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Abstract. A drawing of a graph is greedy if for each ordered pair of ver-
tices u and v, there is a path from u to v such that the Euclidean distance
to v decreases monotonically at every vertex of the path. The existence of
greedy drawings has been widely studied under different topological and
geometric constraints, such as planarity, face convexity, and drawing suc-
cinctness. We introduce greedy rectilinear drawings, in which each edge
is either a horizontal or a vertical segment. These drawings have several
properties that improve human readability and support network routing.
We address the problem of testing whether a planar rectilinear represen-
tation, i.e., a plane graph with specified vertex angles, admits vertex
coordinates that define a greedy drawing. We provide a characterization,
a linear-time testing algorithm, and a full generative scheme for universal
greedy rectilinear representations, i.e., those for which every drawing is
greedy. For general greedy rectilinear representations, we give a combi-
natorial characterization and, based on it, a polynomial-time testing and
drawing algorithm for a meaningful subset of instances.

1 Introduction

In a greedy drawing of a graph in the plane every vertex is mapped to a distinct
point and, for each ordered pair of vertices u and v, there is a distance-decreasing
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path from u to v, i.e., a path such that the Euclidean distance to v decreases
monotonically at every vertex of the path. Greedy drawings have been originally
proposed to support greedy routing schemes for ad hoc wireless networks [20–
22]. In such schemes, a node that has to send a packet to a destination v just
forwards the packet to one of its neighbors that is closer to v than itself. In their
seminal work, Papadimitriou and Ratajczak [20,21] showed that 3-connected
planar graphs form the largest class of graphs for which every instance may admit
a greedy drawing, and they formulated two conjectures. Weak conjecture: Every
3-connected planar graph admits a greedy drawing. Strong conjecture: Every
3-connected planar graph admits a convex greedy drawing, i.e., a planar greedy
drawing with convex faces. Concerning the weak conjecture, Dhandapani [8]
provided an existential proof of greedy drawings for maximal planar graphs.
Later on, Leighton and Moitra [16] and Angelini et al. [4] independently settled
the weak conjecture positively, by also describing constructive algorithms. Da
Lozzo et al. [7] strengthened these results, showing that in fact every 3-connected
planar graph admits a planar greedy drawing. However, the strong conjecture
is still open. For graphs that are not 3-connected, Nöllenburg and Prutkin [18]
characterized the trees that admit a greedy drawing.

Greedy drawings have also been investigated in terms of succinctness, an
important property that helps to make greedy routing schemes work in practice.
A drawing is succinct if the vertex coordinates are represented by a polylogarith-
mic number of bits. Since there exist greedy-drawable graphs in the Euclidean
sense that do not admit a succinct greedy drawing [3], several papers also studied
succinct greedy drawings in spaces different from the Euclidean one or according
to a metric different from the Euclidean distance [11–14,17,24].

We finally mention another model, called self-approaching drawing, that rein-
forces the properties of greedy drawings [1,19]. A straight-line drawing is self-
approaching if for any ordered pair of vertices u and v, there exists a path P
from u to v such that, for any point p on P , the distance from u to p always
decreases while continuously moving along P in the drawing. Clearly, every self-
approaching drawing is greedy, but not vice versa. In particular, the dilation of
self-approaching drawings is bounded by a constant [15], while for greedy draw-
ings it may be unbounded [1]. The dilation (or “stretch-factor”) of a straight-line
drawing is the maximum value of the ratio between the length of the shortest
path between two vertices in the drawing and their Euclidean distance.

Motivation and Contribution. Our work is motivated by the rich litera-
ture on greedy drawings that satisfy some interesting topological or geometric
requirements, such as planarity [7] and face convexity [13,14,20,24]. We study
greedy drawings in the popular orthogonal drawing convention [9,10,23]: Ver-
tices are mapped to points and edges are sequences of horizontal and vertical
segments (each vertex has degree at most 4). More precisely, we introduce pla-
nar greedy rectilinear drawings, that is, crossing-free greedy drawings where each
edge is either a horizontal or a vertical segment. We address the following ques-
tion: “Let H be a planar rectilinear representation, i.e., a plane graph with
given values (90◦, 180◦, 270◦) for the geometric angles around each vertex; is it
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Fig. 1. (a) A rectilinear drawing that is not greedy; (b) A greedy rectilinear drawing of
the same representation (the distance-decreasing paths between u and v are dashed).
(c) Drawing of a universal greedy rectilinear representation. (d)–(e) H is not greedy
realizable if an internal face is not a rectangle or the external face is not orthoconvex.

possible to assign coordinates to the vertices of H so that the resulting drawing
is greedy rectilinear?”. Figure 1a shows a rectilinear drawing that is not greedy;
however, the corresponding rectilinear representation has a greedy drawing, as
shown in Fig. 1b. Our question fits into the effective topology-shape-metrics app-
roach [5,23], which first computes a planar embedding of the graph, then finds
an embedding-preserving orthogonal representation, and finally assigns coordi-
nates to vertices and bends to complete the drawing; we address this last step,
but our representations have no bend. Our contribution is as follows.

Section 2 discusses basic properties of greedy rectilinear drawings. We prove
that the faces are convex and the dilation is bounded by a small constant, and
we show convex (non-rectilinear) greedy drawings in which every distance-
decreasing path between two nodes is arbitrarily longer than the Euclidean dis-
tance.

Section 3 focuses on planar universal greedy rectilinear representations for
which every drawing is greedy (see Fig. 1c). We give a linear-time recognition
algorithm that, in the positive case, computes a greedy drawing of minimum area
on an integer grid. We also describe a generative scheme for constructing any
possible universal greedy rectilinear representation starting from a rectangle.

Section 4 extends the study to general rectilinear greedy representations. We
give a non-geometric characterization of this class, which leads to a linear-time
testing algorithm for a meaningful subset of instances. If the condition of the
characterization is satisfied, a greedy drawing of minimum area within that con-
dition can be computed in quadratic time. However, we show that in general
greedy rectilinear representations may require exponential area.

We assume familiarity with basic concepts of graph drawing and planarity [9];
for space reasons, terminology and some proofs are moved to the full version [2].

2 Basic Properties of Greedy Rectilinear Representations

We denote by x(v) and y(v) the x- and the y-coordinate of a vertex v in a drawing
Γ of a graph. For two vertices u and v of Γ , d(u, v) is the Euclidean distance
between u and v and a path from u to v in Γ is a u-v-path. The degree of v is
denoted as deg(v). If v has neighbors u1, u2, . . . , uh, the cell of v in Γ , denoted
as cell(v), is the (possibly unbounded) region of all points of the plane that are
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Fig. 2. Different types of cells (shaded regions) of a vertex v in a rectilinear drawing
of a graph: (a) deg(v) = 4; (b) deg(v) = 3; (c)–(d) deg(v) = 2, (e) deg(v) = 1.

closer to v than to any ui. Figure 2 shows all types of cells of a vertex v in a
rectilinear drawing, depending on deg(v) and on the angles at v; if deg(v) ≤ 3,
cell(v) is unbounded. The following geometric characterization is proven in [21].

Theorem 1 (Papadimitriou and Ratajczak [21]). A drawing of a graph is
greedy if and only if for every vertex v, cell(v) contains no vertex other than v.

If a rectilinear representation H admits a greedy rectilinear drawing, H is
greedy realizable or, equivalently, it is a greedy rectilinear representation. W.l.o.g.,
we shall assume that H comes with a fixed “rotation”, i.e., for any edge (u, v),
it is fixed whether u is to the left, to the right, above, or below v in every
rectilinear drawing Γ of H. A flat vertex of H (or of Γ ) is a vertex with a flat
angle (180◦). A flat angle formed by two horizontal segments is north-oriented
(south-oriented) if it is above (below) the two segments. A flat angle between
two vertical segments is either east-oriented or west-oriented.

We restrict our study to biconnected graphs, as otherwise the set of greedy
rectilinear drawings may be very limited (see the full version [2]). Lemma 1
(proved in the full version [2]) allows us to further restrict to convex rectilinear
representations, i.e., those having rectangular internal faces and an orthocon-
vex polygon as external boundary. Indeed, if H is not convex, there exist two
vertices u, v such that u ∈ cell(v) in any drawing of H (see also Figs. 1d–e).

Lemma 1. H is greedy realizable only if it is convex.

For a rectilinear drawing of a convex rectilinear representation H, let R(u, v)
denote the minimum bounding box (rectangle or segment) including u and v.
The next property immediately follows from the convexity of H.

Property 1. Let f be a face of H and w be any vertex of H with an angle of 90◦

inside f . Denote by u and v the two neighbors of w along the boundary of f . In
any rectilinear drawing of H, there is no vertex properly inside R(u, v).

We exploit Property 1 to prove that rectilinear greedy drawings have bounded
dilation, where the paths that determine the dilation are distance-decreasing.
An analogous statement does not hold for general convex greedy drawings; an
example of this fact is in the full version [2], together with the proof of Theorem 2.
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Fig. 3. (a) A greedy realizable convex rectilinear representation H that is not universal
greedy due to conflict {u, v}; (b)–(c) The DAGs Dx and Dy for H. (d) A non-convex
representation such that u ∈ cell(v) for any drawing, even though u ≺x v and u ≺y v.

Theorem 2. In a rectilinear greedy drawing on an integer grid, for every two
vertices s, t there is a distance-decreasing s-t-path of length at most 3

√
2 ·d(s, t).

Conflicts in Rectilinear Representations. We now define two directed
acyclic graphs (DAGs) Dx and Dy associated with H, already used for orthog-
onal compaction [6,23]. They are fundamental tools for the rest of the paper.
Dx is obtained from H by orienting the horizontal edges from left to right and
by contracting each maximal path of vertical edges into a node. Dy is defined
symmetrically on the maximal paths of horizontal edges; see Fig. 3. Dx and Dy

may have multiple edges and they are st-digraphs (they have a single source
and a single sink), since the external face of H is orthoconvex. For any vertex u
of H, we denote by cx(u) (cy(u)) the node of Dx (Dy) corresponding to the max-
imal vertical (horizontal) path containing u in H. If cx(u) �= cx(v), the notation
u ≺x v (u ⊀x v) denotes the existence (absence) of a directed path from cx(u)
to cx(v) in Dx. The notation u ∼x v means that either u ≺x v or v ≺x u holds,
while u �∼x v means that none of them holds. The notations u ≺y v, u ⊀y v,
u ∼y v, and u �∼y v are symmetric for Dy. Clearly, ≺x and ≺y are transitive
relations. The next lemma (proved in the full version [2]) states that there is a
directed path between any two vertices of H in at least one of Dx and Dy.

Lemma 2. For any two vertices u and v of a convex rectilinear representa-
tion H, at least one of the following holds: (i) u ∼x v or (ii) u ∼y v.

Let u and v be two vertices of H such that cx(u) �= cx(v) and cy(u) �= cy(v).
By Lemma 2, at least one of u ∼x v and u ∼y v holds, say the latter. If u ∼x v
also holds, the relative positions (left/right/top/bottom) of u and v are fixed
(they are the same in any drawing of H); in this case, we prove that none of
the two vertices lies in the cell of the other in any drawing of H (Lemma 3).
Conversely, this is not guaranteed if u �∼x v (Theorem 3), and we say that u
and v are in a conflict, denoted by {u, v}. In this case, suppose that u ≺y v
(the case v ≺y u is symmetric) and consider the topmost (flat) vertex u′ of the
vertical path corresponding to cx(u) and the bottommost (flat) vertex v′ of the
vertical path corresponding to cx(v). We say that u′ and v′ are responsible for
the conflict {u, v}. A conflict {u, v} is an x-conflict if u �∼x v and a y-conflict if
u �∼y v. In Fig. 3a, {u, v} is an x-conflict, with u′ = u and v′ = v. A conflict is
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resolved in a drawing Γ of H if none of the two vertices that are responsible for
it lies in the cell of the other. The proof of Lemma 3 is in the full version [2].

Lemma 3. Let H be a convex rectilinear representation of a biconnected
graph. A rectilinear drawing Γ of H is greedy if and only if every conflict is
resolved in Γ .

3 Universal Greedy Rectilinear Representations

A convex rectilinear representation H is conflict-free if it has no conflict. The
following concise characterization holds for universal rectilinear representations.

Theorem 3. Let H be a convex rectilinear representation of a biconnected plane
graph. H is universal greedy if and only if it is conflict-free.

Proof. By Lemma 3, if H is conflict-free, every rectilinear drawing of H is greedy
(note that a rectilinear representation may be conflict-free without being convex,
which would imply that it is not universal greedy; see Fig. 3d).

Suppose that H is universal greedy but not conflict-free. Let Γ be any rec-
tilinear drawing of H. Consider two vertices u and v that are responsible for a
conflict in H; assume w.l.o.g. that u �∼x v. We can further assume that there
is no vertex w such that x(u) < x(w) < x(v) in Γ . Indeed, if such a vertex w
exists (which implies w ⊀x u and v ⊀x w), at least one of u ⊀x w and w ⊀x v
holds, as otherwise u ≺x v. Hence, we could have selected either u and w or w
and v instead of u and v. If x(u) = x(v), Γ is not greedy, because u ∈ cell(v)
and v ∈ cell(u). If x(u) < x(v), we can transform Γ into a drawing Γ ′ by moving
u and all the vertices in its vertical path to the right until x(u) = x(v). Since
u and v are consecutive along the x-axis in Γ and since H is convex, Γ ′ is still
planar but not greedy, which contradicts the fact that H is universal greedy. �	
Theorem 4. Let H be a rectilinear representation of an n-vertex biconnected
plane graph. There exists an O(n)-time algorithm to test if H is universal greedy.

Proof. The algorithm first checks in linear time if H is convex. If not, the instance
is rejected. Otherwise, it checks whether both Dx and Dy contain a (directed)
Hamiltonian path, which can be done in linear time in the size of Dx and Dy,
which is O(n). Namely, since each of Dx and Dy is an st-digraph, computing
a longest path from s to t is done in O(n) time from a topological sorting. We
claim that H is universal greedy if and only if this test succeeds. By Theorem 3,
to prove this claim, it is enough to show that a DAG D contains a Hamiltonian
path if and only if for any two vertices u and v of D, there is a directed path
either from u to v or from v to u. If D has a Hamiltonian path π, a directed
path between any two vertices of D is a subpath of π. Conversely, if there is
a directed path between any two vertices of D, then a linear extension of a
topological sorting of the vertices corresponds to a Hamiltonian path. �	
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Since conflict-free rectilinear representations are a subclass of the turn-regular
orthogonal representations [6], for which a minimum-area drawing can be found
in linear time, we can also state the following.

Corollary 1. Let H be a universal greedy rectilinear representation. There is a
linear-time algorithm to compute a (greedy) drawing of H with minimum area.

Generative Scheme. Let H be a biconnected universal greedy rectilinear rep-
resentation. Each of the following operations on H produces a new biconnected
universal greedy rectilinear representation, which gives a generative scheme for
universal greedy rectilinear representations. The proof is in the full version [2].
− k-reflex vertex addition. Attach to the external face of H a path of 1 ≤ k ≤ 4
reflex vertices (corners) that forms a new rectangular internal face, provided that
the resulting representation is convex.
− flat vertex addition. Subdivide an external edge (u, v) of H with a flat vertex of
degree two, provided that the strip of the plane between the two lines orthogonal
to (u, v) and passing through u and v, respectively, has no vertices in its interior.

Theorem 5. Let H be a universal greedy rectilinear representation of a bicon-
nected planar graph. H can be obtained by a suitable sequence of k-reflex vertex
and flat vertex additions, starting from a rectangle.

4 General Greedy Rectilinear Representations

We now consider convex rectilinear representations H of biconnected plane
graphs that may contain conflicts, and investigate conditions under which they
are greedy realizable. We present a characterization (Theorem 6), which yields a
polynomial-time testing algorithm for a meaningful subclass of instances, namely
when Dx and Dy are series-parallel (Theorem 9). Proofs are in the full version [2].

Let D be one of the two DAGs Dx and Dy associated with H. Since D is
an st-digraph, it has an st-ordering S = v1, . . . , vm. For two indices i, j, with
1 ≤ i < j ≤ m, D〈i, j〉 denotes the subgraph of D induced by vi, . . . , vj . We say
that S is good if: (S.1) For any two indices i, j, with 1 ≤ i < j ≤ m, D〈i, j〉
has at most two connected components, and (S.2) if D〈i, j〉 has exactly two
components, then all nodes of one component precede those of the other in S.

Further, we say that a drawing of H respects an st-ordering Sx of Dx (Sy

of Dy) if for any two vertices u,w ∈ H, we have that u lies to the left of w
(below w) in the drawing if and only if cx(u) precedes cx(w) in Sx (cy(u) pre-
cedes cy(w) in Sy). Finally, when we refer to the x-coordinate (y-coordinate) of a
node vi of Dx (of Dy), we mean the one of all the vertices w ∈ H with cx(w) = vi

(with cy(w) = vi), as these vertices belong to the same vertical (horizontal) path.

Theorem 6. A convex rectilinear representation H of a biconnected plane graph
is greedy realizable if and only if both DAGs Dx and Dy admit good st-orderings.

We start by proving the necessity of Theorem 6.



502 P. Angelini et al.

vi−1 vj+1

C2

C1

(a) Dx〈i, j〉 has two components

C1

C2

�

C3vi−1 vj+1
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Fig. 4. Illustration for the proof of Lemma 4

Lemma 4. If Dx or Dy admits no good st-ordering, H is not greedy realizable.

Proof Sketch. If H admits a greedy drawing Γ respecting an st-ordering Sx of Dx

that is not good, there exist i, j, with 1 ≤ i < j ≤ m, such that Dx〈i, j〉 has at
least two connected components C1 and C2. First, note that the vertices of C1

and C2 are vertically separated by a horizontal line in Γ (say, C1 lies above C2;
see Fig. 4), as otherwise there would be at least a pair of vertical paths whose
corresponding nodes in Dx are joined by a directed path.

Since every internal face of H is rectangular, the vertices of the bottom (top)
boundary of C1 (C2) are part of a horizontal path, spanning all x-coordinates
between the ones of vi and vj . Thus, all vertices on the bottom (top) boundary
of C1 (C2) are south-oriented (north-oriented) flat vertices, and the union of their
cells is a connected region spanning all the x-coordinates between their leftmost
and rightmost vertices; see Fig. 4a. So, if a vertex of C1 appears between two
vertices of C2 in Sx, then it lies inside the cell of a vertex of C2 in Γ , and vice
versa. Thus, the vertices of each component are consecutive in Sx. Since Sx is not
good, there is at least another component C3 in Dx〈i, j〉; see Fig. 4b. Consider
the vertical line � that is horizontally equidistant to vi and vj in Γ . Any two
components of Dx〈i, j〉 must be separated by � in order for the cells of the vertices
of these components to be empty, which is not possible for three components. �	

To prove the sufficiency of Theorem 6, we assign the x- and y-coordinates in
two steps, which can be performed independently due to the following lemma.

Lemma 5. Let Γ1 and Γ2 be two drawings of H such that all x-conflicts are
resolved in Γ1 and all y-conflicts are resolved in Γ2. Then, the drawing Γ3 of H
in which the x-coordinate of each vertex is the same as in Γ1 and the y-coordinate
of each vertex is the same as in Γ2 is greedy.

We describe the assignment of the x-coordinates based on the good st-
ordering Sx = v1, . . . , vm of Dx. The assignment of the y-coordinates based
on the good st-ordering of Dy works symmetrically. We first prove in Lemma 6
that, to guarantee that every x-conflict is resolved, it suffices to resolve a specific
subset of them, which is called minimal. Namely, an x-conflict {u, v} dominates
an x-conflict {w, z}, with cx(u) = vi, cx(v) = vj , cx(w) = vk, and cx(z) = v�,
if k ≤ i < j ≤ �. A minimal x-conflict is not dominated by any x-conflict.

By Lemmas 3 and 6, we conclude that a greedy rectilinear drawing can be
obtained by resolving all the minimal conflicts. We finally give a constructive
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Fig. 5. Illustration for the proof of Lemma 6

proof that this can always be done since Sx is good. In particular, we encode
that a minimal x-conflict is resolved with a single inequality on the horizontal
distances between the vertices in the x-conflict. Then, in Lemma 7, we prove that
for a minimal x-conflict {u, v} the nodes cx(u) and cx(v) of Dx are consecutive
in Sx. We use this property to show that the system of inequalities describing the
conditions for the minimal x-conflicts to be resolved always admits a solution.

Lemma 6. Let Γ be a rectilinear drawing of H respecting Sx. If every minimal
x-conflict dominating an x-conflict {u,w} is resolved in Γ , {u,w} is resolved.

Proof Sketch. We may assume that u and w are responsible for {u,w}. Let
vi = cx(u) and vj = cx(w), with i < j. Since Sx is good, graph Dx〈i, j〉 has at
most two connected components C1 and C2. Assume that vi ∈ C1.

Suppose first that vj ∈ C1. Let u′ be the right neighbor of u in H; see Fig. 5a.
Since vi, vj ∈ C1, node cx(u′) precedes cx(w) in Sx and cx(u′) ∈ C1. So, u′ lies
to the left of w in any drawing of H respecting Sx. Hence, the mid-point of edge
(u, u′), which defines the right boundary of cell(u), l ies to the left of w, and
thus w �∈ cell(u). Symmetrically, u �∈ cell(w).

Suppose now that vj ∈ C2. By symmetry, we assume that C1 lies above and
to the left of C2; see Fig. 5b. Let z (r) be the bottommost (topmost) vertex of the
vertical path corresponding to the last node cx(z) of C1 (first node cx(r) of C2)
in Sx, i.e., z and r are responsible for a minimal (and thus resolved) x-conflict.

We show that w �∈ cell(u) (by symmetry, u �∈ cell(w)). If u′ ∈ C1, the previous
case applies. Otherwise, u lies on the right boundary of C1. If cx(u) is a sink of C1,
then C1 contains only cx(u); see Fig. 5c. Thus, either cx(u) is not a sink of C1,
or cx(u) = cx(z). In the latter case, r /∈ cell(u), since the minimal x-conflict {z, r}
is resolved, which implies w /∈ cell(u). Hence, cx(u) �= cx(z) and cx(u) is not a
sink of C1; see Fig. 5d. Since u′ �∈ C1 and u is south-oriented, u lies below z.
Let z′ be the right neighbor of z, with cx(z′) = vk. If z′ is to the left of u′, Dx〈i, k〉
has two connected components; one contains vi and vk, the other contains vj ,
as (u, u′) cannot be crossed. This contradicts (S.2), as i < j < k. So, z′ is to the
right of u′. Since z is to the right of u, the right boundary of cell(z) is to the right
of the one of cell(u). Since r �∈ cell(z), also r �∈ cell(u), and thus w �∈ cell(u). �	
Lemma 7. For any two vertices u and w of H such that {u,w} is a minimal
x-conflict, we have that cx(u) and cx(w) are consecutive in a good st-ordering Sx.
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Fig. 7. The relation graph defined
by the left and right inequalities

Proof. Suppose that there is a vertex z ∈ H such that cx(z) = vj lies
between cx(u) = vi and cx(w) = vk in Sx, i.e., i < j < k. If cx(u) and cx(w)
belong to the same connected component C of Dx〈i, k〉, then by definition, vi and
vk are a source and a sink of C, respectively. Since {u,w} is an x-conflict, we have
u ⊀x w; hence, there is another source cx(s) in C, for some vertex s ∈ H, such
that s ≺x w. Since cx(u) and cx(s) are different sources of C, we have u �∼x s,
and thus {u, s} is an x-conflict dominating the minimal x-conflict {u,w}; a con-
tradiction. If cx(u) and cx(w) belong to different components, then cx(z) does
not belong to the same component as one of them, say cx(u). Thus, u �∼x z, i.e.,
{u, z} is an x-conflict dominating {u,w}; a contradiction. �	

We now present our algorithm to assign x-coordinates so that all minimal
x-conflicts are resolved. We extend some definitions from vertices of H to nodes
of Dx. Namely, we say vi ≺x vj if there is a directed path in Dx from vi and vj .
Also, we say that there is a (minimal) x-conflict {vi, vj} in Dx if there is a
(minimal) x-conflict {u,w} in H such that cx(u) = vi and cx(w) = vj .

For 0 < i, j ≤ m, let xi,j := xj − xi be the x-distance between vi and vj .
To prove that a good st-ordering Sx allows for a greedy realization, we set up a
system of inequalities describing the geometric requirements for the x-distance
of consecutive nodes in Sx in a greedy drawing, and then prove that this system
always admits a solution since Sx is good. First note that, for every 0 < i < m
such that there is no minimal x-conflict {vi, vi+1}, we only require the x-distance
to be positive, so we define the trivial inequality xi,i+1 > 0.

For every 0 < i < m such that there is a minimal x-conflict {vi, vi+1}, we
define two inequalities that describe the necessary conditions for the x-conflict
to be resolved. Let u and w, with cx(u) = vi and cx(w) = vi+1, be responsible
for {vi, vi+1}. We assume that u ≺y w; the other case is symmetric.

By assumption, vi lies to the bottom left of vi+1, so we only have to con-
sider the part cell↙(w) of cell(w) to the bottom left of w (dark region in Fig. 6).
Let (w′, w) be the bottommost incoming edge of vi+1 with cx(w′) = v�i+1 . Then,
the left boundary of cell↙(w) is delimited by the vertical line through the mid-
point of (w′, w). Thus, we require xi,i+1 > x�i+1,i+1/2 ⇔ xi,i+1 > x�i+1,i. Sym-
metrically, we only consider the part cell↗(u) of cell(u) to the top right of u
(light region in Fig. 6), which is bounded by the vertical line through the mid-
point of the topmost outgoing edge (u, u′) of vi with cx(u′) = vri

. Thus, we
require xi,i+1 > xi,ri

/2 ⇔ xi,i+1 > xi+1,ri
. Since v�i+1 and vi (and vi+1 and vri

)
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are not necessarily consecutive in the st-ordering, we express the x-distance
x�i+1,i (and xi,ri

) as the sum of the x-distances between the consecutive nodes
between them in the st-ordering. This gives the left and the right inequality.

xi,i+1 >

i−1∑

j=�i+1

xj,j+1 (left inequality) xi,i+1 >

ri−1∑

j=i+1

xj,j+1 (right inequality)

Note that for every variable xi,i+1 there exists either a trivial inequality or a left
and right inequality. Consider the following triangulated matrices, where ci,j =
−1 if i > j ≥ �i+1 or i < j ≤ ri, where ci,j = 1 if i = j, and ci,j = 0 otherwise.

A =

⎛
⎜⎝

c1,1 0
...

. . .
cm−1,1 · · · cm−1,m−1

⎞
⎟⎠ B =

⎛
⎜⎝

c1,1 · · · c1,m−1

. . .
...

0 cm−1,m−1

⎞
⎟⎠ x =

⎛
⎜⎝

x1,2

...
xm−1,m

⎞
⎟⎠

We express the left and trivial (right and trivial) inequalities as Ax > 0 (as Bx >
0). Any vector x > 0 determines a unique rectilinear drawing: we assign to each
vertex the y-coordinate defined by Sy, we assign to v1 the x-coordinate x1 = 0
and to every other vi the x-coordinate xi = xi−1 + xi−1,i. Since x > 0, the
x-coordinates preserve the good st-ordering and resolve all x-conflicts.

Lemma 8. A vector x = (x1,2, . . . , xm−1,m)� > 0 solves both Ax > 0 and
Bx > 0 if and only if it determines a drawing where all x-conflicts are resolved.

Note that we can always solve Ax > 0 and Bx > 0 independently by solving
the linear equation systems Ax = 1 and Bx = 1 via forward substitution, since A
and B are triangular. We prove that there is always a vector x solving Ax > 0
and Bx > 0 simultaneously. Let C = A + B − Im−1 be the matrix defined by
the values of ci,j . Any solution to the linear inequality system Cx > 0 is also
a solution to both Ax > 0 and Bx > 0. We show that C can be triangulated.
For this, we define the relation graph corresponding to the adjacency matrix
Im−1 − C that contains a vertex ui for each interval xi,i+1, 1 ≤ i < m, and a
directed edge from a vertex ui to a vertex uj if and only if ci,j = −1; see Fig. 7.

Lemma 9. The relation graph of a good st-ordering is acyclic.

Proof Sketch. We show that a shortest cycle C in the relation graph has length 2,
finding a “shortcut” for every longer cycle. Then, we analyze the relative order
of the y-coordinates of the responsible vertices for the two minimal x-conflicts
in H corresponding to C, and find a contradiction for every combination. �	
Lemma 10. The matrix C is triangularizable.

Proof. By Lemma 9, the relation graph described by the matrix Im−1 − C is
acyclic. Hence, there is a permutation matrix P (corresponding to a topological
sort) such that P (Im−1 − C)P−1 is triangulated with only 0’s on the diagonal.
Thus, PIm−1P

−1 − PCP−1 = Im−1 − PCP−1 is triangulated with only 0’s on
the diagonal, so PCP−1 is triangulated with only 1’s on the diagonal. �	
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Since C is triangularizable by Lemma 10, the system of linear equations
Cx = 1 always has a solution, which solves Ax > 0 and Bx > 0 simultaneously.
This concludes the sufficiency proof for Theorem 6.

Note that the given construction ensures that all the coordinates are integer;
however, the area of the drawing is in general not minimum. A rectilinear greedy
drawing with minimum area respecting the given st-orderings can be constructed
in polynomial time by solving a linear program that minimizes

∑m−1
i=1 xi,i+1

under the constraints Ax ≥ 1 and Bx ≥ 1. We analyze the integrality of the
solution and the running time in the full version [2].

Theorem 7. Let H be a convex rectilinear representation of a biconnected plane
graph and let Sx and Sy be good st-orderings of Dx and Dy. We can compute a
greedy drawing of H that respects Sx and Sy with minimum area in O(n2) time.

Fig. 8. Exponential
area lower bound

Although minimum, the area of the drawings yielded by
our algorithm may be non-polynomial in some cases; The-
orem 8 states that there exist convex rectilinear represen-
tations (see Fig. 8) whose DAGs admit good st-orderings,
but there is no combination of them resulting in a succinct
greedy drawing, since the solutions of the corresponding sys-
tem of inequalities are always exponential in the input size.
On the contrary, every universal greedy rectilinear represen-
tation of an n-vertex graph is succinct, since by Corollary 1
it has a (greedy) drawing of minimum area on an integer
grid of size O(n2) [6,23].

Theorem 8. There exist rectilinear representations whose every greedy rectilin-
ear drawing has exponential area, even if Dx and Dy are series-parallel.

When Dx and Dy are series-parallel, the conditions can be tested efficiently.

Theorem 9. Let H be a convex rectilinear representation of a biconnected plane
graph. If Dx and Dy are series-parallel, we can test in O(n) time if H is greedy
realizable. If the test succeeds, a greedy drawing of H is computed in O(n2) time.

Proof Sketch. To find a good st-ordering for Dx, we recursively apply the follow-
ing procedure. Let Dx be composed of a set of subgraphs D1, . . . , Dk, forming a
parallel or a series composition. If D1, . . . , Dk form a parallel composition, then
either k = 2, or k = 3 and D3 is a single edge; otherwise, the graph violates
Condition (S.1). If we remove the sink and source from G, then, by Condi-
tion (S.2), we have a good st-ordering if and only if all nodes of D1 precede
all nodes of D2, there is exactly one sink in D1, and there is exactly one source
in D2. If D1, . . . , Dk form a series composition, we construct good st-orderings
of D1, . . . , Dk recursively and merge them in a good st-ordering of Dx. �	
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5 Open Problems

We introduced rectilinear greedy drawings, i.e., planar greedy drawings in the
orthogonal drawing style with no bends. Our work reveals several interesting
open problems. (1) What if we allow bends along the edges? (2) Can we always
test in polynomial time whether a planar DAG admits a good st-ordering? (3)
Given a biconnected plane graph G, what is the complexity of deciding whether G
admits a (universal) greedy rectilinear representation? This question pertains the
intermediate step of the topology-shape-metrics approach [23].
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