Therese Biedl
Andreas Kerren (Eds.)

Graph Drawing
and Network Visualization

26th International Symposium, GD 2018
Barcelona, Spain, September 26-28, 2018
Proceedings

g

LNCS 11282

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Zurich, Switzerland
John C. Mitchell

Stanford University, Stanford, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology Madras, Chennai, India
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbriicken, Germany

11282

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Therese Biedl - Andreas Kerren (Eds.)

Graph Drawing
and Network Visualization

26th International Symposium, GD 2018
Barcelona, Spain, September 2628, 2018
Proceedings

@ Springer

Editors

Therese Biedl Andreas Kerren
University of Waterloo Linnaeus University
Waterloo, ON, Canada Vixjo, Sweden

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science

ISBN 978-3-030-04413-8 ISBN 978-3-030-04414-5 (eBook)

https://doi.org/10.1007/978-3-030-04414-5
Library of Congress Control Number: 2018961593
LNCS Sublibrary: SL1 — Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-9003-3783
http://orcid.org/0000-0002-0519-2537
https://doi.org/10.1007/978-3-030-04414-5

Preface

This volume contains the papers presented at GD 2018: 26th International Symposium
on Graph Drawing and Network Visualization held during September 26-28, 2018, in
Barcelona. Graph drawing is concerned with the geometric representation of graphs
and constitutes the algorithmic core of network visualization. Graph drawing and
network visualization are motivated by applications where it is crucial to visually
analyze and interact with relational datasets. Information about the conference series
and past symposia is maintained at http://www.graphdrawing.org. The 2018 edition
of the conference was hosted by Universitat Politecnica de Catalunya, with Vera
Sacristan and Rodrigo Silveira as co-chairs of the Organizing Committee. A total of 99
participants attended the conference.

Regular papers could be submitted to one of two distinct tracks: Track 1 for papers
on combinatorial and algorithmic aspects of graph drawing and Track 2 for papers on
experimental, applied, and network visualization aspects. Short papers were given a
separate category, which welcomed both theoretical and applied contributions. An
additional track was devoted to poster submissions. All the tracks were handled by a
single Program Committee. In response to the call for papers, the Program Committee
received a total of 102 submissions, consisting of 85 papers (45 in Track 1, 23 in Track
2, and 17 in the short paper category; two papers that were withdrawn by the authors
are not included in these statistics) and 17 posters. More than 330 expert single-blind
reviews were provided, roughly a third of which were contributed by external
sub-reviewers. After extensive electronic discussions via EasyChair, the Program
Committee selected 41 papers and 14 posters for inclusion in the scientific program of
GD 2018. This resulted in an overall paper acceptance rate of 48% (58% in Track 1,
43% in Track 2, and 29% in the short paper category). Authors published an electronic
version of their accepted papers on an arXiv repository; a conference index with links
to these contributions was made available before the conference.

There were two keynote talks at GD 2018. Alexandru Telea, from University of
Groningen, The Netherlands, talked about methods for “Image-Based Graph Visual-
ization: Advances and Challenge.” Bojan Mohar, from Simon Fraser University,
Canada, spoke about the “Beauty and Challenges of Crossing Numbers.” The abstracts
of both talks are included in the proceedings.

The conference gave out best paper awards in Track 1 and Track 2, plus a best
presentation award and a best poster award. As decided by a subcommittee of the
Program Committee, the award for the best paper in Track 1 was assigned to “Pole
Dancing: 3D Morphs for Tree Drawings” by Elena Arseneva, Prosenjit Bose, Pilar
Cano, Anthony D’Angelo, Vida Dujmovié¢, Fabrizio Frati, Stefan Langerman, and
Alessandra Tappini, and the award for the best paper in Track 2 was assigned to
“Aesthetic Discrimination of Graph Layouts” by Moritz Klammler, Tamara Mche-
dlidze, and Alexey Pak. The participants of the conference voted to determine as the
best presentation the one given jointly by Elena Arseneva and Pilar Cano for the paper

http://www.graphdrawing.org

VI Preface

“Pole Dancing: 3D Morphs for Tree Drawings” and as the best poster the one by
Charles Camacho, Silvia Ferndndez-Merchant, Marija Jelic, Rachel Kirsch, Linda
Kleist, Elizabeth Bailey Matson, and Jennifer White entitled “Bounding the
Tripartite-Circle Crossing Number of Complete Tripartite Graphs.” Congratulations to
all the award winners for their excellent contributions, and many thanks to Springer and
MDPI whose sponsorship funded the prize money for these awards.

Following the tradition, the 25th Annual Graph Drawing Contest was held during
the conference. The contest was divided into two parts, creative topics and the live
challenge. The creative topics featured two graphs, one about Games of Thrones and
one about the Mathematics Genealogy Project. The live challenge focused on drawings
that maximize the crossing-angles, and had two categories: manual and automatic.
Awards were given in each of the four categories. We thank the Contest Committee,
chaired by Maarten Loffler, for preparing interesting and challenging contest problems.
A report about the contest is included in these proceedings.

Many people and organizations contributed to the success of GD 2018. We would
like to thank the Program Committee members and the external reviewers for carefully
reviewing and discussing the submitted papers and posters; this was crucial for putting
together a strong and interesting program. Thanks to all the authors who chose GD
2018 as the publication venue for their research. We are indebted to the gold sponsors
Tom Sawyer Software and yWorks, the silver sponsor Microsoft, and the bronze
sponsor Springer. Their generous support helps to ensure the continued success of this
conference. Last but not least, the organizing co-chairs, Vera Sacristan and Rodrigo
Silveira, did a terrific job; they in turn would like to express their thanks to other local
organizers and volunteers, including Therese Biedl, Pilar Cano, Karla Garcia, Carmen
Hernando, Clemens Huemer, Maarten Loffler, Mercé Mora, Carlos Seara, and Roger
Soli.

The 27th International Symposium on Graph Drawing and Network Visualization
(GD 2019) will take place September 17-20, 2019 in Prthonice (near Prague), Czech
Republic. Daniel Archambault and Csaba Téth will co-chair the Program Committee.
Jiti Fiala and Pavel Valtr will co-chair the Organizing Committee.

October 2018 Therese Biedl
Andreas Kerren

Steering Committee

Daniel Archambault
Therese Biedl
Giuseppe Di Battista
Fabrizio Frati
Andreas Kerren
Stephen G. Kobourov
(Incoming Chair)
Giuseppe Liotta (Outgoing
Chair)
Kwan-Liu Ma
Martin Néllenburg
Roberto Tamassia
Toannis G. Tollis

Csaba D. Toth

Program Committee

Patrizio Angelini

Daniel Archambault
David Auber

Therese Biedl (Co-chair)
Carla Binucci

Erin Chambers

Steven Chaplick
Giuseppe Di Battista
Tim Dwyer

Radoslav Fulek
Christophe Hurter
Andreas Kerren (Co-chair)
Karsten Klein

Debajyoti Mondal

Petra Mutzel

Yoshio Okamoto

Sergey Pupyrev
Helen Purchase
Marcus Schaefer

Organization

Swansea University, UK
University of Waterloo, Canada
Universita Roma Tre, Italy
Universita Roma Tre, Italy
Linnaeus University, Sweden
University of Arizona, USA

Universita di Perugia, Italy

University of California at Davis, USA

Technische Universitidt Wien, Austria

Brown University, USA

University of Crete, Greece and Tom Sawyer Software,
USA

California State University Northridge, USA

Tibingen University, Germany

Swansea University, UK

LaBRI, Université Bordeaux, France

University of Waterloo, Canada

University of Perugia, Italy

Saint Louis University, USA

Universitdat Wiirzburg, Germany

Universita Roma Tre, Italy

Monash University, Australia

IST Austria, Austria

ENAC - Ecole Nationale de 1’Aviation Civile, France

Linnaeus University, Sweden

University of Konstanz, Germany

University of Saskatchewan, Canada

TU Dortmund University, Germany

The University of Electro-Communications and
RIKEN Center for Advanced Intelligence Project
(AIP), Japan

University of Arizona, USA

University of Glasgow, UK

DePaul University, USA

VI Organization

Gerik Scheuermann
Darren Strash
Shigeo Takahashi

Tatiana von Landesberger

Sue Whitesides
David R. Wood
Hsu-Chun Yen

Organizing Committee

Vera Sacristan
Rodrigo Silveira

Contest Committee

Will Devanny

Philipp Kindermann
Maarten Loffler (Chair)
Ignaz Rutter

External Referees

Ackerman, Eyal
Aichem, Michael
Akitaya, Hugo
Alam, Jawaherul
Arroyo, Alan
Balko, Martin
Ballweg, Kathrin
Barth, Lukas

Bekos, Michael
Bereg, Sergey
Biniaz, Ahmad
Blaszczyszyn, Bartek
Blasius, Thomas
Brandenburg, Franz
Chang, Hsien-Chih
Chimani, Markus
Cornelsen, Sabine
Da Lozzo, Giordano
Di Giacomo, Emilio

Leipzig University, Germany

Hamilton College, USA
University of Aizu, Japan

Technische Universitdt Darmstadt, Germany
University of Victoria, Canada

Monash University, Australia

National Taiwan University, Taiwan

Universitat Politécnica de Catalunya, Spain
Universitat Politécnica de Catalunya, Spain

University of California at Irvine, USA
University of Waterloo, Canada
Utrecht University, The Netherlands
Universitdt Passau, Germany

Didimo, Walter
Dujmovi¢, Vida
Doring, Hanna
Evans, William
Fink, Martin
Firman, Oksana
Frati, Fabrizio
Forster, Henry
Grilli, Luca
Gronemann, Martin
Gupta, Siddharth
Hassoumi, Almoctar
Healy, Patrick
Hossain, Md. Igbal
Hu, Yifan

Irvine, Veronika
Jaeger, Sabrina
Jesus Lobo, Maria
Joret, Gwenaél

Kaufmann, Michael
Keil, Mark
Keszegh, Balazs
Kieffer, Steve
Kindermann, Philipp
Klemz, Boris
Klimenta, Mirza
Knauer, Kolja
Kryven, Myroslav
Kurz, Denis

Kync¢l, Jan

Lau, Lap Chi

Lin, Chun-Cheng
Lu, Hsueh-I

Lubiw, Anna
Loffler, Andre
Mehrabi, Saeed
Michael, Traoré
Montecchiani, Fabrizio

Nollenburg, Martin Riiegg, Ulf

Otachi, Yota Schulz, André
Patakova, Zuzana Sommer, Bjorn
Palvolgyi, Domotor Tappini, Alessandra
Rahman, Md. Saidur Uehara, Ryuhei
Roselli, Vincenzo van Renssen, André
Rutter, Ignaz Wallner, Giinter
Rzazewski, Pawet Wang, Hung-Lung
Sponsors

Gold Sponsors

\\“ vy V’//

P |
el
=
—~

y@orks

m /|
Tom Sawyer

SOFTWARE

Silver Sponsor

=. Microsoft

Bronze Sponsor

@ Springer

Organization X

Wang, Yunhai
Wiechert, Veit
Wild, Pascal

Wolff, Alexander
‘Wunderlich, Marcel
Wybrow, Michael
Yu, Tian-Li

Zink, Johannes

“0 the diagramming company

Beauty and Challenges of Crossing Numbers
(Keynote Presentation)

Bojan Mohar

Simon Fraser University, Burnaby and IMFM, Ljubljana
mohar@sfu.ca

Abstract. One of the initial goals of the graph drawing community was trying to
understand what it means for a drawing of a graph to be nice or even beautiful.
These attempts failed due to lack of a formal description how to measure how
beautiful a drawing of a graph is. However, there is a lot of beauty of the results
and methods in this area.

In this talk, the speaker will outline some of his favorite results in crossing
number theory that demonstrate extreme beauty and elegance. Yet, there are
some very basic problems that elude our proper understanding of this area. The
speaker will touch upon some of these as well.

Contents

Invited Talk

Image-Based Graph Visualization: Advances and Challenges

Alexandru Telea

Planarity Variants

Clustered Planarity = Flat Clustered Planarity.

Pier Francesco Cortese and Maurizio Patrignani

Level Planarity: Transitivity vs. Even Crossings

Guido Briickner, Ignaz Rutter, and Peter Stumpf

Short Plane Supports for Spatial Hypergraphs.

Thom Castermans, Mereke van Garderen, Wouter Meulemans,
Martin Néllenburg, and Xiaoru Yuan

Turning Cliques into Paths to Achieve Planarity

Patrizio Angelini, Peter Eades, Seok-Hee Hong, Karsten Klein,
Stephen Kobourov, Giuseppe Liotta, Alfredo Navarra,
and Alessandra Tappini

Upward Drawings

Universal Slope Sets for Upward Planar Drawings

Michael A. Bekos, Emilio Di Giacomo, Walter Didimo,
Giuseppe Liotta, and Fabrizio Montecchiani

Upward Planar Morphs

Giordano Da Lozzo, Giuseppe Di Battista, Fabrizio Frati,
Maurizio Patrignani, and Vincenzo Roselli

Visualizing the Template of a Chaotic Attractor
Maya Olszewski, Jeff Meder, Emmanuel Kieffer, Raphaél Bleuse,

Martin Rosalie, Grégoire Danoy, and Pascal Bouvry

RAC Drawings

On RAC Drawings of Graphs with One Bend per Edge.

Patrizio Angelini, Michael A. Bekos, Henry Forster,
and Michael Kaufmann

23

39

53

67

77

92

X1V Contents

Compact Drawings of 1-Planar Graphs with Right-Angle Crossings
and Few Bends. 137
Steven Chaplick, Fabian Lipp, Alexander Wolff, and Johannes Zink

Drawing Subcubic 1-Planar Graphs with Few Bends, Few Slopes,

and Large Angles 152
Philipp Kindermann, Fabrizio Montecchiani, Lena Schlipf,
and André Schulz

Best Paper Track 2

Aesthetic Discrimination of Graph Layouts 169
Moritz Klammler, Tamara Mchedlidze, and Alexey Pak

Orders

A Flow Formulation for Horizontal Coordinate Assignment
with Prescribed Width 187
Michael Jiinger, Petra Mutzel, and Christiane Spisla

The Queue-Number of Posets of Bounded Width or Height 200
Kolja Knauer, Piotr Micek, and Torsten Ueckerdt

Queue Layouts of Planar 3-Trees, 213
Jawaherul Md. Alam, Michael A. Bekos, Martin Gronemann,
Michael Kaufmann, and Sergey Pupyrev

Crossings

Crossing Minimization in Perturbed Drawings 229
Radoslav Fulek and Csaba D. Toth

The Number of Crossings in Multigraphs with No Empty Lens 242
Michael Kaufimann, Janos Pach, Géza Toth, and Torsten Ueckerdt

Crossing Numbers and Stress of Random Graphs 255
Markus Chimani, Hanna Déring, and Matthias Reitzner

Crossing Angles

A Heuristic Approach Towards Drawings of Graphs with

High Crossing Resolution, 271
Michael A. Bekos, Henry Forster, Christian Geckeler, Lukas Holldnder,
Michael Kaufimann, Amaddus M. Spallek, and Jan Splett

Contents

A Greedy Heuristic for Crossing-Angle Maximization.
Almut Demel, Dominik Diirrschnabel, Tamara Mchedlidze,
Marcel Radermacher, and Lasse Wulf

Contact Representations

Recognition and Drawing of Stick Graphs
Felice De Luca, Md Igbal Hossain, Stephen Kobourov, Anna Lubiw,
and Debajyoti Mondal

On Contact Graphs of Pathson a Grid.
Zakir Deniz, Esther Galby, Andrea Munaro, and Bernard Ries
Specialized Graphs and Trees

On the Area-Universality of Triangulations.
Linda Kleist

Monotone Drawings of k-Inner Planar Graphs
Anargyros Oikonomou and Antonios Symvonis

On L-Shaped Point Set Embeddings of Trees: First
Non-embeddable Examples
Torsten Miitze and Manfred Scheucher

HowtoFitaTreeinaBox
Hugo A. Akitaya, Maarten Loffler, and Irene Parada

Best Paper Track 1

Pole Dancing: 3D Morphs for Tree Drawings.
Elena Arseneva, Prosenjit Bose, Pilar Cano, Anthony D Angelo,
Vida Dujmovi¢, Fabrizio Frati, Stefan Langerman,
and Alessandra Tappini

Partially Fixed Drawings

The Complexity of Drawing a Graph in a Polygonal Region
Anna Lubiw, Tillmann Miltzow, and Debajyoti Mondal

Inserting an Edge into a Geometric Embedding.
Marcel Radermacher and Ignaz Rutter

p-Stars or On Extending a Drawing of a Connected Subgraph
Tamara Mchedlidze and Jérome Urhausen

XVI Contents

Experiments

Perception of Symmetries in Drawings of Graphs 433
Felice De Luca, Stephen Kobourov, and Helen Purchase

Network Alignment by Discrete Ollivier-Ricci Flow 447
Chien-Chun Ni, Yu-Yao Lin, Jie Gao, and Xianfeng Gu

Same Stats, Different Graphs: (Graph Statistics and Why We Need

Graph Drawings).o 463
Hang Chen, Utkarsh Soni, Yafeng Lu, Ross Maciejewski,
and Stephen Kobourov

Orthogonal Drawings

Bend-Minimum Orthogonal Drawings in Quadratic Time. 481
Walter Didimo, Giuseppe Liotta, and Maurizio Patrignani

Greedy Rectilinear Drawings 495
Patrizio Angelini, Michael A. Bekos, Walter Didimo, Luca Grilli,
Philipp Kindermann, Tamara Mchedlidze, Roman Prutkin,
Antonios Symvonis, and Alessandra Tappini

Orthogonal and Smooth Orthogonal Layouts of 1-Planar Graphs

with Low Edge Complexity 509
Evmorfia Argyriou, Sabine Cornelsen, Henry Forster,
Michael Kaufmann, Martin Néllenburg, Yoshio Okamoto,
Chrysanthi Raftopoulou, and Alexander Wolff

Ortho-Polygon Visibility Representations of 3-Connected 1-Plane Graphs ... 524
Giuseppe Liotta, Fabrizio Montecchiani, and Alessandra Tappini

Realizability

Realization and Connectivity of the Graphs of Origami Flat Foldings 541
David Eppstein

Arrangements of Pseudocircles: On Circularizability 555
Stefan Felsner and Manfred Scheucher

The Weighted Barycenter Drawing Recognition Problem 569
Peter Eades, Patrick Healy, and Nikola S. Nikolov

Miscellaneous

Algorithms and Bounds for Drawing Directed Graphs 579
Giacomo Ortali and loannis G. Tollis

Contents XVII

Optimal Grid Drawings of Complete Multipartite Graphs and

an Integer Variant of the Algebraic Connectivity. 593
Ruy Fabila-Monroy, Carlos Hidalgo-Toscano, Clemens Huemer,
Dolores Lara, and Dieter Mitsche

Graph Drawing Contest Report

Graph Drawing Contest Report. 609
William Devanny, Philipp Kindermann, Maarten Loffler,
and Ignaz Rutter

Poster Abstracts

Visual Analysis of Temporal Fiscal Networks with TeFNet 621
Walter Didimo, Luca Grilli, Giuseppe Liotta, Fabrizio Montecchiani,
and Daniele Pagliuca

Multilevel Planarity. 624
Lukas Barth, Guido Briickner, Paul Jungeblut,
and Marcel Radermacher

Schematizing Regional Landmarks for Route Maps. 627
Marcelo Galvdo, Jakub Krukar, and Angela Schwering

Low-Degree Graphs Beyond Planarity 630
Patrizio Angelini, Michael A. Bekos, Michael Kaufmann,
and Thomas Schneck

Bounding the Tripartite-Circle Crossing Number of Complete Tripartite

Charles Camacho, Silvia Ferndndez-Merchant, Marija Jelic,
Rachel Kirsch, Linda Kleist, Elizabeth Bailey Matson,
and Jennifer White

On the Edge Density of k-Planar Graphs 636
Steven Chaplick, Andre Loffler, and Rainer Schmoger

Confluent* Drawings by Hierarchical Clustering. 640
Jonathan X. Zheng, Samraat Pawar, and Dan F. M. Goodman

Examining Weak Line Covers with Two Lines in the Plane. 643
Oksana Firman, Fabian Lipp, Laura Straube, and Alexander Wolff

1-Gap Planarity of Complete Bipartite Graphs 646
Christian Bachmaier, Ignaz Rutter, and Peter Stumpf

XVIIL Contents

Extending Drawings of K, into Arrangements of Pseudocircles. 649
Alan Arroyo, R. Bruce Richter, and Matthew Sunohara

Topology Based Scalable Graph Kernels 652
Kin Sum Liu, Chien-Chun Ni, Yu-Yao Lin, and Jie Gao

New Spectral Sparsification Approach for Drawing Large Graphs. 655
Jingming Hu and Seok-Hee Hong

SPQR Proxy Graphs for Visualization of Large Graphs 658
Seok-Hee Hong and Quan Nguyen

Taming the Knight’s Tour: Minimizing Turns and Crossings 661
Juan Jose Besa, Timothy Johnson, Nil Mamano,
and Martha C. Osegueda

Author Index 665

Invited Talk

®

Check for
updates

Image-Based Graph Visualization:
Advances and Challenges

Alexandru Telea®)

Bernoulli Institute, University of Groningen, Groningen, The Netherlands
a.c.telea@rug.nl

Abstract. Visualizing large, multiply-attributed, and time-dependent
graphs is one of the grand challenges of information visualization. In
recent years, image-based techniques have emerged as a strong competi-
tor in the arena of solutions for this task. While many papers on this
topic have been published, the precise advantages and limitations of such
techniques, and also how they relate to similar techniques in the more
traditional fields of scientific visualization (scivis) and image processing,
have not been sufficiently outlined. In this paper, we aim to provide
such an overview and comparison. We highlight the main advantages
of image-based graph visualization and propose a simple taxonomy for
such techniques. Next, we highlight the differences between graph and
scivis/image datasets that lead to limitations of current image-based
graph visualization techniques. Finally, we consider these limitations to
propose a number of future work directions for extending the effective-
ness and range of image-based graph visualization.

Keywords: Large graph visualization
Image-based information visualization - Multiscale visualization

1 Introduction

Relational data, also called networks or graphs, is a central and ubiquitous
element of many types of data collections generated by multiple application
domains such as traffic analysis and planning, social media, business intelli-
gence, biology, software engineering, and the internet. Since the first moments
when such data was collected, visualization has been a key tool for its explo-
ration and analysis, leading to the emergence and development of the research
domains of graph drawing and graph visualization [15,23]. Last-decade develop-
ments in processing power, data-acquisition tools, and techniques, have led to
what is today globally called big data — collections of tens of millions of sam-
ples having hundreds of measurement values (attributes), all which can evolve
over thousands of time steps. A particular case hereof, big-data graphs, pose
fundamental problems for visual exploration.

On the other hand, several solutions, techniques, and tools have been devel-
oped for the scalable visual exploration of other types of big data collections,

© Springer Nature Switzerland AG 2018
T. Biedl and A. Kerren (Eds.): GD 2018, LNCS 11282, pp. 3-19, 2018.
https://doi.org/10.1007/978-3-030-04414-5_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04414-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-04414-5_1

4 A. Telea

such as 2D images, 3D scalar or vector field volumes, or more generally multidi-
mensional fields, in the domains of scientific visualization and imaging sciences
[52]. Recent developments have tried to approach the two traditionally sepa-
rately evolving fields of graph visualization and scientific visualization, thereby
aiming at leveraging the (visual) scalability of the latter methods to address
big graph related challenges from the former [20]. This has led to interesting
parallels and links between concepts, methods, and applications between the
two fields, and the development of hybrid visualization methods that inherit
strengths from both graph visualization and scientific visualization. However,
large graph visualization still has many unsolved challenges [23].

In this paper (and related talk) we aim to provide an overview of the research
at the crossroads of large graph visualization and scientific visualization. We start
highlighting the main challenges in large graph visualization (Sect.2). Next, we
outline the high-level directions proposed by current research towards addressing
these (Sect. 3). We focus next on one type of technique that aims to solve these
challenges by adapting methods from scientific visualization and imaging to the
particularities of graph visualization — image-based graph visualization (Sect. 4).
Based on the structure of graph data outlined in Sect. 2, we discuss here various
types of image-based methods for graph visualization and highlight parallels to
simplification methods for multivariate field and image data. In the light of these
methods, we next highlight open challenges for image-based graph visualization
(Sect.5) and attempt to clarify some of the more subtle points related to this
new emerging visualization field which, we believe, have not been sufficiently
discussed in current literature. Section 6 concludes the paper outlining promising
directions for future research in image-based graph visualization.

2 Problem Definition

2.1 Preliminaries

To better outline the large graph visualization challenges, we first introduce
some notations. Let G = (V,E C V x V) be a graph with vertices, or nodes,
V = {v;} and edges E = {e;}. Both nodes and edges typically have one or
multiple attributes (also called features, dimensions, or variables). We denote
by v!, 1 < j < Ny, the individual attributes of node v;, and by e}, 1 < j <
Ng, the individual attributes of edge e;, respectively. As a shorthand, let v7
denote all values of the j** attribute of all nodes V; let e/ denote all values
of the j* attribute of all edges E; let V = (v!,...,vV) denote all values
of all node attributes; and let E = (e,...,e"®) denote all values of all edge
attributes, respectively. Attributes can be of all types, e.g., quantitative (values
in R), integral (values in N), ordinal, categorical, text, hyperlinks, but also more
complex data types such as images or video. In this sense, the ordered collections
V and E are very similar to so-called multidimensional datasets as well known
in information visualization [20,34,52]. That is, every node v; or edge e; can
be seen as a sample, or observation, of a respectively Ny and Ng dimensional

Image-Based Graph Visualization: Advances and Challenges 5

dataset. Finally, as graphs can evolve over time, all their ingredients (sets V', E,
V, and E) can be seen as functions of (continuous or discrete) time [2].

Abstract graph space Euclidean space Image space
(" attributed graph G N /) (graph layout (graph visualization)
nodes V edges E 5 MF©G) R(M(F(G)))
node v; edge €; X < > / ®_
8 8 =~ e ;
= 2 = = B £ 8
= = = > S () s
g g =MszMe " g
% g} = ét’ = positions m; e i It
< @ = rendered
shapes r;
A\ % \—/
§ aggregation layouting bundling
2 | fitering bundling glyphs
'S | subsampling image-based techniques
e
Fig. 1. Graph visualization pipeline.

With these notations, visualizing a graph can be defined in terms of the
traditional data visualization pipeline [52] in terms of filtering, mapping and
rendering operations (see also Fig.1). Filtering F reads the input graph G and
produces another graph F(G) which is (more) suitable for subsequent visualiza-
tion, e.g., by removing nodes, edges, and/or attributes that are not of interest,
or aggregating such elements into fewer and/or semantically richer ones. Map-
ping M is a function that takes as input F(G) and outputs a set of shapes
M(F(G)) = {m;} embedded in R? or, less frequently, R3. Typically, nodes are
mapped to individual points, and edges are mapped to straight lines or, less
commonly, curves. Other layout methods, such as adjacency matrices [1], exist
but are less intuitive, less common, and thus not discussed here. Most often, M
takes into account only the graph topology (V, E), and computes only positions
m; for nodes. This is the case of so-called graph layout techniques [51,55]. Ren-
dering R takes as input the layout M (F(G)) and creates actual visible shapes
R(M(F(G))) = {r;}, where each r; is placed at the corresponding layout posi-
tions m;. Visual variables [57] of r; such as size, color, texture, transparency,
orientation, texture, and annotation are used to encode the attributes v; and e;
of the respective node or edge. Interactive exploration techniques such as zoom-
ing, panning, brushing, and lensing can be subsumed to the rendering operator
R as they are essentially customized ways to perform rendering; hence, we do
not discuss them separately.

2.2 Scalability Challenge

With the above notations, we can decompose the challenge of visualizing big-
data graphs into the following three elements:

6 A. Telea

Layout: A good layout should arguably allow end users to detect structures of
interest present in G by examining the rendering R(M (G)). These include, but
are not limited to, finding groups of strongly-connected nodes; finding specific
connection patterns; assessing the overall topology of G; and finding (and fol-
lowing) paths between specific parts of G, at a low level [24]; and identifying,
comparing, and summarizing the information present in G, at a high level [4].
However, even for moderately-sized graphs (|V| or |E| exceeding a few thou-
sands), most existing layout methods cannot usually produce layouts that can
consistently support these tasks [23]. Suboptimal layouts of large graphs, also
called ‘hairballs’, are all to frequent a problem in graph visualization [38,47].
The problem is caused by the fact that there does not exist a ‘natural’ map-
ping between the abstract space of graphs and the Euclidean 2D or 3D render-
ing space. Interestingly, the problem is very similar to that of mapping high-
dimensional scatterplots (sampled datasets in R™) to 2D or 3D by so-called
dimensionality reduction (DR) methods [29,50].

Dimensionality: An effective graph visualization should allow users to answer
questions on all elements of interest of the original graph. Apart from the topol-
ogy (V,E) which should be captured by the layout M(G), this includes the
node and edge attributes V and E. The problem is that, when Ny and Ng
are large, nodes and edges essentially become points in high-dimensional spaces.
Since, as explained, each node and/or edge is typically mapped to a separate
location m;, the challenge is how to depict a high-dimensional data sample, con-
sisting of potentially different attribute types, to the space at or around m,;.
A similar problem exists in scientific visualization when using glyphs to depict
high-dimensional fields [3,44]: The higher-dimensional our data points are, the
more space one needs to show all dimensions, so the fewer such points (in our
case, nodes and/or edges) can one show on a given screen size. At one extreme,
we can display (tens of) thousands of nodes on a typical computer screen if we
only show 2 or 3 attributes per node (encoded e.g. in hue, luminance, and size);
at the other extreme, we can display tens of attributes per node, like in UML
diagrams, but for only a few tens up to hundreds of nodes [5]. The problem is
well known also in multidimensional information visualization.

Clutter and Overdraw: Finally, a scalable graph visualization should accom-
modate (very) large graphs consisting of millions of nodes and/or edges. Even
if we abstract from the aforementioned layout and dimensionality challenges,
a fundamental difficulty here resides in the fact that a node-link visualization
cannot exceed a given density: If nodes and/or edges are drawn too close to each
other, they will form a compact cluttered mass where they cannot be distin-
guished from each other. Additionally, an edge (in the node-link visual model) is
drawn as a line (or curve) so in the limit it needs to use at least a few (tens of)
pixels of screen space to be visible as such (if the edge is too show, we cannot e.g.
see its direction); in Tufte’s terms, there is an upper bound to the data-ink ratio
[67] when drawing a graph edge. Moreover, when attributes must be rendered

Image-Based Graph Visualization: Advances and Challenges 7

atop of the edge, the amount of surrounding whitespace needs to be increased
[17]. This leads in turn to inherent overdraw, i.e. edges that partially occlude
each other, even for moderately-sized graphs of thousands of nodes. A detailed
overview of clutter reduction techniques in information visualization is given by
Ellis and Dix [8]. In large graph visualization, clutter and overdraw are hard to
jointly optimize for: Spatial distortion, e.g. via edge bundling (discussed next
in Sect.4.2), creates more white space, thus reduces clutter, but increases over-
draw; space-filling techniques are of limited effect since, as noted, edges must
be surrounded by white space to be visible as such; apart from these, reducing
clutter and overdraw is not fully possible in the rendering phase only, as this
phase works within the constraints of the layout fed to it by the M operator.

Scivis data simplification Graphvis data simplification

filtering F

filtering F/

a) 3D mesh (80K points) b) simplified mesh (20K points) e) graph (80K edges)

filtering F
filtering F

¢) mesh detail (70 polygons) d) simplified mesh detail 9 graph detail (50 edges) h) graph detail (49 edges)
(69 polygons)

Fig. 2. Data-space simplification of scivis data (a) vs graph data (b). (Color figure
online)

3 Simplification: Ways Towards a Solution

For a given screen resolution for the target image R, how can we approach large
graph visualization? Given the scalability challenges outlined in Sect. 2.2, two
types of approaches exist, as follows.

Data-Space Simplification: First, we can simplify the graph G in the filtering
stage F in the visualization pipeline (Fig.1). This reduces the number of nodes
(IV]), edges (|E|), and/or attributes (Ny, Ng) to be next passed to the mapping
operator M. Following the clutter reduction taxonomy of Ellis and Dix [8], this
includes subsampling, filtering, and clustering (aggregation) [45], all applicable to
V, E, and (V, E) respectively. While effective in tackling clutter, overdraw, and
dimensionality issues, such approaches have two limitations. First, they require

8 A. Telea

a priori knowledge on which data items (samples or dimensions) can be filtered
or clustered together. Secondly, performing such operations on graphs can easily
affect the semantics of the underlying data.

At this point, it is instructive to compare graph visualization (graphvis)
with image and field visualization as done in classical scientific visualization
(scivis). Consider a multidimensional dataset D : R™ — R"; for each point of
the Euclidean m-dimensional domain, n quantitative values are measured. Scivis
provides many methods for visualizing such datasets, e.g. for 2D and 3D vector
fields (m € {2,3},n € {2,3}) or 2D and 3D scalar fields (m € {2,3},n = 1)
[62]. Many techniques exist in scivis (and, by extension, in imaging and sig-
nal processing) for simplifying large fields — we mention here just a few, e.g.,
perceptually-based image downscaling [39], feature extraction from vector fields
[43], multiscale representations of scalar and vector fields [12,14], mesh simpli-
fication [28], and image segmentation [40]. Many such techniques have a multi-
scale nature: Given a dataset D and a simplification level 7 € R™, they produce
a filtered (simplified) version F(D) of D which is (roughly) 7 times smaller
than D. This allows users to continuously vary the level-of-detail parameter 7
until obtaining a visualization that matches their goals, as well as fits the avail-
able screen space with limited clutter. Figure 2(left) illustrates this: From a 3D
surface-mesh dataset (a), we can easily extract a four times smaller dataset (b)
using e.g. mesh decimation [46], which captures very well the overall structure
of the depicted bone shape. Consider now a graph of similar size, whose nodes
are functions in a software system [54] and edges function calls respectively (e).
What should be the equivalent simplification of this graph to a size four times
smaller? (f) This is far from evident. The scivis-graphvis difference manifests
itself even on the tiniest scale: Take a detail (zoom-in) of the mesh dataset (c)
from which we decimate a single polygon (data point). The result (d) is visually
identical. Consider now the analogous zoom-in on a small portion of our call
graph (g) from which we remove a single edge. The result (h) may be visually
similar to the input (g), but can have a completely different semantics — just
imagine that the removed function call edge is vital to the understanding of the
operation of the underlying software.

All in all, most scivis data-space simplification methods succeed in keep-
ing the overall semantics of their data. In contrast, even tiny changes to graph
data can massively affect the underlying semantics. More formally put, scivis
data-space simplification methods appear (in general) to be Cauchy or Lipschitz
continuous (small data changes imply small semantic changes). This clearly does
not hold in general for graph data. We believe the difference is due to two factors:

1. Scivis data is defined over FEuclidean domains (R™). This allows simplifica-
tion operators to readily use continuous Euclidean distances to e.g. aggregate
and cluster data. An entire machinery is available for this, including basis
functions and interpolation methods [12,14].

2. All data samples have (roughly) the same importance, and the phenomenon
(signal) sampled by the scivis dataset D is of bounded frequency. Hence,
discarding a few samples does not affect data semantics.

Image-Based Graph Visualization: Advances and Challenges 9

In contrast:

1. Graph data is defined over an abstract graph space, whose dimensions, and
even dimensionality, are not known or even properly defined. It is not always
evident how to define ‘proximity’ between graph nodes and/or edges. There
is no comparable (continuous) interpolation theory for graph data. Graph-
theoretic distances are not continuous. Simply put: There is nothing (no
information) between two nodes connected by an edge;

2. Nodes and edges can have widely different importances. There is, as we know,
no similar notion of ‘maximal frequency’ of a graph dataset as in scivis. Hence,
discarding a few samples can massively affect graph data semantics.

Image-Level Simplification: A second way to handle large graph visualiza-
tions is to simplify them in the image domain. That is, given the limitations of
data-space graph simplification listed earlier, rather than designing simplifica-
tion operators F' that act on the graph datasets, we embed the simplification
into the graph rendering operator R. The key advantage here is that R acts, by
definition, upon an Euclidean space (the 2D target image), where all samples
(pixels) are equally important. Hence, the main proposal of image-based graph
visualization is to delay simplification to the moment where we can reuse/adapt
known scivis techniques for data simplification. Rather than first simplifying the
graph data (F') and then mapping (M) and rendering (R) it, image-level tech-
niques first map the data, and then simplify it during rendering'. We detail the
advantages and challenges of image-based graph visualization next.

4 Image-Based Graph Visualization

Image-based graph visualization is a subfield of the larger field of image-based
information visualization [20]. The name of this field can be traced back to
2002, when image-based flow visualization (IBFV) was proposed to depict large,
complex, and time-dependent 2D vector fields using animated textures [60]. Key
to IBFV (and its sequels) was the manipulation of the image-space pixels to
produce the final visualization. Several advantages followed from this approach:

— Dense visualizations: Every target image pixel encodes a certain amount of
information, thus maximizing the data-ink ratio [57];

— Clutter is avoided by construction: Rather than scattering dataset samples
over the image space (which can lead to clutter when several such samples
inadvertently overlap), samples are gathered and explicitly aggregated for
each pixel. The aggregation function is fully controlled by the algorithm;

— Implicit multiscale visualizations: By simply changing the resolution of the
target image (zooming in or out), users can continuously control the amount
of information displayed per screen area unit;

! The underlying assumption here is that mapping and simplification are conceptually
commutative. As discussed next, this is not always the case.

10 A. Telea

— Exploitation of existing knowledge about image perception when synthesizing
and /or simplifying a graph visualization;

— Accelerated implementations: Image-based techniques parallelize naturally
over the target image pixels (much as raycasting does), so they optimally
fit to modern GPU architectures [25,62];

— Simpler implementations vs data-space graph simplification techniques.

A more subtle (but present) advantage of image-based graph visualizations
is their ability to reuse principles and techniques grounded in the theory and
practice of image and signal processing, thereby allowing a more principled rea-
soning about, and control of, the resulting visualization. We next outline the
main advances of this field, along with the challenges that we still see open.
Given the structure of a graph in terms of nodes, edges, and attributes thereof
(Sect. 2.1), we structure our discussion along the same concepts.

=
£
5
o
5
b=
5
s
£

Fig. 3. (a) Node-link graph drawing (dataset from Fig. 2e) and (b) its graph splatting.
(Color figure online)

4.1 Node-Centric Techniques

The first image-based graph visualization, to our knowledge, is graph splatting,
proposed in 2003 by De Leeuw and Van Liere [27]. Its intuition is simple: Given
a graph drawing (layout) M(G), its visualization R(M(G)) is the convolution
of M(G) with an isotropic 2D Gaussian kernel in image space. This is simply
a low-pass filter that emphasizes high-density node and/or edge areas in the
layout. The visualization’s level-of-detail, or multiscale nature, is controlled by
the filter’s radius. The samples’ (nodes or edges) weights can be set to reflect
their importance. Figure 3(b) shows the splatting of the graph in Fig.3(a), for
the same call graph as in Fig. 2e, where the nodes’ weights are set to their number
of outgoing edges (fan-out factor). The resulting density map, visualized with
a rainbow colormap, thus emphasizes nodes (functions) that call many other
functions as red spots. This allows easily detecting such suitably-called ‘hot
spots’ in the software system’s architecture.

Image-Based Graph Visualization: Advances and Challenges 11

Graph splatting is extremely simple to implement, fast to execute (linear in
the number of splatted nodes and/or edges), and easy to control by users via
its kernel-radius parameter. It also forms the basis of more advanced techniques
such as graph bundling (Sect.4.2). Formally, it is a variant of the more general
kernel density estimation (KDE) set of techniques used in multidimensional data
analysis [49]. Tts key limitation is that it assumes a good layout M (G): Density
hot spots appear when nodes and/or edges show up closely in a graph layout.
So, when layout methods M place unrelated nodes close to each other, ‘false
positive’ hot spots appear (and analogously for false negatives).

4.2 Edge-Centric Techniques

Graph bundling is the foremost image-based technique focusing on graph edges.
Bundling has a long history (see Fig.4 for an overview of its most important
moments). We distinguish five phases, as follows (for a comprehensive recent
survey, we refer to [26,61]):

Early Phase: Minard hand-drew a so-called ‘flow map’ (a single-root directed
acyclic graph) showing the French wine exports in 1864 [33]. While not properly
a bundled graph, as no edges are grouped together, the visual style featuring
curved edges whose thickness maps edge weights, suggests later bundling tech-
niques. The design was refined in 1898 to create the so-called Sankey diagrams,
which can display more complex (multiple source, cyclic) graphs;

First Computer Methods: One of the first computer-computed bundling-like
visualizations was proposed by Newbery in 1989 [35]. The key novelty vs earlier
methods is grouping edges sharing the same end nodes (so, this technique can
be seen as a particular case of graph simplification by aggregation). Dickerson
et al. coined the term ‘edge bundling’ in 2003 for their method that optimizes
node placement and groups same-endpoints edges (via splines) to simplify graph
drawings. All these techniques could handle only small graphs of tens up to
hundreds of nodes and edges.

Establishment Phase: Subsequent methods focused on larger-size graphs
(thousands of nodes and edges). Flow map layouts [42] generalized in 2005 the
computation of Sankey-like diagrams, also first featuring the ‘organic’ branch-
like structure to be encountered in many later techniques [7,9,53]. At roughly the
same time (2006), two key bundling techniques emerged: Gansner et al. presented
improved circular layouts [11], which grouped edges based on their spatial prox-
imity in M (G); Holten proposed hierarchical edge bundling [16] which grouped
edges based on the graph-theoretic distance of their start and end nodes in a
hierarchy of the graph’s nodes. Holten also pioneered several advanced blending
techniques to cope with edge overdraw (see also Sect. 4.3).

12 A. Telea

Early phase

i
N

a) hand-drawn flow maps (1864) b) Sankey diagrams (1898)

==
[rana] o]

First computer methods

d) confluent drawings (2003)

Establishment phase

f) circular layouts (2005) g) hierarchical edge bundling (2006)

Consolidation phase

State of the art

) Fast Fourier transform bundling (261 7)

k) CUDA universal bundling (2016)

Fig. 4. Key moments in edge bundling history.

Consolidation Phase: The next phase focused on treating general graphs [18],
time-dependent graphs [36], and, most importantly for our context, image-based
methods. The latter include image-based edge bundles (IBEB [53], following the
name-giving of IBFV [60]) which introduced clustering and grouped rendering
of spatially close edges in the form of shaded cushions [58] to both simplify

Image-Based Graph Visualization: Advances and Challenges 13

the rendered graph and emphasize distinct/crossing, bundles. IBEB reused sev-
eral image-processing operators such as KDE [49], distance transforms [10], and
medial axes [48] for computational speed. Next, skeleton-based edge bundles
(SBEB) [9] used medial axes to actually perform graph bundlings, by following
the simple but effective intuition that bundling a set of (close) curves means
moving them towards the centerline of their hull.

State of the Art: Most recent methods focus mainly on scalability, using
image-based techniques. Kernel density edge bundling (KDEEB) [21] showed
that bundling a graph drawing is identical to applying mean shift, well known
in data clustering [6], on the KDE edge-density field. CUDA Universal Bundling
(CUBu) [62] next accelerated KDEEB to bundle 1 million-edge graphs in sub-
second time by parallelizing KDE on the GPU. Fast Fourier Transform Edge
Bundling (FFTEB) [25] further accelerated CUBu by computing the KDE con-
volution in frequency space, thus bundling graphs of tens of millions of edges at
interactive rates. As such, scalability seems to have been addressed successfully.

Shape skeletons

can we use skeletons
to cluster arbitrary data?
can we use mean shift
to compute shape skeletons?

ef;s/;% Mean shift clustering
0/ Sy
G (2 - o
s 0;9/7% ef%& - _ A v
Yy, See " s b4
N are B oo)

Fig. 5. Puzzling connections between graph visualization, shape analysis, and multi-
dimensional data analysis.

Several points can be made about edge bundling. First, bundling is an image-
space simplification technique of the graph drawing R(M(G)) that reduces clut-
ter by creating whitespace between bundles, but increases overdraw (of same-
bundle edges); a recent bundling formal definition as an image-processing oper-
ator is given in [26]. Image-based bundling is a multiscale technique, where
the KDE kernel radius controls the extent over which close edges get bundled,
thereby allowing users to easily and continuously specify how much they want to

14 A. Telea

simplify (bundle) their graphs. Image-based methods are clearly the fastest, most
scalable, bundling methods, due to the high GPU parallelization of their under-
lying image processing operations. Edge similarity, the bundling driving factor,
can be easily defined in terms of a mix of spatial (Euclidean) and attribute-based
distances [41]. More interestingly from a theoretical point, bundling exposes some
puzzling connections between domains as different as data clustering [6], shape
simplification [48], and graph visualization itself (Fig.5). Briefly put:

— If skeletons can be used to bundle graphs [9], how can we further use the
wealth of shape analysis methods to analyze/visualize graphs?

— If skeletons and mean shift bundle graphs [9,21], can we use skeletons to
cluster multidimensional data, or mean shift to compute shape skeletons?

— If mean shift simplifies graphs [21], could we see graphs as yet another form
of multidimensional data?

These questions open, we think, a wealth of new vistas on data visualization.

sparse __ dense a) low weight

Deals
s P Sy,

L of

Fig. 6. Attribute encoding in bundled graph visualizations.

4.3 Attribute-Centric Techniques

Graph visualization scalability also means handing high-dimensional node
and/or edge attributes (Sect.2.2). Visualizing these is hard, since the method
of choice for handling geometric scalability — bundling — massively increases
edge overdraw. Several image-based techniques address attribute visualization,
as follows.

One can directly visualize the edge-density (KDE) map e.g. by alpha blending
[16], which is a simple form of graph splatting using a one-pixel-wide kernel.
Additionally, hue mapping can encode edge attributes, such as density [18,62]
(Fig. 6a), length [16,62] (Fig. 6b), quantitative weights [56] (Fig. 6¢), categorical

Image-Based Graph Visualization: Advances and Challenges 15

edge types [53] (Fig. 6d), and edge directions [41] (Fig. 6e). Two main challenges
exist here. First, at edge overlap locations, attribute values e of multiple edges e;
have to be aggregated together prior to color coding. While this is straightforward
to do for e.g. edge density, it becomes problematic for other attributes such as
edge categorical types or edge directions. This issue parallels known challenges
in scivis (interpolation of vector fields) and infovis (aggregation of categorical
data). Secondly, there is currently no scalable method that can render at the
same time more than roughly two attributes per edge in high-density graph
visualizations. Visualizing graphs having tens of attributes per edge (Ng > 2) is
an open problem. Separately, animation has been used to encode edge directions
by using particle-based techniques [19]. Interestingly, this approach resembles
a form of IBFV [60] applied to the vector field defined by the edges’ tangent
vectors. However, in a typical vector field, the number of singularities (where
IBFV would have problems rendering a smooth, informative, animation) is quite
limited; in a dense graph, this number is very high, equalling the amount of edge
crossings or, in the bundled case, overlaps of different-direction edges [9]. Hence,
IBFV cannot be directly used to visualize large/complex graphs.

5 Open Challenges

Image-based techniques have shown high potential for the efficient and effective
visualization of large graphs. Yet, we also see a number of key challenges that
they would need to tackle to become (more) effective in practice, as follows.

Layouts: Current image-based techniques address the rendering (R) phase,
but assume a suitable node layout to be given as input. As explained, comput-
ing such a layout (for large graphs) is challenging. A promising direction is to
further explore analogies between dimensionality reduction (DR, used to effi-
ciently and effectively visualize high-dimensional sample sets embedded in R™)
and graph drawing [22]. An additional advantage of doing this is that DR can
easily accommodate a wide range of similarity functions, e.g., accounting for
both graph structure and attributes [32]. This could open new ways to visu-
alizing graphs having many node and/or edge attributes. Separately, it would
be interesting to consider image-based bundling approaches for the layout of a
graph’s nodes.

Aggregation: Graph splatting and bundling are the techniques of choice for
generating images of large graphs. However, the way in which the multiple node
and/or edge attribute values that cover a given pixels are to be aggregated is
currently limited to simple operations (sum, average, minimum, or maximum)
[16,62]. Such operations cannot aggregate attributes such as categorical types or
edge directions. For edge directions, it is interesting to consider analogies with
scivis techniques for dense tensor field interpolation [59] which address related
problems. Separately, image processing has proposed a wealth of operators for

16 A. Telea

detecting and emphasizing specific features present in images such as edges, lines,
textures, or even more complex shapes [13]. Such operators could be readily
adapted to highlight patterns of interest in image-based graph visualizations.

Quality: Measuring the quality of an (image-based) graph visualization is an
open topic [37], much due to the fact that there is typically no ground truth to
compare against. Still, image processing techniques can be helpful in this area,
e.g. by providing quantitative measures for the amount of edge intersections,
bends, preservation of graph-theoretic distances, or edge-angle spatial distri-
butions, in the final image. Such image-based metrics have been successful in
assessing the quality of DR scatterplot projections [31], bringing added value
beyond simple aggregate metrics. Exploring their extension to graph visualiza-
tions is potentially effective. Also, such metrics could be easily used to locally
constrain the mapping and/or rendering phases, e.g. to limit the amount of
undesired deformations that bundling produces.

Applications: An interesting and potentially rich field for graph visualization is
the exploration of deep neural networks (DNNs), currently the favored technique
in machine learning. DNNs are large (millions of nodes and/or edges), attributed
by several values (e.g. activations and weights), and time-dependent (e.g. during
the network training). Understanding how DNNs work, and why/where they do
not work, is a major challenge in deep learning [30]. Visualizing DNNs is also very
difficult, as their tightly-connected structure yields significant edge crossings and
overdraw, and it is not evident how e.g. bundling would help for these topologies.
Exploring image-based techniques for this use-case is promising.

6 Conclusion

In this paper, we surveyed current developments of image-based techniques for
the visualization of large, high-dimensional, and time-dependent graphs. These
techniques have major advantages — the ability of creating dense visualizations
with high data-ink ratios, treatment of clutter by construction, an implicit mul-
tiscale nature able to handle large and dense graphs, and scalable implementa-
tions. We highlighted analogies and differences between image-based techniques
and related techniques for the visualization of densely-sampled fields in scientific
visualization. While graph data has several important differences as compared
to field data, the existing similarities make us believe that existing scivis and
image-processing techniques can be further adapted to further assist graph visu-
alization. From a practical perspective, this would lead to the creation of novel
efficient and effective tools for graph visual exploration. Equally important, from
a theoretical perspective, this could lead to further unification of the currently
still separated disciplines of scientific and information visualization.

Image-Based Graph Visualization: Advances and Challenges 17

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Abello, J., van Ham, F.: Matrix zoom: a visual interface to semi-external graphs.
In: Ward, M., Munzner, T. (eds.) Proceedings of IEEE InfoVis, pp. 127-135 (2005)
Archambault, D., et al.: Temporal multivariate networks. In: Kerren, A., Purchase,
H.C., Ward, M.O. (eds.) Multivariate Network Visualization. LNCS, vol. 8380, pp.
151-174. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06793-3_8
Borgo, R., et al.: Glyph-based visualization: foundations, design guidelines, tech-
niques and applications. In: Sbert, M., Szirmay-Kalos, L. (eds.) Eurographics -
State of the Art Reports. The Eurographics Association (2013)

Brehmer, M., Munzner, T.: A multi-level typology of abstract visualization tasks.
IEEE TVCG 19(12), 2376-2385 (2013)

Byelas, H., Telea, A.: Visualizing multivariate attributes on software diagrams. In:
Proceedings of IEEE CSMR, pp. 335-338 (2009)

Comaniciu, D.; Meer, P.: Mean shift: a robust approach toward feature space anal-
ysis. IEEE TPAMI 24(5), 603619 (2002)

Cui, W., Zhou, H., Qu, H., Wong, P.C., Li, X.: Geometry-based edge clustering
for graph visualization. IEEE TVCG 14(6), 1277-1284 (2008)

Ellis, G., Dix, A.: A taxonomy of clutter reduction for information visualisation.
IEEE TVCG 13(6), 1216-1223 (2007)

Ersoy, O., Hurter, C., Paulovich, F., Cantareiro, G., Telea, A.: Skeleton-based edge
bundles for graph visualization. IEEE TVCG 17(2), 2364-2373 (2011)

Fabbri, R., da F. Costa, L., Torelli, J., Bruno, O.: 2D Euclidean distance transform
algorithms: a comparative survey. ACM Comput. Surv. 40(1), 1-44 (2008)
Gansner, E.R., Koren, Y.: Improved circular layouts. In: Kaufmann, M., Wagner,
D. (eds.) GD 2006. LNCS, vol. 4372, pp. 386-398. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-70904-6_37

Garcke, H., Preusser, T., Rumpf, M., Telea, A., Weikard, U., van Wijk, J.J.: A
continuous clustering method for vector fields. In: Moorhead, R. (ed.) Proceedings
of IEEE Visualization, pp. 351-358 (2000)

Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Pearson, London (2011)
Griebel, M., Preusser, T., Rumpf, M., Schweitzer, M.A., Telea, A.: Flow field clus-
tering via algebraic multigrid. In: Proceedings of IEEE Visualization, pp. 35-42
(2004)

Herman, I., Melancon, G., Marshall, M.S.: Graph visualization and navigation in
information visualization: a survey. IEEE TVCG 6(1), 24-43 (2000)

Holten, D.: Hierarchical edge bundles: visualization of adjacency relations in hier-
archical data. IEEE TVCG 12(5), 741-748 (2006)

Holten, D., Isenberg, P., Van Wijk, J.J., Fekete, J.D.: An extended evaluation of
the readability of tapered, animated, and textured directed-edge representations
in node-link graphs. In: Battista, G.D., Fekete, J.D., Qu, H. (eds.) Proceedings of
IEEE PacificVis, pp. 195-202 (2011)

Holten, D., Van Wijk, J.J.: Force-directed edge bundling for graph visualization.
Comput. Graph. Forum 28(3), 983-990 (2009)

Hurter, C., Ersoy, O., Fabrikant, S.I., Klein, T.R., Telea, A.C.: Bundled visualiza-
tion of dynamic graph and trail data. IEEE TVCG 20(8), 1141-1157 (2014)
Hurter, C.: Image-Based Visualization: Interactive Multidimensional Data Explo-
ration. Morgan & Claypool Publishers, San Rafael (2015)

Hurter, C., Ersoy, O., Telea, A.: Graph bundling by kernel density estimation.
Comput. Graph. Forum 31(3), 865-874 (2012)

https://doi.org/10.1007/978-3-319-06793-3_8
https://doi.org/10.1007/978-3-540-70904-6_37

18

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

39.

40.

41.

42.

43.

A. Telea

Kruiger, J.F., Rauber, P.E., Martins, R.M., Kerren, A., Kobourov, S., Telea, A.C.:
Graph layouts by t-SNE. Comput. Graph. Forum 36(3), 283-294 (2017)
Landesberger, T.V., et al.: Visual analysis of large graphs: state-of-the-art and
future research challenges. Comput. Graph. Forum 30(6), 1719-1749 (2011)

Lee, B., Plaisant, C., Parr, C.S., Fekete, J.D., Henry, N.: Task taxonomy for graph
visualization. In: Bertini, E., Plaisant, C., Santucci, G. (eds.) Proceedings of AVI
BELIV, pp. 1-5. ACM (2006)

Lhuillier, A., Hurter, C., Telea, A.: FFTEB: edge bundling of huge graphs by the
Fast Fourier Transform. In: Seo, J., Lee, B. (eds.) Proceedings of IEEE PacificVis
(2017)

Lhuillier, A., Hurter, C., Telea, A.: State of the art in edge and trail bundling
techniques. Comput. Graph. Forum 36(3), 619-645 (2017)

van Liere, R., de Leeuw, W.: GraphSplatting: visualizing graphs as continuous
fields. IEEE TVCG 9(2), 206-212 (2003)

Luebke, D.P.: A developer’s survey of polygonal simplification algorithms. IEEE
CG&A 21(3), 24-35 (2001)

van der Maaten, L., Postma, E.: Dimensionality reduction: a comparative review.
Technicla report TiCC TR 2009-005, Tilburg University, Netherlands (2009).
http://www.uvt.nl/ticc

Marcus, G.: Deep learning: a critical appraisal (2018). arXiv:1801.00631[cs.Al]
Martins, R., Coimbra, D., Minghim, R., Telea, A.: Visual analysis of dimensionality
reduction quality for parameterized projections. Comput. Graph. 41, 26-42 (2014)
Martins, R.M., Kruiger, J.F., Minghim, R., Telea, A.C., Kerren, A.: MVN-Reduce:
dimensionality reduction for the visual analysis of multivariate networks. In: Koz-
likova, B., Schreck, T., Wischgoll, T. (eds.) Proceedings of Eurographics - Short
Papers (2017)

Minard, C.J.: Carte figurative et approximative des quantités de vin francais
exportés par mer en 1864 (1865)

Munzner, T.: Visualization Analysis and Design. CRC Press, Boca Raton (2014)
Newbery, F.: Edge concentration: a method for clustering directed graphs. ACM
SIGSOFT Softw. Eng. Notes 14(7), 76-85 (1989)

Nguyen, Q., Eades, P., Hong, S.-H.: StreamEB: stream edge bundling. In: Didimo,
W., Patrignani, M. (eds.) GD 2012. LNCS, vol. 7704, pp. 400-413. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-36763-2_36

Nguyen, Q., Eades, P., Hong, S.H.: On the faithfulness of graph visualizations. In:
Carpendale, S., Chen, W., Hong, S. (eds.) Proceedings of IEEE PacificVis (2013)
Nocaj, A., Ortmann, M., Brandes, U.: Untangling hairballs. In: Duncan, C., Symvo-
nis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 101-112. Springer, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-45803-7_9

Oztireli, A.C., Gross, M.: Perceptually based downscaling of images. ACM TOG
34(4), 77 (2015)

Pal, N., Pal, S.K.: A review on image segmentation techniques. Pattern Recogn.
26(9), 1277-1294 (1993)

Peysakhovich, V., Hurter, C., Telea, A.: Attribute-driven edge bundling for general
graphs with applications in trail analysis. In: Liu, S., Scheuermann, G., Takahashi,
S. (eds.) Proceedings of IEEE PacificVis, pp. 39-46 (2015)

Phan, D., Xiao, L., Yeh, R., Hanrahan, P., Winograd, T.: Flow map layout. In:
Stasko, J., Ward, M. (eds.) Proceedings of InfoVis, pp. 219-224 (2005)

Post, F.H., Vrolijk, B., Hauser, H., Laramee, R., Doleisch, H.: The state of the
art in flow visualisation: feature extraction and tracking. Comput. Graph. Forum
22(4), 775-792 (2003)

http://www.uvt.nl/ticc
http://arxiv.org/abs/1801.00631[cs.AI
https://doi.org/10.1007/978-3-642-36763-2_36
https://doi.org/10.1007/978-3-662-45803-7_9

44.

45.
46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

Image-Based Graph Visualization: Advances and Challenges 19

Ropinski, T., Oeltze, S., Preim, B.: Survey of glyph-based visualization techniques
for spatial multivariate medical data. Comput. Graph. 35(2), 392-401 (2011)
Schaeffer, S.: Graph clustering. Comput. Sci. Rev. 1(1), 27-64 (2007)

Schroeder, W., Zarge, J., Lorensen, W.: Decimation of triangle meshes. In: Thomas,
J.J. (ed.) Proceedings of ACM SIGGRAPH, pp. 65-70 (1992)

Schulz, H.J., Hurter, C.: Grooming the hairball-how to tidy up network visualiza-
tions? In: Proceedings of IEEE InfoVis (Tutorials) (2013)

Siddiqi, K., Pizer, S.: Medial Representations: Mathematics, Algorithms and Appli-
cations. Springer, Dordrecht (2009). https://doi.org/10.1007/978-1-4020-8658-8
Silverman, B.: Density Estimation for Statistics and Data Analysis. Monographs
on Statistics and Applied Probability, vol. 26 (1992)

Sorzano, C., Vargas, J., Pascual-Montano, A.: A survey of dimensionality reduction
techniques (2014). arxiv.org/pdf/1403.2877

Tamassia, R.: Handbook of Graph Drawing and Visualization. CRC Press, Boca
Raton (2013)

Telea, A.: Data Visualization: Principles and Practice, 2nd edn. CRC Press, Boca
Raton (2015)

Telea, A., Ersoy, O.: Image-based edge bundles: simplified visualization of large
graphs. Comput. Graph. Forum 29(3), 543-551 (2010)

Telea, A., Maccari, A., Riva, C.: An open toolkit for prototyping reverse engineering
visualizations. In: Ebert, D., Brunet, P., Navazzo, I. (eds.) Proceedings of Data
Visualization (IEEE VisSym), pp. 67-75 (2002)

Tollis, I., Battista, G.D., Eades, P., Tamassia, R.: Graph Drawing: Algorithms for
the Visualization of Graphs. Prentice Hall, Upper Saddle River (1999)

Triimper, J., Dollner, J., Telea, A.: Multiscale visual comparison of execution
traces. In: Kagdi, H., Poshyvanyk, D., Penta, M.D. (eds.) Proceedings of IEEE
ICPC (2013)

Tufte, E.R.: The Visual Display of Quantitative Information. Graphics Press,
Cheshire (1992)

Van Wijk, J.J., van de Wetering, H.: Cushion treemaps: visualization of hierarchical
information. In: Wills, G., Keim, D. (eds.) Proceedings of IEEE InfoVis, pp. 73-82
(1999)

Weickert, J., Hagen, H.: Visualization and Processing of Tensor Fields. Springer,
Heidelberg (2007). https://doi.org/10.1007/3-540-31272-2

van Wijk, J.J.: Image based flow visualization. Proc. ACM TOG (SIGGRAPH)
21(3), 745-754 (2002)

Zhou, H., Xu, P., Yuan, X., Qu, H.: Edge bundling in information visualization.
Tsinghua Sci. Technol. 18(2), 145-156 (2013)

van der Zwan, M., Codreanu, V., Telea, A.: CUBu: universal real-time bundling
for large graphs. IEEE TVCG 22(12), 25502563 (2016)

https://doi.org/10.1007/978-1-4020-8658-8
http://arxiv.org/org/pdf/1403.2877
https://doi.org/10.1007/3-540-31272-2

Planarity Variants

®

Check for
updates

Clustered Planarity = Flat Clustered
Planarity

Pier Francesco Cortese and Maurizio Patrignani(®®)
Roma Tre University, Rome, Italy
pierfrancesco@pfcortese.it, maurizio.patrignani@uniroma3.it

Abstract. The complexity of deciding whether a clustered graph admits
a clustered planar drawing is a long-standing open problem in the graph
drawing research area. Several research efforts focus on a restricted ver-
sion of this problem where the hierarchy of the clusters is ‘flat’, i.e.,
no cluster different from the root contains other clusters. We prove
that this restricted problem, that we call FLAT CLUSTERED PLANARITY,
retains the same complexity of the general CLUSTERED PLANARITY prob-
lem, where the clusters are allowed to form arbitrary hierarchies. We
strengthen this result by showing that FLAT CLUSTERED PLANARITY
is polynomial-time equivalent to INDEPENDENT FLAT CLUSTERED PLA-
NARITY, where each cluster induces an independent set. We discuss the
consequences of these results.

1 Introduction

A clustered graph (c-graph) is a planar graph with a recursive hierarchy defined
on its vertices. A clustered planar (c-planar) drawing of a c-graph is a planar
drawing of the underlying graph where: (i) each cluster is represented by a
simple closed region of the plane containing only the vertices of the corresponding
cluster, (ii) cluster borders never intersect, and (iii) any edge and any cluster
border intersect at most once (more formal definitions are given in Sect.2).
The complexity of deciding whether a c-graph admits a c-planar drawing is
still an open problem after more than 20 years of intense research [12,14,17—
19,26,32,34-36,38,42-45,49,50,53].

If we had an efficient c-planarity testing and embedding algorithm we could
produce straight-line drawings of clustered trees [28] and straight-line draw-
ings [11,33] and orthogonal drawings [27] of c-planar c-graphs with rectangular
regions for the clusters.

In order to shed light on the complexity of CLUSTERED PLANARITY, this
problem has been compared with other problems whose complexity is like-
wise challenging. This line of investigation was opened by Marcus Schaefer’s

This research was partially supported by MIUR project “MODE — MOrphing graph
Drawings Efficiently”, prot. 20157TEFM5C_001.
© Springer Nature Switzerland AG 2018

T. Biedl and A. Kerren (Eds.): GD 2018, LNCS 11282, pp. 23-38, 2018.
https://doi.org/10.1007/978-3-030-04414-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04414-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-04414-5_2

24 P. F. Cortese and M. Patrignani

polynomial-time reduction of CLUSTERED PLANARITY to SEFE [53]. SIMUL-
TANEOUS EMBEDDING WITH FIXED EDGES (SEFE) takes as input two pla-
nar graphs G; = (V,E;) and Gy = (V, E2) and asks whether a planar draw-
ing I'1(G4) and a planar drawing I'5(G2) exist such that: (i) each vertex v € V
is mapped to the same point in I} and in Iy and (ii) every edge e € Eq N Ey is
mapped to the same Jordan curve in I} and in I5.

However, the polynomial-time equivalence of the two problems is open and
the reverse reduction of SEFE to CLUSTERED PLANARITY is known only for the
case when the intersection graph Gn = (V, E1 N Es) of the instance of SEFE is
connected [4]. Also in this special case, the complexity of the problem is unknown,
with the exception of the case when G, is a star, which produces a c-graph with
only two clusters, a known polynomial case for CLUSTERED PLANARITY [10,47].

Since the general CLUSTERED PLANARITY problem appears to be elu-
sive, several authors focused on a restricted version of it where the hierar-
chy of the clusters is ‘flat’, i.e., only the root cluster contains other clus-
ters and it does not directly contain vertices of the underlying graph [2,3,5-
7,9,16,20,21,25,29,37,39-41,47,51]. This restricted problem, that we call FLAT
CLUSTERED PLANARITY, is expressive enough to be useful in several applica-
tive domains, as for example in computer networks where routers are grouped
into Autonomous Systems [15], or social networks where people are grouped
into communities [13,30], or software diagrams where classes are grouped into
packages [52]. Also, several hybrid representations have been proposed for the
visual analysis of (not necessarily planar) flat clustered graphs, such as mixed
matrix and node-link representations [13,23,24,31,46], mixed intersection and
node-link representations [8], and mixed space-filling and node-link representa-
tions [1,48,54].

Unfortunately, the complexity of FLAT CLUSTERED PLANARITY is open as
the complexity of the general problem. The authors of [14], after recasting FLAT
CLUSTERED PLANARITY as an embedding problem on planar multi-graphs, con-
clude that we are still far away from solving it. The authors of [4] wonder whether
FLAT CLUSTERED PLANARITY retains the same complexity of CLUSTERED PLA-
NARITY. In this paper we answer this question in the affirmative. Obviously, a
reduction of FLAT CLUSTERED PLANARITY to CLUSTERED PLANARITY is triv-
ial, since the instances of FLAT CLUSTERED PLANARITY are simply a subset of
those of CLUSTERED PLANARITY. The reverse reduction is the subject of Sect. 3,
that proves the following theorem.

Theorem 1. There exists a quadratic-time transformation that maps an
instance of CLUSTERED PLANARITY to an equivalent instance of FLAT CLUS-
TERED PLANARITY.

With very similar techniques we are able to prove also a stronger result.

Theorem 2. There exists a linear-time transformation that maps an instance
of FLAT CLUSTERED PLANARITY to an equivalent instance of INDEPENDENT
FLAT CLUSTERED PLANARITY.

Clustered Planarity = Flat Clustered Planarity 25

Here, by INDEPENDENT FLAT CLUSTERED PLANARITY we mean the restric-
tion of FLAT CLUSTERED PLANARITY to instances where each non-root cluster
induces an independent set.

The paper is structured as follows. Section2 contains basic definitions.
Section 3 contains the proof of Theorem 1 under some simplifying hypotheses
(which are removed in [22]). Some immediate consequences of Theorem1 are
discussed in Sect.4. The proof of Theorem 2 and some remarks about it are in
Sects. 5 and 6, respectively. Conclusions and open problems are in Sect.7. For
space reasons some proofs are sketched or, when trivial, omitted.

2 Preliminaries

Let T be a rooted tree. We denote by 7(T") the root of T and by T'[u] the subtree
of T rooted at one of its nodes p. The depth of a node p of T is the length
(number of edges) of the path from r(T") to p. The height h(T) of a tree T is
the maximum depth of its nodes.

The nodes of a tree can be partitioned into leaves, that do not have children,
and internal nodes. In turn, the internal nodes can be partitioned into two sets:
lower nodes, whose children are all leaves, and higher nodes, that have at least
one internal-node child. We say that a node is homogeneous if its children are
either all leaves or all internal nodes. A tree is homogeneous if all its nodes
are homogeneous. We say that a tree is flat if all its leaves have depth 2. A
flat tree is homogeneous. Figure 1 shows a non-homogeneous tree (Fig. 1(a)), a
homogeneous tree (Fig. 1(b)), and a flat tree (Fig. 1(c)).

(a) (b) (c)

Fig.1. (a) A tree that is not homogeneous. (b) A homogeneous tree. (c) A flat tree.

We also need a special notion of size: the size of a tree T, denoted by S(T),
is the number of higher nodes of T" different from the root of T'. Observe that a
homogeneous tree T is flat if and only if S(7') = 0. For example, the sizes of the
trees represented in Figs. 1(a), (b), and (c) are 2, 2, and 0, respectively (filled
gray nodes in Fig. 1). The proof of the following lemma is trivial.

Lemma 1. A homogeneous tree T of height h(T) > 2 and size S(T) > 0 con-
tains at least one node p* # r(T) such that Tu*] is flat.

A graph G = (V,E) is a set V of vertices and a set E of edges, where each
edge is an unordered pair of vertices. A drawing I'(G) of G is a mapping of its
vertices to distinct points on the plane and of its edges to Jordan curves joining

26 P. F. Cortese and M. Patrignani

the incident vertices. Drawing I'(G) is planar if no two edges intersect except
at common end-vertices. A graph is planar if it admits a planar drawing.

A clustered graph (or c-graph) C is a pair (G,T) where G = (V, E) is a planar
graph, called the underlying graph of C', and T, called the inclusion tree of C,
is a rooted tree such that the set of leaves of T' coincides with V. A cluster u
is an internal node of T. When it is not ambiguous we also identify a cluster
with the respective subset of the vertex set. An inter-cluster edge of a cluster
w of T is an edge of G that has one end-vertex inside p and the other end-
vertex outside u. An independent set of vertices is a set of pairwise non-adjacent
vertices. A cluster p of T is independent if its vertices form an independent set.
A c-graph is independent if all its clusters, with the exception of the root, are
independent clusters. A cluster p of T is a lower cluster (higher cluster) of C' if
1 is a lower node (higher node) of T

A c-graph is flat if its inclusion tree is flat. The clusters of a flat c-graph
are all lower clusters with the exception of the root cluster. A cluster is called
singleton if it contains a single cluster or a single vertex.

A drawing I'(C) of a c-graph C(G,T) is a mapping of vertices and edges
of G to points and to Jordan curves joining their incident vertices, respectively,
and of each internal node p of T to a simple closed region R(u) containing
exactly the vertices of u. Drawing I'(C) is c-planar if: (i) curves representing
edges of G do not intersect except at common end-points; (ii) the boundaries of
the regions representing clusters do not intersect; and (iii) each edge intersects
the boundary of a region at most one time. A c-graph is c-planar if it admits a
c-planar drawing.

Problem CLUSTERED PLANARITY is the problem of deciding whether a c-
graph is c-planar. Problem FLAT CLUSTERED PLANARITY is the restriction of
CLUSTERED PLANARITY to flat c-graphs. Problem INDEPENDENT FLAT CLUS-
TERED PLANARITY is the restriction of CLUSTERED PLANARITY to independent
flat c-graphs.

The proof of the following lemma can be found in [22].

Lemma 2. An instance C(G,T) of CLUSTERED PLANARITY with n vertices
and c clusters can be reduced in time O(n+c) to an equivalent instance such that:
(1) T is homogeneous, (2) r(T) has at least two children, and (3) h(T) <n—1.

3 Proof of Theorem 1

We describe a polynomial-time reduction of CLUSTERED PLANARITY to FLAT
CLUSTERED PLANARITY. Let C(G,T) be a clustered graph, let n be the number
of vertices of G, and let ¢ be the number of clusters of C'. Due to Lemma 2 we can
achieve in O(n+ ¢) time that T is homogeneous and S(T') € O(n). We reduce C
to an equivalent instance Cy(Gy,Ty) where T is flat. The reduction consists of
a sequence of transformations of C' = Cy into Cy, Cq, ..., Csry = Cy, where
each C;(G;,T;), i = 0,1,...,8(T), has an homogeneous inclusion tree T; and
each transformation takes O(n) time.

Clustered Planarity = Flat Clustered Planarity 27

Fig. 2. (a) A c-graph C;. Inter-cluster edges of u* are colored red, green, and blue. (b)
The construction of C;41. (Color figure online)

Consider any C;(G;,T;), with ¢ = 0,...,S8(T) — 1, where T; is a homoge-
neous, non-flat tree of height h(7T;) > 2 (refer to Fig.2(a)). By Lemmal, T;
has at least one node p* # r(T;) such that T;[p*] is flat. Since p* # r(T;),
node p* has a parent v. Also, denote by vy, vs, ..., vy, the children of p* and by
11, o, -« -, g the siblings of p* in T;. We construct C;y1(Gjit1,Tiv1) as follows
(vefer to Fig.2(b)). Graph G,y is obtained from G; by introducing, for each
inter-cluster edge e = (u,v) of u*, two new vertices e, and e, and by replacing
e with a path (u,ey)(ey,ey)(ep,v). Tree Tj41 is obtained from T; by removing
node p*, attaching its children vy, vs, ..., vy directly to v and adding to v two
new children x and ¢, where cluster x (cluster o, respectively) contains all ver-
tices e, (e, respectively) introduced when replacing each inter-cluster edge e of
w* with a path. The following lemmas are trivial.

Lemma 3. If T; is homogeneous then T; 1 is homogeneous.
Lemma 4. We have that S(T;+1) = S(T;) — 1.
Lemma 5. The c-graph Cy = Cs(ry is flat.

The proof of the following lemma is given here under two simplifying hypothe-
ses (the proof of the general case can be found in [22]):

‘H-conn: The underlying graph G; is connected
H-not-root: Cluster v is not the root of T’

Observe that Hypothesis H-conn implies that also G;;; is connected.
Observe, also, that Hypothesis H-not-root and Property 2 of Lemma?2 imply
that there is at least one vertex of G; that is not part of v (this hypothesis is
not satisfied, for example, by the c-graph depicted in Fig. 2(a)).

Lemma 6. C;(G;,T;) is c-planar if and only if Ci11(Giy1,Tiv1) is c-planar.

Proof sketch. The first direction of the proof is straightforward. Let I'(C;) be a
c-planar drawing of C; (refer to Fig. 3(a)). We show how to construct a c-planar

28 P. F. Cortese and M. Patrignani

Fig. 3. (a) A c-planar drawing I'(C;) of c-graph C;. (b) The construction of a c-planar
drawing I'(Cit1).

drawing of Cj;1 (refer to Fig.3(b)). Consider the region R(u*) that contains
R(v;), with i = 1,..., h. The boundary of R(u*) is crossed exactly once by each
inter-cluster edge of u*. Identify outside the boundary of R(u*) two arbitrarily
thin regions R(x) and R(y) that turn around R(p*) and that intersect exactly
once all and only the inter-cluster edges of p*. Insert into each inter-cluster edge
e of p* two vertices e, and e, placing e, inside R(x) and e, inside R(y). By
ignoring R(u*) you have a c-planar drawing I"(C;11) of Ciyq.

Fig. 4. A c-planar drawing of clusters v, x, and ¢ in I'(C;+1). (Color figure online)

Suppose now to have a c-planar drawing I'(C;41) of C;11. We show how to
construct a c-planar drawing I'(C;) of C; under the Hypotheses H-conn and

Clustered Planarity = Flat Clustered Planarity 29

‘H-not-root. Consider the regions R(x) and R(yp) inside R(v) (refer to Fig.4).
Regions R(x) and R(y) are joined by the p inter-cluster edges introduced when
replacing each inter-cluster edge e; of u*, where ¢ = 1,...,p, with a path (red
edges of Fig.4). Such inter-cluster edges of x and ¢ partition R(v) into p regions
that have to host the remaining children of v and the inter-cluster edges among
them. In particular, p—1 of these regions are bounded by two inter-cluster edges
and two portions of the boundaries of R(x) and R(y¢). One of such regions,
instead, is also externally bounded by the boundary of R(v).

Now consider the regions R(v;) corresponding to the children v; of v, with
it =1,...,h, that were originally children of p*. These regions (filled white in
Fig.4) may have inter-cluster edges among them and may be connected to x,
but by construction cannot have inter-cluster edges connecting them to ¢, or
connecting them to the original children u; # p* of v, or exiting the border of
R(v). In particular, due to Hypothesis H-conn, these regions must be directly
or indirectly connected to x. Finally, consider the regions R(u;) corresponding
to the original children p; # p* of v (filled gray in Fig.4). These regions may
have inter-cluster edges among them, connecting them to ¢, or connecting them
to the rest of the graph outside v. In particular, due to Hypotheses H-conn and
‘H-not-root, each p; (and also ¢) must be directly or indirectly connected to the
border of R(v). It follows that the drawing in I'(C;y1) of the subgraph G-
composed by the regions of x, 11, v, ..., v, and their inter-cluster edges cannot
contain in one of its internal faces any other cluster of v. Hence, the sub-region
R(u*) of R(v) that is the union of R(x) and the region enclosed by G- is a
closed and simple region that only contains the regions R(v1), ... R(vp) plus the
region R(x) and all the inter-cluster edges among them (see Fig.5). By ignoring
R(x) and R(y) and by removing vertices e, and e, and joining their incident
edges we obtain a c-planar drawing I'(C}). O

The proof of Theorem 1 descends from Lemmas5 and 6 and from the con-
sideration that each construction of C;y; from C; takes at most O(n) time and,
hence, the time needed to construct Cy is O(n?). Due to the O(n + ¢)-time pre-
processing (Lemma 2), the overall time complexity of the reduction is O(n? +c).

4 Remarks About Theorem 1

In this section we discuss some consequences of Theorem 1 that descend from the
properties of the reduction described in Sect. 3. Such properties are summarized
in the following lemma.

Lemma 7. Let C(G,T) be an n-vertex clustered graph with ¢ clusters. The flat
clustered graph Cy(Gy,Ty) equivalent to C' built as described in the proof of
Theorem 1 has the following properties:

1. Graph Gy is a subdivision of G
2. Each edge of G is replaced by a path of length at most 4h(T) — 8
3. The number of vertices of Gy is ny € O(n - h(T))

30 P. F. Cortese and M. Patrignani

Fig. 5. The drawing of cluster u in I'(C;) corresponding to the drawing I'(Ci4+1) of
Fig. 4.

4. The number of clusters of Cy is ¢y = ¢+ S(T)

Proof. Regarding Property 1, observe that, for ¢ = 1,...,8(T), each G; is
obtained from G;_; by replacing edges with paths. Hence Ggry = Gy is a
subdivision of Gy = G. To prove Property 2 observe that each time an edge e
is subdivided, a pair of vertices e, and e, is inserted and that edges are sub-
divided when the boundary of a higher cluster is removed. Edges that traverse
more boundaries are those that link two vertices whose lowest common ancestor
is the root of T. These edges traverse 2h(T) — 4 higher-cluster boundaries in C.
Hence, the number of vertices inserted into these edges is 4h(T') — 8. Property 3
can be proved by considering that G has O(n) edges and each edge, by Prop-
erty 2, is replaced by a path of length at most O(h(T)). Finally, Property 4
descends from the fact that at each step C;y1 has exactly one cluster more than
C;, since new clusters x and ¢ are inserted but cluster p* is removed. O

An immediate consequence of Property 1 of Lemma7 is that the number
of faces of Gy is equal to the number of faces of G. Also, if G' is connected,
biconnected, or a subdivision of a triconnected graph, Gy is also connected,
biconnected, or a subdivision of a triconnected graph, respectively. If G is a
cycle or a tree, G¢ is also a cycle or a tree, respectively. Hence, the complexity
of CLUSTERED PLANARITY restricted to these kinds of graphs can be related to
the complexity of FLAT CLUSTERED PLANARITY restricted to the same kinds
of graphs. Further, since a subdivision preserves the embedding of the original
graph, the problem of deciding whether a c-graph C(G,T) admits a c-planar

Clustered Planarity = Flat Clustered Planarity 31

drawing where G has a fixed embedding is polynomially equivalent to deciding
whether a flat c-graph C;(Gy,Ty) admits a c-planar drawing where G has a
fixed embedding.

By the above observations some results on flat clustered graphs can be imme-
diately exported to general c-graphs. Consider for example the following.

Theorem 3 ([16, Theorem 1]). There exists an O(n3)-time algorithm to test
the c-planarity of an n-vertex embedded flat c-graph C with at most two vertices
per cluster on each face.

We generalize Theorem 3 to non-flat c-graphs.

Theorem 4. Let C(G,T) be an n-vertezx c-graph where G has a fized embedding.
There exists an O(n® - h(T)3)-time algorithm to test the c-planarity of C if each
lower cluster has at most two vertices on the same face of G and each higher
cluster has at most two inter-cluster edges on the same face of G.

Proof sketch. The proof is based on showing that, starting from a c-graph
C(G,T) that satisfies the hypotheses of the statement, the equivalent flat c-graph
C¢(Gy, Ty) built as described in the proof of Theorem 1 satisfies the hypothe-
ses of Theorem 3. Hence, we first transform C(G,T) into C;(G¢,Tf) in O(n?)
time and then apply Theorem 3 to C¢(Gy,Ty), which gives an answer to the c-
planarity test in O(nfc) time, which is, by Property 3 of Lemma 7, O(n? - h(T)3)
time. a

In [25] it has been proven that FLAT CLUSTERED PLANARITY admits a
subexponential-time algorithm when the underlying graph has a fixed embedding
and its maximum face size £ belongs to o(n).

Theorem 5 (/25, Theorem 3]). FLAT CLUSTERED PLANARITY can be solved in
20(Vin-logn) time for n-vertex embedded flat c-graphs with mazimum face size .

The authors of [25] ask whether their results can be generalized to non-flat
c-graphs. We give an affirmative answer with the following theorem.

Theorem 6. CLUSTERED PLANARITY can be solved in 20(h(T)-VEnlog(n-h(T)
time for n-vertex embedded c-graphs with mazimum face size £ and height h(T)
of the inclusion tree.

Proof sketch. The proof is based on applying Theorem 5 to the equivalent flat
c-graph C;(Gy,Ty) built as described in the proof of Theorem 1. O

Observe that Theorem 6 gives a subexponential-time upper bound for CLUS-
TERED PLANARITY whenever ¢ - h(T)? € o(n). Also observe that Theorems 4
and 6 are actual generalizations of the corresponding Theorems 3 and 5, respec-
tively, as they yield the same bounds when applied to flat clustered graphs.

32 P. F. Cortese and M. Patrignani

5 Proof of Theorem 2

In this section we reduce FLAT CLUSTERED PLANARITY to INDEPENDENT FLAT
CLUSTERED PLANARITY by applying a transformation very similar to the one
described in Sect. 3 to each non-independent cluster.

Let C(G,T) be a flat c-graph. Let k be the number of lower clusters of C that
are not independent. The reduction consists of a sequence of transformations of
C = Cy into C1,Cs,...,Cy where each C;, i = 0,...,k, is a flat c-graph with
k — i non-independent lower clusters.

Fig. 6. (a) A flat c-graph C; with a non-independent cluster p*. (b) The construction
of Ciy1 where p* is replaced by independent clusters v1, ..., vs, X, and .

Consider a flat c-graph C;(G;,T;), with ¢ = 0,...,k — 1, such that C; has
k — ¢ non-independent clusters and let u* be a non-independent cluster of C.
We show how to construct an flat c-graph C;41(G;41,Ti+1) equivalent to C; and
such that C;11 has k — i — 1 non-independent clusters (refer to Fig.6). Denote
by w;, with j = 1,2,...,1, those children of r(T;) such that p; # u*. Suppose
that p* has children v, vo, ..., vy, which are vertices of G;.

The underlying graph G;41 of C;y; is obtained from G; by introducing, for
each inter-cluster edge e = (u, v) of u*, two new vertices e, and e, and replacing
e with a path (u, ey)(ey, e,)(€ep,v). The inclusion tree T;4; of C;1; is obtained
from T; by removing cluster p* and introducing, for each j = 1,2,...,h, a
lower cluster v; child of 7(T;41) containing only v;. We also introduce two lower
clusters x and ¢ as children of 7(T;41) that contain all the vertices e, and e,
respectively, introduced when replacing each inter-cluster edge e of p* with a
path. It is easy to see that C;;; is a flat clustered graph and that it has one
non-independent cluster less than C;.

We prove the following lemma assuming that Hypothesis H-conn holds. The
complete proof is in [22].

Lemma 8. C;(G;,T;) is c-planar if and only if Ci11(Giy1,Tiv1) is c-planar.

Proof sketch. The proof is very similar to the proof of Lemma 6. First, we show
that, given a c-planar drawing I'(C;) of the flat c-graph Cj it is easy to construct a

Clustered Planarity = Flat Clustered Planarity 33

Fig. 7. (a) A c-planar drawing of the flat c-graph of Fig.6(a). (b) The corresponding
c-planar drawing the flat c-graph of Fig. 6(b) where the non-independent cluster p* is
replaced by independent clusters v, ..., vs, X, and .

c-planar drawing I'(C;4+1) of Ci+1 (see, as an example, Fig. 7). Second we show
that, given a c-planar drawing I'(C;y1) of the flat c-graph C;41 it is possible
to construct a c-planar drawing I'(C;) of C;. This second part of the proof is
complicated by the fact that, since in this case Hypothesis H-not-root does not
apply, we may have that in I"'(C;11) the region R(yp) is embraced by inter-cluster
edges and region boundaries of R(v1), R(v2), ... R(v;), and R(x). Hence, before
identifying the region R(p*) the drawing I'(C;+1) needs to be modified so that
the external face touches R(y). This can be easily done by rerouting edges. 0O

The proof of Theorem?2 is concluded by showing that each G;y; can be
obtained from G; in time proportional to the number of vertices and inter-cluster
edges of p*, which gives an overall O(n) time for the reduction.

6 Remarks About Theorem 2

Starting from a flat c-graph, the reduction described in Sect. 5 allows us to find
an equivalent independent flat c-graph with the properties stated in the following
lemma (the proof can be found in [22]).

Lemma 9. Let Cr(Gy,Ty) be an ny-vertex flat clustered graph with cy clus-
ters. The independent flat clustered graph Ci(Gip, Tif) equivalent to Cy built as
described in the proof of Theorem 2 has the following properties:

Graph Gy is a subdivision of Gy

FEach inter-cluster edge of Gy 1is replaced by a path of length at most 4.
The number of vertices of Gif is O(ny)

The number of clusters of Cy (including the root) is c;p < 2¢5 +ny — 1

o~

Also, a further property can be pursued.

34 P. F. Cortese and M. Patrignani

Observation 1. At the same asymptotic cost of the reduction described in the
proof of Theorem 2 it can be achieved that non-root clusters are of two types:
(TYPE 1) clusters containing a single vertex of arbitrary degree or (TYPE 2)
clusters containing multiple vertices of degree two.

All observations of Sect.4 regarding the consequences of Property 1 of
Lemma 7 apply here to of Property 1 of Lemma?9. Further, the two reductions
can be concatenated yielding the following.

Lemma 10. Let C(G,T) be an n-vertex clustered graph with c clusters. The
independent flat clustered graph Ci(Gip, Tif) equivalent to C' built by concatenat-
ing the reduction of Theorem 1 and the reduction of Theorem 2, as modified by
Observation 1, has the following properties:

Graph G is a subdivision of G

Each inter-cluster edge of G is replaced by a path of length at most 4h(T)—4
The number of vertices of Gy is O(n?)

The number of clusters of Cy is O(n - h(T))

Non-root clusters are of two types: (TYPE 1) clusters containing a single
vertex of arbitrary degree or (‘TYPE 2) clusters containing multiple vertices
of degree two

Grds o o~

Lemma 10 describes the most constrained version of CLUSTERED PLANARITY
that is known to be polynomially equivalent to the general problem. Observe that
if all non-root clusters of a c-graph C(G,T') are of TYPE 1 then INDEPENDENT
FLAT CLUSTERED PLANARITY is linear, since C is c-planar if and only if G is
planar. Conversely, if all clusters are of TYPE 2 then the underlying graph is a
collection of cycles, and the problem has unknown complexity [20,21].

7 Conclusions and Open Problems

We showed that CLUSTERED PLANARITY can be reduced to FLAT CLUSTERED
PLANARITY and that this problem, in turn, can be reduced to INDEPENDENT
FrLAT CLUSTERED PLANARITY. The consequences of these results are twofold:
on one side the investigations about the complexity of CLUSTERED PLANARITY
could legitimately be restricted to (independent) flat clustered graphs, neglect-
ing more complex hierarchies of the inclusion tree; on the other side some
polynomial-time results on flat clustered graphs could be easily exported to
general c-graphs (we gave some examples in Sect. 4).

We remark that while Theorems 1 and 2 are formulated in terms of decision
problems, their proofs offer a solution of the corresponding search problems,
meaning that they actually describe a polynomial-time algorithm to compute a
c-planar drawing of a c-graph, provided to have a c-planar drawing of the cor-
responding flat c-graph or a c-planar drawing of the corresponding independent
flat c-graph.

Clustered Planarity = Flat Clustered Planarity 35

Several interesting questions are left open:

Can the reduction presented in this paper be used to generalize some other
polynomial-time testing algorithm for FLAT CLUSTERED PLANARITY to plain
CLUSTERED PLANARITY?

What is the complexity of INDEPENDENT FLAT CLUSTERED PLANARITY
when the underlying graph is a cycle? We know that this problem is polyno-
mial only for constrained drawings of the inter-cluster edges [20,21].

What is the complexity of INDEPENDENT FLAT CLUSTERED PLANARITY
when the number of TYPE 2 clusters is bounded?

References

10.

11.

Abello, J., Kobourov, S.G., Yusufov, R.: Visualizing large graphs with compound-
fisheye views and treemaps. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp.
431-441. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31843-
944

Akitaya, H.A., Fulek, R., T6th, C.D.: Recognizing weak embeddings of graphs.
In: Czumaj, A. (ed.) SODA 2018, pp. 274-292 (2018). https://doi.org/10.1137/1.
9781611975031.20

Angelini, P., Da Lozzo, G.: Clustered planarity with pipes. In: Hong, S.H., Eades,
P., Meidiana, A. (eds.) ISAAC 2016. LIPIcs, vol. 64, pp. 13:1-13:13 (2016). https://
doi.org/10.4230/LIPIcs. ISAAC.2016.13

Angelini, P., Da Lozzo, G.: SEFE = C-planarity? Comput. J. 59(12), 1831-1838
(2016). https://doi.org/10.1093/comjnl/bxw035

Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F.: Strip planarity testing. In:
Wismath, S.;, Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 37-48. Springer,
Cham (2013). https://doi.org/10.1007/978-3-319-03841-4_4

Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F.: Strip planarity testing for
embedded planar graphs. Algorithmica 77(4), 1022-1059 (2017). https://doi.org/
10.1007/s00453-016-0218-9

Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Roselli,
V.: Relaxing the constraints of clustered planarity. Comput. Geom. Theory Appl.
48(2), 42-75 (2015). https://doi.org/10.1016/j.comgeo.2014.08.001

Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Rutter, L.
Intersection-link representations of graphs. J. Graph Algorithms Appl. 21(4), 731—
755 (2017). https://doi.org/10.7155/jgaa.00437

Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Roselli, V.: The importance of
being proper (in clustered-level planarity and T-level planarity). Theor. Comput.
Sci. 571, 1-9 (2015). https://doi.org/10.1016/].tcs.2014.12.019

Angelini, P.; Di Battista, G., Frati, F., Patrignani, M., Rutter, I.: Testing the
simultaneous embeddability of two graphs whose intersection is a biconnected or
a connected graph. J. Discret. Algorithms 14, 150-172 (2012). https://doi.org/10.
1016/j.jda.2011.12.015

Angelini, P., Frati, F., Kaufmann, M.: Straight-line rectangular drawings of clus-
tered graphs. Discret. Comput. Geom. 45(1), 88-140 (2011). https://doi.org/10.
1007/s00454-010-9302-z

https://doi.org/10.1007/978-3-540-31843-9_44
https://doi.org/10.1007/978-3-540-31843-9_44
https://doi.org/10.1137/1.9781611975031.20
https://doi.org/10.1137/1.9781611975031.20
https://doi.org/10.4230/LIPIcs.ISAAC.2016.13
https://doi.org/10.4230/LIPIcs.ISAAC.2016.13
https://doi.org/10.1093/comjnl/bxw035
https://doi.org/10.1007/978-3-319-03841-4_4
https://doi.org/10.1007/s00453-016-0218-9
https://doi.org/10.1007/s00453-016-0218-9
https://doi.org/10.1016/j.comgeo.2014.08.001
https://doi.org/10.7155/jgaa.00437
https://doi.org/10.1016/j.tcs.2014.12.019
https://doi.org/10.1016/j.jda.2011.12.015
https://doi.org/10.1016/j.jda.2011.12.015
https://doi.org/10.1007/s00454-010-9302-z
https://doi.org/10.1007/s00454-010-9302-z

36

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

P. F. Cortese and M. Patrignani

Angelini, P., Frati, F., Patrignani, M.: Splitting clusters to get C-planarity. In:
Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 57-68. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11805-0-8

Batagelj, V., Brandenburg, F.J., Didimo, W., Liotta, G., Palladino, P., Patrignani,
M.: Visual analysis of large graphs using (X, Y)-clustering and hybrid visualiza-
tions. IEEE Trans. Visual. Comput. Graph. 17(11), 1587-1598 (2011). https://
doi.org/10.1109/TVCG.2010.265

Blésius, T., Rutter, I.: A new perspective on clustered planarity as a combinatorial
embedding problem. Theor. Comput. Sci. 609, 306-315 (2016). https://doi.org/
10.1016/j.t¢s.2015.10.011

Candela, M., Di Bartolomeo, M., Di Battista, G., Squarcella, C.: Radian: visual
exploration of traceroutes. IEEE Trans. Visual. Comput. Graph. 24, 2194-2208
(2018). https://doi.org/10.1109/TVCG.2017.2716937

Chimani, M., Di Battista, G., Frati, F., Klein, K.: Advances on testing C-planarity
of embedded flat clustered graphs. In: Duncan, C., Symvonis, A. (eds.) GD 2014.
LNCS, vol. 8871, pp. 416-427. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-45803-7_35

Cornelsen, S., Wagner, D.: Completely connected clustered graphs. J. Discret.
Algorithms 4(2), 313-323 (2006). https://doi.org/10.1016/j.jda.2005.06.002
Cortese, P.F., Di Battista, G.: Clustered planarity (invited lecture). In: SoCG 2005,
pp. 30-32. ACM (2005)

Cortese, P.F., Di Battista, G., Frati, F., Patrignani, M., Pizzonia, M.: C-planarity
of c-connected clustered graphs. J. Graph Algorithms Appl. 12(2), 225-262 (2008)
Cortese, P.F., Di Battista, G., Patrignani, M., Pizzonia, M.: Clustering cycles into
cycles of clusters. J. Graph Algorithms Appl. 9(3), 391-413 (2005)

Cortese, P.F., Di Battista, G., Patrignani, M., Pizzonia, M.: On embedding a cycle
in a plane graph. Discret. Math. 309(7), 1856-1869 (2009). https://doi.org/10.
1016/j.disc.2007.12.090

Cortese, P., Patrignani, M.: Clustered planarity = Flat clustered planarity. Tech-
nical report arXiv:1808.07437v1, Cornell University (2018). http://arxiv.org/abs/
1808.07437v2

Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M.: Computing NodeTrix
representations of clustered graphs. In: Hu, Y., Nollenburg, M. (eds.) GD 2016.
LNCS, vol. 9801, pp. 107-120. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-50106-2_9

Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M.: Computing NodeTrix
representations of clustered graphs. J. Graph Algorithms Appl. 22(2), 139-176
(2018)

Da Lozzo, G., Eppstein, D., Goodrich, M.T., Gupta, S.: Subexponential-time and
FPT algorithms for embedded flat clustered planarity. In: WG 2018 (2018, to
appear)

Dahlhaus, E.: A linear time algorithm to recognize clustered planar graphs and
its parallelization. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS,
vol. 1380, pp. 239-248. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0054325

Di Battista, G., Didimo, W., Marcandalli, A.: Planarization of clustered graphs.
In: Mutzel, P., Jinger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 60-74.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45848-4_5

Di Battista, G., Drovandi, G., Frati, F.: How to draw a clustered tree. J. Discret.
Algorithms 7(4), 479-499 (2009). https://doi.org/10.1016/j.jda.2008.09.015

https://doi.org/10.1007/978-3-642-11805-0_8
https://doi.org/10.1109/TVCG.2010.265
https://doi.org/10.1109/TVCG.2010.265
https://doi.org/10.1016/j.tcs.2015.10.011
https://doi.org/10.1016/j.tcs.2015.10.011
https://doi.org/10.1109/TVCG.2017.2716937
https://doi.org/10.1007/978-3-662-45803-7_35
https://doi.org/10.1007/978-3-662-45803-7_35
https://doi.org/10.1016/j.jda.2005.06.002
https://doi.org/10.1016/j.disc.2007.12.090
https://doi.org/10.1016/j.disc.2007.12.090
http://arxiv.org/abs/1808.07437v1
http://arxiv.org/abs/1808.07437v2
http://arxiv.org/abs/1808.07437v2
https://doi.org/10.1007/978-3-319-50106-2_9
https://doi.org/10.1007/978-3-319-50106-2_9
https://doi.org/10.1007/BFb0054325
https://doi.org/10.1007/BFb0054325
https://doi.org/10.1007/3-540-45848-4_5
https://doi.org/10.1016/j.jda.2008.09.015

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

Clustered Planarity = Flat Clustered Planarity 37

Di Battista, G., Frati, F.: Efficient c-planarity testing for embedded flat clustered
graphs with small faces. J. Graph Algorithms Appl. 13(3), 349-378 (2009)

Di Giacomo, E., Didimo, W., Liotta, G., Palladino, P.: Visual analysis of one-to-
many matched graphs. J. Graph Algorithms Appl. 14(1), 97-119 (2010)

Di Giacomo, E., Liotta, G., Patrignani, M., Tappini, A.: NodeTrix planarity testing
with small clusters. In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS, vol. 10692, pp.
479-491. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73915-1_37
Eades, P., Feng, Q.-W.: Multilevel visualization of clustered graphs. In: North, S.
(ed.) GD 1996. LNCS, vol. 1190, pp. 101-112. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-62495-3_41

Eades, P., Feng, Q., Lin, X., Nagamochi, H.: Straight-line drawing algorithms for
hierarchical graphs and clustered graphs. Algorithmica 44(1), 1-32 (2006). https://
doi.org/10.1007/s00453-004-1144-8

Eades, P., Feng, Q., Nagamochi, H.: Drawing clustered graphs on an orthogonal
grid. J. Graph Algorithms Appl. 3(4), 3-29 (1999). https://doi.org/10.7155/jgaa.
00016

Eades, P., Huang, M.L.: Navigating clustered graphs using force-directed methods.
J. Graph Algorithms Appl. 4(3), 157-181 (2000). https://doi.org/10.7155/jgaa.
00029

Feng, Q.-W., Cohen, R.F., Eades, P.: Planarity for clustered graphs. In: Spirakis, P.
(ed.) ESA 1995. LNCS, vol. 979, pp. 213-226. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-60313-1_145

Frati, F.: Multilayer drawings of clustered graphs. J. Graph Algorithms Appl.
18(5), 633—675 (2014). https://doi.org/10.7155/jgaa.00340

Frati, F.: Clustered graph drawing. In: Kao, M.Y. (ed.) Encyclopedia of Algo-
rithms, 2nd edn, pp. 1-6. Springer, New York (2015). https://doi.org/10.1007/
978-3-642-27848-8_655-1

Fulek, R.: C-planarity of embedded cyclic c-graphs. Comput. Geom. 66, 1-13
(2017). https://doi.org/10.1016/j.comgeo.2017.06.016

Fulek, R.: Embedding graphs into embedded graphs. In: Okamoto, Y., Tokuyama,
T. (eds.) ISAAC 2017. LIPIcs, vol. 92, pp. 34:1-34:12 (2017). https://doi.org/10.
4230/LIPIcs. ISAAC.2017.34

Fulek, R., Kynél, J.: Hanani-Tutte for approximating maps of graphs. In: Speck-
mann, B., T6th, C.D. (eds.) SoCG 18. LIPIcs, pp. 39:1-39:15 (2018). https://doi.
org/10.4230/LIPIcs.SoCG.2018.39

Fulek, R., Kynél, J., Malinovié, 1., Palvolgyi, D.: Clustered planarity testing revis-
ited. Electr. J. Comb. 22(4) (2015). http://www.combinatorics.org/ojs/index.php/
eljc/article/view /v22i4p24, Paper P4.24

Goodrich, M.T., Lueker, G.S., Sun, J.Z.: C-planarity of extrovert clustered graphs.
In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 211-222. Springer,
Heidelberg (2006). https://doi.org/10.1007/11618058_20

Gutwenger, C., Jinger, M., Leipert, S., Mutzel, P., Percan, M., Weiskircher, R.:
Advances in C-planarity testing of clustered graphs. In: Goodrich, M.T., Kobourov,
S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 220-236. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-36151-0-21

Gutwenger, C., Mutzel, P., Schaefer, M.: Practical experience with Hanani-Tutte
for testing c-planarity. In: McGeoch, C.C., Meyer, U. (eds.) ALENEX 2014, pp.
86-97. STAM (2014). https://doi.org/10.1137/1.9781611973198.9

Henry, N., Fekete, J., McGuffin, M.J.: NodeTrix: a hybrid visualization of social
networks. IEEE Trans. Vis. Comput. Graph. 13(6), 1302-1309 (2007)

https://doi.org/10.1007/978-3-319-73915-1_37
https://doi.org/10.1007/3-540-62495-3_41
https://doi.org/10.1007/3-540-62495-3_41
https://doi.org/10.1007/s00453-004-1144-8
https://doi.org/10.1007/s00453-004-1144-8
https://doi.org/10.7155/jgaa.00016
https://doi.org/10.7155/jgaa.00016
https://doi.org/10.7155/jgaa.00029
https://doi.org/10.7155/jgaa.00029
https://doi.org/10.1007/3-540-60313-1_145
https://doi.org/10.1007/3-540-60313-1_145
https://doi.org/10.7155/jgaa.00340
https://doi.org/10.1007/978-3-642-27848-8_655-1
https://doi.org/10.1007/978-3-642-27848-8_655-1
https://doi.org/10.1016/j.comgeo.2017.06.016
https://doi.org/10.4230/LIPIcs.ISAAC.2017.34
https://doi.org/10.4230/LIPIcs.ISAAC.2017.34
https://doi.org/10.4230/LIPIcs.SoCG.2018.39
https://doi.org/10.4230/LIPIcs.SoCG.2018.39
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i4p24
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i4p24
https://doi.org/10.1007/11618058_20
https://doi.org/10.1007/3-540-36151-0_21
https://doi.org/10.1137/1.9781611973198.9

38

47.

48.

49.

50.

51.

52.

53.

54.

P. F. Cortese and M. Patrignani

Hong, S.H., Nagamochi, H.: Two-page book embedding and clustered graph pla-
narity. Technical report 2009-004, Department of Applied Mathematics & Physics,
University of Kyoto, Japan (2009)

Itoh, T., Muelder, C., Ma, K., Sese, J.: A hybrid space-filling and force-directed
layout method for visualizing multiple-category graphs. In: Eades, P., Ertl, T.,
Shen, H. (eds.) IEEE PacificVis 2009, pp. 121-128 (2009)

Jelinek, V., Jelinkové, E., Kratochvil, J., Lidicky, B.: Clustered planarity: embed-
ded clustered graphs with two-component clusters. In: Tollis, I.G., Patrignani,
M. (eds.) GD 2008. LNCS, vol. 5417, pp. 121-132. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00219-9_13

Jelinek, V., Suchy, O., Tesaf, M., Vyskocil, T.: Clustered planarity: clusters with
few outgoing edges. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol.
5417, pp. 102-113. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00219-9-11

Jelinkové, E., Kara, J., Kratochvil, J., Pergel, M., Suchy, O., Vyskocil, T.: Clus-
tered planarity: small clusters in cycles and eulerian graphs. J. Graph Algorithms
Appl. 13(3), 379-422 (2009). https://doi.org/10.7155/jgaa.00192

Sander, G.: Visualisierungstechniken fiir den compilerbau. Ph.D. thesis, Universitét
Saarbriicken, Germany (1996)

Schaefer, M.: Toward a theory of planarity: Hanani-Tutte and planarity variants.
J. Graph Algorithms Appl. 17(4), 367-440 (2013). https://doi.org/10.7155/jgaa.
00298

Zhao, S., McGuffin, M.J., Chignell, M.H.: Elastic hierarchies: combining treemaps
and node-link diagrams. In: Stasko, J.T., Ward, M.O. (eds.) IEEE InfoVis 2005,
p. 8 (2005). https://doi.org/10.1109/INFOVIS.2005.12

https://doi.org/10.1007/978-3-642-00219-9_13
https://doi.org/10.1007/978-3-642-00219-9_11
https://doi.org/10.1007/978-3-642-00219-9_11
https://doi.org/10.7155/jgaa.00192
https://doi.org/10.7155/jgaa.00298
https://doi.org/10.7155/jgaa.00298
https://doi.org/10.1109/INFOVIS.2005.12

®

Check for
updates

Level Planarity: Transitivity vs. Even
Crossings

Guido Briickner!, Ignaz Rutter?, and Peter Stumpf?(®)

! Faculty of Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
brueckner@kit.edu
2 Department of Computer Science and Mathematics, University of Passau,
Passau, Germany
{rutter,stumpf}@fim.uni-passau.de

Abstract. Recently, Fulek et al. [1-3] have presented Hanani-Tutte
results for (radial) level planarity, i.e., a graph is (radial) level planar
if it admits a (radial) level drawing where any two (independent) edges
cross an even number of times. We show that the 2-SAT formulation of
level planarity testing due to Randerath et al. [4] is equivalent to the
strong Hanani-Tutte theorem for level planarity [3]. Further, we show
that this relationship carries over to radial level planarity, which yields
a novel polynomial-time algorithm for testing radial level planarity.

1 Introduction

Planarity of graphs is a fundamental concept for graph theory as a whole, and for
graph drawing in particular. Naturally, variants of planarity tailored specifically
to directed graphs have been explored. A planar drawing is upward planar if all
edges are drawn as monotone curves in the upward direction. A special case are
level planar drawings of level graphs, where the input graph G = (V, E) comes
with a level assignment £: V — {1,2,...,k} for some k € N that satisfies {(u) <
£(v) for all (u,v) € E. One then asks whether there is an upward planar drawing
such that each vertex v is mapped to a point on the horizontal line y = ¢(v)
representing the level of v. There are also radial variants of these concepts,
where edges are drawn as curves that are monotone in the outward direction in
the sense that a curve and any circle centered at the origin intersect in at most
one point. Radial level planarity is derived from level planarity by representing
levels as concentric circles around the origin.

Despite the similarity, the variants with and without levels differ significantly
in their complexity. Whereas testing upward planarity and radial planarity are
NP-complete [5], level planarity and radial level planarity can be tested in poly-
nomial time. In fact, linear-time algorithms are known for both problems [6,7].
However, both algorithms are quite complicated, and subsequent research has
led to slower but simpler algorithms for these problems [4,8]. Recently also con-
strained variants of the level planarity problem have been considered [9,10].

One of the simpler algorithms is the one by Randerath et al. [4]. It only
considers proper level graphs, where each edge connects vertices on adjacent

© Springer Nature Switzerland AG 2018
T. Biedl and A. Kerren (Eds.): GD 2018, LNCS 11282, pp. 39-52, 2018.
https://doi.org/10.1007/978-3-030-04414-5_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04414-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-04414-5_3

40 @G. Briickner et al.

levels. This is not a restriction, because each level graph can be subdivided to
make it proper, potentially at the cost of increasing its size by a factor of k.
It is not hard to see that in this case a drawing is fully specified by the vertex
ordering on each level. To represent this ordering, define a set of variables V =
{uw | u,w € V,u # w,l(u) = ¢(w)}. Randerath et al. observe that there is a
trivial way of specifying the existence of a level-planar drawing by the following
consistency (1), transitivity (2) and planarity constraints (3):

Yuw ey D uw - wu (1)
Yuw,wy €V DouwwAwy = uy (2)
Yuw,vz €V with (u,v), (w,z) € FE independent : uw & vr (3)

The surprising result due to Randerath et al. [4] is that the satisfiability of
this system of constraints (and thus the existence of a level planar drawing)
is equivalent to the satisfiability of a reduced constraint system obtained by
omitting the transitivity constraints (2). That is, transitivity is irrelevant for
the satisfiability. Note that a satisfying assignment of the reduced system is
not necessarily transitive, rather Randerath et al. prove that a solution can be
made transitive without invalidating the other constraints. Since the remaining
conditions 1 and 3 can be easily expressed in terms of 2-SAT, which can be
solved efficiently, this yields a polynomial-time algorithm for level planarity.

A very recent trend in planarity research are Hanani-Tutte style results. The
(strong) Hanani-Tutte theorem [11,12] states that a graph is planar if and only if
it can be drawn so that any two independent edges (i.e., not sharing an endpoint)
cross an even number of times. One may wonder for which other drawing styles
such a statement is true. Pach and Téth [13,14] showed that the weak Hanani-
Tutte theorem (which requires even crossings for all pairs of edges) holds for
a special case of level planarity and asked whether the result holds in general.
This was shown in the affirmative by Fulek et al. [3], who also established the
strong version for level planarity. Most recently, both the weak and the strong
Hanani-Tutte theorem have been established for radial level planarity [1,2].

Contribution. We show that the result of Randerath et al. [4] from 2001 is
equivalent to the strong Hanani-Tutte theorem for level planarity.

The key difference is that Randerath et al. consider proper level graphs,
whereas Fulek et al. [3] work with graphs with only one vertex per level. For a
graph G we define two graphs G*, GT that are equivalent to G with respect to
level planarity. We show how to transform a Hanani-Tutte drawing of a graph G*
into a satisfying assignment for the constraint system of G* and vice versa. Since
this transformation does not make use of the Hanani-Tutte theorem nor of the
result by Randerath et al., this establishes the equivalence of the two results.

Moreover, we show that the transformation can be adapted also to the case
of radial level planarity. This results in a novel polynomial-time algorithm for
testing radial level planarity by testing satisfiability of a system of constraints
that, much like the work of Randerath et al., is obtained from omitting all
transitivity constraints from a constraint system that trivially models radial

Level Planarity: Transitivity vs. Even Crossings 41

level planarity. Currently, we deduce the correctness of the new algorithm from
the strong Hanani-Tutte theorem for radial level planarity [2]. However, also this
transformation works both ways, and a new correctness proof of our algorithm in
the style of the work of Randerath et al. [4] may pave the way for a simpler proof
of the Hanani-Tutte theorem for radial level planarity. We leave this as future
work. Omitted proofs, indicated by (x), can be found in the full version [15].

2 Preliminaries

A level graph is a directed graph G = (V, E) together with a level assignment £ :
V — {1,2,...,k} for some k € N that satisfies £(u) < £(v) for all (u,v) € E.
If ¢(u)+1 = £(v) for all (u,v) € E, the level graph G is proper. Two independent
edges (u,v), (w, x) are critical if £(u) < ¢(x) and £(v) > ¢(w). Note that any pair
of independent edges that can cross in a level drawing of G is a pair of critical
edges. Throughout this paper, we consider drawings that may be non-planar,
but we assume at all times that no two distinct vertices are drawn at the exact
same point, no edge passes through a vertex, and no three (or more) edges cross
in a single point. If any two independent edges cross an even number of times in
a drawing I' of G, it is called a Hanani- Tutte drawing of G.

For any k-level graph G we now define a star form G* so that every level
of G* consists of exactly one vertex. The construction is similar to the one used
by Fulek et al. [3]. Let n; denote the number of vertices on level i for 1 <
i < k. Further, let vy, vs,...,v,, denote the vertices on level ¢. Subdivide every
level i into 2n; sublevels 1¢,2%,... (2n;)". For 1 < j < n;, replace vertex v;
by two vertices v}, vf with £(v}) = j* and £(v]) = n; + j* and connect them
by an edge (v}, v}), referred to as the stretch edge e(v;). Connect all incoming
edges of v; to v’ instead and connect all outgoing edges of v; to 11;’ instead.
Let e = (u,v) be an edge of G. Then let e* denote the edge of G* that connects
the endpoint of e(u) with the starting point of e(v). See Fig. 1. Define GT as
the graph obtained by subdividing the edges of G* so that the graph becomes
proper; again, see Fig. 1. Let (u,v), (w,z) be critical edges in G*. Define their
limits in GT as (u/,v'), (w’,z') where u’, v are endpoints or subdivision vertices
of (u,v), w',2’ are endpoints or subdivision vertices of (w,z) and it is £(u') =

L(w") = max(£(u),f(w)) and £(v") = £(z') = min(¢(v), £(x)).

Lemma 1 (x). Let G be a level graph. Then
G is (radial) level pl. & G* is (radial) level pl. < G™ is (radial) level pl.

3 Level Planarity

Recall from the introduction that Randerath et al. formulated level planarity of
a proper level graph G as a Boolean satisfiability problem S'(G) on the vari-
ables V = {uw | u # w, £(u) = £(w)} and the clauses given by Egs. (1)—(3).

It is readily observed that G is level planar if and only if §'(G) is satisfiable.
Now let S(G) denote the SAT instance obtained by removing the transitivity

42 @G. Briickner et al.

G G* GT

Fig. 1. A level graph G (a) modified to a graph G* so as to have only one vertex per
level (b) and its proper subdivision GT (c).

clauses (2) from S8’(G). Note that it is (vw = —~wu) = (~uw V ~wu) and (uw =
vr) = (-uw V vx), ie., S(G) is an instance of 2-SAT, which can be solved
efficiently. The key claim of Randerath et al. is that S’(G) is satisfiable if and
only if S(G) is satisfiable, i.e., dropping the transitivity clauses does not change
the satisfiability of &'(G). In this section, we show that S(G) is satisfiable if
and only if G* has a Hanani-Tutte level drawing (Theorem 1). Of course, we do
not use the equivalence of both statements to level planarity of G. Instead, we
construct a satisfying truth assignment of S(G) directly from a given Hanani-
Tutte level drawing (Lemma 3), and vice versa (Lemma 4). This directly implies
the equivalence of the results of Randerath et al. and Fulek et al. (Theorem 1).

The common ground for our constructions is the constraint system &'(GV),
where a Hanani-Tutte drawing implies a variable assignment that does not nec-
essarily satisfy the planarity constraints (3), though in a controlled way, whereas
a satisfying assignment of S(G) induces an assignment for S’(G™T) that satisfies
the planarity constraints but not the transitivity constraints (2). Thus, in a
sense, our transformation trades planarity for transitivity and vice versa.

A (not necessarily planar) drawing I" of G induces a truth assignment ¢ of V
by defining for all uw € V that ¢(uw) is true if and only if u lies to the left
of w in I'. Note that this truth assignment must satisfy the consistency clauses,
but does not necessarily satisfy the planarity constraints. The following lemma
describes a relationship between certain truth assignments of S(G) and crossings
in I" that we use to prove Lemmas 3 and 4.

Lemma 2. Let (u,v), (w,x) be two critical edges of G* and let (u',v"), (w', ')
be their limits in G*. Further, let I'* be a drawing of G*, let I'T be the drawing
of GT induced by I'* and let o+ be the truth assignment of S(G) induced
by I't. Then (u,v) and (w,z) intersect an even number of times in I'* if and
only if T (v'w') = T (v'2').

Proof. We may assume without loss of generality that any two edges cross at
most once between consecutive levels by introducing sublevels if necessary. Let X
be a crossing between (u,v) and (w,x) in G*; see Fig. 2(a). Further, let u;, w;
and ug, wy be the subdivision vertices of (u,v) and (w,z) on the levels directly
below and above X in G*, respectively. It is ¢ (ujw;) = =™ (ugws). In the

Level Planarity: Transitivity vs. Even Crossings 43

reverse direction, ot (ujwr) = =T (ugws) implies that (u,v) and (w,x) cross
between the levels £(uq) and £(ug). Due to the definition of limits, any crossing
between (u,v) and (w,z) in G* must occur between the levels ¢(u') = £(w’)
and £(v') = £(x’). Therefore, it is T (v'w') = T (v'2’) if and only if (u,v)
and (w,) cross an even number of times. O

(d)
as
as] p p(ab) = ¢* (a1bs)
4
as] 5.1 ca p(ac) = ¢™ (arca)
3 _ +
s, e p(be) = ¢ (bic2)
[] [[)
by €2 a b

C1

Fig.2. A Hanani-Tutte drawing (a) induces a truth assignment ¢*that satis-
fies S(GT) (b), the value where " differs from 9™ is highlighted in red. Using the sub-
divided stretch edges of GT (c), translate ¢ to a satisfying assignment ¢ of S(G) (d).
(Color figure online)

Lemma 3. Let G be a proper level graph and let I'* be a Hanani-Tutte drawing
of G*. Then S(G) is satisfiable.

Proof. Let I't be the drawing of G induced by I'* and let %™ denote the
truth assignment induced by I'". Note that 1) does not necessarily satisfy the
crossing clauses. Define ¢ so that it satisfies all clauses of S(GT) as follows.

Let v, w"” be two vertices of Gt with £(u”) = ¢(w"). If one of them is a vertex
in G*, then set p* (v, w") = ¥+ (v, w"). Otherwise v, w” are subdivision ver-
tices of two edges (u,v), (w,z) € E(G*). If they are independent, then they are
critical. In that case their limits (u/,v’), (w’, 2’) are already assigned consistently
by Lemma 2. Then set ¢ (uvw”) = ¢+ (u'w’). If (u,v), (w, z) are adjacent, then
we have u = w or v = z. In the first case, we set T (u”/w”) = ¢ (v'2’). In the
second case, we set T (u"w”) = Y+ (v'w').

Thereby, we have for any critical pair of edges (u”,v"), (w”,2") € E(GT) that
et (u'w") = T (v"2") and clearly ot (uv’w”) = —¢T (w”u"). Hence, assign-
ment T satisfies S(GT). See Fig.2 for a drawing I't (a) and the satisfying
assignment of S(G) derived from it (b).

Proceed to construct a satisfying truth assignment ¢ of S(G) as follows.
Let u, w be two vertices of G with ¢(u) = ¢(w). Then the stretch edges e(u), e(w)
in G* are critical by construction. Let (u/,u”), (w’,w”) be their limits in G*.
Set p(uw) = ¢t (u'w’). Because ¢ is a satisfying assignment, all crossing clauses
of S(GT) are satisfied, which implies ¢ (v'w’) = ¢+ (u”w”). The same is true
for all subdivision vertices of e(u) and e(w) in G*. Because ¢ also satisfies

44 @G. Briickner et al.

the consistency clauses of S(GT), this means that ¢ satisfies the consistency
clauses of S(G). See Fig.2 for how S(GT) is translated from Gt (c) to G (d).
Note that the resulting assignment is not necessarily transitive, e.g., it could
be () = p(vw) = ~g(uw).

Consider two edges (u,v), (w,z) in G with ¢(u) = ¢(w). Because G is proper,
we do not have to consider other pairs of edges. Let (v, u”), (w’, w") be the limits
of e(u), e(w) in GT. Further, let (v',v"), (2’ 2") be the limits of e(v), e(z) in GT.
Because there are disjoint directed paths from «' and w’ to v’ and z’ and @™
is a satisfying assignment, it is ™ (v'w’) = ¢ (v'2’). Due to the construction
of ¢ described in the previous paragraph, this means that it is p(uw) = p(vz).
Therefore, ¢ is a satisfying assignment of S(G). O

Lemma 4. Let G be a proper level graph together with a satisfying truth assign-
ment ¢ of S(G). Then there exists a Hanani-Tutte drawing I'* of G*.

Proof. We construct a satisfying truth assignment ¢ of S(GT) from ¢ by essen-
tially reversing the process described in the proof of Lemma 3. Proceed to con-
struct a drawing I'" of G* from T as follows. Recall that by construction,
every level of G consists of exactly one non-subdivision vertex. Let u denote
the non-subdivision vertex of level i. Draw a subdivision vertex w on level i to
the right of u if ™ (uw) is true and to the left of u otherwise. The relative order
of subdivision vertices on either side of w can be chosen arbitrarily. Let I™ be
the drawing of G* induced by I'T. To see that I'* is a Hanani-Tutte drawing,
consider two critical edges (u,v), (w,z) of G*. Let (u',v"), (w',2") denote their
limits in G*. One vertex of v/ and v' (v’ and z’) is a subdivision vertex and
the other one is not. Lemma 2 gives ¢ (u'w’) = ¢ (v'z’) and then by construc-
tion v/, w’ and v’, 2" are placed consistently on their respective levels. Moreover,
Lemma 2 yields that (u,v) and (w,z) cross an even number of times in G*.
Figure 3 illustrates the construction. ad

(a) (b) i % () E ;

Fig. 3. A proper level graph G together with a satisfying variable assignment ¢ (a)
induces a drawing of G (b), which induces a Hanani-Tutte drawing of G* (c).

Theorem 1. Let G be a proper level graph. Then
S(QG) is satisfiable < G* has a Hanani-Tutte level drawing < G is level planar.

Level Planarity: Transitivity vs. Even Crossings 45

4 Radial Level Planarity

In this section we present an analogous construction for radial level planarity. In
contrast to level planarity, we now have to consider cyclic orders on the levels, and
even those may still leave some freedom for drawing the edges between adjacent
levels. In the following we first construct a constraint system of radial level
planarity for a proper level graph G, which is inspired by the one of Randerath
et al. Afterwards, we slightly modify the construction of G*. Finally, in analogy
to the level planar case, we show that a satisfying assignment of our constraint
system defines a satisfying assignment of the constraint system of G*, and that
this in turn corresponds to a Hanani-Tutte radial level drawing of G*.

A Constraint System for Radial Level Planarity. We start with a special
case that bears a strong similarity with the level-planar case. Namely, assume
that G is a proper level graph that contains a directed path P = aq, ..., ay that
has exactly one vertex «; on each level ¢. We now express the cyclic ordering on
each level as linear orders whose first vertex is «;. To this end, we introduce for
each level the variables V; = {a;uv | u,v € V; \ {a;}}, where aj;uv = true means
«;, u, v are arranged clockwise on the circle representing level i. We further
impose the following necessary and sufficient linear ordering constraints L (o).

v distinct U, v eV \{w}: «aquo < - avu (4)

V pairwise distinct w,v,w € V\{a;}: quuAoow = - aquw (5)

It remains to constrain the cyclic orderings of vertices on adjacent levels so
that the edges between them can be drawn without crossings. For two adjacent
levels ¢ and i + 1, let &; = (a4, ;1) be the reference edge. Let F; be the set
of edges (u,v) of G with ¢(u) = i that are not adjacent to an endpoint of ¢;.
Further B = {(a;,v) € E\ {ei}} and E; = {(u, ;1) € E\ {e;}} denote the
edges between levels i and 7 + 1 adjacent to the reference edge ;.

In the context of the constraint formulation, we only consider drawings of
the edges between levels 7 and i + 1 where any pair of edges crosses at most
once and, moreover, ¢€; is not crossed. Note that this can always be achieved,
independently of the orderings chosen for levels ¢ and ¢ + 1. Then, the cyclic
orderings of the vertices on the levels ¢ and ¢ + 1 determine the drawings of all
edges in E;. In particular, two edges (u,v), (v/,v") € E; do not intersect if and
only if a;uu’ & ;100’5 see Fig. 4(a). Therefore, we introduce constraint (6).
For each edge e € E;” U E; it remains to decide whether it is embedded locally
to the left or to the right of ;. We write I(e) in the former case. Two edges e €
E;, f € Ef do not cross if and only if I(e) < —I(f); see Fig.4(b). This gives
us constraint (7). It remains to forbid crossings between edges in F; and edges
in E" UE; . An edge e = («;,v"”) € E;" and an edge (v/,v’) € E; do not cross if
and only if [(e) < a;410'v"; see Fig. 4(c). Crossings with edges (v, a;41) € E;
can be treated analogously. This yields constraints (8) and (9). We denote the

46 @G. Briickner et al.

planarity constraints (6)—(9) by Pg(e;), where €; = (a;, @i11).

V independent (u,v), (u’,v") € E; Cagun & v’ (6)
Veec Ef, f € E/ : o (e) < =l(f) (1)
V independent (a;,v") € E;, (u,v) € E; i a0 & a0 (8)
V independent (u”,a;41) € E; , (u,v) € E; :+ l(u' aip1) < auu” (9)
(a) 0y ! (b) Q;ty ()

+1

Q.—.C

Qijy v
11
ozj u u
Fig. 4. lllustration of the planarity constraints for radial planarity for the case of two

edges in E; (a), constraint (6); the case of an edge in e € F;” and an edge f € E;f (b),
constraint (7); and the case of an edge in F; and an edge e € E;f (c), constraint (8).

It is not difficult to see that the transformation between Hanani-Tutte
drawings and solutions of the constraint system without the transitivity con-
straints (5) can be performed as in the previous section. The only difference is
that one has to deal with edges that share an endpoint with a reference ¢;.

In general, however, such a path P from level 1 to level k does not nec-
essarily exist. Instead, we use an arbitrary reference edge between any two

consecutive levels. More formally, we call a pair of sets A+ = {af, . ,a;},
A~ ={ay,...,qy } reference sets for G if we have o] = af and o] =« and
for1<:<k the reference vertices a - lie on level ¢ and for 1 < ¢ < k graph

G contains the reference edge €; = (oﬁ' aHl) unless there is no edge between
level ¢ and level ¢ + 1 at all. In that case, we can extend every radial drawing
of G by the edge (04;-", @;, 1) without creating new crossings. We may therefore
assume that this case does not occur and we do so from now on.

To express radial level planarity, we express the cyclic orderings on each level
twice, once with respect to the reference vertex o and once with respect to the
reference vertex o, . To express planarity between adjacent levels, we use the
planarity constraints with respect to the reference edge ¢;. It only remains to
specify that, if a;r # o, the linear ordering with respect to these reference
vertices must be linearizations of the same cyclic ordering. This is expressed by
the following cyclic ordering constraints C(;(af,a;).

Vdistinet u, v e V;\{a;,of}: (ajuv & of w) & (o) uaf < a;jva)l) (10)
v veVi\{a,al}: ajvaf & afajv (11)

The constraint set &'(G,A",A”) consists of the linearization con-
straints Lg (o) and Lg(a;) and the cyclic ordering constraints Cq(a;, ;)

Level Planarity: Transitivity vs. Even Crossings 47

for i = 1,2,...,k if o # «;, plus the planarity constraints Pg(e;) for i =
1,2,...,k — 1. This completes the definition of our constraint system.

Theorem 2 (x). Let G be a proper level graph with reference sets AT, A™.
Then the constraint system S'(G, AT, A7) is satisfiable if and only if G is radial
level planar. Moreover, the radial level planar drawings of G correspond bijec-
tively to the satisfying assignments of S'(G, A*, A™).

Similar to Sect.3, we now define a reduced constraints system S(G, A", A7)
obtained from &’(G, AT, A™) by dropping constraint (5). Observe that this
reduced system can be represented as a system of linear equations over Fy, which
can be solved efficiently. Our main result is that S(G, A*, A7) is satisfiable if
and only if G is radial level planar.

Modified Star Form. We also slightly modify the splitting and perturbation
operation in the construction of the star form G* of GG for each level i. This is nec-
essary since we need a special treatment of the reference vertices o and o; on
each level ¢. Consider the level ¢ containing the n; vertices vy, ..., vp,. If oz;-" # o,
then we choose the numbering of the vertices such that v; = «; and vy, = a;L.
We replace i by 2n; — 1 levels 1¢,2¢ ... (2n; — 1)?, which is one level less than
previously. Similar to before, we replace each vertex v; by two vertices bot(v;)
and top(v;) with ¢(bot(v;)) = j* and £(top(v;)) = (n; — 1+ j)* and the cor-
responding stretch edge (bot(v;),top(v;)); see Fig.5(b). This ensures that the
construction works as before, except that the middle level m; = j™ contains two

vertices, namely ;" and o’
(@) N (b) top(a;; ;) (c) ~ etop(a;)
®ip1 Qi -
tOP(O‘Hl) I I
M1 I m;
B [+ borlary I
of =a; bot(a7;.) bot(af)

Fig. 5. Illustration of the modified construction of the stretch edges for G* for the
graph G in (a). The stretch edges for level i 4+ 1 where o, ; # o, (b) and for level i
where o = a; (c).

If, on the other hand, ozj' = a; , then we choose v; = oz;-". But now we replace
level i by 2n; + 1 levels 1%, ..., (2n; + 1)’. Replace v; by vertices bot(v1), top(v:)
with £(bot(v1)) = 1¢ and £(top(v1)) = (2n; + 1)7. Replace all other v; with
vertices bot(v;), top(v;) with £(bot(v;)) = j* and {(top(v;)) = (n; + 1 + j)*
For all j, we add the stretch edge (bot(v;), top(v;)) as before; see Fig. 5(c). This
construction ensures that the stretch edge of oz;-" = «a; starts in the first new
level 1% and ends in the last new level (2711-—4—1)i7 and the middle level m; = n; + 17
contains no vertex.

As before, we replace each original edge (u,v) of the input graph G by the
edge (top(u),bot(v)) connecting the upper endpoint of the stretch edge of u

48 @G. Briickner et al.

to the lower endpoint of the stretch edge of v. Observe that the construction
preserves the properties that for each level i the middle level m; of the levels that
replace ¢ intersects all stretch edges of vertices on level i. Therefore, Lemma 1
also holds for this modified version of G* and its proper subdivision G*. For
each vertex v of G we use e(v) = (bot(v), top(v)) to denote its stretch edge.
We define the function L that maps each level j of G* or Gt to the level i
of GG it replaces. For an edge e of G* and a level i that intersects e, we denote
by e; the subdivision vertex of e at level ¢ in G*. For two levels ¢ and j that
both intersect an edge e of G*, we denote by e/ the path from e; to e; in G™.

Constraint System and Assignment for GT. We now choose reference sets
BT, B~ for Gt that are based on the reference sets AT, A~ for G. Consider a
level j of G* and let ¢ = L(j) be the corresponding level of G. For each level j,
define two vertices ﬂ;f, By Ifa; = o, set B; = 6;' = e(q;);; see Fig.6(b).
Otherwise, the choice is based on whether j is the middle level m = m,; of the
levels L~1(i) that replace level i of G, or whether j lies above or below m.

Choose 3, = top(a;") and 3;, = bot(a;,). For j < m, choose B; = ﬁ;f =

e(a;); and for j > m, choose 3; = ﬁ;f = e(a;);; see Fig. 6(c).
(a) _ + (b) ﬁ;: = /67_; (C) B;qu+1 = B;i+1
Xip1 Yy _
| I O I f
m; mi41
I ﬁj—"wl
= +* .
053— = ﬁl"r — M :;:4—1 = /Bli+1

Fig. 6. Definition of 37, 3 in the assignment for G* for the same graph as in Fig. 5(a).
Vertices 37 (87) are drawn in green (red), or in blue if they coincide. (Color figure
online)

We set BT to be the set containing all ﬁj and likewise for B~. Our next
step is to construct from a satisfying assignment ¢ of S(G, A", A™) a corre-
sponding satisfying assignment @' of S(G*, BT, B™). The construction follows
the approach from Lemma 4 and makes use of the fact that G is essentially a
stretched and perturbed version of G. Since the construction is straightforward
but somewhat technical, we defer it to the full version [15].

Lemma 5 (x). IfS(G, A", A7) is satisfiable, then S(G*, BT, B™) is satisfiable.

Constructing a Hanani-Tutte Drawing. We construct a radial drawing I
of GT, from which we obtain the drawing I"* of G* by smoothing the subdivision
vertices. Afterwards we show that I'* is a Hanani-Tutte drawing.

We construct I'" as follows. Consider a level j of G and let i = L(j) be the
original level of G. First assume j = m; is the middle levels of the levels replacing
level i of G. If B = 5;?, then we place all vertices of V;(G™") in arbitrary order.

Level Planarity: Transitivity vs. Even Crossings 49

Otherwise, we place §; and ﬁj‘ arbitrarily on the circle representing the level m;.
We then place each vertex v € V;(G1)\ {6]-_, B;'} such that 3, , v, 6}' are ordered
clockwise if and only if ap(ﬁ;vﬁj) is true (i.e., we place v on the correct side
of §; and ﬁ;f and arrange the vertices on both sides of ;" and 5]+ arbitrarily).

Next assume j # m;. Then there is exactly one vertex £ € V;(G1) N V(G*).
If ¢ € B™, then we place all vertices of V;(G*) in arbitrary order on the circle
representing the level j. Otherwise, we place 5; and ¢ arbitrarily. We then place
any vertex v € V;(G1)\ {B; &} such that 3,7, &, v are ordered clockwise if and
only if o+ (63-_512) is true. Again, we arrange the vertices on either side of By
and £ arbitrarily. We have now fixed the positions of all vertices and it remains
to draw the edges.

Consider two consecutive levels j and j + 1 of G*. We draw the edges
in E;(G™) such that they do not cross the reference edges in E(G1)N (BT xB™).
We draw an edge e = (ﬂj‘, x') € EJ+ (GT) such that it is locally left of (;T, B;)
if and only if p*(I(e)) = true. By reversing the subdivisions of the edges in G
we obtain G* and along with that we obtain a drawing I'* of G* from I'T.

Let a,b,c be curves or corresponding edges. Then we write cr(a,b) for the
number of crossings between a, b and set cr(a, b, ¢) = cr(a,b) + cr(a, c) + cr(b,).
The following lemma is the radial equivalent to Lemma 2 and constitutes our
main tool for showing that edges in our drawing cross evenly.

Lemma 6 (x). Let C; and Cy be distinct concenctric circles and let a,b,c
be radially monotone curves from Cy to Co with pairwise distinct start- and
endpoints that only intersect at discrete points. Then the start- and endpoints of
a,b, ¢ have the same order on C1 and Cs if and only if cr(a,b,¢) =0 mod 2.

Lemma 7. The drawing I'* is a Hanani-Tutte drawing of G*.

Proof. We show that each pair of independent edges of G* crosses evenly in ™.
Of course it suffices to consider critical pairs of edges, since our drawing is radial
by construction, and therefore non-critical independent edge pairs cannot cross.

Every edge (o, @;, 1) is subdivided into edges of the form (ﬂj', B;11) and
therefore it is not crossed.

Let e, f be two independent edges in E(G*) \ (AT x A7) that are critical.
Let a and b be the innermost and outermost level shared by e and f.

We seek to use Lemma 6 to analyze the parity of the crossings between e
and f. To this end, we construct a curve y along the edges of the form (,B;L, ﬂj_-s-l)
as follows. For every level j we add a curve ¢; between 5, and ﬁ;‘ on the circle
representing the level j (a point for By = ﬂ;.“; chosen arbitrarily otherwise). The
curve 7 is the union of these curves c; and the curves for the edges of the form
(/6’]7L, B;- +1)- Note that v spans from the innermost level 1 to the outermost level
(2nk, + 1)* with endpoints bot(a;) and top(ay,).

For any edge g € G*, we denote its curve in I'* by c(g). For any radial
monotone curve ¢ we denote its subcurve between level i and level j by ¢/
(using only one point on circle ¢ and circle j each). We consider the three curves

50 @G. Briickner et al.

g =2 e =cle), f = c(f)2. We now distinguish cases based on whether one
of the edges e, f starts at the bottom end or ends at the top end of the reference
edges on level a or b.

Case 1: We have e, f, # 8 and ey, f, # 3, . Note that cr(e, f,7) = cr(e, f) +
cr(e,y) +cr(f,~), and therefore cr(e, f) = cr(e, f,v) + cr(e,) +cr(f, ~v) mod 2.

By Lemma 6 we have that the orders of e, fo, 37 and ey, f, 5, differ if
and only if cr(e, f,7) = 1 mod 2. That is cr(e, f,7) = 0 mod 2 if and only
lf@ (ﬁa s €as fa) - +(ﬁ1:a €y, fb) We show that (p+(ﬁ;_7 €a, fa) = 90+(ﬁ1:7€ba fb)
if and only if cr(e,y) + cr(f,7) =0 mod 2. In either case, cr(e, f) is even.

Let a < j < b—1. By construction we have for 3;” # ﬁ;f and any other vertex
v on level j, that §;, v, 6}' are placed clockwise if and only if o™ (B; v, ﬁ;r) is
true. Further, since ¢ satisfies C(]‘-", ﬁj_), we have for any other vertex u on
level j that 3, u,v and ﬁ;, u, v have the same order if and only if 5, v, Bf and
ﬂ;, u, ﬁ;f have the same order, i.e., if and only if u and v lie on the same side of
B; and ,6;“ This however, is equivalent to cr(e,c¢;) + cr(f,¢;) =0 mod 2.

Since p* satisfies P(d;) where d; = (3; * 5111) we have that ¢ (/6’] €5, fi) =
‘P+(6]‘_+176j+17fj+1) We obtain, that ¢ (ﬁ] 76J7f]) = @ (/63+176J+17fj+1)
unless <P+(ﬂj+1’ej+1fj+1) # ot (]++16J+1fj+1) (which requires 3} 41 # /83+1)
This is equivalent to cr(e,cjy1) + cr(f,¢j41) = 1 mod 2. Hence we have
ot (Bfeafs) = o1 (B evfy) if and only if Z;’;}l cr(cj,e) + cr(ej, f) =0 mod 2
(Note that 3, = 6;’.). Since edges of the form (ﬂ;r,/é’;+1) are not crossed, this
is equivalent to cr(vy,e) + cr(v, f) =0 mod 2. Which we aimed to show. By the
above argument we therefore find that cr(e, f) is even.

Case 2. We do not have e,, f, # 87 and ey, fy # 3, . For example, assume

= (3;; the other cases work analogously. We then have 3 = top(o; +). This
means e originates from an edge in (. Since such edges do not cross middle
levels, ¢’ is a subcurve of an original edge ;. Especially, we have only three
vertices per level between a and b that correspond to v, e, f.

Let H C G be the subgraph induced by the vertices of (g;)2, €8, f2. Then ¢+
satisfies all the constraints of S(H,V((£:)%),V((e:)%)). However, each level of
H contains only three vertices, and therefore the transitivity constraints are
trivially satisfied, i.e., ¢ satisfies all the constraints of S’(H, V ((;)%), V((£:)2)).
Thus, by Theorem 2, a drawing 'y of H according to ¢t is planar. Le., we have
erry, ((20)2, €8, £2) = 0. Let C,, Cy, be e-close circles to levels a and b, respectively,
that lie between levels a and b. With Lemma 6 we obtain that ¢;, e, f intersect
C, and C} in the same order.

Note that I't is drawn according to ¢ in level a and in level b. We obtain
that the curves for ¢;, e, f intersect C, in the same order in I't and in I'y. The
same holds for C}. Hence, the curves intersect C, and Cj in the same order in
I't. With Lemma 6 we have crp+ ((£;)%, €8, f8) =0 mod 2. Since v is a subcurve
of €; and thus not crossed in I'T, this yields crpt (€2, f2) =0 mod 2. Thus any
two independent edges have an even number of crossings. a

As in the level planar case the converse also holds.

Level Planarity: Transitivity vs. Even Crossings 51

Lemma 8 (x). Let G* be a level graph with reference sets AT, A~ for G*. If
G* admits a Hanani-Tutte drawing, then there exists a satisfying assignment ¢

of S(G+, A+, A™).

Theorem 3. Let G be a proper level graph with reference sets AT, A=. Then
S(G, AT, A7) is satisfiable < G* has a Hanani-Tutte radial level drawing
< G is radial level planar.

5 Conclusion

We have established an equivalence of two results on level planarity that have so
far been considered as independent. The novel connection has further led us to a
new testing algorithm for radial level planarity. Can similar results be achieved
for level planarity on a rolling cylinder or on a torus [16]?

References

1. Fulek, R., Pelsmajer, M., Schaefer, M.: Hanani-Tutte for radial planarity. In: Di
Giacomo, E., Lubiw, A. (eds.) GD 2015. LNCS, vol. 9411, pp. 99-110. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-27261-0_9

2. Fulek, R., Pelsmajer, M., Schaefer, M.: Hanani-Tutte for radial planarity II. In:
Hu, Y., Néllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 468-481. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-50106-2_36

3. Fulek, R., Pelsmajer, M.J., Schaefer, M., Stefankovi¢, D.: Hanani-Tutte, monotone
drawings, and level-planarity. In: Pach, J. (ed.) Thirty Essays on Geometric Graph
Theory, pp. 263-287. Springer, New York (2013). https://doi.org/10.1007/978-1-
4614-0110-0-14

4. Randerath, B., et al.: A satisfiability formulation of problems on level graphs.
Electron. Notes Discrete Math. 9, 269-277 (2001). 1IICS 2001 Workshop on Theory
and Applications of Satisfiability Testing (SAT 2001)

5. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear
planarity testing. SIAM J. Comput. 31(2), 601-625 (2002)

6. Bachmaier, C., Brandenburg, F.J., Forster, M.: Radial level planarity testing and
embedding in linear time. J. Graph Algorithms Appl. 9(1), 53-97 (2005)

7. Jinger, M., Leipert, S.: Level planar embedding in linear time. In: Kratochviyl, J.
(ed.) GD 1999. LNCS, vol. 1731, pp. 72-81. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-46648-7_7

8. Harrigan, M., Healy, P.: Practical level planarity testing and layout with embedding
constraints. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol.
4875, pp. 62-68. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
77537-9.9

9. Briickner, G., Rutter, I.: Partial and constrained level planarity. In: Klein, P.N.
(ed.) Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 2017), pp. 2000-2011. SIAM (2017)

10. Klemz, B., Rote, G.: Ordered level planarity, geodesic planarity and bi-
monotonicity. In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS, vol. 10692, pp.
440-453. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73915-1_34

https://doi.org/10.1007/978-3-319-27261-0_9
https://doi.org/10.1007/978-3-319-50106-2_36
https://doi.org/10.1007/978-1-4614-0110-0_14
https://doi.org/10.1007/978-1-4614-0110-0_14
https://doi.org/10.1007/3-540-46648-7_7
https://doi.org/10.1007/3-540-46648-7_7
https://doi.org/10.1007/978-3-540-77537-9_9
https://doi.org/10.1007/978-3-540-77537-9_9
https://doi.org/10.1007/978-3-319-73915-1_34

52

11.

12.

13.

14.

15.

16.

@G. Briickner et al.

Chojnacki, C.: Uber wesentlich unplattbare Kurven im dreidimensionalen Raume.
Fundam. Math. 23(1), 135-142 (1934)

Tutte, W.T.: Toward a theory of crossing numbers. J. Combin. Theory 8(1), 45-53
(1970)

Pach, J., Téth, G.: Monotone drawings of planar graphs. J. Graph Theory 46(1),
39-47 (2004)

Pach, J., Téth, G.: monotone drawings of planar graphs. ArXiv:1101.0967 e-prints
(2011)

Briickner, G., Rutter, 1., Stumpf, P.: Level planarity: transitivity vs. even crossings.
CoRR abs/1808.09931 (2018)

Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Rutter,
I.: Beyond level planarity. In: Hu, Y., Noéllenburg, M. (eds.) GD 2016. LNCS,
vol. 9801, pp. 482-495. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
50106-2_37

http://arxiv.org/abs/1101.0967
https://doi.org/10.1007/978-3-319-50106-2_37
https://doi.org/10.1007/978-3-319-50106-2_37

®

Check for
updates

Short Plane Supports for Spatial
Hypergraphs

Thom Castermans®, Mereke van Garderen?, Wouter Meulemans! (™)

Martin Néllenburg®®, and Xiaoru Yuan*

L TU Eindhoven, Eindhoven, The Netherlands
{t.h.a.castermans,w.meulemans }Qtue.nl
2 Universitit Konstanz, Konstanz, Germany
mereke.van.garderen@uni-konstanz.de
3 TU Wien, Vienna, Austria
noellenburg@ac.tuwien.ac.at
4 Peking University, Beijing, China
xiaoru.yuan@pku.edu.cn

Abstract. A graph G = (V, E) is a support of a hypergraph H = (V, S)
if every hyperedge induces a connected subgraph in GG. Supports are used
for certain types of hypergraph visualizations. In this paper we consider
visualizing spatial hypergraphs, where each vertex has a fixed location in
the plane. This is the case, e.g., when modeling set systems of geospatial
locations as hypergraphs. By applying established aesthetic quality cri-
teria we are interested in finding supports that yield plane straight-line
drawings with minimum total edge length on the input point set V. We
first show, from a theoretical point of view, that the problem is NP-hard
already under rather mild conditions as well as a negative approxima-
bility results. Therefore, the main focus of the paper lies on practical
heuristic algorithms as well as an exact, ILP-based approach for comput-
ing short plane supports. We report results from computational exper-
iments that investigate the effect of requiring planarity and acyclicity
on the resulting support length. Further, we evaluate the performance
and trade-offs between solution quality and speed of several heuristics
relative to each other and compared to optimal solutions.

1 Introduction

A hypergraph H = (V,S) is a generalization of a graph, in which each hyperedge
in S is a nonempty subset of the vertex set V, that is, S C P(V) \ {0}. Fur-
thermore, we assume here that every element v € V' is in at least one hyperedge
s € S. Hypergraphs arise in many domains to model set systems representing
clusters, groups or other aggregations. To allow for effective exploration and
analysis of such data, visualization is often used. Indeed, drawing hypergraphs
relates to set visualization, an active subfield of information visualization (see
the recent survey of Alsallakh et al. [3]). Various methods have been developed to
visualize set systems for elements fixed in (geo)spatial positions, such as Bubble

© Springer Nature Switzerland AG 2018
T. Biedl and A. Kerren (Eds.): GD 2018, LNCS 11282, pp. 53-66, 2018.
https://doi.org/10.1007/978-3-030-04414-5_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04414-5_4&domain=pdf
http://orcid.org/0000-0003-0454-3937
https://doi.org/10.1007/978-3-030-04414-5_4

54 T. Castermans et al.

o © /.
° e
-
¢ : ®e @ /./I \.‘0\0
R 2/
°e) ¢ o= w °

Fig. 1. (a) A set system with colors indicating set membership. (b) The shortest plane
support of the corresponding hypergraph. (c¢) A Kelp-style rendering of the set system.
(Color figure online)

Sets [9], LineSets [2], Kelp Diagrams [10] and Kelp Fusion [18]. These methods
make different trade-offs between, e.g., Gestalt theory and Tufte’s principle of
ink minimization [20] to visually convey the set structures; user studies have
been performed to analyze the effectiveness of such trade-offs [18].

An important concept to model the drawing of hypergraphs is that of a
hypergraph support [14]: a support of a hypergraph H = (V,S) is a graph G =
(V, E) such that every hyperedge s € S induces a connected subgraph in G.
In other words, for every hyperedge s, the restriction of G to only edges that
connect vertices in s, denoted G[s], is connected and spans all vertices in s.
Hypergraph supports correspond to a prominent visualization style for geospatial
sets, namely that of connecting all elements of a set using colored links, such as
seen in Kelp-style diagrams [10,18] (see also Fig. 1) or LineSets [2].

Thus, finding an embedded support that satisfies certain criteria readily
translates into a good rendering of the spatial set system. A “good” support
should avoid edge crossings, a standard quality criterion in the graph-drawing
literature [19]. Moreover, as per Tufte’s principle of ink minimization [20], it
should have small total edge length. Of course, one may argue that edges of
the support that are used by multiple hyperedges do not significantly reduce the
“ink” and thus multiplicity should be considered. However, we observe that such
edges show co-occurrences of elements and thus have a potential added value in
the drawing—user studies that establish the validity of this reasoning are beyond
the scope of this paper. The shortest support need not be a tree, but to further
build on this idea of co-occurrences, one may want to restrict the support to be
acyclic—a support tree.

In many applications, the vertices have some associated (geo)spatial location,
thereby prescribing their positions in the drawing of the support. We focus on
this case where vertices have fixed positions in the plane and study supports that
are embedded using straight-line edges. Figure 2 shows an example on real-world
data of restaurants, similar to those used in [18].

Contributions. The contributions of this paper are two-fold: on the one hand
we fill some gaps in theoretical knowledge about computing plane supports and
support trees; on the other hand, we perform computational experiments to

Short Plane Supports for Spatial Hypergraphs 55

4

) % Toronto

g

mS3- 33
W4 - 5 stars
Japanese

Fig. 2. A set system of restaurants in downtown Toronto: input memberships and
locations (left) and a Kelp-style rendering of the shortest plane support (right).

gain more insight into the trade-offs on the complexity of the visual artifact for
(implicit) support-based set visualization methods. Our focus is on the latter.

In Sect. 2 we explore computational aspects of the problem and introduce our
algorithms. We observe that plane support trees always exist if at least one vertex
is contained in all hyperedges, but show that length minimization is NP-hard.
Moreover, the natural approach to extend a minimum spanning tree does not
even yield a constant-factor approximation. Finally, we present two heuristics,
one based on local search, the other on iteratively computing minimum spanning
trees, as well as an exact integer linear program (ILP).

In Sect.3 we describe the results of two computational experiments. The
first experiment compares the performance of the two heuristic algorithms in
terms of quality and speed. Whereas the local search achieves better quality, the
approximation algorithm is faster. The second experiment compares how well
these algorithms perform compared to the optimum, computed via the ILP, and
investigates the cost in terms of edge length incurred by requiring planarity or
acyclicity. The effect of planarity and acyclicity seems to be predictably influ-
enced by the number of hyperedges and the number of incident hyperedges per
vertex, but not by the number of vertices. Moreover, the experiment shows that
local search often achieves an optimal result.

Related Work. Regarding supports for elements with fixed locations, some
results are already known. The results of Bereg et al. [5] imply that existence of
a plane support tree for two disjoint hyperedges can be tested in polynomial time;
this implies the same result for a plane support. This problem has also been stud-
ied in a setting with additional Steiner points [4,11]. Van Goethem et al. [12]
enforce a stricter planarity than that of planar supports and investigate the
resulting properties for elements on a regular grid, where only neighboring ele-
ments can be connected. However, solution length is of no concern in their results.

Without the planarity requirement, existence and length minimization of a
(nonplane) support tree for fixed elements can be solved in polynomial time
[15,16]. Hurtado et al. [13] show that length minimization of a support for two
hyperedges is solvable in polynomial time. However, for three or more hyperedges

56 T. Castermans et al.

this problem is NP-hard [1]. We show that this is in fact hard for two hyperedges
if we do require planarity.

Planar supports without fixed elements have also received attention. Johnson
and Pollak [14] originally showed that deciding whether a planar support exists
is NP-hard; various restrictions have since been proven to be NP-hard (e.g., [7]).
Contrasting these reductions, our hardness result (Theorem 1) requires only two
hyperedges, but uses length minimization. Buchin et al. [7] show that testing for
a planar support tree with bounded maximum degree is solvable in polynomial
time; testing for a planar support tree such that the induced subgraph of each
hyperedge is Hamiltonian can also be done in polynomial time [6].

Various set-visualization methods [2, 10, 18] implicitly also compute supports,
considering various criteria such as length, detour, shape, crossings, and bends.

2 Computing Short Plane Supports

We first describe our theoretical results. Omitted proofs are in the full version [8].

Existence. The observation below gives a sufficient condition for the existence
of a plane support tree. Bereg et al. [5] provide a necessary condition for |S| = 2,
though the problem remains open for |S| > 2.

Observation 1. Consider a hypergraph H = (V,S) with no three vertices in V

on a line, such that Va = (\,cq8 # (. Then H has a plane support tree.

Proof. We use the Euclidean minimum spanning tree on V4 and connect each
vertex in V' \ V4 to the closest one in V4. This readily yields a support tree; it
is plane as no crossings are created when connecting to the closest point in V4
and no overlaps are created in the absence of collinear points. O

Without a vertex in V4, one can immediately construct instances that enforce
a crossing in any support, e.g., an X-configuration of two disjoint hyperedges.

Approximation. In a support tree the subgraph induced by V4 must be a
connected subtree to satisfy the support property for all hyperedges. Next we
consider using the above idea to start with an Euclidean minimum spanning
tree (EMST) of V4 and extend it to a support tree. Though this leads to an
approximation algorithm for two hyperedges [13] if we allow intersections, we
show below that the planarity requirement can cause the resulting support length
to exceed any constant factor of the length of the shortest plane support tree.

Lemma 1. There is a family of n-vertex hypergraphs H = (V,{r,b}) with V4 =
r N b # O such that any plane support of H that includes an EMST of Vi is a
factor O(|V|) longer than the shortest plane support tree.

Proof (sketch). The family is drawn in Fig. 3. The convex chains force the sup-
port with length ©(n) - ¢ when the EMST on Vj is used. Using a different tree
on Vj can give a total of length ©(1) - £. O

Short Plane Supports for Spatial Hypergraphs 57

iy 1]
—M——————eV Us——]| ‘ oV
20/3 haE
We We —

Fig. 3. An n-point instance with approximation ratio ©(n) if using an EMST on V4. All
edges are straight-line segments; curvature emphasizes the effect of the convex chain.

Removing vertex w from construction in Fig. 3, we can similarly show that a
plane support tree, which now necessarily includes the edge uv, is a factor ©(n)
longer than a shortest nonplane support tree.

Corollary 1. There is a family of n-vertex hypergraphs H = (V,{r,b}) with
Va =rnNb+# D such that any plane support tree of H is a factor ©(n) longer
than the shortest nonplane support tree.

Computational Complexity. Unfortunately, finding the shortest plane sup-
port and several restricted variants are NP-hard, as captured in the theo-

rem below. It uses a fairly straightforward reduction from planar monotone
3-SAT [17].

Theorem 1. Let H = (V,{r,b}) be a hypergraph with vertices V having fized
locations in R? and with r C b or rNb = 0. It is NP-hard to decide whether H
admits a plane support tree with length at most L for some L > 0.

2.1 Iterative Minimum Spanning Trees

Here we focus on computing short supports without requiring planarity. As
described by Hurtado et al. [13], EMSTs can be used to find an approxima-
tion of the shortest support. In particular, let H = (V,S) be a hypergraph with
n vertices and k hyperedges; by computing an EMST for each hyperedge and
taking their union, we get a support that is a k-approximation! of the shortest
support. This algorithm runs in O(knlogn) time.

Suppose that we compute the EMSTs Ti,...,T) in that order, for the k
hyperedges in S. The final support is the union of these trees: its length is not
increased by using an edge in T; that is already present in some T} (j < ¢). Hence,
we can consider any pair of vertices that is adjacent in 77 U... U T;_; to have
distance zero, when computing 7T;. This heuristically reduces the length of the
resulting support (though the approximation ratio remains the same). However,
the order in which hyperedges are considered now matters for the result. To
alleviate this issue, we iteratively recompute the minimum spanning trees.

1 One can actually do slightly better, by computing spanning trees on the intersection
of two hyperedges, yielding roughly a (0.8k)-approximation [13].

58 T. Castermans et al.

Algorithm. We define a computation sequence o of a hypergraph H = (V, S) as
a sequence of hyperedges that contains each hyperedge in S at least once. Each
item s in the sequence o represents the computation of the (not-quite Euclidean)
MST on the vertices of s, such that distances between pairs of vertices that are
part of the current support have weight 0 and weight equal to their Euclidean
distance otherwise. We use Ty to denote the current MST for hyperedge s € S,
the support G is always the union over all T,. As we compute a spanning tree
for each hyperedge, G is a support for H when the algorithm terminates.

Efficiency. Implementing G with adjacency lists, we use O(nk) storage as each
of the k trees has O(n) edges. To compute Ty, we use Lemma 2 below to conclude
that there are O(nk) candidate edges, ensuring that Prim’s MST algorithm
runs in O(nk + nlogn) time. To see that we can determine the weight without
overhead, consider all vertices to be indexed with numbers from 1 to n. When
adding a vertex u to the current tree in Prim’s algorithm, we first process the
neighbors of v in G (having a weight 0) and mark that these have been processed
in an array using the above mentioned vertex index. Only then do we process
all other vertices (having weight equal to the Euclidean distance) that are not
marked and are not in the current tree. The total algorithm thus takes O(|o|(nk+
nlogn)) time and ©(nk) space.

Lemma 2. Let P be a point set and I C P x P. Consider the MST T on P,
based on edge weights 0 for edges in F and the Fuclidean distance otherwise.
Then T is a subset of F' and the Euclidean MST on P.

Properties (k = 2). The main question that arises is how long a computation
sequence o must be such that the result stabilizes, that is, any sequence that
extends o gives a support that has the same total length. We use G, to denote the
support resulting from computation sequence o. Below, we sketch an argument
that for k = 2, we need to only recompute one hyperedge: sequence o = (r, b, r)
or 0 = (b,r,b) is sufficient to obtain a stable result. We can compute both
sequences and use the result with smallest total edge length.

Lemma 3. Let H = (V,{r,b}) be a hypergraph. All computation sequences o’
with |0’ > 4 have a shorter computation sequence o with |o| = 3 with G, = G4

Proof (sketch). We show that the third computation does not add a new edge
with both vertices in 7 N b. Hence, the second and fourth computation receive
the same input and thus yield the same result. O

2.2 Local Search

The algorithm described in Sect.2.1 appears to perform well in practice, as
shown in Sect. 3. However, one may wonder whether other commonly employed
heuristic approaches outperform it in the experiments. We therefore implement
a local-search algorithm, specifically, a hill-climbing heuristic.

Short Plane Supports for Spatial Hypergraphs 59

Algorithm. This approach assumes that in the given hypergraph H = (V,S),
at least one vertex v € V occurs in all hyperedges s € S such that Observation 1
applies; let Vi = (,cg5 # (). We need to initialize our hill climbing approach
with a valid (plane), easy to find albeit possibly suboptimal solution. Following
Observation 1, we obtain this by first calculating an EMST of all vertices in Vj,
and subsequently connecting all vertices v € V4 to the nearest v’ € Vj.

Afterwards, we iteratively execute rounds until no further improvement is
gained. Each round consists of checking for each edge in the support if it can
be removed, and if the hyperedges using it can be reconnected by (one or more)
other edges that have a shorter total length than the removed edge without
causing intersections. This check is nontrivial and done in a brute-force manner,
improved by caching and pruning. At the end of each round, the edge replacement
that reduces the total edge length most is actually executed. More rounds are
evaluated until no single edge replacement reduces the total edge length.

As the initial state is a plane support tree, we can also readily enforce acyclic-
ity, or relax the constraints to allow intersections.

2.3 Integer Linear Program

Theorem 1 implies that several variants of computing the shortest plane support
are NP-hard. Here we briefly sketch how to obtain an integer linear programs
(ILP) for a hypergraph H = (V, S), allowing us to leverage effective ILP solvers.
We introduce variables e, ,, € {0,1}, indicating whether edge uv is selected
for the support. This allows us to represent a graph with fixed vertices. Because
the vertex locations are fixed, we can precompute edge lengths d, , as well as
which pairs of edges intersect. This gives the following basic program
minimize

u,wEV du,v *Cu,v

subject to ey + €y <1 forall u,v,w,z € V if edges uv and wx intersect.

What remains is to ensure that the graph is also a support: we need additional
constraints that imply that each hyperedge in .S induces a connected subgraph.
To this end, we construct a flow tree for each hyperedge s. We pick an arbitrary
sink for the hyperedge, os € s, that may receive flow, and let the remaining
vertices in s generate one unit of flow. To formalize this, we introduce variables
fsuw €4{0,1,...,]s| — 1} for each s € S and u,v € s with u # v. We now need
the following constraints: (a) the incoming flow at oy is exactly |s| — 1; (b) the
outgoing flow at o is zero; (c) except for oy, each vertex in s sends out one unit
of flow more than it receives; (d) flow can be sent only over selected edges.

Yues\foo} fsuo, =[s| =1 forallses
fsoew =0 for all s € S,v € s\ {os}
> ves\fuy (fsuw = fswu) =1forall s € S,u € s\ {0}
Fsuw <euw-(Is| —1) for all s € S,u,v € s with u # v

60 T. Castermans et al.

Variants. The ILP results in the shortest plane support for H. It can easily
be modified to give a shortest (plane or unconstrained) support tree as well
as to penalize or admit a limited number of intersections. The latter requires
additional variables to indicate whether both edges of a crossing pair are used.

3 Experiments

As discussed above, there are various ways of defining and computing good sup-
ports. In this section we discuss several computational experiments that were
performed to gain insight into the trade-offs between the different methods and
properties. In particular, we use two different setups. First, we exclude optimal
but slow algorithms to extensively compare the heuristic algorithms. Second,
we include optimal algorithms to answer questions about the effect of requir-
ing planarity or support trees, and to investigate how well heuristic algorithms
approximate the optimal solution, albeit on smaller data sets.

Algorithms. We shall study four algorithms under various conditions in these
experiments. In particular, we use MSTAPPROXIMATION to refer to the sim-
ple approximation algorithm of computing a minimum spanning tree for each
hyperedge and then taking their union [13]. We refer to our heuristic improve-
ment as MSTITERATION (Sect. 2.1). Finally, we use LOCALSEARCH to indicate
our local search algorithm (Sect.2.2) and OPT to denote an exact algorithm for
computing optimal solutions. The latter two allow four different conditions, by
requiring a plane support, a support tree, both (i.e., a plane support tree) or
neither (unrestricted). We append P, T, PT and U to denote these conditions.

Data Generation. We generate a random hypergraph H = (V,.S) via the
procedure described in the full version [8]. Our method ensures that at least
one vertex is an element of all hyperedges (necessary for LOCALSEARCH, see
Sect. 2.2), and that each hyperedge has at least two vertices. The procedure
generates a hypergraph with n vertices, s hyperedges and a degree distribution
d according to one of the following scheme:

EVEN All degrees occur equally frequently.

MID Degrees are drawn from a normal distribution with a peak on k/2.

LOW Degrees are drawn from a normal distribution with a peak on 1.

HIGH Degrees are drawn from a normal distribution with a peak on k.

3.1 Experiment 1: Comparison of Heuristics

Here we focus on answering the following three questions: (1) how much does
the spanning tree iteration help to reduce the length of the support, compared
to computing the minimum spanning trees in isolation; (2) which heuristic algo-
rithm performs best in terms of support length; (3) which heuristic algorithm
performs best in terms of computation time?

Short Plane Supports for Spatial Hypergraphs 61

Setup. For each combination of n = 20, 40, 60, 80, 100, k = 2, 3, 4, 5, 6, 7
and d = EVEN, MID, LOW, HIGH, we generate 1000 random hypergraphs with n
vertices and k hyperedges according to degree distribution scheme d. For each
hypergraph, we perform six algorithms: MSTAPPROXIMATION and MSTITER-
ATION as well as LOCALSEARCH U/T/P/PT. This experiment was run on one
machine, sequentially in a single thread to also allow for comparison of runtime
performance. The machine was an HP ZBook with an Intel Core i7-6700HQ
CPU, 24 GB RAM and running Windows 8.1.

Results. We first consider question (1) and compare MSTAPPROXIMATION
and MSTITERATION. Since MSTITERATION can only improve upon MSTAP-
PROXIMATION, we express this as a ratio between 0 and 1. In Fig. 4 we show the
results for n = 20,60, 100 (Fig. 10 in the full version [8] provides the chart for all
cases). Interestingly, the median gain remains roughly equal as we increase the
number of vertices, though the variance becomes lower. Increasing the number
of hyperedges gradually increases the relative gain of MSTITERATION. We also
observe a dependency on the degree distribution. In particular, MID and EVEN
systematically benefit more from iteration than Low and HIGH. We explain this
by observing that in the extreme cases MSTAPPROXIMATION is optimal: if all
vertices have degree 1, then the optimal support is simply the union of all (dis-
joint) minimum spanning trees; if all vertices have degree k, then the optimal
support is also simply the minimum spanning tree on the vertices. Difficulties
arise when having many vertices that are part of multiple but not all hyperedges.
This corresponds to the MID and EVEN schemes.

Let us now turn towards question (2), and consider the resulting support
length of the LOCALSEARCH algorithm as well. We omit MSTAPPROXIMATION
from these comparisons, since MSTITERATION always performs at least as well.
In Fig. 5 we show the results for n = 40 and 100 (Fig. 11 in the full version [8] pro-
vides the chart for all cases). As one may expect, the length increases gradually
with more hyperedges, as the support must use more edges to ensure that each
hyperedge induces a connected subgraph. Moreover, we see that LOCALSEARCH
U consistently outperforms MSTITERATION. To be exact, this is the case in

0.50

Edge length ratio

0.25

0.00

20 vertices

60 vertices

100 vertices

2

3

4

5

6

7

Distribution
EVEN
LOW
MID

== HIGH

maximum
a3
median
al

minimum

Number of hyperedges

Fig. 4. Ratio of the support length computed by MSTITERATION as a fraction of
MSTAPPROXIMATION. Lower values indicate a higher gain of the iteration method.

62 T. Castermans et al.

Algorithm MSTTteration LocalSearch U LocalSearch T LocalSearch P == LocalSearch PT

40 vertices, MID 40 vertices, HIGH 100 vertices, MID 100 vertices, HIGH

IS
S
S
3

3000

1ooo¥\ltii¥4l ‘;1‘\‘4’}?

0
2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7

Number of hyperedges

Total edge length

2 3 4 5 6 7

Fig. 5. Support length computed by the algorithms for varying values of n, k& and d.

98.5% of all trials; the average ratio of LOCALSEARCH U to MSTITERATION
(including those trials in which MSTITERATION performs better) is 0.877, that
is, the support length is over 12% shorter on average. The effect of degree dis-
tribution also stands out. In LOW and MID, requiring planarity or a support tree
has a large effect on the support length, whereas this is not the case in EVEN
and HIGH. To explain this, observe that the minimum spanning tree on vertices
that are in many or all hyperedges is planar and likely a part of the computed
solution; in the EVEN and HIGH cases, there are comparatively many such ver-
tices which can then serve as places to connect the other vertices in the support.
In the Low and MID cases, there are only few such vertices and thus the shortest
connections that can be used to connect these to such a “backbone” structure
are likely to intersect other connections. Though the number of vertices has lit-
tle effect on MSTITERATION and LOCALSEARCH U, this does exacerbate the
above problem: more vertices leads to a larger increase in support length when
we enforce planarity or a support tree.

Finally, we briefly consider question (3) and compare the computation times
of the various algorithms (see Fig. 6, or Fig.12 in the full version [8]). We see
that the number of hyperedges impacts the computation only slightly, whereas
the number of vertices has a much stronger effect. MSTITERATION clearly out-
performs the LOCALSEARCH variants, running on average 95.11% faster than
LoCALSEARCH U over all trials (98.73% faster on trials with n = 100). Another
clear pattern is that requiring planarity with LOCALSEARCH increases the run-
ning time significantly (272.64% slower over all trials, 354.06% on trials with
n = 100); the number of steps to arrive at a local minimum is not sufficiently
reduced to compensate for the time spent on checking intersections.

3.2 Experiment 2: Comparison of Optimality

Here we focus on answering two questions: (1) how is the support length affected
by additionally requiring that the support is a tree and/or is planar; (2) how
well do the heuristic algorithms approximate the optimal solution?

Short Plane Supports for Spatial Hypergraphs 63

Algorithm MSTTIteration LocalSearch U LocalSearch T LocalSearch P === LocalSearch PT
40 vertices, MID 60 vertices, MID 80 vertices, MID 100 vertices, MID

20
Z 1
&
8
g
~ 10
o
g
=
5 5
= | \ \ l l \

booH
. } bl
2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7 2 3 4 5 6 7
Number of hyperedges

Fig. 6. Computation time of the various algorithms for varying values of n and k.

Setup. For each combination of n = 10, 15, 20, £ = 2, 3 and d = LOW, MID, we
generate 1000 random hypergraphs with n vertices, k hyperedges according to
degree distribution scheme d. For each hypergraph, we run the LOCALSEARCH
U/T/P/PT and compute an optimal solution OpT U/T/P/PT2. To obtain a
large enough number of trials, these experiments were run on different machines
simultaneously and in concurrent threads. As such, we refrain from analyzing
algorithm speed in this experiment.

Failed Trials. In about 3.4% of the CPLEX runs for n = 20, the compu-
tation would run out of memory and therefore not finish successfully. We ran
additional trials to compensate, eventually obtaining 1000 successful trials. This
likely biases the results for n = 20 towards including only the “easier” situ-
ations. The full version [8] provides more details including statistics on which
cases failed and indicators of the “difficulty” of these cases.

Results. Let us first compare the optimal solutions according to the four dif-
ferent restrictions. In Fig.7 we show the results. For two hyperedges, we see

Algorithm Optimal U Optimal T Optimal P === Optimal PT

2 hyperedges, LOW 3 hyperedges, LOW 2 hyperedges, MID 3 hyperedges, MID

SISURE [FRNER ISR SR A

Total edge length

10 15 20 10 15 20 10 15 20 10 15 20
Number of vertices

Fig. 7. Support length achieved by OPT in the four conditions U/T/P/PT.

2 For n = 10, 15, this is a simple branch and bound algorithm; for n = 20 we use the
ILP solution, solved with IBM ILOG CPLEX 12.6.3.

64 T. Castermans et al.

LocalSearch Unconstrained Tree Plane | Plane Tree

2 hyperedges, LOW 3 hyperedges, LOW 2 hyperedges, MID 3 hyperedges, MID

100

75
50 | | |
25
0 T T y T T T y
10 15 20

10 15 20 10 15 20
Number of vertices

% of trials with optimal solution

10 15 20

Fig. 8. Percentage of runs of LOCALSEARCH that achieve the optimal solution. Note
that LOCALSEARCH T always achieves optimal results.

that there is little to no effect of requiring support trees, but a small worst-case
effect for requiring plane supports for the LOW case—the median increases only
slightly. For three hyperedges, we see that the effects become slightly larger.
Most noticeable is that enforcing support trees has now a slight effect, even for
only a few vertices. In terms of plane supports, we see a similar pattern as before,
that is, that of an increase particularly in the LOW case, but also some in the
MID case. Note that the effects for n = 20 are potentially underestimated.

Let us now turn towards how well LOCALSEARCH performs with respect to
the optimal solution. Our results indicate that in a majority of the cases, our
heuristic actually achieves optimal results (see Fig.8). For n = 10, 15 we see
a clear decrease of this percentage for plane supports and trees; we attribute
the apparent increase at n = 20 to the failed trials. To further see how well
LOCALSEARCH performs if it fails to achieve optimal results, we look at the ratio
between the support length it achieves and the optimal support length. In all
cases, we observe a ratio of less than 1.61. The 90-, 95-, and 99-percentile of this
ratio was worst for LOCALSEARCH PT, being 1.05, 1.09, and 1.19, respectively.
Again, we have to keep in mind that the data for n = 20 likely exclude some more
difficult cases and thus the trend in the increasing ratio might extend further for
a larger number of vertices.

4 Conclusion

Motivated by the NP-hardness of computing shortest plane supports, we intro-
duced and evaluated two heuristic algorithms for the problem. Our experiments
showed that the heuristic LOCALSEARCH often achieves the optimal solution, and
otherwise computes a support that is less than 20% longer than the optimal solu-
tion in 99% of the cases. Moreover, our experiments showed that LOCALSEARCH
performs better than MSTITERATION, which in turn is a k-approximation for
k hyperedges. We can also guarantee that LOCALSEARCH (without restric-
tions) is a k-approximation by initializing it using either MSTAPPROXIMATION
or MSTITERATION, though it is not clear whether this change will generally

Short Plane Supports for Spatial Hypergraphs 65

improve the result of LOCALSEARCH. There is a trade-off between speed and sup-
port length, where MSTITERATION is better for the former and LOCALSEARCH
for the latter. We also observed that the increase in support length caused by
additional requirements, depends both on the number of sets and the number
of set memberships per element, but this behavior seems predictable and not to
depend on the number of elements.

Future Work. From the theoretical side, several questions remain open. For
example, can we efficiently decide whether a plane support tree exists? We cur-
rently know how to answer this only for two hyperedges (using Observation 1
and [5]). Furthermore, how many iterations do we need for MSTITERATION
with more than two hyperedges, to guarantee that the computation stabilizes?

Our experiments indicate that our local search algorithm does not always per-
form optimally, especially when requiring plane supports. It is, however, based on
simple hill climbing. Can we employ better search techniques such as simulated
annealing to efficiently find better solutions?

Finally, we chose to generate random hypergraphs for our experiments, as
to not depend on particular properties of (geospatial) configurations that may
be inherent to some real-world data sets. While this reduces the explanatory
power with respect to real-world data sets, it provides us with more insight into
the structural problem, unbiased by unknown or hidden structures of real-world
data. We leave it to future work to further dive into real-world data sets, to see
if similar trends and patterns emerge or more difficult structures arise and to
evaluate the impact of the different heuristics on readability.

Acknowledgments. This work started at Dagstuhl seminar 17332 “Scalable Set
Visualizations”. The authors would like to thank Nathalie Henry Riche for providing
the data for Fig.2. TC was supported by the Netherlands Organisation for Scientific
Research (NWO, 314.99.117). MvG received funding from the European Union’s Sev-
enth Framework Programme (FP7/2007-2013) under ERC grant agreement n°® 319209
(project NEXUS 1492) and the German Research Foundation (DFG) within project
BO02 of SFB/Transregio 161. WM was partially supported by the Netherlands eScience
Centre (NLeSC, 027.015.G02).

References

1. Akitaya, H.A., Loffler, M., Téth, C.D.: Multi-colored spanning graphs. In: Hu,
Y., Nollenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 81-93. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-50106-2_7

2. Alper, B., Henry Riche, N., Ramos, G., Czerwinski, M.: Design study of LineSets,
a novel set visualization technique. IEEE Trans. Vis. Comput. Graph. 17(12),
2259-2267 (2011). https://doi.org/10.1109/TVCG.2011.186

3. Alsallakh, B., Micallef, L., Aigner, W., Hauser, H., Miksch, S., Rodgers, P.: The
state of the art of set visualization. Comput. Graph. Forum 35(1), 234-260 (2016).
https://doi.org/10.1111/cgf.12722

https://doi.org/10.1007/978-3-319-50106-2_7
https://doi.org/10.1109/TVCG.2011.186
https://doi.org/10.1111/cgf.12722

66

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

T. Castermans et al.

. Bereg, S., Fleszar, K., Kindermann, P., Pupyrev, S., Spoerhase, J., Wolff, A.: Col-
ored non-crossing euclidean steiner forest. In: Elbassioni, K., Makino, K. (eds.)
ISAAC 2015. LNCS, vol. 9472, pp. 429-441. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48971-0_37

. Bereg, S., Jiang, M., Yang, B., Zhu, B.: On the red/blue spanning tree prob-
lem. Theor. Comput. Sci. 412(23), 2459-2467 (2011). https://doi.org/10.1016/].
tcs.2010.10.038

. Brandes, U., Cornelsen, S., Pampel, B., Sallaberry, A.: Path-based supports for
hypergraphs. J. Discrete Algorithms 14, 248-261 (2012). https://doi.org/10.1016/
j.jda.2011.12.009

. Buchin, K., van Kreveld, M., Meijer, H., Speckmann, B., Verbeek, K.: On pla-
nar supports for hypergraphs. J. Graph Algorithms Appl. 15(4), 533-549 (2011).
https://doi.org/10.7155/jgaa.00237

. Castermans, T., van Garderen, M., Meulemans, W., Néllenburg, M., Yuan, X.:
Short plane supports for spatial hypergraphs. Computing Research Repository,
arXiv:1808.09729 (2018)

. Collins, C., Penn, G., Carpendale, S.: Bubble sets: revealing set relations with

isocontours over existing visualizations. IEEE Trans. Vis. Comput. Graph. 15(6),

1009-1016 (2009). https://doi.org/10.1109/TVCG.2009.122

Dinkla, K., van Kreveld, M., Speckmann, B., Westenberg, M.: Kelp diagrams: point

set membership visualization. Comput. Graph. Forum 31(3ptl), 875-884 (2012).

https://doi.org/10.1111/j.1467-8659.2012.03080.x

Efrat, A., Hu, Y., Kobourov, S.G., Pupyrev, S.: MapSets: visualizing embedded

and clustered graphs. J. Graph Algorithms Appl. 19(2), 571-593 (2015). https://

doi.org/10.7155/jgaa.00364

van Goethem, A., Kostitsyna, 1., van Kreveld, M., Meulemans, W., Sondag, M.,

Waulms, J.: The painter’s problem: covering a grid with colored connected polygons.

In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS, vol. 10692, pp. 492-505. Springer,

Cham (2018). https://doi.org/10.1007/978-3-319-73915-1_38

Hurtado, F., et al.: Colored spanning graphs for set visualization. Comput. Geom.:

Theory Appl. 68, 262-276 (2018). https://doi.org/10.1016/j.comgeo.2017.06.006

Johnson, D.S., Pollak, H.O.: Hypergraph planarity and the complexity of drawing

Venn diagrams. J. Graph Theory 11(3), 309-325 (1987). https://doi.org/10.1002/

jgt.3190110306

Klemz, B., Mchedlidze, T., Nollenburg, M.: Minimum tree supports for hyper-

graphs and low-concurrency euler diagrams. In: Ravi, R., Gortz, L.L. (eds.) SWAT

2014. LNCS, vol. 8503, pp. 265-276. Springer, Cham (2014). https://doi.org/10.

1007/978-3-319-08404-6_23

Korach, E., Stern, M.: The clustering matroid and the optimal clustering tree.

Math. Program. 98(1-3), 385—414 (2003). https://doi.org/10.1007/s10107-003-

0410-x

Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329-343

(1982). https://doi.org/10.1137/0211025

Meulemans, W., Henry Riche, N., Speckmann, B., Alper, B., Dwyer, T.: Kelp-

Fusion: a hybrid set visualization technique. IEEE Trans. Vis. Comput. Graph.

19(11), 1846-1858 (2013). https://doi.org/10.1109/TVCG.2013.76

Purchase, H.: Metrics for graph drawing aesthetics. J. Vis. Lang. Comput. 13(5),

501-516 (2002). https://doi.org/10.1006/jvlc.2002.0232

Tufte, E.: The Visual Display of Quantitative Information. Graphics Press,

Cheshire (2001)

https://doi.org/10.1007/978-3-662-48971-0_37
https://doi.org/10.1007/978-3-662-48971-0_37
https://doi.org/10.1016/j.tcs.2010.10.038
https://doi.org/10.1016/j.tcs.2010.10.038
https://doi.org/10.1016/j.jda.2011.12.009
https://doi.org/10.1016/j.jda.2011.12.009
https://doi.org/10.7155/jgaa.00237
http://arxiv.org/abs/1808.09729
https://doi.org/10.1109/TVCG.2009.122
https://doi.org/10.1111/j.1467-8659.2012.03080.x
https://doi.org/10.7155/jgaa.00364
https://doi.org/10.7155/jgaa.00364
https://doi.org/10.1007/978-3-319-73915-1_38
https://doi.org/10.1016/j.comgeo.2017.06.006
https://doi.org/10.1002/jgt.3190110306
https://doi.org/10.1002/jgt.3190110306
https://doi.org/10.1007/978-3-319-08404-6_23
https://doi.org/10.1007/978-3-319-08404-6_23
https://doi.org/10.1007/s10107-003-0410-x
https://doi.org/10.1007/s10107-003-0410-x
https://doi.org/10.1137/0211025
https://doi.org/10.1109/TVCG.2013.76
https://doi.org/10.1006/jvlc.2002.0232

®

Check for
updates

Turning Cliques into Paths to Achieve
Planarity

Patrizio Angelini', Peter Eades?, Seok-Hee Hong?, Karsten Klein3,
Stephen Kobourov?, Giuseppe Liotta®, Alfredo Navarra?®,
and Alessandra Tappini®®)

! University of Tiibingen, Tiibingen, Germany
angelini@informatik.uni-tuebingen.de
2 The University of Sydney, Sydney, Australia
{peter.eades,seokhee.hong}@usyd.edu.au
3 University of Konstanz, Konstanz, Germany
karsten.kleinQuni-konstanz.de
4 University of Arizona, Tucson, USA
kobourov@cs.arizona.edu
5 University of Perugia, Perugia, Italy
{giuseppe.liotta,alfredo.navarra}@unipg.it,
alessandra.tappini@studenti.unipg.it

Abstract. Motivated by hybrid graph representations, we introduce
and study the following beyond-planarity problem, which we call h-
CLIQUE2PATH PLANARITY: Given a graph G, whose vertices are par-
titioned into subsets of size at most h, each inducing a clique, remove
edges from each clique so that the subgraph induced by each subset is
a path, in such a way that the resulting subgraph of G is planar. We
study this problem when G is a simple topological graph, and establish
its complexity in relation to k-planarity. We prove that h-CLIQUE2PATH
PLANARITY is NP-complete even when h = 4 and G is a simple 3-plane
graph, while it can be solved in linear time, for any h, when G is 1-plane.

1 Hybrid Representations

A common problem in the visual analysis of real-world networks is that dense
subnetworks create occlusions and hairball-like structures in node-link diagrams
generated by standard layout algorithms, e.g., force-directed methods. On the
other hand, different representations, such as adjacency matrices, are well suited

This work began at the Bertinoro Workshop on Graph Drawing 2018. Research was
partially supported by DFG grant Ka812/17-1 and MIUR-DAAD Joint Mobility Pro-
gram n.57397196 (PA), by Young Scholar Fund/AFF - Univ. Konstanz (KK), by NSF
grants CCF-1740858 - CCF-1712119 (SK), by project “Algoritmi e sistemi di analisi
visuale di reti complesse e di grandi dimensioni” - Ric. di Base 2018, Dip. Ingegneria -
Univ. Perugia (GL, AT), by project GEO-SAFE n.H2020-691161 (AN).

© Springer Nature Switzerland AG 2018

T. Biedl and A. Kerren (Eds.): GD 2018, LNCS 11282, pp. 67-74, 2018.
https://doi.org/10.1007/978-3-030-04414-5_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04414-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-04414-5_5

68 P. Angelini et al.

for dense graphs but make neighbor identification and path-tracing more diffi-
cult [7,12]. Hybrid graph representations combine different representation meta-
phors in order to exploit their strengths and overcome their drawbacks.

The first example of hybrid representation was the NodeTriz model [§],
which combines node-link diagrams with adjacency-matrix representations of
the denser subgraphs [4,5,8,14]. Another example of hybrid representations
are intersection-link representations [1]. In this model vertices are geometric
objects and edges are either intersections between objects (intersection edges),
or crossing-free Jordan arcs attaching at their boundary (link edges). Different
types of objects determine different intersection-link representations.

In [1], cliqgue-planar drawings are defined as intersection-link representations
in which the objects are isothetic rectangles, and the partition into intersection-
and link-edges is given in the input, so that the graph induced by the intersection-
edges is composed of a set of vertex-disjoint cliques. The corresponding recogni-
tion problem is called CLIQUE-PLANARITY, and it has been proved NP-complete
in general and polynomial-time solvable in restricted cases.

We study CLIQUE-PLANARITY when all cliques have bounded size. As proved
in [1], the CLIQUE-PLANARITY problem can be reformulated in the terminology
of beyond-planarity [6,10], as follows. Given a graph G = (V, E) and a partition
of its vertex set V into subsets V1, ..., V,, such that the subgraph of G induced by
each subset V; is a clique, the goal is to compute a planar subgraph G’ = (V| E’)
of G by replacing the clique induced by V;, for each i = 1,...,m, with a path
spanning the vertices of V;. We call h-CLIQUE2PATH PLANARITY (for short,
h-C2PP) the version of this problem in which each clique has size at most h.

We remark that the version of h-C2PP in which the input graph G is a
geometric graph, i.e., it is drawn in the plane with straight-line edges, has been
recently studied by Kindermann et al. [9] in a different context. The input of
their problem is a set of colored points in the plane, and the goal is to decide
whether there exist straight-line spanning trees, one for each same-colored point
subset, that do not cross each other. Since edges are straight-line, their drawings
are determined by the positions of the points, and hence each same-colored point
subset can in fact be seen as a straight-line drawing of a clique, from which edges
have to be removed so that each clique becomes a tree and the drawing becomes
planar. They proved NP-completeness for the case in which the spanning tree
must be a path, even when there are at most 4 vertices with the same color.
This implies that 4-C2PP for geometric graphs in NP-complete. On the other
hand, they provided a linear-time algorithm when there exist at most 3 vertices
with the same color, which then extends to 3-C2PP for geometric graphs.

In this paper, we study the version of h-C2PP in which the input graph G is
a simple topological graph, that is, it is embedded in the plane so that each edge
is a Jordan arc connecting its end-vertices; by simple we mean that a Jordan arc
does not pass through any vertex, and does not intersect any arc more than once
(either with a proper crossing or sharing a common end-vertex); finally, no three
arcs pass through the same point. Our main goal is to study the complexity of

Turning Cliques into Paths to Achieve Planarity 69

this problem in relation to the well-studied class of k-planar graphs, i.e., those
that admit drawings in which each edge has at most k crossings [1,3,6,13].

We observe that the NP-completeness of 4-C2PP for geometric graphs
already implies the NP-completeness of 4-C2PP for simple topological graphs;
also, though not explicitly mentioned in [9], it is possible to show that the
instances produced by that reduction are 4-plane (see [2]). We strengthen this
result by proving in Sect. 2 that 4-C2PP is NP-complete even for simple topo-
logical 3-plane graphs. On the positive side, we prove in Sect. 3 that the h-C2PP
problem for simple topological 1-plane graphs can be solved in linear time for
any value of h. We finally remark that the 2-SAT formulation used in [9] to solve
3-C2PP for geometric graphs can be easily extended to solve 3-C2PP for any
simple topological graph.

For space reasons, some proofs have been omitted or sketched, and can be
found in [2]; the corresponding statements are marked with [*].

2 NP-Completeness for Simple Topological 3-Plane
Graphs

In this section we prove that the k-C2PP problem remains NP-complete for
k = 4 even when the input is a simple topological 3-plane graph.

Since the planarity of a simple topological graph can be checked in linear
time, the h-C2PP problem for simple topological k-plane graphs belongs to NP
for all values of h and k. In the following, we prove the NP-hardness by means
of a reduction from the PLANAR POSITIVE 1-IN-3-SAT problem. In this version
of the SATISFIABILITY problem, which is known to be NP-complete [11], each
variable appears only with its positive literal, each clause has at most three
variables, the graph obtained by connecting each variable with all the clauses
it belongs to is planar, and the goal is to find a truth assignment in such a
way that, for each clause, exactly one of its three variables is set to True. For
each 3-clique we use in the reduction, there is a base edge, which is crossing-
free in the constructed topological graph, while the other two edges always have
crossings. We call left (right) the edge that follows (precedes) the base edge in the
clockwise order of the edges along the 3-clique. Also, if an edge e of a clique does
not belong to the path replacing the clique, we say that e is removed, and that
all the crossings involving e in G are resolved. For each variable z, let n, be the
number of clauses containing . We construct a simple topological graph gadget
G, for z, called variable gadget; see the left dotted box in Fig. 1(a). This gadget
contains 2n, 3-cliques t{,...,t5, , forming a ring, so that the left (right) edge
of t7 only crosses the left (right) edge of tf_; and of t7,,, foreach i =1,...,2n,.
Also, gadget G, contains n, additional 3-cliques, called 7, ..., 77 , so that the
right edge of 77 crosses the left edge of 5, _; and the right edge of ¢3;, while the
left edge of 7 crosses the left edge of t3; and the right edge of ¢35, ;. Then, for
each clause ¢, we construct a topological graph gadget G, called clause gadget,
which is composed of a planar drawing of a 4-clique, together with three 3-cliques
whose left and right edges cross the edges of the 4-clique as in the right dotted

70 P. Angelini et al.

box in Fig. 1(a). In particular, observe that the right (left) edge of each 3-clique
crosses exactly one (two) edges of the 4-clique. Every 3-clique in G, corresponds
to one of the three variables of c. Let x be one of such variables; assuming that
c is the j-th clause that contains x according to the order of the clauses in the
given formula, we connect the 3-clique corresponding to x in the clause gadget
G. to the 3-clique 77 of the variable gadget G, of x by a chain of 3-cliques of
odd length, as in Fig. 1(a).

(b) (©)

Fig. 1. (a) The variable gadget G, for a variable z is represented in the left dotted
box. The clause gadget for a clause c is represented in the right dotted box. The chain
connecting G to G, is represented with lighter colors. The removed edges are dashed
red. (b) All variables are False. (c) At least two variables are True. (Color figure online)

By construction, the resulting simple topological graph G contains cliques
of size at most 4, namely one per clause, and hence is a valid instance of
4-C2PP. Also, by collapsing each variable and clause gadget into a vertex, and
each chain connecting them into an edge, the resulting graph G’ preserves the
planarity of the PLANAR POSITIVE 1-IN-3-SAT instance. This implies that the
only crossings for each edge of G are with other edges in the gadget it belongs
to and, possibly, with the edges of the 3-cliques of a chain. Hence, G is 3-plane.
Namely, each base edge is crossing-free; each internal edge of a 4-clique has one
crossing; each external edge of a 4-clique has two crossings, and the same is true
for the left and right edges of each 3-clique in a chain; finally, the left and right
edges of each 3-clique in either a variable or a clause gadget has three crossings.

In the following we prove the equivalence between the original instance of
PLANAR POSITIVE 1-IN-3-SAT and the constructed instance G of 4-C2PP. For
this, we first give a lemma stating that variable gadgets correctly represent the
behavior of a variable; indeed they can assume one out of two possible states in
any solution for 4-C2PP. The proof of the next lemma can be found in [2].

Lemma 1 [*]. Let G, be the variable gadget for a variable x in G. Then, in any
solution for 4-C2PP, either the left edge of each 3-clique 7}, with j = 1,... ,ng,
is removed, or the right edge of each 3-clique T is removed.

Given Lemma 1, we can associate the truth value of a variable x with the fact
that either the left or the right edge of each 3-clique 77 in the variable gadget
G, of G is removed. We use this association to prove the following theorem.

Turning Cliques into Paths to Achieve Planarity 71

Theorem 1 [*]. The 4-C2PP problem is NP-complete, even for 3-plane graphs.

Proof (sketch). Given an instance of PLANAR POSITIVE 1-IN-3-SAT, we con-
struct an instance G of 4-C2PP in linear time as described above. We prove
one direction of the equivalence between the two problems. The other direction
follows a similar reasoning. Suppose that there exists a solution for 4-C2PP,
i.e., a set of edges of G whose removal resolves all crossings. By Lemma 1, for
each variable x either the left or the right edge of each 3-clique 77" in gadget G,
is removed. We assign True (False) to z if the right (left) edge is removed.
We first claim that for each clause ¢ that contains variable x, the right (left)
edge of the 3-clique t.(z) of the clause gadget G corresponding to x is removed
if and only if the right (left) edge of each 3-clique 77 is removed. Consider the
chain that connects t.(z) with a 3-clique T of G,. For any two consecutive
3-cliques along the chain the left edge of one 3-clique and the right edge of the
other 3-clique must be removed. Since the chain has odd length, the truth value
of G is transferred to the 3-clique ¢.(z) of G, and thus the claim follows.
Consider now a clause ¢ with variables z, y, and z. Let t.(z), t.(y), and
t.(z) be the 3-cliques of the clause gadget G, of ¢ corresponding to z, y, and
z, respectively. Let v be the central vertex of the 4-clique of G., and let v, vy,
v, be the vertices of this 4-clique lying inside t.(z), t.(y), and t.(z) (see Fig.1).
Assume that v,, vy, and v, appear in this clockwise order around v. We now
show that, for exactly one of t.(x), t.(y), and t.(z) the right edge is removed,
which implies that exactly one of x, y, and z is True and hence the instance of
PLANAR POSITIVE 1-IN-3-SAT is positive. Assume that for each of t.(z), t.(y),
and t.(z) the left edge is removed (i.e., all the three variables are set to False),
as in Fig. 1(b). The crossings between the right edges of the three 3-cliques and
the three edges of triangle (v, vy, v,) are not resolved. All edges of this triangle
should be removed, which is not possible since the remaining edges of the 4-
clique do not form a path. Assume now that for at least two of the 3-cliques, say
t.(x) and t.(y), the right edge is removed (i.e., z and y are set to True), as in
Fig. 1(c). Since each edge of triangle (v, v,,v) is crossed by the left edge of one
of t.(x) and t.(y), by construction, these crossings are not resolved. Hence, all
edges of (v, vy, v) should be removed, which is not possible since the remaining
edges of the 4-clique do not form a path of length 4. Finally, assume that for
exactly one of the 3-cliques, say t.(z), the right edge is removed (i.e., x is the
only one set to True), as in Fig. 1(a). By removing edges (v,v;), (v, vy), and
(vy,vs), all crossings are resolved; the remaining edges of the 4-clique form a
path of length 4, as desired. O

3 h-CLIQUE2PATH PLANARITY and 1-Planarity

In this section we show that, when the given simple topological graph is 1-plane,
problem h-C2PP can be solved in linear time in the size of the input, for any
h. We consider all possible simple topological 1-plane cliques and show that the
problem can be solved using only local tests, each requiring constant time. Note
that h < 6, since Kg is the largest 1-planar complete graph [10].

72 P. Angelini et al.

Simple topological 1-plane graphs containing cliques with at most four ver-
tices that cross each other can be constructed, but it is easy to enumerate all
these graphs (up to symmetry); see Fig. 2. Note that such graphs involve at most
two cliques and that if K4 has a crossing, combining it with any other clique
would violate 1-planarity; see Fig.2(a) and (b). The next lemma accounts for
cliques with five or six vertices.

() (d) (e) () (8)

Fig. 2. All 1-plane graphs involving one or more cliques of type K3 and Kj.

(a) (b)

Lemma 2. There exists no 1-plane simple topological graph that contains two
cliques, one of which with at least five vertices, whose edges cross each other.

Proof. Consider a simple 1-plane graph G that contains two disjoint cliques K
and H, with five and three vertices, respectively. Let K’ be the simple plane
topological graph obtained from K by replacing each crossing with a dummy
vertex. By 1-planarity, every face of K’ is a triangle and contains at most one
dummy vertex. Suppose, for a contradiction, that there exists a crossing between
an edge of K and an edge of H in GG. Then there would exist at least a vertex v
of H inside a face f of K’ and at least one outside f. Since H is a triangle, there
must have been two edges that connect vertices inside f to vertices outside f.
If f contains one dummy vertex, then two of its edges are not crossed by edges
of H, as otherwise G would not be 1-plane. Hence, both the edges that connect
vertices inside f to vertices outside f cross the other edge of f, a contradiction.
If f contains no dummy vertices, then each edge of f admits one crossing. Let u
be the vertex of f that is incident to the two edges crossed by edges of H. Since
u has degree 4 in K, it is not possible to draw the third edge of H so that it
crosses only one edge of K, which completes the proof. a

Combining the previous discussion with Lemma 2, we conclude that, for each
subgraph of the input graph G that consists either of a combination of at most
two cliques of size at most 4, as in Fig. 2, or of a single clique not crossing any
other clique, the crossings involving this subgraph (possibly with other edges not
belonging to cliques) can only be resolved by removing its edges, which can be
checked in constant time. In the next theorem, n denotes the number of vertices.

Theorem 2. h-C2PP is O(n)-time solvable for simple topological 1-plane
graphs.

Turning Cliques into Paths to Achieve Planarity 73

4 Open Problems

We studied the h-CLIQUE2PATH PLANARITY problem for simple topological k-
plane graphs; we proved that this problem is NP-complete for o = 4 and k = 3,
while it is solvable in linear time for every value of h, when k& = 1. The natural
open question is: what is the complexity for simple topological 2-plane graphs?

Kindermann et al. [9] recently proved that problem 4-C2PP is NP-complete
for geometric 4-plane graphs. It would be interesting to study this geometric
version of the problem for 2-plane and 3-plane graphs.

Finally, note that the version of the h-C2PP problem when the input is an
abstract graph (which is equivalent to CLIQUE PLANARITY [1]) is NP-complete
when h € O(n). What if & is bounded by a constant or a sublinear function? We
remark that, for h = 3, this version of the problem is equivalent to CLUSTERED
PLANARITY, when restricted to instances in which the graph induced by each
cluster consists of three isolated vertices.

References

1. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Rutter, I.:
Intersection-link representations of graphs. J. Graph Algorithms Appl. 21(4), 731—
755 (2017). https://doi.org/10.7155/jgaa.00437

2. Angelini, P., Eades, P., Hong, S.-H., Klein, K., Kobourov, S., Liotta, G.,
Navarra, A., Tappini, A.: Turning cliques into paths to achieve planarity. CoRR
1808.08925v2 (2018). http://arxiv.org/abs/1808.08925v2

3. Bekos, M.A., Kaufmann, M., Raftopoulou, C.N.: On optimal 2- and 3-
planargraphs. In: 33rd International Symposium on Computational Geometry,
SoCG2017, 4-7 July 2017, Brisbane, Australia, pp. 16:1-16:16 (2017). https://
doi.org/10.4230/LIPIcs.SoCG.2017.16

4. Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M.: Computing NodeTrix
representations of clustered graphs. J. Graph Algorithms Appl. 22(2), 139-176
(2018). https://doi.org/10.7155/jgaa.00461

5. Di Giacomo, E., Liotta, G., Patrignani, M., Tappini, A.: NodeTrix planarity testing
with small clusters. In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS, vol. 10692, pp.
479-491. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73915-1_37

6. Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond
planarity. CoRR abs/1804.07257 (2018). http://arxiv.org/abs/1804.07257

7. Ghoniem, M., Fekete, J., Castagliola, P.: On the readability of graphs using node-
link and matrix-based representations: a controlled experiment and statistical anal-
ysis. Inf. Vis. 4(2), 114-135 (2005). https://doi.org/10.1057 /palgrave.ivs.9500092

8. Henry, N., Fekete, J., McGuffin, M.J.: NodeTrix: a hybrid visualization of social
networks. IEEE Trans. Vis. Comput. Graph. 13(6), 1302-1309 (2007). https://doi.
org/10.1109/TVCG.2007.70582

9. Kindermann, P., Klemz, B., Rutter, 1., Schnider, P., Schulz, A.: The partition
spanning forest problem. In: Mulzer, W. (ed.) Proceedings of the 34th European
Workshop on Computational Geometry (EuroCG 2018), Berlin (2018, to appear)

10. Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-
planarity. Comput. Sci. Rev. 25, 49-67 (2017). https://doi.org/10.1016/j.cosrev.
2017.06.002

https://doi.org/10.7155/jgaa.00437
http://arxiv.org/abs/1808.08925v2
https://doi.org/10.4230/LIPIcs.SoCG.2017.16
https://doi.org/10.4230/LIPIcs.SoCG.2017.16
https://doi.org/10.7155/jgaa.00461
https://doi.org/10.1007/978-3-319-73915-1_37
http://arxiv.org/abs/1804.07257
https://doi.org/10.1057/palgrave.ivs.9500092
https://doi.org/10.1109/TVCG.2007.70582
https://doi.org/10.1109/TVCG.2007.70582
https://doi.org/10.1016/j.cosrev.2017.06.002
https://doi.org/10.1016/j.cosrev.2017.06.002

74

11.

12.

13.

14.

P. Angelini et al.

Mulzer, W., Rote, G.: Minimum-weight triangulation is NP-hard. J. ACM 55(2),
11:1-11:29 (2008). https://doi.org/10.1145/1346330.1346336

Okoe, M., Jianu, R., Kobourov, S.: Revisited experimental comparison of node-link
and matrix representations. In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS, vol.
10692, pp. 287-302. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
73915-1_23

Pach, J., Téth, G.: Graphs drawn with few crossings per edge. Combinatorica
17(3), 427439 (1997). https://doi.org/10.1007/BF01215922

Yang, X., Shi, L., Daianu, M., Tong, H., Liu, Q., Thompson, P.: Blockwise human
brain network visual comparison using NodeTrix representation. IEEE Trans.
Vis. Comput. Graph. 23(1), 181-190 (2017). https://doi.org/10.1109/TVCG.2016.
2598472

https://doi.org/10.1145/1346330.1346336
https://doi.org/10.1007/978-3-319-73915-1_23
https://doi.org/10.1007/978-3-319-73915-1_23
https://doi.org/10.1007/BF01215922
https://doi.org/10.1109/TVCG.2016.2598472
https://doi.org/10.1109/TVCG.2016.2598472

Upward Drawings

®

Check for
updates

Universal Slope Sets for Upward Planar
Drawings

Michael A. Bekos!, Emilio Di Giacomo?®™), Walter Didimo?, Giuseppe LiottaZ2,
and Fabrizio Montecchiani?

! Institut fiir Informatik, Universitit Tiibingen, Tiibingen, Germany
bekos@informatik.uni-tuebingen.de
2 Dipartimento di Ingegneria, Universita degli Studi di Perugia, Perugia, Italy
{emilio.digiacomo,walter.didimo,giuseppe.liotta,
fabrizio.montecchiani}@unipg.it

Abstract. We prove that every set S of A slopes containing the hori-
zontal slope is universal for 1-bend upward planar drawings of bitonic
st-graphs with maximum vertex degree A, i.e., every such digraph admits
a 1-bend upward planar drawing whose edge segments use only slopes
in §. This result is worst-case optimal in terms of the number of slopes,
and, for a suitable choice of S, it gives rise to drawings with worst-case
optimal angular resolution. In addition, we prove that every such set
S can be used to construct 2-bend upward planar drawings of n-vertex
planar st-graphs with at most 4n — 9 bends in total. Our main tool is a
constructive technique that runs in linear time.

1 Introduction

Let G be a graph with maximum vertex degree A. The k-bend planar slope
number of G is the minimum number of slopes for the edge segments needed to
construct a k-bend planar drawing of G, i.e., a planar drawing where each edge is
a polyline with at most & > 0 bends. Since no more than two edge segments inci-
dent to the same vertex can use the same slope, [A/2] is a trivial lower bound
for the k-bend planar slope number of G, irrespectively of k. Besides its theo-
retical interest, this problem forms a natural extension of two well-established
graph drawing models: The orthogonal [6,16,18,29] and the octilinear drawing
models [3,4,7,26], which both have several applications, such as in VLSI and
floor-planning [25,30], and in metro-maps and map-schematization [21,27,28].
Orthogonal drawings use only 2 slopes for the edge segments (0 and %), while
octilinear drawings use no more than 4 slopes (0, , Z, and 2T); consequently,
they are limited to graphs with A <4 and A < 8, respectively.

These two drawing models have been generalized to graphs with arbitrary
maximum vertex degree A by Keszegh et al. [23], who proved that every planar
graph admits a 2-bend planar drawing with [A/2] equispaced slopes. As a wit-
ness of the tight connection between the two problems, the result by Keszegh
et al. was built upon an older result for orthogonal drawings of degree-4 planar
© Springer Nature Switzerland AG 2018

T. Biedl and A. Kerren (Eds.): GD 2018, LNCS 11282, pp. 77-91, 2018.
https://doi.org/10.1007/978-3-030-04414-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04414-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-04414-5_6

78 M. A. Bekos et al.

graphs by Biedl and Kant [6]. In the same paper, Keszegh et al. also stud-
ied the 1-bend planar slope number and showed an upper bound of 2A and a
lower bound of %(A — 1) for this parameter. The upper bound has been recently
improved, initially by Knauer and Walczak [24] to %(A —1) and subsequently by
Angelini et al. [1] to A—1. Angelini et al. actually proved a stronger result: Given
any set S of A — 1 slopes, every planar graph with maximum vertex degree A
admits a 1-bend planar drawing whose edge segments use only slopes in S. Any
such slope set is hence called universal for 1-bend planar drawings. This result
simultaneously establishes the best-known upper bound on the 1-bend planar
slope number of planar graphs and the best-known lower bound on the angular
resolution of 1-bend planar drawings, i.e., on the minimum angle between any
two edge segments incident to the same vertex. Indeed, if the slopes in S are
equispaced, the resulting drawings have angular resolution at least <™.

In this paper we study slope sets that are universal for k-bend upward
planar drawings of directed graphs (or digraphs for short). Recall that in an
upward drawing of a digraph G, every edge (u,v) is drawn as a y-monotone
non-decreasing curve from u to v. Also, G admits an upward planar drawing if
and only if it is a subgraph of a planar st-graph [13,22]. As such drawings are
common for representing planar digraphs, they have been extensively studied
in the literature (see, e.g., [5,9,15,18,20]). A preliminary result for this setting
is due to Di Giacomo et al. [14], who proved that every series-parallel digraph
with maximum vertex degree A admits a 1-bend upward planar drawing that
uses at most A slopes, and this bound on the number of slopes is worst-case
optimal. Notably, their construction gives rise to drawings with optimal angular
resolution 7% (but it uses a predefined set of slopes). Upward drawings with one
bend per edge and few slopes have also been studied for posets by Czyzowicz
et al. [11].

S\
(a) (b)

Fig.1. (a) A 1-bend upward planar drawing of a bitonic st-graph, and (b) a
2-bend upward planar drawing of a planar st-graph, both defined on a slope set
S= {_%707 %7 g7ﬂ—}'

Contribution. We extend the study of universal sets of slopes to upward pla-
nar drawings, and present the first constructive technique that works for all
planar st-graphs. This technique exploits a linear ordering of the vertices of a

Universal Slope Sets for Upward Planar Drawings 79

planar digraph introduced by Gronemann [19], called bitonic st-ordering (see
also Sect. 2). We show that any set S of A slopes containing the horizontal slope
is universal for 1-bend upward planar drawings of degree-A planar digraphs hav-
ing a bitonic st-ordering (Sect.3). We remark that the size of S is worst-case
optimal [14] and, if the slopes of S are chosen to be equispaced, the angular
resolution of the resulting drawing is at least 7 (also optimal); see Fig. 1a for an
illustration. We then extend our construction to all planar st-graphs by using
two bends on a restricted number of edges (Sect.4). More precisely, we show
that, given a set S of A slopes containing the horizontal slope, every n-vertex
upward planar digraph with maximum vertex degree A has a 2-bend upward pla-
nar drawing that uses only slopes in & and with at most 4n — 9 bends in total;
see Fig. 1b for an illustration.
For space reasons some proofs are omitted and can be found in [2].

2 Preliminaries

We assume familiarity with common notation and definitions about graphs,
drawings, and planarity (see, e.g., [12]). An upward planar drawing of a directed

QWM o
(a) ...<o(vh—1)<o(vn)>0(Vhi1)>. (b) (o(vi)>0c(vit1)) and (o(vj)<o(vjt1))

Fig. 2. (a) A bitonic sequence. (b) A forbidden configuration.

simple graph (or digraph for short) G is a planar drawing such that each edge of G
is drawn as a curve monotonically non-decreasing in the y-direction. An upward
drawing is strict if its edge curves are monotonically increasing. A digraph is
upward planar if it admits an upward planar drawing. Note that if a digraph
admits an upward drawing then it also admits a strict upward drawing. A digraph
is upward planar if and only if it is a subgraph of a planar st-graph [13]. Let
G = (V, E) be an n-vertex planar st-graph, i.e., G is a plane acyclic digraph with
a single source s and a single sink ¢, such that s and ¢ belong to the boundary of
the outer face and the edge (s,t) € E [13]. (Other works do not explicitly require
the edge (s,t) to be part of G, see, e.g., [19].) An st-ordering of G is a numbering
o:V — {1,2,...,n} such that for each edge (u,v) € E, it holds o(u) < o(v)
(which implies o(s) = 1 and o(t) = n). Every planar st-graph has an st-ordering,
which can be computed in O(n) time (see, e.g., [10]). If u and v are two adjacent
vertices of G such that o(u) < o(v), we say that v is a successor of u, and u is a
predecessor of v. Denote by S(u) = {v1,va,...,v,} the sequence of successors of
v ordered according to the clockwise circular order of the edges incident to w in

80 M. A. Bekos et al.

the planar embedding of G. The sequence S(u) is bitonic if there exists an integer
1 < h < gsuch that o(vi) < -+ < o(vp_1) < o(vp) > o(Vhg1) > - > o(vg);
see Fig. 2a for an illustration. Notice that when h = 1 or h = ¢, S(u) is actually
a monotonic decreasing or increasing sequence. A bitonic st-ordering of G is
an st-ordering such that, for every vertex w € V, S(u) is bitonic [19]. A pla-
nar st-graph G is a bitonic st-graph if it admits a bitonic st-ordering. Deciding
whether G is bitonic can be done in linear time both in the fixed [19] and in
the variable [8] embedding settings. If G is not bitonic, every st-ordering o of G
contains a forbidden configuration defined as follows. A sequence of successors
S(u) of a vertex u forms a forbidden configuration if there exist two indices i
and j, with 4 < j, such that o(v;) > 0(vi41) and o(v;) < o(vj41), i.e. there is a
path from v;11 to v; and a path from v; to v;11; see Fig. 2b.

Let G = (V, E) be an n-vertex maximal plane graph with vertices u, v, and
w on the boundary of the outer face. A canonical ordering [17] of G is a linear
ordering x = {v; = u,va = v,...,v, = w} of V, such that for every 3 <i < n:

C1: The subgraph G; induced by {v1,va,...,v;} is 2-connected and internally
triangulated, while the boundary of its outer face C; is a cycle containing
(v1,v2);

C2: If i + 1 < n, v;41 belongs to C; 41 and its neighbors in G; form a subpath
of the path obtained by removing (v1,vs) from C;.

Computing x takes O(n) time [17]. Also, x is upward if for every edge (u,v) of
a digraph G u precedes v in .

The slope of a line £ is the angle « that a horizontal line needs to be rotated
counter-clockwise in order to make it overlap with £. If @ = 0 we say that the
slope of £ is horizontal. The slope of a segment is the slope of the line containing
it. Let S = {aq,...,an} be a set of h slopes such that «; < ;1. The slope set
S is equispaced if a1 —a; = 7, for i =1,...,h — 1. Consider a k-bend planar
drawing I' of a graph G, i.e., a planar drawing in which every edge is mapped
to a polyline containing at most k£ 4+ 1 segments. For a vertex v in I" each slope
a € S defines two different rays that emanate from v and have slope a. If «
is horizontal these rays are called left horizontal ray and right horizontal ray.
Otherwise, one of them is the top and the other one is the bottom ray of v. We
say that a ray r, of a vertex v is free if there is no edge attached to v through
7y in I'. We also say that 7, is outer if it is free and the first face encountered
when moving from v along r, is the outer face of I'. The slope number of a
k-bend drawing I is the number of distinct slopes used for the edge segments
of I'. The k-bend upward planar slope number of an upward planar digraph G is
the minimum slope number over all k-bend upward planar drawings of G.

3 1-Bend Upward Planar Drawings

Let G = (V,E) be an n-vertex planar st-graph with a bitonic st-ordering
o = {v1,v2,...,0,}; see, e.g., Fig.3a. We begin by describing an augmenta-
tion technique to “transform” o into an upward canonical ordering of a suitable

Universal Slope Sets for Upward Planar Drawings 81

supergraph G of G. We start from a result by Gronemann [19], whose properties
are summarized in the following lemma; see, e.g., Fig. 3b.

Lemma 1 ([19]). Let G = (V, E) be an n-vertex planar st-graph that admits
a bitonic st-ordering o = {v1,va,...,v,}. There exists a planar st-graph G' =
(V',E") with an st-ordering x = {vL,VR,v1,V2,...,0n} such that: (i) V' =
VU{vr,vr}; (i) E C E' and (vg,vg) € E'; (i) vy, and vg are on the boundary
of the outer face of G'; (iv) Every vertex of G with less than two predecessors in
o has exactly two predecessors in x. Also, G’ and x are computed in O(n) time.

We call G' a canonical augmentation of G. Observe that G’ always contains
the edges (vp,v1) and (vg,v1) because of Lemma (1). We also insert the edge
(vL,vn), which is required according to our definition of st-graph; this addition
is always possible because vy, and v,, are both on the boundary of the outer face.
The next lemma shows that any planar st-graph obtained by triangulating G’
admits an upward canonical ordering; see, e.g., Fig. 3c.

Fig. 3. (a) A bitonic st-graph G with ¢ = {v1,v2,...,vs}. (b) A canonical augmen-
tation G’ of G with x = {vr,vRr,v1,v2,...,vs}. (c) A planar st-graph G obtained by
triangulating G’. x is an upward canonical ordering of G.

Lemma 2. Let G' be a canonical augmentation of an n-vertex bitonic st-graph
G. Every planar st-graph G obtained by triangulating G’ has the following prop-
erties: (a) it has no parallel edges; (b) x = {vp,vR,v1,v2,...,0,} is an upward
canonical ordering.

Proof. Concerning Property (a), suppose for a contradiction that G has two
parallel edges e; and e; connecting v with v. Let C be the 2-cycle formed by e;
and ez and let Ve be the set of vertices distinct from w and v that are inside
C in the embedding of G. V¢ is not empty, as otherwise C would be a non-
triangular face of G. Let w be the vertex with the lowest number in x among
those in V. Since G is planar (in particular e; and ez are not crossed) and has
a single source, it contains a directed path from u to every vertex in V. Hence,
it has an edge from u to w. Also, by assumption, there is no vertex z in V¢

82 M. A. Bekos et al.

such that x(z) < x(w), which implies that u is the only predecessor of w in
X, a contradiction to Lemma 1(iv). Concerning Property (b), if x is a canonical
ordering of G , then x is actually an upward canonical ordering because it is also
an st-ordering. To see that x is a canonical ordering, observe first that vr, vr
and v, are on the boundary of the outer face of G by construction. Denote by
G the subgraph of G induced by {vr,vR,v1,...,v;} and let C be the boundary
of its outer face. We first prove by induction on 4 (for i = 1,2,...,n) that GZ
is 2-connected. In the base case i = 1, él is a 3-cycle and therefore it is 2-
connected. In the case ¢ > 1, G;_1 is 2-connected by induction and v; has at
least two predecessors in éi,l by Lemma 1(iv), thus él is 2-connected. We now
prove that each éi, fori =1,2,...,n, is internally triangulated, which concludes
the proof of condition C1 of canonical ordering. Suppose, for a contradiction,
that there exists an inner face f that is not a triangle. Since G is triangulated,
there exists a vertex v;, with j > 4, that is embedded inside f in G;. Since
X is an st-ordering, there is no directed path from v; to any vertex of f. On
the other hand, either v; = v, or there is a directed path from v; to v,. Both
cases contradict the fact that v, belongs to the boundary of the outer face of
G. We finally show that v; belongs to C;, for i = 1,2,...,n. Since we already
proved that G is triangulated, this is enough to prove CQ By the planarity of
Gl, there is a face f in GZ 1 such that all the neighbors of i in GZ 1 belong to
the boundary of f. We claim that f is the outer face of Gl. If it was an inner
face, then v; would be embedded inside f in G; and, by the same argument used
above, v, would not belong to the boundary of the outer face of G. o

We now show that any set of A slopes S that contains the horizontal slope
is universal for 1-bend upward planar drawings of bitonic st-graphs. The algo-
rithm is inspired by a technique of Angelini et al. [1]. We will use important
additional tools with respect to [1], such as the construction of a triangulated
canonical augmentation, extra slopes to draw the edges inserted by the aug-
mentation procedure, and different geometric invariants. Let G be an n-vertex
bitonic st-graph with maximum vertex degree A; see Fig. 3a. The algorithm first
computes a triangulated canonical augmentation G of G see Figs. 3b and c. We
call dummy edges all edges that are in G but not in G and real edges the edges
in G that are also in G. By Lemma 2, G admits an upward canonical ordering
x = {vL, VR, v1,v2,...,0,}, where y is an st-ordering such that each vertex dis-
tinct from vy, and vg has at least two predecessors. Let S = {p1,...,pa} be any
set of A slopes, which we call real slopes. Let p* be the smallest angle between
two slopes in § and let A* be the maximum number of dummy edges incident
to a vertex of G. For each slope p; (1 < i < A), we add A* dummy slopes
{6%,...,8%.} such that 51 =pi+7J- A*+1’ for j =1,2,..., A*. Hence, there are
A* dummy slopes between any two consecutive real slopes. We will use the real
slopes for the real edges and the dummy slopes for the dummy ones.

Let G be the subgraph of G induced by {vr,vR,v1,v9,...,v;}. The algorithm
constructs the drawing by adding the vertices according to x. More precisely, it
computes a drawing I of the digraph G, obtained from G; by removing the

Universal Slope Sets for Upward Planar Drawings 83

dummy edges (vL,vR) and (vi,vg), which exist by construction, and (vg,wvs)
if it exists. Let C’ be the boundary of the outer face of Gl, and let P be the
path obtained by removing (vy,vg) from C;. For a vertex v of P;, we denote
by d,(v,1) (resp d4(v,4)) the number of real (resp. dummy) edges incident to v
that are not in G; and by p;(v,1) (resp. p;(v,)) the j-th outer real top ray in I
encountered in clockwise (resp. counterclockwise) order around v starting from
the left (resp. right) horizontal ray. For dummy top rays, we define analogously
N

d;(v,1) and 0, (v, 7). I; satisfies the following invariants:

\ | / > dd(v, L)
a > dg(v
\\ \\ : // // \@(U*Z) (/ d(L L>
RN Y
K pr(vi) Y ¢
B 7, B 7,
v, oR v o
(a) I3 (b) 14 15
ty ty
\ \
\ \
\ \
Y \
° \ ° ° \ °
v ¢ W v . @
U U
(c) (d)

Fig. 4. (a)—(b) Illustration for invariants I3-1I5; real rays are dashed, dummy rays are
dotted. (c)—(d) Illustration for Lemma4.

I1 ZAQ is a 1-bend upward planar drawing whose real edges use only slopes in S
I2 Every edge of P; contains a horizontal segment.

I3 Every vertex v of P; has at least d,.(v,4) outer real top rays; see Fig. 4a.
I4 Every vertex v of P; has at least d4(v,i) outer dummy top rays between
N

61(v,4) and py(v,i) (vesp. 61(v,i) and pi(v,4)), including 6;(v,i) (resp.
81(v,1)); see Fig. 4b.

I5 Let ¢ be any horizontal line and let p and p’ be any two intersection points
between ¢ and the polyline representing P; in [5;; walking along ¢ from left to

right, p and p’ are encountered in the same order as when walking along P
from vy, to vg; see Fig. 4b.

The last vertex v, is added to r n—1 in a slightly different way and the result-
ing drawing will satisfy I1. The next two lemmas state important properties of

84 M. A. Bekos et al.

any 1-bend upward planar drawing satisfying I1-I5. Similar lemmas are proven
in [1, Lemmas 2 and 3], but for drawings that satisfy different invariants.

Lemma 3. Let fl be a drawing of CA?Z_ that satisfies Invariants I1-I5. Let (u,v)
be any edge of ﬁi such that u is encountered before v along ﬁi when going from
vy, to vgr, and let X be a positive number. There exists a drawing I} of G
that satisfies Invariants I1-I5 and such that: (i) the horizontal distance between
u and v is increased by \; (i) the horizontal distance between any two other
consecutive vertices along ﬁl is the same as in ﬁ

The next lemma can be proven by suitably applying Lemma 3; see Figs. 4c
and d.

Lemma 4. Let f be a drawing of é_ that satisfies Invariants I1-15. Let u be
a vertex of Pz, and let t,, be any outer top ray of u that crosses an edge of G
n F There exists a drawing I ofG that satisfies Invariants I11-15 in which

'L
t,, does not cross any edge ofG

We now describe our drawing algorithm starting with the computation of I,
We aim at drawing both v; and ve horizontally aligned between vy and vg. Note
that vy is the source of G, and, by the definition of a canonical augmentation, vy
is adjacent to both vy and vy, while vy is adjacent to v, and to at least one of
vy, and vr. We remove the dummy edges (vi,vg) and (v, vg), and the dummy
edge (vg,v2) if it exists. The resulting graph is either the path (vy, v1, v, vg) or
the path (v, v9,v1,vR), which we draw along a horizontal segment.

Lemma 5. Drawing fg satisfies Invariants I1-15.

Assume now that we have constructed drawing L1 of Gy satisfying 11-15
(3 <i<mn). Let {us,...,uq} be the neighbors of the next vertex v; along P;_;.

¥
Let t; be either a(ul, i—1),if (u1,v;) is real, or 61 (uy,i—1), if (uy, vi) is dummy.

Symmetrically, let ¢, be either //)-;(’U,q,i — 1), if (uq,v;) is real, or (51 (ug,i — 1), if
(ug,v;) is dummy. Let t; (for 1 < j < ¢) be any outer real (resp dummy) top
ray emanating from u; if (u;, v;) is real (resp. dummy). By I3 all such top rays
exist and by Lemma 4 we can assume that none of them crosses IA“i,l. Let ¢ be a
horizontal line above the topmost point of fi_l. Let p; be the intersection point
of t; and £. We can assume that, for j =1,2,...,¢ — 1, p; is to the left of p; ;.
If this is not the case, we can increase the distance between u; and ;41 so to
guarantee that p; and p; 41 appear in the desired order along ¢; this can be done
by applying Lemma 3 with respect to each edge (u;,u;41) for a suitable choice of
A; see Figs. ba and b for an illustration. We will place v; above £ using g—2 bottom
rays ba, b3, . .., bg—1 of v; for the segments of the edges (u;,v;) (j = 2,3,...,9—1)
incident to v; such that: (i) b; (1 < j < q) is real (resp. dummy) if (u;,v;) is
real (resp. dummy); (ii) b; precedes b;41 in the counterclockwise order around
v; starting from by. This choice is possible for the real rays because v; has A —1
real bottom rays and it has at least one incident real edge not in G; (otherwise

Universal Slope Sets for Upward Planar Drawings 85

Uy, &
7 NS
¢ PPspaPL ¢ PLB2PaRs BRI RINE s S
L1/ / =~ _la s =~ 2 ’ I ~ o
o t2g, T PR T ¢« 00 by "o U3
Uy 4 v Uy Ul ¢ \ Uy Uy ¢ \ Ug
Uy ® U . Ug .
us us us
(a) (b) (c)
U, & Ui e
AN S
¢ P’ Y 2y .
,' O i
o / N \ = ~e<
U ﬁ \b Ug uy 4 Ug
2 U3 2 us
(d) (e)

Fig. 5. Addition of vertex v;.

it would be a sink of G, which is not possible because i < n). Concerning
the dummy rays, we have at most A* dummy edges incident to v; and A*
dummy bottom rays between any two consecutive real rays. Consider the ray t;
and choose a point p to the right of ¢; and above ¢ such that placing v; on p
guarantees that min;—;.¢—2{z(pj) —2(p;)} > x(pg) —x(p1), where p| = p; and
Py, P3, - -, Py are the intersection points of the rays by, bs,...,b,—1 with the
line ¢ (see Fig. 5¢). Observe that for a sufficiently large y-coordinate, point p can
always be found. We now apply Lemma 3 to each of the edges (u1,us2), (uz,us),
..., (ug—2,uq—1), in this order, choosing A > 0 so that each p; is translated to p;.
(for j =2,3,...,¢—1). We finally apply again the same procedure to (uq—_1, uq)
so that the intersection point between ¢, and the horizontal line ¢y passing
through v; is to the right of v; (see Fig. 5d). After this translation procedure, we
can draw the edge (u1,v;) (resp. (uq,v;)) with a bend at the intersection point
between t; (resp. t,) and £ and therefore using the slope of ¢; (resp. t4) and the
horizontal slope (see Fig. 5e). The edges (uj,v;) (j =2,3,...,¢ — 1) are drawn
with a bend point at p; = p;- and therefore using the slopes of ¢; and b;.

Lemma 6. Drawing ﬁ-, fori=3,4,....,n— 1, satisfies Invariants 11-I5.

Proof. The proof is by induction on i > 3. fi_l satisfies Invariants I1-1I5 by
Lemma5 when ¢ = 3, and by induction when ¢ > 3.

Proof of I1. By construction, each (u;,v;) (j =1,2,...,¢) is drawn as a chain
of at most two segments that use real and dummy slopes. In particular, if (u;, v;)
is real, then it uses real slopes, i.e., slopes in S. By the choice of ¢, the bend
point of (u;,v;) has y-coordinate strictly greater than that of u; and smaller
than or equal to that of v;. Since each (uj,v;) is oriented from u; to v; (as x
is an upward canonical ordering), the drawing is upward. Concerning planarity,
we first observe that I i—1 is planar and it remains planar each time we apply
Lemma 3. Also, by Lemma4 each (uj,v;) (j =1,2,...,¢) does not intersect Iy

86 M. A. Bekos et al.

(except at u;). Further, the order of the bend points along ¢ guarantees that the
edges incident to v; do not cross each other.

Proof of 12. The only edges of 13@ that are not in]31-,1 are (u1,v;) and (uq,v;).
For both these edges the segment incident to v; is horizontal by construction.

Proof of I3. For each vertex of ﬁl distinct from w;, ug and v;, I3 holds by
induction. Invariant I3 also holds for v; because d,(v;,i) < A — 1 (as otherwise
v; would be a source of G, which is not possible because ¢ > 1) and all the real
top rays of v;, which are A — 1, are outer. Consider now vertex u; (a symmetric
argument applies to ug). If (uq, vl) is real, then d,.(uy,4) = d(u1,i—1)—1; in this
case i1 = p (ul, i—1) and therefore all the other d,.(u1,i—1)—1 outer real top rays
ofuyin I remaln outerin T}. If (u1,v;) is dummy, then d,.(uy,4) = dy(u1,i—1);

in this case t; = 51 (u1,7 — 1) and therefore all the d,(u1,7 — 1) outer real top
rays of uy in I';_q remain outer in I7.

Proof of I4. For each vertex of 131 distinct from w;, uq and v;, I4 holds by
induction. I4 also holds for v; because dg(v;,7) < A* and there are A* dummy
Y m
top rays between 01 (v;, 1) and py (v;,4) including &, (v;,4) (all the top rays of v; are
')
outer). Anadogously7 there are A* outer dummy top rays between d;(v;,4) and

p1(v;, 1) including (51 (vi,1). Consider now u; (a symmetric argument applies to
uq). If (u1,v;) is real, then dg(uq,1) = dg(uq,i— 1) in this case t; = py(uy,i—1)

and there are A* outer dummy top rays between 61 (u1,17) and p; (ul,) including
61 (u1,i) (namely, all those between ¢, = p1 (u1,i—1) and pg(ul,z—). If (ug,v;)

is dummy, then dg(uy,4) = dg(ug,i — 1) — 1; in this case t; = (51(u1,z —1) and
therefore all the other dd(ul, — 1) — 1 outer dummy top rays of uy, which by

induction were between 51 (u1,7—1) and pq (ul, i — 1), remain outer in fz

Proof of I5. Notice that the various applications of Lemma3 to f’i,l pre-
serve I5. Let p and p’ be any two intersection points between a horizontal line
¢ and the polyline representing P; in [, with p to the left of p’ along £. If p
and p’ belong to P;_1, I5 holds by induction. If both p and p’ belong to the
path (u1,v;,uq), I5 holds by construction. If p belongs to Pi_; and p’ belongs
to (u1,v;,uq), then p belongs to the subpath of]/51-_1 that goes from vy, to wuy
because the subpath from u, to vg is completely to the right of ¢4, hence I5
holds also in this case. If p belongs to (uq,v;,u,) and p’ belongs to 131'_1, the
proof is symmetric. a

Lemma 7. G has a 1-bend upward planar drawing I" using only slopes in S.

Proof. By Lemma6, drawing I, satisfies Invariant I1-15. We explain how
to add the last vertex v, to obtain a drawing that satisfies Invariant I1. Let
{u1,...,uq} be the predecessors of v,, on P,,_;. Notice that, in this case u; = vy,
and ug = vg. Vertex v, is added to the drawing similarly to all the other vertices

Universal Slope Sets for Upward Planar Drawings 87

added in the previous steps of the algorithm. The only difference is that the
number of real incoming edges incident to v, in I3,_; can be up to A. If this is
the case, since the real bottom rays are A—1, they are not enough to draw all the
real edges incident to v,. Let j be the smallest index such that (u;,v,) is a real
edge. We ignore all the dummy edges (up,v,), for h=1,2,...,j — 1, and apply
the construction used in the previous steps considering only {u;, %11,...,u,} as
predecessors of v,, (notice that such predecessors are at least two because v,, has
at least two incident real edges). By ignoring these dummy edges, the segment
of the real edge (u;,vy) incident to v, will be drawn using the left horizontal
slope. Denote by I n the resulting drawing. As in the proof of Lemma 6, we can
prove that I1 holds for I, and therefore I, is a 1-bend upward planar drawing
whose real edges use only slopes in §. The drawing I" of G is obtained from I,
by removing all its dummy edges and the two dummy vertices vy, and vg. a

Lemma 8. Drawing I' can be computed in O(n) time.

Lemmas7 and 8 are summarized by Theorem 1. Corollary 1 is a consequence of
Theorem 1 and of a result in [14].

Theorem 1. Let S be any set of A > 2 slopes including the horizontal slope
and let G be an n-vertex bitonic planar st-graph with mazimum vertex degree A.
Graph G has a 1-bend upward planar drawing I' using only slopes in S, which
can be computed in O(n) time.

Corollary 1. Every bitonic st-graph with maximum verter degree A > 2 has
1-bend upward planar slope number at most A, which is worst-case optimal.

If S is equispaced, Theorem 1 implies a lower bound of 7 on the angular resolu-
tion of the computed drawing, which is worst-case optimal [14]. Also, Theorem 1
can be extended to planar st-graphs with A < 3, as any such digraph can be
made bitonic by only rerouting the edge (s, t).

Theorem 2. FEvery planar st-graph with maximum vertex degree 3 has 1-bend
upward planar slope number at most 3.

We conclude with the observation that an upward drawing constructed by
the algorithm of Theorem 1 can be transformed into a strict upward drawing that
uses A + 1 slopes rather than A. It suffices to replace every horizontal segment
oriented from its leftmost (rightmost) endpoint to its rightmost (leftmost) one
with a segment having slope € (—¢), for a sufficiently small value of ¢ > 0.

4 2-bend Upward Planar Drawings

We now extend the result of Theorem1 to non-bitonic planar st-graphs. By
adapting a technique of Keszegh et al. [23], one can construct 2-bend upward
planar drawings of planar st-graphs using at most A slopes. We improve upon
this result in two ways: (i) The technique in [23] may lead to drawings with 5n—11

88 M. A. Bekos et al.

bends in total, while we prove that 4n—9 bends suffice; (ii) It uses a fixed set of A
slopes (and it is not immediately clear whether it can work with any set of slopes),
while we show that any set of A slopes with the horizontal one is universal.

Let G be an n-vertex non-bitonic planar st-graph. All forbidden configura-
tions of G can be removed in linear time by subdividing at most n — 3 edges of
G [19]. Let G} be the resulting bitonic st-graph, called a bitonic subdivision of
G. Let (u,d,v) be a directed path of G, obtained by subdividing the edge (u,v)
of G with the dummy vertex d. We call (u, d) the lower stub, and (d,v) the upper
stub of (u,v). We can prove the existence of an augmentation technique similar
to that of Lemma 1, but with an additional property on the upper stubs.

Lemma 9. Let G = (V, E) be an n-vertex planar st-graph that is not bitonic.
Let Gy = (Vp, Ep) be an N-vertex bitonic subdivision of G, with a bitonic st-
ordering o = {v1,va,...,un}. There exists a planar st-graph G' = (V', E") with
an st-ordering x = {vr,vRr,v1,02,..., 0N} such that: (i) V' = Vi, U{vp,vr};
(i) Ey C E' and (vp,vg) € E'; (iii) vy and vr are on the boundary of the
outer face of G'; (iv) Every vertex of Gy, with less than two predecessors in o
has exactly two predecessors in x. (v) There is no vertex in G’ such that its
leftmost or its rightmost incoming edge is an upper stub. Also, G' and x are
computed in O(n) time.

Theorem 3. Let S be any set of A > 2 slopes including the horizontal slope
and let G be an n-vertex planar st-graph with mazximum vertex degree A. Graph
G has a 2-bend upward planar drawing I' using only slopes in S, which has at
most 4n — 9 bends in total and which can be computed in O(n) time.

Proof. We compute a triangulated canonical augmentation Gof G by (1) apply-
ing Lemma9 and (2) triangulating the resulting digraph. By Lemma2, G has
an upward canonical ordering x. The algorithm of Theorem 1 to G would lead
to a 3-bend drawing of G (by interpreting every subdivision vertex as a bend).
We explain how to modify it to construct a drawing I' of G with at most 2
bends per edge and 4n — 9 bends in total. Let v; the next vertex to be added
according to x and let {u1,us,...,uq} its neighbors in P;_;. Suppose that u;
is a dummy vertex and that (u;,v;) is an upper stub. To save one bend along
the edge subdivided by w;, we draw (u;,v;) without bends. By Lemma 9(v), we
have that 1 < j < ¢. The ray ¢; used to draw the segment of (u;,v;) incident to
u; can be any outer real top ray; we choose the ray with same slope as the real
bottom ray b; used to draw the segment of (u;, v;) incident to v;. This is possible
because all real top rays of u; are outer (since (u;,v;) is the only real outgoing
edge of u;). Hence, edge (u;,v;) has no bends. The drawing I" of G is obtained
from I’ by removing dummy edges and replacing dummy vertices (except vy,
and vg, which are removed) with bends. Since the upper stubs of subdivided
edges has 0 bends, each edge of I' has at most 2 bends. Let m; and msy be the
number of edges drawn with 1 and 2 bends, respectively; we have ms < n — 3
and m; =m —mg < 3n—6— (n—3) = 2n — 3. Thus the total number of bends
is at most 2n — 3+ 2(n — 3) = 4n — 9. Finally, G can be computed in O(n) time
(Lemma9) and the modified drawing algorithm still runs in linear time. O

Universal Slope Sets for Upward Planar Drawings 89

A planar st-graph with a source/sink of degree A requires at least A — 1
slopes in any upward planar drawing; thus the gap with Theorem 3 is one unit.
Similarly to Theorem 1, Theorem 3 implies a lower bound of 7% on the angular
resolution of I'; an upper bound of "5 can be proven with the same digraph
used for the lower bound on the slope number. Finally, Theorem 4 extends the
result of Theorem 3 to every upward planar graph using an additional slope.

Theorem 4. Let S be any set of A+1 slopes including the horizontal slope and
let G be an n-vertex upward planar graph with mazximum vertex degree A > 2.
Graph G has a 2-bend upward planar drawing using only slopes in S.

5 Open Problems

(i) Can we draw every planar st-graph with at most one bend per edge (or less
than 4n — 9 in total) and A slopes? (ii) What is the 2-bend upward planar slope
number of planar st-graphs? Is A a tight bound? (iii) What is the straight-line
upward planar slope number of upward planar digraphs?

Acknowledgments. Research partially supported by project: “Algoritmi e sistemi
di analisi visuale di reti complesse e di grandi dimensioni - Ricerca di Base 2018,
Dipartimento di Ingegneria, Universita degli Studi di Perugia”.

References

1. Angelini, P., Bekos, M.A.| Liotta, G., Montecchiani, F.: A universal slope set for
1-bend planar drawings. In: Aronov, B., Katz, M.J. (eds.) SoCG. LIPIcs, vol. 77,
pp- 9:1-9:16. Schloss Dagstuhl (2017). https://doi.org/10.4230/LIPIcs.SoCG.2017.
9, https://arxiv.org/abs/1703.04283

2. Bekos, M.A., Di Giacomo, E., Didimo, W., Liotta, G., Montecchiani, F.: Universal
slope sets for upward planar drawings. ArXiv e-prints abs/1803.09949v2 (2018).
https://arxiv.org/abs/1803.09949v2

3. Bekos, M.A., Gronemann, M., Kaufmann, M., Krug, R.: Planar octilinear drawings
with one bend per edge. J. Graph Algorithms Appl. 19(2), 657—680 (2015). https://
doi.org/10.7155/jgaa.00369

4. Bekos, M.A., Kaufmann, M., Krug, R.: On the total number of bends for planar
octilinear drawings. In: Kranakis, E., Navarro, G., Chévez, E. (eds.) LATIN 2016.
LNCS, vol. 9644, pp. 152-163. Springer, Heidelberg (2016). https://doi.org/10.
1007/978-3-662-49529-2_12

5. Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward pla-
narity testing of single-source digraphs. STAM J. Comput. 27(1), 132-169 (1998).
https://doi.org/10.1137/S0097539794279626

6. Biedl, T.C., Kant, G.: A better heuristic for orthogonal graph drawings. Comput.
Geom. 9(3), 159-180 (1998). https://doi.org/10.1016/S0925-7721(97),00026-6

7. Bodlaender, H.L., Tel, G.: A note on rectilinearity and angular resolution. J. Graph
Algorithms Appl. 8, 89-94 (2004). https://doi.org/10.7155/jgaa.00083

8. Chaplick, S., et al.: Planar L-drawings of directed graphs. In: Frati, F., Ma, K.-L.
(eds.) GD 2017. LNCS, vol. 10692, pp. 465-478. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-73915-1_36

https://doi.org/10.4230/LIPIcs.SoCG.2017.9
https://doi.org/10.4230/LIPIcs.SoCG.2017.9
https://arxiv.org/abs/1703.04283
http://arxiv.org/abs/abs/1803.09949v2
https://arxiv.org/abs/1803.09949v2
https://doi.org/10.7155/jgaa.00369
https://doi.org/10.7155/jgaa.00369
https://doi.org/10.1007/978-3-662-49529-2_12
https://doi.org/10.1007/978-3-662-49529-2_12
https://doi.org/10.1137/S0097539794279626
https://doi.org/10.1016/S0925-7721(97),00026-6
https://doi.org/10.7155/jgaa.00083
https://doi.org/10.1007/978-3-319-73915-1_36
https://doi.org/10.1007/978-3-319-73915-1_36

90

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

M. A. Bekos et al.

. Chimani, M., Zeranski, R.: Upward planarity testing in practice: SAT formulations

and comparative study. ACM J. Exp. Algorithmics 20, 1.2:1.1-1.2:1.27 (2015).
https://doi.org/10.1145/2699875

Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

Czyzowicz, J., Pelc, A.) Rival, L., Urrutia, J.: Crooked diagrams with few slopes.
Order 7(2), 133-143 (1990). https://doi.org/10.1007/BF00383762

Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice-Hall, New Jersey (1999)

Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic
digraphs. Theor. Comput. Sci. 61, 175-198 (1988). https://doi.org/10.1016,/0304-
3975(88),90123-5

Di Giacomo, E., Liotta, G., Montecchiani, F.: 1-bend upward planar drawings of
SP-digraphs. In: Hu, Y., Néllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp.
123-130. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50106-2_10
Didimo, W.: Upward graph drawing. In: Kao, M.Y. (ed.) Encyclopedia of Algo-
rithms. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-642-27848-
8.653-1

Duncan, C., Goodrich, M.T.: Planar orthogonal and polyline drawing algorithms.
In: Tamassia, R. (ed.) Handbook on Graph Drawing and Visualization. Chapman
and Hall/CRC (2013)

de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10(1), 41-51 (1990). https://doi.org/10.1007/BF02122694

Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear
planarity testing. SIAM J. Comput. 31(2), 601-625 (2001). https://doi.org/10.
1137/S0097539794277123

Gronemann, M.: Bitonic st-orderings for upward planar graphs. In: Hu, Y.,
Nollenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 222-235. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-50106-2-18

Healy, P., Nikolov, N.S.: Hierarchical drawing algorithms. In: Tamassia, R. (ed.)
Handbook on Graph Drawing and Visualization. Chapman and Hall/CRC (2013)
Hong, S., Merrick, D., do Nascimento, H.A.D.: Automatic visualisation of metro
maps. J. Vis. Lang. Comput. 17(3), 203—224 (2006). https://doi.org/10.1016/j.
jv1c.2005.09.001

Kelly, D.: Fundamentals of planar ordered sets. Discrete Math. 63(2-3), 197-216
(1987). https://doi.org/10.1016/0012-365X(87),90008-2

Keszegh, B., Pach, J., Palvolgyi, D.: Drawing planar graphs of bounded degree
with few slopes. SIAM J. Discrete Math. 27(2), 1171-1183 (2013). https://doi.
org/10.1137/100815001

Knauer, K., Walczak, B.: Graph drawings with one bend and few slopes. In:
Kranakis, E., Navarro, G., Chévez, E. (eds.) LATIN 2016. LNCS, vol. 9644, pp.
549-561. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49529-
241

Leiserson, C.E.: Area-efficient graph layouts (for VLSI). In: FOCS, pp. 270-281.
IEEE (1980). https://doi.org/10.1109/SFCS.1980.13

Nollenburg, M.: Automated drawings of metro maps. Technical report 2005-25,
Fakultét fir Informatik, Universitat Karlsruhe (2005)

Noéllenburg, M., Wolff, A.: Drawing and labeling high-quality metro maps by mixed-
integer programming. IEEE Trans. Vis. Comput. Graph. 17(5), 626-641 (2011).
https://doi.org/10.1109/TVCG.2010.81

https://doi.org/10.1145/2699875
https://doi.org/10.1007/BF00383762
https://doi.org/10.1016/0304-3975(88),90123-5
https://doi.org/10.1016/0304-3975(88),90123-5
https://doi.org/10.1007/978-3-319-50106-2_10
https://doi.org/10.1007/978-3-642-27848-8_653-1
https://doi.org/10.1007/978-3-642-27848-8_653-1
https://doi.org/10.1007/BF02122694
https://doi.org/10.1137/S0097539794277123
https://doi.org/10.1137/S0097539794277123
https://doi.org/10.1007/978-3-319-50106-2_18
https://doi.org/10.1016/j.jvlc.2005.09.001
https://doi.org/10.1016/j.jvlc.2005.09.001
https://doi.org/10.1016/0012-365X(87),90008-2
https://doi.org/10.1137/100815001
https://doi.org/10.1137/100815001
https://doi.org/10.1007/978-3-662-49529-2_41
https://doi.org/10.1007/978-3-662-49529-2_41
https://doi.org/10.1109/SFCS.1980.13
https://doi.org/10.1109/TVCG.2010.81

28.

29.

30.

Universal Slope Sets for Upward Planar Drawings 91

Stott, J.M., Rodgers, P., Martinez-Ovando, J.C., Walker, S.G.: Automatic metro
map layout using multicriteria optimization. IEEE Trans. Vis. Comput. Graph.
17(1), 101-114 (2011). https://doi.org/10.1109/TVCG.2010.24

Tamassia, R.: On embedding a graph in the grid with the minimum number of
bends. SIAM J. Comput. 16(3), 421-444 (1987). https://doi.org/10.1137/0216030
Valiant, L.G.: Universality considerations in VLSI circuits. IEEE Trans. Comput.
30(2), 135-140 (1981). https://doi.org/10.1109/TC.1981.6312176

https://doi.org/10.1109/TVCG.2010.24
https://doi.org/10.1137/0216030
https://doi.org/10.1109/TC.1981.6312176

q

Check for
updates

Upward Planar Morphs

Giordano Da Lozzo™ | Giuseppe Di Battista, Fabrizio Frati,
Maurizio Patrignani, and Vincenzo Roselli

Roma Tre University, Rome, Italy
{dalozzo,gdb,frati,patrigna,roselli}@dia.uniroma3.it

Abstract. We prove that, given two topologically-equivalent upward
planar straight-line drawings of an n-vertex directed graph G, there
always exists a morph between them such that all the intermediate draw-
ings of the morph are upward planar and straight-line. Such a morph
consists of O(1) morphing steps if G is a reduced planar st-graph, O(n)
morphing steps if G is a planar st-graph, O(n) morphing steps if G is a
reduced upward planar graph, and O(nz) morphing steps if G is a general
upward planar graph. Further, we show that 2(n) morphing steps might
be necessary for an upward planar morph between two topologically-
equivalent upward planar straight-line drawings of an n-vertex path.

1 Introduction

One of the definitions of the word morph that can be found in English dictionaries
is “to gradually change into a different image”. The Graph Drawing community
defines the morph of graph drawings similarly. Namely, given two drawings I
and I of a graph G, a morph between Iy and I3 is a continuously changing
family of drawings of G indexed by time ¢ € [0, 1], such that the drawing at time
t = 01is Iy and the drawing at time ¢ = 1 is I}. Further, the way the Graph
Drawing community adopted the word morph is consistent with its Ancient
Greek root pwp@n, which means “shape” in a broad sense. Namely, if both I
and I have a certain geometric property, it is desirable that all the drawings of
the morph also have the same property. In particular, we talk about a planar, a
straight-line, an orthogonal, or a convex morph if all the intermediate drawings
of the morph are planar (edges do not cross), straight-line (edges are straight-
line segments), orthogonal (edges are polygonal lines composed of horizontal and
vertical segments), or convez (the drawings are planar and straight-line, and the
faces are delimited by convex polygons), respectively.

The state of the art on planar morphs covers more than 100 years, starting
from the 1914/1917 works of Tietze [25] and Smith [23]. The seminal papers of
Cairns [13] and Thomassen [24] proved the existence of a planar straight-line
morph between any two topologically-equivalent planar straight-line drawings
of a graph. In the last 10 years, the attention of the research community focused

This research was partially supported by MIUR Project “MODE”, by H2020-MSCA-
RISE project “CONNECT”, and by MIUR-DAAD JMP N° 34120.
© Springer Nature Switzerland AG 2018

T. Biedl and A. Kerren (Eds.): GD 2018, LNCS 11282, pp. 92-105, 2018.
https://doi.org/10.1007/978-3-030-04414-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04414-5_7&domain=pdf
https://doi.org/10.1007/978-3-030-04414-5_7

Upward Planar Morphs 93

on algorithms for constructing planar morphs with few morphing steps (see,
e.g., [1-7,11,12,21,26]). Each morphing step, sometimes simply called step, is a
linear morph, in which the vertices move along straight-line (possibly distinct)
trajectories at uniform speed. A unidirectional morph is a linear morph in which
the vertex trajectories are all parallel. It is known [2,4] that a planar straight-
line morph with a linear number of unidirectional morphing steps exists between
any two topologically-equivalent planar straight-line drawings of the same graph,
and that this bound is the best possible.

Upward planarity is usually regarded as the natural extension of planarity
to directed graphs; see, e.g., [9,10,15,16,18]. A drawing of a directed graph is
upward planar if it is planar and the edges are represented by curves mono-
tonically increasing in the vertical direction. Despite the importance of upward
planarity, up to now, no algorithm has been devised to morph upward planar
drawings of directed graphs. This paper deals with the following question: Given
two topologically-equivalent upward planar drawings Iy and I of an upward
planar directed graph G, does an upward planar straight-line morph between I
and I3 always exist? In this paper we give a positive answer to this question.

Problems related to upward planar graphs are usually more difficult than
the corresponding problems for undirected graphs. For example, planarity can
be tested in linear time [20] while testing upward planarity is NP-complete
[18]; all planar graphs admit planar straight-line grid drawings with polyno-
mial area [22] while there are upward planar graphs that require exponential
area in any upward planar straight-line grid drawing [17]. Quite surprisingly, we
show that, from the morphing point of view, the difference between planarity and
upward planarity is less sharp; indeed, in some cases, upward planar straight-
line drawings can be morphed even more efficiently than planar straight-line
drawings.

More in detail, our results are as follows. Let Iy and I} be topologically-
equivalent upward planar drawings of an n-vertex upward plane graph G. We
show algorithms to construct upward planar straight-line morphs between I
and I with the following number of unidirectional morphing steps:

i. O(1) steps if G is a reduced plane st-graph (see Sect. 4);

ii. O(n) steps if G is a plane st-graph (see Sect. 4);

iii. O(n) steps if G is a reduced upward plane graph (see Sect. 5);

iv. O(n - f(n)) steps if G is a general upward plane graph, assuming that an
O(f(n))-step algorithm exists to construct an upward planar morph between
any two upward planar drawings of any n-vertex plane st-graph (see Sect. 5).
This, together with Result ii., yields an O(n?)-step upward planar morph for
general upward plane graphs.

Further, we show (Sect.3) that there exist two topologically-equivalent
upward planar drawings of an n-vertex upward plane path such that any upward
planar morph between them consists of 2(n) morphing steps.

In order to prove Result i. we devise a technique that allows us to construct
a morph in which each morphing step modifies either only the z-coordinates
or only the y-coordinates of the vertices. Result ii. builds on the techniques in

94 G. Da Lozzo et al.

[2] and leverages on the arrangement of low-degree vertices in upward planar
drawings in order to morph maximal plane st-graphs. We then exploit such
morphs for general plane st-graphs. In order to prove Results iii. and iv. we use
an inductive technique for reducing the geometric differences between Iy and
1.

Because of space limitations, some proofs are omitted or sketched. They can
be found in the full version of the paper.

2 Preliminaries

We assume familiarity with graph drawing [15] and related concepts.

In this paper we only consider straight-line drawings. Thus, where it leads
to no confusion, we will omit the term “straight-line”. Let I" be a drawing of a
graph G and let H be a subgraph of G. We denote by I'[H] the restriction of I"
to the vertices and edges of H. Two planar drawings of a connected graph are
topologically equivalent if they have the same circular order of the edges around
each vertex and the same cycle bounding the outer face. A planar embedding
is an equivalence class of planar drawings. A plane graph is a planar graph
equipped with a planar embedding. In a planar straight-line drawing an internal
face (the outer face) is strictly convez if its angles are all smaller (greater) than
7. A planar straight-line drawing is strictly convez if each face is strictly convex.

A y-assignment yg : V(G) — R is an assignment of reals to the vertices of a
graph G. A drawing I" of G satisfies y¢g if the y-coordinate in I" of each vertex
v € V(G) is yg(v). An z-assignment xz¢ for G is defined analogously.

In a directed graph G we denote by uv an edge directed from a vertex u to
a vertex v; then v is a successor of u, and u is a predecessor of v. A directed
path consists of the edges u;u;41, for i = 1,...,n — 1. The underlying graph of
G is the undirected graph obtained from G by omitting the directions from its
edges. A transitive edge in a directed graph G is an edge uv such that G contains
a directed path from u to v different from the edge wv. A reduced graph is a
directed graph that does not contain any transitive edges.

A drawing of a directed graph is upward planar if it is planar and each edge
wv is drawn as a curve monotonically increasing in the y-direction from v to v. A
directed graph is upward planar if it admits an upward planar drawing. Consider
an upward planar drawing I" of an upward planar graph G. Let u, v, and w be
three vertices consecutive and in this clockwise order along the boundary of a
face f of G. We denote by Z(u, v, w) the angle formed by the (undirected) edges
(u,v) and (v, w) in the interior of f. Also, we say that v is a sink-switch (source-
switch) of f if uv and wv (vu and vw) are edges of G. Furthermore, we say that
v is a switch of G if it is either a sink-switch or a source-switch of some face of I'.
Two switches v and v of a face f are clockwise (counter-clockwise) consecutive if
traversing f clockwise (counter-clockwise) no switch is encountered in between
u and v. The drawing I' determines a large-angle assignment, that is, a labeling,
for each face f and each three clockwise consecutive switches u, v, and w for
f of the corresponding angle /(u, v, w) as large, if it is larger than 7 in I', or
small, it is smaller than 7 in I" [9].

Upward Planar Morphs 95

Two upward planar drawings of an upward planar graph G have the same
upward planar embedding if they have the same planar embedding and the same
large-angle assignment. We denote by ¢(G) the number of switches labeled large
in G. A combinatorial characterization of upward planar embeddings in terms
of large angles is given in [9]. An upward plane graph is an upward planar graph
equipped with an upward planar embedding.

Let Iy and Iy be upward planar drawings of an upward plane graph G. An
upward planar morph is a continuous transformation from Iy to I} indexed by
time ¢ € [0, 1] in which the drawing at each time ¢ € [0, 1] is upward planar.

A plane st-graph is an upward plane graph with a single source s and a single
sink ¢, and with an upward planar embedding in which s and ¢ are incident to
the outer face. A plane st-graph always admits an upward planar straight-line
drawing [16]. A cycle in an upward plane graph is an st-cycle if it consists of two
directed paths. A face f of an upward plane graph is an st-face if it is delimited
by an st-cycle; the directed paths delimiting an st-face f are called left and right
boundary, where the edge of the left boundary incident to the source-switch sy
of f immediately precedes the edge of the right boundary incident to s; in the
clockwise order of the edges incident to sy. The following is well-known.

Lemma 1. An upward plane graph is a plane st-graph iff all its faces are st-
faces.

An internal vertex v of a maximal plane st-graph G is simple if the neighbors
of v induce a cycle in the underlying graph of G.

Lemma 2 (Alamdari et al. [2]). Any mazimal plane st-graph contains a sim-
ple vertex of degree at most 5.

3 Slow Morphs and Fast Morphs

We start this section by proving the following lower bound.

U1 U3
(%]

[)
U1

Uy v U2 V2 Uz U3
o—Ppog—o ° o—po Uy
U3

u3

(@) P (b) Io (c) I

Fig. 1. Hlustration for Theorem 1. (a) P; (b) Io; and (c) I1. For the sake of readability
I and I have curved edges. However, the z-coordinates of the vertices can be slightly
perturbed in order to make Iy and I straight-line.

96 G. Da Lozzo et al.

Theorem 1. There are two upward planar drawings of an n-verter upward
plane path such that any upward planar morph between them consists of 2(n)
steps.

Proof sketch. Assume, for the sake of simplicity, that n is even, and let n = 2k.
Consider the n-vertex upward plane path P defined as follows (refer to Fig. 1a).
The path P contains vertices w; and v;, for ¢ = 1,...,k, and directed edges
u;v;, for i =1,... k, and u;4qv;, for i = 1,...,k — 1. We fix the upward planar
embedding of P as in Fig. 1b and c.

Let Iy and I3 be two upward planar straight-line drawings of P in which
the bottom-to-top order of the vertices is uy, ..., ug, vk, ..., v1 (see Fig. 1b) and
Uk, ..., UL, V1, ...,V (see Fig. 1c), respectively. Let (Iy = A1, Ao, ..., App1 = 1)
be any upward planar morph from Iy to I that consists of A morphing steps.
We have the following.

Claim 1.1. For each j =1,...,h+1, the vertices u;j, ujq1,...,Ux—1,Ur appear
in this bottom-to-top order in A;.

By Claim 1.1 and since ug, ux_1 appear in this bottom-to-top order in I} =
Ap+1, we have that h +1 > k — 1, hence h € 02(n). O

We now establish a tool that will allow us to design efficient algorithms for
morphing upward planar drawings. Consider two planar straight-line drawings
I'" and I'” of a plane graph G with the same y-assignment. Since the drawings
are straight-line and have the same y-assignment, a horizontal line ¢ intersects a
vertex or an edge of G in I'’ if and only if it intersects the same vertex or edge in
I'". We say that I'" and I'" are left-to-right equivalent if, for any horizontal line
£, for any vertex or edge o of G, and for any vertex or edge 8 of G such that /¢
intersects both a and 3 (in I and in I'"), we have that the intersection of @ with
£ is to the left of the intersection of 8 with £ in I"" if and only if the intersection
of o with £ is to the left of the intersection of 3 with £ in I'”. The definition of
bottom-to-top equivalent drawings is analogous. We have the following.

Lemma 3. Any two upward planar drawings I'" and I'" of a plane st-graph G
with the same y-assignment are left-to-right equivalent.

Proof. Since G is a plane st-graph, the drawings I and I have the same faces.
By Lemmal such faces are st-faces. Also, every horizontal line ¢ crosses an st-
face f at most twice, and the left-to-right order of these crossings along ¢ is the
same in I"" and I'” because the left and right boundaries of f are the same in
I'" and I'. The statement follows. O

Lemma 4 is due to [2]. We extend it in Lemma 5.

Lemma 4 ([2], Corollary 7.2). Consider a unidirectional morph acting on
points p, q, and r. If p is on one side of the oriented line through qr at the
beginning and at the end of the morph, then p is on the same side of the oriented
line through qr throughout the morph.

Upward Planar Morphs 97

Lemma 5. Let I’ and I'" be two left-to-right or bottom-to-top equivalent pla-
nar drawings of a plane graph. Then the linear morph M from I to I'" is
unidirectional and planar.

Proof. Since I'" and I'"’ have the same y-assignment (z-assignment), given that
they are left-to-right (bottom-to-top) equivalent, it follows that all the vertices
move along horizontal (vertical) trajectories. Thus, M is unidirectional. Also,
since I" and I'" are left-to-right (bottom-to-top) equivalent, each horizontal
(vertical) line crosses the same sequence of vertices and edges in both I and
I'". Thus, by Lemma 4, M is planar. O

Lemma 5 allows us to devise a simple morphing technique between any two
upward planar drawings [y and I of the same upward plane graph G, when a
pair of upward planar drawings of G with special properties can be computed.
We say that the pair (Iy, I'1) is an hvh-pair if there exist upward planar drawings
It and I of G such that: (i) I and I are left-to-right equivalent, (ii) I} and
I'| are bottom-to-top equivalent, and (iii) I'] and I are left-to-right equivalent.
Our morphing tool is expressed by the following lemma.

Lemma 6 (Fast morph). Let (1o, I1) be an hvh-pair of upward planar draw-
ings of an upward plane graph G. There is a 3-step upward planar morph from
Fo to Fl .

Proof sketch. We define the morph M as (I'y, I, I, I1). The drawings I} and
I exist by hypothesis. Lemma 5 guarantees that M is unidirectional and planar.
We use Lemma 4 to prove that M is upward. a

The next lemma will allow us to restrict our attention to biconnected graphs.

Lemma 7. Let Iy and Iy be two upward planar drawings of an n-vertex upward
plane graph G whose underlying graph is connected. There exist upward planar
drawings I', and I') of an O(n)-vertex upward plane graph G’ that is a supergraph
of G, whose underlying graph is biconnected, and such that I'j|G] = Iy and
I'l[G] = I't. Further, if G is reduced or an st-graph, then so is G'.

Proof sketch. We iteratively apply the following procedure. Consider a cutvertex
v of G and two edges that belong to distinct blocks of G and that are consecutive
in the circular order of the edges incident to v. Let u and w be the end-vertices
of such edges different from v. We add to G a vertex v and two edges connecting
v’ with v and w; these edges are oriented as the ones connecting v with u and
w, respectively. By placing v and its incident edges inside the face of G incident
to v, u, and w, we obtain an upward plane supergraph of G with one block less
than G. Upward planar drawings of this graph extending Iy and I can be easily
obtained. The repetition of this procedure proves the lemma. a

4 Plane st-Graphs

In this section, we show algorithms for constructing upward planar morphs
between upward planar drawings of plane st-graphs.

98 G. Da Lozzo et al.

4.1 Reduced Plane st-Graphs
We first consider plane st-graphs without transitive edges. We have the following.

Lemma 8. Any two upward planar drawings Iy and Iy of a reduced plane st-
graph G form an hvh-pair.

Proof sketch. By Lemma 7 we can assume that G is biconnected. We construct
two upward planar drawings I} and I that, together with Iy and I, satisfy
Conditions (i)—(iii) of the definition of hvh-pair. We construct I} and I} as
follows. First, we draw the left boundary of the outer face of G so that each
vertex has the same y-coordinate in I7 as in I, for ¢ = 0,1. In both I}j and I
the z-coordinates of all the vertices of this path are 0. Then, we add to Ij and
I'{ the right boundaries of the st-faces of G one by one, following a topological
sorting of the oriented dual graph of G. In I} (in I']) we assign to the internal
vertices of each right boundary the same y-coordinates they have in Iy (I7); since
G is reduced, the set of these vertices is non-empty. All the internal vertices of
each right boundary get the same x-coordinate, which is used in both I} and
I'{; this a-coordinate is sufficiently large so that no crossing is introduced. O

Combining Lemma 6 with Lemma 8 we obtain the following result.

Theorem 2. Let Iy and Iy be any two upward planar drawings of a reduced
plane st-graph. There is a 3-step upward planar morph from Iy to I7.

4.2 General Plane st-Graphs

We now turn our attention to general plane st-graphs. We restate here, in terms
of plane st-graphs, a result by Hong and Nagamochi [19] that was originally
formulated in terms of hierarchical plane (undirected) graphs.

Theorem 3 ([19], Theorem 8). Consider an internally 3-connected plane st-
graph G and let yg be a y-assignment of the vertices of G such that each vertex
v is assigned a value yg(v) that is greater than those assigned to its predecessors.
There exists a strictly-conver upward planar drawing of G satisfying ya.

We use Theorem 3 to prove the following theorem, which allows us to restrict
our attention to maximal plane st-graphs.

Theorem 4. Let Iy and Iy be two upward planar drawings of an n-vertex plane
st-graph G. Suppose that an algorithm A exists that constructs an f(r)-step
upward planar morph between any two upward planar drawings of an r-vertex
maximal plane st-graph. Then there exists an O(f(n))-step upward planar morph
from Iy to I.

Proof sketch. By Lemma 7 we can assume that G is biconnected. We augment
G to a maximal plane st-graph G* by inserting a vertex vy into each face f
of G and by inserting a directed edge from the source-switch s; of f to vy

Upward Planar Morphs 99

and directed edges from v to every other vertex incident to f. We define a
y-assignment y2. for G* by setting y.(v) = y&(v) for each vertex v € V(G)
and by setting, for each vertex vy € V(G*)\ V(G), a value for y2.(vs) that is
larger than y2. (sf) and smaller than y2. (v), for every other vertex v incident to
f. We similarly define a y-assignment yg,. using the y-coordinates of I'y. We use
Theorem 3 to construct upward planar drawings I and Iy of G* satisfying y2.
and y., respectively. By Lemma 3 we have that If[G] and I (I'7[G] and I1)
are left-to-right equivalent. Therefore, by Lemma 5, the linear morph Mj, from
Io to IF[G] (M from IY[G] to I1) is unidirectional and planar. Such a morph
is also upward since both Iy and I[}[G] (I and I}[G]) are upward planar and
left-to-right equivalent. Then, we apply algorithm A to construct a morph from
Iy to I't and restrict such a morph to a morph M” from I5[G] to I'5[G]. The
morph from [to I7 is the concatenation of My, M”, and M]. O

The kernel of a polygon P is the set of points p inside or on P such that, for
any point g on P, the open segment pg lies inside P.

Lemma 9 (Convexify). Let I' be an upward planar drawing of an internally
3-connected plane st-graph G, let f be an st-face of G, and let P be the polygon
representing [in I'. There exists an upward planar drawing I of G such that
the polygon representing the boundary of f is strictly-convex and M = (I, I")
18 a unidirectional upward planar morph. Further, if v is a vertex incident to f
that is in the kernel of P in I", then v is in the kernel of the polygon representing
the boundary of f throughout M.

Proof. Denote by yg the y-assignment for the vertices of G induced by I'. By
Theorem 3, there exists a strictly-convex upward planar drawing I of G sat-
isfying yg. Thus, by Lemma 3 and since G is a plane st-graph, I" and I are
left-to-right-equivalent drawings. By Lemma 5, the linear morph M from I" to
I is unidirectional and planar. Since I" and I are upward, M is upward as
well.

Consider now a vertex v incident to f that is in the kernel of P in I'. Since
the polygon representing the boundary of f in I is strictly-convex, v is also in
the kernel of such a polygon. Augment G to a graph G, by introducing (suitably
oriented) edges connecting v to the vertices incident to f that are not already
adjacent to v. Since v is in the kernel of the polygon representing the boundary
of f both in I' and in I, this results in two left-to-right equivalent upward
planar drawings I, and I, of G,. By the same arguments used for M, we have
that the linear morph M, = (I',, I'}) is planar. Hence, v is in the kernel of the
polygon representing the boundary of f throughout M. a

Given two upward planar straight-line drawings Iy and I'; of a maximal plane
st-graph G, our strategy for constructing an upward planar morph from I to I}
is as follows: (1) we find a simple vertex v of G of degree at most 5; (2) we remove
v and its incident edges from G, I, and I, obtaining upward planar drawings
I} and I of an upward plane graph G’; (3) we triangulate G’, I, and I by
inserting edges incident to a former neighbor u of v, obtaining upward planar

100 G. Da Lozzo et al.

drawings I} and Iy" of a maximal plane st-graph G”; (4) we apply induction

in order to construct an upward planar morph M” from I} to I'{; and (5) we
remove the edges incident to u that are not in G and insert v and its incident
edges in M”, thus obtaining an upward planar morph M from I} to I}. In
order for this strategy to work, we need u to satisfy certain properties, which are
expressed in the upcoming definition of distinguished neighbor; further, we need
to perform one initial (and one final) unidirectional upward planar morph so to
convexify the polygon representing what will be called a characteristic cycle.

Let v be a simple vertex with degree at most 5 in a maximal plane st-
graph G. Let G(v) be the subgraph of G induced by v and its neighbors. A
predecessor u of v in G is a distinguished predecessor if, for each predeces-
sor w of v, there is a directed path in G(v) from w to v through u. A suc-
cessor v of v in G is a distinguished successor if, for each successor w of v,
there is a directed path in G(v) from v to w through u. A neighbor of v is
a distinguished neighbor if it is a distinguished predecessor or successor of v.
Examples of distinguished neighbors are in Fig. 2.

S1

()

Fig. 2. Distinguished predecessors (enclosed by red squares), distinguished successors
(enclosed by red circles), and characteristic cycles (filled yellow). (Color figure online)

Lemma 10. The vertex v has at most one distinguished predecessor, at most
one distinguished successor, and at least one distinguished neighbor.

We define the characteristic cycle C(v) as follows. Let cg(v) be the subgraph
of G induced by the neighbors of v. Since v is simple, the underlying graph of
ca(v) is a cycle. If cg(v) is an st-cycle, then C(v) := cg(v); this is always the
case if v has degree 3. Otherwise, c¢g(v) has two sources s; and s and two sinks
t; and to. Suppose that G contains the edges s;v and vsy, the cases in which
it contains the edges ssv and vsy, or tyv and vta, or tov and vty are analogous.
Suppose also, w.l.o.g., that s1,t1, s2, and ¢ appear in this clockwise order along
cg(v). If v has degree 4, then we define C(v) as the st-cycle composed of the
edges s1v, vS2, Sate, and s1ty. Otherwise, v has degree 5. Consider the directed
path P; = (v1,v,vs), where vy (v2) is the distinguished predecessor (successor)
of v or, if such a node does not exist, the source s; (s2). Then P; splits cg(v)
into two paths P» and Ps with length 2 and 3, respectively. Cycle C(v) is defined
as the st-cycle composed of P; and P3. We have the following structural lemma.

Upward Planar Morphs 101

Lemma 11. The characteristic cycle C(v) is an st-cycle which contains all the
distinguished neighbors of v. Further, all the vertices of cg(v) not belonging to
C(v) are adjacent to all the distinguished neighbors of v.

Characteristic cycles are used in order to prove the following.

Lemma 12. There is a unidirectional upward planar morph (I',I"), where in
I the distinguished neighbors of v are in the kernel of the polygon represent-

ing cg(v).

Proof sketch. 1f C(v) is convex in I, then by Lemma 11 the distinguished neigh-
bors of v already are in the kernel of the polygon representing cg(v). Otherwise,
we remove the interior of C(v) and use Lemma 9 to make C'(v) convex. Then,
we suitably reinsert the interior of C'(v) to obtain the desired morph. O

The following concludes our discussion on maximal plane st-graph.

Theorem 5. Let Iy and I be two upward planar drawings of an n-verter maz-
imal plane st-graph. There is an O(n)-step upward planar morph from Iy to
I.

Proof sketch. If n = 3, then the desired morph is constructed as in Lemma 6. If
n > 3, then by Lemma 2 a simple vertex v exists in G with degree at most 5.
By Lemma 10, v has a distinguished neighbor u. By Lemma 12, unidirectional
upward planar morphs (I, Ag) and (A;, I'y) exist, where Ay and A; are upward
planar drawings of GG in which w lies in the kernels of the polygons representing
C(v). Remove v from G, Ay, and Ay, and insert (suitably oriented) edges between
u and the former neighbors of v that are not already adjacent to u, thus obtaining
upward planar drawings I} and Iy of an (n — 1)-vertex maximal plane st-
graph G”. Recursively compute an upward planar morph M” from I} to I7.
Finally, remove the edges incident to w that are not in G and insert v and its
incident edges in M", obtaining an upward planar morph M from Ay to A;.
This, together with (I, Ag) and (Ay, I}), provides the desired morph from I
to Fl- O

We finally get the following.

Corollary 1. Let Iy and I'y be two upward planar drawings of an n-vertex plane
st-graph. There exists an O(n)-step upward planar morph from Iy to I7.

Proof. The statement follows by Lemma 7, Theorem 4, and Theorem 5. O

5 Upward Plane Graphs

Let G be an upward plane graph, let f be a face of G, and let u, v, and w be
three clockwise consecutive switches of f. Also, let v; (v2) be the neighbor of v
clockwise preceding (succeeding) v along f, and let u; (u2) be the neighbor of u
clockwise preceding (succeeding) u along f. We say that [u,v,w] is a pocket for
fif Z(vy,v,v3) = small and Z(uy,u,us) = large. The following is well-known.

102 G. Da Lozzo et al.

Lemma 13 ([9]). Let G be an upward plane graph and let f be a face of G that
is mot an st-face. Then, there exists a pocket [u,v,w] for f.

Next, we give a lemma that shows how to “simplify” a face of an upward
plane graph that is not an st-graph, by removing one of its pockets.

Lemma 14. Let G be an n-vertex (reduced) upward plane graph, let [u,v,w]
be a pocket for a face f of G, and let I' be an upward planar drawing of G.
Suppose that an algorithm A (Ar) exists that constructs an f(r)-step (fr(r)-
step) upward planar morph between any two upward planar drawings of an r-
vertex (reduced) plane st-graph. Then, there exists an O(f(n))-step (O(fr(n))-
step) upward planar morph from I' to an upward planar drawing I'* of G in
which w and u have direct visibility and such that u lies below w, if a directed
path exists in f from v to u, and it lies above w, if a directed path exists in f
from u to v.

Proof sketch. Suppose that a directed path p,, exists in f from v to u
(see Fig. 3a); the case in which a directed path exists in f from u to v can be
treated symmetrically. We first show that there exists an upward planar drawing
I'” of G such that (i) it is possible to add to I'"” an upward planar drawing of two
directed paths p’ and p” from u to w that form an st-face (see Fig. 3b), and (ii)
there exists an O(f(n))-step (O(fr(n))-step) upward planar morph M’ from I’
to I'". We then show that there exists an upward planar drawing I'* of G such
that (iii)vertices w and w have direct visibility and w lies below w (see Fig. 3c),
and (vi)there exists an O(f(n))-step (O(fr(n))-step) upward planar morph M*
from I'" to I'*. Composing M’ and M* yields an upward planar morph from
I to I'*. a

Fig. 3. Illustrations for the proof of Lemma 14.

Theorem 6. Let Iy and I be two upward planar drawings of an n-vertex
(reduced) upward plane graph G. Suppose that an algorithm A (Ag) exists
that constructs an f(r)-step (fr(r)-step) upward planar morph between any two
upward planar drawings of an r-vertex (reduced) plane st-graph. There exists an
O(n- f(n))-step (an O(n - fr(n))-step) upward planar morph from I'y to I7.

Upward Planar Morphs 103

Proof sketch. By Lemma 7, we can assume that G is biconnected. In order to
prove the statement, we show that there exists a ((2((G) + 1) - f(n))-step (a
((2¢(G)+1)- fr(n))-step) upward planar morph from Iy to Iy, if G is a (reduced)
upward plane graph. Since ¢(G) € O(n), the statement follows.

The proof is by induction on £(G). In the base case ¢(G) = 0 and thus G is a
(reduced) plane st-graph. Hence, by applying algorithm A (Ag) to I'y and I7,
we obtain an f(n)-step (an fr(n)-step) upward planar morph from Iy to I7.

In the inductive case £(G) > 0. Then there exists a face f of G that is not
an st-face. Thus, by Lemma 13, there exists a pocket [u,v,w] for f. By Lemma
14, we can construct upward planar drawings I} and I of G in which u and w
have direct visibility and u lies below w (assuming that a directed path exists
in f from v to u, the other case being symmetric), and such that there exists an
f(n)-step (an fr(n)-step) upward planar morph Mga.¢ from Iy to I7) and an
f(n)-step (an fr(n)-step) upward planar morph M fip;sp, from I7 to I.

Let G* be the plane graph obtained from G by splitting f with a directed
edge uw. Graph G* is an upward plane graph whose upward planar embedding
is constructed by assigning to each switch in G* the same label small or large
it has in G. Also, £(G*) = ¢(G) — 1, since u is not a switch in G*. Further, G* is
reduced if G is reduced, since there exists no directed path from u to w in G (due
to the fact that [u,v,w] is a pocket of f). Let I'y and I'f be the planar straight-
line drawings of G* obtained by drawing the directed edge uw as a straight-line
segment connecting v and w in I} and in I, respectively. It is easy to see
that I'y and I} are upward planar drawings of G*. Therefore, by the inductive
hypothesis and since V(G*) = V(G), we can construct a ((26(G*)+1)- f(n))-step
(a ((26(G*)+1)- fr(n))-step) upward planar morph from I'j to I'f". Observe that,
since G C G*, restricting each drawing in M* to G yields a ((2((G) —1)- f(n))-
step upward planar morph M~ of G from I} to I']. Therefore, by concatenating
morphs Myare, M™, and Minisn, we obtain a ((2((G) + 1) - f(n))-step (a
((2¢(G) + 1) - fr(n))-step) upward planar morph of G from Iy to I7. O

Theorems 2, 4, and 6, imply the following main result.

Theorem 7. Let Iy and I be two upward planar drawings of the same n-vertex
(reduced) upward plane graph. There exists an O(n?)-step (an O(n)-step) upward
planar morph from Iy to I7.

6 Conclusions and Open Problems

In this paper, we addressed for the first time the problem of morphing upward
planar straight-line drawings. We proved that an upward planar morph between
any two upward planar drawings of the same upward plane graph always exists.
It easy to see that all our algorithms can be implemented in polynomial time.
Several problems remain open. In our opinion the most interesting question
is whether an O(1)-step upward planar morph between any two upward planar
drawings of the same plane st-graph exists. In case of a positive answer, by
Theorem 6, an optimal O(n)-step upward planar morph would exist between

104 G. Da Lozzo et al.

any two upward planar drawings of the same n-vertex upward plane graph. In
case of a negative answer, it would be interesting to find broad classes of upward
plane graphs that admit upward planar morphs with a sub-linear number of
steps. We proved that reduced plane st-graphs have this property and we ask
whether the same is true for series-parallel digraphs [8,14].

References

1. Aichholzer, O., et al.: Convexifying polygons without losing visibilities. In: 23rd
Canadian Conference on Computational Geometry, CCCG 2011 (2011)

2. Alamdari, S., et al.: How to morph planar graph drawings. STAM J. Comput.
46(2), 824-852 (2017)

3. Alamdari, S., et al.: Morphing planar graph drawings with a polynomial number
of steps. In: Khanna, S. (ed.) 24th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2013, pp. 1656-1667 (2013)

4. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Roselli,
V.: Morphing planar graph drawings optimally. In: Esparza, J., Fraigniaud, P.,
Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 126-137.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43948-7_11

5. Angelini, P., Da Lozzo, G., Frati, F., Lubiw, A., Patrignani, M., Roselli, V.: Opti-
mal morphs of convex drawings. In: Symposium on Computational Geometry, vol.
34 of LIPIcs, pp. 126-140. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2015)

6. Angelini, P., Frati, F., Patrignani, M., Roselli, V.: Morphing planar graph drawings
efficiently. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 49-60.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03841-4_5

7. Barrera-Cruz, F., Haxell, P., Lubiw, A.: Morphing planar graph drawings with
unidirectional moves. In: Mexican Conference on Discrete Mathematics and Com-
putational Geometry, pp. 57-65 (2013). http://arxiv.org/abs/1411.6185

8. Bertolazzi, P., Cohen, R.F., Di Battista, G., Tamassia, R., Tollis, I.G.: How to
draw a series-parallel digraph. Int. J. Comput. Geom. Appl. 4(4), 385-402 (1994)

9. Bertolazzi, P., Di Battista, G., Liotta, G., Mannino, C.: Upward drawings of tri-
connected digraphs. Algorithmica 12(6), 476-497 (1994)

10. Bertolazzi, P., Di Battista, G., Mannino, C., Tamassia, R.: Optimal upward pla-
narity testing of single-source digraphs. STAM J. Comput. 27(1), 132-169 (1998)

11. Biedl, T., Lubiw, A., Petrick, M., Spriggs, M.: Morphing orthogonal planar graph
drawings. ACM Trans. Algorithms (TALG) 9(4), 29 (2013)

12. Biedl, T., Lubiw, A., Spriggs, M.J.: Morphing planar graphs while preserving edge
directions. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 13-24.
Springer, Heidelberg (2006). https://doi.org/10.1007/11618058_2

13. Cairns, S.S.: Deformations of plane rectilinear complexes. Am. Math. Monthly
51(5), 247-252 (1944)

14. Cohen, R.F., Di Battista, G., Tamassia, R., Tollis, I.G.: Dynamic graph drawings:
Trees, series-parallel digraphs, and planar st-digraphs. SIAM J. Comput. 24(5),
970-1001 (1995)

15. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice-Hall, Upper Saddle River (1999)

16. Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic
digraphs. Theor. Comput. Sci. 61, 175-198 (1988)

https://doi.org/10.1007/978-3-662-43948-7_11
https://doi.org/10.1007/978-3-319-03841-4_5
http://arxiv.org/abs/1411.6185
https://doi.org/10.1007/11618058_2

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Upward Planar Morphs 105

Di Battista, G., Tamassia, R., Tollis, [.G.: Area requirement and symmetry display
of planar upward drawings. Discrete Comput. Geom. 7(4), 381-401 (1992)

Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear
planarity testing. SIAM J. Comput. 31(2), 601-625 (2002)

Hong, S., Nagamochi, H.: Convex drawings of hierarchical planar graphs and clus-
tered planar graphs. J. Discrete Alg. 8(3), 282-295 (2010)

Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM 21(4), 549-568 (1974)
Roselli, V.: Morphing and visiting drawings of graphs. Ph.D. thesis, Universita
degli Studi di Roma “Roma Tre”, Dottorato di Ricerca in Ingegneria, Sezione
Informatica ed Automazione, XXVI Ciclo (2014)

Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of the First
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 1990, pp. 138-148.
Society for Industrial and Applied Mathematics, Philadelphia (1990)

Smith, H.L.: On continuous representations of a square upon itself. Ann. Math.
19(2), 137-141 (1917)

Thomassen, C.: Deformations of plane graphs. J. Comb. Theory Ser. B 34(3),
244-257 (1983)

Tietze, H.: Uber stetige abbildungen einer quadratflache auf sich selbst. Rendiconti
del Circolo Matematico di Palermo 38(1), 247-304 (1914)

van Goethem, A., Verbeek, K.: Optimal morphs of planar orthogonal draw-
ings. In: 34th International Symposium on Computational Geometry, SoCG 2018,
Budapest, Hungary, 11-14 June 2018, pp. 42:1-42:14 (2018)

q

Check for
updates

Visualizing the Template of a Chaotic
Attractor

Maya Olszewski'®, Jeff Meder!®, Emmanuel Kieffer?®, Raphaél Bleuse!' @,
Martin Rosalie?®, Grégoire Danoy!®)®, and Pascal Bouvry'?

! FSTC/CSC-ILIAS, University of Luxembourg, 6, Avenue de la Fonte,
4364 Esch-sur-Alzette, Luxembourg
{maya.olszewski.001, jeff.meder.001}@student.uni.lu,
{raphael.bleuse,gregoire.danoy,pascal.bouvry}@uni.lu
2 8nT, University of Luxembourg, 6, Avenue de la Fonte,

4364 Esch-sur-Alzette, Luxembourg
{emmanuel .kieffer,martin.rosalie}@uni.lu

Abstract. Chaotic attractors are solutions of deterministic processes, of
which the topology can be described by templates. We consider templates
of chaotic attractors bounded by a genus—1 torus described by a linking
matrix. This article introduces a novel and unique tool to validate a link-
ing matrix, to optimize the compactness of the corresponding template
and to draw this template. The article provides a detailed description of
the different validation steps and the extraction of an order of crossings
from the linking matrix leading to a template of minimal height. Finally,
the drawing process of the template corresponding to the matrix is saved
in a Scalable Vector Graphics (SVG) file.

Keywords: Chaotic attractor - Template
Linking matrix - Optimization - Visualization

1 Introduction

Resulting of theoretical studies on chaos attractors, applications including
chaotic dynamics can be found in a multitude of domains. Their range goes
from computer science [23], through classical sciences with physical networks
[14], biology and genetics [27] and chemistry with chaotic dynamics in chemical
reactions [8], all the way to electronics and chaos in electronic devices [13] and
even environmental studies on population evolution [5].

Birman and Williams [6] introduce templates as knot-holder to describe the
topological structure of chaotic attractors. The notion of linking matrices to
describe chaotic attractors with integers has been first introduced by Mindlin
et al. in 1990 [18]. The matrix contains the number of torsions and permutations
occurring along the flow of an attractor. The template is a ribbon graph com-
bined with a layering graph. In 1998, Gilmore wrote an extensive survey on the
research on chaotic dynamical systems over the past decade [11], in which one
© Springer Nature Switzerland AG 2018

T. Biedl and A. Kerren (Eds.): GD 2018, LNCS 11282, pp. 106-119, 2018.
https://doi.org/10.1007/978-3-030-04414-5_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04414-5_8&domain=pdf
http://orcid.org/0000-0001-9926-058X
http://orcid.org/0000-0002-2360-8487
http://orcid.org/0000-0002-5530-8577
http://orcid.org/0000-0002-6728-2132
http://orcid.org/0000-0003-3676-120X
http://orcid.org/0000-0001-9419-4210
http://orcid.org/0000-0001-9338-2834
https://doi.org/10.1007/978-3-030-04414-5_8

Visualizing the Template of a Chaotic Attractor 107

can see various drawings of templates. In his paper, he provides the summary of
the topological analysis from dynamical system to template.

The subject of chaotic dynamics studies are promising and on-going. But it
clearly misses matrices validation and drawing tools. The research community
would benefit from an efficient application that verifies the validity of matrices
and draws their corresponding template. The novel tool presented in this paper
is publicly available online at https://gitlab.uni.lu/pcog/cate, and aims to fill
this gap.

This paper is structured as follows. In Sect.2 we give an introduction to
the problem. Section 3 provides a state-of-the-art analysis in the field of chaotic
attractors, focusing on their validation and visualization. In Sect. 4, we first out-
line our approach to determine the validity of a linking matrix. Secondly, we
describe the procedure to get the minimal height of a template and its visual-
ization. In Sect. 5, we present the experimental work and the results in order to
validate our proposed approach. Finally, we conclude and outline some directions
for future work in Sect. 6.

2 Problem Description

A chaotic attractor is a solution of a dynamic deterministic process that is very
sensitive to its initial conditions. The solution will converge to the same global
shape (the attractor), independently of the starting position in the basin of
attraction. Malasoma [16] proposed a simple differential equations system

T=1y
y==z (1)
2= —az+xy? -,

(a) Chaotic attractor (b) Template

Fig. 1. A representation of a template of a chaotic attractor solution to the Malasoma
system (1) for o = 2.027. (a) Chaotic attractor with the Poincaré section (see [25] for
the definition of this section named S,). (b) Template of the chaotic attractor from
the Poincaré section.

https://gitlab.uni.lu/pcog/cate

108 M. Olszewski et al.

with chaotic dynamics as solutions when « € [2.027;2.08]. A detailed analysis
of the topological properties of the attractors that can be produced by this sys-
tem has been proposed in [24,25]. For instance, Fig. 1 summarizes some steps
of the topological characterization (Poincaré section and template) of a chaotic
attractor when a = 2.027. In this article, we are considering only attractors
bounded by genus-1 torus such as Rossler attractors [26] or Malasoma attrac-
tors [16] (Fig. 1a); it does not work for more complex attractors such as Lorenz
attractors [15] bounded by a genus-3 torus.

A template is a compact branched two-manifold with boundary and smooth
expansive semiflow built locally from two types of charts: joining and splitting
[10]. It is a figure that represents the topological structure of a chaotic attractor.
Since the 1990s there have been two different ways to represent templates with
linking matrices that are still used today, as one can see in the recent paper of
Gilmore and Rosalie [12], where algorithms are given to switch from one repre-
sentation to the other. Hereinafter, the representation first given by Melvin and
Tufillaro [17] is considered. This representation only requires a linking matrix,
and gives a standard representation at the end, where at the bottom of the tem-
plate the strips are ordered from the back-most on the left to the front-most on
the right. This is the representation used for the template shown in Fig. 1. We
also use the orientation convention defined by Tufillaro et al. [17,18] (Fig. 2).

Convention Torsions Permutations
\ \\V \///
\v (W7
+1 -1 posmve negatlve positive negative

Fig. 2. Convention of representing oriented crossings. The permutation between two
branches is positive if the crossing generated is equal to +1, otherwise it is negative.
We use the same convention for torsions.

A linking matrix is a matrix that details the number and the direction of
crossings in a template. As illustrated in Fig. 2, a torsion is a twist of a branch
with itself and a permutation is an exchange of position of two branches. Fur-
thermore, the torsions and permutations can be either positive or negative as
defined by the orientation convention shown in Fig.2. The linking matrix M
corresponding to Fig. 1 is given by (2).

10 0 0
00 —1-1

M=1p-1-11 @)
0-1-10

The diagonal elements in the linking matrix correspond to the torsions. As
an example, consider matrix M. The element M; ; = 1 represents the number of

Visualizing the Template of a Chaotic Attractor 109

torsions of branch one of the template from Fig. 1. This branch performs exactly
one single positive torsion as indicated by the matrix M. The non-diagonal ele-
ments correspond to the number of permutations between the different branches.
As an example, M3 4 = —1 means that branches two and four perform a negative
permutation which is depicted by the crossing of the orange and red branch in
Fig. 1. It is sufficient to consider the part of the matrix above the diagonal, as it
is symmetric.

The linking matrix M is unique but the corresponding template can be drawn
in various ways. Some representations can be longer than others. This is why our
goal is to find the most concise template. This means that we aim to maximize
the number of permutations per level of the template. There might be however
several templates with minimum size. In this work we only consider the first
template of minimum size generated by the algorithm.

An important remark is that not every matrix corresponds to a valid template
of a chaotic attractor. As a chaotic attractor is a solution of a deterministic
process and the linking matrix represents it, such a matrix needs to fulfill certain
criteria. We will describe the tool we created to verify the validity of a linking
matrix, to solve the underlying scheduling problem to find the order of the
permutations and to determine the most concise representation of a template.
Finally, the tool also renders the solution found.

3 Related Work

The visualization of a template has been addressed in Chap. 5 Sect. 5 of [28]
and, according to our best knowledge, the validation of a linking matrix has
never been addressed. Usually, this has been done manually by each author. The
only comparable project we found is a Mathematica code written by Tufillaro
et al. [28], which draws templates. Extensive details are available in the Chap.
5 of [28]. It has been used recently in papers written by Barrio et al. [2-4].
This implementation, however, only works on older versions of Mathematica.
Furthermore, one has to specify as input an explicit order of crossings, which
means that it does not find them automatically from a linking matrix, unlike
the algorithm presented in this paper. This Mathematica code does not provide
a validity verification either, it is purely a tool for drawing “clean” templates.

To the best of our knowledge, such a tool has never been proposed and could
be beneficial for the scientific community, as it is not always easy to see whether a
matrix is valid or not. Indeed there have been publications with invalid matrices
that our tool would have marked as such [18]. Some other papers have presented
quite unattractive drawings of templates (eg. Fig. 4 of [1]) and we feel that our
tool would provide researchers with an easy and rapid way to solve this problem.
Moreover, it can also be used by the community as a tool for building a linking
matrix from the linking number numerically obtained during the topological
characterization method for attractors bounded by a genus—1 torus (see [11,21]
for details).

110 M. Olszewski et al.

4 Linking Matrix and Template of a Chaotic Attractor

In this section, we are going to discuss the approach we developed in order to
check the validity of a given linking matrix, to find a corresponding template of
minimal height as well as to visualize it. Firstly in Sect. 4.1, we will describe the
different validation steps which we are applying on a matrix and justify their
necessity. Secondly, Sect.4.2 explains the tree construction we use in order to
minimize the height of the resulting template and the methods we apply for the
visualization of the template.

Algorithm 1. Drawing of the template of a linking matrix.
: verify correct matrix input form

: verify continuitiy constraints of matrix

: verify determinism constraints of matrix

. if passed all verification steps then:

construct tree

find shortest path in tree

draw template

4.1 Validation of a Linking Matrix

A linking matrix is a topological representation of a chaotic attractor, hence it
needs to satisfy certain constraints linked to the attractor. Essentially, a template
consists of strips that are stretched, twisted, folded and glued at the bottom over
and over again after a clockwise rotation. We remind that we are only considering
templates of attractors bounded by a genus—1 torus.

In order to visualize this, one can imagine having a sheet of paper split into
several strips. The behavior of those strips is given by the elements of the matrix.
If one can deform the paper in such a way that the paper respects the constraints
given by the matrix without having to tear it apart, then the matrix corresponds
to a valid template. If tears are unavoidable, no valid template exists. If there
is a tearing mechanism in the attractor, we are out of the scope because this
means that the attractor is at least bounded by a genus—2 torus.

Validation Steps. The steps below evaluate whether or not a linking matrix
is valid, i.e., if it corresponds to a chaotic attractor.

First of all, we need to verify that a matrix is of the right form. A valid
linking matrix, by definition, has a certain construction. It is square, symmetric
and has integers as values [17].

The next three validation steps are constraints on the continuity of the tem-
plate. Going back to the sheet of paper example, these constraints guarantee
that no tears occur. The first of these constraints is linked to the diagonal ele-
ments of the matrix. These elements have to respect the condition which dictates
that they have to differ by exactly one from their diagonal neighbors. Violating

Visualizing the Template of a Chaotic Attractor 111

this constraint would result in a discontinuous template. Similar to the diagonal
constraint, a linking matrix needs to satisfy the condition which states that an
arbitrary value in the matrix cannot differ from the values of all of its neighbors
by more than one. Finally, the last continuity constraint is based on the order of
the elements on the bottom of the template. From a linking matrix, one needs
to be able to obtain a valid order for the template. The order is an array which
defines the position of the branches at the bottom of the template after perform-
ing the crossings. We obtain this order from the matrix by applying a simple
algorithm described in [17]. A valid ordering array contains all branch indexes
exactly once. An index being present twice would mean that two branches would
end up at the same end position, which is impossible without a tear and therefore
would result in an invalid template.

The last two verification steps are linked to the determinism of a chaotic
attractor. As stated earlier, chaotic attractors are solutions of dynamic deter-
ministic systems, meaning that from any starting point there is a unique image
and no choice is possible. As the template is a topological representation of a
chaotic attractor, it also needs to respect its intrinsic properties like determin-
ism. The first of those two verifications consists in checking whether the linking
matrix has 2 x 2 sub-matrices located on its diagonal that are not valid. Up to
addition of a global torsion (see [24] for details) there are two 2 X 2 matrices that
are not valid, namely B and C:

([0 c-[2] co=[t]) @

The set (3) corresponds to matrices that are associated to discontinuous tem-
plates. If the matrix has such a sub-matrix on its diagonal, this means that
it presents a choice opportunity at some point and violates the determinism
condition. Therefore, it is not valid.

Finally, in the second step, which we call planarity check, we verify the order
of the end positions of the template. The idea is to take the final positions of the
branches at the end of the template, and connect them with arcs in a certain
way. Start with 1, and connect it to 2 over the list. Then connect 2 to 3 below
the list, 3 to 4 over, and so on. If the arcs cannot be drawn without intersecting,
then the matrix is invalid. This is illustrated by Fig. 3, where the left part of the
figure corresponds to this verification of the matrix (2), and has no intersections.
The right side on the other hand corresponding to matrix N (4) does not pass
the test.

o

0 0
0 0 —
N—O 0 — (4)
—1-

0
1
0
-1

— ==

0

If this planarity condition was not verified and there was an intersection,
the system would have a choice when arriving at this intersection, which would
violate the determinism assumption. Therefore, a matrix that does not satisfy
this condition cannot correspond to a valid template.

112 M. Olszewski et al.

Fig. 3. Planarity check of matrices (2) (left) and (4) (right).

Order of the Validation Steps. The order of the different validation steps
is defined in the way described above, we start checking the most general con-
straints, and then check the most specific ones (Algorithm 1). For example, if a
matrix is not square matrix, there is no need to verify specific constraints like
the diagonal constraint, as the matrix is not even a linking matrix by definition.
The same idea applies to the other criteria.

In literature, there have been publications with invalid matrices that our
procedure would have labeled as such. One example would be the first 4 x
4 linking matrix in [18], which gives the matrix with the following diagonal
elements: 6, 5, 5 and 4. This matrix would not have passed the validation step
which dictates that all elements on the diagonal of a matrix have to differ by
one from their diagonal neighbors.

3223
2223
K= 2234 (5)

3344

For the matrix K (5) the ordering validation step fails because the ordering at the
end is given by the array [2, 2, 3, 3], meaning that both strips one and four are on
position two and strips two and three are on position three. As this is a problem
for continuity, this matrix would not pass the order test. This illustrates that a
tool to validate a matrix would facilitate the analysis of linking matrices, as it
is not always easy to see whether a matrix is valid or not. A complete example
of the validation process can be found in the appendices of the extended version
[20].

4.2 Visualization of a Template

Tree Construction. After having verified the validity of a linking matrix, the
next step is to generate a visualization of a template with minimal height from
a given linking matrix. In order to determine the minimal height of a template,
one has to optimize the scheduling of all the crossings between the different
branches. For this purpose, we developed an approach where we take as input a
valid linking matrix and make use of its permutations to generate a tree graph
using a breadth first approach, meaning that we build it level by level.

To do this, we follow Algorithm 2. We derive the initial order from the matrix
which represents the root of the tree as a first step. Furthermore, we also retrieve
the list of performable permutations between the branches. Beginning at the

Visualizing the Template of a Chaotic Attractor 113

Algorithm 2. Tree construction

1: if validMatriz(matriz) then
2: init = Node(permutationList, order, father = None) ;

3: finalOrder = getFinalOrder(matriz)

4: queue = [init] ;

5: while queue # @ do

6: node = queuel0] ;

7: queue = queue[l] ;

8: toExecute = permutationList N allNeighborCombinations(node.order) ;
9: if toEzecute = @ and node.order = finalOrder then

10: setLeaf(node) ;

11: break ;

12: for p in toEzecute do

13: newNode =

14: Node(updated PermutationList(p), updatedOrder(p), father = node) ;
15: queue.append(newNode) ;

root, we simulate the permutations and generate additional nodes which are
annotated with an updated order and then added to the tree. For each node
created, the list of permutations yet to be performed will differ. Eventually, a
node representing a leaf with an empty permutation list and a valid final order
will be generated. At this point, the computation of the tree is stopped. By
traversing the tree from the root to that leaf, we get the sequence of permutations
to execute in order to obtain a template of minimal height. To illustrate this
procedure, consider the following 4 x 4 matrix A (6).

~1-1-1-1
100 0

A=1101 1 (6)
10 1 2

From this matrix, we get an initial order where the branches are numbered
beginning from 1 to 4. To retrieve the set of permutations to perform, we have
to consider the non-diagonal elements of the matrix. For example, the branch
with the label 1, has to perform a negative permutation with the branches
2, 3 and 4. There is also a positive permutation between branch 3 and 4.
So, we obtain the following list of permutations which needs to be executed
[(1,2), (1,3), (1,4), (3,4)-

To find the permutations which can be performed at this stage, we need
to consider our initial order from which we can derive which branches are
direct neighbors. For instance, we obtain the following list of neighbor pairs
[(1,2),(2,3),(3,4)]. By taking the intersection of the neighbor list and the set
of permutations to perform, we obtain a set of permutation which are possible
to process during the initial stage. By doing so, we can permute branch 1 and
2 or 3 and 4. However, we could also perform both permutations in parallel as
performing one of them does not prohibit the other one. As illustrated on top of

114 M. Olszewski et al.

(3,4) (1,2)

£
e

2,41,3 —Pp 2,4,3,1

-
N
IS
©
N
>
©

&3
=
©

2,413 —p 2,431

e
e
w

(1,2) (%

1,234 —P 2134

2,3,1,4 —P 2,341 —Pp 2,431

(1,2), (3, 4) 1,4) (1,3)
=

2,1,4,3 —P 2,4,1,3 —p 2,4,3,1
Root Level 1 Level 2 Level 3 Level 4

Fig. 4. Final and complete tree for matrix A from (6) including the root and the
child nodes generated per level. Each node represents the updated order after each
permutation described by the incoming edge. (Color figure online)

Fig. 4, we see the root labeled with the initial order of the branches. After the
first set of permutations have been performed, different child nodes are created
at level 1. The corresponding order of each child node is obtained by switching
the positions of the permuted branches in the initial order of the root.

From the new order of each child node, we try to find a new permutation to
perform by defining the neighbor pairs. We then recompute the possible permu-
tations for this iteration. Each iteration will add one or more children to tree
and this process is repeated until all permutations have been performed or no
new permutation can be computed. However, a node which can no longer per-
form a permutation while there are still some permutations in the set left to be
executed, is not considered valid.

Figure 4 also shows the final tree after all permutations have been performed.
The green arrows leading to the green colored leaf denote the shortest path where
the labels show the order of execution of the permutations to get to the final order
of the template. This will result in a template of shortest possible height. There
are also three other possible solutions but they will not reduce the height of the
template to a minimum as they perform one additional permutation. However,
we stop the computation of building the tree after encountering the first valid
leaf, so the red nodes will never be computed. The breadth-first construction of
the tree guarantees that the first found solution is the shortest one.

Drawing of the Template. Finally, after verification of the linking matrix
and after having found the shortest path in the tree corresponding to the most
concise order of crossings, we can now draw the template. To draw the templates
as scalable vector graphics, we used python’s swgwrite module [19].

In order to draw both torsions and permutations, we use a cubic Bézier curve
as shape. To illustrate how we use it, consider two points (z1,y1) and (z2,ys2)

Visualizing the Template of a Chaotic Attractor 115

and suppose we want to draw this Bézier curve between them, in the same shape
as those used in the permutations and torsions. The starting point is given by
(z1,y1) and we will give the rest of the points relative to this starting point. The
relative end point is then given by (z2 — x1,y2 — y1) and the two relative control
points by (x1, (y2 — y1)/2) and (x2 — 21, (y2 — y1)/2). So the control points are
always halfway in height between the two points and straight above respectively
below them.

To draw a torsion we first draw one Bézier curve, then add a small white
circle in the middle of this curve to erase this part. Finally we draw the other
Bézier curve. This procedure is illustrated in Fig. 5(a—c). Permutations are drawn
in a similar way. The sign of the permutation defines which of the two branches
is drawn first, then when the other one is drawn it covers it up as it comes on
top of the other one (Fig.5(d—e)).

Do

(a) (b)

Fig.5. An illustration of a positive torsion (a—c) and a positive permutation (d—e)
drawing process.

We start by considering the torsions of the matrix and draw all of them.
Then we move on to the permutations. They are given by the sequence of edges
forming the shortest path of the tree generated by the input matrix. We then
draw the rest of the template by levels. At each level, every strip can do one
of three actions: do a straight transition, permute left or permute right. The
shortest path tells us which two strips should permute. Given this information,
it is easy to calculate the coordinates at the next level of each strip and apply
the correct transition (Fig.6).

Fig. 6. Template of one linking matrix with five branches and eight permutations.

116 M. Olszewski et al.

5 Performance Evaluation

An elementary matrix is a unique linking matrix describing a chaotic mechanism
without additional torsions or symmetry properties [22]. Given an input size,
Rosalie describes in this article a method to generate all possible elementary
linking matrices of such size. We used this method to obtain the 14, 38 and
116 possible elementary matrices with resp. five, six and seven branches (resp.
5% 5,6 x6 and 7 x 7 linking matrices). Figure 7 depicts for each matrix
size the distribution of the elementary matrices with respect to the number of
permutations to process.

Matrix size: 5 Matrix size: 6 Matrix size: 7

0 0 20

Fig. 7. Distribution of the number of elementary matrices with respect to the number
of permutations to process. There are 14 (resp. 38 and 116) matrices of size 5 (resp. 6
and 7).

Occurences

5 10 15
Number of permutations

R Y
Number of permutations

Fig. 8. Elapsed time depending on the number of permutations for the matrices
depending on their size. The diamond represents the average value.

The experiments were conducted on a server with an Intel Xeon X7560 pro-
cessor with a clock speed of 2.27 GHz, and 1024 GB of RAM. Even though this

Visualizing the Template of a Chaotic Attractor 117

server is not the fastest available, it is the only one fulfilling the memory require-
ments (instances required between 25 MB and 400 GB of memory). For the sake
of comparability, all instances have been run on the same machine. For the
complete description of the cluster environment, please refer to https://hpc.uni.
lu/systems/chaos/. We computed the templates of all the elementary matrices
described above. We ran the experiments with version v0.0.1 of the code. For
each input matrix, we measured 30 times the time elapsed to get the template.
The 7 x 7 matrix with 27 permutations ran out of memory and crashed: we
removed it from the graphs. Figures8 and9 depict the elapsed computation
time with respect to the number of permutations to process. As expected, we
observe a drastic rise that characterizes a combinatorial explosion in the number
of permutations.

9 10 11 12 13 14
Number of permutations

Fig. 9. Elapsed time depending on the number of permutations for the 167 matrices.
The diamond represents the average value.

6 Conclusion

In this paper, we presented a tool which verifies whether a linking matrix corre-
sponds to a topologically valid template. Moreover, our approach computes and
draws a template of minimal height corresponding to this linking matrix. This
is especially interesting for linking matrices with a higher number of crossings.
We believe that this tool could benefit the research community as it eases the
process of verifying the validity of a linking matrix, and quickly draws one of its
matching templates.

A possible extension of our work could be to represent the generated tem-
plates as a 3D model in an automated way. One representation of a 3D template
was given by Cross and Gilmore, where they include the torsions as a part of
the global modification [9]. Another visualization was given by Boulant et al.

https://hpc.uni.lu/systems/chaos/
https://hpc.uni.lu/systems/chaos/

118 M. Olszewski et al.

(Fig. 6 of [7]). Such a 3D visualization would allow to be even closer visually to
the nature of a chaotic attractor, and thus could provide more intuitive insights.

Acknowledgments. The experiments presented in this paper were carried out using
the HPC facilities of the University of Luxembourg [29] (see https://hpc.uni.lu). This
work is partially funded by the joint research programme UL/SnT-ILNAS on Digital
Trust for Smart ICT.

References

1. Anastassiou, S., Bountis, T., Petalas, Y.G.: On the topology of the Lii attractor
and related systems. J. Phys. A: Math. Theor. 41(48), 485101 (2008). https://doi.
org/10.1088/1751-8113/41,/48,/485101

2. Barrio, R., Blesa, F., Serrano, S.: Qualitative analysis of the réssler equations:
bifurcations of limit cycles and chaotic attractors. Phys. D: Nonlinear Phenom.
238(13), 1087-1100 (2009). https://doi.org/10.1016/j.physd.2009.03.010

3. Barrio, R., Blesa, F., Serrano, S.: Topological changes in periodicity hubs of dissi-
pative systems. Phys. Rev. Lett. 108(21), 214102 (2012). https://doi.org/10.1103/
physrevlett.108.214102

4. Barrio, R., Dena, A., Tucker, W.: A database of rigorous and high-precision peri-
odic orbits of the Lorenz model. Comput. Phys. Commun. 194, 76-83 (2015).
https://doi.org/10.1016/j.cpc.2015.04.007

5. Beninca, E., Ballantine, B., Ellner, S.P., Huisman, J.: Species fluctuations sustained
by a cyclic succession at the edge of chaos. Proc. Nat. Acad. Sci. 112(20), 6389—
6394 (2015). https://doi.org/10.1073 /pnas.1421968112

6. Birman, J.S., Williams, R.F.: Knotted periodic orbits in dynamical systems—I:
Lorenz’s equation. Topology 22(1), 47-82 (1983). https://doi.org/10.1016/0040-
9383(83)90045-9

7. Boulant, G., Lefranc, M., Bielawski, S., Derozier, D.: A nonhorseshoe template in
a chaotic laser model. Int. J. Bifurcat. Chaos 08(05), 965-975 (1998). https://doi.
org/10.1142/s0218127498000772

8. Budroni, M.A., Calabrese, 1., Miele, Y., Rustici, M., Marchettini, N., Rossi, F.:
Control of chemical chaos through medium viscosity in a batch ferroin-catalysed
Belousov-Zhabotinsky reaction. Phys. Chem. Chem. Phys. 19(48), 32235-32241
(2017). https://doi.org/10.1039/c7cp06601e

9. Cross, D.J., Gilmore, R.: Dressed return maps distinguish chaotic mechanisms.
Phys. Rev. E 87(1), 012919 (2013). https://doi.org/10.1103/physreve.87.012919

10. Ghrist, R.W., Holmes, P.J., Sullivan, M.C.: Knots and Links in Three-Dimensional
Flows. Springer, Berlin (1997). https://doi.org/10.1007/bfb0093387

11. Gilmore, R.: Topological analysis of chaotic dynamical systems. Rev. Mod. Phys.
70(4), 1455-1529 (1998). https://doi.org/10.1103/revmodphys.70.1455

12. Gilmore, R., Rosalie, M.: Algorithms for concatenating templates. Chaos: Interdisc
J. Nonlinear Sci. 26(3), 033102 (2016). https://doi.org/10.1063/1.4942799

13. Kumar, S., Strachan, J.P., Williams, R.S.: Chaotic dynamics in nanoscale NbO;
Mott memristors for analogue computing. Nature 548(7667), 318-321 (2017).
https://doi.org/10.1038 /nature23307

14. Larger, L., Penkovsky, B., Maistrenko, Y.: Laser chimeras as a paradigm for mul-
tistable patterns in complex systems. Nat. Commun. 6(1), 7752 (2015). https://
doi.org/10.1038 /ncomms8752

https://hpc.uni.lu
https://doi.org/10.1088/1751-8113/41/48/485101
https://doi.org/10.1088/1751-8113/41/48/485101
https://doi.org/10.1016/j.physd.2009.03.010
https://doi.org/10.1103/physrevlett.108.214102
https://doi.org/10.1103/physrevlett.108.214102
https://doi.org/10.1016/j.cpc.2015.04.007
https://doi.org/10.1073/pnas.1421968112
https://doi.org/10.1016/0040-9383(83)90045-9
https://doi.org/10.1016/0040-9383(83)90045-9
https://doi.org/10.1142/s0218127498000772
https://doi.org/10.1142/s0218127498000772
https://doi.org/10.1039/c7cp06601e
https://doi.org/10.1103/physreve.87.012919
https://doi.org/10.1007/bfb0093387
https://doi.org/10.1103/revmodphys.70.1455
https://doi.org/10.1063/1.4942799
https://doi.org/10.1038/nature23307
https://doi.org/10.1038/ncomms8752
https://doi.org/10.1038/ncomms8752

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Visualizing the Template of a Chaotic Attractor 119

Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20(2), 130-141 (1963).
https://doi.org/10.1175/1520-0469(1963)020(0130:dnf)2.0.co;2

Malasoma, J.M.: What is the simplest dissipative chaotic jerk equation which is
parity invariant? Phys. Lett. A 264(5), 383-389 (2000). https://doi.org/10.1016/
s0375-9601(99)00819-1

Melvin, P., Tufillaro, N.B.: Templates and framed braids. Phys. Rev. A 44, R3419—
R3422 (1991). https://doi.org/10.1103/PhysRevA.44.R3419

Mindlin, G.B., Hou, X.J., Solari, H.G., Gilmore, R., Tufillaro, N.B.: Classifica-
tion of strange attractors by integers. Phys. Rev. Lett. 64(20), 2350-2353 (1990).
https://doi.org/10.1103/physrevlett.64.2350

Moitzi, M.: svgwrite (Python Library) (2018). https://pypi.org/project/svgwrite/.
Accessed 26 May 2018

Olszewski, M., et al.: Visualizing the template of a chaotic attractor. arXiv preprint
arXiv:1807.11853 (2018)

Rosalie, M.: Templates and subtemplates of Rossler attractors from a bifurcation
diagram. J. Phys. A: Math. Theor. 49(31), 315101 (2016). https://doi.org/10.1088/
1751-8113/49/31/315101

Rosalie, M.: Chaotic mechanism description by an elementary mixer for the tem-
plate of an attractor. arXiv preprint arXiv:1703.02768 (2017)

Rosalie, M., Danoy, G., Chaumette, S., Bouvry, P.: Chaos-enhanced mobility mod-
els for multilevel swarms of UAVs. Swarm Evol. Comput. 41, 36-48 (2018). https://
doi.org/10.1016/j.swevo.2018.01.002

Rosalie, M., Letellier, C.: Systematic template extraction from chaotic attractors: I.
genus-one attractors with an inversion symmetry. J. Phys. A: Math. Theor. 46(37),
375101 (2013). https://doi.org/10.1088/1751-8113/46/37/375101

Rosalie, M., Letellier, C.: Systematic template extraction from chaotic attractors:
II. genus-one attractors with multiple unimodal folding mechanisms. J. Phys. A:
Math. Theor. 48(23), 235101 (2015). https://doi.org/10.1088/1751-8113/48/23/
235101

Rossler, O.: An equation for continuous chaos. Phys. Lett. A 57(5), 397-398 (1976).
https://doi.org/10.1016/0375-9601(76)90101-8

Suzuki, Y., Lu, M., Ben-Jacob, E., Onuchic, J.N.: Periodic, quasi-periodic and
chaotic dynamics in simple gene elements with time delays. Sci. Rep. 6(1), 21037
(2016). https://doi.org/10.1038/srep21037

Tufillaro, N.B.; Abbott, T., Reilly, J.: An Experimental Approach to Nonlinear
Dynamics and Chaos. Addison-Wesley, Redwood City (1992)

Varrette, S., Bouvry, P., Cartiaux, H., Georgatos, F.: Management of an academic
HPC cluster: the UL experience. In: 2014 International Conference on High Perfor-
mance Computing & Simulation (HPCS). IEEE (2014). https://doi.org/10.1109/
hpcsim.2014.6903792

https://doi.org/10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
https://doi.org/10.1016/s0375-9601(99)00819-1
https://doi.org/10.1016/s0375-9601(99)00819-1
https://doi.org/10.1103/PhysRevA.44.R3419
https://doi.org/10.1103/physrevlett.64.2350
https://pypi.org/project/svgwrite/
http://arxiv.org/abs/1807.11853
https://doi.org/10.1088/1751-8113/49/31/315101
https://doi.org/10.1088/1751-8113/49/31/315101
http://arxiv.org/abs/1703.02768
https://doi.org/10.1016/j.swevo.2018.01.002
https://doi.org/10.1016/j.swevo.2018.01.002
https://doi.org/10.1088/1751-8113/46/37/375101
https://doi.org/10.1088/1751-8113/48/23/235101
https://doi.org/10.1088/1751-8113/48/23/235101
https://doi.org/10.1016/0375-9601(76)90101-8
https://doi.org/10.1038/srep21037
https://doi.org/10.1109/hpcsim.2014.6903792
https://doi.org/10.1109/hpcsim.2014.6903792

RAC Drawings

®

Check for
updates

On RAC Drawings of Graphs with One
Bend per Edge

Patrizio Angelini®®, Michael A. Bekos, Henry Forster, and Michael Kaufmann

Wilhelm-Schickhard-Institut fiir Informatik,
Universitat Tiibingen, Tiibingen, Germany
{angelini ,bekos,foersth, mk}@informat ik.uni-tuebingen.de

Abstract. A k-bend right-angle-crossing drawing (or k-bend RAC draw-
ing, for short) of a graph is a polyline drawing where each edge has
at most k£ bends and the angles formed at the crossing points of the
edges are 90°. Accordingly, a graph that admits a k-bend RAC drawing
is referred to as k-bend right-angle-crossing graph (or k-bend RAC, for
short). In this paper, we continue the study of the maximum edge-density
of 1-bend RAC graphs. We show that an n-vertex 1-bend RAC graph
cannot have more than 5.5n — O(1) edges. We also demonstrate that
there exist infinitely many n-vertex 1-bend RAC graphs with exactly
5n — O(1) edges. Our results improve both the previously known best
upper bound of 6.5n — O(1) edges and the corresponding lower bound of
4.5n — O(4/n) edges by Arikushi et al. (Comput. Geom. 45(4), 169-177
(2012)).

1 Introduction

A recent research direction in Graph Drawing, which is currently receiving a
great deal of attention [26,29,31], focuses on combinatorial and algorithmic
aspects for families of graphs that can be drawn on the plane while avoiding
specific kinds of edge crossings; see, e.g., [22] for a survey. This direction is infor-
mally recognized under the term “beyond planarity”. An early work on beyond
planarity (and probably the one that initiated this direction in Graph Draw-
ing) is due to Didimo, Eades, and Liotta [21], who introduced and first studied
the family of graphs that admit polyline drawings, with few bends per edge,
in which the angles formed at the edge crossings are 90°. Their primary moti-
vation stemmed from experiments indicating that the humans’ abilities to read
and understand drawings of graphs are not affected too much, when the edges
cross at large angles [27,28] and the number of bends per edge is limited [34,35].
Their work naturally gave rise to a systematic study of several different variants
of these graphs; see, e.g., [7-9,12,18-20,23].

Formally, a k-bend right-angle-crossing drawing (or k-bend RAC drawing, for
short) of a graph is a polyline drawing where each edge has at most k bends
and the angles formed at the crossing points of the edges are 90°. Accordingly,

© Springer Nature Switzerland AG 2018
T. Biedl and A. Kerren (Eds.): GD 2018, LNCS 11282, pp. 123-136, 2018.
https://doi.org/10.1007/978-3-030-04414-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04414-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-04414-5_9

124 P. Angelini et al.

a graph that admits a k-bend RAC drawing is referred to as k-bend right-angle-
crossing graph (or k-bend RAC, for short); a 0-bend RAC graph (drawing) is
also called a straight-line RAC graph (drawing).

There exist several results for straight-line RAC graphs. Didimo et al. [21]
showed that a straight-line RAC graph with n vertices has at most 4n—10 edges,
which is a tight bound, i.e., there exist infinitely many straight-line RAC graphs
with n vertices and exactly 4n — 10 edges. These graphs are actually referred to
as optimal or mazimally-dense straight-line RAC and are in fact 1-planar [23],
i.e., they admit drawings in which each edge is crossed at most once. In gen-
eral, however, deciding whether a graph is straight-line RAC is NP-hard [8], and
remains NP-hard even if the drawing must be upward [7] or 1-planar [12]. Bach-
maler et al. [10] and Brandenburg et al. [15] presented interesting relationships
between the class of straight-line RAC graphs and subclasses of 1-planar graphs.
Variants, in which the vertices are restricted on two parallel lines or on a circle,
have been studied by Di Giacomo et al. [18], and by Hong and Nagamochi [25].

An immediate observation emerging from this short literature overview is
that the focus has been primarily on the straight-line case; the results for RAC
drawings with bends are significantly fewer. Didimo et al. [21] observed that
1- and 2-bend RAC graphs have a sub-quadratic number of edges, while any
graph with n vertices admits a 3-bend RAC drawing in O(n*) area; the required
area was improved to O(n?®) by Di Giacomo et al. [19]. Quadratic area for 1-
bend RAC drawings can be achieved for subclasses of 1-plane graphs [16]; for
general 1-plane graphs the known algorithm may yield 1-bend RAC drawings
with super-polynomial area [12]. The best-known upper bounds on the number
of edges of 1- and 2-bend RAC graphs are due to Arikushi et al. [9], who showed
that these graphs can have at most 6.5n — 13 and 74.2n edges, respectively.
Arikushi et al. [9] also presented 1- and 2-bend RAC graphs with n vertices, and
4.5n — O(y/n) and 7.83n — O(y/n) edges, respectively. Angelini et al. [7] have
shown that all graphs with maximum vertex degree 3 are 1-bend RAC, while
those with maximum vertex degree 6 are 2-bend RAC. It is worth noting that
the complexity of deciding whether a graph is 1- or 2-bend RAC is still open.

Our Contribution: In this work, we present improved lower and upper bounds
on the maximum edge-density of 1-bend RAC graphs. Note that this type of
problems is commonly referred to as Turan type, and has been widely studied
also in the framework of beyond planarity; see, e.g., [1-5,13,17,24,30,32,33,36].
More precisely, in Sect. 3, we show that an n-vertex 1-bend RAC graph cannot
have more than 5.5n — O(1) edges, while in Sect.4 we demonstrate that there
exist infinitely many 1-bend RAC graphs with n vertices and exactly 5n — O(1)
edges. These two results together further narrow the gap between the best-known
lower and upper bounds on the maximum edge-density of 1-bend RAC graphs
(from 2n to n/2). Our approach for proving the upper bound in Sect.3 builds
upon the charging technique by Arikushi et al. [9], which we overview in Sect. 2.
We discuss open problems in Sect. 5.

On RAC Drawings of Graphs with One Bend per Edge 125

2 Overview of the Charging Technique

In this section, we introduce the necessary notation and we describe the most
important aspects of the charging technique by Arikushi et al. [9] for bounding
the maximum number of edges of a 1-bend RAC graph. Consider an n-vertex
1-bend RAC graph G = (V, E), together with a corresponding 1-bend RAC
drawing " with the minimum number of crossings. The edges of G are partitioned
into two sets Ey and F7, based on whether they are crossing-free in I" (set Ep)
or they have at least a crossing (set E7). Let Gy and G; be the subgraphs of G
induced by Ey and Fq, respectively.

Since Gy is plane, |Ey| < 3n — 6 holds. To estimate |E;|, Arikushi et al.
consider the graph G} that is obtained from the drawing of Gy, by replacing
each crossing point with a dummy vertex; we call G} the planarization of the
drawing of G1. Let V{, E, and F] be the set of vertices, edges, and faces of G7,
respectively. Let deg(v) be the degree of a vertex v of G and s(f) be the size of a
face f of G, that is, the number of edges incident to f. In the charging scheme,
every vertex v of G} is initially assigned a charge ch(v) equal to deg(v) — 4,
while every face f of G} is initially assigned a charge ch(f) equal to s(f) — 4.
By Euler’s formula, the sum of charges over all vertices and faces of G is:

> (deg(v) —4) + Y (s(f) = 4) = 2|B}| — 4|V/| + 2| By | - 4|Fj| = -8
veVy fEF]

In two subsequent discharging phases, they redistribute the charges in G| so
that (i) the total charge remains the same, and (ii) all faces have non-negative
charges. In the first discharging phase, for every edge e with one bend, half a unit
of charge is passed from each of its two endvertices to the face that is incident to
the convex bend of e. Arikushi et al. show that each face of size less than 4 has
at least one convex bend, so it receives at least one unit of charge. Hence, after
this phase, the only faces that have negative charges are the so-called lenses,
which have size 2 and only one convex bend (each lens has charge —1). On the
other hand, the charge of every vertex v € V{ is at least ch’(v) = ; deg(v) — 4.

In the second discharging phase, Arikushi et al. exploit the crossing mini-
mality of I' to guarantee the existence of an injective mapping from the lenses
to the convex bends incident to faces of G} with size at least 4. Since each such
bend yields one additional unit of charge to its incident face, and since this face
has already a non-negative charge due to its size, it is possible to move this
unit from the face to the mapped lens without introducing faces with negative
charge. Hence, after the second phase, the charge ch”(f) of each face f € Fy is
non-negative (and at least as large as its initial charge, i.e., ch”(f) > ch(Jf)).
Since ch”(v) = ch(v), |E1| < 4n — 8 can be proved as follows:

|Ey|—4n =) (; deg(v) — 4> <Y ()< D eh)+ > eh(f) =8

veVy/ vevy veVy/ feF]
(1)

126 P. Angelini et al.

So far, graph G has |Eg| + |E1| < 7Tn — 14 edges. Arikushi et al. improve this
bound in a conclusive analysis based on the observation that a triangular face
of Gy cannot contain edges of F;. Hence, if Gy contains exactly 3n — 6 edges,
then it is a triangulation, and thus E; = (). More in general, they considered how
many edges F7 may contain when Gg is a graph obtained from a triangulation
by removing k edges. Let Vy, Ey, and Fy be the sets of vertices, edges, and faces
of Gy, respectively, and let d(f) be the degree of a face f € Fp, i.e., the number
of its distinct vertices. Then, by Eq.1 we have:

Bl Y (df)-8) (2)

f€Fo;d(f)>3

Arikushi et al. proved that the right-hand side of Eq. 2 is at most 8k. In fact,
the removal of any crossing-free edge e leads to one of the following cases.

C.1 if e was a bridge of a face, this yields a face with the same degree, which
leaves the right-hand side of Eq.2 unchanged;

C.2if e was adjacent to two triangles, this yields a new face f of degree d(f) = 4,
which can contain at most 4d(f) — 8 = 8 edges of E, which increases the
right-hand side of Eq.2 by 8;

C.3 if e was adjacent to a triangle and to a face of degree d(f) (containing at
most 4d(f) — 8 edges of E1), this yields a new face of degree at most d(f)+1,
which can contain at most 4(d(f) + 1) — 8 = 4d(f) — 4 edges of E;, which
increases the right-hand side of Eq.2 by at most 4; finally,

C.4 if e was adjacent to two faces f1 and fo such that d(f1),d(f2) > 3 (containing
at most 4(d(f1) + d(f2)) — 16 edges of Ey), this yields a new face of degree
at most d(f1) + d(f2) — 2, which contains at most 4(d(f1) +d(f2) —2) —8 =
4(d(f1) + d(f2)) — 16 edges of E1, leaving the right-hand side of Eq.2 as is.

Hence, the removal of k uncrossed edges increases the right-hand side of Eq. 2
by at most 8k. With this observation, Arikushi et al. derived two different upper
bounds on the number of edges of G, namely:

|[E|<(B3n—6—-k)+4n—-8=Tn—14—k (3)
|E| < (3n—6—k)+ 8k (4)

The minimum of the two bounds is maximized when k = n/2 — 1, which yields
|E| < 6.5n—13. Arikushi et al. noticed that the bound of 8% is an overestimation,
and that possible refinements would lead to improvements of the overall bound.

3 An Improved Upper Bound

In this section, we describe how to improve the analysis of the charging scheme
described in Sect. 2 to obtain a better upper bound. W.l.o.g., we assume that G
is connected and that n > 5. Let f be a face of Gy. As in the previous section,
we denote by d(f) the degree of f, that is, the number of distinct vertices of f.

On RAC Drawings of Graphs with One Bend per Edge 127

Since f is not necessarily simple or connected, the boundary of f is a disjoint
set of (not necessarily simple) cycles, which are called facial walks; see Fig. la.
We denote by £(f) the length of face f, that is, the number of edges (counted
with multiplicities) in all facial walks of f.

Since a vertex v may occur more than once in a facial walk of f, we denote
by m(v) the number of its occurrences in f minus one (that is, the number of
extra occurrences beyond its first). The sum of such extra occurrences over all
the vertices of face f is denoted by m(f), that is, m(f) = >_, ., my(v). Further,
we denote by b(f) the number of biconnected components of all facial walks of
f. Finally, we assume that an isolated vertex of f (if any) is not a biconnected
component of f, and we denote by i(f) the number of isolated vertices of f. It
is not difficult to see that £(f) = d(f) + m(f) — i(f)-

Vg U5 Vg U5
O O (o] o}
o O U4
U7 Vg V10 U7 O Vg V10
o——oO o (o]
U3 O U3
v VU
oV11 oVt
U8 V8 O
Vg o’UQ
O O
U1 U1
(a) (b)

Fig.1. (a) Illustration of a non-simple, non-connected face f of Gp (colored in
black). The edges of G1 are colored gray. Face f consists of two facial walks (w1 =
(v1,v2,v1,v3, V4, Vs, V6, U7, v8) and wa = (ve, v10)) and an isolated vertex (vi1). Observe
that d(f) = 11 (as f contains 11 distinct vertices), £(f) = 11 (as the sum of the lengths
of wi and ws is 11), mys(v1) = 1 (as v1 appears twice in w1), i(f) = 1 (as v11 is an
isolated vertex of f), and b(f) = 3 (as w1 consists of two biconnected components,
while ws is biconnected). Face f is good, since each of its edges is good. Note that
removing edge (v4,v7) would make edges (vs,vs) and (vg,v10) not good. (b) The faces
of Fi(f) that are surrounding the three biconnected components of f are tiled in gray.

Let G’ be the planarization of the drawing I" of G. As opposed to G, whose
faces are not necessarily connected, the faces of G’ are in fact connected, since G
is connected. Let f be a face of Gy and let e be any edge incident to f. We say
that edge e is good for f if and only if there is no other edge ¢’ incident to f such
that e and ¢’ are both incident to a face g of G’ that lies inside f. Accordingly,
face f is called good if and only if either all its edges are good for f or if f is a
triangle; see Fig. 1a. Note that, if each face of G is good, then every face of the
planarization G’ is either a triangle of crossing-free edges or contains at most one
crossing-free edge, and vice versa. In the next two lemmas, we assume that the
faces of Gy are good; we show later how to guarantee this property. For this, we
may need to introduce parallel edges (but no self-loops) in Gy, which however

128 P. Angelini et al.

are non-homotopic (each region they define contains at least a vertex). Further,
we may need to introduce planar edges with more than one bend; this does not
affect the discharging scheme of Arikushi et al. which only considers Gj.

Lemma 1. Let I' be a drawing of G such that all faces of Gy are good. Then,
each face f of Gy contains at most 2d(f)—2m(f)+2i(f)+4b(f)—8 edges of G1.

Proof. Consider the subgraph G(f) of G which is induced by the interior of f
and let I'(f) be the drawing of G(f) derived from I'. We denote by G1(f) =
(Vi(f), E1(f)) the subgraph of G(f) induced by the set of crossing edges in I'(f),
and by G (f) the planarization of Gy (f).

Let B(f) be the set of biconnected components of f and FY(f) the set of faces
of the drawing of G (f) that is derived from I'(f). Since every edge of f is good,
every biconnected component ¢ € B(f) with length ¢(c) will be surrounded by a
face f. € F{(f) in G} that is of length ¢(f.) > 2¢(c); see Fig. 1b. Hence, before the
discharging phases in the charging scheme of Arikushi et al. (applied on G/ (f)),
the charge of face f! is at least 2¢(c) —4. Since after the second discharging phase,
the charge of each face is at least as much as its initial charge, it follows that
the charge of face f. is still at least 2¢(c) — 4 even after the discharging phases.
Since isolated vertices of f are not surrounded by a face of F}(f), summing up
the charges of all biconnected components of f, we get that

Dok (f) = Y (26(e)—4) = 26(f) —4b(f) = 2(d(f) +m(f)—i(f)) —4b(f)

ceB(f) ce€B(f)

Since, after the second discharging phase, each face has a non-negative charge
and the sum of the charges of faces surrounding biconnected components of f is
a lower bound for the sum of the charges of all faces in Fy(f), we get that

ST (f)= > '(f) =0
freF{(f) ce€B(f)

Hence, by refining Eq.1 we obtain that the number of crossing edges in G(f)
can be upper-bounded as follows

B = 4d(9) = 3 (5 dest) — 1) < o)

vef vef

< ")+ Y eh(f) = 2(d(f) — m(f) +i(f)) + 4b(f)

vef freF{(f)
= —8—2(d(f) + m(f) — i(f)) + 4b(f)
This concludes our proof. a

In the following lemma, we improve Arikushi et al.’s upper bound on the num-
ber of edges of GG; that G may contain, when the plane subgraph Gy is obtained
from a plane triangulation T" by removing k edges, under the assumption that T
may contain non-homotopic parallel edges (but no self-loops), and that each face

On RAC Drawings of Graphs with One Bend per Edge 129

f € Fy of Gg is good. Let t(f) be the minimum number of edges that must be
removed from 7" to obtain f. Similar to Arikushi et al., we preliminarily observe
that a face f of Go with ¢(f) = 0 cannot contain edges of G; in G. If ¢(f) =1,
the only two possible configurations for face f are illustrated in Figs. 2a and b.
In both cases, face f can contain at most two crossing edges. If ¢(f) = 2, the
only three possible configurations for face f are illustrated in Figs. 2c—2e. Then,
face f can contain at most five crossing edges. Let Fy and F¢ be the set of faces
of Gy that can be obtained from triangulation 7" by removing 1 and 2 edges,
respectively, that is, F} = {f € Fo;t(f) = 1} and F} = {f € Fy;t(f) = 2}. By
Lemma 1 and the previous observations, we have

|Er| S2AFS[+5IF51+ > (2d(f) — 2m(f) + 2i(f) +4b(f) —8) (5)
fEFu;t(f)>2

C u A O

(a) 4,0,0,1 (b) 3,1,0,2 (c) 5,0,0,1 (d) 4,1,0,2 (e) 3,0,1,1

- A QY @

(f) 6,0,0,1 (g) 5,1,0,2 (h) 4,0,1,1 (i) 4,2,0,3 (j) 42,0,3 (k) 4,2,0,3

Fig. 2. All bounded faces that can be obtained from T by removing (a)—(b) 1 edge,
(c)—(e) 2 edges, (f)—(k) 3 edges. The caption of each subfigure indicates the values of

(d(f), m(f),i(f), b(f))-

In the following lemma, we prove that a slight overestimation of the right-

hand side of Eq. 5 is upper-bounded by %k, which clearly implies that |FE;| < %k.

Lemma 2. If Gy is obtained from triangulation T by removing k edges, then:

S SIR S (@d() - 2mlf) +20() +40(f)) < 5
fEF;t(f)>2

ko (6)

Proof. Our proof is by induction on k and is similar to the corresponding one
of Arikushi et al. (Lemma 5 in [9]). In contrast to their proof, we assume that
Gy is obtained from triangulation 7' by removing edges in a certain order. In
particular, we want to avoid the case in which the removal of an edge e results
in merging two faces f1 and f such that t(f1),t(f2) > 1 (refer to Case C.4 in

Sect. 2). We guarantee this property as follows. Consider the subgraph D of the
dual of T induced by the edges that are dual to those that we have to remove to

130

P. Angelini et al.

obtain Gy. We remove the edges in the order in which their dual edges appear
in a BFS traversal of each connected component of D. In this way, every inter-
level edge in the BF'S traversal corresponds to removing an edge that is incident
to a triangular face (not visited yet), while each intra-level edge corresponds to
removing a bridge from a face that has been created by previously removed edges.
In both cases, we avoid merging two faces f; and fa such that t(f1),¢(f2) > 1.

Denote by 7(Gp) the left-hand side of Eq.6. In the base of the induction,

k = 0 holds. In this case, graph G coincides with triangulation 7" and thus
7(Go) = 0. In the induction hypothesis, we assume that the lemma holds for
k > 0, and we prove that it also holds for k' = k + 1.

SN ERREIRNE VIR

(a) Cla (b) C.1b (¢) C.le (d) C.2a (e) C.2b () C.2b

Fig. 3. Illustrations of Cases C.1 and C.2. Edge (u,v) is gray-colored.

Let G{, be a plane graph obtained from T by removing k' edges, and let Gy

be the plane graph obtained from T by removing the same k' edges, except for

the
We

C.1

C.2

last one, which we call (u,v). For Go, by induction, it holds that 7(Go) < §k.
consider the following cases:

Edge (u,v) is a bridge of a face f in G such that ¢(f) > 3. Let f’ be the face

of G}, that is obtained by the removal of (u,v). Note that ¢(f’) > 4. Since

(u,v) is a biconnected component of f, it holds that b(f') = b(f) — 1. Since

(u,v) is a bridge, it also holds that d(f') = d(f). To establish the values

of m(f’) and i(f’), we observe that u, or v, or both may become isolated

vertices of Gy, after the removal of (u,v). We study these cases separately.

(a) Both u and v become isolated vertices in Gy; see Fig. 3a. Then m(f’) =
m(f) and i(f') = i(f) + 2. Since 2d(f') — 2m(f') + 2i(f') + 4b(f') — 8 =
20(f) — 2m(F) + 20(f) +2) + A(b(f) — 1) — 8 = 2d(f) — 2m(f) + 2i(f) +
4b(f) — 8, it follows that 7(Gf) = 7(Go) < 5k < §K'.

(b) Exactly one of u and v, say v, becomes an isolated vertex in Gj; see
Fig.3b. Then m(f’) = m(f) — 1 and i(f’) = i(f) + 1. Since 2d(f’) —
2m(f') + 20(f") + (') — 8 = 2d(f) — 2m(f) — 1) + 26(f) + 1) +
A(B(F) — 1) — 8 = 2d(f) — 2m(f) + 2i(f) + 4b(f) — 8, it follows that
T(Gé) = T(G()) < %]ﬂ < %k/

(¢) Neither u nor v becomes an isolated vertex in Gj; see Fig.3c. Then
m(f') = m(f) — 2 and i(f") = i(f). Since 2d(f") — 2m(f") + 20(f") +
1(f7) — 8 = 2d(f) — 20m(f) — 2) + 2i(f) + Ab(]) — 1) — 8 = 2d(f) -
2m(f) + 2i(f) + 4b(f) — 8, it follows that 7(Gj) = 7(Go) < 5k < 3K/

The removal of (u,v) merges a triangular face A (that is, t(A) = 0) with an

adjacent face f of Gy with ¢(f) > 3 into a face f’ of G},. Note that ¢(f") > 4.

We consider two cases:

On RAC Drawings of Graphs with One Bend per Edge 131

(a) Faces A and f share only edge (u,v); see Fig. 3d. Then d(f’) = d(f)+1
m(f') = m(f), b(f') = b(f), i(f") = i(f). Since 2d(f’) — 2m(f’) +
2i(f") +4b(f') =8 = 2(d(f) + 1) — 2m(f) + 2i(f) +4b(f) — 8 = 2d(f) —
2m(f) + 2i(f) + 4b(f) — 8 + 2, it follows that 7(Gf) = 7(Go) + 2 <

Sk+2< K.

(b) Faces A and f share at least two edges; see Fig. 3e and f. By removing
(u,v), the number of occurrences of the third vertex v’ of A increases
by one and the number of biconnected components increases by one.
Then d(f) = d(f), m(f') = m(f) + 1, b(f') = b(f) + 1, i(f') = i(f).
Since 2d(f") — 2m(f') 4+ 2i(f') + 4b(f') — 8 = 2d(f) — 2(m(f) + 1) +
2i(f)+4(b(f)+1)—8 =2d(f) —2m(f)+2i(f)+4b(f) —8+2, it follows
that 7(Gf) = 7(Go) +2 < 5k +2 < 3K

C.3 The removal of (u,v) yields a face f' of G} with ¢(f’) € {1,2,3}. Note that
in the previous cases t(f’) > 4. So, if we rule out this case, then the proof
follows. We consider two cases, which correspond to Cases C.1 and C.2 for
smaller faces, respectively.

(a) Face f’ is obtained by removing a bridge from a face f. Hence, t(f) =
t(f") — 1 and f’ is disconnected. Observe that if ¢(f’) = 1, then face
f' is not disconnected as can be seen from Fig.2a and b. Therefore,
t(f’) > 2 holds in this subcase.

(b) Face f’ is obtained by merging a face f with a triangular face A. Hence,
t(f) = t(f’) — 1 holds. Since A is triangular, we observe that it does
not contribute to 7(Gy).

In both cases, the face f that is eliminated in order to create face f’ is such

that ¢(f) = t(f’) — 1. We observe that 7(Gj) is equal to 7(Gp), plus the

contribution of f’ to 7(Gj), minus the contribution of f to 7(Gg). More

precisely: If ¢(f’) = 1, then 7(Gj) = 7(Go) + 5 —0 < 2k + § = Sk s

Fig. 2a-b. If t(f’) = 2, then 7(G}) = 7(Go) + E -8< 816—!—?S gk'

Fig. 2c—e. Otherwise t(f) = 3; see Fig.2f-k. Th1s nnphes that T(G’) <

7(Go) +(d(f") —2m(f)+21(f’) +4b(f') —8) — L8 Tt is easy to verify that

2d(f") —2m(f") + 21(Y+ 4b(f') -8 < 8 holds for each of the cases shown

in Fig. 2f k. Hence, 7(G}) < 7(Go) + § < 3k + 5 = 3K/,

This concludes the proof. a

By following a counting similar to Arikushi et al. we obtain a bound on the
maximum number of edges of a 1-bend RAC graph with n vertices, when all
the faces of G are good. Since planar graphs have at most 3n — 6 edges even
in the presence of non-homotopic parallel edges, the bound is obtained when
™m—14—k=3n—6—Fk+ %k, that is, k = %(n — 2). This directly implies that
in this case |E| < 5.5n — 11.

In the following, we prove that it is not a loss of generality to assume that
all faces of Gg are good, as otherwise we can augment our graph by adding
only crossing-free edges to G (not necessarily drawn with one bend but rather
as curves), in such a way that every face of Gy becomes good. Recall that we
denote by G’ the planarization of drawing I" of G.

132 P. Angelini et al.

Assume that there exists a face of Gy that is not good. Hence, there exist
at least two edges belonging to Gy which are incident to the same face f’ in
G'. If f’ consists exclusively of edges of Gg, then we triangulate f’. Otherwise,
we traverse the facial walk of f’ starting from any dummy vertex of f’ and we
connect by a crossing-free edge the first occurring vertex that is incident to an
edge of Gy with the last occurring vertex that is also incident to an edge of Gy.
This implies that one of the two faces into which f’ is split contains only one
crossing-free edge, namely the newly added edge. Note that, in both cases, it
is always possible to add the described edges, since we do not require them to
be drawn with one bend. Since in both cases, we split a face into smaller faces,
this process eventually terminates. At the end, each face is either a triangle of
crossing-free edges or contains at most one crossing-free edge. Hence, it is indeed
not a loss of generality to assume that all faces of G are good.

We remark that the aforementioned procedure may result in parallel edges
or self-loops, which are however non-homotopic by construction. In particular, a
self-loop may appear, when the first and the last occurring vertices in the facial
walk are identified and form a cut-vertex of G. Note that while Lemma 2 allows
non-homotopic parallel edges, it does not allow self-loops. Hence, for self-loops
we need to use a different approach. Consider self-loop s. As already mentioned,
s is incident to a cut-vertex of G and encloses a part of I', which we assume
not to contain any other self-loop. Let H; and Hs be the subgraphs of G that
are induced by the vertices of G that are in the interior and the exterior of s,
respectively. Denote by n; and ns the number of vertices of H; and Hs, respec-
tively, and by m; and mq their corresponding number of edges. Observe that
n = ni1+n9e—1. Note that edge s is accounted neither in H; nor in Hy. By induc-
tion, we may assume that m; < 5.5n7 — 11 and my < 5.5n9 — 11. Hence, graph
G (including s) contains at most 5.5(ny +ng) —224+1 =5.5n—15.5 < 5.5n—11
edges. This implies that the upper bound holds even in the presence of self-loops.

We are now ready to state the main theorem of this section.

Theorem 1. Every n-vertex 1-bend RAC graph has at most 5.5n — 11 edges.

4 An Improved Lower Bound

In this section, we present an improved lower bound for the number of edges of
1-bend RAC graphs. Our construction is partially inspired by the corresponding
lower bound constructions of 2-planar graphs [14] and fan-planar graphs [30]
with maximum density.

Theorem 2. There exists infinitely many n-vertex 1-bend RAC graphs with
ezactly b5n — 10 edges.

Proof. A central ingredient in our lower bound construction is the dodecahedral
graph; see Fig.4a. This graph admits a straight-line planar drawing in which
the outer face is a regular pentagon, and the inner faces can be partitioned into
three sets, based on their shape. Namely, the innermost face (shaded in gray
in Fig. 4a) is again a regular pentagon, vertically mirrored with respect to the

On RAC Drawings of Graphs with One Bend per Edge 133

outer one; also, all the faces adjacent to the innermost face have the same shape,
which we will describe more precisely later, and the same holds for all the faces
adjacent to the outer face. In particular, the drawing of each face is symmetric
with respect to the line that is perpendicular to one of its sides (whose length is
denoted by a in Fig. 4b) and passes through its opposite vertex (denoted by A
in Fig. 4b). Adopting the notation scheme of Fig. 4b, in the following we provide
values for the angles and side length ratios to fully describe the shapes of the
faces adjacent to the innermost face and to the outer face; for an illustration,
refer to Fig. 4a.

(i) The five faces adjacent to the innermost face are realized such that the side
of length a is incident to the inner face. Angles o and 3 are 88° and 100°,
respectively. In addition, side-length b is 1.5 times the side-length a.

(ii) The five faces adjacent to the outer face are realized such that the side of
length a is incident to the outer face. Angles o and v are 160° and 54°,
respectively. In addition, side-length b is 8.5 times side-length c.

(a) (©)

Fig. 4. Tlustrations for the lower bound construction: (a) the dodecahedral graph,
(b) angles and edge lengths, and (c) crossing configuration.

Consider two copies D1 and Ds of this drawing of the dodecahedral graph.
Since both the innermost face of D, and the outer face of Dy are drawn as regular
pentagons, after scaling the drawing Do uniformly and mirroring it vertically,
we can construct a drawing of a larger graph by identifying the innermost face

134 P. Angelini et al.

of D with the outer face of Ds. This process can be clearly repeated arbitrarily
many times. The result is a graph family such that every member of this family
admits a straight-line planar drawing, in which each face has one of the shapes
described above.

For our lower bound construction, we add five chords in the interior of each
face of every member of the above family. Hence, the five vertices that are inci-
dent to each face induce a complete graph K5. In the following, we describe how
to draw such chords in the interior of each of the aforementioned faces, based on
their shape, so that the resulting drawing is 1-bend RAC. For an illustration of
the configuration of the crossing edges in each of these faces refer to Fig. 4c; we
will formally define angles a, 81, 82,71, 7y2 shortly. Observe that all edges and
the formed angles are symmetric with respect to the line through vertex A that
is perpendicular to C1Cs. Also, for every three vertices u, w, and v that are con-
secutive along the boundary of the face, the chord (u,v) will cross both chords
incident to w, making a bend between these two crossings. In the following, we
provide values for the angles a1, 81, 82,71, 72 to fully describe the configurations
of the crossing edges.

(i) For the innermost face, oy = 1 = P2 = 71 = 72 = 45° holds; refer to

Fig. ha.
(ii) For the outer face, a3 = 1 = 2 = 71 = 72 = 45° holds; refer to Fig. 5b.
(iii) For the five faces neighboring the innermost face, oy = 40°, 51 = 30°,

B2 = 50°, v1 = 45° and 5 = 60° holds; refer to [6].
(iv) For the five faces neighboring the outer face, ay = 47.5°, 81 = 85°, B2 =
42.5°, 1 = 45° and 2 = 5° holds; refer to [6].

(a) (b)

Fig. 5. Chords inside (a) the innermost face, and (b) the outer face.

It follows that each graph in the family admits a 1-bend RAC drawing. Let G,
be such a graph with n vertices. Next, we discuss the exact number of edges of
graph G,,. Since the crossing-free edges of GG,, form a planar graph, whose faces
are all of length 5, it follows by Euler’s formula that this graph has %(nf 2) edges
and %(n — 2) faces. Since each of these faces contains five chords, the number of

edges of G, is 2(n —2) +5- 2(n — 2) = 5n — 10, and the statement follows. O

On RAC Drawings of Graphs with One Bend per Edge 135

5 Conclusions

In this paper, we improved the previously best lower and upper bounds on
the number of edges of 1-bend RAC graphs. The gap between our lower and
upper bound is approximately n/2. A future challenge will be to further nar-
row this gap. We conjecture that an n-vertex 1-bend RAC graph cannot have
more than 5n — 10 edges (as it is the case for several other classes of beyond
planar graphs; see e.g. [11,30,33]). Significantly more difficult seems to be the
problem of improving the current best lower and upper bounds on the number
of edges of 2-bend RAC graphs, where the gap is significantly wider (approx.,
67n). Closely connected are also complexity related questions; in particular, the
characterization and recognition of 1- and 2-bend RAC graphs are still open.

Acknowlegdment. This project was supported by DFG grant KA812/18-1.

References

1. Ackerman, E.: On the maximum number of edges in topological graphs with no
four pairwise crossing edges. Discrete Comput. Geom. 41(3), 365-375 (2009)

2. Ackerman, E.: On topological graphs with at most four crossings per edge. CoRR
abs/1509.01932 (2015)

3. Ackerman, E., Keszegh, B., Vizer, M.: On the size of planarly connected crossing
graphs. J. Graph Algorithms Appl. 22(1), 11-22 (2018)

4. Ackerman, E., Tardos, G.: On the maximum number of edges in quasi-planar
graphs. J. Comb. Theory, Series A 114(3), 563-571 (2007)

5. Agarwal, P.K., Aronov, B., Pach, J., Pollack, R., Sharir, M.: Quasi-planar graphs
have a linear number of edges. Combinatorica 17(1), 1-9 (1997)

6. Angelini, P., Bekos, M., Forster, H., Kaufmann, M.: On RACdrawings of graphs
with one bend per edge. CoRR 1808.10470 (2018). http://arxiv.org/abs/1808.
10470

7. Angelini, P., et al.: On the perspectives opened by right angle crossing drawings.
J. Graph Algorithms Appl. 15(1), 53-78 (2011)

8. Argyriou, E.N., Bekos, M.A., Symvonis, A.: The straight-line RAC drawing prob-
lem is NP-hard. J. Graph Algorithms Appl. 16(2), 569-597 (2012)

9. Arikushi, K., Fulek, R., Keszegh, B., Moric, F., Téth, C.D.: Graphs that admit
right angle crossing drawings. Comput. Geom. 45(4), 169-177 (2012)

10. Bachmaier, C., Brandenburg, F.J., Hanauer, K., Neuwirth, D., Reislhuber, J.: NIC-
planar graphs. Discrete Appl. Math. 232, 23-40 (2017)

11. Bae, S.W., et al.: Gap-planar graphs. In: Frati, F., Ma, K.-L. (eds.) GD 2017.
LNCS, vol. 10692, pp. 531-545. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-73915-1_41

12. Bekos, M.A., Didimo, W., Liotta, G., Mehrabi, S., Montecchiani, F.: On RAC
drawings of 1-planar graphs. Theor. Comput. Sci. 689, 48-57 (2017)

13. Bekos, M.A., Kaufmann, M., Raftopoulou, C.N.: On the density of non-simple 3-
planar graphs. In: Hu, Y., No6llenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp.
344-356. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50106-2_27

14. Bekos, M. A., Kaufmann, M., Raftopoulou, C.N.: On optimal 2- and 3-planar graphs.
In: Aronov, B., Katz, M.J. (eds.) Symposium on Computational Geometry. LIPIcs,
vol. 77, pp. 16:1-16:16, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2017)

http://arxiv.org/abs/1808.10470
http://arxiv.org/abs/1808.10470
https://doi.org/10.1007/978-3-319-73915-1_41
https://doi.org/10.1007/978-3-319-73915-1_41
https://doi.org/10.1007/978-3-319-50106-2_27

136

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

P. Angelini et al.

Brandenburg, F.J., Didimo, W., Evans, W.S., Kindermann, P.; Liotta, G., Montec-
chiani, F.: Recognizing and drawing IC-planar graphs. Theor. Comput. Sci. 636,
1-16 (2016)

Chaplick, S., Lipp, F., Wolff, A., Zink, J.: 1-bend RAC drawings of NIC-planar
graphs in quadratic area. In: Mulzer, W. (ed.) Proceedings of the 34th European
Workshop on Computational Geometry (EuroCG 2018). Berlin (2018, to appear)
Cheong, O., Har-Peled, S., Kim, H., Kim, H.: On the number of edges of fan-
crossing free graphs. Algorithmica 73(4), 673-695 (2015)

Di Giacomo, E., Didimo, W., Eades, P., Liotta, G.: 2-layer right angle crossing
drawings. Algorithmica 68(4), 954-997 (2014)

Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H.: Area, curve complexity, and
crossing resolution of non-planar graph drawings. Theory Comput. Syst. 49(3),
565-575 (2011)

Didimo, W., Eades, P., Liotta, G.: A characterization of complete bipartite RAC
graphs. Inf. Process. Lett. 110(16), 687-691 (2010)

Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings.
Theor. Comput. Sci. 412(39), 5156-5166 (2011)

Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond
planarity. CoRR abs/1804.07257 (2018)

Eades, P., Liotta, G.: Right angle crossing graphs and 1-planarity. Discrete Appl.
Math. 161(7-8), 961-969 (2013)

Fox, J., Pach, J., Suk, A.: The number of edges in k-quasi-planar graphs. STAM J.
Discrete Math. 27(1), 550-561 (2013)

Hong, S.-H., Nagamochi, H.: Testing full outer-2-planarity in linear time. In: Mayr,
E.W. (ed.) WG 2015. LNCS, vol. 9224, pp. 406-421. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-53174-7_29

Hong, S., Tokuyama, T.: Algorithmics for beyond planar graphs. NII Shonan Meet-
ing Seminar 089, 27 November—1 December 2016

Huang, W.: Using eye tracking to investigate graph layout effects. In: Hong, S.,
Ma, K. (eds.) APVIS, pp. 97-100. IEEE Computer Society (2007)

Huang, W., Eades, P., Hong, S.: Larger crossing angles make graphs easier to read.
J. Vis. Lang. Comput. 25(4), 452-465 (2014)

Kaufmann, M., Kobourov, S., Pach, J., Hong, S.: Beyond planargraphs: Algorith-
mics and combinatorics. Dagstuhl Seminar 16452, 6-11 November 2016
Kaufmann, M., Ueckerdt, T.: The density of fan-planar graphs. CoRR
abs/1403.6184 (2014)

Liotta, G.: Graph drawing beyond planarity: Some results and open problems.
SoCG Week, Invited talk (4 July 2017)

Pach, J., Radoici¢, R., Tardos, G., Téth, G.: Improving the crossing lemma by finding
more crossings in sparse graphs. Discrete Comput. Geom. 36(4), 527-552 (2006)
Pach, J., Téth, G.: Graphs drawn with few crossings per edge. Combinatorica
17(3), 427-439 (1997)

Purchase, H.C.: Effective information visualisation: a study of graph drawing aes-
thetics and algorithms. Interact. Comput. 13(2), 147-162 (2000)

Purchase, H.C., Carrington, D.A., Allder, J.: Empirical evaluation of aesthetics-
based graph layout. Empir. Softw. Eng. 7(3), 233255 (2002)

Ringel, G.: Ein Sechsfarbenproblem auf der Kugel. Abh. Math. Sem. Univ. Hamb.
29, 107-117 (1965)

https://doi.org/10.1007/978-3-662-53174-7_29

®

Check for
updates

Compact Drawings of 1-Planar Graphs
with Right-Angle Crossings
and Few Bends

Steven Chaplick@®, Fabian Lipp®, Alexander Wolff®, and Johannes Zink®™)

Lehrstuhl fiir Informatik I, Universitat Wiirzburg, Wiirzburg, Germany
{steven.chaplick,fabian.lipp,alexander.wolff,
johannes.zink}@uni-wuerzburg.de
http://wwwl.informatik.uni-wuerzburg.de/en/staff

Abstract. We study the following classes of beyond-planar graphs: 1-
planar, IC-planar, and NIC-planar graphs. These are the graphs that
admit a 1-planar, IC-planar, and NIC-planar drawing, respectively. A
drawing of a graph is I-planar if every edge is crossed at most once.
A 1-planar drawing is IC-planar if no two pairs of crossing edges share
a vertex. A l-planar drawing is NIC-planar if no two pairs of crossing
edges share two vertices.

We study the relations of these beyond-planar graph classes to right-
angle crossing (RAC) graphs that admit compact drawings on the grid
with few bends. We present four drawing algorithms that preserve the
given embeddings. First, we show that every n-vertex NIC-planar graph
admits a NIC-planar RAC drawing with at most one bend per edge on
a grid of size O(n) x O(n). Then, we show that every n-vertex l-planar
graph admits a 1-planar RAC drawing with at most two bends per edge
on a grid of size O(n®) x O(n?). Finally, we make two known algorithms
embedding-preserving; for drawing 1-planar RAC graphs with at most
one bend per edge and for drawing IC-planar RAC graphs straight-line.

1 Introduction

In graph theory and graph drawing, beyond-planar graph classes have expe-
rienced increasing interest in recent years. A prominent example is the class
of I-planar graphs, that is, graphs that admit a drawing where each edge is
crossed at most once. The 1-planar graphs were introduced by Ringel [18] in
1965; Kobourov et al. [15] surveyed them recently. Another example that has
received considerable attention are RACy graphs, that is, graphs that admit a
poly-line drawing where all crossings are at right angles and each edge has at
most k bends. The RACy, graphs were introduced by Didimo et al. [7]. Using
right-angle crossings and few bends is motivated by several cognitive studies
suggesting a positive correlation between large crossing angles or small curve
complexity and the readability of a graph drawing [13,14,17].

The full version of this paper is available on arXiv [4] and the appendices are given
therein.
© Springer Nature Switzerland AG 2018

T. Biedl and A. Kerren (Eds.): GD 2018, LNCS 11282, pp. 137-151, 2018.
https://doi.org/10.1007/978-3-030-04414-5_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04414-5_10&domain=pdf
http://orcid.org/0000-0003-3501-4608
http://orcid.org/0000-0001-7833-0454
http://orcid.org/0000-0001-5872-718X
https://doi.org/10.1007/978-3-030-04414-5_10

138 S. Chaplick et al.

We investigate the relationships between (certain subclasses of) 1l-planar
graphs and RACy graphs that admit drawings on a polynomial-size grid. The
prior work and our contributions are summarized in Fig.2. A broader overview
of beyond-planar graph classes is given in a recent survey by Didimo et al. [§].

(a) RACo (b) IC-planar (c¢) NIC-planar ~ (d) l-planar (e) 1-planar
drawing. drawing. drawing. drawing. RAC,; drawing.

Fig. 1. Examples of different types of drawings. Figure 1d and e show drawings of the
same graph. Figure le is taken from the Annotated Bibliography on 1-Planarity [15].

Basic Terminology. A mapping I is called a drawing of the graph G = (V, E) if
each vertex v € V is mapped to a point in R? and each edge uv is mapped to a
simple open Jordan curve in R? such that the endpoints of this curve are I"(u)
and I'(v). For convenience, we will refer to the points and simple open Jordan
curves of a drawing as vertices and edges. The topologically connected regions
of R? \ I' are the faces of I". The unbounded face of I' is its outer face; the
other faces are inner faces. Each face defines a circular list of bounding edges
(resp. edge sides), which we call its boundary list. Two drawings of a graph G are
equivalent when they have the same set of boundary lists for their inner faces and
outer faces. Each equivalence class of drawings of G is an embedding. A k-bend
(poly-line) drawing is a drawing in which every edge is drawn as a connected
sequence of at most k + 1 line segments. The (up to) k inner vertices of an edge
connecting these line segments are called bend points or bends. A 0-bend drawing
is more commonly referred to as a straight-line drawing. A drawing on the grid
of size w X h is a drawing where every vertex, bend point, and crossing point has
integer coordinates in the range [0,w] X [0, h]. In any drawing we require that
vertices, bends, and crossings are pairwise distinct points. A drawing is 1-planar
if every edge is crossed at most once. A 1-planar drawing is independent-crossing
planar (IC-planar) if no two pairs of crossing edges share a vertex. A 1-planar
drawing is near-independent-crossing planar (NIC-planar) if any two pairs of
crossing edges share at most one vertex. A drawing is right-angle-crossing (RAC')
if (i) it is a poly-line drawing, (i¢) no more than two edges cross in the same
point, and (%i) in every crossing point the edges intersect at right angles. We
further specialize the notion of RAC drawings. A drawing is RACy, if it is RAC
and k-bend; it is RACP®Y if it is RAC and on a grid whose size is polynomial in
its number of vertices. Examples for IC-planar, NIC-planar, 1-planar, and RAC
drawings are given in Fig. 1. The planar, 1-planar, NIC-planar, IC-planar, and
RAC), graphs are the graphs that admit a crossing-free, 1-planar, NIC-planar,

Compact Drawings of 1-Planar Graphs with Right-Angle Crossings 139

IC-planar, and RAC}, drawing, respectively. More specifically, RACZOly is the set
of graphs that admit a RACZOly drawing. A plane, 1-plane, NIC-plane, and IC-
plane graph is a graph given with a specific planar, 1-planar, NIC-planar, and IC-
planar embedding, respectively. In a 1-planar embedding the edge crossings are
known and they are stored as if they were vertices. We will denote an embedded
graph by (G,) where G is the graph and £ is the embedding of this graph. For a
point p in the plane, let 2(p) and y(p) denote its x- and y-coordinate, respectively.
Given two points p and ¢, we denote the straight-line segment connecting them
by pg and its length, the Euclidean distance of p and ¢, by ||pq||-

/ RACgOly = all graphs

/V is contained in (incl.

fixed embeddings)
/v is contained in (open
for fixed embeddings)
open if contained or in-
comparable

open if contained or
containing or incompa-
rable

IC-planar)

A

L
.+ incomparable
planar

Fig. 2. Relating some classes of (beyond-)planar graphs and RAC graphs. Our main
results are the containment relationships indicated by the thick blue arrows (Color
figure online).

Previous Work. In the diagram in Fig. 2, we give an overview of the relation-
ships between classes of 1-planar graphs and RACy graphs. Clearly, the planar
graphs are a subset of the IC-planar graphs, which are a subset of the NIC-
planar graphs, which are a subset of the 1-planar graphs. It is well known that
every plane graph can be drawn with straight-line edges on a grid of quadratic
size [10,19]. Every IC-planar graph admits an IC-planar RACy drawing but
not necessarily in polynomial area [3]. Moreover, there are graphs in RACSOly
that are not 1-planar [9] and, therefore, also not IC-planar. The class of RACy
graphs is incomparable with the classes of NIC-planar graphs [1] and 1-planar
graphs [9]. Bekos et al. [2] showed that every 1-planar graph admits a 1-planar
RAC; drawing, but their recursive drawings may need exponential area. Every
graph admits a RAC3 drawing in polynomial area, but this does not hold if a
given embedding of the graph must be preserved [7].

140 S. Chaplick et al.

Our Contributions. We contribute four new results; two main results and two
adaptations of prior results. First, we constructively show that every NIC-plane
graph admits a RAC; drawing in quadratic area; see Sect. 2. This improves upon
a side result by Liotta and Montecchiani [16], who showed that every IC-plane
graph admits a RACs drawing on a grid of quadratic size. Second, we construc-
tively show that every l-plane graph admits a RAC,; drawing in polynomial
area; see Sect. 3. Beside these two main results, we show how to preserve a given
embedding when computing RAC drawings. Precisely, we show Theorem 1 in
Appendix D.1 by adapting an algorithm of Bekos et al. [2] and we show The-
orem 2 in Appendix D.2 by adapting an algorithm of Brandenburg et al. [3].

Theorem 1. Any n-vertex 1-plane graph admits an embedding-preserving
RAC) drawing. It can be computed in O(n) time.

Theorem 2. Any straight-line drawable n-vertex IC-plane graph admits an
embedding-preserving RACy drawing. It can be computed in O(n3) time.

2 NIC-Planar 1-Bend RAC Drawings in Quadratic Area

In this section we constructively show that quadratic area is sufficient for RAC,
drawings of NIC-planar graphs. We prove the following.

Theorem 3. Any n-vertex NIC-plane graph (G, &) admits a NIC-planar RAC
drawing that respects £ and lies on a grid of size O(n) x O(n). The drawing can
be computed in O(n) time.

Preprocessing. Our algorithm gets an n-vertex NIC-plane graph (G, £) as input.
We first aim to make (G, &) biconnected and planar so that we can draw it
using the algorithm by Harel and Sardas [11]. Around each crossing in &, we
insert up to four dummy edges to obtain empty kites. A kite is a K4 that is
embedded such that (i) every vertex lies on the boundary of the outer face,
and (ii) there is exactly one crossing, which does not lie on the boundary of
the outer face. A kite K as a subgraph of a graph H is said to be empty if
there is no edge of H\K that is on an inner face of K or crosses edges of K.
Inserting a dummy edge could create a pair of parallel edges. If this happens,
we subdivide the original edge participating in this pair by a dummy vertex
(see the transition from Fig.3a — b). Note that we never create parallel dummy
edges since G is NIC-planar. After this, we remove both crossing edges from each
empty kite and obtain empty quadrangles (see Fig. 3c). We store each such empty
quadrangle in a list Q). At the end of the preprocessing, we make the resulting
plane graph biconnected via, e.g., the algorithm of Hopcroft and Tarjan [12].
Since each empty quadrangle is contained in a biconnected component, no edges
are inserted into it. Let (G',E’) be the resulting plane biconnected graph.

https://arxiv.org/pdf/1806.10044v4.pdf#nameddest=subsection.A.4.1
https://arxiv.org/pdf/1806.10044v4.pdf#nameddest=subsection.A.4.2

Compact Drawings of 1-Planar Graphs with Right-Angle Crossings 141

(a) crossing as it (b) empty kite and sub- (¢) empty quad- (d) divided quad-
initially appears divided original edge rangle rangle

Fig. 3. Modifying the crossings and computing the BCO.

Drawing Step. Now, we draw a graph that we obtain from (G’,&’) by first
producing a biconnected canonical ordering (BCO)'. We use the algorithm by
Harel and Sardas [11], which is a generalization of the algorithm of Chrobak
and Payne [5], which in turn is based on the shift algorithm of de Fraysseix
et al. [10]. The algorithm of Harel and Sardas consists of two phases. Given a
plane biconnected graph H, in the first phase a BCO II of the vertices in H
is computed. In the second phase, H is drawn according to I on a grid of size
(2|V(H)|—4) x (JV(H)| —2). Unlike the classical shift algorithm, the algorithm
of Harel and Sardas computes the (biconnected) canonical ordering bottom-up,
which we will exploit here. Let ITj, = (v1,...,vx) be a partial BCO of H after
step k, and let Hy be the plane subgraph of H induced by IT;. We say that a
vertex u is covered by vy if u is on the boundary of the outer face of Hy_1, but
not on that of Hy.

We perform the following additional operations when we compute the
BCO II. Whenever we reach an empty quadrangle ¢ = (a,b,c,d) of the list @ for
the first time, i.e., when the first vertex of ¢g—say a—is added to the BCO, we
insert an edge inside ¢ from a to the vertex opposite a in ¢, that is, to c. We call
the resulting structure a divided quadrangle (see Fig.3d). In two special cases,
we perform further modifications of the graph. They will help us to guarantee
a correct reinsertion of the crossing edges in the next step of the algorithm.
Namely, when we encounter the last vertex vi.st € {b,c,d} of ¢, we distinguish
three cases.

Case 1: v, = ¢ (see Fig.4a). Here, no operations are performed.

Case 2: vlg € {,d}, and the other of {b,d} is covered by ¢ (see Fig. 4b).
We insert a dummy vertex wvghifr, which we call shift vertex, into the current
BCO directly before v, and make it adjacent to a and c. Observe that, if
VUshift 18 the k-th vertex in II , this still yields a valid BCO since vgpiy has two

1 BCOs are a generalization of canonical orderings that assume only biconnectivity
(instead of triconnectivity). In a BCO of a plane graph H, the subgraph Hjy of H
induced by v1, ..., v is connected, the edge viv2 lies on the boundary of the outer
face and all vertices in H — H}, lie within the outer face of Hy. For k > 2, the vertex v
has one or more neighbors in Hy_;. If vx has exactly one neighbor u in Hx_1, then
it has a legal support on the outer face of Hx_1, i.e., in the circular order of adjacent
vertices around u, it follows or precedes a vertex in Hy_1.

142 S. Chaplick et al.

neighbors in IT;_; and is on the outer face of the subgraph induced by IIj,_.
Later, we will remove vgpie, but for now it forces the algorithm of Harel and
Sardas to shift a and ¢ away from each other before v,¢ is added.
Case 3: gt € {b,d}, and neither b nor d is covered by ¢ (see Fig. 4c).

Let {viower} = {b,d} \ viast. We subdivide the edge aviower via a dummy
verteX Udqummy- If @Viower is an original edge of the input graph, this edge
will be bent at vqummy in the final drawing. We insert vqummy into the cur-
rent BCO directly before vjgwer. To obtain a divided quadrangle again, we
insert the dummy edge aviower, Which we will remove before we reinsert
the crossing edges. This will give us some extra space inside the triangle
(@, Vdummy Viower) for a bend point. Inserting vqummy as k-th vertex into T
keeps IT valid since Udummy USes the support edge incident to a that would
have been covered by viower Otherwise. Then, vjower has at least two neighbors
in ﬁk, namely a and vVqummy-

We draw the resulting plane biconnected fi-vertex graph (G, €) according to
its BCO II via the algorithm by Harel and Sardas and obtain a crossing-free
drawing I'. We do not modify the actual drawing phase.

a

(a) Case 1; viast = ¢

€{b,d}

(d) Case 1

Ushift

a

(b) Case 2; viasy = d and b
is covered by ¢

d

C
€{v,d}
e{a,c} Pcross
a

(e) Case 2

d = Vyagt

C
b=

Vlower

a Vdummy

(c) Case 3; viast = d and b is
not covered by ¢

Vdummy
€{b.d} €la,c}

(f) Case 3

Fig. 4. Divided quadrangles produced in the three cases of the drawing step (a)—(c) and
the crossing edges after the reinsertion step (d)—(f) in our algorithm. For orientation,
lines with slope 1 or —1 are dashed violet. (Color figure online)

Postprocessing (Reinserting the Crossing Edges). We refine the underlying grid
of I' by a factor of 2 in both dimensions. Let ¢ = (a, b, ¢, d) be a quadrangle in @,

Compact Drawings of 1-Planar Graphs with Right-Angle Crossings 143

where a is the first and viag; the last vertex in I7 among the vertices in ¢. From g,
we first remove the chord edge ac and obtain an empty quadrangle. Then, we
distinguish three cases for reinserting the crossing edges that we removed in the
preprocessing. These are the same cases as in the description of the modified
computation of the BCO before. In this case distinction we omit some lengthy
but straight-forward calculations; see Zink’s master’s thesis [21] for the details.

Case 1: vj,s; = ¢ (see Fig. 4a).
Since c is adjacent to a, b, and d in G, it has the largest y-coordinate among
the vertices in ¢. Assume that y(d) is smaller or equal to y(b) since the other
case is symmetric. An example of a quadrangle in this case before and after
the reinsertion of the crossing edges is given in Fig. 4a and d, respectively. We
will have a crossing point at (z(a),y(d)). To this end, we insert the edge ac
with a bend at e, = (x(a),y(d)+1) and we insert the edge bd with a bend at
epd = (z(a) +1,y(d)). Clearly the crossing is at a right angle. Observe that g
is convex since c is the last drawn vertex of ¢ and ¢ is adjacent to b, a, and d
in this circular order in the embedding and observe that both bend points lie
inside q. Therefore, it follows that both crossing edges lie completely inside q.

Case 2: vjg € {b,d}, and the other of {b, d} is covered by ¢ (see Fig. 4b).
Assume that y(d) > y(b); the other case is symmetric. An example of a quad-
rangle in this case before and after the reinsertion of the crossing edges is
given in Fig. 4b and e, respectively. We remove vgpiry in addition to removing
the edge ac. We define the crossing point peross = (Zeross, Yeross) as the inter-
section point of the lines with slope 1 and —1 through ¢ and b, respectively.
The coordinates of this crossing point are Teross = (z(c) —y(c)+x(b) +y(b))/2
and Yeross = (—x(c) + y(c¢) + z(b) + y(b))/2. Since we refined the grid
by a factor of 2 in each dimension, the above coordinates are both inte-
gers. We place the two bend points onto the same lines at the closest grid
points that are next to pcross, i-€., we draw the edge ac with a bend point
at €ge = (Teross — 1y Yeross — 1) and we insert the edge bd with a bend point
at epg = (Teross — 1y Yeross + 1). We do not intersect or touch the edge ad
because we shifted a far enough away from ¢ by the extra shift due to vgpi.
Moreover, the points e,. and peross on the line with slope 1 through c are
inside the empty quadrangle g since b is covered by ¢ (then b is below the line
with slope 1 through ¢) and y(b) is at most equal to y(eqc)-

Case 3: vjagt € {b,d}, and neither b nor d is covered by ¢ (see Fig. 4c).
Assume that y(d) > y(b); again, the other case is symmetric. An example of
a quadrangle in this case before and after the reinsertion of the crossing edges
is given in Figs. 4c and f, respectively. Note that the edge ab is a dummy edge,
which we inserted during the computation of I , and next to this edge, there is
the path avqummyb. This path is the former edge ab. We will reinsert the edges
ac and bd such that they cross in (z(c),y(b)). We will bend the edge bd on
the line with slope 1 through ¢ at y = y(b) because from this point we always
“see” d inside ¢. So, we define Tpena = z(c) — Ay with Ay = y(c) — y(b).
First, we remove the dummy edge ab. Second, we insert the edge ac with a
bend point at eq. = (x(c),y(b) — 1). Third, we insert the edge bd with a bend

144 S. Chaplick et al.

point at epq = (Tbend, y(b)). Note that e,. might be below the straight-line
segment ab since a could have been shifted far away from c. However, eq.
cannot be on or below the path avVqummyb because y(vdummy) < Y(€ac) and
the slope of the line segment vgummyb is either greater than 1 or negative.
Therefore, the crossing edges ac and bd lie completely inside the pentagonal
face (@, Yaummy, 0 ¢, d).

Result. After we have reinserted the crossing edges into each quadrangle of @, we
remove all dummy edges and transform the remaining dummy vertices to bend
points. The resulting drawing I" is a RAC; drawing that preserves the embedding
of the NIC-plane input graph (G, €). In Appendix A (p. 15), we bound the size
of the grid that our drawings need, as follows.

Lemma 4. FEvery vertex, bend point, and crossing point of the drawing returned
by our algorithm lies on a grid of size at most (16n — 32) x (8n — 16).

The shift algorithm of Harel and Sardas runs in linear time [11]. Also, our
additional operations can be performed in linear time [21]. This proves Theo-
rem 3. We give a full example of a NIC-plane RAC; drawing generated by a
Java implementation of our algorithm in Figs.9 and 10 in Appendix B.

3 1-Planar 2-Bend RAC Drawings in Polynomial Area

In this section we constructively prove the following.

Theorem 5. Any n-vertex 1-plane graph (G, &) admits a 1-planar RACy draw-
ing that respects £ and lies on a grid of size O(n®) x O(n3). The drawing can be
computed in O(n) time.

The idea of our algorithm is to draw a slightly modified, planarized version
of the 1-plane input graph with a variant of the shift algorithm (by Harel and
Sardas [11]) and then “manually” redraw the crossing edges so that they cross at
right angles and have at most two bends each. The difficulty is to find grid points
for the bend points and the crossings so that the redrawn edges do not touch or
cross the surrounding edges drawn by the shift algorithm. To this end, we refine
our grid and place the middle part of each crossing edge onto a horizontal or
vertical grid line so that the edge crossings are at right angles.

Preprocessing. Our algorithm gets an n-vertex 1l-plane graph (G, &) as input.
First, we planarize G by replacing each crossing point by a vertex (see Fig. 5a).
We will refer to them as crossing vertices. Second, we enclose each crossing
vertex by a subdivided kite, which is an empty kite where the four boundary
edges are subdivided by a vertex (see Fig. 5b). We use subdivided kites instead
of empty kites to maintain the embedding and to avoid adding parallel edges.
Third, we make the graph biconnected using, e.g., the algorithm of Hopcroft and
Tarjan [12]. Note that we do not insert edges into inner faces of subdivided kites
because all vertices and edges of a subdivided kite are in the same biconnected

https://arxiv.org/pdf/1806.10044v4.pdf#nameddest=section.A.1
https://arxiv.org/pdf/1806.10044v4.pdf#nameddest=section.A.2

Compact Drawings of 1-Planar Graphs with Right-Angle Crossings 145

a a
4 d4 4 d3
as as
ai c ai J
2
a9 dy a2

(a) Planarized crossing where the crossing (b) Enclosing the crossing vertex ¢ by a
point became a crossing vertex c. subdivided kite.

Fig.5. A crossing point is replaced by a crossing vertex ¢ and we insert four 2-paths
of two dummy edges and a dummy vertex to induce a subdivided kite at each crossing.
The vertices di1, d2, ds, and d4 are the dummy vertices of these 2-paths.

component. After these three steps, we have a biconnected plane graph (G’ £’).
We draw (G',£’) using the algorithm of Harel and Sardas [11]. This algorithm
returns a crossing-free straight-line drawing I'” of (G’, "), whose vertices lie on
a grid of size (2n’ —4) x (n’ — 2), where n’ is the number of vertices of G’.

Assignment of Edges to Axis-Parallel Half-Lines. For each crossing vertex ¢ there
are four incident edges in G’. They correspond to two edges of G. Consider the
circular order around c¢ in (G’,&’). The first and the third edge incident to ¢
correspond to one edge in (G, £); symmetrically, the second and fourth incident
edge correspond to one edge. To obtain a RAC drawing from this, we redraw
each of the four edges around c. Consider an edge ac from a vertex a of the
subdivided kite to the crossing vertex c. This edge is then redrawn with a bend
point b that lies on an axis-parallel line through c. For an example how a crossing
in I is replaced by a RAC crossing, see the transition from Fig. 8a to f. In order
to obtain a right-angle crossing, we bijectively assign the four incident edges
to the four axis-parallel half-lines originating in c¢. We call such a mapping an
assignment. We do not take an arbitrary assignment, but take care to avoid
extra crossings with edges that are redrawn or previously drawn. We call an
assignment A valid if there is a way to redraw each edge e with one bend so that
the bend point of e lies on the half-line A(e) and the resulting drawing is plane.

To ensure that our valid assignment can be realized on a small grid, we
introduce further criteria. We say that an edge e; depends on another edge e
with respect to an assignment A if es lies in the angular sector between e; and
the half-line A(e;). In Fig. 6a, for example, the edge es depends on e4 and eq
depends on e, but e; and e4 do not depend on any edge. We call edges (such
as e; and e4) that do not depend on other edges independent. We define the
dependency depth of an assignment to be the largest integer k¥ with 0 < k < 3
such that there is a chain of k+1 edges ej, ea, ..., ex+1 incident to ¢ such that e;
depends on ey and ... and e; depends on eg;1, but there is no such chain of
k + 2 edges. For example, in Fig. 6a, b, and c, the assignment has a dependency
depth of 1, whereas in Fig.6d, the assignment has a dependency depth of 0.
Showing that there is a valid assignment of dependency depth at most 1 will
imply the existence of an appropriate set of grid points for the bend points as

146 S. Chaplick et al.

formalized in Lemmas 7 and 8. In fact, as we will see in the discussion below, if we
could avoid dependencies, our drawing would fit on a grid of size O(n?) x O(n?).
Unfortunately, with our current approach this seems to be unavoidable.

We now construct an assignment that we will show in Lemma 6 to be valid
and to have dependency depth at most 1. The four cases of our assignment are
given in order of priority. Note that, in Cases 1 and 2, our assignment always
contains dependencies; see Fig. 6a and b. Note further that it is enough to specify
the assignment of one edge; the remaining assignment is determined since the
circular orders of the edges and the assigned half-lines must be the same.

he e/ e ha
€3
€3 N
q 5h3
(a) Case 1: ¢ con- (b) Case 2: ¢ con- (c) Case 3: ¢ con- (d) Case 4: One edge
tains four edges. tains three edges. tains two edges. per quadrant.

hy: e

hs:
(e) Case 1. (f) Case 2. (g) Case 3. (h) Case 4.

Fig. 6. The four cases of our assignment procedure: (a)—(d) indicate the assignment
with orange arrows and show that the dependency depth is always at most 1, (e)—(f)
show that the assignment is valid; the radius of the light blue disk is e.

Case 1: There is a quadrant ¢ that contains all four incident edges; see Fig. 6a.
Take the two “inner” edges in ¢ and assign them to the two half-lines that
bound ¢, while keeping the circular order.

Case 2: There is a quadrant ¢ that contains three incident edges; see Fig. 6b.
Consider the edge outside ¢, say e, and assign it to the closest half-line h;
that does not bound gq.

Case 3: There is a quadrant ¢ that contains two incident edges; see Fig. 6¢.
Assign the incident edges in ¢ to their closest half-lines.

Case 4: Each quadrant contains exactly one incident edge; see Fig. 6d.

Assign each edge to its closest half-line in counter-clockwise direction.

See also Appendix C, where we prove the following lemma on p. 16.

Lemma 6. Our assignment procedure returns a valid assignment with depen-
dency depth at most 1.

https://arxiv.org/pdf/1806.10044v4.pdf#nameddest=section.A.3

Compact Drawings of 1-Planar Graphs with Right-Angle Crossings 147

Note that Lemma 6 already gives us a RAC, drawing of the input graph,
but in order to get a (good) bound on the grid size of the drawing, we have to
place the bend points on a grid that is as coarse as possible, but still fine enough
to provide us with grid points where we need them: on the half-lines emanating
from the crossing vertices. This is what the remainder of this section is about.

a

(a) available polygon (b) triangle for valid edge placement given points p and ¢

Fig. 7. Example of an available polygon in which we determine the points p and ¢ and
with them the triangle for valid edge placement and the line segment gc.

Placement of Bend Points on the Grid. In I'', we have a drawing of a subdivided
kite for every crossing in the 1-plane input graph. It is an octagon with a central
crossing vertex ¢ of degree four in its interior. For an example, see Fig.8a. We
will redraw the straight-line edges between ¢ and its four adjacent vertices as
1-bend edges according to the assignment A computed in the previous step. The
segment of such a 1-bend edge ac that ends at ¢ will lie on the axis-parallel
half-line A(ac). If we pair and concatenate the 1-bend edges that enter ¢ from
opposite sides, we obtain two 2-bend edges and a right-angle crossing in c; see
Fig. 8f. It remains to show how the bend points for the edges are placed on the
grid. We proceed as follows.

First, we determine for each edge ac incident to a crossing vertex c the
available region into which we can redraw ac with a bend b on A(ac). The region
between @c and the half-line A(ac) inside the subdivided kite defines an available
polygon. Examples of such an available polygon are given in Figs.7a and 8b.
Note that the available polygons might overlap (as they do once in Fig.8b).
Observe that there is only a triangle inside each available polygon in which the
new line segment ab can be placed. Such a triangle for valid edge placement is
determined by a, ¢ and a corner point p of the available polygon. The point p
is the corner point (excluding a and c¢) for which the angle between a¢ and
ap inside the available polygon is the smallest. These triangles for valid edge
placement are depicted in Figs. 7b and 8c. Again, they might overlap. Observe
that in such a triangle, the angle at a cannot become arbitrarily small because
every determining point lies on a grid point. Let ¢ be the intersection point of
the line through @p and the half-line A(ac). One can see g as the projection of p
onto A(ac) seen from a. Note that we have a degenerated case if a € A(ac). Then,
the available polygon has no area and equals the line segment @c. In this case let
a = p = q. Moreover, note that p can be equal to ¢ because the intersection of

148 S. Chaplick et al.

(a) A subdivided kite. The (b) Available polygons for (c) Triangles for valid edge
assignment of edges to half- each pair of edge and as- placement.
lines is indicated by arrows. signed half-line.

as as

a2

(d) After the insertion of (e) Available polygon and (f) Result after the inser-
the bend points of the three triangle for valid edge place- tion of the bend point b.
independent edges. ment for the edge azc which

depends on a;c.

Fig. 8. Transformation from a planarized crossing to a RACs crossing.

A(ac) and an edge of the subdivided kite is also a corner point of the available
polygon. This is the only case where p may not be a grid point.

We will place the bend point b onto the line segment g¢, but observe that
the triangles for valid edge placement of two edges e; and e; might overlap if e;
depends on ey in A. To solve this, we first draw the independent edges, then
recompute the available polygons and the triangles for valid edge placement for
the other edges, and finally draw those edges. Remember that our assignment
procedure returns only assignments with dependency depth at most 1. Let I
be drawn on a grid of size n x n. We refine the grid by a factor of 7 in each
dimension. The next step in our algorithm relies on the following lemma (which
we prove in Appendix C, p. 19).

An important tool in our analysis will be the so-called Farey sequence [20]
of order n — 1, which is the sequence of all reduced fractions from 0 to 1 with
numerator and denominator being positive integers bounded by n — 1.

Lemma 7. For any independent edge ac, the interior of the line segment qc
contains at least one grid point of the refined 72 x 72 grid.

Using Lemma 7, we pick for each independent edge any grid point of g¢, place
a bend point b on it, and replace the segment ac by the two segments ab and bc.
In Fig. 8c, the edges a;c, asc, and a4c are independent, but asc depends on a;c.

https://arxiv.org/pdf/1806.10044v4.pdf#nameddest=section.A.3

Compact Drawings of 1-Planar Graphs with Right-Angle Crossings 149

We again refine the grid by a factor of nn in each dimension. The grid size is
now 723 x 2. For the remaining edges incident to a crossing vertex c, we compute
new available polygons and triangles for valid edge placement since we need to
take the 1-bend edges into account that were inserted in the previous step. Now
the following lemma (proved in Appendix C, p. 22) yields grid points for the
bend points of the remaining edges.

Lemma 8. After having redrawn the independent edges, the interior of the line
segment qc of each edge depending on an independent edge contains at least one
grid point of the refined 73 x 73 grid.

For each remaining edge incident to a crossing vertex ¢ we pick any grid point
of its line segment gc and place a bend point b on it. Again, we replace ac by
the two line segments ab and be.

Result. Finally, we remove the dummy edges and dummy vertices that bound the
subdivided kites and interpret the crossing vertices as crossing points. We return
the resulting RACy drawing I'. It is drawn on a grid of size (8n/® — 48n'? +
961’ — 64) x (4n'3 — 24n'? +48n’ — 32), where n’ is the number n of vertices of G
plus 5 times the number of crossings cr(€) in €. Note that cr(€) < n — 2 for
1-plane graphs [6]. If we ignore the bend points, the drawing is on a grid of size
(2n' —4) x (n’ — 2), i.e., its size is quadratic. Again, the algorithm by Harel and
Sardas [11] and our modification run in linear time. Therefore, we conclude the
correctness of Theorem 5.

4 Conclusion and Open Questions

We have shown that any n-vertex NIC-plane graph admits a RACP*Y drawing
in O(n?) area and that any n-vertex 1-plane graph admits a RACISOly drawing
in O(n%) area. We have also shown how to adjust two existing algorithms for
drawing certain 1-planar graphs such that their embedding is preserved. More
precisely, we have proved that any 1-plane graph admits a RAC; drawing. This
answers an open question explicitly asked by the authors of the original algo-
rithm [2]. We have also proved that any straight-line drawable IC-plane graph
admits a RACy drawing, where the original algorithm did not necessarily pre-
serve the embedding [3]. The diagram in Fig. 2 leaves some open questions. Does
any 1-planar graph admit a RACII’Oly drawing? Can we draw any graph in RACy
with only right-angle crossings in polynomial area when we allow one or two
bends per edge? What is the relationship between RAC; and RACEOly? Can we
compute RACS®Y drawings of 1-plane graphs in o(n®) area?

https://arxiv.org/pdf/1806.10044v4.pdf#nameddest=section.A.3

150

S. Chaplick et al.

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Bachmaier, C., Brandenburg, F.J., Hanauer, K., Neuwirth, D., Reislhuber, J.: NIC-

planar graphs. Discrete Appl. Math. 232, 23-40 (2017). https://doi.org/10.1016/
j.dam.2017.08.015

. Bekos, M.A., Didimo, W., Liotta, G., Mehrabi, S., Montecchiani, F.: On RAC

drawings of 1-planar graphs. Theor. Comput. Sci. 689, 48-57 (2017). https://doi.
org/10.1016/j.tcs.2017.05.039

. Brandenburg, F.J., Didimo, W., Evans, W.S., Kindermann, P., Liotta, G., Montec-

chiani, F.: Recognizing and drawing IC-planar graphs. Theor. Comput. Sci. 636,
1-16 (2016). https://doi.org/10.1016/j.tcs.2016.04.026

. Chaplick, S., Lipp, F., Wolff, A., Zink, J.: Compact drawings of 1-planar graphs

with right-angle crossings and few bends. Arxiv report (2018). http://arxiv.org/
abs/1806.10044v4

. Chrobak, M., Payne, T.H.: A linear-time algorithm for drawing a planar graph

on a grid. Inf. Process. Lett. 54(4), 241-246 (1995). https://doi.org/10.1016,/0020-
0190(95)00020-D

. Czap, J., Huddk, D.: On drawings and decompositions of 1-planar graphs. Electr.

J. Comb. 20(2), 54 (2013). http://www.combinatorics.org/ojs/index.php/eljc/
article/view/v20i2p54

. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings.

Theor. Comput. Sci. 412(39), 51565166 (2011). https://doi.org/10.1016/j.tcs.
2011.05.025

. Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond

planarity. Arxiv report (2018). http://arxiv.org/abs/1804.07257

. Eades, P., Liotta, G.: Right angle crossing graphs and 1-planarity. Discrete Appl.

Math. 161(7-8), 961-969 (2013). https://doi.org/10.1016/j.dam.2012.11.019

de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10(1), 41-51 (1990). https://doi.org/10.1007/BF02122694

Harel, D., Sardas, M.: An algorithm for straight-line drawing of planar graphs.
Algorithmica 20(2), 119-135 (1998). https://doi.org/10.1007/PL00009189
Hopcroft, J.E., Tarjan, R.E.: Algorithm 447: efficient algorithms for graph manip-
ulation. Commun. ACM 16(6), 372-378 (1973). https://doi.org/10.1145/362248.
362272

Huang, W., Eades, P., Hong, S.: Larger crossing angles make graphs easier to read.
J. Vis. Lang. Comput. 25(4), 452-465 (2014). https://doi.org/10.1016/j.jvlc.2014.
03.001

Huang, W., Hong, S., Eades, P.: Effects of crossing angles. In: Proceedings IEEE
VGTC Pacific Visualization Symposium (PacificVis 2008), pp. 41-46 (2008).
https://doi.org/10.1109/PACIFICVIS.2008.4475457

Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-
planarity. Comput. Sci. Rev. 25, 49-67 (2017). https://doi.org/10.1016/j.cosrev.
2017.06.002

Liotta, G., Montecchiani, F.: L-visibility drawings of IC-planar graphs. Inf. Process.
Lett. 116(3), 217-222 (2016). https://doi.org/10.1016/j.ipl.2015.11.011

Purchase, H.: Which aesthetic has the greatest effect on human understanding? In:
DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248—-261. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-63938-1_67

Ringel, G.: Ein Sechsfarbenproblem auf der Kugel. Abh. Math. Seminar Univ.
Hamburg 29(1-2), 107-117 (1965)

https://doi.org/10.1016/j.dam.2017.08.015
https://doi.org/10.1016/j.dam.2017.08.015
https://doi.org/10.1016/j.tcs.2017.05.039
https://doi.org/10.1016/j.tcs.2017.05.039
https://doi.org/10.1016/j.tcs.2016.04.026
http://arxiv.org/abs/1806.10044v4
http://arxiv.org/abs/1806.10044v4
https://doi.org/10.1016/0020-0190(95)00020-D
https://doi.org/10.1016/0020-0190(95)00020-D
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v20i2p54
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v20i2p54
https://doi.org/10.1016/j.tcs.2011.05.025
https://doi.org/10.1016/j.tcs.2011.05.025
http://arxiv.org/abs/1804.07257
https://doi.org/10.1016/j.dam.2012.11.019
https://doi.org/10.1007/BF02122694
https://doi.org/10.1007/PL00009189
https://doi.org/10.1145/362248.362272
https://doi.org/10.1145/362248.362272
https://doi.org/10.1016/j.jvlc.2014.03.001
https://doi.org/10.1016/j.jvlc.2014.03.001
https://doi.org/10.1109/PACIFICVIS.2008.4475457
https://doi.org/10.1016/j.cosrev.2017.06.002
https://doi.org/10.1016/j.cosrev.2017.06.002
https://doi.org/10.1016/j.ipl.2015.11.011
https://doi.org/10.1007/3-540-63938-1_67

19.

20.

21.

Compact Drawings of 1-Planar Graphs with Right-Angle Crossings 151

Schnyder, W.: Embedding planar graphs on the grid. In: Johnson, D.S. (ed.) Pro-
ceedings 1st ACM-SIAM Symposium Discrete Algorithms (SODA 1990), pp. 138—
148 (1990). http://dl.acm.org/citation.cfm?id=320176.320191

Wikipedia contributors: Farey sequence—Wikipedia, the free encyclopedia (2018).
https://en.wikipedia.org/w/index.php?title=Farey_sequence&oldid=844932264.
Accessed 8 June 2018

Zink, J.: 1-planar RAC drawings with bends. Master’s thesis, Institut fiir Infor-
matik, Universitdat Wiirzburg (2017). http://www1l.pub.informatik.uni-wuerzburg.
de/pub/theses/2017-zink-master.pdf

http://dl.acm.org/citation.cfm?id=320176.320191
https://en.wikipedia.org/w/index.php?title=Farey_sequence&oldid=844932264
http://www1.pub.informatik.uni-wuerzburg.de/pub/theses/2017-zink-master.pdf
http://www1.pub.informatik.uni-wuerzburg.de/pub/theses/2017-zink-master.pdf

)

Check for
updates

Drawing Subcubic 1-Planar Graphs with
Few Bends, Few Slopes, and Large Angles

(=)@, Fabrizio Montecchiani?, Lena Schlipf?,

and André Schulz®

Philipp Kindermann'!

L University of Waterloo, Waterloo, Canada
philipp.kindermann@uwaterloo.ca
2 Universita degli Studi di Perugia, Perugia, Italy
fabrizio.montecchiani@unipg.it
3 FernUniversitét in Hagen, Hagen, Germany
{lena.schlipf,andre.schulz}@fernuni-hagen.de

Abstract. We show that the 1l-planar slope number of 3-connected
cubic 1-planar graphs is at most 4 when edges are drawn as polygonal
curves with at most 1 bend each. This bound is obtained by drawings
whose vertex and crossing resolution is at least /4. On the other hand,
if the embedding is fixed, then there is a 3-connected cubic 1-planar
graph that needs 3 slopes when drawn with at most 1 bend per edge. We
also show that 2 slopes always suffice for 1-planar drawings of subcubic
1-planar graphs with at most 2 bends per edge. This bound is obtained
with vertex resolution 7/2 and the drawing is RAC (crossing resolution
7 /2). Finally, we prove lower bounds for the slope number of straight-line
1-planar drawings in terms of number of vertices and maximum degree.

1 Introduction

A graph is 1-planar if it can be drawn in the plane such that each edge is crossed
at most once. The notion of 1-planarity naturally extends planarity and received
considerable attention since its first introduction by Ringel in 1965 [33], as wit-
nessed by recent surveys [14,27]. Despite the efforts made in the study of 1-planar
graphs, only few results are known concerning their geometric representations
(see, e.g., [1,4,7,11]). In this paper, we study the existence of 1-planar drawings
that simultaneously satisfy the following properties: edges are polylines using
few bends and few distinct slopes for their segments, edge crossings occur at
large angles, and pairs of edges incident to the same vertex form large angles.
For example, Fig. 1d shows a 1-bend drawing of a 1-planar graph (i.e., a drawing
in which each edge is a polyline with at most one bend) using 4 distinct slopes,
such that edge crossings form angles at least 7/4, and the angles formed by edges
incident to the same vertex are at least 7/4. In what follows, we briefly recall
known results concerning the problems of computing polyline drawings with few
bends and few slopes or with few bends and large angles.

Related Work. The k-bend (planar) slope number of a (planar) graph G with
maximum vertex degree A is the minimum number of distinct edge slopes needed

© Springer Nature Switzerland AG 2018
T. Biedl and A. Kerren (Eds.): GD 2018, LNCS 11282, pp. 152-166, 2018.
https://doi.org/10.1007/978-3-030-04414-5_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04414-5_11&domain=pdf
http://orcid.org/0000-0001-5764-7719
https://doi.org/10.1007/978-3-030-04414-5_11

Drawing Subcubic 1-Planar Graphs 153

to compute a (planar) drawing of G such that each edge is a polyline with at
most k bends. When k = 0, this parameter is simply known as the (planar) slope
number of G. Clearly, if G has maximum vertex degree A, at least [A/2] slopes
are needed for any k. While there exist non-planar graphs with A > 5 whose
slope number is unbounded with respect to A [3,32], Keszegh et al. [24] proved
that the planar slope number is bounded by 29(4). Several authors improved
this bound for subfamilies of planar graphs (see, e.g., [21,26,28]).

Concerning k-bend drawings, Angelini et al. [2] proved that the 1-bend planar
slope number is at most A — 1, while Keszegh et al. [24] proved that the 2-
bend planar slope number is [A/2] (which is tight). Special attention has been
paid in the literature to the slope number of (sub)cubic graphs, i.e., graphs
having vertex degree (at most) 3. Mukkamala and Palvolgyi showed that the four
slopes {0, §, 5, ?jf} suffice for every cubic graph [31]. For planar graphs, Kant
and independently Dujmovié¢ et al. proved that cubic 3-connected planar graphs
have planar slope number 3 disregarding the slopes of three edges on the outer
face [15,22], while Di Giacomo et al. [13] proved that the planar slope number
of subcubic planar graphs is 4. We also remark that the slope number problem
is related to orthogonal drawings, which are planar and with slopes {0, Z} [16],
and with octilinear drawings, which are planar and with slopes {0, §, 7, I } [5].
All planar graphs with A < 4 (except the octahedron) admit 2-bend orthogonal
drawings [6,29], and planar graphs admit octilinear drawings without bends if
A < 3[13,22], with 1 bend if A <5 [5], and with 2 bends if A < 8 [24].

Of particular interest for us is the k-bend 1-planar slope number of 1-planar
graphs, i.e., the minimum number of distinct edge slopes needed to compute a
1-planar drawing of a 1-planar graph such that each edge is a polyline with at
most k& > 0 bends. Di Giacomo et al. [12] proved an O(A) upper bound for the
1-planar slope number (k = 0) of outer 1-planar graphs, i.e., graphs that can be
drawn 1-planar with all vertices on the external boundary.

Finally, the vertex resolution and the crossing resolution of a drawing are
defined as the minimum angle between two consecutive segments incident to
the same vertex or crossing, respectively (see, e.g., [17,20,30]). A drawing is
RAC (right-angle crossing) if its crossing resolution is 7/2. Eades and Liotta
proved that 1-planar graphs may not have straight-line RAC drawings [18], while
Chaplick et al. [8] and Bekos et al. [4] proved that every l-planar graph has a
1-bend RAC drawing that preserves the embedding.

Our Contribution. We prove upper and lower bounds on the k-bend 1-planar
slope number of 1-planar graphs, when k € {0, 1,2}. Our results are based on
techniques that lead to drawings with large vertex and crossing resolution.

In Sect. 3, we prove that every 3-connected cubic 1-planar graph admits a
1-bend 1-planar drawing that uses at most 4 distinct slopes and has both vertex
and crossing resolution 7/4. In Sect.4, we show that every subcubic 1-planar
graph admits a 2-bend 1-planar drawing that uses at most 2 distinct slopes and
has both vertex and crossing resolution 7/2. These bounds on the number of
slopes and on the vertex/crossing resolution are clearly worst-case optimal. In
Sect. 5.1, we give a 3-connected cubic 1-plane graph for which any embedding-

154 P. Kindermann et al.

preserving 1-bend drawing uses at least 3 distinct slopes. The lower bound holds
even if we are allowed to change the outer face. In Sect.5.2, we present 2-
connected subcubic 1-plane graphs with n vertices such that any embedding-
preserving straight-line drawing uses 2(n) distinct slopes, and 3-connected 1-
plane graphs with maximum degree A > 3 such that any embedding-preserving
straight-line drawing uses at least 9(A — 1) distinct slopes, which implies that
at least 18 slopes are needed if A = 3.
Preliminaries can be found in Sect. 2, while open problems are in Sect. 6.

2 Preliminaries

We only consider simple graphs with neither self-loops nor multiple edges. A
drawing I' of a graph G maps each vertex of G to a point of the plane and each
edge to a simple open Jordan curve between its endpoints. We always refer to
simple drawings where two edges can share at most one point, which is either
a common endpoint or a proper intersection. A drawing divides the plane into
topologically connected regions, called faces; the infinite region is called the outer
face. For a planar (i.e., crossing-free) drawing, the boundary of a face consists
of vertices and edges, while for a non-planar drawing the boundary of a face
may also contain crossings and parts of edges. An embedding of a graph G is
an equivalence class of drawings of G that define the same set of faces and the
same outer face. A (1-)plane graph is a graph with a fixed (1-)planar embedding.
Given a 1-plane graph G, the planarization G* of G is the plane graph obtained
by replacing each crossing of G with a dummy vertez. To avoid confusion, the
vertices of G* that are not dummy are called real. Moreover, we call fragments
the edges of G* that are incident to a dummy vertex. The next lemma will be
used in the following and can be of independent interest, as it extends a similar
result by Fabrici and Madaras [19]. The proof is given in the full version [25].

Lemma 1. Let G = (V, E) be a 1-plane graph and let G* be its planarization.
We can re-embed G such that each edge is still crossed at most once and (i)
no cutvertez of G* is a dummy vertex, and (ii) if G is 3-connected, then G* is
3-connected.

A drawing I' is straight-line if all its edges are mapped to segments, or it
is k-bend if each edge is mapped to a chain of segments with at most k£ > 0
bends. The slope of an edge segment of I" is the slope of the line containing this
segment. For convenience, we measure the slopes by their angle with respect to
the z-axis. Let S = {a, ..., s} be aset of t distinct slopes. The slope number of
a k-bend drawing I" is the number of distinct slopes used for the edge segments
of I'. An edge segment of I" uses the north (N) port (south (S) port) of a vertex v
if it has slope 7/2 and v is its bottommost (topmost) endpoint. We can define
analogously the west (W) and east (E) ports with respect to the slope 0, the
north-west (NW) and south-east (SE) ports with respect to slope 37 /4, and the
south-west (SW) and north-east (NE) ports with respect to slope 7/4. Any such
port is free for v if there is no edge that attaches to v by using it.

Drawing Subcubic 1-Planar Graphs 155

We will use a decomposition technique called canonical ordering [23]. Let
G = (V, E) be a 3-connected plane graph. Let 6 = {Vy,...,Vk} be an ordered
partition of V', that is, Vi U---UVg =V and V;NV; = 0 for i # j. Let G; be the
subgraph of G induced by V; U- - -UV; and denote by C; the outer face of G;. The
partition § is a canonical ordering of G if: (i) V; = {v1, v2}, where v; and v lie on
the outer face of G and (v1,v2) € E. (ii) Vi = {v,}, where v, lies on the outer
face of G, (v1,v,) € E. (iii) Each C; (i > 1) is a cycle containing (vq, v2). (iv)
Each G; is 2-connected and internally 3-connected, that is, removing any two
interior vertices of G; does not disconnect it. (v) For each i € {2,..., K —1}, one
of the following conditions holds: (a) V; is a singleton v® that lies on C; and has
at least one neighbor in G\ G;; (b) V; is a chain {v},...,v{}, both v} and v} have
exactly one neighbor each in C;_1, and vj,...,v} ; have no neighbor in C;_;.
Since G is 3-connected, each vj- has at least one neighbor in G \ G;.

Let v be a vertex in V;, then its neighbors in G;_1 (if G;_; exists) are called
the predecessors of v, while its neighbors in G \ G; (if G;+1 exists) are called
the successors of v. In particular, every singleton has at least two predecessors
and at least one successor, while every vertex in a chain has either zero or one
predecessor and at least one successor. Kant [23] proved that a canonical ordering
of G always exists and can be computed in O(n) time; the technique in [23] is
such that one can arbitrarily choose two adjacent vertices u and w on the outer
face so that u = v; and w = vy in the computed canonical ordering.

An n-vertex planar st-graph G = (V, E) is a plane acyclic directed graph with
a single source s and a single sink ¢, both on the outer face [10]. An st-ordering
of G is a numbering o : V — {1,2,...,n} such that for each edge (u,v) € E, it
holds o(u) < o(v) (thus o(s) =1 and o(t) = n). For an st-graph, an st-ordering
can be computed in O(n) time (see, e.g., [9]) and every biconnected undirected
graph can be oriented to become a planar st-graph (also in linear time).

3 1-Bend Drawings of 3-Connected Cubic 1-Planar
Graphs

Let G be a 3-connected 1-plane cubic graph, and let G* be its planarization.
We can assume that G* is 3-connected (else we can re-embed G by Lemma 1).
We choose as outer face of G a face containing an edge (v, v2) whose vertices
are both real (see Fig.1a). Such a face exists: If G has n vertices, then G* has
fewer than 3n/4 dummy vertices because G is subcubic. Hence we find a face
in G* with more real than dummy vertices and hence with two consecutive real
vertices. Let § = {V1,..., VK } be a canonical ordering of G*, let G; be the graph
obtained by adding the first i sets of § and let C; be the outer face of G;.

Note that a real vertex v of GG; can have at most one successor w in some
set V; with j > i. We call w an L-successor (resp., R-successor) of v if v is the
leftmost (resp., rightmost) neighbor of V; on C;. Similarly, a dummy vertex x
of G; can have at most two successors in some sets V; and V; with [> j > 1.
In both cases, a vertex v of G; having a successor in some set V; with j > ¢ is
called attachable. We call v L-attachable (resp., R-attachable) if v is attachable

156 P. Kindermann et al.

Vs 1 ?
1 V1
(a) G

(b) 6 (¢) uv-cut (d)

Fig.1. (a) A 3-connected 1l-plane cubic graph G; (b) a canonical ordering ¢ of the
planarization G* of G—the real (dummy) vertices are black points (white squares); (c)
the edges crossed by the dashed line are a uv-cut of G5 with respect to (u, w)—the two
components have a yellow and a blue background, respectively; (d) a 1-bend 1-planar
drawing with 4 slopes of G (Color figure online)

and has no L-successor (resp., R-successor) in G;. We will draw an upward edge
at u with slope /4 (resp., 3w/4) only if it is L-attachable (resp., R-attachable).

Let u and v be two vertices of C;, for i > 1. Denote by P;(u,v) the path of C;
having u and v as endpoints and that does not contain (v1,vs). Vertices u and v
are consecutive if they are both attachable and if P;(u,v) does not contain any
other attachable vertex. Given two consecutive vertices u and v of C; and an
edge e of C;, a uv-cut of G; with respect to e is a set of edges of G; that contains
both e and (vy,v2) and whose removal disconnects G; into two components,
one containing u and one containing v (see Fig. 1c). We say that u and v are
L-consecutive (resp., R-consecutive) if they are consecutive, u lies to the left
(resp., right) of v on C;, and u is L-attachable (resp., R-attachable).

We construct an embedding-preserving drawing I; of G;, for i = 2,... K,
by adding one by one the sets of §. A drawing I'; of G; is valid, if:

P1 Tt uses only slopes in the set {0, 115 %” ;
P2 It is a 1-bend drawing such that the union of any two edge fragments that

correspond to the same edge in G is drawn with (at most) one bend in total.

A valid drawing 'k of G will coincide with the desired drawing of G, after
replacing dummy vertices with crossing points.

Construction of ;. We begin by showing how to draw Gso. We distinguish
two cases, based on whether Vs is a singleton or a chain, as illustrated in Fig. 2.
Construction of I, for 2 < i < K. We now show how to compute a valid
drawing of G, for i = 3,..., K — 1, by incrementally adding the sets of 4.

We aim at constructing a valid drawing I'; that is also stretchable, i.e., that
satisfies the following two more properties; see Fig. 3. These two properties will
be useful to prove Lemma 2, which defines a standard way of stretching a drawing
by lengthening horizontal segments.

P3 The edge (v1,v2) is drawn with two segments s; and sy that meet at a
point p. Segment s; uses the SE port of v; and so uses the SW port of v,.
Also, p is the lowest point of I3, and no other point of I'; is contained by
the two lines that contain s; and ss.

Drawing Subcubic 1-Planar Graphs 157

U2 U1 U? 2
Ih V2 V1 (o5
Vo U2
(a) (b) (c)
Fig. 2. Construction of I>: (a) Vs is a real singleton; Fig. 3. I is stretchable.

(b) V2 is a dummy singleton; (c) V2 is a chain.

P4 For every pair of consecutive vertices u and v of C; with u left of v on Cj,
it holds that (a) If w is L-attachable (resp., v is R-attachable), then the
path P;(u,v) is such that for each vertical segment s on this path there
is a horizontal segment in the subpath before s if s is traversed upwards
when going from u to v (resp., from v to u); (b) if both v and v are real,
then P;(u,v) contains at least one horizontal segment; and (c¢) for every
edge e of P;(u,v) such that e contains a horizontal segment, there exists a
uv-cut of G; with respect to e whose edges all contain a horizontal segment
in I; except for (v1,v2), and such that there exists a y-monotone curve that
passes through all and only such horizontal segments and (vy,vs).

Lemma 2. Suppose that I; is valid and stretchable, and let uw and v be two
consecutive vertices of C;. If u is L-attachable (resp., v is R-attachable), then
it is possible to modify I'; such that any half-line with slope w/4 (resp., 3w/4)
that originates at u (resp., at v) and that intersects the outer face of I'; does not
intersect any edge segment with slope 7/2 of P;(u,v). Also, the modified drawing
is still valid and stretchable.

Proof Sketch. Crossings between such half-lines and vertical segments of P;(u, v)
can be solved by finding suitable uv-cuts and moving everything on the right /left
side of the cut to the right/left. The full proof is given in the full version [25]. O

Let P be a set of ports of a vertex v; the symmetric set of ports P’ of v is
the set of ports obtained by mirroring P at a vertical line through v. We say
that I is attachable if the following two properties also apply.

P5 At any attachable real vertex v of I3, its N, NW, and NE ports are free.

P6 Let v be an attachable dummy vertex of I';. If v has two successors, there are
four possible cases for its two used ports, illustrated with two solid edges in
Fig. 4a—d. If v has only one successor not in I;, there are eight possible cases
for its three used ports, illustrated with two solid edges plus one dashed or
one dotted edge in Fig. 4a—e.

Observe that I, besides being valid, is also stretchable and attachable by
construction (see also Fig. 2). Assume that G;_; admits a valid, stretchable, and
attachable drawing I5_1, for some 2 < i < K — 1; we show how to add the
next set V; of ¢ so to obtain a drawing I; of G; that is valid, stretchable and
attachable. We distinguish between the following cases.

158 P. Kindermann et al.

. » o . ° *
(a) C1 (b) C2 (c) C2 symm. (d) C3 (e) C3 symm.

Fig. 4. Illustration for P6. If v has two successors not in I';, then the edges connecting v
to its two neighbors in I'; are solid. If v has one successor in I;, then the edge between v
and this successor is dashed or dotted.

Case 1. V; is a singleton, i.e., V; = {v'}. Note that if v’ is real, it has two
neighbors on C;_1, while if it is dummy, it can have either two or three neighbors
on C;_1. Let u; and u, be the first and the last neighbor of v*, respectively, when
walking along C;_1 in clockwise direction from v;. We will call w; (resp., u,.) the
leftmost predecessor (resp., rightmost predecessor) of v'.
Case 1.1. Vertex v* is real. Then, u; and u, are its only two neighbors in C;_;.
Each of u; and u,. can be real or dummy. If u; (resp., u,.) is real, we draw (ug, v)
(resp., (u,,v")) with a single segment using the NE port of u; and the SW port
of v® (resp., the NW port of u, and the SE port of v?). If u; is dummy and has
two successors not in I;_1, we distinguish between the cases of Fig.4 as shown
in Fig. 5. The symmetric configuration of C3 is only used for connecting to w,..
If u; is dummy and has one successor not in I;_1, we distinguish between
the various cases of Fig. 4 as indicated in Fig. 6. Observe that C'1 requires a local
reassignment of one port of u;. The edge (u,,v?) is drawn by following a similar
case analysis. Vertex v’ is then placed at the intersection of the lines passing
through the assigned ports, which always intersect by construction. In particular,
the S port is only used when u; has one successor, but the same situation cannot
occur when drawing (u,,v?). Otherwise, there is a path of C;_; from u; via
its successor x on C;_1 to w, via its successor y on C;_1. Note that z = y is
possible but x # w,.. Since the first edge on this path goes from a predecessor
to a successor and the last edge goes from a successor to a predecessor, there
has to be a vertex z without a successor on the path; but then u; and u, are
not consecutive. To avoid crossings between I;_; and the new edges (ul,vi)
and (u,,v"), we apply Lemma 2 to suitably stretch the drawing. In particular,
possible crossings can occur only with vertical edge segments of P;_q(uy,u,),

vt i
N7 u

(a) C1 (b) C2 (c) C2 symm. (d) C3

Fig. 5. A real singleton when u; is dummy with two successors not in I;_1

Drawing Subcubic 1-Planar Graphs 159

U I i X

(a) C1 (b) C1) C2 symm.

Fig. 6. Some cases for the addition of a real singleton when wu; is dummy with one
successor not in I;_1

because when walking along P;_1(u;,u,) from wu; to u, we only encounter a
(possibly empty) set of segments with slopes in the range {37/4, 7/2, 0}, followed
by a (possibly empty) set of segments with slopes in the range {7/2,7/4,0}.
Case 1.2. Vertex v* is dummy. By 1-planarity, the two or three neighbors of v’
on C;_p are all real. If v has two neighbors, we draw (u;,v?) and (u,,v?) as
shown in Fig. 7a, while if v¢ has three neighbors, we draw (u;,v*) and (u,.,v*) as
shown in Fig. 7b. Analogous to the previous case, vertex v is placed at the inter-
section of the lines passing through the assigned ports, which always intersect
by construction, and avoiding crossings between I;_; and the new edges (ug, v*)
and (u,,v%) by applying Lemma 2. In particular, if v* has three neighbors on
C;_1, say u;, w, and u,, by P4 there is a horizontal segment between u; and w,
as well as between w and w,.. Thus, Lemma 2 can be applied not only to resolve
crossings, but also to find a suitable point where the two lines with slopes 7 /4
and 37/4 meet along the line with slope /2 that passes through w.
Case 2.V is a chain, i.e., V; = {v},v},...,v/}. We find a point as if we had to
place a vertex v whose leftmost predecessor is the leftmost predecessor of v and
whose rightmost predecessor is the rightmost predecessor of vi. We then draw
the chain slightly below this point by using the same technique used to draw Vs.
Again, Lemma 2 can be applied to resolve possible crossings.

We formally prove the correctness of our algorithm in the full version [25].

Lemma 3. Drawing I'x_1 is valid, stretchable, and attachable.

Construction of I'y. We now show how to add Vg = {v,} to I'k_1 so as to
obtain a valid drawing of Gk, and hence the desired drawing of G after replacing
dummy vertices with crossing points. Recall that (v1,v,) is an edge of G by the
definition of canonical ordering. We distinguish whether v,, is real or dummys;

Ur Uup
(2 Uy

(a) (b)

Fig. 7. Illustration for the addition of a dummy singleton

160 P. Kindermann et al.

Un

Un

U1 U1

(a) vy is dummy (b) vy, is real

Fig. 8. Illustration for the addition of Vi

the two cases are shown in Fig.8. Note that if v, is dummy, its four neighbors
are all real and hence their N, NW, and NE ports are free by P5. If v, is real,
it has three neighbors in I'x_1, v1 is real by construction, and the S port can
be used to attach with a dummy vertex. Finally, since I'x_; is attachable, we
can use Lemma 2 to avoid crossings and to find a suitable point to place v,. A
complete drawing is shown in Fig. 1d.

The theorem follows immediately by the choice of the slopes.

Theorem 1. Every 3-connected cubic 1-planar graph admits a 1-bend 1-planar
drawing with at most 4 distinct slopes and angular and crossing resolution m/4.

4 2-Bend Drawings

Liu et al. [29] presented an algorithm to compute orthogonal drawings for planar
graphs of maximum degree 4 with at most 2 bends per edge (except the octahe-
dron, which requires 3 bends on one edge). We make use of their algorithm for
biconnected graphs. The algorithm chooses two vertices s and ¢ and computes an
st-ordering of the input graph. Let V = {v1,...,v,} with o(v;) =4, 1 <i < n.
Liu et al. now compute an embedding of GG such that v, lies on the outer face
if deg(s) = 4 and v,,—; lies on the outer face if deg(t) = 4; such an embedding
exists for every graph with maximum degree 4 except the octahedron.

The edges around each vertex v;,1 < i < n, are assigned to the four ports
as follows. If v; has only one outgoing edge, it uses the N port; if v; has two
outgoing edges, they use the N and E port; if v; has three outgoing edges, they
use the N, E; and W port; and if v; has four outgoing edges, they use all four
ports. Symmetrically, the incoming edges of v; use the S, W, E, and N port, in
this order. The edge (s, t) (if it exists) is assigned to the W port of both s and ¢.
If deg(s) = 4, the edge (s,v2) is assigned to the S port of s (otherwise the port
remains free); if deg(t) = 4, the edge (¢,v,—1) is assigned to the N port of ¢
(otherwise the port remains free). Note that every vertex except s and t has at
least one incoming and one outgoing edge; hence, the given embedding of the
graph provides a unique assignment of edges to ports. Finally, they place the
vertices bottom-up as prescribed by the st-ordering. The way an edge is drawn
is determined completely by the port assignment, as depicted in Fig. 9.

Let G = (V, E) be a subcubic 1-plane graph. We first re-embed G according
to Lemma 1. Let G* be the planarization of G after the re-embedding. Then, all

Drawing Subcubic 1-Planar Graphs 161

AT T30 H e
b= LT 3 eld]

vertical horizontal L-shapes C-shapes U-shapes

Fig. 9. The shapes to draw edges

cutvertices of G* are real vertices, and since they have maximum degree 3, there
is always a bridge connecting two 2-connected components. Let G1, ..., G be the
2-connected components of G, and let G be the planarization of G;,1 < ¢ < k.
We define the bridge decomposition tree T of G as the graph having a node for
each component G; of G, and an edge (G;, G;), for every pair G;, G; connected
by a bridge in G. We root 7 in G;1. For each component G;,2 < i < k, let u; be
the vertex of G; connected to the parent of G; in 7 by a bridge and let u; be
an arbitrary vertex of G;. We will create a drawing I'; for each component G;
with at most 2 slopes and 2 bends such that u; lies on the outer face.

To this end, we first create a drawing I* of G} with the algorithm of Liu
et al. [29] and then modify the drawing. Throughout the modifications, we will
make sure that the following invariants hold for the drawing I7*.

I1) I’} is a planar orthogonal drawing of G} and edges are drawn as in Fig. 9;

(
(I2) wu; lies on the outer face of I'* and its N port is free;

(I3) every edge is y-monotone from its source to its target;

(I4) every edge with 2 bends is a C-shape, there are no edges with more bends;
(I5) if a C-shape ends in a dummy vertex, it uses only E ports; and

(I6)

if a C-shape starts in a dummy vertex, it uses only W ports.

Lemma 4. Every G} admits a drawing I} that satisfies invariants (11)-(16).

Proof Sketch. We choose t = u; and some real vertex s and use the algorithm
by Liu et al. to draw G;. Since s and ¢ are real, there are no U-shapes. Since no
real vertex can have an outgoing edge at its W port or incoming edge at its E
port, the invariants follow. The full proof is given in the full version [25]. O

We now iteratively remove the C-shapes from the drawing while maintaining
the invariants. We make use of a technique similar to the stretching in Sect. 3. We
lay an orthogonal y-monotone curve S through our drawing that intersects no
vertices. Then we stretch the drawing by moving S and all features that lie right
of S to the right, and stretching all points on S to horizontal segments. After
this stretch, in the area between the old and the new position of S, there are
only horizontal segments of edges that are intersected by S. The same operation
can be defined symmetrically for an z-monotone curve that is moved upwards.

Lemma 5. Fvery G; admits an orthogonal 2-bend drawing such that w; lies on
the outer face and its N port is free.

162 P. Kindermann et al.

' 1 u vn—f'lu:‘ v:u

(a) (b) (c)

Fig. 10. Proof of Lemma 5, Case 1

Proof Sketch. We start with a drawing I of G that satisfies invariants (I1)—
(I6), which exists by Lemma 4. By (I2), u; lies on the outer face and its N port is
free. If no dummy vertex in I is incident to a C-shape, by (I4) all edges incident
to dummy vertices are drawn with at most 1 bend, so the resulting drawing I
of G; is an orthogonal 2-bend drawing. Otherwise, there is a C-shape between
a real vertex u and a dummy vertex v. We show how to eliminate this C-shape
without introducing new ones while maintaining all invariants.

We prove the case that (u,v) is directed from u to v, so by (I5) it uses only E
ports; the other case is symmetric. We do a case analysis based on which ports
at u are free. We show one case here and the rest in the full version [25].

Case 1. The N port at u is free; see Fig. 10. Create a curve S as follows: Start
at some point p slightly to the top left of v and extend it downward to infinity.
Extend it from p to the right until it passes the vertical segment of (u,v) and
extend it upwards to infinity. Place the curve close enough to u and (u,v) such
that no vertex or bend point lies between S and the edges of u that lie right next
to it. Then, stretch the drawing by moving S to the right such that u is placed
below the top-right bend point of (u,v). Since S intersected a vertical segment
of (u,v), this changes the edge to be drawn with 4 bends. However, now the
region between u and the second bend point of (u,v) is empty and the N port
of u is free, so we can make an L-shape out of (u,v) that uses the N port at u.
This does not change the drawing style of any edge other than (u,v), so all the
invariants are maintained and the number of C-shapes is reduced by one. O

Finally, we combine the drawings I'; to a drawing I" of G. Recall that every
cutvertex is real and two biconnected components are connected by a bridge.
Let G; be a child of G; in the bridge decomposition tree. We have drawn G
with u; on the outer face and a free N port. Let v; be the neighbor of u; in G;.
We choose one of its free ports, rotate and scale I'; such that it fits into the face
of that port, and connect u; and v; with a vertical or horizontal segment. Doing
this for every biconnected component gives an orthogonal 2-bend drawing of G.

Theorem 2. Fvery subcubic I-plane graph admits a 2-bend 1-planar drawing
with at most 2 distinct slopes and both angular and crossing resolution /2.

Drawing Subcubic 1-Planar Graphs 163

5 Lower Bounds for 1-Plane Graphs

5.1 1-Bend Drawings of Subcubic Graphs

Theorem 3. There exists a subcubic 3-connected 1-plane graph such that any
embedding-preserving 1-bend drawing uses at least 3 distinct slopes. The lower
bound holds even if we are allowed to change the outer face.

Proof. Let G be the K4 with a planar embedding. The outer face is a 3-cycle,
which has to be drawn as a polygon IT with at least four (nonreflex) corners.
Since we allow only one bend per edge, one of the corners of IT has to be a vertex
of G. The vertex in the interior has to connect to this corner, however, all of its
free ports lie on the outside. Thus, no drawing of G is possible. O

5.2 Straight-Line Drawings
The full proofs for this section are given in the full version [25].

Theorem 4. There exist 2-reqular 2-connected 1-plane graphs with n vertices
such that any embedding-preserving straight-line drawing uses (2(n) distinct
slopes.

Proof Sketch. Let Gy be the graph given by the cycleay ..., agy1,bky1,---,01,01
and the embedding shown in Fig. 11a. Walking along the path ay,...,ax+1, we
find that the slope has to increase at every step. a

Lemma 6. There exist 3-reqular 3-connected I1-plane graphs such that any
embedding-preserving straight-line drawing uses at least 18 distinct slopes.

Proof Sketch. Consider the graph depicted in Fig. 11b. We find that the slopes of
the edges (a;, b;), (ai,ci), (¢i,d;), (¢iyei), (ei,d;), (€;,a;4+1) have to be increasing
in this order for every i = 1,2, 3. a

Theorem 5. There exist 3-connected 1-plane graphs such that any embedding-
preserving straight-line drawing uses at least 9(A — 1) distinct slopes.

(a) Theorem 4 (b) Lemma 6 (¢) Theorem 5

Fig. 11. The constructions for the results of Sect. 5

164 P. Kindermann et al.

Proof Sketch. Consider the graph depicted in Fig. 11c. The degree of a;, ¢;, and ¢;
is A. We repeat the proof of Lemma 6, but observe that the slopes of the 9(A—3)
added edges lie between the slopes of (a;, b;), (a;, ¢;), (¢i,€;), and (e;,a;41). O

6 Open Problems

The research in this paper gives rise to interesting questions, among them: (1)
Is it possible to extend Theorem 1 to all subcubic 1-planar graphs? (2) Can we
drop the embedding-preserving condition from Theorem 3?7 (3) Is the 1-planar
slope number of 1-planar graphs bounded by a function of the maximum degree?

References

1. Alam, M.J., Brandenburg, F.J., Kobourov, S.G.: Straight-line grid drawings of
3-connected l-planar graphs. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS,
vol. 8242, pp. 83-94. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-
03841-4_8

2. Angelini, P., Bekos, M.A., Liotta, G., Montecchiani, F.: A universal slope set for
1-bend planar drawings. In: Aronov, B., Katz, M.J. (eds.) Proceedings of 33rd
International Symposium on Computational Geometry (SoCG 2017). LIPIcs, vol.
77, pp. 9:1-9:16. Schloss Dagstuhl (2017). https://doi.org/10.4230/LIPIcs.SoCG.
2017.9

3. Barat, J., Matousek, J., Wood, D.R.: Bounded-degree graphs have arbitrarily
large geometric thickness. Electr. J. Comb. 13(1), 1-14 (2006). http://www.
combinatorics.org/Volume_13/Abstracts/v13ilr3.html

4. Bekos, M.A., Didimo, W., Liotta, G., Mehrabi, S., Montecchiani, F.: On RAC
drawings of 1-planar graphs. Theor. Comput. Sci. 689, 48-57 (2017). https://doi.
org/10.1016/j.tcs.2017.05.039

5. Bekos, M.A., Gronemann, M., Kaufmann, M., Krug, R.: Planar octilinear drawings
with one bend per edge. J. Graph Algorithms Appl. 19(2), 657-680 (2015). https://
doi.org/10.7155/jgaa.00369

6. Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings. Com-
put. Geom. Theory Appl. 9(3), 159-180 (1998). https://doi.org/10.1016/S0925-
7721(97)00026-6

7. Brandenburg, F.J.: T-shape visibility representations of 1-planar graphs. Comput.
Geom. 69, 16-30 (2018). https://doi.org/10.1016/j.comgeo.2017.10.007

8. Chaplick, S., Lipp, F., Wolff, A., Zink, J.: 1-bend RAC drawings of NIC-
planar graphs in quadratic area. In: Korman, M., Mulzer, W. (eds.) Proceedings
of 34th European Workshop on Computational Geometry (EuroCG 2018). pp.
28:1-28:6. FU Berlin, Berlin (2018). https://conference.imp.fu-berlin.de/eurocgl8/
download /paper_28.pdf

9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algo-
rithms, 3rd ed. MIT Press, Cambridge (2009). https://mitpress.mit.edu/books/
introduction-algorithms-third-edition

10. Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic
digraphs. Theor. Comput. Sci. 61, 175-198 (1988). https://doi.org/10.1016,/0304-
3975(88)90123-5

https://doi.org/10.1007/978-3-319-03841-4_8
https://doi.org/10.1007/978-3-319-03841-4_8
https://doi.org/10.4230/LIPIcs.SoCG.2017.9
https://doi.org/10.4230/LIPIcs.SoCG.2017.9
http://www.combinatorics.org/Volume_13/Abstracts/v13i1r3.html
http://www.combinatorics.org/Volume_13/Abstracts/v13i1r3.html
https://doi.org/10.1016/j.tcs.2017.05.039
https://doi.org/10.1016/j.tcs.2017.05.039
https://doi.org/10.7155/jgaa.00369
https://doi.org/10.7155/jgaa.00369
https://doi.org/10.1016/S0925-7721(97)00026-6
https://doi.org/10.1016/S0925-7721(97)00026-6
https://doi.org/10.1016/j.comgeo.2017.10.007
https://conference.imp.fu-berlin.de/eurocg18/download/paper_28.pdf
https://conference.imp.fu-berlin.de/eurocg18/download/paper_28.pdf
https://mitpress.mit.edu/books/introduction-algorithms-third-edition
https://mitpress.mit.edu/books/introduction-algorithms-third-edition
https://doi.org/10.1016/0304-3975(88)90123-5
https://doi.org/10.1016/0304-3975(88)90123-5

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Drawing Subcubic 1-Planar Graphs 165

Di Giacomo, E., et al.: Ortho-polygon visibility representations of embedded
graphs. Algorithmica 80(8), 2345-2383 (2018). https://doi.org/10.1007/s00453-
017-0324-2

Di Giacomo, E., Liotta, G., Montecchiani, F.: Drawing outer 1-planar graphs with
few slopes. J. Graph Algorithms Appl. 19(2), 707-741 (2015). https://doi.org/10.
7155/jgaa.00376

Di Giacomo, E., Liotta, G., Montecchiani, F.: Drawing subcubic planar graphs
with four slopes and optimal angular resolution. Theor. Comput. Sci. 714, 51-73
(2018). https://doi.org/10.1016/j.tcs.2017.12.004

Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond
planarity. arxiv report arXiv:1804.07257 (2018)

Dujmovié, V., Eppstein, D., Suderman, M., Wood, D.R.: Drawings of planar graphs
with few slopes and segments. Comput. Geom. 38(3), 194-212 (2007). https://doi.
org/10.1016/j.comgeo.2006.09.002

Duncan, C., Goodrich, M.T.: Planar orthogonal and polyline drawing algorithms.
In: Tamassia, R. (ed.) Handbook on Graph Drawing and Visualization. Chap-
man and Hall/CRC, Boca Raton (2013). http://cs.brown.edu/people/rtamassi/
gdhandbook/chapters/orthogonal.pdf

Duncan, C.A., Kobourov, S.G.: Polar coordinate drawing of planar graphs with
good angular resolution. J. Graph Algorithms Appl. 7(4), 311-333 (2003). https://
doi.org/10.7155/jgaa.00073

Fades, P., Liotta, G.: Right angle crossing graphs and 1-planarity. Discrete Appl.
Math. 161(7-8), 961-969 (2013). https://doi.org/10.1016/j.dam.2012.11.019
Fabrici, I., Madaras, T.: The structure of 1-planar graphs. Discrete Math. 307 (7—
8), 854-865 (2007). https://doi.org/10.1016/j.disc.2005.11.056

Formann, M., et al.: Drawing graphs in the plane with high resolution. STAM J.
Comput. 22(5), 1035-1052 (1993). https://doi.org/10.1137/0222063

Jelinek, V., Jelinkova, E., Kratochvil, J., Lidicky, B., Tesar, M., Vyskocil, T.: The
planar slope number of planar partial 3-trees of bounded degree. Graphs Comb.
29(4), 981-1005 (2013). https://doi.org/10.1007/s00373-012-1157-2

Kant, G.: Hexagonal grid drawings. In: Mayr, E.-W. (ed.) WG 1992. LNCS, vol. 657,
pp. 263-276. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56402-
0-53

Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1),
4-32 (1996). https://doi.org/10.1007/BF02086606

Keszegh, B., Pach, J., Palvolgyi, D.: Drawing planar graphs of bounded degree
with few slopes. SIAM J. Discrete Math. 27(2), 1171-1183 (2013). https://doi.
org/10.1137/100815001

Kindermann, P., Montecchiani, F., Schlipf, L., Schulz, A.: Drawing subcubic
1-planar graphs with few bends, few slopes, and large angles. arxiv report
arXiv:1808.08496 (2018)

Knauer, K.B., Micek, P., Walczak, B.: Outerplanar graph drawings with few slopes.
Comput. Geom. 47(5), 614-624 (2014). https://doi.org/10.1016/j.comgeo.2014.01.
003

Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on
1-planarity. Comput. Sci. Reviews 25, 49-67 (2017). https://doi.org/10.1016/j.
cosrev.2017.06.002

Lenhart, W., Liotta, G., Mondal, D., Nishat, R.I.: Planar and plane slope number
of partial 2-trees. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp.
412-423. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03841-4_36

https://doi.org/10.1007/s00453-017-0324-2
https://doi.org/10.1007/s00453-017-0324-2
https://doi.org/10.7155/jgaa.00376
https://doi.org/10.7155/jgaa.00376
https://doi.org/10.1016/j.tcs.2017.12.004
http://arxiv.org/abs/1804.07257
https://doi.org/10.1016/j.comgeo.2006.09.002
https://doi.org/10.1016/j.comgeo.2006.09.002
http://cs.brown.edu/people/rtamassi/gdhandbook/chapters/orthogonal.pdf
http://cs.brown.edu/people/rtamassi/gdhandbook/chapters/orthogonal.pdf
https://doi.org/10.7155/jgaa.00073
https://doi.org/10.7155/jgaa.00073
https://doi.org/10.1016/j.dam.2012.11.019
https://doi.org/10.1016/j.disc.2005.11.056
https://doi.org/10.1137/0222063
https://doi.org/10.1007/s00373-012-1157-z
https://doi.org/10.1007/3-540-56402-0_53
https://doi.org/10.1007/3-540-56402-0_53
https://doi.org/10.1007/BF02086606
https://doi.org/10.1137/100815001
https://doi.org/10.1137/100815001
http://arxiv.org/abs/1808.08496
https://doi.org/10.1016/j.comgeo.2014.01.003
https://doi.org/10.1016/j.comgeo.2014.01.003
https://doi.org/10.1016/j.cosrev.2017.06.002
https://doi.org/10.1016/j.cosrev.2017.06.002
https://doi.org/10.1007/978-3-319-03841-4_36

166 P. Kindermann et al.

29. Liu, Y., Morgana, A., Simeone, B.: A linear algorithm for 2-bend embeddings of
planar graphs in the two-dimensional grid. Discrete Appl. Math. 81(1-3), 69-91
(1998). https://doi.org/10.1007/978-3-319-03841-4_36

30. Malitz, S.M., Papakostas, A.: On the angular resolution of planar graphs. STAM J.
Discrete Math. 7(2), 172-183 (1994). https://doi.org/10.1137/S0895480193242931

31. Mukkamala, P., P4lvolgyi, D.: Drawing cubic graphs with the four basic slopes. In:
van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 254-265.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-25878-7_25

32. Pach, J., Pélvélgyi, D.: Bounded-degree graphs can have arbitrarily large slope
numbers. Electr. J. Comb. 13(1), 1-4 (2006). http://www.combinatorics.org/
Volume_13/Abstracts/v13ilnl.html

33. Ringel, G.: Ein Sechsfarbenproblem auf der Kugel. Abh. Math. Semin. Univ.
Hambg. 29(1-2), 107-117 (1965). https://doi.org/10.1007/BF02996313

https://doi.org/10.1007/978-3-319-03841-4_36
https://doi.org/10.1137/S0895480193242931
https://doi.org/10.1007/978-3-642-25878-7_25
http://www.combinatorics.org/Volume_13/Abstracts/v13i1n1.html
http://www.combinatorics.org/Volume_13/Abstracts/v13i1n1.html
https://doi.org/10.1007/BF02996313

Best Paper Track 2

®

Check for
updates

Aesthetic Discrimination of Graph
Layouts

Moritz Klammler!, Tamara Mchedlidze! ™) and Alexey Pak?®

! Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
moritz@klammler.eu, mched@iti.uka.de
2 Fraunhofer Institute of Optronics, System Technologies and Image Exploitation,
Fraunhoferstrafie 1, 76131 Karlsruhe, Germany
alexey.pak@iosb.fraunhofer.de

Abstract. This paper addresses the following basic question: given two
layouts of the same graph, which one is more aesthetically pleasing?
We propose a neural network-based discriminator model trained on a
labeled dataset that decides which of two layouts has a higher aesthetic
quality. The feature vectors used as inputs to the model are based on
known graph drawing quality metrics, classical statistics, information-
theoretical quantities, and two-point statistics inspired by methods of
condensed matter physics. The large corpus of layout pairs used for
training and testing is constructed using force-directed drawing algo-
rithms and the layouts that naturally stem from the process of graph
generation. It is further extended using data augmentation techniques.
Our model demonstrates a mean prediction accuracy of 96.48%, outper-
forming discriminators based on stress and on the linear combination of
popular quality metrics by a small but statistically significant margin.
The full version of the paper including the appendix with additional
illustrations is available at https://arxiv.org/abs/1809.01017.

Keywords: Graph drawing - Graph drawing aesthetics
Machine learning - Neural networks - Graph drawing syndromes

1 Introduction

What makes a drawing of a graph aesthetically pleasing? This admittedly vague
question is central to the field of Graph Drawing which has over its history
suggested numerous answers. Borrowing ideas from Mathematics, Physics, Arts,
etc., many researchers have tried to formalize the elusive concept of aesthetics.

In particular, dozens of formulas collectively known as drawing aesthetics
(or, more precisely, quality metrics [6]) have been proposed that attempt to
capture in a single number how beautiful, readable and clear a drawing of an
abstract graph is. Of those, simple metrics such as the number of edge crossings,
minimum crossing angle, vertex distribution or angular resolution parameters,
are obviously incapable per se of providing the ultimate aesthetic statement.
© Springer Nature Switzerland AG 2018

T. Biedl and A. Kerren (Eds.): GD 2018, LNCS 11282, pp. 169-184, 2018.
https://doi.org/10.1007/978-3-030-04414-5_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04414-5_12&domain=pdf
https://arxiv.org/abs/1809.01017
https://doi.org/10.1007/978-3-030-04414-5_12

170 M. Klammler et al.

Advanced metrics may represent, for example, the energy of a corresponding
system of physical bodies [5,9]. This approach underlies many popular graph
drawing algorithms [39] and often leads to pleasing results in practice. However,
it is known that low values of energy or stress do not always correspond to the
highest degree of symmetry [43] which is an important aesthetic criterion [30].

Another direction of research aims to narrow the scope of the original ques-
tion to specific application domains, focusing on the purpose of a drawing or pos-
sible user actions it may facilitate (tasks). The target parameters — readability
and the clarity of representation — may be assessed via user performance studies.
However, even in this case such aesthetic notions as symmetry still remain impor-
tant [30]. In general, aesthetically pleasing designs are known to positively affect
the apparent and the actual usability [25,41] of interfaces and induce positive
mental states of users, enhancing their problem-solving abilities [8].

In this work, we offer an alternative perspective on the aesthetics of graph
drawings. First, we address a slightly modified question: “Of two given drawings
of the same graph, which one is more aesthetically pleasing?”. With that, we
implicitly admit that “the ultimate” quality metric may not exist and one can
hope for at most a (partial) ordering. Instead of a metric, we therefore search for
a binary discriminator function of graph drawings. As limited as it is, it could be
useful for practical applications such as picking the best answer out of outputs
of several drawing algorithms or resolving local minima in layout optimization.

Second, like Huang et al. [13], we believe that by combining multiple met-
rics computed for each drawing, one has a better chance of capturing complex
aesthetic properties. We thus also consider a “meta-algorithm” that aggregates
several “input” metrics into a single value. However, unlike the recipe by Huang
et al., we do not specify the form of this combination a priori but let an artifi-
cial neural network “learn” it based on a sample of labeled training data. In the
recent years, machine learning techniques have proven useful in such aesthetics-
related tasks as assessing the appeal of 3D shapes [4] or cropping photos [24].
Our network architecture is based on a so-called Siamese neural network [3] — a
generic model specifically designed for binary functions of same-kind inputs.

Finally, we acknowledge that any simple or complex input metric may become
crucial to the answer in some cases that are hard to predict a priori. We there-
fore implement as many input metrics as we can and relegate their ranking to
the model. In addition to those known from the literature, we implement a few
novel metrics inspired by statistical tools used in Condensed Matter Physics
and Crystallography, which we expect to be helpful in capturing the symmetry,
balance, and salient structures in large graphs. These metrics are based on so-
called syndromes — variable-size multi-sets of numbers computed for a graph or
its drawing (e.g. vertex coordinates or pairwise distances). In order to reduce
these heterogeneous multi-sets to a fixed-size feature vector (input to the dis-
criminator model), we perform a feature extraction process which may involve
steps such as creating histograms or performing regressions.

In our experiments, our discriminator model outperforms the known (metric-
based) algorithms and achieves an average accuracy of 96.48% when identifying

Aesthetic Discrimination of Graph Layouts 171

the “better” graph drawing out of a pair. The project source code including the
data generation procedure is available online [20].

The remainder of this paper is structured as follows. In Sect.2 we briefly
overview the state-of-the-art in quantifying graph layout aesthetics. Section 4
discusses the used syndromes of aesthetic quality, Sect. 5 feature extraction, and
Sect. 6 the discriminator model. The dataset used in our experiments is described
in Sect. 7. The results and the comparisons with the known metrics are presented
in Sect. 8. Section 9 finalizes the paper and provides an outlook for future work.

2 Related Work

According to empirical studies, graph drawings that maximize one or several
quality metrics are more aethetically pleasing and easier to read [12,13,28,31,42].
For instance, in their seminal work, Purchase et al. have established [30] that
higher numbers of edge crossings and bends as well as lower levels of symmetry
negatively influence user performance in graph reading tasks.

Many graph drawing algorithms attempt to optimize multiple quality met-
rics. As one way to combine them, Huang et al. [13] have used a weighted sum
of “simple” metrics, effects of their interactions (see Purchase [29] or Huang and
Huang [16]), and error terms to account for possible measurement errors.

In another work, Huang et al. [15] have empirically demonstrated that their
“aggregate” metric is sensitive to quality changes and is correlated with the
human performance in graph comprehension tasks. They have also noticed that
the dependence of aesthetic quality on input quality metrics can be non-linear
(e.g. a quadratic relationship better describes the interplay between crossing
angles and drawing quality [14]). Our work extends this idea as we allow for
arbitrary non-linear dependencies implemented by an artificial neural network.

In evolutionary graph drawing approaches, several techniques have been sug-
gested to “train” a fitness function' from the user’s responses as a composition
of several known quality metrics. Masui [23] modeled the fitness function as a
linear combination in which the weights are obtained via genetic programming
from the pairs of “good” and “bad” layouts provided by users. The so-called
co-evolution was used by Barbosa and Barreto [1] to evolve the weights of the
fitness function in parallel with a drawing population in order to match the
ranking made by users. Spénemann and others [37] suggested two alternative
techniques. In the first one, the user directly chooses the weights with a slider.
In the second, they select good layouts from the current population and the
weights are adjusted according to the selection. Rosete-Suarez [32] determined
the relative importance of individual quality metrics based on user inputs. Sev-
eral machine learning-based approaches to graph drawing are described by dos
Santos Vieira et al. [33]. Recently, Kwon et al. [22] presented a novel work on
topological similarity of graphs. Their goal was to avoid expensive computations
of graph layouts and their quality measures. The resulting system was able to
sketch a graph in different layouts and estimate corresponding quality measures.

1 Objective function in genetic algorithms that summarizes optimization goals.

172 M. Klammler et al.

3 Definitions

In this paper we consider general simple graphs G = (V, E) where V = V(G)
and E = E(G) are the vertex and edge sets of G with |V| =n and |E| =m. A
drawing or layout of a graph is its graphical representation where vertices are
drawn as points or small circles, and the edges as straight line segments. Vertex
positions in a drawing are denoted by p* = (p¥,p5)T for k = 1,...,n and their
set P = {p*}7_,. Furthermore, we use dist(u, v) to denote the graph-theoretical
distance — the length of the shortest path between vertices u and v in G — and
dist(u, v) for the Euclidean distance between u and v in the drawing I'(G).

4 Quality Syndromes of Graph Layouts

A quality syndrome of a layout I" is a multi-set of numbers sharing an interpreta-
tion that are known or suspected to correlate with the aesthetic quality (e.g. all
pairwise angles between incident edges in I"). In the following we describe several
syndromes (implemented in our code) inspired by popular quality metrics and
common statistical tools. The list is by no means exhaustive, nor do we claim
syndromes below as necessary or independent. Our model accepts any combina-
tion of syndromes; better choices remain to be systematically investigated.

PRINVEC1 and PRINVEC2. The two principal axes of the set P. If we define a
covariance matrix C' = {¢;;}, ¢ij = %22:1 (pF —]Ti)(p;? -7j)), 4,5 € {1,2},
where p; = %Zzzl pk are the mean values over each dimension, then
PRINVEC1 and PRINVEC2 will be its eigenvectors.

PRINCOMP1 and PRINCOMP2. Projections of vertex positions onto v; = PRINVEC1
and vy = PRINVEC2, that is, {((p’ —To) ,i) iy for i € {1,2} where ()
denotes the scalar product.

ANGULAR. Let A(v) denote the sequence of edges incident to a vertex v, appearing
in a clockwise order around it in I'. Let a(e;, e;) denote the clockwise angle
between edges e; and e; incident to the same vertex. This syndrome is then
defined as U,y (g){(ei, €;) : €5, €; are consecutive in A(v)}.

EDGE_LENGTH. U, ,)ep(c) {distr(u,v)} is the set of edge lengths in I".

RDF_GLOBAL. |, ev (g {distr(u,v)} contains distances between all vertices in
the drawing. The concept of a radial distribution function (RDF) [7] (the
distribution of RDF_GLOBAL) is borrowed from Statistical Physics and Crys-
tallography and characterizes the regularity of molecular structures. In large
graph layouts it captures regular, periodic and symmetric patterns in the
vertex positions.

RDF_LOCAL(d). U, zyev(c{distr(u,v) « dist(u,v) < d} is the set of distances
between vertices such that the graph-theoretical distance between them is
bounded by d € N. In our implementation, we compute RDF_LOCAL(2?) for
1€{0,...,[logy(D)]} where D is the diameter of G. RDF_LOCAL(d) in a sense
interpolates between EDGE_LENGTH (d = 1) and RDF_GLOBAL (d — 0).

Aesthetic Discrimination of Graph Layouts 173

TENSION. U, pev(q)idistr(u,v)/diste(u,v)} are the ratios of Euclidean and
graph-theoretical distances computed for all vertex pairs. TENSION is moti-
vated by and is related to the well-known stress function [17].

Note that before computing the quality syndromes, we normalize all layouts so
that the center of gravity of V' is at the origin and the mean edge length is fixed
in order to remove the effects of scaling and translation (but not rotation).

5 Feature Vectors

The sizes of quality syndromes are in general graph- and layout-dependent. A
neural network, however, requires a fixed-size input. A collection of syndromes
is condensed to this feature vector via feature extraction. Our approach to this
step relies on several auxiliary definitions. Let S = {z;}!_; be a syndrome with p
entries. By S* we denote the arithmetic mean and by S” the root mean square of
S. We also define a histogram sequence S® = %(Sl, ...,Sg) — normalized counts

in a histogram built over S with 3 bins. The entropy [36] of S” is defined as

&(5°) = —Zlog2(5i)5i- (1)

We expect the entropy, as a measure of disorder, to be related to the aesthetic
quality of a layout and convey important information to the discriminator.
The entropy &(S?) is sensitive to the number of bins 3 (cf. Fig.1). In order
to avoid influencing the results via arbitrary choices of 3, we compute it for § =
8,16,...,512. After that, we perform a linear regression of &(S?) as a function
of log,(f3). Specifically, we find S and S such that 3 5(S log, f+5" —&(99))?
is minimized. The parameters (intercept S™ and slope S?) of this regression no
longer depend on the histogram size and are used as feature vector components.
Figure 1 illustrates that the dependence of &(S”) on log,(f3) is indeed often close
to linear and the regression provides a decent approximation.
A discrete histogram over S can be generalized to a continuous sliding average
P
SF(l‘) = —= i=1 P;('r7xl))
— oo dy Zi:l F(y7xl)

(2)

A natural choice for the kernel F'(z, y) is the Gaussian F, (z,y) = exp (7 (z—y)*) .

202

By analogy to Eq. 1, we may now define the differential entropy [36] as

—+o0
P(5F) = — / dz logy(S™ (2)) §% (x). 3)
This entropy via kernel function still depends on parameter o (the filter width).
Computing 2(S%%) for multiple o values as we do for &(S?) is too expensive.
Instead, we have found that using Scott’s Normal Reference Rule [35] as a heuris-
tic to fix o yields satisfactory results, and allows us to define S¢ = 2(S¥7).

174 M. Klammler et al.

8
\ \ \
. L r= 1% f(z)=-1.97+060x i
x r= 2% f(z)=-21840.74z
6 L * r= 5% f(z)=-2254+091x
r=10% f(z)=-1.94+0.98z
5 & r=20% f(z)=-144+0.99z
E 4
~
& 3
2
4
1 —
0 / —
_1 | | | | |
3 4 5 6 7 8 9

log, (B)

Fig. 1. Entropy € =& (Sﬁ) computed for histogram sequences S? defined for different
numbers of histogram bins (. Different markers (colors) correspond to several layouts
of a regular grid-like graph, progressively distorted according to the parameter r. The
dependence of £ on log, () is well approximated by a linear function. Both intercept
and slope show a strong correlation with the levels of distortion r. (Color figure online)

Using these definitions, for the most complex syndrome RDF_LOCAL(d) we
introduce RDF_LOCAL — a 30-tuple containing the arithmetic mean, root mean
square and the differential entropy of RDF_LOCAL(2Y) for i € (0,...,9). With
that?, RDF_LOCAL = (RDF_LOCAL(2")", RDF_LOCAL(2%)”, RDF,LUCAL(T’)E)?:O.

Finally, we assemble the 57-dimensional® feature vector for a layout I" as

Flayout(I') = PRINVEC1 U PRINVEC2 U RDF_LOCAL U | J (S*, 57,57, 57)
S

where S ranges over PRINCOMP1, PRINCOMP2, ANGULAR, EDGE_LENGTH, RDF_GLOBAL
and TENSION.

In addition, the discriminator model receives the trivial properties of the under-
lying graph as the second 2-dimensional vector Fyapn(G) = (log(n),log(m)).

6 Discriminator Model

Feature extractors such as those introduced in the previous section reduce an
arbitrary graph G and its arbitrary layout I" to fixed-size vectors Fgraph(G) and

2 Values i < 10 are sufficient as no graph in our dataset has a diameter exceeding 2°.

3 The size is one less than expected from the explanation above because we do not
include the arithmetic mean for EDGE_LENGTH as it is constant (due to the layout
normalization mentioned earlier) and therefore non-informative.

Aesthetic Discrimination of Graph Layouts 175

Flayout(I"). Given a graph G and a pair of its alternative layouts Iy, and I3,
the discriminator function DM receives the feature vectors v, = Flayout({a),
Vy = Flayout ({3) and vg = Farapn(G) and outputs a scalar value

t = DM(vg, vq,vp) € [—1,1]. (4)

The interpretation is as follows: if ¢ < 0, then the model believes that I, is
“prettier” than Iy; if ¢ > 0, then it prefers I'y. Its magnitude |t| encodes the
confidence level of the decision (the higher |¢|, the more solid the answer).

For the implementation of the function DM we have chosen a practically
convenient and flexible model structure known as Siamese neural networks, orig-
inally proposed by Bromley and others [3] that is defined as

DM(vg, vq,vp) = GM(0, — 03, vG) (5)

where o, = SM(v,) and o, = SM(v;). The shared model SM and the global
model GM are implemented as multi-layer neural networks with a simple struc-
ture shown in Fig. 2. The network was implemented using the Keras [18] frame-
work with the TensorFlow [40] library as back-end.

Oy — 0Oy —— -

ut
3

11 13

dense
[¢]
concatenation

[~
Q
dense

(a) (b)

Fig. 2. Structure of the neural networks SM(v) (a) and GM(o, — 05, vc) (b). Shaded
blocks denote standard network layers, and the numbers on the arrows denote the
dimensionality of the respective representations.

The SM network (Fig. 2(a)) consists of two “dense” (fully-connected) layers,
each preceded by a “dropout” layer (discarding 50% and 25% of the signals,
respectively). Dropout is a stochastic regularization technique intended to avoid
overfitting that was first proposed by Srivastava and others [38].

In the GM network (Fig. 2(b)), the graph-related feature vector v¢ is passed
through an auxiliary dense layer, and concatenated with the difference signal
(o4 — op) obtained from the output vectors of SM for the two layouts. The
final dense layer produces the scalar output value. The first and the auxiliary
layers use linear activation functions, the hidden layer uses ReLU [11] and the
final layer hyperbolic tangent activation. Following the standard practice, the

176 M. Klammler et al.

inputs to the network are normalized by subtracting the mean and dividing by
the standard deviation of the feature computed over the complete dataset.

In total, the DM model has 1066 free parameters, trained via stochastic gra-
dient descent-based optimization of the mean squared error (MSE) loss function.

7 Training and Testing Data

For training, all machine learning methods require datasets representing the
variability of possible inputs. Our DM model needs a dataset containing graphs,
their layouts, and known aesthetic orderings of layout pairs. We have assembled
such a dataset using two types of sources. First, we used the collections of the
well-known graph archives ROME, NORTH and RANDDAG which are published on
graphdrawing.org as well as the NIST’s “Matrix Market” [2].

Second, we have generated random graphs using the algorithms listed below.
As a by-product, some of them produce layouts that stem naturally from the
generation logic. We refer to these as native layouts (see [19] for details).

GRID. Regular n x m grids. Native layouts: regular rectangular grids.

TORUS1. Same as GRID, but the first and the last “rows” are connected to form
a 1-torus (a cylinder). No native layouts.

TORUS2. Same as TORUS1, but also the first and the last “columns” are connected
to form a 2-torus (a doughnut). No native layouts.

LINDENMAYER. Uses a stochastic L-system [27] to derive increasingly complex
graphs by performing random replacements of individual vertices with more
complicated substructures such as an n-ring or an n-clique. Produces a planar
native layout.

QUASI(n)D for n € {3,...,6}. Projection of a primitive cubic lattice in an n-
dimensional space onto a 2-dimensional plane intersecting that space at a
random angle. The native layout follows from the construction.

MOSAIC1. Starts with a regular polygon and randomly divides faces according to
a set of simple rules until the desired graph size is reached. The rules include
adding a vertex connected to all vertices of the face; subdividing each edge
and adding a vertex that connects to each subdivision vertex; subdividing
each edge and connecting them to a cycle. The native layout follows from the
construction.

MOSAIC2. Applies a randomly chosen rule of MOSAIC1 to every face, with the goal
of obtaining more symmetric graphs.

BOTTLE. Constructs a graph as a three-dimensional mesh over a random solid of
revolution. The native layout is an axonometric projection.

For each graph, we have computed force-directed layouts using the FM? [10] and
stress-minimization [17] algorithms. We assume these and native layouts to be
generally aesthetically pleasing and call them all proper layouts of a graph.
Furthermore, we have generated a priori un-pleasing (garbage) layouts as
follows. Given a graph G = (V, E), we generate a random graph G’ = (V' E')
with [V'| = |V]| and |E’| = |E| and compute a force-directed layout for G'.

http://www.graphdrawing.org/

Aesthetic Discrimination of Graph Layouts 177

The coordinates found for the vertices V'’ are then assigned to V. We call these
“phantom” layouts due to the use of a “phantom” graph G’. We find that phan-
tom layouts look less artificial than purely random layouts when vertex positions
are sampled from a uniform or a normal distribution. This might be due to the
fact that G and G’ have the same density and share some beneficial aspects of
the force-directed method (such as mutual repelling of nodes).

For training and testing of the discriminator model we need a corpus of
labeled pairs — triplets (I, Iy, t) where I, and I', are two different layouts for
the same graph and ¢ € [—1, 1] is a value indicating the relative aesthetic quality
of I, and I},. A negative (positive) value for ¢ expresses that the quality of
I, is superior (inferior) compared to I, and the magnitude of ¢ expresses the
confidence of this prediction. We only use pairs with sufficiently large |¢|.

As manually-labelled data were unavailable, we have fixed the values of ¢
as follows. First, we paired a proper and a garbage layout of a graph. The
assumption is that the former is always more pleasing (i.e. t = +1). Second, in
order to obtain more nuanced layout pairs and to increase the amount of data,
we have employed the well-known technique of data augmentation as follows.

Layout Worsening: Given a proper layout I', we apply a transformation designed
to gradually reduce its aesthetic quality that is modulated by some parameter
r € [0,1], resulting in a transformed layout I'\. By varying the degree r of the
distortion, we may generate a sequence of layouts ordered by their anticipated
aesthetic value: a layout with less distortion is expected to be more pleasing
than a layout with more distortion when starting from a presumably decent
layout. We have implemented the following worsening techniques. PERTURB: add
Gaussian noise to each node’s coordinates. FLIP_NODES: swap coordinates of
randomly selected node pairs. FLIP_EDGES: same as FLIP_NODES but restricted
to connected node pairs. MOVLSQ: apply an affine deformation based on moving
least squares suggested (although for a different purpose) by Schaefer et al. [34].
In essence, all vertices are shifted according to some smoothly varying coordinate

mapping.

Layout Interpolation: As the second data augmentation technique, we linearly
interpolated the positions of corresponding vertices between the proper and
garbage layouts of the same graph. The resulting label ¢ is then proportional
to the difference in the interpolation parameter.

In total, using all the methods described above, we have been able to collect
a database of about 36 000 labeled layout pairs.

8 Ewvaluation

The performance of the discriminator model was evaluated using cross-validation
with 10-fold random subsampling [21]. In each round, 20% of graphs (with all
their layouts) were chosen randomly and were set aside for testing, and the model
was trained using the remaining layout pairs. Of IV labeled pairs used for testing,

178 M. Klammler et al.

in each round we computed the number N.gect Of pairs for which the model
properly predicted the aesthetic preference, and derived the accuracy (success
rate) A = Neorrect/N. The standard deviation of A over the 10 runs was taken
as the uncertainty of the results. With the average number of test samples of
N = 7415, the eventual success rate was A = (96.48 + 0.85)%.

8.1 Comparison with Other Metrics

In order to assess the relative standing of the suggested method, we have imple-
mented two known aesthetic metrics (stress and the combined metric by Huang
et al. [15]) and evaluated them over the same dataset. The metric values were
trivially converted to the respective discriminator function outputs.

Stress 7 of a layout I' of a simple connected graph G = (V, E) was defined
by Kamada and Kawai [17] as

n—1 n
T() =Y > kij(distr(vi,v;) — Ldista(vi,v;))” , (6)
i=1 j=i+1

where L denotes the desirable edge length and k;; = K/distg(v;,v;)? is the
strength of a “spring” attached to v; and v;. The constant K is irrelevant in the
context of discriminator functions and can be set to any value.

As observed by Welch and Kobourov [43], the numeric value of stress depends
on the layout scale via the constant L in the Eq.6 which complicates compar-
isons. Their suggested solution was for each layout to find L that minimizes 7°
(e.g. using binary search). In our implementation, we applied a similar technique
based on fitting and minimizing a quadratic function to the stress computed at
three scales. We refer to this quantity as STRESS.

The combined metric proposed by Huang et al. [15] (referred to as COMB) is
a weighted average of four simpler quality metrics: the number of edge crossings
(CC), the minimum crossing angle between any two edges in the drawing (CR),
the minimum angle between two adjacent edges (AR), and the standard deviation
computed over all edge lengths (EL).

The average is computed over the so-called z-scores of the above metrics.
Each z-score is found by subtracting the mean and dividing by the standard
deviation of the metric for all layouts of a given graph to be compared with each
other. More formally, let G be a graph and I1,..., I} be its k layouts to be
compared pairwise. Let M (I;) be the value of metric M for I; and pups and oy
be the mean and the standard deviation of M (I5) for i € {1,...,k}. Then

o ML) — pvr
o = (7)
oM
is the z-score for metric M and layout I';. The combined metric then is

COMB(I}) =) was). (8)
M

Aesthetic Discrimination of Graph Layouts 179

The weights wjs were found via Nelder-Mead maximization [26] of the prediction
accuracy over the training dataset?.

DISC MODEL
STRESS
COMB

N X N

DISC MODEL
STRESS
COMB

> X N

DISC MODEL
STRESS
COMB

x NN

=

Fig. 3. Examples where our discriminator model (DISC_MODEL) succeeds (V) and the

competing metrics fail (*¥) to predict the answer correctly. In each row, the layout on
the left is expected to be superior compared to the one on the right.

The accuracy of the stress-based and the combined model-based discrimi-
nators is shown in Table1l. In most cases, our model outperforms these algo-
rithms by a comfortable margin. Figure 3 provides examples of mis-predictions.
By inspecting such cases, we notice that STRESS often fails to guess the aesthet-
ics of (almost) planar layouts that contain both very short and very long edges
(such behavior may also be inferred from the definition of STRESS). We observe

4 The obtained weights are: wg. = +0.4803 £ 0.0855, wee = +0.4679 + 0.1069, wer =
—0.0431 + 0.0315, war = —0.0087 £ 0.0072.

180 M. Klammler et al.

that there are planar graphs, such as nested triangulations, for which this prop-
erty is unavoidable in planar drawings. The mis-predictions of COMB seem to be
due to the high weight of the edge length metric EL. Both STRESS and COMB are
weaker than our model in capturing the absolute symmetry and regularity of
layouts.

Table 1. Accuracy scores for the COMB and STRESS model. The standard deviation in
each column is estimated based on the 5-fold cross-validation (using 20% of data for
testing each time). The “Advantage” column shows the improvement in the accuracy
of our model with respect to the alternative metric.

Metric | Success rate Advantage
STRESS | (93.49 + 0.86)% | (2.99 + 1.01)%

COMB | (92.76 + 1.03)% | (3.71 & 1.22)%

8.2 Significance of Individual Syndromes

In order to estimate the influence of individual syndromes on the final result, we
have tested several modifications of our model. For each syndrome, we considered
the case when the feature vector contained only that syndrome. In the second
case, that syndrome was removed from the original feature vector. The entries
for the omitted features were set to zero. The results are shown in Table 2.

Table 2. Success rates of our discriminator when a syndrome is excluded from the
feature vector, and when the feature vector contains only that a syndrome. Note that
RDF_LOCAL is a family of syndromes that are all included or excluded together. The
apparent paradox of higher success rates when some syndromes are excluded can be
explained by a statistical fluctuation and is well within the listed range of uncertainty.

Property Sole exclusion | Sole inclusion
PRINCOMP1 (96.37 £ 0.84)% | (55.51 £ 6.50)%
PRINCOMP2 (96.20 £ 0.76)% | (61.08 + 5.24)%
EDGE_LENGTH (96.33 +0.59)% | (71.65 + 3.38)%
ANGULAR (96.40 4 0.34)% | (77.79 £ 6.06)%
RDF_GLOBAL (95.92 +0.94)% | (86.37 + 3.43)%
TENSION (96.83 +0.31)% | (89.78 +0.95)%
RDF_LOCAL (90.04 +2.04)% | (94.78 + 1.60)%
Baseline using all properties | (96.48 + 0.85)%

As can be observed, the dominant contribution to the accuracy of the model
is due to the RDF-based properties RDF_LOCAL and RDF_GLOBAL. The exclusion

Aesthetic Discrimination of Graph Layouts 181

of other syndromes does not significantly change the results (they agree within
the estimated uncertainty). However, the sole inclusion of these syndromes still
performs better than random choice. This suggests that there is a considerable
overlap between the aesthetic aspects captured by various syndromes. Further
analysis is needed to identify the nature and the magnitude of these correlations.

9 Conclusion

In this paper we propose a machine learning-based discriminator model that
selects the more aesthetically pleasing drawing from a pair of graph layouts.
Our model picks the “better” layout in more than 96% cases and outperforms
known stress-based and linear combination-based models. To the best of our
knowledge, this is the first application of machine learning methods to this ques-
tion. Previously, such techniques have proven successful in a range of complex
issues involving aesthetics, prior knowledge, and unstated rules in object recog-
nition, industrial design, and digital arts. As our model uses a simple network
architecture, investigating the performance of more complex networks is war-
ranted.

Previous efforts were focused on determining the aesthetic quality of a layout
as a weighted average of individual quality metrics. We extend these ideas and
findings in the sense that we do not assume any particular form of dependency
between the overall aesthetic quality and the individual quality metrics.

Going beyond simple quality metrics, we define quality syndromes that cap-
ture arrays of information about graphs and layouts. In particular, we borrow
the notion of RDF from Statistical Physics and Crystallography; RDF-based
features demonstrate the strongest potential in extracting the aesthetic quality
of a layout. We expect RDF's (describing the microscopic structure of materials)
to be the most relevant for large graphs. It is tempting to investigate whether
further tools from physics can be useful in capturing drawing aesthetics.

From multiple syndromes, we construct fixed-size feature vectors using com-
mon statistical tools. Our feature vector does not contain any information on
crossings or crossing angles, nevertheless its performance is superior with respect
to the weighted averages-based model which accounts for both. It would be inter-
esting to investigate whether including these and other features further improves
the performance of the neural network-based model.

In order to train and evaluate the model, we have assembled a relatively large
corpus of labeled pairs of layouts, using available and generated graphs and
exploiting the assumption that layouts produced by force-directed algorithms
and native graph layouts are aesthetically pleasing and that disturbing them
reduces the aesthetic quality. We admit that this study should ideally be repeated
with human-labeled data. However, this requires that a dataset be collected with
a size similar to ours, which is a challenging task. Creating such a dataset may
become a critically important accomplishment in the graph drawing field.

182 M. Klammler et al.
References
1. Barbosa, H.J.C., Barreto, A.M.S.: An interactive genetic algorithm with coevolu-

10.

11.

12.

13.

14.

15.

tion of weights for multiobjective problems. In: Spector, L., Goodman, E.D., Wu,
A., Langdon, W.B., Voigt, H.M. (eds.) An Interactive Genetic Algorithm With
Co-evolution of Weights for Multiobjective Problems, GECCO 2001, pp. 203-210.
Morgan Kaufmann Publishers Inc. (2001)

Boisvert, R.F., Pozo, R., Remington, K., Barrett, R.F., Dongarra, J.J.: Matrix
market: a web resource for test matrix collections. In: Boisvert, R.F. (ed.) Qual-
ity of Numerical Software: Assessment and enhancement, pp. 125-137. Springer,
Heidelberg (1997). https://doi.org/10.1007/978-1-5041-2940-4_9

Bromley, J., Guyon, 1., LeCun, Y., Sackinger, E., Shah, R.: Signature verifi-
cation using a “Siamese” time delay neural network. In: Advances in Neural
Information Processing Systems, pp. 737-744 (1994). https://doi.org/10.1142/
S0218001493000339

Dev, K., Villar, N., Lau, M.: Polygons, points, or voxels?: Stimuli selection for
crowdsourcing aesthetics preferences of 3d shape pairs. In: Gooch, B., Gingold, Y.I.,
Winnemoeller, H., Bartram, L., Spencer, S.N. (eds.) Proceedings of the symposium
on Computational Aesthetics, CAE 2017, Los Angeles, California, USA, pp. 2:1—
2:7. ACM (2017). https://doi.org/10.1145/3092912.3092918

Eades, P.: A heuristic for graph drawing. Congr. Numer. 24, 149-160 (1984)
Eades, P., Hong, S., Nguyen, A., Klein, K.: Shape-based quality metrics for large
graph visualization. J. Graph Algorithms Appl. 21(1), 29-53 (2017). https://doi.
org/10.7155/jgaa.00405

Findenegg, G.H., Hellweg, T.: Statistische Thermodynamik, 2nd edn. Springer,
Darmstadt (2015). https://doi.org/10.1007/978-3-642-37872-0

. Fredrickson, B.L.: What good are positive emotions. Rev. Gen. Psychol. 2, 300-319

(1998)

Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed place-
ment. Softw. Pract. Exper. 21(11), 1129-1164 (1991). https://doi.org/10.1002/
spe.4380211102

Hachul, S., Jiinger, M.: Drawing large graphs with a potential-field-based multilevel
algorithm. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 285-295. Springer,
Heidelberg (2005). https://doi.org/10.1007/978-3-540-31843-9_29

Hahnloser, R.H.R., Sarpeshkar, R., Mahowald, M.A., Douglas, R.J., Seung, H.S.:
Digital selection and analogue amplification coexist in a cortex-inspired silicon
circuit. Nature 405, 947-951 (2000). https://doi.org/10.1038/35016072

Huang, W., Eades, P.: How people read graphs. In: Hong, S. (ed.) Asia-Pacific Sym-
posium on Information Visualisation, APVIS 2005, pp. 51-58, Australia, Sydney
(2005)

Huang, W., Eades, P., Hong, S.H., Lin, C.C.: Improving multiple aesthetics
produces better graph drawings. J. Vis. Lang. Comput. 24(4), 262-272 (2013).
https://doi.org/10.1016/j.jvlc.2011.12.002

Huang, W., Hong, S., Eades, P.: Effects of crossing angles. In: IEEE VGTC Pacific
Visualization Symposium 2008, PacificVis 2008, Kyoto, Japan, pp. 41-46 (2008).
https://doi.org/10.1109/PACIFICVIS.2008.4475457

Huang, W., Huang, M.L., Lin, C.C.: Evaluating overall quality of graph visualiza-
tions based on aesthetics aggregation. Inf. Sci. 330, 444-454 (2016). https://doi.
org/10.1016/j.ins.2015.05.028, SI: Visual Info Communication

https://doi.org/10.1007/978-1-5041-2940-4_9
https://doi.org/10.1142/S0218001493000339
https://doi.org/10.1142/S0218001493000339
https://doi.org/10.1145/3092912.3092918
https://doi.org/10.7155/jgaa.00405
https://doi.org/10.7155/jgaa.00405
https://doi.org/10.1007/978-3-642-37872-0
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1002/spe.4380211102
https://doi.org/10.1007/978-3-540-31843-9_29
https://doi.org/10.1038/35016072
https://doi.org/10.1016/j.jvlc.2011.12.002
https://doi.org/10.1109/PACIFICVIS.2008.4475457
https://doi.org/10.1016/j.ins.2015.05.028
https://doi.org/10.1016/j.ins.2015.05.028

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Aesthetic Discrimination of Graph Layouts 183

Huang, W., Huang, M.: Exploring the relative importance of crossing number
and crossing angle. In: Dai, G., et al. (eds.) Proceedings of the 3rd International
Symposium on Visual Information Communication, VINCI 2010, pp. 1-8, ACM
(2010). https://doi.org/10.1145/1865841.1865854

Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf.
Process. Lett. 31(1), 7-15 (1989). https://doi.org/10.1016,/0020-0190(89)90102-6
Keras. https://keras.io/

Klammler, M.: Aesthetic value of graph layouts: investigation of statistical syn-
dromes for automatic quantification. Master’s thesis, Karlsruhe Institute of Tech-
nology (2018). http://klammler.eu/msc/

Klammler, M., et al.: Source code for aesthetic discrimination of graph layouts.
https://github.com/5gonl12eder/msc-graphstudy

Kohavi, R.: A study of cross-validation and bootstrap for accuracy estimation
and model selection. In: Proceedings of the 14thInternational Joint Conference on
Artificial Intelligence, IJCAI 1995, Montréal Québec, Canada, vol. 2, pp. 1137—
1145. Morgan Kaufmann (1995)

Kwon, O.H., Crnovrsanin, T., Ma, K.L.: What would a graph look like in this
layout? A machine learning approach to large graph visualization. IEEE Trans.
Vis. Comput. Graph. 24(1), 478-488 (2018). https://doi.org/10.1109/TVCG.2017.
2743858

Masui, T.: Evolutionary learning of graph layout constraints from examples. In:
Szekely, P.A. (ed.) Proceedings of the 7th Annual ACM Symposium on User Inter-
face Software and Technology, pp. 103-108. UIST 1994. ACM (1994). https://doi.
org/10.1145/192426.192468

Nishiyama, M., Okabe, T., Sato, Y., Sato, I.: Sensation-based photo cropping.
In: Gao, W., et al. (eds.) Proceedings of the 17th ACM International Conference
on Multimedia. pp. 669-672. MM 2009, ACM (2009). https://doi.org/10.1145/
1631272.1631384

Norman, D.A.: Emotion & design: attractive things work better. Interactions 9(4),
36—42 (2002). https://doi.org/10.1145/543434.543435

Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes: The Art
of Scientific Computing, 3 edn. Cambridge University Press (2007)
Prusinkiewicz, P., Lindenmayer, A.: The Algorithmic Beauty of Plants. Springer,
New York (1990). https://doi.org/10.1007/978-1-4613-8476-2

Purchase, H.: Which aesthetic has the greatest effect on human understanding? In:
DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248—-261. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-63938-1_67

Purchase, H.C.: Performance of layout algorithms: comprehension, not computa-
tion. J. Vis. Lang. Comput. 9(6), 647-657 (1998). https://doi.org/10.1006/jvlc.
1998.0093

Purchase, H.C., Cohen, R.F., James, M.: Validating graph drawing aesthetics.
In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 435-446. Springer,
Heidelberg (1996). https://doi.org/10.1007/BFb0021827

Purchase, H.C., Hamer, J., Néllenburg, M., Kobourov, S.G.: On the usability of
Lombardi graph drawings. In: Didimo, W., Patrignani, M. (eds.) GD 2012. LNCS,
vol. 7704, pp. 451-462. Springer, Heidelberg (2013). https://doi.org/10.1007 /978~
3-642-36763-2_40

Rosete-Suarez, A., Sebag, M., Ochoa-Rodriguez, A.: A study of evolutionary graph
drawing: laboratoire de Recherche en Informatique (LRI), Universite Paris-Sud XI,
p. 1228. Technical report (1999)

https://doi.org/10.1145/1865841.1865854
https://doi.org/10.1016/0020-0190(89)90102-6
https://keras.io/
http://klammler.eu/msc/
https://github.com/5gon12eder/msc-graphstudy
https://doi.org/10.1109/TVCG.2017.2743858
https://doi.org/10.1109/TVCG.2017.2743858
https://doi.org/10.1145/192426.192468
https://doi.org/10.1145/192426.192468
https://doi.org/10.1145/1631272.1631384
https://doi.org/10.1145/1631272.1631384
https://doi.org/10.1145/543434.543435
https://doi.org/10.1007/978-1-4613-8476-2
https://doi.org/10.1007/3-540-63938-1_67
https://doi.org/10.1006/jvlc.1998.0093
https://doi.org/10.1006/jvlc.1998.0093
https://doi.org/10.1007/BFb0021827
https://doi.org/10.1007/978-3-642-36763-2_40
https://doi.org/10.1007/978-3-642-36763-2_40

184

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

M. Klammler et al.

dos Santos Vieira, R., do Nascimento, H.A.D., da Silva, W.B.: The application of
machine learning to problems in graph drawing — a literature review. In: Proceed-
ings of the 7th International Conference on Information, Process, and Knowledge
Management,e KNOW 2015, Lisbon, Portugal, pp. 112-118 (2015)

Schaefer, S., McPhail, T., Warren, J.: Image deformation using moving least
squares. ACM Trans. Graph. 25(3), 533-540 (2006). https://doi.org/10.1145/
1141911.1141920

Scott, D.W.: On optimal and data-based histograms. Biometrika 66(3), 605-610
(1979). https://doi.org/10.1093 /biomet/66.3.605

Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(4),
623-656 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb00917.x

Spoénemann, M., Duderstadt, B., von Hanxleden, R.: Evolutionary meta layout of
graphs. In: Dwyer, T., Purchase, H., Delaney, A. (eds.) Diagrams 2014. LNCS
(LNAI), vol. 8578, pp. 16-30. Springer, Heidelberg (2014). https://doi.org/10.
1007/978-3-662-44043-8_3

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.:
Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn.
Res. 15(1), 1929-1958 (2014)

Tamassia, R.: Handbook of Graph Drawing and Visualization. Discrete Mathemat-
ics and Its Applications. CRC Press (2013)

Tensor flow. https://tensorflow.org/

Tractinsky, N., Katz, A.S., Ikar, D.: What is beautiful is usable. Interact. Comput.
13(2), 127-145 (2000). https://doi.org/10.1016,/50953-5438(00)00031-X

Ware, C., Purchase, H.C., Colpoys, L., McGill, M.: Cognitive measurements of
graph aesthetics. Inf. Vis. 1(2), 103-110 (2002). https://doi.org/10.1057 /palgrave.
ivs.9500013

Welch, E., Kobourov, S.: Measuring symmetry in drawings of graphs. Comput.
Graph. Forum 36(3), 341-351 (2017). https://doi.org/10.1111/cgf.13192

https://doi.org/10.1145/1141911.1141920
https://doi.org/10.1145/1141911.1141920
https://doi.org/10.1093/biomet/66.3.605
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1007/978-3-662-44043-8_3
https://doi.org/10.1007/978-3-662-44043-8_3
https://tensorflow.org/
https://doi.org/10.1016/S0953-5438(00)00031-X
https://doi.org/10.1057/palgrave.ivs.9500013
https://doi.org/10.1057/palgrave.ivs.9500013
https://doi.org/10.1111/cgf.13192

Orders

®

Check for
updates

A Flow Formulation for Horizontal

Coordinate Assignment with Prescribed
Width

Michael Jiinger!, Petra Mutzel?®, and Christiane Spisla2(®)
1 University of Cologne, Cologne, Germany
mjuenger@informatik.uni-koeln.de
2 TU Dortmund University, Dortmund, Germany
{petra.mutzel,christiane.spisla}@cs.tu-dortmund.de

Abstract. We consider the coordinate assignment phase of the well
known Sugiyama framework for drawing directed graphs in a hierarchi-
cal style. The extensive literature in this area has given comparatively
little attention to a prescribed width of the drawing. We present a mini-
mum cost flow formulation that supports prescribed width and optionally
other criteria like lower and upper bounds on the distance of neighboring
nodes in a layer or enforced vertical edge segments. In our experiments
we demonstrate that our approach can compete with state-of-the-art
algorithms.

Keywords: Hierarchical drawings + Coordinate assignment
Minimum cost flow - Prescribed drawing width

1 Introduction

The Sugiyama framework [12] is a popular approach for drawing directed graphs.
It layouts the graph in a hierarchical manner and works in five phases: Cycle
removal, layer assignment, crossing minimization, coordinate assignment and
edge routing. If the graph is not already acyclic, some edges are reversed to
prepare the graph for the next phase. Then each node is assigned to a layer so
that all edges point from top to bottom. After that the orderings of the nodes
within each layer are determined. In the coordinate assignment phase that we
consider here, the exact positions of the nodes are fixed. Finally the edges are
layouted, e.g., as straight lines. A good overview over the different phases of the
framework can be found in [9].

After the nodes are assigned to layers and the orderings of the nodes within
their layers are fixed, the task of the coordinate assignment phase is to compute
z-coordinates for all nodes. There are several, sometimes contradicting, objec-
tives in this phase, e.g., short edges, minimum distance between neighboring
nodes, straight edges, balanced positions of the nodes between their neighbors
in adjacent layers, and few bend points of edges that cross multiple layers. The
© Springer Nature Switzerland AG 2018

T. Biedl and A. Kerren (Eds.): GD 2018, LNCS 11282, pp. 187-199, 2018.
https://doi.org/10.1007/978-3-030-04414-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04414-5_13&domain=pdf
http://orcid.org/0000-0001-7621-971X
https://doi.org/10.1007/978-3-030-04414-5_13

188 M. Jiinger et al.

criterion “short edges” can be handled by exact algorithms as well as fast heuris-
tics that give pleasant results, possibly also considering other aesthetic criteria.

When it comes to the width of the drawing one usually tries to restrict
the maximum number of nodes in one layer, see e.g. [5]. Long edges, i.e. edges
that span more than two layers, are often split into paths with one dummy
node on each intermediate layer. Healy and Nikolov [8] present a branch-and-
cut approach to compute a layering that takes the influence of the number of
dummy nodes on the width into account. Jabrayilov et al. [10] do the same
in a mixed integer program that treats the first two phases of the Sugiyama
framework simultaneously. But still, the maximum number of nodes in one layer
does not necessarily define the actual width of the final drawing, as illustrated in
Fig. 1. The main objective of most methods for the coordinate assignment phase
is “short edges”, which often leads to small drawings, but the width of the final
layout is not directly addressed.

k /; k I Q
Fig. 1. In the left picture the horizontal edge length is £ — 3 and the width is 1, in

the right picture the horizontal edge length is 0 and the width is k — 2, where £ is the
number of layers.

There may be further requirements for the final drawing, such as an aspect
ratio in order to make optimal use of the drawing area, or a maximum distance
between two nodes on the same layer if they are semantically related. A common
request is that inner segments of long edges are drawn as vertical straight lines
in order to improve readability.

Related Work. Sugiyama et al. [12] present a quadratic programming formulation
that has a combination of two asthetic criteria as objective function, short edges
(closeness to adjacent nodes) and a balanced layout (positioning nodes close
to the barycenter of their upper and lower neighbors). Gansner et al. [7] give a
simpler formulation in which they replace quadratic terms of the form (x, —,,)?
by |2, — 2| and leave out the balance terms. The coordinate assignment problem
can be interpreted as an instance of the layer assignment problem, and they
suggest to apply the network simplex algorithm to an auxiliary graph to obtain
a drawing with minimum horizontal edge length. Given an initial layout, some
heuristics sweep through the layers and try to shift the nodes to better positions
depending on the fixed z-coordinates of their neighbors in adjacent layers, see
e.g. [6,11,12]. Two fast heuristics that compute coordinates from scratch are

Horizontal Coordinate Assignment with Prescribed Width 189

presented by Buchheim et al. [3] and by Brandes and Kopf [2]. Both algorithms
draw inner segments of long edges straight and aim for a balanced layout with
short edges.

Our Contribution. We formulate the coordinate assignment problem as a mini-
mum cost flow problem that can be solved efficiently. Within this formulation we
can fix the maximum width of the final drawing as well as a maximum and min-
imum horizontal distance between nodes in the same layer and we can enforce
straightness to some edges. We compute z-coordinates such that the total hori-
zontal edge length is minimized subject to these further constraints.

2 Notation and Preliminaries

Let G = (V, E) be a directed graph with |V| = n nodes and |E| = m edges. For
a directed edge e = (u,v) we denote the start node of e with start(e) = u and
the target node of e with target(e) = v. A path P from wu to v of length k is a
set of edges {e; = (vi,vi11) | i =1,...,k where u = v; and v = vp41}. We also
write u = v. If vy = vy it is called a cycle. A graph is called a directed acyclic
graph (DAG) if it has no cycles. A layering L of a graph assigns every v € V
a layer L;, such that i < j holds for every edge e = (u,v) with £(u) = L; and
L(v) = L;. The layering is called proper if L(v) = L(u)+ 1 for every edge (u,v),
i.e., the layers of every pair of adjacent nodes are consecutive. An edge that
violates the latter property is called a long edge. Every graph with a layering
can be transformed into a graph with a proper layering by subdividing every
long edge into a chain of edges. We denote with |£| the number of layers and
with |L;| the number of nodes in layer L;.

An ordering ord defines a partial ordering on the nodes of G. For every
layer L; it assigns each node in L; a number 1 < j < |L;| and we write u < v if
ord(u) < ord(v). We denote with v} the j-th node in layer L;.

Given a graph G with a layering £ and an ordering ord the horizontal coor-
dinate assignment problem (HCAP) asks for z-coordinates for every node, so
that z(u) < z(v) if w < v. We will restrict ourselves to integer coordinates. The
horizontal length of an edge e = (u,v) is defined as length(e) = |z(v) — z(u)| and
the total horizontal edge length is length(E) = 3 . i, length(e). The width of the
assignment is max,cy (v) — minyecy x(v). Unless otherwise stated, we mean the
horizontal length whenever we talk about the length of an edge.

HCAP,,;»£r is the variant of HCAP in which we also want to minimize the
total horizontal edge length.

We assume familiarity with minimum cost flows. Ahuja et al. [1] give
a good overview. Let N = (Vy,En) be a directed graph with a super
source s and a super sink ¢, so for all other nodes the amount of incoming
flow equals the amount of outgoing flow. We have lower and upper bounds
on the edges and a cost function cost : Exy — R. Let f be a feasible
flow. For a subset of nodes V' C Vxn \ {s,t} we denote with f(V’') =

Y vev Ze:(v’w) fle) = > evr Ee:(u’v) f(e) the flow through V’. For s we

190 M. Jiinger et al.

define f(s) to be the total amount of flow leaving s. For a subset of edges
E' C Ey we denote with f(E') = > _p f(e) the flow over £’ and with
cost(E') = 3 c g cost(e) the cost of E' and with costy = . f(e)- cost(e)
the total cost of f.

3 Network Flow Formulation

In this section we describe the construction of a network for the horizontal
coordinate assignment problem. Given a minimum cost flow in this network we
show how to obtain z-coordinates for all nodes such that the total horizontal edge
length is minimized. By a simple modification we can compute z-coordinates that
give us minimum total horizontal edge length with respect to a given maximum
width of the drawing. The basic idea is that flow represents horizontal distance
and we send flow from top to bottom through the layers.

3.1 Network Construction

Let G = (V,E) be a DAG with a proper layering £ and an ordering and let
N = (Vy, En) be the minimum cost flow network. For now let us assume that
neighboring nodes on a layer should have an equal minimum distance of one and
that we have no further requirements concerning the edges.

For every layer L; with i € {1,...,|£|} we add nodes w, w?,... ,w‘iLi‘ and
28,28 ..., ZliLil to N. Imagine the node w? placed above the layer L; and between
vj and v} (wf is placed at the left end and wj, | at the right end of the layer).

The nodes z; are placed in the same way below layer L;. Although we do not
have a drawing of G at this moment we can still use terms like “above” and
“below” because the layering gives us a vertical ordering of the nodes of G and
we can talk about “left” and “right” because of the given ordering of the nodes
in each layer. Since we are placing the nodes w; and z]‘ “between” the nodes
v; and 11; 41 we want to extend the “<” relation to give a partial ordering on
V U Vy in the following way: wi < vi < wi < v§ < .-+ < UIiLi‘ < wail and
b < vl <2 <ol << UliLiI < ZliLi\' We connect w; to z; with an edge aé
that has a lower bound of one and an upper bound of co and a cost of zero. The
flow over these edges will define the distance between v} and v? ;. We denote
the set of these edges with A. Figure2(a) shows an example.

For every layer L; with ¢ € {1,...,|£|} and every j € {0,...,|L;| —1} we add
edges bwj = (W}, w}, 1), bwh = (w1, w}), bz = (2, 2j,1) and bz = (2], 7))
to N. The lower bound of these edges is zero and the upper bound is co. The

cost of these network edges equals the number of graph edges they “cross over”.

«— — .
That means, the cost of bwj and bw; equals the number of incoming graph

edges of node vj» and the cost of bzé and b_z>; equals the number of outgoing
graph edges of wé, see Fig.2(a). Positive flow over one of these edges will cause
the crossed-over graph edges to have positive horizontal length. We call the set
of these edges B.

Horizontal Coordinate Assignment with Prescribed Width 191

— —
cost(bw})= cost(bw})= 1

b
wh
i i LN LN
"y wt ()
b’
@] £ / . N
i j
a
j—1 —
7 1
bZ‘,/ (jk
% % 5
j—1 J e: i+1 e
= R '
2
j
. —_.
cost(bz})= cost(bz})=2 Q oo oo Q
(a) (b)

Fig. 2. Illustration of edges of the sets (a) A, B and (b) C. Nodes of G are white
circles, nodes of N are green rectangles. Edges of G are gray, edges of N are green.
(Color figure online)

Now we connect the nodes of neighboring layers. We could add edges between
every z; and every wfj% but we want to keep the number of edges between layers
as small as possible. We add edges only in special situations and will show later
that this suffices for correctness. For every layer L; with ¢ € {1,...,|£] — 1} we
add edges cyy = (2§, wh™) and L) = (z‘iLi‘,wfzill) to the network with
a lower bound of zero, an upper bound of co and a cost of zero. Additionally
we add edges c;'-k = (z;, w}jl) if there exist eq, eq, e3,e4 € E with start(e;) = ’U;,
start(eg) = v},, where v;'», is the next node to the right of 11; with an outgoing edge
and target(ez) = vi"', target(es) = vif ', where v} is the next node to the right
of vfjl with an incoming edge and the following conditions holds: start(ez) <
start(e;) < start(es) < start(eq) and target(ey) < target(es) < target(es) <
target(ez). We call this situation a hug between z§ and wj . These edges get
a lower bound of zero, an upper bound of oo, and the cost equals the number
of graph edges they cross over: cost(ci,) = [{e = (v),v}) € E |p < jAq >
k' or p > j' A q < k}|. Like the edges of B, flow on edges of this kind will cause
horizontal length and we denote the set of all 03- » by C. Figure 2(b) illustrates a
hug situation.

Finally we add a super source s and a super sink ¢ to the network. We connect
s with every w},j € {1,...,|L1|} and t with every zl‘f‘, ke{l,...,|Lig|}. These
edges get a lower bound of zero, an upper bound of co and a cost of zero. Figure 3
shows a complete example network. If it is clear from the context which layer or

which node is meant, we omit the node subscripts and superscripts.

3.2 Obtaining Coordinates and Correctness

Let f be a feasible flow in the network described above. We observe that f (a?) =

f (w;) =f (z;) since a; is the only outgoing edge of w; and the only incoming

192 M. Jiinger et al.

Fig. 3. An example network with underlying graph. Edges of the set A are red (solid),
edges of the set B are blue (dashed) and edges of the set C' are purple (dashdotted).
The numbers along the edges denote the flow, unlabeled edges carry no flow. (Color
figure online)

edge of z; We define the z-coordinate of a node v} as

w(vf) =) flai) =D flwi) =) f(=). (1)
1=0 1=0 1=0

Together with y(v;) = i we get an induced drawing with a feasible coordinate
assignment, because for every v;, v, within the same layer z(v;) < z(vx) if and
only if v; < vy (since the amount of flow over edges a € A is always positive).
Now we want to explain the correspondence between the cost of a flow f and
the total horizontal edge length of the resulting drawing. The intuition is, that
if flow is sent from the right of start(e) to the left of target(e) for some edge e,
then target(e) is “pushed” to the right because of the additional flow on the left.
This results in a horizontal expansion of e. We define for an edge e = (u,v) € F

E')(e) = {bw € B | start(bw) <v A target(bw) > v}
U {bz € B | start(bz) <u A target(bz) > u}
U {ce C| start(c) <u A target(c) > v}
as the set of network edges that start to the left of e and end to the right of e,

thus cross over e from left to right. Analogously the set of network edges that
cross over a graph edge from right to left is

<E(e) = {bw € B | start(bw) >v A target(bw) < v}
U {bz € B | start(bz) > u A target(bz) < u}
U {ce C| start(c) > u N target(c) < v}.

We make the following observations:

Horizontal Coordinate Assignment with Prescribed Width 193

Property 1. cost(g) =|{e€ E | g € E(e)}\—H{e EF|ge€ <E(e)}| Vg € BUC.
Property 2. Because of the flow conservation rule we have
S fwt) = S £(20) for alli € {1, |L]} and
z'L i fwh) = z'“‘ F(wh) = f(s) for all i,k € {1,...,|C]}.
Property 3. The width of the induced drawing is
maxj <;<|c| (Zllel‘_l f(wﬁ)) < f(s).
Property 4. Let e = (v H'1) be an edge Then
—
Yt cortt F) = Y £ + (B () - F(E ().

The last property is illustrated in Fig. 4. The total flow that reaches all w;.H
that are to left of target(e) comes from the z that are to the left of start(e) and
from nodes that are to the right of target(e) or start(e). Flow from the latter
nodes has to pass over e from right to left. Flow from a node z; that is to the
left of start(e) and does not enter one of the wZJrl
over e from left to right.

left of target(e) has to pass

Lemma 1. For a feasible flow f and the induced drawing costy > length(E)
holds.

Proof. Let e = (v}, vit!) be an edge of G. The length of e is length(e) = |z(vt) —
z(vi™)| and together with (1) we have
1

iz . k-1 .
length(e) = f(z) — f(wlzﬂ)‘
=0 =0
= > G- Y fth
z} <start(e) wli+1<ta7"get(e)
= |#(E(€)~ f(E(e))| (by Property 4).

Therefore we have for the total edge length

length(E) = Z‘f(ﬁ(e)) - f(f(e))‘

ecE

<> ([fEE| +|1E@))
> (F(E@©)+ F(E@)

eclE

N flg) HeeElge E()}ufecE|ge E(e)}

geEEN
= Z f(g) - cost(yg (by Property 1)

geEN
= costy.

194 M. Jiinger et al.

l@ l@

{20, 21, .., 251} J(E(e)

{wo, wi, .., wi_1} F(E(e))

l

Fig. 4. Nlustration of Property 4. The rectangles represent all network nodes to the
left of v; and vy, respectively. The thick arrows represent the flow of several edges.

Lemma 2. Let I' be a drawing of G. There exists a flow f that induces I and
whose cost is equal to the total edge length of .

Proof. Tf necessary, we set z:(v) := x(v) — min,ecy 2(v) so that the smallest z-
coordinate is zero. That gives us an equivalent drawing. We construct the flow f
as follows: Let w be the width of I". We send w units of flow from s to ¢, so that
the k-th unit takes the path P,=s5s>5 wl Rl w2 i> e S wfcl‘ = t, where
w;Z is chosen so that z(v} ;) > k and x(v},) < k (w, = wp, if z(v]) > k and
wj, = wILi" if x(vlLi‘ < k). That means we send the k-th unit through the k-th
“column” of I'. This is always possible, because of the subpaths wi — 2% 5

Ji Ji
2h — wé‘H = wj ", - So for every v there are x(v) units of flow that pass by to

the left of v, thus giving us correct coordinates for all nodes.

We deﬁne El :={e= (v vt e E| (v) <kand z(vj™") > k}u{ee E|
z(vh) > kand z(vith) < k}, ie. all edges that cross over the k-th column
between L; and L;11. We show that there exists a path Py that produces the same
cost as the number of graph edges that cross over the k-th column in total, that
is cost(Py) = Zlu "|EL|. Then we have Y%, cost(Py) = S2%_, Zl’cl 1|Ek|
length(E) and we have proven the lemma.

z+1

It suffices to focus on the subpath P} from z = z; to w = wj,

two consecutive layers. Notice that network edges (s,w!), (w?, z%) and (21411
do not contribute to the cost of the flow. For better readability we denote the
nodes of L; with u; and the nodes of L;; with v; and we omit the superscripts.
If not stated otherwise we use z; for 2} and w; for wi*'. We construct P’ = P}

‘ j
so that cost(P’) = |E'| = |E}|.

between

Case 1: There exists no edge e with start(e) < z and target(e) < w.
That means every edge e with start(e) < z has target() > w, and if target() <w

then start(e) > z. Then we set P’ = z — zj, 1 — 29 — wo — w; — w. For
every u; < z with p outgoing edges P’ uses exactly one bz with cost p. All these

N
edges are in E’. For every v; < w with ¢ incoming edges we use exactly one bw

Horizontal Coordinate Assignment with Prescribed Width 195

with cost g. Again these edges are in E’. So cost(P') = |E’|, since there are no
other edges in E’.

Case 2: There exists no edge e with start(e) > z and target(e) > w.

Arguing like in Case 1, we set P/ = z = 2L, = W|L,,,| — w. As before the cost
of P’ equals |E|.

Case 3: There exists an edge e; with start(e;) < z and target(e;) < w and
another edge e, with start(e,) > z and target(e,) > w.

Let e; be the edge with the biggest xz(start(e)) of all edges e with start(e) < z
and target(e) < w, and let e, be the edge with the smallest z(start(e)) of all
edges e with start(e) > z and target(e) > w.

Case 3.1: There is at least one node u’ with outgoing edges and

start(e;) < u' < z.

Let u, = start(e;) and vy = target(e;). We know vy < w. Let vy, be the first
node to the right of vy with an edge e, = (up,vp/) and up, > u4. Such a node
does exist, since we have e,.. Notice that vy, might be to the right of w.

Then we have a hug: Set e; = ¢;, set e to one outgoing edge of ug11 (or the
next node to the right of uy, which has an outgoing edge), e4 = e,» and set e3 to
one incoming edge of vy 1 (or the next one to the left of vy/), see Fig. 5. Notice
that e; may coincide with e3 and es with ey.

We have start(es) < start(e1), because we chose e; = e; with the biggest
x(start(e)) and vy is the first node to the right of vy with an adjacent node to
the right of u,. So every node between vy = target(e1) and vy, including vy =
target(es), can only have adjacent nodes to the left of u, = start(eq). It is clear
that start(e1) < start(ez) and start(ez) < start(es), since start(es) = up > ug.
By choice of eq, ez and ey target(e1) < target(es) < target(es) holds. We know
that target(ez) > w because there is at least one node between start(e;) and z
whose outgoing edges have to end to the right of w because of the choice of e;.
If target(eq) > target(es) then es would have been chosen for e,. and therefore
for e4. So target(es) < target(ez) also holds. So there exists cy(,/—1) € En and
we set P/ =2 5 2z, — wp_1 — w.

Now for the cost. A subset of E’ are the edges e with 2z, < start(e) < z and
target(e) > w, which are covered by the bz of P'.

We have two options. First, if wj,_1 > w then all edges e with start(e) < z,
and target(e) > wp/—y are covered by cyr—1) and the remaining edges e with

start(e) < z4 and w < target(e) < wp/ 1 are covered by the bw of P'. Edges e
with start(e) > 2z > uy and target(e) < w < wy are also covered by cgy(p/—1)-
There cannot be any edge e with z < start(e) and w < target(e) < wp_1
or zy < start(e) < z and target(e) < w, which would be crossed over by two
different edges of P’, due to the choice of edges e; to ey.

Second, if wy_1 < w then ¢y, —1y covers all edges e with start(e) < z, and
target(e) > w > wp—1 and all edges e with start(e) > z > z, and target(e) <
wpr—1 < w. Edges e with start(e) > z and w1 < target(e) < w are covered by

2,
the bw. Again there are no edges that are crossed over twice by P’ due to the

196 M. Jiinger et al.

choice of e; to e4. And there are no edges in E’ that are not covered by some
edge of P’

Case 3.2: start(e;) is the next node to the left of z with outgoing edges, but
there is at least one node v with outgoing edges and start(e,) > v’ > z.
This case is analogous to Case 3.1.

Case 3.3: start(e;) is the next node to the left of z with outgoing edges and
start(e,) is the next node to the right of z with outgoing edges.
Let e; = (ug,vy) and vy, be the first node right of vy with an adjacent node
up > ug. Again we have a hug. Set e; = ¢;, e2 = e,, e3 to an incoming edge
of vpr—1 (or a lower node, if necessary) and eq = (up, vp/).

With the same arguments as in Case 3.1 we convince ourselves that e1, ez,
e3 and ey are indeed a hug and we have cj, r—1). We set P’ = 2 — wp 1 5 w.
As before cost(P’) = |E’|. O

Theorem 1. A minimum cost flow in the network described above solves
HCAPinEL-

Proof. Lemmal and Lemma 2. a

o o ofolg

Fig. 5. Case 3.1. Only relevant network nodes and edges are depicted. Edges that
participate in the hug are black.

For controlling the maximum width of the drawing we make use of Property 3,
which states that the width of the drawing is at most the flow leaving s. We can
add an additional node s’ and an edge (s,s’) to N and replace all edges of the
form (s, w; b with (¢,]1) Now we can limit the maximum width of the drawing
by setting the upper bound of (s, s’) to an appropriate value.

Further constraints can be modelled by manipulating the network. By adjust-
ing the lower and upper bounds of edges a € A we can realize minimum and
maximum distances between two neighboring nodes on the same layer. By remov-
ing every g € TC(@) u E')(e) from the network, we can enforce the edge e to be
drawn vertically.

Horizontal Coordinate Assignment with Prescribed Width 197

4 Experimental Results

In our experiment we want to demonstrate that we are able to restrict the width
of the drawing without paying too much in terms of total (horizontal) edge length
and time.

We implemented the algorithm from Sect. 3, which we will call MCF within
the Open Graph Drawing Framework [4] (OGDF) and used the OGDF network
simplex software to solve the minimum cost flow problem. We also implemented
the approach of Gansner et al. [7] (Gansner) that also uses the network simplex
algorithm. Additionally we use three other OGDF methods: an ILP that also
takes balancing the nodes between their neighbors into account (LP), the algo-
rithm of Buchheim, Jiinger and Leipert [3] (BJL) and the algorithm of Brandes
and Kopf [2] (BK). All algorithms draw inner segments of long edges as verti-
cal lines, since this is generally desirable for good readability. MCF is config-
ured to compute a layout with minimum edge length with respect to minimum
possible width and Gansner computes coordinates that minimize the total edge
length regardless of width. We used a subset of the AT&T graphs from www.
graphdrawing.org/data.html consisting of 1277 graphs with 10 to 100 nodes as
our test set.

The test was run on an Intel Xeon E5-2640v3 2.6 GHz CPU with 128 GB
RAM.

Figures6, 7, and 8 show the results. The whiskers in Figs.6 and 7 cover
95% of the data and outliers are omitted for better readability. Figure 8 shows
absolute values for MCF and Fig. 9 displays three example drawings.

180
width —
160 edge length =3 |

inLLE :

Gansner BK

percent to minimum

Fig. 6. Width and total edge length produced by MCF, Gansner, LP, BJL and BK
relative to minimum width, resp. edge length.

0.05

0.04 time

0.03

0.02

0.01 L

MCF Gansner BK

running time in sec.

Fig. 7. Running time for MCF, Gansner, LP, BJL and BK.

www.graphdrawing.org/data.html
www.graphdrawing.org/data.html

198 M. Jiinger et al.

160 —————————————————— 8000
+

140 + R g 7000 1
120 | + + 1 5 6000 [1

+ =)
100 | 4+ + 1 $ 5000 | ~

= oy =
5 sof o+t g 1 &, 4000 | 1

= 1‘"+ +F * ot * + * 3
+ F o i £+t 1 23000 ~

i + S
0 'S 2000 | 4

8
1000 |]

Y
10 20 30 40 50 60 70 80 90 100
nodes

(b)

(a) (b) (c)

Fig.9. Example drawings of a graph with 29 nodes and 33 edges. (a) MCF: width:
9, edge length: 58. (b) Gansner: width: 13, edge length: 54. (¢) BK: width: 16.5, edge
length: 63.5.

In Fig.6 the resulting total edge length and width of the drawings are
depicted relative to the minima that are computed by Gansner and MCF, respec-
tively. We see that MCF still achieves good results in terms of total edge length,
even though it has the restriction of meeting the minimum width. The total edge
length of drawings computed with MCF is on average 2.2% over the minimum,
while drawings produced with Gansner have on average a width that is 8.9% over
the minimum. In an extreme example with minimum width 1, Gansner results
in width 15.

Figure 7 shows the running time in seconds. MCF (4.9 ms on average) is a
bit slower than Gansner (3.9 ms on average). The fastest algorithm on average is
BJL with 2.5 ms.

5 Conclusion

We presented a minimum cost flow formulation for the coordinate assignment
problem that minimizes the total edge length with respect to several optional
criteria like the maximum width or lower and upper bounds on the distance of

Horizontal Coordinate Assignment with Prescribed Width 199

neighboring nodes in a layer. In our experiments we showed that our approach
can compete with state-of-the-art algorithms.

References

10.

11.

12.

Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows - Theory, Algorithms and
Applications. Prentice Hall, Upper Saddle River (1993)

Brandes, U., Kopf, B.: Fast and simple horizontal coordinate assignment. In:
Mutzel, P., Jiinger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 31-44.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45848-4_3

Buchheim, C., Jinger, M., Leipert, S.: A fast layout algorithm for k-level graphs.
In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 229-240. Springer, Heidelberg
(2001). https://doi.org/10.1007/3-540-44541-2_22

Chimani, M., Gutwenger, C., Jinger, M., Klau, G.W., Klein, K., Mutzel, P.: The
open graph drawing framework (OGDF). In: Tamassia, R. (ed.) Handbook on
Graph Drawing and Visualization, pp. 543-569. Chapman and Hall/CRC, Boca
Raton (2013)

Coffman, E.G., Graham, R.L.: Optimal scheduling for two-processor systems. Acta
Informatica 1(3), 200-213 (1972). https://doi.org/10.1007/BF00288685

Eades, P., Lin, X., Tamassia, R.: An algorithm for drawing a hierarchical graph.
Int. J. Comput. Geom. Appl. 6(2), 145-156 (1996). https://doi.org/10.1142/
S0218195996000101

Gansner, E.R., Koutsofios, E., North, S.C., Vo, K.P.: A technique for drawing
directed graphs. Softw. Eng. 19(3), 214-230 (1993). https://doi.org/10.1109/32.
221135

Healy, P., Nikolov, N.S.: A branch-and-cut approach to the directed acyclic graph
layering problem. In: Goodrich, M.T.; Kobourov, S.G. (eds.) GD 2002. LNCS,
vol. 2528, pp. 98-109. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36151-0-10

Healy, P., Nikolov, N.S.: Hierarchical drawing algorithms. In: Tamassia, R. (ed.)
Handbook on Graph Drawing and Visualization, pp. 409-453. Chapman and
Hall/CRC, Boca Raton (2013)

Jabrayilov, A., Mallach, S., Mutzel, P., Riiegg, U., von Hanxleden, R.: Compact
layered drawings of general directed graphs. In: Hu, Y., Noéllenburg, M. (eds.) GD
2016. LNCS, vol. 9801, pp. 209-221. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-50106-2_17

Sander, G.: A fast heuristic for hierarchical Manhattan layout. In: Brandenburg,
F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 447-458. Springer, Heidelberg (1996).
https://doi.org/10.1007/BFb0021828

Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierar-
chical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109-125 (1981).
https://doi.org/10.1109/TSMC.1981.4308636

https://doi.org/10.1007/3-540-45848-4_3
https://doi.org/10.1007/3-540-44541-2_22
https://doi.org/10.1007/BF00288685
https://doi.org/10.1142/S0218195996000101
https://doi.org/10.1142/S0218195996000101
https://doi.org/10.1109/32.221135
https://doi.org/10.1109/32.221135
https://doi.org/10.1007/3-540-36151-0_10
https://doi.org/10.1007/3-540-36151-0_10
https://doi.org/10.1007/978-3-319-50106-2_17
https://doi.org/10.1007/978-3-319-50106-2_17
https://doi.org/10.1007/BFb0021828
https://doi.org/10.1109/TSMC.1981.4308636

l‘)

Check for
updates

The Queue-Number of Posets of Bounded
Width or Height

Kolja Knauer!(®) | Piotr Micek?, and Torsten Ueckerdt?

1 Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

kolja.knauer@lis-lab.fr

2 Faculty of Mathematics and Computer Science, Theoretical Computer Science

Department, Jagiellonian University, Krakéw, Poland

piotr.micek@tcs.uj.edu.pl

3 Karlsruhe Institute of Technology (KIT), Institute of Theoretical Informatics,

Karlsruhe, Germany

torsten.ueckerdt@kit.edu

Abstract. Heath and Pemmaraju [9] conjectured that the queue-
number of a poset is bounded by its width and if the poset is planar
then also by its height. We show that there are planar posets whose
queue-number is larger than their height, refuting the second conjecture.
On the other hand, we show that any poset of width 2 has queue-number
at most 2, thus confirming the first conjecture in the first non-trivial case.
Moreover, we improve the previously best known bounds and show that
planar posets of width w have queue-number at most 3w — 2 while any
planar poset with 0 and 1 has queue-number at most its width.

1 Introduction

A queue layout of a graph consists of a total ordering on its vertices and an
assignment of its edges to queues, such that no two edges in a single queue are
nested. The minimum number of queues needed in a queue layout of a graph G
is called its queue-number and denoted by qn(G).

To be more precise, let G be a graph and let L be a linear order on the
vertices of G. We say that the edges uwv,u'v’ € E(G) are nested with respect
toLifu<uw <v <voru <u<wv < v in L. Given a linear order L
of the vertices of G, the edges uiv1,...,urvr of G form a rainbow of size k if
up < o < up < v <--- <oy in L. Given G and L, the edges of G can be
partitioned into k queues if and only if there is no rainbow of size kK + 1 in L,
see [10].

The queue-number was introduced by Heath and Rosenberg in 1992 [10] as an
analogy to book embeddings. Queue layouts were implicitly used before and have

K. Knauer was supported by ANR projects GATO: ANR-16-CE40-0009-01 and DIS-
TANCIA: ANR-17-CE40-0015.

P. Micek was partially supported by the National Science Center of Poland under grant
no. 2015/18/E/ST6,/00299.

© Springer Nature Switzerland AG 2018

T. Biedl and A. Kerren (Eds.): GD 2018, LNCS 11282, pp. 200-212, 2018.
https://doi.org/10.1007/978-3-030-04414-5_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04414-5_14&domain=pdf
https://doi.org/10.1007/978-3-030-04414-5_14

The Queue-Number of Posets of Bounded Width or Height 201

applications in fault-tolerant processing, sorting with parallel queues, matrix
computations, scheduling parallel processes, and communication management
in distributed algorithm (see [8,10,13]).

Perhaps the most intriguing question concerning queue-numbers is whether
planar graphs have bounded queue-number.

Conjecture 1 (Heath and Rosenberg [10]).
The queue-number of planar graphs is bounded by a constant.

In this paper we study queue-numbers of posets. The parameter was intro-
duced in 1997 by Heath and Pemmaraju [9] and the main idea is that given a
poset one should lay it out respecting its relation. Two elements a, b of a poset
are called comparable if a < b or b < a, and incomparable, denoted by a | b,
otherwise. Posets are visualized by their diagrams: Elements are placed as points
in the plane and whenever a < b in the poset, and there is no element ¢ with
a < ¢ < b, there is a curve from a to b going upwards (that is y-monotone).
We denote this case as a < b. The diagram represents those relations which are
essential in the sense that they are not implied by transitivity, also known as
cover relations. The undirected graph implicitly defined by such a diagram is the
cover graph of the poset. Given a poset P, a linear extension L of P is a linear
order on the elements of P such that x <, y, whenever <p y. (Throughout the
paper we use a subscript on the symbol <, if we want to emphasize which order
it represents.) Finally, the queue-number of a poset P, denoted by qu(P), is the
smallest k such that there is a linear extension L of P for which the resulting lin-
ear layout of Gp contains no (k+ 1)-rainbow. Clearly we have qn(Gp) < qn(P),
i.e., the queue-number of a poset is at least the queue-number of its cover graph.
It is shown in [9] that even for planar posets, that is posets admitting crossing-
free diagrams, there is no function f such that qn(P) < f(qu(Gp)) (Fig.1).

Fig. 1. A poset and a layout with two queues (gray and black). Note that the order of
the elements on the spine is a linear extension of the poset.

Heath and Pemmaraju [9] investigated the maximum queue-number of sev-
eral classes of posets, in particular with respect to bounded width (the maximum
number of pairwise incomparable elements) and height (the maximum number
of pairwise comparable elements). A set with every two elements being compa-
rable is a chain. A set with every two distinct elements being incomparable is
an antichain. They proved that if width(P) < w, then qn(P) < w?. The lower
bound is attained by weak orders, i.e., chains of antichains and is conjectured to
be the upper bound as well:

202 K. Knauer et al.

Congjecture 2 (Heath and Pemmaraju [9]).
Every poset of width w has queue-number at most w.

Furthermore, they made a step towards this conjecture for planar posets: if a
planar poset P has width(P) < w, then qn(P) < 4w — 1. For the lower bound
side they provided planar posets of width w and queue-number [/w].

We improve the bounds for planar posets and get the following:

Theorem 1. FEvery planar poset of width w has queue-number at most 3w — 2.
Moreover, there are planar posets of width w and queue-number w.

As an ingredient of the proof we show that posets without certain subdi-
vided crowns satisfy Conjecture2 (c.f. Theorem 5). This implies the conjecture
for interval orders and planar posets with (unique minimum) 0 and (unique
maximum) 1 (c.f. Corollary 2). Moreover, we confirm Conjecture2 for the first
non-trivial case w = 2:

Theorem 2. Every poset of width 2 has queue-number at most 2.

An easy corollary of this is that all posets of width w have queue-number at
most w? —w + 1 (c.f. Corollary 1).

Another conjecture of Heath and Pemmaraju concerns planar posets of
bounded height:

Congjecture 8 (Heath and Pemmaraju [9]).
Every planar poset of height h has queue-number at most h.

We show that Conjecture 3 is false for the first non-trivial case h = 2:
Theorem 3. There is a planar poset of height 2 with queue-number at least 4.

Furthermore, we establish a link between a relaxed version of Conjectures 3
and 1, namely we show that the latter is equivalent to planar posets of height
2 having bounded queue-number (c.f. Theorem 6). On the other hand, we show
that Conjecture 3 holds for planar posets with 0 and 1:

Theorem 4. FEvery planar poset of height h with 0 and 1 has queue-number at
most h — 1.

Organization of the paper. In Sect.2 we consider general (not necessarily pla-
nar) posets and give upper bounds on their queue-number in terms of their
width, such as Theorem 2. In Sect.3 we consider planar posets and bound the
queue-number in terms of the width, both from above and below, i.e., we prove
Theorem 1. In Sect. 4 we give a counterexample to Conjecture 3 by constructing
a planar poset with height 2 and queue-number at least 4. Here we also argue
that proving any upper bound on the queue-number of such posets is equiva-
lent to proving Conjecture 1. Finally, we show that Conjecture 3 holds for planar
posets with 0 and 1 and that for every h there is a planar poset of height h and
queue-number h — 1 (c.f. Proposition 3).

The Queue-Number of Posets of Bounded Width or Height 203

2 General Posets of Bounded Width

By Dilworth’s Theorem [3], the width of a poset P coincides with the smallest
integer w such that P can be decomposed into w chains of P. Let us derive
Proposition 1 of Heath and Pemmaraju [9] from such a chain partition.

Proposition 1. For every poset P, if width(P) < w then qn(P) < w?.

Proof. Let P be a poset of width w and Cy,...,C,, be a chain partition of P.
Let L be any linear extension of P and a < b <p ¢ <y d with a < d and b < c.
Note that we must have either a || b or ¢ || d. If follows that if a € C;, b € Cj,
c € Cy, and d € Cy, then (i,£) # (j,k). As there are only w? ordered pairs (z,y)
with z,y € [w], we can conclude that every nesting set of covers has cardinality
at most w?. O

Note that in the above proof L is any linear extension and that without choos-
ing the linear extension L carefully, upper bound w? is best-possible. Namely,
if P ={a1,...,ax,b1,...,br} with comparabilities a; < b; for all 1 < i,j <k,
then P has width k and the linear extension a1 < ... < ap < b < ... < by
creates a rainbow of size k2.

We continue by showing that every poset of width 2 has queue-number at
most 2, that is, we prove Theorem 2.

Proof (Theorem 2). Let P be a poset of width 2 and minimum element 0 and
C1,Cs be a chain partition of P. Note that the assumption of the minimum
causes no loss of generality, since a 0 can be added without increasing the width
nor decreasing the queue-number. Any linear extension L of P partitions the
ground set X naturally into inclusion-maximal sets of elements, called blocks,
from the same chain in {C7,Cy} that appear consecutively along L, see Fig. 2.
We denote the blocks by Bi,..., B according to their appearance along L.
We say that L is lazy if for each i = 2,...,k, each element z € B; has a
relation to some element y € B;_;. A linear extension L can be obtained by
picking any minimal element m € P, put it into L, and recurse on P\ {m}.
Lazy linear extensions (with respect to C1,C5) can be constructed by the same
process where additionally the next element is chosen from the same chain as
the element before, if possible. Note that the existence of a 0 is needed in order
to ensure the property of laziness with respect to Bs.

Now we shall prove that in a lazy linear extension no three covers are pairwise
nesting. So assume that a < b is any cover and that a € B; and b € B;. As L
is lazy, b is comparable to some element in B;_; (if j > 2) and all elements in
By,...,Bj_o (if j > 3). With a < b being a cover, it follows from L being lazy
that ¢ € {j—2,7—1,4}. If i = j, then no cover is nested under a < b. If i = j—1,
then no cover ¢ < d is nested above a < b: either ¢ € B; and d € B; and hence
¢ < d is not a cover, or both endpoints would be inside the same chain, i.e., ¢,d
are the last and first element of B;_5 and B; or B; and B, 2, respectively. This
implies ¢ <y, a <p d <p bor a <p ¢ <p b <y r, respectively, and ¢ < d cannot
nest above a < b. If i = j — 2, then no cover is nested above a < b. Thus, either

204 K. Knauer et al.

Bs Ba
B3
B2
B EL YA XL e N,
Ch Cs By By Bs B;s Bs

Fig. 2. A poset of width 2 with a 0 and a chain partition C1,C2 and the blocks
Bi, ..., Bs induced by a lazy linear extension with respect to C1, Ca.

no cover is nested below a < b, or no cover is nested above a < b, or both. In
particular, there is no three nesting covers and qn(P) < 2. O

Corollary 1. Every poset of width w has queue-number at most w? — 2|w/2].

Proof. We take any chain partition of size w and pair up chains to obtain a set
S of |w/2] disjoint pairs. Each pair from S induces a poset of width at most 2,
which by Theorem 2 admits a linear order with at most two nesting covers. Let
L be a linear extension of P respecting all these partial linear extensions.

Now, following the proof of Proposition 1 any cover can be labeled by a pair
(i,) corresponding to the chains containing its endpoint. Thus, in a set of nesting
covers any pair appears at most once, but for each i, such that (¢,7) € S only
two of the four possible pairs can appear simultaneously in a nesting. This yields

the upper bound. a

For an integer k > 2 we define a subdivided k-crown as the poset Py as follows.
The elements of Py are {a1,...,ax,b1,...,bk,c1,...,cr} and the cover relations
are given by a; < b; and b; < ¢; fori=2,...,k, a; <¢;_1fori=1,....k—1,

and a; < cg; see the left of Fig. 3. We refer to the covers of the form a; < c; as
the diagonal covers and we say that a poset P has an embedded Py if P contains
3k elements that induce a copy of Py in P with all diagonal covers of that copy
being covers of P.

Cc1 C2 Cc1 C2 (3 C1 C2 C3 (4

P I N N\ M ’ Y
TN
a1 a2 a; az as a; a2 a3 aq z

Fig. 3. Left: The posets P2, P, and P,. Right: The existence of an element z with
cover relation z < x and non-cover relation z < y gives rise to a gray edge from z to y.

Theorem 5. If P is a poset that for no k > 2 has an embedded Py, then the
queue-number of P is at most the width of P.

The Queue-Number of Posets of Bounded Width or Height 205

Proof. Let P be any poset. For this proof we consider the cover graph Gp of P
as a directed graph with each edge xy directed from z to y if x < y in P. We
call these edges the cover edges. Now we augment Gp to a directed graph G by
introducing for some incomparable pairs z || y a directed edge. Specifically, we
add a directed edge from x to y if there exists a z with z < x,y in P where z < x
is a cover relation and z < y is not a cover relation; see the right of Fig.3. We
call these edges the gray edges of G.

Now we claim that if G has a directed cycle, then P has an embedded sub-
divided crown. Clearly, every directed cycle in G has at least one gray edge.
We consider the directed cycles with the fewest gray edges and among those let
C = [e1,...,c¢ be one with the fewest cover edges. First assume that C has a
cover edge (hence ¢ > 3), say cics is a gray edge followed by a cover edge cacs.
Consider the element z with cover relation z < ¢; and non-cover relation z < ¢
in P. By z < ¢3 < ¢3 we have a non-cover relation z < ¢z in P. Now if ¢; || ¢3
in P, then G contains the gray edge cics (see Fig.4(a)) and [c1,c¢3,...,¢ is a
directed cycle with the same number of gray edges as C' but fewer cover edges, a
contradiction. On the other hand, if ¢; < ¢3 in P (note that ¢z < ¢; is impossible
as z < ¢ is a cover), then there is a directed path @ of cover edges from ¢; to
cs (see Fig.4(b)) and C + Q — {cica, cacs} contains a directed cycle with fewer
gray edges than C, again a contradiction.

(d)

@) . C (b) ., € ()
Q
C1 C1 C €1 C “
C2 C2 CZ\VCJ Cz\é;/q
z z ay a1

Fig. 4. Illustrations for the proof of Theorem 5.

Hence C' = [ey,. .., ¢ is a directed cycle consisting solely of gray edges. Note
that by the first paragraph {ci,...,c¢} is an antichain in P. For i = 2,...,¢
let a; be the element of P with cover relation a; < ¢;_1 and non-cover relation
a; < ¢, as well as a; with cover relation a; < ¢, and non-cover relation a; <
c1. As {c1,...,¢ce} is an antichain and a; < ¢; holds for ¢ = 1,...,¢, we have
{c1,...,ee}n{ai,...,ar} = 0. Let us assume that a; < ¢; in P for some j # 1, (.
If a1 < ¢j is a cover relation, then there is a gray edge c;c; in G (see Fig. 4(c))
and the cycle [e1, ..., ¢;] is shorter than C, a contradiction. If a; < ¢; is a non-
cover relation, then there is a gray edge c,c; in G (see Fig. 4(d)) and the cycle
[¢js- .., ce] is shorter than C, again a contradiction.

Hence, the only relations between aq,...,a, and cq,. .., c; are cover relations
a1 < ¢¢ and a; < ¢;_1 for i = 2,...,¢ and the non-cover relations a; < ¢; for
i=1,...,¢ Hence ay,...,ap are pairwise distinct. Moreover, {a1,...,ap} is an
antichain in P since the only possible relations among these elements are of the

206 K. Knauer et al.

form a; < ay or a; < a;_1, which would contradict that ay < ¢, and a; < ¢;_1

are cover relations. Finally, we pick for every ¢ = 1,...,¢ an element b; with
a; < b; < ¢;, which exists as a; < ¢; is a non-cover relation. Together with the
above relations between aq,...,ay and cy,...,c, we conclude that by,...,by are

pairwise distinct and these 3¢ elements induce a copy of Py in P with all diagonal
covers in that copy being covers of P.

Thus, if P has no embedded Py, then the graph G we constructed has no
directed cycles, and we can pick L to be any topological ordering of G. As Gp C
G, L is a linear extension of P. For any two nesting covers zo <p, 1 <1, y1 <L Y2
we have 1 || 22 or y1 || y2 or both, since x5 < ys is a cover. However, if 25 < z1
in P, then there would be a gray edge from y> to y; in G, contradicting y; <, ¥
and L being a topological ordering of G. We conclude that x; || 3 and the left
endpoints of any rainbow form an antichain, proving qn(P) < width(P). O

Let us remark that several classes of posets have no embedded subdivided
crowns, e.g., graded posets, interval orders (since these are 2+ 2-free, see [6]),
or (quasi-)series-parallel orders (since these are N-free, see [7]). Here, 2+ 2 and
N are the four-element posets defined by a < b,c < d and a < b,c < d,c < b,
respectively. Also note that while subdivided crowns are planar posets, no planar
poset with 0 and 1 has an embedded k-crown. Indeed, already looking at the
subposet induced by the k-crown and the 0 and the 1, it is easy to see that there
must be a crossing in any diagram. Thus, we obtain:

Corollary 2. For any interval order, series-parallel order, and planar poset with
0 and 1, P we have qn(P) < width(P).

3 Planar Posets of Bounded Width

Heath and Pemmaraju [9] show that the largest queue-number among planar
posets of width w lies between [/w] and 4w — 1. Here we improve the lower
bound to w and the upper bound to 3w — 2.

Proposition 2. For each w there exists a planar poset Q,, with 0 and 1 of width
w and queue-number w.

Proof. We shall define @Q,, recursively, starting with Q1 being any chain. For
w > 2, QQ, consists of a lower copy P and a disjoint upper copy P’ of Q. _1,
three additional elements a, b, ¢, and the following cover relations in between:

— a < xz, where z is the 0 of P

— y < z’, where y is the 1 of P and 2z’ is the 0 of P’
— 1’ < ¢, where 3 is the 1 of P’

—a<b<c

It is easily seen that all cover relations of P and P’ remain cover relations in
Quw, and that), is planar, has width w, a is the 0 of @),,, and ¢ is the 1 of Q.
See Fig. 5 for an illustration.

The Queue-Number of Posets of Bounded Width or Height 207

Fig. 5. Recursively constructing planar posets @, of width w and queue-number w.
Left: Q1 is a two-element chain. Middle: @Q., is defined from two copies P, P’ of Qu_1.
Right: The general situation for a linear extension of Q..

To prove that qn(Q,,) = w we argue by induction on w, with the case w =1
being immediate. Let L be any linear extension of Q,,. Then a is the first element
in L and ¢ is the last. Since y < 2/, all elements in P come before all elements
of P’. Now if in L the element b comes after all elements of P, then P is nested
under cover a < b, and if b comes before all elements of P’, then P’ is nested
under cover b < c¢. We obtain w nesting covers by induction on P in the former
case, and by induction on P’ in the latter case. This concludes the proof. O

Next we prove Theorem 1, namely that the maximum queue-number of planar
posets of width w lies between w and 3w — 2.

Proof (Theorem1). By Proposition 2 some planar posets of width w have queue-
number w. So it remains to consider an arbitrary planar poset P of width w and
show that P has queue-number at most 3w — 2. To this end, we shall add some
relations to P, obtaining another planar poset @) of width w that has a 0 and
1, with the property that qn(P) < qn(Q) + 2w — 2. Note that this will conclude
the proof, as by Corollary 2 we have qn(Q) < w.

Given a planar poset P of width w, there are at most w minima and at most
w maxima. Hence there are at most 2w — 2 extrema that are not on the outer
face. For each such extremum x — say x is a minimum — consider the unique face
f with an obtuse angle at . We introduce a new relation y < x, where y is a
smallest element at face f, see Fig. 6. Note that this way we introduce at most
2w — 2 new relations, and that these can be drawn y-monotone and crossing-free
by carefully choosing the other element in each new relation. Furthermore, every
inner face has a unique source and unique sink.

Now consider a cover relation a <p b that is not a cover relation in the new
poset Q. For the corresponding edge e from a to b in Q) there is one face f with
unique source a and unique sink b. Now either way the other edge in f incident
to a or to b must be one of the 2w — 2 newly inserted edges, see again Fig. 6.
This way we assign a < b to one of 2w — 2 queues, one for each newly inserted
edge. Every such queue contains either at most one edge or two incident edges,
i.e., a nesting is impossible, no matter what linear ordering is chosen later.

We create at most 2w — 2 queues to deal with the cover relations of P that
are not cover relations of @) and spend another w queues for @ dealing with the
remaining cover relations of P. Thus, qn(P) < qn(Q) + 2w — 2 < 3w — 2. O

208 K. Knauer et al.

Fig. 6. Inserting new relations (dashed) into a face of a plane diagram. Note that
relation a < b is a cover relation in P but not in Q.

4 Planar Posets of Bounded Height

Recall Conjecture 3, which states that every planar poset of height h has queue-
number at most h. In the following, we give a counterexample to this conjecture:

Proof (Theorem3). Consider the graph G that is constructed as follows: Start
with K319 with bipartition classes {a1,a2} and {b1,...,b10}. For every i =
1,...,9 add four new vertices ¢; 1,...,¢; 4, each connected to b; and b;y;. The
resulting graph G has 46 vertices, is planar and bipartite with bipartition classes
X = {bl,...,bu)} and Y = {a1,a2}U{Ci7j | 1 S 1 S 9,1 S] S 4} See Flg7

Fig. 7. A planar poset P of height 2 and queue-number at least 4. Left: The cover
graph Gp of P. Right: A part of a planar diagram of P.

Let P be the poset arising from G by introducing the relation z < y for every
edge xy in G with x € X and y € Y. Clearly, P has height 2 and hence the cover
relations of P are exactly the edges of G. Moreover, by a result of Moore [12]
(see also [2]) P is planar because G is planar, also see the right of Fig. 7.

We shall argue that qu(P) > 4. To this end, let L be any linear extension of P.
Without loss of generality we have a1 <j, as. Note that since in P one bipartition

The Queue-Number of Posets of Bounded Width or Height 209

class of G is entirely below the other, any 4-cycle in G gives a 2-rainbow. Let
bi, , by, be the first two elements of X in L, b;,, b, be the last two such elements.
As | X| = 10 there exists 1 < i < 9 such that {i,i + 1} N {i1,i2,51,52} = 0, i.e.,
we have b;,,b;, <p bi,bit1 <z bj,, b5, <z a1 < a2, where we use that a; and
ao are above all elements of X in P.

Now consider the elements C' = {¢;1,...,¢; 4} that are above b; and b; 41 in
P. As |C| > 4, there are two elements ¢1, ¢o of C that are both below ay,as in L,
or both between a; and as in L, or both above a1, as in L. Consider the 2-rainbow
R in the 4-cycle [c1,b;,¢ca,b;11]. In the first case R is nested below the 4-cycle
la1,bi,, a2,b;,], in the second case the cover b, < a; is nested below R and R is
nested below the cover b;, < ag, and in the third case 4-cycle [a1,bj,, as,bj,] is
nested below R. As each case results in a 4-rainbow, we have qu(P) > 4. O

Even though Conjecture 3 has to be refuted in its strongest meaning, it might
hold that planar posets of height h have queue-number O(h), or at least bounded
by some function f(h) in terms of h, or at least that planar posets of height 2
have bounded queue-number. As it turns out, all these statements are equivalent,
and in turn equivalent to Conjecture 1.

Theorem 6. The following statements are equivalent:

(i) Planar graphs have queue-number O(1) (Conjecture 1).

(i) Planar posets of height h have queue-number O(h).
(i4i) Planar posets of height h have queue-number at most f(h) for a function f.
(iv) Planar posets of height 2 have queue-number O(1).

(v) Planar bipartite graphs have queue-number O(1).

Proof. (i)=-(ii) Pemmaraju proves in his thesis [14] (see also [4]) that if G
is a graph, 7 is a vertex ordering of G with no (k + 1)-rainbow, Vi,...,V,,
are color classes of any proper m-coloring of GG, and 7’ is the vertex ordering
with Vi <4/ +++ <4 Vi, where within each V; the ordering of 7 is inherited,
then 7/ has no (2(m — 1)k 4 1)-rainbow. So if P is any poset of height h,
its cover graph Gp has qu(Gp) < ¢ by (i) for some global constant ¢ > 0.
Splitting P into h antichains Ay, ..., A, by iteratively removing all minimal
elements induces a proper h-coloring of G p with color classes Ay, ..., Ap. As
every vertex ordering 7’ of G with A; <, .-+ <, A}, is a linear extension
of P, it follows by Pemmaraju’s result that qn(P) < 2(h — 1) qn(Gp) < 2ch,
ie., qu(P) € O(h).

(ii) =(ili)=(iv) These implications are immediate.

(iv)=(v) Moore proves in his thesis [12] (see also [2]) that if G is a planar

and bipartite graph with bipartition classes A and B, and Py is the poset on

element set AU B = V(G) where z < y if and only if x € A,y € B,zy € E(Q),

then Pg is a planar poset of height 2. As G is the cover graph of Pg, we have

qn(G) < qu(Pg) < ¢ for some constant ¢ > 0 by (iv), i.e., qn(G) € O(1).

(v)=(i) This is a result of Dujmovi¢ and Wood [5]. O

Finally, we show that Conjecture 3 holds for planar posets with 0 and 1.

210 K. Knauer et al.

Proof (Theorem 4). Let P be a planar poset with 0 and 1. Then P has dimension
at most two [1], i.e., it can be written as the intersection of two linear extensions
of P. A particular consequence of this is, that there is a well-defined dual poset
P* in which two distinct elements x, y are comparable in P if and only if they are
incomparable in P*. Poset P* reflects a “left of”-relation for each incomparable
pair « || y in P in the following sense: Any maximal chain C' in P corresponds
to a 0-1-path @ in Gp, which splits the elements of P\ C into those left of
@ and those right of Q. Now & <p« y if and only if z is left of the path for
every maximal chain containing y (equivalently y is right of the path for every
maximal chain containing z). Due to planarity, if a < b is a cover in P and C' is
a maximal chain containing neither a nor b, then a and b are on the same side
of the path @ corresponding to C. In particular, if for z,y € C we have a <p« x
and b || y, then b and y are comparable in P*, but if y <p« b we would get a
crossing of C' and a < b. Also see the left of Fig.8. We summarize:

(*) If a < b, a <p+ x for some z € C and b || y for some y € C, then b <p« y.

crossing

R 3

Cas ax a1 by by by
0

Fig. 8. Left: Illustration of (x): If a <px z, b || y, * < y, and a < b is a cover, then
b <p+ y due to planarity. Right: If as <r a2 <p a1 <r b1 <r b2 <p b3 is a 3-rainbow
with az2,as < a1, then as < as.

Now let L be the leftmost linear extension of P, i.e., the unique linear exten-
sion L with the property that for any x || y in P we have x <, y if and only
if