + 4

3
c1u

3 − (3γ + (2c2 − 5c3)u
)
(εux)

2, (30)

and subscripts denote partial derivatives.
Following [2, 8], we define two-soliton weak asymptotics:

Definition 2 A sequence u(t, x, ε), belonging to C∞(0, T ;C∞(R1
x)) for ε =

const > 0 and belonging to C(0, T ;D ′(R1
x)) uniformly in ε ≥ 0, is called a weak

asymptotic mod OD ′(ε2) solution of (1), (26) if the relations (27) hold uniformly in
t with the accuracy OD ′(ε2).

Next we present the ansatz as the sum of two distorted solitons, that is:

u =
2∑

i=1

Giω
(
β(x − ϕi)/ε

)
, (31)

where

Gi = Ai + Si(τ ), ϕi = ϕi0(t)+ εϕi1(τ ), τ = β1
(
ϕ20(t)− ϕ10(t)

)
/ε, (32)

ϕi0 = Vit + xi0 describe the trajectories of the non-interacting waves (4) with
the amplitudes Ai ; and τ describes the distance between the non-interacting
wave trajectories. Next we suppose that Si(τ ), ϕi1(τ ) are smooth functions such
that

Si → 0 as τ → ±∞, (33)

ϕi1 → 0 as τ → −∞, ϕi1 → ϕ∞
i1 = consti as τ → +∞. (34)

To construct the asymptotics we should calculate the weak expansions of the
terms from the left-hand sides of the relations (27). For any ψ(x) ∈ D(R1) we
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have

∫ ∞

−∞
uψ(x)dx = ε

β

2∑
i=1

Gi

∫ ∞

−∞
ω(η)ψ

(
ϕi + ε

β
η
)
dη = ε

β

2∑
i=1

Gi

∫ ∞

−∞
ω(η)

{
ψ(ϕi)

+ ε

β
ψ ′(ϕi)+O(ε2η2)

}
dη =

(
a1

ε

β

2∑
i=1

Giδ(x − ϕi)+OD ′(ε3), ψ(x)
)
, (35)

where δ(x) is the Dirac delta-function; here and in what follows, we use the
notation

ak
def=
∫ ∞

−∞
(
ω(η)

)k
dη, k > 0, a′2

def=
∫ ∞

−∞
(
ω′(η)

)2
dη. (36)

At the same time for any even F(u, εux) ∈ C1, F
(
u(−x), εux(−x)

) =
F
(
u(x), εux(x)

)
:

F(u, εux) = ε

2∑
i=1

aF,i

βi

δ(x − ϕi)+ ε

β2
R(0)

F δ(x − x∗)

− ε2

β2

{
χ2R

(0)
F + β2

−1R(1)
F

}
δ′(x − x∗)+OD ′(ε3), (37)

where χi = Viτ/ψ̇0 + ϕi1, ψ̇0 = β(V2 − V1),

R
(n)
F =

∫ ∞

−∞
ηn
{
F
( 2∑

i=1

Giω(ηi2), β

2∑
j=1

Gjω
′(ηj2)

)

−
2∑

i=1

F
(
Aiω(ηi2), βAiω

′(ηi2)
)}

dη, n = 1, 2,

aF,i =
∫ ∞

−∞
F
(
Aiω(η), βAiω

′(η)
)
dη, ηi2 = η − δ1

i σ, σ = β(ϕ1 − ϕ2))/ε.

Substituting (35), (37) into (27) we obtain linear combinations of δ(x − x∗),
εδ′(x − ϕi), i = 1, 2, and εδ′(x − x∗) (see also [2, 8]); therefore, we pass to the
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following system of equations:

2∑
i=1

Si = 0, ψ̇0
d

dτ
R(0)

Q2
+R(0)

K2
= 0, a1ψ̇0

d

dτ

2∑
i=1

{
Aiϕi1 + χiSi

}
= f,

(38)

ψ̇0
d

dτ

{ 2∑
i=1

aQ2,iϕi1 + χ2R
(0)
Q2

+ β−1R
(1)
Q2

)
= F, (39)

where

f = R(0)
P1

, F = R(0)
P2

− a′2L− χ2R
(0)
K2

− β−1R(1)
K2

,

L = ψ̇0β

2∑
i=1

dϕi1

dτ
(G2

i − A2
i )− ψ̇0

(
G1

dS2

dτ
−G2

dS1

dτ

)
λ(1,0)

+ βG1G2(ϕ̇1 + ϕ̇1)λ(1,1), λ(k,l) = 1

a′2

∫ ∞

−∞
ω(k)(η12)ω

(l)(η)dη,

Now we can formulate a formal result:

Theorem 2 Let the assumptions (6), (13), (21) be satisfied. Presuppose also that
Eqs. (38), (39) admit a solution with the properties (33), (34). Then the solitary
wave collision in the problem (1), (26) preserves the elastic scenario with accuracy
OD ′(ε2).
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Frame Expansions of Test Functions,
Tempered Distributions, and
Ultradistributions

Stevan Pilipović and Diana T. Stoeva

Abstract The paper is devoted to frame expansions in Fréchet spaces. First we
review some results which concern series expansions in general Fréchet spaces via
Fréchet and General Fréchet frames. Then we present some new results on series
expansions of tempered distributions and ultradistributions, and the corresponding
test functions, via localized frames and coefficients in appropriate sequence spaces.

1 Introduction

In this paper we present results devoted to frame expansions in Fréchet spaces. First
we consider the general case, expansions via Fréchet frames and appropriate dual
sequences in general, and then we aim at expansions of generalized functions via a
proper class of frames. As the Hermite expansions are the basic ones for tempered
distributions and ultradistributions, a suitable localization of a frame with respect
to the Hermite basis enables us to extend the consideration of generalized functions
using an appropriate class of frames instead of the Hermite basis.

Frames were introduced in Hilbert spaces [11]. They generalize the concept of
an orthonormal basis allowing even redundancy, but still provide series expansions
of all the elements of the space. Frames were extended to Banach spaces (atomic
decompositions and Banach frames [15, 16, 21], p-frames [1], Xd -frames [8]) and
furthermore to Fréchet spaces (pre-Fréchet, Fréchet, and General Fréchet frames,
[26, 27, 29]). For other types of frame concepts in Banach spaces and Fréchet spaces,
we refer to [7] and [5, 6], respectively.

While Hilbert frames always guarantee series expansions in Hilbert spaces, this
is not always the case with Banach and Fréchet frames. In this paper we review
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some results related to sufficient conditions for series expansions in general Fréchet
spaces, as well as present new results devoted to series expansions in certain spaces
of test functions and their duals via appropriate frames.

The paper is organized as follows. Section 2 contains the main definitions, nota-
tion, and basic needed facts. In Sect. 3 we review some results from [26, 27] which
are related to series expansions in general Fréchet spaces via Fréchet and General
Fréchet frames. Section 4 is devoted to new results which concern expansions in
certain spaces of test functions, tempered distributions, and ultradistributions, via
localized frames; the statements are given without proofs and the proofs are subject
of a further extended paper [28].

2 Preliminaries

Throughout the paper, (H, 〈·, ·〉) denotes a separable Hilbert space. We consider
countable sequences and for convenience of the writing we index them by the
set N. A sequence (gn)

∞
n=1 with elements from H is called: a frame for H if

there exist positive constants A and B (called frame bounds) so that A‖f ‖2 ≤∑∞
n=1 |〈f, gn〉|2 ≤ B‖f ‖2 for every f ∈ H [11]; a Riesz basis for H if its elements

are the images of the elements of an orthonormal basis under a bounded bijective
operator on H [4].

Let us recall some needed basic facts from frame theory (see, e.g., [10]). Let
G = (gn)

∞
n=1 be a frame for H . Then there exists a frame (fn)

∞
n=1 for H so that f =∑∞

n=1〈f, fn〉gn = ∑∞
n=1〈f, gn〉fn, f ∈ H. Such (fn)

∞
n=1 is called a dual frame of

(gn)
∞
n=1. The analysis operator UG, given by UGf = (〈f, gn〉)∞n=1, is bounded

from H into �2, the synthesis operator TG defined on finite sequences by TG(c) =∑
n cnen extends to a bounded operator from �2 into H , the frame operator SG =

TGUG is a bounded bijection of H onto H , and the series in SGf =∑∞
n=1〈f, gn〉gn

converges unconditionally. The sequence (S−1
G gn)

∞
n=1 is a dual frame of (gn)

∞
n=1,

called the canonical dual of (gn)
∞
n=1, and it will be denoted by (g̃n)

∞
n=1. When

(gn)
∞
n=1 is a Riesz basis of H (and thus a frame for H ), then (g̃n)

∞
n=1 is the only

dual frame of (gn)∞n=1. Frames which are not Riesz bases have other dual frames in
addition to the canonical dual one.

Recall also the localization-notions introduced in [22]. Given a Riesz basis
(gn)

∞
n=1 for H , a frame E = (en)

∞
n=1 for H is called: polynomially localized

with respect to (gn)
∞
n=1 with decay s > 0 if there is a constant Cs > 0 so

that max{|〈em, gn〉|, |〈em, g̃n〉|} ≤ Cs(1 + |m − n|)−s , m, n ∈ N; exponentially
localized with respect to (gn)

∞
n=1 if for some s > 0 there is a constant Cs > 0

so that max{|〈em, gn〉|, |〈em, g̃n〉|} ≤ Cse−s|m−n|, m, n ∈ N. Notice that in the
literature there exist other ways to define localization of frames [2, 3, 17, 18], but
for the purposes of the current paper it is relevant and enough to use the localization
concepts according to [22].
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Next, (X, ‖·‖) denotes a Banach space and (Θ, ‖|·‖|) denotes a Banach sequence
space. A Banach sequence space is a BK-space if the coordinate functionals are
continuous. If the canonical vectors form a Schauder basis for Θ , then Θ is called
a CB-space and it is clearly a BK-space. Given a BK-space Θ and a Riesz basis
G = (gn)

∞
n=1 for H , one associates with Θ the following Banach space:

HΘ
G := {f ∈ H : f =

∞∑
n=1

cngn with (cn)
∞
n=1 ∈ Θ} normed by ‖f ‖HΘ

G
:= ‖|(cn)∞n=1‖|Θ.

Further, we consider Fréchet spaces which are projective limits of Banach spaces.
Let {Yk, | · |k}k∈N0 be a sequence of separable Banach spaces such that

{0} �= ∩k∈N0Yk ⊆ . . . ⊆ Y2 ⊆ Y1 ⊆ Y0 (1)

| · |0 ≤ | · |1 ≤ | · |2 ≤ . . . (2)

YF := ∩k∈N0Yk is dense in Yk, k ∈ N0. (3)

Under the conditions (1)–(3), YF is a Fréchet space with the sequence of norms | · |k,
k ∈ N0, and it is called the projective limit of Yk , k ∈ N0. We will use such type of
sequences in two cases:

1. Yk = Xk with norm ‖ · ‖k, k ∈ N0;
2. Yk = Θk with norm ‖|·‖|k, k ∈ N0.

We use the term operator for a linear mapping. Given sequences of Banach
spaces, {Xk}k∈N0 and {Θk}k∈N0 , which satisfy (1)–(3), an operator G : ΘF → XF

is called F -bounded if for every k ∈ N0, there exists a constant Ck > 0 such that
‖G(cn)

∞
n=1‖k ≤ Ck‖|{cn}∞n=1‖|k for all (cn)∞n=1∈ΘF . Now we recall the definitions

of Fréchet and General Fréchet frames.

Definition 2.1 ([27]) Let {Xk, ‖ · ‖k}k∈N0 be a sequence of Banach spaces satisfy-
ing (1)–(3) and let {Θk, ‖|·‖|k}k∈N0 be a sequence of BK-spaces satisfying (1)–(3).
A sequence (gn)

∞
n=1 of elements from X∗

F is called: a General pre-Fréchet frame
(in short, General pre-F -frame) for XF with respect to ΘF if there exist sequences
{̃sk}k∈N0 ⊆ N0, {sk}k∈N0 ⊆ N0, which increase to ∞ with the property sk ≤ s̃k ,
k ∈ N0, and there exist constants 0 < Ak ≤ Bk < ∞, k ∈ N0, satisfying

(gn(f ))∞n=1 ∈ ΘF , f ∈XF , (4)

Ak‖f ‖sk ≤ ‖|{gn(f )}∞n=1‖|k ≤ Bk‖f ‖̃sk , f ∈XF , k ∈ N0; (5)

a General Fréchet frame (in short, General F -frame) for XF with respect to ΘF if
it is a General pre-F -frame for XF with respect to ΘF and there exists a continuous
operator V : ΘF → XF so that V (gn(f ))∞n=1 = f for every f ∈XF .
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Let sk = s̃k = k, k ∈ N0. In this case the above definition of a General pre-
F -frame reduces to the definition of a pre-Fréchet frame (in short pre-F -frame)
[29], and if in addition the continuity of V is replaced by the stronger condition of
F -boundedness of V , then one comes to the concept of a Fréchet frame (in short F -
frame) [26]. In the particular case when Xk = X, and Θk = Θ , k ∈ N0: an F -frame
(resp. pre-F -frame) for XF with respect to ΘF is actually a Banach frame for X with
respect to Θ (resp. Θ-frame for X) as introduced in [21] (resp. [8]); when (4) and
the upper inequality of (5) hold, one comes to the definition of a Θ-Bessel sequence
for X.

When (gn)
∞
n=1 is a pre-F-frame for XF with respect to ΘF , then for any n ∈ N

and any k ∈ N0, gn can be extended in a unique way to a continuous operator on Xk

and this extension will be denoted by gk
n.

Recall that a positive continuous function μ on R is called: a k-moderate weight
if k ≥ 0 and there exists a constant C > 0 so that μ(t+x) ≤ C(1+|t|)kμ(x), t, x ∈
R; a sub-exponential weight, if there exist constants C > 0, γ > 0 and β ∈ (0, 1)
so that μ(t + x) ≤ Ceγ |t |βμ(x), t, x ∈ R. Taking μk(x) = (1 + |x|)k (resp.
β ∈ (0, 1) and μk(x) = ek|x|β ), x ∈ R, k ∈ N0, the spaces Θk := �2

μk
, k ∈

N0, satisfy (1)–(3) and their projective limit ∩kΘk is the so-called space of rapidly
decreasing sequences s (resp. space of sub-exponentially decreasing sequences sβ ).
Further, we will use the following statement:

Lemma 2.2 Let G = (gn)
∞
n=1 be a Riesz basis for H . For k ∈ N0, let μk be a

k-moderate weight so that 1 = μ0(x) ≤ μ1(x) ≤ μ2(x) ≤ . . ., for every x ∈ R.
Then {Θk}k∈N0 := {�2

μk
}k∈N0 is a sequence of CB-spaces satisfying (1)–(3), the

spaces Xk := H
Θk

G , k ∈ N0, satisfy (1)–(3), and gn ∈ XF for every n ∈ N. The
conclusions also hold if the assumptions “μk - k-moderate weight” are replaced by
“μk - sub-exponential weight.”

Test function spaces and their duals under consideration in the paper are
S (R) := {f ∈ C∞(R) : |f |k := supx∈R supm≤k |f (m)(x)| (1 + |x|2)k/2 <

∞, ∀k ∈ N0}, and its dual S ′(R) ⊂ C∞(R), the space of tempered distributions;

Σα := {φ ∈ C∞(R) : |φ|h,α := supn∈N0,x∈R
hnem|x|1/α |φ(n)(x)|

n!α < ∞, ∀h > 0},
and its dual (Σα(R))′, α > 1/2, the space of Beurling tempered ultradistributions,
cf. [9, 14, 19, 25].

In the sequel, (hn)
∞
n=1 is the Hermite orthonormal basis (hn)

∞
n=0 of L2(R), re-

indexed from 1 to ∞, i.e., hn+1(t) = hn(t) = (2(n)n! √π)−1/2 (−1)net
2/2 dn

dtn
(e−t2

),
n ∈ N0. Recall that hn ∈ S and hn ∈ Σα , α > 1/2, n ∈ N. Moreover, we know
[30] the following:

– If f ∈ S , then (〈f, hn〉)∞n=1 ∈ s; conversely, if (an)
∞
n=1 ∈ s, then

∑∞
n=1 anhn

converges in S to f =∑∞
n=1〈f, hn〉hn, (〈f, hn〉)∞n=1 = (an)

∞
n=1.

– If F ∈ S ′, then (bn)
∞
n=1 := (F (hn))

∞
n=1 ∈ s′ and F(f ) = ∑∞

n=1〈f, hn〉bn,
f ∈ S ; conversely, if (bn)∞n=1 ∈ s′, then the mapping F : f →∑∞

n=1〈f, hn〉bn
is well defined on S , it determines F as an element of S ′ and (F (hn))

∞
n=1 =

(bn)
∞
n=1.
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The above two statements also hold when S , S ′, s, and s′ are replaced by Σα ,
(Σα)′, s1/(2α), and (s1/(2α))′ with α > 1/2, respectively [9, 14, 19, 25]. Moreover,
one can consider elliptic Shubin type polynomial operators, the corresponding
orthonormal systems (given by eigenfunctions), and the corresponding eigenvalues
in order to define Fréchet function spaces and corresponding sequence spaces (cf.
[20, 31]), with the same aim as Hermite functions and the eigenvalues which
correspond to the Harmonic oscillator.

3 Frame Expansions in Fréchet Spaces

In this section we recall some general statements about sufficient conditions for
series expansions in Fréchet spaces via Fréchet and General Fréchet frames, and
appropriate dual sequences. We start with the case of Fréchet frames.

Proposition 3.1 ([26]) Let (gn)
∞
n=1 be an F -frame for XF with respect to ΘF .

Then the following holds.

(a) For every k∈N0, the sequence {gk
i }∞i=1 is a Banach frame for Xs with respect to

Θk .
(b) If Θk , k ∈ N0, are CB-spaces, then there exists (fn)

∞
n=1 ∈ (XF )N, which is

Θ∗
k -Bessel sequence for X∗

k for every k ∈ N0 and such that

f =
∞∑
i=1

gi(f )fi , f ∈XF , (in XF ), (6)

g =
∞∑
i=1

g(fi )gi, g ∈ X∗
F , (in X∗

F ), (7)

f =
∞∑
i=1

gk
i (f )fi , f ∈Xk, k∈N0. (8)

(c) If Θk and Θ∗
k , k∈N0, are CB-spaces, then there exists (fn)

∞
n=1∈ (XF )N, which

is a Θ∗
k -frame for X∗

k for every k ∈ N0 and such that (6)–(8) hold, and moreover,

g =
∞∑
i=1

g(fi)g
k
i , g ∈ X∗

k , k ∈ N0. (9)

(d) If Θk , k∈N0, are reflexive CB-spaces, then there exists (fn)
∞
n=1∈ (XF )N, which

is a Banach frame for X∗
k with respect to Θ∗

k for every k ∈ N0 such that (6)–(9)
hold.
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As one can see in Proposition 3.1, the F-boundedness property of V leads to
series expansions in all the spaces Xk , k ∈ N0. Now we continue with the case of
General Fréchet frames and show that in this case the continuity property of V is
enough to imply the existence of a subsequence {Xw̃j }∞j=0 of the given sequence
{Xs̃k }∞k=0 according to Definition 2.1, so that one has series expansions in Xw̃j ,
j ∈ N0, with convergence in appropriate norms.

Theorem 3.2 ([27]) Let (gn)∞n=1 be a General F -frame for XF with respect to ΘF

and let Θk , k∈N0, be CB-spaces. Then there exist sequences {wj }j∈N0 , {rj }j∈N0 ,
and {w̃j }j∈N0 , which increase to ∞ and there exist constants Ãj , B̃j , j ∈ N0, such
that for every j ∈ N0,

Ãj‖f ‖wj ≤ ‖|{gi(f )}∞i=1‖|rj ≤ B̃j‖f ‖w̃j , ∀f ∈XF .

Moreover, there exists a sequence (fn)
∞
n=1 ∈ (XF )N such that for every j ∈ N0,

(fn)
∞
n=1 is a Θ∗

rj
-Bessel sequence for X∗

wj
and

f =
∞∑
i=1

g
w̃j

i (f )fi in ‖.‖wj -norm, f ∈Xw̃j .

4 Expansions of Tempered Distributions
and Ultradistributions by Localized Frames

In this section, we aim at expansions in a Fréchet space and its dual by localized
frames and coefficients in a corresponding Fréchet sequence space. First we present
a general result based on frames localized with respect to a Riesz basis and providing
frame expansions in a corresponding Fréchet space, and then we apply it to obtain
frame expansions in spaces of tempered distributions and ultradistributions, as well
as in the corresponding test function spaces. To clarify some notation, when we take
a frame element en ∈ XF(⊂ H ⊂ X∗

F ) and consider it as a functional in X∗
F , then

we denote it by bold-style en.
Let us start with a general theorem about expansions in Fréchet spaces via

localized frames.

Theorem 4.1 Let the assumptions and notation of Lemma 2.2 hold. Assume that
E = (en)

∞
n=1 is a sequence with elements from XF which is a frame for H and

polynomially localized with respect to G with decay s for every s ∈ N (resp.
exponentially localized with respect to G). Then the following statements hold.

(a) ẽn ∈ XF for every n ∈ N.
(b) The analysis operator UE is F -bounded from XF into ΘF , the synthesis

operator TE is F -bounded from ΘF into XF , and the frame operator SE is
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F -bounded and bijective from XF onto XF with unconditional convergence of
the series in SEf =∑∞

n=1〈f, en〉en.
(c) For every f ∈ XF ,

f =
∑∞

n=1
〈f, ẽn〉en =

∑∞
n=1

〈f, en〉ẽn (with convergence in XF )

with (〈f, ẽn〉)∞n=1 ∈ ΘF and (〈f, en〉)∞n=1 ∈ ΘF .
(d) If XF and ΘF have the following property with respect to (gn)

∞
n=1:

P(gn): For f ∈ H , one has f ∈ XF if and only if (〈f, gn〉)∞n=1 ∈ ΘF .

then they also have the properties P(en) and P(ẽn).
(e) Both (en)

∞
n=1 and (ẽn)

∞
n=1 form Fréchet frames for XF with respect to ΘF .

(f) For every g ∈ X∗
F ,

g =
∑∞

n=1
g(en) ẽn =

∑∞
n=1

g(ẽn) en (with convergence in X∗
F ) (10)

with (g(en))
∞
n=1 ∈ Θ∗

F and (g(ẽn))
∞
n=1 ∈ Θ∗

F .

(g) If (an)
∞
n=1 ∈ Θ∗

F , then
∑∞

n=1 anen (resp.
∑∞

n=1 anẽn) converges in X∗
F , i.e.,

the mapping f  → ∑∞
n=1〈f, en〉an (resp. f  → ∑∞

n=1〈f, ẽn〉an) determines a
continuous linear functional on XF .

Remark Note that in the setting of the above theorem, when G is an orthonormal
basis of H or more generally, when G is a Riesz basis for H satisfying any of the
following two conditions:

(P1): ∀s ∈ N ∃Cs > 0 : |〈gm, gn〉| ≤ Cs(1 + |m− n|)−s, m, n ∈ N,
(P2): ∃s > 0 ∃Cs > 0 : |〈gm, gn〉| ≤ Cse−s|m−n|, m, n ∈ N,

then the property P(gn) is satisfied.
Now we apply Theorem 4.1 to obtain series expansions in the spaces S and

Σα (for α > 1/2), and their duals, via frames localized by the Hermite orthonormal
basis and coefficients in the corresponding sequence spaces. Furthermore, we extend
the known characterizations of S , Σα , α > 1/2, and their dual spaces, based on the
Hermite basis (see the end of Sect. 2), to characterizations based on a larger class of
frame-functions.

Theorem 4.2 Assume that (en)∞n=1 is a sequence with elements from S (R) which
is a frame for L2(R) and which is polynomially localized with respect to the Hermite
basis (hn)

∞
n=1 with decay s for every s ∈ N. Take (gn)

∞
n=1 := (hn)

∞
n=1. Then P(gn)

and the conclusions in Theorem 4.1 hold with XF replaced by S and ΘF replaced
by s.

Theorem 4.3 Let α > 1/2. Assume that a sequence (en)
∞
n=1 with elements from

Σα is a frame for L2(R) which is exponentially localized with respect to the
Hermite basis (hn)

∞
n=1. Take (gn)

∞
n=1 := (hn)

∞
n=1. Then P(gn) and the conclusions

in Theorem 4.1 hold with XF replaced by Σα and ΘF replaced by s1/(2α).
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To illustrate Theorems 4.2 and 4.3, below we give an example based on
appropriate linear combinations of Hermite functions. Further examples are to be
given in an extended paper [28].

Example 4.4 Let r ∈ N and for i = 1, 2, . . . , r , take εi ≥ 0 and a sequence (ai
n)

∞
n=1

of complex numbers satisfying |ai
n| ≤ εi for n ≥ 2,

∑r
i=1 |ai

1| ≤ 1, and
∑r

i=1 εi <

1. For n ∈ N, consider en := hn +∑r
i=1 ai

nhn+i , which clearly belongs to S (R)

and Σα , α > 1/2. Then the sequence (en)
∞
n=1 is a Riesz basis for L2(R) and it is

s-localized with respect to the Hermite orthonormal basis (hn)
∞
n=1 for every s > 0,

as well as exponentially localized with respect to (hn)
∞
n=1.

Remark 4.5 Having in mind the known expansions of tempered distributions
(S (R+))′ [12, 23] and Beurling ultradistributions (Gα

α(R+))′ [13, 24], and their test
spaces, by the use of the Laguerre orthonormal basis ln, n ∈ N, and validity of the
corresponding properties P(ln), we can transfer the above results to the mentioned
classes of distributions and ultradistributions over R+.
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Abstract The direct segregated boundary-domain integral equations (BDIEs) for
the mixed boundary value problem for a second order elliptic partial differential
equation with variable coefficient in 2D is considered in this paper. An appropriate
parametrix (Levi function) is used to reduce this BVP to the BDIEs. Although
the theory of BDIEs in 3D is well developed, the BDIEs in 2D need a special
consideration due to their different equivalence properties. As a result, we need
to set conditions on the domain or on the associated Sobolev spaces to insure the
invertibility of corresponding parametrix-based integral layer potentials and hence
the unique solvability of BDIEs. The properties of corresponding potential operators
are investigated. The equivalence of the original BVP and the obtained BDIEs is
analysed.

1 Preliminaries

The direct segregated boundary-domain integral equations (BDIEs) for the mixed
boundary value problem for a second order elliptic partial differential equation with
variable coefficient in 2D is considered in this paper. An appropriate parametrix
(Levi function) is used to reduce this BVP to the BDIEs. Although the theory of
BDIEs in 3D is well developed, cf. [2, 3, 8, 9], the BDIEs in 2D need a special
consideration due to their different equivalence properties. As a result, we need
to set conditions on the domain or on the associated Sobolev spaces to insure the
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invertibility of corresponding parametrix-based integral layer potentials and hence
the unique solvability of BDIEs. The properties of corresponding potential operators
are investigated. The equivalence of the original BVP and the obtained BDIEs is
analysed.

Let Ω be a domain in R2 bounded by a smooth curve ∂Ω , and let n(x) be the
exterior unit normal vector defined on ∂Ω . The set of all infinitely differentiable
functions on Ω with compact support is denoted by D(Ω). The function space
D ′(Ω) consists of all continuous linear functionals over D(Ω). The space Hs(R2),
s ∈ R, denotes the Bessel potential space, and H−s(R2) is the dual space to Hs(R2).
We define Hs(Ω) = {u ∈ D ′(Ω) : u = U |Ω for some U ∈ Hs(R2)}. The space
H̃ s(Ω) is the closure of D(Ω) with respect to the norm of Hs(R2), and for s ∈
(− 1

2 ,
1
2 ), the space Hs(Ω) can be identified with H̃ (Ω), see, e.g., [7].

We shall consider the scalar elliptic differential equation

Au(x) =
2∑

i=1

∂

∂xi

[
a(x)

∂u(x)

∂xi

]
= f (x) in Ω,

where u is unknown function and f is a given function in Ω . We assume that

a ∈ C∞(R2), 0 < amin ≤ a(x) ≤ amax < ∞, ∀ x ∈ R
2. (1)

For u ∈ H 2(Ω) and v ∈ H 1(Ω) if we put h(x) = a(x)
∂u(x)
∂xj

v(x) and apply the
Gauss–Ostrogradsky theorem, we obtain the following Green’s first identity:

E (u, v) = −
∫
Ω

(Au)(x)v(x)dx +
∫
∂Ω

T c+u(x)γ+v(x)dsx, (2)

where E (u, v) :=
2∑

i=1

∫
Ω

a(x)
∂u(x)

∂xi

∂v(x)

∂xi
dx is the symmetric bilinear form, γ+ is

the trace operator and

T c+u(x) :=
2∑

i=1

ni(x)γ
+
[
a(x)

∂

∂xi
u(x)

]
for x ∈ ∂Ω, (3)

is the classical co-normal derivative.

Remark 1.1 For v ∈ D(Ω), γ+v = 0. If u ∈ H 1(Ω), then we can define Au as a
distribution on Ω by (Au, v) = −E (u, v) for v ∈ D(Ω).
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The subspace H 1,0(Ω;A) is defined as in [5] (see also, [10])

H 1,0(Ω;A) := {g ∈ H 1(Ω) : Ag ∈ L2(Ω)},

with the norm ‖g‖2
H 1,0(Ω;A)

:= ‖g‖2
H 1(Ω)

+ ‖Ag‖2
L2(Ω).

For u ∈ H 1(Ω) the classical co-normal derivative (3) is not well defined, but for
u ∈ H 1,0(Ω;A), there exists the following continuous extension of this definition
hinted by the first Green identity (2) (see, e.g., [5, 10] and the references therein).

Definition 1.2 For u ∈ H 1,0(Ω;A) the (canonical) co-normal derivative T +u ∈
H− 1

2 (∂Ω) is defined in the following weak form:

〈T +u,w〉∂Ω := E (u, γ+
−1w)+

∫
Ω

(Au)γ+
−1wdx for all w ∈ H

1
2 (∂Ω) (4)

where γ+
−1 : H 1

2 (∂Ω) → H 1(Ω) is a continuous right inverse of the trace operator

γ+, which maps H 1(Ω) → H
1
2 (∂Ω), while 〈·, ·〉∂Ω denote the duality brackets

between the spaces H− 1
2 (∂Ω) and H

1
2 (∂Ω), which extend the usual L2(∂Ω) inner

product.

Remark 1.3 The first Green identity (2) also holds for u ∈ H 1,0(Ω;A) and v ∈
H 1(Ω) if we replace there T c+ by T +, cf. [5, 10].

By interchanging the roles of u and v in the first Green identity and subtracting the
result, we obtain the second Green identity for u, v ∈ H 1,0(Ω;A),

∫
Ω

(vAu− uAv)dx = 〈T +u, γ+v〉∂Ω − 〈T +v, γ+u〉∂Ω. (5)

Let ∂Ω = ∂ΩD ∪ ∂ΩN where ∂ΩD and ∂ΩN are non-empty and non-
intersecting parts of ∂Ω . We shall derive and investigate BDIEs for the following
mixed BVP: Find a function u ∈ H 1(Ω) satisfying conditions

Au = f in Ω, (6)

γ+u = ϕ0 on ∂ΩD, (7)

T +u = ψ0 on ∂ΩN, (8)

where ϕ0 ∈ H
1
2 (∂ΩD), ψ0 ∈ H− 1

2 (∂ΩN) and f ∈ L2(Ω) are given functions.
Equation (6) is understood in distributional sense as in Remark 1.1, Eq. (7) is
understood in trace sense and Eq. (8) is understood in functional sense (4).

Theorem 1.4 The homogeneous version of BVP (6)–(8), i.e. with f = 0, ϕ0 =
0, ψ0 = 0 has only the trivial solution. Hence the nonhomogeneous problem (6)–
(8) may possess at most one solution.
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Proof The proof follows from Green’s formula (2) with v = u as a solution of the
homogeneous mixed BVP (cf. [2, Theorem 2.1]). ��

2 Parametrix-Based Potential Operators

Definition 2.1 A function P(x, y) is a parametrix (Levi function) for the operator
A if

AxP(x, y) = δ(x − y)+ R(x, y)

where δ is the Dirac-delta distribution, while R(x, y) is a remainder possessing at
most a weak singularity at x = y.

For 2D, the parametrix and hence the corresponding remainder can be chosen as
in [8],

P(x, y) = ln |x − y|
2πa(y)

, R(x, y) =
2∑

i=1

xi − yi

2πa(y)|x − y|2
∂a(x)

∂xi
, x, y ∈ R

2.

Similar to [2, 8], we define the parametrix-based Newtonian and remainder
potential operators as

Pg(y) :=
∫
Ω

P(x, y)g(x)dx, Rg(y) :=
∫
Ω

R(x, y)g(x)dx. (9)

The single and double layer potential operators corresponding to the parametrix
P(x, y), are defined for y /∈ ∂Ω as

Vg(y) := −
∫
∂Ω

P (x, y)g(x)dsx, Wg(y) := −
∫
∂Ω

T +
x P (x, y)g(x)dsx,

(10)

where g is some scalar density function. The following boundary integral (pseudo-
differential) operators are also defined for y ∈ ∂Ω,

V g(y) := −
∫
∂Ω

P (x, y)g(x)dsx, W g(y) := −
∫
∂Ω

T +
x P (x, y)g(x)dsx,

(11)

W ′g(y) := −
∫
∂Ω

T +
y P (x, y)g(x)dsx. (12)
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Let VΔ,WΔ,VΔ,WΔ denote the potentials and the boundary operators cor-
responding to the Laplace operator A = Δ. Then the relations similar to [1,
Eq. (3.9)–(3.12)] hold (cf.[2] for the 3D case),

Vg = 1

a
VΔg, Wg = 1

a
WΔ(ag) (13)

V g = 1

a
VΔg, W g = 1

a
WΔ(ag), (14)

W ′g = W ′
Δg +

[
a

∂

∂n

(
1

a

)]
VΔg, (15)

T +Wg = T +
Δ WΔ(ag)+

[
a

∂

∂n

(
1

a

)]
W+

Δ (ag). (16)

The mapping and jump properties of the operators (9)–(12) follow from rela-
tions (13)–(16) and are described in detail in [6, Theorems 1–3]. Particularly, we
have the following jump relations.

Theorem 2.2 Let g1 ∈ H− 1
2 (∂Ω), g2 ∈ H

1
2 (∂Ω) and y ∈ ∂Ω . Then

γ±Vg1(y) = V g1(y) (17)

γ±Wg2(y) = ∓1

2
g2(y)+W g2(y). (18)

T ±Vg1(y) = ±1

2
g1(y)+W ′g1(y), (19)

T ±Wg2(y) = L̂ g2(y)− ∂a

∂n

(
∓1

2
I +W

)
g2(y), (20)

where

L̂ g2 := T +
Δ WΔ(ag2) = T −

Δ WΔ(ag2) =: L̂Δ(ag2) on ∂Ω. (21)

If u ∈ H 1,0(Ω;A), then substituting v(x) by P(x, y) in the second Green
identity (5) for Ω \ B(y, ε), where B(y, ε) is a disc of radius ε centred at y, and
taking the limit ε → 0, we arrive at the following parametrix-based third Green
identity (cf. e.g. [2, 8, 11]: ),

u+Ru− VT +u+Wγ+u = PAu in Ω. (22)

Applying the trace operator to Eq. (22) and using the jump relations (17) and (18),
we have

1

2
γ+u+ γ+Ru− V T +u+W γ+u = γ+PAu on ∂Ω. (23)
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Similarly, applying co-normal derivative operator to Eq. (22), and using the jump
relation (19), we obtain

1

2
T +u+ T +Ru−W ′T +u+ T +Wγ+u = T +PAu on ∂Ω. (24)

For some functions f,Ψ and Φ let us consider a more general indirect integral
relation associated with Eq. (22),

u+Ru− VΨ +WΦ = Pf in Ω. (25)

Lemma 2.3 Let u ∈ H 1(Ω), f ∈ L2(Ω),Ψ ∈ H− 1
2 (∂Ω),Φ ∈ H

1
2 (∂Ω) satisfy

Eq. (25). Then u belongs to H 1,0(Ω;A) and is a solution of PDE (6), i.e. Au = f

in Ω , and V (Ψ − T +u)(y)−W(Φ − γ+u)(y) = 0, y ∈ Ω .

Proof The proof is similar to the one in 3D case in [2, Lemma 4.1]. ��
For s ∈ R and Γ1 ⊂ ∂Ω , let us define the subspaces (cf. e.g. [12, p. 147])

Hs∗∗(∂Ω) := {g ∈ Hs(∂Ω) : 〈g, 1〉∂Ω = 0}, H̃ s∗∗(Γ1) := {g ∈ H̃ s(Γ1) : 〈g, 1〉Γ1 = 0}.

The following result is proved in [6, Theorem 4].

Theorem 2.4 If ψ ∈ H
− 1

2∗∗ (∂Ω) satisfies V ψ = 0 on ∂Ω , then ψ = 0.

Proof The theorem holds for the operator VΔ (see, e.g., [7, Corollary 8.11(ii)]),
which due to (14) implies it for the operator V as well. ��

The following theorem is proved in [7, Theorem 8.16].

Theorem 2.5

(i) The operator VΔ : H− 1
2 (∂Ω) → H

1
2 (∂Ω), is H− 1

2 (∂Ω)- elliptic, i.e.

〈VΔψ,ψ〉∂Ω ≥ c‖ψ‖
H

− 1
2 (∂Ω)

for all ψ ∈ H− 1
2 (∂Ω), if and only if Cap

∂Ω
< 1.

(ii) The operator VΔ : H− 1
2 (∂Ω) → H

1
2 (∂Ω) has a bounded inverse if and only

if Cap
∂Ω

�= 1.

The following result is proved in [6, Theorem 5].

Theorem 2.6 Let Ω ⊂ R2 have diam(Ω) < 1. Then the single layer potential

V : H− 1
2 (∂Ω) → H

1
2 (∂Ω) is invertible.

Proof Since Cap
∂Ω

≤ diam(Ω), (see, [13, p. 553, properties 1 and 3]), then
diam(Ω) < 1 implies Cap

∂Ω
< 1. The result follows from Theorem 2.5(ii) and

the first relation in (14). ��
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Corollary 2.7 Let Γ1 be a non-empty part of the boundary curve ∂Ω .

(i) The operator

rΓ1
V : H̃− 1

2 (Γ1) → H
1
2 (Γ1) (26)

is bounded and Fredholm of index zero.

(ii) If ψ̃ ∈ H̃
− 1

2∗∗ (Γ1) satisfies rΓ1
V ψ̃ = 0 on Γ1, then ψ̃ = 0.

Proof

(i) The operator V : H− 1
2 (∂Ω) → H

1
2 (∂Ω) is bounded, which implies that

operator (26) is bounded as well.

The operatorVΔ : H− 1
2 (∂Ω) → H

1
2 (∂Ω) admits the decompositionVΔ = V0+K ,

where the operator V0 is positive and bounded below and K is a compact linear

operator from H− 1
2 (∂Ω) to H

1
2 (∂Ω) (cf. [7, Theorm 7.6], and [5, Theorem 2]). If

ψ̃ ∈ H̃− 1
2 (Γ1), then suppψ̃ ⊂ Γ 1 and

〈rΓ1
V0ψ̃, ψ̃〉Γ1 = 〈V0ψ̃, ψ̃〉∂Ω ≥ c‖ψ̃‖

H
− 1

2 (∂Ω)
= c‖ψ̃‖

H̃
− 1

2 (Γ1)
,

which means, the operator rΓ1
V0 : H̃− 1

2 (Γ1) → H
1
2 (Γ1) is positive and bounded

below. Also, the operator rΓ1
K : H̃− 1

2 (Γ1) → H
1
2 (Γ1) is compact. Since rΓ1

VΔ =
rΓ1

V0 + rΓ1
K , the operator rΓ1

V Δ : H̃− 1
2 (Γ1) → H

1
2 (Γ1) is Fredholm of index

zero (cf. [7, Theorem 2.33]). Since V = 1
a
VΔ and the multiplication by 1

a
is an

isomorphism in H
1
2 (Γ1) under condition (1), we obtain (cf. e.g. [7, Theorem 2.21])

that operator (26) is Fredholm of index zero as well.

To prove item (ii), suppose ψ̃ ∈ H̃
− 1

2∗∗ (Γ1), i.e. 〈ψ̃ , 1〉Γ1 = 〈ψ̃ , 1〉∂Ω = 0, which

implies ψ̃ ∈ H
− 1

2∗∗ (∂Ω). For ψ̃ ∈ H
− 1

2∗∗ (∂Ω), we have 〈VΔψ̃, ψ̃〉∂Ω ≥ 0, moreover,
if 〈VΔψ̃, ψ̃〉∂Ω = 0, then ψ̃ = 0 on ∂Ω (cf. [7, Theorm 8.12]). Hence, if rΓ1

V ψ̃ =
0, then rΓ1

VΔψ̃ = 0 and 〈VΔψ̃, ψ̃〉∂Ω = 〈rΓ1
VΔψ̃, ψ̃〉Γ1

= 0, which implies

ψ̃ = 0. ��
The following assertion can be proved similar to [7, Theorem 8.16].

Theorem 2.8 Let Γ1 be a non-empty part of the boundary curve ∂Ω .

(i) The operator rΓ1
VΔ : H̃− 1

2 (Γ1) → H
1
2 (Γ1) is H̃− 1

2 (Γ1)-elliptic if and only if
CapΓ1

< 1.

(ii) The operators rΓ1
VΔ : H̃− 1

2 (Γ1) → H
1
2 (Γ1) and rΓ1

V : H̃− 1
2 (Γ1) →

H
1
2 (Γ1) are continuously invertible if and only if Cap

Γ1
�= 1.



474 T. G. Ayele et al.

Corollary 2.9 Let Γ1 be a non-empty part of the boundary curve and diam(Γ1) <

1. Then the operator rΓ1
V : H̃− 1

2 (Γ1) → H
1
2 (Γ1) has a bounded inverse.

Proof Since Cap
Γ1

≤ diam(Γ1), (see, [13, p. 553, properties 1 and 3]), then
diam(Γ1) < 1 implies Cap

Γ1
< 1. The result follows from Theorem 2.8(ii). ��

Theorem 2.10 Let Γ2 be a non-empty open part of the boundary curve ∂Ω . The
operator

rΓ2L̂Δ := rΓ2T
±
Δ WΔ : H̃ 1

2 (Γ2) → H− 1
2 (Γ2) (27)

is H̃
1
2 (Γ2)-elliptic. Operator (27) and the operator

rΓ2L̂ : H̃ 1
2 (Γ2) → H− 1

2 (Γ2) (28)

are continuously invertible.

Proof The ellipticity of operator (27) follows from inequality (6.39) in [12]. The
continuity of this operator and the Lax–Milgram lemma then imply its invertibility.
Together with relation (21) this implies the invertibility of operator (28).

The following result is proved in [6, Lemma 2].

Lemma 2.11

(i) Let either Ψ ∗ ∈ H− 1
2 (∂Ω) and diam(Ω) < 1 or Ψ ∗ ∈ H

− 1
2∗∗ (∂Ω). If

VΨ ∗(y) = 0 in Ω , then Ψ ∗ = 0 on ∂Ω .

(ii) Let Φ∗ ∈ H
1
2 (∂Ω). If WΦ∗(y) = 0 in Ω , then Φ∗ = 0 on ∂Ω .

Lemma 2.12 Let ∂Ω = Γ 1∪Γ 2, where Γ1 and Γ2 are non-empty non-intersecting

parts of the boundary curve ∂Ω . Let Φ∗ ∈ H̃
1
2 (Γ2) and either Ψ ∗ ∈ H̃

− 1
2∗∗ (Γ1) or

Ψ ∗ ∈ H̃− 1
2 (Γ1) but diam(Γ1) < 1. If

VΨ ∗(y)−WΦ∗(y) = 0, y ∈ Ω, (29)

then Ψ ∗ = 0 and Φ∗ = 0.

Proof The proof follows from Theorems 2.8 (i) and 2.10 similar to [2,
Lemma 4.2(iii)]. ��

3 BDIEs for Mixed BVP

We shall use the following notations for product spaces:

X
0 := H 1,0(Ω;A)× H̃− 1

2 (∂ΩD)× H̃
1
2 (∂ΩN),

Y
11,0 := H 1,0(Ω;A)×H

1
2 (∂ΩD)×H− 1

2 (∂ΩN),
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Y
22,0 := H 1,0(Ω;A)×H− 1

2 (∂ΩD)×H
1
2 (∂ΩN),

Y
12,0 := H 1,0(Ω;A)×H

1
2 (∂Ω),

Y
21,0 := H 1,0(Ω;A)×H− 1

2 (∂Ω).

Let further in this section u ∈ H 1,0(Ω;A) be a solution of BVP (6)–(8) with
ϕ0 ∈ H

1
2 (∂ΩD), ψ0 ∈ H− 1

2 (∂ΩN) and f ∈ L2(Ω).

Let Φ0 ∈ H
1
2 (∂Ω) and Ψ0 ∈ H− 1

2 (∂Ω) be some extensions of the given data

ϕ0 ∈ H
1
2 (∂ΩD) from ∂ΩD to ∂Ω and ψ0 ∈ H− 1

2 (∂ΩN) from ∂ΩN to ∂Ω ,
respectively. Similar to [2], to reduce BVP (6)–(8) to one or another BDIE system,
we shall use Eq. (22) in Ω, and restrictions of Eqs. (23) or (24) to appropriate parts
of the boundary. We shall substitute f for Au, Φ0 + ϕ for γ+u and Ψ0 + ψ for

T +u, where Φ0 ∈ H
1
2 (∂Ω) and Ψ0 ∈ H− 1

2 (∂Ω) are considered as known, while ψ

belongs to H̃− 1
2 (∂ΩD) and ϕ to H̃

1
2 (∂ΩN) due to the boundary conditions (7)–(8)

and are to be found along with u ∈ H 1,0(Ω;A). This will lead us to four different
segregated BDIE systems with respect to the unknown triplet [u,ψ, ϕ]4 =: U ∈
X0 ⊂ X.

BDIE system (M11) is obtained from Eq. (22) in Ω , the restriction of Eq. (23)
on ∂ΩD and the restriction of Eq. (24) on ∂ΩN . Then we arrive at the following
segregated system of BDIEs:

u+Ru− Vψ +Wϕ = F0 in Ω, (30)

γ+Ru− V ψ +W ϕ = γ+F0 − ϕ0 on ∂ΩD, (31)

T +Ru−W ′ψ + T +Wϕ = T +F0 − ψ0 on ∂ΩN, (32)

where F0 := Pf + VΨ0 −WΦ0.

System (30)–(32) can be written in the form M
11
U = F

11
, where

M
11 :=

⎡
⎢⎣

I +R −V W

r∂ΩD
γ+R −r∂ΩD

V r∂ΩD
W

r∂ΩN
T+R −r∂ΩN

W ′ r∂ΩN
T+W

⎤
⎥⎦ , F

11 :=
⎡
⎢⎣

F0

r∂ΩD
γ+F0 − ϕ0

r∂ΩN
T+F0 −ψ0

⎤
⎥⎦ .

Due to the mapping properties of participating operators, F
11 ∈ Y11,0 and the

operator M
11 : X0 → Y11,0 is bounded.

Remark 3.1 F
11 = 0 if and only if (f,Φ0, Ψ0) = 0.

Proof The proof follows in the similar way as in the corresponding proof in 3D case
in [2, Remark 5.1]. ��
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BDIE system (M12), obtained using Eq. (22) in Ω and Eq. (23) on the whole
boundary ∂Ω , is:

u+Ru− Vψ +Wϕ = F0 in Ω, (33)

1

2
ϕ + γ+Ru− V ψ +W ϕ = γ+F0 −Φ0 on ∂Ω . (34)

System (33)–(34) can be written in the form M
12
U = F

12
, where

M
12 :=

[
I +R −V W

γ+R −V 1
2 I +W

]
, F

12 :=
[

F0

γ+F0 −Φ0

]
.

Note that F
12

belongs to Y
12,0 and due to the mapping properties of operators

involved in M
12

, the operator M
12 : X0 → Y

12,0 is bounded.

Remark 3.2 Let Ψ0 ∈ H
− 1

2∗∗ (∂Ω) or Ψ0 ∈ H− 1
2 (∂Ω) but diam(Ω) < 1. Then

F
12 = 0 if and only if (f,Φ0, Ψ0) = 0.

Proof Indeed, the latter equality evidently implies the former. Conversely, let
F

12 = (F0, γ
+F0 − Φ0) = 0. This implies −VΨ0 + WΦ0 = Pf in Ω . Due

to Lemma 2.3, f = 0 and VΨ0 − WΦ0 = 0 in Ω . The equality γ+F0 − Φ0 = 0
implies Φ0 = 0 on ∂Ω . Thus VΨ0 = 0, hence by Theorem 2.4 it follows
Ψ0 = 0. ��

BDIE system (M21) is another system obtained using Eq. (22) in Ω and Eq. (24)
on ∂Ω, i.e.

u+Ru− Vψ +Wϕ = F0 in Ω, (35)

1

2
ψ + T +Ru−W ′ψ + T +Wϕ = T +F0 − Ψ0 on ∂Ω. (36)

System (35)–(36) can be written in the form M
21
U = F

21
, where

M
21 :=

[
I +R −V W

T +R 1
2I −W ′ T +W

]
, F

21 :=
[

F0

T +F0 − Ψ0

]
.

Note that F
21

belongs to Y21,0 and due to the mapping properties of operators
involved in M

21
, the operator M

21 : X0 → Y21,0 is bounded.

Remark 3.3 F
21 = 0 if and only if (f,Φ0, Ψ0) = 0.

Proof The proof follows in the similar way as in Remark 3.2.

BDIE system (M22), a system of almost second kind (up to the spaces) obtained
using Eq. (22) in Ω , the restriction of Eq. (24) to ∂ΩD and the restriction of Eq. (23)
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to ∂ΩN is:

u+Ru− Vψ +Wϕ = F0 in Ω, (37)

1

2
ψ + T +Ru−W ′ψ + T +Wϕ = T +

a F0 − Ψ0 on ∂ΩD, (38)

1

2
ϕ + γ+Rbu− Vaψ +Waϕ = F+

0 − Φ0 on ∂ΩN. (39)

System (37)–(39) can be rewritten in the form M
22
U = F

22
, where

M
22 :=

⎡
⎢⎢⎣

I +R −V W

r
∂ΩD

T+R r
∂ΩD

( 1
2 I −W ′) r

∂ΩD
T+W

r
∂ΩN

γ+R −r
∂ΩN

V r
∂ΩN

( 1
2 I +W )

⎤
⎥⎥⎦ , F

22 :=

⎡
⎢⎢⎣

F0

r
∂ΩD

{T+F0 − Ψ0}
r
∂ΩN

{γ+F0 −Φ0}

⎤
⎥⎥⎦ .

Note that F
22

belongs to Y22,0 and due to the mapping properties of operators
involved in M

22
, the operator M

22 : X0 → Y22,0 is bounded.

Remark 3.4 F
22 = 0 if and only if (f,Φ0, Ψ0) = 0.

Proof The proof follows in the similar way as in the corresponding proof in 3D case
in [2, Remark 5.11]. ��

4 Equivalence

In what follows, we shall prove the equivalence of the mixed BVP (6)–(8) to BDIE
systems (M11), (M12), (M21) and (M22).

Theorem 4.1 Let ϕ0 ∈ H
1
2 (∂ΩD), ψ0 ∈ H− 1

2 (∂ΩN), f ∈ L2(Ω) and let Φ0 ∈
H

1
2 (∂Ω) and Ψ0 ∈ H− 1

2 (∂Ω) be some extensions of ϕ0 and ψ0, respectively.

(i) If some u ∈ H 1,0(Ω;A) solves the mixed BVP (6)–(8) in Ω , then the solution
is unique and the triplet (u,ψ, ϕ)T ∈ X0, where

ψ = T +u− Ψ0, ϕ = γ+u−Φ0, on ∂Ω (40)

solves the BDIE systems (M11), (M12), (M21) and (M22).
(ii) If diam(Ω) < 1 and a triplet (u,ψ, ϕ)T ∈ X

0 solves one of the BDIE systems
(M11) or (M21) or (M12) or (M22), then this solution is unique and solves all
the BDIE systems, while u solves BVP (6)–(8) and relations (40) hold.
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Proof

(i) Let u ∈ H 1,0(Ω;A) be a solution to BVP (6)–(8). Due to Theorem 1.4 it is
unique. Set ψ := T +u−Ψ0 and ϕ := γ+u−Φ0. Then ψ ∈ H̃− 1

2 (∂ΩD), ϕ ∈
H̃

1
2 (∂ΩN) and recalling how BDIE systems (M11), (M12), (M21) and (M22)

were constructed, we obtain that the triplet (u,ψ, ϕ)T solves systems (M11),
(M12), (M21) and (M22).

(ii) Let a triplet (u,ψ, ϕ)T ∈ X0 solve BDIE system (M11) or (M12) or (M21) or
(M22). The hypotheses of Lemma 2.3 are satisfied for the first equation in BDIE
system, implying that u solves PDE (6) in Ω , while the following equation
holds:

VΨ ∗ −WΦ∗ = 0 in Ω, (41)

where Ψ ∗ = Ψ0 + ψ − T +u and Φ∗ = Φ0 + ϕ − γ+u.
Suppose first that the triplet (u,ψ, ϕ)T ∈ X

0 solves BDIE system (M11).
Taking trace of Eq. (30) on ∂ΩD using the jump relations (17)–(18), and
subtracting Eq. (31) from it, we obtain

γ+u = ϕ0 on ∂ΩD, (42)

i.e., u satisfies the Dirichlet condition (7). Taking the co-normal derivative of
Eq. (30) on ∂ΩN , using the jump relations (19)–(20) and subtracting Eq. (32)
from it, we obtain

T +u = ψ0 on ∂ΩN, (43)

i.e., u satisfies the Neumann condition (8). Hence u solves the mixed BVP
(6)–(8).

Taking into account ϕ = 0, Φ0 = ϕ0 on ∂ΩD and ψ = 0, Ψ0 = ψ0
on ∂ΩN , Eqs. (42) and (43) imply that the first equation in (40) is satisfied on
∂ΩN and the second equation in (40) is satisfied on ∂ΩD. Thus we have Ψ ∗ ∈
H̃− 1

2 (∂ΩD) and Φ∗ ∈ H̃
1
2 (∂ΩN) in (41). Let Γ1 = ∂ΩD, Γ2 = ∂ΩN . Then

diam(Γ1) ≤ diam(Ω) < 1 and Lemma 2.12 implies Ψ ∗ = Φ∗ = 0, which
completes the proof of conditions in (40). Uniqueness of the solution to BDIE
systems (M11) follows from (40) along with Remark 3.1 and Theorem 1.4.

Finally, item (i) implies that triplet (u,ψ, ϕ)T ∈ X0 solves also BDIE
systems (M12), (M21) and (M22).

Similar arguments work if we suppose that instead of the BDIE systems
(M11), the triplet (u,ψ, ϕ)T ∈ X0 solves BDIE systems (M21) or (M12) or
(M22).

��
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5 Conclusion

In this paper, we considered the mixed BVP problem for variable-coefficient PDE
in a two-dimensional bounded domain, where the right-hand side function is from

L2(Ω) and the Dirichlet data from the space H
1
2 (∂ΩD) and the Neumann data

from the space H− 1
2 (∂ΩN). The BVP was reduced to four systems of boundary-

domain integral equations and their equivalence to the original BVP was shown.
The invertibility of the associated operators in the corresponding Sobolev spaces
can also be proved. In a similar way one can consider also the 2D versions of the
BDIEs for mixed problem in exterior domains, united BDIEs as well as the localised
BDIEs, which were analysed for 3D case in [2–4, 9].
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Boundary-Domain Integral Equations
for Variable Coefficient Dirichlet BVP
in 2D Unbounded Domain

T. T. Dufera and S. E. Mikhailov

Abstract In this paper, the Dirichlet boundary value problem for the second order
stationary diffusion elliptic partial differential equation with variable coefficient is
considered in unbounded (exterior) two-dimensional domain. Using an appropriate
parametrix (Levi function), this problem is reduced to some direct segregated
boundary-domain integral equations (BDIEs). We investigate the properties of
corresponding parametrix-based integral volume and layer potentials in some
weighted Sobolev spaces, as well as the unique solvability of BDIEs and their
equivalence to the original BVP.

1 Basic Notations and Function Spaces

Let Ω = Ω+ be an unbounded open domain in R2 such that the complement
Ω− := R2 \ Ω is bounded open domain. Let the boundary ∂Ω = ∂Ω− be
closed and infinitely smooth curve. The space of infinitely differentiable functions
having compact support in Ω is denoted by D(Ω) and its dual space, the space of
distributions, by D ′(Ω), while D(Ω̄) is the set of restrictions on Ω̄ of functions
from D(R2). The spaces Hs(Ω), Hs(∂Ω) denote the Sobolev (Bessel potential)
spaces.

We shall consider the following second order partial differential equation, with
variable coefficient

Au(x) :=
2∑

i=1

∂

∂xi

(
a(x)

∂u(x)

∂xi

)
= f (x) x ∈ Ω, (1)
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where u is unknown function; f (x) and a(x) > a0 > 0 are given functions in Ω .
We will further use the weighted Sobolev spaces. Let

ρ2(x) := (1 + |x|2)1/2 ln(2 + |x|2). (2)

For any real β, we denote by L2(ρ
β
2 ;Ω) the weighted Lebesgue space (see, e.g.,

[7]) consisting of all measurable functions g(x) on Ω such that gρβ

2 ∈ L2(Ω), i.e.,

‖g‖2
L2(ρ

β
2 ;Ω)

=
∫
Ω

∣∣∣g(x)ρβ

2 (x)

∣∣∣2 dx < ∞.

The space L2(ρ
β
2 ;Ω), equipped with the norm ‖ · ‖

L2(ρ
β
2 ;Ω)

and appropriate inner

product, is a Hilbert space.
The weighted Sobolev space H 1(Ω) is defined by

H 1(Ω) :=
{
g ∈ L2(ρ

−1
2 ;Ω) : ∇g ∈ L2(Ω)

}
, (3)

and for its norm we have ‖g‖2
H 1(Ω)

:= ‖g‖2
L2(ρ

−1
2 ;Ω)

+ ‖∇g‖2
L2(Ω), while

|g|2
H 1(Ω)

:= ∑2
i=1

∫
Ω
| ∂g
∂xi

|2dx = ‖∇g‖2
L2(Ω)

is the square of the semi-norm. The

space D(R2) is dense in H 1(R2), see, e.g., [1, Theorem 7.2]. This implies that the
dual space of H 1(R2), denoted by H −1(R2), is a space of distributions. Using the
corresponding property for the space H 1(Ω), one can prove that D(Ω̄) is dense in
H 1(Ω). The trace operator γ+ on ∂Ω defined on functions from H 1(Ω) satisfies
the usual trace theorems. This allows to define in particular the subspace

H 1
0 (Ω) =

{
g ∈ H 1(Ω) : γ+g = 0

}
.

It can be proved that D(Ω) is dense inH 1
0 (Ω) and therefore its dual space is a space

of distributions. Let us denote by H̃ 1(Ω) a completion of D(Ω) in H 1(R2), and
H̃ −1(Ω) := [H 1(Ω)]′, H −1(Ω) := [H̃ 1(Ω)]′ are the corresponding dual
spaces. The inclusion L2(ρ2;Ω) ⊂ H −1(Ω) holds and a distribution f in the dual
space H̃ −1(Ω) has the form f = ∑2

i=1
∂gi
∂xi

+ f0, where gi ∈ L2(R
2) and is zero

outside Ω , f0 ∈ L2(ρ2;Ω), cf., e.g., [12, Eq. (2.5.129)]. This implies that D(Ω) is
dense in H̃ −1(Ω) and D(R2) is dense in H −1(R2).

From Definition (3) we obtain the following assertion.

Lemma 1 The space H 1(Ω) contains constant functions.

Lemma 1 implies that the space of real constants,R, is a closed subspace ofH 1(Ω).
Thus we can define the quotient space H 1(Ω)/R, which is a Banach space, and
its norm is given by ‖u + R‖H 1(Ω)/R = infc∈R ‖u + c‖H 1(Ω). The dual space(
H 1(Ω)/R

)′
is identified with H̃ −1(Ω) ⊥ R, i.e.,

(
H 1(Ω)/R

)′ = H̃ −1(Ω) ⊥
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R since they are isometrically isomorphic (see, e.g., [8, Lemma 2.12(ii)]). Similarly,(
H̃ 1(Ω)/R

)′ = H −1(Ω) ⊥ R.
The following Poincaré-type inequalities hold (cf. [2, Theorems 1.1 and 1.2]).

Theorem 1

(i) The semi-norm | · |H 1(Ω) defined on H 1(Ω)/R is a norm equivalent to the
quotient norm, i.e., there exist positive constants c1, C1 such that

c1|v|H 1(Ω) ≤ ‖v‖H 1(Ω)/R ≤ C1|v|H 1(Ω).

(ii) Moreover, the semi-norm | · |H 1(Ω) is a norm on H 1
0 (Ω), equivalent to the

norm ‖ · ‖H 1(Ω), i.e., there exist positive constants c2, C2 such that

c2|v|H 1(Ω) ≤ ‖v‖H 1
0 (Ω) ≤ C2|v|H 1(Ω).

For u ∈ H 1(Ω) and the coefficient a(x) ∈ L∞(Ω), PDE (1) is well defined in
the distributional sense as 〈Au, v〉Ω := −〈a∇u,∇v〉Ω = −E (u, v), for any v ∈
D(Ω), where E (u, v) := ∫Ω E(u, v)(x)dx, E(u, v)(x) := ∇v(x) · a(x)∇u(x).

Unless stated otherwise we henceforth assume that there are some constants a0, a1
such that

a ∈ L∞(R2) and 0 < a0 < a(x) < a1 < ∞ for a.e x ∈ R
2. (4)

To obtain boundary-domain integral equations, we will also always consider the
coefficient a such that

a ∈ C1(R2) and ρ2∇a ∈ L∞(R2). (5)

If u ∈ H 1(Ω), then u ∈ H 1(Ω), from the trace theorem it follows that, γ+u ∈
H

1
2 (∂Ω), where γ+ = γ+

∂Ω is the trace operator on ∂Ω from the exterior domain
Ω+.

For the operator A, similar to [4] for the three-dimensional case, we introduce the
space, H 1,0(Ω;A) := {g ∈ H 1(Ω) : Ag ∈ L2(ρ2;Ω)}, where the norm is given
by its square, ‖g‖2

H 1,0(Ω;A)
:= ‖g‖2

H 1(Ω)
+‖Ag‖2

L2(ρ2;Ω). For u ∈ H 1,0(Ω;A), as

in the 3D case [4], we define the canonical co-normal derivative T +u ∈ H− 1
2 (∂Ω)

similar to, for example, in [5, Lemma 3.2] and [8, Lemma 4.3] as

〈T +u,ω〉∂Ω :=
∫
Ω

[(γ+
−1ω)Au+ E(u, γ+

−1ω)]dx ∀ω ∈ H
1
2 (∂Ω), (6)

where γ+
−1 : H 1

2 (∂Ω) → H 1(Ω) is a bounded right inverse to the trace operator

γ+ : H 1(Ω) → H
1
2 (∂Ω), and 〈·, ·〉∂Ω denotes the duality brackets between the

spaces H− 1
2 (∂Ω) and H

1
2 (∂Ω) which extends the usual L2(∂Ω) scalar product.
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The operator T + : H 1,0(Ω;A) → H− 1
2 (∂Ω) is continuous and gives the

continuous extension to H 1,0(Ω;A) of the classical co-normal derivative operator
a ∂
∂n

, where ∂
∂n

= γ+∇ · n and n = n+ is normal vector on ∂Ω directed outward
the exterior domain Ω .

Similar to the proofs available in [5, Lemma 3.4] (see also [10] for the spaces
Hs,t(Ω;A)), one can prove that for u ∈ H 1,0(Ω;A) the first Green identity

〈T +u, γ+v〉∂Ω =
∫
Ω

[vAu+ E(u, v)]dx ∀v ∈ H 1(Ω) (7)

holds true. Then, for any functions u, v ∈ H 1,0(Ω;A) we have the second Green
identity,

∫
Ω

[vAu− uAv]dx = 〈T +u, γ+v〉∂Ω − 〈T +v, γ+u〉∂Ω. (8)

Remark 1 If a satisfies condition (4) and the second condition in (5), then
‖ga‖H 1(Ω) ≤ C1‖g‖H 1(Ω), ‖g 1

a
‖H 1(Ω) ≤ C2‖g‖H 1(Ω), where the constant

C1 and C2 are independent of g ∈ H 1(Ω), this means, a and 1/a are multipliers
in the space H 1(Ω).

Let us introduce the following subspaces:

L2(ρ2;Ω) ⊥ R := {f ∈ L2(ρ2;Ω) : 〈f, 1〉Ω = 0}
H 1,0⊥(Ω;A) := {g ∈ H 1(Ω) : Ag ∈ L2(ρ2;Ω) ⊥ R},

H
− 1

2∗ (∂Ω) :=
{
ψ ∈ H− 1

2 (∂Ω) : 〈ψ, 1〉∂Ω = 0
}
.

Employing the first Green identity (7) with v = 1, we arrive at the following
assertion.

Lemma 2 If u ∈ H 1,0⊥(Ω;A), then T +u ∈ H
− 1

2∗ (∂Ω).

2 Dirichlet BVP in Exterior Domain

Given f ∈ L2(ρ2;Ω) and ϕ0 ∈ H
1
2 (∂Ω), find a function u ∈ H 1,0(Ω;A) such

that:

Au = f in Ω, (9)

γ+u = ϕ0 on ∂Ω. (10)
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Let us denote by AD = [A, γ+]T : H 1,0(Ω;A) → L2(ρ2;Ω) × H
1
2 (∂Ω), the

left-hand side operator, which is evidently continuous. Similar to the proof in [4] for
the three-dimensional case, one can prove the following assertion in the 2D case.

Theorem 2 Under conditions (4), the Dirichlet problem (9)–(10) is uniquely
solvable and its solution can be written as u = A −1

D (f, ϕ0)
T , where the operator

A −1
D : L2(ρ2;Ω)×H

1
2 (∂Ω) → H 1,0(Ω) is continuous.

3 Parametrix-Based Potentials in Exterior Domain

A function P(x, y) is a parametrix (Levi function) for the operator A if
AxP(x, y) = δ(x − y) + R(x, y), where δ is the Dirac-delta distribution, while
R(x, y) is a remainder possessing at most a weak (integrable) singularity at x = y.
In particular, see, e.g., [9] the function

P(x, y) = ln |x − y|
2πa(y)

, x, y ∈ R
2, (11)

is a parametrix for the operator A and the corresponding remainder is given by

R(x, y) =
2∑

i=1

xi − yi

2πa(y)|x − y|2
∂a(x)

∂xi
, x, y ∈ R

2. (12)

Let u ∈ D(Ω̄). For any fixed y ∈ Ω , let Bε(y) be an open ball centered at y
with a sufficiently small radius ε > 0, and let Br(0) be an open ball centered at the
origin with a radius r large enough to contain ∂Ω and the support of u, put Ωε :=
(Ω ∩ Br(0)) \ Bε(y), we have R(·, y) ∈ L2(ρ2;Ωε) and P(·, y) ∈ H 1,0(Ωε).
Applying the second Green identity (8) in Ωε with v = P(y, ·) and taking usual
limits as ε → 0, cf. [11], we get the third Green identity in Ωr := Ω ∩ Br(0),

u+Ru− V (T +u)+W(γ+u) = PAu (13)

for u ∈ D(Ω̄). Here,

Pg(y) :=
∫
Ω

P(x, y)g(x)dx, Rg(y) :=
∫
Ω

R(x, y)g(x)dx, y ∈ R
2,

(14)

are, respectively, the parametrix-based Newtonian and remainder potentials, while

Vg(y) := −
∫
∂Ω

P (x, y)g(x)dSx, Wg(y) := −
∫
∂Ω

[TxP (x, y)]g(x)dSx , x ∈ R
2\∂Ω,

(15)
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are the parametrix-based single layer and double layer potentials. Deducing (13) we
took into account that u ≡ 0 in Ω \ Br(0) ⊂ Ω \ suppu. Since no term in (13)
depends on r if r is sufficiently large, we obtain that (13) is valid in the whole
domain Ω for any u ∈ D(Ω̄).

From definitions (11)–(12) and (14)–(15) one can obtain representations of the
parametrix-based potential operators in terms of their counterparts for a = 1 (i.e.,
associated with the Laplace operator Δ ), cf. [3, 4],

Pg = 1

a
PΔg, Rg = −1

a

2∑
j=1

∂j [PΔ(g∂ja)], Vg = 1

a
VΔg, Wg = 1

a
WΔ(ag).

(16)

The Newtonian and the remainder potential operators given by (14) for Ω = R2

will be denoted as P and R, respectively, and the relations similar to (16) hold for
them as well.

In addition to conditions (4) and (5) on the coefficient a, we will sometimes also
need the condition

ρ2
2Δa ∈ L∞(R2). (17)

Employing that the corresponding mapping properties hold true for the potentials
associated with the Laplace operator Δ, cf., e.g., Section 8 in [13] and references
therein, relations (16) lead to the following assertion.

Theorem 3 The following operators are continuous under conditions (5).

P : H −1(R2) ⊥ R → H 1(R2), (18)

P : H̃ −1(Ω) ⊥ R → H 1(R2), (19)

R : L2(w;R2) → H 1(R2), (20)

V : H− 1
2∗ (∂Ω) → H 1(Ω), (21)

W : H 1
2 (∂Ω) → H 1(Ω), (22)

while the following operators are continuous under conditions (5) and (17).

P : L2(ρ2;Ω) ⊥ R → H 1,0(R2;A), (23)

R : H 1(Ω) → H 1,0(Ω;A), (24)

V : H− 1
2∗ (∂Ω) → H 1,0(Ω;A), (25)

W : H 1
2 (∂Ω) → H 1,0(Ω;A). (26)
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Similar to [10, Theorem 3.12] one can prove that D(Ω̄) is dense in H 1,0(Ω;A)

and in H 1,0⊥(Ω;A). Then Theorem 3 and Lemma 2 imply the following assertion.

Corollary 1 The third Green identity (13) holds true for any u ∈ H 1,0⊥(Ω;A).

The boundary integral (pseudo-differential) operators of the direct values and of
the co-normal derivatives of the single and double layer potentials are defined by

V g(y) := −
∫
Γ

P (x, y)g(x)dsx , W g(y) := −
∫
Γ

TxP (x, y)g(x)dsx y ∈ Γ,

W ′g(y) := −
∫
Γ

TyP (x, y)g(x)dsx L ±g(y) := T ±
y Wg(y) y ∈ Γ.

Applying the trace and co-normal derivative operators to the third Green iden-
tity (13), and using the jump relations for the potential operators we obtain for
u ∈ H 1,0⊥(Ω;A),

1

2
γ+u+ γ+Ru− V T +u+W γ+u = γ+PAu on ∂Ω, (27)

1

2
T +u+ T +Ru−W ′T +u+L +γ+u = T +PAu on ∂Ω. (28)

Conditions (5) are assumed to hold for (27) and conditions (5) and (17) for (28).
For some functions f , Ψ , and Φ let us consider a more general indirect integral

relation associated with Eq. (13).

u+Ru− VΨ +WΦ = Pf in Ω. (29)

Lemma 3 Let u ∈ H 1,0⊥(Ω;A), f ∈ L2(ρ2;Ω) ⊥ R, Ψ ∈ H
− 1

2∗ (∂Ω), and

Φ ∈ H
1
2 (∂Ω) satisfy Eq. (29) and let conditions (5), (17) hold. Then, u is a solution

of the equation

Au = f in Ω, (30)

while

V (Ψ − T +u)−W(Φ − γ+u) = 0, in Ω. (31)

Proof Since u ∈ H 1,0⊥(Ω;A), we can write the third Green identity (13) for the
function u. Then subtracting (29) from it, we obtain

− VΨ ∗ +WΦ∗ = P[Au− f ] in Ω, (32)
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where Ψ ∗ := T +u−Ψ and Φ∗ := γ+u−Φ. Multiplying equality (32) by a(y) we
get

−VΔΨ ∗ +WΔ(aΦ∗) = PΔ[Au− f ] in Ω.

Applying the Laplace operator Δ to the last equation and taking into consideration
that both functions in the left-hand side are harmonic potentials, while the right-
hand side function is the classical Newtonian potential, we arrive at Eq. (30).
Substituting (30) back into (32) leads to (31). ��
Lemma 4 Let conditions (5) and (17) hold.

(i) If Ψ ∗ ∈ H
− 1

2∗ (∂Ω) and VΨ ∗ = 0 in Ω , then Ψ ∗ = 0.

(ii) If Φ∗ ∈ H
1
2 (∂Ω) and WΦ∗(y) = 0 in Ω , then Φ∗(x) = C/a(x), where C is a

constant.

Proof The proof of item (i) coincides with the proof of its counterpart for interior
domains in [6], while the proof of item (ii) is similar to the proof for the 3D case in
[4, Lemma 4.2]. ��

4 BDIEs for Exterior Dirichlet BVP

To reduce the variable coefficient Dirichlet BVP (9)–(10) to a segregated boundary-
domain integral equation systems, let us denote the unknown co-normal derivative

as ψ := T +u ∈ H− 1
2 (∂Ω) and further consider ψ as formally independent of u.

For a given function f in L2(ρ2;Ω) ⊥ R, assume that the function u satisfies
the PDE Au = f in Ω . Then by substituting the Dirichlet condition into the third
Green identity (13) and either into its trace (27) or into its co-normal derivative (28)
on ∂Ω , we can reduce the BVP (9)–(10) to two different systems of boundary-
domain integral equations for the unknown functions u ∈ H 1(Ω;A) and ψ :=
T +u ∈ H− 1

2 (∂Ω).
BDIE system (D1) obtained under conditions (5) from the third Green’s

identity (13) and its trace equation (27) is

u+Ru− Vψ = F0 in Ω,

γ+Ru− V ψ = γ+F0 − ϕ0 on ∂Ω,

where

F0 := Pf −Wϕ0 in Ω. (33)
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The system can be written in a matrix form as D1U = F 1, where

U := [u,ψ]t ∈ H 1,0(Ω;A)×H− 1
2 (∂Ω),

and

D1 :=
[
I +R −V

γ+R −V

]
, F 1 =

[
F0

γ+F0 − ϕ0

]
. (34)

From the mapping properties of W and P in Theorem 3, we get the inclusion F0 ∈
H 1,0(Ω;A), and the trace theorem implies γ+F0 ∈ H

1
2 (∂Ω). Therefore, F 1 ∈

H 1(Ω)×H
1
2 (∂Ω).

BDIE system (D2) obtained under conditions (5) and (17) from the third Green’s
identity (13) and its co-normal derivative equation (28) is

u+Ru− Vψ = F0 in Ω,

1

2
ψ + T +Ru−W ′ψ = T +F0 on ∂Ω,

where F0 is given by (33). In a matrix form it can be written as D2U = F 2, where

D2 =
[
I +R −V

T +R 1
2 I −W ′

]
, F 2 =

[
F0

T +F0

]
.

Note that the operatorD2 : H 1,0(Ω;A)×H
− 1

2∗ (∂Ω) → H 1,0(Ω;A)×H− 1
2 (∂Ω)

is bounded.

5 Equivalence and Uniqueness Theorems

Theorem 4 Let ϕ0 ∈ H
1
2 (∂Ω), f ∈ L2(ρ2;Ω) ⊥ R, and conditions (5) and (17)

hold.

(i) If some u ∈ H 1,0⊥(Ω;A) solves the BVP (9)–(10), then the pair (u,ψ), where

ψ = T +u ∈ H
− 1

2∗ (∂Ω), (35)

solves BDIE systems (D1) and (D2).

(ii) If a pair (u,ψ) ∈ H 1,0⊥(Ω;A)× H
− 1

2∗ (∂Ω) solves BDIE system (D1), then
u solves BDIE system (D2) and BVP (9)–(10), this solution is unique, and ψ

satisfies (35).
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Proof

(i) Setting ψ := T +u and recalling how BDIE system (D1) and (D2) were
constructed, we obtain that the couple (u,ψ) solves them.

(ii) Let now a pair (u,ψ) ∈ H 1,0⊥(Ω;A)×H
− 1

2∗ (∂Ω) solves system (D1). Due to
the first equation in the BDIE systems, the hypotheses of Lemma 3 are satisfied
implying that u solves PDE (9) in Ω and

V (ψ − T +u)−W(ϕ0 − γ+u) = 0 in Ω. (36)

Taking the trace of the first equation in (D1) and subtracting the second equation
from it, we get γ+u = ϕ0 on ∂Ω. Thus, the Dirichlet boundary condition is
satisfied, and using this in (36), we obtain V (ψ − T +u) = 0 in Ω. Lemma 4
(i) then implies ψ = T +u.

The uniqueness of the BDIE system follows from the fact that the corre-
sponding homogeneous BDIE systems can be associated with the homogeneous
Dirichlet problem, which has only the trivial solution. Then the previous
paragraph implies that the homogeneous BDIE system also has only the trivial
solutions. ��

Theorem 5 Let ϕ0 ∈ H
1
2 (∂Ω), f ∈ L2(ρ2;Ω) ⊥ R, and conditions (5) and (17)

hold.

(i) Homogeneous BDIE system (D2) admits only one linearly independent solution

(u0, ψ0) ∈ H 1,0⊥(Ω;A)×H
− 1

2∗ (∂Ω), where u0 is the solution of the Dirichlet
BVP

Au0 = 0 in Ω, (37)

γ+u0 = 1

a(x)
on ∂Ω, (38)

while

ψ0 = T +u0 on ∂Ω. (39)

(ii) The non-homogeneous BDIE system (D2) is solvable, and any of its solutions

(u,ψ) ∈ H 1,0⊥(Ω;A)×H
− 1

2∗ (∂Ω) can be represented as

u = ũ+ Cu0 in Ω, (40)

where ũ solves BVP (9)–(10) and C is a constant, while

ψ = T +ũ+ Cψ0 on ∂Ω. (41)
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Proof Problem (37)–(38) is uniquely solvable in H 1,0⊥(Ω;A) by Theorem 2.
Consequently, the third Green identity (13) is applicable to u0, leading to

u0 +Ru0 − Vψ0 = 0 in Ω. (42)

Taking the co-normal derivative of (42) and substituting (39) again, we arrive at

1

2
ψ0 + T +Ru0 −W ′ψ0 = 0 on ∂Ω. (43)

Equations (42) and (43) mean that the pair (u0, ψ0) solves the homogeneous BDIE
system (D2).

To prove item (ii), we first remark that the solvability of non-homogeneous
system (D2) follows from the solvability of the BVP (9)–(10) in H 1,0⊥(Ω;A)

and the deduction of system (D2).

Let now a pair (u,ψ)T ∈ H 1,0⊥(Ω) × H
− 1

2∗ (∂Ω) solves BDIE system (D2).
Due to the first equation in the BDIE systems, Lemma 3 implies that u solves
PDE (9) in Ω and relation (36) holds. Taking the co-normal derivative of the first
equation in (D2) on ∂Ω and subtract it from the second equation in (D2), we obtain
ψ = T +u on ∂Ω. Then inserting this in (36) gives W(ϕ0 − γ+u) = 0, in Ω, and
Lemma 4(ii) implies

γ+u = ϕ0 + C/a(x) on ∂Ω, (44)

where C is a constant. Thus, u satisfies the Dirichlet condition (44) instead of (10).
Introducing the notation ũ by (40) in (44) and taking into account (37)–(38) prove
the claim of item (ii). ��
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A Boundary-Domain Integral Equation
Method for an Elliptic Cauchy Problem
with Variable Coefficients

Andriy Beshley, Roman Chapko, and B. Tomas Johansson

Abstract We consider an integral based method for numerically solving the
Cauchy problem for second-order elliptic equations in divergence form with
spacewise dependent coefficients. The solution is represented as a boundary-domain
integral, with unknown densities to be identified. The given Cauchy data is matched
to obtain a system of boundary-domain integral equations from which the densities
can be constructed. For the numerical approximation, an efficient Nyström scheme
in combination with Tikhonov regularization is presented for the boundary-domain
integral equations, together with some numerical investigations.

1 Introduction

The Cauchy problem for elliptic equations is a classical example of an ill-posed
inverse problem; there are numerous results and methods presented in the literature
for this problem, and it is not possible to give an adequate overview of them in this
work (some references are in the introduction in [5]).

In [6], a regularizing method based on a single-layer approach is described for
the stable numerical solution to the Cauchy problem for the Laplace equation for
two and three dimensional regions. That method builds on ideas given in [4, 11].
We continue the work of [6] by considering equations with spacewise dependent
coefficients and using boundary-domain integrals. Boundary-domain formulations
occur in the literature but mainly for direct problems, see, for example, [1, 2, 7, 8,
12, 13, 15, 16] and subsequent works by those authors.
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Let D0 ⊂ R2 be a bounded simply connected domain with boundary curve Γ0 ∈
C2, and let D−1 ⊂ D0 have a simple closed boundary curve Γ−1 ∈ C2 lying wholly
within D0, and define the solution domain D = D0 \ D−1. Let u ∈ H 1(D) be a
solution of the second-order elliptic equation

Lu(x) = div(σ (x) gradu(x)) = 0, x ∈ D, (1)

which satisfies the Dirichlet boundary condition

u = f1 on Γ0 (2)

and the Neumann boundary condition

σ
∂u

∂ν
= f2 on Γ0 (3)

with given functions f1 and f2, σ ∈ C∞(D̄), σ > 0, and ν the outward unit normal
to the boundary.

The linear inverse problem we study is: find the function u satisfying (1)–(3),
in particular, reconstruct, in a stable way, the Cauchy data u and ∂u

∂ν
on the inner

boundary curve Γ−1.

2 Reduction to a Boundary-Domain Integral Equation

The fundamental solution for Eq. (1) is in general not explicitly known unless σ is
a constant, there is thus no feasible way to reduce (1)–(3) to a boundary integral
equation. However, for Eq. (1) there is an alternative function called the parametrix.

Definition 1 A function P(x, y), x, y ∈ D, is called a parametrix (or Levi function)
of a differential operator L provided that

LxP(x, y) = δ(x − y)+ R(x, y),

where δ is the Dirac function and the remainder function R has a weak singularity
for x = y.

For the operator in (1), a Levi function (the Levi function is not unique [14]) can be
given as

P(x, y) = ln |x − y|
2πσ(y)

, x, y ∈ D, x �= y
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with the remainder function being

R(x, y) = (x − y) · grad σ(x)

2πσ(y)|x − y|2 , x, y ∈ D, x �= y.

The function R has clearly a weak singularity when x = y as required in the above
definition.

We use an indirect integral equation approach, based on the potential representa-
tion

u(x) =
∫
D

ψ(y)P (x, y) dy +
∫
Γ−1

ψ−1(y)P (x, y) ds(y)

+
∫
Γ0

ψ0(y)P (x, y) ds(y), x ∈ D

(4)

with unknown densities ψ ∈ C(D), ψ−1 ∈ C(Γ−1), and ψ0 ∈ C(Γ0).
From the representation (4) and the definition of a Levi function, (1)–(3) can be

reduced to the following boundary-domain integral equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x)+
∫
D

ψ(y)R(x, y) dy +
∫
Γ−1

ψ−1(y)R(x, y) ds(y)

+
∫
Γ0

ψ0(y)R(x, y) ds(y) = 0, x ∈ D,

∫
D

ψ(y)P (x, y) dy +
∫
Γ−1

ψ−1(y)P (x, y) ds(y)

+
∫
Γ0

ψ0(y)P (x, y) ds(y) = f1(x), x ∈ Γ0,

−1

2
ψ0(x)+

∫
D

ψ(y)σ(x)
∂P (x, y)

∂ν(x)
dy +

∫
Γ−1

ψ−1(y)σ (x)
∂P (x, y)

∂ν(x)
ds(y)

+
∫
Γ0

ψ0(y)σ (x)
∂P (x, y)

∂ν(x)
ds(y) = f2(x), x ∈ Γ0.

(5)

Assume that the boundary curves Γ0 and Γ−1 are homothetic with factor ξ−1 and
have the parametric representations

Γ0 = {x(t) = (x1(t), x2(t)) : t ∈ [0, 2π)},
Γ−1 = {x−1(t) = (ξ−1x1(t), ξ−1x2(t)) : t ∈ [0, 2π)}. (6)
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Here, ξ−1 ∈ (0, 1) is a fixed parameter. It is further assumed that D contains the
origin.

We make the following change of variables in the double integrals in (5),

y1 = p1(ξ, τ ) = ξx1(τ ) and y2 = p2(ξ, τ ) = ξx2(τ ),

where (ξ, τ ) ∈ Π = (ξ−1, 1) × [0, 2π) with Jacobian J (ξ, τ ) = ξ(x1(τ )x
′
2(τ ) −

x2(τ )x
′
1(τ )). We use the notation p = (p1, p2) for the function mapping into Π .

The system (5) can then be written in the parametrized form

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(η, t)+ 1

2π

∫
Π

ϕ(ξ, τ)R̃(η, t; ξ, τ) dτdξ + 1

2π

∫ 2π

0
ϕ−1(ξ−1, τ )R̃−1(η, t; ξ−1, τ ) dτ

+ 1

2π

∫ 2π

0
ϕ0(τ)R̃0(η, t; τ) dτ = 0, (η, t) ∈ Π,

1

2π

∫
Π

ϕ(ξ, τ)P̌ (t; ξ, τ) dτdξ + 1

2π

∫ 2π

0
ϕ−1(ξ−1, τ )P̌−1(t; ξ−1, τ ) dτ

+ 1

2π

∫ 2π

0
ϕ0(τ)P̌0(t; τ) dτ = f̃1(t), t ∈ [0, 2π),

−1

2
ϕ0(t)+ 1

2π

∫
Π

ϕ(ξ, τ)P̂ (t; ξ, τ) dτdξ + 1

2π

∫ 2π

0
ϕ−1(ξ−1, τ )P̂−1(t; ξ−1, τ ) dτ

+ 1

2π

∫ 2π

0
ϕ0(τ)P̂0(t; τ) dτ = f̃2(t), t ∈ [0, 2π).

(7)

Here, we introduced the functions ϕ(η, t) = ψ(p(η, t)), ϕ−1(ξ−1, t) =
ψ−1(p(ξ−1, t)), ϕ−1(t) = ψ−1(x(t)), ϕ0(t) = ψ0(x(t)), f̃1(t) = f1(x(t)),
f̃2(t) = f2(x(t)), and the kernels

R̃(η, t; ξ, τ ) = 2πR(p(η, t), p(ξ, τ ))J (ξ, τ ),

R̃−1(η, t; ξ−1, τ ) = 2πR(p(η, t), ξ−1x(τ))ξ−1|x ′(τ )|,

R̃0(η, t; τ ) = 2πR(p(η, t), x(τ ))|x ′(τ )|;

P̌ (t; ξ, τ ) = 2πP(x(t), p(ξ, τ ))J (ξ, τ ),

P̌−1(t; ξ−1, τ ) = 2πP(x(t), ξ−1x(τ))ξ−1|x ′(τ )|,

P̌0(t; τ ) = 2πP(x(t), x(τ ))|x ′(τ )|;
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P̂ (t; ξ, τ ) = 2πσ(x(t))
∂P (x(t), ξx(τ ))

∂ν(x(t))
J (ξ, τ ),

P̂−1(t; ξ−1, τ ) = 2πσ(x(t))
∂P (x(t), ξ−1x(τ))

∂ν(x(t))
ξ−1|x ′(τ )|,

P̂0(t; τ ) = 2πσ(x(t))
∂P (x(t), x(τ ))

∂ν(x(t))
|x ′(τ )|.

The kernels R̃ and P̌0 have various singularities, and they are handled using
ideas from [3, 9, 10]. For example, the strong singularity in R̃(η, t; η, τ ) is split
as I1(t) + I2(t) using a vector function representation involving the normal and
tangential vectors to the boundary, rendering I2 as a Cauchy type integral dealt with
using [10]. The logarithmic singularity in P̌0 is split as in [9].

3 Numerical Solution of the Boundary-Domain Integrals

We use the following interpolation quadrature rules:

1

2π

∫
Π

g(ξ, τ ) dτdξ ≈ 1

2n

N∑
k=1

2n−1∑
i=0

αkg(ηk, ti), (8)

1

2π

∫
Π

g(ξ, τ ) cot
τ − t

2
dτdξ ≈

N∑
k=1

2n−1∑
i=0

αkTi(t)g(ηk, ti ), (9)

1

2π

∫ 2π

0
f (τ) dτ ≈ 1

2n

2n−1∑
k=0

f (tk), (10)

1

2π

∫ 2π

0
f (τ) ln

(
4

e
sin2 t − τ

2

)
dτ ≈

2n−1∑
k=0

Fk(t) f (tk), (11)

with quadrature weights αk ∈ R, quadrature points ηk ∈ (0, 1), k = 1, . . . , N , and
weight functions as in [9]. The midpoint quadrature has weights αk = 1−ξ−1

N
, k =

1, . . . , N , with quadrature points ηk = 1 − 1−ξ−1
2N (2k − 1).
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Using (8)–(11) in (7) together with collocating the approximating equations at
the quadrature points leads to the linear system

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕmi +
N∑

k=1

2n−1∑
j=0

αkϕkj R̄(ηm, ti; ηk, tj )+ 1

2n

2n−1∑
j=0

[
ϕ−1j R̃−1(ηm, ti; ξ−1, tj )

+ϕ0j R̃0(ηm, ti; tj )
] = 0,

1

2n

N∑
k=1

2n−1∑
j=0

αkϕkj P̌ (ti; ηk, tj )+ 1

2n

2n−1∑
j=0

ϕ−1j P̌−1(ti; ξ−1, tj )

+
2n−1∑
j=0

ϕ0j

[
P̌

(1)
0 (ti, tj )Fj (ti )+ 1

2n
P̌

(2)
0 (ti; tj )

]
= f̃1i ,

−1

2
ϕ0i + 1

2n

N∑
k=1

2n−1∑
j=0

αkϕkj P̂ (ti; ηk, tj )+ 1

2n

2n−1∑
j=0

[
ϕ−1j P̂−1(ti; ξ−1, tj )

+ϕ0j P̂0(ti, tj )
] = f̃2i ,

(12)

with

R̄(ηm, ti; ηk, tj ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

2n
R̃(ηm, ti; ηk, tj ) for m �= k,

1

2n
R̃(1)(ηm, ti; ηk, tj )

+Tj(ti )R̃
(2)(ηm, ti; ηk, tj ) for m = k,

and the right-hand side f̃1i = f̃1(ti ) and f̃2i = f̃2(ti ), where ϕmi ≈ ϕ(ηm, ti ),
ϕ0i ≈ ϕ0(ti) and ϕ−1i ≈ ϕ−1(ξ−1, ti ), with ti = iπ

n
for m = 1, . . . , N , and i =

0, . . . , 2n− 1, and R̃(1) and R̃(2) are smooth functions.
The matrix of the linear system (12) has a large condition number due to the

ill-posedness of the Cauchy problem (1)–(3). Hence, to obtain a stable smooth
solution, regularization is necessary. We employ Tikhonov regularization, rendering
the solution xα of the regularized normal equations

(AT A+ αI)xα = AT b, (13)



An Integral Equation Method for an Elliptic Cauchy Problem 499

where AT is the transpose of A, b is the right-hand side of (12), and α > 0 a
regularization parameter.

An approximation of the solution to (1)–(3) and to the Cauchy data on Γ−1 is
obtained by applying the above discretization to the boundary-domain representa-
tion (4) with coefficients from (12) calculated using (13).

4 Numerical Examples

The doubly connected solution domain D is bounded by the two boundary curves

Γ0 = {x(t) = (cos(t), sin(t)) : t ∈ [0, 2π)},

Γ−1 = {x−1(t) = (0.5 cos(t), 0.5 sin(t)) : t ∈ [0, 2π)},

where we have put ξ−1 = 0.5 (see (6)). The functions σ , f1, and f2 are given as

σ(x) = 4−x2
1+x2

2 x ∈ D, and f1 = x1x2, f2 = 2x1x2(4−x2
1+x2

2) on Γ0.

A straightforward calculation shows that the function uex = x1x2 is an exact
solution to (1)–(3).

In Table 1 are the errors obtained for the Cauchy data on the inner boundary curve
Γ−1 for the numerical solution of the Cauchy problem (1)–(3) calculated with the
outlined boundary-domain approach for exact data generated from uex . In the table,
N is the number of internal quadrature curves, and n is the number of quadrature
points on each such curve. For graphical illustration, in Fig. 1 is the exact solution on
Γ−1 and the numerical reconstructions with exact data, for function values and the
normal derivative. Moreover, in Fig. 2 are the corresponding reconstructions with
3% noisy data.

The calculations and regularization are straightforward to use. It is anticipated
that if the reader implements the outlined method for domains of the similar type,
accuracy of the same order in the reconstruction will be obtained. The calculations
only take a few seconds on an ordinary desktop computer. Thus, it has been
demonstrated that boundary-domain integral equations can be applied for the stable
numerical solution of the Cauchy problem for elliptic equations.

Table 1 The error in the case
of exact data for the
regularizing parameter
α = 10e − 11

N n ‖ũ− uex‖∞,Γ−1 ‖ ∂ũ
∂ν

− ∂uex

∂ν
‖∞,Γ−1

3 32 5.278E-004 1.747E-002

5 64 1.348E-004 4.457E-003

7 128 6.617E-006 3.323E-004
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Fig. 1 The exact solution (solid line) and numerical reconstruction (dashed line) using the direct
approach with Tikhonov regularization parameter α = 10e − 11 (N = 5, n = 64). (a) Boundary
function on Γ−1. (b) Normal derivative on Γ−1
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Fig. 2 The exact solution (solid line) and numerical reconstruction (dashed line) using the direct
approach with Tikhonov regularization parameter α = 10e − 5 in the case of 3% noisy data
(N = 7, n = 128). (a) Boundary function on Γ−1. (b) Normal derivative on Γ−1

References

1. M.A. Al-Jawary, L.C. Wrobel, Numerical solution of two-dimensional mixed problems
with variable coefficients by the boundary-domain integral and integro-differential equation
methods. Eng. Anal. Bound. Elem. 35, 1279–1287 (2011)

2. W.T. Ang, J. Kusuma, D.L. Clements, A boundary element method for a second order elliptic
partial differential equation with variable coefficients. Eng. Anal. Bound. Elem. 18, 311–316
(1996)

3. A. Beshley, R. Chapko, B.T. Johansson, An integral equation method for the numerical solution
of a Dirichlet problem for second-order elliptic equations with variable coefficients. J. Eng.
Math. 112, 63–73 (2018)

4. F. Cakoni, R. Kress, Integral equations for inverse problems in corrosion detection from partial
Cauchy data. Inverse Probl. Imag. 1, 229–245 (2007)



An Integral Equation Method for an Elliptic Cauchy Problem 501

5. R. Chapko, B.T. Johansson, A direct integral equation method for a Cauchy problem for the
Laplace equation in 3-dimensional semi-infinite domains. Comput. Model. Eng. Sci. 85, 105–
128 (2012)

6. R. Chapko, B.T. Johansson, A boundary integral approach for numerical solution of the Cauchy
problem for the Laplace equation. Ukr. Math. J. 68, 1665–1682 (2016)

7. D.L. Clements, A boundary integral equation method for the numerical solution of a second
order elliptic equation with variable coefficients. J. Aust. Math. Soc. 22, 218–228 (1980)

8. D.L. Clements, A fundamental solution for linear second-order elliptic systems with variable
coefficients. J. Eng. Math. 49, 209–216 (2004)

9. R. Kress, Linear Integral Equations, 3rd edn. (Springer, Berlin, 2013)
10. R. Kress, On Trefftz’ integral equation for the Bernoulli free boundary value problem. Numer.

Math. 136, 503–522 (2017)
11. R. Kress, W. Rundell, Nonlinear integral equations and the iterative solution for an inverse

boundary value problem. Inverse Probl. 21, 1207–223 (2005)
12. S.E. Mikhailov, Localized boundary-domain integral formulations for problems with variable

coefficients. Eng. Anal. Bound. Elem. 26, 681–690 (2002)
13. S.E. Mikhailov, Analysis of united boundary-domain integro-differential and integral equations

for a mixed BVP with variable coefficients. Math. Methods Appl. Sci. 29, 715–739 (2006)
14. C. Miranda, Partial Differential Equations of Elliptic Type (Springer, New York, 1970)
15. A. Pomp, The Boundary-Domain Integral Method for Elliptic Systems. With Applications in

Shells. Lecture Notes in Mathematics, vol. 1683 (Springer, Berlin, 1998)
16. J. Ravnik, L. Skerget, Integral equation formulation of an unsteady diffusion-convection

equation with variable coefficient and velocity. Comput. Math. Appl. 66, 2477–2488 (2014)



On Indirect Boundary Integral Equation
Methods and Applications

Angelica Malaspina

Abstract In the classical indirect boundary integral equation method, the solution
of the Dirichlet (Neumann) problem for Laplace equation is sought in the form of
double (single) layer potential. The alternative method provides the choice of form
for the solution of Dirichlet (Neumann) problem in terms of a single (double) layer
potential. In this paper, we describe how to obtain these integral representations in
multiply connected domains. An application of our results in the theory of conjugate
differential forms is also given.

1 Introduction

A wide variety of BVPs (boundary value problems) in materials science, elec-
trostatics and elasticity require the solution of Laplace equation Δu = 0 in
multiply connected domains (see, e.g., [18] for a classic reference and [15] and the
references therein for more recent works and applications). The boundary integral
equation methods provide powerful and elegant tools for solving such problems,
these procedures give the great opportunity to achieve the solution in closed form,
which is very advantageous for numerical computations. As is well known, there are
chiefly two procedures for the reduction to equivalent boundary integral equations:
the direct approach (which is based on Green’s representation formula for solutions
of the BVPs) and the indirect approach (which rests on an appropriate layer ansatz).

In this note, we consider Laplace equation in a multiply connected domain
Ω of Rn (n ≥ 2) with either the Dirichlet boundary condition or the Neumann
boundary condition on Σ = ∂Ω . Under suitable assumptions, both BVPs have
unique solutions (see, e.g., [14, 18]).
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The classical indirect method for solving the Dirichlet problem by writing its
solution as a double layer potential yields a second kind Fredholm integral equation.
For bounded simply connected domains, the integral equation is uniquely solvable,
while for multiply connected domains (see, e.g., [14, 18, 20]) it is necessary to add
some further terms to double layer potential. In [5], we apply the alternative indirect
method to solve the Dirichlet problem and we achieve a representation theorem
for its solution only in terms of a single layer potential. The boundary integral
equation method we employ has been introduced for the first time in [1] for simply
connected domains; it strongly depends on the theory of reducible operators and
the theory of differential forms. We remark that the use of differential forms leads
to interesting results. In fact, we are able to study also the Neumann problem in a
multiply connected domain (see [5, Sec. 5]). We recall that, in this case, when we
seek the solution in terms of a double layer potential, by imposing the boundary
condition we get a hypersingular integral. Differently from other methods (see, e.g.,
[17]), ours uses neither the theory of pseudodifferential operators nor the concept of
hypersingular integrals. Moreover, the usage of the differential forms allows us to
get necessary and sufficient conditions for the existence of a 2-form conjugate to a
harmonic function in a multiply connected domain (see [5, Sec. 6]).

Subsequently, the study conducted for Laplace equation has laid the groundwork
for other elliptic BVPs (in multiply connected domains see [4, 6] and in simply
connected domains see [7, 8, 10, 11]).

2 Alternative Indirect Method to Dirichlet Problem

Throughout this paper Ω is a domain (open connected set) of Rn (n ≥ 2) bounded
by several closed surfaces. In particular, Ω has the following form

Ω = Ω0 \
m⋃

j=1

Ωj (1)

where m ∈ N and Ωj (j = 0, . . . ,m) are m + 1 bounded domains of Rn such that
Ωj ⊂ Ω0 and Ωj ∩Ωk = ∅, j, k = 1, . . . ,m, j �= k. We suppose that its boundary
Σ = ⋃m

j=0 Σj (Σj = ∂Ωj ∈ C1,λ, λ ∈ (0, 1]) is a Lyapunov hypersurface.
ν(x) = (ν1(x), . . . , νn(x)) denotes the outwards unit normal vector at the point
x = (x1, . . . , xn) ∈ Σ .

The symbol L
p
h(Σ) (for any non-negative integer h) denotes the vector space

of all differential forms of degree h (briefly h-forms) defined on Σ such that their
components are integrable functions belonging to Lp(Σ) in a coordinate system
of class C1 (and consequently in every coordinate system of class C1). We always
consider p as a real number such that p ∈]1,+∞[.
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A fundamental solution of the Laplace operator Δ is

s(x, y) =

⎧⎪⎨
⎪⎩

1

2π
ln |x − y| n = 2,

1

(2 − n)cn
|x − y|2−n n > 2

(cn being the hypersurface measure of the unit sphere in Rn).

2.1 Dirichlet Problem

Given f ∈ W 1,p(Σ), we want to determine the solution of the Dirichlet problem

{
Δu = 0 in Ω,

u = f on Σ,
(2)

in the form of a single layer potential

u(x) =
∫
Σ

ϕ(y) s(x, y) dσy, x ∈ Ω (3)

with density ϕ ∈ Lp(Σ).
We recall that for n = 2 there are some boundaries for which it is not possible to

represent the solution of (2) in a simply connected domain Ω ⊂ R2 by means of (3).
In particular, it is not possible to represent the constant functions. In this case, we
say that the boundary of such domain is exceptional. Also for multiply connected
domains we have such particular cases and these occur if and only if Σ0 = ∂Ω0 is
exceptional (see [4, Theorem 3.1] for more details).

By imposing the boundary condition to (3), an integral equation of the first kind

∫
Σ

ϕ(y)s(x, y) dσy = f (x), x ∈ Σ (4)

arises. Following [1], we take the differential d of both sides of Eq. (4) and the
following singular integral equation

∫
Σ

ϕ(y)dx[s(x, y)]dσy = df (x), x ∈ Σ (5)

comes out. Observe that in (5) the unknown is a function ϕ ∈ Lp(Σ), while the data
belongs to a different space: df ∈ L

p

1 (Σ). We show that Eq. (5) can be reduced to
a Fredholm one. In fact, the left-hand side of (5) can be viewed as a linear and
continuous operator S : Lp(Σ) → L

p

1 (Σ). In [5, Lemma 4.1], we show that S can
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be reduced on the left by the following reducing operator S′ : Lp
1 (Σ) → Lp(Σ)

S′ψ(x) = ∗
Σ

∫
Σ

ψ(y) ∧ dx[sn−2(x, y)], x ∈ Σ, (6)

where sk(x, y) =
∑

j1<...<jk

s(x, y)dxj1 . . . dxjkdyj1 . . . dyjk is the double k-form

introduced by Hodge, and the symbol ∗
Σ

has the following meaning: if w is an (n−
1)-form on Σ and w = w0dσ , then ∗

Σ
w = w0. In fact we have

S′Sϕ = −1

4
ϕ +K2ϕ, (7)

where Kϕ(x) =
∫
Σ

ϕ(y)
∂

∂νx
s(x, y)dσy is a compact operator from Lp(Σ) into

itself. We note that in the proof of (7), the following identity plays a key role (see
[1, p. 186])1

∂

∂νx

(∫
Σ

∂

∂νy
s(x, y)ψ(y) dσy

)
dσx = dx

∫
Σ

dψ(y) ∧ sn−2(x, y), a.e. on Σ

(8)

which holds for any ψ ∈ W 1,p(Σ). (8) explains that the normal derivative of double
layer potential is equal to the differential of single layer potential; it provides a
generalization of formulas which usually can be found in the literature in a different
form and only for dimension two and three (see, e.g., [16, (1.2.14), (1.2.15)]).

Since S is a reducible operator, its range is closed and we can apply the
alternative theorem to Eq. (5). Hence, we deduce that (5) admits a solution if and

only if the compatibility condition
∫
Σ

ψ ∧ h = 0 is satisfied for any solution

h ∈ L
q
n−2(Σ) (q = p/(p − 1)) of the homogeneous adjoint equation: S∗h(x) ≡∫

Σ

ψ(y) ∧ dy[s(x, y)] = 0, a.e. on Σ , S∗ : Lq

n−2(Σ) → Lq(Σ) being the adjoint

of S. One can prove that S∗h = 0 if and only if h is a weakly closed (n − 2)-form
(see [5, Theorem 4.2]). Consequently, the singular integral equation (5) is always
solvable. We have thus the existence theorem.

Theorem 1 For any f ∈ W 1,p(Σ), there exists a solution of the following BVP

{
Δw = 0 in Ω,

dw = df on Σ

1For a direct proof of (8), see [9, p. 70].
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in the form of a single layer potential (3), where its density ϕ ∈ Lp(Σ) solves the

singular integral equation Sϕ(x) ≡
∫
Σ

ϕ(y)dx[s(x, y)] dσy = df.

In order to solve the Dirichlet problem (2) we also need the next result.

Lemma 1 ([5, Lemma 4.4]) Given c0, c1, . . . , cm ∈ R, there exists a solution of
the following BVP

{
Δv = 0 in Ω,

v = ch on Σh, h = 0, . . . ,m,

which is given by

v(x) =
m∑

h=1

(ch − c0)

∫
Σ

Ψh(y)s(x, y) dσy + c0, x ∈ Ω, (9)

where Ψh ∈ Lp(Σ) (h=1,. . . ,m) are such that

1

2
Ψh(x)+

∫
Σ

Ψh(y)
∂

∂νx
s(x, y) dσy = 0, x ∈ Σ, h = 1, . . . ,m

and
∫
Σ

Ψh(y)s(x, y) dσy = δhk, ∀ x ∈ Ωk, k = 1, . . . ,m.

We are now in a position to give our main claim.

Theorem 2 Let f be a function belonging to W 1,p(Σ).

• If n ≥ 3 or n = 2 and Σ0 is not exceptional, the Dirichlet problem (2) has
a unique solution representable by means of a single layer potential (3). In
particular, its density ϕ can be written as ψ = ϕ+Ψ , where ϕ solves the singular
integral equation (4) and Ψ is the density of the single layer potential (9) which
is constant on each connected component of Σ .

• If n = 2 and Σ0 is exceptional, the solution of Dirichlet problem (2) can be
represented as the sum of a single layer potential and a constant.

Remark 1 We observe that the left reduction (7) is not an equivalent reduction.2

However, as remarked in [3] in the case of a simply connected domain, we still have
a kind of equivalence. Specifically, under the assumption that N(S′S) = N(S), if
β is such that the equation Sα = β is solvable, then this equation is equivalent to
S′Sα = S′β. Since N(S′S) = N(S) and the equation Sϕ = df admits always a

2A left reduction is said to be equivalent if N(S′) = {0}, where N(S′) denotes the kernel of S′ (see,
e.g., [19, pp. 19–20]). This means that Sα = β if, and only if, S′Sα = S′β.
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solution, we deduce the equivalence between (5) and the Fredholm equation S′Sϕ =
S′(df ).

3 Applications

The results of Sect. 1 can be applied to study the Neumann problem and they are
also useful to get a property related to the theory of conjugate differential forms.

3.1 Neumann Problem

We consider the Neumann problem for Laplace equation

⎧⎨
⎩
Δu = 0 in Ω,
∂u

∂ν
= f on Σ,

(10)

where f is an assigned function satisfying the following condition

∫
Σ

f dσ = 0. (11)

Theorem 2 allows us to represent the solution of (10) by means of a double layer
potential with density ψ

u(x) =
∫
Σ

ψ(y)
∂

∂νy
s(x, y) dσy, x ∈ Ω. (12)

This holds true if and only if the datum f satisfies the following m+ 1 conditions

∫
Σj

f dσ = 0, j = 0, 1, . . . ,m. (13)

In fact, if u is a double layer potential with density ψ ∈ W 1,p(Σ), in view of (8),

the boundary condition
∂u

∂ν
= f turns into the following one

dx

∫
Σ

dψ(y) ∧ sn−2(x, y) = f dσ
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which can be rewritten as S′(dψ) = f , S′ being (6). Because of Theorem 2, any
ψ ∈ W 1,p(Σ) can be written as a single layer potential with density φ ∈ Lp(Σ)

and since dψ = Sφ, we infer S′(dψ) = S′S(φ). Hence, by virtue of (7), we have

− 1

4
φ +K2φ = f. (14)

Therefore, there exists a solution of (10) if and only if (14) is solvable and this is
possible if and only if f satisfies (13) (see [5, Theorem 5.2]). Then we get the next
result.

Theorem 3 Given f ∈ Lp(Σ), the Neumann problem (10) admits solution
(uniquely determined up to an additive constant) in terms of (12) if and only if f
satisfies conditions (13). In particular, the density ψ ∈ W 1,p(Σ) of (12) is given by

ψ(x) =
∫
Σ

φ(y)s(x, y) dσy, x ∈ Σ,

if n ≥ 3 or n = 2 and Σ0 is not exceptional and

ψ(x) =
∫
Σ

φ(y)s(x, y) dσy + c, x ∈ Σ, c ∈ R

if n = 2 and Σ0 is exceptional, φ ∈ Lp(Σ) being a solution of Eq. (14).

Finally, if f satisfies only condition (11), we need to modify the representation of
the solution.

Theorem 4 ([4, Theorem 5.4]) Given f ∈ Lp(Σ) satisfying (11), the Neumann
problem (10) admits a solution (uniquely determined up to an additive constant)
representable as

u(x) =
∫
Σ

ψ(y)
∂

∂νy
s(x, y) dσy −

m∑
j=1

1

|Σj |
∫
Σj

f (t) dσt

∫
Σj

s(x, y) dσy, ψ ∈ W1,p(Σ).

3.2 A Representation Theorem on Conjugate Differential
Forms

It is well known that, if u is a harmonic function in a simply connected domain
Ω ⊂ R2, there exists a conjugate harmonic function v (i.e., u + iv is holomorphic
in Ω). By means of differential forms it is possible to extend such a concept to real
higher dimensions (see [2]). If u is a harmonic function, we say that the 2-form v is
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conjugate to u if

du = δv, dv = 0, (15)

where δu = (−1)n+1 ∗ d ∗ u is co-differential of u and ∗ is the adjoint operator.3

We note that, in the case n = 2, dv = 0 is always satisfied, while du = δv is
nothing but the Cauchy-Riemann system. Then u and v = v0dx

1dx2 are conjugate
differential forms if and only if u+ iv0 is holomorphic.

In the case n = 3, the 0-form u and the 2-form v = v1dx
2dx3 + v2dx

3dx1 +
v3dx

1dx2 are conjugate if and only if the vector (u, v1, v2, v3) is solution of the
Moisil-Theodorescu system: ∇u = rot (v1, v2, v3), div (v1, v2, v3) = 0.

The next result provides a representation theorem related to conjugate differential
forms in a domain Ω of Rn bounded by several closed surfaces (see (1)).

Theorem 5 ([5, Theorem 6.1]) Let u be a harmonic function of class C1(Ω).
There exists a 2-form v conjugate to u in Ω if and only if

∫
Σj

∂u

∂ν
dσ = 0, j = 0, 1, . . . ,m. (16)

Moreover, the 2-form v is given by

v(x) = − ∗
∫
Σ

ψ(y) ∧ dy[sn−2(x, y)] + ω(x),

where ψ ∈ W 1,p is the density of the double layer potential (12) representing u

and ω is an arbitrary closed and co-closed 2-form (i.e., dω = 0 and δω = 0,
respectively).

Proof If there exists a 2-form v which is conjugate to u, we can write
∂u

∂ν
dσ =

−δ ∗ u = ∗du = ∗δv = d ∗ v. It follows that
∫
Σj

∂u

∂ν
dσ =

∫
Σj

d ∗ v = 0.

Thus the necessity of (16) is proved. Conversely, if (16) holds, Theorem 3 shows
that u can be represented by a double layer potential (12) with density ψ . Set v0 =
∗w; we have: du = (−1)n−1 ∗ dw = (−1)n−1 ∗ d ∗ v0 = δv0. Moreover, since
dy[sn−2(x, y)] = δx[sn−1(x, y)] (see [12, p. 309]), we can write

v0(x) = − ∗ δ

∫
Σ

ψ(y) ∧ sn−1(x, y) = (−1)nd ∗
∫
Σ

ψ(y) ∧ sn−1(x, y)

3For definitions related to differential forms see, e.g., [13].
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and also the second equation in (15) is satisfied by v0. Finally, if dω = 0 and
δω = 0, also v0 + ω is conjugate to u. Conversely, if v1 is conjugate to u, then
ω = v1 − v0 is closed and co-closed. ��
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Part XII
Wavelet Theory and Its Related Topics

Session Organizers: Keiko Fujita and Akira Morimoto

The theory of the mathematics is important, but it is also important to apply it to
real life. From this point of view, we organized the session “Wavelet theory and
its related Topics” intended to discuss not only the pure mathematics, but also the
applied mathematics related to the research in engineering, medicine, acoustics, and
the other various fields. In the following, we will introduce the speakers (or the
authors) in our session and their research briefly.

Unfortunately, Yoshihiro Aihara failed to attend, but he presents his research
on the set of deficient divisors of an entire holomorphic curve as the paper
“Holomorphic Curves and Linear Systems in Algebraic Manifolds.” In his paper, he
gives theorems on the structure of the set of deficient divisors of entire holomorphic
curves and gives structure theorems for a family of linear systems of the set of
deficient divisors.

Kensuke Fujinoki gave a talk on a two-dimensional directional lifting scheme
on a frequency plane in the two-dimensional Euclidean space. It is useful for an
efficient multidirectional wavelet expansion or transformation. He focuses on the
lifting scheme as an elementary modification of a set of biorthogonal filters with
biorthogonality. He proposes a method which is a straightforward extension of the
original lifting scheme on the one-dimensional Euclidean spaces that offers a custom
design of biorthogonal filters with directional properties.

Keiko Fujita gave a talk on Gabor wavelet transform of analytic functionals on
the sphere in general dimension. To understand the Gabor wavelet transformation on
the sphere, she treats Gabor wavelet transforms of the Delta function, the Gaussian
function and a constant function.

Nobuko Ikawa gave a talk on a hearing test by using the complex continuous
wavelet analysis. It is difficult to examine infants’ hearing ability. Because the
hearing test takes a long time and the infant must often be under anesthesia during
that time. In order to solve such problems and to reduce inspection time, she
proposes a new hearing test method.
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Akira Morimoto gave a talk on an image separation problem in the case where
the observed images are mixtures of rotated original images. He proposes two
procedures to detect rotation angles of the original image and the rotated original
images.



Holomorphic Curves and Linear Systems
in Algebraic Manifolds

Yoshihiro Aihara

Abstract In this note we will give theorems on the set of deficient divisors of an
entire holomorphic curve f : C → M , where M is a projective algebraic manifold.
We first give an inequality of second main theorem type and a defect relation for
f that improve the results in Aihara (Tohoku Math J 58:287–315, 2012). By making
use of the defect relation, we give theorems on the structure of the set of deficient
divisors of f . We also have structure theorems for a family of linear systems of the
set of deficient divisors.

1 Introduction

Let M be a projective algebraic manifold and L → M an ample line bundle. We
denote by |L| the complete linear system of L and let Λ ⊆ |L| be a linear system.
In the previous paper [1], after the study of Nochka [3], we studied properties of the
deficiencies of a holomorphic curve f : C → M as functions on linear systems
and gave the structure theorem for the set

Df = {D ∈ Λ ; δf (D) > δf (BΛ)}

of deficient divisors. For the definitions, see Sects. 2 and 3. In the proof of the
structure theorem for Df , we used an inequality of the second main theorem type
and a defect relation for f and Λ (Theorems 3.1 and 4.2 in [1]). In this note, we
first give an improvement of the inequality of the second main theorem type and
give a defect relation. We also give structure theorems for a family of linear systems
of deficient divisors. Details will be published elsewhere.
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2 Preliminaries

We recall some known facts on Nevanlinna theory for holomorphic curves. For
details, see [5] and [6]. Let z be the natural coordinate in C and set

Δ(r) = {z ∈ C; |z| < r} and C(r) = {z ∈ C; |z| = r}.

For a (1,1)-current ϕ of order zero on C, we set

N(r, ϕ) =
∫ r

1
〈ϕ, χΔ(t)〉 dt

t
,

where χΔ(r) denotes the characteristic function of Δ(r). Let M be a compact
complex manifold and let L → M be a line bundle over M . We denote by
Γ (M, L) the space of all holomorphic sections of L → M and by |L| =
P(Γ (M, L)) the complete linear system of L. Denote by || · || a Hermitian fiber
metric in L and by ω its Chern form. Let f : C → M be a holomorphic curve.
We set

Tf (r, L) = N(r, f ∗ω)

and call it the characteristic function of f with respect to L. If

lim inf
r→+∞

Tf (r, L)

log r
= +∞,

then f is said to be transcendental. We define the order ρf of f : C → M by

ρf = lim sup
r→+∞

log Tf (r, L)

log r
.

We notice that the definition of ρf is independent of a choice of positive line
bundles L → M . Let D = (σ ) ∈ |L| with ||σ || ≤ 1 on M . Assume that
f (C) is not contained in Supp D. We define the proximity function of D by

mf (r, D) =
∫
C(r)

log

(
1

||σ(f (z))||
)

dθ

2π
.

Then we have the following first main theorem for holomorphic curves.

Theorem 1 (First Main Theorem) Let L → M be a line bundle over M and
let f : C → M be a non-constant holomorphic curve. Then

Tf (r, L) = N(r, f ∗D)+mf (r, D)+O(1)
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for D ∈ |L| with f (C) �⊆ Supp D, where O(1) stands for a bounded term as
r → +∞.

Let f and D be as above. We define Nevanlinna’s deficiency δf (D) by

δf (D) = lim inf
r→+∞

mf (r, D)

Tf (r, L)
.

It is clear that 0 ≤ δf (D) ≤ 1. Then we have a defect function δf defined on |L|.
If δf (D) > 0, then D is called a deficient divisor in the sense of Nevanlinna.

3 Value Distribution Theory for Coherent Ideal Sheaves

In this section we recall some basic facts in value distribution theory for coherent
ideal sheaves and give Crofton type formula. For details, see [6, Chapter 2] and [7].
We use the same notation as in Sect. 2.

Let f : C → M be a holomorphic curve and I a coherent ideal sheaf of the
structure sheaf OM of M . Let U = {Uj } be a finite open covering of M with
a partition of unity {ηj } subordinate to U . We can assume that there exist finitely
many sections σjk ∈ Γ (Uj , I ) such that every stalk Ip over p ∈ Uj is
generated by germs (σj1)p, . . . , (σjlj )p. Set

dI (p) =
⎛
⎝∑

j

ηj (p)

lj∑
k=1

∣∣σjk(p)
∣∣2
⎞
⎠

1/2

.

We take a positive constant C such that CdI (p) ≤ 1 for all p ∈ M. Set

φI (p) = − logCdI (p)

and call it the proximity potential for I . It is easy to verify that φI is well
defined up to addition by a bounded continuous function on M . We now define
the proximity function mf (r, I ) of f for I , or equivalently, for the complex
analytic subspace (may be non-reduced)

Y = (Supp (OM/I ), OM/I )

by

mf (r, I ) =
∫
C(r)

φI (f (z))
dθ

2π
,
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provided that f (C) is not contained in SuppY . For z0 ∈ f−1(Supp Y ), we can
choose an open neighborhood U of z0 and a positive integer ν such that

f ∗I = ((z− z0)
ν) on U.

Then we see

log dI (f (z)) = ν log |z− z0| + hU(z) for z ∈ U,

where hU is a C∞-function on U . Thus we have the counting function
N(r, f ∗I ) as in Sect. 2. Moreover, we set

ωI ,f = −ddchU on U,

where dc = (
√−1/4π)(∂ − ∂). We obtain a well-defined smooth (1, 1)-form

ωI ,f on C. Define the characteristic function Tf (r, I ) of f for I by

Tf (r, I ) =
∫ r

1

dt

t

∫
Δ(t)

ωI ,f .

We have the first main theorem in value distribution theory for coherent ideal
sheaves due to Noguchi–Winkelmann–Yamanoi [7, Theorem 2.9]:

Theorem 2 (First Main Theorem) Let f : C → M and I be as above. Then

Tf (r, I ) = N(r, f ∗I )+mf (r, I )+O(1).

When I defines an effective divisor D on M , it is easy to see that

Tf (r, I ) = Tf (r, OM(D))+O(1) and mf (r, I ) = mf (r, D)+O(1).

Let L → M be an ample line bundle and W ⊆ Γ (M, L) a subspace with
dimW ≥ 2. Set Λ = P(W). The base locus Bs Λ of Λ is defined by

BsΛ =
⋂
D∈Λ

SuppD.

We define a coherent ideal sheaf I0 in the following way. For each p ∈ M , the
stalk I0,p is generated by all germs (σ )p for σ ∈ W . Then I0 defines the base
locus of Λ as a complex analytic subspace BΛ, that is,

BΛ = (Supp (OM/I0), OM/I0).

Hence Bs Λ = Supp (OM/I0).
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We now give a Crofton type formula. Let f : C → M be a non-constant
holomorphic curve. If f (C) �⊆ SuppD for all D ∈ Λ, then we say that f is non-
degenerate with respect to Λ. Let μ be the invariant measure on Pl (C) normalized
so that μ(Pl(C)) = 1. We have the following generalized Crofton’s formula due to
Kobayashi [6, Theorem 2.4.12].

Theorem 3 Suppose that f : C → M is non-degenerate with respect to Λ and
f (C) �⊆ Bs Λ. Then

∫
D∈Λ

mf (r, D)dμ(D) = mf (r, I0)+O(1)

and hence

Tf (r, L) =
∫
D∈Λ

N(r, f ∗D)dμ(D) +mf (r, I0)+O(1).

We define the deficiency of BΛ for f by

δf (BΛ) = lim inf
r→+∞

mf (r, I0)

Tf (r, L)
.

Set

Df = {D ∈ Λ; δf (D) > δf (BΛ)}.

We call Df the set of deficient divisors in Λ. By making use of Theorem 2, we
have the following proposition [1, Proposition 4.1].

Proposition 1 The set Df is a null set in the sense of the Lebesgue measure on Λ.
In particular,

δf (D) = δf (BΛ)

for almost all D ∈ Λ.

This proposition plays an important role in the proof of theorems in Sect. 4.

4 Inequality of the Second Main Theorem Type

We will give an inequality of the second main theorem type for a holomorphic curve
f : C → M that improves Theorem 3.1 in [1]. For simplicity, we assume that f is
of finite type. Let W ⊆ Γ (M, L) be a linear subspace with dimW = l0+1 ≥ 2 and
set Λ = P(W). We call Λ a linear system included in |L|. Let D1, . . . ,Dq be
divisors in Λ such that Dj = (σj ) for σj ∈ W . We first give a definition of
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subgeneral position. Set Q = {1, . . . , q} and take a basis {ψ0, . . . , ψl0} of W .
We write

σj =
l0∑

k=0

cjkψk (cjk ∈ C)

for each j ∈ Q. For a subset R ⊆ Q, we define a matrix AR by AR =
(cjk)j∈R,0≤k≤l0.

Definition 1 Let N ≥ l0 and q ≥ N + 1. We say that D1, . . . ,Dq are in
N-subgeneral position in Λ if

rank AR = l0 + 1 for every subset R ⊆ Q with 1R = N + 1.

If they are in l0-subgeneral position, we simply say that they are in general position.

Remark 1 The above definition is different from the usual one (cf. [6, p. 114]). In
fact, the divisors D1, . . . ,Dq are usually said to be in N-subgeneral position in
Λ provided that

⋂
j∈R

SuppDj = ∅ for every subset R ⊆ Q with 1R = N + 1.

However, the divisors D1, . . . ,Dq may have a common point when they are in
N-subgeneral position in the above sense.

Let $Λ : M → P(W∗) be a natural meromorphic mapping, where W∗ is the
dual of W (cf. [5, p. 68]). Then we have the linearly non-degenerate holomorphic
curve

FΛ = $Λ ◦ f : C → P(W∗).

We let W(FΛ) denote the Wronskian of FΛ.

Definition 2 If ρf < +∞, then f is said to be of finite type.

By making use of the methods in [1] and [4], we have an inequality of the second
main theorem type as follows.

Theorem 4 Let f : C → M be a transcendental holomorphic curve that is non-
degenerate with respect to Λ. Let D1, . . . ,Dq ∈ Λ be divisors in N-subgeneral
position. Assume that f is of finite type. Then

(q − 2N + l0 − 1) (Tf (r, L)−mf (r, I0)) ≤
q∑

j=1

N(r, f ∗Dj )+ Ef (r)
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as r → +∞, where

Ef (r) = −(2N − n+ 1)N(r, f ∗I0)−
(
N

n

)
N(r, (W(FΛ)0)+ o(Tf (r, L)).

We notice here that in the proof of the above theorem, we use an estimate for
Nochka’s weight improved by N. Toda (see [6, p. 118]). In order to get a defect
relation from Theorem 4, we define a constant ηf (BΛ) by

ηf (BΛ) = lim inf
r→+∞

−(2N − n+ 1)N(r, f ∗I0)− (N/n)N(r, (W(FΛ)0)

Tf (r, L)
.

It is clear that ηf (BΛ) ≤ 0. Now, by Theorem 4, we have a defect relation.

Theorem 5 Let Λ, f and D1, . . . ,Dq be as in Theorem 4. Then

q∑
j=1

(δf (Dj )− δf (BΛ)) ≤ (1 − δf (BΛ))(2N − l0 + 1)+ ηf (BΛ).

Remark 2 In the case where ρf = +∞, by a suitable modification, we also have
theorems similar to the above (cf. [1]).

5 Structure Theorems for the Set of Deficient Divisors

In this section we give theorems on the structure of the set of deficient divisors. Let
L → M be an ample line bundle and f : C → M a transcendental holomorphic
curve of finite type. Let Λ ⊆ |L| be a linear system. Let

Df = {D ∈ Λ ; δf (D) > δf (BΛ)}.

We summarize the basic facts on the set Df (see [1, §5]).

Theorem 6 The set Df of deficient divisors is a union of at most countably
many linear systems included in Λ. The set of values of deficiency of f is at
most a countable subset {ei} of [0, 1]. For each ei , there exist linear systems
Λ1(ei), . . . ,Λs(ei) included in Λ such that ei = δf (BΛj (ei)) for j = 1, . . . , s.

By Theorem 6, there exist at most countably many linear systems {Λj } in
Λ such that Df =⋃j Λj . Define Lf = {Λj }∪{Λ}. We call Lf the fundamental
family of linear systems for f .

The set of all linear systems with dimension k included in Λ is parameterized
by a Grassmann variety. For a transcendental holomorphic curve f : C → M , we
will define a defect function δΛ,f on Grassmannians in the following way. Suppose
that f is non-degenerate with respect to Λ. We fix a positive integer k with
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1 ≤ k ≤ dim Λ. We let Gr(k, Λ) denote the Grassmann variety of k-dimensional
linear subvarieties of the projective space Λ. For a point A ∈ Gr(k, Λ), we define

δΛ,f (A) = inf {δf (D); D ∈ A}.

For a linear subsystem Π of Λ with dimΠ > k, we also define Gr(k, Π) that
is the subvariety of Gr(k, Λ) (cf. [2, Lecture 6]). Set

κf (Gr(k, Π)) = inf
{
δΠ,f (A); A ∈ Gr(k, Π)

}
.

For a linear system Πi in Lf with dimΠi > k, we get the Grassmannian
Gr(k, Πi) that is the subvariety of Gr(k, Λ). Let G = {Gr(k, Πi)} be the
family of all such Grassmannians. Then we have the following structure theorem.

Theorem 7 For a sufficiently small positive number ε, there exist finitely many
subvarieties Gr(k, Π1), . . . ,Gr(k, Πt) contained in G such that

{A ∈ Gr(k, Λ); δΛ,f (A) ≥ κf (Gr(k, Λ))+ ε} =
t⋃

i=1

Gr(k, Πi).

In particular, the exceptional set

{A ∈ Gr(k, Λ); δΛ,f (A) > κf (Gr(k, Λ))}

for Gr(k, Λ) is the union of all Grassmannians in G .

For the function δΛ,f : Gr(k, Λ) → [0, 1], we have the following theorem.

Theorem 8 The set of values of δΛ,f is an at most countable subset {ei} of
[0, 1]. If Gr(k, Π) ∈ G and if A ∈ Gr(k, Π) is generic, then κf (Gr(k, Π)) =
δf (A). The set of non-generic points in Gr(k, Π) is contained in a union of at
most countable Grassmannians in G . In particular, the closure of the inverse image
δ−1
Λ,f (ei) can be written

δ−1
Λ,f (ei) =

t⋃
j=1

Gr(k, Πij )

for finitely many varieties Gr(k, Πi1), . . . ,Gr(k, Πit ) in G .

Remark 3 Let Π1,Π2 ∈ G . We notice that κf (Gr(k, Π1)) < κf (Gr(k, Π2)) if
Gr(k, Π2) is a proper subvariety of Gr(k, Π1).
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Two-Dimensional Directional Lifting
Schemes

Kensuke Fujinoki

Abstract We consider a two-dimensional directional lifting scheme on a frequency
plane R2 that is useful for an efficient multidirectional wavelet expansion or
transformation. In particular, we focus on the lifting scheme as an elementary
modification of a set of biorthogonal filters that hold biorthogonality. The proposed
method is a straightforward extension of the original lifting scheme on R that offers
a custom design of biorthogonal filters with directional properties.

1 Introduction

With recent technological advances, we are managing large amounts of data,
which requires efficient representations and processing. Applied harmonic analysis,
whose purpose is to provide efficient representations of functions or data, has been
developed not only for harmonic analysis but also for other scientific fields, such as
electrical engineering and computer science, particularly signal processing.

A wavelet system is a typical example, and it has two main reasons for its
success. The first is that it provides an optimally sparse approximation of a signal
compared with traditional Fourier-based methods. The second is the existence of
fast computation algorithms to precisely and efficiently manage digital data, thereby
providing a range of applications in signal processing. For more details of wavelets
and their applications, see [11, 12].

The appearance of the lifting scheme proposed by Sweldens [13, 14] is one of the
milestones in the development of the theory of wavelet analysis. The lifting scheme
has various aspects in both mathematics and signal processing; however, the main
idea is to provide a custom design of biorthogonal wavelets as well as biorthogonal
filters in any bounded domain (see [1, 3–5, 9, 10]).
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In this paper, we focus on a custom filter design of the lifting scheme. In
particular, we consider the lifting scheme on a frequency plane R2 to construct two-
dimensional biorthogonal filters that have a freedom of directional properties.

2 Biorthogonal Filters

We first review one-dimensional biorthogonal filters. More detailed introductions
are provided in [15, 16]. Following the signal processing literature, we refer to a
sequence as a filter.

We consider two finite filters, a low-pass (LP) filter {hn}n∈Z and a high-pass (HP)
filter {gn}n∈Z, both of which have a finite number of nonzero coefficients and belong
to the square summable sequence space �2(Z). For ξ ∈ R, we define

h(ξ) =
∑
n∈Z

hn e−iξn and g(ξ) =
∑
n∈Z

gn e−iξn,

which we call the Fourier transform of a sequence. Since h(ξ) and g(ξ) are periodic
functions with period 2π , they belong to a space of square integrable functions
L2(T), where T = R/2πZ. Similarly, we define their dual functions h̃(ξ), g̃(ξ) ∈
L2(T) as

h̃(ξ) =
∑
n∈Z

h̃n e−iξn and g̃(ξ) =
∑
n∈Z

g̃n e−iξn,

where {h̃n}n∈Z and {g̃n}n∈Z are the dual LP filter and the dual HP filter, respectively.
We assume that these functions are trigonometric polynomials with h(0) =

h̃(0) = 1 and g(π) = g̃(π) = 1. We define a modulation matrix M(ξ) ∈
(L2(T))2×2 and its dual modulation matrix M̃(ξ) ∈ (L2(T))2×2 as

M(ξ) :=
[
h(ξ) h(ξ + π)

g(ξ) g(ξ + π)

]
and M̃(ξ) :=

[
h̃(ξ) h̃(ξ + π)

g̃(ξ) g̃(ξ + π)

]
.

The biorthogonality of the filters is then represented by the perfect reconstruction
condition, which can be written as

M̃(ξ)M(ξ)∗ = I, (1)

where M∗ is the complex conjugate transpose of M and I is the 2 × 2 identity
matrix.

Definition 1 (Perfect Reconstruction Filter) A set of filters {h, g, h̃, g̃} is said to
consist of perfect reconstruction filters if the perfect reconstruction condition (1) is
satisfied.
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Remark 1 Perfect reconstruction filters are also called biorthogonal filters because
the condition (1) is also called the biorthogonality condition.

It is important to note that the condition (1) implies that

h̃ (ξ) h (ξ)+ g̃ (ξ) g (ξ) = 1, (2)

and

h̃ (ξ) h (ξ + π)+ g̃ (ξ) g (ξ + π) = 0, (3)

where h(ξ) denotes the complex conjugate of h(ξ). Equation (2) is called the
identity summation condition, which guarantees the conservation of a standard �2

norm; (3) is the alias cancellation condition. In general, biorthogonal wavelets are
generated from biorthogonal filters that satisfy these conditions (see [2]).

3 Lifting Scheme

The lifting scheme corresponds to modifying biorthogonal filters without losing
biorthogonality. Let �(ξ) and �̃(ξ) be trigonometric polynomials. We call them a
lifting filter and dual lifting filter, respectively. We assume that a set {h, g, h̃, g̃} is
biorthogonal, and two HP filters g(ξ) and g̃(ξ) that satisfy (2) and (3) are defined
by the standard choice:

g(ξ) = e−iξ h̃(ξ + π) and g̃(ξ) = e−iξ h(ξ + π). (4)

Then, we have the following:

Proposition 1 (Herley and Vetterli [17]) Let h(ξ) and h̃(ξ) be finite biorthogonal
LP filters in the sense of (2) and (4). A finite filter h̃�(ξ) is biorthogonal to h(ξ) if
and only if there exists a finite filter �(ξ) such that

h̃�(ξ) = h̃(ξ)+ e−iξ h(ξ + π) �(2ξ).

The lifting scheme further extends Proposition 1. Together with Proposition 1
and the definition of HP filters in (4), we can generate a new primal HP filter g�(ξ)

that is dual to g̃(ξ). Similar results can be seen in h(ξ) and g̃(ξ). We summarize
these observations as follows:

Definition 2 (Lifting Scheme [13]) The modifications of a set of biorthogonal fil-
ters {h, g, h̃, g̃} defined by (5) and (6) are called lifting and dual lifting, respectively:

h̃�(ξ) = h̃(ξ)+ g̃(ξ) �(2ξ), g�(ξ) = g(ξ)− h(ξ) �(2ξ), (5)

h�̃(ξ) = h(ξ)+ g(ξ) �̃(2ξ), g̃�̃(ξ) = g̃(ξ)− h̃(ξ) �̃(2ξ). (6)
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Remark 2 Lifting and dual lifting guarantee the biorthogonality of biorthogonal
filters, which means that lifted filters {h, g�, h̃�, g̃} and {h�̃, g, h̃, g̃�̃} are both
biorthogonal filters, and {h�̃, g�, h̃�, g̃�̃} are also biorthogonal filters.

4 Two-Dimensional Directional Lifting

On the standard frequency plane R2, we consider a set of square lattice sites

Γ := {νi | i = 0, 1, 2, 3} ,
where ν0 = (0, 0), ν1 = (0, π), ν2 = (π, 0), ν3 = (π, π). As in the one-
dimensional case, we assume that M(ξ) is a modulation matrix whose entries are
biorthogonal filters with frequency shifts in Γ :

M(ξ) :=

⎡
⎢⎢⎣

h(ξ) h(ξ + ν1) h(ξ + ν2) h(ξ + ν3)

g1(ξ) g1(ξ + ν1) g1(ξ + ν2) g1(ξ + ν3)

g2(ξ) g2(ξ + ν1) g2(ξ + ν2) g2(ξ + ν3)

g3(ξ) g3(ξ + ν1) g3(ξ + ν2) g3(ξ + ν3)

⎤
⎥⎥⎦ ,

where ξ = (ξ1, ξ2) ∈ R2 and ν ∈ Γ . Note that we have three HP filters gk(ξ), k =
1, 2, 3. These filters are trigonometric polynomials defined as

h(ξ) =
∑
n∈Z2

hn e−iξ ·n and gk(ξ) =
∑
n∈Z2

gk,n e
−iξ ·n,

which are normalized to h(ν0) = h̃(ν0) = 1 and gk(νk) = g̃k(νk) = 1 for k =
1, 2, 3. We assume that LP filters h(ξ) and h̃(ξ) are π/2-rotation invariant, whereas
both HP filters gk(ξ) and g̃k(ξ), k = 1, 2 are defined as ±π/4-rotations of the case
of k = 3.

Similarly, we define a dual modulation matrix M̃(ξ) with dual filters h̃(ξ) and
g̃k(ξ), k = 1, 2, 3. Biorthogonality of the filters is now written as

M̃(ξ)M(ξ)∗ = I, (7)

where I is the 4 × 4 identity matrix. In this setting, we have the following
proposition, which generalizes (2) and (3).

Proposition 2 A set of filters {h, gk, h̃, g̃k}k=1,2,3 is a set of perfect reconstruction
filters if and only if the following two conditions hold:

h̃(ξ)h(ξ) +
3∑

k=1

g̃k(ξ)gk(ξ) = 1, (8)
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and

h̃(ξ)h(ξ + ν)+
3∑

k=1

g̃k(ξ)gk(ξ + ν) = 0, ν ∈ Γ \ {ν0}. (9)

Proposition 2 is a special case of Durand [6], and Yin and Daubechies [18], in which
more general cases are found, that is, other types of frequency lattices. As in the
one-dimensional case, (8) is the condition for �2 norm preservation; (9) is for alias
cancellation.

From Propositions 1 and 2, we have the following results:

Theorem 1 Let k = 1, 2, 3. Suppose that �k (ξ) and �̃k (ξ) are trigonometric
polynomials, and {h, gk, h̃, g̃k} is a set of finite biorthogonal filters that satis-
fies (8) and (9). Then, two new sets of finite biorthogonal filters {h, g�

k, h̃
�, g̃k} and

{h�̃, gk, h̃, g̃
�̃
k} are defined as

h̃�(ξ) = h̃(ξ)+
3∑

k=1

g̃k(ξ) �k(2ξ), g�
k(ξ) = gk(ξ)− h(ξ) �k(2ξ), (10)

and

h�̃(ξ) = h(ξ)+
3∑

k=1

gk(ξ) �̃k(2ξ), g̃ �̃
k (ξ) = g̃k(ξ)− h̃(ξ) �̃k(2ξ). (11)

Proof Because of the two facts that the initial set of filters {h, gk, h̃, g̃k} is
biorthogonal, and both trigonometric polynomials �k(ξ) and �̃k(ξ) are periodic
functions with period (2π, 2π), we only need to show the biorthogonality in terms
of �k(ξ) and �̃k(ξ).

We consider a matrix form of the lifting (10). We can rewrite it as

⎡
⎢⎢⎢⎣

h̃�(ξ)

g̃1(ξ)

g̃2(ξ)

g̃3(ξ)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

1 �1(2ξ) �2(2ξ) �3(2ξ)
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

h̃(ξ)

g̃1(ξ)

g̃2(ξ)

g̃3(ξ)

⎤
⎥⎥⎦ ,

and

⎡
⎢⎢⎢⎣

h(ξ)

g �
1 (ξ)

g �
2 (ξ)

g �
3 (ξ)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

1 0 0 0
−�1(2ξ) 1 0 0
−�2(2ξ) 0 1 0
−�3(2ξ) 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

h(ξ)

g1(ξ)

g2(ξ)

g3(ξ)

⎤
⎥⎥⎦ .
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From the perfect reconstruction condition (7), the biorthogonality follows from

⎡
⎢⎢⎣

1 �1(2ξ) �2(2ξ) �3(2ξ)
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 0 0 0
−�1(2ξ) 1 0 0
−�2(2ξ) 0 1 0
−�3(2ξ) 0 0 1

⎤
⎥⎥⎦
∗

= I.

Similarly, in the case of the dual lifting (11), we show the biorthogonality using

⎡
⎢⎢⎢⎣

h�̃(ξ)

g1(ξ)

g2(ξ)

g3(ξ)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎣

1 �̃1(2ξ) �̃2(2ξ) �̃3(2ξ)
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

h(ξ)

g1(ξ)

g2(ξ)

g3(ξ)

⎤
⎥⎥⎦ ,

and
⎡
⎢⎢⎢⎢⎣

h̃(ξ)

g̃ �̃
1 (ξ)

g̃ �̃
2 (ξ)

g̃ �̃
3 (ξ)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 0 0 0

−�̃1(2ξ) 1 0 0

−�̃2(2ξ) 0 1 0

−�̃3(2ξ) 0 0 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣

h̃(ξ)

g̃1(ξ)

g̃2(ξ)

g̃3(ξ)

⎤
⎥⎥⎦ .

��
Remark 3 As in the original lifting scheme on R, a set {h�̃, g�

k, h̃
�, g̃�̃

k} is also
biorthogonal.

Remark 4 The three lifting filters �k(ξ) and their duals �̃k(ξ) can be freely chosen
so that the resulting filters have specific directional properties. The biorthogonality
is guaranteed regardless of how we choose the lifting filters.

By applying the inverse Fourier transformation to (10) and (11) in Theorem 1,
we have convolution forms of the directional lifting scheme:

h̃�
n = h̃n +

3∑
k=1

∑
l∈Z2

g̃k,n−2l �k,−l, g�
k,n = gk,n −

∑
l∈Z2

hn−2l �k,l ,

h�̃
n = hn +

3∑
k=1

∑
l∈Z2

gk,n−2l �̃k,l, g̃�̃
k,n = g̃k,n −

∑
l∈Z2

h̃n−2l �̃k,−l,

where {�k,l | k = 1, 2, 3; l ∈ Z2} and {�̃k,l | k = 1, 2, 3; l ∈ Z2} are finite lifting
filters and dual lifting filters, respectively.

Remark 4 indicates an essential property of the two-dimensional directional
lifting scheme. If an initial set of filters {h, gk, h̃, g̃k}k=1,2,3 is biorthogonal, then
lifting with �k(ξ) holds the biorthogonality so that we can always construct a new



Two-Dimensional Directional Lifting Schemes 531

set of biorthogonal filters {h, g�
k, h̃

�, g̃k}k=1,2,3. This is true for {h�̃, gk, h̃, g̃
�̃
k}k=1,2,3

with dual lifting �̃(ξ).
This means that we have remarkable freedom to design three biorthogonal HP

filters g�
k(ξ) and g̃�̃

k(ξ) independently. For example, directional wavelet transfor-
mations for isotropic image representations introduced in [7, 8] use such a nature of
the two-dimensional lifting scheme, where the HP filters are designed in an isotropic
manner on an equilateral triangular lattice.
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Gabor Wavelet Transformation
on the Sphere and Its Related Topic

Keiko Fujita

Abstract We studied the Gabor wavelet transform of analytic functionals on the
sphere in general dimension. Then, we studied the Gabor wavelet transformation on
the two-dimensional sphere and its inverse transformation. In this note, following
our previous results, to understand the Gabor wavelet transformation on the sphere,
we consider some Gabor wavelet transforms of analytic functionals and square
integrable functions on the sphere.

1 Introduction

In [3], we studied the Gabor wavelet transform of analytic functional on the sphere
in general dimension. Then to simplify the results in [3], we treated the Gabor
wavelet transformation on the circle in [2]. And then, in [4], we constructed the
inverse Gabor wavelet transformation concretely in the two-dimensional sphere by
using our results in [1]. In this note, to see the Gabor wavelet transformation on the
sphere, we consider some Gabor wavelet transforms of several simple functions
on the sphere. Note that we call the Gabor wavelet transformation the Gabor
transformation in [4].

1.1 Fourier Transformation on the Sphere

Let S2
r be the sphere with radius r > 0 in R3, that is,

S2
r = {(x1, x2, x3) ∈ R3; x2

1 + x2
2 + x2

3 = r2}.
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For z = (z1, z2, z3) and w = (w1, w2, w3) ∈ C3, we set

z ·w = z1w1 + z2w2 + z3w3, z2 = z · z.

For an integrable function f on S2
r , we define the Fourier transform of f by

(Ff )(ω) =
∫
S2
r

e−ix·ωf (x)dΩx,

where dΩ is the normalized invariant measure on S2
r . Note that vol(S2

r ) = 4πr2.
For the square integrable functions f and g on S2

r , we define a sesquilinear form
(f, g)S2

r
by

(f, g)S2
r
≡
∫
S2
r

f (x)g(x)dΩx.

Then (f, g)S2
r

gives an inner product and we denote by L2(S2
r ) the space of square

integrable functions on S2
r with the inner product (f, g)S2

r
and the norm ‖f ‖S2

r
=√

(f, f )S2
r
.

1.2 Windowed Fourier Transformation on the Sphere

For f ∈ L2(S2
r ) and ω, τ ∈ C3, we define the windowed Fourier transformation

W F with the window function exp(−x2/2) by

W F : f  → (W Ff )(τ, ω) =
∫
S2
r

exp(−ix · ω) exp

(
− (x − τ )2

2

)
f (x)dΩx

= e
−r2−τ2

2

∫
S2
r

exp (−ix · (ω + iτ )) f (x)dΩx

= e
−r2−τ2

2 (Ff )(ω + iτ ).

1.3 Gabor Wavelet Transformation on the Sphere

Let ω0 ∈ R3 be fixed. Put

Gω0(x) = e−x2/2e−ix·ω0 .
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For f ∈ L2(S2
r ) and a ∈ R+ = {x : x > 0}, we define the Gabor wavelet

transformation Gω0 by

Gω0 : f  → (Gω0f )(τ, a) = 1

a

∫
S2
r

Gω0

(
x − τ

a

)
f (x)dΩx

= 1

a

∫
S2
r

exp

(
−i

x − τ

a
· ω0

)
exp

(
−1

2

(
x − τ

a

)2
)
f (x)dΩx

= 1

a
e
− r2+τ2

2a2 eiτ ·
ω0
a

∫
S2
r

exp
(
−ix · ω0

a

)
exp

(
−x · τ

a2

)
f (x)dΩx.

2 Gabor Wavelet Transform of Analytic Functional
on the Sphere

Since Gωo(x) is an analytic function in R3, we can consider the Gabor wavelet
transform of analytic functional. We treated the Gabor wavelet transform of analytic
functional in [3] in general dimension. First we recall some notation.

We denote by A (S2
r ) the space of real analytic functions on S2

r , and by A ′(S2
r )

the space of analytic functionals (or hyperfunctions) on S2
r . Let 〈T , g〉 be the

canonical bilinear form of duality on A ′(S2
r )×A (S2

r ).
Since A (Sn) ⊂ L2(S2

r ) ⊂ A ′(S2
r ), for g ∈ L2(S2

r ) we define Tg ∈ A ′(S2
r ) by

〈Tg , f 〉 = (f , g)S2
r
=
∫
S2
r

f (x)g(x)dΩx, f ∈ A (S2
r ).

Note the mapping g  → Tg is a continuous antilinear injection.
Let T ∈ A ′(S2

r ). We will define the Fourier–Borel transform of T by

(FT )(ω) = 〈Tx, exp(−ix · ω)〉, ω ∈ C3.

Note that we defined (FT )(ω) = 〈Tx, exp(x · ω)〉 in [5].
For ω, τ ∈ C3, in [3], we defined a mapping WGF by

WGF : T  → (WGFT )(τ, ω) =
〈
Tx , exp(− (x − τ )2 /2) exp(−ix · ω)

〉
,

and we call the mapping T  → (WGFT )(τ, ω) the Gabor transformation. For T ∈
A ′(S2

r ), we call the mapping

Gω0 : T  → (Gω0T )(τ, a) = 1

a

〈
Tx , Gω0(

x − τ

a
)

〉
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the Gabor wavelet transformation. Since T ∈ A ′(S2
r ),

(WGFT )(τ, ω) = exp((−r2 − τ 2)/2) 〈Tx , exp(x · (τ − iω))〉 ,

(Gω0T )(τ, a) = 1

a

〈
Tx , exp(−i

x − τ

a
· ω0) exp(−1

2
(
x − τ

a
)2)

〉

= 1

a
ei

τ ·ω0
a e

− r2+τ2

2a2
〈
Tx , exp

(
−i

x · ω0

a

)
exp
(x · τ

a2

)〉
.

The inverse mappings of WGF and Gω0 were given in [4].

3 Examples

3.1 Gabor Wavelet Transform of the Delta Function

Let δ(x) be the Delta function, that is, for y ∈ S2
r and f ∈ A (S2

r )

〈δ(x − y) , f (x)〉 = f (y).

Therefore when Ty(x) = δ(x − y), we have

(WGFTy)(τ, ω) = exp(−(y − τ )2/2) exp(−iy · ω),

(Gω0Ty)(τ, a) = 1

a
exp(−i

y − τ

a
· ω0) exp(−1

2
(
y − τ

a
)2)

= 1

a
ei

(τ−y)·ω0
a e

− r2+τ2

2a2 exp
(y · τ

a2

)
.

Thus

|(WGFTy)(τ, ω)| = exp(− (y − τ )2

2
), |(Gω0Ty)(τ, a)| = 1

a
exp(−1

2
(
y − τ

a
)2).

When τ = y, then |(Gω0Ty)(τ, a)| = 1/a. For a fixed a, |(Gω0Ty)(τ, a)| is a
Gaussian function.

Assume that τ ∈ S2
r . Let P be the point on S2

r represented by τ and let Q be the
point on S2

r represented by y. We denote by OX the segment which is the straight
line connecting the origin and the point X. And let θ be the angle between OP and
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Fig. 1 |(Gω0Ty)(τ, a)| = 1
a
e−1/a2

exp(cos θ/a2)
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Fig. 2 |Gω0 (
x−τ
a

)| = e−1/a2
exp(cos θ/a2)

OQ. Then (y − τ )2 = (2r sin(θ/2))2, and we have

|(WGFTy)(τ, ω)| = exp(−2r2 sin2(θ/2)),

|(Gω0Ty)(τ, a)| = 1

a
exp(−2r2 sin2(θ/2)/a2)

= 1

a
exp(−r2(1 − cos θ)/a2) = 1

a
e−r2/a2

exp(r2 cos θ/a2).

Therefore for τ, y ∈ S2
1 , the graph of |(Gω0Ty)(τ, a)| is given by Fig. 1, and for

x = (0, 0, 1) and τ = (sin θ cosϕ, sin θ sin ϕ, cos θ), ϕ, θ ∈ R, |Gω0(
x−τ
a

)| does
not depend on ω0 and on ϕ, and the graph of |Gω0(

x−τ
a

)| is given by Fig. 2.
More generally, let P be a point on R3 represented by τ = r ′τ ′, τ ′ ∈ S2

1 , r
′ > 0

and Qj be the point on S2
r represented by yj , and let θj be the angle between the
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segments OP and OQj . Then for T =∑m
j=1 cj δ(x − yj ),

|(Gω0T )(τ, a)| ≤ 1

a
e
− r2+(r′)2

2a2

m∑
j=1

cj exp
(
rr ′ cos θj/a2

)
.

3.2 Gabor Wavelet Transform of the Gaussian Function

Next we consider the Gabor wavelet transform of the Gaussian function. For b > 0,
put fy(x) = 1

b
exp(−(x − y)2/(2b2)), y ∈ S2

r . For a sufficiently small b > 0
the Gaussian function looks like the Delta function. (Gω0fy)(τ, a) is calculated as
follows:

(Gω0fy)(τ, a) = 1

ab

∫
S2
r

Gω0

(
x − τ

a

)
e−(x−y)2/2b2

dΩx

= 1

ab

∫
S2
r

e−i(x−τ )· ω0
a e

− 1
2 (

x−τ
a )

2− 1
2

(
(x−y)

b

)2

dΩx

= 1

ab
eiτ ·

ω0
a e

− 1
2

(
r2+τ2

a2 + 2r2

b2

) ∫
S2
r

e−ix· ω0
a e

x

a2 ·
(
τ+ a2y

b2

)
dΩx. (1)

To consider the integral
∫
S2
r

exp
(−ix · ω0

a

)
exp
(

x
a2 ·
(
τ + a2y

b2

))
dΩx , we recall

some notation. Let Pk,2(t) be the Legendre polynomial of degree k and of
dimension 3:

Pk,2(t) =
(−1

2

)2 1

k!
dk

dtk
(1 − t2)k =

[k/2]∑
l=0

(−1)l
Γ (k − l + 1/2)

l!(k − 2l)!√π
(2t)k−2l .

We define the extended Legendre polynomial by

Pk,2(z,w) = (
√
z2)k(

√
w2)kPk,2

(
z√
z2

· w√
w2

)
, z,w ∈ C3.

Let

Jν(t) =
(
t

2

)ν ∞∑
l=0

1

l!Γ (ν + l + 1)

(
it

2

)2l

, ν �= −1,−2, · · · ,
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be the Bessel function of order ν. We put

J̃ν(t) = Γ (ν + 1)

(
t

2

)−ν

Jν(t) =
∞∑
l=0

Γ (ν + 1)

l!Γ (ν + l + 1)

(
it

2

)2l

, j̃k(t) = J̃k+1/2(t).

(2)

When ν > 0, |J̃ν(t)| ≤ e|t | for t ∈ C and 0 < cos t < |J̃ν(t)| for −π
2 < t < π

2 .
Further we know that limν→∞ J̃ν(t) = 1 for t ∈ C and ν > 0. (See Lemma 5.13 in
[5].)

Then by using the extended Legendre polynomials and the modified Bessel
functions, the exponential function is represented as follows:

exp(z · w) =
∞∑
k=0

√
πN(k, 2)

2k+1Γ (k + 3
2 )

j̃k(i
√
z2
√
w2)Pk,2(z,w),

where N(k, 2) = 2k + 1. Note that j̃k(−t) = j̃k(t). For η, ζ ∈ C3, we know

∫
S2
r

exp(ix · η) exp(x · ζ )dΩx =
∞∑
k=0

πN(k, 2)r2k

22k+2Γ (k + 3
2 )

2
j̃k(r

√
η2)j̃k(ir

√
ζ 2)Pk,2(η, ζ )

= j̃0

(
ir

√
(ζ + iη)2

)
.

For this calculation see [4] and [5], for example. By (2), we note that

j̃0(t) =
√
π

2

∞∑
l=0

1

l!Γ (3/2 + l)

(
it

2

)2l

.

Therefore,

(Gω0fy)(τ, a) = 1

ab

∫
S2
r

Gω0

(
x − τ

a

)
e−(x−y)2/2b2

dΩx

= 1

ab
eiτ ·

ω0
a e

− 1
2

(
r2+τ2

a2 + 2r2

b2

)
j̃0

(
ir

√
(
τ

a2 + y

b2 − i
ω0

a
)2

)
.

By (1), we have

|(Gω0fy)(τ, a)| ≤ 1

ab
e
− 1

2

(
r2+τ2

a2 + 2r2

b2

)
e

(
r

√
τ2

a2 + r2

b2

)
= 1

ab
exp

(
− (r −√

τ 2)2

2a2

)
.

For t ∈ R, the graph of j̃ 0(t) is as follows:
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3.3 Gabor Wavelet Transform of a Constant Function

When f (x) = C ∈ L2(S2
r ) is a constant function,

(Gω0f )(τ, a) = C

a

∫
S2
r

Gω0

(
x − τ

a

)
dΩx

= C

a

∫
S2
r

e−i(x−τ )· ω0
a e−

1
2 (

x−τ
a )

2
dΩx

= C

a
eiτ ·

ω0
a e

− 1
2

(
r2+τ2

a2

) ∫
S2
r

e−ix· ω0
a e

x· τ

a2 dΩx. (3)

Thus as we calculated in [4], we have

(Gω0f )(τ, a) = C

a
ei

τ ·ω0
a e

− r2+τ2

2a2 j̃0

(
r

√
(aω0 + iτ )2

a2

)
.

By (3), we have

|Gω0f (τ, a)| ≤ C

a
e
− r2+τ2

2a2 e
r
√

τ2

a2 = C

a
exp

(
− (r −√

τ 2)2

2a2

)
.

For r, r ′ > 0 and put τ0 = r ′τ ′0, τ ′0 ∈ S2
1 and x0 = rτ ′0. Let f be a function on S2

r

and let (Gω0f )(τ, a) be the Gabor wavelet transform of f . By examples as above,
for a sufficiently small a, the graph of |(Gω0f )(τ, a)| near τ0 tells us some behavior
of f near x0.
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Application of Complex Continuous
Wavelet Analysis to Auditory Evoked
Brain Responses

Nobuko Ikawa, Akira Morimoto, and Ryuichi Ashino

Abstract Most infants learn words by hearing. Hearing tests for infants are very
important because infants who are hard of hearing often need special training to
learn language skills. Unfortunately, hearing tests take 30 min, during which time
the infant must often be under anesthesia. Therefore, reducing the test time would
be beneficial. This paper proposes the use of a new hearing test based on the complex
continuous wavelet analysis as a possible faster alternative.

1 Introduction

It is well known that Helen Adams Keller tried her utmost efforts to get language
skills. For infants who are hard of hearing, the earlier the infants have hearing test,
the more the language skills infants have. Nowadays, all the newborn infants have
the automated ABR hearing test (see [6]). If an infant does not pass the automated
ABR hearing test, he or she needs to have the ASSR hearing test further. These tests
use EEG. Unfortunately, the automated ABR hearing test takes about 15 min, and
the ASSR hearing test takes about 30 min.

All the newborn infants have the automated ABR hearing test during sleep. When
an infant has the ASSR hearing test, the infant must often be under anesthesia. By
this reason, reducing test times of the automated ABR hearing test and the ASSR
hearing test is indispensable. We propose the use of a new hearing test based on the
complex continuous wavelet analysis as a possible faster alternative.
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Wavelet analysis is a new time-frequency analysis, more precisely, time-scale
analysis (see [12]). Several applications of wavelet analysis in the neurosciences
are given in [2]. The auditory nerve relays electrical nerve impulses from ears to
the cerebrum. We record activities of the auditory neuron group at midbrain as
electroencephalogram (EEG). This EEG is called an auditory evoked brain response
(AEBR). AEBRs are used to assist human objective audiometry tests. For the
tests, an auditory brainstem response (ABR) and an auditory steady-state response
(ASSR) are commonly used.

Some earlier applications of wavelets to ABR were presented by Hanrahan [4,
5]. There are many papers to apply wavelet analysis to ABR and ASSR. Bradley
and Wilson [1] applied wavelet analysis to auditory evoked potentials (AEPs). The
proposed method by Bradley and Wilson uses the 2048 averaged ABR data.

In [7, 8, 10], we proposed a new method which uses only 10 averaged ABR
data. Our proposed method reduces observation time. In this paper, we apply the
one-dimensional complex continuous wavelet analysis (CCWA) to ABRs. Several
experiments show that ABR consists of three groups in the time domain. By
watching results of applying the CCWA to ASSRs, we propose a new averaging
method based on the Galambos idea. Several experiments demonstrate that our
proposed method is seven times faster than the conventional methods.

2 One-Dimensional Complex Continuous Wavelet Analysis

A mother wavelet is a function ψ ∈ L2(R) with zero average:
∫ +∞
−∞ ψ(t) dt = 0.

Usually, it is normalized ‖ψ‖ = 1 and centers in the neighborhood of t = 0. For

a > 0 and b ∈ R, we define ψa,b(t) = 1√
a
ψ

(
t − b

a

)
. Note that ‖ψa,b‖ = 1. The

continuous wavelet transform of x ∈ L2(R) at (a, b) is defined by

Wψ [x(t)](a, b) = C(a, b) = 〈x,ψa,b〉 =
∫ ∞

−∞
x(t)ψ∗

a,b(t) dt,

where ψ∗ denotes the complex conjugate of ψ . For the mother wavelet, we choose

the complex Morlet wavelet function ψ(t) defined by ψ(t) = 1√
2πσ 2

e
− t2

2σ2 eiω0t ,

which is illustrated in Fig. 1. The real part �ψ(t) of ψ(t) is reflection symmetric at
t = 0. The imaginary part �ψ(t) of ψ(t) is point symmetric at (0, 0). Here, we put

σ =
√

3
2 , ω0 = 2π and used the MATLAB(2016a) function:

[PSI,X] = cmorwavf(LB,UB,N,FB,FC)
for the complex Morlet wavelet with LB=-5, UB=5, N=1000, FB=1.5, FC=1.

In this paper, the wavelet analysis using the Morlet wavelet is called the one-
dimensional complex continuous wavelet analysis (CCWA).
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Fig. 1 The complex Morlet
wavelet
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3 Apply CCWA to ABR

The ABRs used in this paper were recorded in an acoustically quiet room. Subjects
reclined in a comfortable chair or lay on a bed. An electrode was placed high on
each subject’s vertex. Two electrodes were placed on the earlobes of both ears. The
ground electrode was placed on the forehead. The subjects were healthy 20-year-old
male adults.

As input stimuli, acoustic stimuli composed of clicks with 70 dB nHL intensity,
0.1 ms duration, and 20 Hz frequency. Here, the decibel normal hearing level (dB
nHL) values are referred to hearing thresholds of normal hearing subjects. We stored
512-points EEG data after the click stimulus. The 512-points data is called an epoch.
The duration of one epoch is 10.24 ms, since the sampling rate is 50,000 Hz.

Definition 1 Denote by Epochk , the kth epoch. Define ABRN = 1

N

N∑
k=1

Epochk .

We call ABRN by N-average ABR.

In this paper, 2000-average ABR is simply called ABR. Figure 2 shows the
results of applying the CCWA to two normal samples of ABRs. Each waveform
(upper graph) shows the original waveform of ABR. Each intensity image (lower
graph) shows the modulus of the continuous wavelet transform Ca,b = C(a, b).
Yellow indicates high modulus, and black indicates low modulus. The horizontal
axis indicates time from 0 to 10 ms. These graphs of two examples show the typical
characteristics of the peaks of the normal ABR waveforms. From the results of
CCWA, we observed that ABR waveform has the three frequency bands. The first
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Fig. 2 Apply CCWA to ABRs. The upper ABR has the fourth peak at 5 ms. The lower ABR does
not have this peak

group consists of the time interval from 0 to 3 ms. The second group consists of the
time interval from 3 to 7 ms. The third group consists of the time interval from 7 to
10 ms. Furthermore, the second group has two yellow frequency bands. However,
there is a difference between two modulus intensity images. The different frequency
results around 5 ms suggest whether the fourth peak in ABR exists or not.

4 Apply CCWA to ASSR

For assessment of the clinical hearing level of infants, the MASTER (multiple
auditory steady-state evoked response [11]) and Navigator PRO systems are useful.
These systems use the 80-Hz ASSR. It takes 30 min to test the hearing level for five
frequencies. Thirty minutes is quite a long time, especially for infants or very young
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children. Measuring the 80-Hz ASSR, we use a sedative, because subjects must be
asleep.

On the other hand, the 40-Hz ASSR can be measured when subjects are awake.
Therefore, a rapid objective audiometry test has been desired for the 40-Hz ASSR.
The 40-Hz ASSR was recorded using our previous proposed hardware system
shown in [9]. The input stimuli (sound conditions) were a sinusoidal amplitude-
modulated (SAM) tone. We fixed a modulation frequency (MF) at 40 Hz. We
selected a single carrier frequency (CF) of 1000 Hz. We started the sound intensity
at 70 dB nHL. Then, we decreased the sound intensity to its threshold, in steps of 10
dB nHL. For normal hearing subjects, the 40-Hz ASSR is recorded as a waveform
of the same frequency as the modulation frequency (40 Hz).

We recorded EEG for up to 30 s. The sampling frequency was 1024 Hz. We cut
the digital data into epochs. One epoch consisted of 512-points data. The duration of
one epoch was 500 ms. We needed to average at least 20 epochs with sound stimuli
above 60 dB nHL. We needed to average at least 40 epochs with sound stimuli below
60 dB nHL. For 60 dB nHL, if we were unable to detect the 40-Hz ASSR by the
average of 20 epochs, then we checked the average of 40 epochs. Since one epoch
took 500 ms, we should measure EEG for 10 s or for 20 s.

In order to decrease time of measuring EEG for our original objective audiometry
device, we design a new procedure of averaging waveforms of the 40-Hz ASSR. Our
averaging method is based on the Galambos idea shown in Fig. 3. Since the sampling
frequency is 1024 Hz, 1024/40 = 25.6 ≈ 26 points are shifted for one period of 40
Hz. For the sampling data D = {d[t] | t = 0, 1, 2, . . .} and m ≥ 1, put

ak = (d[26(k − 1)], d[26(k − 1)+ 1], . . . , d[26(k − 1)+ 511]), k = 1, . . . ,m.

Then, for M ≤ (m− 20), we define an averaged vector as sM = 1

M

M+20∑
k=21

ak .

We have the following two observations. In the first step, we applied the CCWA
to spontaneous EEG (non-evoked) waveforms. The CCWA results are shown in
Fig. 4. The result of one epoch waveform a1 is shown in the left graph. The result
of the averaged spontaneous EEG S40 is shown in the right graph. We can observe
brain waves of periodic frequency, but we cannot observe 40 Hz waves. In Fig. 4,
yellow indicates high modulus, and black indicates low modulus.

In the second step, we applied the CCWA to auditory evoked brain waveforms.
The results are shown in Fig. 5. The CCWA results of one epoch waveform a1 with
70, 50, and 30 dB nHL are illustrated in the left side of Fig. 5. We cannot observe
40 Hz waves. The CCWA results of the averaged vectors are illustrated in the right
side of Fig. 5. We can observe 40 Hz waves. We use S20 for 70 dB nHL and S40 for
50 or 30 dB nHL.

Several experiments demonstrate that we can detect the 40-Hz ASSR using S20
with sound stimuli above 60 dB nHL. Several experiments demonstrate that we can
detect the 40-Hz ASSR using S40 below 60 dB nHL. We need to measure EEG
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Fig. 3 Relationship of the 40-Hz event related potential (ERP) and middle latency response [3]
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Fig. 4 Apply CCWA to non-evoked brain waveforms (spontaneous EEG). Left: one epoch a1.
Right: the averaged vector S40
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Fig. 5 Apply CCWA to 40-Hz ASSRs. Left: one epoch a1. Right: the averaged vector S20 for
70 dB nHL and S40 for 50 or 30 dB nHL

for 1.5 s or for 2 s. Then, our new averaging method is seven times faster than the
conventional methods.

5 Conclusions

From the graphs of applying the CCWA to ABRs and ASSRs, we obtain the time-
frequency characteristics of waveforms. The ABR consists of three groups in the
time domain. Each group consists of multiple frequency bands.

In the case of 40-Hz ASSRs, for one epoch waveform, we have not observed the
typical response around 40 Hz, when all subjects receive the sound stimuli. It means
that the procedure of averaging epochs is essentially needed for the detection of the
40-Hz ASSR. We propose the averaging method based on the Galambos idea. We
can detect the 40-Hz ASSR using S20 with sound stimuli above 60 dB nHL. We can
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detect the 40-Hz ASSR using S40 below 60 dB nHL. Our proposed method is seven
times faster than the conventional methods.

The automated detection using the CCWA is a future work.
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Detection of Rotation Angles on Image
Separation Problem

Akira Morimoto, Ryuichi Ashino, and Takeshi Mandai

Abstract An image separation problem, where observed images are mixtures of
rotated original images, is considered. Two procedures to detect rotation angles are
proposed. Numerical experiments show the usefulness of proposed procedures.

1 Introduction

In 1953, Cherry studied the “cocktail party problem,” that is, “how do we recognize
what one person is saying when others are speaking at the same time?,” in [1].
Cherry posed an open problem: “On what logical basis could one design a machine
for carrying out such an operation?”

In 1991, Jutten et al. designed the machine in [2–4] and called their methods
INdependent Components Analysis (INCA, now it is called ICA). In their situation,
we observe several mixtures of original signals, then we separate the mixtures into
original signals. This inverse problem is called a blind source separation (BSS).
ICA is a powerful tool for solving BSS problems, for example, see [5]. There are
methods which can solve BSS problems without using ICA, for example, see [6].

We have been interested in time-scale analysis using wavelet transforms, and
we have been applying it to BSS problems. In [7–9], we used a pair of wavelet
transforms to separate speech signals without time delay. In [10], we applied the
analytic wavelet transform to solve speech separation problems with time delay. We
considered image separation problems and proposed to use the continuous multi-
wavelet transforms in [11, 12]. We proposed N-tree discrete wavelet transforms in
[13]. We proposed a source reduction method by Gaussian elimination in [14]. We
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treated image separation with translation in [15]. In this paper, we consider image
separation problems where observed images are mixtures of rotated original images.

2 Image Mixing Model

Let us define the translation operator Tc and the rotation operator Rθ on L2(R2) by

Tcf (x) = f (x − c),

Rθf (x) = f (P (−θ)x),

where f ∈ L2(R2), c ∈ R2, θ ∈ [0, 360) [degree], and P(θ) =
(

cos θ − sin θ

sin θ cos θ

)
is

a rotation matrix.
Let sn ∈ L2(R2), n = 1, . . ., N be original images, and let yj ∈ L2(R2), j = 1,

. . ., J be observed images. Assume that the observed images are given by the mixing
model:

yj =
N∑

n=1

aj,nTcj,nRθj,n sn, (1)

where N is the number of original images, aj,n are mixing coefficients, cj,n are
translation parameters, and θj,n are rotation angles. A sample of observed images is
illustrated in Fig. 1. From J observed images, we first estimate unknown parameters,
N , aj,n, cj,n, and θj,n and second separate original images. We assume that the
number J of observed images is larger than or equal to the number N of original
images. Under this assumption, after estimating all parameters, we separate original
images.

In [15], we estimated translation parameters when all θj,n vanish. In this paper,
we estimate rotation angles when all cj,n vanish. We treat the following mixing
model:

yj =
N∑

n=1

aj,nRθj,n sn, j = 1, 2. (2)

First, we estimate the number N of original images. Next, we estimate

(θ1,n − θ2,n)(mod 360) [degree], n = 1, . . . , N,

which are called relative rotation angles in this paper. In our numerical simulations,
we set N = 6. The original images are illustrated in Fig. 2 left. Mixing coefficients
are uniformly distributed random numbers in [0.2, 0.8], and rotation angles are
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Fig. 1 A sample of observed images

Fig. 2 Left: original images, sn, n = 1, . . . , 6. Right: rotated images of s1 with rotation angles
θ = 33, 152, 191, and 309 [degree]

uniformly distributed random numbers between 0 and 360 [degree]. Let the mixing
coefficients be

A = (aj,n) =
(

0.7063 0.5064 0.7379 0.5986 0.2506 0.2107
0.4301 0.7653 0.4034 0.3448 0.2904 0.6540

)
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Fig. 3 A sample pair of observed images

and the rotation angles be

Θ = (θj,n) =
(

247.50 26.35 23.36 154.99 113.03 254.71
217.14 303.18 84.30 311.86 50.81 359.27

)
.

Then we have observed images y1 and y2 illustrated in Fig. 3. Our purpose is
to estimate the number N of original images and the relative rotation angles
(θ1,n − θ2,n)(mod 360). In this simulation,

N = 6,(
θ1,n − θ2,n

)
n=1,...,N = ( 30.36 83.17 299.06 203.13 62.22 255.44

)
. (3)

3 Rotation Angle Detection

Let us introduce our procedure to estimate the number N of original images and the
relative rotation angles from two observed images. In the following two procedures,
Ñ denotes an estimate of N , and θ̃n, n = 1, . . . , Ñ denote estimates of the relative
rotation angles.

1. Apply the linear edge extraction filter to observed images.
2. Take an inner product between the edge image of the first observed image and

the rotated edge image of the second observed image.
3. Plot the graph of the inner product versus rotation angle, see Fig. 6.
4. Let Ñ be the number of peaks in the graph.
5. Let θ̃n, n = 1, . . . , Ñ be the rotation angles which attain peaks in the graph.
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Fig. 4 Left: the Fourier image of y1 (log scale). Right: the Fourier mask for edge extraction

Fig. 5 Negatives of the absolute values of edge images. Left: y1 and right: y2

In the first step, take the Fourier transform of the observed image y1 (see Fig. 4
left). Multiply the mask illustrated in Fig. 4 right, and apply the inverse Fourier
transformation. Then, we have an edge image of y1. Figure 5 shows negatives of the
absolute values of edge images.

We illustrate the graph of the inner product versus rotation angle in Fig. 6. The
number of peaks in the graph is six, which coincides with our estimation of the
number N of original images. The angles which attain peaks in the graph indicate
our estimations of the relative rotation angles.

We propose another procedure to estimate the number N of original images and
the relative rotation angles in the Fourier space.

1. Apply the Fourier transformation to observed images.
2. Apply the mask illustrated in Fig. 4 right to the Fourier observed images.
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Fig. 6 The graph of the inner
product versus rotation angle.
Crosses correspond to the
relative rotation angles in (3)

0 100 200 300
-1

0

1

2

3

4

5
10

6

Degree

Fig. 7 The graph of the
absolute value of the inner
product versus rotation angle.
The inner product is
calculated in the Fourier
space. Crosses correspond to
the relative rotation angles
in (3)
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3. Take an inner product between the first masked Fourier image and the rotated
second masked Fourier image.

4. Plot the graph of the absolute value of the above inner product versus rotation
angle, see Fig. 7.

5. Let Ñ be the number of peaks in the graph.
6. Let θ̃n, n = 1, . . . , Ñ be the rotation angles which attain peaks in the graph.

Figure 7 is the graph of the absolute value of the inner product versus rotation
angle. We can estimate the number of original images and the relative rotation
angles.
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4 Conclusion and Feature Works

Under the condition described in Sect. 2, many numerical experiments suggest that
our proposed procedures can estimate the number of original images and the relative
rotation angles. We need a method to estimate ratios of mixing coefficients.

The computational costs of our proposed methods are rather high. To reduce the
computational costs, we use the polar coordinate system of edge images illustrated
in Fig. 8 and a circular convolution to make a similar graph of Fig. 6. This graph
illustrated in Fig. 9 is noisier than Figs. 6 and 7. We cannot detect six peaks in
Fig. 9. To treat the mixing model equation (1), more computational cost is needed.
To reduce the computational cost, a modification of the polar coordinate system will
be needed.

r
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[degree]

Fig. 8 Left: making the polar coordinate system. Right: the polar coordinate system of the first
edge image
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Fig. 9 The graph of the absolute value of the circular convolution versus rotation angle. Crosses
correspond to the relative rotation angles in (3)
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on partial differential equations.



Uniform Boundary Stabilization
of the Wave Equation with a Nonlinear
Delay Term in the Boundary Conditions

Wassila Ghecham, Salah-Eddine Rebiai, and Fatima Zohra Sidiali

Abstract A wave equation in a bounded and smooth domain of Rn with a delay
term in the nonlinear boundary feedback is considered. Under suitable assumptions,
global existence and uniform decay rates for the solutions are established by
adopting an approach due to Lasiecka and Tataru (Differ Integral Equ 6:507–533,
1993). The proof of existence of solutions relies on a construction of a suitable
approximating problem for which the existence of solution will be established
using nonlinear semigroup theory and then passage to the limit gives the existence
of solutions to the original problem. The uniform decay rates for the solutions
are obtained by proving certain integral inequalities for the energy function and
by establishing a comparison theorem which relates the asymptotic behaviour of
the energy and of the solutions to an appropriate dissipative ordinary differential
equation.

1 Introduction

In [2], Datko et al. showed that an arbitrarily small time delay in the feedback
may destabilize a wave system which is otherwise exponentially stable. Xu et al.
[7] established sufficient conditions that guarantee the exponential stability of the
one-dimensional wave equation with a delay term in the linear boundary feedback.
Nicaise and Pignotti [6] extended this result to the multi-dimensional wave equation
with a delay term in the linear boundary or internal feedback. In this paper, we study
the problem of stability for the multi-dimensional wave equation with a delay term
in the nonlinear boundary feedback.

Let Ω be an open bounded domain of Rn with smooth boundary Γ which
consists of two non-empty parts Γ1 and Γ2 such that Γ 1 ∩ Γ 2 = ∅. Let ν(.) denote
the unit normal on Γ pointing towards the exterior of Ω. In Ω, we consider the
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wave equation with a nonlinear delay term in the boundary conditions

utt (x, t)−Δu(x, t) = 0 in Ω × (0,+∞),

u(x, 0) = u0(x), ut (x, 0) = u1(x) in Ω,

u(x, t) = 0 on Γ1 × (0,+∞), (1)

∂u

∂ν
(x, t) = −α1f (ut (x, t))− α2g(ut (x, t − τ )) on Γ2 × (0,+∞),

ut (x, t − τ ) = f0(x, t − τ ) on Γ2 × (0, τ ),

where ∂u
∂ν

is the normal derivative and τ > 0 is the time delay. Moreover, α1 and α2
are positive constants, u0, u1, and f0 are the initial data which belong to appropriate
Hilbert spaces, and f and g are real-valued functions of class C(R).

In absence of delay (α2 = 0), stability problems for (1) have been extensively
treated in the literature (see [1, 3, 4, 8]), and the energy estimates obtained depend
on the nonlinear function f.

The main purpose of this paper is to study the asymptotic behaviour of the
solutions of (1) in the case where both α1 and α2 are different from zero. To this
aim, we need to make the following assumptions:

(H1)

(i) f is a continuous monotone increasing function on R;
(ii) f (0) = 0 and sf (s) > 0 for s �= 0;
(iii) sf (s) ≤ M1s

2 for |s| ≥ 1, for some M1 > 0.

(H2)

(i) g is an odd nondecreasing locally Lipschitz continuous function on R;
(ii) g(0) = 0 and sg(s) > 0 for s �= 0;
(iii) sg(s) ≤ M2s

2 for s ∈ R, for some M2 > 0;
(iv) sg(s) ≥ M3s

2 for |s| ≥ 1, for some M3 > 0;
(v) a1sg(s) ≤ G(s) ≤ a2sf (s), where G(s) = ∫ s

0 g(r)dr, for some positive
constants a1anda2.

(H3) α1 > a2α2
a1

.
(H4) There exists x0 ∈ Rn such that with m(x) = x − x0,

m(x).ν(x) ≤ 0 on Γ1.

Regarding the well-posedness of the solutions to system (1), we have the
following result.
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Theorem 1 Assume (H1) and (H2). Then, for each (u0, u1, f0) ∈ H 1
Γ1
(Ω) ×

L2(Ω)× L2(Γ2, L
2(0, τ )), system (1) has at least one solution

u ∈ Cloc(0,+∞;H 1
Γ1
(Ω)) ∩ C1

loc(0,+∞;L2(Ω)),

such that

ut ∈ L2
loc(0,+∞;L2(Γ2)),

∂u

∂ν
∈ L2

loc(0,+∞;L2(Γ2)).

In order to state our stability result, we introduce as in [4] a real valued strictly
increasing concave function h(s) defined for s ≥ 0 and satisfying

h(0) = 0;
h(sf (s)) ≥ s2 + f 2(s) for |s| ≤ N, for some N > 0,

and we define the following functions:

•

h̃(s) = h(
s

mes Σ2
), s ≥ 0,

where Σ2 = Γ2 × (0, T ) and T is a given constant.
•

p(s) = (cI + h̃)−1Ks,

where c and K are positive constants. Then p is a positive, continuous, strictly
increasing function with p(0) = 0.

•

q(s) = s − (I + p)−1(s), s > 0,

q is also a positive, continuous, strictly increasing function with q(0) = 0.

Let E(t) be the energy function corresponding to the solution of (1) defined by

E(t) = 1

2

∫
Ω

{|∇u(x, t)|2 + |ut (x, t)|2}dx + ξ

2

∫
Γ2

∫ 1

0
G(ut(x, t − ρτ))dρdΓ,

where the positive constant ξ is such that
(H5)

2τα2

a2
(1 − a1) < ξ <

2τ

a2
(α1 − α2a2).
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Theorem 2 Assume hypotheses (H1)–(H5). Let (u, ut ) be a solution of system (1)
with the properties stated in Theorem 1. Then for some T0 > 0,

E(t) ≤ S(
t

T0
− 1)(E(0)) for t > T0,

where S(t) is the solution of the differential equation

d

dt
S(t)+ q(S(t)) = 0, S(0) = E(0).

If we additionally assume that the function f (s) is of a polynomial growth at the
origin, the following explicit decay rates are obtained.

Corollary 1 Assume in addition to (H1)–(H5) that there exists positive constants
b1 and b2 such that

f (s)s ≤ b1s
2 for all s ∈ R,

f (s)s ≥ b2 |s|p+1 for |s| ≤ 1, for some p ≥ 1.

Then

E(t) ≤ Me−δt if p = 1,

E(t) ≤ Mt
2

1−r if p > 1.

The rest of the paper is organized as follows: In Sect. 2, we sketch the proof of
Theorem 1 and in Sect. 3, we outline the proof of Theorem 2.

2 Sketch of the Proof of Theorem 1

We first prove the theorem, by the arguments of nonlinear semigroup theory, for g

Lipschitz continuous on R and f strongly monotone.
Then we consider the following approximation of problem (1) with l as the

parameter of approximation:

ult t (x, t)−Δul(x, t) = 0 in Ω × (0,+∞),

ul(x, 0) = u0(x), ult (x, 0) = u1(x) in Ω,

ul(x, t) = 0 on Γ1 × (0,+∞), (2)

∂ul

∂ν
(x, t) = −α1fl(ult (x, t))− α2gl(ult (x, t − τ )) on Γ2 × (0,+∞),

ult (x, t − τ ) = f0(x, t − τ ) on Γ2 × (0, τ ),
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where

fl(ul(x, t)) = f (ul(x, t))+ 1

l
ult (x, t)

and the functions gl are defined by

gl(s) =
⎧⎨
⎩

g(s), |s| ≤ l

g(l), s ≥ l

g(−l), s ≤ −l.

Notice that for each value of the parameter l, the functions fl are strongly monotone
and the functions gl are Lipschitz continuous on R. Then there exists a solution
(ul, ult ) of (2) such that

ul ∈ Cloc(0,+∞;H 1
Γ1
(Ω)) ∩ C1

loc(0,+∞;L2(Ω))

and

ult ∈ L2
loc(0,+∞;L2(Γ2)),

∂ul

∂ν
∈ L2

loc(0,+∞;L2(Γ2)).

We prove that we can extract a subsequence from the above sequence of solutions
ul that has limit which is a solution of problem (1).

3 Sketch of the Proof of Theorem 2

By virtue of Lemma 2.2 in [4], it is enough to prove the theorem for smooth solutions

u ∈ C(0, T ;H 2(Ω)) ∩ C1(0, T ;H 1
Γ1
(Ω)).

We proceed in several steps.

Step 1
Differentiating E(t) and applying Green’s theorem, we conclude that the energy is
decreasing and there exists a constant C > 0 such that

d

dt
E(t) ≤ −C

∫
Γ2

{ut (x, t)f (ut (x, t)+ ut (x, t − τ )g(ut (x, t − τ )}dΓ dt.

Here and throughout the rest of the paper C is a positive constant at different
occurrences.
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Step 2
Set

E(t) = E (t)+ Ed(t),

where

E (t) = 1

2

∫
Ω

{|∇u(x, t)|2 + |ut (x, t)|2}dx

and

Ed(t) = ξ

2

∫
Γ2

∫ 1

0
G(ut(x, t − ρτ)dρdΓ.

From the mean value theorem and the monotonicity of g, we have

Ed(t) ≤ C

∫ T

0

∫
Γ2

ut (x, t − τ )g(ut (x, t − τ ))dΓ dt.

Step 3
For E (t), we have the following estimate obtained by combining the multiplier
techniques (multiplying both sides of the first equation in (1) by m(x).∇u(x, t) and
integrating over Ω × (0, T )) and the absorption of the tangential gradient by the
normal derivative ∂u

∂ν
and u (Lemma 7.2 in [5]):

∫ T

0
E (t)dt ≤ C{E(T )+

∫ T

0

∫
Γ2

{u2
t (x, t)+ f 2(ut (x, t))+

ut (x, t − τ )g(ut (x, t − τ ))}dΓ dt} + C ‖u‖2
L2(0,T ;H 1/2+ε (Ω))

,

where 0 < ε < 1/2 is small enough arbitrary but fixed.

Step 4
From Steps 2 and 3, we have

∫ T

0
E(t)dt ≤ C{E(T )+

∫ T

0

∫
Γ2

{u2
t (x, t)+ f 2(ut (x, t))+

ut (x, t − τ )g(ut (x, t − τ ))}dΓ dt} + C ‖u‖2
L2(0,T ;H 1/2+ε (Ω))

,
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which in turn implies since E(t) is nonincreasing

E(T ) ≤ C

∫ T

0

∫
Γ2

{u2
t (x, t)+ f 2(ut (x, t)+ ut (x, t − τ )g(ut (x, t − τ ))}dΓ dt +

C ‖u‖2
L2(0,T ;H 1/2+ε (Ω))

.

Step 5
We drop the lower-order term on the right-hand side of the previous estimate by
compactness/uniqueness argument to obtain

E(T ) ≤ C

∫ T

0

∫
Γ2

{u2
t (x, t)+ f 2(ut (x, t))+ ut (x, t − τ )g(ut (x, t − τ ))}dΓ dt.

Step 6
From the estimate established in Step 5 and the hypothesis (H1), we get

p(E(T ))+ E(T ) ≤ E(0).

Step 7
Now, from Step 6, we have for m = 0, 1, 2, . . .

E(m(T + 1))+ p(E(m(T + 1)) ≤ E(mT ).

Set

sm = E(mT ), s0 = E(0).

It follows from Lemma 3.3 in [4] that

E(mT ) ≤ S(m), m = 0, 1, 2, . . . .

Let t = mT + τ and recall the evolution property, we obtain

E(t) ≤ E(mT ) ≤ S(m) ≤ S(
t − τ

T
) ≤ S(

t

T
− 1) for t > T .

This is the sought-after stability result.
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