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Abstract. We prove that every set S of Δ slopes containing the hori-
zontal slope is universal for 1-bend upward planar drawings of bitonic
st-graphs with maximum vertex degree Δ, i.e., every such digraph admits
a 1-bend upward planar drawing whose edge segments use only slopes
in S. This result is worst-case optimal in terms of the number of slopes,
and, for a suitable choice of S, it gives rise to drawings with worst-case
optimal angular resolution. In addition, we prove that every such set
S can be used to construct 2-bend upward planar drawings of n-vertex
planar st-graphs with at most 4n − 9 bends in total. Our main tool is a
constructive technique that runs in linear time.

1 Introduction

Let G be a graph with maximum vertex degree Δ. The k-bend planar slope
number of G is the minimum number of slopes for the edge segments needed to
construct a k-bend planar drawing of G, i.e., a planar drawing where each edge is
a polyline with at most k ≥ 0 bends. Since no more than two edge segments inci-
dent to the same vertex can use the same slope, �Δ/2� is a trivial lower bound
for the k-bend planar slope number of G, irrespectively of k. Besides its theo-
retical interest, this problem forms a natural extension of two well-established
graph drawing models: The orthogonal [6,16,18,29] and the octilinear drawing
models [3,4,7,26], which both have several applications, such as in VLSI and
floor-planning [25,30], and in metro-maps and map-schematization [21,27,28].
Orthogonal drawings use only 2 slopes for the edge segments (0 and π

2 ), while
octilinear drawings use no more than 4 slopes (0, π

4 , π
2 , and 3π

4 ); consequently,
they are limited to graphs with Δ ≤ 4 and Δ ≤ 8, respectively.

These two drawing models have been generalized to graphs with arbitrary
maximum vertex degree Δ by Keszegh et al. [23], who proved that every planar
graph admits a 2-bend planar drawing with �Δ/2� equispaced slopes. As a wit-
ness of the tight connection between the two problems, the result by Keszegh
et al. was built upon an older result for orthogonal drawings of degree-4 planar
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graphs by Biedl and Kant [6]. In the same paper, Keszegh et al. also stud-
ied the 1-bend planar slope number and showed an upper bound of 2Δ and a
lower bound of 3

4 (Δ− 1) for this parameter. The upper bound has been recently
improved, initially by Knauer and Walczak [24] to 3

2 (Δ−1) and subsequently by
Angelini et al. [1] to Δ−1. Angelini et al. actually proved a stronger result: Given
any set S of Δ − 1 slopes, every planar graph with maximum vertex degree Δ
admits a 1-bend planar drawing whose edge segments use only slopes in S. Any
such slope set is hence called universal for 1-bend planar drawings. This result
simultaneously establishes the best-known upper bound on the 1-bend planar
slope number of planar graphs and the best-known lower bound on the angular
resolution of 1-bend planar drawings, i.e., on the minimum angle between any
two edge segments incident to the same vertex. Indeed, if the slopes in S are
equispaced, the resulting drawings have angular resolution at least π

Δ−1 .
In this paper we study slope sets that are universal for k-bend upward

planar drawings of directed graphs (or digraphs for short). Recall that in an
upward drawing of a digraph G, every edge (u, v) is drawn as a y-monotone
non-decreasing curve from u to v. Also, G admits an upward planar drawing if
and only if it is a subgraph of a planar st-graph [13,22]. As such drawings are
common for representing planar digraphs, they have been extensively studied
in the literature (see, e.g., [5,9,15,18,20]). A preliminary result for this setting
is due to Di Giacomo et al. [14], who proved that every series-parallel digraph
with maximum vertex degree Δ admits a 1-bend upward planar drawing that
uses at most Δ slopes, and this bound on the number of slopes is worst-case
optimal. Notably, their construction gives rise to drawings with optimal angular
resolution π

Δ (but it uses a predefined set of slopes). Upward drawings with one
bend per edge and few slopes have also been studied for posets by Czyzowicz
et al. [11].

(a) (b)

Fig. 1. (a) A 1-bend upward planar drawing of a bitonic st-graph, and (b) a
2-bend upward planar drawing of a planar st-graph, both defined on a slope set
S = {−π

4
, 0, π

4
, π
2
, π}.

Contribution. We extend the study of universal sets of slopes to upward pla-
nar drawings, and present the first constructive technique that works for all
planar st-graphs. This technique exploits a linear ordering of the vertices of a
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planar digraph introduced by Gronemann [19], called bitonic st-ordering (see
also Sect. 2). We show that any set S of Δ slopes containing the horizontal slope
is universal for 1-bend upward planar drawings of degree-Δ planar digraphs hav-
ing a bitonic st-ordering (Sect. 3). We remark that the size of S is worst-case
optimal [14] and, if the slopes of S are chosen to be equispaced, the angular
resolution of the resulting drawing is at least π

Δ (also optimal); see Fig. 1a for an
illustration. We then extend our construction to all planar st-graphs by using
two bends on a restricted number of edges (Sect. 4). More precisely, we show
that, given a set S of Δ slopes containing the horizontal slope, every n-vertex
upward planar digraph with maximum vertex degree Δ has a 2-bend upward pla-
nar drawing that uses only slopes in S and with at most 4n − 9 bends in total;
see Fig. 1b for an illustration.

For space reasons some proofs are omitted and can be found in [2].

2 Preliminaries

We assume familiarity with common notation and definitions about graphs,
drawings, and planarity (see, e.g., [12]). An upward planar drawing of a directed

v1 . . .v2
vh−1 vh+1 vq. . .

u

vh

(a) . . . <σ(vh−1)<σ(vh)>σ(vh+1)>. . .

v1 . . .
vi vi+1 vj

vqvj+1. . .
. . .

u

(b) (σ(vi)>σ(vi+1)) and (σ(vj)<σ(vj+1))

Fig. 2. (a) A bitonic sequence. (b) A forbidden configuration.

simple graph (or digraph for short) G is a planar drawing such that each edge of G
is drawn as a curve monotonically non-decreasing in the y-direction. An upward
drawing is strict if its edge curves are monotonically increasing. A digraph is
upward planar if it admits an upward planar drawing. Note that if a digraph
admits an upward drawing then it also admits a strict upward drawing. A digraph
is upward planar if and only if it is a subgraph of a planar st-graph [13]. Let
G = (V,E) be an n-vertex planar st-graph, i.e., G is a plane acyclic digraph with
a single source s and a single sink t, such that s and t belong to the boundary of
the outer face and the edge (s, t) ∈ E [13]. (Other works do not explicitly require
the edge (s, t) to be part of G, see, e.g., [19].) An st-ordering of G is a numbering
σ : V → {1, 2, . . . , n} such that for each edge (u, v) ∈ E, it holds σ(u) < σ(v)
(which implies σ(s) = 1 and σ(t) = n). Every planar st-graph has an st-ordering,
which can be computed in O(n) time (see, e.g., [10]). If u and v are two adjacent
vertices of G such that σ(u) < σ(v), we say that v is a successor of u, and u is a
predecessor of v. Denote by S(u) = {v1, v2, . . . , vq} the sequence of successors of
v ordered according to the clockwise circular order of the edges incident to u in
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the planar embedding of G. The sequence S(u) is bitonic if there exists an integer
1 ≤ h ≤ q such that σ(v1) < · · · < σ(vh−1) < σ(vh) > σ(vh+1) > · · · > σ(vq);
see Fig. 2a for an illustration. Notice that when h = 1 or h = q, S(u) is actually
a monotonic decreasing or increasing sequence. A bitonic st-ordering of G is
an st-ordering such that, for every vertex u ∈ V , S(u) is bitonic [19]. A pla-
nar st-graph G is a bitonic st-graph if it admits a bitonic st-ordering. Deciding
whether G is bitonic can be done in linear time both in the fixed [19] and in
the variable [8] embedding settings. If G is not bitonic, every st-ordering σ of G
contains a forbidden configuration defined as follows. A sequence of successors
S(u) of a vertex u forms a forbidden configuration if there exist two indices i
and j, with i < j, such that σ(vi) > σ(vi+1) and σ(vj) < σ(vj+1), i.e. there is a
path from vi+1 to vi and a path from vj to vj+1; see Fig. 2b.

Let G = (V,E) be an n-vertex maximal plane graph with vertices u, v, and
w on the boundary of the outer face. A canonical ordering [17] of G is a linear
ordering χ = {v1 = u, v2 = v, . . . , vn = w} of V , such that for every 3 ≤ i ≤ n:

C1: The subgraph Gi induced by {v1, v2, . . . , vi} is 2-connected and internally
triangulated, while the boundary of its outer face Ci is a cycle containing
(v1, v2);

C2: If i + 1 ≤ n, vi+1 belongs to Ci+1 and its neighbors in Gi form a subpath
of the path obtained by removing (v1, v2) from Ci.

Computing χ takes O(n) time [17]. Also, χ is upward if for every edge (u, v) of
a digraph G u precedes v in χ.

The slope of a line � is the angle α that a horizontal line needs to be rotated
counter-clockwise in order to make it overlap with �. If α = 0 we say that the
slope of � is horizontal. The slope of a segment is the slope of the line containing
it. Let S = {α1, . . . , αh} be a set of h slopes such that αi < αi+1. The slope set
S is equispaced if αi+1 − αi = π

h , for i = 1, . . . , h − 1. Consider a k-bend planar
drawing Γ of a graph G, i.e., a planar drawing in which every edge is mapped
to a polyline containing at most k + 1 segments. For a vertex v in Γ each slope
α ∈ S defines two different rays that emanate from v and have slope α. If α
is horizontal these rays are called left horizontal ray and right horizontal ray.
Otherwise, one of them is the top and the other one is the bottom ray of v. We
say that a ray rv of a vertex v is free if there is no edge attached to v through
rv in Γ . We also say that rv is outer if it is free and the first face encountered
when moving from v along rv is the outer face of Γ . The slope number of a
k-bend drawing Γ is the number of distinct slopes used for the edge segments
of Γ . The k-bend upward planar slope number of an upward planar digraph G is
the minimum slope number over all k-bend upward planar drawings of G.

3 1-Bend Upward Planar Drawings

Let G = (V,E) be an n-vertex planar st-graph with a bitonic st-ordering
σ = {v1, v2, . . . , vn}; see, e.g., Fig. 3a. We begin by describing an augmenta-
tion technique to “transform” σ into an upward canonical ordering of a suitable
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supergraph ̂G of G. We start from a result by Gronemann [19], whose properties
are summarized in the following lemma; see, e.g., Fig. 3b.

Lemma 1 ([19]). Let G = (V,E) be an n-vertex planar st-graph that admits
a bitonic st-ordering σ = {v1, v2, . . . , vn}. There exists a planar st-graph G′ =
(V ′, E′) with an st-ordering χ = {vL, vR, v1, v2, . . . , vn} such that: (i) V ′ =
V ∪{vL, vR}; (ii) E ⊂ E′ and (vL, vR) ∈ E′; (iii) vL and vR are on the boundary
of the outer face of G′; (iv) Every vertex of G with less than two predecessors in
σ has exactly two predecessors in χ. Also, G′ and χ are computed in O(n) time.

We call G′ a canonical augmentation of G. Observe that G′ always contains
the edges (vL, v1) and (vR, v1) because of Lemma (1). We also insert the edge
(vL, vn), which is required according to our definition of st-graph; this addition
is always possible because vL and vn are both on the boundary of the outer face.
The next lemma shows that any planar st-graph obtained by triangulating G′

admits an upward canonical ordering; see, e.g., Fig. 3c.

v1

v2

v3

v4
v5

v6
v7

v8

(a)

v1

v2

v3

v4
v5

v6
v7

v8

vL vR

(b)

v1

v2
v3

v4

v5
v6

v7

v8

vL vR

(c)

Fig. 3. (a) A bitonic st-graph G with σ = {v1, v2, . . . , v8}. (b) A canonical augmen-

tation G′ of G with χ = {vL, vR, v1, v2, . . . , v8}. (c) A planar st-graph ̂G obtained by

triangulating G′. χ is an upward canonical ordering of ̂G.

Lemma 2. Let G′ be a canonical augmentation of an n-vertex bitonic st-graph
G. Every planar st-graph ̂G obtained by triangulating G′ has the following prop-
erties: (a) it has no parallel edges; (b) χ = {vL, vR, v1, v2, . . . , vn} is an upward
canonical ordering.

Proof. Concerning Property (a), suppose for a contradiction that ̂G has two
parallel edges e1 and e2 connecting u with v. Let C be the 2-cycle formed by e1
and e2 and let VC be the set of vertices distinct from u and v that are inside
C in the embedding of ̂G. VC is not empty, as otherwise C would be a non-
triangular face of ̂G. Let w be the vertex with the lowest number in χ among
those in VC . Since ̂G is planar (in particular e1 and e2 are not crossed) and has
a single source, it contains a directed path from u to every vertex in VC . Hence,
it has an edge from u to w. Also, by assumption, there is no vertex z in VC
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such that χ(z) < χ(w), which implies that u is the only predecessor of w in
χ, a contradiction to Lemma 1(iv). Concerning Property (b), if χ is a canonical
ordering of ̂G, then χ is actually an upward canonical ordering because it is also
an st-ordering. To see that χ is a canonical ordering, observe first that vL, vR

and vn are on the boundary of the outer face of ̂G by construction. Denote by
̂Gi the subgraph of ̂G induced by {vL, vR, v1, . . . , vi} and let ̂Ci be the boundary
of its outer face. We first prove by induction on i (for i = 1, 2, . . . , n) that ̂Gi

is 2-connected. In the base case i = 1, ̂G1 is a 3-cycle and therefore it is 2-
connected. In the case i > 1, ̂Gi−1 is 2-connected by induction and vi has at
least two predecessors in ̂Gi−1 by Lemma 1(iv), thus ̂Gi is 2-connected. We now
prove that each ̂Gi, for i = 1, 2, . . . , n, is internally triangulated, which concludes
the proof of condition C1 of canonical ordering. Suppose, for a contradiction,
that there exists an inner face f that is not a triangle. Since ̂G is triangulated,
there exists a vertex vj , with j > i, that is embedded inside f in ̂Gj . Since
χ is an st-ordering, there is no directed path from vj to any vertex of f . On
the other hand, either vj = vn or there is a directed path from vj to vn. Both
cases contradict the fact that vn belongs to the boundary of the outer face of
̂G. We finally show that vi belongs to Ci, for i = 1, 2, . . . , n. Since we already
proved that ̂Gi is triangulated, this is enough to prove C2. By the planarity of
̂Gi, there is a face f in ̂Gi−1 such that all the neighbors of vi in ̂Gi−1 belong to
the boundary of f . We claim that f is the outer face of ̂Gi. If it was an inner
face, then vi would be embedded inside f in ̂Gi and, by the same argument used
above, vn would not belong to the boundary of the outer face of ̂G. 
�

We now show that any set of Δ slopes S that contains the horizontal slope
is universal for 1-bend upward planar drawings of bitonic st-graphs. The algo-
rithm is inspired by a technique of Angelini et al. [1]. We will use important
additional tools with respect to [1], such as the construction of a triangulated
canonical augmentation, extra slopes to draw the edges inserted by the aug-
mentation procedure, and different geometric invariants. Let G be an n-vertex
bitonic st-graph with maximum vertex degree Δ; see Fig. 3a. The algorithm first
computes a triangulated canonical augmentation ̂G of G; see Figs. 3b and c. We
call dummy edges all edges that are in ̂G but not in G and real edges the edges
in ̂G that are also in G. By Lemma 2, ̂G admits an upward canonical ordering
χ = {vL, vR, v1, v2, . . . , vn}, where χ is an st-ordering such that each vertex dis-
tinct from vL and vR has at least two predecessors. Let S = {ρ1, . . . , ρΔ} be any
set of Δ slopes, which we call real slopes. Let ρ∗ be the smallest angle between
two slopes in S and let Δ∗ be the maximum number of dummy edges incident
to a vertex of ̂G. For each slope ρi (1 ≤ i ≤ Δ), we add Δ∗ dummy slopes
{δi

1, . . . , δ
i
Δ∗} such that δi

j = ρi + j · ρ∗

Δ∗+1 , for j = 1, 2, . . . ,Δ∗. Hence, there are
Δ∗ dummy slopes between any two consecutive real slopes. We will use the real
slopes for the real edges and the dummy slopes for the dummy ones.

Let ̂Gi be the subgraph of ̂G induced by {vL, vR, v1, v2, . . . , vi}. The algorithm
constructs the drawing by adding the vertices according to χ. More precisely, it
computes a drawing ̂Γi of the digraph ̂G−

i obtained from ̂Gi by removing the
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dummy edges (vL, vR) and (v1, vR), which exist by construction, and (vR, v2)
if it exists. Let ̂Ci be the boundary of the outer face of ̂Gi, and let ̂Pi be the
path obtained by removing (vL, vR) from ̂Ci. For a vertex v of ̂Pi, we denote
by dr(v, i) (resp. dd(v, i)) the number of real (resp. dummy) edges incident to v

that are not in ̂Gi and by
�

ρj(v, i) (resp.
�

ρj(v, i)) the j-th outer real top ray in ̂Γi

encountered in clockwise (resp. counterclockwise) order around v starting from
the left (resp. right) horizontal ray. For dummy top rays, we define analogously
�

δj(v, i) and
�

δj(v, i). ̂Γi satisfies the following invariants:

̂Γi

≥ dr(v, i)

v

̂Pi

vL vR

(a) I3

�

α1(v, i)

v

̂Pi
̂Γi

�

ρ1(v, i)

�

α1(v, i)

�

ρ1(v, i)

≥ dd(v, i)

p p′
�

vL vR

≥ dd(v, i)

(b) I4–I5

u
v w

tu

(c)

u
v w

tu

(d)

Fig. 4. (a)–(b) Illustration for invariants I3–I5; real rays are dashed, dummy rays are
dotted. (c)–(d) Illustration for Lemma 4.

I1 ̂Γi is a 1-bend upward planar drawing whose real edges use only slopes in S.
I2 Every edge of ̂Pi contains a horizontal segment.
I3 Every vertex v of ̂Pi has at least dr(v, i) outer real top rays; see Fig. 4a.
I4 Every vertex v of ̂Pi has at least dd(v, i) outer dummy top rays between

�

δ1(v, i) and
�

ρ1(v, i) (resp.
�

δ1(v, i) and
�

ρ1(v, i)), including
�

δ1(v, i) (resp.
�

δ1(v, i)); see Fig. 4b.
I5 Let � be any horizontal line and let p and p′ be any two intersection points

between � and the polyline representing ̂Pi in ̂Γi; walking along � from left to
right, p and p′ are encountered in the same order as when walking along ̂Pi

from vL to vR; see Fig. 4b.

The last vertex vn is added to ̂Γn−1 in a slightly different way and the result-
ing drawing will satisfy I1. The next two lemmas state important properties of
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any 1-bend upward planar drawing satisfying I1–I5. Similar lemmas are proven
in [1, Lemmas 2 and 3], but for drawings that satisfy different invariants.

Lemma 3. Let ̂Γi be a drawing of ̂G−
i that satisfies Invariants I1–I5. Let (u, v)

be any edge of ̂Pi such that u is encountered before v along ̂Pi when going from
vL to vR, and let λ be a positive number. There exists a drawing ̂Γ ′

i of ̂G−
i

that satisfies Invariants I1–I5 and such that: (i) the horizontal distance between
u and v is increased by λ; (ii) the horizontal distance between any two other
consecutive vertices along ̂Pi is the same as in ̂Γi.

The next lemma can be proven by suitably applying Lemma3; see Figs. 4c
and d.

Lemma 4. Let ̂Γi be a drawing of ̂G−
i that satisfies Invariants I1–I5. Let u be

a vertex of ̂Pi, and let tu be any outer top ray of u that crosses an edge of ̂G−
i

in ̂Γi. There exists a drawing ̂Γ ′
i of ̂G−

i that satisfies Invariants I1–I5 in which
tu does not cross any edge of ̂G−

i .

We now describe our drawing algorithm starting with the computation of ̂Γ2.
We aim at drawing both v1 and v2 horizontally aligned between vL and vR. Note
that v1 is the source of G, and, by the definition of a canonical augmentation, v1
is adjacent to both vL and vR, while v2 is adjacent to v1 and to at least one of
vL and vR. We remove the dummy edges (v1, vR) and (vL, vR), and the dummy
edge (vR, v2) if it exists. The resulting graph is either the path 〈vL, v1, v2, vR〉 or
the path 〈vL, v2, v1, vR〉, which we draw along a horizontal segment.

Lemma 5. Drawing ̂Γ2 satisfies Invariants I1–I5.

Assume now that we have constructed drawing ̂Γi−1 of ̂Gi−1 satisfying I1–I5
(3 ≤ i < n). Let {u1, . . . , uq} be the neighbors of the next vertex vi along ̂Pi−1.

Let t1 be either
�

ρ1(u1, i−1), if (u1, vi) is real, or
�

δ1(u1, i−1), if (u1, vi) is dummy.

Symmetrically, let tq be either
�

ρ1(uq, i − 1), if (uq, vi) is real, or
�

δ1(uq, i − 1), if
(uq, vi) is dummy. Let tj (for 1 < j < q) be any outer real (resp. dummy) top
ray emanating from uj if (uj , vi) is real (resp. dummy). By I3 all such top rays
exist and by Lemma 4 we can assume that none of them crosses ̂Γi−1. Let � be a
horizontal line above the topmost point of ̂Γi−1. Let pj be the intersection point
of tj and �. We can assume that, for j = 1, 2, . . . , q − 1, pj is to the left of pj+1.
If this is not the case, we can increase the distance between uj and uj+1 so to
guarantee that pj and pj+1 appear in the desired order along �; this can be done
by applying Lemma3 with respect to each edge (uj , uj+1) for a suitable choice of
λ; see Figs. 5a and b for an illustration. We will place vi above � using q−2 bottom
rays b2, b3, . . . , bq−1 of vi for the segments of the edges (uj , vi) (j = 2, 3, . . . , q−1)
incident to vi such that: (i) bj (1 < j < q) is real (resp. dummy) if (uj , vi) is
real (resp. dummy); (ii) bj precedes bj+1 in the counterclockwise order around
vi starting from b2. This choice is possible for the real rays because vi has Δ− 1
real bottom rays and it has at least one incident real edge not in ̂Gi (otherwise
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� p2p3p1 p4
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b2

(c)

u4

�
p3

p2p1 p4

u3

vi�H

u2
u1

(d)

u4

�

u3

vi�H

u2
u1
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Fig. 5. Addition of vertex vi.

it would be a sink of G, which is not possible because i < n). Concerning
the dummy rays, we have at most Δ∗ dummy edges incident to vi and Δ∗

dummy bottom rays between any two consecutive real rays. Consider the ray t1
and choose a point p to the right of t1 and above � such that placing vi on p
guarantees that mini=1...q−2{x(p′

i+1)−x(p′
i)} > x(pq)−x(p1), where p′

1 = p1 and
p′
2, p

′
3, . . . , p

′
q−1 are the intersection points of the rays b2, b3, . . . , bq−1 with the

line � (see Fig. 5c). Observe that for a sufficiently large y-coordinate, point p can
always be found. We now apply Lemma3 to each of the edges (u1, u2), (u2, u3),
. . . , (uq−2, uq−1), in this order, choosing λ ≥ 0 so that each pj is translated to p′

j

(for j = 2, 3, . . . , q − 1). We finally apply again the same procedure to (uq−1, uq)
so that the intersection point between tq and the horizontal line �H passing
through vi is to the right of vi (see Fig. 5d). After this translation procedure, we
can draw the edge (u1, vi) (resp. (uq, vi)) with a bend at the intersection point
between t1 (resp. tq) and �H and therefore using the slope of t1 (resp. tq) and the
horizontal slope (see Fig. 5e). The edges (uj , vi) (j = 2, 3, . . . , q − 1) are drawn
with a bend point at pj = p′

j and therefore using the slopes of tj and bj .

Lemma 6. Drawing ̂Γi, for i = 3, 4, . . . , n − 1, satisfies Invariants I1–I5.

Proof. The proof is by induction on i ≥ 3. ̂Γi−1 satisfies Invariants I1–I5 by
Lemma 5 when i = 3, and by induction when i > 3.

Proof of I1. By construction, each (uj , vi) (j = 1, 2, . . . , q) is drawn as a chain
of at most two segments that use real and dummy slopes. In particular, if (uj , vi)
is real, then it uses real slopes, i.e., slopes in S. By the choice of �, the bend
point of (uj , vi) has y-coordinate strictly greater than that of uj and smaller
than or equal to that of vi. Since each (uj , vi) is oriented from uj to vi (as χ
is an upward canonical ordering), the drawing is upward. Concerning planarity,
we first observe that ̂Γi−1 is planar and it remains planar each time we apply
Lemma 3. Also, by Lemma 4 each (uj , vi) (j = 1, 2, . . . , q) does not intersect ̂Γi−1



86 M. A. Bekos et al.

(except at uj). Further, the order of the bend points along � guarantees that the
edges incident to vi do not cross each other.

Proof of I2. The only edges of ̂Pi that are not in ̂Pi−1 are (u1, vi) and (uq, vi).
For both these edges the segment incident to vi is horizontal by construction.

Proof of I3. For each vertex of ̂Pi distinct from u1, uq and vi, I3 holds by
induction. Invariant I3 also holds for vi because dr(vi, i) ≤ Δ − 1 (as otherwise
vi would be a source of G, which is not possible because i > 1) and all the real
top rays of vi, which are Δ − 1, are outer. Consider now vertex u1 (a symmetric
argument applies to uq). If (u1, vi) is real, then dr(u1, i) = dr(u1, i−1)−1; in this
case t1 =

�

ρ1(u1, i−1) and therefore all the other dr(u1, i−1)−1 outer real top rays
of u1 in ̂Γi−1 remain outer in ̂Γi. If (u1, vi) is dummy, then dr(u1, i) = dr(u1, i−1);

in this case t1 =
�

δ1(u1, i − 1) and therefore all the dr(u1, i − 1) outer real top
rays of u1 in ̂Γi−1 remain outer in ̂Γi.

Proof of I4. For each vertex of ̂Pi distinct from u1, uq and vi, I4 holds by
induction. I4 also holds for vi because dd(vi, i) ≤ Δ∗ and there are Δ∗ dummy

top rays between
�

δ1(vi, i) and
�

ρ1(vi, i) including
�

δ1(vi, i) (all the top rays of vi are

outer). Analogously, there are Δ∗ outer dummy top rays between
�

δ1(vi, i) and
�

ρ1(vi, i) including
�

δ1(vi, i). Consider now u1 (a symmetric argument applies to
uq). If (u1, vi) is real, then dd(u1, i) = dd(u1, i−1); in this case t1 =

�

ρ1(u1, i−1)

and there are Δ∗ outer dummy top rays between
�

δ1(u1, i) and
�

ρ1(u1, i) including
�

δ1(u1, i) (namely, all those between t1 =
�

ρ1(u1, i−1) and
�

ρ2(u1, i−1)). If (u1, vi)

is dummy, then dd(u1, i) = dd(u1, i − 1) − 1; in this case t1 =
�

δ1(u1, i − 1) and
therefore all the other dd(u1, i − 1) − 1 outer dummy top rays of u1, which by

induction were between
�

δ1(u1, i − 1) and
�

ρ1(u1, i − 1), remain outer in ̂Γi.

Proof of I5. Notice that the various applications of Lemma3 to ̂Γi−1 pre-
serve I5. Let p and p′ be any two intersection points between a horizontal line
� and the polyline representing ̂Pi in ̂Γi, with p to the left of p′ along �. If p
and p′ belong to ̂Pi−1, I5 holds by induction. If both p and p′ belong to the
path 〈u1, vi, uq〉, I5 holds by construction. If p belongs to ̂Pi−1 and p′ belongs
to 〈u1, vi, uq〉, then p belongs to the subpath of ̂Pi−1 that goes from vL to u1

because the subpath from uq to vR is completely to the right of tq, hence I5
holds also in this case. If p belongs to 〈u1, vi, uq〉 and p′ belongs to ̂Pi−1, the
proof is symmetric. 
�
Lemma 7. G has a 1-bend upward planar drawing Γ using only slopes in S.
Proof. By Lemma 6, drawing ̂Γn−1 satisfies Invariant I1–I5. We explain how
to add the last vertex vn to obtain a drawing that satisfies Invariant I1. Let
{u1, . . . , uq} be the predecessors of vn on ̂Pn−1. Notice that, in this case u1 = vL

and uq = vR. Vertex vn is added to the drawing similarly to all the other vertices
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added in the previous steps of the algorithm. The only difference is that the
number of real incoming edges incident to vn in ̂Γn−1 can be up to Δ. If this is
the case, since the real bottom rays are Δ−1, they are not enough to draw all the
real edges incident to vn. Let j be the smallest index such that (uj , vn) is a real
edge. We ignore all the dummy edges (uh, vn), for h = 1, 2, . . . , j − 1, and apply
the construction used in the previous steps considering only {uj , uj+1, . . . , uq} as
predecessors of vn (notice that such predecessors are at least two because vn has
at least two incident real edges). By ignoring these dummy edges, the segment
of the real edge (uj , vn) incident to vn will be drawn using the left horizontal
slope. Denote by ̂Γn the resulting drawing. As in the proof of Lemma6, we can
prove that I1 holds for ̂Γn and therefore ̂Γn is a 1-bend upward planar drawing
whose real edges use only slopes in S. The drawing Γ of G is obtained from ̂Γn

by removing all its dummy edges and the two dummy vertices vL and vR. 
�
Lemma 8. Drawing Γ can be computed in O(n) time.

Lemmas 7 and 8 are summarized by Theorem 1. Corollary 1 is a consequence of
Theorem 1 and of a result in [14].

Theorem 1. Let S be any set of Δ ≥ 2 slopes including the horizontal slope
and let G be an n-vertex bitonic planar st-graph with maximum vertex degree Δ.
Graph G has a 1-bend upward planar drawing Γ using only slopes in S, which
can be computed in O(n) time.

Corollary 1. Every bitonic st-graph with maximum vertex degree Δ ≥ 2 has
1-bend upward planar slope number at most Δ, which is worst-case optimal.

If S is equispaced, Theorem 1 implies a lower bound of π
Δ on the angular resolu-

tion of the computed drawing, which is worst-case optimal [14]. Also, Theorem 1
can be extended to planar st-graphs with Δ ≤ 3, as any such digraph can be
made bitonic by only rerouting the edge (s, t).

Theorem 2. Every planar st-graph with maximum vertex degree 3 has 1-bend
upward planar slope number at most 3.

We conclude with the observation that an upward drawing constructed by
the algorithm of Theorem 1 can be transformed into a strict upward drawing that
uses Δ + 1 slopes rather than Δ. It suffices to replace every horizontal segment
oriented from its leftmost (rightmost) endpoint to its rightmost (leftmost) one
with a segment having slope ε (−ε), for a sufficiently small value of ε > 0.

4 2-bend Upward Planar Drawings

We now extend the result of Theorem 1 to non-bitonic planar st-graphs. By
adapting a technique of Keszegh et al. [23], one can construct 2-bend upward
planar drawings of planar st-graphs using at most Δ slopes. We improve upon
this result in two ways: (i) The technique in [23] may lead to drawings with 5n−11
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bends in total, while we prove that 4n−9 bends suffice; (ii) It uses a fixed set of Δ
slopes (and it is not immediately clear whether it can work with any set of slopes),
while we show that any set of Δ slopes with the horizontal one is universal.

Let G be an n-vertex non-bitonic planar st-graph. All forbidden configura-
tions of G can be removed in linear time by subdividing at most n − 3 edges of
G [19]. Let Gb be the resulting bitonic st-graph, called a bitonic subdivision of
G. Let 〈u, d, v〉 be a directed path of Gb obtained by subdividing the edge (u, v)
of G with the dummy vertex d. We call (u, d) the lower stub, and (d, v) the upper
stub of (u, v). We can prove the existence of an augmentation technique similar
to that of Lemma 1, but with an additional property on the upper stubs.

Lemma 9. Let G = (V,E) be an n-vertex planar st-graph that is not bitonic.
Let Gb = (Vb, Eb) be an N -vertex bitonic subdivision of G, with a bitonic st-
ordering σ = {v1, v2, . . . , vN}. There exists a planar st-graph G′ = (V ′, E′) with
an st-ordering χ = {vL, vR, v1, v2, . . . , vN} such that: (i) V ′ = Vb ∪ {vL, vR};
(ii) Eb ⊂ E′ and (vL, vR) ∈ E′; (iii) vL and vR are on the boundary of the
outer face of G′; (iv) Every vertex of Gb with less than two predecessors in σ
has exactly two predecessors in χ. (v) There is no vertex in G′ such that its
leftmost or its rightmost incoming edge is an upper stub. Also, G′ and χ are
computed in O(n) time.

Theorem 3. Let S be any set of Δ ≥ 2 slopes including the horizontal slope
and let G be an n-vertex planar st-graph with maximum vertex degree Δ. Graph
G has a 2-bend upward planar drawing Γ using only slopes in S, which has at
most 4n − 9 bends in total and which can be computed in O(n) time.

Proof. We compute a triangulated canonical augmentation ̂G of G by (1) apply-
ing Lemma 9 and (2) triangulating the resulting digraph. By Lemma2, ̂G has
an upward canonical ordering χ. The algorithm of Theorem1 to ̂G would lead
to a 3-bend drawing of G (by interpreting every subdivision vertex as a bend).
We explain how to modify it to construct a drawing ̂Γ of ̂G with at most 2
bends per edge and 4n − 9 bends in total. Let vi the next vertex to be added
according to χ and let {u1, u2, . . . , uq} its neighbors in ̂Pi−1. Suppose that uj

is a dummy vertex and that (uj , vi) is an upper stub. To save one bend along
the edge subdivided by uj , we draw (uj , vi) without bends. By Lemma 9(v), we
have that 1 < j < q. The ray tj used to draw the segment of (uj , vi) incident to
uj can be any outer real top ray; we choose the ray with same slope as the real
bottom ray bj used to draw the segment of (uj , vi) incident to vi. This is possible
because all real top rays of uj are outer (since (uj , vi) is the only real outgoing
edge of uj). Hence, edge (uj , vi) has no bends. The drawing Γ of G is obtained
from ̂Γ by removing dummy edges and replacing dummy vertices (except vL

and vR, which are removed) with bends. Since the upper stubs of subdivided
edges has 0 bends, each edge of Γ has at most 2 bends. Let m1 and m2 be the
number of edges drawn with 1 and 2 bends, respectively; we have m2 ≤ n − 3
and m1 = m − m2 ≤ 3n − 6 − (n − 3) = 2n − 3. Thus the total number of bends
is at most 2n − 3 + 2(n − 3) = 4n − 9. Finally, ̂G can be computed in O(n) time
(Lemma 9) and the modified drawing algorithm still runs in linear time. 
�
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A planar st-graph with a source/sink of degree Δ requires at least Δ − 1
slopes in any upward planar drawing; thus the gap with Theorem3 is one unit.
Similarly to Theorem1, Theorem 3 implies a lower bound of π

Δ on the angular
resolution of Γ ; an upper bound of π

Δ−1 can be proven with the same digraph
used for the lower bound on the slope number. Finally, Theorem4 extends the
result of Theorem 3 to every upward planar graph using an additional slope.

Theorem 4. Let S be any set of Δ+1 slopes including the horizontal slope and
let G be an n-vertex upward planar graph with maximum vertex degree Δ ≥ 2.
Graph G has a 2-bend upward planar drawing using only slopes in S.

5 Open Problems

(i) Can we draw every planar st-graph with at most one bend per edge (or less
than 4n− 9 in total) and Δ slopes? (ii) What is the 2-bend upward planar slope
number of planar st-graphs? Is Δ a tight bound? (iii) What is the straight-line
upward planar slope number of upward planar digraphs?
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References

1. Angelini, P., Bekos, M.A., Liotta, G., Montecchiani, F.: A universal slope set for
1-bend planar drawings. In: Aronov, B., Katz, M.J. (eds.) SoCG. LIPIcs, vol. 77,
pp. 9:1–9:16. Schloss Dagstuhl (2017). https://doi.org/10.4230/LIPIcs.SoCG.2017.
9, https://arxiv.org/abs/1703.04283

2. Bekos, M.A., Di Giacomo, E., Didimo, W., Liotta, G., Montecchiani, F.: Universal
slope sets for upward planar drawings. ArXiv e-prints abs/1803.09949v2 (2018).
https://arxiv.org/abs/1803.09949v2

3. Bekos, M.A., Gronemann, M., Kaufmann, M., Krug, R.: Planar octilinear drawings
with one bend per edge. J. Graph Algorithms Appl. 19(2), 657–680 (2015). https://
doi.org/10.7155/jgaa.00369

4. Bekos, M.A., Kaufmann, M., Krug, R.: On the total number of bends for planar
octilinear drawings. In: Kranakis, E., Navarro, G., Chávez, E. (eds.) LATIN 2016.
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