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Preface

This volume contains the papers presented at GD 2018: 26th International Symposium
on Graph Drawing and Network Visualization held during September 26–28, 2018, in
Barcelona. Graph drawing is concerned with the geometric representation of graphs
and constitutes the algorithmic core of network visualization. Graph drawing and
network visualization are motivated by applications where it is crucial to visually
analyze and interact with relational datasets. Information about the conference series
and past symposia is maintained at http://www.graphdrawing.org. The 2018 edition
of the conference was hosted by Universitat Politècnica de Catalunya, with Vera
Sacristán and Rodrigo Silveira as co-chairs of the Organizing Committee. A total of 99
participants attended the conference.

Regular papers could be submitted to one of two distinct tracks: Track 1 for papers
on combinatorial and algorithmic aspects of graph drawing and Track 2 for papers on
experimental, applied, and network visualization aspects. Short papers were given a
separate category, which welcomed both theoretical and applied contributions. An
additional track was devoted to poster submissions. All the tracks were handled by a
single Program Committee. In response to the call for papers, the Program Committee
received a total of 102 submissions, consisting of 85 papers (45 in Track 1, 23 in Track
2, and 17 in the short paper category; two papers that were withdrawn by the authors
are not included in these statistics) and 17 posters. More than 330 expert single-blind
reviews were provided, roughly a third of which were contributed by external
sub-reviewers. After extensive electronic discussions via EasyChair, the Program
Committee selected 41 papers and 14 posters for inclusion in the scientific program of
GD 2018. This resulted in an overall paper acceptance rate of 48% (58% in Track 1,
43% in Track 2, and 29% in the short paper category). Authors published an electronic
version of their accepted papers on an arXiv repository; a conference index with links
to these contributions was made available before the conference.

There were two keynote talks at GD 2018. Alexandru Telea, from University of
Groningen, The Netherlands, talked about methods for “Image-Based Graph Visual-
ization: Advances and Challenge.” Bojan Mohar, from Simon Fraser University,
Canada, spoke about the “Beauty and Challenges of Crossing Numbers.” The abstracts
of both talks are included in the proceedings.

The conference gave out best paper awards in Track 1 and Track 2, plus a best
presentation award and a best poster award. As decided by a subcommittee of the
Program Committee, the award for the best paper in Track 1 was assigned to “Pole
Dancing: 3D Morphs for Tree Drawings” by Elena Arseneva, Prosenjit Bose, Pilar
Cano, Anthony D’Angelo, Vida Dujmović, Fabrizio Frati, Stefan Langerman, and
Alessandra Tappini, and the award for the best paper in Track 2 was assigned to
“Aesthetic Discrimination of Graph Layouts” by Moritz Klammler, Tamara Mche-
dlidze, and Alexey Pak. The participants of the conference voted to determine as the
best presentation the one given jointly by Elena Arseneva and Pilar Cano for the paper

http://www.graphdrawing.org


“Pole Dancing: 3D Morphs for Tree Drawings” and as the best poster the one by
Charles Camacho, Silvia Fernández-Merchant, Marija Jelic, Rachel Kirsch, Linda
Kleist, Elizabeth Bailey Matson, and Jennifer White entitled “Bounding the
Tripartite-Circle Crossing Number of Complete Tripartite Graphs.” Congratulations to
all the award winners for their excellent contributions, and many thanks to Springer and
MDPI whose sponsorship funded the prize money for these awards.

Following the tradition, the 25th Annual Graph Drawing Contest was held during
the conference. The contest was divided into two parts, creative topics and the live
challenge. The creative topics featured two graphs, one about Games of Thrones and
one about the Mathematics Genealogy Project. The live challenge focused on drawings
that maximize the crossing-angles, and had two categories: manual and automatic.
Awards were given in each of the four categories. We thank the Contest Committee,
chaired by Maarten Löffler, for preparing interesting and challenging contest problems.
A report about the contest is included in these proceedings.

Many people and organizations contributed to the success of GD 2018. We would
like to thank the Program Committee members and the external reviewers for carefully
reviewing and discussing the submitted papers and posters; this was crucial for putting
together a strong and interesting program. Thanks to all the authors who chose GD
2018 as the publication venue for their research. We are indebted to the gold sponsors
Tom Sawyer Software and yWorks, the silver sponsor Microsoft, and the bronze
sponsor Springer. Their generous support helps to ensure the continued success of this
conference. Last but not least, the organizing co-chairs, Vera Sacristán and Rodrigo
Silveira, did a terrific job; they in turn would like to express their thanks to other local
organizers and volunteers, including Therese Biedl, Pilar Cano, Karla García, Carmen
Hernando, Clemens Huemer, Maarten Löffler, Mercè Mora, Carlos Seara, and Roger
Solí.

The 27th International Symposium on Graph Drawing and Network Visualization
(GD 2019) will take place September 17–20, 2019 in Průhonice (near Prague), Czech
Republic. Daniel Archambault and Csaba Tóth will co-chair the Program Committee.
Jiří Fiala and Pavel Valtr will co-chair the Organizing Committee.

October 2018 Therese Biedl
Andreas Kerren
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Beauty and Challenges of Crossing Numbers
(Keynote Presentation)

Bojan Mohar

Simon Fraser University, Burnaby and IMFM, Ljubljana
mohar@sfu.ca

Abstract. One of the initial goals of the graph drawing community was trying to
understand what it means for a drawing of a graph to be nice or even beautiful.
These attempts failed due to lack of a formal description how to measure how
beautiful a drawing of a graph is. However, there is a lot of beauty of the results
and methods in this area.
In this talk, the speaker will outline some of his favorite results in crossing

number theory that demonstrate extreme beauty and elegance. Yet, there are
some very basic problems that elude our proper understanding of this area. The
speaker will touch upon some of these as well.
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Image-Based Graph Visualization:
Advances and Challenges

Alexandru Telea(B)

Bernoulli Institute, University of Groningen, Groningen, The Netherlands
a.c.telea@rug.nl

Abstract. Visualizing large, multiply-attributed, and time-dependent
graphs is one of the grand challenges of information visualization. In
recent years, image-based techniques have emerged as a strong competi-
tor in the arena of solutions for this task. While many papers on this
topic have been published, the precise advantages and limitations of such
techniques, and also how they relate to similar techniques in the more
traditional fields of scientific visualization (scivis) and image processing,
have not been sufficiently outlined. In this paper, we aim to provide
such an overview and comparison. We highlight the main advantages
of image-based graph visualization and propose a simple taxonomy for
such techniques. Next, we highlight the differences between graph and
scivis/image datasets that lead to limitations of current image-based
graph visualization techniques. Finally, we consider these limitations to
propose a number of future work directions for extending the effective-
ness and range of image-based graph visualization.

Keywords: Large graph visualization
Image-based information visualization · Multiscale visualization

1 Introduction

Relational data, also called networks or graphs, is a central and ubiquitous
element of many types of data collections generated by multiple application
domains such as traffic analysis and planning, social media, business intelli-
gence, biology, software engineering, and the internet. Since the first moments
when such data was collected, visualization has been a key tool for its explo-
ration and analysis, leading to the emergence and development of the research
domains of graph drawing and graph visualization [15,23]. Last-decade develop-
ments in processing power, data-acquisition tools, and techniques, have led to
what is today globally called big data – collections of tens of millions of sam-
ples having hundreds of measurement values (attributes), all which can evolve
over thousands of time steps. A particular case hereof, big-data graphs, pose
fundamental problems for visual exploration.

On the other hand, several solutions, techniques, and tools have been devel-
oped for the scalable visual exploration of other types of big data collections,
c© Springer Nature Switzerland AG 2018
T. Biedl and A. Kerren (Eds.): GD 2018, LNCS 11282, pp. 3–19, 2018.
https://doi.org/10.1007/978-3-030-04414-5_1
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4 A. Telea

such as 2D images, 3D scalar or vector field volumes, or more generally multidi-
mensional fields, in the domains of scientific visualization and imaging sciences
[52]. Recent developments have tried to approach the two traditionally sepa-
rately evolving fields of graph visualization and scientific visualization, thereby
aiming at leveraging the (visual) scalability of the latter methods to address
big graph related challenges from the former [20]. This has led to interesting
parallels and links between concepts, methods, and applications between the
two fields, and the development of hybrid visualization methods that inherit
strengths from both graph visualization and scientific visualization. However,
large graph visualization still has many unsolved challenges [23].

In this paper (and related talk) we aim to provide an overview of the research
at the crossroads of large graph visualization and scientific visualization. We start
highlighting the main challenges in large graph visualization (Sect. 2). Next, we
outline the high-level directions proposed by current research towards addressing
these (Sect. 3). We focus next on one type of technique that aims to solve these
challenges by adapting methods from scientific visualization and imaging to the
particularities of graph visualization – image-based graph visualization (Sect. 4).
Based on the structure of graph data outlined in Sect. 2, we discuss here various
types of image-based methods for graph visualization and highlight parallels to
simplification methods for multivariate field and image data. In the light of these
methods, we next highlight open challenges for image-based graph visualization
(Sect. 5) and attempt to clarify some of the more subtle points related to this
new emerging visualization field which, we believe, have not been sufficiently
discussed in current literature. Section 6 concludes the paper outlining promising
directions for future research in image-based graph visualization.

2 Problem Definition

2.1 Preliminaries

To better outline the large graph visualization challenges, we first introduce
some notations. Let G = (V,E ⊂ V × V ) be a graph with vertices, or nodes,
V = {vi} and edges E = {ei}. Both nodes and edges typically have one or
multiple attributes (also called features, dimensions, or variables). We denote
by vj

i , 1 ≤ j ≤ NV , the individual attributes of node vi, and by eji , 1 ≤ j ≤
NE , the individual attributes of edge ei, respectively. As a shorthand, let vj

denote all values of the jth attribute of all nodes V ; let ej denote all values
of the jth attribute of all edges E; let V = (v1, . . . ,vNV ) denote all values
of all node attributes; and let E = (e1, . . . , eNE ) denote all values of all edge
attributes, respectively. Attributes can be of all types, e.g., quantitative (values
in R), integral (values in N), ordinal, categorical, text, hyperlinks, but also more
complex data types such as images or video. In this sense, the ordered collections
V and E are very similar to so-called multidimensional datasets as well known
in information visualization [20,34,52]. That is, every node vi or edge ei can
be seen as a sample, or observation, of a respectively NV and NE dimensional
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dataset. Finally, as graphs can evolve over time, all their ingredients (sets V , E,
V, and E) can be seen as functions of (continuous or discrete) time [2].

m
ap

pi
ng

 M

filt
er

ed
 gr

ap
h F

(G
)

fil
te

rin
g 
F

Abstract graph space Euclidean space Image space

node vi

no
de

 at
trib

ute
s

vi
1

vi
NV

...

edge ei
ed

ge
 at

trib
ute

s

ei
1

ei
NE

...

attributed graph G
nodes V edges E

graph layout
M(F(G))

re
nd

er
in

g 
R

graph visualization
R(M(F(G)))

positions mi 
rendered

shapes ri 

aggregation
filtering

subsampling

layouting
bundling

bundling
glyphs

image-based techniques

Te
ch

ni
qu

es

Fig. 1. Graph visualization pipeline.

With these notations, visualizing a graph can be defined in terms of the
traditional data visualization pipeline [52] in terms of filtering, mapping and
rendering operations (see also Fig. 1). Filtering F reads the input graph G and
produces another graph F (G) which is (more) suitable for subsequent visualiza-
tion, e.g., by removing nodes, edges, and/or attributes that are not of interest,
or aggregating such elements into fewer and/or semantically richer ones. Map-
ping M is a function that takes as input F (G) and outputs a set of shapes
M(F (G)) = {mi} embedded in R

2 or, less frequently, R3. Typically, nodes are
mapped to individual points, and edges are mapped to straight lines or, less
commonly, curves. Other layout methods, such as adjacency matrices [1], exist
but are less intuitive, less common, and thus not discussed here. Most often, M
takes into account only the graph topology (V,E), and computes only positions
mi for nodes. This is the case of so-called graph layout techniques [51,55]. Ren-
dering R takes as input the layout M(F (G)) and creates actual visible shapes
R(M(F (G))) = {ri}, where each ri is placed at the corresponding layout posi-
tions mi. Visual variables [57] of ri such as size, color, texture, transparency,
orientation, texture, and annotation are used to encode the attributes vi and ei
of the respective node or edge. Interactive exploration techniques such as zoom-
ing, panning, brushing, and lensing can be subsumed to the rendering operator
R as they are essentially customized ways to perform rendering; hence, we do
not discuss them separately.

2.2 Scalability Challenge

With the above notations, we can decompose the challenge of visualizing big-
data graphs into the following three elements:
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Layout: A good layout should arguably allow end users to detect structures of
interest present in G by examining the rendering R(M(G)). These include, but
are not limited to, finding groups of strongly-connected nodes; finding specific
connection patterns; assessing the overall topology of G; and finding (and fol-
lowing) paths between specific parts of G, at a low level [24]; and identifying,
comparing, and summarizing the information present in G, at a high level [4].
However, even for moderately-sized graphs (|V | or |E| exceeding a few thou-
sands), most existing layout methods cannot usually produce layouts that can
consistently support these tasks [23]. Suboptimal layouts of large graphs, also
called ‘hairballs’, are all to frequent a problem in graph visualization [38,47].
The problem is caused by the fact that there does not exist a ‘natural’ map-
ping between the abstract space of graphs and the Euclidean 2D or 3D render-
ing space. Interestingly, the problem is very similar to that of mapping high-
dimensional scatterplots (sampled datasets in R

n) to 2D or 3D by so-called
dimensionality reduction (DR) methods [29,50].

Dimensionality: An effective graph visualization should allow users to answer
questions on all elements of interest of the original graph. Apart from the topol-
ogy (V,E) which should be captured by the layout M(G), this includes the
node and edge attributes V and E. The problem is that, when NV and NE

are large, nodes and edges essentially become points in high-dimensional spaces.
Since, as explained, each node and/or edge is typically mapped to a separate
location mi, the challenge is how to depict a high-dimensional data sample, con-
sisting of potentially different attribute types, to the space at or around mi.
A similar problem exists in scientific visualization when using glyphs to depict
high-dimensional fields [3,44]: The higher-dimensional our data points are, the
more space one needs to show all dimensions, so the fewer such points (in our
case, nodes and/or edges) can one show on a given screen size. At one extreme,
we can display (tens of) thousands of nodes on a typical computer screen if we
only show 2 or 3 attributes per node (encoded e.g. in hue, luminance, and size);
at the other extreme, we can display tens of attributes per node, like in UML
diagrams, but for only a few tens up to hundreds of nodes [5]. The problem is
well known also in multidimensional information visualization.

Clutter and Overdraw: Finally, a scalable graph visualization should accom-
modate (very) large graphs consisting of millions of nodes and/or edges. Even
if we abstract from the aforementioned layout and dimensionality challenges,
a fundamental difficulty here resides in the fact that a node-link visualization
cannot exceed a given density : If nodes and/or edges are drawn too close to each
other, they will form a compact cluttered mass where they cannot be distin-
guished from each other. Additionally, an edge (in the node-link visual model) is
drawn as a line (or curve) so in the limit it needs to use at least a few (tens of)
pixels of screen space to be visible as such (if the edge is too show, we cannot e.g.
see its direction); in Tufte’s terms, there is an upper bound to the data-ink ratio
[57] when drawing a graph edge. Moreover, when attributes must be rendered
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atop of the edge, the amount of surrounding whitespace needs to be increased
[17]. This leads in turn to inherent overdraw, i.e. edges that partially occlude
each other, even for moderately-sized graphs of thousands of nodes. A detailed
overview of clutter reduction techniques in information visualization is given by
Ellis and Dix [8]. In large graph visualization, clutter and overdraw are hard to
jointly optimize for: Spatial distortion, e.g. via edge bundling (discussed next
in Sect. 4.2), creates more white space, thus reduces clutter, but increases over-
draw; space-filling techniques are of limited effect since, as noted, edges must
be surrounded by white space to be visible as such; apart from these, reducing
clutter and overdraw is not fully possible in the rendering phase only, as this
phase works within the constraints of the layout fed to it by the M operator.
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Fig. 2. Data-space simplification of scivis data (a) vs graph data (b). (Color figure
online)

3 Simplification: Ways Towards a Solution

For a given screen resolution for the target image R, how can we approach large
graph visualization? Given the scalability challenges outlined in Sect. 2.2, two
types of approaches exist, as follows.

Data-Space Simplification: First, we can simplify the graph G in the filtering
stage F in the visualization pipeline (Fig. 1). This reduces the number of nodes
(|V |), edges (|E|), and/or attributes (NV , NE) to be next passed to the mapping
operator M . Following the clutter reduction taxonomy of Ellis and Dix [8], this
includes subsampling, filtering, and clustering (aggregation) [45], all applicable to
V , E, and (V,E) respectively. While effective in tackling clutter, overdraw, and
dimensionality issues, such approaches have two limitations. First, they require
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a priori knowledge on which data items (samples or dimensions) can be filtered
or clustered together. Secondly, performing such operations on graphs can easily
affect the semantics of the underlying data.

At this point, it is instructive to compare graph visualization (graphvis)
with image and field visualization as done in classical scientific visualization
(scivis). Consider a multidimensional dataset D : Rm → R

n; for each point of
the Euclidean m-dimensional domain, n quantitative values are measured. Scivis
provides many methods for visualizing such datasets, e.g. for 2D and 3D vector
fields (m ∈ {2, 3}, n ∈ {2, 3}) or 2D and 3D scalar fields (m ∈ {2, 3}, n = 1)
[52]. Many techniques exist in scivis (and, by extension, in imaging and sig-
nal processing) for simplifying large fields – we mention here just a few, e.g.,
perceptually-based image downscaling [39], feature extraction from vector fields
[43], multiscale representations of scalar and vector fields [12,14], mesh simpli-
fication [28], and image segmentation [40]. Many such techniques have a multi-
scale nature: Given a dataset D and a simplification level τ ∈ R

+, they produce
a filtered (simplified) version F (D) of D which is (roughly) τ times smaller
than D. This allows users to continuously vary the level-of-detail parameter τ
until obtaining a visualization that matches their goals, as well as fits the avail-
able screen space with limited clutter. Figure 2(left) illustrates this: From a 3D
surface-mesh dataset (a), we can easily extract a four times smaller dataset (b)
using e.g. mesh decimation [46], which captures very well the overall structure
of the depicted bone shape. Consider now a graph of similar size, whose nodes
are functions in a software system [54] and edges function calls respectively (e).
What should be the equivalent simplification of this graph to a size four times
smaller? (f) This is far from evident. The scivis-graphvis difference manifests
itself even on the tiniest scale: Take a detail (zoom-in) of the mesh dataset (c)
from which we decimate a single polygon (data point). The result (d) is visually
identical. Consider now the analogous zoom-in on a small portion of our call
graph (g) from which we remove a single edge. The result (h) may be visually
similar to the input (g), but can have a completely different semantics – just
imagine that the removed function call edge is vital to the understanding of the
operation of the underlying software.

All in all, most scivis data-space simplification methods succeed in keep-
ing the overall semantics of their data. In contrast, even tiny changes to graph
data can massively affect the underlying semantics. More formally put, scivis
data-space simplification methods appear (in general) to be Cauchy or Lipschitz
continuous (small data changes imply small semantic changes). This clearly does
not hold in general for graph data. We believe the difference is due to two factors:

1. Scivis data is defined over Euclidean domains (Rm). This allows simplifica-
tion operators to readily use continuous Euclidean distances to e.g. aggregate
and cluster data. An entire machinery is available for this, including basis
functions and interpolation methods [12,14].

2. All data samples have (roughly) the same importance, and the phenomenon
(signal) sampled by the scivis dataset D is of bounded frequency. Hence,
discarding a few samples does not affect data semantics.
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In contrast:

1. Graph data is defined over an abstract graph space, whose dimensions, and
even dimensionality, are not known or even properly defined. It is not always
evident how to define ‘proximity’ between graph nodes and/or edges. There
is no comparable (continuous) interpolation theory for graph data. Graph-
theoretic distances are not continuous. Simply put: There is nothing (no
information) between two nodes connected by an edge;

2. Nodes and edges can have widely different importances. There is, as we know,
no similar notion of ‘maximal frequency’ of a graph dataset as in scivis. Hence,
discarding a few samples can massively affect graph data semantics.

Image-Level Simplification: A second way to handle large graph visualiza-
tions is to simplify them in the image domain. That is, given the limitations of
data-space graph simplification listed earlier, rather than designing simplifica-
tion operators F that act on the graph datasets, we embed the simplification
into the graph rendering operator R. The key advantage here is that R acts, by
definition, upon an Euclidean space (the 2D target image), where all samples
(pixels) are equally important. Hence, the main proposal of image-based graph
visualization is to delay simplification to the moment where we can reuse/adapt
known scivis techniques for data simplification. Rather than first simplifying the
graph data (F ) and then mapping (M) and rendering (R) it, image-level tech-
niques first map the data, and then simplify it during rendering1. We detail the
advantages and challenges of image-based graph visualization next.

4 Image-Based Graph Visualization

Image-based graph visualization is a subfield of the larger field of image-based
information visualization [20]. The name of this field can be traced back to
2002, when image-based flow visualization (IBFV) was proposed to depict large,
complex, and time-dependent 2D vector fields using animated textures [60]. Key
to IBFV (and its sequels) was the manipulation of the image-space pixels to
produce the final visualization. Several advantages followed from this approach:

– Dense visualizations: Every target image pixel encodes a certain amount of
information, thus maximizing the data-ink ratio [57];

– Clutter is avoided by construction: Rather than scattering dataset samples
over the image space (which can lead to clutter when several such samples
inadvertently overlap), samples are gathered and explicitly aggregated for
each pixel. The aggregation function is fully controlled by the algorithm;

– Implicit multiscale visualizations: By simply changing the resolution of the
target image (zooming in or out), users can continuously control the amount
of information displayed per screen area unit;

1 The underlying assumption here is that mapping and simplification are conceptually
commutative. As discussed next, this is not always the case.
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– Exploitation of existing knowledge about image perception when synthesizing
and/or simplifying a graph visualization;

– Accelerated implementations: Image-based techniques parallelize naturally
over the target image pixels (much as raycasting does), so they optimally
fit to modern GPU architectures [25,62];

– Simpler implementations vs data-space graph simplification techniques.

A more subtle (but present) advantage of image-based graph visualizations
is their ability to reuse principles and techniques grounded in the theory and
practice of image and signal processing, thereby allowing a more principled rea-
soning about, and control of, the resulting visualization. We next outline the
main advances of this field, along with the challenges that we still see open.
Given the structure of a graph in terms of nodes, edges, and attributes thereof
(Sect. 2.1), we structure our discussion along the same concepts.
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Fig. 3. (a) Node-link graph drawing (dataset from Fig. 2e) and (b) its graph splatting.
(Color figure online)

4.1 Node-Centric Techniques

The first image-based graph visualization, to our knowledge, is graph splatting,
proposed in 2003 by De Leeuw and Van Liere [27]. Its intuition is simple: Given
a graph drawing (layout) M(G), its visualization R(M(G)) is the convolution
of M(G) with an isotropic 2D Gaussian kernel in image space. This is simply
a low-pass filter that emphasizes high-density node and/or edge areas in the
layout. The visualization’s level-of-detail, or multiscale nature, is controlled by
the filter’s radius. The samples’ (nodes or edges) weights can be set to reflect
their importance. Figure 3(b) shows the splatting of the graph in Fig. 3(a), for
the same call graph as in Fig. 2e, where the nodes’ weights are set to their number
of outgoing edges (fan-out factor). The resulting density map, visualized with
a rainbow colormap, thus emphasizes nodes (functions) that call many other
functions as red spots. This allows easily detecting such suitably-called ‘hot
spots’ in the software system’s architecture.
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Graph splatting is extremely simple to implement, fast to execute (linear in
the number of splatted nodes and/or edges), and easy to control by users via
its kernel-radius parameter. It also forms the basis of more advanced techniques
such as graph bundling (Sect. 4.2). Formally, it is a variant of the more general
kernel density estimation (KDE) set of techniques used in multidimensional data
analysis [49]. Its key limitation is that it assumes a good layout M(G): Density
hot spots appear when nodes and/or edges show up closely in a graph layout.
So, when layout methods M place unrelated nodes close to each other, ‘false
positive’ hot spots appear (and analogously for false negatives).

4.2 Edge-Centric Techniques

Graph bundling is the foremost image-based technique focusing on graph edges.
Bundling has a long history (see Fig. 4 for an overview of its most important
moments). We distinguish five phases, as follows (for a comprehensive recent
survey, we refer to [26,61]):

Early Phase: Minard hand-drew a so-called ‘flow map’ (a single-root directed
acyclic graph) showing the French wine exports in 1864 [33]. While not properly
a bundled graph, as no edges are grouped together, the visual style featuring
curved edges whose thickness maps edge weights, suggests later bundling tech-
niques. The design was refined in 1898 to create the so-called Sankey diagrams,
which can display more complex (multiple source, cyclic) graphs;

First Computer Methods: One of the first computer-computed bundling-like
visualizations was proposed by Newbery in 1989 [35]. The key novelty vs earlier
methods is grouping edges sharing the same end nodes (so, this technique can
be seen as a particular case of graph simplification by aggregation). Dickerson
et al. coined the term ‘edge bundling’ in 2003 for their method that optimizes
node placement and groups same-endpoints edges (via splines) to simplify graph
drawings. All these techniques could handle only small graphs of tens up to
hundreds of nodes and edges.

Establishment Phase: Subsequent methods focused on larger-size graphs
(thousands of nodes and edges). Flow map layouts [42] generalized in 2005 the
computation of Sankey-like diagrams, also first featuring the ‘organic’ branch-
like structure to be encountered in many later techniques [7,9,53]. At roughly the
same time (2006), two key bundling techniques emerged: Gansner et al. presented
improved circular layouts [11], which grouped edges based on their spatial prox-
imity in M(G); Holten proposed hierarchical edge bundling [16] which grouped
edges based on the graph-theoretic distance of their start and end nodes in a
hierarchy of the graph’s nodes. Holten also pioneered several advanced blending
techniques to cope with edge overdraw (see also Sect. 4.3).
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Fig. 4. Key moments in edge bundling history.

Consolidation Phase: The next phase focused on treating general graphs [18],
time-dependent graphs [36], and, most importantly for our context, image-based
methods. The latter include image-based edge bundles (IBEB [53], following the
name-giving of IBFV [60]) which introduced clustering and grouped rendering
of spatially close edges in the form of shaded cushions [58] to both simplify
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the rendered graph and emphasize distinct/crossing, bundles. IBEB reused sev-
eral image-processing operators such as KDE [49], distance transforms [10], and
medial axes [48] for computational speed. Next, skeleton-based edge bundles
(SBEB) [9] used medial axes to actually perform graph bundlings, by following
the simple but effective intuition that bundling a set of (close) curves means
moving them towards the centerline of their hull.

State of the Art: Most recent methods focus mainly on scalability, using
image-based techniques. Kernel density edge bundling (KDEEB) [21] showed
that bundling a graph drawing is identical to applying mean shift, well known
in data clustering [6], on the KDE edge-density field. CUDA Universal Bundling
(CUBu) [62] next accelerated KDEEB to bundle 1 million-edge graphs in sub-
second time by parallelizing KDE on the GPU. Fast Fourier Transform Edge
Bundling (FFTEB) [25] further accelerated CUBu by computing the KDE con-
volution in frequency space, thus bundling graphs of tens of millions of edges at
interactive rates. As such, scalability seems to have been addressed successfully.

Graphs

Shape skeletons

Mean shift clustering

skeletons bundle graphs...

can we use shape 

methods to study 

relational data?
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can we see graph data

as multidimensional data?

Fig. 5. Puzzling connections between graph visualization, shape analysis, and multi-
dimensional data analysis.

Several points can be made about edge bundling. First, bundling is an image-
space simplification technique of the graph drawing R(M(G)) that reduces clut-
ter by creating whitespace between bundles, but increases overdraw (of same-
bundle edges); a recent bundling formal definition as an image-processing oper-
ator is given in [26]. Image-based bundling is a multiscale technique, where
the KDE kernel radius controls the extent over which close edges get bundled,
thereby allowing users to easily and continuously specify how much they want to
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simplify (bundle) their graphs. Image-based methods are clearly the fastest, most
scalable, bundling methods, due to the high GPU parallelization of their under-
lying image processing operations. Edge similarity, the bundling driving factor,
can be easily defined in terms of a mix of spatial (Euclidean) and attribute-based
distances [41]. More interestingly from a theoretical point, bundling exposes some
puzzling connections between domains as different as data clustering [6], shape
simplification [48], and graph visualization itself (Fig. 5). Briefly put:

– If skeletons can be used to bundle graphs [9], how can we further use the
wealth of shape analysis methods to analyze/visualize graphs?

– If skeletons and mean shift bundle graphs [9,21], can we use skeletons to
cluster multidimensional data, or mean shift to compute shape skeletons?

– If mean shift simplifies graphs [21], could we see graphs as yet another form
of multidimensional data?

These questions open, we think, a wealth of new vistas on data visualization.

d) e)

c)low weight high weight

direction

Fig. 6. Attribute encoding in bundled graph visualizations.

4.3 Attribute-Centric Techniques

Graph visualization scalability also means handing high-dimensional node
and/or edge attributes (Sect. 2.2). Visualizing these is hard, since the method
of choice for handling geometric scalability – bundling – massively increases
edge overdraw. Several image-based techniques address attribute visualization,
as follows.

One can directly visualize the edge-density (KDE) map e.g. by alpha blending
[16], which is a simple form of graph splatting using a one-pixel-wide kernel.
Additionally, hue mapping can encode edge attributes, such as density [18,62]
(Fig. 6a), length [16,62] (Fig. 6b), quantitative weights [56] (Fig. 6c), categorical
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edge types [53] (Fig. 6d), and edge directions [41] (Fig. 6e). Two main challenges
exist here. First, at edge overlap locations, attribute values eji of multiple edges ej
have to be aggregated together prior to color coding. While this is straightforward
to do for e.g. edge density, it becomes problematic for other attributes such as
edge categorical types or edge directions. This issue parallels known challenges
in scivis (interpolation of vector fields) and infovis (aggregation of categorical
data). Secondly, there is currently no scalable method that can render at the
same time more than roughly two attributes per edge in high-density graph
visualizations. Visualizing graphs having tens of attributes per edge (NE > 2) is
an open problem. Separately, animation has been used to encode edge directions
by using particle-based techniques [19]. Interestingly, this approach resembles
a form of IBFV [60] applied to the vector field defined by the edges’ tangent
vectors. However, in a typical vector field, the number of singularities (where
IBFV would have problems rendering a smooth, informative, animation) is quite
limited; in a dense graph, this number is very high, equalling the amount of edge
crossings or, in the bundled case, overlaps of different-direction edges [9]. Hence,
IBFV cannot be directly used to visualize large/complex graphs.

5 Open Challenges

Image-based techniques have shown high potential for the efficient and effective
visualization of large graphs. Yet, we also see a number of key challenges that
they would need to tackle to become (more) effective in practice, as follows.

Layouts: Current image-based techniques address the rendering (R) phase,
but assume a suitable node layout to be given as input. As explained, comput-
ing such a layout (for large graphs) is challenging. A promising direction is to
further explore analogies between dimensionality reduction (DR, used to effi-
ciently and effectively visualize high-dimensional sample sets embedded in R

n)
and graph drawing [22]. An additional advantage of doing this is that DR can
easily accommodate a wide range of similarity functions, e.g., accounting for
both graph structure and attributes [32]. This could open new ways to visu-
alizing graphs having many node and/or edge attributes. Separately, it would
be interesting to consider image-based bundling approaches for the layout of a
graph’s nodes.

Aggregation: Graph splatting and bundling are the techniques of choice for
generating images of large graphs. However, the way in which the multiple node
and/or edge attribute values that cover a given pixels are to be aggregated is
currently limited to simple operations (sum, average, minimum, or maximum)
[16,62]. Such operations cannot aggregate attributes such as categorical types or
edge directions. For edge directions, it is interesting to consider analogies with
scivis techniques for dense tensor field interpolation [59] which address related
problems. Separately, image processing has proposed a wealth of operators for
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detecting and emphasizing specific features present in images such as edges, lines,
textures, or even more complex shapes [13]. Such operators could be readily
adapted to highlight patterns of interest in image-based graph visualizations.

Quality: Measuring the quality of an (image-based) graph visualization is an
open topic [37], much due to the fact that there is typically no ground truth to
compare against. Still, image processing techniques can be helpful in this area,
e.g. by providing quantitative measures for the amount of edge intersections,
bends, preservation of graph-theoretic distances, or edge-angle spatial distri-
butions, in the final image. Such image-based metrics have been successful in
assessing the quality of DR scatterplot projections [31], bringing added value
beyond simple aggregate metrics. Exploring their extension to graph visualiza-
tions is potentially effective. Also, such metrics could be easily used to locally
constrain the mapping and/or rendering phases, e.g. to limit the amount of
undesired deformations that bundling produces.

Applications: An interesting and potentially rich field for graph visualization is
the exploration of deep neural networks (DNNs), currently the favored technique
in machine learning. DNNs are large (millions of nodes and/or edges), attributed
by several values (e.g. activations and weights), and time-dependent (e.g. during
the network training). Understanding how DNNs work, and why/where they do
not work, is a major challenge in deep learning [30]. Visualizing DNNs is also very
difficult, as their tightly-connected structure yields significant edge crossings and
overdraw, and it is not evident how e.g. bundling would help for these topologies.
Exploring image-based techniques for this use-case is promising.

6 Conclusion

In this paper, we surveyed current developments of image-based techniques for
the visualization of large, high-dimensional, and time-dependent graphs. These
techniques have major advantages – the ability of creating dense visualizations
with high data-ink ratios, treatment of clutter by construction, an implicit mul-
tiscale nature able to handle large and dense graphs, and scalable implementa-
tions. We highlighted analogies and differences between image-based techniques
and related techniques for the visualization of densely-sampled fields in scientific
visualization. While graph data has several important differences as compared
to field data, the existing similarities make us believe that existing scivis and
image-processing techniques can be further adapted to further assist graph visu-
alization. From a practical perspective, this would lead to the creation of novel
efficient and effective tools for graph visual exploration. Equally important, from
a theoretical perspective, this could lead to further unification of the currently
still separated disciplines of scientific and information visualization.
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Abstract. The complexity of deciding whether a clustered graph admits
a clustered planar drawing is a long-standing open problem in the graph
drawing research area. Several research efforts focus on a restricted ver-
sion of this problem where the hierarchy of the clusters is ‘flat’, i.e.,
no cluster different from the root contains other clusters. We prove
that this restricted problem, that we call Flat Clustered Planarity,
retains the same complexity of the general Clustered Planarity prob-
lem, where the clusters are allowed to form arbitrary hierarchies. We
strengthen this result by showing that Flat Clustered Planarity

is polynomial-time equivalent to Independent Flat Clustered Pla-

narity, where each cluster induces an independent set. We discuss the
consequences of these results.

1 Introduction

A clustered graph (c-graph) is a planar graph with a recursive hierarchy defined
on its vertices. A clustered planar (c-planar) drawing of a c-graph is a planar
drawing of the underlying graph where: (i) each cluster is represented by a
simple closed region of the plane containing only the vertices of the corresponding
cluster, (ii) cluster borders never intersect, and (iii) any edge and any cluster
border intersect at most once (more formal definitions are given in Sect. 2).
The complexity of deciding whether a c-graph admits a c-planar drawing is
still an open problem after more than 20 years of intense research [12,14,17–
19,26,32,34–36,38,42–45,49,50,53].

If we had an efficient c-planarity testing and embedding algorithm we could
produce straight-line drawings of clustered trees [28] and straight-line draw-
ings [11,33] and orthogonal drawings [27] of c-planar c-graphs with rectangular
regions for the clusters.

In order to shed light on the complexity of Clustered Planarity, this
problem has been compared with other problems whose complexity is like-
wise challenging. This line of investigation was opened by Marcus Schaefer’s
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polynomial-time reduction of Clustered Planarity to SEFE [53]. Simul-
taneous Embedding with Fixed Edges (SEFE) takes as input two pla-
nar graphs G1 = (V,E1) and G2 = (V,E2) and asks whether a planar draw-
ing Γ1(G1) and a planar drawing Γ2(G2) exist such that: (i) each vertex v ∈ V
is mapped to the same point in Γ1 and in Γ2 and (ii) every edge e ∈ E1 ∩ E2 is
mapped to the same Jordan curve in Γ1 and in Γ2.

However, the polynomial-time equivalence of the two problems is open and
the reverse reduction of SEFE to Clustered Planarity is known only for the
case when the intersection graph G∩ = (V,E1 ∩ E2) of the instance of SEFE is
connected [4]. Also in this special case, the complexity of the problem is unknown,
with the exception of the case when G∩ is a star, which produces a c-graph with
only two clusters, a known polynomial case for Clustered Planarity [10,47].

Since the general Clustered Planarity problem appears to be elu-
sive, several authors focused on a restricted version of it where the hierar-
chy of the clusters is ‘flat’, i.e., only the root cluster contains other clus-
ters and it does not directly contain vertices of the underlying graph [2,3,5–
7,9,16,20,21,25,29,37,39–41,47,51]. This restricted problem, that we call Flat
Clustered Planarity, is expressive enough to be useful in several applica-
tive domains, as for example in computer networks where routers are grouped
into Autonomous Systems [15], or social networks where people are grouped
into communities [13,30], or software diagrams where classes are grouped into
packages [52]. Also, several hybrid representations have been proposed for the
visual analysis of (not necessarily planar) flat clustered graphs, such as mixed
matrix and node-link representations [13,23,24,31,46], mixed intersection and
node-link representations [8], and mixed space-filling and node-link representa-
tions [1,48,54].

Unfortunately, the complexity of Flat Clustered Planarity is open as
the complexity of the general problem. The authors of [14], after recasting Flat

Clustered Planarity as an embedding problem on planar multi-graphs, con-
clude that we are still far away from solving it. The authors of [4] wonder whether
Flat Clustered Planarity retains the same complexity of Clustered Pla-

narity. In this paper we answer this question in the affirmative. Obviously, a
reduction of Flat Clustered Planarity to Clustered Planarity is triv-
ial, since the instances of Flat Clustered Planarity are simply a subset of
those of Clustered Planarity. The reverse reduction is the subject of Sect. 3,
that proves the following theorem.

Theorem 1. There exists a quadratic-time transformation that maps an
instance of Clustered Planarity to an equivalent instance of Flat Clus-

tered Planarity.

With very similar techniques we are able to prove also a stronger result.

Theorem 2. There exists a linear-time transformation that maps an instance
of Flat Clustered Planarity to an equivalent instance of Independent

Flat Clustered Planarity.
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Here, by Independent Flat Clustered Planarity we mean the restric-
tion of Flat Clustered Planarity to instances where each non-root cluster
induces an independent set.

The paper is structured as follows. Section 2 contains basic definitions.
Section 3 contains the proof of Theorem 1 under some simplifying hypotheses
(which are removed in [22]). Some immediate consequences of Theorem 1 are
discussed in Sect. 4. The proof of Theorem 2 and some remarks about it are in
Sects. 5 and 6, respectively. Conclusions and open problems are in Sect. 7. For
space reasons some proofs are sketched or, when trivial, omitted.

2 Preliminaries

Let T be a rooted tree. We denote by r(T ) the root of T and by T [μ] the subtree
of T rooted at one of its nodes μ. The depth of a node μ of T is the length
(number of edges) of the path from r(T ) to μ. The height h(T ) of a tree T is
the maximum depth of its nodes.

The nodes of a tree can be partitioned into leaves, that do not have children,
and internal nodes. In turn, the internal nodes can be partitioned into two sets:
lower nodes, whose children are all leaves, and higher nodes, that have at least
one internal-node child. We say that a node is homogeneous if its children are
either all leaves or all internal nodes. A tree is homogeneous if all its nodes
are homogeneous. We say that a tree is flat if all its leaves have depth 2. A
flat tree is homogeneous. Figure 1 shows a non-homogeneous tree (Fig. 1(a)), a
homogeneous tree (Fig. 1(b)), and a flat tree (Fig. 1(c)).

(a) (b) (c)

Fig. 1. (a) A tree that is not homogeneous. (b) A homogeneous tree. (c) A flat tree.

We also need a special notion of size: the size of a tree T , denoted by S(T ),
is the number of higher nodes of T different from the root of T . Observe that a
homogeneous tree T is flat if and only if S(T ) = 0. For example, the sizes of the
trees represented in Figs. 1(a), (b), and (c) are 2, 2, and 0, respectively (filled
gray nodes in Fig. 1). The proof of the following lemma is trivial.

Lemma 1. A homogeneous tree T of height h(T ) ≥ 2 and size S(T ) > 0 con-
tains at least one node μ∗ �= r(T ) such that T [μ∗] is flat.

A graph G = (V,E) is a set V of vertices and a set E of edges, where each
edge is an unordered pair of vertices. A drawing Γ (G) of G is a mapping of its
vertices to distinct points on the plane and of its edges to Jordan curves joining
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the incident vertices. Drawing Γ (G) is planar if no two edges intersect except
at common end-vertices. A graph is planar if it admits a planar drawing.

A clustered graph (or c-graph) C is a pair (G,T ) where G = (V,E) is a planar
graph, called the underlying graph of C, and T , called the inclusion tree of C,
is a rooted tree such that the set of leaves of T coincides with V . A cluster μ
is an internal node of T . When it is not ambiguous we also identify a cluster
with the respective subset of the vertex set. An inter-cluster edge of a cluster
μ of T is an edge of G that has one end-vertex inside μ and the other end-
vertex outside μ. An independent set of vertices is a set of pairwise non-adjacent
vertices. A cluster μ of T is independent if its vertices form an independent set.
A c-graph is independent if all its clusters, with the exception of the root, are
independent clusters. A cluster μ of T is a lower cluster (higher cluster) of C if
μ is a lower node (higher node) of T .

A c-graph is flat if its inclusion tree is flat. The clusters of a flat c-graph
are all lower clusters with the exception of the root cluster. A cluster is called
singleton if it contains a single cluster or a single vertex.

A drawing Γ (C) of a c-graph C(G,T ) is a mapping of vertices and edges
of G to points and to Jordan curves joining their incident vertices, respectively,
and of each internal node μ of T to a simple closed region R(μ) containing
exactly the vertices of μ. Drawing Γ (C) is c-planar if: (i) curves representing
edges of G do not intersect except at common end-points; (ii) the boundaries of
the regions representing clusters do not intersect; and (iii) each edge intersects
the boundary of a region at most one time. A c-graph is c-planar if it admits a
c-planar drawing.

Problem Clustered Planarity is the problem of deciding whether a c-
graph is c-planar. Problem Flat Clustered Planarity is the restriction of
Clustered Planarity to flat c-graphs. Problem Independent Flat Clus-

tered Planarity is the restriction of Clustered Planarity to independent
flat c-graphs.

The proof of the following lemma can be found in [22].

Lemma 2. An instance C(G,T ) of Clustered Planarity with n vertices
and c clusters can be reduced in time O(n+c) to an equivalent instance such that:
(1) T is homogeneous, (2) r(T ) has at least two children, and (3) h(T ) ≤ n − 1.

3 Proof of Theorem1

We describe a polynomial-time reduction of Clustered Planarity to Flat

Clustered Planarity. Let C(G,T ) be a clustered graph, let n be the number
of vertices of G, and let c be the number of clusters of C. Due to Lemma 2 we can
achieve in O(n+ c) time that T is homogeneous and S(T ) ∈ O(n). We reduce C
to an equivalent instance Cf (Gf , Tf ) where Tf is flat. The reduction consists of
a sequence of transformations of C = C0 into C1, C2, . . . , CS(T ) = Cf , where
each Ci(Gi, Ti), i = 0, 1, . . . ,S(T ), has an homogeneous inclusion tree Ti and
each transformation takes O(n) time.
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Fig. 2. (a) A c-graph Ci. Inter-cluster edges of μ∗ are colored red, green, and blue. (b)
The construction of Ci+1. (Color figure online)

Consider any Ci(Gi, Ti), with i = 0, . . . ,S(T ) − 1, where Ti is a homoge-
neous, non-flat tree of height h(Ti) ≥ 2 (refer to Fig. 2(a)). By Lemma 1, Ti

has at least one node μ∗ �= r(Ti) such that Ti[μ∗] is flat. Since μ∗ �= r(Ti),
node μ∗ has a parent ν. Also, denote by ν1, ν2, . . . , νh the children of μ∗ and by
μ1, μ2, . . . , μk the siblings of μ∗ in Ti. We construct Ci+1(Gi+1, Ti+1) as follows
(refer to Fig. 2(b)). Graph Gi+1 is obtained from Gi by introducing, for each
inter-cluster edge e = (u, v) of μ∗, two new vertices eχ and eϕ and by replacing
e with a path (u, eχ)(eχ, eϕ)(eϕ, v). Tree Ti+1 is obtained from Ti by removing
node μ∗, attaching its children ν1, ν2, . . . , νh directly to ν and adding to ν two
new children χ and ϕ, where cluster χ (cluster ϕ, respectively) contains all ver-
tices eχ (eϕ, respectively) introduced when replacing each inter-cluster edge e of
μ∗ with a path. The following lemmas are trivial.

Lemma 3. If Ti is homogeneous then Ti+1 is homogeneous.

Lemma 4. We have that S(Ti+1) = S(Ti) − 1.

Lemma 5. The c-graph Cf = CS(T ) is flat.

The proof of the following lemma is given here under two simplifying hypothe-
ses (the proof of the general case can be found in [22]):

H-conn: The underlying graph Gi is connected
H-not-root : Cluster ν is not the root of T

Observe that Hypothesis H-conn implies that also Gi+1 is connected.
Observe, also, that Hypothesis H-not-root and Property 2 of Lemma2 imply
that there is at least one vertex of Gi that is not part of ν (this hypothesis is
not satisfied, for example, by the c-graph depicted in Fig. 2(a)).

Lemma 6. Ci(Gi, Ti) is c-planar if and only if Ci+1(Gi+1, Ti+1) is c-planar.

Proof sketch. The first direction of the proof is straightforward. Let Γ (Ci) be a
c-planar drawing of Ci (refer to Fig. 3(a)). We show how to construct a c-planar
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Fig. 3. (a) A c-planar drawing Γ (Ci) of c-graph Ci. (b) The construction of a c-planar
drawing Γ (Ci+1).

drawing of Ci+1 (refer to Fig. 3(b)). Consider the region R(μ∗) that contains
R(νi), with i = 1, . . . , h. The boundary of R(μ∗) is crossed exactly once by each
inter-cluster edge of μ∗. Identify outside the boundary of R(μ∗) two arbitrarily
thin regions R(χ) and R(ϕ) that turn around R(μ∗) and that intersect exactly
once all and only the inter-cluster edges of μ∗. Insert into each inter-cluster edge
e of μ∗ two vertices eχ and eϕ, placing eχ inside R(χ) and eϕ inside R(ϕ). By
ignoring R(μ∗) you have a c-planar drawing Γ (Ci+1) of Ci+1.

χ ϕ
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ν5 ν6

ν7
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ν10
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μ4

μ5

μ6

μ7

μ8

μ9

μ10

Fig. 4. A c-planar drawing of clusters ν, χ, and ϕ in Γ (Ci+1). (Color figure online)

Suppose now to have a c-planar drawing Γ (Ci+1) of Ci+1. We show how to
construct a c-planar drawing Γ (Ci) of Ci under the Hypotheses H-conn and
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H-not-root. Consider the regions R(χ) and R(ϕ) inside R(ν) (refer to Fig. 4).
Regions R(χ) and R(ϕ) are joined by the p inter-cluster edges introduced when
replacing each inter-cluster edge ei of μ∗, where i = 1, . . . , p, with a path (red
edges of Fig. 4). Such inter-cluster edges of χ and ϕ partition R(ν) into p regions
that have to host the remaining children of ν and the inter-cluster edges among
them. In particular, p−1 of these regions are bounded by two inter-cluster edges
and two portions of the boundaries of R(χ) and R(ϕ). One of such regions,
instead, is also externally bounded by the boundary of R(ν).

Now consider the regions R(νi) corresponding to the children νi of ν, with
i = 1, . . . , h, that were originally children of μ∗. These regions (filled white in
Fig. 4) may have inter-cluster edges among them and may be connected to χ,
but by construction cannot have inter-cluster edges connecting them to ϕ, or
connecting them to the original children μi �= μ∗ of ν, or exiting the border of
R(ν). In particular, due to Hypothesis H-conn, these regions must be directly
or indirectly connected to χ. Finally, consider the regions R(μi) corresponding
to the original children μi �= μ∗ of ν (filled gray in Fig. 4). These regions may
have inter-cluster edges among them, connecting them to ϕ, or connecting them
to the rest of the graph outside ν. In particular, due to Hypotheses H-conn and
H-not-root, each μi (and also ϕ) must be directly or indirectly connected to the
border of R(ν). It follows that the drawing in Γ (Ci+1) of the subgraph Gμ∗

composed by the regions of χ, ν1, ν2, . . . , νh and their inter-cluster edges cannot
contain in one of its internal faces any other cluster of ν. Hence, the sub-region
R(μ∗) of R(ν) that is the union of R(χ) and the region enclosed by Gμ∗ is a
closed and simple region that only contains the regions R(ν1), . . .R(νh) plus the
region R(χ) and all the inter-cluster edges among them (see Fig. 5). By ignoring
R(χ) and R(ϕ) and by removing vertices eχ and eϕ and joining their incident
edges we obtain a c-planar drawing Γ (Ci). ��

The proof of Theorem 1 descends from Lemmas 5 and 6 and from the con-
sideration that each construction of Ci+1 from Ci takes at most O(n) time and,
hence, the time needed to construct Cf is O(n2). Due to the O(n + c)-time pre-
processing (Lemma 2), the overall time complexity of the reduction is O(n2 + c).

4 Remarks About Theorem1

In this section we discuss some consequences of Theorem 1 that descend from the
properties of the reduction described in Sect. 3. Such properties are summarized
in the following lemma.

Lemma 7. Let C(G,T ) be an n-vertex clustered graph with c clusters. The flat
clustered graph Cf (Gf , Tf ) equivalent to C built as described in the proof of
Theorem1 has the following properties:

1. Graph Gf is a subdivision of G
2. Each edge of G is replaced by a path of length at most 4h(T ) − 8
3. The number of vertices of Gf is nf ∈ O(n · h(T ))
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Fig. 5. The drawing of cluster μ in Γ (Ci) corresponding to the drawing Γ (Ci+1) of
Fig. 4.

4. The number of clusters of Cf is cf = c + S(T )

Proof. Regarding Property 1, observe that, for i = 1, . . . ,S(T ), each Gi is
obtained from Gi−1 by replacing edges with paths. Hence GS(T ) = Gf is a
subdivision of G0 = G. To prove Property 2 observe that each time an edge e
is subdivided, a pair of vertices eχ and eϕ is inserted and that edges are sub-
divided when the boundary of a higher cluster is removed. Edges that traverse
more boundaries are those that link two vertices whose lowest common ancestor
is the root of T . These edges traverse 2h(T ) − 4 higher-cluster boundaries in C.
Hence, the number of vertices inserted into these edges is 4h(T ) − 8. Property 3
can be proved by considering that G has O(n) edges and each edge, by Prop-
erty 2, is replaced by a path of length at most O(h(T )). Finally, Property 4
descends from the fact that at each step Ci+1 has exactly one cluster more than
Ci, since new clusters χ and ϕ are inserted but cluster μ∗ is removed. ��

An immediate consequence of Property 1 of Lemma 7 is that the number
of faces of Gf is equal to the number of faces of G. Also, if G is connected,
biconnected, or a subdivision of a triconnected graph, Gf is also connected,
biconnected, or a subdivision of a triconnected graph, respectively. If G is a
cycle or a tree, Gf is also a cycle or a tree, respectively. Hence, the complexity
of Clustered Planarity restricted to these kinds of graphs can be related to
the complexity of Flat Clustered Planarity restricted to the same kinds
of graphs. Further, since a subdivision preserves the embedding of the original
graph, the problem of deciding whether a c-graph C(G,T ) admits a c-planar
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drawing where G has a fixed embedding is polynomially equivalent to deciding
whether a flat c-graph Cf (Gf , Tf ) admits a c-planar drawing where Gf has a
fixed embedding.

By the above observations some results on flat clustered graphs can be imme-
diately exported to general c-graphs. Consider for example the following.

Theorem 3 ([16, Theorem 1]). There exists an O(n3)-time algorithm to test
the c-planarity of an n-vertex embedded flat c-graph C with at most two vertices
per cluster on each face.

We generalize Theorem 3 to non-flat c-graphs.

Theorem 4. Let C(G,T ) be an n-vertex c-graph where G has a fixed embedding.
There exists an O(n3 · h(T )3)-time algorithm to test the c-planarity of C if each
lower cluster has at most two vertices on the same face of G and each higher
cluster has at most two inter-cluster edges on the same face of G.

Proof sketch. The proof is based on showing that, starting from a c-graph
C(G,T ) that satisfies the hypotheses of the statement, the equivalent flat c-graph
Cf (Gf , Tf ) built as described in the proof of Theorem1 satisfies the hypothe-
ses of Theorem 3. Hence, we first transform C(G,T ) into Cf (Gf , Tf ) in O(n2)
time and then apply Theorem 3 to Cf (Gf , Tf ), which gives an answer to the c-
planarity test in O(n3

f ) time, which is, by Property 3 of Lemma7, O(n3 · h(T )3)
time. ��

In [25] it has been proven that Flat Clustered Planarity admits a
subexponential-time algorithm when the underlying graph has a fixed embedding
and its maximum face size � belongs to o(n).

Theorem 5 ([25, Theorem 3]). Flat Clustered Planarity can be solved in
2O(

√
�n·log n) time for n-vertex embedded flat c-graphs with maximum face size �.

The authors of [25] ask whether their results can be generalized to non-flat
c-graphs. We give an affirmative answer with the following theorem.

Theorem 6. Clustered Planarity can be solved in 2O(h(T )·√�n·log(n·h(T ))

time for n-vertex embedded c-graphs with maximum face size � and height h(T )
of the inclusion tree.

Proof sketch. The proof is based on applying Theorem5 to the equivalent flat
c-graph Cf (Gf , Tf ) built as described in the proof of Theorem1. ��

Observe that Theorem 6 gives a subexponential-time upper bound for Clus-

tered Planarity whenever � · h(T )2 ∈ o(n). Also observe that Theorems 4
and 6 are actual generalizations of the corresponding Theorems 3 and 5, respec-
tively, as they yield the same bounds when applied to flat clustered graphs.
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5 Proof of Theorem2

In this section we reduce Flat Clustered Planarity to Independent Flat

Clustered Planarity by applying a transformation very similar to the one
described in Sect. 3 to each non-independent cluster.

Let C(G,T ) be a flat c-graph. Let k be the number of lower clusters of C that
are not independent. The reduction consists of a sequence of transformations of
C = C0 into C1, C2, . . . , Ck where each Ci, i = 0, . . . , k, is a flat c-graph with
k − i non-independent lower clusters.

ρ

μ∗ μ4 μ5μ3

e f

g

Ci

μ2μ1

(a)

ρ

μ4 μ5μ3

Ci+1

μ2μ1χ ϕ

eχ
fχ

gχ
eϕ

fϕ
gϕ

fχ

ν1 ν2 ν3 ν4 ν5

(b)

Fig. 6. (a) A flat c-graph Ci with a non-independent cluster μ∗. (b) The construction
of Ci+1 where μ∗ is replaced by independent clusters ν1, . . . , ν5, χ, and ϕ.

Consider a flat c-graph Ci(Gi, Ti), with i = 0, . . . , k − 1, such that Ci has
k − i non-independent clusters and let μ∗ be a non-independent cluster of C.
We show how to construct an flat c-graph Ci+1(Gi+1, Ti+1) equivalent to Ci and
such that Ci+1 has k − i − 1 non-independent clusters (refer to Fig. 6). Denote
by μj , with j = 1, 2, . . . , l, those children of r(Ti) such that μj �= μ∗. Suppose
that μ∗ has children v1, v2, . . . , vh, which are vertices of Gi.

The underlying graph Gi+1 of Ci+1 is obtained from Gi by introducing, for
each inter-cluster edge e = (u, v) of μ∗, two new vertices eχ and eϕ and replacing
e with a path (u, eχ)(eχ, eϕ)(eϕ, v). The inclusion tree Ti+1 of Ci+1 is obtained
from Ti by removing cluster μ∗ and introducing, for each j = 1, 2, . . . , h, a
lower cluster νj child of r(Ti+1) containing only vj . We also introduce two lower
clusters χ and ϕ as children of r(Ti+1) that contain all the vertices eχ and eϕ,
respectively, introduced when replacing each inter-cluster edge e of μ∗ with a
path. It is easy to see that Ci+1 is a flat clustered graph and that it has one
non-independent cluster less than Ci.

We prove the following lemma assuming that Hypothesis H-conn holds. The
complete proof is in [22].

Lemma 8. Ci(Gi, Ti) is c-planar if and only if Ci+1(Gi+1, Ti+1) is c-planar.

Proof sketch. The proof is very similar to the proof of Lemma6. First, we show
that, given a c-planar drawing Γ (Ci) of the flat c-graph Ci it is easy to construct a
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Fig. 7. (a) A c-planar drawing of the flat c-graph of Fig. 6(a). (b) The corresponding
c-planar drawing the flat c-graph of Fig. 6(b) where the non-independent cluster μ∗ is
replaced by independent clusters ν1, . . . , ν5, χ, and ϕ.

c-planar drawing Γ (Ci+1) of Ci+1 (see, as an example, Fig. 7). Second we show
that, given a c-planar drawing Γ (Ci+1) of the flat c-graph Ci+1 it is possible
to construct a c-planar drawing Γ (Ci) of Ci. This second part of the proof is
complicated by the fact that, since in this case Hypothesis H-not-root does not
apply, we may have that in Γ (Ci+1) the region R(ϕ) is embraced by inter-cluster
edges and region boundaries of R(ν1), R(ν2), . . .R(νl), and R(χ). Hence, before
identifying the region R(μ∗) the drawing Γ (Ci+1) needs to be modified so that
the external face touches R(ϕ). This can be easily done by rerouting edges. ��

The proof of Theorem2 is concluded by showing that each Gi+1 can be
obtained from Gi in time proportional to the number of vertices and inter-cluster
edges of μ∗, which gives an overall O(n) time for the reduction.

6 Remarks About Theorem2

Starting from a flat c-graph, the reduction described in Sect. 5 allows us to find
an equivalent independent flat c-graph with the properties stated in the following
lemma (the proof can be found in [22]).

Lemma 9. Let Cf (Gf , Tf ) be an nf -vertex flat clustered graph with cf clus-
ters. The independent flat clustered graph Cif(Gif, Tif) equivalent to Cf built as
described in the proof of Theorem2 has the following properties:

1. Graph Gif is a subdivision of Gf

2. Each inter-cluster edge of Gf is replaced by a path of length at most 4.
3. The number of vertices of Gif is O(nf )
4. The number of clusters of Cif (including the root) is cif ≤ 2cf + nf − 1

Also, a further property can be pursued.
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Observation 1. At the same asymptotic cost of the reduction described in the
proof of Theorem2 it can be achieved that non-root clusters are of two types:
(Type 1) clusters containing a single vertex of arbitrary degree or (Type 2)
clusters containing multiple vertices of degree two.

All observations of Sect. 4 regarding the consequences of Property 1 of
Lemma 7 apply here to of Property 1 of Lemma9. Further, the two reductions
can be concatenated yielding the following.

Lemma 10. Let C(G,T ) be an n-vertex clustered graph with c clusters. The
independent flat clustered graph Cif(Gif, Tif) equivalent to C built by concatenat-
ing the reduction of Theorem1 and the reduction of Theorem2, as modified by
Observation 1, has the following properties:

1. Graph Gif is a subdivision of G
2. Each inter-cluster edge of Gf is replaced by a path of length at most 4h(T )−4
3. The number of vertices of Gif is O(n2)
4. The number of clusters of Cif is O(n · h(T ))
5. Non-root clusters are of two types: (Type 1) clusters containing a single

vertex of arbitrary degree or (Type 2) clusters containing multiple vertices
of degree two

Lemma 10 describes the most constrained version of Clustered Planarity

that is known to be polynomially equivalent to the general problem. Observe that
if all non-root clusters of a c-graph C(G,T ) are of Type 1 then Independent

Flat Clustered Planarity is linear, since C is c-planar if and only if G is
planar. Conversely, if all clusters are of Type 2 then the underlying graph is a
collection of cycles, and the problem has unknown complexity [20,21].

7 Conclusions and Open Problems

We showed that Clustered Planarity can be reduced to Flat Clustered

Planarity and that this problem, in turn, can be reduced to Independent

Flat Clustered Planarity. The consequences of these results are twofold:
on one side the investigations about the complexity of Clustered Planarity

could legitimately be restricted to (independent) flat clustered graphs, neglect-
ing more complex hierarchies of the inclusion tree; on the other side some
polynomial-time results on flat clustered graphs could be easily exported to
general c-graphs (we gave some examples in Sect. 4).

We remark that while Theorems 1 and 2 are formulated in terms of decision
problems, their proofs offer a solution of the corresponding search problems,
meaning that they actually describe a polynomial-time algorithm to compute a
c-planar drawing of a c-graph, provided to have a c-planar drawing of the cor-
responding flat c-graph or a c-planar drawing of the corresponding independent
flat c-graph.



Clustered Planarity = Flat Clustered Planarity 35

Several interesting questions are left open:

– Can the reduction presented in this paper be used to generalize some other
polynomial-time testing algorithm for Flat Clustered Planarity to plain
Clustered Planarity?

– What is the complexity of Independent Flat Clustered Planarity

when the underlying graph is a cycle? We know that this problem is polyno-
mial only for constrained drawings of the inter-cluster edges [20,21].

– What is the complexity of Independent Flat Clustered Planarity

when the number of Type 2 clusters is bounded?
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Abstract. Recently, Fulek et al. [1–3] have presented Hanani-Tutte
results for (radial) level planarity, i.e., a graph is (radial) level planar
if it admits a (radial) level drawing where any two (independent) edges
cross an even number of times. We show that the 2-Sat formulation of
level planarity testing due to Randerath et al. [4] is equivalent to the
strong Hanani-Tutte theorem for level planarity [3]. Further, we show
that this relationship carries over to radial level planarity, which yields
a novel polynomial-time algorithm for testing radial level planarity.

1 Introduction

Planarity of graphs is a fundamental concept for graph theory as a whole, and for
graph drawing in particular. Naturally, variants of planarity tailored specifically
to directed graphs have been explored. A planar drawing is upward planar if all
edges are drawn as monotone curves in the upward direction. A special case are
level planar drawings of level graphs, where the input graph G = (V,E) comes
with a level assignment � : V → {1, 2, . . . , k} for some k ∈ N that satisfies �(u) <
�(v) for all (u, v) ∈ E. One then asks whether there is an upward planar drawing
such that each vertex v is mapped to a point on the horizontal line y = �(v)
representing the level of v. There are also radial variants of these concepts,
where edges are drawn as curves that are monotone in the outward direction in
the sense that a curve and any circle centered at the origin intersect in at most
one point. Radial level planarity is derived from level planarity by representing
levels as concentric circles around the origin.

Despite the similarity, the variants with and without levels differ significantly
in their complexity. Whereas testing upward planarity and radial planarity are
NP-complete [5], level planarity and radial level planarity can be tested in poly-
nomial time. In fact, linear-time algorithms are known for both problems [6,7].
However, both algorithms are quite complicated, and subsequent research has
led to slower but simpler algorithms for these problems [4,8]. Recently also con-
strained variants of the level planarity problem have been considered [9,10].

One of the simpler algorithms is the one by Randerath et al. [4]. It only
considers proper level graphs, where each edge connects vertices on adjacent
c© Springer Nature Switzerland AG 2018
T. Biedl and A. Kerren (Eds.): GD 2018, LNCS 11282, pp. 39–52, 2018.
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levels. This is not a restriction, because each level graph can be subdivided to
make it proper, potentially at the cost of increasing its size by a factor of k.
It is not hard to see that in this case a drawing is fully specified by the vertex
ordering on each level. To represent this ordering, define a set of variables V =
{uw | u,w ∈ V, u �= w, �(u) = �(w)}. Randerath et al. observe that there is a
trivial way of specifying the existence of a level-planar drawing by the following
consistency (1), transitivity (2) and planarity constraints (3):

∀uw ∈ V : uw ⇔ ¬ wu (1)
∀uw, wy ∈ V : uw ∧ wy ⇒ uy (2)
∀uw, vx ∈ V with (u, v), (w, x) ∈ E independent : uw ⇔ vx (3)

The surprising result due to Randerath et al. [4] is that the satisfiability of
this system of constraints (and thus the existence of a level planar drawing)
is equivalent to the satisfiability of a reduced constraint system obtained by
omitting the transitivity constraints (2). That is, transitivity is irrelevant for
the satisfiability. Note that a satisfying assignment of the reduced system is
not necessarily transitive, rather Randerath et al. prove that a solution can be
made transitive without invalidating the other constraints. Since the remaining
conditions 1 and 3 can be easily expressed in terms of 2-Sat, which can be
solved efficiently, this yields a polynomial-time algorithm for level planarity.

A very recent trend in planarity research are Hanani-Tutte style results. The
(strong) Hanani-Tutte theorem [11,12] states that a graph is planar if and only if
it can be drawn so that any two independent edges (i.e., not sharing an endpoint)
cross an even number of times. One may wonder for which other drawing styles
such a statement is true. Pach and Tóth [13,14] showed that the weak Hanani-
Tutte theorem (which requires even crossings for all pairs of edges) holds for
a special case of level planarity and asked whether the result holds in general.
This was shown in the affirmative by Fulek et al. [3], who also established the
strong version for level planarity. Most recently, both the weak and the strong
Hanani-Tutte theorem have been established for radial level planarity [1,2].

Contribution. We show that the result of Randerath et al. [4] from 2001 is
equivalent to the strong Hanani-Tutte theorem for level planarity.

The key difference is that Randerath et al. consider proper level graphs,
whereas Fulek et al. [3] work with graphs with only one vertex per level. For a
graph G we define two graphs G�, G+ that are equivalent to G with respect to
level planarity. We show how to transform a Hanani-Tutte drawing of a graph G�

into a satisfying assignment for the constraint system of G+ and vice versa. Since
this transformation does not make use of the Hanani-Tutte theorem nor of the
result by Randerath et al., this establishes the equivalence of the two results.

Moreover, we show that the transformation can be adapted also to the case
of radial level planarity. This results in a novel polynomial-time algorithm for
testing radial level planarity by testing satisfiability of a system of constraints
that, much like the work of Randerath et al., is obtained from omitting all
transitivity constraints from a constraint system that trivially models radial
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level planarity. Currently, we deduce the correctness of the new algorithm from
the strong Hanani-Tutte theorem for radial level planarity [2]. However, also this
transformation works both ways, and a new correctness proof of our algorithm in
the style of the work of Randerath et al. [4] may pave the way for a simpler proof
of the Hanani-Tutte theorem for radial level planarity. We leave this as future
work. Omitted proofs, indicated by (�), can be found in the full version [15].

2 Preliminaries

A level graph is a directed graph G = (V,E) together with a level assignment � :
V → {1, 2, . . . , k} for some k ∈ N that satisfies �(u) < �(v) for all (u, v) ∈ E.
If �(u)+1 = �(v) for all (u, v) ∈ E, the level graph G is proper. Two independent
edges (u, v), (w, x) are critical if �(u) ≤ �(x) and �(v) ≥ �(w). Note that any pair
of independent edges that can cross in a level drawing of G is a pair of critical
edges. Throughout this paper, we consider drawings that may be non-planar,
but we assume at all times that no two distinct vertices are drawn at the exact
same point, no edge passes through a vertex, and no three (or more) edges cross
in a single point. If any two independent edges cross an even number of times in
a drawing Γ of G, it is called a Hanani-Tutte drawing of G.

For any k-level graph G we now define a star form G� so that every level
of G� consists of exactly one vertex. The construction is similar to the one used
by Fulek et al. [3]. Let ni denote the number of vertices on level i for 1 ≤
i ≤ k. Further, let v1, v2, . . . , vni

denote the vertices on level i. Subdivide every
level i into 2ni sublevels 1i, 2i, . . . , (2ni)i. For 1 ≤ j ≤ ni, replace vertex vj

by two vertices v′
j , v′′

j with �(v′
j) = ji and �(v′′

j ) = ni + ji and connect them
by an edge (v′

j , v
′′
j ), referred to as the stretch edge e(vj). Connect all incoming

edges of vj to v′
j instead and connect all outgoing edges of vj to v′′

j instead.
Let e = (u, v) be an edge of G. Then let e� denote the edge of G� that connects
the endpoint of e(u) with the starting point of e(v). See Fig. 1. Define G+ as
the graph obtained by subdividing the edges of G� so that the graph becomes
proper; again, see Fig. 1. Let (u, v), (w, x) be critical edges in G�. Define their
limits in G+ as (u′, v′), (w′, x′) where u′, v′ are endpoints or subdivision vertices
of (u, v), w′, x′ are endpoints or subdivision vertices of (w, x) and it is �(u′) =
�(w′) = max(�(u), �(w)) and �(v′) = �(x′) = min(�(v), �(x)).

Lemma 1 (�). Let G be a level graph. Then
G is (radial) level pl. ⇔ G� is (radial) level pl. ⇔ G+ is (radial) level pl.

3 Level Planarity

Recall from the introduction that Randerath et al. formulated level planarity of
a proper level graph G as a Boolean satisfiability problem S ′(G) on the vari-
ables V = {uw | u �= w, �(u) = �(w)} and the clauses given by Eqs. (1)–(3).

It is readily observed that G is level planar if and only if S ′(G) is satisfiable.
Now let S(G) denote the Sat instance obtained by removing the transitivity
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G�G G+

Fig. 1. A level graph G (a) modified to a graph G� so as to have only one vertex per
level (b) and its proper subdivision G+ (c).

clauses (2) from S ′(G). Note that it is (uw ⇒ ¬wu) ≡ (¬uw ∨¬wu) and (uw ⇒
vx) ≡ (¬uw ∨ vx), i.e., S(G) is an instance of 2-Sat, which can be solved
efficiently. The key claim of Randerath et al. is that S ′(G) is satisfiable if and
only if S(G) is satisfiable, i.e., dropping the transitivity clauses does not change
the satisfiability of S ′(G). In this section, we show that S(G) is satisfiable if
and only if G� has a Hanani-Tutte level drawing (Theorem 1). Of course, we do
not use the equivalence of both statements to level planarity of G. Instead, we
construct a satisfying truth assignment of S(G) directly from a given Hanani-
Tutte level drawing (Lemma 3), and vice versa (Lemma 4). This directly implies
the equivalence of the results of Randerath et al. and Fulek et al. (Theorem 1).

The common ground for our constructions is the constraint system S ′(G+),
where a Hanani-Tutte drawing implies a variable assignment that does not nec-
essarily satisfy the planarity constraints (3), though in a controlled way, whereas
a satisfying assignment of S(G) induces an assignment for S ′(G+) that satisfies
the planarity constraints but not the transitivity constraints (2). Thus, in a
sense, our transformation trades planarity for transitivity and vice versa.

A (not necessarily planar) drawing Γ of G induces a truth assignment ϕ of V
by defining for all uw ∈ V that ϕ(uw) is true if and only if u lies to the left
of w in Γ . Note that this truth assignment must satisfy the consistency clauses,
but does not necessarily satisfy the planarity constraints. The following lemma
describes a relationship between certain truth assignments of S(G) and crossings
in Γ that we use to prove Lemmas 3 and 4.

Lemma 2. Let (u, v), (w, x) be two critical edges of G� and let (u′, v′), (w′, x′)
be their limits in G+. Further, let Γ � be a drawing of G�, let Γ+ be the drawing
of G+ induced by Γ � and let ϕ+ be the truth assignment of S(G+) induced
by Γ+. Then (u, v) and (w, x) intersect an even number of times in Γ � if and
only if ϕ+(u′w′) = ϕ+(v′x′).

Proof. We may assume without loss of generality that any two edges cross at
most once between consecutive levels by introducing sublevels if necessary. Let X
be a crossing between (u, v) and (w, x) in G�; see Fig. 2(a). Further, let u1, w1

and u2, w2 be the subdivision vertices of (u, v) and (w, x) on the levels directly
below and above X in G�, respectively. It is ϕ+(u1w1) = ¬ϕ+(u2w2). In the
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reverse direction, ϕ+(u1w1) = ¬ϕ+(u2w2) implies that (u, v) and (w, x) cross
between the levels �(u1) and �(u2). Due to the definition of limits, any crossing
between (u, v) and (w, x) in G� must occur between the levels �(u′) = �(w′)
and �(v′) = �(x′). Therefore, it is ϕ+(u′w′) = ϕ+(v′x′) if and only if (u, v)
and (w, x) cross an even number of times. ��

u w = w′

v = v′ x
x′

u′

u1 w1

u2w2

w3u3

ϕ+(u′w′) = true

ϕ+(u1w1) = true

ϕ+(u2w2) = true

ϕ+(u3w3) = true

ϕ+(v′x′) = true

a1

a2

a3

a4

b1

b2

b3

b4

c1

c2

c3

c4

a b c

ϕ(ab) = ϕ+(a1b2)

ϕ(ac) = ϕ+(a1c3)

ϕ(bc) = ϕ+(b1c2)

(a) (b) (c) (d)

Fig. 2. A Hanani-Tutte drawing (a) induces a truth assignment ϕ+that satis-
fies S(G+) (b), the value where ϕ+ differs from ψ+ is highlighted in red. Using the sub-
divided stretch edges of G+ (c), translate ϕ+ to a satisfying assignment ϕ of S(G) (d).
(Color figure online)

Lemma 3. Let G be a proper level graph and let Γ � be a Hanani-Tutte drawing
of G�. Then S(G) is satisfiable.

Proof. Let Γ+ be the drawing of G+ induced by Γ � and let ψ+ denote the
truth assignment induced by Γ+. Note that ψ+ does not necessarily satisfy the
crossing clauses. Define ϕ+ so that it satisfies all clauses of S(G+) as follows.

Let u′′, w′′ be two vertices of G+ with �(u′′) = �(w′′). If one of them is a vertex
in G�, then set ϕ+(u′′, w′′) = ψ+(u′′, w′′). Otherwise u′′, w′′ are subdivision ver-
tices of two edges (u, v), (w, x) ∈ E(G�). If they are independent, then they are
critical. In that case their limits (u′, v′), (w′, x′) are already assigned consistently
by Lemma 2. Then set ϕ+(u′′w′′) = ψ+(u′w′). If (u, v), (w, x) are adjacent, then
we have u = w or v = x. In the first case, we set ϕ+(u′′w′′) = ψ+(v′x′). In the
second case, we set ϕ+(u′′w′′) = ψ+(u′w′).

Thereby, we have for any critical pair of edges (u′′, v′′), (w′′, x′′) ∈ E(G+) that
ϕ+(u′′w′′) = ϕ+(v′′x′′) and clearly ϕ+(u′′w′′) = ¬ϕ+(w′′u′′). Hence, assign-
ment ϕ+ satisfies S(G+). See Fig. 2 for a drawing Γ+ (a) and the satisfying
assignment of S(G+) derived from it (b).

Proceed to construct a satisfying truth assignment ϕ of S(G) as follows.
Let u, w be two vertices of G with �(u) = �(w). Then the stretch edges e(u), e(w)
in G� are critical by construction. Let (u′, u′′), (w′, w′′) be their limits in G+.
Set ϕ(uw) = ϕ+(u′w′). Because ϕ+ is a satisfying assignment, all crossing clauses
of S(G+) are satisfied, which implies ϕ+(u′w′) = ϕ+(u′′w′′). The same is true
for all subdivision vertices of e(u) and e(w) in G+. Because ϕ+ also satisfies
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the consistency clauses of S(G+), this means that ϕ satisfies the consistency
clauses of S(G). See Fig. 2 for how S(G+) is translated from G+ (c) to G (d).
Note that the resulting assignment is not necessarily transitive, e.g., it could
be ϕ(uv) = ϕ(vw) = ¬ϕ(uw).

Consider two edges (u, v), (w, x) in G with �(u) = �(w). Because G is proper,
we do not have to consider other pairs of edges. Let (u′, u′′), (w′, w′′) be the limits
of e(u), e(w) in G+. Further, let (v′, v′′), (x′, x′′) be the limits of e(v), e(x) in G+.
Because there are disjoint directed paths from u′ and w′ to v′ and x′ and ϕ+

is a satisfying assignment, it is ϕ+(u′w′) = ϕ+(v′x′). Due to the construction
of ϕ described in the previous paragraph, this means that it is ϕ(uw) = ϕ(vx).
Therefore, ϕ is a satisfying assignment of S(G). ��
Lemma 4. Let G be a proper level graph together with a satisfying truth assign-
ment ϕ of S(G). Then there exists a Hanani-Tutte drawing Γ � of G�.

Proof. We construct a satisfying truth assignment ϕ+ of S(G+) from ϕ by essen-
tially reversing the process described in the proof of Lemma 3. Proceed to con-
struct a drawing Γ+ of G+ from ϕ+ as follows. Recall that by construction,
every level of G+ consists of exactly one non-subdivision vertex. Let u denote
the non-subdivision vertex of level i. Draw a subdivision vertex w on level i to
the right of u if ϕ+(uw) is true and to the left of u otherwise. The relative order
of subdivision vertices on either side of u can be chosen arbitrarily. Let Γ � be
the drawing of G� induced by Γ+. To see that Γ � is a Hanani-Tutte drawing,
consider two critical edges (u, v), (w, x) of G�. Let (u′, v′), (w′, x′) denote their
limits in G+. One vertex of u′ and v′ (w′ and x′) is a subdivision vertex and
the other one is not. Lemma 2 gives ϕ+(u′w′) = ϕ+(v′x′) and then by construc-
tion u′, w′ and v′, x′ are placed consistently on their respective levels. Moreover,
Lemma 2 yields that (u, v) and (w, x) cross an even number of times in G�.
Figure 3 illustrates the construction. ��

(c)(b)(a)

Fig. 3. A proper level graph G together with a satisfying variable assignment ϕ (a)
induces a drawing of G+ (b), which induces a Hanani-Tutte drawing of G� (c).

Theorem 1. Let G be a proper level graph. Then
S(G) is satisfiable ⇔ G� has a Hanani-Tutte level drawing ⇔ G is level planar.
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4 Radial Level Planarity

In this section we present an analogous construction for radial level planarity. In
contrast to level planarity, we now have to consider cyclic orders on the levels, and
even those may still leave some freedom for drawing the edges between adjacent
levels. In the following we first construct a constraint system of radial level
planarity for a proper level graph G, which is inspired by the one of Randerath
et al. Afterwards, we slightly modify the construction of G�. Finally, in analogy
to the level planar case, we show that a satisfying assignment of our constraint
system defines a satisfying assignment of the constraint system of G+, and that
this in turn corresponds to a Hanani-Tutte radial level drawing of G�.

A Constraint System for Radial Level Planarity. We start with a special
case that bears a strong similarity with the level-planar case. Namely, assume
that G is a proper level graph that contains a directed path P = α1, . . . , αk that
has exactly one vertex αi on each level i. We now express the cyclic ordering on
each level as linear orders whose first vertex is αi. To this end, we introduce for
each level the variables Vi = {αiuv | u, v ∈ Vi \ {αi}}, where αiuv ≡ true means
αi, u, v are arranged clockwise on the circle representing level i. We further
impose the following necessary and sufficient linear ordering constraints LG(αi).

∀ distinct u, v ∈ V \ {αi} : αiuv ⇔ ¬ αivu (4)
∀ pairwise distinct u, v, w ∈ V \ {αi} : αiuv ∧ αivw ⇒ ¬ αiuw (5)

It remains to constrain the cyclic orderings of vertices on adjacent levels so
that the edges between them can be drawn without crossings. For two adjacent
levels i and i + 1, let εi = (αi, αi+1) be the reference edge. Let Ei be the set
of edges (u, v) of G with �(u) = i that are not adjacent to an endpoint of εi.
Further E+

i = {(αi, v) ∈ E \ {εi}} and E−
i = {(u, αi+1) ∈ E \ {εi}} denote the

edges between levels i and i + 1 adjacent to the reference edge εi.
In the context of the constraint formulation, we only consider drawings of

the edges between levels i and i + 1 where any pair of edges crosses at most
once and, moreover, εi is not crossed. Note that this can always be achieved,
independently of the orderings chosen for levels i and i + 1. Then, the cyclic
orderings of the vertices on the levels i and i + 1 determine the drawings of all
edges in Ei. In particular, two edges (u, v), (u′, v′) ∈ Ei do not intersect if and
only if αiuu′ ⇔ αi+1vv′; see Fig. 4(a). Therefore, we introduce constraint (6).
For each edge e ∈ E+

i ∪ E−
i it remains to decide whether it is embedded locally

to the left or to the right of εi. We write l(e) in the former case. Two edges e ∈
E−

i , f ∈ E+
i do not cross if and only if l(e) ⇔ ¬l(f); see Fig. 4(b). This gives

us constraint (7). It remains to forbid crossings between edges in Ei and edges
in E+

i ∪ E−
i . An edge e = (αi, v

′′) ∈ E+
i and an edge (u′, v′) ∈ Ei do not cross if

and only if l(e) ⇔ αi+1v
′v′′; see Fig. 4(c). Crossings with edges (v, αi+1) ∈ E−

i

can be treated analogously. This yields constraints (8) and (9). We denote the
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planarity constraints (6)–(9) by PG(εi), where εi = (αi, αi+1).

∀ independent (u, v), (u′, v′) ∈ Ei : αiuu′ ⇔ αi+1vv′ (6)

∀e ∈ E+
i , f ∈ E−

i : l(e) ⇔ ¬l(f) (7)

∀ independent (αi, v
′′) ∈ E+

i , (u, v) ∈ Ei : l(αi, v
′′) ⇔ αi+1vv′′ (8)

∀ independent (u′′, αi+1) ∈ E−
i , (u, v) ∈ Ei : l(u′′, αi+1) ⇔ αiuu′′ (9)

α+
i u u′

α−
i+1 v v′

εi

i

i + 1

α+
i u′

α−
i+1 v′v′′

εi

i

i + 1

α+
i

α−
i+1

εi

i

i + 1e f

(a) (c)(b)

e

Fig. 4. Illustration of the planarity constraints for radial planarity for the case of two
edges in Ei (a), constraint (6); the case of an edge in e ∈ E−

i and an edge f ∈ E+
i (b),

constraint (7); and the case of an edge in Ei and an edge e ∈ E+
i (c), constraint (8).

It is not difficult to see that the transformation between Hanani-Tutte
drawings and solutions of the constraint system without the transitivity con-
straints (5) can be performed as in the previous section. The only difference is
that one has to deal with edges that share an endpoint with a reference εi.

In general, however, such a path P from level 1 to level k does not nec-
essarily exist. Instead, we use an arbitrary reference edge between any two
consecutive levels. More formally, we call a pair of sets A+ = {α+

1 , . . . , α+
k },

A− = {α−
1 , . . . , α−

k } reference sets for G if we have α−
1 = α+

1 and α+
k = α−

k and
for 1 ≤ i ≤ k the reference vertices α+

i , α−
i lie on level i and for 1 ≤ i < k graph

G contains the reference edge εi = (α+
i , α−

i+1) unless there is no edge between
level i and level i + 1 at all. In that case, we can extend every radial drawing
of G by the edge (α+

i , α−
i+1) without creating new crossings. We may therefore

assume that this case does not occur and we do so from now on.
To express radial level planarity, we express the cyclic orderings on each level

twice, once with respect to the reference vertex α+
i and once with respect to the

reference vertex α−
i . To express planarity between adjacent levels, we use the

planarity constraints with respect to the reference edge εi. It only remains to
specify that, if α+

i �= α−
i , the linear ordering with respect to these reference

vertices must be linearizations of the same cyclic ordering. This is expressed by
the following cyclic ordering constraints CG(α+

i , α−
i ).

∀ distinct u, v ∈ Vi \ {α−
i , α+

i } : (α−
i uv ⇔ α+

i uv) ⇔ (α−
i uα+

i ⇔ α−
i vα+

i ) (10)

∀ v ∈ Vi \ {α−
i , α+

i } : α−
i vα+

i ⇔ α+
i α−

i v (11)

The constraint set S ′(G,A+, A−) consists of the linearization con-
straints LG(α+

i ) and LG(α−
i ) and the cyclic ordering constraints CG(α+

i , α−
i )
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for i = 1, 2, . . . , k if α+
i �= α−

i , plus the planarity constraints PG(εi) for i =
1, 2, . . . , k − 1. This completes the definition of our constraint system.

Theorem 2 (�). Let G be a proper level graph with reference sets A+, A−.
Then the constraint system S ′(G,A+, A−) is satisfiable if and only if G is radial
level planar. Moreover, the radial level planar drawings of G correspond bijec-
tively to the satisfying assignments of S ′(G,A+, A−).

Similar to Sect. 3, we now define a reduced constraints system S(G,A+, A−)
obtained from S ′(G,A+, A−) by dropping constraint (5). Observe that this
reduced system can be represented as a system of linear equations over F2, which
can be solved efficiently. Our main result is that S(G,A+, A−) is satisfiable if
and only if G is radial level planar.

Modified Star Form. We also slightly modify the splitting and perturbation
operation in the construction of the star form G� of G for each level i. This is nec-
essary since we need a special treatment of the reference vertices α+

i and α−
i on

each level i. Consider the level i containing the ni vertices v1, . . . , vni
. If α+

i �= α−
i ,

then we choose the numbering of the vertices such that v1 = α−
i and vni

= α+
i .

We replace i by 2ni − 1 levels 1i, 2i, . . . , (2ni − 1)i, which is one level less than
previously. Similar to before, we replace each vertex vj by two vertices bot(vj)
and top(vj) with �(bot(vj)) = ji and �(top(vj)) = (ni − 1 + j)i and the cor-
responding stretch edge (bot(vj), top(vj)); see Fig. 5(b). This ensures that the
construction works as before, except that the middle level mi = jni contains two
vertices, namely α+

i
′′ and α−

i
′.

top(α+
i )

bot(α+
i )

top(α+
i+1)

bot(α+
i+1)

top(α−
i+1)

bot(α−
i+1)

mimi+1

(c)(b)
α−

i+1 α+
i+1

α+
i = α−

i

(a)

Fig. 5. Illustration of the modified construction of the stretch edges for G� for the
graph G in (a). The stretch edges for level i + 1 where α+

i+1 �= α−
i+1 (b) and for level i

where α+
i = α−

i (c).

If, on the other hand, α+
i = α−

i , then we choose v1 = α+
i . But now we replace

level i by 2ni +1 levels 1i, . . . , (2ni +1)i. Replace v1 by vertices bot(v1), top(v1)
with �(bot(v1)) = 1i and �(top(v1)) = (2ni + 1)j . Replace all other vj with
vertices bot(vj), top(vj) with �(bot(vj)) = ji and �(top(vj)) = (ni + 1 + j)i.
For all j, we add the stretch edge (bot(vj), top(vj)) as before; see Fig. 5(c). This
construction ensures that the stretch edge of α+

i = α−
i starts in the first new

level 1i and ends in the last new level (2ni+1)i, and the middle level mi = ni + 1j

contains no vertex.
As before, we replace each original edge (u, v) of the input graph G by the

edge (top(u),bot(v)) connecting the upper endpoint of the stretch edge of u
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to the lower endpoint of the stretch edge of v. Observe that the construction
preserves the properties that for each level i the middle level mi of the levels that
replace i intersects all stretch edges of vertices on level i. Therefore, Lemma 1
also holds for this modified version of G� and its proper subdivision G+. For
each vertex v of G we use e(v) = (bot(v), top(v)) to denote its stretch edge.

We define the function L that maps each level j of G� or G+ to the level i
of G it replaces. For an edge e of G� and a level i that intersects e, we denote
by ei the subdivision vertex of e at level i in G+. For two levels i and j that
both intersect an edge e of G�, we denote by ej

i the path from ei to ej in G+.

Constraint System and Assignment for G+. We now choose reference sets
B+, B− for G+ that are based on the reference sets A+, A− for G. Consider a
level j of G� and let i = L(j) be the corresponding level of G. For each level j,
define two vertices β+

j , β−
j . If α−

i = α+
i , set β−

j = β+
j = e(α−

i )j ; see Fig. 6(b).
Otherwise, the choice is based on whether j is the middle level m = mi of the
levels L−1(i) that replace level i of G, or whether j lies above or below m.
Choose β−

m = top(α+
i ) and β+

m = bot(α−
i+1). For j < m, choose β−

j = β+
j =

e(α−
i )j and for j > m, choose β−

j = β+
j = e(α+

i )j ; see Fig. 6(c).

β+
7i

= β−
7i

β+
1i

= β−
7i

β+
5i+1 = β−

5i+1

β+
mi+1

β−
mi+1

β+
1i+1 = β−

1i+1

mi mi+1

(b) (c)
α−

i+1 α+
i+1

α+
i = α−

i

(a)

Fig. 6. Definition of β+, β− in the assignment for G+ for the same graph as in Fig. 5(a).
Vertices β+ (β−) are drawn in green (red), or in blue if they coincide. (Color figure
online)

We set B+ to be the set containing all β+
j and likewise for B−. Our next

step is to construct from a satisfying assignment ϕ of S(G,A+, A−) a corre-
sponding satisfying assignment ϕ+ of S(G+, B+, B−). The construction follows
the approach from Lemma 4 and makes use of the fact that G+ is essentially a
stretched and perturbed version of G. Since the construction is straightforward
but somewhat technical, we defer it to the full version [15].

Lemma 5 (�). If S(G,A+, A−) is satisfiable, then S(G+, B+, B−) is satisfiable.

Constructing a Hanani-Tutte Drawing. We construct a radial drawing Γ+

of G+, from which we obtain the drawing Γ � of G� by smoothing the subdivision
vertices. Afterwards we show that Γ � is a Hanani-Tutte drawing.

We construct Γ+ as follows. Consider a level j of G+ and let i = L(j) be the
original level of G. First assume j = mi is the middle levels of the levels replacing
level i of G. If β−

j = β+
j , then we place all vertices of Vj(G+) in arbitrary order.
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Otherwise, we place β−
j and β+

j arbitrarily on the circle representing the level mi.
We then place each vertex v ∈ Vj(G+)\{β−

j , β+
j } such that β−

j , v, β+
j are ordered

clockwise if and only if ϕ(β−
j vβ+

j ) is true (i.e., we place v on the correct side
of β−

j and β+
j and arrange the vertices on both sides of β−

j and β+
j arbitrarily).

Next assume j �= mi. Then there is exactly one vertex ξ ∈ Vj(G+) ∩ V (G�).
If ξ ∈ B−, then we place all vertices of Vj(G+) in arbitrary order on the circle
representing the level j. Otherwise, we place β−

j and ξ arbitrarily. We then place
any vertex v ∈ Vj(G+) \ {β−

j , ξ} such that β−
j , ξ, v are ordered clockwise if and

only if ϕ+(β−
j ξv) is true. Again, we arrange the vertices on either side of β−

j

and ξ arbitrarily. We have now fixed the positions of all vertices and it remains
to draw the edges.

Consider two consecutive levels j and j + 1 of G+. We draw the edges
in Ej(G+) such that they do not cross the reference edges in E(G+)∩(B+×B−).
We draw an edge e = (β+

j , x′) ∈ E+
j (G+) such that it is locally left of (β+

j , β−
j )

if and only if ϕ+(l(e)) = true. By reversing the subdivisions of the edges in G+

we obtain G� and along with that we obtain a drawing Γ � of G� from Γ+.
Let a, b, c be curves or corresponding edges. Then we write cr(a, b) for the

number of crossings between a, b and set cr(a, b, c) = cr(a, b) + cr(a, c) + cr(b, c).
The following lemma is the radial equivalent to Lemma 2 and constitutes our
main tool for showing that edges in our drawing cross evenly.

Lemma 6 (�). Let C1 and C2 be distinct concenctric circles and let a, b, c
be radially monotone curves from C1 to C2 with pairwise distinct start- and
endpoints that only intersect at discrete points. Then the start- and endpoints of
a, b, c have the same order on C1 and C2 if and only if cr(a, b, c) ≡ 0 mod 2.

Lemma 7. The drawing Γ � is a Hanani-Tutte drawing of G�.

Proof. We show that each pair of independent edges of G� crosses evenly in Γ �.
Of course it suffices to consider critical pairs of edges, since our drawing is radial
by construction, and therefore non-critical independent edge pairs cannot cross.

Every edge (α+
i , α−

i+1) is subdivided into edges of the form (β+
j , β−

j+1) and
therefore it is not crossed.

Let e, f be two independent edges in E(G�) \ (A+ × A−) that are critical.
Let a and b be the innermost and outermost level shared by e and f .

We seek to use Lemma 6 to analyze the parity of the crossings between e
and f . To this end, we construct a curve γ along the edges of the form (β+

j , β−
j+1)

as follows. For every level j we add a curve cj between β−
j and β+

j on the circle
representing the level j (a point for β−

j = β+
j ; chosen arbitrarily otherwise). The

curve γ is the union of these curves cj and the curves for the edges of the form
(β+

j , β−
j+1). Note that γ spans from the innermost level 1 to the outermost level

(2nk + 1)k with endpoints bot(α+
1 ) and top(α−

k ).
For any edge g ∈ G�, we denote its curve in Γ � by c(g). For any radial

monotone curve c we denote its subcurve between level i and level j by cj
i

(using only one point on circle i and circle j each). We consider the three curves
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g′ = γb
a, e′ = c(e)b

a, f ′ = c(f)b
a. We now distinguish cases based on whether one

of the edges e, f starts at the bottom end or ends at the top end of the reference
edges on level a or b.

Case 1: We have ea, fa �= β+
a and eb, fb �= β−

b . Note that cr(e, f, γ) = cr(e, f) +
cr(e, γ)+ cr(f, γ), and therefore cr(e, f) ≡ cr(e, f, γ)+ cr(e, γ)+ cr(f, γ) mod 2.

By Lemma 6 we have that the orders of ea, fa, β+
a and eb, fb, β

−
b differ if

and only if cr(e, f, γ) ≡ 1 mod 2. That is cr(e, f, γ) ≡ 0 mod 2 if and only
if ϕ+(β+

a , ea, fa) = ϕ+(β−
b , eb, fb). We show that ϕ+(β+

a , ea, fa) = ϕ+(β−
b , eb, fb)

if and only if cr(e, γ) + cr(f, γ) ≡ 0 mod 2. In either case, cr(e, f) is even.
Let a ≤ j ≤ b−1. By construction we have for β−

j �= β+
j and any other vertex

v on level j, that β−
j , v, β+

j are placed clockwise if and only if ϕ+(β−
j , v, β+

j ) is
true. Further, since ϕ+ satisfies C(β+

j , β−
j ), we have for any other vertex u on

level j that β−
j , u, v and β+

j , u, v have the same order if and only if β−
j , v, β+

j and
β−

j , u, β+
j have the same order, i.e., if and only if u and v lie on the same side of

β−
j and β+

j . This however, is equivalent to cr(e, cj) + cr(f, cj) ≡ 0 mod 2.
Since ϕ+ satisfies P(δj) where δj = (β+

j , β−
j+1), we have that ϕ+(β+

j , ej , fj) =
ϕ+(β−

j+1, ej+1, fj+1). We obtain, that ϕ+(β+
j , ej , fj) = ϕ+(β−

j+1, ej+1, fj+1)
unless ϕ+(β−

j+1, ej+1fj+1) �= ϕ+(β+
j+1ej+1fj+1) (which requires β−

j+1 �= β+
j+1).

This is equivalent to cr(e, cj+1) + cr(f, cj+1) ≡ 1 mod 2. Hence, we have
ϕ+(β+

a eafa) = ϕ+(β+
b ebfb) if and only if

∑b−1
j=a cr(cj , e) + cr(cj , f) ≡ 0 mod 2

(Note that β−
b = β+

b .). Since edges of the form (β+
j , β−

j+1) are not crossed, this
is equivalent to cr(γ, e) + cr(γ, f) ≡ 0 mod 2. Which we aimed to show. By the
above argument we therefore find that cr(e, f) is even.

Case 2. We do not have ea, fa �= β+
a and eb, fb �= β−

b . For example, assume
ea = β+

a ; the other cases work analogously. We then have β+
a = top(α+

i ). This
means e originates from an edge in G. Since such edges do not cross middle
levels, g′ is a subcurve of an original edge εi. Especially, we have only three
vertices per level between a and b that correspond to γ, e, f .

Let H ⊆ G+ be the subgraph induced by the vertices of (εi)b
a, eb

a, f b
a. Then ϕ+

satisfies all the constraints of S(H,V ((εi)b
a), V ((εi)b

a)). However, each level of
H contains only three vertices, and therefore the transitivity constraints are
trivially satisfied, i.e., ϕ+ satisfies all the constraints of S ′(H,V ((εi)b

a), V ((εi)b
a)).

Thus, by Theorem 2, a drawing ΓH of H according to ϕ+ is planar. I.e., we have
crΓH

((εi)b
a, eb

a, f b
a) = 0. Let Ca, Cb be ε-close circles to levels a and b, respectively,

that lie between levels a and b. With Lemma 6 we obtain that εi, e, f intersect
Ca and Cb in the same order.

Note that Γ+ is drawn according to ϕ+ in level a and in level b. We obtain
that the curves for εi, e, f intersect Ca in the same order in Γ+ and in ΓH . The
same holds for Cb. Hence, the curves intersect Ca and Cb in the same order in
Γ+. With Lemma 6 we have crΓ+((εi)b

a, eb
a, f b

a) ≡ 0 mod 2. Since γ is a subcurve
of εi and thus not crossed in Γ+, this yields crΓ+(eb

a, f b
a) ≡ 0 mod 2. Thus any

two independent edges have an even number of crossings. ��
As in the level planar case the converse also holds.
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Lemma 8 (�). Let G� be a level graph with reference sets A+, A− for G+. If
G� admits a Hanani-Tutte drawing, then there exists a satisfying assignment ϕ
of S(G+, A+, A−).

Theorem 3. Let G be a proper level graph with reference sets A+, A−. Then
S(G,A+, A−) is satisfiable ⇔ G� has a Hanani-Tutte radial level drawing

⇔ G is radial level planar.

5 Conclusion

We have established an equivalence of two results on level planarity that have so
far been considered as independent. The novel connection has further led us to a
new testing algorithm for radial level planarity. Can similar results be achieved
for level planarity on a rolling cylinder or on a torus [16]?
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7. Jünger, M., Leipert, S.: Level planar embedding in linear time. In: Kratochv́ıyl, J.
(ed.) GD 1999. LNCS, vol. 1731, pp. 72–81. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-46648-7 7

8. Harrigan, M., Healy, P.: Practical level planarity testing and layout with embedding
constraints. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol.
4875, pp. 62–68. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
77537-9 9

9. Brückner, G., Rutter, I.: Partial and constrained level planarity. In: Klein, P.N.
(ed.) Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA 2017), pp. 2000–2011. SIAM (2017)

10. Klemz, B., Rote, G.: Ordered level planarity, geodesic planarity and bi-
monotonicity. In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS, vol. 10692, pp.
440–453. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73915-1 34

https://doi.org/10.1007/978-3-319-27261-0_9
https://doi.org/10.1007/978-3-319-50106-2_36
https://doi.org/10.1007/978-1-4614-0110-0_14
https://doi.org/10.1007/978-1-4614-0110-0_14
https://doi.org/10.1007/3-540-46648-7_7
https://doi.org/10.1007/3-540-46648-7_7
https://doi.org/10.1007/978-3-540-77537-9_9
https://doi.org/10.1007/978-3-540-77537-9_9
https://doi.org/10.1007/978-3-319-73915-1_34


52 G. Brückner et al.
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Abstract. A graph G = (V, E) is a support of a hypergraph H = (V, S)
if every hyperedge induces a connected subgraph in G. Supports are used
for certain types of hypergraph visualizations. In this paper we consider
visualizing spatial hypergraphs, where each vertex has a fixed location in
the plane. This is the case, e.g., when modeling set systems of geospatial
locations as hypergraphs. By applying established aesthetic quality cri-
teria we are interested in finding supports that yield plane straight-line
drawings with minimum total edge length on the input point set V . We
first show, from a theoretical point of view, that the problem is NP-hard
already under rather mild conditions as well as a negative approxima-
bility results. Therefore, the main focus of the paper lies on practical
heuristic algorithms as well as an exact, ILP-based approach for comput-
ing short plane supports. We report results from computational exper-
iments that investigate the effect of requiring planarity and acyclicity
on the resulting support length. Further, we evaluate the performance
and trade-offs between solution quality and speed of several heuristics
relative to each other and compared to optimal solutions.

1 Introduction

A hypergraph H = (V, S) is a generalization of a graph, in which each hyperedge
in S is a nonempty subset of the vertex set V , that is, S ⊆ P(V ) \ {∅}. Fur-
thermore, we assume here that every element v ∈ V is in at least one hyperedge
s ∈ S. Hypergraphs arise in many domains to model set systems representing
clusters, groups or other aggregations. To allow for effective exploration and
analysis of such data, visualization is often used. Indeed, drawing hypergraphs
relates to set visualization, an active subfield of information visualization (see
the recent survey of Alsallakh et al. [3]). Various methods have been developed to
visualize set systems for elements fixed in (geo)spatial positions, such as Bubble
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(a) (b) (c)

Fig. 1. (a) A set system with colors indicating set membership. (b) The shortest plane
support of the corresponding hypergraph. (c) A Kelp-style rendering of the set system.
(Color figure online)

Sets [9], LineSets [2], Kelp Diagrams [10] and Kelp Fusion [18]. These methods
make different trade-offs between, e.g., Gestalt theory and Tufte’s principle of
ink minimization [20] to visually convey the set structures; user studies have
been performed to analyze the effectiveness of such trade-offs [18].

An important concept to model the drawing of hypergraphs is that of a
hypergraph support [14]: a support of a hypergraph H = (V, S) is a graph G =
(V,E) such that every hyperedge s ∈ S induces a connected subgraph in G.
In other words, for every hyperedge s, the restriction of G to only edges that
connect vertices in s, denoted G[s], is connected and spans all vertices in s.
Hypergraph supports correspond to a prominent visualization style for geospatial
sets, namely that of connecting all elements of a set using colored links, such as
seen in Kelp-style diagrams [10,18] (see also Fig. 1) or LineSets [2].

Thus, finding an embedded support that satisfies certain criteria readily
translates into a good rendering of the spatial set system. A “good” support
should avoid edge crossings, a standard quality criterion in the graph-drawing
literature [19]. Moreover, as per Tufte’s principle of ink minimization [20], it
should have small total edge length. Of course, one may argue that edges of
the support that are used by multiple hyperedges do not significantly reduce the
“ink” and thus multiplicity should be considered. However, we observe that such
edges show co-occurrences of elements and thus have a potential added value in
the drawing—user studies that establish the validity of this reasoning are beyond
the scope of this paper. The shortest support need not be a tree, but to further
build on this idea of co-occurrences, one may want to restrict the support to be
acyclic—a support tree.

In many applications, the vertices have some associated (geo)spatial location,
thereby prescribing their positions in the drawing of the support. We focus on
this case where vertices have fixed positions in the plane and study supports that
are embedded using straight-line edges. Figure 2 shows an example on real-world
data of restaurants, similar to those used in [18].

Contributions. The contributions of this paper are two-fold: on the one hand
we fill some gaps in theoretical knowledge about computing plane supports and
support trees; on the other hand, we perform computational experiments to
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Fig. 2. A set system of restaurants in downtown Toronto: input memberships and
locations (left) and a Kelp-style rendering of the shortest plane support (right).

gain more insight into the trade-offs on the complexity of the visual artifact for
(implicit) support-based set visualization methods. Our focus is on the latter.

In Sect. 2 we explore computational aspects of the problem and introduce our
algorithms. We observe that plane support trees always exist if at least one vertex
is contained in all hyperedges, but show that length minimization is NP-hard.
Moreover, the natural approach to extend a minimum spanning tree does not
even yield a constant-factor approximation. Finally, we present two heuristics,
one based on local search, the other on iteratively computing minimum spanning
trees, as well as an exact integer linear program (ILP).

In Sect. 3 we describe the results of two computational experiments. The
first experiment compares the performance of the two heuristic algorithms in
terms of quality and speed. Whereas the local search achieves better quality, the
approximation algorithm is faster. The second experiment compares how well
these algorithms perform compared to the optimum, computed via the ILP, and
investigates the cost in terms of edge length incurred by requiring planarity or
acyclicity. The effect of planarity and acyclicity seems to be predictably influ-
enced by the number of hyperedges and the number of incident hyperedges per
vertex, but not by the number of vertices. Moreover, the experiment shows that
local search often achieves an optimal result.

Related Work. Regarding supports for elements with fixed locations, some
results are already known. The results of Bereg et al. [5] imply that existence of
a plane support tree for two disjoint hyperedges can be tested in polynomial time;
this implies the same result for a plane support. This problem has also been stud-
ied in a setting with additional Steiner points [4,11]. Van Goethem et al. [12]
enforce a stricter planarity than that of planar supports and investigate the
resulting properties for elements on a regular grid, where only neighboring ele-
ments can be connected. However, solution length is of no concern in their results.

Without the planarity requirement, existence and length minimization of a
(nonplane) support tree for fixed elements can be solved in polynomial time
[15,16]. Hurtado et al. [13] show that length minimization of a support for two
hyperedges is solvable in polynomial time. However, for three or more hyperedges



56 T. Castermans et al.

this problem is NP-hard [1]. We show that this is in fact hard for two hyperedges
if we do require planarity.

Planar supports without fixed elements have also received attention. Johnson
and Pollak [14] originally showed that deciding whether a planar support exists
is NP-hard; various restrictions have since been proven to be NP-hard (e.g., [7]).
Contrasting these reductions, our hardness result (Theorem 1) requires only two
hyperedges, but uses length minimization. Buchin et al. [7] show that testing for
a planar support tree with bounded maximum degree is solvable in polynomial
time; testing for a planar support tree such that the induced subgraph of each
hyperedge is Hamiltonian can also be done in polynomial time [6].

Various set-visualization methods [2,10,18] implicitly also compute supports,
considering various criteria such as length, detour, shape, crossings, and bends.

2 Computing Short Plane Supports

We first describe our theoretical results. Omitted proofs are in the full version [8].

Existence. The observation below gives a sufficient condition for the existence
of a plane support tree. Bereg et al. [5] provide a necessary condition for |S| = 2,
though the problem remains open for |S| > 2.

Observation 1. Consider a hypergraph H = (V, S) with no three vertices in V
on a line, such that VA =

⋂
s∈S s �= ∅. Then H has a plane support tree.

Proof. We use the Euclidean minimum spanning tree on VA and connect each
vertex in V \ VA to the closest one in VA. This readily yields a support tree; it
is plane as no crossings are created when connecting to the closest point in VA

and no overlaps are created in the absence of collinear points. ��
Without a vertex in VA, one can immediately construct instances that enforce

a crossing in any support, e.g., an X-configuration of two disjoint hyperedges.

Approximation. In a support tree the subgraph induced by VA must be a
connected subtree to satisfy the support property for all hyperedges. Next we
consider using the above idea to start with an Euclidean minimum spanning
tree (EMST) of VA and extend it to a support tree. Though this leads to an
approximation algorithm for two hyperedges [13] if we allow intersections, we
show below that the planarity requirement can cause the resulting support length
to exceed any constant factor of the length of the shortest plane support tree.

Lemma 1. There is a family of n-vertex hypergraphs H = (V, {r, b}) with VA =
r ∩ b �= ∅ such that any plane support of H that includes an EMST of VA is a
factor Θ(|V |) longer than the shortest plane support tree.

Proof (sketch). The family is drawn in Fig. 3. The convex chains force the sup-
port with length Θ(n) · � when the EMST on VA is used. Using a different tree
on VA can give a total of length Θ(1) · �. ��
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Fig. 3. An n-point instance with approximation ratio Θ(n) if using an EMST on VA. All
edges are straight-line segments; curvature emphasizes the effect of the convex chain.

Removing vertex w from construction in Fig. 3, we can similarly show that a
plane support tree, which now necessarily includes the edge uv, is a factor Θ(n)
longer than a shortest nonplane support tree.

Corollary 1. There is a family of n-vertex hypergraphs H = (V, {r, b}) with
VA = r ∩ b �= ∅ such that any plane support tree of H is a factor Θ(n) longer
than the shortest nonplane support tree.

Computational Complexity. Unfortunately, finding the shortest plane sup-
port and several restricted variants are NP-hard, as captured in the theo-
rem below. It uses a fairly straightforward reduction from planar monotone
3-SAT [17].

Theorem 1. Let H = (V, {r, b}) be a hypergraph with vertices V having fixed
locations in R

2 and with r ⊆ b or r ∩ b = ∅. It is NP-hard to decide whether H
admits a plane support tree with length at most L for some L > 0.

2.1 Iterative Minimum Spanning Trees

Here we focus on computing short supports without requiring planarity. As
described by Hurtado et al. [13], EMSTs can be used to find an approxima-
tion of the shortest support. In particular, let H = (V, S) be a hypergraph with
n vertices and k hyperedges; by computing an EMST for each hyperedge and
taking their union, we get a support that is a k-approximation1 of the shortest
support. This algorithm runs in O(kn log n) time.

Suppose that we compute the EMSTs T1, . . . , Tk in that order, for the k
hyperedges in S. The final support is the union of these trees: its length is not
increased by using an edge in Ti that is already present in some Tj (j < i). Hence,
we can consider any pair of vertices that is adjacent in T1 ∪ . . . ∪ Ti−1 to have
distance zero, when computing Ti. This heuristically reduces the length of the
resulting support (though the approximation ratio remains the same). However,
the order in which hyperedges are considered now matters for the result. To
alleviate this issue, we iteratively recompute the minimum spanning trees.

1 One can actually do slightly better, by computing spanning trees on the intersection
of two hyperedges, yielding roughly a (0.8k)-approximation [13].
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Algorithm. We define a computation sequence σ of a hypergraph H = (V, S) as
a sequence of hyperedges that contains each hyperedge in S at least once. Each
item s in the sequence σ represents the computation of the (not-quite Euclidean)
MST on the vertices of s, such that distances between pairs of vertices that are
part of the current support have weight 0 and weight equal to their Euclidean
distance otherwise. We use Ts to denote the current MST for hyperedge s ∈ S;
the support G is always the union over all Ts. As we compute a spanning tree
for each hyperedge, G is a support for H when the algorithm terminates.

Efficiency. Implementing G with adjacency lists, we use O(nk) storage as each
of the k trees has O(n) edges. To compute Ts, we use Lemma 2 below to conclude
that there are O(nk) candidate edges, ensuring that Prim’s MST algorithm
runs in O(nk + n log n) time. To see that we can determine the weight without
overhead, consider all vertices to be indexed with numbers from 1 to n. When
adding a vertex u to the current tree in Prim’s algorithm, we first process the
neighbors of u in G (having a weight 0) and mark that these have been processed
in an array using the above mentioned vertex index. Only then do we process
all other vertices (having weight equal to the Euclidean distance) that are not
marked and are not in the current tree. The total algorithm thus takes O(|σ|(nk+
n log n)) time and Θ(nk) space.

Lemma 2. Let P be a point set and F ⊆ P × P . Consider the MST T on P ,
based on edge weights 0 for edges in F and the Euclidean distance otherwise.
Then T is a subset of F and the Euclidean MST on P .

Properties (k = 2). The main question that arises is how long a computation
sequence σ must be such that the result stabilizes, that is, any sequence that
extends σ gives a support that has the same total length. We use Gσ to denote the
support resulting from computation sequence σ. Below, we sketch an argument
that for k = 2, we need to only recompute one hyperedge: sequence σ = 〈r, b, r〉
or σ = 〈b, r, b〉 is sufficient to obtain a stable result. We can compute both
sequences and use the result with smallest total edge length.

Lemma 3. Let H = (V, {r, b}) be a hypergraph. All computation sequences σ′

with |σ′| ≥ 4 have a shorter computation sequence σ with |σ| = 3 with Gσ = Gσ′ .

Proof (sketch). We show that the third computation does not add a new edge
with both vertices in r ∩ b. Hence, the second and fourth computation receive
the same input and thus yield the same result. ��

2.2 Local Search

The algorithm described in Sect. 2.1 appears to perform well in practice, as
shown in Sect. 3. However, one may wonder whether other commonly employed
heuristic approaches outperform it in the experiments. We therefore implement
a local-search algorithm, specifically, a hill-climbing heuristic.
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Algorithm. This approach assumes that in the given hypergraph H = (V, S),
at least one vertex v ∈ V occurs in all hyperedges s ∈ S such that Observation 1
applies; let VA =

⋂
s∈S s �= ∅. We need to initialize our hill climbing approach

with a valid (plane), easy to find albeit possibly suboptimal solution. Following
Observation 1, we obtain this by first calculating an EMST of all vertices in VA,
and subsequently connecting all vertices v �∈ VA to the nearest v′ ∈ VA.

Afterwards, we iteratively execute rounds until no further improvement is
gained. Each round consists of checking for each edge in the support if it can
be removed, and if the hyperedges using it can be reconnected by (one or more)
other edges that have a shorter total length than the removed edge without
causing intersections. This check is nontrivial and done in a brute-force manner,
improved by caching and pruning. At the end of each round, the edge replacement
that reduces the total edge length most is actually executed. More rounds are
evaluated until no single edge replacement reduces the total edge length.

As the initial state is a plane support tree, we can also readily enforce acyclic-
ity, or relax the constraints to allow intersections.

2.3 Integer Linear Program

Theorem 1 implies that several variants of computing the shortest plane support
are NP-hard. Here we briefly sketch how to obtain an integer linear programs
(ILP) for a hypergraph H = (V, S), allowing us to leverage effective ILP solvers.

We introduce variables eu,v ∈ {0, 1}, indicating whether edge uv is selected
for the support. This allows us to represent a graph with fixed vertices. Because
the vertex locations are fixed, we can precompute edge lengths du,v as well as
which pairs of edges intersect. This gives the following basic program

minimize
∑

u,v∈V du,v · eu,v

subject to eu,v + ew,x ≤ 1 for all u, v, w, x ∈ V if edges uv and wx intersect.

What remains is to ensure that the graph is also a support: we need additional
constraints that imply that each hyperedge in S induces a connected subgraph.
To this end, we construct a flow tree for each hyperedge s. We pick an arbitrary
sink for the hyperedge, σs ∈ s, that may receive flow, and let the remaining
vertices in s generate one unit of flow. To formalize this, we introduce variables
fs,u,v ∈ {0, 1, . . . , |s| − 1} for each s ∈ S and u, v ∈ s with u �= v. We now need
the following constraints: (a) the incoming flow at σs is exactly |s| − 1; (b) the
outgoing flow at σs is zero; (c) except for σs, each vertex in s sends out one unit
of flow more than it receives; (d) flow can be sent only over selected edges.

(a)
∑

u∈s\{σs} fs,u,σs
= |s| − 1 for all s ∈ S

(b) fs,σs,v = 0 for all s ∈ S, v ∈ s \ {σs}
(c)

∑
v∈s\{u}(fs,u,v − fs,v,u) = 1 for all s ∈ S, u ∈ s \ {σs}

(d) fs,u,v ≤ eu,v · (|s| − 1) for all s ∈ S, u, v ∈ s with u �= v
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Variants. The ILP results in the shortest plane support for H. It can easily
be modified to give a shortest (plane or unconstrained) support tree as well
as to penalize or admit a limited number of intersections. The latter requires
additional variables to indicate whether both edges of a crossing pair are used.

3 Experiments

As discussed above, there are various ways of defining and computing good sup-
ports. In this section we discuss several computational experiments that were
performed to gain insight into the trade-offs between the different methods and
properties. In particular, we use two different setups. First, we exclude optimal
but slow algorithms to extensively compare the heuristic algorithms. Second,
we include optimal algorithms to answer questions about the effect of requir-
ing planarity or support trees, and to investigate how well heuristic algorithms
approximate the optimal solution, albeit on smaller data sets.

Algorithms. We shall study four algorithms under various conditions in these
experiments. In particular, we use MSTApproximation to refer to the sim-
ple approximation algorithm of computing a minimum spanning tree for each
hyperedge and then taking their union [13]. We refer to our heuristic improve-
ment as MSTIteration (Sect. 2.1). Finally, we use LocalSearch to indicate
our local search algorithm (Sect. 2.2) and Opt to denote an exact algorithm for
computing optimal solutions. The latter two allow four different conditions, by
requiring a plane support, a support tree, both (i.e., a plane support tree) or
neither (unrestricted). We append P, T, PT and U to denote these conditions.

Data Generation. We generate a random hypergraph H = (V, S) via the
procedure described in the full version [8]. Our method ensures that at least
one vertex is an element of all hyperedges (necessary for LocalSearch, see
Sect. 2.2), and that each hyperedge has at least two vertices. The procedure
generates a hypergraph with n vertices, s hyperedges and a degree distribution
d according to one of the following scheme:
even All degrees occur equally frequently.
mid Degrees are drawn from a normal distribution with a peak on k/2.
low Degrees are drawn from a normal distribution with a peak on 1.
high Degrees are drawn from a normal distribution with a peak on k.

3.1 Experiment 1: Comparison of Heuristics

Here we focus on answering the following three questions: (1) how much does
the spanning tree iteration help to reduce the length of the support, compared
to computing the minimum spanning trees in isolation; (2) which heuristic algo-
rithm performs best in terms of support length; (3) which heuristic algorithm
performs best in terms of computation time?
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Setup. For each combination of n = 20, 40, 60, 80, 100, k = 2, 3, 4, 5, 6, 7
and d = even, mid, low, high, we generate 1000 random hypergraphs with n
vertices and k hyperedges according to degree distribution scheme d. For each
hypergraph, we perform six algorithms: MSTApproximation and MSTIter-

ation as well as LocalSearch U/T/P/PT. This experiment was run on one
machine, sequentially in a single thread to also allow for comparison of runtime
performance. The machine was an HP ZBook with an Intel Core i7-6700HQ
CPU, 24 GB RAM and running Windows 8.1.

Results. We first consider question (1) and compare MSTApproximation

and MSTIteration. Since MSTIteration can only improve upon MSTAp-

proximation, we express this as a ratio between 0 and 1. In Fig. 4 we show the
results for n = 20, 60, 100 (Fig. 10 in the full version [8] provides the chart for all
cases). Interestingly, the median gain remains roughly equal as we increase the
number of vertices, though the variance becomes lower. Increasing the number
of hyperedges gradually increases the relative gain of MSTIteration. We also
observe a dependency on the degree distribution. In particular, mid and even

systematically benefit more from iteration than low and high. We explain this
by observing that in the extreme cases MSTApproximation is optimal: if all
vertices have degree 1, then the optimal support is simply the union of all (dis-
joint) minimum spanning trees; if all vertices have degree k, then the optimal
support is also simply the minimum spanning tree on the vertices. Difficulties
arise when having many vertices that are part of multiple but not all hyperedges.
This corresponds to the mid and even schemes.

Let us now turn towards question (2), and consider the resulting support
length of the LocalSearch algorithm as well. We omit MSTApproximation

from these comparisons, since MSTIteration always performs at least as well.
In Fig. 5 we show the results for n = 40 and 100 (Fig. 11 in the full version [8] pro-
vides the chart for all cases). As one may expect, the length increases gradually
with more hyperedges, as the support must use more edges to ensure that each
hyperedge induces a connected subgraph. Moreover, we see that LocalSearch
U consistently outperforms MSTIteration. To be exact, this is the case in

Fig. 4. Ratio of the support length computed by MSTIteration as a fraction of
MSTApproximation. Lower values indicate a higher gain of the iteration method.
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Fig. 5. Support length computed by the algorithms for varying values of n, k and d.

98.5% of all trials; the average ratio of LocalSearch U to MSTIteration

(including those trials in which MSTIteration performs better) is 0.877, that
is, the support length is over 12% shorter on average. The effect of degree dis-
tribution also stands out. In low and mid, requiring planarity or a support tree
has a large effect on the support length, whereas this is not the case in even

and high. To explain this, observe that the minimum spanning tree on vertices
that are in many or all hyperedges is planar and likely a part of the computed
solution; in the even and high cases, there are comparatively many such ver-
tices which can then serve as places to connect the other vertices in the support.
In the low and mid cases, there are only few such vertices and thus the shortest
connections that can be used to connect these to such a “backbone” structure
are likely to intersect other connections. Though the number of vertices has lit-
tle effect on MSTIteration and LocalSearch U, this does exacerbate the
above problem: more vertices leads to a larger increase in support length when
we enforce planarity or a support tree.

Finally, we briefly consider question (3) and compare the computation times
of the various algorithms (see Fig. 6, or Fig. 12 in the full version [8]). We see
that the number of hyperedges impacts the computation only slightly, whereas
the number of vertices has a much stronger effect. MSTIteration clearly out-
performs the LocalSearch variants, running on average 95.11% faster than
LocalSearch U over all trials (98.73% faster on trials with n = 100). Another
clear pattern is that requiring planarity with LocalSearch increases the run-
ning time significantly (272.64% slower over all trials, 354.06% on trials with
n = 100); the number of steps to arrive at a local minimum is not sufficiently
reduced to compensate for the time spent on checking intersections.

3.2 Experiment 2: Comparison of Optimality

Here we focus on answering two questions: (1) how is the support length affected
by additionally requiring that the support is a tree and/or is planar; (2) how
well do the heuristic algorithms approximate the optimal solution?
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Fig. 6. Computation time of the various algorithms for varying values of n and k.

Setup. For each combination of n = 10, 15, 20, k = 2, 3 and d = low, mid, we
generate 1000 random hypergraphs with n vertices, k hyperedges according to
degree distribution scheme d. For each hypergraph, we run the LocalSearch

U/T/P/PT and compute an optimal solution Opt U/T/P/PT
2. To obtain a

large enough number of trials, these experiments were run on different machines
simultaneously and in concurrent threads. As such, we refrain from analyzing
algorithm speed in this experiment.

Failed Trials. In about 3.4% of the CPLEX runs for n = 20, the compu-
tation would run out of memory and therefore not finish successfully. We ran
additional trials to compensate, eventually obtaining 1000 successful trials. This
likely biases the results for n = 20 towards including only the “easier” situ-
ations. The full version [8] provides more details including statistics on which
cases failed and indicators of the “difficulty” of these cases.

Results. Let us first compare the optimal solutions according to the four dif-
ferent restrictions. In Fig. 7 we show the results. For two hyperedges, we see

Fig. 7. Support length achieved by Opt in the four conditions U/T/P/PT.

2 For n = 10, 15, this is a simple branch and bound algorithm; for n = 20 we use the
ILP solution, solved with IBM ILOG CPLEX 12.6.3.
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Fig. 8. Percentage of runs of LocalSearch that achieve the optimal solution. Note
that LocalSearch T always achieves optimal results.

that there is little to no effect of requiring support trees, but a small worst-case
effect for requiring plane supports for the low case—the median increases only
slightly. For three hyperedges, we see that the effects become slightly larger.
Most noticeable is that enforcing support trees has now a slight effect, even for
only a few vertices. In terms of plane supports, we see a similar pattern as before,
that is, that of an increase particularly in the low case, but also some in the
mid case. Note that the effects for n = 20 are potentially underestimated.

Let us now turn towards how well LocalSearch performs with respect to
the optimal solution. Our results indicate that in a majority of the cases, our
heuristic actually achieves optimal results (see Fig. 8). For n = 10, 15 we see
a clear decrease of this percentage for plane supports and trees; we attribute
the apparent increase at n = 20 to the failed trials. To further see how well
LocalSearch performs if it fails to achieve optimal results, we look at the ratio
between the support length it achieves and the optimal support length. In all
cases, we observe a ratio of less than 1.61. The 90-, 95-, and 99-percentile of this
ratio was worst for LocalSearch PT, being 1.05, 1.09, and 1.19, respectively.
Again, we have to keep in mind that the data for n = 20 likely exclude some more
difficult cases and thus the trend in the increasing ratio might extend further for
a larger number of vertices.

4 Conclusion

Motivated by the NP-hardness of computing shortest plane supports, we intro-
duced and evaluated two heuristic algorithms for the problem. Our experiments
showed that the heuristic LocalSearch often achieves the optimal solution, and
otherwise computes a support that is less than 20% longer than the optimal solu-
tion in 99% of the cases. Moreover, our experiments showed that LocalSearch
performs better than MSTIteration, which in turn is a k-approximation for
k hyperedges. We can also guarantee that LocalSearch (without restric-
tions) is a k-approximation by initializing it using either MSTApproximation

or MSTIteration, though it is not clear whether this change will generally
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improve the result of LocalSearch. There is a trade-off between speed and sup-
port length, where MSTIteration is better for the former and LocalSearch

for the latter. We also observed that the increase in support length caused by
additional requirements, depends both on the number of sets and the number
of set memberships per element, but this behavior seems predictable and not to
depend on the number of elements.

Future Work. From the theoretical side, several questions remain open. For
example, can we efficiently decide whether a plane support tree exists? We cur-
rently know how to answer this only for two hyperedges (using Observation 1
and [5]). Furthermore, how many iterations do we need for MSTIteration

with more than two hyperedges, to guarantee that the computation stabilizes?
Our experiments indicate that our local search algorithm does not always per-

form optimally, especially when requiring plane supports. It is, however, based on
simple hill climbing. Can we employ better search techniques such as simulated
annealing to efficiently find better solutions?

Finally, we chose to generate random hypergraphs for our experiments, as
to not depend on particular properties of (geospatial) configurations that may
be inherent to some real-world data sets. While this reduces the explanatory
power with respect to real-world data sets, it provides us with more insight into
the structural problem, unbiased by unknown or hidden structures of real-world
data. We leave it to future work to further dive into real-world data sets, to see
if similar trends and patterns emerge or more difficult structures arise and to
evaluate the impact of the different heuristics on readability.
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Abstract. Motivated by hybrid graph representations, we introduce
and study the following beyond-planarity problem, which we call h-
Clique2Path Planarity: Given a graph G, whose vertices are par-
titioned into subsets of size at most h, each inducing a clique, remove
edges from each clique so that the subgraph induced by each subset is
a path, in such a way that the resulting subgraph of G is planar. We
study this problem when G is a simple topological graph, and establish
its complexity in relation to k-planarity. We prove that h-Clique2Path

Planarity is NP-complete even when h = 4 and G is a simple 3-plane
graph, while it can be solved in linear time, for any h, when G is 1-plane.

1 Hybrid Representations

A common problem in the visual analysis of real-world networks is that dense
subnetworks create occlusions and hairball-like structures in node-link diagrams
generated by standard layout algorithms, e.g., force-directed methods. On the
other hand, different representations, such as adjacency matrices, are well suited
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for dense graphs but make neighbor identification and path-tracing more diffi-
cult [7,12]. Hybrid graph representations combine different representation meta-
phors in order to exploit their strengths and overcome their drawbacks.

The first example of hybrid representation was the NodeTrix model [8],
which combines node-link diagrams with adjacency-matrix representations of
the denser subgraphs [4,5,8,14]. Another example of hybrid representations
are intersection-link representations [1]. In this model vertices are geometric
objects and edges are either intersections between objects (intersection edges),
or crossing-free Jordan arcs attaching at their boundary (link edges). Different
types of objects determine different intersection-link representations.

In [1], clique-planar drawings are defined as intersection-link representations
in which the objects are isothetic rectangles, and the partition into intersection-
and link-edges is given in the input, so that the graph induced by the intersection-
edges is composed of a set of vertex-disjoint cliques. The corresponding recogni-
tion problem is called Clique-planarity, and it has been proved NP-complete
in general and polynomial-time solvable in restricted cases.

We study Clique-planarity when all cliques have bounded size. As proved
in [1], the Clique-planarity problem can be reformulated in the terminology
of beyond-planarity [6,10], as follows. Given a graph G = (V,E) and a partition
of its vertex set V into subsets V1, . . . , Vm such that the subgraph of G induced by
each subset Vi is a clique, the goal is to compute a planar subgraph G′ = (V,E′)
of G by replacing the clique induced by Vi, for each i = 1, . . . ,m, with a path
spanning the vertices of Vi. We call h-Clique2Path Planarity (for short,
h-C2PP) the version of this problem in which each clique has size at most h.

We remark that the version of h-C2PP in which the input graph G is a
geometric graph, i.e., it is drawn in the plane with straight-line edges, has been
recently studied by Kindermann et al. [9] in a different context. The input of
their problem is a set of colored points in the plane, and the goal is to decide
whether there exist straight-line spanning trees, one for each same-colored point
subset, that do not cross each other. Since edges are straight-line, their drawings
are determined by the positions of the points, and hence each same-colored point
subset can in fact be seen as a straight-line drawing of a clique, from which edges
have to be removed so that each clique becomes a tree and the drawing becomes
planar. They proved NP-completeness for the case in which the spanning tree
must be a path, even when there are at most 4 vertices with the same color.
This implies that 4-C2PP for geometric graphs in NP-complete. On the other
hand, they provided a linear-time algorithm when there exist at most 3 vertices
with the same color, which then extends to 3-C2PP for geometric graphs.

In this paper, we study the version of h-C2PP in which the input graph G is
a simple topological graph, that is, it is embedded in the plane so that each edge
is a Jordan arc connecting its end-vertices; by simple we mean that a Jordan arc
does not pass through any vertex, and does not intersect any arc more than once
(either with a proper crossing or sharing a common end-vertex); finally, no three
arcs pass through the same point. Our main goal is to study the complexity of
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this problem in relation to the well-studied class of k-planar graphs, i.e., those
that admit drawings in which each edge has at most k crossings [1,3,6,13].

We observe that the NP-completeness of 4-C2PP for geometric graphs
already implies the NP-completeness of 4-C2PP for simple topological graphs;
also, though not explicitly mentioned in [9], it is possible to show that the
instances produced by that reduction are 4-plane (see [2]). We strengthen this
result by proving in Sect. 2 that 4-C2PP is NP-complete even for simple topo-
logical 3-plane graphs. On the positive side, we prove in Sect. 3 that the h-C2PP

problem for simple topological 1-plane graphs can be solved in linear time for
any value of h. We finally remark that the 2-SAT formulation used in [9] to solve
3-C2PP for geometric graphs can be easily extended to solve 3-C2PP for any
simple topological graph.

For space reasons, some proofs have been omitted or sketched, and can be
found in [2]; the corresponding statements are marked with [*].

2 NP-Completeness for Simple Topological 3-Plane
Graphs

In this section we prove that the k-C2PP problem remains NP-complete for
k = 4 even when the input is a simple topological 3-plane graph.

Since the planarity of a simple topological graph can be checked in linear
time, the h-C2PP problem for simple topological k-plane graphs belongs to NP
for all values of h and k. In the following, we prove the NP-hardness by means
of a reduction from the Planar Positive 1-in-3-SAT problem. In this version
of the Satisfiability problem, which is known to be NP-complete [11], each
variable appears only with its positive literal, each clause has at most three
variables, the graph obtained by connecting each variable with all the clauses
it belongs to is planar, and the goal is to find a truth assignment in such a
way that, for each clause, exactly one of its three variables is set to True. For
each 3-clique we use in the reduction, there is a base edge, which is crossing-
free in the constructed topological graph, while the other two edges always have
crossings. We call left (right) the edge that follows (precedes) the base edge in the
clockwise order of the edges along the 3-clique. Also, if an edge e of a clique does
not belong to the path replacing the clique, we say that e is removed, and that
all the crossings involving e in G are resolved. For each variable x, let nx be the
number of clauses containing x. We construct a simple topological graph gadget
Gx for x, called variable gadget ; see the left dotted box in Fig. 1(a). This gadget
contains 2nx 3-cliques tx1 , . . . , t

x
2nx

, forming a ring, so that the left (right) edge
of txi only crosses the left (right) edge of txi−1 and of txi+1, for each i = 1, . . . , 2nx.
Also, gadget Gx contains nx additional 3-cliques, called τx

1 , . . . , τx
nx

, so that the
right edge of τx

j crosses the left edge of tx2j−1 and the right edge of tx2j , while the
left edge of τx

j crosses the left edge of tx2j and the right edge of tx2j−1. Then, for
each clause c, we construct a topological graph gadget Gc, called clause gadget,
which is composed of a planar drawing of a 4-clique, together with three 3-cliques
whose left and right edges cross the edges of the 4-clique as in the right dotted
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box in Fig. 1(a). In particular, observe that the right (left) edge of each 3-clique
crosses exactly one (two) edges of the 4-clique. Every 3-clique in Gc corresponds
to one of the three variables of c. Let x be one of such variables; assuming that
c is the j-th clause that contains x according to the order of the clauses in the
given formula, we connect the 3-clique corresponding to x in the clause gadget
Gc to the 3-clique τx

j of the variable gadget Gx of x by a chain of 3-cliques of
odd length, as in Fig. 1(a).

tx1

tx2

tx3

tx4

tx5

tx6 GcGx

τx
1

τx
2

τx
3

vx

vz

vy

v

(a)

vx

vz

vy

v

(b)

vx

vz

vy

v

(c)

Fig. 1. (a) The variable gadget Gx for a variable x is represented in the left dotted
box. The clause gadget for a clause c is represented in the right dotted box. The chain
connecting Gx to Gc is represented with lighter colors. The removed edges are dashed
red. (b) All variables are False. (c) At least two variables are True. (Color figure online)

By construction, the resulting simple topological graph G contains cliques
of size at most 4, namely one per clause, and hence is a valid instance of
4-C2PP. Also, by collapsing each variable and clause gadget into a vertex, and
each chain connecting them into an edge, the resulting graph G′ preserves the
planarity of the Planar Positive 1-in-3-SAT instance. This implies that the
only crossings for each edge of G are with other edges in the gadget it belongs
to and, possibly, with the edges of the 3-cliques of a chain. Hence, G is 3-plane.
Namely, each base edge is crossing-free; each internal edge of a 4-clique has one
crossing; each external edge of a 4-clique has two crossings, and the same is true
for the left and right edges of each 3-clique in a chain; finally, the left and right
edges of each 3-clique in either a variable or a clause gadget has three crossings.

In the following we prove the equivalence between the original instance of
Planar Positive 1-in-3-SAT and the constructed instance G of 4-C2PP. For
this, we first give a lemma stating that variable gadgets correctly represent the
behavior of a variable; indeed they can assume one out of two possible states in
any solution for 4-C2PP. The proof of the next lemma can be found in [2].

Lemma 1 [*]. Let Gx be the variable gadget for a variable x in G. Then, in any
solution for 4-C2PP, either the left edge of each 3-clique τx

j , with j = 1, . . . , nx,
is removed, or the right edge of each 3-clique τx

j is removed.

Given Lemma 1, we can associate the truth value of a variable x with the fact
that either the left or the right edge of each 3-clique τx

j in the variable gadget
Gx of G is removed. We use this association to prove the following theorem.
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Theorem 1 [*]. The 4-C2PP problem is NP-complete, even for 3-plane graphs.

Proof (sketch). Given an instance of Planar Positive 1-in-3-SAT, we con-
struct an instance G of 4-C2PP in linear time as described above. We prove
one direction of the equivalence between the two problems. The other direction
follows a similar reasoning. Suppose that there exists a solution for 4-C2PP,
i.e., a set of edges of G whose removal resolves all crossings. By Lemma 1, for
each variable x either the left or the right edge of each 3-clique τx

j in gadget Gx

is removed. We assign True (False) to x if the right (left) edge is removed.
We first claim that for each clause c that contains variable x, the right (left)

edge of the 3-clique tc(x) of the clause gadget Gc corresponding to x is removed
if and only if the right (left) edge of each 3-clique τx

j is removed. Consider the
chain that connects tc(x) with a 3-clique τx

j of Gx. For any two consecutive
3-cliques along the chain the left edge of one 3-clique and the right edge of the
other 3-clique must be removed. Since the chain has odd length, the truth value
of Gx is transferred to the 3-clique tc(x) of Gc and thus the claim follows.

Consider now a clause c with variables x, y, and z. Let tc(x), tc(y), and
tc(z) be the 3-cliques of the clause gadget Gc of c corresponding to x, y, and
z, respectively. Let v be the central vertex of the 4-clique of Gc, and let vx, vy,
vz be the vertices of this 4-clique lying inside tc(x), tc(y), and tc(z) (see Fig. 1).
Assume that vx, vy, and vz appear in this clockwise order around v. We now
show that, for exactly one of tc(x), tc(y), and tc(z) the right edge is removed,
which implies that exactly one of x, y, and z is True and hence the instance of
Planar Positive 1-in-3-SAT is positive. Assume that for each of tc(x), tc(y),
and tc(z) the left edge is removed (i.e., all the three variables are set to False),
as in Fig. 1(b). The crossings between the right edges of the three 3-cliques and
the three edges of triangle (vx, vy, vz) are not resolved. All edges of this triangle
should be removed, which is not possible since the remaining edges of the 4-
clique do not form a path. Assume now that for at least two of the 3-cliques, say
tc(x) and tc(y), the right edge is removed (i.e., x and y are set to True), as in
Fig. 1(c). Since each edge of triangle (vx, vy, v) is crossed by the left edge of one
of tc(x) and tc(y), by construction, these crossings are not resolved. Hence, all
edges of (vx, vy, v) should be removed, which is not possible since the remaining
edges of the 4-clique do not form a path of length 4. Finally, assume that for
exactly one of the 3-cliques, say tc(x), the right edge is removed (i.e., x is the
only one set to True), as in Fig. 1(a). By removing edges (v, vx), (vx, vy), and
(vy, vz), all crossings are resolved; the remaining edges of the 4-clique form a
path of length 4, as desired. ��

3 h-Clique2Path Planarity and 1-Planarity

In this section we show that, when the given simple topological graph is 1-plane,
problem h-C2PP can be solved in linear time in the size of the input, for any
h. We consider all possible simple topological 1-plane cliques and show that the
problem can be solved using only local tests, each requiring constant time. Note
that h ≤ 6, since K6 is the largest 1-planar complete graph [10].
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Simple topological 1-plane graphs containing cliques with at most four ver-
tices that cross each other can be constructed, but it is easy to enumerate all
these graphs (up to symmetry); see Fig. 2. Note that such graphs involve at most
two cliques and that if K4 has a crossing, combining it with any other clique
would violate 1-planarity; see Fig. 2(a) and (b). The next lemma accounts for
cliques with five or six vertices.

(a) (b) (c) (d) (e) (f) (g)

Fig. 2. All 1-plane graphs involving one or more cliques of type K3 and K4.

Lemma 2. There exists no 1-plane simple topological graph that contains two
cliques, one of which with at least five vertices, whose edges cross each other.

Proof. Consider a simple 1-plane graph G that contains two disjoint cliques K
and H, with five and three vertices, respectively. Let K ′ be the simple plane
topological graph obtained from K by replacing each crossing with a dummy
vertex. By 1-planarity, every face of K ′ is a triangle and contains at most one
dummy vertex. Suppose, for a contradiction, that there exists a crossing between
an edge of K and an edge of H in G. Then there would exist at least a vertex v
of H inside a face f of K ′ and at least one outside f . Since H is a triangle, there
must have been two edges that connect vertices inside f to vertices outside f .
If f contains one dummy vertex, then two of its edges are not crossed by edges
of H, as otherwise G would not be 1-plane. Hence, both the edges that connect
vertices inside f to vertices outside f cross the other edge of f , a contradiction.
If f contains no dummy vertices, then each edge of f admits one crossing. Let u
be the vertex of f that is incident to the two edges crossed by edges of H. Since
u has degree 4 in K, it is not possible to draw the third edge of H so that it
crosses only one edge of K, which completes the proof. ��

Combining the previous discussion with Lemma 2, we conclude that, for each
subgraph of the input graph G that consists either of a combination of at most
two cliques of size at most 4, as in Fig. 2, or of a single clique not crossing any
other clique, the crossings involving this subgraph (possibly with other edges not
belonging to cliques) can only be resolved by removing its edges, which can be
checked in constant time. In the next theorem, n denotes the number of vertices.

Theorem 2. h-C2PP is O(n)-time solvable for simple topological 1-plane
graphs.
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4 Open Problems

We studied the h-Clique2Path Planarity problem for simple topological k-
plane graphs; we proved that this problem is NP-complete for h = 4 and k = 3,
while it is solvable in linear time for every value of h, when k = 1. The natural
open question is: what is the complexity for simple topological 2-plane graphs?

Kindermann et al. [9] recently proved that problem 4-C2PP is NP-complete
for geometric 4-plane graphs. It would be interesting to study this geometric
version of the problem for 2-plane and 3-plane graphs.

Finally, note that the version of the h-C2PP problem when the input is an
abstract graph (which is equivalent to Clique Planarity [1]) is NP-complete
when h ∈ O(n). What if h is bounded by a constant or a sublinear function? We
remark that, for h = 3, this version of the problem is equivalent to Clustered

Planarity, when restricted to instances in which the graph induced by each
cluster consists of three isolated vertices.
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Abstract. We prove that every set S of Δ slopes containing the hori-
zontal slope is universal for 1-bend upward planar drawings of bitonic
st-graphs with maximum vertex degree Δ, i.e., every such digraph admits
a 1-bend upward planar drawing whose edge segments use only slopes
in S. This result is worst-case optimal in terms of the number of slopes,
and, for a suitable choice of S, it gives rise to drawings with worst-case
optimal angular resolution. In addition, we prove that every such set
S can be used to construct 2-bend upward planar drawings of n-vertex
planar st-graphs with at most 4n − 9 bends in total. Our main tool is a
constructive technique that runs in linear time.

1 Introduction

Let G be a graph with maximum vertex degree Δ. The k-bend planar slope
number of G is the minimum number of slopes for the edge segments needed to
construct a k-bend planar drawing of G, i.e., a planar drawing where each edge is
a polyline with at most k ≥ 0 bends. Since no more than two edge segments inci-
dent to the same vertex can use the same slope, �Δ/2� is a trivial lower bound
for the k-bend planar slope number of G, irrespectively of k. Besides its theo-
retical interest, this problem forms a natural extension of two well-established
graph drawing models: The orthogonal [6,16,18,29] and the octilinear drawing
models [3,4,7,26], which both have several applications, such as in VLSI and
floor-planning [25,30], and in metro-maps and map-schematization [21,27,28].
Orthogonal drawings use only 2 slopes for the edge segments (0 and π

2 ), while
octilinear drawings use no more than 4 slopes (0, π

4 , π
2 , and 3π

4 ); consequently,
they are limited to graphs with Δ ≤ 4 and Δ ≤ 8, respectively.

These two drawing models have been generalized to graphs with arbitrary
maximum vertex degree Δ by Keszegh et al. [23], who proved that every planar
graph admits a 2-bend planar drawing with �Δ/2� equispaced slopes. As a wit-
ness of the tight connection between the two problems, the result by Keszegh
et al. was built upon an older result for orthogonal drawings of degree-4 planar
c© Springer Nature Switzerland AG 2018
T. Biedl and A. Kerren (Eds.): GD 2018, LNCS 11282, pp. 77–91, 2018.
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graphs by Biedl and Kant [6]. In the same paper, Keszegh et al. also stud-
ied the 1-bend planar slope number and showed an upper bound of 2Δ and a
lower bound of 3

4 (Δ− 1) for this parameter. The upper bound has been recently
improved, initially by Knauer and Walczak [24] to 3

2 (Δ−1) and subsequently by
Angelini et al. [1] to Δ−1. Angelini et al. actually proved a stronger result: Given
any set S of Δ − 1 slopes, every planar graph with maximum vertex degree Δ
admits a 1-bend planar drawing whose edge segments use only slopes in S. Any
such slope set is hence called universal for 1-bend planar drawings. This result
simultaneously establishes the best-known upper bound on the 1-bend planar
slope number of planar graphs and the best-known lower bound on the angular
resolution of 1-bend planar drawings, i.e., on the minimum angle between any
two edge segments incident to the same vertex. Indeed, if the slopes in S are
equispaced, the resulting drawings have angular resolution at least π

Δ−1 .
In this paper we study slope sets that are universal for k-bend upward

planar drawings of directed graphs (or digraphs for short). Recall that in an
upward drawing of a digraph G, every edge (u, v) is drawn as a y-monotone
non-decreasing curve from u to v. Also, G admits an upward planar drawing if
and only if it is a subgraph of a planar st-graph [13,22]. As such drawings are
common for representing planar digraphs, they have been extensively studied
in the literature (see, e.g., [5,9,15,18,20]). A preliminary result for this setting
is due to Di Giacomo et al. [14], who proved that every series-parallel digraph
with maximum vertex degree Δ admits a 1-bend upward planar drawing that
uses at most Δ slopes, and this bound on the number of slopes is worst-case
optimal. Notably, their construction gives rise to drawings with optimal angular
resolution π

Δ (but it uses a predefined set of slopes). Upward drawings with one
bend per edge and few slopes have also been studied for posets by Czyzowicz
et al. [11].

(a) (b)

Fig. 1. (a) A 1-bend upward planar drawing of a bitonic st-graph, and (b) a
2-bend upward planar drawing of a planar st-graph, both defined on a slope set
S = {−π

4
, 0, π

4
, π
2
, π}.

Contribution. We extend the study of universal sets of slopes to upward pla-
nar drawings, and present the first constructive technique that works for all
planar st-graphs. This technique exploits a linear ordering of the vertices of a
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planar digraph introduced by Gronemann [19], called bitonic st-ordering (see
also Sect. 2). We show that any set S of Δ slopes containing the horizontal slope
is universal for 1-bend upward planar drawings of degree-Δ planar digraphs hav-
ing a bitonic st-ordering (Sect. 3). We remark that the size of S is worst-case
optimal [14] and, if the slopes of S are chosen to be equispaced, the angular
resolution of the resulting drawing is at least π

Δ (also optimal); see Fig. 1a for an
illustration. We then extend our construction to all planar st-graphs by using
two bends on a restricted number of edges (Sect. 4). More precisely, we show
that, given a set S of Δ slopes containing the horizontal slope, every n-vertex
upward planar digraph with maximum vertex degree Δ has a 2-bend upward pla-
nar drawing that uses only slopes in S and with at most 4n − 9 bends in total;
see Fig. 1b for an illustration.

For space reasons some proofs are omitted and can be found in [2].

2 Preliminaries

We assume familiarity with common notation and definitions about graphs,
drawings, and planarity (see, e.g., [12]). An upward planar drawing of a directed

v1 . . .v2
vh−1 vh+1 vq. . .

u

vh

(a) . . . <σ(vh−1)<σ(vh)>σ(vh+1)>. . .

v1 . . .
vi vi+1 vj

vqvj+1. . .
. . .

u

(b) (σ(vi)>σ(vi+1)) and (σ(vj)<σ(vj+1))

Fig. 2. (a) A bitonic sequence. (b) A forbidden configuration.

simple graph (or digraph for short) G is a planar drawing such that each edge of G
is drawn as a curve monotonically non-decreasing in the y-direction. An upward
drawing is strict if its edge curves are monotonically increasing. A digraph is
upward planar if it admits an upward planar drawing. Note that if a digraph
admits an upward drawing then it also admits a strict upward drawing. A digraph
is upward planar if and only if it is a subgraph of a planar st-graph [13]. Let
G = (V,E) be an n-vertex planar st-graph, i.e., G is a plane acyclic digraph with
a single source s and a single sink t, such that s and t belong to the boundary of
the outer face and the edge (s, t) ∈ E [13]. (Other works do not explicitly require
the edge (s, t) to be part of G, see, e.g., [19].) An st-ordering of G is a numbering
σ : V → {1, 2, . . . , n} such that for each edge (u, v) ∈ E, it holds σ(u) < σ(v)
(which implies σ(s) = 1 and σ(t) = n). Every planar st-graph has an st-ordering,
which can be computed in O(n) time (see, e.g., [10]). If u and v are two adjacent
vertices of G such that σ(u) < σ(v), we say that v is a successor of u, and u is a
predecessor of v. Denote by S(u) = {v1, v2, . . . , vq} the sequence of successors of
v ordered according to the clockwise circular order of the edges incident to u in
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the planar embedding of G. The sequence S(u) is bitonic if there exists an integer
1 ≤ h ≤ q such that σ(v1) < · · · < σ(vh−1) < σ(vh) > σ(vh+1) > · · · > σ(vq);
see Fig. 2a for an illustration. Notice that when h = 1 or h = q, S(u) is actually
a monotonic decreasing or increasing sequence. A bitonic st-ordering of G is
an st-ordering such that, for every vertex u ∈ V , S(u) is bitonic [19]. A pla-
nar st-graph G is a bitonic st-graph if it admits a bitonic st-ordering. Deciding
whether G is bitonic can be done in linear time both in the fixed [19] and in
the variable [8] embedding settings. If G is not bitonic, every st-ordering σ of G
contains a forbidden configuration defined as follows. A sequence of successors
S(u) of a vertex u forms a forbidden configuration if there exist two indices i
and j, with i < j, such that σ(vi) > σ(vi+1) and σ(vj) < σ(vj+1), i.e. there is a
path from vi+1 to vi and a path from vj to vj+1; see Fig. 2b.

Let G = (V,E) be an n-vertex maximal plane graph with vertices u, v, and
w on the boundary of the outer face. A canonical ordering [17] of G is a linear
ordering χ = {v1 = u, v2 = v, . . . , vn = w} of V , such that for every 3 ≤ i ≤ n:

C1: The subgraph Gi induced by {v1, v2, . . . , vi} is 2-connected and internally
triangulated, while the boundary of its outer face Ci is a cycle containing
(v1, v2);

C2: If i + 1 ≤ n, vi+1 belongs to Ci+1 and its neighbors in Gi form a subpath
of the path obtained by removing (v1, v2) from Ci.

Computing χ takes O(n) time [17]. Also, χ is upward if for every edge (u, v) of
a digraph G u precedes v in χ.

The slope of a line � is the angle α that a horizontal line needs to be rotated
counter-clockwise in order to make it overlap with �. If α = 0 we say that the
slope of � is horizontal. The slope of a segment is the slope of the line containing
it. Let S = {α1, . . . , αh} be a set of h slopes such that αi < αi+1. The slope set
S is equispaced if αi+1 − αi = π

h , for i = 1, . . . , h − 1. Consider a k-bend planar
drawing Γ of a graph G, i.e., a planar drawing in which every edge is mapped
to a polyline containing at most k + 1 segments. For a vertex v in Γ each slope
α ∈ S defines two different rays that emanate from v and have slope α. If α
is horizontal these rays are called left horizontal ray and right horizontal ray.
Otherwise, one of them is the top and the other one is the bottom ray of v. We
say that a ray rv of a vertex v is free if there is no edge attached to v through
rv in Γ . We also say that rv is outer if it is free and the first face encountered
when moving from v along rv is the outer face of Γ . The slope number of a
k-bend drawing Γ is the number of distinct slopes used for the edge segments
of Γ . The k-bend upward planar slope number of an upward planar digraph G is
the minimum slope number over all k-bend upward planar drawings of G.

3 1-Bend Upward Planar Drawings

Let G = (V,E) be an n-vertex planar st-graph with a bitonic st-ordering
σ = {v1, v2, . . . , vn}; see, e.g., Fig. 3a. We begin by describing an augmenta-
tion technique to “transform” σ into an upward canonical ordering of a suitable
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supergraph ̂G of G. We start from a result by Gronemann [19], whose properties
are summarized in the following lemma; see, e.g., Fig. 3b.

Lemma 1 ([19]). Let G = (V,E) be an n-vertex planar st-graph that admits
a bitonic st-ordering σ = {v1, v2, . . . , vn}. There exists a planar st-graph G′ =
(V ′, E′) with an st-ordering χ = {vL, vR, v1, v2, . . . , vn} such that: (i) V ′ =
V ∪{vL, vR}; (ii) E ⊂ E′ and (vL, vR) ∈ E′; (iii) vL and vR are on the boundary
of the outer face of G′; (iv) Every vertex of G with less than two predecessors in
σ has exactly two predecessors in χ. Also, G′ and χ are computed in O(n) time.

We call G′ a canonical augmentation of G. Observe that G′ always contains
the edges (vL, v1) and (vR, v1) because of Lemma (1). We also insert the edge
(vL, vn), which is required according to our definition of st-graph; this addition
is always possible because vL and vn are both on the boundary of the outer face.
The next lemma shows that any planar st-graph obtained by triangulating G′

admits an upward canonical ordering; see, e.g., Fig. 3c.

v1

v2

v3

v4
v5

v6
v7

v8

(a)

v1

v2

v3

v4
v5

v6
v7

v8

vL vR

(b)

v1

v2
v3

v4

v5
v6

v7

v8

vL vR

(c)

Fig. 3. (a) A bitonic st-graph G with σ = {v1, v2, . . . , v8}. (b) A canonical augmen-

tation G′ of G with χ = {vL, vR, v1, v2, . . . , v8}. (c) A planar st-graph ̂G obtained by

triangulating G′. χ is an upward canonical ordering of ̂G.

Lemma 2. Let G′ be a canonical augmentation of an n-vertex bitonic st-graph
G. Every planar st-graph ̂G obtained by triangulating G′ has the following prop-
erties: (a) it has no parallel edges; (b) χ = {vL, vR, v1, v2, . . . , vn} is an upward
canonical ordering.

Proof. Concerning Property (a), suppose for a contradiction that ̂G has two
parallel edges e1 and e2 connecting u with v. Let C be the 2-cycle formed by e1
and e2 and let VC be the set of vertices distinct from u and v that are inside
C in the embedding of ̂G. VC is not empty, as otherwise C would be a non-
triangular face of ̂G. Let w be the vertex with the lowest number in χ among
those in VC . Since ̂G is planar (in particular e1 and e2 are not crossed) and has
a single source, it contains a directed path from u to every vertex in VC . Hence,
it has an edge from u to w. Also, by assumption, there is no vertex z in VC
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such that χ(z) < χ(w), which implies that u is the only predecessor of w in
χ, a contradiction to Lemma 1(iv). Concerning Property (b), if χ is a canonical
ordering of ̂G, then χ is actually an upward canonical ordering because it is also
an st-ordering. To see that χ is a canonical ordering, observe first that vL, vR

and vn are on the boundary of the outer face of ̂G by construction. Denote by
̂Gi the subgraph of ̂G induced by {vL, vR, v1, . . . , vi} and let ̂Ci be the boundary
of its outer face. We first prove by induction on i (for i = 1, 2, . . . , n) that ̂Gi

is 2-connected. In the base case i = 1, ̂G1 is a 3-cycle and therefore it is 2-
connected. In the case i > 1, ̂Gi−1 is 2-connected by induction and vi has at
least two predecessors in ̂Gi−1 by Lemma 1(iv), thus ̂Gi is 2-connected. We now
prove that each ̂Gi, for i = 1, 2, . . . , n, is internally triangulated, which concludes
the proof of condition C1 of canonical ordering. Suppose, for a contradiction,
that there exists an inner face f that is not a triangle. Since ̂G is triangulated,
there exists a vertex vj , with j > i, that is embedded inside f in ̂Gj . Since
χ is an st-ordering, there is no directed path from vj to any vertex of f . On
the other hand, either vj = vn or there is a directed path from vj to vn. Both
cases contradict the fact that vn belongs to the boundary of the outer face of
̂G. We finally show that vi belongs to Ci, for i = 1, 2, . . . , n. Since we already
proved that ̂Gi is triangulated, this is enough to prove C2. By the planarity of
̂Gi, there is a face f in ̂Gi−1 such that all the neighbors of vi in ̂Gi−1 belong to
the boundary of f . We claim that f is the outer face of ̂Gi. If it was an inner
face, then vi would be embedded inside f in ̂Gi and, by the same argument used
above, vn would not belong to the boundary of the outer face of ̂G. 
�

We now show that any set of Δ slopes S that contains the horizontal slope
is universal for 1-bend upward planar drawings of bitonic st-graphs. The algo-
rithm is inspired by a technique of Angelini et al. [1]. We will use important
additional tools with respect to [1], such as the construction of a triangulated
canonical augmentation, extra slopes to draw the edges inserted by the aug-
mentation procedure, and different geometric invariants. Let G be an n-vertex
bitonic st-graph with maximum vertex degree Δ; see Fig. 3a. The algorithm first
computes a triangulated canonical augmentation ̂G of G; see Figs. 3b and c. We
call dummy edges all edges that are in ̂G but not in G and real edges the edges
in ̂G that are also in G. By Lemma 2, ̂G admits an upward canonical ordering
χ = {vL, vR, v1, v2, . . . , vn}, where χ is an st-ordering such that each vertex dis-
tinct from vL and vR has at least two predecessors. Let S = {ρ1, . . . , ρΔ} be any
set of Δ slopes, which we call real slopes. Let ρ∗ be the smallest angle between
two slopes in S and let Δ∗ be the maximum number of dummy edges incident
to a vertex of ̂G. For each slope ρi (1 ≤ i ≤ Δ), we add Δ∗ dummy slopes
{δi

1, . . . , δ
i
Δ∗} such that δi

j = ρi + j · ρ∗

Δ∗+1 , for j = 1, 2, . . . ,Δ∗. Hence, there are
Δ∗ dummy slopes between any two consecutive real slopes. We will use the real
slopes for the real edges and the dummy slopes for the dummy ones.

Let ̂Gi be the subgraph of ̂G induced by {vL, vR, v1, v2, . . . , vi}. The algorithm
constructs the drawing by adding the vertices according to χ. More precisely, it
computes a drawing ̂Γi of the digraph ̂G−

i obtained from ̂Gi by removing the
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dummy edges (vL, vR) and (v1, vR), which exist by construction, and (vR, v2)
if it exists. Let ̂Ci be the boundary of the outer face of ̂Gi, and let ̂Pi be the
path obtained by removing (vL, vR) from ̂Ci. For a vertex v of ̂Pi, we denote
by dr(v, i) (resp. dd(v, i)) the number of real (resp. dummy) edges incident to v

that are not in ̂Gi and by
�

ρj(v, i) (resp.
�

ρj(v, i)) the j-th outer real top ray in ̂Γi

encountered in clockwise (resp. counterclockwise) order around v starting from
the left (resp. right) horizontal ray. For dummy top rays, we define analogously
�

δj(v, i) and
�

δj(v, i). ̂Γi satisfies the following invariants:

̂Γi

≥ dr(v, i)

v

̂Pi

vL vR

(a) I3

�

α1(v, i)

v

̂Pi
̂Γi

�

ρ1(v, i)

�

α1(v, i)

�

ρ1(v, i)

≥ dd(v, i)

p p′
�

vL vR

≥ dd(v, i)

(b) I4–I5

u
v w

tu

(c)

u
v w

tu

(d)

Fig. 4. (a)–(b) Illustration for invariants I3–I5; real rays are dashed, dummy rays are
dotted. (c)–(d) Illustration for Lemma 4.

I1 ̂Γi is a 1-bend upward planar drawing whose real edges use only slopes in S.
I2 Every edge of ̂Pi contains a horizontal segment.
I3 Every vertex v of ̂Pi has at least dr(v, i) outer real top rays; see Fig. 4a.
I4 Every vertex v of ̂Pi has at least dd(v, i) outer dummy top rays between

�

δ1(v, i) and
�

ρ1(v, i) (resp.
�

δ1(v, i) and
�

ρ1(v, i)), including
�

δ1(v, i) (resp.
�

δ1(v, i)); see Fig. 4b.
I5 Let � be any horizontal line and let p and p′ be any two intersection points

between � and the polyline representing ̂Pi in ̂Γi; walking along � from left to
right, p and p′ are encountered in the same order as when walking along ̂Pi

from vL to vR; see Fig. 4b.

The last vertex vn is added to ̂Γn−1 in a slightly different way and the result-
ing drawing will satisfy I1. The next two lemmas state important properties of
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any 1-bend upward planar drawing satisfying I1–I5. Similar lemmas are proven
in [1, Lemmas 2 and 3], but for drawings that satisfy different invariants.

Lemma 3. Let ̂Γi be a drawing of ̂G−
i that satisfies Invariants I1–I5. Let (u, v)

be any edge of ̂Pi such that u is encountered before v along ̂Pi when going from
vL to vR, and let λ be a positive number. There exists a drawing ̂Γ ′

i of ̂G−
i

that satisfies Invariants I1–I5 and such that: (i) the horizontal distance between
u and v is increased by λ; (ii) the horizontal distance between any two other
consecutive vertices along ̂Pi is the same as in ̂Γi.

The next lemma can be proven by suitably applying Lemma3; see Figs. 4c
and d.

Lemma 4. Let ̂Γi be a drawing of ̂G−
i that satisfies Invariants I1–I5. Let u be

a vertex of ̂Pi, and let tu be any outer top ray of u that crosses an edge of ̂G−
i

in ̂Γi. There exists a drawing ̂Γ ′
i of ̂G−

i that satisfies Invariants I1–I5 in which
tu does not cross any edge of ̂G−

i .

We now describe our drawing algorithm starting with the computation of ̂Γ2.
We aim at drawing both v1 and v2 horizontally aligned between vL and vR. Note
that v1 is the source of G, and, by the definition of a canonical augmentation, v1
is adjacent to both vL and vR, while v2 is adjacent to v1 and to at least one of
vL and vR. We remove the dummy edges (v1, vR) and (vL, vR), and the dummy
edge (vR, v2) if it exists. The resulting graph is either the path 〈vL, v1, v2, vR〉 or
the path 〈vL, v2, v1, vR〉, which we draw along a horizontal segment.

Lemma 5. Drawing ̂Γ2 satisfies Invariants I1–I5.

Assume now that we have constructed drawing ̂Γi−1 of ̂Gi−1 satisfying I1–I5
(3 ≤ i < n). Let {u1, . . . , uq} be the neighbors of the next vertex vi along ̂Pi−1.

Let t1 be either
�

ρ1(u1, i−1), if (u1, vi) is real, or
�

δ1(u1, i−1), if (u1, vi) is dummy.

Symmetrically, let tq be either
�

ρ1(uq, i − 1), if (uq, vi) is real, or
�

δ1(uq, i − 1), if
(uq, vi) is dummy. Let tj (for 1 < j < q) be any outer real (resp. dummy) top
ray emanating from uj if (uj , vi) is real (resp. dummy). By I3 all such top rays
exist and by Lemma 4 we can assume that none of them crosses ̂Γi−1. Let � be a
horizontal line above the topmost point of ̂Γi−1. Let pj be the intersection point
of tj and �. We can assume that, for j = 1, 2, . . . , q − 1, pj is to the left of pj+1.
If this is not the case, we can increase the distance between uj and uj+1 so to
guarantee that pj and pj+1 appear in the desired order along �; this can be done
by applying Lemma3 with respect to each edge (uj , uj+1) for a suitable choice of
λ; see Figs. 5a and b for an illustration. We will place vi above � using q−2 bottom
rays b2, b3, . . . , bq−1 of vi for the segments of the edges (uj , vi) (j = 2, 3, . . . , q−1)
incident to vi such that: (i) bj (1 < j < q) is real (resp. dummy) if (uj , vi) is
real (resp. dummy); (ii) bj precedes bj+1 in the counterclockwise order around
vi starting from b2. This choice is possible for the real rays because vi has Δ− 1
real bottom rays and it has at least one incident real edge not in ̂Gi (otherwise
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Fig. 5. Addition of vertex vi.

it would be a sink of G, which is not possible because i < n). Concerning
the dummy rays, we have at most Δ∗ dummy edges incident to vi and Δ∗

dummy bottom rays between any two consecutive real rays. Consider the ray t1
and choose a point p to the right of t1 and above � such that placing vi on p
guarantees that mini=1...q−2{x(p′

i+1)−x(p′
i)} > x(pq)−x(p1), where p′

1 = p1 and
p′
2, p

′
3, . . . , p

′
q−1 are the intersection points of the rays b2, b3, . . . , bq−1 with the

line � (see Fig. 5c). Observe that for a sufficiently large y-coordinate, point p can
always be found. We now apply Lemma3 to each of the edges (u1, u2), (u2, u3),
. . . , (uq−2, uq−1), in this order, choosing λ ≥ 0 so that each pj is translated to p′

j

(for j = 2, 3, . . . , q − 1). We finally apply again the same procedure to (uq−1, uq)
so that the intersection point between tq and the horizontal line �H passing
through vi is to the right of vi (see Fig. 5d). After this translation procedure, we
can draw the edge (u1, vi) (resp. (uq, vi)) with a bend at the intersection point
between t1 (resp. tq) and �H and therefore using the slope of t1 (resp. tq) and the
horizontal slope (see Fig. 5e). The edges (uj , vi) (j = 2, 3, . . . , q − 1) are drawn
with a bend point at pj = p′

j and therefore using the slopes of tj and bj .

Lemma 6. Drawing ̂Γi, for i = 3, 4, . . . , n − 1, satisfies Invariants I1–I5.

Proof. The proof is by induction on i ≥ 3. ̂Γi−1 satisfies Invariants I1–I5 by
Lemma 5 when i = 3, and by induction when i > 3.

Proof of I1. By construction, each (uj , vi) (j = 1, 2, . . . , q) is drawn as a chain
of at most two segments that use real and dummy slopes. In particular, if (uj , vi)
is real, then it uses real slopes, i.e., slopes in S. By the choice of �, the bend
point of (uj , vi) has y-coordinate strictly greater than that of uj and smaller
than or equal to that of vi. Since each (uj , vi) is oriented from uj to vi (as χ
is an upward canonical ordering), the drawing is upward. Concerning planarity,
we first observe that ̂Γi−1 is planar and it remains planar each time we apply
Lemma 3. Also, by Lemma 4 each (uj , vi) (j = 1, 2, . . . , q) does not intersect ̂Γi−1
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(except at uj). Further, the order of the bend points along � guarantees that the
edges incident to vi do not cross each other.

Proof of I2. The only edges of ̂Pi that are not in ̂Pi−1 are (u1, vi) and (uq, vi).
For both these edges the segment incident to vi is horizontal by construction.

Proof of I3. For each vertex of ̂Pi distinct from u1, uq and vi, I3 holds by
induction. Invariant I3 also holds for vi because dr(vi, i) ≤ Δ − 1 (as otherwise
vi would be a source of G, which is not possible because i > 1) and all the real
top rays of vi, which are Δ − 1, are outer. Consider now vertex u1 (a symmetric
argument applies to uq). If (u1, vi) is real, then dr(u1, i) = dr(u1, i−1)−1; in this
case t1 =

�

ρ1(u1, i−1) and therefore all the other dr(u1, i−1)−1 outer real top rays
of u1 in ̂Γi−1 remain outer in ̂Γi. If (u1, vi) is dummy, then dr(u1, i) = dr(u1, i−1);

in this case t1 =
�

δ1(u1, i − 1) and therefore all the dr(u1, i − 1) outer real top
rays of u1 in ̂Γi−1 remain outer in ̂Γi.

Proof of I4. For each vertex of ̂Pi distinct from u1, uq and vi, I4 holds by
induction. I4 also holds for vi because dd(vi, i) ≤ Δ∗ and there are Δ∗ dummy

top rays between
�

δ1(vi, i) and
�

ρ1(vi, i) including
�

δ1(vi, i) (all the top rays of vi are

outer). Analogously, there are Δ∗ outer dummy top rays between
�

δ1(vi, i) and
�

ρ1(vi, i) including
�

δ1(vi, i). Consider now u1 (a symmetric argument applies to
uq). If (u1, vi) is real, then dd(u1, i) = dd(u1, i−1); in this case t1 =

�

ρ1(u1, i−1)

and there are Δ∗ outer dummy top rays between
�

δ1(u1, i) and
�

ρ1(u1, i) including
�

δ1(u1, i) (namely, all those between t1 =
�

ρ1(u1, i−1) and
�

ρ2(u1, i−1)). If (u1, vi)

is dummy, then dd(u1, i) = dd(u1, i − 1) − 1; in this case t1 =
�

δ1(u1, i − 1) and
therefore all the other dd(u1, i − 1) − 1 outer dummy top rays of u1, which by

induction were between
�

δ1(u1, i − 1) and
�

ρ1(u1, i − 1), remain outer in ̂Γi.

Proof of I5. Notice that the various applications of Lemma3 to ̂Γi−1 pre-
serve I5. Let p and p′ be any two intersection points between a horizontal line
� and the polyline representing ̂Pi in ̂Γi, with p to the left of p′ along �. If p
and p′ belong to ̂Pi−1, I5 holds by induction. If both p and p′ belong to the
path 〈u1, vi, uq〉, I5 holds by construction. If p belongs to ̂Pi−1 and p′ belongs
to 〈u1, vi, uq〉, then p belongs to the subpath of ̂Pi−1 that goes from vL to u1

because the subpath from uq to vR is completely to the right of tq, hence I5
holds also in this case. If p belongs to 〈u1, vi, uq〉 and p′ belongs to ̂Pi−1, the
proof is symmetric. 
�
Lemma 7. G has a 1-bend upward planar drawing Γ using only slopes in S.
Proof. By Lemma 6, drawing ̂Γn−1 satisfies Invariant I1–I5. We explain how
to add the last vertex vn to obtain a drawing that satisfies Invariant I1. Let
{u1, . . . , uq} be the predecessors of vn on ̂Pn−1. Notice that, in this case u1 = vL

and uq = vR. Vertex vn is added to the drawing similarly to all the other vertices
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added in the previous steps of the algorithm. The only difference is that the
number of real incoming edges incident to vn in ̂Γn−1 can be up to Δ. If this is
the case, since the real bottom rays are Δ−1, they are not enough to draw all the
real edges incident to vn. Let j be the smallest index such that (uj , vn) is a real
edge. We ignore all the dummy edges (uh, vn), for h = 1, 2, . . . , j − 1, and apply
the construction used in the previous steps considering only {uj , uj+1, . . . , uq} as
predecessors of vn (notice that such predecessors are at least two because vn has
at least two incident real edges). By ignoring these dummy edges, the segment
of the real edge (uj , vn) incident to vn will be drawn using the left horizontal
slope. Denote by ̂Γn the resulting drawing. As in the proof of Lemma6, we can
prove that I1 holds for ̂Γn and therefore ̂Γn is a 1-bend upward planar drawing
whose real edges use only slopes in S. The drawing Γ of G is obtained from ̂Γn

by removing all its dummy edges and the two dummy vertices vL and vR. 
�
Lemma 8. Drawing Γ can be computed in O(n) time.

Lemmas 7 and 8 are summarized by Theorem 1. Corollary 1 is a consequence of
Theorem 1 and of a result in [14].

Theorem 1. Let S be any set of Δ ≥ 2 slopes including the horizontal slope
and let G be an n-vertex bitonic planar st-graph with maximum vertex degree Δ.
Graph G has a 1-bend upward planar drawing Γ using only slopes in S, which
can be computed in O(n) time.

Corollary 1. Every bitonic st-graph with maximum vertex degree Δ ≥ 2 has
1-bend upward planar slope number at most Δ, which is worst-case optimal.

If S is equispaced, Theorem 1 implies a lower bound of π
Δ on the angular resolu-

tion of the computed drawing, which is worst-case optimal [14]. Also, Theorem 1
can be extended to planar st-graphs with Δ ≤ 3, as any such digraph can be
made bitonic by only rerouting the edge (s, t).

Theorem 2. Every planar st-graph with maximum vertex degree 3 has 1-bend
upward planar slope number at most 3.

We conclude with the observation that an upward drawing constructed by
the algorithm of Theorem 1 can be transformed into a strict upward drawing that
uses Δ + 1 slopes rather than Δ. It suffices to replace every horizontal segment
oriented from its leftmost (rightmost) endpoint to its rightmost (leftmost) one
with a segment having slope ε (−ε), for a sufficiently small value of ε > 0.

4 2-bend Upward Planar Drawings

We now extend the result of Theorem 1 to non-bitonic planar st-graphs. By
adapting a technique of Keszegh et al. [23], one can construct 2-bend upward
planar drawings of planar st-graphs using at most Δ slopes. We improve upon
this result in two ways: (i) The technique in [23] may lead to drawings with 5n−11



88 M. A. Bekos et al.

bends in total, while we prove that 4n−9 bends suffice; (ii) It uses a fixed set of Δ
slopes (and it is not immediately clear whether it can work with any set of slopes),
while we show that any set of Δ slopes with the horizontal one is universal.

Let G be an n-vertex non-bitonic planar st-graph. All forbidden configura-
tions of G can be removed in linear time by subdividing at most n − 3 edges of
G [19]. Let Gb be the resulting bitonic st-graph, called a bitonic subdivision of
G. Let 〈u, d, v〉 be a directed path of Gb obtained by subdividing the edge (u, v)
of G with the dummy vertex d. We call (u, d) the lower stub, and (d, v) the upper
stub of (u, v). We can prove the existence of an augmentation technique similar
to that of Lemma 1, but with an additional property on the upper stubs.

Lemma 9. Let G = (V,E) be an n-vertex planar st-graph that is not bitonic.
Let Gb = (Vb, Eb) be an N -vertex bitonic subdivision of G, with a bitonic st-
ordering σ = {v1, v2, . . . , vN}. There exists a planar st-graph G′ = (V ′, E′) with
an st-ordering χ = {vL, vR, v1, v2, . . . , vN} such that: (i) V ′ = Vb ∪ {vL, vR};
(ii) Eb ⊂ E′ and (vL, vR) ∈ E′; (iii) vL and vR are on the boundary of the
outer face of G′; (iv) Every vertex of Gb with less than two predecessors in σ
has exactly two predecessors in χ. (v) There is no vertex in G′ such that its
leftmost or its rightmost incoming edge is an upper stub. Also, G′ and χ are
computed in O(n) time.

Theorem 3. Let S be any set of Δ ≥ 2 slopes including the horizontal slope
and let G be an n-vertex planar st-graph with maximum vertex degree Δ. Graph
G has a 2-bend upward planar drawing Γ using only slopes in S, which has at
most 4n − 9 bends in total and which can be computed in O(n) time.

Proof. We compute a triangulated canonical augmentation ̂G of G by (1) apply-
ing Lemma 9 and (2) triangulating the resulting digraph. By Lemma2, ̂G has
an upward canonical ordering χ. The algorithm of Theorem1 to ̂G would lead
to a 3-bend drawing of G (by interpreting every subdivision vertex as a bend).
We explain how to modify it to construct a drawing ̂Γ of ̂G with at most 2
bends per edge and 4n − 9 bends in total. Let vi the next vertex to be added
according to χ and let {u1, u2, . . . , uq} its neighbors in ̂Pi−1. Suppose that uj

is a dummy vertex and that (uj , vi) is an upper stub. To save one bend along
the edge subdivided by uj , we draw (uj , vi) without bends. By Lemma 9(v), we
have that 1 < j < q. The ray tj used to draw the segment of (uj , vi) incident to
uj can be any outer real top ray; we choose the ray with same slope as the real
bottom ray bj used to draw the segment of (uj , vi) incident to vi. This is possible
because all real top rays of uj are outer (since (uj , vi) is the only real outgoing
edge of uj). Hence, edge (uj , vi) has no bends. The drawing Γ of G is obtained
from ̂Γ by removing dummy edges and replacing dummy vertices (except vL

and vR, which are removed) with bends. Since the upper stubs of subdivided
edges has 0 bends, each edge of Γ has at most 2 bends. Let m1 and m2 be the
number of edges drawn with 1 and 2 bends, respectively; we have m2 ≤ n − 3
and m1 = m − m2 ≤ 3n − 6 − (n − 3) = 2n − 3. Thus the total number of bends
is at most 2n − 3 + 2(n − 3) = 4n − 9. Finally, ̂G can be computed in O(n) time
(Lemma 9) and the modified drawing algorithm still runs in linear time. 
�
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A planar st-graph with a source/sink of degree Δ requires at least Δ − 1
slopes in any upward planar drawing; thus the gap with Theorem3 is one unit.
Similarly to Theorem1, Theorem 3 implies a lower bound of π

Δ on the angular
resolution of Γ ; an upper bound of π

Δ−1 can be proven with the same digraph
used for the lower bound on the slope number. Finally, Theorem4 extends the
result of Theorem 3 to every upward planar graph using an additional slope.

Theorem 4. Let S be any set of Δ+1 slopes including the horizontal slope and
let G be an n-vertex upward planar graph with maximum vertex degree Δ ≥ 2.
Graph G has a 2-bend upward planar drawing using only slopes in S.

5 Open Problems

(i) Can we draw every planar st-graph with at most one bend per edge (or less
than 4n− 9 in total) and Δ slopes? (ii) What is the 2-bend upward planar slope
number of planar st-graphs? Is Δ a tight bound? (iii) What is the straight-line
upward planar slope number of upward planar digraphs?
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Abstract. We prove that, given two topologically-equivalent upward
planar straight-line drawings of an n-vertex directed graph G, there
always exists a morph between them such that all the intermediate draw-
ings of the morph are upward planar and straight-line. Such a morph
consists of O(1) morphing steps if G is a reduced planar st-graph, O(n)
morphing steps if G is a planar st-graph, O(n) morphing steps if G is a
reduced upward planar graph, and O(n2) morphing steps if G is a general
upward planar graph. Further, we show that Ω(n) morphing steps might
be necessary for an upward planar morph between two topologically-
equivalent upward planar straight-line drawings of an n-vertex path.

1 Introduction

One of the definitions of the word morph that can be found in English dictionaries
is “to gradually change into a different image”. The Graph Drawing community
defines the morph of graph drawings similarly. Namely, given two drawings Γ0

and Γ1 of a graph G, a morph between Γ0 and Γ1 is a continuously changing
family of drawings of G indexed by time t ∈ [0, 1], such that the drawing at time
t = 0 is Γ0 and the drawing at time t = 1 is Γ1. Further, the way the Graph
Drawing community adopted the word morph is consistent with its Ancient
Greek root μωρφή, which means “shape” in a broad sense. Namely, if both Γ0

and Γ1 have a certain geometric property, it is desirable that all the drawings of
the morph also have the same property. In particular, we talk about a planar, a
straight-line, an orthogonal, or a convex morph if all the intermediate drawings
of the morph are planar (edges do not cross), straight-line (edges are straight-
line segments), orthogonal (edges are polygonal lines composed of horizontal and
vertical segments), or convex (the drawings are planar and straight-line, and the
faces are delimited by convex polygons), respectively.

The state of the art on planar morphs covers more than 100 years, starting
from the 1914/1917 works of Tietze [25] and Smith [23]. The seminal papers of
Cairns [13] and Thomassen [24] proved the existence of a planar straight-line
morph between any two topologically-equivalent planar straight-line drawings
of a graph. In the last 10 years, the attention of the research community focused
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on algorithms for constructing planar morphs with few morphing steps (see,
e.g., [1–7,11,12,21,26]). Each morphing step, sometimes simply called step, is a
linear morph, in which the vertices move along straight-line (possibly distinct)
trajectories at uniform speed. A unidirectional morph is a linear morph in which
the vertex trajectories are all parallel. It is known [2,4] that a planar straight-
line morph with a linear number of unidirectional morphing steps exists between
any two topologically-equivalent planar straight-line drawings of the same graph,
and that this bound is the best possible.

Upward planarity is usually regarded as the natural extension of planarity
to directed graphs; see, e.g., [9,10,15,16,18]. A drawing of a directed graph is
upward planar if it is planar and the edges are represented by curves mono-
tonically increasing in the vertical direction. Despite the importance of upward
planarity, up to now, no algorithm has been devised to morph upward planar
drawings of directed graphs. This paper deals with the following question: Given
two topologically-equivalent upward planar drawings Γ0 and Γ1 of an upward
planar directed graph G, does an upward planar straight-line morph between Γ0

and Γ1 always exist? In this paper we give a positive answer to this question.
Problems related to upward planar graphs are usually more difficult than

the corresponding problems for undirected graphs. For example, planarity can
be tested in linear time [20] while testing upward planarity is NP-complete
[18]; all planar graphs admit planar straight-line grid drawings with polyno-
mial area [22] while there are upward planar graphs that require exponential
area in any upward planar straight-line grid drawing [17]. Quite surprisingly, we
show that, from the morphing point of view, the difference between planarity and
upward planarity is less sharp; indeed, in some cases, upward planar straight-
line drawings can be morphed even more efficiently than planar straight-line
drawings.

More in detail, our results are as follows. Let Γ0 and Γ1 be topologically-
equivalent upward planar drawings of an n-vertex upward plane graph G. We
show algorithms to construct upward planar straight-line morphs between Γ0

and Γ1 with the following number of unidirectional morphing steps:

i. O(1) steps if G is a reduced plane st-graph (see Sect. 4);
ii. O(n) steps if G is a plane st-graph (see Sect. 4);
iii. O(n) steps if G is a reduced upward plane graph (see Sect. 5);
iv. O(n · f(n)) steps if G is a general upward plane graph, assuming that an

O(f(n))-step algorithm exists to construct an upward planar morph between
any two upward planar drawings of any n-vertex plane st-graph (see Sect. 5).
This, together with Result ii., yields an O(n2)-step upward planar morph for
general upward plane graphs.

Further, we show (Sect. 3) that there exist two topologically-equivalent
upward planar drawings of an n-vertex upward plane path such that any upward
planar morph between them consists of Ω(n) morphing steps.

In order to prove Result i. we devise a technique that allows us to construct
a morph in which each morphing step modifies either only the x-coordinates
or only the y-coordinates of the vertices. Result ii. builds on the techniques in
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[2] and leverages on the arrangement of low-degree vertices in upward planar
drawings in order to morph maximal plane st-graphs. We then exploit such
morphs for general plane st-graphs. In order to prove Results iii. and iv. we use
an inductive technique for reducing the geometric differences between Γ0 and
Γ1.

Because of space limitations, some proofs are omitted or sketched. They can
be found in the full version of the paper.

2 Preliminaries

We assume familiarity with graph drawing [15] and related concepts.
In this paper we only consider straight-line drawings. Thus, where it leads

to no confusion, we will omit the term “straight-line”. Let Γ be a drawing of a
graph G and let H be a subgraph of G. We denote by Γ [H] the restriction of Γ
to the vertices and edges of H. Two planar drawings of a connected graph are
topologically equivalent if they have the same circular order of the edges around
each vertex and the same cycle bounding the outer face. A planar embedding
is an equivalence class of planar drawings. A plane graph is a planar graph
equipped with a planar embedding. In a planar straight-line drawing an internal
face (the outer face) is strictly convex if its angles are all smaller (greater) than
π. A planar straight-line drawing is strictly convex if each face is strictly convex.

A y-assignment yG : V (G) → R is an assignment of reals to the vertices of a
graph G. A drawing Γ of G satisfies yG if the y-coordinate in Γ of each vertex
v ∈ V (G) is yG(v). An x-assignment xG for G is defined analogously.

In a directed graph G we denote by uv an edge directed from a vertex u to
a vertex v; then v is a successor of u, and u is a predecessor of v. A directed
path consists of the edges uiui+1, for i = 1, . . . , n − 1. The underlying graph of
G is the undirected graph obtained from G by omitting the directions from its
edges. A transitive edge in a directed graph G is an edge uv such that G contains
a directed path from u to v different from the edge uv. A reduced graph is a
directed graph that does not contain any transitive edges.

A drawing of a directed graph is upward planar if it is planar and each edge
uv is drawn as a curve monotonically increasing in the y-direction from u to v. A
directed graph is upward planar if it admits an upward planar drawing. Consider
an upward planar drawing Γ of an upward planar graph G. Let u, v, and w be
three vertices consecutive and in this clockwise order along the boundary of a
face f of G. We denote by ∠(u, v, w) the angle formed by the (undirected) edges
(u, v) and (v, w) in the interior of f . Also, we say that v is a sink-switch (source-
switch) of f if uv and wv (vu and vw) are edges of G. Furthermore, we say that
v is a switch of G if it is either a sink-switch or a source-switch of some face of Γ .
Two switches u and v of a face f are clockwise (counter-clockwise) consecutive if
traversing f clockwise (counter-clockwise) no switch is encountered in between
u and v. The drawing Γ determines a large-angle assignment, that is, a labeling,
for each face f and each three clockwise consecutive switches u, v, and w for
f of the corresponding angle ∠(u, v, w) as large, if it is larger than π in Γ , or
small, it is smaller than π in Γ [9].
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Two upward planar drawings of an upward planar graph G have the same
upward planar embedding if they have the same planar embedding and the same
large-angle assignment. We denote by 	(G) the number of switches labeled large
in G. A combinatorial characterization of upward planar embeddings in terms
of large angles is given in [9]. An upward plane graph is an upward planar graph
equipped with an upward planar embedding.

Let Γ0 and Γ1 be upward planar drawings of an upward plane graph G. An
upward planar morph is a continuous transformation from Γ0 to Γ1 indexed by
time t ∈ [0, 1] in which the drawing at each time t ∈ [0, 1] is upward planar.

A plane st-graph is an upward plane graph with a single source s and a single
sink t, and with an upward planar embedding in which s and t are incident to
the outer face. A plane st-graph always admits an upward planar straight-line
drawing [16]. A cycle in an upward plane graph is an st-cycle if it consists of two
directed paths. A face f of an upward plane graph is an st-face if it is delimited
by an st-cycle; the directed paths delimiting an st-face f are called left and right
boundary, where the edge of the left boundary incident to the source-switch sf
of f immediately precedes the edge of the right boundary incident to sf in the
clockwise order of the edges incident to sf . The following is well-known.

Lemma 1. An upward plane graph is a plane st-graph iff all its faces are st-
faces.

An internal vertex v of a maximal plane st-graph G is simple if the neighbors
of v induce a cycle in the underlying graph of G.

Lemma 2 (Alamdari et al. [2]). Any maximal plane st-graph contains a sim-
ple vertex of degree at most 5.

3 Slow Morphs and Fast Morphs

We start this section by proving the following lower bound.

v3v1u1 u2 u3v2

(a) P

v1
v2
v3

u3
u2
u1

(b) Γ0

v3
v2
v1

u1
u2
u3

(c) Γ1

Fig. 1. Illustration for Theorem 1. (a) P ; (b) Γ0; and (c) Γ1. For the sake of readability
Γ0 and Γ1 have curved edges. However, the x-coordinates of the vertices can be slightly
perturbed in order to make Γ0 and Γ1 straight-line.
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Theorem 1. There are two upward planar drawings of an n-vertex upward
plane path such that any upward planar morph between them consists of Ω(n)
steps.

Proof sketch. Assume, for the sake of simplicity, that n is even, and let n = 2k.
Consider the n-vertex upward plane path P defined as follows (refer to Fig. 1a).
The path P contains vertices ui and vi, for i = 1, . . . , k, and directed edges
uivi, for i = 1, . . . , k, and ui+1vi, for i = 1, . . . , k − 1. We fix the upward planar
embedding of P as in Fig. 1b and c.

Let Γ0 and Γ1 be two upward planar straight-line drawings of P in which
the bottom-to-top order of the vertices is u1, . . . , uk, vk, . . . , v1 (see Fig. 1b) and
uk, . . . , u1, v1, . . . , vk (see Fig. 1c), respectively. Let 〈Γ0 = Λ1, Λ2, . . . , Λh+1 = Γ1〉
be any upward planar morph from Γ0 to Γ1 that consists of h morphing steps.
We have the following.

Claim 1.1. For each j = 1, . . . , h+1, the vertices uj , uj+1, . . . , uk−1, uk appear
in this bottom-to-top order in Λj.

By Claim 1.1 and since uk, uk−1 appear in this bottom-to-top order in Γ1 =
Λh+1, we have that h + 1 > k − 1, hence h ∈ Ω(n). ��

We now establish a tool that will allow us to design efficient algorithms for
morphing upward planar drawings. Consider two planar straight-line drawings
Γ ′ and Γ ′′ of a plane graph G with the same y-assignment. Since the drawings
are straight-line and have the same y-assignment, a horizontal line 	 intersects a
vertex or an edge of G in Γ ′ if and only if it intersects the same vertex or edge in
Γ ′′. We say that Γ ′ and Γ ′′ are left-to-right equivalent if, for any horizontal line
	, for any vertex or edge α of G, and for any vertex or edge β of G such that 	
intersects both α and β (in Γ ′ and in Γ ′′), we have that the intersection of α with
	 is to the left of the intersection of β with 	 in Γ ′ if and only if the intersection
of α with 	 is to the left of the intersection of β with 	 in Γ ′′. The definition of
bottom-to-top equivalent drawings is analogous. We have the following.

Lemma 3. Any two upward planar drawings Γ ′ and Γ ′′ of a plane st-graph G
with the same y-assignment are left-to-right equivalent.

Proof. Since G is a plane st-graph, the drawings Γ ′ and Γ ′′ have the same faces.
By Lemma1 such faces are st-faces. Also, every horizontal line 	 crosses an st-
face f at most twice, and the left-to-right order of these crossings along 	 is the
same in Γ ′ and Γ ′′ because the left and right boundaries of f are the same in
Γ ′ and Γ ′′. The statement follows. ��

Lemma 4 is due to [2]. We extend it in Lemma 5.

Lemma 4 ([2], Corollary 7.2). Consider a unidirectional morph acting on
points p, q, and r. If p is on one side of the oriented line through qr at the
beginning and at the end of the morph, then p is on the same side of the oriented
line through qr throughout the morph.
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Lemma 5. Let Γ ′ and Γ ′′ be two left-to-right or bottom-to-top equivalent pla-
nar drawings of a plane graph. Then the linear morph M from Γ ′ to Γ ′′ is
unidirectional and planar.

Proof. Since Γ ′ and Γ ′′ have the same y-assignment (x-assignment), given that
they are left-to-right (bottom-to-top) equivalent, it follows that all the vertices
move along horizontal (vertical) trajectories. Thus, M is unidirectional. Also,
since Γ ′ and Γ ′′ are left-to-right (bottom-to-top) equivalent, each horizontal
(vertical) line crosses the same sequence of vertices and edges in both Γ ′ and
Γ ′′. Thus, by Lemma 4, M is planar. ��

Lemma 5 allows us to devise a simple morphing technique between any two
upward planar drawings Γ0 and Γ1 of the same upward plane graph G, when a
pair of upward planar drawings of G with special properties can be computed.
We say that the pair (Γ0, Γ1) is an hvh-pair if there exist upward planar drawings
Γ ′
0 and Γ ′

1 of G such that: (i) Γ0 and Γ ′
0 are left-to-right equivalent, (ii) Γ ′

0 and
Γ ′
1 are bottom-to-top equivalent, and (iii) Γ ′

1 and Γ1 are left-to-right equivalent.
Our morphing tool is expressed by the following lemma.

Lemma 6 (Fast morph). Let (Γ0, Γ1) be an hvh-pair of upward planar draw-
ings of an upward plane graph G. There is a 3-step upward planar morph from
Γ0 to Γ1.

Proof sketch. We define the morph M as 〈Γ0, Γ
′
0, Γ

′
1, Γ1〉. The drawings Γ ′

0 and
Γ ′
1 exist by hypothesis. Lemma 5 guarantees that M is unidirectional and planar.

We use Lemma 4 to prove that M is upward. ��
The next lemma will allow us to restrict our attention to biconnected graphs.

Lemma 7. Let Γ0 and Γ1 be two upward planar drawings of an n-vertex upward
plane graph G whose underlying graph is connected. There exist upward planar
drawings Γ ′

0 and Γ ′
1 of an O(n)-vertex upward plane graph G′ that is a supergraph

of G, whose underlying graph is biconnected, and such that Γ ′
0[G] = Γ0 and

Γ ′
1[G] = Γ1. Further, if G is reduced or an st-graph, then so is G′.

Proof sketch. We iteratively apply the following procedure. Consider a cutvertex
v of G and two edges that belong to distinct blocks of G and that are consecutive
in the circular order of the edges incident to v. Let u and w be the end-vertices
of such edges different from v. We add to G a vertex v′ and two edges connecting
v′ with u and w; these edges are oriented as the ones connecting v with u and
w, respectively. By placing v′ and its incident edges inside the face of G incident
to v, u, and w, we obtain an upward plane supergraph of G with one block less
than G. Upward planar drawings of this graph extending Γ0 and Γ1 can be easily
obtained. The repetition of this procedure proves the lemma. ��

4 Plane st-Graphs

In this section, we show algorithms for constructing upward planar morphs
between upward planar drawings of plane st-graphs.



98 G. Da Lozzo et al.

4.1 Reduced Plane st-Graphs

We first consider plane st-graphs without transitive edges. We have the following.

Lemma 8. Any two upward planar drawings Γ0 and Γ1 of a reduced plane st-
graph G form an hvh-pair.

Proof sketch. By Lemma 7 we can assume that G is biconnected. We construct
two upward planar drawings Γ ′

0 and Γ ′
1 that, together with Γ0 and Γ1, satisfy

Conditions (i)–(iii) of the definition of hvh-pair. We construct Γ ′
0 and Γ ′

1 as
follows. First, we draw the left boundary of the outer face of G so that each
vertex has the same y-coordinate in Γ ′

i as in Γi, for i = 0, 1. In both Γ ′
0 and Γ ′

1

the x-coordinates of all the vertices of this path are 0. Then, we add to Γ ′
0 and

Γ ′
1 the right boundaries of the st-faces of G one by one, following a topological

sorting of the oriented dual graph of G. In Γ ′
0 (in Γ ′

1) we assign to the internal
vertices of each right boundary the same y-coordinates they have in Γ0 (Γ1); since
G is reduced, the set of these vertices is non-empty. All the internal vertices of
each right boundary get the same x-coordinate, which is used in both Γ ′

0 and
Γ ′
1; this x-coordinate is sufficiently large so that no crossing is introduced. ��

Combining Lemma 6 with Lemma 8 we obtain the following result.

Theorem 2. Let Γ0 and Γ1 be any two upward planar drawings of a reduced
plane st-graph. There is a 3-step upward planar morph from Γ0 to Γ1.

4.2 General Plane st-Graphs

We now turn our attention to general plane st-graphs. We restate here, in terms
of plane st-graphs, a result by Hong and Nagamochi [19] that was originally
formulated in terms of hierarchical plane (undirected) graphs.

Theorem 3 ([19], Theorem 8). Consider an internally 3-connected plane st-
graph G and let yG be a y-assignment of the vertices of G such that each vertex
v is assigned a value yG(v) that is greater than those assigned to its predecessors.
There exists a strictly-convex upward planar drawing of G satisfying yG.

We use Theorem 3 to prove the following theorem, which allows us to restrict
our attention to maximal plane st-graphs.

Theorem 4. Let Γ0 and Γ1 be two upward planar drawings of an n-vertex plane
st-graph G. Suppose that an algorithm A exists that constructs an f(r)-step
upward planar morph between any two upward planar drawings of an r-vertex
maximal plane st-graph. Then there exists an O(f(n))-step upward planar morph
from Γ0 to Γ1.

Proof sketch. By Lemma 7 we can assume that G is biconnected. We augment
G to a maximal plane st-graph G∗ by inserting a vertex vf into each face f
of G and by inserting a directed edge from the source-switch sf of f to vf
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and directed edges from vf to every other vertex incident to f . We define a
y-assignment y0

G∗ for G∗ by setting y0
G∗(v) = y0

G(v) for each vertex v ∈ V (G)
and by setting, for each vertex vf ∈ V (G∗) \ V (G), a value for y0

G∗(vf ) that is
larger than y0

G∗(sf ) and smaller than y0
G∗(v), for every other vertex v incident to

f . We similarly define a y-assignment y1
G∗ using the y-coordinates of Γ1. We use

Theorem 3 to construct upward planar drawings Γ ∗
0 and Γ ∗

1 of G∗ satisfying y0
G∗

and y1
G∗ , respectively. By Lemma 3 we have that Γ ∗

0 [G] and Γ0 (Γ ∗
1 [G] and Γ1)

are left-to-right equivalent. Therefore, by Lemma 5, the linear morph M′
0 from

Γ0 to Γ ∗
0 [G] (M′

1 from Γ ∗
1 [G] to Γ1) is unidirectional and planar. Such a morph

is also upward since both Γ0 and Γ ∗
0 [G] (Γ1 and Γ ∗

1 [G]) are upward planar and
left-to-right equivalent. Then, we apply algorithm A to construct a morph from
Γ ∗
0 to Γ ∗

1 and restrict such a morph to a morph M′′ from Γ ∗
0 [G] to Γ ∗

1 [G]. The
morph from Γ0 to Γ1 is the concatenation of M′

0, M′′, and M′
1. ��

The kernel of a polygon P is the set of points p inside or on P such that, for
any point q on P , the open segment pq lies inside P .

Lemma 9 (Convexify). Let Γ be an upward planar drawing of an internally
3-connected plane st-graph G, let f be an st-face of G, and let P be the polygon
representing f in Γ . There exists an upward planar drawing Γ ′ of G such that
the polygon representing the boundary of f is strictly-convex and M = 〈Γ, Γ ′〉
is a unidirectional upward planar morph. Further, if v is a vertex incident to f
that is in the kernel of P in Γ , then v is in the kernel of the polygon representing
the boundary of f throughout M.

Proof. Denote by yG the y-assignment for the vertices of G induced by Γ . By
Theorem 3, there exists a strictly-convex upward planar drawing Γ ′ of G sat-
isfying yG. Thus, by Lemma 3 and since G is a plane st-graph, Γ and Γ ′ are
left-to-right-equivalent drawings. By Lemma 5, the linear morph M from Γ to
Γ ′ is unidirectional and planar. Since Γ and Γ ′ are upward, M is upward as
well.

Consider now a vertex v incident to f that is in the kernel of P in Γ . Since
the polygon representing the boundary of f in Γ ′ is strictly-convex, v is also in
the kernel of such a polygon. Augment G to a graph G∗ by introducing (suitably
oriented) edges connecting v to the vertices incident to f that are not already
adjacent to v. Since v is in the kernel of the polygon representing the boundary
of f both in Γ and in Γ ′, this results in two left-to-right equivalent upward
planar drawings Γ∗ and Γ ′

∗ of G∗. By the same arguments used for M, we have
that the linear morph M∗ = 〈Γ∗, Γ ′

∗〉 is planar. Hence, v is in the kernel of the
polygon representing the boundary of f throughout M. ��

Given two upward planar straight-line drawings Γ0 and Γ1 of a maximal plane
st-graph G, our strategy for constructing an upward planar morph from Γ0 to Γ1

is as follows: (1) we find a simple vertex v of G of degree at most 5; (2) we remove
v and its incident edges from G, Γ0, and Γ1, obtaining upward planar drawings
Γ ′
0 and Γ ′

1 of an upward plane graph G′; (3) we triangulate G′, Γ ′
0, and Γ ′

1 by
inserting edges incident to a former neighbor u of v, obtaining upward planar
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drawings Γ ′′
0 and Γ ′′

1 of a maximal plane st-graph G′′; (4) we apply induction
in order to construct an upward planar morph M′′ from Γ ′′

0 to Γ ′′
1 ; and (5) we

remove the edges incident to u that are not in G and insert v and its incident
edges in M′′, thus obtaining an upward planar morph M from Γ0 to Γ1. In
order for this strategy to work, we need u to satisfy certain properties, which are
expressed in the upcoming definition of distinguished neighbor; further, we need
to perform one initial (and one final) unidirectional upward planar morph so to
convexify the polygon representing what will be called a characteristic cycle.

Let v be a simple vertex with degree at most 5 in a maximal plane st-
graph G. Let G(v) be the subgraph of G induced by v and its neighbors. A
predecessor u of v in G is a distinguished predecessor if, for each predeces-
sor w of v, there is a directed path in G(v) from w to v through u. A suc-
cessor u of v in G is a distinguished successor if, for each successor w of v,
there is a directed path in G(v) from v to w through u. A neighbor of v is
a distinguished neighbor if it is a distinguished predecessor or successor of v.
Examples of distinguished neighbors are in Fig. 2.

v

(a)

v

s1

s2

t1 t2

(b)

v

(c)

v

s1

s2
t1 t2

(d)

v

s

s2

t1 t2

(e)

1

Fig. 2. Distinguished predecessors (enclosed by red squares), distinguished successors
(enclosed by red circles), and characteristic cycles (filled yellow). (Color figure online)

Lemma 10. The vertex v has at most one distinguished predecessor, at most
one distinguished successor, and at least one distinguished neighbor.

We define the characteristic cycle C(v) as follows. Let cG(v) be the subgraph
of G induced by the neighbors of v. Since v is simple, the underlying graph of
cG(v) is a cycle. If cG(v) is an st-cycle, then C(v) := cG(v); this is always the
case if v has degree 3. Otherwise, cG(v) has two sources s1 and s2 and two sinks
t1 and t2. Suppose that G contains the edges s1v and vs2, the cases in which
it contains the edges s2v and vs1, or t1v and vt2, or t2v and vt1 are analogous.
Suppose also, w.l.o.g., that s1, t1, s2, and t2 appear in this clockwise order along
cG(v). If v has degree 4, then we define C(v) as the st-cycle composed of the
edges s1v, vs2, s2t2, and s1t2. Otherwise, v has degree 5. Consider the directed
path P1 = (v1, v, v2), where v1 (v2) is the distinguished predecessor (successor)
of v or, if such a node does not exist, the source s1 (s2). Then P1 splits cG(v)
into two paths P2 and P3 with length 2 and 3, respectively. Cycle C(v) is defined
as the st-cycle composed of P1 and P3. We have the following structural lemma.
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Lemma 11. The characteristic cycle C(v) is an st-cycle which contains all the
distinguished neighbors of v. Further, all the vertices of cG(v) not belonging to
C(v) are adjacent to all the distinguished neighbors of v.

Characteristic cycles are used in order to prove the following.

Lemma 12. There is a unidirectional upward planar morph 〈Γ, Γ ′〉, where in
Γ ′ the distinguished neighbors of v are in the kernel of the polygon represent-
ing cG(v).

Proof sketch. If C(v) is convex in Γ , then by Lemma 11 the distinguished neigh-
bors of v already are in the kernel of the polygon representing cG(v). Otherwise,
we remove the interior of C(v) and use Lemma 9 to make C(v) convex. Then,
we suitably reinsert the interior of C(v) to obtain the desired morph. ��

The following concludes our discussion on maximal plane st-graph.

Theorem 5. Let Γ0 and Γ1 be two upward planar drawings of an n-vertex max-
imal plane st-graph. There is an O(n)-step upward planar morph from Γ0 to
Γ1.

Proof sketch. If n = 3, then the desired morph is constructed as in Lemma 6. If
n > 3, then by Lemma 2 a simple vertex v exists in G with degree at most 5.
By Lemma 10, v has a distinguished neighbor u. By Lemma 12, unidirectional
upward planar morphs 〈Γ0, Λ0〉 and 〈Λ1, Γ0〉 exist, where Λ0 and Λ1 are upward
planar drawings of G in which u lies in the kernels of the polygons representing
C(v). Remove v from G, Λ0, and Λ1, and insert (suitably oriented) edges between
u and the former neighbors of v that are not already adjacent to u, thus obtaining
upward planar drawings Γ ′′

0 and Γ ′′
1 of an (n − 1)-vertex maximal plane st-

graph G′′. Recursively compute an upward planar morph M′′ from Γ ′′
0 to Γ ′′

1 .
Finally, remove the edges incident to u that are not in G and insert v and its
incident edges in M′′, obtaining an upward planar morph M from Λ0 to Λ1.
This, together with 〈Γ0, Λ0〉 and 〈Λ1, Γ0〉, provides the desired morph from Γ0

to Γ1. ��
We finally get the following.

Corollary 1. Let Γ0 and Γ1 be two upward planar drawings of an n-vertex plane
st-graph. There exists an O(n)-step upward planar morph from Γ0 to Γ1.

Proof. The statement follows by Lemma 7, Theorem 4, and Theorem 5. ��

5 Upward Plane Graphs

Let G be an upward plane graph, let f be a face of G, and let u, v, and w be
three clockwise consecutive switches of f . Also, let v1 (v2) be the neighbor of v
clockwise preceding (succeeding) v along f , and let u1 (u2) be the neighbor of u
clockwise preceding (succeeding) u along f . We say that [u, v, w] is a pocket for
f if ∠(v1, v, v2) = small and ∠(u1, u, u2) = large. The following is well-known.
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Lemma 13 ([9]). Let G be an upward plane graph and let f be a face of G that
is not an st-face. Then, there exists a pocket [u, v, w] for f .

Next, we give a lemma that shows how to “simplify” a face of an upward
plane graph that is not an st-graph, by removing one of its pockets.

Lemma 14. Let G be an n-vertex (reduced) upward plane graph, let [u, v, w]
be a pocket for a face f of G, and let Γ be an upward planar drawing of G.
Suppose that an algorithm A (AR) exists that constructs an f(r)-step (fR(r)-
step) upward planar morph between any two upward planar drawings of an r-
vertex (reduced) plane st-graph. Then, there exists an O(f(n))-step (O(fR(n))-
step) upward planar morph from Γ to an upward planar drawing Γ ∗ of G in
which w and u have direct visibility and such that u lies below w, if a directed
path exists in f from v to u, and it lies above w, if a directed path exists in f
from u to v.

Proof sketch. Suppose that a directed path pvu exists in f from v to u
(see Fig. 3a); the case in which a directed path exists in f from u to v can be
treated symmetrically. We first show that there exists an upward planar drawing
Γ ′ of G such that (i) it is possible to add to Γ ′ an upward planar drawing of two
directed paths p′ and p′′ from u to w that form an st-face (see Fig. 3b), and (ii)
there exists an O(f(n))-step (O(fR(n))-step) upward planar morph M′ from Γ
to Γ ′. We then show that there exists an upward planar drawing Γ ∗ of G such
that (iii)vertices w and u have direct visibility and u lies below w (see Fig. 3c),
and (vi)there exists an O(f(n))-step (O(fR(n))-step) upward planar morph M∗

from Γ ′ to Γ ∗. Composing M′ and M∗ yields an upward planar morph from
Γ to Γ ∗. ��
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v1v2

u1
u2

pvu
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p′
p′′
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Fig. 3. Illustrations for the proof of Lemma 14.

Theorem 6. Let Γ0 and Γ1 be two upward planar drawings of an n-vertex
(reduced) upward plane graph G. Suppose that an algorithm A (AR) exists
that constructs an f(r)-step (fR(r)-step) upward planar morph between any two
upward planar drawings of an r-vertex (reduced) plane st-graph. There exists an
O(n · f(n))-step (an O(n · fR(n))-step) upward planar morph from Γ0 to Γ1.
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Proof sketch. By Lemma 7, we can assume that G is biconnected. In order to
prove the statement, we show that there exists a ((2	(G) + 1) · f(n))-step (a
((2	(G)+1)·fR(n))-step) upward planar morph from Γ0 to Γ1, if G is a (reduced)
upward plane graph. Since 	(G) ∈ O(n), the statement follows.

The proof is by induction on 	(G). In the base case 	(G) = 0 and thus G is a
(reduced) plane st-graph. Hence, by applying algorithm A (AR) to Γ0 and Γ1,
we obtain an f(n)-step (an fR(n)-step) upward planar morph from Γ0 to Γ1.

In the inductive case 	(G) > 0. Then there exists a face f of G that is not
an st-face. Thus, by Lemma 13, there exists a pocket [u, v, w] for f . By Lemma
14, we can construct upward planar drawings Γ ′

0 and Γ ′
1 of G in which u and w

have direct visibility and u lies below w (assuming that a directed path exists
in f from v to u, the other case being symmetric), and such that there exists an
f(n)-step (an fR(n)-step) upward planar morph Mstart from Γ0 to Γ ′

0 and an
f(n)-step (an fR(n)-step) upward planar morph Mfinish from Γ ′

1 to Γ1.
Let G∗ be the plane graph obtained from G by splitting f with a directed

edge uw. Graph G∗ is an upward plane graph whose upward planar embedding
is constructed by assigning to each switch in G∗ the same label small or large
it has in G. Also, 	(G∗) = 	(G) − 1, since u is not a switch in G∗. Further, G∗ is
reduced if G is reduced, since there exists no directed path from u to w in G (due
to the fact that [u, v, w] is a pocket of f). Let Γ ∗

0 and Γ ∗
1 be the planar straight-

line drawings of G∗ obtained by drawing the directed edge uw as a straight-line
segment connecting u and w in Γ ′

0 and in Γ ′
1, respectively. It is easy to see

that Γ ∗
0 and Γ ∗

1 are upward planar drawings of G∗. Therefore, by the inductive
hypothesis and since V (G∗) = V (G), we can construct a ((2	(G∗)+1)·f(n))-step
(a ((2	(G∗)+1)·fR(n))-step) upward planar morph from Γ ∗

0 to Γ ∗
1 . Observe that,

since G ⊂ G∗, restricting each drawing in M∗ to G yields a
(
(2	(G)− 1) · f(n)

)
-

step upward planar morph M− of G from Γ ′
0 to Γ ′

1. Therefore, by concatenating
morphs Mstart, M−, and Mfinish, we obtain a

(
(2	(G) + 1) · f(n)

)
-step (a(

(2	(G) + 1) · fR(n)
)
-step) upward planar morph of G from Γ0 to Γ1. ��

Theorems 2, 4, and 6, imply the following main result.

Theorem 7. Let Γ0 and Γ1 be two upward planar drawings of the same n-vertex
(reduced) upward plane graph. There exists an O(n2)-step (an O(n)-step) upward
planar morph from Γ0 to Γ1.

6 Conclusions and Open Problems

In this paper, we addressed for the first time the problem of morphing upward
planar straight-line drawings. We proved that an upward planar morph between
any two upward planar drawings of the same upward plane graph always exists.
It easy to see that all our algorithms can be implemented in polynomial time.

Several problems remain open. In our opinion the most interesting question
is whether an O(1)-step upward planar morph between any two upward planar
drawings of the same plane st-graph exists. In case of a positive answer, by
Theorem 6, an optimal O(n)-step upward planar morph would exist between
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any two upward planar drawings of the same n-vertex upward plane graph. In
case of a negative answer, it would be interesting to find broad classes of upward
plane graphs that admit upward planar morphs with a sub-linear number of
steps. We proved that reduced plane st-graphs have this property and we ask
whether the same is true for series-parallel digraphs [8,14].
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Abstract. Chaotic attractors are solutions of deterministic processes, of
which the topology can be described by templates. We consider templates
of chaotic attractors bounded by a genus–1 torus described by a linking
matrix. This article introduces a novel and unique tool to validate a link-
ing matrix, to optimize the compactness of the corresponding template
and to draw this template. The article provides a detailed description of
the different validation steps and the extraction of an order of crossings
from the linking matrix leading to a template of minimal height. Finally,
the drawing process of the template corresponding to the matrix is saved
in a Scalable Vector Graphics (SVG) file.

Keywords: Chaotic attractor · Template
Linking matrix · Optimization · Visualization

1 Introduction

Resulting of theoretical studies on chaos attractors, applications including
chaotic dynamics can be found in a multitude of domains. Their range goes
from computer science [23], through classical sciences with physical networks
[14], biology and genetics [27] and chemistry with chaotic dynamics in chemical
reactions [8], all the way to electronics and chaos in electronic devices [13] and
even environmental studies on population evolution [5].

Birman and Williams [6] introduce templates as knot-holder to describe the
topological structure of chaotic attractors. The notion of linking matrices to
describe chaotic attractors with integers has been first introduced by Mindlin
et al. in 1990 [18]. The matrix contains the number of torsions and permutations
occurring along the flow of an attractor. The template is a ribbon graph com-
bined with a layering graph. In 1998, Gilmore wrote an extensive survey on the
research on chaotic dynamical systems over the past decade [11], in which one
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can see various drawings of templates. In his paper, he provides the summary of
the topological analysis from dynamical system to template.

The subject of chaotic dynamics studies are promising and on-going. But it
clearly misses matrices validation and drawing tools. The research community
would benefit from an efficient application that verifies the validity of matrices
and draws their corresponding template. The novel tool presented in this paper
is publicly available online at https://gitlab.uni.lu/pcog/cate, and aims to fill
this gap.

This paper is structured as follows. In Sect. 2 we give an introduction to
the problem. Section 3 provides a state-of-the-art analysis in the field of chaotic
attractors, focusing on their validation and visualization. In Sect. 4, we first out-
line our approach to determine the validity of a linking matrix. Secondly, we
describe the procedure to get the minimal height of a template and its visual-
ization. In Sect. 5, we present the experimental work and the results in order to
validate our proposed approach. Finally, we conclude and outline some directions
for future work in Sect. 6.

2 Problem Description

A chaotic attractor is a solution of a dynamic deterministic process that is very
sensitive to its initial conditions. The solution will converge to the same global
shape (the attractor), independently of the starting position in the basin of
attraction. Malasoma [16] proposed a simple differential equations system

⎧
⎨

⎩

ẋ = y
ẏ = z
ż = −αz + xy2 − x,

(1)

−1.5

−1

−0.5

0

0.5

1

1.5

−5 −4 −3 −2 −1 0 1 2 3 4 5

Say

x

Poincaré section 1 2 3 4

(a) Chaotic attractor (b) Template

Fig. 1. A representation of a template of a chaotic attractor solution to the Malasoma
system (1) for α = 2.027. (a) Chaotic attractor with the Poincaré section (see [25] for
the definition of this section named Sa). (b) Template of the chaotic attractor from
the Poincaré section.

https://gitlab.uni.lu/pcog/cate
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with chaotic dynamics as solutions when α ∈ [2.027; 2.08]. A detailed analysis
of the topological properties of the attractors that can be produced by this sys-
tem has been proposed in [24,25]. For instance, Fig. 1 summarizes some steps
of the topological characterization (Poincaré section and template) of a chaotic
attractor when α = 2.027. In this article, we are considering only attractors
bounded by genus–1 torus such as Rössler attractors [26] or Malasoma attrac-
tors [16] (Fig. 1a); it does not work for more complex attractors such as Lorenz
attractors [15] bounded by a genus–3 torus.

A template is a compact branched two-manifold with boundary and smooth
expansive semiflow built locally from two types of charts: joining and splitting
[10]. It is a figure that represents the topological structure of a chaotic attractor.
Since the 1990s there have been two different ways to represent templates with
linking matrices that are still used today, as one can see in the recent paper of
Gilmore and Rosalie [12], where algorithms are given to switch from one repre-
sentation to the other. Hereinafter, the representation first given by Melvin and
Tufillaro [17] is considered. This representation only requires a linking matrix,
and gives a standard representation at the end, where at the bottom of the tem-
plate the strips are ordered from the back-most on the left to the front-most on
the right. This is the representation used for the template shown in Fig. 1. We
also use the orientation convention defined by Tufillaro et al. [17,18] (Fig. 2).

Convention Torsions Permutations

+1 −1 positive negative positive negative

Fig. 2. Convention of representing oriented crossings. The permutation between two
branches is positive if the crossing generated is equal to +1, otherwise it is negative.
We use the same convention for torsions.

A linking matrix is a matrix that details the number and the direction of
crossings in a template. As illustrated in Fig. 2, a torsion is a twist of a branch
with itself and a permutation is an exchange of position of two branches. Fur-
thermore, the torsions and permutations can be either positive or negative as
defined by the orientation convention shown in Fig. 2. The linking matrix M
corresponding to Fig. 1 is given by (2).

M =

⎡

⎢
⎢
⎣

1 0 0 0
0 0 −1 −1
0 −1 −1 −1
0 −1 −1 0

�
��� (2)

The diagonal elements in the linking matrix correspond to the torsions. As
an example, consider matrix M . The element M1,1 = 1 represents the number of
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torsions of branch one of the template from Fig. 1. This branch performs exactly
one single positive torsion as indicated by the matrix M . The non-diagonal ele-
ments correspond to the number of permutations between the different branches.
As an example, M2,4 = −1 means that branches two and four perform a negative
permutation which is depicted by the crossing of the orange and red branch in
Fig. 1. It is sufficient to consider the part of the matrix above the diagonal, as it
is symmetric.

The linking matrix M is unique but the corresponding template can be drawn
in various ways. Some representations can be longer than others. This is why our
goal is to find the most concise template. This means that we aim to maximize
the number of permutations per level of the template. There might be however
several templates with minimum size. In this work we only consider the first
template of minimum size generated by the algorithm.

An important remark is that not every matrix corresponds to a valid template
of a chaotic attractor. As a chaotic attractor is a solution of a deterministic
process and the linking matrix represents it, such a matrix needs to fulfill certain
criteria. We will describe the tool we created to verify the validity of a linking
matrix, to solve the underlying scheduling problem to find the order of the
permutations and to determine the most concise representation of a template.
Finally, the tool also renders the solution found.

3 Related Work

The visualization of a template has been addressed in Chap. 5 Sect. 5 of [28]
and, according to our best knowledge, the validation of a linking matrix has
never been addressed. Usually, this has been done manually by each author. The
only comparable project we found is a Mathematica code written by Tufillaro
et al. [28], which draws templates. Extensive details are available in the Chap.
5 of [28]. It has been used recently in papers written by Barrio et al. [2–4].
This implementation, however, only works on older versions of Mathematica.
Furthermore, one has to specify as input an explicit order of crossings, which
means that it does not find them automatically from a linking matrix, unlike
the algorithm presented in this paper. This Mathematica code does not provide
a validity verification either, it is purely a tool for drawing “clean” templates.

To the best of our knowledge, such a tool has never been proposed and could
be beneficial for the scientific community, as it is not always easy to see whether a
matrix is valid or not. Indeed there have been publications with invalid matrices
that our tool would have marked as such [18]. Some other papers have presented
quite unattractive drawings of templates (eg. Fig. 4 of [1]) and we feel that our
tool would provide researchers with an easy and rapid way to solve this problem.
Moreover, it can also be used by the community as a tool for building a linking
matrix from the linking number numerically obtained during the topological
characterization method for attractors bounded by a genus–1 torus (see [11,21]
for details).
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4 Linking Matrix and Template of a Chaotic Attractor

In this section, we are going to discuss the approach we developed in order to
check the validity of a given linking matrix, to find a corresponding template of
minimal height as well as to visualize it. Firstly in Sect. 4.1, we will describe the
different validation steps which we are applying on a matrix and justify their
necessity. Secondly, Sect. 4.2 explains the tree construction we use in order to
minimize the height of the resulting template and the methods we apply for the
visualization of the template.

Algorithm 1. Drawing of the template of a linking matrix.
1: verify correct matrix input form
2: verify continuitiy constraints of matrix
3: verify determinism constraints of matrix
4: if passed all verification steps then:
5: construct tree
6: find shortest path in tree
7: draw template

4.1 Validation of a Linking Matrix

A linking matrix is a topological representation of a chaotic attractor, hence it
needs to satisfy certain constraints linked to the attractor. Essentially, a template
consists of strips that are stretched, twisted, folded and glued at the bottom over
and over again after a clockwise rotation. We remind that we are only considering
templates of attractors bounded by a genus–1 torus.

In order to visualize this, one can imagine having a sheet of paper split into
several strips. The behavior of those strips is given by the elements of the matrix.
If one can deform the paper in such a way that the paper respects the constraints
given by the matrix without having to tear it apart, then the matrix corresponds
to a valid template. If tears are unavoidable, no valid template exists. If there
is a tearing mechanism in the attractor, we are out of the scope because this
means that the attractor is at least bounded by a genus–2 torus.

Validation Steps. The steps below evaluate whether or not a linking matrix
is valid, i.e., if it corresponds to a chaotic attractor.

First of all, we need to verify that a matrix is of the right form. A valid
linking matrix, by definition, has a certain construction. It is square, symmetric
and has integers as values [17].

The next three validation steps are constraints on the continuity of the tem-
plate. Going back to the sheet of paper example, these constraints guarantee
that no tears occur. The first of these constraints is linked to the diagonal ele-
ments of the matrix. These elements have to respect the condition which dictates
that they have to differ by exactly one from their diagonal neighbors. Violating
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this constraint would result in a discontinuous template. Similar to the diagonal
constraint, a linking matrix needs to satisfy the condition which states that an
arbitrary value in the matrix cannot differ from the values of all of its neighbors
by more than one. Finally, the last continuity constraint is based on the order of
the elements on the bottom of the template. From a linking matrix, one needs
to be able to obtain a valid order for the template. The order is an array which
defines the position of the branches at the bottom of the template after perform-
ing the crossings. We obtain this order from the matrix by applying a simple
algorithm described in [17]. A valid ordering array contains all branch indexes
exactly once. An index being present twice would mean that two branches would
end up at the same end position, which is impossible without a tear and therefore
would result in an invalid template.

The last two verification steps are linked to the determinism of a chaotic
attractor. As stated earlier, chaotic attractors are solutions of dynamic deter-
ministic systems, meaning that from any starting point there is a unique image
and no choice is possible. As the template is a topological representation of a
chaotic attractor, it also needs to respect its intrinsic properties like determin-
ism. The first of those two verifications consists in checking whether the linking
matrix has 2 × 2 sub-matrices located on its diagonal that are not valid. Up to
addition of a global torsion (see [24] for details) there are two 2×2 matrices that
are not valid, namely B and C:

{

B =
[−1 0

0 0

�
, C =

[
0 0
0 −1

�
, C + 1 =

[
1 1
1 0

�
, . . .

}

. (3)

The set (3) corresponds to matrices that are associated to discontinuous tem-
plates. If the matrix has such a sub-matrix on its diagonal, this means that
it presents a choice opportunity at some point and violates the determinism
condition. Therefore, it is not valid.

Finally, in the second step, which we call planarity check, we verify the order
of the end positions of the template. The idea is to take the final positions of the
branches at the end of the template, and connect them with arcs in a certain
way. Start with 1, and connect it to 2 over the list. Then connect 2 to 3 below
the list, 3 to 4 over, and so on. If the arcs cannot be drawn without intersecting,
then the matrix is invalid. This is illustrated by Fig. 3, where the left part of the
figure corresponds to this verification of the matrix (2), and has no intersections.
The right side on the other hand corresponding to matrix N (4) does not pass
the test.

N =

⎡

⎢
⎢
⎣

0 0 0 0
0 1 0 −1
0 0 0 −1
0 −1 −1 −1

�
��� (4)

If this planarity condition was not verified and there was an intersection,
the system would have a choice when arriving at this intersection, which would
violate the determinism assumption. Therefore, a matrix that does not satisfy
this condition cannot correspond to a valid template.
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214 31 314 21

Fig. 3. Planarity check of matrices (2) (left) and (4) (right).

Order of the Validation Steps. The order of the different validation steps
is defined in the way described above, we start checking the most general con-
straints, and then check the most specific ones (Algorithm 1). For example, if a
matrix is not square matrix, there is no need to verify specific constraints like
the diagonal constraint, as the matrix is not even a linking matrix by definition.
The same idea applies to the other criteria.

In literature, there have been publications with invalid matrices that our
procedure would have labeled as such. One example would be the first 4 ×
4 linking matrix in [18], which gives the matrix with the following diagonal
elements: 6, 5, 5 and 4. This matrix would not have passed the validation step
which dictates that all elements on the diagonal of a matrix have to differ by
one from their diagonal neighbors.

K =

⎡

⎢
⎢
⎣

3 2 2 3
2 2 2 3
2 2 3 4
3 3 4 4

�
��� (5)

For the matrix K (5) the ordering validation step fails because the ordering at the
end is given by the array [2, 2, 3, 3], meaning that both strips one and four are on
position two and strips two and three are on position three. As this is a problem
for continuity, this matrix would not pass the order test. This illustrates that a
tool to validate a matrix would facilitate the analysis of linking matrices, as it
is not always easy to see whether a matrix is valid or not. A complete example
of the validation process can be found in the appendices of the extended version
[20].

4.2 Visualization of a Template

Tree Construction. After having verified the validity of a linking matrix, the
next step is to generate a visualization of a template with minimal height from
a given linking matrix. In order to determine the minimal height of a template,
one has to optimize the scheduling of all the crossings between the different
branches. For this purpose, we developed an approach where we take as input a
valid linking matrix and make use of its permutations to generate a tree graph
using a breadth first approach, meaning that we build it level by level.

To do this, we follow Algorithm 2. We derive the initial order from the matrix
which represents the root of the tree as a first step. Furthermore, we also retrieve
the list of performable permutations between the branches. Beginning at the
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Algorithm 2. Tree construction
1: if validMatrix(matrix) then
2: init = Node(permutationList, order, father = None) ;
3: finalOrder = getF inalOrder(matrix)
4: queue = [init] ;
5: while queue �= ∅ do
6: node = queue[0] ;
7: queue = queue[1 :] ;
8: toExecute = permutationList ∩ allNeighborCombinations(node.order) ;
9: if toExecute = ∅ and node.order = finalOrder then

10: setLeaf(node) ;
11: break ;

12: for p in toExecute do
13: newNode =
14: Node(updatedPermutationList(p), updatedOrder(p), father = node) ;
15: queue.append(newNode) ;

root, we simulate the permutations and generate additional nodes which are
annotated with an updated order and then added to the tree. For each node
created, the list of permutations yet to be performed will differ. Eventually, a
node representing a leaf with an empty permutation list and a valid final order
will be generated. At this point, the computation of the tree is stopped. By
traversing the tree from the root to that leaf, we get the sequence of permutations
to execute in order to obtain a template of minimal height. To illustrate this
procedure, consider the following 4 × 4 matrix A (6).

A =

⎡

⎢
⎢
⎣

−1 −1 −1 −1
−1 0 0 0
−1 0 1 1
−1 0 1 2

�
��� (6)

From this matrix, we get an initial order where the branches are numbered
beginning from 1 to 4. To retrieve the set of permutations to perform, we have
to consider the non-diagonal elements of the matrix. For example, the branch
with the label 1, has to perform a negative permutation with the branches
2, 3 and 4. There is also a positive permutation between branch 3 and 4.
So, we obtain the following list of permutations which needs to be executed
[(1, 2), (1, 3), (1, 4), (3, 4)].

To find the permutations which can be performed at this stage, we need
to consider our initial order from which we can derive which branches are
direct neighbors. For instance, we obtain the following list of neighbor pairs
[(1, 2), (2, 3), (3, 4)]. By taking the intersection of the neighbor list and the set
of permutations to perform, we obtain a set of permutation which are possible
to process during the initial stage. By doing so, we can permute branch 1 and
2 or 3 and 4. However, we could also perform both permutations in parallel as
performing one of them does not prohibit the other one. As illustrated on top of
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1, 2, 3, 41, 2, 3, 4

(1,2), (3, 4)
2, 1, 4, 3

2, 1, 3, 4

1, 2, 4, 3

2, 4, 1, 3 2, 4, 3, 1

2, 3, 1, 4

2, 1, 4, 3

2, 1, 4, 3

2, 3, 4, 1

2, 4, 1, 3

2, 4, 1, 3

2, 4, 3, 1

2, 4, 3, 1

2, 4, 3, 1

(1, 4) (1, 3)

(1, 4)

(1, 4)

(1, 4) (1, 3)(1, 2)

(3, 4)

(1, 3)

(1,2)

(3, 4)

(1, 3)

(3, 4)

Root Level 1 Level 2 Level 3 Level 4

Fig. 4. Final and complete tree for matrix A from (6) including the root and the
child nodes generated per level. Each node represents the updated order after each
permutation described by the incoming edge. (Color figure online)

Fig. 4, we see the root labeled with the initial order of the branches. After the
first set of permutations have been performed, different child nodes are created
at level 1. The corresponding order of each child node is obtained by switching
the positions of the permuted branches in the initial order of the root.

From the new order of each child node, we try to find a new permutation to
perform by defining the neighbor pairs. We then recompute the possible permu-
tations for this iteration. Each iteration will add one or more children to tree
and this process is repeated until all permutations have been performed or no
new permutation can be computed. However, a node which can no longer per-
form a permutation while there are still some permutations in the set left to be
executed, is not considered valid.

Figure 4 also shows the final tree after all permutations have been performed.
The green arrows leading to the green colored leaf denote the shortest path where
the labels show the order of execution of the permutations to get to the final order
of the template. This will result in a template of shortest possible height. There
are also three other possible solutions but they will not reduce the height of the
template to a minimum as they perform one additional permutation. However,
we stop the computation of building the tree after encountering the first valid
leaf, so the red nodes will never be computed. The breadth-first construction of
the tree guarantees that the first found solution is the shortest one.

Drawing of the Template. Finally, after verification of the linking matrix
and after having found the shortest path in the tree corresponding to the most
concise order of crossings, we can now draw the template. To draw the templates
as scalable vector graphics, we used python’s swgwrite module [19].

In order to draw both torsions and permutations, we use a cubic Bézier curve
as shape. To illustrate how we use it, consider two points (x1, y1) and (x2, y2)
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and suppose we want to draw this Bézier curve between them, in the same shape
as those used in the permutations and torsions. The starting point is given by
(x1, y1) and we will give the rest of the points relative to this starting point. The
relative end point is then given by (x2 −x1, y2 − y1) and the two relative control
points by (x1, (y2 − y1)/2) and (x2 − x1, (y2 − y1)/2). So the control points are
always halfway in height between the two points and straight above respectively
below them.

To draw a torsion we first draw one Bézier curve, then add a small white
circle in the middle of this curve to erase this part. Finally we draw the other
Bézier curve. This procedure is illustrated in Fig. 5(a–c). Permutations are drawn
in a similar way. The sign of the permutation defines which of the two branches
is drawn first, then when the other one is drawn it covers it up as it comes on
top of the other one (Fig. 5(d–e)).

(a) (b) (c) (d) (e)

Fig. 5. An illustration of a positive torsion (a–c) and a positive permutation (d–e)
drawing process.

We start by considering the torsions of the matrix and draw all of them.
Then we move on to the permutations. They are given by the sequence of edges
forming the shortest path of the tree generated by the input matrix. We then
draw the rest of the template by levels. At each level, every strip can do one
of three actions: do a straight transition, permute left or permute right. The
shortest path tells us which two strips should permute. Given this information,
it is easy to calculate the coordinates at the next level of each strip and apply
the correct transition (Fig. 6).

Fig. 6. Template of one linking matrix with five branches and eight permutations.
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5 Performance Evaluation

An elementary matrix is a unique linking matrix describing a chaotic mechanism
without additional torsions or symmetry properties [22]. Given an input size,
Rosalie describes in this article a method to generate all possible elementary
linking matrices of such size. We used this method to obtain the 14, 38 and
116 possible elementary matrices with resp. five, six and seven branches (resp.
5 × 5, 6 × 6 and 7 × 7 linking matrices). Figure 7 depicts for each matrix
size the distribution of the elementary matrices with respect to the number of
permutations to process.

Matrix size: 5 Matrix size: 6 Matrix size: 7

0 2 4 6 8 0 5 10 15 0 10 20

0

5

10

Number of permutations

O
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s

Fig. 7. Distribution of the number of elementary matrices with respect to the number
of permutations to process. There are 14 (resp. 38 and 116) matrices of size 5 (resp. 6
and 7).
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Fig. 8. Elapsed time depending on the number of permutations for the matrices
depending on their size. The diamond represents the average value.

The experiments were conducted on a server with an Intel Xeon X7560 pro-
cessor with a clock speed of 2.27 GHz, and 1024 GB of RAM. Even though this
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server is not the fastest available, it is the only one fulfilling the memory require-
ments (instances required between 25 MB and 400 GB of memory). For the sake
of comparability, all instances have been run on the same machine. For the
complete description of the cluster environment, please refer to https://hpc.uni.
lu/systems/chaos/. We computed the templates of all the elementary matrices
described above. We ran the experiments with version v0.0.1 of the code. For
each input matrix, we measured 30 times the time elapsed to get the template.
The 7 × 7 matrix with 27 permutations ran out of memory and crashed: we
removed it from the graphs. Figures 8 and 9 depict the elapsed computation
time with respect to the number of permutations to process. As expected, we
observe a drastic rise that characterizes a combinatorial explosion in the number
of permutations.
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Fig. 9. Elapsed time depending on the number of permutations for the 167 matrices.
The diamond represents the average value.

6 Conclusion

In this paper, we presented a tool which verifies whether a linking matrix corre-
sponds to a topologically valid template. Moreover, our approach computes and
draws a template of minimal height corresponding to this linking matrix. This
is especially interesting for linking matrices with a higher number of crossings.
We believe that this tool could benefit the research community as it eases the
process of verifying the validity of a linking matrix, and quickly draws one of its
matching templates.

A possible extension of our work could be to represent the generated tem-
plates as a 3D model in an automated way. One representation of a 3D template
was given by Cross and Gilmore, where they include the torsions as a part of
the global modification [9]. Another visualization was given by Boulant et al.

https://hpc.uni.lu/systems/chaos/
https://hpc.uni.lu/systems/chaos/
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(Fig. 6 of [7]). Such a 3D visualization would allow to be even closer visually to
the nature of a chaotic attractor, and thus could provide more intuitive insights.
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the HPC facilities of the University of Luxembourg [29] (see https://hpc.uni.lu). This
work is partially funded by the joint research programme UL/SnT-ILNAS on Digital
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Abstract. A k-bend right-angle-crossing drawing (or k-bend RAC draw-
ing, for short) of a graph is a polyline drawing where each edge has
at most k bends and the angles formed at the crossing points of the
edges are 90◦. Accordingly, a graph that admits a k-bend RAC drawing
is referred to as k-bend right-angle-crossing graph (or k-bend RAC, for
short). In this paper, we continue the study of the maximum edge-density
of 1-bend RAC graphs. We show that an n-vertex 1-bend RAC graph
cannot have more than 5.5n − O(1) edges. We also demonstrate that
there exist infinitely many n-vertex 1-bend RAC graphs with exactly
5n − O(1) edges. Our results improve both the previously known best
upper bound of 6.5n−O(1) edges and the corresponding lower bound of
4.5n − O(

√
n) edges by Arikushi et al. (Comput. Geom. 45(4), 169–177

(2012)).

1 Introduction

A recent research direction in Graph Drawing, which is currently receiving a
great deal of attention [26,29,31], focuses on combinatorial and algorithmic
aspects for families of graphs that can be drawn on the plane while avoiding
specific kinds of edge crossings; see, e.g., [22] for a survey. This direction is infor-
mally recognized under the term “beyond planarity”. An early work on beyond
planarity (and probably the one that initiated this direction in Graph Draw-
ing) is due to Didimo, Eades, and Liotta [21], who introduced and first studied
the family of graphs that admit polyline drawings, with few bends per edge,
in which the angles formed at the edge crossings are 90◦. Their primary moti-
vation stemmed from experiments indicating that the humans’ abilities to read
and understand drawings of graphs are not affected too much, when the edges
cross at large angles [27,28] and the number of bends per edge is limited [34,35].
Their work naturally gave rise to a systematic study of several different variants
of these graphs; see, e.g., [7–9,12,18–20,23].

Formally, a k-bend right-angle-crossing drawing (or k-bend RAC drawing, for
short) of a graph is a polyline drawing where each edge has at most k bends
and the angles formed at the crossing points of the edges are 90◦. Accordingly,

c© Springer Nature Switzerland AG 2018
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a graph that admits a k-bend RAC drawing is referred to as k-bend right-angle-
crossing graph (or k-bend RAC, for short); a 0-bend RAC graph (drawing) is
also called a straight-line RAC graph (drawing).

There exist several results for straight-line RAC graphs. Didimo et al. [21]
showed that a straight-line RAC graph with n vertices has at most 4n−10 edges,
which is a tight bound, i.e., there exist infinitely many straight-line RAC graphs
with n vertices and exactly 4n − 10 edges. These graphs are actually referred to
as optimal or maximally-dense straight-line RAC and are in fact 1-planar [23],
i.e., they admit drawings in which each edge is crossed at most once. In gen-
eral, however, deciding whether a graph is straight-line RAC is NP-hard [8], and
remains NP-hard even if the drawing must be upward [7] or 1-planar [12]. Bach-
maier et al. [10] and Brandenburg et al. [15] presented interesting relationships
between the class of straight-line RAC graphs and subclasses of 1-planar graphs.
Variants, in which the vertices are restricted on two parallel lines or on a circle,
have been studied by Di Giacomo et al. [18], and by Hong and Nagamochi [25].

An immediate observation emerging from this short literature overview is
that the focus has been primarily on the straight-line case; the results for RAC
drawings with bends are significantly fewer. Didimo et al. [21] observed that
1- and 2-bend RAC graphs have a sub-quadratic number of edges, while any
graph with n vertices admits a 3-bend RAC drawing in O(n4) area; the required
area was improved to O(n3) by Di Giacomo et al. [19]. Quadratic area for 1-
bend RAC drawings can be achieved for subclasses of 1-plane graphs [16]; for
general 1-plane graphs the known algorithm may yield 1-bend RAC drawings
with super-polynomial area [12]. The best-known upper bounds on the number
of edges of 1- and 2-bend RAC graphs are due to Arikushi et al. [9], who showed
that these graphs can have at most 6.5n − 13 and 74.2n edges, respectively.
Arikushi et al. [9] also presented 1- and 2-bend RAC graphs with n vertices, and
4.5n − O(

√
n) and 7.83n − O(

√
n) edges, respectively. Angelini et al. [7] have

shown that all graphs with maximum vertex degree 3 are 1-bend RAC, while
those with maximum vertex degree 6 are 2-bend RAC. It is worth noting that
the complexity of deciding whether a graph is 1- or 2-bend RAC is still open.

Our Contribution: In this work, we present improved lower and upper bounds
on the maximum edge-density of 1-bend RAC graphs. Note that this type of
problems is commonly referred to as Turán type, and has been widely studied
also in the framework of beyond planarity; see, e.g., [1–5,13,17,24,30,32,33,36].
More precisely, in Sect. 3, we show that an n-vertex 1-bend RAC graph cannot
have more than 5.5n − O(1) edges, while in Sect. 4 we demonstrate that there
exist infinitely many 1-bend RAC graphs with n vertices and exactly 5n − O(1)
edges. These two results together further narrow the gap between the best-known
lower and upper bounds on the maximum edge-density of 1-bend RAC graphs
(from 2n to n/2). Our approach for proving the upper bound in Sect. 3 builds
upon the charging technique by Arikushi et al. [9], which we overview in Sect. 2.
We discuss open problems in Sect. 5.
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2 Overview of the Charging Technique

In this section, we introduce the necessary notation and we describe the most
important aspects of the charging technique by Arikushi et al. [9] for bounding
the maximum number of edges of a 1-bend RAC graph. Consider an n-vertex
1-bend RAC graph G = (V,E), together with a corresponding 1-bend RAC
drawing Γ with the minimum number of crossings. The edges of G are partitioned
into two sets E0 and E1, based on whether they are crossing-free in Γ (set E0)
or they have at least a crossing (set E1). Let G0 and G1 be the subgraphs of G
induced by E0 and E1, respectively.

Since G0 is plane, |E0| ≤ 3n − 6 holds. To estimate |E1|, Arikushi et al.
consider the graph G′

1 that is obtained from the drawing of G1, by replacing
each crossing point with a dummy vertex; we call G′

1 the planarization of the
drawing of G1. Let V ′

1 , E′
1, and F ′

1 be the set of vertices, edges, and faces of G′
1,

respectively. Let deg(v) be the degree of a vertex v of G′
1 and s(f) be the size of a

face f of G′
1, that is, the number of edges incident to f . In the charging scheme,

every vertex v of G′
1 is initially assigned a charge ch(v) equal to deg(v) − 4,

while every face f of G′
1 is initially assigned a charge ch(f) equal to s(f) − 4.

By Euler’s formula, the sum of charges over all vertices and faces of G′
1 is:

∑

v∈V ′
1

(deg(v) − 4) +
∑

f∈F ′
1

(s(f) − 4) = 2|E′
1| − 4|V ′

1 | + 2|E′
1| − 4|F ′

1| = −8

In two subsequent discharging phases, they redistribute the charges in G′
1 so

that (i) the total charge remains the same, and (ii) all faces have non-negative
charges. In the first discharging phase, for every edge e with one bend, half a unit
of charge is passed from each of its two endvertices to the face that is incident to
the convex bend of e. Arikushi et al. show that each face of size less than 4 has
at least one convex bend, so it receives at least one unit of charge. Hence, after
this phase, the only faces that have negative charges are the so-called lenses,
which have size 2 and only one convex bend (each lens has charge −1). On the
other hand, the charge of every vertex v ∈ V ′

1 is at least ch′(v) = 1
2 deg(v) − 4.

In the second discharging phase, Arikushi et al. exploit the crossing mini-
mality of Γ to guarantee the existence of an injective mapping from the lenses
to the convex bends incident to faces of G′

1 with size at least 4. Since each such
bend yields one additional unit of charge to its incident face, and since this face
has already a non-negative charge due to its size, it is possible to move this
unit from the face to the mapped lens without introducing faces with negative
charge. Hence, after the second phase, the charge ch′′(f) of each face f ∈ F ′

1 is
non-negative (and at least as large as its initial charge, i.e., ch′′(f) ≥ ch(f)).
Since ch′′(v) = ch(v), |E1| ≤ 4n − 8 can be proved as follows:

|E1|−4n =
∑

v∈V ′
1

(
1
2

deg(v) − 4
)

≤
∑

v∈V ′
1

ch′′(v) ≤
∑

v∈V ′
1

ch′′(v)+
∑

f∈F ′
1

ch′′(f) = −8

(1)
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So far, graph G has |E0| + |E1| ≤ 7n − 14 edges. Arikushi et al. improve this
bound in a conclusive analysis based on the observation that a triangular face
of G0 cannot contain edges of E1. Hence, if G0 contains exactly 3n − 6 edges,
then it is a triangulation, and thus E1 = ∅. More in general, they considered how
many edges E1 may contain when G0 is a graph obtained from a triangulation
by removing k edges. Let V0, E0, and F0 be the sets of vertices, edges, and faces
of G0, respectively, and let d(f) be the degree of a face f ∈ F0, i.e., the number
of its distinct vertices. Then, by Eq. 1 we have:

|E1| ≤
∑

f∈F0;d(f)>3

(4d(f) − 8) (2)

Arikushi et al. proved that the right-hand side of Eq. 2 is at most 8k. In fact,
the removal of any crossing-free edge e leads to one of the following cases.

C.1 if e was a bridge of a face, this yields a face with the same degree, which
leaves the right-hand side of Eq. 2 unchanged;

C.2 if e was adjacent to two triangles, this yields a new face f of degree d(f) = 4,
which can contain at most 4d(f) − 8 = 8 edges of E1, which increases the
right-hand side of Eq. 2 by 8;

C.3 if e was adjacent to a triangle and to a face of degree d(f) (containing at
most 4d(f)−8 edges of E1), this yields a new face of degree at most d(f)+1,
which can contain at most 4(d(f) + 1) − 8 = 4d(f) − 4 edges of E1, which
increases the right-hand side of Eq. 2 by at most 4; finally,

C.4 if e was adjacent to two faces f1 and f2 such that d(f1), d(f2) > 3 (containing
at most 4(d(f1) + d(f2)) − 16 edges of E1), this yields a new face of degree
at most d(f1) + d(f2) − 2, which contains at most 4(d(f1) + d(f2) − 2) − 8 =
4(d(f1) + d(f2)) − 16 edges of E1, leaving the right-hand side of Eq. 2 as is.

Hence, the removal of k uncrossed edges increases the right-hand side of Eq. 2
by at most 8k. With this observation, Arikushi et al. derived two different upper
bounds on the number of edges of G, namely:

|E| ≤ (3n − 6 − k) + 4n − 8 = 7n − 14 − k (3)
|E| ≤ (3n − 6 − k) + 8k (4)

The minimum of the two bounds is maximized when k = n/2 − 1, which yields
|E| ≤ 6.5n−13. Arikushi et al. noticed that the bound of 8k is an overestimation,
and that possible refinements would lead to improvements of the overall bound.

3 An Improved Upper Bound

In this section, we describe how to improve the analysis of the charging scheme
described in Sect. 2 to obtain a better upper bound. W.l.o.g., we assume that G
is connected and that n ≥ 5. Let f be a face of G0. As in the previous section,
we denote by d(f) the degree of f , that is, the number of distinct vertices of f .
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Since f is not necessarily simple or connected, the boundary of f is a disjoint
set of (not necessarily simple) cycles, which are called facial walks; see Fig. 1a.
We denote by �(f) the length of face f , that is, the number of edges (counted
with multiplicities) in all facial walks of f .

Since a vertex v may occur more than once in a facial walk of f , we denote
by mf (v) the number of its occurrences in f minus one (that is, the number of
extra occurrences beyond its first). The sum of such extra occurrences over all
the vertices of face f is denoted by m(f), that is, m(f) =

∑
v∈f mf (v). Further,

we denote by b(f) the number of biconnected components of all facial walks of
f . Finally, we assume that an isolated vertex of f (if any) is not a biconnected
component of f , and we denote by i(f) the number of isolated vertices of f . It
is not difficult to see that �(f) = d(f) + m(f) − i(f).

v2

v9 v10

v11

v7

v5v6

v3

v4

v1

v8

(a)

v2

v9 v10

v11

v7

v5v6

v3

v4

v1

v8

(b)

Fig. 1. (a) Illustration of a non-simple, non-connected face f of G0 (colored in
black). The edges of G1 are colored gray. Face f consists of two facial walks (w1 =
〈v1, v2, v1, v3, v4, v5, v6, v7, v8〉 and w2 = 〈v9, v10〉) and an isolated vertex (v11). Observe
that d(f) = 11 (as f contains 11 distinct vertices), �(f) = 11 (as the sum of the lengths
of w1 and w2 is 11), mf (v1) = 1 (as v1 appears twice in w1), i(f) = 1 (as v11 is an
isolated vertex of f), and b(f) = 3 (as w1 consists of two biconnected components,
while w2 is biconnected). Face f is good, since each of its edges is good. Note that
removing edge (v4, v7) would make edges (v5, v6) and (v9, v10) not good. (b) The faces
of F ′

1(f) that are surrounding the three biconnected components of f are tiled in gray.

Let G′ be the planarization of the drawing Γ of G. As opposed to G0, whose
faces are not necessarily connected, the faces of G′ are in fact connected, since G
is connected. Let f be a face of G0 and let e be any edge incident to f . We say
that edge e is good for f if and only if there is no other edge e′ incident to f such
that e and e′ are both incident to a face g of G′ that lies inside f . Accordingly,
face f is called good if and only if either all its edges are good for f or if f is a
triangle; see Fig. 1a. Note that, if each face of G0 is good, then every face of the
planarization G′ is either a triangle of crossing-free edges or contains at most one
crossing-free edge, and vice versa. In the next two lemmas, we assume that the
faces of G0 are good; we show later how to guarantee this property. For this, we
may need to introduce parallel edges (but no self-loops) in G0, which however
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are non-homotopic (each region they define contains at least a vertex). Further,
we may need to introduce planar edges with more than one bend; this does not
affect the discharging scheme of Arikushi et al. which only considers G1.

Lemma 1. Let Γ be a drawing of G such that all faces of G0 are good. Then,
each face f of G0 contains at most 2d(f)−2m(f)+2i(f)+4b(f)−8 edges of G1.

Proof. Consider the subgraph G(f) of G which is induced by the interior of f
and let Γ (f) be the drawing of G(f) derived from Γ . We denote by G1(f) =
(V1(f), E1(f)) the subgraph of G(f) induced by the set of crossing edges in Γ (f),
and by G′

1(f) the planarization of G1(f).
Let B(f) be the set of biconnected components of f and F ′

1(f) the set of faces
of the drawing of G′

1(f) that is derived from Γ (f). Since every edge of f is good,
every biconnected component c ∈ B(f) with length �(c) will be surrounded by a
face f ′

c ∈ F ′
1(f) in G′

1 that is of length �(f ′
c) ≥ 2�(c); see Fig. 1b. Hence, before the

discharging phases in the charging scheme of Arikushi et al. (applied on G′
1(f)),

the charge of face f ′
c is at least 2�(c)−4. Since after the second discharging phase,

the charge of each face is at least as much as its initial charge, it follows that
the charge of face f ′

c is still at least 2�(c) − 4 even after the discharging phases.
Since isolated vertices of f are not surrounded by a face of F ′

1(f), summing up
the charges of all biconnected components of f , we get that
∑

c∈B(f)

ch′′(f ′
c) ≥

∑

c∈B(f)

(2�(c)−4) = 2�(f)−4b(f) = 2(d(f)+m(f)−i(f))−4b(f)

Since, after the second discharging phase, each face has a non-negative charge
and the sum of the charges of faces surrounding biconnected components of f is
a lower bound for the sum of the charges of all faces in F ′

1(f), we get that
∑

f ′∈F ′
1(f)

ch′′(f ′) −
∑

c∈B(f)

ch′′(f ′
c) ≥ 0

Hence, by refining Eq. 1 we obtain that the number of crossing edges in G(f)
can be upper-bounded as follows

|E1(f)| − 4d(f) =
∑

v∈f

(
1
2

deg(v) − 4
)

≤
∑

v∈f

ch′′(v)

≤
∑

v∈f

ch′′(v) +
∑

f ′∈F ′
1(f)

ch′′(f ′) − 2(d(f) − m(f) + i(f)) + 4b(f)

= −8 − 2(d(f) + m(f) − i(f)) + 4b(f)

This concludes our proof. ��
In the following lemma, we improve Arikushi et al.’s upper bound on the num-

ber of edges of G1 that G may contain, when the plane subgraph G0 is obtained
from a plane triangulation T by removing k edges, under the assumption that T
may contain non-homotopic parallel edges (but no self-loops), and that each face
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f ∈ F0 of G0 is good. Let t(f) be the minimum number of edges that must be
removed from T to obtain f . Similar to Arikushi et al., we preliminarily observe
that a face f of G0 with t(f) = 0 cannot contain edges of G1 in G. If t(f) = 1,
the only two possible configurations for face f are illustrated in Figs. 2a and b.
In both cases, face f can contain at most two crossing edges. If t(f) = 2, the
only three possible configurations for face f are illustrated in Figs. 2c–2e. Then,
face f can contain at most five crossing edges. Let F 1

0 and F 2
0 be the set of faces

of G0 that can be obtained from triangulation T by removing 1 and 2 edges,
respectively, that is, F 1

0 = {f ∈ F0; t(f) = 1} and F 2
0 = {f ∈ F0; t(f) = 2}. By

Lemma 1 and the previous observations, we have

|E1| ≤ 2|F 1
0 | + 5|F 2

0 | +
∑

f∈F0;t(f)>2

(2d(f) − 2m(f) + 2i(f) + 4b(f) − 8) (5)

(a) 4, 0, 0, 1 (b) 3, 1, 0, 2 (c) 5, 0, 0, 1 (d) 4, 1, 0, 2 (e) 3, 0, 1, 1

(f) 6, 0, 0, 1 (g) 5, 1, 0, 2 (h) 4, 0, 1, 1 (i) 4, 2, 0, 3 (j) 4, 2, 0, 3 (k) 4, 2, 0, 3

Fig. 2. All bounded faces that can be obtained from T by removing (a)–(b) 1 edge,
(c)–(e) 2 edges, (f)–(k) 3 edges. The caption of each subfigure indicates the values of
(d(f), m(f), i(f), b(f)).

In the following lemma, we prove that a slight overestimation of the right-
hand side of Eq. 5 is upper-bounded by 8

3k, which clearly implies that |E1| ≤ 8
3k.

Lemma 2. If G0 is obtained from triangulation T by removing k edges, then:

8
3
|F 1

0 | +
16
3

|F 2
0 | +

∑

f∈F0;t(f)>2

(2d(f) − 2m(f) + 2i(f) + 4b(f) − 8) ≤ 8
3
k (6)

Proof. Our proof is by induction on k and is similar to the corresponding one
of Arikushi et al. (Lemma 5 in [9]). In contrast to their proof, we assume that
G0 is obtained from triangulation T by removing edges in a certain order. In
particular, we want to avoid the case in which the removal of an edge e results
in merging two faces f1 and f2 such that t(f1), t(f2) ≥ 1 (refer to Case C.4 in
Sect. 2). We guarantee this property as follows. Consider the subgraph D of the
dual of T induced by the edges that are dual to those that we have to remove to
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obtain G0. We remove the edges in the order in which their dual edges appear
in a BFS traversal of each connected component of D. In this way, every inter-
level edge in the BFS traversal corresponds to removing an edge that is incident
to a triangular face (not visited yet), while each intra-level edge corresponds to
removing a bridge from a face that has been created by previously removed edges.
In both cases, we avoid merging two faces f1 and f2 such that t(f1), t(f2) ≥ 1.

Denote by τ(G0) the left-hand side of Eq. 6. In the base of the induction,
k = 0 holds. In this case, graph G0 coincides with triangulation T and thus
τ(G0) = 0. In the induction hypothesis, we assume that the lemma holds for
k ≥ 0, and we prove that it also holds for k′ = k + 1.

(a) C.1a (b) C.1b (c) C.1c (d) C.2a

v′

(e) C.2b

v′

(f) C.2b

Fig. 3. Illustrations of Cases C.1 and C.2. Edge (u, v) is gray-colored.

Let G′
0 be a plane graph obtained from T by removing k′ edges, and let G0

be the plane graph obtained from T by removing the same k′ edges, except for
the last one, which we call (u, v). For G0, by induction, it holds that τ(G0) ≤ 8

3k.
We consider the following cases:

C.1 Edge (u, v) is a bridge of a face f in G0 such that t(f) ≥ 3. Let f ′ be the face
of G′

0 that is obtained by the removal of (u, v). Note that t(f ′) ≥ 4. Since
(u, v) is a biconnected component of f , it holds that b(f ′) = b(f)− 1. Since
(u, v) is a bridge, it also holds that d(f ′) = d(f). To establish the values
of m(f ′) and i(f ′), we observe that u, or v, or both may become isolated
vertices of G′

0 after the removal of (u, v). We study these cases separately.
(a) Both u and v become isolated vertices in G′

0; see Fig. 3a. Then m(f ′) =
m(f) and i(f ′) = i(f)+2. Since 2d(f ′)− 2m(f ′)+2i(f ′)+4b(f ′)− 8 =
2d(f)−2m(f)+2(i(f)+2)+4(b(f)−1)−8 = 2d(f)−2m(f)+2i(f)+
4b(f) − 8, it follows that τ(G′

0) = τ(G0) ≤ 8
3k < 8

3k′.
(b) Exactly one of u and v, say v, becomes an isolated vertex in G′

0; see
Fig. 3b. Then m(f ′) = m(f) − 1 and i(f ′) = i(f) + 1. Since 2d(f ′) −
2m(f ′) + 2i(f ′) + 4b(f ′) − 8 = 2d(f) − 2(m(f) − 1) + 2(i(f) + 1) +
4(b(f) − 1) − 8 = 2d(f) − 2m(f) + 2i(f) + 4b(f) − 8, it follows that
τ(G′

0) = τ(G0) ≤ 8
3k < 8

3k′.
(c) Neither u nor v becomes an isolated vertex in G′

0; see Fig. 3c. Then
m(f ′) = m(f) − 2 and i(f ′) = i(f). Since 2d(f ′) − 2m(f ′) + 2i(f ′) +
4b(f ′) − 8 = 2d(f) − 2(m(f) − 2) + 2i(f) + 4(b(f) − 1) − 8 = 2d(f) −
2m(f) + 2i(f) + 4b(f) − 8, it follows that τ(G′

0) = τ(G0) ≤ 8
3k < 8

3k′.
C.2 The removal of (u, v) merges a triangular face Δ (that is, t(Δ) = 0) with an

adjacent face f of G0 with t(f) ≥ 3 into a face f ′ of G′
0. Note that t(f ′) ≥ 4.

We consider two cases:
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(a) Faces Δ and f share only edge (u, v); see Fig. 3d. Then d(f ′) = d(f)+1,
m(f ′) = m(f), b(f ′) = b(f), i(f ′) = i(f). Since 2d(f ′) − 2m(f ′) +
2i(f ′) + 4b(f ′) − 8 = 2(d(f) + 1) − 2m(f) + 2i(f) + 4b(f) − 8 = 2d(f) −
2m(f) + 2i(f) + 4b(f) − 8 + 2, it follows that τ(G′

0) = τ(G0) + 2 ≤
8
3k + 2 < 8

3k′.
(b) Faces Δ and f share at least two edges; see Fig. 3e and f. By removing

(u, v), the number of occurrences of the third vertex v′ of Δ increases
by one and the number of biconnected components increases by one.
Then d(f ′) = d(f), m(f ′) = m(f) + 1, b(f ′) = b(f) + 1, i(f ′) = i(f).
Since 2d(f ′) − 2m(f ′) + 2i(f ′) + 4b(f ′) − 8 = 2d(f) − 2(m(f) + 1) +
2i(f)+4(b(f)+1)−8 = 2d(f)−2m(f)+2i(f)+4b(f)−8+2, it follows
that τ(G′

0) = τ(G0) + 2 ≤ 8
3k + 2 < 8

3k′.
C.3 The removal of (u, v) yields a face f ′ of G′

0 with t(f ′) ∈ {1, 2, 3}. Note that
in the previous cases t(f ′) ≥ 4. So, if we rule out this case, then the proof
follows. We consider two cases, which correspond to Cases C.1 and C.2 for
smaller faces, respectively.
(a) Face f ′ is obtained by removing a bridge from a face f . Hence, t(f) =

t(f ′) − 1 and f ′ is disconnected. Observe that if t(f ′) = 1, then face
f ′ is not disconnected as can be seen from Fig. 2a and b. Therefore,
t(f ′) ≥ 2 holds in this subcase.

(b) Face f ′ is obtained by merging a face f with a triangular face Δ. Hence,
t(f) = t(f ′) − 1 holds. Since Δ is triangular, we observe that it does
not contribute to τ(G0).

In both cases, the face f that is eliminated in order to create face f ′ is such
that t(f) = t(f ′) − 1. We observe that τ(G′

0) is equal to τ(G0), plus the
contribution of f ′ to τ(G′

0), minus the contribution of f to τ(G0). More
precisely: If t(f ′) = 1, then τ(G′

0) = τ(G0) + 8
3 − 0 ≤ 8

3k + 8
3 = 8

3k′; see
Fig. 2a–b. If t(f ′) = 2, then τ(G′

0) = τ(G0) + 16
3 − 8

3 ≤ 8
3k + 8

3 = 8
3k′; see

Fig. 2c–e. Otherwise, t(f ′) = 3; see Fig. 2f–k. This implies that τ(G′
0) ≤

τ(G0)+ (2d(f ′)−2m(f ′)+2i(f ′)+4b(f ′)−8)− 16
3 . It is easy to verify that

2d(f ′) − 2m(f ′) + 2i(f ′) + 4b(f ′) − 8 ≤ 8 holds for each of the cases shown
in Fig. 2f–k. Hence, τ(G′

0) ≤ τ(G0) + 8
3 ≤ 8

3k + 8
3 = 8

3k′.

This concludes the proof. ��
By following a counting similar to Arikushi et al. we obtain a bound on the

maximum number of edges of a 1-bend RAC graph with n vertices, when all
the faces of G0 are good. Since planar graphs have at most 3n − 6 edges even
in the presence of non-homotopic parallel edges, the bound is obtained when
7n − 14 − k = 3n − 6 − k + 8

3k, that is, k = 3
2 (n − 2). This directly implies that

in this case |E| ≤ 5.5n − 11.
In the following, we prove that it is not a loss of generality to assume that

all faces of G0 are good, as otherwise we can augment our graph by adding
only crossing-free edges to G (not necessarily drawn with one bend but rather
as curves), in such a way that every face of G0 becomes good. Recall that we
denote by G′ the planarization of drawing Γ of G.
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Assume that there exists a face of G0 that is not good. Hence, there exist
at least two edges belonging to G0 which are incident to the same face f ′ in
G′. If f ′ consists exclusively of edges of G0, then we triangulate f ′. Otherwise,
we traverse the facial walk of f ′ starting from any dummy vertex of f ′ and we
connect by a crossing-free edge the first occurring vertex that is incident to an
edge of G0 with the last occurring vertex that is also incident to an edge of G0.
This implies that one of the two faces into which f ′ is split contains only one
crossing-free edge, namely the newly added edge. Note that, in both cases, it
is always possible to add the described edges, since we do not require them to
be drawn with one bend. Since in both cases, we split a face into smaller faces,
this process eventually terminates. At the end, each face is either a triangle of
crossing-free edges or contains at most one crossing-free edge. Hence, it is indeed
not a loss of generality to assume that all faces of G0 are good.

We remark that the aforementioned procedure may result in parallel edges
or self-loops, which are however non-homotopic by construction. In particular, a
self-loop may appear, when the first and the last occurring vertices in the facial
walk are identified and form a cut-vertex of G. Note that while Lemma 2 allows
non-homotopic parallel edges, it does not allow self-loops. Hence, for self-loops
we need to use a different approach. Consider self-loop s. As already mentioned,
s is incident to a cut-vertex of G and encloses a part of Γ , which we assume
not to contain any other self-loop. Let H1 and H2 be the subgraphs of G that
are induced by the vertices of G that are in the interior and the exterior of s,
respectively. Denote by n1 and n2 the number of vertices of H1 and H2, respec-
tively, and by m1 and m2 their corresponding number of edges. Observe that
n = n1+n2−1. Note that edge s is accounted neither in H1 nor in H2. By induc-
tion, we may assume that m1 ≤ 5.5n1 − 11 and m2 ≤ 5.5n2 − 11. Hence, graph
G (including s) contains at most 5.5(n1 +n2)− 22+1 = 5.5n− 15.5 ≤ 5.5n− 11
edges. This implies that the upper bound holds even in the presence of self-loops.

We are now ready to state the main theorem of this section.

Theorem 1. Every n-vertex 1-bend RAC graph has at most 5.5n − 11 edges.

4 An Improved Lower Bound

In this section, we present an improved lower bound for the number of edges of
1-bend RAC graphs. Our construction is partially inspired by the corresponding
lower bound constructions of 2-planar graphs [14] and fan-planar graphs [30]
with maximum density.

Theorem 2. There exists infinitely many n-vertex 1-bend RAC graphs with
exactly 5n − 10 edges.

Proof. A central ingredient in our lower bound construction is the dodecahedral
graph; see Fig. 4a. This graph admits a straight-line planar drawing in which
the outer face is a regular pentagon, and the inner faces can be partitioned into
three sets, based on their shape. Namely, the innermost face (shaded in gray
in Fig. 4a) is again a regular pentagon, vertically mirrored with respect to the



On RAC Drawings of Graphs with One Bend per Edge 133

outer one; also, all the faces adjacent to the innermost face have the same shape,
which we will describe more precisely later, and the same holds for all the faces
adjacent to the outer face. In particular, the drawing of each face is symmetric
with respect to the line that is perpendicular to one of its sides (whose length is
denoted by a in Fig. 4b) and passes through its opposite vertex (denoted by A
in Fig. 4b). Adopting the notation scheme of Fig. 4b, in the following we provide
values for the angles and side length ratios to fully describe the shapes of the
faces adjacent to the innermost face and to the outer face; for an illustration,
refer to Fig. 4a.

(i) The five faces adjacent to the innermost face are realized such that the side
of length a is incident to the inner face. Angles α and β are 88◦ and 100◦,
respectively. In addition, side-length b is 1.5 times the side-length a.

(ii) The five faces adjacent to the outer face are realized such that the side of
length a is incident to the outer face. Angles α and γ are 160◦ and 54◦,
respectively. In addition, side-length b is 8.5 times side-length c.

54◦

136◦160◦

88◦
100◦

(a)

α

β β

γ γ

cc

b b

a

A

B1 B2

C1 C2

(b)

A

B1 B2

C1 C2

γ1 γ1
γ2 γ2

β1 β1

β2 β2

α1 α1

(c)

Fig. 4. Illustrations for the lower bound construction: (a) the dodecahedral graph,
(b) angles and edge lengths, and (c) crossing configuration.

Consider two copies D1 and D2 of this drawing of the dodecahedral graph.
Since both the innermost face of D1 and the outer face of D2 are drawn as regular
pentagons, after scaling the drawing D2 uniformly and mirroring it vertically,
we can construct a drawing of a larger graph by identifying the innermost face
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of D1 with the outer face of D2. This process can be clearly repeated arbitrarily
many times. The result is a graph family such that every member of this family
admits a straight-line planar drawing, in which each face has one of the shapes
described above.

For our lower bound construction, we add five chords in the interior of each
face of every member of the above family. Hence, the five vertices that are inci-
dent to each face induce a complete graph K5. In the following, we describe how
to draw such chords in the interior of each of the aforementioned faces, based on
their shape, so that the resulting drawing is 1-bend RAC. For an illustration of
the configuration of the crossing edges in each of these faces refer to Fig. 4c; we
will formally define angles α1, β1, β2, γ1, γ2 shortly. Observe that all edges and
the formed angles are symmetric with respect to the line through vertex A that
is perpendicular to C1C2. Also, for every three vertices u, w, and v that are con-
secutive along the boundary of the face, the chord (u, v) will cross both chords
incident to w, making a bend between these two crossings. In the following, we
provide values for the angles α1, β1, β2, γ1, γ2 to fully describe the configurations
of the crossing edges.

(i) For the innermost face, α1 = β1 = β2 = γ1 = γ2 = 45◦ holds; refer to
Fig. 5a.

(ii) For the outer face, α1 = β1 = β2 = γ1 = γ2 = 45◦ holds; refer to Fig. 5b.
(iii) For the five faces neighboring the innermost face, α1 = 40◦, β1 = 30◦,

β2 = 50◦, γ1 = 45◦ and γ2 = 60◦ holds; refer to [6].
(iv) For the five faces neighboring the outer face, α1 = 47.5◦, β1 = 85◦, β2 =

42.5◦, γ1 = 45◦ and γ2 = 5◦ holds; refer to [6].

(a) (b)

Fig. 5. Chords inside (a) the innermost face, and (b) the outer face.

It follows that each graph in the family admits a 1-bend RAC drawing. Let Gn

be such a graph with n vertices. Next, we discuss the exact number of edges of
graph Gn. Since the crossing-free edges of Gn form a planar graph, whose faces
are all of length 5, it follows by Euler’s formula that this graph has 5

3 (n−2) edges
and 2

3 (n − 2) faces. Since each of these faces contains five chords, the number of
edges of Gn is 5

3 (n − 2) + 5 · 2
3 (n − 2) = 5n − 10, and the statement follows. ��
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5 Conclusions

In this paper, we improved the previously best lower and upper bounds on
the number of edges of 1-bend RAC graphs. The gap between our lower and
upper bound is approximately n/2. A future challenge will be to further nar-
row this gap. We conjecture that an n-vertex 1-bend RAC graph cannot have
more than 5n − 10 edges (as it is the case for several other classes of beyond
planar graphs; see e.g. [11,30,33]). Significantly more difficult seems to be the
problem of improving the current best lower and upper bounds on the number
of edges of 2-bend RAC graphs, where the gap is significantly wider (approx.,
67n). Closely connected are also complexity related questions; in particular, the
characterization and recognition of 1- and 2-bend RAC graphs are still open.
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Abstract. We study the following classes of beyond-planar graphs: 1-
planar, IC-planar, and NIC-planar graphs. These are the graphs that
admit a 1-planar, IC-planar, and NIC-planar drawing, respectively. A
drawing of a graph is 1-planar if every edge is crossed at most once.
A 1-planar drawing is IC-planar if no two pairs of crossing edges share
a vertex. A 1-planar drawing is NIC-planar if no two pairs of crossing
edges share two vertices.

We study the relations of these beyond-planar graph classes to right-
angle crossing (RAC ) graphs that admit compact drawings on the grid
with few bends. We present four drawing algorithms that preserve the
given embeddings. First, we show that every n-vertex NIC-planar graph
admits a NIC-planar RAC drawing with at most one bend per edge on
a grid of size O(n) ×O(n). Then, we show that every n-vertex 1-planar
graph admits a 1-planar RAC drawing with at most two bends per edge
on a grid of size O(n3)×O(n3). Finally, we make two known algorithms
embedding-preserving; for drawing 1-planar RAC graphs with at most
one bend per edge and for drawing IC-planar RAC graphs straight-line.

1 Introduction

In graph theory and graph drawing, beyond-planar graph classes have expe-
rienced increasing interest in recent years. A prominent example is the class
of 1-planar graphs, that is, graphs that admit a drawing where each edge is
crossed at most once. The 1-planar graphs were introduced by Ringel [18] in
1965; Kobourov et al. [15] surveyed them recently. Another example that has
received considerable attention are RACk graphs, that is, graphs that admit a
poly-line drawing where all crossings are at right angles and each edge has at
most k bends. The RACk graphs were introduced by Didimo et al. [7]. Using
right-angle crossings and few bends is motivated by several cognitive studies
suggesting a positive correlation between large crossing angles or small curve
complexity and the readability of a graph drawing [13,14,17].

The full version of this paper is available on arXiv [4] and the appendices are given
therein.
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We investigate the relationships between (certain subclasses of) 1-planar
graphs and RACk graphs that admit drawings on a polynomial-size grid. The
prior work and our contributions are summarized in Fig. 2. A broader overview
of beyond-planar graph classes is given in a recent survey by Didimo et al. [8].

(a) RAC0

drawing.
(b) IC-planar

drawing.
(c) NIC-planar

drawing.
(d) 1-planar
drawing.

(e) 1-planar
RAC1 drawing.

Fig. 1. Examples of different types of drawings. Figure 1d and e show drawings of the
same graph. Figure 1e is taken from the Annotated Bibliography on 1-Planarity [15].

Basic Terminology. A mapping Γ is called a drawing of the graph G = (V,E) if
each vertex v ∈ V is mapped to a point in R

2 and each edge uv is mapped to a
simple open Jordan curve in R

2 such that the endpoints of this curve are Γ (u)
and Γ (v). For convenience, we will refer to the points and simple open Jordan
curves of a drawing as vertices and edges. The topologically connected regions
of R

2 \ Γ are the faces of Γ . The unbounded face of Γ is its outer face; the
other faces are inner faces. Each face defines a circular list of bounding edges
(resp. edge sides), which we call its boundary list. Two drawings of a graph G are
equivalent when they have the same set of boundary lists for their inner faces and
outer faces. Each equivalence class of drawings of G is an embedding. A k-bend
(poly-line) drawing is a drawing in which every edge is drawn as a connected
sequence of at most k + 1 line segments. The (up to) k inner vertices of an edge
connecting these line segments are called bend points or bends. A 0-bend drawing
is more commonly referred to as a straight-line drawing. A drawing on the grid
of size w×h is a drawing where every vertex, bend point, and crossing point has
integer coordinates in the range [0, w] × [0, h]. In any drawing we require that
vertices, bends, and crossings are pairwise distinct points. A drawing is 1-planar
if every edge is crossed at most once. A 1-planar drawing is independent-crossing
planar (IC-planar) if no two pairs of crossing edges share a vertex. A 1-planar
drawing is near-independent-crossing planar (NIC-planar) if any two pairs of
crossing edges share at most one vertex. A drawing is right-angle-crossing (RAC )
if (i) it is a poly-line drawing, (ii) no more than two edges cross in the same
point, and (iii) in every crossing point the edges intersect at right angles. We
further specialize the notion of RAC drawings. A drawing is RACk if it is RAC
and k-bend; it is RACpoly if it is RAC and on a grid whose size is polynomial in
its number of vertices. Examples for IC-planar, NIC-planar, 1-planar, and RAC
drawings are given in Fig. 1. The planar, 1-planar, NIC-planar, IC-planar, and
RAC k graphs are the graphs that admit a crossing-free, 1-planar, NIC-planar,
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IC-planar, and RACk drawing, respectively. More specifically, RACpoly
k is the set

of graphs that admit a RACpoly
k drawing. A plane, 1-plane, NIC-plane, and IC-

plane graph is a graph given with a specific planar, 1-planar, NIC-planar, and IC-
planar embedding, respectively. In a 1-planar embedding the edge crossings are
known and they are stored as if they were vertices. We will denote an embedded
graph by (G, E) where G is the graph and E is the embedding of this graph. For a
point p in the plane, let x(p) and y(p) denote its x- and y-coordinate, respectively.
Given two points p and q, we denote the straight-line segment connecting them
by pq and its length, the Euclidean distance of p and q, by ‖pq‖.

planar

IC-planar

NIC-planar

1-planar
RACpoly

1

RAC1

?
RAC0

RACpoly
0

RACpoly
2

RAC2

RACpoly
3 = all graphs

E?

?

?

?

?
?E?

E?

is contained in (incl.
fixed embeddings)

is contained in (open
for fixed embeddings)

open if contained or in-
comparable

open if contained or
containing or incompa-
rable

incomparable

without B-config.

E?

Se
c.
3

Se
c.
2

App. D1

A
pp. D

2

Fig. 2. Relating some classes of (beyond-)planar graphs and RAC graphs. Our main
results are the containment relationships indicated by the thick blue arrows (Color
figure online).

Previous Work. In the diagram in Fig. 2, we give an overview of the relation-
ships between classes of 1-planar graphs and RACk graphs. Clearly, the planar
graphs are a subset of the IC-planar graphs, which are a subset of the NIC-
planar graphs, which are a subset of the 1-planar graphs. It is well known that
every plane graph can be drawn with straight-line edges on a grid of quadratic
size [10,19]. Every IC-planar graph admits an IC-planar RAC0 drawing but
not necessarily in polynomial area [3]. Moreover, there are graphs in RACpoly

0

that are not 1-planar [9] and, therefore, also not IC-planar. The class of RAC0

graphs is incomparable with the classes of NIC-planar graphs [1] and 1-planar
graphs [9]. Bekos et al. [2] showed that every 1-planar graph admits a 1-planar
RAC1 drawing, but their recursive drawings may need exponential area. Every
graph admits a RAC3 drawing in polynomial area, but this does not hold if a
given embedding of the graph must be preserved [7].
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Our Contributions. We contribute four new results; two main results and two
adaptations of prior results. First, we constructively show that every NIC-plane
graph admits a RAC1 drawing in quadratic area; see Sect. 2. This improves upon
a side result by Liotta and Montecchiani [16], who showed that every IC-plane
graph admits a RAC2 drawing on a grid of quadratic size. Second, we construc-
tively show that every 1-plane graph admits a RAC2 drawing in polynomial
area; see Sect. 3. Beside these two main results, we show how to preserve a given
embedding when computing RAC drawings. Precisely, we show Theorem 1 in
Appendix D.1 by adapting an algorithm of Bekos et al. [2] and we show The-
orem 2 in Appendix D.2 by adapting an algorithm of Brandenburg et al. [3].

Theorem 1. Any n-vertex 1-plane graph admits an embedding-preserving
RAC1 drawing. It can be computed in O(n) time.

Theorem 2. Any straight-line drawable n-vertex IC-plane graph admits an
embedding-preserving RAC0 drawing. It can be computed in O(n3) time.

2 NIC-Planar 1-Bend RAC Drawings in Quadratic Area

In this section we constructively show that quadratic area is sufficient for RAC1

drawings of NIC-planar graphs. We prove the following.

Theorem 3. Any n-vertex NIC-plane graph (G, E) admits a NIC-planar RAC1

drawing that respects E and lies on a grid of size O(n)×O(n). The drawing can
be computed in O(n) time.

Preprocessing. Our algorithm gets an n-vertex NIC-plane graph (G, E) as input.
We first aim to make (G, E) biconnected and planar so that we can draw it
using the algorithm by Harel and Sardas [11]. Around each crossing in E , we
insert up to four dummy edges to obtain empty kites. A kite is a K4 that is
embedded such that (i) every vertex lies on the boundary of the outer face,
and (ii) there is exactly one crossing, which does not lie on the boundary of
the outer face. A kite K as a subgraph of a graph H is said to be empty if
there is no edge of H\K that is on an inner face of K or crosses edges of K.
Inserting a dummy edge could create a pair of parallel edges. If this happens,
we subdivide the original edge participating in this pair by a dummy vertex
(see the transition from Fig. 3a – b). Note that we never create parallel dummy
edges since G is NIC-planar. After this, we remove both crossing edges from each
empty kite and obtain empty quadrangles (see Fig. 3c). We store each such empty
quadrangle in a list Q. At the end of the preprocessing, we make the resulting
plane graph biconnected via, e.g., the algorithm of Hopcroft and Tarjan [12].
Since each empty quadrangle is contained in a biconnected component, no edges
are inserted into it. Let (G′, E ′) be the resulting plane biconnected graph.

https://arxiv.org/pdf/1806.10044v4.pdf#nameddest=subsection.A.4.1
https://arxiv.org/pdf/1806.10044v4.pdf#nameddest=subsection.A.4.2
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(a) crossing as it
initially appears

vdummy

(b) empty kite and sub-
divided original edge

(c) empty quad-
rangle

(d) divided quad-
rangle

Fig. 3. Modifying the crossings and computing the BCO.

Drawing Step. Now, we draw a graph that we obtain from (G′, E ′) by first
producing a biconnected canonical ordering (BCO)1. We use the algorithm by
Harel and Sardas [11], which is a generalization of the algorithm of Chrobak
and Payne [5], which in turn is based on the shift algorithm of de Fraysseix
et al. [10]. The algorithm of Harel and Sardas consists of two phases. Given a
plane biconnected graph H, in the first phase a BCO Π of the vertices in H
is computed. In the second phase, H is drawn according to Π on a grid of size
(2|V (H)| − 4) × (|V (H)| − 2). Unlike the classical shift algorithm, the algorithm
of Harel and Sardas computes the (biconnected) canonical ordering bottom-up,
which we will exploit here. Let Πk = (v1, . . . , vk) be a partial BCO of H after
step k, and let Hk be the plane subgraph of H induced by Πk. We say that a
vertex u is covered by vk if u is on the boundary of the outer face of Hk−1, but
not on that of Hk.

We perform the following additional operations when we compute the
BCO Π̂. Whenever we reach an empty quadrangle q = (a, b, c, d) of the list Q for
the first time, i.e., when the first vertex of q—say a—is added to the BCO, we
insert an edge inside q from a to the vertex opposite a in q, that is, to c. We call
the resulting structure a divided quadrangle (see Fig. 3d). In two special cases,
we perform further modifications of the graph. They will help us to guarantee
a correct reinsertion of the crossing edges in the next step of the algorithm.
Namely, when we encounter the last vertex vlast ∈ {b, c, d} of q, we distinguish
three cases.

Case 1: vlast = c (see Fig. 4a). Here, no operations are performed.
Case 2: vlast ∈ {b, d}, and the other of {b, d} is covered by c (see Fig. 4b).

We insert a dummy vertex vshift, which we call shift vertex, into the current
BCO directly before vlast and make it adjacent to a and c. Observe that, if
vshift is the k-th vertex in Π̂, this still yields a valid BCO since vshift has two

1 BCOs are a generalization of canonical orderings that assume only biconnectivity
(instead of triconnectivity). In a BCO of a plane graph H, the subgraph Hk of H
induced by v1, . . . , vk is connected, the edge v1v2 lies on the boundary of the outer
face and all vertices in H−Hk lie within the outer face of Hk. For k > 2, the vertex vk
has one or more neighbors in Hk−1. If vk has exactly one neighbor u in Hk−1, then
it has a legal support on the outer face of Hk−1, i.e., in the circular order of adjacent
vertices around u, it follows or precedes a vertex in Hk−1.
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neighbors in Π̂k−1 and is on the outer face of the subgraph induced by Π̂k−1.
Later, we will remove vshift, but for now it forces the algorithm of Harel and
Sardas to shift a and c away from each other before vlast is added.

Case 3: vlast ∈ {b, d}, and neither b nor d is covered by c (see Fig. 4c).
Let {vlower} = {b, d} \ vlast. We subdivide the edge avlower via a dummy
vertex vdummy. If avlower is an original edge of the input graph, this edge
will be bent at vdummy in the final drawing. We insert vdummy into the cur-
rent BCO directly before vlower. To obtain a divided quadrangle again, we
insert the dummy edge avlower, which we will remove before we reinsert
the crossing edges. This will give us some extra space inside the triangle
(a, vdummy, vlower) for a bend point. Inserting vdummy as k-th vertex into Π̂

keeps Π̂ valid since vdummy uses the support edge incident to a that would
have been covered by vlower otherwise. Then, vlower has at least two neighbors
in Π̂k, namely a and vdummy.

We draw the resulting plane biconnected n̂-vertex graph (Ĝ, Ê) according to
its BCO Π̂ via the algorithm by Harel and Sardas and obtain a crossing-free
drawing Γ̂ . We do not modify the actual drawing phase.

a

b

c

d

(a) Case 1; vlast = c

a

b

c

d
vshift

(b) Case 2; vlast = d and b
is covered by c

a

c

d = vlast

vdummy

b =
vlower

(c) Case 3; vlast = d and b is
not covered by c

a

b

c

d

e{a,c}

e{b,d}

(d) Case 1

a

b

c

d

e{b,d}
e{a,c} pcross

(e) Case 2

a

c

vdummye{b,d} e{a,c}

Δy

Δy d

b

(f) Case 3

Fig. 4. Divided quadrangles produced in the three cases of the drawing step (a)–(c) and
the crossing edges after the reinsertion step (d)–(f) in our algorithm. For orientation,
lines with slope 1 or −1 are dashed violet. (Color figure online)

Postprocessing (Reinserting the Crossing Edges). We refine the underlying grid
of Γ̂ by a factor of 2 in both dimensions. Let q = (a, b, c, d) be a quadrangle in Q,
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where a is the first and vlast the last vertex in Π̂ among the vertices in q. From q,
we first remove the chord edge ac and obtain an empty quadrangle. Then, we
distinguish three cases for reinserting the crossing edges that we removed in the
preprocessing. These are the same cases as in the description of the modified
computation of the BCO before. In this case distinction we omit some lengthy
but straight-forward calculations; see Zink’s master’s thesis [21] for the details.

Case 1: vlast = c (see Fig. 4a).
Since c is adjacent to a, b, and d in Ĝ, it has the largest y-coordinate among
the vertices in q. Assume that y(d) is smaller or equal to y(b) since the other
case is symmetric. An example of a quadrangle in this case before and after
the reinsertion of the crossing edges is given in Fig. 4a and d, respectively. We
will have a crossing point at (x(a), y(d)). To this end, we insert the edge ac
with a bend at eac = (x(a), y(d)+1) and we insert the edge bd with a bend at
ebd = (x(a) + 1, y(d)). Clearly the crossing is at a right angle. Observe that q
is convex since c is the last drawn vertex of q and c is adjacent to b, a, and d
in this circular order in the embedding and observe that both bend points lie
inside q. Therefore, it follows that both crossing edges lie completely inside q.

Case 2: vlast ∈ {b, d}, and the other of {b, d} is covered by c (see Fig. 4b).
Assume that y(d) > y(b); the other case is symmetric. An example of a quad-
rangle in this case before and after the reinsertion of the crossing edges is
given in Fig. 4b and e, respectively. We remove vshift in addition to removing
the edge ac. We define the crossing point pcross = (xcross, ycross) as the inter-
section point of the lines with slope 1 and −1 through c and b, respectively.
The coordinates of this crossing point are xcross = (x(c)−y(c)+x(b)+y(b))/2
and ycross = (−x(c) + y(c) + x(b) + y(b))/2. Since we refined the grid
by a factor of 2 in each dimension, the above coordinates are both inte-
gers. We place the two bend points onto the same lines at the closest grid
points that are next to pcross, i.e., we draw the edge ac with a bend point
at eac = (xcross − 1, ycross − 1) and we insert the edge bd with a bend point
at ebd = (xcross − 1, ycross + 1). We do not intersect or touch the edge ad
because we shifted a far enough away from c by the extra shift due to vshift.
Moreover, the points eac and pcross on the line with slope 1 through c are
inside the empty quadrangle q since b is covered by c (then b is below the line
with slope 1 through c) and y(b) is at most equal to y(eac).

Case 3: vlast ∈ {b, d}, and neither b nor d is covered by c (see Fig. 4c).
Assume that y(d) > y(b); again, the other case is symmetric. An example of
a quadrangle in this case before and after the reinsertion of the crossing edges
is given in Figs. 4c and f, respectively. Note that the edge ab is a dummy edge,
which we inserted during the computation of Π̂, and next to this edge, there is
the path avdummyb. This path is the former edge ab. We will reinsert the edges
ac and bd such that they cross in (x(c), y(b)). We will bend the edge bd on
the line with slope 1 through c at y = y(b) because from this point we always
“see” d inside q. So, we define xbend := x(c) − Δy with Δy := y(c) − y(b).
First, we remove the dummy edge ab. Second, we insert the edge ac with a
bend point at eac = (x(c), y(b)− 1). Third, we insert the edge bd with a bend
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point at ebd = (xbend, y(b)). Note that eac might be below the straight-line
segment ab since a could have been shifted far away from c. However, eac
cannot be on or below the path avdummyb because y(vdummy) < y(eac) and
the slope of the line segment vdummyb is either greater than 1 or negative.
Therefore, the crossing edges ac and bd lie completely inside the pentagonal
face (a, vdummy, b, c, d).

Result. After we have reinserted the crossing edges into each quadrangle of Q, we
remove all dummy edges and transform the remaining dummy vertices to bend
points. The resulting drawing Γ is a RAC1 drawing that preserves the embedding
of the NIC-plane input graph (G, E). In Appendix A (p. 15), we bound the size
of the grid that our drawings need, as follows.

Lemma 4. Every vertex, bend point, and crossing point of the drawing returned
by our algorithm lies on a grid of size at most (16n − 32) × (8n − 16).

The shift algorithm of Harel and Sardas runs in linear time [11]. Also, our
additional operations can be performed in linear time [21]. This proves Theo-
rem 3. We give a full example of a NIC-plane RAC1 drawing generated by a
Java implementation of our algorithm in Figs. 9 and 10 in AppendixB.

3 1-Planar 2-Bend RAC Drawings in Polynomial Area

In this section we constructively prove the following.

Theorem 5. Any n-vertex 1-plane graph (G, E) admits a 1-planar RAC2 draw-
ing that respects E and lies on a grid of size O(n3)×O(n3). The drawing can be
computed in O(n) time.

The idea of our algorithm is to draw a slightly modified, planarized version
of the 1-plane input graph with a variant of the shift algorithm (by Harel and
Sardas [11]) and then “manually” redraw the crossing edges so that they cross at
right angles and have at most two bends each. The difficulty is to find grid points
for the bend points and the crossings so that the redrawn edges do not touch or
cross the surrounding edges drawn by the shift algorithm. To this end, we refine
our grid and place the middle part of each crossing edge onto a horizontal or
vertical grid line so that the edge crossings are at right angles.

Preprocessing. Our algorithm gets an n-vertex 1-plane graph (G, E) as input.
First, we planarize G by replacing each crossing point by a vertex (see Fig. 5a).
We will refer to them as crossing vertices. Second, we enclose each crossing
vertex by a subdivided kite, which is an empty kite where the four boundary
edges are subdivided by a vertex (see Fig. 5b). We use subdivided kites instead
of empty kites to maintain the embedding and to avoid adding parallel edges.
Third, we make the graph biconnected using, e.g., the algorithm of Hopcroft and
Tarjan [12]. Note that we do not insert edges into inner faces of subdivided kites
because all vertices and edges of a subdivided kite are in the same biconnected

https://arxiv.org/pdf/1806.10044v4.pdf#nameddest=section.A.1
https://arxiv.org/pdf/1806.10044v4.pdf#nameddest=section.A.2
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a1

a2

a3

a4

c

(a) Planarized crossing where the crossing
point became a crossing vertex c.

a1

a2

a3

a4

c

d1
d2

d3d4

(b) Enclosing the crossing vertex c by a
subdivided kite.

Fig. 5. A crossing point is replaced by a crossing vertex c and we insert four 2-paths
of two dummy edges and a dummy vertex to induce a subdivided kite at each crossing.
The vertices d1, d2, d3, and d4 are the dummy vertices of these 2-paths.

component. After these three steps, we have a biconnected plane graph (G′, E ′).
We draw (G′, E ′) using the algorithm of Harel and Sardas [11]. This algorithm
returns a crossing-free straight-line drawing Γ ′ of (G′, E ′), whose vertices lie on
a grid of size (2n′ − 4) × (n′ − 2), where n′ is the number of vertices of G′.

Assignment of Edges to Axis-Parallel Half-Lines. For each crossing vertex c there
are four incident edges in G′. They correspond to two edges of G. Consider the
circular order around c in (G′, E ′). The first and the third edge incident to c
correspond to one edge in (G, E); symmetrically, the second and fourth incident
edge correspond to one edge. To obtain a RAC drawing from this, we redraw
each of the four edges around c. Consider an edge ac from a vertex a of the
subdivided kite to the crossing vertex c. This edge is then redrawn with a bend
point b that lies on an axis-parallel line through c. For an example how a crossing
in Γ ′ is replaced by a RAC crossing, see the transition from Fig. 8a to f. In order
to obtain a right-angle crossing, we bijectively assign the four incident edges
to the four axis-parallel half-lines originating in c. We call such a mapping an
assignment. We do not take an arbitrary assignment, but take care to avoid
extra crossings with edges that are redrawn or previously drawn. We call an
assignment A valid if there is a way to redraw each edge e with one bend so that
the bend point of e lies on the half-line A(e) and the resulting drawing is plane.

To ensure that our valid assignment can be realized on a small grid, we
introduce further criteria. We say that an edge e1 depends on another edge e2
with respect to an assignment A if e2 lies in the angular sector between e1 and
the half-line A(e1). In Fig. 6a, for example, the edge e3 depends on e4 and e2
depends on e1, but e1 and e4 do not depend on any edge. We call edges (such
as e1 and e4) that do not depend on other edges independent. We define the
dependency depth of an assignment to be the largest integer k with 0 ≤ k ≤ 3
such that there is a chain of k+1 edges e1, e2, . . . , ek+1 incident to c such that e1
depends on e2 and . . . and ek depends on ek+1, but there is no such chain of
k + 2 edges. For example, in Fig. 6a, b, and c, the assignment has a dependency
depth of 1, whereas in Fig. 6d, the assignment has a dependency depth of 0.
Showing that there is a valid assignment of dependency depth at most 1 will
imply the existence of an appropriate set of grid points for the bend points as
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formalized in Lemmas 7 and 8. In fact, as we will see in the discussion below, if we
could avoid dependencies, our drawing would fit on a grid of size O(n2)×O(n2).
Unfortunately, with our current approach this seems to be unavoidable.

We now construct an assignment that we will show in Lemma 6 to be valid
and to have dependency depth at most 1. The four cases of our assignment are
given in order of priority. Note that, in Cases 1 and 2, our assignment always
contains dependencies; see Fig. 6a and b. Note further that it is enough to specify
the assignment of one edge; the remaining assignment is determined since the
circular orders of the edges and the assigned half-lines must be the same.

ce1
e2

e3 e4

h1

h2

h3

h4

q

(a) Case 1: q con-
tains four edges.

c
e1

e2 e3
e4

h1

h2

h3

h4

q

(b) Case 2: q con-
tains three edges.

c

e1
e2

e3

e4

h1

h2

h3

h4

q

(c) Case 3: q con-
tains two edges.

c

e1e2

e3 e4

h1

h2

h3

h4

(d) Case 4: One edge
per quadrant.
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h2

h3

h4
e2

e3 e4

q

e1
ε

(e) Case 1.

h1

h2

h3

h4

e1

e2 e3
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(f) Case 2.

h1

h2

h3

h4

e1
e2

e3
e4

q

(g) Case 3.

h1

h2

h3

h4

e1

e2

e3

e4

(h) Case 4.

Fig. 6. The four cases of our assignment procedure: (a)–(d) indicate the assignment
with orange arrows and show that the dependency depth is always at most 1, (e)–(f)
show that the assignment is valid; the radius of the light blue disk is ε.

Case 1: There is a quadrant q that contains all four incident edges; see Fig. 6a.
Take the two “inner” edges in q and assign them to the two half-lines that
bound q, while keeping the circular order.

Case 2: There is a quadrant q that contains three incident edges; see Fig. 6b.
Consider the edge outside q, say e1, and assign it to the closest half-line hi

that does not bound q.
Case 3: There is a quadrant q that contains two incident edges; see Fig. 6c.

Assign the incident edges in q to their closest half-lines.
Case 4: Each quadrant contains exactly one incident edge; see Fig. 6d.

Assign each edge to its closest half-line in counter-clockwise direction.

See also Appendix C, where we prove the following lemma on p. 16.

Lemma 6. Our assignment procedure returns a valid assignment with depen-
dency depth at most 1.

https://arxiv.org/pdf/1806.10044v4.pdf#nameddest=section.A.3
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Note that Lemma 6 already gives us a RAC2 drawing of the input graph,
but in order to get a (good) bound on the grid size of the drawing, we have to
place the bend points on a grid that is as coarse as possible, but still fine enough
to provide us with grid points where we need them: on the half-lines emanating
from the crossing vertices. This is what the remainder of this section is about.

c

a

(a) available polygon

c

a

p

q

(b) triangle for valid edge placement given points p and q

Fig. 7. Example of an available polygon in which we determine the points p and q and
with them the triangle for valid edge placement and the line segment qc.

Placement of Bend Points on the Grid. In Γ ′, we have a drawing of a subdivided
kite for every crossing in the 1-plane input graph. It is an octagon with a central
crossing vertex c of degree four in its interior. For an example, see Fig. 8a. We
will redraw the straight-line edges between c and its four adjacent vertices as
1-bend edges according to the assignment A computed in the previous step. The
segment of such a 1-bend edge ac that ends at c will lie on the axis-parallel
half-line A(ac). If we pair and concatenate the 1-bend edges that enter c from
opposite sides, we obtain two 2-bend edges and a right-angle crossing in c; see
Fig. 8f. It remains to show how the bend points for the edges are placed on the
grid. We proceed as follows.

First, we determine for each edge ac incident to a crossing vertex c the
available region into which we can redraw ac with a bend b on A(ac). The region
between ac and the half-line A(ac) inside the subdivided kite defines an available
polygon. Examples of such an available polygon are given in Figs. 7a and 8b.
Note that the available polygons might overlap (as they do once in Fig. 8b).
Observe that there is only a triangle inside each available polygon in which the
new line segment ab can be placed. Such a triangle for valid edge placement is
determined by a, c and a corner point p of the available polygon. The point p
is the corner point (excluding a and c) for which the angle between ac and
ap inside the available polygon is the smallest. These triangles for valid edge
placement are depicted in Figs. 7b and 8c. Again, they might overlap. Observe
that in such a triangle, the angle at a cannot become arbitrarily small because
every determining point lies on a grid point. Let q be the intersection point of
the line through ap and the half-line A(ac). One can see q as the projection of p
onto A(ac) seen from a. Note that we have a degenerated case if a ∈ A(ac). Then,
the available polygon has no area and equals the line segment ac. In this case let
a = p = q. Moreover, note that p can be equal to q because the intersection of
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(a) A subdivided kite. The
assignment of edges to half-
lines is indicated by arrows.

c
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(b) Available polygons for
each pair of edge and as-
signed half-line.

c

a4

a3
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a1

(c) Triangles for valid edge
placement.

c
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(d) After the insertion of
the bend points of the three
independent edges.

c

a4

a3
a2

b1

b3

b4
a1

(e) Available polygon and
triangle for valid edge place-
ment for the edge a2c which
depends on a1c.

c

a4

a3
a2

b1

b2

b3

b4
a1

(f) Result after the inser-
tion of the bend point b2.

Fig. 8. Transformation from a planarized crossing to a RAC2 crossing.

A(ac) and an edge of the subdivided kite is also a corner point of the available
polygon. This is the only case where p may not be a grid point.

We will place the bend point b onto the line segment qc, but observe that
the triangles for valid edge placement of two edges e1 and e2 might overlap if e1
depends on e2 in A. To solve this, we first draw the independent edges, then
recompute the available polygons and the triangles for valid edge placement for
the other edges, and finally draw those edges. Remember that our assignment
procedure returns only assignments with dependency depth at most 1. Let Γ ′

be drawn on a grid of size ñ × ñ. We refine the grid by a factor of ñ in each
dimension. The next step in our algorithm relies on the following lemma (which
we prove in Appendix C, p. 19).

An important tool in our analysis will be the so-called Farey sequence [20]
of order ñ − 1, which is the sequence of all reduced fractions from 0 to 1 with
numerator and denominator being positive integers bounded by ñ − 1.

Lemma 7. For any independent edge ac, the interior of the line segment qc
contains at least one grid point of the refined ñ2 × ñ2 grid.

Using Lemma 7, we pick for each independent edge any grid point of qc, place
a bend point b on it, and replace the segment ac by the two segments ab and bc.
In Fig. 8c, the edges a1c, a3c, and a4c are independent, but a2c depends on a1c.
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We again refine the grid by a factor of ñ in each dimension. The grid size is
now ñ3× ñ3. For the remaining edges incident to a crossing vertex c, we compute
new available polygons and triangles for valid edge placement since we need to
take the 1-bend edges into account that were inserted in the previous step. Now
the following lemma (proved in Appendix C, p. 22) yields grid points for the
bend points of the remaining edges.

Lemma 8. After having redrawn the independent edges, the interior of the line
segment qc of each edge depending on an independent edge contains at least one
grid point of the refined ñ3 × ñ3 grid.

For each remaining edge incident to a crossing vertex c we pick any grid point
of its line segment qc and place a bend point b on it. Again, we replace ac by
the two line segments ab and bc.

Result. Finally, we remove the dummy edges and dummy vertices that bound the
subdivided kites and interpret the crossing vertices as crossing points. We return
the resulting RAC2 drawing Γ . It is drawn on a grid of size (8n′3 − 48n′2 +
96n′ −64)× (4n′3 −24n′2 +48n′ −32), where n′ is the number n of vertices of G
plus 5 times the number of crossings cr(E) in E . Note that cr(E) ≤ n − 2 for
1-plane graphs [6]. If we ignore the bend points, the drawing is on a grid of size
(2n′ − 4) × (n′ − 2), i.e., its size is quadratic. Again, the algorithm by Harel and
Sardas [11] and our modification run in linear time. Therefore, we conclude the
correctness of Theorem 5.

4 Conclusion and Open Questions

We have shown that any n-vertex NIC-plane graph admits a RACpoly
1 drawing

in O(n2) area and that any n-vertex 1-plane graph admits a RACpoly
2 drawing

in O(n6) area. We have also shown how to adjust two existing algorithms for
drawing certain 1-planar graphs such that their embedding is preserved. More
precisely, we have proved that any 1-plane graph admits a RAC1 drawing. This
answers an open question explicitly asked by the authors of the original algo-
rithm [2]. We have also proved that any straight-line drawable IC-plane graph
admits a RAC0 drawing, where the original algorithm did not necessarily pre-
serve the embedding [3]. The diagram in Fig. 2 leaves some open questions. Does
any 1-planar graph admit a RACpoly

1 drawing? Can we draw any graph in RAC0

with only right-angle crossings in polynomial area when we allow one or two
bends per edge? What is the relationship between RAC1 and RACpoly

2 ? Can we
compute RACpoly

2 drawings of 1-plane graphs in o(n6) area?

https://arxiv.org/pdf/1806.10044v4.pdf#nameddest=section.A.3
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Abstract. We show that the 1-planar slope number of 3-connected
cubic 1-planar graphs is at most 4 when edges are drawn as polygonal
curves with at most 1 bend each. This bound is obtained by drawings
whose vertex and crossing resolution is at least π/4. On the other hand,
if the embedding is fixed, then there is a 3-connected cubic 1-planar
graph that needs 3 slopes when drawn with at most 1 bend per edge. We
also show that 2 slopes always suffice for 1-planar drawings of subcubic
1-planar graphs with at most 2 bends per edge. This bound is obtained
with vertex resolution π/2 and the drawing is RAC (crossing resolution
π/2). Finally, we prove lower bounds for the slope number of straight-line
1-planar drawings in terms of number of vertices and maximum degree.

1 Introduction

A graph is 1-planar if it can be drawn in the plane such that each edge is crossed
at most once. The notion of 1-planarity naturally extends planarity and received
considerable attention since its first introduction by Ringel in 1965 [33], as wit-
nessed by recent surveys [14,27]. Despite the efforts made in the study of 1-planar
graphs, only few results are known concerning their geometric representations
(see, e.g., [1,4,7,11]). In this paper, we study the existence of 1-planar drawings
that simultaneously satisfy the following properties: edges are polylines using
few bends and few distinct slopes for their segments, edge crossings occur at
large angles, and pairs of edges incident to the same vertex form large angles.
For example, Fig. 1d shows a 1-bend drawing of a 1-planar graph (i.e., a drawing
in which each edge is a polyline with at most one bend) using 4 distinct slopes,
such that edge crossings form angles at least π/4, and the angles formed by edges
incident to the same vertex are at least π/4. In what follows, we briefly recall
known results concerning the problems of computing polyline drawings with few
bends and few slopes or with few bends and large angles.

Related Work. The k-bend (planar) slope number of a (planar) graph G with
maximum vertex degree Δ is the minimum number of distinct edge slopes needed
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to compute a (planar) drawing of G such that each edge is a polyline with at
most k bends. When k = 0, this parameter is simply known as the (planar) slope
number of G. Clearly, if G has maximum vertex degree Δ, at least �Δ/2� slopes
are needed for any k. While there exist non-planar graphs with Δ ≥ 5 whose
slope number is unbounded with respect to Δ [3,32], Keszegh et al. [24] proved
that the planar slope number is bounded by 2O(Δ). Several authors improved
this bound for subfamilies of planar graphs (see, e.g., [21,26,28]).

Concerning k-bend drawings, Angelini et al. [2] proved that the 1-bend planar
slope number is at most Δ − 1, while Keszegh et al. [24] proved that the 2-
bend planar slope number is �Δ/2� (which is tight). Special attention has been
paid in the literature to the slope number of (sub)cubic graphs, i.e., graphs
having vertex degree (at most) 3. Mukkamala and Pálvölgyi showed that the four
slopes {0, π

4 , π
2 , 3π

4 } suffice for every cubic graph [31]. For planar graphs, Kant
and independently Dujmović et al. proved that cubic 3-connected planar graphs
have planar slope number 3 disregarding the slopes of three edges on the outer
face [15,22], while Di Giacomo et al. [13] proved that the planar slope number
of subcubic planar graphs is 4. We also remark that the slope number problem
is related to orthogonal drawings, which are planar and with slopes {0, π

2 } [16],
and with octilinear drawings, which are planar and with slopes {0, π

4 , π
2 , 3π

4 } [5].
All planar graphs with Δ ≤ 4 (except the octahedron) admit 2-bend orthogonal
drawings [6,29], and planar graphs admit octilinear drawings without bends if
Δ ≤ 3 [13,22], with 1 bend if Δ ≤ 5 [5], and with 2 bends if Δ ≤ 8 [24].

Of particular interest for us is the k-bend 1-planar slope number of 1-planar
graphs, i.e., the minimum number of distinct edge slopes needed to compute a
1-planar drawing of a 1-planar graph such that each edge is a polyline with at
most k ≥ 0 bends. Di Giacomo et al. [12] proved an O(Δ) upper bound for the
1-planar slope number (k = 0) of outer 1-planar graphs, i.e., graphs that can be
drawn 1-planar with all vertices on the external boundary.

Finally, the vertex resolution and the crossing resolution of a drawing are
defined as the minimum angle between two consecutive segments incident to
the same vertex or crossing, respectively (see, e.g., [17,20,30]). A drawing is
RAC (right-angle crossing) if its crossing resolution is π/2. Eades and Liotta
proved that 1-planar graphs may not have straight-line RAC drawings [18], while
Chaplick et al. [8] and Bekos et al. [4] proved that every 1-planar graph has a
1-bend RAC drawing that preserves the embedding.

Our Contribution. We prove upper and lower bounds on the k-bend 1-planar
slope number of 1-planar graphs, when k ∈ {0, 1, 2}. Our results are based on
techniques that lead to drawings with large vertex and crossing resolution.

In Sect. 3, we prove that every 3-connected cubic 1-planar graph admits a
1-bend 1-planar drawing that uses at most 4 distinct slopes and has both vertex
and crossing resolution π/4. In Sect. 4, we show that every subcubic 1-planar
graph admits a 2-bend 1-planar drawing that uses at most 2 distinct slopes and
has both vertex and crossing resolution π/2. These bounds on the number of
slopes and on the vertex/crossing resolution are clearly worst-case optimal. In
Sect. 5.1, we give a 3-connected cubic 1-plane graph for which any embedding-
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preserving 1-bend drawing uses at least 3 distinct slopes. The lower bound holds
even if we are allowed to change the outer face. In Sect. 5.2, we present 2-
connected subcubic 1-plane graphs with n vertices such that any embedding-
preserving straight-line drawing uses Ω(n) distinct slopes, and 3-connected 1-
plane graphs with maximum degree Δ ≥ 3 such that any embedding-preserving
straight-line drawing uses at least 9(Δ − 1) distinct slopes, which implies that
at least 18 slopes are needed if Δ = 3.

Preliminaries can be found in Sect. 2, while open problems are in Sect. 6.

2 Preliminaries

We only consider simple graphs with neither self-loops nor multiple edges. A
drawing Γ of a graph G maps each vertex of G to a point of the plane and each
edge to a simple open Jordan curve between its endpoints. We always refer to
simple drawings where two edges can share at most one point, which is either
a common endpoint or a proper intersection. A drawing divides the plane into
topologically connected regions, called faces; the infinite region is called the outer
face. For a planar (i.e., crossing-free) drawing, the boundary of a face consists
of vertices and edges, while for a non-planar drawing the boundary of a face
may also contain crossings and parts of edges. An embedding of a graph G is
an equivalence class of drawings of G that define the same set of faces and the
same outer face. A (1-)plane graph is a graph with a fixed (1-)planar embedding.
Given a 1-plane graph G, the planarization G∗ of G is the plane graph obtained
by replacing each crossing of G with a dummy vertex. To avoid confusion, the
vertices of G∗ that are not dummy are called real. Moreover, we call fragments
the edges of G∗ that are incident to a dummy vertex. The next lemma will be
used in the following and can be of independent interest, as it extends a similar
result by Fabrici and Madaras [19]. The proof is given in the full version [25].

Lemma 1. Let G = (V,E) be a 1-plane graph and let G∗ be its planarization.
We can re-embed G such that each edge is still crossed at most once and (i)
no cutvertex of G∗ is a dummy vertex, and (ii) if G is 3-connected, then G∗ is
3-connected.

A drawing Γ is straight-line if all its edges are mapped to segments, or it
is k-bend if each edge is mapped to a chain of segments with at most k > 0
bends. The slope of an edge segment of Γ is the slope of the line containing this
segment. For convenience, we measure the slopes by their angle with respect to
the x-axis. Let S = {α1, . . . , αt} be a set of t distinct slopes. The slope number of
a k-bend drawing Γ is the number of distinct slopes used for the edge segments
of Γ . An edge segment of Γ uses the north (N) port (south (S) port) of a vertex v
if it has slope π/2 and v is its bottommost (topmost) endpoint. We can define
analogously the west (W) and east (E) ports with respect to the slope 0, the
north-west (NW) and south-east (SE) ports with respect to slope 3π/4, and the
south-west (SW) and north-east (NE) ports with respect to slope π/4. Any such
port is free for v if there is no edge that attaches to v by using it.



Drawing Subcubic 1-Planar Graphs 155

We will use a decomposition technique called canonical ordering [23]. Let
G = (V,E) be a 3-connected plane graph. Let δ = {V1, . . . ,VK} be an ordered
partition of V , that is, V1 ∪· · ·∪VK = V and Vi ∩Vj = ∅ for i 
= j. Let Gi be the
subgraph of G induced by V1∪· · ·∪Vi and denote by Ci the outer face of Gi. The
partition δ is a canonical ordering of G if: (i) V1 = {v1, v2}, where v1 and v2 lie on
the outer face of G and (v1, v2) ∈ E. (ii) VK = {vn}, where vn lies on the outer
face of G, (v1, vn) ∈ E. (iii) Each Ci (i > 1) is a cycle containing (v1, v2). (iv)
Each Gi is 2-connected and internally 3-connected, that is, removing any two
interior vertices of Gi does not disconnect it. (v) For each i ∈ {2, . . . , K −1}, one
of the following conditions holds: (a) Vi is a singleton vi that lies on Ci and has
at least one neighbor in G\Gi; (b) Vi is a chain {vi

1, . . . , v
i
l}, both vi

1 and vi
l have

exactly one neighbor each in Ci−1, and vi
2, . . . , v

i
l−1 have no neighbor in Ci−1.

Since G is 3-connected, each vi
j has at least one neighbor in G \ Gi.

Let v be a vertex in Vi, then its neighbors in Gi−1 (if Gi−1 exists) are called
the predecessors of v, while its neighbors in G \ Gi (if Gi+1 exists) are called
the successors of v. In particular, every singleton has at least two predecessors
and at least one successor, while every vertex in a chain has either zero or one
predecessor and at least one successor. Kant [23] proved that a canonical ordering
of G always exists and can be computed in O(n) time; the technique in [23] is
such that one can arbitrarily choose two adjacent vertices u and w on the outer
face so that u = v1 and w = v2 in the computed canonical ordering.

An n-vertex planar st-graph G = (V,E) is a plane acyclic directed graph with
a single source s and a single sink t, both on the outer face [10]. An st-ordering
of G is a numbering σ : V → {1, 2, . . . , n} such that for each edge (u, v) ∈ E, it
holds σ(u) < σ(v) (thus σ(s) = 1 and σ(t) = n). For an st-graph, an st-ordering
can be computed in O(n) time (see, e.g., [9]) and every biconnected undirected
graph can be oriented to become a planar st-graph (also in linear time).

3 1-Bend Drawings of 3-Connected Cubic 1-Planar
Graphs

Let G be a 3-connected 1-plane cubic graph, and let G∗ be its planarization.
We can assume that G∗ is 3-connected (else we can re-embed G by Lemma 1).
We choose as outer face of G a face containing an edge (v1, v2) whose vertices
are both real (see Fig. 1a). Such a face exists: If G has n vertices, then G∗ has
fewer than 3n/4 dummy vertices because G is subcubic. Hence we find a face
in G∗ with more real than dummy vertices and hence with two consecutive real
vertices. Let δ = {V1, . . . ,VK} be a canonical ordering of G∗, let Gi be the graph
obtained by adding the first i sets of δ and let Ci be the outer face of Gi.

Note that a real vertex v of Gi can have at most one successor w in some
set Vj with j > i. We call w an L-successor (resp., R-successor) of v if v is the
leftmost (resp., rightmost) neighbor of Vj on Ci. Similarly, a dummy vertex x
of Gi can have at most two successors in some sets Vj and Vl with l ≥ j > i.
In both cases, a vertex v of Gi having a successor in some set Vj with j > i is
called attachable. We call v L-attachable (resp., R-attachable) if v is attachable
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(a) G

V6
V5

V4V3 V2

v1

v2

V1

V8V7

(b) δ

u

v

v1
v2

w

(c) uv-cut (d)

Fig. 1. (a) A 3-connected 1-plane cubic graph G; (b) a canonical ordering δ of the
planarization G∗ of G—the real (dummy) vertices are black points (white squares); (c)
the edges crossed by the dashed line are a uv-cut of G5 with respect to (u, w)—the two
components have a yellow and a blue background, respectively; (d) a 1-bend 1-planar
drawing with 4 slopes of G (Color figure online)

and has no L-successor (resp., R-successor) in Gi. We will draw an upward edge
at u with slope π/4 (resp., 3π/4) only if it is L-attachable (resp., R-attachable).

Let u and v be two vertices of Ci, for i > 1. Denote by Pi(u, v) the path of Ci

having u and v as endpoints and that does not contain (v1, v2). Vertices u and v
are consecutive if they are both attachable and if Pi(u, v) does not contain any
other attachable vertex. Given two consecutive vertices u and v of Ci and an
edge e of Ci, a uv-cut of Gi with respect to e is a set of edges of Gi that contains
both e and (v1, v2) and whose removal disconnects Gi into two components,
one containing u and one containing v (see Fig. 1c). We say that u and v are
L-consecutive (resp., R-consecutive) if they are consecutive, u lies to the left
(resp., right) of v on Ci, and u is L-attachable (resp., R-attachable).

We construct an embedding-preserving drawing Γi of Gi, for i = 2, . . . ,K,
by adding one by one the sets of δ. A drawing Γi of Gi is valid, if:

P1 It uses only slopes in the set {0, π
4 , π

2 , 3π
4 };

P2 It is a 1-bend drawing such that the union of any two edge fragments that
correspond to the same edge in G is drawn with (at most) one bend in total.

A valid drawing ΓK of GK will coincide with the desired drawing of G, after
replacing dummy vertices with crossing points.
Construction of Γ2. We begin by showing how to draw G2. We distinguish
two cases, based on whether V2 is a singleton or a chain, as illustrated in Fig. 2.
Construction of Γi, for 2 < i < K. We now show how to compute a valid
drawing of Gi, for i = 3, . . . , K − 1, by incrementally adding the sets of δ.

We aim at constructing a valid drawing Γi that is also stretchable, i.e., that
satisfies the following two more properties; see Fig. 3. These two properties will
be useful to prove Lemma 2, which defines a standard way of stretching a drawing
by lengthening horizontal segments.

P3 The edge (v1, v2) is drawn with two segments s1 and s2 that meet at a
point p. Segment s1 uses the SE port of v1 and s2 uses the SW port of v2.
Also, p is the lowest point of Γi, and no other point of Γi is contained by
the two lines that contain s1 and s2.
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v1 v2v2

(a)

v1
v2

v2

(b)

v1
v2
2

v2
1

v2v2
3

(c)

Fig. 2. Construction of Γ2: (a) V2 is a real singleton;
(b) V2 is a dummy singleton; (c) V2 is a chain.

u

v1 v2

ve

p

Fig. 3. Γi is stretchable.

P4 For every pair of consecutive vertices u and v of Ci with u left of v on Ci,
it holds that (a) If u is L-attachable (resp., v is R-attachable), then the
path Pi(u, v) is such that for each vertical segment s on this path there
is a horizontal segment in the subpath before s if s is traversed upwards
when going from u to v (resp., from v to u); (b) if both u and v are real,
then Pi(u, v) contains at least one horizontal segment; and (c) for every
edge e of Pi(u, v) such that e contains a horizontal segment, there exists a
uv-cut of Gi with respect to e whose edges all contain a horizontal segment
in Γi except for (v1, v2), and such that there exists a y-monotone curve that
passes through all and only such horizontal segments and (v1, v2).

Lemma 2. Suppose that Γi is valid and stretchable, and let u and v be two
consecutive vertices of Ci. If u is L-attachable (resp., v is R-attachable), then
it is possible to modify Γi such that any half-line with slope π/4 (resp., 3π/4)
that originates at u (resp., at v) and that intersects the outer face of Γi does not
intersect any edge segment with slope π/2 of Pi(u, v). Also, the modified drawing
is still valid and stretchable.

Proof Sketch. Crossings between such half-lines and vertical segments of Pi(u, v)
can be solved by finding suitable uv-cuts and moving everything on the right/left
side of the cut to the right/left. The full proof is given in the full version [25]. �

Let P be a set of ports of a vertex v; the symmetric set of ports P ′ of v is
the set of ports obtained by mirroring P at a vertical line through v. We say
that Γi is attachable if the following two properties also apply.

P5 At any attachable real vertex v of Γi, its N, NW, and NE ports are free.
P6 Let v be an attachable dummy vertex of Γi. If v has two successors, there are

four possible cases for its two used ports, illustrated with two solid edges in
Fig. 4a–d. If v has only one successor not in Γi, there are eight possible cases
for its three used ports, illustrated with two solid edges plus one dashed or
one dotted edge in Fig. 4a–e.

Observe that Γ2, besides being valid, is also stretchable and attachable by
construction (see also Fig. 2). Assume that Gi−1 admits a valid, stretchable, and
attachable drawing Γi−1, for some 2 ≤ i < K − 1; we show how to add the
next set Vi of δ so to obtain a drawing Γi of Gi that is valid, stretchable and
attachable. We distinguish between the following cases.
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v

(a) C1

v

(b) C2

v

(c) C2 symm.

v

(d) C3

v

(e) C3 symm.

Fig. 4. Illustration for P6. If v has two successors not in Γi, then the edges connecting v
to its two neighbors in Γi are solid. If v has one successor in Γi, then the edge between v
and this successor is dashed or dotted.

Case 1. Vi is a singleton, i.e., Vi = {vi}. Note that if vi is real, it has two
neighbors on Ci−1, while if it is dummy, it can have either two or three neighbors
on Ci−1. Let ul and ur be the first and the last neighbor of vi, respectively, when
walking along Ci−1 in clockwise direction from v1. We will call ul (resp., ur) the
leftmost predecessor (resp., rightmost predecessor) of vi.
Case 1.1. Vertex vi is real. Then, ul and ur are its only two neighbors in Ci−1.
Each of ul and ur can be real or dummy. If ul (resp., ur) is real, we draw (ul, v

i)
(resp., (ur, v

i)) with a single segment using the NE port of ul and the SW port
of vi (resp., the NW port of ur and the SE port of vi). If ul is dummy and has
two successors not in Γi−1, we distinguish between the cases of Fig. 4 as shown
in Fig. 5. The symmetric configuration of C3 is only used for connecting to ur.

If ul is dummy and has one successor not in Γi−1, we distinguish between
the various cases of Fig. 4 as indicated in Fig. 6. Observe that C1 requires a local
reassignment of one port of ul. The edge (ur, v

i) is drawn by following a similar
case analysis. Vertex vi is then placed at the intersection of the lines passing
through the assigned ports, which always intersect by construction. In particular,
the S port is only used when ul has one successor, but the same situation cannot
occur when drawing (ur, v

i). Otherwise, there is a path of Ci−1 from ul via
its successor x on Ci−1 to ur via its successor y on Ci−1. Note that x = y is
possible but x 
= ur. Since the first edge on this path goes from a predecessor
to a successor and the last edge goes from a successor to a predecessor, there
has to be a vertex z without a successor on the path; but then ul and ur are
not consecutive. To avoid crossings between Γi−1 and the new edges (ul, v

i)
and (ur, v

i), we apply Lemma 2 to suitably stretch the drawing. In particular,
possible crossings can occur only with vertical edge segments of Pi−1(ul, ur),

ul

vi

(a) C1

ul

vi

(b) C2

ul

vi

(c) C2 symm.

ul
vi

(d) C3

Fig. 5. A real singleton when ul is dummy with two successors not in Γi−1
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ul

vi

(a) C1

ul

vi

(b) C1

ul

vi

(c) C2

ul

vi

(d) C2 symm.

ul

vi

(e) C3

Fig. 6. Some cases for the addition of a real singleton when ul is dummy with one
successor not in Γi−1

because when walking along Pi−1(ul, ur) from ul to ur we only encounter a
(possibly empty) set of segments with slopes in the range {3π/4, π/2, 0}, followed
by a (possibly empty) set of segments with slopes in the range {π/2, π/4, 0}.
Case 1.2. Vertex vi is dummy. By 1-planarity, the two or three neighbors of vi

on Ci−1 are all real. If vi has two neighbors, we draw (ul, v
i) and (ur, v

i) as
shown in Fig. 7a, while if vi has three neighbors, we draw (ul, v

i) and (ur, v
i) as

shown in Fig. 7b. Analogous to the previous case, vertex vi is placed at the inter-
section of the lines passing through the assigned ports, which always intersect
by construction, and avoiding crossings between Γi−1 and the new edges (ul, v

i)
and (ur, v

i) by applying Lemma 2. In particular, if vi has three neighbors on
Ci−1, say ul, w, and ur, by P4 there is a horizontal segment between ul and w,
as well as between w and ur. Thus, Lemma 2 can be applied not only to resolve
crossings, but also to find a suitable point where the two lines with slopes π/4
and 3π/4 meet along the line with slope π/2 that passes through w.
Case 2. Vi is a chain, i.e., Vi = {vi

1, v
i
2, . . . , v

i
l}. We find a point as if we had to

place a vertex v whose leftmost predecessor is the leftmost predecessor of vi
1 and

whose rightmost predecessor is the rightmost predecessor of vi
l . We then draw

the chain slightly below this point by using the same technique used to draw V2.
Again, Lemma 2 can be applied to resolve possible crossings.

We formally prove the correctness of our algorithm in the full version [25].

Lemma 3. Drawing ΓK−1 is valid, stretchable, and attachable.

Construction of ΓK . We now show how to add VK = {vn} to ΓK−1 so as to
obtain a valid drawing of GK , and hence the desired drawing of G after replacing
dummy vertices with crossing points. Recall that (v1, vn) is an edge of G by the
definition of canonical ordering. We distinguish whether vn is real or dummy;

ul
ur

vi

(a)

ur

ul

vi

(b)

Fig. 7. Illustration for the addition of a dummy singleton
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v1

vn

(a) vn is dummy

v1

vn

(b) vn is real

Fig. 8. Illustration for the addition of Vk

the two cases are shown in Fig. 8. Note that if vn is dummy, its four neighbors
are all real and hence their N, NW, and NE ports are free by P5. If vn is real,
it has three neighbors in ΓK−1, v1 is real by construction, and the S port can
be used to attach with a dummy vertex. Finally, since ΓK−1 is attachable, we
can use Lemma 2 to avoid crossings and to find a suitable point to place vn. A
complete drawing is shown in Fig. 1d.

The theorem follows immediately by the choice of the slopes.

Theorem 1. Every 3-connected cubic 1-planar graph admits a 1-bend 1-planar
drawing with at most 4 distinct slopes and angular and crossing resolution π/4.

4 2-Bend Drawings

Liu et al. [29] presented an algorithm to compute orthogonal drawings for planar
graphs of maximum degree 4 with at most 2 bends per edge (except the octahe-
dron, which requires 3 bends on one edge). We make use of their algorithm for
biconnected graphs. The algorithm chooses two vertices s and t and computes an
st-ordering of the input graph. Let V = {v1, . . . , vn} with σ(vi) = i, 1 ≤ i ≤ n.
Liu et al. now compute an embedding of G such that v2 lies on the outer face
if deg(s) = 4 and vn−1 lies on the outer face if deg(t) = 4; such an embedding
exists for every graph with maximum degree 4 except the octahedron.

The edges around each vertex vi, 1 ≤ i ≤ n, are assigned to the four ports
as follows. If vi has only one outgoing edge, it uses the N port; if vi has two
outgoing edges, they use the N and E port; if vi has three outgoing edges, they
use the N, E, and W port; and if vi has four outgoing edges, they use all four
ports. Symmetrically, the incoming edges of vi use the S, W, E, and N port, in
this order. The edge (s, t) (if it exists) is assigned to the W port of both s and t.
If deg(s) = 4, the edge (s, v2) is assigned to the S port of s (otherwise the port
remains free); if deg(t) = 4, the edge (t, vn−1) is assigned to the N port of t
(otherwise the port remains free). Note that every vertex except s and t has at
least one incoming and one outgoing edge; hence, the given embedding of the
graph provides a unique assignment of edges to ports. Finally, they place the
vertices bottom-up as prescribed by the st-ordering. The way an edge is drawn
is determined completely by the port assignment, as depicted in Fig. 9.

Let G = (V,E) be a subcubic 1-plane graph. We first re-embed G according
to Lemma 1. Let G∗ be the planarization of G after the re-embedding. Then, all
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vertical horizontal L-shapes C-shapes U-shapes

Fig. 9. The shapes to draw edges

cutvertices of G∗ are real vertices, and since they have maximum degree 3, there
is always a bridge connecting two 2-connected components. Let G1, . . . , Gk be the
2-connected components of G, and let G∗

i be the planarization of Gi, 1 ≤ i ≤ k.
We define the bridge decomposition tree T of G as the graph having a node for
each component Gi of G, and an edge (Gi, Gj), for every pair Gi, Gj connected
by a bridge in G. We root T in G1. For each component Gi, 2 ≤ i ≤ k, let ui be
the vertex of Gi connected to the parent of Gi in T by a bridge and let u1 be
an arbitrary vertex of G1. We will create a drawing Γi for each component Gi

with at most 2 slopes and 2 bends such that ui lies on the outer face.
To this end, we first create a drawing Γ ∗

i of G∗
i with the algorithm of Liu

et al. [29] and then modify the drawing. Throughout the modifications, we will
make sure that the following invariants hold for the drawing Γ ∗

i .

(I1) Γ ∗
i is a planar orthogonal drawing of G∗

i and edges are drawn as in Fig. 9;
(I2) ui lies on the outer face of Γ ∗

i and its N port is free;
(I3) every edge is y-monotone from its source to its target;
(I4) every edge with 2 bends is a C-shape, there are no edges with more bends;
(I5) if a C-shape ends in a dummy vertex, it uses only E ports; and
(I6) if a C-shape starts in a dummy vertex, it uses only W ports.

Lemma 4. Every G∗
i admits a drawing Γ ∗

i that satisfies invariants (I1)–(I6).

Proof Sketch. We choose t = ui and some real vertex s and use the algorithm
by Liu et al. to draw Gi. Since s and t are real, there are no U-shapes. Since no
real vertex can have an outgoing edge at its W port or incoming edge at its E
port, the invariants follow. The full proof is given in the full version [25]. �

We now iteratively remove the C-shapes from the drawing while maintaining
the invariants. We make use of a technique similar to the stretching in Sect. 3. We
lay an orthogonal y-monotone curve S through our drawing that intersects no
vertices. Then we stretch the drawing by moving S and all features that lie right
of S to the right, and stretching all points on S to horizontal segments. After
this stretch, in the area between the old and the new position of S, there are
only horizontal segments of edges that are intersected by S. The same operation
can be defined symmetrically for an x-monotone curve that is moved upwards.

Lemma 5. Every Gi admits an orthogonal 2-bend drawing such that ui lies on
the outer face and its N port is free.
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u

v

(a)

u

v

(b)

u

v

(c)

Fig. 10. Proof of Lemma 5, Case 1

Proof Sketch. We start with a drawing Γ ∗
i of G∗

i that satisfies invariants (I1)–
(I6), which exists by Lemma 4. By (I2), ui lies on the outer face and its N port is
free. If no dummy vertex in Γ ∗

i is incident to a C-shape, by (I4) all edges incident
to dummy vertices are drawn with at most 1 bend, so the resulting drawing Γi

of Gi is an orthogonal 2-bend drawing. Otherwise, there is a C-shape between
a real vertex u and a dummy vertex v. We show how to eliminate this C-shape
without introducing new ones while maintaining all invariants.

We prove the case that (u, v) is directed from u to v, so by (I5) it uses only E
ports; the other case is symmetric. We do a case analysis based on which ports
at u are free. We show one case here and the rest in the full version [25].
Case 1. The N port at u is free; see Fig. 10. Create a curve S as follows: Start
at some point p slightly to the top left of u and extend it downward to infinity.
Extend it from p to the right until it passes the vertical segment of (u, v) and
extend it upwards to infinity. Place the curve close enough to u and (u, v) such
that no vertex or bend point lies between S and the edges of u that lie right next
to it. Then, stretch the drawing by moving S to the right such that u is placed
below the top-right bend point of (u, v). Since S intersected a vertical segment
of (u, v), this changes the edge to be drawn with 4 bends. However, now the
region between u and the second bend point of (u, v) is empty and the N port
of u is free, so we can make an L-shape out of (u, v) that uses the N port at u.
This does not change the drawing style of any edge other than (u, v), so all the
invariants are maintained and the number of C-shapes is reduced by one. �

Finally, we combine the drawings Γi to a drawing Γ of G. Recall that every
cutvertex is real and two biconnected components are connected by a bridge.
Let Gj be a child of Gi in the bridge decomposition tree. We have drawn Gj

with uj on the outer face and a free N port. Let vi be the neighbor of uj in Gi.
We choose one of its free ports, rotate and scale Γj such that it fits into the face
of that port, and connect uj and vi with a vertical or horizontal segment. Doing
this for every biconnected component gives an orthogonal 2-bend drawing of G.

Theorem 2. Every subcubic 1-plane graph admits a 2-bend 1-planar drawing
with at most 2 distinct slopes and both angular and crossing resolution π/2.
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5 Lower Bounds for 1-Plane Graphs

5.1 1-Bend Drawings of Subcubic Graphs

Theorem 3. There exists a subcubic 3-connected 1-plane graph such that any
embedding-preserving 1-bend drawing uses at least 3 distinct slopes. The lower
bound holds even if we are allowed to change the outer face.

Proof. Let G be the K4 with a planar embedding. The outer face is a 3-cycle,
which has to be drawn as a polygon Π with at least four (nonreflex) corners.
Since we allow only one bend per edge, one of the corners of Π has to be a vertex
of G. The vertex in the interior has to connect to this corner, however, all of its
free ports lie on the outside. Thus, no drawing of G is possible. �

5.2 Straight-Line Drawings

The full proofs for this section are given in the full version [25].

Theorem 4. There exist 2-regular 2-connected 1-plane graphs with n vertices
such that any embedding-preserving straight-line drawing uses Ω(n) distinct
slopes.

Proof Sketch. Let Gk be the graph given by the cycle a1 . . . , ak+1, bk+1, . . . , b1, a1

and the embedding shown in Fig. 11a. Walking along the path a1, . . . , ak+1, we
find that the slope has to increase at every step. �

Lemma 6. There exist 3-regular 3-connected 1-plane graphs such that any
embedding-preserving straight-line drawing uses at least 18 distinct slopes.

Proof Sketch. Consider the graph depicted in Fig. 11b. We find that the slopes of
the edges (ai, bi), (ai, ci), (ci, di), (ci, ei), (ei, di), (ei, ai+1) have to be increasing
in this order for every i = 1, 2, 3. �

Theorem 5. There exist 3-connected 1-plane graphs such that any embedding-
preserving straight-line drawing uses at least 9(Δ − 1) distinct slopes.

a1

a2

a3

a4

a6

a5

b1

b2

b4
b6

b5 b3

(a) Theorem 4

a2a3

a1

b1

c1

d1

e1

b3

c3

d3

e3

b2
c2

d2
e2

f1

f2
f3

(b) Lemma 6

a2a3

a1

b1

c1

e1

b3

c3

e3
b2

c2 e2

f1
f2

f3

(c) Theorem 5

Fig. 11. The constructions for the results of Sect. 5
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Proof Sketch. Consider the graph depicted in Fig. 11c. The degree of ai, ci, and ei

is Δ. We repeat the proof of Lemma 6, but observe that the slopes of the 9(Δ−3)
added edges lie between the slopes of (ai, bi), (ai, ci), (ci, ei), and (ei, ai+1). �

6 Open Problems

The research in this paper gives rise to interesting questions, among them: (1)
Is it possible to extend Theorem 1 to all subcubic 1-planar graphs? (2) Can we
drop the embedding-preserving condition from Theorem 3? (3) Is the 1-planar
slope number of 1-planar graphs bounded by a function of the maximum degree?
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Abstract. This paper addresses the following basic question: given two
layouts of the same graph, which one is more aesthetically pleasing?
We propose a neural network-based discriminator model trained on a
labeled dataset that decides which of two layouts has a higher aesthetic
quality. The feature vectors used as inputs to the model are based on
known graph drawing quality metrics, classical statistics, information-
theoretical quantities, and two-point statistics inspired by methods of
condensed matter physics. The large corpus of layout pairs used for
training and testing is constructed using force-directed drawing algo-
rithms and the layouts that naturally stem from the process of graph
generation. It is further extended using data augmentation techniques.
Our model demonstrates a mean prediction accuracy of 96.48%, outper-
forming discriminators based on stress and on the linear combination of
popular quality metrics by a small but statistically significant margin.

The full version of the paper including the appendix with additional
illustrations is available at https://arxiv.org/abs/1809.01017.

Keywords: Graph drawing · Graph drawing aesthetics
Machine learning · Neural networks · Graph drawing syndromes

1 Introduction

What makes a drawing of a graph aesthetically pleasing? This admittedly vague
question is central to the field of Graph Drawing which has over its history
suggested numerous answers. Borrowing ideas from Mathematics, Physics, Arts,
etc., many researchers have tried to formalize the elusive concept of aesthetics.

In particular, dozens of formulas collectively known as drawing aesthetics
(or, more precisely, quality metrics [6]) have been proposed that attempt to
capture in a single number how beautiful, readable and clear a drawing of an
abstract graph is. Of those, simple metrics such as the number of edge crossings,
minimum crossing angle, vertex distribution or angular resolution parameters,
are obviously incapable per se of providing the ultimate aesthetic statement.
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Advanced metrics may represent, for example, the energy of a corresponding
system of physical bodies [5,9]. This approach underlies many popular graph
drawing algorithms [39] and often leads to pleasing results in practice. However,
it is known that low values of energy or stress do not always correspond to the
highest degree of symmetry [43] which is an important aesthetic criterion [30].

Another direction of research aims to narrow the scope of the original ques-
tion to specific application domains, focusing on the purpose of a drawing or pos-
sible user actions it may facilitate (tasks). The target parameters – readability
and the clarity of representation – may be assessed via user performance studies.
However, even in this case such aesthetic notions as symmetry still remain impor-
tant [30]. In general, aesthetically pleasing designs are known to positively affect
the apparent and the actual usability [25,41] of interfaces and induce positive
mental states of users, enhancing their problem-solving abilities [8].

In this work, we offer an alternative perspective on the aesthetics of graph
drawings. First, we address a slightly modified question: “Of two given drawings
of the same graph, which one is more aesthetically pleasing?”. With that, we
implicitly admit that “the ultimate” quality metric may not exist and one can
hope for at most a (partial) ordering. Instead of a metric, we therefore search for
a binary discriminator function of graph drawings. As limited as it is, it could be
useful for practical applications such as picking the best answer out of outputs
of several drawing algorithms or resolving local minima in layout optimization.

Second, like Huang et al. [13], we believe that by combining multiple met-
rics computed for each drawing, one has a better chance of capturing complex
aesthetic properties. We thus also consider a “meta-algorithm” that aggregates
several “input” metrics into a single value. However, unlike the recipe by Huang
et al., we do not specify the form of this combination a priori but let an artifi-
cial neural network “learn” it based on a sample of labeled training data. In the
recent years, machine learning techniques have proven useful in such aesthetics-
related tasks as assessing the appeal of 3D shapes [4] or cropping photos [24].
Our network architecture is based on a so-called Siamese neural network [3] – a
generic model specifically designed for binary functions of same-kind inputs.

Finally, we acknowledge that any simple or complex input metric may become
crucial to the answer in some cases that are hard to predict a priori. We there-
fore implement as many input metrics as we can and relegate their ranking to
the model. In addition to those known from the literature, we implement a few
novel metrics inspired by statistical tools used in Condensed Matter Physics
and Crystallography, which we expect to be helpful in capturing the symmetry,
balance, and salient structures in large graphs. These metrics are based on so-
called syndromes – variable-size multi-sets of numbers computed for a graph or
its drawing (e.g. vertex coordinates or pairwise distances). In order to reduce
these heterogeneous multi-sets to a fixed-size feature vector (input to the dis-
criminator model), we perform a feature extraction process which may involve
steps such as creating histograms or performing regressions.

In our experiments, our discriminator model outperforms the known (metric-
based) algorithms and achieves an average accuracy of 96.48% when identifying
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the “better” graph drawing out of a pair. The project source code including the
data generation procedure is available online [20].

The remainder of this paper is structured as follows. In Sect. 2 we briefly
overview the state-of-the-art in quantifying graph layout aesthetics. Section 4
discusses the used syndromes of aesthetic quality, Sect. 5 feature extraction, and
Sect. 6 the discriminator model. The dataset used in our experiments is described
in Sect. 7. The results and the comparisons with the known metrics are presented
in Sect. 8. Section 9 finalizes the paper and provides an outlook for future work.

2 Related Work

According to empirical studies, graph drawings that maximize one or several
quality metrics are more aethetically pleasing and easier to read [12,13,28,31,42].
For instance, in their seminal work, Purchase et al. have established [30] that
higher numbers of edge crossings and bends as well as lower levels of symmetry
negatively influence user performance in graph reading tasks.

Many graph drawing algorithms attempt to optimize multiple quality met-
rics. As one way to combine them, Huang et al. [13] have used a weighted sum
of “simple” metrics, effects of their interactions (see Purchase [29] or Huang and
Huang [16]), and error terms to account for possible measurement errors.

In another work, Huang et al. [15] have empirically demonstrated that their
“aggregate” metric is sensitive to quality changes and is correlated with the
human performance in graph comprehension tasks. They have also noticed that
the dependence of aesthetic quality on input quality metrics can be non-linear
(e.g. a quadratic relationship better describes the interplay between crossing
angles and drawing quality [14]). Our work extends this idea as we allow for
arbitrary non-linear dependencies implemented by an artificial neural network.

In evolutionary graph drawing approaches, several techniques have been sug-
gested to “train” a fitness function1 from the user’s responses as a composition
of several known quality metrics. Masui [23] modeled the fitness function as a
linear combination in which the weights are obtained via genetic programming
from the pairs of “good” and “bad” layouts provided by users. The so-called
co-evolution was used by Barbosa and Barreto [1] to evolve the weights of the
fitness function in parallel with a drawing population in order to match the
ranking made by users. Spönemann and others [37] suggested two alternative
techniques. In the first one, the user directly chooses the weights with a slider.
In the second, they select good layouts from the current population and the
weights are adjusted according to the selection. Rosete-Suarez [32] determined
the relative importance of individual quality metrics based on user inputs. Sev-
eral machine learning-based approaches to graph drawing are described by dos
Santos Vieira et al. [33]. Recently, Kwon et al. [22] presented a novel work on
topological similarity of graphs. Their goal was to avoid expensive computations
of graph layouts and their quality measures. The resulting system was able to
sketch a graph in different layouts and estimate corresponding quality measures.
1 Objective function in genetic algorithms that summarizes optimization goals.
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3 Definitions

In this paper we consider general simple graphs G = (V,E) where V = V (G)
and E = E(G) are the vertex and edge sets of G with |V | = n and |E| = m. A
drawing or layout of a graph is its graphical representation where vertices are
drawn as points or small circles, and the edges as straight line segments. Vertex
positions in a drawing are denoted by pk = (pk

1 , p
k
2)

T for k = 1, . . . , n and their
set P = {pk}n

k=1. Furthermore, we use distG(u, v) to denote the graph-theoretical
distance – the length of the shortest path between vertices u and v in G – and
distΓ (u, v) for the Euclidean distance between u and v in the drawing Γ (G).

4 Quality Syndromes of Graph Layouts

A quality syndrome of a layout Γ is a multi-set of numbers sharing an interpreta-
tion that are known or suspected to correlate with the aesthetic quality (e.g. all
pairwise angles between incident edges in Γ ). In the following we describe several
syndromes (implemented in our code) inspired by popular quality metrics and
common statistical tools. The list is by no means exhaustive, nor do we claim
syndromes below as necessary or independent. Our model accepts any combina-
tion of syndromes; better choices remain to be systematically investigated.

PRINVEC1 and PRINVEC2. The two principal axes of the set P . If we define a
covariance matrix C = {cij}, cij = 1

n

∑n
k=1 (pk

i − pi)(pk
j − pj)), i, j ∈ {1, 2},

where pi = 1
n

∑n
k=1 pk

i are the mean values over each dimension, then
PRINVEC1 and PRINVEC2 will be its eigenvectors.

PRINCOMP1 and PRINCOMP2. Projections of vertex positions onto v1 = PRINVEC1
and v2 = PRINVEC2, that is, {〈

(
pj − p

)
,vi〉}n

j=1 for i ∈ {1, 2} where 〈·, ·〉
denotes the scalar product.

ANGULAR. Let A(v) denote the sequence of edges incident to a vertex v, appearing
in a clockwise order around it in Γ . Let α(ei, ej) denote the clockwise angle
between edges ei and ej incident to the same vertex. This syndrome is then
defined as

⋃
v∈V (G){α(ei, ej) : ei, ej are consecutive in A(v)}.

EDGE LENGTH.
⋃

(u,v)∈E(G){distΓ (u, v)} is the set of edge lengths in Γ .
RDF GLOBAL.

⋃
u�=v∈V (G){distΓ (u, v)} contains distances between all vertices in

the drawing. The concept of a radial distribution function (RDF) [7] (the
distribution of RDF GLOBAL) is borrowed from Statistical Physics and Crys-
tallography and characterizes the regularity of molecular structures. In large
graph layouts it captures regular, periodic and symmetric patterns in the
vertex positions.

RDF LOCAL(d).
⋃

u�=v∈V (G){distΓ (u, v) : dist(u, v) ≤ d} is the set of distances
between vertices such that the graph-theoretical distance between them is
bounded by d ∈ N. In our implementation, we compute RDF LOCAL(2i) for
i ∈ {0, . . . , �log2(D)�} where D is the diameter of G. RDF LOCAL(d) in a sense
interpolates between EDGE LENGTH (d = 1) and RDF GLOBAL (d → ∞).
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TENSION.
⋃

u�=v∈V (G){distΓ (u, v)/distG(u, v)} are the ratios of Euclidean and
graph-theoretical distances computed for all vertex pairs. TENSION is moti-
vated by and is related to the well-known stress function [17].

Note that before computing the quality syndromes, we normalize all layouts so
that the center of gravity of V is at the origin and the mean edge length is fixed
in order to remove the effects of scaling and translation (but not rotation).

5 Feature Vectors

The sizes of quality syndromes are in general graph- and layout-dependent. A
neural network, however, requires a fixed-size input. A collection of syndromes
is condensed to this feature vector via feature extraction. Our approach to this
step relies on several auxiliary definitions. Let S = {xi}p

i=1 be a syndrome with p
entries. By Sμ we denote the arithmetic mean and by Sρ the root mean square of
S. We also define a histogram sequence Sβ = 1

p (S1, . . . , Sβ) – normalized counts
in a histogram built over S with β bins. The entropy [36] of Sβ is defined as

E (Sβ) = −
p∑

i=1

log2(Si)Si. (1)

We expect the entropy, as a measure of disorder, to be related to the aesthetic
quality of a layout and convey important information to the discriminator.

The entropy E (Sβ) is sensitive to the number of bins β (cf. Fig. 1). In order
to avoid influencing the results via arbitrary choices of β, we compute it for β =
8, 16, . . . , 512. After that, we perform a linear regression of E (Sβ) as a function
of log2(β). Specifically, we find Sη and Sσ such that

∑
β(Sσ log2 β+Sη−E (Sβ))2

is minimized. The parameters (intercept Sη and slope Sσ) of this regression no
longer depend on the histogram size and are used as feature vector components.
Figure 1 illustrates that the dependence of E (Sβ) on log2(β) is indeed often close
to linear and the regression provides a decent approximation.

A discrete histogram over S can be generalized to a continuous sliding average

SF (x) =
∑p

i=1 F (x, xi)
∫ +∞

−∞ dy
∑p

i=1 F (y, xi)
. (2)

A natural choice for the kernel F (x, y) is the Gaussian Fσ(x, y) = exp
(
− (x−y)2

2σ2

)
.

By analogy to Eq. 1, we may now define the differential entropy [36] as

D(SFσ ) = −
∫ +∞

−∞
dx log2(S

Fσ (x)) SFσ (x). (3)

This entropy via kernel function still depends on parameter σ (the filter width).
Computing D(SFσ ) for multiple σ values as we do for E (Sβ) is too expensive.
Instead, we have found that using Scott’s Normal Reference Rule [35] as a heuris-
tic to fix σ yields satisfactory results, and allows us to define Sε = D(SFσ ).
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Fig. 1. Entropy E = E(Sβ) computed for histogram sequences Sβ defined for different
numbers of histogram bins β. Different markers (colors) correspond to several layouts
of a regular grid-like graph, progressively distorted according to the parameter r. The
dependence of E on log2(β) is well approximated by a linear function. Both intercept
and slope show a strong correlation with the levels of distortion r. (Color figure online)

Using these definitions, for the most complex syndrome RDF LOCAL(d) we
introduce RDF LOCAL – a 30-tuple containing the arithmetic mean, root mean
square and the differential entropy of RDF LOCAL(2i) for i ∈ (0, . . . , 9). With
that2, RDF LOCAL =

(
RDF LOCAL(2i)μ, RDF LOCAL(2i)ρ, RDF LOCAL(2i)ε

)9
i=0

.
Finally, we assemble the 57-dimensional3 feature vector for a layout Γ as

Flayout(Γ ) = PRINVEC1 ∪ PRINVEC2 ∪ RDF LOCAL ∪
⋃

S

(Sμ, Sρ, Sη, Sσ)

where S ranges over PRINCOMP1, PRINCOMP2, ANGULAR, EDGE LENGTH, RDF GLOBAL
and TENSION.

In addition, the discriminatormodel receives the trivial properties of the under-
lying graph as the second 2-dimensional vector Fgraph(G) = (log(n), log(m)).

6 Discriminator Model

Feature extractors such as those introduced in the previous section reduce an
arbitrary graph G and its arbitrary layout Γ to fixed-size vectors Fgraph(G) and

2 Values i < 10 are sufficient as no graph in our dataset has a diameter exceeding 29.
3 The size is one less than expected from the explanation above because we do not

include the arithmetic mean for EDGE LENGTH as it is constant (due to the layout
normalization mentioned earlier) and therefore non-informative.
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Flayout(Γ ). Given a graph G and a pair of its alternative layouts Γa and Γb,
the discriminator function DM receives the feature vectors va = Flayout(Γa),
vb = Flayout(Γb) and vG = Fgraph(G) and outputs a scalar value

t = DM(vG,va,vb) ∈ [−1, 1]. (4)

The interpretation is as follows: if t < 0, then the model believes that Γa is
“prettier” than Γb; if t > 0, then it prefers Γb. Its magnitude |t| encodes the
confidence level of the decision (the higher |t|, the more solid the answer).

For the implementation of the function DM we have chosen a practically
convenient and flexible model structure known as Siamese neural networks, orig-
inally proposed by Bromley and others [3] that is defined as

DM(vG,va,vb) = GM(σa − σb,vG) (5)

where σa = SM(va) and σb = SM(vb). The shared model SM and the global
model GM are implemented as multi-layer neural networks with a simple struc-
ture shown in Fig. 2. The network was implemented using the Keras [18] frame-
work with the TensorFlow [40] library as back-end.
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Fig. 2. Structure of the neural networks SM(v) (a) and GM(σa −σb, vG) (b). Shaded
blocks denote standard network layers, and the numbers on the arrows denote the
dimensionality of the respective representations.

The SM network (Fig. 2(a)) consists of two “dense” (fully-connected) layers,
each preceded by a “dropout” layer (discarding 50% and 25% of the signals,
respectively). Dropout is a stochastic regularization technique intended to avoid
overfitting that was first proposed by Srivastava and others [38].

In the GM network (Fig. 2(b)), the graph-related feature vector vG is passed
through an auxiliary dense layer, and concatenated with the difference signal
(σa − σb) obtained from the output vectors of SM for the two layouts. The
final dense layer produces the scalar output value. The first and the auxiliary
layers use linear activation functions, the hidden layer uses ReLU [11] and the
final layer hyperbolic tangent activation. Following the standard practice, the
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inputs to the network are normalized by subtracting the mean and dividing by
the standard deviation of the feature computed over the complete dataset.

In total, the DM model has 1 066 free parameters, trained via stochastic gra-
dient descent-based optimization of the mean squared error (MSE) loss function.

7 Training and Testing Data

For training, all machine learning methods require datasets representing the
variability of possible inputs. Our DM model needs a dataset containing graphs,
their layouts, and known aesthetic orderings of layout pairs. We have assembled
such a dataset using two types of sources. First, we used the collections of the
well-known graph archives ROME, NORTH and RANDDAG which are published on
graphdrawing.org as well as the NIST’s “Matrix Market” [2].

Second, we have generated random graphs using the algorithms listed below.
As a by-product, some of them produce layouts that stem naturally from the
generation logic. We refer to these as native layouts (see [19] for details).

GRID. Regular n × m grids. Native layouts: regular rectangular grids.
TORUS1. Same as GRID, but the first and the last “rows” are connected to form

a 1-torus (a cylinder). No native layouts.
TORUS2. Same as TORUS1, but also the first and the last “columns” are connected

to form a 2-torus (a doughnut). No native layouts.
LINDENMAYER. Uses a stochastic L-system [27] to derive increasingly complex

graphs by performing random replacements of individual vertices with more
complicated substructures such as an n-ring or an n-clique. Produces a planar
native layout.

QUASI〈n〉D for n ∈ {3, . . . , 6}. Projection of a primitive cubic lattice in an n-
dimensional space onto a 2-dimensional plane intersecting that space at a
random angle. The native layout follows from the construction.

MOSAIC1. Starts with a regular polygon and randomly divides faces according to
a set of simple rules until the desired graph size is reached. The rules include
adding a vertex connected to all vertices of the face; subdividing each edge
and adding a vertex that connects to each subdivision vertex; subdividing
each edge and connecting them to a cycle. The native layout follows from the
construction.

MOSAIC2. Applies a randomly chosen rule of MOSAIC1 to every face, with the goal
of obtaining more symmetric graphs.

BOTTLE. Constructs a graph as a three-dimensional mesh over a random solid of
revolution. The native layout is an axonometric projection.

For each graph, we have computed force-directed layouts using the FM3 [10] and
stress-minimization [17] algorithms. We assume these and native layouts to be
generally aesthetically pleasing and call them all proper layouts of a graph.

Furthermore, we have generated a priori un-pleasing (garbage) layouts as
follows. Given a graph G = (V,E), we generate a random graph G′ = (V ′, E′)
with |V ′| = |V | and |E′| = |E| and compute a force-directed layout for G′.

http://www.graphdrawing.org/
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The coordinates found for the vertices V ′ are then assigned to V . We call these
“phantom” layouts due to the use of a “phantom” graph G′. We find that phan-
tom layouts look less artificial than purely random layouts when vertex positions
are sampled from a uniform or a normal distribution. This might be due to the
fact that G and G′ have the same density and share some beneficial aspects of
the force-directed method (such as mutual repelling of nodes).

For training and testing of the discriminator model we need a corpus of
labeled pairs – triplets (Γa, Γb, t) where Γa and Γa are two different layouts for
the same graph and t ∈ [−1, 1] is a value indicating the relative aesthetic quality
of Γa and Γb. A negative (positive) value for t expresses that the quality of
Γa is superior (inferior) compared to Γb and the magnitude of t expresses the
confidence of this prediction. We only use pairs with sufficiently large |t|.

As manually-labelled data were unavailable, we have fixed the values of t
as follows. First, we paired a proper and a garbage layout of a graph. The
assumption is that the former is always more pleasing (i.e. t = ±1). Second, in
order to obtain more nuanced layout pairs and to increase the amount of data,
we have employed the well-known technique of data augmentation as follows.

Layout Worsening: Given a proper layout Γ , we apply a transformation designed
to gradually reduce its aesthetic quality that is modulated by some parameter
r ∈ [0, 1], resulting in a transformed layout Γ ′

r. By varying the degree r of the
distortion, we may generate a sequence of layouts ordered by their anticipated
aesthetic value: a layout with less distortion is expected to be more pleasing
than a layout with more distortion when starting from a presumably decent
layout. We have implemented the following worsening techniques. PERTURB: add
Gaussian noise to each node’s coordinates. FLIP NODES: swap coordinates of
randomly selected node pairs. FLIP EDGES: same as FLIP NODES but restricted
to connected node pairs. MOVLSQ: apply an affine deformation based on moving
least squares suggested (although for a different purpose) by Schaefer et al. [34].
In essence, all vertices are shifted according to some smoothly varying coordinate
mapping.

Layout Interpolation: As the second data augmentation technique, we linearly
interpolated the positions of corresponding vertices between the proper and
garbage layouts of the same graph. The resulting label t is then proportional
to the difference in the interpolation parameter.

In total, using all the methods described above, we have been able to collect
a database of about 36 000 labeled layout pairs.

8 Evaluation

The performance of the discriminator model was evaluated using cross-validation
with 10-fold random subsampling [21]. In each round, 20% of graphs (with all
their layouts) were chosen randomly and were set aside for testing, and the model
was trained using the remaining layout pairs. Of N labeled pairs used for testing,
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in each round we computed the number Ncorrect of pairs for which the model
properly predicted the aesthetic preference, and derived the accuracy (success
rate) A = Ncorrect/N . The standard deviation of A over the 10 runs was taken
as the uncertainty of the results. With the average number of test samples of
N = 7415, the eventual success rate was A = (96.48 ± 0.85)%.

8.1 Comparison with Other Metrics

In order to assess the relative standing of the suggested method, we have imple-
mented two known aesthetic metrics (stress and the combined metric by Huang
et al. [15]) and evaluated them over the same dataset. The metric values were
trivially converted to the respective discriminator function outputs.

Stress T of a layout Γ of a simple connected graph G = (V,E) was defined
by Kamada and Kawai [17] as

T (Γ ) =
n−1∑

i=1

n∑

j=i+1

kij (distΓ (vi, vj) − LdistG(vi, vj))
2

, (6)

where L denotes the desirable edge length and kij = K/distG(vi, vj)2 is the
strength of a “spring” attached to vi and vj . The constant K is irrelevant in the
context of discriminator functions and can be set to any value.

As observed by Welch and Kobourov [43], the numeric value of stress depends
on the layout scale via the constant L in the Eq. 6 which complicates compar-
isons. Their suggested solution was for each layout to find L that minimizes T
(e.g. using binary search). In our implementation, we applied a similar technique
based on fitting and minimizing a quadratic function to the stress computed at
three scales. We refer to this quantity as STRESS.

The combined metric proposed by Huang et al. [15] (referred to as COMB) is
a weighted average of four simpler quality metrics: the number of edge crossings
(CC), the minimum crossing angle between any two edges in the drawing (CR),
the minimum angle between two adjacent edges (AR), and the standard deviation
computed over all edge lengths (EL).

The average is computed over the so-called z-scores of the above metrics.
Each z-score is found by subtracting the mean and dividing by the standard
deviation of the metric for all layouts of a given graph to be compared with each
other. More formally, let G be a graph and Γ1, . . . , Γk be its k layouts to be
compared pairwise. Let M(Γi) be the value of metric M for Γi and μM and σM

be the mean and the standard deviation of M(Γi) for i ∈ {1, . . . , k}. Then

z
(i)
M =

M(Γi) − μM

σM
(7)

is the z-score for metric M and layout Γi. The combined metric then is

COMB(Γj) =
∑

M

wM z
(j)
M . (8)
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The weights wM were found via Nelder-Mead maximization [26] of the prediction
accuracy over the training dataset4.

DISC MODEL

STRESS

COMB

DISC MODEL

STRESS

COMB

DISC MODEL

STRESS

COMB

Fig. 3. Examples where our discriminator model (DISC MODEL) succeeds (✓) and the

competing metrics fail (✗) to predict the answer correctly. In each row, the layout on
the left is expected to be superior compared to the one on the right.

The accuracy of the stress-based and the combined model-based discrimi-
nators is shown in Table 1. In most cases, our model outperforms these algo-
rithms by a comfortable margin. Figure 3 provides examples of mis-predictions.
By inspecting such cases, we notice that STRESS often fails to guess the aesthet-
ics of (almost) planar layouts that contain both very short and very long edges
(such behavior may also be inferred from the definition of STRESS). We observe
4 The obtained weights are: wEL = +0.4803 ± 0.0855, wCC = +0.4679 ± 0.1069, wCR =
−0.0431 ± 0.0315, wAR = −0.0087 ± 0.0072.
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that there are planar graphs, such as nested triangulations, for which this prop-
erty is unavoidable in planar drawings. The mis-predictions of COMB seem to be
due to the high weight of the edge length metric EL. Both STRESS and COMB are
weaker than our model in capturing the absolute symmetry and regularity of
layouts.

Table 1. Accuracy scores for the COMB and STRESS model. The standard deviation in
each column is estimated based on the 5-fold cross-validation (using 20% of data for
testing each time). The “Advantage” column shows the improvement in the accuracy
of our model with respect to the alternative metric.

Metric Success rate Advantage

STRESS (93.49 ± 0.86)% (2.99 ± 1.01)%

COMB (92.76 ± 1.03)% (3.71 ± 1.22)%

8.2 Significance of Individual Syndromes

In order to estimate the influence of individual syndromes on the final result, we
have tested several modifications of our model. For each syndrome, we considered
the case when the feature vector contained only that syndrome. In the second
case, that syndrome was removed from the original feature vector. The entries
for the omitted features were set to zero. The results are shown in Table 2.

Table 2. Success rates of our discriminator when a syndrome is excluded from the
feature vector, and when the feature vector contains only that a syndrome. Note that
RDF LOCAL is a family of syndromes that are all included or excluded together. The
apparent paradox of higher success rates when some syndromes are excluded can be
explained by a statistical fluctuation and is well within the listed range of uncertainty.

Property Sole exclusion Sole inclusion

PRINCOMP1 (96.37 ± 0.84)% (55.51 ± 6.50)%

PRINCOMP2 (96.20 ± 0.76)% (61.08 ± 5.24)%

EDGE LENGTH (96.33 ± 0.59)% (71.65 ± 3.38)%

ANGULAR (96.40 ± 0.34)% (77.79 ± 6.06)%

RDF GLOBAL (95.92 ± 0.94)% (86.37 ± 3.43)%

TENSION (96.83 ± 0.31)% (89.78 ± 0.95)%

RDF LOCAL (90.04 ± 2.04)% (94.78 ± 1.60)%

Baseline using all properties (96.48 ± 0.85)%

As can be observed, the dominant contribution to the accuracy of the model
is due to the RDF-based properties RDF LOCAL and RDF GLOBAL. The exclusion
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of other syndromes does not significantly change the results (they agree within
the estimated uncertainty). However, the sole inclusion of these syndromes still
performs better than random choice. This suggests that there is a considerable
overlap between the aesthetic aspects captured by various syndromes. Further
analysis is needed to identify the nature and the magnitude of these correlations.

9 Conclusion

In this paper we propose a machine learning-based discriminator model that
selects the more aesthetically pleasing drawing from a pair of graph layouts.
Our model picks the “better” layout in more than 96% cases and outperforms
known stress-based and linear combination-based models. To the best of our
knowledge, this is the first application of machine learning methods to this ques-
tion. Previously, such techniques have proven successful in a range of complex
issues involving aesthetics, prior knowledge, and unstated rules in object recog-
nition, industrial design, and digital arts. As our model uses a simple network
architecture, investigating the performance of more complex networks is war-
ranted.

Previous efforts were focused on determining the aesthetic quality of a layout
as a weighted average of individual quality metrics. We extend these ideas and
findings in the sense that we do not assume any particular form of dependency
between the overall aesthetic quality and the individual quality metrics.

Going beyond simple quality metrics, we define quality syndromes that cap-
ture arrays of information about graphs and layouts. In particular, we borrow
the notion of RDF from Statistical Physics and Crystallography; RDF-based
features demonstrate the strongest potential in extracting the aesthetic quality
of a layout. We expect RDFs (describing the microscopic structure of materials)
to be the most relevant for large graphs. It is tempting to investigate whether
further tools from physics can be useful in capturing drawing aesthetics.

From multiple syndromes, we construct fixed-size feature vectors using com-
mon statistical tools. Our feature vector does not contain any information on
crossings or crossing angles, nevertheless its performance is superior with respect
to the weighted averages-based model which accounts for both. It would be inter-
esting to investigate whether including these and other features further improves
the performance of the neural network-based model.

In order to train and evaluate the model, we have assembled a relatively large
corpus of labeled pairs of layouts, using available and generated graphs and
exploiting the assumption that layouts produced by force-directed algorithms
and native graph layouts are aesthetically pleasing and that disturbing them
reduces the aesthetic quality. We admit that this study should ideally be repeated
with human-labeled data. However, this requires that a dataset be collected with
a size similar to ours, which is a challenging task. Creating such a dataset may
become a critically important accomplishment in the graph drawing field.
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Abstract. We consider the coordinate assignment phase of the well
known Sugiyama framework for drawing directed graphs in a hierarchi-
cal style. The extensive literature in this area has given comparatively
little attention to a prescribed width of the drawing. We present a mini-
mum cost flow formulation that supports prescribed width and optionally
other criteria like lower and upper bounds on the distance of neighboring
nodes in a layer or enforced vertical edge segments. In our experiments
we demonstrate that our approach can compete with state-of-the-art
algorithms.

Keywords: Hierarchical drawings · Coordinate assignment
Minimum cost flow · Prescribed drawing width

1 Introduction

The Sugiyama framework [12] is a popular approach for drawing directed graphs.
It layouts the graph in a hierarchical manner and works in five phases: Cycle
removal, layer assignment, crossing minimization, coordinate assignment and
edge routing. If the graph is not already acyclic, some edges are reversed to
prepare the graph for the next phase. Then each node is assigned to a layer so
that all edges point from top to bottom. After that the orderings of the nodes
within each layer are determined. In the coordinate assignment phase that we
consider here, the exact positions of the nodes are fixed. Finally the edges are
layouted, e.g., as straight lines. A good overview over the different phases of the
framework can be found in [9].

After the nodes are assigned to layers and the orderings of the nodes within
their layers are fixed, the task of the coordinate assignment phase is to compute
x-coordinates for all nodes. There are several, sometimes contradicting, objec-
tives in this phase, e.g., short edges, minimum distance between neighboring
nodes, straight edges, balanced positions of the nodes between their neighbors
in adjacent layers, and few bend points of edges that cross multiple layers. The
c© Springer Nature Switzerland AG 2018
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criterion “short edges” can be handled by exact algorithms as well as fast heuris-
tics that give pleasant results, possibly also considering other aesthetic criteria.

When it comes to the width of the drawing one usually tries to restrict
the maximum number of nodes in one layer, see e.g. [5]. Long edges, i.e. edges
that span more than two layers, are often split into paths with one dummy
node on each intermediate layer. Healy and Nikolov [8] present a branch-and-
cut approach to compute a layering that takes the influence of the number of
dummy nodes on the width into account. Jabrayilov et al. [10] do the same
in a mixed integer program that treats the first two phases of the Sugiyama
framework simultaneously. But still, the maximum number of nodes in one layer
does not necessarily define the actual width of the final drawing, as illustrated in
Fig. 1. The main objective of most methods for the coordinate assignment phase
is “short edges”, which often leads to small drawings, but the width of the final
layout is not directly addressed.

· · ·
k

· · ·
k

Fig. 1. In the left picture the horizontal edge length is k − 3 and the width is 1, in
the right picture the horizontal edge length is 0 and the width is k − 2, where k is the
number of layers.

There may be further requirements for the final drawing, such as an aspect
ratio in order to make optimal use of the drawing area, or a maximum distance
between two nodes on the same layer if they are semantically related. A common
request is that inner segments of long edges are drawn as vertical straight lines
in order to improve readability.

Related Work. Sugiyama et al. [12] present a quadratic programming formulation
that has a combination of two asthetic criteria as objective function, short edges
(closeness to adjacent nodes) and a balanced layout (positioning nodes close
to the barycenter of their upper and lower neighbors). Gansner et al. [7] give a
simpler formulation in which they replace quadratic terms of the form (xv −xu)2

by |xv−xu| and leave out the balance terms. The coordinate assignment problem
can be interpreted as an instance of the layer assignment problem, and they
suggest to apply the network simplex algorithm to an auxiliary graph to obtain
a drawing with minimum horizontal edge length. Given an initial layout, some
heuristics sweep through the layers and try to shift the nodes to better positions
depending on the fixed x-coordinates of their neighbors in adjacent layers, see
e.g. [6,11,12]. Two fast heuristics that compute coordinates from scratch are
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presented by Buchheim et al. [3] and by Brandes and Köpf [2]. Both algorithms
draw inner segments of long edges straight and aim for a balanced layout with
short edges.

Our Contribution. We formulate the coordinate assignment problem as a mini-
mum cost flow problem that can be solved efficiently. Within this formulation we
can fix the maximum width of the final drawing as well as a maximum and min-
imum horizontal distance between nodes in the same layer and we can enforce
straightness to some edges. We compute x-coordinates such that the total hori-
zontal edge length is minimized subject to these further constraints.

2 Notation and Preliminaries

Let G = (V,E) be a directed graph with |V | = n nodes and |E| = m edges. For
a directed edge e = (u, v) we denote the start node of e with start(e) = u and
the target node of e with target(e) = v. A path P from u to v of length k is a
set of edges {ei = (vi, vi+1) | i = 1, . . . , k where u = v1 and v = vk+1}. We also
write u

∗→ v. If vk+1 = v1 it is called a cycle. A graph is called a directed acyclic
graph (DAG) if it has no cycles. A layering L of a graph assigns every v ∈ V
a layer Li, such that i < j holds for every edge e = (u, v) with L(u) = Li and
L(v) = Lj . The layering is called proper if L(v) = L(u)+1 for every edge (u, v),
i.e., the layers of every pair of adjacent nodes are consecutive. An edge that
violates the latter property is called a long edge. Every graph with a layering
can be transformed into a graph with a proper layering by subdividing every
long edge into a chain of edges. We denote with |L| the number of layers and
with |Li| the number of nodes in layer Li.

An ordering ord defines a partial ordering on the nodes of G. For every
layer Li it assigns each node in Li a number 1 ≤ j ≤ |Li| and we write u < v if
ord(u) < ord(v). We denote with vi

j the j-th node in layer Li.
Given a graph G with a layering L and an ordering ord the horizontal coor-

dinate assignment problem (HCAP) asks for x-coordinates for every node, so
that x(u) < x(v) if u < v. We will restrict ourselves to integer coordinates. The
horizontal length of an edge e = (u, v) is defined as length(e) = |x(v)−x(u)| and
the total horizontal edge length is length(E) =

∑
e∈E length(e). The width of the

assignment is maxv∈V x(v)−minv∈V x(v). Unless otherwise stated, we mean the
horizontal length whenever we talk about the length of an edge.

HCAPminEL is the variant of HCAP in which we also want to minimize the
total horizontal edge length.

We assume familiarity with minimum cost flows. Ahuja et al. [1] give
a good overview. Let N = (VN , EN ) be a directed graph with a super
source s and a super sink t, so for all other nodes the amount of incoming
flow equals the amount of outgoing flow. We have lower and upper bounds
on the edges and a cost function cost : EN → R. Let f be a feasible
flow. For a subset of nodes V ′ ⊆ VN \ {s, t} we denote with f(V ′) =∑

v∈V ′
∑

e=(v,w) f(e) =
∑

v∈V ′
∑

e=(u,v) f(e) the flow through V ′. For s we
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define f(s) to be the total amount of flow leaving s. For a subset of edges
E′ ⊂ EN we denote with f(E′) =

∑
e∈E′ f(e) the flow over E′ and with

cost(E′) =
∑

e∈E′ cost(e) the cost of E′ and with costf =
∑

e∈EN
f(e) · cost(e)

the total cost of f .

3 Network Flow Formulation

In this section we describe the construction of a network for the horizontal
coordinate assignment problem. Given a minimum cost flow in this network we
show how to obtain x-coordinates for all nodes such that the total horizontal edge
length is minimized. By a simple modification we can compute x-coordinates that
give us minimum total horizontal edge length with respect to a given maximum
width of the drawing. The basic idea is that flow represents horizontal distance
and we send flow from top to bottom through the layers.

3.1 Network Construction

Let G = (V,E) be a DAG with a proper layering L and an ordering and let
N = (VN , EN ) be the minimum cost flow network. For now let us assume that
neighboring nodes on a layer should have an equal minimum distance of one and
that we have no further requirements concerning the edges.

For every layer Li with i ∈ {1, . . . , |L|} we add nodes wi
0, w

i
1, . . . , w

i
|Li| and

zi
0, z

i
1, . . . , z

i
|Li| to N . Imagine the node wi

j placed above the layer Li and between
vi

j and vi
j+1 (wi

0 is placed at the left end and wi
|Li| at the right end of the layer).

The nodes zi
j are placed in the same way below layer Li. Although we do not

have a drawing of G at this moment we can still use terms like “above” and
“below” because the layering gives us a vertical ordering of the nodes of G and
we can talk about “left” and “right” because of the given ordering of the nodes
in each layer. Since we are placing the nodes wi

j and zi
j “between” the nodes

vi
j and vi

j+1 we want to extend the “<” relation to give a partial ordering on
V ∪ VN in the following way: wi

0 < vi
1 < wi

1 < vi
2 < · · · < vi

|Li| < wi
|Li| and

zi
0 < vi

1 < zi
1 < vi

2 < · · · < vi
|Li| < zi

|Li|. We connect wi
j to zi

j with an edge ai
j

that has a lower bound of one and an upper bound of ∞ and a cost of zero. The
flow over these edges will define the distance between vi

j and vi
j+1. We denote

the set of these edges with A. Figure 2(a) shows an example.
For every layer Li with i ∈ {1, . . . , |L|} and every j ∈ {0, . . . , |Li|−1} we add

edges
−→
bwi

j = (wi
j , w

i
j+1),

←−
bwi

j = (wi
j+1, w

i
j),

−→
bzi

j = (zi
j , z

i
j+1) and

←−
bzi

j = (zi
j+1, z

i
j)

to N . The lower bound of these edges is zero and the upper bound is ∞. The
cost of these network edges equals the number of graph edges they “cross over”.
That means, the cost of

←−
bwi

j and
−→
bwi

j equals the number of incoming graph

edges of node vi
j and the cost of

←−
bzi

j and
−→
bzi

j equals the number of outgoing
graph edges of vi

j , see Fig. 2(a). Positive flow over one of these edges will cause
the crossed-over graph edges to have positive horizontal length. We call the set
of these edges B.
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vj

wi
j−1

zij−1

aij−1

wi
j

zij

aij

cost(
←−
bwi

j)= cost(
−→
bwi

j)= 1

cost(
←−
bzij)= cost(bzij)= 2

−→

−→

bzij

←−
bzij

−→
bwi

j

←−
bwi

j

(a)

vij vij+1• • • • • •

vi+1
k vi+1

k+1 • • •• • •

e1 e2

e3 e4

zij

wi+1
k

cijk

(b)

Fig. 2. Illustration of edges of the sets (a) A, B and (b) C. Nodes of G are white
circles, nodes of N are green rectangles. Edges of G are gray, edges of N are green.
(Color figure online)

Now we connect the nodes of neighboring layers. We could add edges between
every zi

j and every wi+1
k , but we want to keep the number of edges between layers

as small as possible. We add edges only in special situations and will show later
that this suffices for correctness. For every layer Li with i ∈ {1, . . . , |L| − 1} we
add edges ci

00 = (zi
0, w

i+1
0 ) and ci

|Li||Li+1| = (zi
|Li|, w

i+1
|Li+1|) to the network with

a lower bound of zero, an upper bound of ∞ and a cost of zero. Additionally
we add edges ci

jk = (zi
j , w

i+1
k ) if there exist e1, e2, e3, e4 ∈ E with start(e1) = vi

j ,
start(e2) = vi

j′ , where vi
j′ is the next node to the right of vi

j with an outgoing edge
and target(e3) = vi+1

k , target(e4) = vi+1
k′ , where vi+1

k′ is the next node to the right
of vi+1

k with an incoming edge and the following conditions holds: start(e3) ≤
start(e1) < start(e2) ≤ start(e4) and target(e1) ≤ target(e3) < target(e4) ≤
target(e2). We call this situation a hug between zi

j and wi+1
k . These edges get

a lower bound of zero, an upper bound of ∞, and the cost equals the number
of graph edges they cross over: cost(ci

jk) = |{e = (vi
p, v

i
q) ∈ E | p ≤ j ∧ q ≥

k′ or p ≥ j′ ∧ q ≤ k}|. Like the edges of B, flow on edges of this kind will cause
horizontal length and we denote the set of all ci

jk by C. Figure 2(b) illustrates a
hug situation.

Finally we add a super source s and a super sink t to the network. We connect
s with every w1

j , j ∈ {1, . . . , |L1|} and t with every z
|L|
k , k ∈ {1, . . . , |L|L||}. These

edges get a lower bound of zero, an upper bound of ∞ and a cost of zero. Figure 3
shows a complete example network. If it is clear from the context which layer or
which node is meant, we omit the node subscripts and superscripts.

3.2 Obtaining Coordinates and Correctness

Let f be a feasible flow in the network described above. We observe that f(ai
j) =

f(wi
j) = f(zi

j) since ai
j is the only outgoing edge of wi

j and the only incoming
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Fig. 3. An example network with underlying graph. Edges of the set A are red (solid),
edges of the set B are blue (dashed) and edges of the set C are purple (dashdotted).
The numbers along the edges denote the flow, unlabeled edges carry no flow. (Color
figure online)

edge of zi
j . We define the x-coordinate of a node vi

j as

x(vi
j) :=

j−1∑

l=0

f(ai
l) =

j−1∑

l=0

f(wi
l) =

j−1∑

l=0

f(zi
l ). (1)

Together with y(vi
j) = i we get an induced drawing with a feasible coordinate

assignment, because for every vj , vk within the same layer x(vj) < x(vk) if and
only if vj < vk (since the amount of flow over edges a ∈ A is always positive).

Now we want to explain the correspondence between the cost of a flow f and
the total horizontal edge length of the resulting drawing. The intuition is, that
if flow is sent from the right of start(e) to the left of target(e) for some edge e,
then target(e) is “pushed” to the right because of the additional flow on the left.
This results in a horizontal expansion of e. We define for an edge e = (u, v) ∈ E

−→
E (e) := {bw ∈ B | start(bw) < v ∧ target(bw) > v}

∪ {bz ∈ B | start(bz) < u ∧ target(bz) > u}
∪ {c ∈ C | start(c) < u ∧ target(c) > v}

as the set of network edges that start to the left of e and end to the right of e,
thus cross over e from left to right. Analogously the set of network edges that
cross over a graph edge from right to left is

←−
E (e) := {bw ∈ B | start(bw) > v ∧ target(bw) < v}

∪ {bz ∈ B | start(bz) > u ∧ target(bz) < u}
∪ {c ∈ C | start(c) > u ∧ target(c) < v}.

We make the following observations:
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Property 1. cost(g) = |{e ∈ E | g ∈ −→
E (e)}|+ |{e ∈ E | g ∈ ←−

E (e)}| ∀g ∈ B ∪C.

Property 2. Because of the flow conservation rule we have
∑|Li|

j=0 f(wi
j) =

∑|Li|
j=0 f(zi

j) for all i ∈ {1, . . . , |L|} and
∑|Li|

j=0 f(wi
j) =

∑|Lk|
j=0 f(wk

j ) = f(s) for all i, k ∈ {1, . . . , |L|}.
Property 3. The width of the induced drawing is
max1≤i≤|L|

(∑|Li|−1
j=1 f(wi

j)
)

≤ f(s).

Property 4. Let e = (vi
j , v

i+1
k ) be an edge. Then

∑
wi+1

l <vi+1
k

f(wi+1
l ) =

∑
zi
l<vi

j
f(zi

l ) + f(
←−
E (e)) − f(

−→
E (e)).

The last property is illustrated in Fig. 4. The total flow that reaches all wi+1
j

that are to left of target(e) comes from the zi
j that are to the left of start(e) and

from nodes that are to the right of target(e) or start(e). Flow from the latter
nodes has to pass over e from right to left. Flow from a node zi

j that is to the
left of start(e) and does not enter one of the wi+1

j left of target(e) has to pass
over e from left to right.

Lemma 1. For a feasible flow f and the induced drawing costf ≥ length(E)
holds.

Proof. Let e = (vi
j , v

i+1
k ) be an edge of G. The length of e is length(e) = |x(vi

j)−
x(vi+1

k )| and together with (1) we have

length(e) =
∣
∣
∣

j−1∑

l=0

f(zi
l ) −

k−1∑

l=0

f(wi+1
l )

∣
∣
∣

=
∣
∣
∣

∑

zi
l<start(e)

f(zi
l ) −

∑

wi+1
l <target(e)

f(wi+1
l )

∣
∣
∣

=
∣
∣
∣f(

−→
E (e)) − f(

←−
E (e))

∣
∣
∣ (by Property 4).

Therefore we have for the total edge length

length(E) =
∑

e∈E

∣
∣
∣f(

−→
E (e)) − f(

←−
E (e))

∣
∣
∣

≤
∑

e∈E

(∣
∣
∣f(

−→
E (e))

∣
∣
∣ +

∣
∣
∣f(

←−
E (e)

∣
∣
∣
)

=
∑

e∈E

(
f(

−→
E (e)) + f(

←−
E (e)

)

=
∑

g∈EN

f(g) · |{e ∈ E | g ∈ −→
E (e)} ∪ {e ∈ E | g ∈ ←−

E (e)}|

=
∑

g∈EN

f(g) · cost(g) (by Property 1)

= costf .

�
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vj

vk

• • •

• • •

{z0, z1, ..., zj−1}

{w0, w1, ..., wk−1}

f(
−→
E (e))

f(
←−
E (e))

Fig. 4. Illustration of Property 4. The rectangles represent all network nodes to the
left of vj and vk, respectively. The thick arrows represent the flow of several edges.

Lemma 2. Let Γ be a drawing of G. There exists a flow f that induces Γ and
whose cost is equal to the total edge length of Γ .

Proof. If necessary, we set x(v) := x(v) − minv∈V x(v) so that the smallest x-
coordinate is zero. That gives us an equivalent drawing. We construct the flow f
as follows: Let ω be the width of Γ . We send ω units of flow from s to t, so that
the k-th unit takes the path Pk = s

∗→ w1
j1

∗→ w2
j2

∗→ · · · ∗→ w
|L|
j|L|

∗→ t, where
wi

ji
is chosen so that x(vi

ji+1) ≥ k and x(vi
ji

) < k (wi
ji

= wi
0, if x(vi

1) ≥ k and
wi

ji
= wi

|Li|, if x(vi
|Li| < k). That means we send the k-th unit through the k-th

“column” of Γ . This is always possible, because of the subpaths wi
ji

→ zi
ji

∗→
zi
0 → wi+1

0
∗→ wi+1

ji+1
. So for every v there are x(v) units of flow that pass by to

the left of v, thus giving us correct coordinates for all nodes.
We define Ei

k := {e = (vi
j , v

i+1
l ) ∈ E | x(vi

j) < k and x(vi+1
l ) ≥ k}∪{e ∈ E |

x(vi
j) ≥ k and x(vi+1

l ) < k}, i.e. all edges that cross over the k-th column
between Li and Li+1. We show that there exists a path Pk that produces the same
cost as the number of graph edges that cross over the k-th column in total, that
is cost(Pk) =

∑|L|−1
i=1 |Ei

k|. Then we have
∑ω

k=1 cost(Pk) =
∑ω

k=1

∑|L|−1
i=1 |Ei

k| =
length(E) and we have proven the lemma.

It suffices to focus on the subpath P i
k from z = zi

ji
to w = wi+1

ji+1
between

two consecutive layers. Notice that network edges (s, w1), (wi, zi) and (z|L|, t)
do not contribute to the cost of the flow. For better readability we denote the
nodes of Li with uj and the nodes of Li+1 with vj and we omit the superscripts.
If not stated otherwise we use zj for zi

j and wj for wi+1
j . We construct P ′ = P i

k

so that cost(P ′) = |E′| = |Ei
k|.

Case 1: There exists no edge e with start(e) < z and target(e) < w.
That means every edge e with start(e) < z has target(e) > w, and if target(e) < w

then start(e) > z. Then we set P ′ = z → zji−1
∗→ z0 → w0 → w1

∗→ w. For
every uj < z with p outgoing edges P ′ uses exactly one

←−
bz with cost p. All these

edges are in E′. For every vj < w with q incoming edges we use exactly one
−→
bw
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with cost q. Again these edges are in E′. So cost(P ′) = |E′|, since there are no
other edges in E′.

Case 2: There exists no edge e with start(e) > z and target(e) > w.
Arguing like in Case 1, we set P ′ = z

∗→ z|Li| → w|Li+1|
∗→ w. As before the cost

of P ′ equals |E′|.
Case 3: There exists an edge el with start(el) < z and target(el) < w and
another edge er with start(er) > z and target(er) > w.
Let el be the edge with the biggest x(start(e)) of all edges e with start(e) < z
and target(e) < w, and let er be the edge with the smallest x(start(e)) of all
edges e with start(e) > z and target(e) > w.
Case 3.1: There is at least one node u′ with outgoing edges and
start(el) < u′ < z.
Let ug = start(el) and vg′ = target(el). We know vg′ < w. Let vh′ be the first
node to the right of vg′ with an edge er′ = (uh, vh′) and uh > ug. Such a node
does exist, since we have er. Notice that vh′ might be to the right of w.

Then we have a hug: Set e1 = el, set e2 to one outgoing edge of ug+1 (or the
next node to the right of ug, which has an outgoing edge), e4 = er′ and set e3 to
one incoming edge of vh′−1 (or the next one to the left of vh′), see Fig. 5. Notice
that e1 may coincide with e3 and e2 with e4.

We have start(e3) ≤ start(e1), because we chose e1 = el with the biggest
x(start(e)) and vh′ is the first node to the right of vg′ with an adjacent node to
the right of ug. So every node between vg′ = target(e1) and vh′ , including vh′−1 =
target(e3), can only have adjacent nodes to the left of ug = start(e1). It is clear
that start(e1) < start(e2) and start(e2) ≤ start(e4), since start(e4) = uh > ug.
By choice of e1, e3 and e4 target(e1) ≤ target(e3) < target(e4) holds. We know
that target(e2) > w because there is at least one node between start(e1) and z
whose outgoing edges have to end to the right of w because of the choice of e1.
If target(e4) > target(e2) then e2 would have been chosen for er′ and therefore
for e4. So target(e4) ≤ target(e2) also holds. So there exists cg(h′−1) ∈ EN and
we set P ′ = z

∗→ zg → wh′−1
∗→ w.

Now for the cost. A subset of E′ are the edges e with zg < start(e) < z and
target(e) > w, which are covered by the

←−
bz of P ′.

We have two options. First, if wh−1 > w then all edges e with start(e) < zg

and target(e) > wh′−1 are covered by cg(h′−1) and the remaining edges e with
start(e) < zg and w < target(e) < wh′−1 are covered by the

←−
bw of P ′. Edges e

with start(e) > z > ug and target(e) < w < wh′ are also covered by cg(h′−1).
There cannot be any edge e with z < start(e) and w < target(e) < wh′−1

or zg < start(e) < z and target(e) < w, which would be crossed over by two
different edges of P ′, due to the choice of edges e1 to e4.

Second, if wh−1 < w then cg(h′−1) covers all edges e with start(e) < zg and
target(e) > w > wh′−1 and all edges e with start(e) > z > zg and target(e) <
wh′−1 < w. Edges e with start(e) > z and wh′−1 < target(e) < w are covered by
the

−→
bw. Again there are no edges that are crossed over twice by P ′ due to the
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choice of e1 to e4. And there are no edges in E′ that are not covered by some
edge of P ′.
Case 3.2: start(el) is the next node to the left of z with outgoing edges, but
there is at least one node u′ with outgoing edges and start(er) > u′ > z.
This case is analogous to Case 3.1.
Case 3.3: start(el) is the next node to the left of z with outgoing edges and
start(er) is the next node to the right of z with outgoing edges.
Let el = (ug, vg′) and vh′ be the first node right of vg′ with an adjacent node
uh > ug. Again we have a hug. Set e1 = el, e2 = er, e3 to an incoming edge
of vh′−1 (or a lower node, if necessary) and e4 = (uh, vh′).

With the same arguments as in Case 3.1 we convince ourselves that e1, e2,
e3 and e4 are indeed a hug and we have cji(h′−1). We set P ′ = z → wh′−1

∗→ w.
As before cost(P ′) = |E′|. �
Theorem 1. A minimum cost flow in the network described above solves
HCAPminEL.

Proof. Lemma 1 and Lemma 2. �

ug uh

vg′ vh′

e3

e1 e2

e4

z

w

Fig. 5. Case 3.1. Only relevant network nodes and edges are depicted. Edges that
participate in the hug are black.

For controlling the maximum width of the drawing we make use of Property 3,
which states that the width of the drawing is at most the flow leaving s. We can
add an additional node s′ and an edge (s, s′) to N and replace all edges of the
form (s, w1

j ) with (s′, w1
j ). Now we can limit the maximum width of the drawing

by setting the upper bound of (s, s′) to an appropriate value.
Further constraints can be modelled by manipulating the network. By adjust-

ing the lower and upper bounds of edges a ∈ A we can realize minimum and
maximum distances between two neighboring nodes on the same layer. By remov-
ing every g ∈ ←−

E (e) ∪ −→
E (e) from the network, we can enforce the edge e to be

drawn vertically.
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4 Experimental Results

In our experiment we want to demonstrate that we are able to restrict the width
of the drawing without paying too much in terms of total (horizontal) edge length
and time.

We implemented the algorithm from Sect. 3, which we will call MCF within
the Open Graph Drawing Framework [4] (OGDF) and used the OGDF network
simplex software to solve the minimum cost flow problem. We also implemented
the approach of Gansner et al. [7] (Gansner) that also uses the network simplex
algorithm. Additionally we use three other OGDF methods: an ILP that also
takes balancing the nodes between their neighbors into account (LP), the algo-
rithm of Buchheim, Jünger and Leipert [3] (BJL) and the algorithm of Brandes
and Köpf [2] (BK). All algorithms draw inner segments of long edges as verti-
cal lines, since this is generally desirable for good readability. MCF is config-
ured to compute a layout with minimum edge length with respect to minimum
possible width and Gansner computes coordinates that minimize the total edge
length regardless of width. We used a subset of the AT&T graphs from www.
graphdrawing.org/data.html consisting of 1277 graphs with 10 to 100 nodes as
our test set.

The test was run on an Intel Xeon E5-2640v3 2.6 GHz CPU with 128 GB
RAM.

Figures 6, 7, and 8 show the results. The whiskers in Figs. 6 and 7 cover
95% of the data and outliers are omitted for better readability. Figure 8 shows
absolute values for MCF and Fig. 9 displays three example drawings.

Fig. 6. Width and total edge length produced by MCF, Gansner, LP, BJL and BK
relative to minimum width, resp. edge length.

Fig. 7. Running time for MCF, Gansner, LP, BJL and BK.

www.graphdrawing.org/data.html
www.graphdrawing.org/data.html
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Fig. 8. Absolute values of (a) width and (b) total edge length for MCF.

Fig. 9. Example drawings of a graph with 29 nodes and 33 edges. (a) MCF: width:
9, edge length: 58. (b) Gansner: width: 13, edge length: 54. (c) BK: width: 16.5, edge
length: 63.5.

In Fig. 6 the resulting total edge length and width of the drawings are
depicted relative to the minima that are computed by Gansner and MCF, respec-
tively. We see that MCF still achieves good results in terms of total edge length,
even though it has the restriction of meeting the minimum width. The total edge
length of drawings computed with MCF is on average 2.2% over the minimum,
while drawings produced with Gansner have on average a width that is 8.9% over
the minimum. In an extreme example with minimum width 1, Gansner results
in width 15.

Figure 7 shows the running time in seconds. MCF (4.9 ms on average) is a
bit slower than Gansner (3.9 ms on average). The fastest algorithm on average is
BJL with 2.5 ms.

5 Conclusion

We presented a minimum cost flow formulation for the coordinate assignment
problem that minimizes the total edge length with respect to several optional
criteria like the maximum width or lower and upper bounds on the distance of
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neighboring nodes in a layer. In our experiments we showed that our approach
can compete with state-of-the-art algorithms.
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Abstract. Heath and Pemmaraju [9] conjectured that the queue-
number of a poset is bounded by its width and if the poset is planar
then also by its height. We show that there are planar posets whose
queue-number is larger than their height, refuting the second conjecture.
On the other hand, we show that any poset of width 2 has queue-number
at most 2, thus confirming the first conjecture in the first non-trivial case.
Moreover, we improve the previously best known bounds and show that
planar posets of width w have queue-number at most 3w − 2 while any
planar poset with 0 and 1 has queue-number at most its width.

1 Introduction

A queue layout of a graph consists of a total ordering on its vertices and an
assignment of its edges to queues, such that no two edges in a single queue are
nested. The minimum number of queues needed in a queue layout of a graph G
is called its queue-number and denoted by qn(G).

To be more precise, let G be a graph and let L be a linear order on the
vertices of G. We say that the edges uv, u′v′ ∈ E(G) are nested with respect
to L if u < u′ < v′ < v or u′ < u < v < v′ in L. Given a linear order L
of the vertices of G, the edges u1v1, . . . , ukvk of G form a rainbow of size k if
u1 < · · · < uk < vk < · · · < v1 in L. Given G and L, the edges of G can be
partitioned into k queues if and only if there is no rainbow of size k + 1 in L,
see [10].

The queue-number was introduced by Heath and Rosenberg in 1992 [10] as an
analogy to book embeddings. Queue layouts were implicitly used before and have
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applications in fault-tolerant processing, sorting with parallel queues, matrix
computations, scheduling parallel processes, and communication management
in distributed algorithm (see [8,10,13]).

Perhaps the most intriguing question concerning queue-numbers is whether
planar graphs have bounded queue-number.

Conjecture 1 (Heath and Rosenberg [10]).
The queue-number of planar graphs is bounded by a constant.

In this paper we study queue-numbers of posets. The parameter was intro-
duced in 1997 by Heath and Pemmaraju [9] and the main idea is that given a
poset one should lay it out respecting its relation. Two elements a, b of a poset
are called comparable if a < b or b < a, and incomparable, denoted by a ‖ b,
otherwise. Posets are visualized by their diagrams: Elements are placed as points
in the plane and whenever a < b in the poset, and there is no element c with
a < c < b, there is a curve from a to b going upwards (that is y-monotone).
We denote this case as a ≺ b. The diagram represents those relations which are
essential in the sense that they are not implied by transitivity, also known as
cover relations. The undirected graph implicitly defined by such a diagram is the
cover graph of the poset. Given a poset P , a linear extension L of P is a linear
order on the elements of P such that x <L y, whenever x <P y. (Throughout the
paper we use a subscript on the symbol <, if we want to emphasize which order
it represents.) Finally, the queue-number of a poset P , denoted by qn(P ), is the
smallest k such that there is a linear extension L of P for which the resulting lin-
ear layout of GP contains no (k+1)-rainbow. Clearly we have qn(GP ) ≤ qn(P ),
i.e., the queue-number of a poset is at least the queue-number of its cover graph.
It is shown in [9] that even for planar posets, that is posets admitting crossing-
free diagrams, there is no function f such that qn(P ) ≤ f(qn(GP )) (Fig. 1).

Fig. 1. A poset and a layout with two queues (gray and black). Note that the order of
the elements on the spine is a linear extension of the poset.

Heath and Pemmaraju [9] investigated the maximum queue-number of sev-
eral classes of posets, in particular with respect to bounded width (the maximum
number of pairwise incomparable elements) and height (the maximum number
of pairwise comparable elements). A set with every two elements being compa-
rable is a chain. A set with every two distinct elements being incomparable is
an antichain. They proved that if width(P ) ≤ w, then qn(P ) ≤ w2. The lower
bound is attained by weak orders, i.e., chains of antichains and is conjectured to
be the upper bound as well:



202 K. Knauer et al.

Conjecture 2 (Heath and Pemmaraju [9]).
Every poset of width w has queue-number at most w.

Furthermore, they made a step towards this conjecture for planar posets: if a
planar poset P has width(P ) ≤ w, then qn(P ) ≤ 4w − 1. For the lower bound
side they provided planar posets of width w and queue-number �√w�.

We improve the bounds for planar posets and get the following:

Theorem 1. Every planar poset of width w has queue-number at most 3w − 2.
Moreover, there are planar posets of width w and queue-number w.

As an ingredient of the proof we show that posets without certain subdi-
vided crowns satisfy Conjecture 2 (c.f. Theorem5). This implies the conjecture
for interval orders and planar posets with (unique minimum) 0 and (unique
maximum) 1 (c.f. Corollary 2). Moreover, we confirm Conjecture 2 for the first
non-trivial case w = 2:

Theorem 2. Every poset of width 2 has queue-number at most 2.

An easy corollary of this is that all posets of width w have queue-number at
most w2 − w + 1 (c.f. Corollary 1).

Another conjecture of Heath and Pemmaraju concerns planar posets of
bounded height:

Conjecture 3 (Heath and Pemmaraju [9]).
Every planar poset of height h has queue-number at most h.

We show that Conjecture 3 is false for the first non-trivial case h = 2:

Theorem 3. There is a planar poset of height 2 with queue-number at least 4.

Furthermore, we establish a link between a relaxed version of Conjectures 3
and 1, namely we show that the latter is equivalent to planar posets of height
2 having bounded queue-number (c.f. Theorem6). On the other hand, we show
that Conjecture 3 holds for planar posets with 0 and 1:

Theorem 4. Every planar poset of height h with 0 and 1 has queue-number at
most h − 1.

Organization of the paper. In Sect. 2 we consider general (not necessarily pla-
nar) posets and give upper bounds on their queue-number in terms of their
width, such as Theorem2. In Sect. 3 we consider planar posets and bound the
queue-number in terms of the width, both from above and below, i.e., we prove
Theorem1. In Sect. 4 we give a counterexample to Conjecture 3 by constructing
a planar poset with height 2 and queue-number at least 4. Here we also argue
that proving any upper bound on the queue-number of such posets is equiva-
lent to proving Conjecture 1. Finally, we show that Conjecture 3 holds for planar
posets with 0 and 1 and that for every h there is a planar poset of height h and
queue-number h − 1 (c.f. Proposition 3).
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2 General Posets of Bounded Width

By Dilworth’s Theorem [3], the width of a poset P coincides with the smallest
integer w such that P can be decomposed into w chains of P . Let us derive
Proposition 1 of Heath and Pemmaraju [9] from such a chain partition.

Proposition 1. For every poset P , if width(P ) ≤ w then qn(P ) ≤ w2.

Proof. Let P be a poset of width w and C1, . . . , Cw be a chain partition of P .
Let L be any linear extension of P and a <L b <L c <L d with a ≺ d and b ≺ c.
Note that we must have either a ‖ b or c ‖ d. If follows that if a ∈ Ci, b ∈ Cj ,
c ∈ Ck, and d ∈ C�, then (i, �) 	= (j, k). As there are only w2 ordered pairs (x, y)
with x, y ∈ [w], we can conclude that every nesting set of covers has cardinality
at most w2. 
�

Note that in the above proof L is any linear extension and that without choos-
ing the linear extension L carefully, upper bound w2 is best-possible. Namely,
if P = {a1, . . . , ak, b1, . . . , bk} with comparabilities ai < bj for all 1 ≤ i, j ≤ k,
then P has width k and the linear extension a1 < . . . < ak < bk < . . . < b1
creates a rainbow of size k2.

We continue by showing that every poset of width 2 has queue-number at
most 2, that is, we prove Theorem2.

Proof (Theorem 2). Let P be a poset of width 2 and minimum element 0 and
C1, C2 be a chain partition of P . Note that the assumption of the minimum
causes no loss of generality, since a 0 can be added without increasing the width
nor decreasing the queue-number. Any linear extension L of P partitions the
ground set X naturally into inclusion-maximal sets of elements, called blocks,
from the same chain in {C1, C2} that appear consecutively along L, see Fig. 2.
We denote the blocks by B1, . . . , Bk according to their appearance along L.
We say that L is lazy if for each i = 2, . . . , k, each element x ∈ Bi has a
relation to some element y ∈ Bi−1. A linear extension L can be obtained by
picking any minimal element m ∈ P , put it into L, and recurse on P \ {m}.
Lazy linear extensions (with respect to C1, C2) can be constructed by the same
process where additionally the next element is chosen from the same chain as
the element before, if possible. Note that the existence of a 0 is needed in order
to ensure the property of laziness with respect to B2.

Now we shall prove that in a lazy linear extension no three covers are pairwise
nesting. So assume that a ≺ b is any cover and that a ∈ Bi and b ∈ Bj . As L
is lazy, b is comparable to some element in Bj−1 (if j ≥ 2) and all elements in
B1, . . . , Bj−2 (if j ≥ 3). With a ≺ b being a cover, it follows from L being lazy
that i ∈ {j−2, j−1, j}. If i = j, then no cover is nested under a ≺ b. If i = j−1,
then no cover c ≺ d is nested above a ≺ b: either c ∈ Bi and d ∈ Bj and hence
c ≺ d is not a cover, or both endpoints would be inside the same chain, i.e., c, d
are the last and first element of Bj−2 and Bj or Bi and Bi+2, respectively. This
implies c <L a <L d <L b or a <L c <L b <L r, respectively, and c ≺ d cannot
nest above a ≺ b. If i = j − 2, then no cover is nested above a ≺ b. Thus, either



204 K. Knauer et al.

Fig. 2. A poset of width 2 with a 0 and a chain partition C1, C2 and the blocks
B1, . . . , B5 induced by a lazy linear extension with respect to C1, C2.

no cover is nested below a ≺ b, or no cover is nested above a ≺ b, or both. In
particular, there is no three nesting covers and qn(P ) ≤ 2. 
�
Corollary 1. Every poset of width w has queue-number at most w2 − 2w/2�.
Proof. We take any chain partition of size w and pair up chains to obtain a set
S of w/2� disjoint pairs. Each pair from S induces a poset of width at most 2,
which by Theorem2 admits a linear order with at most two nesting covers. Let
L be a linear extension of P respecting all these partial linear extensions.

Now, following the proof of Proposition 1 any cover can be labeled by a pair
(i, j) corresponding to the chains containing its endpoint. Thus, in a set of nesting
covers any pair appears at most once, but for each i, j such that (i, j) ∈ S only
two of the four possible pairs can appear simultaneously in a nesting. This yields
the upper bound. 
�

For an integer k ≥ 2 we define a subdivided k-crown as the poset Pk as follows.
The elements of Pk are {a1, . . . , ak, b1, . . . , bk, c1, . . . , ck} and the cover relations
are given by ai ≺ bi and bi ≺ ci for i = 2, . . . , k, ai ≺ ci−1 for i = 1, . . . , k − 1,
and a1 ≺ ck; see the left of Fig. 3. We refer to the covers of the form ai ≺ cj as
the diagonal covers and we say that a poset P has an embedded Pk if P contains
3k elements that induce a copy of Pk in P with all diagonal covers of that copy
being covers of P .

Fig. 3. Left: The posets P2, P3, and P4. Right: The existence of an element z with
cover relation z ≺ x and non-cover relation z < y gives rise to a gray edge from x to y.

Theorem 5. If P is a poset that for no k ≥ 2 has an embedded Pk, then the
queue-number of P is at most the width of P .
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Proof. Let P be any poset. For this proof we consider the cover graph GP of P
as a directed graph with each edge xy directed from x to y if x ≺ y in P . We
call these edges the cover edges. Now we augment GP to a directed graph G by
introducing for some incomparable pairs x ‖ y a directed edge. Specifically, we
add a directed edge from x to y if there exists a z with z < x, y in P where z ≺ x
is a cover relation and z < y is not a cover relation; see the right of Fig. 3. We
call these edges the gray edges of G.

Now we claim that if G has a directed cycle, then P has an embedded sub-
divided crown. Clearly, every directed cycle in G has at least one gray edge.
We consider the directed cycles with the fewest gray edges and among those let
C = [c1, . . . , c�] be one with the fewest cover edges. First assume that C has a
cover edge (hence � ≥ 3), say c1c2 is a gray edge followed by a cover edge c2c3.
Consider the element z with cover relation z ≺ c1 and non-cover relation z < c2
in P . By z < c2 ≺ c3 we have a non-cover relation z < c3 in P . Now if c1 ‖ c3
in P , then G contains the gray edge c1c3 (see Fig. 4(a)) and [c1, c3, . . . , c�] is a
directed cycle with the same number of gray edges as C but fewer cover edges, a
contradiction. On the other hand, if c1 < c3 in P (note that c3 < c1 is impossible
as z ≺ c1 is a cover), then there is a directed path Q of cover edges from c1 to
c3 (see Fig. 4(b)) and C + Q − {c1c2, c2c3} contains a directed cycle with fewer
gray edges than C, again a contradiction.

Fig. 4. Illustrations for the proof of Theorem 5.

Hence C = [c1, . . . , c�] is a directed cycle consisting solely of gray edges. Note
that by the first paragraph {c1, . . . , c�} is an antichain in P . For i = 2, . . . , �
let ai be the element of P with cover relation ai ≺ ci−1 and non-cover relation
ai < ci, as well as a1 with cover relation a1 ≺ c� and non-cover relation a1 <
c1. As {c1, . . . , c�} is an antichain and ai < ci holds for i = 1, . . . , �, we have
{c1, . . . , c�}∩{a1, . . . , a�} = ∅. Let us assume that a1 < cj in P for some j 	= 1, �.
If a1 ≺ cj is a cover relation, then there is a gray edge cjc1 in G (see Fig. 4(c))
and the cycle [c1, . . . , cj ] is shorter than C, a contradiction. If a1 < cj is a non-
cover relation, then there is a gray edge c�cj in G (see Fig. 4(d)) and the cycle
[cj , . . . , c�] is shorter than C, again a contradiction.

Hence, the only relations between a1, . . . , a� and c1, . . . , c� are cover relations
a1 ≺ c� and ai ≺ ci−1 for i = 2, . . . , � and the non-cover relations ai < ci for
i = 1, . . . , �. Hence a1, . . . , a� are pairwise distinct. Moreover, {a1, . . . , a�} is an
antichain in P since the only possible relations among these elements are of the
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form a1 < a� or ai < ai−1, which would contradict that a1 ≺ c� and ai ≺ ci−1

are cover relations. Finally, we pick for every i = 1, . . . , � an element bi with
ai < bi < ci, which exists as ai < ci is a non-cover relation. Together with the
above relations between a1, . . . , a� and c1, . . . , c� we conclude that b1, . . . , b� are
pairwise distinct and these 3� elements induce a copy of P� in P with all diagonal
covers in that copy being covers of P .

Thus, if P has no embedded Pk, then the graph G we constructed has no
directed cycles, and we can pick L to be any topological ordering of G. As GP ⊆
G, L is a linear extension of P . For any two nesting covers x2 <L x1 <L y1 <L y2
we have x1 ‖ x2 or y1 ‖ y2 or both, since x2 ≺ y2 is a cover. However, if x2 < x1

in P , then there would be a gray edge from y2 to y1 in G, contradicting y1 <L y2
and L being a topological ordering of G. We conclude that x1 ‖ x2 and the left
endpoints of any rainbow form an antichain, proving qn(P ) ≤ width(P ). 
�

Let us remark that several classes of posets have no embedded subdivided
crowns, e.g., graded posets, interval orders (since these are 2+2-free, see [6]),
or (quasi-)series-parallel orders (since these are N-free, see [7]). Here, 2+ 2 and
N are the four-element posets defined by a < b, c < d and a < b, c < d, c < b,
respectively. Also note that while subdivided crowns are planar posets, no planar
poset with 0 and 1 has an embedded k-crown. Indeed, already looking at the
subposet induced by the k-crown and the 0 and the 1, it is easy to see that there
must be a crossing in any diagram. Thus, we obtain:

Corollary 2. For any interval order, series-parallel order, and planar poset with
0 and 1, P we have qn(P ) ≤ width(P ).

3 Planar Posets of Bounded Width

Heath and Pemmaraju [9] show that the largest queue-number among planar
posets of width w lies between �√w� and 4w − 1. Here we improve the lower
bound to w and the upper bound to 3w − 2.

Proposition 2. For each w there exists a planar poset Qw with 0 and 1 of width
w and queue-number w.

Proof. We shall define Qw recursively, starting with Q1 being any chain. For
w ≥ 2, Qw consists of a lower copy P and a disjoint upper copy P ′ of Qw−1,
three additional elements a, b, c, and the following cover relations in between:

– a ≺ x, where x is the 0 of P
– y ≺ x′, where y is the 1 of P and x′ is the 0 of P ′

– y′ ≺ c, where y′ is the 1 of P ′

– a ≺ b ≺ c

It is easily seen that all cover relations of P and P ′ remain cover relations in
Qw, and that Qw is planar, has width w, a is the 0 of Qw, and c is the 1 of Qw.
See Fig. 5 for an illustration.
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Fig. 5. Recursively constructing planar posets Qw of width w and queue-number w.
Left: Q1 is a two-element chain. Middle: Qw is defined from two copies P, P ′ of Qw−1.
Right: The general situation for a linear extension of Qw.

To prove that qn(Qw) = w we argue by induction on w, with the case w = 1
being immediate. Let L be any linear extension of Qw. Then a is the first element
in L and c is the last. Since y ≺ x′, all elements in P come before all elements
of P ′. Now if in L the element b comes after all elements of P , then P is nested
under cover a ≺ b, and if b comes before all elements of P ′, then P ′ is nested
under cover b ≺ c. We obtain w nesting covers by induction on P in the former
case, and by induction on P ′ in the latter case. This concludes the proof. 
�

Next we prove Theorem1, namely that the maximum queue-number of planar
posets of width w lies between w and 3w − 2.

Proof (Theorem 1). By Proposition 2 some planar posets of width w have queue-
number w. So it remains to consider an arbitrary planar poset P of width w and
show that P has queue-number at most 3w − 2. To this end, we shall add some
relations to P , obtaining another planar poset Q of width w that has a 0 and
1, with the property that qn(P ) ≤ qn(Q) + 2w − 2. Note that this will conclude
the proof, as by Corollary 2 we have qn(Q) ≤ w.

Given a planar poset P of width w, there are at most w minima and at most
w maxima. Hence there are at most 2w − 2 extrema that are not on the outer
face. For each such extremum x – say x is a minimum – consider the unique face
f with an obtuse angle at x. We introduce a new relation y < x, where y is a
smallest element at face f , see Fig. 6. Note that this way we introduce at most
2w−2 new relations, and that these can be drawn y-monotone and crossing-free
by carefully choosing the other element in each new relation. Furthermore, every
inner face has a unique source and unique sink.

Now consider a cover relation a ≺P b that is not a cover relation in the new
poset Q. For the corresponding edge e from a to b in Q there is one face f with
unique source a and unique sink b. Now either way the other edge in f incident
to a or to b must be one of the 2w − 2 newly inserted edges, see again Fig. 6.
This way we assign a ≺ b to one of 2w − 2 queues, one for each newly inserted
edge. Every such queue contains either at most one edge or two incident edges,
i.e., a nesting is impossible, no matter what linear ordering is chosen later.

We create at most 2w − 2 queues to deal with the cover relations of P that
are not cover relations of Q and spend another w queues for Q dealing with the
remaining cover relations of P . Thus, qn(P ) ≤ qn(Q) + 2w − 2 ≤ 3w − 2. 
�
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y

x

a

b

Fig. 6. Inserting new relations (dashed) into a face of a plane diagram. Note that
relation a < b is a cover relation in P but not in Q.

4 Planar Posets of Bounded Height

Recall Conjecture 3, which states that every planar poset of height h has queue-
number at most h. In the following, we give a counterexample to this conjecture:

Proof (Theorem 3). Consider the graph G that is constructed as follows: Start
with K2,10 with bipartition classes {a1, a2} and {b1, . . . , b10}. For every i =
1, . . . , 9 add four new vertices ci,1, . . . , ci,4, each connected to bi and bi+1. The
resulting graph G has 46 vertices, is planar and bipartite with bipartition classes
X = {b1, . . . , b10} and Y = {a1, a2} ∪ {ci,j | 1 ≤ i ≤ 9, 1 ≤ j ≤ 4}. See Fig. 7.

a1 a2

b1

b10

c5,1 c5,4

a1 a2

b1

b2

c1,1
c1,2

c1,3
c1,4

Fig. 7. A planar poset P of height 2 and queue-number at least 4. Left: The cover
graph GP of P . Right: A part of a planar diagram of P .

Let P be the poset arising from G by introducing the relation x < y for every
edge xy in G with x ∈ X and y ∈ Y . Clearly, P has height 2 and hence the cover
relations of P are exactly the edges of G. Moreover, by a result of Moore [12]
(see also [2]) P is planar because G is planar, also see the right of Fig. 7.

We shall argue that qn(P ) ≥ 4. To this end, let L be any linear extension of P .
Without loss of generality we have a1 <L a2. Note that since in P one bipartition
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class of G is entirely below the other, any 4-cycle in G gives a 2-rainbow. Let
bi1 , bi2 be the first two elements of X in L, bj1 , bj2 be the last two such elements.
As |X| = 10 there exists 1 ≤ i ≤ 9 such that {i, i + 1} ∩ {i1, i2, j1, j2} = ∅, i.e.,
we have bi1 , bi2 <L bi, bi+1 <L bj1 , bj2 <L a1 <L a2, where we use that a1 and
a2 are above all elements of X in P .

Now consider the elements C = {ci,1, . . . , ci,4} that are above bi and bi+1 in
P . As |C| ≥ 4, there are two elements c1, c2 of C that are both below a1, a2 in L,
or both between a1 and a2 in L, or both above a1, a2 in L. Consider the 2-rainbow
R in the 4-cycle [c1, bi, c2, bi+1]. In the first case R is nested below the 4-cycle
[a1, bi1 , a2, bi2 ], in the second case the cover bj1 ≺ a1 is nested below R and R is
nested below the cover bi1 ≺ a2, and in the third case 4-cycle [a1, bj1 , a2, bj2 ] is
nested below R. As each case results in a 4-rainbow, we have qn(P ) ≥ 4. 
�

Even though Conjecture 3 has to be refuted in its strongest meaning, it might
hold that planar posets of height h have queue-number O(h), or at least bounded
by some function f(h) in terms of h, or at least that planar posets of height 2
have bounded queue-number. As it turns out, all these statements are equivalent,
and in turn equivalent to Conjecture 1.

Theorem 6. The following statements are equivalent:

(i) Planar graphs have queue-number O(1) (Conjecture 1).
(ii) Planar posets of height h have queue-number O(h).
(iii) Planar posets of height h have queue-number at most f(h) for a function f .
(iv) Planar posets of height 2 have queue-number O(1).
(v) Planar bipartite graphs have queue-number O(1).

Proof. (i)⇒(ii) Pemmaraju proves in his thesis [14] (see also [4]) that if G
is a graph, π is a vertex ordering of G with no (k + 1)-rainbow, V1, . . . , Vm

are color classes of any proper m-coloring of G, and π′ is the vertex ordering
with V1 <π′ · · · <π′ Vm, where within each Vi the ordering of π is inherited,
then π′ has no (2(m − 1)k + 1)-rainbow. So if P is any poset of height h,
its cover graph GP has qn(GP ) ≤ c by (i) for some global constant c > 0.
Splitting P into h antichains A1, . . . , Ah by iteratively removing all minimal
elements induces a proper h-coloring of GP with color classes A1, . . . , Ah. As
every vertex ordering π′ of G with A1 <π′ · · · <π′ Ah is a linear extension
of P , it follows by Pemmaraju’s result that qn(P ) ≤ 2(h − 1) qn(GP ) ≤ 2ch,
i.e., qn(P ) ∈ O(h).

(ii) ⇒(iii)⇒(iv) These implications are immediate.
(iv)⇒(v) Moore proves in his thesis [12] (see also [2]) that if G is a planar
and bipartite graph with bipartition classes A and B, and PG is the poset on
element set A ∪ B = V (G) where x < y if and only if x ∈ A, y ∈ B, xy ∈ E(G),
then PG is a planar poset of height 2. As G is the cover graph of PG, we have
qn(G) ≤ qn(PG) ≤ c for some constant c > 0 by (iv), i.e., qn(G) ∈ O(1).
(v)⇒(i) This is a result of Dujmović and Wood [5]. 
�

Finally, we show that Conjecture 3 holds for planar posets with 0 and 1.
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Proof (Theorem 4). Let P be a planar poset with 0 and 1. Then P has dimension
at most two [1], i.e., it can be written as the intersection of two linear extensions
of P . A particular consequence of this is, that there is a well-defined dual poset
P � in which two distinct elements x, y are comparable in P if and only if they are
incomparable in P �. Poset P � reflects a “left of”-relation for each incomparable
pair x ‖ y in P in the following sense: Any maximal chain C in P corresponds
to a 0-1-path Q in GP , which splits the elements of P \ C into those left of
Q and those right of Q. Now x <P � y if and only if x is left of the path for
every maximal chain containing y (equivalently y is right of the path for every
maximal chain containing x). Due to planarity, if a ≺ b is a cover in P and C is
a maximal chain containing neither a nor b, then a and b are on the same side
of the path Q corresponding to C. In particular, if for x, y ∈ C we have a <P � x
and b ‖ y, then b and y are comparable in P �, but if y <P � b we would get a
crossing of C and a ≺ b. Also see the left of Fig. 8. We summarize:

(�) If a ≺ b, a <P � x for some x ∈ C and b ‖ y for some y ∈ C, then b <P � y.

Fig. 8. Left: Illustration of (�): If a <P� x, b ‖ y, x < y, and a ≺ b is a cover, then
b <P� y due to planarity. Right: If a3 <L a2 <L a1 <L b1 <L b2 <L b3 is a 3-rainbow
with a2, a3 < a1, then a3 < a2.

Now let L be the leftmost linear extension of P , i.e., the unique linear exten-
sion L with the property that for any x ‖ y in P we have x <L y if and only
if x < y in P �. Assume that a2 <L a1 <L b1 <L b2 is a pair of nesting covers
a1 ≺ b1 below a2 ≺ b2. Then a1 ‖ a2 (hence a2 <P � a1) or b1 ‖ b2 (hence
b1 <P � b2) or both. Observe that the latter case is impossible, as for any max-
imal chain C containing a1 ≺ b1 we would have a2 <P � a1 with a1 ∈ C and
b1 <P � b2 with b1 ∈ C, contradicting (�). So the nesting of a1 ≺ b1 below a2 ≺ b2
is either of type A with a2 < a1, or of type B with b1 < b2. See Fig. 9.

Now consider the case that cover a2 ≺ b2 is nested below another cover
a3 ≺ b3, see the right of Fig. 8. Then also a1 ≺ b1 is nested below a3 ≺ b3 and
we claim that if both, the nesting of a1 ≺ b1 below a2 ≺ b2 as well as the nesting
of a1 ≺ b1 below a3 ≺ b3, are of type A (respectively type B), then also the
nesting of a2 ≺ b2 below a3 ≺ b3 is of type A (respectively type B). Indeed,
assuming type B, we would get a3 <P � a2 and b1 <P � b3, which together with
any maximal chain C containing a2 < a1 < b1 contradicts (�).
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Fig. 9. A nesting of a1 ≺ b1 below a2 ≺ b2 of type A (left) and type B (right).

Finally, let ak <L · · · <L a1 <L b1 <L · · · <L bk be any k-rainbow and let
I = {i ∈ [k] | ai < a1}, i.e., for each i ∈ I the nesting of a1 ≺ b1 below ai ≺ bi

is of type A. Then we have just shown that the nesting of aj ≺ bj below ai ≺ bi

is of type A whenever i, j ∈ I and of type B whenever i, j /∈ I. Hence, the set
{ai | i ∈ I}∪{a1, b1}∪{bi | i /∈ I} is a chain in P of size k+1, and thus k ≤ h−1.
It follows that P has queue-number at most h − 1, as desired. 
�

The proof of the following can be found in the arXiv version of the present
paper, [11].

Proposition 3. For each h there exists a planar poset Qh of height h and queue-
number h − 1.

5 Conclusions

We studied the queue-number of (planar) posets of bounded height and width.
Two main problems remain open: bounding the queue-number by the width and
bounding it by a function of the height in the planar case, where the latter is
equivalent to the central conjecture in the area of queue-numbers of graphs. For
the first problem the biggest class known to satisfy it are posets without the
embedded the subdivided k-crowns for k ≥ 2 as defined in Sect. 2. Note, that
proving it for k ≥ 3 would imply that Conjecture 2 holds for all 2-dimensional
posets, which seems to be a natural next step.

Let us close the paper by recalling another interesting conjecture from [9],
which we would like to see progress in:

Conjecture 4. (Heath and Pemmaraju [9]).
Every planar poset on n elements has queue-number at most �√n�.
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Abstract. A queue layout of a graph G consists of a linear order of the
vertices of G and a partition of the edges of G into queues, so that no two
independent edges of the same queue are nested. The queue number of G
is the minimum number of queues required by any queue layout of G. In
this paper, we continue the study of the queue number of planar 3-trees.
As opposed to general planar graphs, whose queue number is not known
to be bounded by a constant, the queue number of planar 3-trees has
been shown to be at most seven. In this work, we improve the upper
bound to five. We also show that there exist planar 3-trees, whose queue
number is at least four; this is the first example of a planar graph with
queue number greater than three.

1 Introduction

In a queue layout [12], the vertices of a graph are restricted to a line and the
edges are drawn at different half-planes delimited by this line, called queues.
The task is to find a linear order of the vertices along the underlying line and
a corresponding assignment of the edges of the graph to the queues, so that no
two independent edges of the same queues are nested; see Fig. 1. Recall that
two edges are called independent if they do not share an endvertex. The queue
number of a graph is the smallest number of queues that are required by any
queue layout of the graph. Note that queue layouts form the “dual” concept of
stack layouts [14], which do not allow two edges of the same stack to cross.

Apart from the intriguing theoretical interest, queue layouts find applications
in several domains [2,11,15,20]. As a result, they have been studied extensively
over the years [3,5,9,10,12,16–21]. An important open problem in this area is
whether the queue number of planar graphs is bounded by a constant. A positive
answer to this problem would have several important implications, e.g., (i) that
every n-vertex planar graph admits a O(1) × O(1) × O(n) straight-line grid
drawing [22], (ii) that every Hamiltonian bipartite planar graph admits a 2-
layer drawing and an edge-coloring of bounded size, such that edges of the same
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Fig. 1. (a) The Goldner-Harary planar 3-tree, and (b) a 5-queue layout of it produced
by our algorithm, in which edges of different queues are colored differently. (Color figure
online)

color do not cross [8], and (iii) that the queue number of k-planar graphs is also
bounded by a constant [9]. The best-known upper bound is due to Dujmović [4],
who showed that the queue number of an n-vertex planar graph is at most
O(log n) (improving upon an earlier bound by Di Battista et al. [3]).

It is worth noting that many subclasses of planar graphs have bounded queue
number. Every tree has queue number one [12], outerplanar graphs have queue
number at most two [11], and series-parallel graphs have queue number at most
three [18]. Surprisingly, planar 3-trees have queue number at most seven [21],
although they were conjectured to have super-constant queue number by Pem-
maraju [16]. As a matter of fact, every graph that admits a 1-queue layout
is planar with at most 2n − 3 edges; however, testing this property is NP-
complete [11]; for a survey refer to [9].

Our Contribution. In Sect. 2, we improve the upper bound on the queue number
of planar 3-trees from seven [21] to five; recall that a planar 3-tree is a trian-
gulated plane graph G with n ≥ 3 vertices, such that G is either a 3-cycle, if
n = 3, or has a vertex whose deletion gives a planar 3-tree with n− 1 vertices, if
n > 3. In Sect. 3, we show that there exist planar 3-trees, whose queue number
is at least four, thus strengthening a corresponding result of Wiechert [21] for
general (that is, not necessarily planar) 3-trees. We stress that our lower bound
is also the best known for planar graphs. Table 1 puts our results in the context
of existing bounds. We conclude in Sect. 4 with open problems.

Preliminaries. For a pair of distinct vertices u and v, we write u ≺ v, if u precedes
v in a linear order. We also write [v1, v2, . . . , vk] to denote that vi precedes vi+1

for all 1 ≤ i < k. Assume that F is a set of k ≥ 2 independent edges (si, ti) with
si ≺ ti, for all 1 ≤ i ≤ k. If the linear order is [s1, . . . , sk, tk, . . . , t1], then we say
that F is a k-rainbow, while if the linear order is [s1, . . . , sk, t1, . . . , sk], we say
that F is a k-twist. The edges of F form a k-necklace, if [s1, t1, . . . , sk, tk]; see
Fig. 2a. A preliminary result for queue layouts is the following.

Lemma 1 (Heath and Rosenberg [12]). A linear order of the vertices of a
graph admits a k-queue layout if and only if there exists no (k + 1)-rainbow.
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Table 1. Queue numbers of various subclasses of planar graphs

Upper bound Lower bound

Graph class Old New Old New

Tree 1 [12] 1 [12]

Outerplanar 2 [11] 2 [12]

Series-parallel 3 [18] 3 [21]

Planar 3-tree 7 [21] 5 [Theorem 1] 3 [21] 4 [Theorem 2]

Planar O(log n) [4] 3 [21] 4 [Theorem 2]

Central in our approach is also the following construction by Dujmović
et al. [7] for internally-triangulated outerplane graphs; for an illustration see
Figs. 2b–c.

Lemma 2 (Dujmović, Pór, Wood [7]). Every internally-triangulated outer-
plane graph, G, admits a straight-line outerplanar drawing, Γ (G), such that the
y-coordinates of vertices of G are integers, and the absolute value of the differ-
ence of the y-coordinates of the endvertices of each edge of G is either one or
two. Furthermore, the drawing can be used to construct a 2-queue layout of G.

Let 〈u, v, w〉 be a face of a drawing Γ (G) produced by the construction of
Lemma 2, where G is an internally triangulated outerplane graph. Up to renam-
ing of the vertices of this face, we may assume that |y(u)−y(v)| = |y(u)−y(w)| =
1, |y(v)−y(w)| = 2 and y(v) > y(w). We refer to vertex u as to the anchor of the
face 〈u, v, w〉 of Γ (G); v and w are referred to as top and bottom, respectively. It
is easy to verify that drawing Γ (G) can be converted to a 2-queue layout of G
as follows: (i) for any two distinct vertices u and v of G, u ≺ v, if and only if the
y-coordinate of u is strictly greater than the one of v, or the y-coordinate of u is
equal to the one of v, and u is to the left of v in Γ (G), (ii) edge (u, v) is assigned
to the first (second) queue if and only if the absolute value of the difference of
the y-coordinates of u and v is one (two, respectively) in Γ (G).

Finally, let 〈u, v, w〉 and 〈u′, v′, w′〉 be two faces of Γ (G), such that u and u′

are their anchors, v and v′ are their top vertices, and w and w′ are their bottom
vertices. If u and u′ are distinct and u ≺ u′ in the 2-queue layout, then v ≺ v′ (if
v �= v′) and w ≺ w′ (if w �= w′). The property clearly holds, if u and u′ do not
have the same y-coordinate. Otherwise, the property holds, since Γ (G) is planar.

2 The Upper Bound

In this section, we prove that the queue number of every planar 3-tree is at most
five. Our approach is inspired by the algorithm of Wiechert [21] to compute 7-
queue layouts for general (not necessarily planar) 3-trees. To reduce the number
of required queues in the produced layouts, we make use of structural properties
of the input graph. In particular, we put the main ideas of the algorithm of
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Fig. 2. (a) 3-rainbow, 3-twist and 3-necklace (from top to bottom); (b) an internally-
triangulated outerplane graph G0; the dotted-gray edges are added to make it bicon-
nected; its gray-shaded faces contain components c1, c2 and c3 of G1; (c) the drawing
Γ (G0) by Lemma 2; the vertex-labels indicate the linear order of its 2-queue layout;
the anchor vertices of faces 〈9, 10, 12〉, 〈3, 5, 9〉 and 〈4, 8, 9〉 are 10, 5, 8, respectively.

Wiechert [21] into a peeling-into-levels approach (see, e.g., [23]), according to
which the vertices and the edges of the input graph are partitioned as follows:
(i) vertices incident to the outerface are at level zero, (ii) vertices incident to the
outerface of the graph induced by deleting all vertices of levels 0, . . . , i − 1 are
at level i, (iii) edges between same-level vertices are called level edges, and (iv)
edges between vertices of different levels are called binding edges.

To keep the description simple, we first show how to compute a 5-queue lay-
out of a planar 3-tree G, assuming that G has only two levels. Then, we extend
our approach to more than two levels. We conclude by discussing the differences
between the approach of Wiechert [21] and ours; we also describe which proper-
ties of planar 3-trees we exploited to reduce the required number of queues.

The Two-Level Case. We start with the (intuitively easier) case in which the
given planar 3-tree G consists of two levels, L0 and L1. Since we use this case
as a tool to cope with the general case of more than two levels, we consider a
slightly more general scenario. In particular, we make the following assumptions
(see Fig. 2b): (A.1) the graph G0 induced by the vertices of level L0 is outer-
plane and internally-triangulated, and (A.2) each connected component of the
graph G1 induced by the vertices of level L1 is outerplane and resides within a
(triangular) face of G0. Without loss of generality we may also assume that G0

is biconnected, as otherwise we can augment it to being biconnected by adding
(level-L0) edges without affecting its outerplanarity. Note that in a planar 3-
tree, graph G0 is simply a triangle (and not an outerplane graph, as we have
assumed), and as a result G1 is a single outerplane component. Our algorithm
maintains the following invariants:

I.1 the linear order is such that all vertices of L0 precede all vertices of L1;
I.2 the level edges use two queues, Q0 and Q1;
I.3 the binding edges use three queues, Q2, Q3, and Q4.

In the following lemma, we show how to determine a (partial) linear order of the
vertices of levels L0 and L1 that satisfies the first two invariants of our algorithm.
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Lemma 3. There is an order of vertices of level L0 and a partial order of ver-
tices of level L1 such that I.1 and I.2 are satisfied.

Proof. To compute an order that satisfies I.1, we construct two orders, one for
the vertices of level L0 (that satisfies I.2) and one for the vertices of level L1

(that also satisfies I.2), and then we concatenate them so that the vertices of L0

precede the vertices of L1.
To compute an order of the vertices of L0 satisfying I.2, we apply Lemma 2,

as by our initial assumption A.1, graph G0 is internally-triangulated and outer-
plane. Thus, I.2 is satisfied for the vertices of level L0. To compute an order of the
vertices of L1 satisfying I.2, we apply Lemma 2 individually for every connected
component of G1, which can be done by our initial assumption A.2. Then the
resulting orders are concatenated (as defined by next Lemma 4). Since for every
two connected components of G1, all vertices of the first one either precede or
follow all vertices of the second one, we can use the same two queues (denoted
by Q0 and Q1 in I.2) for all the vertices of L1. Therefore, I.2 is satisfied. �	

Next, we complete the order of the vertices of G, in a way that the binding edges
between L0 and L1 require at most three additional queues so as to satisfy I.3.

Lemma 4. Given the linear order of the vertices of level L0 and the partial
order of the vertices of level L1 produced by Lemma 3, there is a total order of
the vertices of L0 and L1 that extends their partial orders and an assignment of
the binding edges between L0 and L1 into three queues such that I.3 is satisfied.

Fig. 3. The 5-queue layout for the graph in Fig. 2; since 5 ≺ 8 and 8 ≺ 10 in the order
of the vertices of level L0 as seen in Fig. 2, c2 precedes c3, and c3 precedes c1. (Color
figure online)

Proof. Consider a connected component c of G1. By our initial assumption A.2,
component c resides within a triangular face 〈u, v, w〉 of G0. Let u, v and w
be the anchor, top and bottom vertices of the face, respectively. We assign the
binding edges incident to u to queue Q2, the ones incident to v to queue Q3 and
the ones incident to w to queue Q4; see the blue, red, and green edges in Fig. 3.

Next we describe how to compute the relative order of the connected compo-
nents of G1. Let c and c′ be two such components. By our initial assumption A.2,
c and c′ reside within two triangular faces 〈u, v, w〉 and 〈u′, v′, w′〉 of G0. Assume
that u and u′ are the anchors of the two faces, v, v′ are top and w,w′ are bottom
vertices. If u �= u′, then c precedes c′ if and only if u ≺ u′ in the order of L0.
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If u = u′, we have v �= v′ or w �= w′. If v �= v′, then c precedes c′ if and only if
v ≺ v′ in the order of L0. Otherwise (that is, u = u′ and v = v′), c precedes c′ if
and only if w ≺ w′ in the order of L0. We claim that for the resulting order of
L1, I.3 is satisfied, that is, no two edges of each of Q2, Q3 and Q4 are nested.

We start our proof with Q2. Consider two independent edges (x, y) ∈ Q2

and (x′, y′) ∈ Q2, where x, x′ ∈ L0 and y, y′ ∈ L1 (see the blue edges in Fig. 3
incident to 5 and 8). By construction of Q2, x and x′ are anchors of two different
faces fx and fx′ of G0 (see the faces of Fig. 2c that contain c2 and c3). Without
loss of generality we assume that x ≺ x′ in the order of L0. Then, the two
components cy and cy′ of G1, that reside within fx and fx′ and contain y and
y′, are such that all vertices of cy precede all vertices of cy′ (in Fig. 3, x = 5
precedes y = 8; thus, cy = c2 precedes cy′ = c3). Since y ∈ cy and y′ ∈ cy′ , edges
(x, y) and (x′, y′) do not nest.

We continue our proof with Q3 (the proof for Q4 is similar). Let (x, y) and
(x′, y′) be two independent edges of Q3, where x, x′ ∈ L0 and y, y′ ∈ L1 (see the
red edges in Fig. 3 incident to 3 and 4). By construction of Q3, x and x′ are the
top vertices of two different faces fx and fx′ of G0 (see the faces of Fig. 2c that
contain c2 and c3). Let cy and cy′ be the components of G1 that reside within
fx and fx′ and contain y and y′. Finally, let u and u′ be the anchors of fx and
fx′ , respectively. Suppose first that u �= u′ and assume that u ≺ u′ in the order
of L0. Since u ≺ u′, it follows that x ≺ x′ and that all vertices of cy precede
all vertices of cy′ (in Fig. 3, u = 5 precedes u′ = 8, which implies that x = 3
precedes x′ = 4; thus, cy = c2 precedes c′

y = c3). Since y ∈ cy and y′ ∈ cy′ ,
it follows that (x, y) and (x′, y′) are not nested. Suppose now that u = u′ and
assume that x ≺ x′ in the order of L0. Since u = u′ and x ≺ x′, all vertices of
cy precede all vertices of cy′ . Since y ∈ cy and y′ ∈ cy′ , it follows that (x, y) and
(x′, y′) are not nested. Hence, I.3 is satisfied, which concludes the proof. �	

Lemmas 3 and 4 conclude the two-level case. Before we proceed with the
multi-level case, we make a useful observation. To satisfy I.3, we did not impose
any restriction on the order of the vertices of each connected component of G1

(any order that satisfies I.2 for level L1 would be suitable for us, that is, not
necessarily the one constructed by Lemma 2). What we fixed, was the relative
order of these components. We are now ready to proceed to the multi-level case.

The Multi-level Case. We now consider the general case, in which our planar
3-tree G consists of more than two levels, say L0, L1, . . . , Lλ with λ ≥ 2. Let Gi

be the subgraph of G induced by the vertices of level Li; i = 0, 1, . . . , λ. The
connected components of each graph Gi are internally-triangulated outerplane
graphs that are not necessarily biconnected: Clearly, this holds for G0, which
is a triangle. Assuming that for some i = 1, . . . , λ, graph Gi−1 has the claimed
property, we observe that each connected component of Gi resides within a facial
triangle of Gi−1. Since each non-empty facial triangle of Gi−1 in G induces a
planar 3-tree [13], the claim follows by observing that the removal of the outer
face of a planar 3-tree yields a plane graph, whose outer vertices induce an
internally-triangulated outerplane graph.
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For the recursive step of our algorithm, assume that for some i = 0, . . . , λ−1
we have a 5-queue layout for each of the connected components of the graph Hi+1

induced by the vertices of Li+1, . . . , Lλ, that satisfies the following invariants.

M.1 the linear order is such that all vertices of Lj precede all vertices of Lj+1

for every j = i + 1, . . . , λ − 1;
M.2 the level edges of Li+1, . . . , Lλ use two queues, Q0 and Q1;
M.3 for every j = i + 1, . . . , λ − 1, the binding edges between Lj and Lj+1 use

three queues, Q2, Q3, and Q4.

Based on these layouts, we show how to construct a 5-queue layout (satisfying
M.1–M.3) for each of the connected components of the graph Hi induced by
the vertices of Li, . . . , Lλ. Let Ci be such a component. By definition, Ci is
delimited by a connected component ci of Gi which is internally-triangulated
and outerplane. If none of the faces of ci contains a connected component of
Hi+1, then we compute a 2-queue layout of it using Lemma 2. Consider now the
more general case, in which some of the faces of ci contain connected components
of Hi+1. By M.1–M.3, we have computed 5-queue layouts for all the connected
components, say d1, . . . , dk, of Hi+1 that reside within the faces of ci.

Fig. 4. Illustrations for the proof of Theorem 1.

We proceed by applying the two-level algorithm to the subgraph of Ci induced
by the vertices of ci and the vertices incident to the outer faces of d1, . . . , dk.
By the last observation we made in the two-level case, this will result in: (a) a
linear order O(ci) of the vertices of ci, (b) a relative order of the components
d1, . . . , dk, (c) an assignment of the (level-Li) edges of ci into Q0 and Q1, and
(d) an assignment of the binding edges between ci and each of d1, . . . , dk into
Q2, Q3 and Q4. Up to renaming, we assume that d1, . . . , dk is the computed
order of these components; see Fig. 4a.

By (c) and (d), all edges of Ci are assigned to Q0, . . . ,Q4, since the edges of
d1, . . . , dk have been recursively assigned to these queues. Next, we partition the
order of vertices of Ci into λ − i + 1 disjoint intervals, say pi, . . . , pλ, such that
pμ precedes pν if and only if μ ≺ ν. All the (level-Li) vertices of ci are contained
in pi in the order O(ci) by (a). For j = i+1, . . . , λ, pj contains the vertices of Lj

of each of the components d1, . . . , dk, such that the vertices of Lj of dμ precede
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the vertices of Lj of dν if and only if μ ≺ ν; see Fig. 4b. The proof that M.1–M.3
are satisfied can be found in the full version [1]. We summarize in the following.

Theorem 1. Every planar 3-tree has queue number at most 5.

We note here that queue layouts are closely related to track layouts; for
definitions refer to [7]. The following result follows immediately from a known
result by Dujmović, Morin, Wood [6]; see the full version [1] for details.

Corollary 1. The track number of a planar 3-tree is at most 4000.

Differences with Wiechert’s Algorithm. Wiechert’s algorithm [21] builds
upon a previous algorithm by Dujmović et al. [6]. Both yield queue layouts for
general k-trees, using the breadth-first search (BFS) starting from an arbitrary
vertex r of G. For each d > 0 and each connected component C induced by the
vertices at distance d from r, create a node (called bag) “containing” all vertices
of C; two bags are adjacent if there is an edge of G between them. For a k-tree,
the result is a tree of bags T , called tree-partition, so that (P.1) every node of
T induces a connected (k − 1)-tree, and (P.2) for each non-root node x ∈ T , if
y ∈ T is the parent of x, then the vertices in y having a neighbor in x form a
clique of size k. Both algorithms order the bags of T , such that the vertices of
the bags at distance d from r precede those at distance d+1. The vertices within
each bag are ordered by induction using P.1.

The algorithms differ in the way the edges are assigned to queues; the more
efficient one by Wiechert [21] uses 2k −1 queues (2k−1 for the inter- and 2k−1+1
for the intra-bag edges), which is worst-case optimal for 1- and 2-trees.

If G is a planar 3-tree and the BFS is started from a dummy vertex incident
to the three outervertices of G, then the intra- and inter-bag edges correspond
to the level and binding edges of our approach, while the bags at distance d from
r in T correspond to different connected components of level d.

To reduce the number of queues, we observed that in G (i) every node of
T induces a connected outerplanar graph, while (ii) each clique of size three by
P.2 is a triangular face of G. By the first observation, we reduced the number
of queues for intra-bag edges; by the second, we combined orders from different
bags more efficiently.

3 The Lower Bound

In the following, we prove that the queue number of planar 3-trees is at least
four. To this end, we will define recursively a subgraph of a planar 3-tree G and
we will show that it contains at least one 4-rainbow in any ordering. Starting
with a set of T independent edges (si, ti) with 1 ≤ i ≤ T and T to be determined
later, we connect their endpoints to two unique vertices, say A and B, which we
assume to be neighboring. We refer to these edges as (s, t)-edges.

As a next step, we stellate each triangle 〈A, si, ti〉 with a vertex xi, that is,
we introduce vertex xi and connect it to A, si, and ti. Symmetrically, we also
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Fig. 5. Construction of graph GT : Each gray subgraph in (a) corresponds to a copy of
the graph of (b).

stellate each triangle 〈B, si, ti〉 with a vertex yi. Afterwards, we add one more
level, that is, we stellate each of the triangles 〈A, si, ti〉, 〈B, si, ti〉, 〈A, xi, si〉,
〈A, xi, ti〉, 〈B, yi, si〉 and 〈B, yi, ti〉 with vertices αi, βi, pi, qi, ui and vi, respec-
tively; see Fig. 5b. We further stellate 〈si, ti, αi〉 with α′

i and then 〈si, ti, α
′
i〉 with

α′′
i . Symmetrically, we stellate 〈si, ti, βi〉 with β′

i and 〈si, ti, β
′
i〉 with β′′

i .
Let GT be the graph constructed so far. We refer to vertices A and B as the

poles of GT and we assume that GT admits a 3-queue layout Q. By symmetry, we
may assume that A ≺ B and that si ≺ ti for each edge (si, ti). Consider a single
edge (si, ti) and the relative order of its endvertices to A and B. Then, there
exist six possible permutations: (P.1) si ≺ A ≺ B ≺ ti, (P.2) A ≺ si ≺ B ≺ ti,
(P.3) si ≺ A ≺ ti ≺ B, (P.4) A ≺ B ≺ si ≺ ti, (P.5) si,≺ ti ≺ A ≺ B, and (P.6)
A ≺ si ≺ ti ≺ B.

By the pigeonhole principle and by setting T = 6l, we may claim that at
least one of the permutations P.1–P.6 applies to at least l edges. We will show
that if too many (s, t)-edges share one of the permutations P.1–P.5, then there
exists a 4-rainbow, contradicting the fact that Q is a 3-queue layout for GT .
This implies that if T is large enough, then for at least one (s, t)-edge of GT

permutation P.6 applies. Based on this fact, we describe later how to augment
the graph that we have constructed so far using a recursive construction such
that we can also rule out permutation P.6. Thereby, proving the claimed lower
bound of four. We start with an auxiliary lemma.

Lemma 5. In every queue that contains r2 independent edges, there exists either
an r-twist or an r-necklace.

Proof. Assume that no r-twist exists, as otherwise the lemma holds. We will
prove the existence of an r-necklace. Let (s1, t1), . . . , (sr2 , tr2) be the r2 indepen-
dent edges. Assume w.l.o.g. that si ≺ si+1 for each i = 1, . . . , r2 − 1. Consider
the edge (s1, t1). Since s1 is the first vertex in the order and no two edges nest,
each vertex ti, with i > 1, is to the right of t1. Since no r-twist exists, vertex
sr is to the right of t1. Thus, (s1, t1) and (sr, tr) do not cross. The removal of
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(s1, t1), . . . , (sr−1, tr−1) makes sr first. By applying this argument r − 1 times,
we obtain that (s1, t1), (sr, tr), . . .

(
s(r−1)2+1, t(r−1)2+1

)
form an r-necklace. �	

Applying the pigeonhole principle to a k-queue layout, we obtain the follow-
ing.

Corollary 2. Every k-queue layout with at least kr2 independent edges contains
at least one r-twist or at least one r-necklace.

We exploit this result for permutations P.1–P.6 as follows. Recall that Q is
a 3-queue layout for GT . So, if we set T = 18r2 for an r > 0 of our choice,
then at least 3r2 (s, t)-edges of GT share the same permutation. Moreover, these
edges are by construction independent. Therefore, by Corollary 2 at least r of
them form a necklace or a twist (while also sharing the same permutation). In
the following, we show that if r (s, t)-edges, say w.l.o.g. (s1, t1), . . . , (sr, tr), form
a necklace or a twist (for an appropriate choice of r) and simultaneously share
one of the permutations P.1–P.5, then a 4-rainbow is inevitably induced, which
contradicts the fact that Q is a 3-queue layout. We consider each case separately.

Case P.1: Let r = 8. It suffices to consider the case, in which (s1, t1), . . . , (s8, t8)
form a twist, since in general for r > 1 the necklace case is impossible. Hence, the
order is [s1 . . . s8ABt1 . . . t8]. We show that x4 always yields a 4-rainbow; Fig. 6
shows the three subcases arising when x4 is such that x4 ≺ B holds. Clearly,
each yields a 4-rainbow. Since we did not use the edge (x4, A), by symmetry, a
4-rainbow is also obtained when B ≺ x4.

Case P.2: As in the previous case, we set r = 8 and we only consider the
case, in which (s1, t1), . . . , (s8, t8) form a twist, since the necklace case is again
impossible. Hence, the order is [As1 . . . s8Bt1 . . . t8]. One may verify that placing
x4 and x5 to the left of t8 always results in a 4-rainbow (see the full version [1]
for details). For the case in which x4 and x5 are preceded by t8, we distinguish
between if x4 ≺ x5 holds or not. Both result in a 4-rainbow.

Case P.3: This case can be ruled out like Case P.2 due to symmetry.

Fig. 6. Illustration for the Case P.1 when x4 ≺ B holds.

Case P.4: Let r = 10. We distinguish two subcases based on whether the edges
(s1, t1), . . . , (s10, t10) form a twist or a necklace (in contrast to the previous case,
here both cases are possible).
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Fig. 7. Illustration for the Case P.4 when z4...7 ≺ t9 holds.

We start with the twist case. Hence, the order is [ABs1 . . . s10t1 . . . t10]. Let
Z4...7 = {x4, . . . , x7} ∪ {y4, . . . y7} and let z4...7 be any element of Z4...7. Similar
to the previous case, we sweep from left to right and rule out easy subcases.
However, we have to ensure that we do not use any edge from z4...7 to A or B in
order to keep the roles of xi and yi interchangeable. Figure 7 shows that we may
assume that t9 ≺ z4...7, that is, all x4, . . . , x7 and y4, . . . , y7 are preceded by t9.

Next, we show that we can always construct a 3-rainbow spanning (s8, t8),
which then yields the desired 4-rainbow. Let us take a closer look at the ordering
of the 8 vertices in Z4...7. To prevent the creation of a 3-rainbow that spans
(s8, t8), we claim that the ordering has to comply with two requirements: (R.1)
the indices of the first 7 elements of Z4...7 are non-decreasing, and (R.2) for
the last 7 elements of Z4...7, it must hold that all x precede all y. Assume to
the contrary, that R.1 does not hold. Hence, there exists a pair of vertices, say
w.l.o.g xj ≺ xi, with i < j and xi is not the last element of Z4...7. Then,
[si . . . sj . . . xj . . . xi] forms a 2-rainbow and together with the last element of
Z4...7 that is adjacent to either A or B, we obtain a 3-rainbow spanning (s8, t8);
a contradiction. Assume now that R.2 does not hold. Then, there exists a pair
yi ≺ xj with yi not being the first element. Let the first element be xl. Then,
[A . . . B . . . sl . . . xl . . . yi . . . xj ] is a 3-rainbow spanning (s8, t8); a contradiction.

Now, we show that R.1 and R.2 cannot simultaneously hold, which implies
the existence of a 4-rainbow. Consider the last element of Z4...7. Assume that R.1
and R.2 both hold. By R.2, we may deduce that the last three elements of Z4...7

belong to {y4, . . . y7}. Let them be yi, yj , y� as they appear from left to right.
Then, by R.1 we have that i < j. Consider now xj . By R.1, yi ≺ xj must hold.
This contradicts the fact that yi, yj , y� are the last three elements of Z4...7.

We continue with the necklace case. Here, the order is [ABs1t1 . . . s10t10]. We
make several observations about the ordering in the form of propositions; their
formal proofs can be found in the full version [1].

Proposition 1. Let w be a neighbor of si and ti for 3 ≤ i ≤ 8. Then, either
si−1 ≺ w ≺ ti+1 holds, or s10 ≺ w.

Proposition 2. Let w and z be two vertices that form a K4 with si and ti, for
3 ≤ i ≤ 8. Then, at least one of the following holds: s10 ≺ w or s10 ≺ z.
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Proposition 3. Let w, z be neighbors of both si, ti, for 3 ≤ i ≤ 8. Then, at
most one of w and z is between si−1 and si or between ti and ti−1. Furthermore,
if one of w and z is between si−1 and si or between ti and ti−1, then the other
is not between si and ti.

Proposition 4. For 4 ≤ i ≤ 8, each vertex from the set {xi, yi, pi, qi, ui, vi} is
between si−1 and ti+1.

Fig. 8. Contradiction for placing xi, yi, pi, qi, ui, vi in range (si−1, ti+1), 4 ≤ i ≤ 8.

By Proposition 4, for 4 ≤ i ≤ 8, each vertex from {si, ti, xi, yi, pi, qi, ui, vi} is
in (si−1, ti+1). Then, the edges between these vertices cannot form a 2-rainbow,
as otherwise this 2-rainbow along with the two edges (A, t10) and (B, s10) would
form a 4-rainbow. Assume w.l.o.g. that xi ≺ yi. Then, by Proposition 3, one of
the following two conditions hold: (i) xi ≺ si ≺ ti ≺ yi, (ii) si ≺ xi ≺ yi ≺ ti;
see Fig. 8. In both cases, pi must precede both xi and si, as otherwise either
(pi, si), (xi, ti), or (pi, xi), (si, ti) would form a 2-rainbow; see Fig. 8. But then
there is no valid position for qi without creating a 2-rainbow in either case,
resulting together with (A, t10) and (B, s10) in a 4-rainbow.

Case P.5: This case can be ruled out like Case P.4 due to symmetry.
From the above case analysis it follows that if r is at least 10 (which implies

that T is at least 1,800), then for at least one (s, t)-edge of GT permutation P.6
applies, that is, there exists 1 ≤ i0 ≤ T such that A ≺ si0 ≺ ti0 ≺ B. Notice
that the edges (A,B) and (si0 , ti0) form a 2-rainbow.

We proceed by augmenting graph GT as follows. For each edge (si, ti) of
GT , we introduce a new copy of GT , which has si and ti as poles. Let G′

T

be the augmented graph and let (s′
1, t

′
1), . . . , (s

′
T , t′T ) be the (s, t)-edges of the

copy of graph GT in G′
T corresponding to the edge (si0 , ti0) of the original

graph GT . Then, by our arguments above there exists 1 ≤ i′0 ≤ T such that
si0 ≺ s′

i0
≺ t′i0 ≺ ti0 . Hence, the edges (A,B), (si0 , ti0) and (s′

i0
, t′i0) form a

3-rainbow, since A ≺ si0 ≺ ti0 ≺ B holds. If we apply the same augmentation
procedure to graph G′

T , then we guarantee that the resulting graph G′′
T , which is

clearly a subgraph of a planar 3-tree, has inevitably a 4-rainbow. Hence, either
GT does not admit a 3-queue layout, as we initially assumed, or G′′

T does not
admit a 3-queue layout. In both cases, Theorem2 follows.

Theorem 2. There exist planar 3-trees that have queue number at least 4.
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4 Conclusions

In this work, we presented improved bounds on the queue number of planar
3-trees. Three main open problems arise from our work. The first one concerns
the exact upper bound on the queue number of planar 3-trees. Does there exist
a planar 3-tree, whose queue number is five (as our upper bound) or the queue
number of every planar 3-tree is four (as our lower bound example)? The second
problem is whether the technique that we developed for planar 3-trees can be
extended so to improve the upper bound for the queue number of general (that
is, non-planar) k-trees, which is currently exponential in k [21]. Finally, the third
problem is the central question in the area. Is the queue number of general planar
graphs (that is, that are not necessarily planar 3-trees) bounded by a constant?
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15. Pach, J., Thiele, T., Tóth, G.: Three-dimensional grid drawings of graphs. In:
DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 47–51. Springer, Heidelberg
(1997). https://doi.org/10.1007/3-540-63938-1 49

16. Pemmaraju, S.V.: Exploring the powers of stacks and queues via graph layouts.
Ph.D. thesis, Virginia Tech (1992)

17. Pupyrev, S.: Mixed linear layouts of planar graphs. In: Frati, F., Ma, K.-L. (eds.)
GD 2017. LNCS, vol. 10692, pp. 197–209. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-73915-1 17

18. Rengarajan, S., Veni Madhavan, C.E.: Stack and queue number of 2-trees. In:
Du, D.-Z., Li, M. (eds.) COCOON 1995. LNCS, vol. 959, pp. 203–212. Springer,
Heidelberg (1995). https://doi.org/10.1007/BFb0030834

19. Shahrokhi, F., Shi, W.: On crossing sets, disjoint sets, and pagenumber. J. Algo-
rithms 34(1), 40–53 (2000)

20. Tarjan, R.E.: Sorting using networks of queues and stacks. J. ACM 19(2), 341–346
(1972)

21. Wiechert, V.: On the queue-number of graphs with bounded tree-width. Electr. J.
Comb. 24(1) (2017). P1.65

22. Wood, D.R.: Queue layouts, tree-width, and three-dimensional graph drawing.
In: Agrawal, M., Seth, A. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 348–359.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36206-1 31

23. Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. Syst. Sci.
38(1), 36–67 (1989)

https://doi.org/10.1007/3-540-63938-1_49
https://doi.org/10.1007/978-3-319-73915-1_17
https://doi.org/10.1007/978-3-319-73915-1_17
https://doi.org/10.1007/BFb0030834
https://doi.org/10.1007/3-540-36206-1_31


Crossings



Crossing Minimization in Perturbed
Drawings

Radoslav Fulek1(B) and Csaba D. Tóth2,3
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Abstract. Due to data compression or low resolution, nearby vertices
and edges of a graph drawing may be bundled to a common node or arc.
We model such a “compromised” drawing by a piecewise linear map ϕ :
G → R

2. We wish to perturb ϕ by an arbitrarily small ε > 0 into a proper
drawing (in which the vertices are distinct points, any two edges intersect
in finitely many points, and no three edges have a common interior point)
that minimizes the number of crossings. An ε-perturbation, for every
ε > 0, is given by a piecewise linear map ψε : G → R

2 with ‖ϕ−ψε‖ < ε,
where ‖.‖ is the uniform norm (i.e., sup norm).

We present a polynomial-time solution for this optimization problem
when G is a cycle and the map ϕ has no spurs (i.e., no two adjacent
edges are mapped to overlapping arcs). We also show that the problem
becomes NP-complete (i) when G is an arbitrary graph and ϕ has no
spurs, and (ii) when ϕ may have spurs and G is a cycle or a union of
disjoint paths.

Keywords: Map approximation · C-planarity · Crossing number

1 Introduction

A graph G = (V,E) is a 1-dimensional simplicial complex. A continuous piece-
wise linear map ϕ : G → R

2 maps the vertices in V into points in the plane,
and the edges in E to piecewise linear arcs between the corresponding vertices.
However, several vertices may be mapped to the same point, and two edges may
be mapped to overlapping arcs. This scenario arises in applications in cartogra-
phy, clustering, and visualization, due to data compression, graph semantics, or
low resolution. Previous research focused on determining whether such a map
ϕ can be “perturbed” into an embedding. Specifically, a continuous piecewise
linear map ϕ : G → M is a weak embedding if, for every ε > 0, there is an
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embedding ψε : G → M with ‖ϕ − ψε‖ < ε, where ‖.‖ is the uniform norm (i.e.,
sup norm). Recently, Fulek and Kynčl [1] gave a polynomial-time algorithm for
recognizing weak embeddings, and the running time was subsequently improved
to O(n log n) for simplicial maps by Akitaya et al. [2]. Note, however, that only
planar graphs admit embeddings and weak embeddings. In this paper, we extend
the concept of ε-perturbations to nonplanar graphs, and seek a perturbation with
the minimum number of crossings.

A continuous map ϕ : G → M of a graph G to a 2-manifold M is a drawing if
(i) the vertices in V are mapped to distinct points in M , (ii) each edge is mapped
to a Jordan arc between two vertices without passing through any other vertex,
and (iii) any two edges intersect in finitely many points. A crossing between
two edges, e1, e2 ∈ E, is defined as an intersection point between the relative
interiors of the arcs ϕ(e1) and ϕ(e2). For a piecewise linear map ϕ : G → R

2,
let cr(ϕ) be the minimum nonnegative integer k such that for every ε > 0, there
exists a drawing ψε : G → R

2 with ‖ϕ − ψε‖ < ε and k crossings, see Fig. 1 for
an illustration.

ϕ(v1)

ϕ(v2) = ϕ(v8)

ϕ(v3) = ϕ(v5) = ϕ(v7) = ϕ(v9)

ϕ(v4) = ϕ(v10)

ϕ(v6)

ϕ(v11)

ϕ : P10 = v1 . . . v11 → R
2

ψε : P10 = v1 . . . v11 → R
2

‖ϕ − ψε‖ ≤ ε

Fig. 1. An example for a map ϕ : G → R
2, where G = P10, i.e., a path of length 10,

with cr(ϕ) = 1 (left); and a perturbation ψε witnessing that cr(ϕ) ≤ 1 (right).

It is clear that ϕ is a weak embedding if and only if cr(ϕ) = 0. Note also
that if e1, e2 ∈ E and the arcs ϕ(e1) and ϕ(e2) cross transversely at some point
p ∈ R

2, then ψε(e1) and ψε(e2) also cross in the ε-neighborhood of p for any
sufficiently small ε > 0. An ε-perturbation may, however, remove tangencies and
partial overlaps between edges.

The problem of determining cr(ϕ) for a given map ϕ : G → R
2 is NP-

complete: In the special case that ϕ(G) is a single point, cr(ϕ) equals the crossing
number of G, and it is NP-complete to find the crossing number of a given
graph [3] (even if G is a planar graph plus one edge [4]).

In this paper, we focus on the special case that G is a cycle. A series of recent
papers [5–7] show that weak embeddings can be recognized in O(n log n) time.
Chang et al. [6] identified two features of a map ϕ : G → R

2 that are difficult to
handle: A spur is a vertex whose incident edges are mapped to the same arc or
overlapping arcs, and a fork is a vertex mapped to the relative interior of the
image of some nonincident edge (a vertex may be both a fork and a spur). We
prove the following results.
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Theorem 1. Given a cycle G = (V,E) and a piecewise linear map ϕ : G → R
2,

where G has n vertices and the image ϕ(G) is a plane graph with m vertices,
then cr(ϕ) can be computed

1. in O((m + n) log(m + n)) time if ϕ has neither spurs nor forks,
2. in O((mn) log(mn)) time if ϕ has no spurs.

As noted above, the problem of determining cr(ϕ) is NP-complete when G
is an arbitrary graph (even if ϕ is a constant map). We show that the problem
remains NP-complete if G is a cycle and we drop the condition that ϕ has no
spurs.

Theorem 2. Given k ∈ N and a piecewise linear map ϕ : G → R
2, it is NP-

complete to decide whether cr(ϕ) ≤ k if ϕ : G → R
2 may have spurs and

1. G is a cycle, or
2. G is a union of disjoint paths.

Related Previous Work. Finding efficient algorithms for the recognition of
weak embeddings ϕ : G → M , where G is an arbitrary graph, was posed as an
open problem in [5–7]. The first polynomial-time solution for the general version
follows from a recent variant [1] of the Hanani-Tutte theorem [8,9], which was
conjectured by Skopenkov [10] in 2003 and in a slightly weaker form already by
Repovš and Skopenkov [11] in 1998. Weak embeddings of graphs also general-
ize various graph visualization models such as strip planarity [12] and level
planarity [13]; and can be seen as a special case [14] of the notoriously difficult
cluster-planarity (for short, c-planarity) [15,16], whose tractability remains
elusive today.

Organization. We start in Sect. 2 with preliminary observations that show that
determining cr(ϕ) is a purely combinatorial problem, which can be formulated
without metric inequalities. We describe and analyse a recognition algorithm,
proving Theorem1 in Sect. 3. We prove NP-hardness by a reduction from 3SAT
in Sect. 4, and conclude in Sect. 5. Omitted proofs are available in the Appendix.

2 Preliminaries

We rely on techniques introduced in [1,5,6,17], and complement them with
additional tools to keep track of edge crossings. A piecewise linear function
ϕ : G → R

2 is a composition ϕ = γ ◦ λ, where λ : G → H is a continu-
ous map from G to a graph H (i.e., a 1-dimensional simplicial complex) and
γ : H → R

2 is a drawing of H. We may further assume, by subdividing the
edges of G if necessary, that the map λ : G → H is simplicial, that is, it maps
vertices to vertices and edges to edges; and γ : H → R

2 is a straight-line drawing
of H, where each edge in E(H) is mapped to a line segment. To distinguish the
graphs G and H in our terminology, G has vertices V (G) and edges E(G),
and H has clusters V (H) and pipes E(H).
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A perturbation ψε of ϕ lies in the ε-neighborhood of ϕ(G). We define suitable
neighborhoods for the graph H, and the image γ(H) = ϕ(G). For the graph H
and its drawing γ : H → R

2, we define the neighborhood N ⊂ R
2 as the

union of regions Nu and Nuv for every u ∈ V (H) and uv ∈ E(G), respectively,
as follows. Let ε0 > 0 be a sufficiently small constant specified below. For every
u ∈ V (H), let Nu be the closed disk of radius ε0 centered at γ(u). For every edge
uv ∈ E(H), let Nuv be the set of points at distance at most ε20 from γ(uv) that
lie in the interior of neither Nu nor Nv. Let ε0 > 0 be so small that for every
triple {u, v, w} ⊂ V (H), the disk Nu is disjoint from both Nv and Nvw, and the
regions Nuv and Nuw are disjoint from each other. (Note, however, that regions
Nuv and Nu′v′ may intersect if the line segments γ(uv) and γ(u′v′) cross.)

Such ε0 > 0 exists due to piecewise linearity of ϕ and by compactness.
(Indeed, consider the intersection Bu,v and Bu,w of the boundary of Nu with
that of Nuv and Nuw, respectively. Taking ε0 sufficiently small, we assume that
Nu ∩γ(uv) and Nu ∩γ(uw) are line segments meeting in u at some angle α ≤ π.
We require ε0 < 1

π α since we need ε20 < 1
π ε0α for Bu,v and Bu,w to be disjoint,

and hence Nuv and Nuw.) By definition, an ε-perturbation of ϕ = γ ◦ λ lies in
the neighborhood N for all ε ∈ (0, ε20).

For the graph H and its drawing γ : H → R
2, we also define the thickening

H, H ⊂ H, as a 2-dimensional manifold with boundary as follows. For every
u ∈ V (H), create a topological disk Du, and for every edge uv ∈ E(H), create
a rectangle Ruv. For every Du and Ruv, fix an arbitrary orientation of ∂Du and
∂Ruv, respectively. Partition the boundary of ∂Du into deg(u) arcs, and label
them by Au,v, for all uv ∈ E(H), in the cyclic order around ∂Du determined
by the rotation of u in the the drawing γ(G). The manifold H is obtained by
identifying two opposite sides of every rectangle Ruv with Au,v and Av,u via
an orientation preserving homeomorphism. Note that there is a natural map
Γ : H → N such that Γ |H = γ; Γ is a homeomorphism between Du and Nu for
every u ∈ V (H); and Γ maps Ruv to Nuv for every uv ∈ E(H).

We reformulate a problem instance ϕ : G → R
2 as two functions λ : G → H

and γ : H → R
2, where G and H are abstract graphs, λ is a simplicial map and

γ is a straight-line drawing of H. A perturbation of the map ϕ = γ ◦ λ is a
drawing ψ = Γ ◦ Λ, where Λ : G → H is a drawing of G on H with the following
properties:

(P1) for every vertex a ∈ V (G), Λ(a) ∈ Dλ(a),
(P2) for every edge ab ∈ E(G), Λ(ab) ⊂ Dλ(a) ∪ Rλ(a)λ(b) ∪ Dλ(b) such that it
crosses the boundary of the disks Dλ(a) and Dλ(b) precisely once, and
(P3) all crossing between arcs Λ(e), e ∈ E(G), lie in the disks Du, u ∈ V (H);

and Γ : H → R
2 maps the disk Du injectively into Nu for all u ∈ V (H), and

rectangle Ruv into Nuv for all uv ∈ E(H) (however the rectangles Ruv and Ru′v′

may be mapped to crossing neighborhoods Nuv and Nu′v′ for two independent
edges uv, u′v′ ∈ E(H)).

Combinatorial Representation. Properties (P1)–(P3) allow for a combina-
torial representation of the drawing Λ : G → H: For every pipe uv ∈ E(H),
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let πuv be a total order of the edges in λ−1[uv] ⊆ E(G) in Rλ(a)λ(b); and let
πΛ = {πuv : uv ∈ E(H)} the collection of these total orders. In fact, we can
assume that Λ(G) consists of straight-line segments in every rectangle Ruv, and
every disk Du. The number of crossings in each disk Du is determined by the
cyclic order of the segment endpoints along ∂Du. Thus the number of crossings
in all disk Du, u ∈ V (H) is determined by πΛ.

Two Types of Crossings. The reformulation of the problem allows us to
distinguish two types of crossings in a piecewise-linear map ϕ : G → R

2: edge-
crossings in the neighborhoods Nu, u ∈ V (H), and crossings between edges
mapped to two pipes that cross each other.

The number of crossings between the edges of G inside a disk Nu, u ∈ V (H),
is the same as the number of crossings in Du, since Γ is injective on Du. We
denote the total number of such crossings by

cr1(λ) = min
Λ

⎛
⎝ ∑

u∈V (H)

CRΛ(u)

⎞
⎠ ,

where CRΛ(u) is the number of crossings of the drawing Λ(G) in the disk Du.
Let the weight of a pipe e ∈ E(H) be the number of edges of G mapped to e,

that is, w(e) := |λ−1[e]|. If the arcs γ(e1) and γ(e2) cross in the plane, for some
e1, e2 ∈ E(H), then every edge in λ−1[e1] crosses all edges in λ−1[e2]. The total
number of crossings between the edges of G attributed to the crossings between
pipes is

cr2(γ, λ) =
∑

{e1,e2}∈C

w(e1)w(e2),

where C is the multiset of pipe pairs {e1, e2} such that γ(e1) and γ(e2) cross. It
is now clear that

cr(γ ◦ λ) = cr1(λ) + cr2(γ, λ). (1)

The operations in Sect. 3 successively modify an instance ϕ = γ ◦ λ until
H becomes a cycle. In this case, it is easy to determine cr2(γ, λ), which is a
consequence of the following folklore lemma.

Lemma 1 [18, Lemma 1.12]. If G = Cn and H = Ck and λ : G → H is
a simplicial map without spurs, where the cycle G winds around the cycle H
precisely n/k times, then cr1(λ) = n

k − 1.

3 Cycles Without Spurs

Let G = Cn be a cycle with n vertices, and H an arbitrary abstract graph,
λ : G → H a simplicial map that does not map any two consecutive edges of G
to the same edge in H, and γ : H → R

2 a straight-line drawing. In this section,
we prove that cr(γ ◦ λ) is invariant under the so-called ClusterExpansion and
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PipeExpansion operations. (Similar operations for weak embeddings have been
introduced in [1,5,6,17].) We show that a sequence of O(n) operations produces
an instance in which H is a cycle, where we can easily determine both cr1(λ)
and cr2(γ, λ), hence cr(γ ◦ λ).

Du
Dλ′(xa)

Dλ′(xc)

xa

b

xc

a

c

Fig. 2. ClusterExpansion(u).

ClusterExpansion(u). See Fig. 2 for an illustration. (1) Let Du be a suffi-
ciently small disk centered at γ(u) that intersects only the images of pipes
incident to u. (2) Subdivide every pipe uv ∈ E(H) incident to u with a new
cluster yv, let γ(yv) := ∂Du ∩ γ(uv). (3) Subdivide every edge ab ∈ E(G)
such that λ(b) = u with a new vertex xa such that λ(xa) = yλ(a). (4) For
every vertex b ∈ λ−1[u], and any two neighbors xa and xc, insert an edge
xaxc in G, insert a pipe λ(xa)λ(xc) in H if it is not already present, and
draw this pipe in the plane as a straight-line segment between γ(λ(xa)) and
γ(λ(xc)). (5) Delete cluster u from H, and delete all vertices in λ−1[u] from
G. (6) Return the resulting instance by λ′ : G′ → H ′ and γ′ : H ′ → R

2.

Lemma 2. If G is a cycle, λ : G → H has no spur, and u ∈ V (H), then
ClusterExpansion(u) produces an instance where G′ is a cycle, λ′ : G′ → H ′ has
no spur, and cr(γ ◦ λ) = cr(γ′ ◦ λ′).

We remark that cr(γ◦λ) is invariant under the ClusterExpansion(u) operation
even in the presence of spurs, however the proof is somewhat simpler in the
absence spurs, and Lemma 2 also establishes that ClusterExpansion(u) does not
create new spurs.

Pipe Expansion. A cluster u ∈ V (H) is a base of an incident pipe uv if every
vertex in λ−1[u] is incident to an edge in λ−1[uv]. A pipe uv ∈ E(H) is safe if
both u and v are bases of uv. The following operation is defined on safe pipes.
See Fig. 2 for an illustration. (We note that our algorithm would be correct even
if PipeExpansion(uv) were defined on all pipes, unlike the result in [2], since λ
does not contain spurs. We restrict this operation to safe pipe to simplify the
runtime analysis.)
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PipeExpansion(uv). (1) Let Duv be a sufficiently narrow ellipse with foci
at γ(u) and γ(v) that intersects only the images of pipes incident to u
and v. (2) Subdivide every pipe e ∈ E(H) incident to u or v with a new
cluster ye, let γ(ye) := ∂Duv ∩ γ(e). (3) Subdivide every edge ab ∈ E(G)
such that λ(a) /∈ {u, v} and λ(b) ∈ {u, v} with a new vertex xa such that
λ(x) = yλ(ab). (4) For every edge bc ∈ λ−1[uv], and the two neighbors
xa and xd of b and c, respectively, insert an edge xaxd in G, insert a
pipe λ(xa)λ(xd) in H if it is not already present, and draw this pipe in
the plane as a straight-line segment between γ(λ(xa)) and γ(λ(xd)). (5)
Delete clusters u and v from H, and delete all vertices in λ−1[uv] from
G. (6) Return the resulting instance by λ′ : G′ → H ′ and γ′ : H ′ → R

2

(Fig. 3).

Du Dv
a

b
c d

xa

xd
Ruv

Dλ′(xa)

Dλ′(xd)

Fig. 3. PipeExpansion(uv) for a safe pipe uv.

Lemma 3. If G is a cycle, λ : G → H has no spur, and uv ∈ E(H) is a safe
pipe, then PipeExpansion(uv) produces an instance where G′ is a cycle, λ′ : G′ →
H ′ has no spur, and cr(γ ◦ λ) = cr(γ′ ◦ λ′).

We remark that Lemma 3 holds even for uv that is not safe, provided that
λ : G → H has no spur.

Main Algorithm. Given an instance λ : G → H and γ : H → R
2, we apply

the two operations defined above as follows.

Algorithm 1. Input: (G,H, λ, γ)
U0 ←− V (H)
for every u ∈ U0 do

ClusterExpansion(u)
while there is a safe pipe uv ∈ E(H) such that degH(u) ≥ 3 or
degH(v) ≥ 3 do

PipeExpansion(uv)

uv ←− an arbitrary edge in E(H).
return cr2(γ, λ) + |λ−1[uv]| − 1.

Lemma 4. Algorithm1 terminates.

Proof. By Lemmas 2 and 3, λ : G → H has no spurs in any step of the algorithm.
It is enough to show that the while loop of Algorithm1 terminates. We define
the potential function Φ(G,H) = |E(G)| − |E(H)|, and show that Φ(G,H) ≥ 0
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and it decreases in every invocation of PipeExpansion(uv). Since G is a cycle
and λ has no spur, every edge in λ−1[uv] is adjacent to one edge in some other
pipe incident to u and one edge in some other pipe incident to v. Each of these
edges contributes to one edge in E(G′) inside the ellipse Duv. Since uv is safe,
G′ has no other new edges. Consequently, |E(G′)| = |E(G)|. Since degH(u) ≥ 3
or degH(v) ≥ 3, PipeExpansion(uv) replaces the clusters u and v with at least
3 clusters, each of which is incident to at least one pipe in the ellipse Duv.
Consequently, |E(H ′)| > |E(H)|, and so Φ(G,H) > Φ(G′,H ′), as claimed. �
Lemma 5. At the end of the while loop of Algorithm1, H is a cycle.

Proof. It is enough to show that if H is not a cycle in the while loop of
Algorithm 1, then there is a safe pipe uv ∈ E(H) such that degH(u) ≥ 3 or
degH(v) ≥ 3. Observe that every cluster created by ClusterExpansion(u) (resp.,
PipeExpansion(uv)) is a base for the unique incident pipe in the exterior of disk
Du (resp., ellipse Duv). Let s : V (H) → E(H) be a function that maps every
cluster to that incident pipe. Note also that the input does not have spurs, and
no spurs are created in the algorithm by Lemmas 2 and 3. In the absence of
spurs, if u ∈ V (H) and degH(u) = 2, then u is a base for both incident pipes.

Assume that in some step of the while loop, H is not a cycle. Let v1 ∈ V (H)
be an arbitrary cluster such that degH(v1) ≥ 3. Construct a maximal simple
path (v1, v2, . . . , v�) incrementally such that s(vi) = vivi+1 for i = 1, 2, . . . . If
the path encounters a cluster vi where s(vi) = s(vi−1), then the pipe vi−1vi is
safe. Similarly, if degH(vi+1) = 2, then vivi+1 is safe. Otherwise, the path ends
with a repeated cluster: s(v�) = v�vi, for some 1 ≤ i <  − 1, and so we obtain
a cycle (vi, vi+1, . . . , v�) of at least 3 vertices. Let vj , i ≤ j ≤ , be the cluster
created in the most recent ClusterExpansion(u) or PipeExpansion(uv) operation.
Then s(vj) is a pipe in the exterior of a disk Du or an ellipse Duv. Hence, the
pipe vj−1vj is in the interior of Du or Duv, moreover vj and vj−1 were created
by the same operation. However, this implies s(vj−1) �= vj−1vj , contradicting
the assumption that (vi, vi+1, . . . , v�) is a cycle. We conclude that the path finds
a safe pipe before any cluster repeats. �
Lemma 6. Algorithm1 returns cr(γ ◦ λ).

Proof. By (1), cr(γ◦λ) = cr1(λ)+cr2(γ, λ). Here cr2(γ, λ) can be computed by a
line sweep of the drawing γ(H). By Lemmas 1 and 5, at the end of the algorithm,
cr1(λ) = |λ−1[uv]| − 1 for an arbitrary edge uv ∈ E(H). By Lemmas 2 and 3,
cr(γ ◦ λ) is invariant in the operations, so the algorithm reports cr(γ ◦ λ) for the
input instance. �

Running Time. The efficient implementation of our algorithm relies on the fol-
lowing data structures. For every cluster u ∈ V (H) we maintain the set of vertices
of V (G) in λ−1[u]. For every pipe uv ∈ E(H), we maintain λ−1[uv] ⊂ E(G),
the weight w(uv) = |λ−1[uv]|, and the sum of weights of all pipes that cross uv,
that we denote by W (uv). Then we have cr2(γ, λ) = 1

2

∑
uv∈E(H) w(uv)W (uv).

We also maintain the current value of cr2(γ, λ). We further maintain indicator



Crossing Minimization in Perturbed Drawings 237

variables that support checking the conditions of the while loop in Algorithm1:
(i) whether the cluster is a base for the pipe, (ii) whether a cluster has degree
2, and (iii) whether a pipe is safe.

Lemma 7. With the above data structures, Algorithm1 runs in O((M +
R) log M) time, where M = |E(H)| + |E(G)| and R = cr(γ ◦ λ) < M2.

4 NP-Completeness in the Presence of Spurs

In this section, we prove Theorem 2. In a problem instance, we are given a sim-
plicial map λ : G → H, a straight-line drawing γ : H → R

2, and a nonnegative
integer K, and ask whether cr(γ ◦ λ) ≤ K.

Lemma 8. The above problem is in NP.

Proof. A feasible drawing Γ ◦ Λ : G → R
2 with cr(Γ ◦ Λ) ≤ K can be witnessed

by a combinatorial representation of Λ. Specifically, we can determine cr2(γ, λ)
by computing the weight of each pipe uv ∈ E(H) in O(|E(G)| + |E(H)|) time,
and finding all edge-crossings in the drawing γ(H) in O(|E(H)| log |E(H)|) time.
Given a combinatorial representation of a drawing Λ : G → H, we can deter-
mine the number of crossings at all nodes u ∈ V (H) in O(

∑
u∈V (H) |λ−1[u]|) =

O(|E(G)|) time. �
We prove NP-hardness by a reduction from 3SAT. Let Φ be a boolean formula

in 3CNF with a set X = {x1, . . . , xn} of variables and a set C = {c1, . . . , cm} of
clauses. We construct graphs G and H, a simplicial map λ : G → H, a straight-
line drawing γ : H → R

2, and an integer K ∈ N such that cr(γ ◦ λ) ≤ K if and
only if Φ is satisfiable.

First Construction: Disjoint Union of Paths. Refer to Fig. 4.

ux
3 ux

5m+5ux
5m+4

ux
4 ux

5

Fig. 4. Two embeddings of Gx.Top: P x
1 is above P x

3 . Bottom: P x
1 is below P x

3 .

Construction of H and γ : H → R
2. For every variable x ∈ X , create a path

Hx = (ux
3 , ux

4 , . . . , ux
5m+5).

For i = 1, . . . , m, the i-th clause ci ∈ C is associated to at most three (negated
or non-negated) variables, say, x, y, z ∈ X . Identify the clusters ux

5i+� = uy
5i+� =

uz
5i+� for  = 0, 1, 2, 3 and we denote the resulting clusters also by u5i+� and

associate them with clause ci. Add two new clusters vi an wi, and two new pipes
viu

x
5i+1 and wiu

x
5i+2. This completes the description of H.
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For every i = 1, . . . , m, we map clusters u5i, . . . , u5i+3 to integer points
5i, . . . , 5i + 3 on the x-axis. The two additional clusters, vi and wi, are mapped
to points γ(vi) = (5i + 1, 1) and γ(wi) = (5i + 2,−1), above and below the
x-axis. The remaining clusters and pipes of Hx, x ∈ X , are mapped to inte-
ger points in the horizonal line y = j + 1. Specifically, γ(uxj

i ) = (i, j + 1), for
3 ≤ i ≤ 5m+5, except for clusters u

xj

i that have been merged and incorporated
in clause gadgets.

Observation 1. For every x ∈ X , γ(Hx) is an x-monotone polygonal path in
the plane. This ensures, in particular, that if ci ∈ C contains variables x, y, and
z, then the pipes of Hx, Hy, and Hz that enter u5i and exit u5i+3 appear in
reverse ccw order in the rotation of u5i and u5i+3, respectively.

Construction of G and λ : G → H. For each clause ci ∈ C, create a path Gi of
4 vertices mapped to (vi, u5i+1, u5i+2, wi). For each variable x ∈ X , create a path
Gx as follows. First create a path of 15m+5 vertices as a concatenation of three
paths: P x

1 , P x
2 , and P x

3 , which are mapped to (ux
3 , . . . , ux

5m+4), (ux
5m+4, . . . , u

x
4),

and (ux
4 , . . . , ux

5m+5), respectively. We shall modify P x
1 and P x

3 within each clus-
ter. Regardless of these local modifications, in every embedding of Gx, the path
P x
2 lies between P x

1 and P x
3 . The truth value of variable x is encoded by the

above-below relationship between P x
1 and P x

3 (Fig. 4(a–b)).
Each pair (x, ci) ∈ X ×C, where a literal x or x appears in ci, corresponds to

the subpath (u5i, . . . , u5i+3) of Hx. Suppose that a subpath A ⊂ P x
1 and B ⊂ P x

3

are mapped to this subpath. To simplify notation, we assume that A and B are
directed from u5i to u5i+3.

Refer to Fig. 5. If c0 contains the non-negated x, then replace A on P 1
x

with a subpath mapped to A′ = (u5i, u5i+1, u5i+2, u5i+3, u5i+2, u5i+1, u5i+2,
u5i+3) and B with a subpath mapped to B′ = (u5i, u5i+1, u5i+2, u5i+1, u5i, u5i+1,
u5i+2, u5i+3). If c0 contains the negated x then replace A with B′, and B with
A′. This completes the definition of G.

The drawing γ : H → R
2 and λ : G → H determine cr2(γ, λ). Let K =

cr2(γ, λ) + 13m. Note that G and H have O(mn) vertices and edges, and the
drawing γ maps the clusters in V (H) to integer points in an O(m) × O(n) grid.

Equivalence. First, we show that the satisfiability of Φ implies that cr(γ, λ) ≤
K. Assume that Φ is satisfiable, and let τ : X → {true, false} be a satisfying
truth assignment. Fix ε ∈ (0, ε0). For every x ∈ X , denote by Nx the union
of disks Nu and Nuv for all clusters v ∈ V (Hx) and pipes uv ∈ E(Hx); and
similarly let Ni be the union of such regions for the path (u5i, . . . , u5i+3) in H.
For every x ∈ X , incrementally, embed the path Gx in Nx as follows: each edge
is an x-monotone Jordan arc; if τ(x) = true, then P x

1 lies above P x
3 ; otherwise

P x
3 lies above P x

1 . If a clause ci contains variables x, y, z ∈ X , we also ensure
that the embeddings of Gz, Gy, and Gy are pairwise disjoint within Ni. This is
possible by Observation 1. Finally, for i = 1, . . . , m, embed the path Gi as fol-
lows. Assume that ci contains the variables x, y, z ∈ X , where x corresponds to a
true literal in ci. Then Γ (Gi) starts from γ(vi) along the vertical line x = 5i + 1
until it crosses the arc Γ (P x

2 ), then follows Γ (P x
2 ) to the vertical line x = 5i+2,
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Fig. 5. A clause gadget for ci = (x ∨ y ∨ z), where τ(x) = τ(z) = false and τ(y) = true.
The neighborhood of the four middle “vertically prolonged” clusters and pipes between
them forms Ni.

and continues to γ(wi) along that line. Note that Γ (P x
2 ) crosses only 3 edges

in Γ (Gx), and 5 edges in Γ (Gy) and Γ (Gz). So there are 13 crossings in Ni for
i = 1, . . . , m; and the total number of crossings is cr2(γ, λ) + 13m, as required.

Second, we show that cr(γ, λ) ≤ K implies that Φ is satisfiable by construct-
ing a satisfying assignment. Consider functions Λ : G → H and Γ : H → R

2

such that Γ ◦ Λ : G → R
2 is a drawing in which cr(Γ ◦ Λ) ≤ K. Note that

cr2(γ, λ) crossings are unavoidable due to edge-crossings in the drawing γ(H).
Hence, by the definition of K, there are at most 13m crossings in the neighbor-
hoods of clusters. We show that (1) there must be precisely 13 crossings in each
neighborhood Ni, (2) Γ ◦ Λ(Gx) is an embedding for every x ∈ X , and (3) the
embeddings of Gx, for all x ∈ X , jointly encode a satisfying truth assignment
for Φ. (1) and (2) is established by the following lemma.

Lemma 9. Let i ∈ {1, . . . , m} and let x, y, z ∈ X be the three variables in ci. In
Γ ◦Λ, there are at least 13 crossings in neighborhood Ni, and equality is possible
only if none of the drawings Γ ◦ Λ(Gx), x ∈ X , has self-crossings in Ni, and at
least one of Gx, Gy and Gz is crossed exactly 3 times by Gi.

By Lemma 9, cr1(λ) ≤ 13m implies that Γ ◦ Λ defines an embedding of Gx,
for all x ∈ X , in each region Ni, i = 1, . . . , m. Consequently, Γ ◦ Λ defines an
embedding of Gx in R

2 for all x ∈ X . In every embedding Γ ◦ Λ(Gx), for x ∈ X ,
either P x

1 lies above P x
2 , or vice versa. We can now define a truth assignment

τ : X → {true, false} such that for every x ∈ X , τ(x) = true if and only if P x
1

lies above P x
2 in Γ ◦ Λ(Gx).

Lemma 10. Assume that Γ ◦ Λ(Gx) is an embedding for every x ∈ X , which
determines the truth assignment τ : X → {true, false} described above. For every



240 R. Fulek and C. D. Tóth

i = 1, . . . , m, if variable x appears in clause ci, and Gi crosses Gx at most 3
times in Ni, then x appears as a true literal in ci.

Proof. Consider the highest and lowest path Ph and Pl among P x
1 , P x

2 or P x
3 ,

respectively, in Ni ∩ Γ ◦ Λ(Gx), none of which can be P x
2 since Γ ◦ Λ(Gx) is an

embedding. By the construction of λ, either there exists exactly one pipe-degree
2 component of Ph in λ−1[u5i+1] and exactly one pipe-degree 2 component of Pl

in λ−1[u5i+2], or vice versa.
By the construction of λ, Gi crosses each of P x

1 , P x
2 , and P x

3 at least once
in Ni. By the hypothesis of the lemma, it crosses each exactly once. Then Ph

has only one pipe-degree 2 component in λ−1[u5i+1], and Pl has only one pipe-
degree 2 component in λ−1[u5i+2]. By the construction of λ, if x appears as a
non-negated literal in ci this means that Ph = P x

1 lies above P x
2 and therefore

τ(x) = true. Similarly, if x appears as a negated literal in ci this means that
P x
3 = Ph lies above P x

2 and therefore τ(x) = false. Consequently, x appears as a
true literal in ci and that concludes the proof. �

Since cr1(λ) ≤ 13m, for every i = 1, . . . , m, there are exactly 13 crossings in
Ni by Lemma 9. Moreover, by Lemma 9 the drawing Γ ◦ Λ(Gx) is an embedding
for every x ∈ X , and in every ci for one its variables x the drawing of Gx is
crossed by Gi exactly 3 times. By Lemma 10, the assignment τ makes at least
one literal in each clause ci of Φ true. We conclude that Φ is satisfiable, as
required. This completes the proof of NP-hardness.

Second Construction: Cycle. In our first construction, G is a disjoint union
of paths, and for every path endpoint a ∈ V (G), a is the only vertex mapped
to the cluster λ(a) ∈ V (H). This property allows us to expand the construc-
tion as follows. We augment G into a cycle G by adding a perfect matching
MG connecting the path endpoints, and we augment H with the corresponding
matching between the clusters MH = {λ(a)λ(b) : ab ∈ MG}, and for every new
pipe uv ∈ MH draw a polygonal arc γ(uv) between γ(u) and γ(v) that does
not pass through the image of any other cluster (but may cross images of other
pipes). The augmentation does not change cr1(λ), and we can easily compute
the increase in cr2(γ, λ) due to new crossings. Consequently, finding cr(γ ◦ λ)
remains NP-hard.

5 Conclusions

Motivated by recent efficient algorithms that can decide whether a piecewise
linear map ϕ : G → R

2 can be perturbed into an embedding, we investigate
the problem of computing the minimum number of crossings in a perturbation.
We have described an efficient algorithm when G is a cycle and ϕ has no spurs
(Theorem 1); and the problem becomes NP-hard if G is an arbitrary graph,
or if G is a cycle but ϕ may have spurs (Theorem 2). However, perhaps one
can minimize the number of crossings efficiently under milder assumptions. We
formulate one promising scenario as follows: Is there a polynomial-time algorithm
that finds cr(γ ◦ λ) when λ−1[u] is a planar graph (resp., an edgeless graph) for
every cluster u ∈ V (H) and λ has no spurs?
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Abstract. Let G be a multigraph with n vertices and e > 4n edges,
drawn in the plane such that any two parallel edges form a simple closed
curve with at least one vertex in its interior and at least one vertex in
its exterior. Pach and Tóth [5] extended the Crossing Lemma of Ajtai et
al. [1] and Leighton [3] by showing that if no two adjacent edges cross and
every pair of nonadjacent edges cross at most once, then the number of
edge crossings in G is at least αe3/n2, for a suitable constant α > 0. The
situation turns out to be quite different if nonparallel edges are allowed
to cross any number of times. It is proved that in this case the number
of crossings in G is at least αe2.5/n1.5. The order of magnitude of this
bound cannot be improved.

1 Introduction

In this paper, multigraphs may have parallel edges but no loops. A topological
graph (or multigraph) is a graph (multigraph) G drawn in the plane with the
property that every vertex is represented by a point and every edge uv is repre-
sented by a curve (continuous arc) connecting the two points corresponding to
the vertices u and v. We assume, for simplicity, that the points and curves are
in “general position”, that is, (a) no vertex is an interior point of any edge; (b)
any pair of edges intersect in at most finitely many points; (c) if two edges share
an interior point, then they properly cross at this point; and (d) no 3 edges cross
at the same point. Throughout this paper, every multigraph G is a topological
multigraph, that is, G is considered with a fixed drawing that is given from the
context. In notation and terminology, we then do not distinguish between the
vertices (edges) and the points (curves) representing them. The number of cross-
ing points in the considered drawing of G is called its crossing number, denoted
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by cr(G). (i.e., cr(G) is defined for topological multigraphs rather than abstract
multigraphs.)

The classic “crossing lemma” of Ajtai, Chvátal, Newborn, Szemerédi [1] and
Leighton [3] gives an asymptotically best-possible lower bound on the crossing
number in any n-vertex e-edge topological graph without loops or parallel edges,
provided e > 4n.

Theorem A (Crossing Lemma, Ajtai et al. [1] and Leighton [3]). There
is an absolute constant α > 0, such that for any n-vertex e-edge topological graph
G we have

cr(G) ≥ α
e3

n2
, provided e > 4n.

In general, the Crossing Lemma does not hold for topological multigraphs
with parallel edges, as for every n and e there are n-vertex e-edge topological
multigraphs G with cr(G) = 0. Székely proved the following variant for multi-
graphs by restricting the edge multiplicity, that is the maximum number of
pairwise parallel edges, in G to be at most m.

Theorem B (Székely [6]). There is an absolute constant α > 0 such that
for any m ≥ 1 and any n-vertex e-edge multigraph G with edge multiplicity at
most m we have

cr(G) ≥ α
e3

mn2
, provided e > 4mn.

Most recently, Pach and Tóth [5] extended the Crossing Lemma to so-called
branching multigraphs. We say that a topological multigraph is

– separated if any pair of parallel edges form a simple closed curve with at least
one vertex in its interior and at least one vertex in its exterior,

– single-crossing if any pair of edges cross at most once (that is, edges sharing
k endpoints, k ∈ {0, 1, 2}, may have at most k + 1 points in common), and

– locally starlike if no two adjacent edges cross (that is, edges sharing k end-
points, k ∈ {1, 2}, may not cross).

A topological multigraph is branching if it is separated, single-crossing and locally
starlike. Note that the edge multiplicity of a branching multigraph may be as
high as n − 2.

Theorem C (Pach and Tóth [5]). There is an absolute constant α > 0 such
that for any n-vertex e-edge branching multigraph G we have

cr(G) ≥ α
e3

n2
, provided e > 4n.

In this paper we generalize Theorem C by showing that the Crossing Lemma
holds for all topological multigraphs that are separated and locally starlike,
but not necessarily single-crossing. We shall sometimes refer to the separated
condition as the multigraph having “no empty lens,” where we remark that here
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a lens is bounded by two entire edges, rather than general edge segments as
sometimes defined in the literature. We also prove a Crossing Lemma variant for
separated (and not necessarily locally starlike) multigraphs, where however the
term α e3

n2 must be replaced by α e2.5

n1.5 . Both results are best-possible up to the
value of constant α.

Theorem 1. There is an absolute constant α > 0 such that for any n-vertex
e-edge topological multigraph G with e > 4n we have

(i) cr(G) ≥ α e3

n2 , if G is separated and locally starlike.
(ii) cr(G) ≥ α e2.5

n1.5 , if G is separated.

Moreover, both bounds are best-possible up to the constant α.

We prove Theorem 1 in Sect. 3. Our arguments hold in a more general setting,
which we present in Sect. 2. In Sect. 4 we use this general setting to deduce other
known Crossing Lemma variants, including TheoremB. We conclude the paper
with some open questions in Sect. 5.

2 A Generalized Crossing Lemma

In this section we consider general drawing styles and propose a generalized
Crossing Lemma, which will subsume all Crossing Lemma variants mentioned
here. A drawing style D is a predicate over the collection of all topological
drawings, i.e., for each topological drawing of a multigraph G we specify whether
G is in drawing style D or not. We say that G is a multigraph in drawing style
D when G is a topological multigraph whose drawing is in drawing style D.

In order to prove our generalized Crossing Lemma, we follow the line of
arguments of Pach and Tóth [5] for branching multigraphs. Their main tool
is a bisection theorem for branching drawings, which easily generalizes to all
separated drawings. We generalize their definition as follows.

Definition 1 (D-bisection width). For a drawing style D the D-bisection
width bD(G) of a multigraph G in drawing style D is the smallest number of
edges whose removal splits G into two multigraphs, G1 and G2, in drawing style
D with no edge connecting them such that |V (G1)|, |V (G2)| ≥ n/5.

We say that a drawing style is monotone if removing edges retains the draw-
ing style, that is, for every multigraph G in drawing style D and any edge
removal, the resulting multigraph with its inherited drawing from G is again in
drawing style D. Note that we require a monotone drawing style to be retained
only after removing edges, but not necessarily after removing vertices. For exam-
ple, the branching drawing style is in general not maintained after removing a
vertex, since a closed curve formed by a pair of parallel edges might become
empty.

Given a topological multigraph G, we call any operation of the following form
a vertex split : (1) Replace a vertex v of G by two vertices v1 and v2 and (2) by
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locally modifying the edges in a small neighborhood of v, connect each edge in
G incident to v to either v1 or v2 in such a way that no new crossing is created.
We say that a drawing style is split-compatible if performing vertex splits retains
the drawing style, that is, for every multigraph G in drawing style D and any
vertex split, the resulting multigraph with its inherited drawing from G is again
in drawing style D.

We are now ready to state our main result.

Theorem 2 (Generalized Crossing Lemma). Suppose D is a monotone and
split-compatible drawing style, and that there are constants k1, k2, k3 > 0 and
b > 1 such that each of the following holds for every n′-vertex e′-edge multigraph
G′ in drawing style D:

(P1) If cr(G′) = 0, then the edge count satisfies e′ ≤ k1 · n′.
(P2) The D-bisection width satisfies bD(G′) ≤ k2

√
cr(G′) + Δ(G′) · e′ + n′.

(P3) The edge count satisfies e′ ≤ k3n
′b.

Then there exists an absolute constant α > 0 such that for any n-vertex e-edge
multigraph G in drawing style D we have

cr(G) ≥ α
ex(b)+2

nx(b)+1
, provided e > (k1 + 1)n,

where x(b) := 1/(b− 1) and α = αb ·k−2
2 ·k−x(b)

3 for some constant αb depending
only on b.

Lemma 1. If there exist for arbitrarily large n multigraphs in drawing style D
with n vertices and e = Θ(nb) edges such that any two edges cross at most a
constant number of times, then the bound in Theorem2 is asymptotically tight.

Proof. Consider such an n-vertex e-edge multigraph in drawing style D. Clearly,
there are at most O(e2) = O(n2b) crossings, while Theorem 2 gives with x(b) =
1/(b − 1) that there are at least

Ω

(
ex(b)+2

nx(b)+1

)
= Ω

(
ex(b)+2

nb·x(b)

)
= Ω

(
nb·x(b)+2b

nb·x(b)

)
= Ω

(
n2b

)

crossings. ��

2.1 Proof of Theorem2

Proof Idea. Before proving Theorem2, let us sketch the rough idea. Suppose,
for a contradiction, that G is a multigraph in drawing style D with fewer than
α ex(b)+2

nx(b)+1 crossings, for a constant α to be defined. First, we conclude from (P1)
that G must have many edges. Then, by (P2), the D-bisection width of G
is small, and thus we can remove few edges from the drawing to obtain two
smaller multigraphs, G1 and G2, both also in drawing style D, which we call
parts. We then repeat splitting each large enough part into two parts each,
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again using (P2). Note that each part has at most 4/5 of the vertices of the
corresponding part in the previous step. We continue until all parts are smaller
than a carefully chosen threshold. As we removed relatively few edges during this
decomposition algorithm, the final parts still have a lot of edges, while having
few vertices each. This will contradict (P3) and hence complete the proof.

Now, let us start with the proof of Theorem2. We define an absolute constant

α :=
1

22x(b)+14
· 1
k2
2

· 1

k
x(b)
3

(1)

Now let G̃ be a fixed multigraph in drawing style D with ñ vertices and
ẽ > (k1 + 1)ñ edges. Let G′ be an edge-maximal subgraph of G̃ on vertex
set V (G̃) such that the inherited drawing of G′ has no crossings. Since D is
monotone, G′ is in drawing style D. Hence, by (P1), for the number e′ of edges
in G′ we have e′ ≤ k1 · n′ = k1 · ñ. Since G′ is edge-maximal crossing-free, each
edge in E(G̃) − E(G′) has at least one crossing with an edge in E(G′). Thus

cr(G̃) ≥ ẽ − e′ ≥ ẽ − k1ñ > ñ. (2)

In case (k1 + 1)ñ < ẽ ≤ βñ for β := α−1/(x(b)+2), we get

cr(G̃)
(2)
> ñ ≥ α · ẽx(b)+2

ñx(b)+1
,

as desired. To prove Theorem 2 in the remaining case ẽ > βñ we use proof by
contradiction. Therefore assume that the number of crossings in G̃ satisfies

cr(G̃) < α · ẽx(b)+2

ñx(b)+1
.

Let d denote the average degree of the vertices of G̃, that is, d = 2ẽ/ñ. For
every vertex v ∈ V (G̃) whose degree, deg(v, G̃), is larger than d, we perform
�deg(v, G̃)/d� − 1 vertex splits so as to split v into �deg(v, G̃)/d� vertices, each
of degree at most d. At the end of the procedure, we obtain a multigraph G with
e = ẽ edges, n < 2ñ vertices, and maximum degree Δ(G) ≤ d = 2ẽ/ñ < 4e/n.
Moreover, as D is split-compatible, G is in drawing style D. For the number of
crossings in G, we have

cr(G) = cr(G̃) < α · ẽx(b)+2

ñx(b)+1
< 2x(b)+1α · ex(b)+2

nx(b)+1
. (3)

Moreover, recall that

e > βñ > β
n

2
for β =

1
α1/(x(b)+2)

. (4)

We break G into smaller parts, according to the following procedure. At each
step the parts form a partition of the entire vertex set V (G).
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Decomposition Algorithm

Step 0.

� Let G0 = G,G0
1 = G,M0 = 1,m0 = 1.

Suppose that we have already executed Step i, and that the
resulting graph Gi consists of Mi parts, Gi

1, G
i
2, . . . , G

i
Mi

, each
in drawing style D and having at most (4/5)in vertices. Assume
without loss of generality that each of the first mi parts of Gi

has at least (4/5)i+1n vertices and the remaining Mi − mi have
fewer. Letting n(Gi

j) denote the number of vertices of the part
Gi

j , we have

(4/5)i+1n(G) ≤ n(Gi
j) ≤ (4/5)in(G), 1 ≤ j ≤ mi. (5)

Hence,

mi ≤ (5/4)i+1. (6)

Step i + 1.
� If

(4/5)i <
1

(2k3)x(b)
· ex(b)

nx(b)+1
, (7)

then stop.
� Else, for j = 1, 2, . . . ,mi, delete bD(Gi

j) edges from Gi
j , as

guaranteed by (P2), such that Gi
j falls into two parts, each of

which is in drawing style D and contains at most (4/5)n(Gi
j)

vertices. Let Gi+1 denote the resulting graph on the original set
of n vertices.

Clearly, each part of Gi+1 has at most (4/5)i+1n vertices.

Suppose that the Decomposition Algorithm terminates in Step k + 1. If
k > 0, then

(4/5)k <
1

(2k3)x(b)
· ex(b)

nx(b)+1
≤ (4/5)k−1. (8)

First, we give an upper bound on the total number of edges deleted from
G. Using Cauchy-Schwarz inequality, we get for any nonnegative numbers
a1, . . . , am,

m∑

j=1

√
aj ≤

√√√√m
m∑

j=1

aj , (9)
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and thus obtain that, for any 0 ≤ i ≤ k,

mi∑

j=1

√
cr(Gi

j)
(9)

≤
√√√√mi

mi∑

j=1

cr(Gi
j)

(6)

≤
√

(5/4)i+1
√

cr(G)

(3)
<

√
(5/4)i+1

√

2x(b)+1α · ex(b)+2

nx(b)+1
. (10)

Letting e(Gi
j) and Δ(Gi

j) denote the number of edges and maximum degree in
part Gi

j , respectively, we obtain similarly

mi∑

j=1

√
Δ(Gi

j) · e(Gi
j) + n(Gi

j)
(9)

≤

√√√√√mi

⎛

⎝
mi∑

j=1

Δ(Gi
j) · e(Gi

j) + n(Gi
j)

⎞

⎠

(6)

≤
√

(5/4)i+1
√

Δ(G) · e + n ≤
√

(5/4)i+1

√
4e

n
e + n

<
√

(5/4)i+1

√
5e2

n
<

√
(5/4)i+1

3e√
n

, (11)

where we used in the last line the fact that n < e.
Using a partial sum of a geometric series we get

k∑

i=0

(
√

5/4)i+1 =
(
√

5/4)k+2 − 1
√

5/4 − 1
−1 <

(
√

5/4)3
√

5/4 − 1
· (

√
5/4)k−1 < 12 · (

√
5/4)k−1

(12)
Thus, as each Gi

j is in drawing style D and hence (P2) holds for each Gi
j , the

total number of edges deleted during the decomposition procedure is
k∑

i=0

mi∑

j=1

bD(G
i
j) ≤ k2

k∑

i=0

mi∑

j=1

√
cr(Gi

j) + Δ(Gi
j) · e(Gi

j) + n(Gi
j)

≤ k2

⎛

⎝
k∑

i=0

mi∑

j=1

√
cr(Gi

j) +
k∑

i=0

mi∑

j=1

√
Δ(Gi

j) · e(Gi
j) + n(Gi

j)

⎞

⎠

(10),(11)
≤ k2

(
k∑

i=0

√
(5/4)i+1

) ⎛

⎝

√

2x(b)+1α · ex(b)+2

nx(b)+1
+

3e√
n

⎞

⎠

(12)
< k2 · 12

√
(5/4)k−1

⎛

⎝

√

2x(b)+1α · ex(b)+2

nx(b)+1
+

3e√
n

⎞

⎠

(8)
< k2 · 12

√

(2k3)x(b) · nx(b)+1

ex(b)

⎛

⎝

√

2x(b)+1α · ex(b)+2

nx(b)+1
+

3e√
n

⎞

⎠

< k2 · 36 ·
√

k
x(b)
3

⎛

⎝2
x(b)√

αe +

√
2x(b)nx(b)

ex(b)−2

⎞

⎠

(4)
< k2 · 36 ·

√
k
x(b)
3 · 2x(b)

(
√

α +

√
1

βx(b)

)
e
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(4)
= k2 · 36 ·

√
k
x(b)
3 · 2x(b)

⎛

⎝√
α +

√

α
x(b)

x(b)+2

⎞

⎠ e < k2 ·
√

k
x(b)
3 · 2x(b)+6√

αe
(1)
=

e

2
.

(13)

By (13) the Decomposition Algorithm removes less than half of the edges
of G if k > 0. Hence, the number of edges of the graph Gk obtained in the final
step of this procedure satisfies

e(Gk) >
e

2
. (14)

(Note that this inequality trivially holds if the algorithm terminates in the very
first step, i.e., when k = 0.)

Next we shall give an upper bound on e(Gk) that contradicts (14). The
number of vertices of each part Gk

j of Gk satisfies

n(Gk
j ) ≤ (4/5)kn

(8)
<

(
1

(2k3)x(b)
· ex(b)

nx(b)+1

)
n =

(
e

2 · k3 · n

)x(b)

, 1 ≤ j ≤ Mk.

Hence

n(Gk
j )b−1 <

(
e

2 · k3 · n

)x(b)(b−1)

=
e

2 · k3 · n
,

since x(b) = 1/(b − 1) and hence x(b)(b − 1) = 1.
As Gk

j is in drawing style D, (P3) holds for Gk
j and we have

e(Gk
j ) ≤ k3 · n(Gk

j )b < k3 · n(Gk
j ) · e

2 · k3 · n
= n(Gk

j ) · e

2n
.

Therefore, for the total number of edges of Gk we have

e(Gk) =
Mk∑

j=1

e(Gk
j ) <

e

2n

Mk∑

j=1

n(Gk
j ) =

e

2
,

contradicting (14). This completes the proof of Theorem 2. ��

3 Separated Multigraphs

We derive our Crossing Lemma variants for separated multigraphs (Theorem1)
from the generalized Crossing Lemma (Theorem 2) presented in Sect. 2. Let us
denote the separated drawing style by Dsep and the separated and locally star-
like drawing style by Dloc−star. In order to apply Theorem 2, we shall find for
D = Dsep,Dloc−star (1) the largest number of edges in a crossing-free n-vertex
multigraph in drawing style D, (2) an upper bound on the D-bisection width
of multigraphs in drawing style D, and (3) an upper bound on the number of
edges in any n-vertex multigraph in drawing style D.

As for crossing-free multigraphs Dsep and Dloc−star are equivalent to the
branching drawing style, we can rely on the following Lemma of Pach and Tóth.
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Lemma 2 (Pach and Tóth [5]). Any n-vertex crossing-free branching multi-
graph, n ≥ 3, has at most 3n − 6 edges.

Corollary 1. Any n-vertex crossing-free multigraph in drawing style Dsep or
Dloc−star, n ≥ 3, has at most 3n − 6 edges.

Also we can derive the bounds on the D-bisection width from the correspond-
ing bound for the branching drawing style due to Pach and Tóth.

Lemma 3 (Pach and Tóth [5]). For any multigraph G in the branching draw-
ing style D with n vertices of degrees d1, d2, . . . , dn, and with cr(G) crossings,
the D-bisection width of G satisfies

bD(G) ≤ 22

√√√
√cr(G) +

n∑

i=1

d2i + n.

Lemma 4. For D = Dsep,Dloc−star any multigraph G in the drawing style D
with n vertices, e edges, maximum degree Δ(G), and with cr(G) crossings, the
D-bisection width of G satisfies

bD(G) ≤ 44
√

cr(G) + Δ(G) · e + n.

Proof. Let G be a multigraph in drawing style D. Suppose there is a simple
closed curve γ formed by parts of only two edges e1 and e2, which does not have
a vertex in its interior. This can happen between two consecutive crossings of
e1 and e2, or for D 
= Dloc−star between a common endpoint and a crossing of
e1 and e2. Further assume that the interior of γ is inclusion-minimal among all
such curves, and note that this implies that an edge crosses e1 along γ if and
only if it crosses e2 along γ. Say e1 has at most as many crossings along γ as e2.
We then reroute the part of e2 on γ very closely along the part of e1 along γ so
as to reduce the number of crossings between e1 and e2. The rerouting does not
introduce new crossing pairs of edges. Hence, the resulting multigraph is again in
drawing style D and has at most as many crossings as G. Similarly, we proceed
when γ has no vertex in its exterior.

Thus, we can redraw G to obtain a multigraph G′ in drawing style D with
cr(G′) ≤ cr(G), such that introducing a new vertex at each crossing of G′ creates
a crossing-free multigraph that is separated, i.e., in drawing style D. Now, using
precisely the same proof as the proof of its special case Lemma 3 in [5], we can
show that

bD(G′) ≤ 22

√√√√cr(G′) +
n∑

i=1

d2i + n,

where d1, . . . , dn denote the degrees of vertices in G′. Thus with
n∑

i=1

d2i ≤ Δ(G)
n∑

i=1

di ≤ 2Δ(G) · e

the result follows. ��
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Finally, let us bound the number of edges in crossing-free multigraphs. Again,
we can utilize the result of Pach and Tóth for the branching drawing style.

Lemma 5 (Pach and Tóth [5]). For any n-vertex e-edge, n ≥ 3, multigraph
of maximum degree Δ(G) in the branching drawing style we have Δ(G) ≤ 2n−4
and e ≤ n(n − 2), and both bounds are best-possible.

Lemma 6. For any n-vertex e-edge multigraph in drawing style D of maximum
degree Δ(G) we have

(i) Δ(G) ≤ (n − 1)(n − 2) and e ≤ (
n
2

)
(n − 2) if D = Dsep,

(ii) Δ(G) ≤ 2n − 4 and e ≤ n(n − 2) if G if D = Dloc−star.

Moreover, each bound is best-possible.

Proof. Let G be a fixed n-vertex, n ≥ 3, e-edge crossing-free multigraph in
drawing style D.

(i) Let D = Dsep. Clearly, every set of pairwise parallel edges contains at most
n − 2 edges, since every lens has to contain a vertex different from the
two endpoints of these edges. This gives Δ(G) ≤ (n − 1)(n − 2) and e ≤
nΔ(G)/2 =

(
n
2

)
(n−2). To see that these bounds are tight, consider n points

in the plane with no four points on a circle. Then it is easy to draw between
any two points n−2 edges as circular arcs such that the resulting multigraph
(which has

(
n
2

)
(n − 2) edges) is in separating drawing style.

(ii) Let D = Dloc−star. Consider any fixed vertex v in G and remove all edges not
incident to v. The resulting multigraph is branching and hence by Lemma5
v has at most 2n−4 incident edges. Thus Δ(G) ≤ 2n−4 and e ≤ nΔ(G)/2 =
n(n − 2). By Lemma 5, these bounds are tight, even for the more restrictive
branching drawing style. ��
We are now ready to prove that drawing styles Dloc−star and Dsep fulfill

the requirements of the generalized Crossing Lemma (Theorem 2), which lets us
prove Theorem 1.

Proof (Proof of Theorem 1). Let D = Dloc−star for (i) and D = Dsep for (ii).
Clearly, these drawing styles are monotone, i.e., maintained when removing
edges, as well as split-compatible. So it remains to determine the constants
k1, k2, k3 > 0 and b > 1 such that (P1), (P2), and (P3) hold for D.

(P1) holds with k1 = 3 for D = Dloc−star,Dsep by Corollary 1. (P2) holds
with k2 = 44 for D = Dsep by Lemma 4, which implies the same for D =
Dloc−star. (P3) holds with k3 = 1 and b = 3 for D = Dsep by Lemma 6(i), and
with k3 = 1 and b = 2 for D = Dloc−star by Lemma 6(ii).

For b = 2 we have x(b) = 1/(b − 1) = 1. Thus Theorem 2 for D = Dloc−star

gives an absolute constant α > 0 such that for every n-vertex e-edge separated
and locally starlike multigraph we have cr(G) ≥ αex(b)+2/nx(b)+1 = αe3/n2,
provided e > (k1 + 1)n = 4n. Moreover, by Lemma 6(ii) there are separated
multigraphs with n vertices and Θ(n2) edges, any two of which cross at most
once. Hence, the term e3/n2 is best-possible by Lemma 1.
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For b = 3 we have x(b) = 1/(b − 1) = 0.5. Thus Theorem 2 for D = Dsep

gives an absolute constant α > 0 such that for every n-vertex e-edge separated
multigraph we have cr(G) ≥ αex(b)+2/nx(b)+1 = αe2.5/n1.5, provided e > (k1 +
1)n = 4n. Moreover, by Lemma 6(i) there are separated multigraphs with n
vertices and Θ(n3) edges, any two of which cross at most twice. Hence, the term
e2.5/n1.5 is best-possible by Lemma 1. ��

4 Other Crossing Lemma Variants

We use the generalized Crossing Lemma (Theorem 2) to reprove existing variants
of the Crossing Lemma due to Székely and Pach, Spencer, Tóth, respectively.

4.1 Low Multiplicity

Here we consider for fixed m ≥ 1 the drawing style Dm which is characterized
by the absence of m + 1 pairwise parallel edges. In particular, any n-vertex
multigraph G in drawing style Dm has at most m

(
n
2

)
edges, i.e., (P3) holds for

Dm with b = 2 and k3 = m. Moreover, if G is crossing-free on n vertices and e
edges, then e ≤ 3mn, i.e., (P1) holds for Dm with k1 = 3m.

Finally, we claim that (P2) holds for Dm with k2 being independent of m.
To this end, let G be any n-vertex e-edge multigraph in drawing style Dm. As
already noted by Székely [6], we can reroute all but one edge in each bundle
in such a way that in the resulting multigraph G′ every lens is empty, no two
adjacent edges cross, and cr(G′) ≤ cr(G). (Simply route every edge very closely
to its parallel copy with the fewest crossings.) Clearly, G′ has drawing style Dm.

Now, we place a new vertex in each lens of G′, giving a multigraph G′′ with
n′′ ≤ n+ e vertices and e′′ = e edges, which is in the separated drawing style D.
By Lemma 4, there is an absolute constant k such that

bD(G′′) ≤ k
√

cr(G′′) + Δ(G′′) · e′′ + n′′.

As bDm
(G) ≤ bD(G′′), cr(G′′) = cr(G′) ≤ cr(G), Δ(G′′) = Δ(G), and Δ(G)+1 ≤

2Δ(G) we conclude that

bDm
(G) ≤ 2k

√
cr(G) + Δ(G) · e + n.

In other words, (P2) holds for drawing style Dm with an absolute constant
k2 = 2k that is independent of m.

Note that for b = 2, we have x(b) = 1. We conclude with Theorem 2 that
there is an absolute constant α′ such that for every m and every n-vertex e-edge
multigraph G in drawing style Dm we have

cr(G) ≥ α′ · 1

k
x(b)
3

· ex(b)+2

nx(b)+1
= α′ · e3

mn2
, provided e > (3m + 1)n,

which is the statement of Theorem B.
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4.2 High Girth

Theorem D (Pach, Spencer, Tóth [4]). For any r ≥ 1 there is an absolute
constant αr > 0 such that for any n-vertex e-edge graph G of girth larger than
2r we have

cr(G) ≥ αr · er+2

nr+1
, provided e > 4n.

Here we consider for fixed r ≥ 1 the drawing style Dr which is characterized
by the absence of cycles of length at most 2r. In particular, any multigraph G
in drawing style Dr has neither loops nor multiple edges. Hence (P1) holds for
drawing style Dr with k1 = 3. Secondly, drawing style Dr is more restrictive
than the branching drawing style and thus also (P2) holds for Dr. Moreover,
any n-vertex graph in drawing style Dr has O(n1+1/r) edges [2], i.e., (P3) holds
for Dr with b = 1+1/r. Finally, Dr is obviously a monotone and split-compatible
drawing style.

Thus with x(b) = 1/(b − 1) = r, Theorem 2 immediately gives

cr(G) ≥ αr · er+2

nr+1
, provided e > 4n

for any n-vertex e-edge multigraph in drawing style Dr, which is the statement
of Theorem D.

5 Conclusions

Let G be a topological multigraph with n vertices and e > 4n edges. We have
shown that cr(G) ≥ αe3/n2 if G is separated and locally starlike, which gener-
alizes the result for branching multigraphs [5], which are additionally single-
crossing. Moreover, if G is only separated, then the lower bound drops to
cr(G) ≥ αe2.5/n1.5, which is tight up to the constant factor, too. It remains
open to determine a best-possible Crossing Lemma for separated and single-
crossing multigraphs. This would follow from our generalized Crossing Lemma
(Theorem 2), where the missing ingredient is the determination of the smallest
b such that every separated and single-crossing multigraph G on n vertices has
O(nb) edges. It is easy to see that the maximum degree Δ(G) may be as high
as (n − 1)(n − 2), but we suspect that any such G has O(n2) edges.
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Abstract. Consider a random geometric graph over a random point
process in Rd. Two points are connected by an edge if and only if
their distance is bounded by a prescribed distance parameter. We show
that projecting the graph onto a two dimensional plane is expected to
yield a constant-factor crossing number (and rectilinear crossing num-
ber) approximation. We also show that the crossing number is positively
correlated to the stress of the graph’s projection.

1 Introduction

An undirected abstract graph G0 consists of vertices and edges connecting vertex
pairs. An injection of G0 into Rd is an injective map from the vertices of G0

to Rd, and edges onto curves between their corresponding end points but not
containing any other vertex point. For d ≥ 3, we may assume that distinct edges
do not share any point (other than a common end point). For d = 2, we call
the injection a drawing, and it may be necessary to have points where curves
cross. A drawing is good if no pair of edges crosses more than once, nor meets
tangentially, and no three edges share the same crossing point. Given a drawing
D, we define its crossing number cr(D) as the number points where edges cross.
The crossing number cr(G0) of the graph itself is the smallest cr(D) over all
its good drawings D. We may restrict our attention to the rectilinear crossing
number cr(G0), where edge curves are straight lines; note that cr(G0) ≥ cr(G0).

The crossing number and its variants have been studied for several decades,
see, e.g., [30], but still many questions are widely open. We know the crossing
numbers only for very few graph classes; already for cr(Kn), i.e., on complete
graphs with n vertices, we only have conjectures, and for cr(Kn) not even them.
Since deciding cr(G0) is NP-complete [15] (and cr even ∃R-complete [4]), sev-
eral attempts for approximation algorithms have been undertaken. The problem
does not allow a PTAS unless P= NP [6]. For general graphs, we currently do
not know whether there is an α-approximation for any constant α. However, we
can achieve constant ratios for dense graphs [14] and for bounded pathwidth
graphs [3]. Other strong algorithms deal with graphs of maximum bounded
c© Springer Nature Switzerland AG 2018
T. Biedl and A. Kerren (Eds.): GD 2018, LNCS 11282, pp. 255–268, 2018.
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degree and achieve either slightly sublinear ratios [13], or constant ratios for
further restrictions such as embeddability on low-genus surfaces [16–18] or a
bounded number of graph elements to remove to obtain planarity [7,9,10,12].

We will make use of the crossing lemma, originally due to [2,25]1: There
are constants2 d ≥ 4, c ≥ 1

64 such that any abstract graph G0 on n vertices
and m ≥ dn edges has cr(G0) ≥ cm3/n2. In particular for (dense) graphs with
m = Θ(n2), this yields the asymptotically tight maximum of Θ(m2) crossings.

Random Geometric Graphs (RGGs). We always consider a geometric graph G as
input, i.e., an abstract graph G0 together with a straight-line injection into Rd,
for some d ≥ 2; we identify the vertices with their points. For a 2-dimensional
plane L, the postfix operator |L denotes the projection onto L.

Given a set of points V in Rd, the unit-ball graph (unit-disk graph if d = 2)
is the geometric graph using V as vertices that has an edge between two points
iff balls of radius 1 centered at these points touch or overlap. Thus, points are
adjacent iff their distance is ≤ 2. In general, we may use arbitrary threshold
distances δ > 0. We are interested in random geometric graphs (RGGs), i.e.,
when using a Poisson point process to obtain V for the above graph class 2.

Stress. When drawing (in particular large) graphs with straight lines in practice,
stress is a well-known and successful concept, see, e.g., [5,20,21]: let G be a
geometric graph, d0, d1 two distance functions on vertex pairs—(at least) the
latter of which depends on an injection—and w weights. We have:

stress(G) :=
∑

v1,v2∈V (G),v1 �=v2

w(v1, v2) · (d0(v1, v2) − d1(v1, v2))2. (1)

In a typical scenario, G is injected into R2, d0 encodes the graph-theoretic
distances (number of edges on the shortest path) or some given similarity
matrix, and d1 is the Euclidean distance in R2. Intuitively, in a drawing
of 0 (or low) stress, the vertices’ geometric distances d1 are (nearly) iden-
tical to their “desired” distance according to d0. A typical weight function
w(v1, v2) := d0(v1, v2)−2 softens the effect of “bad” geometric injections for
vertices that are far away from each other anyhow. It has been observed empir-
ically that low-stress drawings tend to be visually pleasing and to have a low
number of crossings, see, e.g., [8,22]. While it may seem worthwhile to approx-
imate the crossing number by minimizing a drawing’s stress, there is no sound
mathematical basis for this approach.

There are different ways to find (close to) minimal-stress drawings in 2D [5].
One way is multidimensional scaling, cf. [20], where we start with an injection
of an abstract graph G0 into some high-dimensional space Rd and asking for
a projection of it onto R2 with minimal stress. It should be understood that
Euclidean distances in a unit-ball graph in Rd by construction closely correspond
to the graph-theoretic distances. In fact, for such graphs it seems reasonable to
1 Incidentally, the lemma allows an intriguingly elegant proof using stochastics [1].
2 The currently best constants d = 7, c = 1

20
are due to [19].
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use the distances in Rd as the given metrics d0, and seek an injection into R2—
whose resulting distances form d1—by means of projection.

Contribution. We consider RGGs for large t and investigate the mean, variance,
and corresponding law of large numbers both for their rectilinear crossing number
and their minimal stress when projecting them onto the plane. We also prove,
for the first time, a positive correlation between these two measures.

While our technical proofs make heavy use of stochastic machinery (sev-
eral details of which have to be deferred to the arXiv version [11]), the conse-
quences are very algorithmic: We give a surprisingly simple algorithm that yields
an expected constant approximation ratio for random geometric graphs even in
the pure abstract setting. In fact, we can state the algorithm already now; the
remainder of this paper deals with the proof of its properties and correctness:

Given a random geometric graph G in Rd (see below for details), we pick a
random 2-dimensional plane L in Rd to obtain a straight-line drawing G|L that
yields a crossing number approximation both for cr(G0) and for cr(G0).

Throughout this paper, we prefer to work within the setting of a Poisson point
process because of the strong mathematical tools from the Malliavin calculus
that are available in this case. It is straightforward to de-Poissonize our results:
this yields asymptotically the same results—even with the same constants—for
n uniform random points instead of a Poisson point process; we omit the details.

2 Notations and Tools from Stochastic Geometry

Let W ⊂ Rd be a convex set of volume vold(W ) = 1. Choose a Poisson dis-
tributed random variable n with parameter t, i.e., En = t. Next choose n points
V = {v1, . . . , vn} independently in W according to the uniform distribution.
Those points form a Poisson point process V in W of intensity t. A Poisson
point process has several nice properties, e.g., for disjoint subsets A,B ⊂ W , the
sets V ∩A and V ∩B are independent (thus also their size is independent). Let V k

�= ,
k ≥ 1, be the set of all ordered k-tuples over V with pairwise distinct elements.
We will consider V as the vertex set of a geometric graph G for the distances
parameter (δt)t>0 with edges E = {{u, v} | u, v ∈ V, u �= v, ‖u−v‖ ≤ δt}, i.e., we
have an edge between two distinct points if and only if their distance is at most
δt. Such random geometric graphs (RGG) have been extensively investigated,
see, e.g., [27,29], but nothing is known about the stress or crossing number of
its underlying abstract graph G0.

A U-statistic U(k, f) :=
∑

v∈V k
�=

f(v) is the sum over f(v) for all k-tuples v.
Here, f is a measurable non-negative real-valued function, and f(v) only depends
on v and is independent of the rest of V . The number of edges in G is a U-statistic
as m = 1

2

∑
v,u∈V,v �=u 1(‖v − u‖ ≤ δt). Likewise, the stress of a geometric graph

as well as the crossing number of a straight-line drawing is a U-statistic, using
2- and 4-tuples of V , respectively. The well-known multivariate Slivnyak-Mecke
formula tells us how to compute the expectation EV over all realizations of the
Poisson process V ; for U-statistics we have, see [31, Cor. 3.2.3]:
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EV

∑

(v1,...,vk)∈V k
�=

f(v1, . . . , vk) = tk
∫

Wk

f(v1, . . . , vk) dv1 · · · dvk. (2)

We already know EV n = EV |V | = t. Solving the above formula for the expected
number of edges, we obtain

EV m = EV |E| =
κd

2
t2δd

t + O(t2δd+1
t surf(W )), (3)

where κd = vold(Bd) is the volume of the unit ball Bd in Rd, and surf(W )
the surface area of W . For n and m, central limit theorems and concentration
inequalities are well known as t → ∞, see, e.g., [27,29].

The expected degree EV deg(v) of a typical vertex v is approximately of order
κd t δd

t (this can be made precise using Palm distributions). This naturally leads
to three different asymptotic regimes as introduced in Penrose’s book [27]:

– in the sparse regime we have limt→∞ t δd
t = 0, thus EV deg(v) tends to zero;

– in the thermodynamic regime we have limt→∞ t δd
t = c > 0, thus EV deg(v)

is asymptotically constant;
– in the dense regime we have limt→∞ t δd

t = ∞, thus EV deg(v) → ∞.

Observe that in standard graph theoretic terms, the thermodynamic regime leads
to sparse graphs, i.e., via (3) we obtain EV m = Θ(t) = Θ(EV n). Similarly, the
dense regime—together with δt → c—leads to dense graphs, i.e., EV m = Θ(t2) =
Θ((EV n)2). Recall that to employ the crossing lemma, we want m ≥ 4n. Also,
the lemma already shows that any good (straight-line) drawing of a dense graph
G0 already gives a constant-factor approximation for cr(G0) (and cr(G0)). In the
following we thus assume a constant 0 < c ≤ t δd

t and δt → 0, i.e., m = o(n2).
The Slivnyak-Mecke formula is a classical tool to compute expectations and

will thus be used extensively throughout this paper. Yet, suitable tools to com-
pute variances came up only recently. They emerged in connection with the
development of the Malliavin calculus for Poisson point processes [23,26]. An
important operator for functions g(V ) of Poisson point processes is the differ-
ence (also called add-one-cost) operator,

Dvg(V ) := g(V ∪ {v}) − g(V ),

which considers the change in the function value when adding a single further
point v. We know that there is a Poincaré inequality for Poisson functionals [23,
32], yielding the upper bound in (4) below. On the other hand, the isometry
property of the Wiener-Itô chaos expansion [24] of an (square integrable) L2-
function g(V ) leads to the lower bound in (4):

t

∫

W

(EV Dvg(V ))2 dv ≤ VarV g(V ) ≤ t

∫

W

EV (Dvg(V ))2 dv. (4)

Often, in particular in the cases we are interested in in this paper, the bounds
are sharp in the order of t and often even sharp in the occurring constant. This
is due to the fact that the Wiener-Itô chaos expansion, the Poincaré inequality,
and the lower bound are particularly well-behaved for Poisson U-statistics [28].
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3 Rectilinear Crossing Number of an RGG

Let L be the set of all two-dimensional linear planes and L ∈ L be a random plane
chosen according to a (uniform) Haar probability measure on L. The drawing
GL := G|L is the projection of G onto L. Let [u, v] denote the segment between
vertex points u, v ∈ V if their distance is at most δt and ∅ otherwise. The
rectilinear crossing number of GL is a U-statistic of order 4:

cr(GL) =
1
8

∑

(v1,v2,v3,v4)∈V 4
�=

1([v1, v2]|L ∩ [v3, v4]|L �= ∅).

Keep in mind that even for the best possible projection we only obtain
minL∈L cr(G|L) ≥ cr(G0). To analyze EV minL∈L cr(G|L) is more complicated
than EL,V cr(G|L); fortunately, we will not require it.

3.1 The Expectation of the Rectilinear Crossing Numbers

For the expectation with respect to the underlying Poisson point process the
Slivnyak-Mecke formula (2) gives

EV cr(GL) =
1
8

t4
∫

W

∫

W 3

1([v1, v2]|L ∩ [v3, v4]|L �= ∅) dv4dv3dv2

︸ ︷︷ ︸
=:IW (v1)

dv1.

Let cd be the constant given by the expectation of the event that two inde-
pendent edges cross. In this paper’s arXiv version [11, Appendix A], we prove in
Proposition 15 that cd ≤ 2πκ2

d, that IW (v1)

δ2d+2
t

is bounded by cd times the volume

of the maximal (d − 2)-dimensional section of W , and that

lim
δt→0

IW (v1)
δ2d+2
t

= cdvold−2((v1 + L⊥) ∩ W ), (5)

where L⊥ is the d − 2 dimensional hyperplane perpendicular to L. Using the
dominated convergence theorem of Lebesgue and Fubini’s theorem we obtain

lim
t→∞

EV cr(GL)
t4δ2d+2

t

=
1
8
cd

∫

W

vold−2((v1 + L⊥) ∩ W ) dv1

=
1
8
cd

∫

W |L

∫

(vL
1 +L⊥)∩W

vold−2((vL
1 + L⊥) ∩ W ) dvL⊥

1 dvL
1

=
1
8
cd

∫

W |L

vold−2((vL
1 + L⊥) ∩ W )2 dvL

1

︸ ︷︷ ︸
=:I(2)(W,L)

.



260 M. Chimani et al.

Theorem 1. Let GL be the projection of an RGG onto a two-dimensional plane
L. Then, as t → ∞ and δt → 0,

EV cr(GL) =
1
8
cd t4δ2d+2

t I(2)(W,L) + o(δ2d+2
t t4).

For unit-disk graphs, i.e., d = 2, the choice of L is unique and the projection
superfluous. There the expected crossing number is asymptotically c2

8 t4δ6t and
thus of order Θ(m3/n2) which is asymptotically optimal as witnessed by the
crossing lemma. In general, the expectation is of order

t4δ2d+2
t = Θ

(
m3

n2

( m

n2

) 2−d
d

)
.

The extra factor m/n2 can be understood as the probability that two vertices
are connected via an edge, thus measures the “density” of the graph.

3.2 The Variance of the Rectilinear Crossing Numbers

By the variance inequalities (4) for functionals of Poisson point processes we are
interested in the moments of the difference operator of the crossing numbers:

EV Dvcr(GL) =
1
8
EV

∑

(v2,...,v4)∈V 3
�=

1([v, v2]|L ∩ [v3, v4]|L �= ∅) =
1
8
t3IW (v)(6)

EV (Dvcr(GL))2 = EV

(1
8

∑

(v2,...,v4)∈V 3
�=

1([v, v2]|L ∩ [v3, v4]|L �= ∅)
)2

(7)

Plugging (7) into the Poincaré inequality (4) gives

VarV cr(GL) ≤ 1
64

t

∫

W

EV

( ∑

(v2,...,v4)∈V 3
�=

1([v, v2]|L ∩ [v3, v4]|L �= ∅)
)2

dv.

Using calculations from integral geometry (see this paper’s arXiv version [11,
Appendix B]), there is a constant 0 < c′

d ≤ 2πκdcd (given by the expectation of
the event that two pairs of independent edges cross) such that

VarV cr(GL) ≤ 1
64

(
c2d +

c′
d

tδd
t

)
t7δ4d+4

t

∫

W

vold−2((v + L⊥) ∩ W )2
(
1 + o(1)

)
dv

+ O(max{t6δ4d+2
t , t5δ3d+2

t , t4δ2d+2
t }).

We use that tδd
t ≥ c > 0, assume d ≥ 3, and use Fubini’s theorem again.

lim
t→∞

VarV cr(GL)
t7δ4d+4

t

≤ 1
64

(
c2d + c′

d lim
t→∞

1
tδd

t

) ∫

W |L

vold−2((v + L⊥) ∩ W )3 dv

︸ ︷︷ ︸
=:I(3)(W,L)

.
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On the other hand, (6) and the lower bound in (4) gives in our case

VarV cr(GL) ≥ t

∫

W

(EV Dvcr(GL))2 dv

≥ 1
64

t7
∫

W

IW (v)2 dv =
1
64

c2d t7δ4d+4
t I(3)(W,L)(1 + o(1)).

Thus our bounds have the correct order and, in the dense regime where tδd
t → ∞,

are even sharp. Using 0 < c′
d ≤ 2πκdcd we obtain:

Theorem 2. Let GL be the projection of an RGG in Rd, d ≥ 3, onto a two-
dimensional plane L. Then, as t → ∞ and δt → 0,

1
64

c2dI
(3)(W,L) ≤ lim

t→∞
VarV cr(GL)

t7δ4d+4
t

≤ 1
64

(
c2d + 2πκdcd lim

t→∞
1

tδd
t

)
I(3)(W,L).

Theorems 1 and 2 show for the standard deviation

σ(cr(GL)) =
√

VarV cr(GL) = Θ(t4δ2d+2
t t−

1
2 ) = Θ(EV cr(GL) (EV n)− 1

2 ),

which is smaller than the expectation by a factor (EV n)− 1
2 = t−

1
2 . Or, equiva-

lently, the coefficient of variation σ(cr(GL))
EV cr(GL) is of order t−

1
2 . As t → ∞, our bounds

on the expectation and variance together with Chebychev’s inequality lead to

P

(∣∣∣∣
cr(GL)
t4δ2d+2

t

− EV cr(GL)
t4δ2d+2

t

∣∣∣∣ ≥ ε

)
≤ VarV cr(GL)

t8δ4d+4
t ε2

→ 0.

Corollary 3 (Law of Large Numbers). For given L, the normalized ran-
dom crossing number converges in probability (with respect to the Poisson point
process V ) as t → ∞,

cr(GL)
t4δ2d+2

t

→ 1
8
cdI

(2)(W,L).

Until now we fixed a plane L and computed the variance with respect to the
random points V . Theorems 1 and 2 allow to compute the expectation and vari-
ance with respect to V and a randomly chosen plane L. For the expectation we
obtain from Theorem 1 and by Fubini’s theorem

EL,V cr(GL) =
1
8
cd t4δ2d+2

t

∫

L
I(2)(W,L) dL + o(t4δ2d+2

t ), (8)

as t → ∞ and δt → 0, where dL denotes integration with respect to the Haar
measure on L. For simplicity we assume in the following that limt→∞(tδd

t )−1 = 0.
We use the variance decomposition VarL,V X = ELVarV X + VarLEV X. By
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ELVarV cr(GL) =
1
64

c2d t7δ4d+4
t

∫

L
I(3)(W,L) dL + o(t7δ4d+4

t ), and

VarLEV cr(GL) = EL(EV cr(GL))2 − (EL,V cr(GL))2

=
1
64

c2d t8δ4d+4
t

⎡

⎢⎣
∫

L
I(2)(W,L)2 dL −

⎛

⎝
∫

L
I(2)(W,L)dL

⎞

⎠
2
⎤

⎥⎦ + o(t8δ4d+4
t )

we obtain

VarL,V cr(GL) =
1
64

c2d t8δ4d+4
t

⎡

⎢⎣
∫

L
I(2)(W,L)2dL −

⎛

⎝
∫

L
I(2)(W,L)dL

⎞

⎠
2
⎤

⎥⎦

+o(t8δ4d+4
t ). (9)

Hölder’s inequality implies that the term in brackets is positive as long as
I(2)(W,L) is not a constant function.

3.3 The Rotation Invariant Case

If W is the ball B of unit volume and thus V is rotation invariant, then
I(2)(B,L) = I(2)(B) is a constant function independent of L, and the lead-
ing term in (9) is vanishing. From (8) we see that in this case the expectation is
independent of L.

EV cr(GL) = ELEV cr(GL) = t4δ2d+2
t I(2)(B) + o(t4δ2d+2

t )

For the variance this implies VarLEV cr(GL) = 0, and hence

VarL,V cr(GL) = ELVarV cr(GL) =
1
64

c2d t7δ4d+4
t I(3)(B) + o(t7δ4d+4

t ).

In this case the variance VarL,V is of the order t−1—and thus surprisingly
significantly—smaller than in the general case.

Theorem 4. Let GL be the projection of an RGG in the ball B ⊂ Rd, d ≥ 3,
onto a two-dimensional uniformly chosen random plane L. Then

EL,V cr(GL) =
1
8
cd t4δ2d+2

t I(2)(B) + o(t4δ2d+2
t ) and

VarL,V cr(GL) =
1
64

c2d t7δ4d+4
t I(3)(B) + o(t7δ4d+4

t ),

as t → ∞, δt → 0 and tδd
t → ∞.

Again, Chebychev’s inequality immediately yields a law of large numbers
which states that with high probability the crossing number of GL in a random
direction is very close to 1

8cd t4δ2d+2
t I(2)(B).
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Corollary 5 (Law of Large Numbers). Let GL be the projection of an RGG
in B ⊂ Rd, d ≥ 3, onto a random two-dimensional plane L. Then the normalized
random crossing number converges in probability (with respect to the Poisson
point process V and to L), as t → ∞,

cr(GL)
t4δ2d+2

t

→ 1
8
cdI

(2)(B).

As known by the crossing lemma, the optimal crossing number is of order
m3

n2 . In our setting this means that we are looking for the optimal direction of
projection which leads to a crossing number of order t4δ3d

t , much smaller than
the expectation EV cr(GL). Chebychev’s inequality shows that if W = B it is
difficult to find this optimal direction and to reach this order of magnitude; using
δt → 0 in the last step we have:

PL,V (cr(GL) ≤ ct4δ3d
t ) ≤ PL,V

(|cr(GL) − EL,V cr(GL)|≥ EL,V cr(GL) − ct4δ3d
t

)

≤ VarL,V cr(GL)
(EL,V cr(GL) − ct4δ3d

t )2
= O(t−1).

Hence a computational näıve approach of minimizing the crossing numbers
by just projecting onto a sample of random planes seems to be expensive. This
suggests to combine the search for an optimal choice of the direction of projection
with other quantities of the RGG. It is a long standing assumption in graph
drawing that there is a connection between the crossing number and the stress
of a graph. Therefore the next section is devoted to investigations concerning
the stress of RGGs.

4 The Stress of an RGG

According to (1) we define the stress of GL as

stress(G,GL) :=
1
2

∑

(v1,v2)∈V 2
�=

w(v1, v2)(d0(v1, v2) − dL(v1, v2))2,

where w(v1, v2) a positive weight-function and d0 resp. dL are the distances
between v1 and v2, resp v1|L and v2|L. As cr(G), stress is a U-statistic, but now
of order two. Using the Slivnyak-Mecke formula, it is immediate that

EV stress(G,GL) =
1
2
t2

∫

W 2

w(v1, v2)(d0(v1, v2) − dL(v1, v2))2dv1dv2

︸ ︷︷ ︸
=:S(1)(W,L)

.
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For the variance, the Poincaré inequality (4) implies

VarV stress(G,GL) ≤ t

∫

W

EV (Dv(stress(G,GL)))2dv

=
1
4
t

∫

W

EV

(
∑

v1∈V

w(v, v1)(d0(v, v1) − dL(v, v1))2
)2

dv

=
1
4
t3

∫

W 3

2∏

i=1

(
w(v, vi)(d0(v, vi) − dL(v, vi))2

)
dv1dv2dv

︸ ︷︷ ︸
=:S(2)(W,L)

+
1
4
t2

∫

W 2

w(v, v1)2(d0(v, v1) − dL(v, v1))4 dv1dv.

Hence the standard deviation of the stress is smaller than the expectation by
a factor t−

1
2 and thus the stress is concentrated around its mean. Again the

computation of the lower bound for the variance in (4) is asymptotically sharp.

VarV stress(G,GL) ≥ t

∫

W

(EV Dv(stress(G,GL)))2dv

=
1
4
t

∫

W

(
EV

∑

v1∈V

w(v, v1)(d0(v, v1) − dL(v, v1))2
)2

dv =
1
4
t3S(2)(W,L).

Theorem 6. Let GL be the projection of an RGG in Rd, d ≥ 3, onto a two-
dimensional plane L. Then

EV stress(G,GL) =
1
2

t2 S(1)(W,L) and

VarV stress(G,GL) =
1
4

t3 S(2)(W,L) + O(t2).

The discussions from Sects. 3.2 and 3.3 lead to analogous results for the stress of
the RGG. Using Chebychev’s inequality we could derive a law of large numbers.
Taking expectations with respect to a uniform plane L we obtain:

EL,V stress(G,GL) =
1
2
t2

∫

L
S(1)(W,L)dL,

VarL,V stress(G,GL) =
1
4
t4

⎡

⎢⎣
∫

L
S(1)(W,L)2dL −

⎛

⎝
∫

L
S(1)(W,L)dL

⎞

⎠
2
⎤

⎥⎦ + O(t3).

Again, the term in brackets is only vanishing if W = B. In this case

VarL,V stress(G,GL) = ELVarV stress(G,GL) =
1
4
t3S(2)(B) + O(t2).
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5 Correlation Between Crossing Number and Stress

It seems to be widely conjectured that the crossing number and the stress should
be positively correlated. Yet it also seems that a rigorous proof is still missing.
It is the aim of this section to provide the first proof of this conjecture, in the
case where the graph is a random geometric graph.

Clearly, by the definition of cr and stress we have

Dv cr(GL) ≥ 0 and Dv stress(G,GL) ≥ 0,

for all v and all realizations of V . Such a functional F satisfying Dv(F ) ≥ 0
is called increasing. The Harris-FKG inequality for Poisson point processes [23]
links this fact to the correlation of cr(GL) and stress(G,GL).

Theorem 7. Because stress and cr are increasing we have

EV cr(GL)stress(G,GL) ≥ EV cr(GL)EV stress(G,GL),

and thus the correlation is positive.

We immediately obtain that the covariance is positive and is of order at most

CovV

(
cr(GL), stress(GL)

) ≤
√
VarV cr(GL)VarV stress(G,GL)

≤ 1
16

cd

(
1 +

2πκd

cd
lim

t→∞
1

tδd
t

) 1
2
t5δ2d+2

t I(3)(W,L)
1
2 S(2)(W,L)

1
2 + o(t5δ2d+2

t ).

In [11, Appendix C] we use Mehler’s formula to prove a lower bound:

CovV

(
cr(GL), stress(G,GL)

)≥ t5

16

∫

W 2

IW (v)w(v, v1)(d0(v, v1) − dL(v, v1))2dv1dv.

We combine this bound with (5), divide by the standard deviations from Theo-
rems 2 and 6 and obtain the asymptotics for the correlation coefficient:

Theorem 8. Let GL be the projection of an RGG in Rd, d ≥ 3, onto a two-
dimensional plane L. Then

lim
t→∞CorrV (cr(GL), stress(G,GL))

≥

∫

W 2

vold−2((v + L⊥) ∩ W )w(v, v1)(d0(v, v1) − dL(v, v1))2dv1dv

(1 + 2πκd

cd
limt→∞ 1

tδd
t
)

1
2 I(3)(W,L)

1
2 S(2)(W,L)

1
2

.

It can be shown that this bound is even tight and asymptotically gives the correct
correlation coefficient.



266 M. Chimani et al.

5.1 The Rotation Invariant Case

In principle the bounds for the covariance in the Poisson point process V given
above can be used to compute covariance bounds in L and V when L is not fixed
but random. For this we could use the covariance decomposition

CovL,V (X,Y ) = ELCovV (X,Y ) + CovL(EV X,EV Y ).

Here we concentrate again on the case when W = B is the ball of unit volume
and thus V is rotation invariant. Then CovL(EV cr(GL),EV stress(GL)) = 0, and
as an immediate consequence of Theorem 8 we obtain

Corollary 9. Let GL be the projection of an RGG in B ⊂ Rd, d ≥ 3, onto
a two-dimensional random plane L. Then the correlation between the crossing
number and the stress of the RGG is positive with

lim
t→∞CorrL,V (cr(GL), stress(G,GL))

≥
∫

B2 vold−2(v + L⊥) ∩ B)w(v, v1)(d0(v, v1) − dL(v, v1))2dv1dv

(1 + 2πκd

cd
limt→∞ 1

tδd
t
)

1
2 I(3)(B)

1
2 S(2)(B)

1
2

.

In particular, the correlation does not vanish as t → ∞. This gives the first proof
we are aware of, that there is a strict positive correlation between the crossing
number and the stress of a graph. Hence, at least for RGGs, the method to
optimize the stress to obtain good crossing numbers can be supported by rigorous
mathematics.

6 Consequences and Conclusion

Apart from providing precise asymptotics for the crossing numbers of draw-
ings of random geometric graphs, the main findings are the positive covariance
and the non-vanishing correlation between the stress and the crossing number
of the drawing of a random geometric graph. Of interest would be whether
CovL(cr(GL), stress(G,GL)) > 0 for arbitrary graphs G. Yet there are simple
examples of graphs G where this is wrong. Yet we could ask in a slightly weaker
form whether at least EV CovL(cr(GL), stress(GL)) > 0, but we have not been
able to prove that.

We may coarsely summarize the gist of all the above findings algorithmi-
cally in the context of crossing number approximation, ignoring precise numeric
terms that can be found above. We yield the first (expected) crossing number
approximations for a rich class of randomized graphs:

Corollary 10. Let G be a random geometric graph in R2 (unit-disk graph) as
defined above. With high probability, the number of crossings in its natural
straight-line drawing is at most a constant factor away from cr(G0) and cr(G0).
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Corollary 11. Let G be a random geometric graph in Rd (unit-ball graph) as
defined above. We obtain a straight-line drawing D by projecting it onto a ran-
domly chosen 2D plane. With high probability, the number of crossings in D is
at most a factor α away from cr(G0) and cr(G0). Thereby, α is only dependent
on the graph’s density.

Corollary 12. Let G be a random geometric graph and use its natural distances
in Rd as input for stress minimization. The stress is positively correlated to the
crossing number. Loosely speaking, a drawing of G with close to minimal stress
is expected to yield a close to minimal number of crossings.
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Abstract. The crossing resolution of a non-planar drawing of a graph
is the value of the minimum angle formed by any pair of crossing edges.
Recent experiments have shown that the larger the crossing resolution
is, the easier it is to read and interpret a drawing of a graph. However,
maximizing the crossing resolution turns out to be an NP-hard problem
in general and only heuristic algorithms are known that are mainly based
on appropriately adjusting force-directed algorithms.

In this paper, we propose a new heuristic algorithm for the cross-
ing resolution maximization problem and we experimentally compare
it against the known approaches from the literature. Our experimental
evaluation indicates that the new heuristic produces drawings with bet-
ter crossing resolution, but this comes at the cost of slightly higher aspect
ratio, especially when the input graph is large.

1 Introduction

In Graph Drawing, there exists a rich literature and a wide range of techniques
for drawing planar graphs; see, e.g., [11,28,34]. However, drawing a non-planar
graph, and in particular when it does not have some special structure (e.g., degree
restriction), is a difficult and challenging task, mainly due to the edge crossings
that negatively affect the drawing’s quality [39]. As a result, the established
techniques are significantly fewer (e.g., crossing minimization heuristics [22,40],
energy-based layout algorithms [20,24]); for an overview refer to [13,36,41].

In this context, Huang et al. [31,32] a decade ago introduced some important
experimental evidence, that edge crossings may not negatively affect the draw-
ing’s quality too much (and hence the human’s ability to read and interpret it),
when the angles formed by the crossing edges are large. In other words, while
prior to these experiments it was commonly accepted that mainly the number of
crossings is the most important parameter for judging the quality of a non-planar
graph drawing, it turned out that the types of edge crossings also matter. As a
result, a new and prominent research direction was initiated, recognized under
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(a) (b)

Fig. 1. (a) A RAC drawing of the complete graph K5, and (b) a drawing of the complete
graph K6, whose crossing resolution is arbitrarily close to 90◦.

the term “beyond planarity” [30,35,37], which focuses on graphs and their prop-
erties, when different constraints on the types of edges crossings are imposed;
refer to [16] for a recent survey.

The value of the minimum angle formed by any two crossing edges in a
drawing is referred to as its crossing resolution; the crossing resolution of a graph
is defined as the maximum crossing resolution over all its drawings. Clearly,
the crossing resolution of a non-planar graph is at most 90◦, while a graph
that admits a drawing with crossing resolution 90◦ is called right-angle-crossing
(RAC ) graph; see Fig. 1. Notably, RAC graphs are sparse with at most 4n − 10
edges [15], while deciding whether a graph is RAC is NP-hard [4].

The latter result is an indication that the problem of finding drawings with
high crossing resolution might also be difficult, even though, formally, its com-
plexity has not been settled yet for values of the crossing resolution smaller
than 90◦. Also, the literature is significantly more limited, when restricting the
crossing resolution to be smaller than 90◦, as also evidenced by Sect. 2.

From a practical point of view, we are only aware of two methods that aim at
drawings with high crossing resolution; both of them are adjustments of force-
directed algorithms [20]. The first one is due to Huang et al. [33], while the
second one is due to Argyriou et al. [5]. Common in both algorithms is that
they apply appropriate forces on the endvertices of every pair of crossing edges.
Each of them uses a different way to compute (the direction and the magnitude
of) the forces, but the underlying idea of both is the same: the smaller the
crossing angles are, the larger are the magnitudes of the forces applied at their
endvertices.

In this work, we approach the crossing resolution maximization problem from
a different perspective. We suggest a simple and intuitive randomization method,
which, in a sense, mimics the way a human would try to increase the crossing
resolution of a drawing. How would one increase the crossing resolution of a
given drawing? First, she would try to identify the pair of edges that define the
crossing resolution of the drawing (we call them critical edges); then, she would
try to move an endvertex of this pair (which we choose at random), hoping that
by this move the crossing resolution will increase. Of course, we cannot consider
all possible positions for the vertex to be moved. Instead, we consider a small set
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of randomly generated ones. If there exists a position among them, that does not
lead to a reduction of the crossing resolution, we move the vertex to this position.

In general, randomization is a technique that has not been deeply examined in
Graph Drawing, as it seems difficult to even speculate about the expected quality
of the produced drawings; a notable exception is the randomized approach by
Goldschmidt and Takvorian [27] for computing large planar subgraphs. Since
we also could not provide any theoretical guarantee on the expected quality of
the produced drawings, we followed a more practical approach. We implemented
our algorithm and the force-directed ones of [5] and [33], and we experimentally
compared them on standard benchmark graphs. Our evaluation indicates that
our method significantly outperforms the force-directed ones [5,33] in terms of
crossing resolution, but this comes at the cost of slightly worse running time for
large and dense graphs. Analogous results are obtained, when our algorithm and
the ones of [5] and [33] are adjusted to maximize the angular resolution (i.e., the
minimum value of the angle between any two adjacent edges [23]) or the total
resolution (i.e., the minimum of the angular and the crossing resolution [5]).

Preliminaries: Unless otherwise specified, in this paper we consider simple undi-
rected graphs. Let G = (V,E) be such a graph. The degree of vertex u ∈ V of
G is denoted by d(u). The degree d(G) of graph G is defined as the maximum
degree of its vertices, i.e., d(G) = maxu∈V d(u). Given a drawing Γ (G) of G, we
denote by p(u) = (xu, yu) the position of vertex u ∈ V of G in Γ (G).

Structure of the Paper: The remainder of this paper is structured as follows.
Section 2 overviews related works. Our algorithm is presented in detail in Sect. 3
and is experimentally evaluated against the ones of Huang et al. [33] and
Argyriou et al. [5] in Sect. 4, where we also discuss our insights from this project.
In [9], we provide experimental results on grid restricted drawings, on more test
sets and on the graphs from the Graph Drawing Competition in 2017.

2 Related Work

As already mentioned, the study of the crossing resolution maximization problem
has mainly focused on its optimal case, i.e., on the study of RAC graphs. An n-
vertex RAC graph has at most 4n−10 edges [15], while deciding whether a graph
is RAC is NP-hard [4]. The maximally-dense RAC graphs are 1-planar [21], i.e.,
they can be drawn with at most one crossing per edge. Actually, several rela-
tionships between the class of RAC graphs and subclasses of 1-planar graphs
are known [7,10]. Deciding, however, whether a 1-planar graph is RAC is NP-
hard [8]. Note that the problem of finding RAC drawings has also been stud-
ied in the presence of bends [2,6,15,26] and by imposing restrictions on the
degree [3], the structure [14] and the drawing [25,29] of the graph. The results
are fewer, when the right-angle constraint is relaxed. Dujmovic et al. [19] proved
that an n-vertex graph with crossing resolution at least α radians, has at most
(3n−6)π/α edges. Corresponding density results are also known in the presence
of bends [1,26].
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An immediate observation emerging from the above overview is that the focus
has been primarily on theoretical aspects of the problem. Most of the approaches
that could be useful in practice are based on force-directed techniques [13,20].
COWA is a system that supports conceptual web site traffic analysis [17]; its
algorithmic core is a force-directed heuristic to compute simultaneous embed-
dings of two non-planar graphs with high crossing resolution. Didimo et al. [18]
describe topology-driven force-directed heuristics to achieve good trade-offs in
terms of number of edge crossings, crossing resolution, and geodesic edge ten-
dency; the obtained drawings, however, are not straight-line. For straight-line
drawings, Nguyen et al. [38] suggest a quadratic-program to increase the cross-
ing angles of circular drawings. Of more general scope are the already mentioned
force-directed algorithms of Argyriou et al. [5] and Huang et al. [33].

3 Description of Our Heuristic Approach

In this section, we describe our heuristic for obtaining drawings with high cross-
ing resolution. The input of our heuristic consists of a graph G and an initial
drawing Γ0 of G with crossing resolution c(Γ0). We assume that no two edges
of G overlap in Γ0, i.e., c(Γ0) > 0. A circular drawing or a drawing obtained by
applying a force-directed algorithm on G clearly meets this precondition.

Our algorithm is iterative and at each iteration performs some operations
that are mainly based on randomization. At the i-th iteration, we assume that
we have computed a drawing Γi−1 of crossing resolution c(Γi−1) ≥ c(Γ0). In
other words, we assume, as an invariant for our algorithm, that the crossing
resolution cannot be decreased at some iteration. Then, a vertex of Γi−1 is chosen
arbitrarily at random based on the so-called vertex-pool, which may contain: (i)
either all vertices of Γi−1, or (ii) a prespecified subset of the vertices of Γi−1,
called critical.

Intuitively, the critical vertices are the endpoints of the edges that define
the crossing resolution of drawing Γi−1. To formally define them, we first need
to introduce the notion of critical edge-pairs. A pair of edges e and e′ is called
critical in Γi−1, if e and e′ cross in Γi−1 and the minimum angle that is formed
at their crossing point is equal to c(Γi−1). The set of critical vertices of Γi−1 is
then defined by the four endvertices of each critical edge-pair.

The role of critical vertices is central in our algorithm1: By appropriately
changing the location of a critical vertex or of a vertex in the neighbourhood of
the critical vertices, we naturally expect to improve the crossing resolution of the
current drawing. We turned this observation into an algorithmic implementation
through a probabilistic random selection procedure, so that the vertices at graph-
distance i from the ones of the vertex-pool have higher probability for selection
than the corresponding ones at distance j in the graph, when 0 ≤ i < j. So, if
the vertex-pool contains only critical vertices, then the closer a vertex is to the
1 If the focus is not on the critical vertices for a large graph, then our algorithm will

need a large number of iterations to converge to a good solution, because it is simply
very unlikely to select to move one of the vertices that define the crossing resolution.
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Fig. 2. Illustration of an iteration step of our algorithm: (a) The chosen vertex is the
white one; the computed rays r0, . . . , r7 have been rotated by 8◦; the black-colored
points along these rays are points π0, . . . , π7; among them, π4 yields the best solution.
(b) The resulting drawing after moving the vertex at position π2.

critical vertices, the more likely it is to be chosen. Otherwise, the vertex-pool
contains all vertices and each vertex can be chosen with the same probability.

What we quickly realized from our practical analysis, is that the crossing
resolution of the initial drawing improves rapidly during the first iterations of the
algorithm. However, by focusing only at the critical vertices, it is highly possible
that the algorithm will get trapped to some local maxima after a number of
iterations. So, special care is needed to avoid these bottlenecks, especially when
the input graph is large. We will discuss ways to avoid them later in this section.

So far, we have described the main idea of our algorithm, which at each
iteration chooses uniformly at random a vertex of the current drawing to move
(based on the content of the vertex-pool), so to improve the crossing resolution.
Next, we describe how to compute its new position in the next drawing. Note
that our method resembles probabilistic hill climbing approaches.

Let vi be the vertex of Γi−1 that has been chosen to be moved at the i-th
iteration. To compute the position of vi in the next drawing Γi, we consider a
set of ρ rays r0, r1, . . . , rρ−1 that all emanate from p(vi) in Γi−1, such that the
angle formed by ray rj , with j = 0, 1, . . . , ρ−1, and the horizontal axis equals to
2jπ/ρ, where ρ > 0 is an integer parameter of the algorithm. These rays are then
rotated by an angle that is chosen uniformly at random in the interval [0, 2π];
see Fig. 2. The position of vertex vi in Γi will eventually be along one of the
rays r0, r1, . . . , rρ−1. More precisely, for each ray ri we choose a distance value
δi uniformly at random from the interval [δmin, δmax], where δmin and δmax are
two positive parameters of the algorithm. For each j = 0, 1, . . . , ρ − 1, a new
point πj is obtained by translating p(u) along rj by a distance δj ; point πj is
feasible, if the crossing resolution of the drawing obtained by placing vertex vi

at πj and by keeping all other vertices of G in their positions in Γi−1 is at least
as large as the crossing resolution of Γi−1, and there is no vertex of Γi−1 at πj .

If none of the points πj , with j = 0, 1, . . . , ρ − 1 is feasible, then the position
of vi in Γi is p(vi), i.e., same as in Γi−1, since c(Γi) ≥ c(Γi−1) must hold. If there
is one or more feasible points, then one may consider two different approaches
to determine the position of vi in Γi. The most natural is to choose the feasible
point that maximizes the crossing resolution of the obtained drawing. As an
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alternative, one may rely again on randomization and chose uniformly at random
one of the feasible points as the position of vi in Γi. We note that we did not
observe any significant difference between these two approaches (in terms of the
crossing resolution of the obtained drawings), so we simply adopted the first one.
The termination condition of our algorithm is simple and depends on an input
parameter τ . More specifically, if the crossing resolution has not improved during
the last τ iterations, we assume that the algorithm has converged and we stop.

Avoiding Local Maxima. To avoid getting trapped to locally optimal solu-
tions, we mainly investigated two approaches, which are both parametrizable by
two input parameters ζ and ζ ′. The first mimics the human behaviour. What
would one do to escape from a locally optimal solution? She would stop trying
to move the endvertices of the edges defining the crossing resolution; she would
rather start moving “irrelevant” vertices hoping that by doing so a better solu-
tion will be easier to be computed afterwards. Our algorithm is mimicking this
idea as follows: (i) if during the last ζ iterations the crossing resolution has not
been improved, then the vertex-pool becomes wider by including all the vertices,
and the algorithm is executed with this vertex-pool for ζ ′ iterations; (ii) after-
wards, the vertex-pool switches back to the critical vertices. While this approach
turned out to be effective for smaller graphs, for graphs with more than 100 ver-
tices, it was not so efficient; in most iterations with the wider vertex-pool, the
embedding could not change in a beneficial way for the algorithm to proceed.

Our second approach is based on parameters ρ, δmin and δmax of the algo-
rithm. Our idea was that if the algorithm gets trapped to a locally optimal
solution, then a “drastic” or “sharp” move may help to escape. We turned this
idea into an algorithmic implementation as follows: (i) if during the last ζ itera-
tions the crossing resolution has not been improved, we double the values of ρ,
δmin and δmax, and the algorithm is executed with these values for ζ ′ iterations;
(ii) afterwards, ρ, δmin and δmax switch back to this initial value. This approach
may lead to drawings with larger area, but this is “expected”, as it turns out
that drawings with high crossing resolution may require large area [2,10].

Complexity Issues. A factor that highly affects the efficiency of our algorithm
is the computation of the crossing points of the edges and the corresponding
angles at these points. Given a drawing, a näıve approach to compute its cross-
ings requires O(m2) time, which can be improved by a plane-sweep technique to
O(m log m + c) time, where m and c denote the number of edges and crossings.

Instead of computing all crossing points and the corresponding angles for
each candidate position of each iteration, we adopted a different approach for
determining the set of feasible candidate positions, which turned out to be quite
efficient in practice. Recall that we denoted by vi the vertex chosen at the i-
th iteration step, and by π0, . . . , πρ−1 the candidate positions to move vi. Let
e0, . . . , edi−1 be the edges incident to vi, where di = deg(vi). Next, for each
edge ek with k = 0, . . . , di − 1 we compute the crossings and the corresponding
crossing angles of ek with all other edges in Γi−1. Let φi be the minimum crossing
angle computed; this is our reference angle. Also, for each candidate position πj

with j = 0, . . . , ρ − 1, and for each edge ek with k = 0, . . . , di − 1, we compute
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the crossings and the corresponding crossing angles of ek with all other edges of
the drawing, assuming that vi is at πj . Let χj be the minimum crossing angle
computed with this approach, when vi is at position πj . Clearly, πj is feasible only
if χj ≥ φi. Note that the complexity of this approach is O(deg(vi)m) = O(nm).

3.1 Some Interesting Variants

In general, aesthetically pleasant drawings of graphs are usually the result of
compromising between different aesthetic criteria. Towards this direction, we
discuss in this section interesting variants of our algorithm, which are motivated
by the following observation that we made while working on this project (see
Sect. 4): Drawings that are optimised only in terms of the crossing resolution
tend to have bad aspect ratio and poor angular resolution.

Aspect Ratio. It was easy to instruct our algorithm to prevent producing
drawings with aspect ratio either higher than the one of the starting layout
or higher than a given input value. What we simply had to do was to reject
candidate positions, which violate this precondition.

Total Resolution. Similarly as above, we could adjust our algorithm to yield
drawings with high total resolution by simply taking into account also the angu-
lar resolution of the drawing. In particular, if the total resolution of the drawing
is defined by its angular resolution, then the way we compute the critical vertices
of this drawing has to change; the critical vertices must be the endvertices of the
pairs of edges that define the angular resolution. Also, at each iteration of our
algorithm we have to ensure that the total resolution does not decrease. We do
so by rejecting candidate positions which yield a reduced total resolution.

Angular Resolution. As it is the case with the force-directed algorithms of
Huang et al. [33] and Argyriou et al. [5], our algorithm can be also restricted to
maximize only the angular resolution (by neglecting its crossing resolution). We
already described in the previous paragraph the necessary changes in the defini-
tion of the critical vertices and the rule according to which a candidate position
is rejected (i.e., when it yields a drawing with a reduced angular resolution).

Grid Drawings. Our algorithm, as it has been described so far, does not nec-
essarily produce grid drawings, i.e., drawings in which the vertices are at integer
coordinates. However, it can be easily adjusted to produce such drawings. More
precisely, if we round the candidate positions computed at each iteration of our
algorithm to their closest grid points and use these grid points as candidates
for the next position of the vertex to be moved, then the obtained drawing will
be grid (assuming, of course, that the starting drawing is grid). One can even
bound the size of the grid, by rejecting candidate grid positions outside the
bounds. In [9], we report experimental results on this variant.

4 Experimental Evaluation

In this section, we present the results of our experimental evaluation. For compar-
ison purposes, apart from our algorithm, we also implemented the force-directed
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algorithms of Argyriou et al. [5] and Huang et al. [33]. The implementations2

were in Java using yFiles [42]. The experiment was performed on a Linux laptop
with four cores at 2.4 GHz and 8 GB RAM. As a test set for our experiment, we
used the non-planar Rome graphs [12], which form a collection of around 8.100
benchmark graphs; in [9], we also report on the AT&T graphs.

The experiment was performed as follows. Initially, each Rome graph was
laid out using the SmartOrganic layouter of yFiles [42]. Starting from this lay-
out, every graph was drawn with (i) our algorithm, (ii) our algorithm restricted
not to violate the aspect ratio of the initial layout, and the force-directed algo-
rithms (iii) by Argyriou et al. and (iv) by Huang et al. Since all algorithms of
the experiment can easily be adjusted to maximize only the crossing resolution,
or only the angular resolution or both (by maximizing the total resolution),
we adjusted each of the algorithms to maximize exclusively the correspond-
ing measures; see Figs. 3, 4 and 5. In our algorithm, this can be achieved by
modifying appropriately the content of the vertex-pool (as we saw in Sect. 3.1),
while in the algorithms of Argyriou et al. and of Huang et al. by switching on
only the forces that maximize the corresponding properties under measure (note
that, each of these two algorithms has a different set of forces to maximize the
crossing and the angular resolution, such that together they maximize the total
resolution). The reported results are on average across different drawings with
same number of vertices. Finally, we mention that for our algorithm, we chose
δmax = 1

2 max{w, h}, where w and h are the width and the height of the initial
drawing, respectively, δmin = 1

100δmax and ρ = 10.

Crossing Resolution. Our results for the crossing resolution are summarized
in Fig. 3. Here, each algorithm was adjusted to maximize exclusively the crossing
resolution (i.e., by ignoring the drawing’s angular resolution). It is immediate
to see that our algorithm outperforms all other ones in terms of the crossing
resolution of the produced drawings, when we do not impose any restriction on
the aspect ratio of the computed drawings; refer to the solid-black curve, denoted
as Unrestricted, in Fig. 3a. The variant of our algorithm, which does not violate
the aspect ratio of the initial layout, leads to drawings with slightly smaller
crossing resolution; refer to the solid-gray curve, denoted as AR-restricted, in
Fig. 3a. Finally, the two force-directed algorithms seem to produce drawings
with worse crossing resolution; refer to the dotted-gray and dotted-black curves
of Fig. 3a (by Argyriou et al. and by Huang et al., respectively).

While our unrestricted algorithm produces drawings with better crossing res-
olution, this comes at a cost of drastically increased aspect ratio (see Fig. 3b),
which, however, is still better that the corresponding aspect ratio of the draw-
ings produced by the algorithm of Argyriou et al. For the latter algorithm, it
seems that the forces due to the angles formed at the crossings outperform the
corresponding spring forces, which try to keep the lengths of the edges short.
Going back to our unrestricted algorithm, its behaviour is up to a certain degree
expected, mainly due to the fact that there is no control on the lengths of the
edges. On the other hand, the restricted variant of our algorithm, which does
2 Our implementation is available on request from the authors.
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Fig. 3. Experimental results on the crossing resolution for the Rome graphs.

not allow the aspect ratio to increase, has more or less comparable performance
(in terms of aspect ratio) with the one of Huang et al.

Regarding the number of crossings, the restricted variant of our algorithm
and the force-directed algorithm of Huang et al. yield drawings with comparable
number of crossings, which at the same time is significantly smaller than the
number of crossings produced by the two other algorithms; see Fig. 3c.

A different behaviour can be observed in the number of iterations, which
are required by the algorithms to converge; refer to Fig. 3d. We note here that
we used different criteria to determine whether the algorithms of our experiment
had converged. For our algorithms and for the force-directed algorithm by Huang
et al., we assumed that the algorithm had converged, if the crossing resolution
between 500 consecutive iterations was not improved by more than 0.001◦. For
the algorithm by Argyriou et al., we decided to use a much more restricted
convergence criterion, because the produced layouts can change vastly between
consecutive iterations. We made this choice mainly to have “comparable” num-
ber of iterations among the algorithms of the experiment. In this direction, we
adopted the convergence criterion that the authors used in their previous exper-
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imental analysis that is, we assumed that the algorithm had converged, if the
crossing resolution between two consecutive iterations was not improved by more
than 0.001◦. Observe that even under this more restricted convergence criterion,
the algorithm needs significantly more iterations to converge than the remaining
three algorithms of the experiment; see Fig. 3d. The maximum number of itera-
tions that each of the algorithms could perform in order to converge was set to
100.000, but that limit was never reached. We observe that both force-directed
algorithms seem to require a great amount of iterations to converge for small
graphs, where a drawing with really good crossing resolution is possible. How-
ever, for larger graphs the algorithm by Huang et al. requires the least amount of
iterations. On the other hand, both the unrestricted and the restricted variant of
our algorithm require comparable number of iterations to converge, but clearly
more than the ones of the algorithm by Huang et al.

Total Resolution. Our results for the total resolution are summarized in Fig. 4.
Here, each algorithm was adjusted to maximize both the crossing and the angu-
lar resolution. For the vast majority of the graphs in the experiment, both our
unrestricted algorithm and its restricted variant yield drawings with better total
resolution than the corresponding ones by Argyriou et al. The drawings pro-
duced by the algorithm by Huang et al. seems to have worse total resolution; see
Fig. 4a. Note, however, that both variants of our algorithm as well as the force-
directed algorithm by Argyriou et al. tend to produce drawings of the same total
resolution for larger graphs with a small difference in our favor.

Contrary to the results for the total resolution, the results for the aspect ratio
show that the drawings produced by the algorithm by Huang et al. are better
(in terms of aspect ratio) than the drawings produced by remaining algorithms;
see Fig. 4b. More concretely, the drawings produced by the restricted variant of
our algorithm have slightly worse aspect ratios. Then, the ones produced by the
force-directed algorithm by Argyriou et al. follow. Again, we observe that our
unrestricted algorithm leads to drawings with very high aspect ratio.

The restricted variant of our algorithm and the algorithm by Huang et al.
yield drawings with the least number of crossings; see Fig. 4c. Comparable but
slightly worse (in terms of the number of crossings) are the drawings produced
by the force-directed algorithm by Argyriou et al. Our unrestricted algorithm
seems to require the largest number of crossings, which turn out to be notably
higher than the corresponding ones of the other three algorithms.

On the negative side, both the unrestricted and the restricted variant of our
algorithm require more iterations than the force-directed algorithm by Huang et
al.; see Fig. 4d. Recall, however, that the latter algorithm is clearly outperformed
by both our variants in term of total resolution. The algorithm by Argyriou et al.
clearly requires the highest number of iterations (especially for large graphs). We
note that the convergence criterion was the same as for the crossing resolution;
however, the measured quality was (not the crossing but) the total resolution.

Angular Resolution. We conclude the analysis of our experimental evaluation
with the results for the angular resolution; see Fig. 5. Here, each algorithm was
adjusted to maximize only the angular resolution (i.e., by ignoring the drawing’s
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Fig. 4. Experimental results on the total resolution for the Rome graphs.

crossing resolution). A notable observation is that, for small graphs the best
results are achieved by the algorithm by Argyriou et al., while for medium-
size graphs by our unrestricted algorithm; see Fig. 5a. For large graphs, the two
algorithms tend to have the same performance. The restricted variant of our
algorithm yields drawings with slightly worse angular resolution. The algorithm
by Huang et al. is outperformed by all algorithms of the experiment.

The results for the aspect ratio, the number of crossings and the required
number of iterations are very similar with corresponding ones for the total res-
olution; see Fig. 5b–d. This observation suggests that, for most of the graphs of
our experiment, the angular resolution dominates the crossing resolution (and
thus is the one defining the total resolution) in the constructed drawings, which
explains the similarity in the reported results. The small differences result from
the fact that the crossing resolution cannot be entirely neglected.

Discussion. While working on this project, we made some useful observations
and obtained some interesting insights. In particular, there is a recent hypothesis
(also supported by experiments) that drawings, in which the crossing angles, are
large are easy to read and understand. We observed that drawings that are
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(b) Aspect ratio vs no. of vertices
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(c) No. of crossings vs no. of vertices

10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

Number of Vertices

It
er
at
io
ns

Unrestricted AR-restricted
Huang et al. Argyriou et al.

(d) No. of iterations vs no. of vertices

Fig. 5. Experimental results on the angular resolution for the Rome graphs.

optimized only in terms of the crossing angles might be arbitrarily bad and may
have several undesired properties. In particular, in these drawings it was very
common to have adjacent edges to run almost in parallel and vertices to be very
close to each other. Hence, angular resolution and aspect ratio were often poor.
The additional restrictions that we imposed regarding the angular resolution and
the aspect ratio helped significantly improving the readability of the drawings,
without loosing too much of their quality in terms of the crossing resolution.

We conclude by noting that our motivation to work with this problem was our
participation to GD2017 contest, where we performed miserably using a force-
directed algorithm; for details see [9]. As our evaluation shows, the performance
of such algorithms is good, only when several aesthetic criteria are taken into
account; our new approach is definitely more promising than our previous as
evidenced by our experiments. The framework that we developed seems to be
quite adaptable to optimize or to take into account also other desired aesthetic
properties of a drawing.
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1. Ackerman, E., Fulek, R., Tóth, C.D.: Graphs that admit polyline drawings with
few crossing angles. SIAM J. Discrete Math. 26(1), 305–320 (2012). https://doi.
org/10.1137/100819564

2. Angelini, P., et al.: On the perspectives opened by right angle crossing drawings. J.
Graph Algorithms Appl. 15(1), 53–78 (2011). https://doi.org/10.7155/jgaa.00217

3. Angelini, P., et al.: Large angle crossing drawings of planar graphs in subquadratic
area. In: Márquez, A., Ramos, P., Urrutia, J. (eds.) EGC 2011. LNCS, vol. 7579, pp.
200–209. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34191-
5 19

4. Argyriou, E.N., Bekos, M.A., Symvonis, A.: The straight-line RAC drawing prob-
lem is NP-hard. J. Graph Algorithms Appl. 16(2), 569–597 (2012). https://doi.
org/10.7155/jgaa.00274

5. Argyriou, E.N., Bekos, M.A., Symvonis, A.: Maximizing the total resolution of
graphs. Comput. J. 56(7), 887–900 (2013). https://doi.org/10.1093/comjnl/bxs088

6. Arikushi, K., Fulek, R., Keszegh, B., Moric, F., Tóth, C.D.: Graphs that admit
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Abstract. The crossing angle of a straight-line drawing Γ of a graph
G = (V, E) is the smallest angle between two crossing edges in Γ . Decid-
ing whether a graph G has a straight-line drawing with a crossing angle
of 90◦ is NP-hard [1]. We propose a simple heuristic to compute a draw-
ing with a large crossing angle. The heuristic greedily selects the best
position for a single vertex in a random set of points. The algorithm
is accompanied by a speed-up technique to compute the crossing angle
of a straight-line drawing. We show the effectiveness of the heuristic in
an extensive empirical evaluation. Our heuristic was clearly the winning
algorithm (CoffeeVM) in the Graph Drawing Challenge 2017 [6].

1 Introduction

The crossing angle cr-α(Γ ) of a straight-line drawing Γ is defined to be the
minimum over all angles created by two crossing edges in Γ . The 24th edition
of the annual Graph Drawing Challenge, held during the Graph Drawing Sym-
posium, posed the following problem: Given a graph G, compute a straight-line
drawing Γ on an integer grid that has a large crossing angle. In this paper we
present a greedy heuristic that starts with a carefully chosen initial drawing and
repeatedly moves a vertex v to a random point p if this increases the crossing
angle of Γ . This heuristic was the winning algorithm of the GD Challenge’17 [6].

Related Works. A drawing of a graph is called RAC if its minimum crossing
angle is 90◦. Deciding whether a graph has a straight-line RAC drawing is an
NP-hard problem [1]. Giacomo et al. [13] proved that every straight-line draw-
ing of a complete graph with at least 12 vertices has a crossing angle of Θ(π/n).
Didimo et al. [7] have shown that every n-vertex graph that admits a straight-
line RAC drawing has at most 4n − 10 edges. This bound is tight, since there
is an infinite family of graphs with 4n − 10 edges that have straight-line RAC
drawings. Moreover they proved that every graph has a RAC drawing with three
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bends per edge. Arikishu et al. [3] showed that any n-vertex graph that admits a
RAC drawing with one bend or two bends per edge has at most 6.5n and 74.2n
edges, respectively. For an overview over further results on RAC drawings we
refer to [8]. Dujmović et al. [9] introduced the concept of αAC graphs. A graph is
αAC if it admits a drawing with crossing angle of at least α. For α > π/3, αAC
graphs are quasiplanar graphs, i.e., graphs that admit a drawing without three
mutually crossing edges, and thus have at most 6.5n−20 edges. Moreover, every
n-vertex αAC graph with α ∈ (0, π/2) has at most (π/α)(3n− 6) edges. Besides
the theoretical work on this topic, there are a few force-directed approaches that
optimize the crossing angle in drawings of arbitrary graphs [2,14], see Sect. 2.1.

Contribution. We introduce a heuristic to increase the crossing angle in a given
straight-line drawing Γ (Sect. 3). The heuristic is accompanied by a speed-up
technique to compute the pair of crossing edges in Γ that create the small-
est crossing angle. In Sect. 4 we give an extensive evaluation of our heuristic.
The evaluation is driven by three main research questions: (i) What is a good
parametrization of our heuristic? (ii) Does our heuristic improve the crossing
angle of a given initial drawing? (iii) What is a good choice for an initial draw-
ing?

2 Preliminaries

Let Γ be a straight-line drawing of a graph G = (V,E). Denote by n and m
the number of vertices and edges of G, respectively. Let e and e′ be two distinct
edges of G. If e and e′ have an interior intersection in Γ , the function cr-α(Γ, e, e′)
denotes the smallest angle formed by e and e′ in Γ . In case that e and e′ do not
intersect, we define cr-α(Γ, e, e′) to be π/2. The local crossing angle of a vertex
v is defined as the minimum angle of the edges incident to v, i.e., cr-α(Γ, v) =
mine,uv∈E,e�=uv cr-α(Γ, e, uv). The crossing angle of a drawing Γ is defined as
cr-α(Γ ) = mine,e′∈E,e�=e′ cr-α(Γ, e, e′). Let Δx and Δy be the difference of the
x-coordinates and the y-coordinates of the endpoints of e in a drawing Γ . The
slope of e is the angle between e and the x-axis, i.e. slope(Γ, e) = arctan(Δy/Δx)
if Δx �= 0 and slope(Γ, e) = −π/2 otherwise.

2.1 Force-Directed Approaches

In general, force-directed algorithms [10,11] compute for each vertex v of a graph
G = (V,E) a force Fv. A new drawing Γ ′ is obtained from a drawing Γ by
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Fig. 1. Sketches of the force (a) Fcos(v), (b) Fcage(v) and (c) Fang(v).
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Algorithm 1. Random Sampling
Input : Initial drawing Γ , number of levels L ∈ N, number of samples T ∈ N,

scaling factor b ∈ (0, 1), side length s > 0
Output : Drawing Γ

1 while stopping criteria do
2 (e1, e2) ← crossing edges with smallest crossing angle in Γ
3 v ← random vertex in e1 ∪ e2
4 for i ← 1 to L do
5 Ri ← square centered at Γ [v] with side length s · bi−1

6 for 1 to T do
7 q ← uniform random position in Ri

8 if cr-α(Γ [v �→ q] , v) > cr-α(Γ, v) then
9 Γ [v] ← q

displacing every vertex v according to the force Fv. Classically, the force Fv is
a linear combination of repelling and attracting forces, i.e., all pairs of vertices
repel each other, and incident vertices attract each other. It is easy to integrate
new forces into this generic system, e.g., in order to increase the crossing angle.
For this purpose, Huang et al. [14] introduced the cosine force Fcos. The force-
directed approach considered by Argyriou et al. [2] uses two forces, Fcage and
Fang, to increase the crossing angle. In the following we will describe each force.

Let −→xy denote the unit length vector from x to y. Let uv, xy be two crossing
edges in Γ and let α be the angle as depicted in Fig. 1(a) and let p denote the
intersection point of uv and xy, see Fig. 1. The cosine force for v is defined as
Fcos(v) = kcos · cos α · −→yx, where kcos is a positive constant.

The force Fcage(v) is a compound of two forces Fcage(v, x) and Fcage(v, y).
Let lab denote the distance between two points a and b. Let l�vx be the length
of the edge vx in a triangle vxp with side length lvp and lxp, and a right angle
at the point p. Then, Fcage(v, x) = kcage · log(lvx/l�vx)−→vx, where kcage is positive
constant. The force Fcage(v, y) is defined symmetrically.

Again the force Fang(v) is a compound of the forces Fang(v, x) and Fang(v, y).
Consider the unit vector a that is perpendicular to the bisector of −→uv and −→yx,
refer Fig. 1c. Further, let α′ be the angle between the −→uv and −→yx. Then the force
Fang(v, x) is defined as kang · sign(α′ − π/2) · |π/2 − α′|/α′ · a where kang is a
positive constant. The force Fang(v, y) is defined correspondingly.

3 Multilevel Random Sampling

Our algorithm starts with a drawing Γ of a graph G and iteratively improves
the crossing angle of Γ by moving a vertex to a better position, i.e., we locally
optimize the crossing angle of the drawing; for pseudocode refer to Algorithm 1.
For this purpose we greedily select a vertex v with a minimal crossing angle
cr-α(Γ, v). More precisely, let e and e′ be two edges with a minimal crossing
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angle in Γ . We set v randomly to be an endpoint of e and e′. We iteratively
improve the crossing angle of v by sampling a set S of T points within a square
R and by moving v to the position p ∈ S that induces a maximal local crossing
angle. We repeat this process L ∈ N

+ times and decrease the size of R in each
iteration.

More formally, denote by Γ [v �→ p] the drawing obtained from Γ by moving
v to the point p = (px, py) ∈ R

2. Let Ri(p) = [px − s · bi/2, py − s · bi/2] ×
[px + s/2, py + s · bi/2] ⊂ R

2 be a square centered at the point p with a scaling
factor b ∈ (0, 1) and initial side length s > 0. Let p0 be the position of v in Γ
and let S0 ⊂ R0(p0) be a set of T points in R0(p0) chosen uniformly at ran-
dom. Let pi be a point in Si−1 ∪{pi−1} that maximizes cr-α(Γ

[
v �→ pi

]
, v). We

obtain a new sample Si by randomly selecting T points within the square Ri(pi).
Since cr-α(Γ

[
v �→ pi

]
, v) = maxuv∈E,e∈E\{uv} cr-α(Γ

[
v �→ pi

]
, uv, e), the func-

tion can be evaluated in O(deg(v)|E|) time.

3.1 Fast Minimum Angle Computation

The running time of the random sampling approach relies on computing in each
iteration a pair of edges creating the minimum crossing angle cr-α(Γ ). More
formally, we are looking for a pair of distinct edges e, f ∈ E that have a minimal
crossing angle in a straight-line drawing Γ , i.e., cr-α(Γ, e, f) = cr-α(Γ ). The
well known sweep-line algorithm [4] requires O((n+k) log(n+k)) time to report
all k intersecting edges in Γ . In general the number of intersecting edges can
be Ω(m2), but we are only interested in a single pair that forms the minimal
crossing angle. Therefore, we propose an algorithm, which uses the slopes of the
edges in Γ to rule out pairs of edges, which cannot form the minimum angle.

Assume that we already found two intersecting edges forming a small angle of
size δ > 0. We set t := �π/δ	 and distribute the edges into t buckets B0, . . . , Bt−1

such that bucket Bi contains exactly the edges e with iπ/t ≤ slope(Γ, e)+π/2 <
(i+1)π/t. Then each bucket covers an interval of size π/ �π/δ	 ≥ δ. Thus, if there
exist edges e, f with cr-α(Γ, e, f) < δ, they belong to the same or to the adjacent
buckets (modulo t). Overall, we consider all pairs of edges in Bi ∪ Bi+1 (mod t),
i = 1, . . . t, and find the pair forming the smallest crossing angle. To find this
pair we could apply a sweep-line algorithm to the set Bi ∪ Bi+1. In general this
set can contain Ω(m) edges. Thus, in worst case we would not gain a speed up
in comparison to a sweep-line algorithm applied to Γ . On the other hand, in
practice we expect the number of edges in a bucket to be small. If we assume
this number to be a constant, the overall running time of the exhaustive check
is linear in m and does not depend on the number of crossings.

Implementation Details. In the case that the slopes in Γ are uniformly dis-
tributed, we expect the number of edges in a bucket to decrease with an decreas-
ing estimate δ. We set the value δ to be the minimal crossing angle of the r longest
edges in Γ . In our implementation we set r to be 50 if the graph contains at
most 5000 edges, otherwise it is 300.
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Fig. 2. The distribution of the sum of number of vertices and edges per graph class.
The plot is scaled such that a bar of full height would contain 40 graphs.

4 Experimental Evaluation

The Random Sampling heuristic has several parameters which allow for many
different configurations. In Sect. 4.4, we investigate the influence of the configu-
ration on the crossing angle of the drawing computed by the random sampling
approach. We investigate the question of whether the Random Sampling app-
roach improves the crossing angle of a given drawing. Our evaluation in Sect. 4.5
answers the question affirmatively. Moreover, we expect that the crossing angle
of the drawing computed by the random sampling approach depends on the
choice of the initial drawing. We show that this is indeed the case (Sect. 4.6).
We close the evaluation with a short running time analysis in Sect. 4.7. Our
evaluation is based on a selection of artificial and real world graphs (Sect. 4.1),
several choices of the initial drawing, see Sect. 4.2, and a specific way to compare
two drawing algorithms (Sect. 4.3).

Setup. All experiments were conducted on a single core of an AMD Opteron
Processor 6172 clocked at 2.1 GHz. The server is equipped with 256 GB RAM.
All algorithms were compiled with g++-4.8.5 with optimization mode -O3.

4.1 Benchmark Graphs

We evaluate the heuristic on the following graph classes, either purely synthetic
or with a structure resembling real-world data. Figure 2 shows the size distribu-
tion of these graphs. The color of each class is used consistently throughout the
paper.

Real World. The classes Rome and North (AT&T)1 are the non-planar subsets
of the corresponding well known benchmark sets, respectively. From each graph
class we picked 100 graphs uniformly at random. The Community graphs are
generated with the LFR-Generator [17] implemented in NetworKit [19].
These graphs resemble social networks with a community structure.

Artificial. For each artificial graph we picked the number n of vertices uniformly
at random between 100 and 1000. The Triangulation+X class contains ran-
domly generated n-vertex triangulations with an additional set of x edges.

1 http://graphdrawing.org/data.html.

http://graphdrawing.org/data.html
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Fig. 3. Crossing angles of the initial drawings.

The number x is picked uniformly at random between 0.1n and 0.15n. The
endpoints of the additional edge are picked uniformly at random, as well.

The class 1-Planar consists of graphs that admit drawings where every
edge has at most one crossing. We used a geometric and topological procedure to
generate these graphs. For the former consider a random point set P of n points.
Let e1, . . . ek be a random permutation of all pairs of points in P . Let G0 = (P, ∅).
If the drawing Gi−1 +ei induced by P is simple and 1-planar, we define Gi to be
this graph, otherwise we set Gi = Gi−1. We construct the topological 1-Planar
graphs based on a random planar triangulation G generated with OGDF [5]. Let
v be a random vertex of G and let v, x, u, y be an arbitrary 4-cycle. We add uv
to G if G+uv is 1-planar. The process is repeated x times, for a random number
x ∈ [0.3n, 0.4n]. In contrast to the experimental work on crossing minimization in
book embeddings [16], we did not observe that our heuristic performs differently
on the topological and geometric 1-Planar graphs. Hence, we merge the two
classes into a single class. Thus, in total the 1-Planar graphs contain 200 graphs
compared to 100 in the other graph classes.

4.2 Initial Drawings

In our evaluation we consider four initial drawings of each benchmark graph;
refer to Table 1. A random point set P of size n induces a Random drawing
of an n-vertex graph. The Fr+Cos drawings are generated by applying our
implementation of the force-directed method of Fruchtermann and Reingold [11]
to the Random drawings with the additional Fcos force (Sect. 2.1). We applied
the stress majorization [5,12] implementation of the Open Graph Drawing

Framework (OGDF) to Random in order to obtain the Stress drawings.
The Cr-small drawings are computed with the heuristic introduced by Rader-
macher et al. [18] in order to decrease the number of crossings in straight-line
drawings. They showed that the heuristic computes drawings with significantly
less crossings than drawings computed by stress majorization. Unfortunately,
within a feasible amount of time we were not able to compute Cr-small draw-
ing for the classes 1-Planar and Triangulation+X.

A point in Fig. 3 corresponds to the crossing angle of an initial drawing. The
plot is categorized by graph class. The Random drawings have the smallest
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Table 1. Initial drawings with their identi-
fiers used throughout the paper.

Identifier Algorithm

Random uni. rand. vertex placement

Fr+Cos FR + Cosine forces (Sect. 2.1)

Stress Stress majorization [12]

Cr-small Crossing minimization [18]

Table 2. Configurations of the
Random Sampling approach.
The scaling factor b is 0.2 and
the initial side length s is 105.

Levels Sample Size

L T

Sloppy 3 50

Medium 4 175

Precise 5 400

crossing angles. The Stress drawings have a larger crossing angle than Cr-

small and overall, Fr+Cos drawings tend to have the largest crossing angle.
We point out that in contrast to the evaluation of Argyriou et al. [2], our

implementation of the force-directed method with Fcage and Fang produces draw-
ings with smaller crossing angles than with Fcos. Thus, we do not consider these
drawings in our evaluation.

4.3 Differences Between Paired Drawings

In order to compare the performance of two algorithms on multiple graphs and
to investigate by how much one of the algorithms outperforms the other, we
employ the following machinery. We denote by Γ{G} the set of all drawings of G.
Let G = {G1, G2, . . . , Gk} be a family of (non-planar) graphs. We refer to a set
Λ = {Γ1, . . . , Γk} as a family of drawings of G where Γi ∈ Γ{Gi} . Let Λ1 and Λ2

be two families of drawings of G. Let F be a subset of G. We say Λ1 outperforms
Λ2 on F if and only if for all Gi ∈ F the inequality cr-α(Γ 1

i ) > cr-α(Γ 2
i ) holds.

If Λ1 outperforms Λ2 on F then Λ1 has an advantage of Δ > 0 on F if for all
Gi ∈ F the inequality cr-α(Γ 1

i ) > cr-α(Γ 2
i ) + Δ holds. For a finite set G, we say

F has relative size at least p ∈ [0, 1] if |F| ≥ p · |G|.
In order to compare two families of drawings we plot the advantage as a

function of p; refer to Fig. 5. For each value p the plot contains 5 five bars, each
corresponding to a graph class. The height of the bars correspond to advantages
Δ for a set of relative size p. A caption of a figure in the form of A vs B indicates
that if Δ is positive, B has advantage Δ over A. Correspondingly, if Δ is negative,
A has an advantage of −Δ over B. Thus, Fig. 5 shows that for p = 0.1, for each
graph class there is a subset F of relative size 0.1, i.e., F contains at least
10 graphs, such that the set Sloppy has an advantage of Δ over Precise on
F . In greater detail, Sloppy has an advantage of 7.9◦ over Precise on the
North graphs, 12.9◦ on the Rome graphs, 11.5◦ on the Community graphs,
1.2◦ on the 1-Planar graphs and 1.2◦ on the Triangulation+X graphs. On
the other side, Precise has an advantage of 12.9◦ over Sloppy on at least 10
North graphs, 15.7◦ on the Rome graphs, 13.8◦ on the Community graphs,
1.1◦ on the 1-Planar graphs and 0.4◦ on the Triangulation+X graphs. Note
that only for p < 0.5 there can be two disjoint subsets F1,F2 of a graph class
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Fig. 4. Performance of different configurations

Fig. 5. Comparison of the Sloppy configuration to the Medium and Precise config-
uration. The colors indicate the graph as indicated by Fig. 2.

of relative size p such that Precise has an advantage over Sloppy on F1 and
Sloppy has an advantage over Precise on F2.

4.4 Parametrization of the Random Sampling Approach

The Random Sampling approach introduced in Sect. 3 has four different
parameters, the number of levels L, the size of the sample T , the initial side
length s and the scaling factor b, that allows for many different configurations.
With an increasing number T of samples, we expect to obtain a larger crossing
angle in each iteration to the cost of an increasing running time. If we allow each
configuration the same running time, it is unclear whether it is beneficial to
increase the number of iterations or to increase the number of samples (T ) and
levels (L) per iteration. This motivates the following question: does the crossing
angle of a drawing of an n-vertex graph computed by the random sampling app-
roach within a given time limit tn increase with an increasing number of samples
and levels? We choose to set the time limit tn to n seconds. This allows for at
least 1.6 · n iterations on our benchmark instances. Since the parametrization
space is infeasibly large, we evaluate three exemplary configurations, Sloppy,
Medium and Precise; see Table 2.

The plot in Fig. 4 does not indicate that the distributions of the crossing
angle differ across different configurations significantly . With the plot in Fig. 5
we can confirm this observation. For each configuration there is only a small
subset of each class such that the configuration has an advantage over the other
configurations. For example, for the Rome graphs there exist at least 10 graphs
such that Sloppy has an advantage of 10◦ over Precise. On the other hand,
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there are at least 10 different graphs such Precise has also an advantage of 10◦

over Sloppy. For p ≥ 0.5 no configuration has an advantage over the other, or it
negligibly small. Thus, we conclude that given a common time limit, increasing
the levels and the sample size does not necessarily increase the crossing angle.

Fig. 6. Crossing angles of the initial drawings after optimization with the Random

Sampling approach.

Fig. 7. Initial crossing angle vs the final crossing angle. The plots show the crossing
angles of the classes North, Community and 1-Planar.

4.5 Improvement of the Crossing Angles

In this section we investigate whether the Random Sampling approach is able
to improve the crossing angle of a given drawing within 2n iterations. Given the
same number of iterations, it is most-likely that we obtain a larger crossing angle
of a drawing if we increase the number of samples. Thus, we use the Precise

configuration for the evaluation of the above question. We refer to the draw-
ings after the application of the Random Sampling approach as Random

�,
Fr+Cos

�, Stress� and Cr-small�, respectively.
The plots in Figs. 3 and 6 indicate that the Random Sampling approach

indeed improves the crossing angle of the initial drawings. Figure 7 shows the
relationship between the crossing angle of the initial drawing and the final draw-
ing. For the purpose of clarity, the plot only shows drawings of the classes North,
Community and 1-Planar. The plots shows that the Random Sampling app-
roach considerably improves the crossing angle of the initial drawing. In case of
the North graphs there are a few graphs that have an improvement of at least
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70◦. There are at least 10 drawings in Random whose crossing angle is improved
by at least 75◦ . For all real world graph classes and all initial layouts there are
70 graphs in each class, such that the final drawing has an advantage of over 25◦.

For Triangulation+X, Fr+Cos
� has an advantage of at least 11◦ over

Fr+Cos on at least 90 Triangulation+X. For the remaining initial layouts
the corresponding advantage is at most 7.6◦. Considering the 1-Planar graphs
the corresponding advantages are 14◦ and 9.7◦. This indicates that within 2n
iterations a large initial crossing angle helps to further improve the crossing
angle of 1-Planar and Triangulation+X graphs. Overall we observe that
the 1-Planar and Triangulation+X classes are rather difficult to optimize.
This can either be a limitation of our heuristic or the crossing angle of these
graphs are indeed small. Unfortunately, we are not aware of meaningful upper
and lower bounds on the crossing angle of straight-line drawing of these graphs.
Nevertheless, we can conclude that our heuristic indeed improves the initial
crossing angle. To which extend our heuristic is able to increase crossing angle
of a drawing depends on the graph class and on the initial drawing itself.

4.6 Effect of the Initial Drawing

The Random Sampling approach iteratively improves the crossing angle of a
given drawing. Given a different drawing of the same graph the heuristic might
be able to compute a drawing with a larger crossing angle. Hence, we investi-
gate whether the choice of the initial drawing influences the crossing angle of a
drawing obtained by the Random Sampling approach with 2n iterations.

For all graph classes, except from North, it is apparent from Fig. 6 that the
drawings in the set Random

� have noticeably smaller crossing angles compared
to the remaining drawings. This meets our expectations, since the initial Ran-

dom drawings presumably has many crossings [15] and thus is likely to have
many small crossing angles; compare the initial crossing angles plotted in Fig. 3.

Fig. 8. Comparison of the initial layout.

The plot in Fig. 6 suggests that the set Fr+Cos
� contains drawings with the

largest crossing angles. In order to corroborate this claim, Fig. 8 shows crossing
angles obtained by different algorithms. It shows that except for one graph, each



296 A. Demel et al.

drawing in Fr+Cos
� has a larger crossing angle than the corresponding drawing

in Random
�. Figure 8b and c suggest that Fr+Cos

� overall contains more
drawings with a larger crossing angle compared to Stress

� and Cr-small�.
With the help of Fig. 9 we are able to quantify the number of graphs above the
diagonal and the difference of the crossing angles. Figure 9a shows that for the
graph classes 1-Planar and Triangulation+X, there are each at least 90
of 100 graphs whose drawings in Fr+Cos

� have a crossing angle larger then
the corresponding drawing in Stress

�, i.e., Fr+Cos
� has an advantage of 4.5◦

degrees over Stress
�.

Fig. 9. Comparison of the crossing angle of the final drawings.

There are at least 50 1-Planar graphs such that the Fr+Cos
� has an

advantage of 10◦ over Stress�. At least 50 Community graphs have drawings in
Fr+Cos

� with an advantage of 5◦ over the corresponding drawings in Stress
�.

There are 10 North graphs such that Fr+Cos
� has an advantage of at least 5◦

over Stress�. Vice versa there are 10 different North graph such that Stress�

has an advantage of at least 5◦ over Fr+Cos
�. Considering subsets of size 10,

Fr+Cos
� has an advantage of 20◦ over Stress

�.
Recall that Cr-small� does neither contain drawings of the class 1-Planar

nor of the class Triangulation+X. The drawings of Fr+Cos
� has an advan-

tage of over 7◦ over Cr-small� on over 70 Community graphs. For a subset
with at least 10 Community graphs, the advantage rises to almost 25◦. The
comparison on Stress

� and Cr-small� shows that drawings with a few cross-
ings do not necessarily yield larger crossing angles. Overall, we conclude that
the Random Sampling approach computes the largest crossing angle when
applied to the Fr+Cos drawings. This is plausible, since the crossing angles of
the initial crossing angles are already good. As shown in the previous section,
depending on the graph class, there is a large improvement in the crossing angle,
if we start with such an initial drawing. In further investigations we were able to
show that the advantages of Fr+Cos

� decreases comparably to Stress
� with
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4n iterations. However, doubling the iterations does not entirely cover the gap
between the crossing angles of the initial drawings.

4.7 Note on the Running Time

In this section we shortly evaluate the running time of our algorithm on all
our graphs. For this purpose, we applied two implementations of the Random

Sampling heuristic to the Random drawings. The Sweep implementation uses
a sweep-line algorithm to compute the pair of crossing edges that create the
smallest crossing. Bucket uses the algorithm described in Sect. 3.1. We employ
the speed-up technique only for graphs with at least 1000 edges, we refer to
these graphs as large. Figure 10 plots the running time per iteration for n-vertex
graphs. The median and the second 3-quantile of the running time on the large
graphs are highlighted. Bucket has an average running time of 391 ms per
iteration on the large graphs and Sweep has an average running time of 500 ms.
On all graph Bucket requires on average 328 ms per iteration.

Fig. 10. Average Running time per iteration vs the number of vertices.

5 Conclusion

We designed and evaluated a simple heuristic to increase the crossing angle
in a straight-line drawing of a graph. On real world networks our heuristic is
able to compute larger crossing angles than on artificial networks. This can
either be a limitation of our heuristic or the crossing angle of our artificial graph
classes are small. We are not aware of lower and upper bounds of the crossing

Fig. 11. (a) Stress drawing of a Rome graph. (b) Drawing after optimizing the cross-
ing angle. The ratio between the longest and shortest edges is large.
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angle of these graphs. Thus, investigating such bounds of the 1-Planar and
Triangulation+X graphs is an interesting theoretical question.

Figure 11 shows that our heuristic does not necessarily compute readable
drawings. Nevertheless, parts of the Random Sampling heuristic are easily
exchangeable. For example, the objective function can be replaced by a linear
combination of number of crossing and the crossing angle. Thus, future work can
be concerned with adapting the Random Sampling approach with the aim to
compute readable drawings.
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Abstract. A Stick graph is an intersection graph of axis-aligned seg-
ments such that the left end-points of the horizontal segments and the
bottom end-points of the vertical segments lie on a “ground line”, a
line with slope −1. It is an open question to decide in polynomial time
whether a given bipartite graph G with bipartition A∪B has a Stick rep-
resentation where the vertices in A and B correspond to horizontal and
vertical segments, respectively. We prove that G has a Stick representa-
tion if and only if there are orderings of A and B such that G’s bipartite
adjacency matrix with rows A and columns B excludes three small ‘for-
bidden’ submatrices. This is similar to characterizations for other classes
of bipartite intersection graphs.

We present an algorithm to test whether given orderings of A and
B permit a Stick representation respecting those orderings, and to find
such a representation if it exists. The algorithm runs in time linear in
the size of the adjacency matrix. For the case when only the ordering
of A is given, we present an O(|A|3|B|3)-time algorithm. When neither
ordering is given, we present some partial results about graphs that are,
or are not, Stick representable.

1 Introduction

Let O be a set of geometric objects in the Euclidean plane. The intersection
graph of O is a graph where each vertex corresponds to a distinct object in O,
and two vertices are adjacent if and only if the corresponding objects intersect.
Recognition of intersection graphs that arise from different types of geometric
objects such as segments, rectangles, discs, intervals, etc., is a classic problem in
combinatorial geometry. Some of these classes, such as interval graphs [2], can
be recognized in polynomial-time, whereas many others are NP-hard [4,25,27].
There are many beautiful results that characterize intersection classes in terms of
a vertex ordering without certain forbidden patterns, and recently, Hell et al. [20]
unified many previous results by giving a general polynomial time recognition
algorithm for all cases of small forbidden patterns.

c© Springer Nature Switzerland AG 2018
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Fig. 1. (a) A bipartite graph G = (A ∪ B,E). (b) A Stick representation of G. (c)–(e)
Illustration for different types of intersection representations. (c) A 2DOR representa-
tion. (d) A Hook representation. (e) A grounded segment representation.

In this paper we study a class of bipartite intersection graphs called Stick
graphs. A Stick graph is an intersection graph of axis-aligned segments with the
property that the left end-points of horizontal segments and the bottom end-
points of vertical segments all lie on a ground line, �, which we take, without loss
of generality, to be a line of slope −1. See Fig. 1(a)–(b). It is an open problem
to recognize Stick graphs in polynomial time [8].

Stick graphs lie between two well-studied classes of bipartite intersection
graphs. First of all, they are a subset of the grid intersection graphs (GIG) [19]—
intersection graphs of horizontal and vertical segments in the plane—which are
NP-complete to recognize [25]. When all the horizontal segments extend right-
ward to infinity and the vertical segments extend upward to infinity, we obtain
the subclass of 2-directional orthogonal ray (2DOR) graphs (e.g., see Fig. 1(c)),
which can be recognized in polynomial time [30]. It is easy to show that every
2DOR graph is a Stick graph—truncate each ray at a ground line placed above
and to the right of every intersection point (and then flip the picture upside-
down). Thus the class of Stick graphs lies strictly between these two classes.

What the two classes (GIG and 2DOR) have in common is a nice characteri-
zation in terms of vertex orderings. A bipartite graph G with vertex bipartition
A ∪ B can be represented as a bipartite adjacency matrix, M(G) with rows and
columns corresponding to A and B, respectively, and a 1 in row i, column j, if
(i, j) is an edge. Both GIG graphs and 2DOR graphs can be characterized as
graphs G for which M(G) has a row and column ordering without certain ‘for-
bidden’ submatrices. (Details below.) Many other bipartite intersection graphs
can be similarly characterized in terms of forbidden submatrices, see [24].

One of our main results is a similar characterization of Stick graphs. Specif-
ically, we will prove that a bipartite graph G with vertex bipartition A ∪ B has
a Stick representation with vertices of A corresponding to horizontal segments
and vertices of B corresponding to the vertical segments if and only if there is
an ordering of A and an ordering of B such that M(G) has no submatrix of the
following form, where ∗ stands for either 0 or 1:

[ ]∗ 1 ∗
∗ 0 1
1 ∗ ∗

[ ]1 ∗
0 1
1 ∗

[ ]∗ 1 ∗
1 0 1
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Although this characterization does not (yet) give us a polynomial time algo-
rithm to recognize Stick graphs, it allows us to make some progress. Given a
bipartite graph G with vertex bipartition A ∪ B, we want to know if G has
a Stick representation with A and B corresponding to horizontal and vertical
segments, respectively. It is easy to show that a solution to this problem is com-
pletely determined by a total ordering σ of the vertices of G corresponding to the
order (from left to right) in which the segments touch the ground line. A natural
way to tackle the recognition of Stick graphs is as a hierarchy of problems, each
(possibly) more difficult than the next:

(i) Fixed As and Bs: In this case an ordering, σa, of the vertices in A and
an ordering, σB, of the vertices in B are given, and the output ordering
σ must respect these given orderings. Because of our forbidden submatrix
characterization, this problem can be solved in polynomial time.

(ii) Fixed As: In this case only the ordering σA is given.
(iii) General Stick graphs: In this case, neither σA nor σB is given, i.e., there

is no restriction on the ordering of the vertices.

Our Results: We give an algorithm with run-time O(|A||B|) for problem (i).
This is faster than naively looking for the forbidden submatrices. (And in fact,
we use our algorithm to prove the forbidden submatrix characterization). Fur-
thermore, the algorithm will find a Stick representation when one exists.

We give an algorithm for problem (ii) with run time O(|A|3|B|3) that uses the
forbidden submatrix characterization and reduces the problem to 2-Satisfiability.
For problem (iii), recognizing Stick graphs, we give some conditions that ensure
a graph is a Stick graph, and some conditions that ensure a graph is not a Stick
graph.

Related Work: We now review the research related to the recognition of inter-
section graphs, in particular those that are bipartite.

Interval graphs, i.e., intersection graph of horizontal intervals on the real
line, can be recognized in linear time [2,13]. Bipartite interval graphs with a
fixed bipartition are known as interval bigraphs (IBG) [14,28], and can be recog-
nized in polynomial time [28]. In contrast to the interval graphs, no linear-time
recognition algorithm is known for IBG.

Many bipartite graph classes have been characterized in terms of forbid-
den submatrices of the graph’s bipartite adjacency matrix, and a rich body of
research examines when the rows and columns of a matrix can be permuted to
avoid forbidden submatrices [24]. For example, a graph G is chordal bipartite if
and only if M(G) can be permuted to avoid the matrix γ1 in Fig. 2 [24], which
led to a polynomial-time algorithm [26]. G is a bipartite permutation graph if
and only if M(G) can be permuted to avoid γ1, γ2, and γ3 [11].

A graph is a two-directional orthogonal ray (2DOR) graph if it admits an
intersection representation of upward and rightward rays [30,31]. A graph is a
2DOR graph if and only if its incidence matrix admits a permutation of its rows
and columns that avoids γ1 and γ2 [30].
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γ1 =
[
1 0
1 1

]
γ2 =

[
1 0
0 1

]
γ3 =

[
1 1
0 1

]
γ4 =

[
1 0 1
* 1 *

]
γ5 =

⎡
⎣* 1 *
1 0 1
* 1 *

⎤
⎦

Fig. 2. Forbidden submatrices, where ∗ stands for either 0 or 1.

There is a linear-time algorithm to recognize 2DOR graphs [12,30]. If there
are 3 or 4 allowed directions for the rays, then the graphs are called 3DOR
or 4DOR graphs, respectively. Felsner et al. [16] showed that if the direction
(right, left, up, or down) for each vertex is given, then the existence of a 4DOR
representation respecting the given directions can be decided in polynomial time.
If the horizontal elements are segments and the vertical elements are rays, then
the corresponding intersection graphs are called SegRay graphs [7–9,23]. A graph
G is a SegRay graph if and only if M(G) can be permuted to avoid γ4 [10].

The time-complexity questions for 3DOR, 4DOR and SegRay are all open.
The class of segment graphs contains the graphs that can be represented as

intersections of segments (with arbitrary slopes and intersection angles). Every
planar graph has a segment intersection representation [6]. Restricting to axis-
aligned segments gives rise to grid intersection graphs (GIG) [25]. A bipartite
graph is a GIG graph if and only if its incidence matrix admits a permutation of
its rows and columns that avoids γ5 [19]. If all the segments must have the same
length, then the graphs are known as unit grid intersection graphs (UGIG) [27].
The recognition problem is NP-complete for both GIG [25] and UGIG [27]. We
note that 4DOR is a subset of UGIG but Stick is not [8].

Researchers have examined further restrictions on GIG. For example, the
graphs that admit a GIG representation with the additional constraint that all
the segments must intersect (or be “stabbed by”) a ground line form the stabbable
grid intersection (StabGIG) graph class [8].

Another class of intersection graphs that restricts the objects on a ground
line is defined in terms of hooks. A hook consists of a center point on the ground
line together with an incident vertical segment and horizontal segment above
the ground line. Hook graphs are intersection graphs of hooks [5,21,32], e.g.,
see Fig. 1(d). Hook graphs are also known as max point-tolerance graphs [5] and
heterozygosity graphs [18]. The bipartite graphs that admit a Hook representa-
tion are called BipHook [8]. The complexities of recognizing the classes StabGIG,
BipHook, and Stick are all open [8]. Chaplick et al. [8] examined the containment
relations of these graph classes.

Grounded segment representations are a generalization of Stick representa-
tions, where the segments can have arbitrary slopes, e.g., see Fig. 1(e). Note
that the segments are still restricted to lie on the same side of the ground line.
Cardinal et al. [4] showed that the problem of deciding whether a graph admits
a grounded segment representation is ∃R-complete. We refer to [3,4] for other
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related classes such as outersegment and outerstring graphs, and for the study
of their containment relations.

The following table summarizes the time complexities of recognizing different
classes of bipartite intersection graphs, where n and m are the sizes of the two
vertex sets of the bipartition.

Graph class Time complexity Ref

Chordal Bipartite Graphs O((n + m)2), or |E| log(n + m) [26,33]

Bipartite Permutation Graphs O(nm)-time [34]

2-Directional Ray Graphs (2DOR) O(nm)-time [12,30]

3- or 4-Directional Ray Graphs
(3DOR, 4DOR)

Open [12,30]

4-DOR with given directions for
vertices

f(n,m)-timea [16]

3-DOR with a given bipartition
(A ∪ B), and an ordering for As, i.e.,
vertical rays

O((n + m)2)-time [16]

Grid Intersection Graphs (GIG) NP-complete [25]

Unit Grid Intersection Graphs
(UGIG)

NP-complete [27]

Grounded Segment Intersection
Graphs

∃R-complete [4]

StabGIG, SegRay, Hook, BipHook
and Stick Graphs

Open [8,22]

aMultiplication time for two (n + m) × (n + m) matrices

2 Fixed As and Bs

In this section we study Stick representations of graphs with a fixed bipartition
of the vertices and fixed vertex orderings for each vertex set. We call this problem
StickAB , defined formally as follows.

Problem: Stick Representation with Fixed As and Bs (StickAB)
Input: A bipartite graph G = (A∪B,E), an ordering σA of the vertices in
A, and an ordering σB of the vertices in B.
Question: Does G admit a Stick representation such that the ith horizontal
segment on the ground line � corresponds to the ith vertex of σA and the
jth vertical segment on � corresponds to the jth vertex of σB?

We first present an O(|A||B|)-time algorithm for StickAB . A Stick represen-
tation is totally determined by the order σ of the segments’ intersection with the
ground line (details in the proof of Lemma1). Thus the idea of the algorithm
is to impose some ordering constraints between the vertices of A and B based
on some submatrices of the adjacency matrix of G. We show that the required
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Fig. 3. (a) The incidence matrix M for the graph of Fig. 1(a). (b) The directed graph
H. (c) A total order (a1, b1, a2, a3, b2, b3, b4) of the vertices in H. The corresponding
Stick drawing is in Fig. 1(b). (d) Illustration of a forbidden ordering if mj,p = 0.

Stick representation exists if and only if there exists a total order σ of (A ∪ B)
that satisfies the constraints and preserves the given orderings σA and σB. We
now describe the details.

Assume that σA = (a1, . . . , an) and σB = (b1, . . . , bm). Let M be the ordered
bipartite adjacency matrix of A and B, i.e., M has rows a1, . . . , an and columns
b1, . . . , bm, where the entry mi,p, i.e., the entry at the ith row and pth column,
is 1 or 0 depending on whether ai and bp are adjacent or not, as illustrated in
Fig. 3(a).

We start with the constraints ai−1 ≺ ai, where 2 ≤ i ≤ n, and bp−1 ≺ bp,
where 2 ≤ p ≤ m to enforce the given orderings σA and σB . We now add some
more constraints, as follows.

C1: If an entry mi,p is 1, then add the constraint ai ≺ bp, e.g., see the black
edges in Fig. 3(b).

C2: If M contains an ordered submatrix
bp bq[ ]

ai 1 ∗
aj 0 1 , then add the constraint

bp ≺ aj . For example, see the gray edges in Fig. 3(b).

We now test whether the set of constraints is consistent. Consider a directed
graph H with vertex set (A∪B), where each constraint corresponds to a directed
edge (Fig. 3(b)). Then the set of constraints is consistent if and only if H is
acyclic, and the following lemma claims that this occurs if and only if the graph
admits a Stick representation.

Lemma 1. G admits a Stick representation respecting σA and σB if and only
if H is acyclic, i.e., the constraints are consistent.

Proof. We first show that the constraints are necessary. Every constraint between
two vertices of the same set is implied by σA or σB . For Condition C1, observe
that a horizontal segment ai can intersect a vertical segment bp only if ai precedes
bp, i.e., we must have ai ≺ bp. For Condition C2, we already have ai ≺ aj , bp ≺
bq, ai ≺ bp, aj ≺ bq. If we assume that aj ≺ bp, then we have ai ≺ aj ≺ bp ≺ bq,
and to reach the vertical segment bq, aj would intersect bp. Since mj,p = 0, this
intersection is forbidden. Figure 3(d) illustrates this scenario. Therefore, we must
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have the constraint bp ≺ aj . Since all the constraints are necessary, if G admits
an intersection representation, then the set of constraints is consistent.

We now prove the converse. Suppose the set of constraints is consistent.
Take a total order of A ∪ B which is consistent with all the constraints, e.g., see
Fig. 1(c). This is a “topological order” of H. Initiate the drawing of the corre-
sponding orthogonal segments in this order on the ground line �. This determines
the y-coordinate of every a ∈ A and the x-coordinate of every b ∈ B. For each
vertex a ∈ A, let maxB(a) be the neighbor of a in G with the largest index.
We extend the horizontal segment corresponding to a to the right until the x-
coordinate of maxB(a). Similarly, for each vertex b ∈ B, let minA(b) be the
neighbor of b in G with the minimum index. We extend the vertical segment
corresponding to b upward until the y-coordinate of minA(b).

We must show that the resulting drawing does not contain any forbidden
intersection. Suppose by contradiction that the segments of aj and bp intersect,
but they are not adjacent in G, i.e., mj,p = 0. We now have aj ≺ bp, and
the entries bq = maxB(aj) and ai = minA(bp) give the submatrix described in
Condition C2, thus the constraint bp ≺ aj applies, a contradiction. �	

An algorithm to solve StickAB follows immediately, and can be implemented
in linear time in the size of the adjacency matrix M .

Theorem 1. There is an O(|A||B|)-time algorithm to decide the StickAB prob-
lem, and construct a Stick representation if one exists.

Proof. The algorithm was given above: We construct the directed graph H from
the 0-1 matrix M and test if H is acyclic. This correctly decides StickAB by
Lemma 1. Furthermore, if H is acyclic, then we can construct a Stick represen-
tation as specified in the proof of Lemma1. Pseudocode for the algorithm is
given in the full version [15].

The matrix M has size O(nm) where n = |A| and m = |B|, and the graph
H has n + m vertices and O(nm) edges. We can test acyclicity of a graph and
find a topological ordering in linear time. Also, the construction of the Stick
representation is clearly doable in linear time.

Thus we only need to give details on constructing H in time O(nm). We
can construct the edges of H that correspond to σA and σB in time O(n + m).
The edges arising from constraints C1 correspond to the 1’s in the matrix M ,
so we can construct them in O(nm) time. The edges arising from constraints C2

correspond to some of the 0’s in the matrix M . Specifically, a 0 in position mj,p

gives a C2 constraint bp ≺ aj if and only if there is a 1 in row j to the right of
the 0 and a 1 in column p above the 0. We can flag the 0’s that have a 1 to their
right by scanning each row of M from right to left. Similarly, we can flag the 0’s
that have a 1 above them by scanning each column of M from bottom to top.
These scans take time O(nm). Finally, if a 0 in M has both flags, then we add
the corresponding edge to H. The total time is O(nm). �	

Lemma 1 also yields a forbidden submatrix characterization for StickAB .
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Theorem 2. An instance of StickAB with graph G = (A ∪ B,E) has a solution
if and only if G’s ordered adjacency matrix M has no ordered submatrix of the
following form:

P1 =

bp bq br[ ]ai ∗ 1 ∗
aj ∗ 0 1
ak 1 ∗ ∗

, P2 =

bp bq[ ]ai 1 ∗
aj 0 1
ak 1 ∗

, P3 =

bp bq br[ ]
ai ∗ 1 ∗
aj 1 0 1

.

Observe that P2 and P3 are special cases of P1 with p=q and j=k, respectively.

Proof. We will use the graph H that we constructed above and used in Lemma 1.
By Lemma 1, the theorem statement is equivalent to the statement that M has
a submatrix P1, P2 or P3 if and only if H has a directed cycle.

We first show that if the matrix M has one of the ordered submatrices
P1, P2, P3 then H has a directed cycle. For P1, the cycle in H is ak ≺ bp (by C1),
bp ≺ bq (by σB), bq ≺ aj (by C2), aj ≺ ak (by σA). For P2, the cycle is bp ≺ aj

(by C2), aj ≺ ak (by σA), ak ≺ bp (by C1). For P3, the cycle is bq ≺ aj (by C2),
aj ≺ bp (by C1), bp ≺ bq (by σB).

To prove the other direction, suppose that H has a directed cycle O. We
will show that M has one of the submatrices P1, P2, P3. Let bq be the rightmost
vertex of O in σB, and let (bq, z) be the outgoing edge of bq in O. Since bq is
the rightmost vertex of O in σB , z must be a vertex aj of A. The constraint
bq ≺ aj can only be added by C2. Therefore, we must have the configuration

bq br[ ]
ai 1 *
aj 0 1 . The path can now continue from aj following zero or more A vertices,

but to complete the cycle, it eventually needs to reach a vertex bp of B. Since
bq is the rightmost in σB, bp must appear either before bq or coincide with bq.
First suppose that bp 
= bq. If the outgoing edge of aj is (aj , bp), then we obtain
the configuration P3. Otherwise, the path visits several vertices of A and then
visits bp, and we thus obtain the configuration P1.

Suppose now that bp = bq. In this case the outgoing edge of aj cannot be
(aj , bp), because such an edge can only be added by C1, which would imply
mj,p = mj,q = 1, violating the configuration above. If the path visits several
vertices of A and then visits bp(= bq), then there must be a 1 in the qth column
below the jth row. We thus obtain the configuration P2. �	

Bipartite Graphs Representable for All Orderings: The above forbidden
submatrix characterization allows us to characterize the bipartite graphs G =
(A ∪ B,E) that have a Stick representation for every possible ordering of A and
B. Observe that the forbidden submatrices P2, P3, P1 correspond, respectively,
to the bipartite graphs shown in Fig. 4(a)–(c). We can construct 22 = 4 graphs
from Fig. 4(a) based on whether each of the dotted edges is present or not.
Similarly, we can construct 22 = 4 graphs from Fig. 4(b), and 25 = 32 graphs
from Fig. 4(b). Let H be the set that consists of these 40 graphs. From Theorem 2
we immediately obtain:
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Fig. 4. The forbidden subgraphs for Theorem 3. Dotted edges are optional.

Theorem 3. A bipartite graph G = (A ∪ B,E) admits a Stick representation
for every possible ordering of A and B if and only if G does not contain any
graph of H.

3 Fixed As

In this section we study the Stick representation problem when the ordering of
only the vertices in A is given. A formal description of the problem, which we
call StickA, is as follows.

Problem: Stick Representation with Fixed As (StickA)
Input: A bipartite graph G = (A∪B,E), and a vertex-ordering σA of A.
Question: Does G admit a Stick representation such that the ith horizontal
segment on the ground line corresponds to the ith vertex of σA?

We give a polynomial-time algorithm for StickA. The idea is to use the forbid-
den submatrix characterization for StickAB (Theorem 2). We need an ordering
of the B vertices that, together with the given ordering σA, avoids the forbid-
den submatrices P1, P2, P3. We will express the conditions for the ordering of
the B vertices as a 2-SAT formula, i.e., a CNF (conjunctive normal form) for-
mula where each clause contains at most two literals. 2-SAT can be solved in
polynomial time [1].

Theorem 4. There is an algorithm with run-time O(|A|3|B|3) to decide the
StickA problem, and construct a Stick representation if one exists.

Proof. For each pair of vertices v, w of G, we create variables pv≺w and pw≺v

(representing the ordering of segments v and w on the ground line). We will
enforce pv≺w = ¬pw≺v by adding clauses (¬pv≺w ∨ ¬pw≺v) ∧ (pv≺w ∨ pw≺v).
(One variable would suffice, but it is notationally easier to have both.) We first
set the truth values of all the variables involving two vertices of A based on σA.
We then add a few other clauses based on P1, P2, P3, as follows.

For every bp, bq, br giving rise to P1, we add the clauses (¬pbq≺br ∨ pbq≺bp)
and (¬pbp≺bq ∨ pbr≺bq ). The first clause means that if bq ≺ br, then to avoid P1,
we must have bq ≺ bp. Similarly, the second clause means if bp ≺ bq, then to
avoid P1, we must have br ≺ bq. These clauses ensure that if the SAT formula
has a solution, then no configuration of the form P1 can arise.

For every bp, bq giving rise to P2, we set pbq≺bp to true. This would avoid any
forbidden configuration of the form P2 in a solution of the 2-SAT formula.
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Finally, for every bp, bq, br giving rise to P3, we add the clauses (¬pbq≺br ∨
pbq≺bp) and (¬pbp≺bq ∨pbr≺bq ). Note that these clauses can be interpreted in the
same way as for P1, i.e., if the 2-SAT formula has a solution, then no configuration
of the form P3 can arise.

Let F be the resulting 2-SAT formula, which can be solved in linear time in
the input size [1], i.e., O((|A| + |B|)2) time. If F does not have a solution, then
there does not exist any ordering of the Bs that avoids the forbidden patterns.
Thus G does not admit the required Stick representation. If F has a solution,
then there exists an ordering σB of Bs that together with σA avoids all the
forbidden patterns. By Theorem2, G admits the required Stick representation,
and it can be constructed from σA and σB using Theorem 1.

Thus the time complexity of the algorithm is dominated by the time to
construct the 2-SAT formula, which is O(|A|3|B|3). Pseudocode for the algorithm
is given in the full version [15]. �	

Bipartite Graphs Representable for All A Orderings: We also consid-
ered the class of bipartite graphs G = (A ∪ B,E) such that for every order-
ing of the vertices of A there exists a Stick representation. We will call this
the Stick∀A class. Although we do not have a characterization of the Stick∀A
class, we describe some positive and negative instances below in Remark 1 and
Remark 2, with proofs in the full version [15].

Remark 1. Any bipartite graph G = (A ∪ B,E) with at most three vertices in
A belongs to the Stick∀A class.

Remark 2. A graph does not belong to Stick∀A if its bipartite adjacency matrix

contains the submatrix

⎡
⎢⎣

⎤
⎥⎦

a1 1 ∗
a2 0 1
a3 1 0
a4 ∗ 1

. (Here the columns are unordered.)

4 Stick Graphs

In this section we examine general Stick representations, i.e., we do not impose
any constraints on the ordering of the vertices.

Problem: Stick Representation
Input: A bipartite graph G = (A ∪ B,E).
Question: Does G admit a Stick representation such that the vertices in A
and B correspond to horizontal and vertical segments, respectively?

It is an open question to find a polynomial time algorithm for the above
problem of recognizing Stick graphs.

We give some positive instances (Remarks 3–4) and some negative instances
(Remark 5). The proofs of all but the first remark are included in the full ver-
sion [15]. We need a few definitions to state the remarks, as follows.
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A matrix has the simultaneous consecutive ones property if the rows and
columns can be permuted so that the 1’s in each row and each column appear
consecutively [29]. A one-sided drawing of a planar bipartite graph G = (A ∪
B,E) is a planar straight-line drawing of G, where all vertices in A lie on the
x-axis, and the vertices of B lie strictly above the x-axis [17].

Remark 3. Let G = (A ∪ B,E) be a bipartite graph and let M be its adjacency
matrix, where the rows and columns correspond to As and Bs, respectively.
If M has the simultaneous consecutive ones property, then G admits a Stick
representation, which can be computed in O(|A||B|) time.

Proof. One can determine whether M has the simultaneous consecutive ones
property in O(|A||B|) time [29], and if so, then one can construct such a matrix
M ′ within the same time complexity.

We now show how to construct the Stick representation from M ′. For each
row (resp., column), we draw a horizontal (resp., vertical) segment starting from
the rightmost (resp., topmost) 1 entry. We extend the horizontal segments to
the left and vertical segments downward such that they touch a ground line �.

Let the resulting drawing be D, which may contain many unnecessary cross-
ings. However, for each unnecessary crossing, we can follow the segments involved
in the crossings upward and rightward to find two distinct 1 entries. Since the
matrix has the simultaneous ones property, the violated entries in each row
(column) must lie consecutively at the left end of the row (bottom end of the
column). Therefore, one can find a (+x,−y)-monotone path P that separates
the violated entries from the rest of the matrix.

Let b1, b2, . . . , bk be the bend points creating 90◦ angles towards �. To com-
pute the required Stick representation, we remove these bends one after another,
as follows. Consider the topmost bend point bi. Imagine a Cartesian coordinate
system with origin at bi. Move the rows above bi and columns to the right of bi
towards the upward and rightward directions, respectively. It is straightforward
to observe that one now can construct a ground line �′ through bi such that the
violated entries lie in the region below the path determined by bi+1, . . . , bk. �	
Remark 4. Let G = (A ∪ B,E) be an n-vertex bipartite graph that admits a
one-sided planar drawing. Then G is a Stick graph, and its Stick representation
can be computed in O(n2) time.

Remark 5. Let H be the graph obtained by deleting a perfect matching from
a complete bipartite graph K4,4. Any graph G = (A ∪ B,E) containing H as
an induced subgraph does not admit a Stick representation. Since H is a planar
graph, not all planar bipartite graphs are Stick graphs.

5 Open Problems

We conclude the paper with the following open problems.

Open Problem 1. What is the complexity of recognizing Stick graphs? Is the
problem NP-complete? By Theorem 2 the problem is equivalent to ordering the
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rows and columns of a 0-1 matrix to exclude the 3 forbidden submatrices given
in the Theorem statement. Note that these forbidden submatrices involve 5 or 6
rows and columns (vertices of the graph) so the results of Hell et al. [20], which
apply to patterns of at most 4 vertices in a bipartite graph, do not provide a
polynomial time algorithm.

One possible approach using 3-SAT is as follows. Given a bipartite graph
G = (A ∪ B,E), one can create a 3-SAT formula Φ such that Φ is satisfiable if
and only if G admits a Stick representation, as follows. For each pair of vertices
v, w of G, create variables pv≺w and pw≺v (representing the ordering of v and
w on the ground line), and add clauses (¬pv≺w ∨ ¬pw≺v) ∧ (pv≺w ∨ pw≺v) to
enforce pv≺w = ¬pw≺v. Now express the conditions C1 and C2 from Sect. 2 as
3-SAT clauses.

Φ1: (Condition C1.) If mi,p = 1, then set pai≺bp = 1.
Φ2: (Condition C2.) We must express the condition that if the ordered submatrix

bp bq[ ]
ai 1 ∗
aj 0 1 exists, then pbp≺aj

= 1. Thus, if mi,p = 1,mjq = 1 and mj,p = 0,

then we add the clause (¬pai≺aj
∨ ¬pbp≺bq ∨ ¬paj≺bp).

Φ3: For each triple u, v, w of vertices, add the clause (¬pu≺v ∨ ¬pv≺w ∨ pu≺w).
Intuitively, these are transitivity constraints, which would ensure a total
ordering on the ground line.

It is not difficult to show that the 3-SAT Φ is satisfiable if and only if G
admits the required intersection representation. However, since Φ contains O(n2)
variables, using known SAT-solvers would not be faster than a naive algorithm
that simply guesses the order of the segments along the ground line. Therefore,
an interesting direction for future research would be to find a 3-SAT formulation
with a linear number of variables.

Open Problem 2. Can we improve the time complexity of the recognition
algorithm for graphs with fixed As?
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Abstract. In this paper we consider Contact graphs of Paths on a Grid
(CPG graphs), i.e. graphs for which there exists a family of interiorly
disjoint paths on a grid in one-to-one correspondence with their vertex
set such that two vertices are adjacent if and only if the corresponding
paths touch at a grid-point. Our class generalizes the well studied class
of VCPG graphs (see [1]). We examine CPG graphs from a structural
point of view which leads to constant upper bounds on the clique number
and the chromatic number. Moreover, we investigate the recognition and
3-colorability problems for B0-CPG, a subclass of CPG. We further show
that CPG graphs are not necessarily planar and not all planar graphs
are CPG.

1 Introduction

Asinowski et al. [3] introduced the class of vertex intersection graphs of paths on
a grid, referred to as VPG graphs. An undirected graph G = (V,E) is called a
VPG graph if one can associate a path on a grid with each vertex such that two
vertices are adjacent if and only if the corresponding paths intersect on at least
one grid-point. It is not difficult to see that the class of VPG graphs coincides
with the class of string graphs, i.e. intersection graphs of curves in the plane
(see [3]).

A natural restriction which was forthwith considered consists in limiting the
number of bends (i.e. 90◦ turns at a grid-point) that the paths may have: an
undirected graph G = (V,E) is a Bk-VPG graph, for some integer k ≥ 0, if one
can associate a path on a grid having at most k bends with each vertex such
that two vertices are adjacent if and only if the corresponding paths intersect on
at least one grid-point. Since their introduction, Bk-VPG have been extensively
studied (see [2,3,5,7–9,14,15,18–20]).

A notion closely related to intersection graphs is that of contact graphs. Such
graphs can be seen as a special type of intersection graphs of geometrical objects
in which these objects are not allowed to have common interior points but only
to touch each other. Contact graphs of various types of objects have been studied
in the literature (see, e.g., [1,10,11,21–23]). In this paper, we consider Contact
graphs of Paths on a Grid (CPG graphs for short) which are defined as follows.
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(a) Allowed contacts. (b) Forbidden contact.

Fig. 1. Examples of types of contact between two paths (the endpoints of a path are
marked by an arrow).

A graph G is a CPG graph if the vertices of G can be represented by a family of
interiorly disjoint paths on a grid, two vertices being adjacent in G if and only
if the corresponding paths touch, i.e. share a grid-point which is an endpoint of
at least one of the two paths (see Fig. 1). Note that this class is hereditary, i.e.
closed under vertex deletion. Similarly to VPG, a Bk-CPG graph is a CPG graph
admitting a representation in which each path has at most k bends. Clearly, any
Bk-CPG graph is also a Bk-VPG graph.

Aerts and Felsner [1] considered a similar family of graphs, namely those
admitting a Vertex Contact representation of Paths on a Grid (VCPG for short).
The vertices of such graphs can be represented by a family of interiorly disjoint
paths on a grid, but the adjacencies are defined slightly differently: two vertices
are adjacent if and only if the endpoint of one of the corresponding paths touches
an interior point of the other corresponding path (observe that this is equivalent
to adding the constraint forbidding two paths from having a common endpoint,
i.e. contacts as in Fig. 1a on the right). This class has been considered by other
authors as well (see [6,7,14,19,24]).

It is not difficult to see that graphs admitting a VCPG are planar (see [1])
and it immediately follows from the definition that those graphs are CPG graphs.
This containment is in fact strict even when restricted to planar CPG graphs,
as there exist, in addition to nonplanar CPG graphs, planar graphs which are
CPG but do not admit a VCPG.

To the best of our knowledge, the class of CPG graphs has never been studied
in itself and our present intention is to provide some structural properties (see
Sect. 3). By considering a specific weight function on the vertices, we provide
upper bounds on the number of edges in CPG graphs as well as on the clique
number and the chromatic number (see Sect. 3). In particular, we show that B0-
CPG graphs are 4-colorable and that 3-colorability restricted to B0-CPG is
NP-complete (see Sect. 5). We further prove that recognizing B0-CPG graphs is
NP-complete. Additionally, we show that the classes of CPG graphs and planar
graphs are incomparable (see Sect. 4).

2 Preliminaries

Throughout this paper, all considered graphs are undirected, finite and simple.
For any graph theoretical notion not defined here, we refer the reader to [13].
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Let G = (V,E) be a graph with vertex set V and edge set E. The degree of
a vertex v ∈ V , denoted by d(v), is the number of neighbors of v in G. A graph
G is k-regular if the degree of every vertex in G is k ≥ 0. A clique (resp. stable
set) in G is a set of pairwise adjacent (resp. nonadjacent) vertices. The graph
obtained from G by deleting a vertex v ∈ V is denoted by G − v. For a given
graph H, G is H-free if it contains no induced subgraph isomorphic to H.

As usual, Kn (resp. Cn) denotes the complete graph (resp. chordless cycle)
on n vertices and Km,n denotes the complete bipartite graph with bipartition
(V1, V2) such that |V1| = m and |V2| = n. Given a graph G, the line graph of
G, denoted by L(G), is the graph such that each vertex ve in L(G) corresponds
to an edge e in G and two vertices are adjacent in L(G) if and only if their
corresponding edges in G have a common endvertex.

A graph G is planar if it can be drawn in the plane without crossing edges;
such a drawing is then called a planar embedding of G. A planar embedding
divides the plane into several regions referred to as faces. A planar graph is
maximally planar if adding any edge renders it nonplanar. A maximally planar
graph has exactly 2n−4 faces, where n is the number of vertices in the graph. A
graph H is a minor of a graph G, if H can be obtained from G by deleting edges
and vertices and by contracting edges. It is well-known that a graph is planar if
and only if it does not contain K5 or K3,3 as a minor [13].

A coloring of a graph G is a mapping c associating with every vertex u an
integer c(u), called a color, such that c(v) �= c(u) for every edge uv. If at most k
distinct colors are used, c is called a k-coloring. The smallest integer k such that
G admits a k-coloring is called the chromatic number of G, denoted by χ(G).

Consider a rectangular grid G where the horizontal lines are referred to as
rows and the vertical lines as columns. The grid-point lying on row x and column
y is denoted by (x, y). An interior point of a path P on G is a point belonging to
P and different from its endpoints; the interior of P is the set of all its interior
points. A graph G = (V,E) is CPG if there exists a collection P of interiorly
disjoint paths on a grid G such that P is in one-to-one correspondence with V
and two vertices are adjacent in G if and only if the corresponding paths touch;
if every path in P has at most k bends, G is Bk-CPG. The pair R = (G,P) is
a CPG representation of G, and more specifically a k-bend CPG representation
if every path in P has at most k bends. In the following, the path representing
some vertex u in a CPG representation R of a graph G is denoted by PR

u , or
simply Pu if it is clear from the context.

Let G = (V,E) be a CPG graph and R = (G,P) be a CPG representation
of G. A grid-point p is of type I if it corresponds to an endpoint of four paths
in P (see Fig. 2a), and of type II if it corresponds to an endpoint of two paths
in P and an interior point of a third path in P (see Fig. 2b).

For any grid-point p, we denote by τ(p) the number of edges in the subgraph
induced by the vertices whose corresponding paths contain or have p as an
endpoint. Note that this subgraph is a clique and so τ(p) =

(
j
2

)
if j paths touch

at grid-point p.
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p

(a) Type I.

p

Subtype a

p

Subtype b

(b) Type II.

Fig. 2. Two types of grid-points.

For any path P , we denote by P̊ (resp. ∂(P )) the interior (resp. endpoints)
of P . For a vertex u ∈ V , we define the weight of u with respect to R, denoted
by wR

u or simply wu if it is clear from the context, as follows. Let qiu (i = 1, 2)
be the endpoints of the corresponding path Pu in P and consider, for i = 1, 2,

wi
u = |{P ∈ P | qiu ∈ P̊}| +

1
2

· |{P ∈ P | P �= Pu and qiu ∈ ∂(P )}|.

Then wu = w1
u + w2

u.

Observation 1. Let G = (V,E) be a CPG graph and R = (G,P) be a CPG
representation of G. For any vertex u ∈ V and i = 1, 2, wi

u ≤ 3
2 where equality

holds if and only if qiu is a grid-point of type I or II.

Indeed, the contribution of qiu to wi
u is maximal if all four grid-edges containing

qiu are used by paths of P, which may only happen when qiu is a grid-point of
type I or II.

Remark. In fact, we have wi
u ∈ {0, 1

2 , 1, 3
2} for any vertex u ∈ V and i = 1, 2.

Observation 2. Let G = (V,E) be a CPG graph and R = (G,P) be a CPG
representation of G. Then

|E| ≤
∑

u∈V

wu,

where equality holds if and only if all paths of P pairwise touch at most once.

Indeed, if uv ∈ E, we may assume that either an endpoint of Pu touches the
interior of Pv, or Pu and Pv have a common endpoint. In the first case, the edge
uv is fully accounted for in the weight of u, and in the second case, the edge uv
is accounted for in both wu and wv by one half. The characterization of equality
then easily follows.

3 Structural Properties of CPG Graphs

In this section, we investigate CPG graphs from a structural point of view and
present some useful properties which we will further exploit.
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Lemma 1. A CPG graph is either 6-regular or has a vertex of degree at most 5.

Proof. If G = (V,E) is a CPG graph and R is a CPG representation of G, by
combining Observations 1 and 2, we obtain

∑

u∈V

d(u) = 2|E| ≤ 2
∑

u∈V

wu ≤ 2
∑

u∈V

(
3
2

+
3
2

)
= 6|V |. ��

Remark. We can show that there exists an infinite family of 6-regular CPG
graphs. Due to lack of space, this proof is here omitted but can be found in the
full version [12].

For B1-CPG graphs, we can strengthen Lemma 1 as follows.

Proposition 1. Every B1-CPG graph has a vertex of degree at most 5.

Proof. Let G = (V,E) be a B1-CPG graph and R be a 1-bend CPG representa-
tion of G. Denote by p the upper-most endpoint of a path among the left-most
endpoints in R, and by Px (with x ∈ V ) an arbitrary path having p as an end-
point. Since R is a 1-bend CPG representation, no path uses the grid-edge on
the left of p, for otherwise p would not be a left-most endpoint. Therefore, p con-
tributes to the weight of x with respect to R by at most 1 and, by Observations
1 and 2, we have

∑

u∈V

d(u) = 2|E| ≤ 2(wx +
∑

u�=x

wu) ≤ 6|V | − 1,

which implies the existence of a vertex of degree at most 5. ��
A natural question that arises when considering CPG graphs is whether they
may contain large cliques. It immediately follows from Observation 2 that CPG
graphs cannot contain Kn, for n ≥ 8. This can be further improved as shown in
the next result.

Theorem 1. CPG graphs are K7-free.

Proof. Since the class of CPG graphs is hereditary, it is sufficient to show that
K7 is not a CPG graph. Suppose, to the contrary, that K7 is a CPG graph
and consider a CPG representation R = (G,P) of K7. Observe first that the
weight of every vertex with respect to R must be exactly 2 ·3/2, as otherwise by
Observation 1, we would have

∑
u∈V wu < 3|V | = 21 = |E| which contradicts

Observation 2. This implies in particular that every grid-point corresponding to
an endpoint of a path is either of type I or II. Furthermore, any two paths must
touch at most once, for otherwise by Observation 2, |E| <

∑
u∈V wu = 3|V | =

|E|. Hence, if we denote by PI (resp. PII) the set of grid-points of type I (resp.
type II), then since τ(p) = 6 for all p ∈ PI and τ(p) = 3 for all p ∈ PII , we
have that 6|PI |+3|PII | = 21, which implies |PII | �= 0. Suppose that there exists
a path Pu having one endpoint corresponding to a grid-point of type I and the
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other corresponding to a grid-point of type II. Since the corresponding vertex u
has degree 6, Pu must then properly contain an endpoint of another path which,
as first observed, necessarily corresponds to a grid-point of type II. But vertex
u would then have degree 3 + 2 + 2 as no two paths touch more than once, a
contradiction. Hence, every path has both its endpoints of the same type. But
then, |PI | = 0; indeed, if there exists a path having both its endpoints of type
I, since no two paths touch more than once, this implies that every path has
both its endpoints of type I, i.e. |PII | = 0, a contradiction. Now, if we consider
each grid-point of type II as a vertex and connect any two such vertices when
the corresponding grid-points belong to a same path, then we obtain a planar
embedding of a 4-regular graph on 7 vertices. But this contradicts the fact that
every 4-regular graph on 7 vertices contains K3,3 as a minor (a proof of this
result can be found in the full version [12]). ��
However, CPG graphs may contain cliques on 6 vertices as shown in Proposi-
tion 2. Due to lack of space, its proof is omitted here and can be found in the
full version [12].

Proposition 2. K6 is in B2-CPG \B1-CPG.

We conclude this section with a complexity result pointing towards the fact that
there may not be a polynomial characterization of B0-CPG graphs. Let us first
introduce rectilinear planar graphs: a graph G is rectilinear planar if it admits
a rectilinear planar drawing, i.e. a drawing mapping each edge to a horizontal
or vertical segment.

Theorem 2. Recognition is NP-complete for B0-CPG graphs.

Proof. We show that a graph G is rectilinear planar if and only if its line graph
L(G) is B0-CPG. As Recognition for rectilinear planar graphs was shown to
be NP-complete in [17], this concludes the proof. Suppose G is a rectilinear
planar graph and let D be the collection of horizontal and vertical segments
in a rectilinear planar drawing of G. It is not difficult to see that the contact
graph of D is isomorphic to L(G). Conversely, assume that L(G) is a B0-CPG
graph and consider a 0-bend CPG representation R = (G,P) of L(G). Since
L(G) is K1,3-free [4], every path in P has at most two contact points. Thus,
by eventually shortening paths, we may assume that contacts only happen at
endpoints of paths. Therefore, R induces a rectilinear planar drawing of G, where
each vertex corresponds to a contact point in R and each edge is mapped to its
corresponding path in P. ��

4 Planar CPG Graphs

In this section, we focus on planar graphs and their relation with CPG graphs.
In particular, we show that not every planar graph is CPG and not all CPG
graphs are planar.1

1 We can further show that not all CPG graphs are 1-planar as K7 − E(K3) is CPG
but not 1-planar [25].
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12 3

4 5

6 7e

(a) A nonplanar graph G.

P5 P4

P3

P1

P2

P7

P6

(b) A 0-bend CPG representation of G.

Fig. 3. A B0-CPG graph containing K3,3 as a minor (contract the edge e).

Lemma 2. If G is a CPG graph for which there exists a CPG representation
containing no grid-point of type I or II.a, then G is planar. In particular, if G
is a triangle-free CPG graph, then G is planar.

Proof. Let G = (V,E) be a CPG graph for which there exists a CPG represen-
tation R containing no grid-point of type I or II.a. By considering each path of
R as a curve in the plane, it follows that G is a curve contact graph having a
representation (namely R) in which any point in the plane belongs to at most
three curves. Furthermore, whenever a point in the plane belongs to the interior
of a curve C and corresponds to an endpoint of two other curves, then those two
curves lie on the same side of C (recall that there is no grid-point of type II.a).
Hence, it follows from Proposition 2.1 in [21] that G is planar.

If G is a triangle-free CPG graph, then no CPG representation of G contains
grid-points of type I or II.a. Hence, G is planar. ��
Remark. Since K3,3 is a triangle-free nonplanar graph, it follows from Lemma
2 that K3,3 is not CPG. Therefore, CPG graphs are K3,3-free. Observe however
that for any k ≥ 0, Bk-CPG is not a subclass of planar graphs as there exist
B0-CPG graphs which are not planar (see Fig. 3).

It immediately follows from [7] that all triangle-free planar graphs are B1-
CPG; hence, we have the following corollary.

Corollary 1. If a graph G is triangle-free, then G is planar if and only if G is
B1-CPG.

The next result allows us to detect planar graphs that are not CPG.

Lemma 3. Let G = (V,E) be a planar graph. If G is a CPG graph, then G has
at most 4|V | − 2f + 4 vertices of degree at most 3, where f denotes the number
of faces of G. In particular, if G is maximally planar, then G has at most 12
vertices of degree at most 3.

Proof. Let G = (V,E) be a planar CPG graph and R = (G,P) a CPG repre-
sentation of G. Denote by U the subset of vertices in G of degree at most 3. If
a path Pu, with u ∈ U , touches every other path in P at most once, then, since
at least one endpoint of Pu is then not a grid-point of type I or II, the weight of
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(a) A non CPG maximally planar graph.

1 2

3

4

5

6 7

P1

P2

P4

P3

P6P5

P7

(b) A maximally planar CPG graph.

Fig. 4. Two maximally planar graphs.

u with respect to R is at most 3/2 + 1. Thus, if we assume that this is the case
for all paths whose corresponding vertex is in U , we have by Observation 2

|E| ≤
(

3
2

+ 1
)

|U | + 3(|V | − |U |) = 3|V | − |U |
2

.

On the other hand, if there exists u ∈ U such that Pu touches some path more
than once, then the above inequality still holds as the corresponding edge is
already accounted for. Using the fact that f = |E| − |V | + 2 (Euler’s formula),
we obtain the desired upper bound. Moreover, if G is maximally planar, then
f = 2|V | − 4 and so |U | ≤ 12. ��
Remark. In Fig. 4a, we give an example of a maximally planar graph which is
not CPG due to Lemma 3. It is constructed by iteratively adding a vertex in
a triangular face, starting from the triangle, so that it has exactly 13 vertices
of degree 3. There exist however maximally planar graphs which are CPG (see
Fig. 4b). Note that maximally planar graphs do not admit a VCPG [1].

5 Coloring CPG Graphs

In this section, we provide tight upper bounds on the chromatic number of
Bk-CPG graphs for different values of k and investigate the 3-Colorability

problem for CPG graphs. The proof of the following result is an easy exercise
left to the reader (see the full version [12]).

Theorem 3. CPG graphs are 6-colorable.

Remark. Since K6 is B2-CPG, this bound is tight for Bk-CPG graphs with k ≥ 2.
We leave as an open problem whether this bound is also tight for B1-CPG graphs
(note that it is at least 5 since K5 is B1-CPG).

Theorem 4. B0-CPG graphs are 4-colorable. Moreover, K4 is a 4-chromatic
B0-CPG graph.
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Proof. Let G be a B0-CPG graph and R = (G,P) a 0-bend CPG representation
of G. Denote by L (resp. C) the set of rows (resp. columns) of G on which lies at
least one path of P. Since the representation contains no bend, if A is a row in
L (resp. column in C), then the set of vertices having their corresponding path
on A induces a collection of disjoint paths in G. If B �= A is another row in L
(resp. column in C), then no path in A touches a path in B. Hence, it suffices to
use two colors to color the vertices having their corresponding path in a row of
L and two other colors to color the vertices having their corresponding path in
a column of C to obtain a proper coloring of G. ��
It immediately follows from a result in [22] that the 3-colorability problem
is NP-complete in CPG, even if the graph admits a representation in which
each grid-point belongs to at most two paths. We conclude this section by a
strengthening of this result.

Theorem 5. 3-Colorability is NP-complete in B0-CPG.

Proof. We exhibit a polynomial reduction from 3-Colorability restricted to
planar graphs of maximum degree 4, which was shown to be NP-complete in [16].

Let G = (V,E) be a planar graph of maximum degree 4. It follows from [26]
that G admits a grid embedding where each vertex is mapped to a grid-point
and each edge is mapped to a grid-path with at most 4 bends, in such a way
that all paths are interiorly disjoint (such an embedding can be obtained in
linear time). Denote by D = (V, E) such an embedding, where V is the set of
grid-points in one-to-one correspondence with V and E is the set of grid-paths in
one-to-one correspondence with E. For any vertex u ∈ V , we denote by (xu, yu)
the grid-point in V corresponding to u and by PN

u (resp. PS
u ) the path of E , if

any, having (xu, yu) as an endpoint and using the grid-edge above (resp. below)
(xu, yu). For any edge e ∈ E, we denote by Pe the path in E corresponding to
e. We construct from D a 0-bend CPG representation R in such a way that the
corresponding graph G′ is 3-colorable if and only if G is 3-colorable.

By eventually adding rows and columns to the grid, we may assume that
the interior of each path P in E is surrounded by an empty region, i.e. no path
P ′ �= P or grid-point of V lies in the interior of this region. In the following,
we denote this region by RP (delimited by red dashed lines in every subsequent
figure) and assume, without loss of generality, that it is always large enough for
the following operations.

We first associate with every vertex u ∈ V a vertical path Pu containing the
grid-point (xu, yu) as follows. If PN

u (resp. PS
u ) is not defined, the top (resp.

lower) endpoint of Pu is (xu, yu + ε) (resp. (xu, yu − ε)) for a small enough ε
so that the segment [(xu, yu), (xu, yu + ε)] (resp. [(xu, yu), (xu, yu − ε)]) touches
no path of E . If PN

u has at least one bend, then the top endpoint of Pu lies at
the border of RPN

u
on column xu (see Fig. 5a). If PN

u has no bend, then the top
endpoint of Pu lies at the middle of PN

u (see Fig. 5b). Similarly, we define the
lower endpoint of Pu according to PS

u : if PS
u has at least one bend, then the

lower endpoint of Pu lies at the border of RPS
u

on column xu, otherwise it lies
at the middle of PS

u .
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(xu, yu)

PN
u

(a) PN
u contains at least one bend.

(xu, yu)

PN
u

(b) PN
u contains no bend.

Fig. 5. Constructing the path Pu corresponding to vertex u (in blue). (Color figure
online)

(a) A path containing one interior ver-
tical segment.

(b) A path containing two interior ver-
tical segments.

Fig. 6. Replacing interior vertical segments by 0-bend paths (in blue). (Color figure
online)

For any path P of E with at least two bends, an interior vertical segment
of P is a vertical segment of P containing none of its endpoints (note that
since every path in E has at most 4 bends, it may contain at most two interior
vertical segments). We next replace every interior segment of P by a slightly
longer vertical path touching the border of RP (see Fig. 6).

We finally introduce two gadgets H (see Fig. 7) and H ′, where H ′ is the
subgraph of H induced by {b, c, 4, 5, 6, 7, 8, 9, 10}, as follows. Denote by P ′ the
set of vertical paths introduced so far and by V ′ the set of vertices of the contact
graph of P ′. Observe that V ′ contains a copy of V and that two vertices are
adjacent in the contact graph of P ′ if and only if they are both copies of vertices
in V and the path P of P corresponding to the edge between these two copies is a
vertical path with no bend. Now, along each path Puv of P such that the vertical
paths Pu and Pv of P ′ do not touch, we add gadgets H and H ′ as follows. Let
P1, . . . , Pk be the vertical paths of P ′ encountered in order when going along
Puv from (xu, yu) to (xv, yv) and let uj be the vertex of V ′ corresponding to
Pj , for 1 ≤ j ≤ k. Note that P1 (resp. Pk) is the path corresponding to vertex



On Contact Graphs of Paths on a Grid 327

u = u1 (resp. v = uk) and that Pj , for 2 ≤ j ≤ k − 1, is a path corresponding
to an interior vertical segment of Puv (this implies in particular that k ≤ 4). We
add the gadget H ′ in between u1 and u2 by identifying u1 with b and u2 with
c. Moreover, for any 2 ≤ j ≤ k − 1, we add the gadget H in between uj and
uj+1 by identifying uj with b and uj+1 with a (see Fig. 8 where k = 4 and each
box labeled H (resp. H ′) means that gadget H (resp. H ′) has been added by
identifying the vertex lying to the left of the box to b and the vertex lying on
the right of the box to a (resp. c)).

The resulting graph G′ remains B0-CPG. Indeed, we may add 0-bend CPG
representations of the gadgets H and H ′ inside RPuv

and at different heights so
that they do not touch any other such gadget, as shown in Fig. 9. In the full ver-
sion [12], we give a local example of the resulting 0-bend CPG representation R.

We now show that G is 3-colorable if and only if G′ is. To this end, we prove
the following.

Claim 1

• In any 3-coloring c of H ′, we have c(b) �= c(c).
• In any 3-coloring c of H, we have c(a) = c(b) and c(b) �= c(c).

Proof. Let c : {a, b, c, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} → {blue, red, green} be a 3-coloring
of H and assume without loss of generality that c(b) = blue. Clearly, at least
two vertices among 4, 6 and 8 have the same color. If vertices 4, 6 and 8 all
have the same color, say red, then either c(7) = blue and c(9) = green, or
c(7) = green and c(9) = blue. Therefore, {c(5), c(10)} = {blue, green} and
since c is adjacent to all three colors, we then obtain a contradiction. Now if
vertices 4 and 8 have the same color, say red, then vertex 6 has color green and
both 7 and 9 have color blue, a contradiction. Hence, either c(4) = c(6) �= c(8)
or c(8) = c(6) �= c(4). By symmetry, we may assume that vertices 4 and 6 have
the same color, say red, and that vertex 8 has color green. This implies that
vertex 7 has color green, vertices 9 and 5 have color blue and vertex 10 has color
red; but then, c(c) = green �= c(b). This proves the first point of the claim.
Observe that each coloring of b and c with distinct colors can be extended to a
3-coloring of H ′ and H.

As for the second point, since vertices 4 and 6 have color red, both 1 and 2
must have color green, and since vertex 8 has color green, vertex 3 must have
color red. Consequently, c(a) = blue = c(b). ♦

We finally conclude the proof of Theorem 5. By Claim 1, if c is a 3-coloring
of G′ then, for any path Puv of P, we have c(u1) �= c(u2) and c(u2) = c(ui) for
all 3 ≤ i ≤ k. Hence, c induces a 3-coloring of G. Conversely, it is easy to see
that any 3-coloring of G can be extended to a 3-coloring of G′. ��
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Fig. 7. The gadget H (left) and a 0-bend CPG representation of it (right).

u = u1
u2 u3

u4 = vH ′ H H

Fig. 8. Adding gadgets H and H ′.

Puj

Puj+1

(a) Adding gadget H.

Pu

Pu2

(b) Adding gadget H ′.

Fig. 9. Locally adding gadgets to control the color of the vertices.

6 Conclusion

We conclude by stating the following open questions:

1. Are B1-CPG graphs 5-colorable?
2. Can we characterize those planar graphs which are CPG?
3. Is Recognition NP-complete for Bk-CPG graphs with k > 0?

References

1. Aerts, N., Felsner, S.: Vertex contact graphs of paths on a grid. In: Kratsch, D.,
Todinca, I. (eds.) WG 2014. LNCS, vol. 8747, pp. 56–68. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-12340-0 5

2. Alcón, L., Bonomo, F., Mazzoleni, M.P.: Vertex intersection graphs of paths on a
grid: characterization within block graphs. Graphs Comb. 33(4), 653–664 (2017)

3. Asinowski, A., Cohen, E., Golumbic, M.C., Limouzy, V., Lipshteyn, M., Stern,
M.: Vertex intersection graphs of paths on a grid. J. Graph Algorithms Appl. 16,
129–150 (2012)

https://doi.org/10.1007/978-3-319-12340-0_5


On Contact Graphs of Paths on a Grid 329

4. Beineke, L.W.: Characterizations of derived graphs. J. Comb. Theory 9(2), 129–
135 (1970)

5. Chaplick, S., Cohen, E., Stacho, J.: Recognizing some subclasses of vertex inter-
section graphs of 0-bend paths in a grid. In: Kolman, P., Kratochv́ıl, J. (eds.) WG
2011. LNCS, vol. 6986, pp. 319–330. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-25870-1 29

6. Chaplick, S., Kobourov, S.G., Ueckerdt, T.: Equilateral L-contact graphs. In:
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Abstract. We study straight-line drawings of planar graphs with pre-
scribed face areas. A plane graph is area-universal if for every area assign-
ment on the inner faces, there exists a straight-line drawing realizing the
prescribed areas.

For triangulations with a special vertex order, we present a sufficient
criterion for area-universality that only requires the investigation of one
area assignment. Moreover, if the sufficient criterion applies to one plane
triangulation, then all embeddings of the underlying planar graph are
also area-universal. To date, it is open whether area-universality is a
property of a plane or planar graph.

We use the developed machinery to present area-universal families of
triangulations. Among them we characterize area-universality of accor-
dion graphs showing that area-universal and non-area-universal graphs
may be structural very similar.

Keywords: Area-universality · Triangulation · Planar graph
Face area

1 Introduction

By Fary’s theorem [11,20,22], every plane graph has a straight-line drawing. We
are interested in straight-line drawings with the additional property that the
face areas correspond to prescribed values. Particularly, we study area-universal
graphs for which all prescribed face areas can be realized by a straight-line
drawing. Usually, in a planar drawing, no two edges intersect except in common
vertices. It is worthwhile to be slightly more generous and allow crossing-free
drawings, i.e., drawings that can be obtained as the limit of a sequence of planar
straight-line drawings. Note that a crossing-free drawing of a triangulation is not
planar (degenerate) if and only if the area of at least one face vanishes. Moreover,
we consider two crossing-free drawings of a plane graph as equivalent if the cyclic
order of the incident edges at each vertex and the outer face coincide.

For a plane graph G, we denote the set of faces by F , and the set of inner
faces by F ′. An area assignment is a function A : F ′ → R≥0. We say G is area-
universal if for every area assignment A there exists an equivalent crossing-free
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drawing where every inner face f ∈ F ′ has area A(f). We call such a drawing
A-realizing and the area assignment A realizable.

Related Work. Biedl and Ruiz Velázquez [6] showed that planar partial 3-trees,
also known as subgraphs of stacked triangulations or Apollonian networks, are
area-universal. In fact, every subgraph of a plane area-universal graph is area-
universal. Ringel [19] gave two examples of graphs that have drawings where all
face areas are of equal size, namely the octahedron graph and the icosahedron
graph. Thomassen [21] proved that plane 3-regular graphs are area-universal.
Moreover, Ringel [19] showed that the octahedron graph is not area-universal.
Kleist [15] generalized this result by introducing a simple counting argument
which shows that no Eulerian triangulation, different from K3, is area-universal.
Moreover, it is shown in [15] that every 1-subdivision of a plane graphs is area-
universal; that is, every area assignment of a plane graph has a realizing polyline
drawing where each edge has at most one bend. Evans et al. [10,17] present
classes of area-universal plane quadrangulations. In particular, they verify the
conjecture that plane bipartite graphs are area-universal for quadrangulations
with up to 13 vertices. Particular graphs have also been studied: It is known
that the square grid [9] and the unique triangulation on seven vertices [4] are
area-universal. Moreover, non-area-universal triangulations on up to ten vertices
have been investigated in [13].

The computational complexity of the decision problem of area-universality
for a given graph was studied by Dobbins et al. [7]. The authors show that
this decision problem belongs to Universal Existential Theory of the

Reals (∀∃R), a natural generalization of the class Existential Theory of

the Reals (∃R), and conjecture that this problem is also ∀∃R-complete. They
show hardness of several variants, e.g., the analogue problem of volume univer-
sality of simplicial complexes in three dimensions.

In a broader sense, drawings of planar graphs with prescribed face areas can
be understood as cartograms. Cartograms have been intensely studied for duals
of triangulations [1,3,5,14] and in the context of rectangular layouts, dissections
of a rectangle into rectangles [8,12,23]. For a detailed survey of the cartogram
literature, we refer to [18].

Our Contribution. In this work we present three characterizations of area-univer-
sal triangulations. We use these characterizations for proving area-universality
of certain triangulations. Specifically, we consider triangulations with a vertex
order, where (most) vertices have at least three neighbors with smaller index,
called predecessors. We call such an order a p-order. For triangulations with a
p-order, the realizability of an area assignment reduces to finding a real root of
a univariate polynomial. If the polynomial is surjective, we can guarantee area-
universality. In fact, this is the only known method to prove the area-universality
of a triangulation besides the simple argument for plane 3-trees relying on K4.

We discover several interesting facts. First, to guarantee area-universality
it is enough to investigate one area assignment. Second, if the polynomial is
surjective for one plane graph, then it is for every embedding of the underlying
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planar graph. Consequently, the properties of one area assignment can imply the
area-universality of all embeddings of a planar graph. This may indicate that
area-universality is a property of planar graphs.

We use the method to prove area-universality for several graph families
including accordion graphs. To obtain an accordion graph from the plane octa-
hedron graph, we introduce new vertices of degree 4 by subdividing an edge of
the central triangle. Figure 1 presents four examples of accordion graphs. Sur-
prisingly, the insertion of an even number of vertices yields a non-area-universal
graph while the insertion of an odd number of vertices yields an area-universal
graph. Accordions with an even number of vertices are Eulerian and thus not
area-universal [15]. Consequently, area-universal and non-area-universal graphs
may have a very similar structure. (In [17], we use the method to classify small
triangulations with p-orders on up to ten vertices.)

Fig. 1. Examples of accordion graphs. A checkmark indicates area-universality and a
cross non-area-universality.

Organization. We start by presenting three characterizations of area-universality
of triangulations in Sect. 2. In Sect. 3, we turn our attention to triangulations
with p-orders and show how the analysis of one area assignment can be sufficient
to prove area-universality of all embeddings of the given triangulation. Then, in
Sect. 4, we apply the developed method to prove area-universality for certain
graph families; among them we characterize the area-universality of accordion
graphs. We end with a discussion and a list of open problems in Sect. 5. For
omitted proofs consider the appendices of the full version [16].

2 Characterizations of Area-Universal Triangulations

Throughout this section, let T be a plane triangulation on n vertices. A straight-
line drawing of T can be encoded by the 2n vertex coordinates, and hence, by a
point in the Euclidean space R

2n. We call such a vector of coordinates a vertex
placement and denote the set of all vertex placements encoding crossing-free
drawings by D(T ); we also write D if T is clear from the context.

It is easy to see that an A-realizing drawing of a triangulation can be trans-
formed by an affine linear map into an A-realizing drawing where the outer
face corresponds to any given triangle of correct total area ΣA :=

∑
f∈F ′ A(f),

where F ′ denotes the set of inner faces as before.
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Lemma 1. [15, Obs. 2] A plane triangulation T with a realizable area assign-
ment A, has an A-realizing drawing within every given outer face of area ΣA.

Likewise, affine linear maps can be used to scale realizing drawings by any factor.
For any positive real number α ∈ R and area assignment A, let αA denote the
scaled area assignment of A where αA(f) := α · A(f) for all f ∈ F ′.

Lemma 2. Let A be an area assignment of a plane graph and α > 0. The scaled
area assignment αA is realizable if and only if A is realizable.

For a plane graph and c > 0, let A
c denote the set of area assignments with a

total area of c. Lemma 2 directly implies the following property.

Lemma 3. Let c > 0. A plane graph is area universal if all area assignments
in A

c are realizable.

2.1 Closedness of Realizable Area Assignments

In [15, Lemma 4], it is shown for triangulations that A ∈ A
c is realizable if

and only if in every open neighborhood of A in A
c there exists a realizable area

assignment. For our purposes, we need a stronger version. Let A
≤c denote the

set of area assignments of T with a total area of at most c. For a fixed face f
of T , A≤c|f→a denotes the subset of A≤c where f is assigned to a fixed a > 0.

Proposition 1. Let T be a plane triangulation and c > 0. Then A ∈ A
c is

realizable if and only if for some face f with A(f) > 0 every open neighborhood
of A in A

≤2c|f→A(f) contains a realizable area assignment.

Intuitively, Proposition 1 enables us not to worry about area assignments with
bad but unlikely properties. In particular, area-universality is guaranteed by the
realizability of a dense subset of Ac. Moreover, this stronger version allows to
certify the realizability of an area assignment by realizable area assignments with
slightly different total areas. The proof of Proposition 1 goes along the same lines
as in [15, Lemma 4]; it is based on the fact that the set of drawings of T with a
fixed face f and a total area of at most 2c is compact.

2.2 Characterization by 4-Connected Components

For a plane triangulation T , a 4-connected component is a maximal 4-connected
subgraph of T . Moreover, we call a triangle t of T separating if at least one
vertex of T lies inside t and at least one vertex lies outside t; in other words, t is
not a face of T .

Proposition 2. A plane triangulation T is area-universal if and only if every
4-connected component of T is area-universal.

Proof (Sketch). The proof is based on the fact that a plane graph G with a sep-
arating triangle t is area-universal if and only if Ge, the induced graph by t and
its exterior, and Gi, the induced graph by t and its interior, are area-universal.
In particular, Lemma 1 allows us to combine realizing drawings of Ge and Gi to
a drawing of G.
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Remark. Note that a plane 3-tree has no 4-connected component. (Recall that
K4 is 3-connected and a graph on n > 4 vertices is 4-connected if and only if it
has no separating triangle.) This is another way to see their area-universality.

2.3 Characterization by Polynomial Equation System

Dobbins et al. [7, Proposition 1] show a close connection of area-universality and
equation systems: For every plane graph G with area assignment A there exists
a polynomial equation system E such that A is realizable if and only if E has
a real solution. Here we strengthen the statement for triangulations, namely it
suffices to guarantee the face areas; these imply all further properties such as
planarity and the equivalent embedding. To do so, we introduce some notation.

A plane graph G induces an orientation of the vertices of each face. For a
face f given by the vertices v1, . . . , vk, we say f is counter clockwise (ccw) if
the vertices v1, . . . , vk appear in ccw direction on a walk on the boundary of f ;
otherwise f is clockwise (cw). Moreover, the function area(f,D) measures the
area of a face f in a drawing D. For a ccw triangle t with vertices v1, v2, v3, we
denote the coordinates of vi by (xi, yi). Its area in D is given by the determinant

Det(v1, v2, v3) := det
(
c(v1), c(v2), c(v3)

)
= 2 · area(t,D), (1)

where c(vi) := (xi, yi, 1). Since the (complement of the) outer face fo has area
ΣA in an A-realizing drawing, we define A(fo) := ΣA. For a set of faces F̃ ⊂ F ,
we define the area equation system of F̃ as

aeq(T,A, F̃ ) := {Det(vi, vj , vk) = A(f) | f ∈ F̃ , f =: (vi, vj , vk) ccw}.

For convenience, we omit the factor of 2 in each area equation. Therefore, without
mentioning it any further, we usually certify the realizability of A by a 1/2A-
realizing drawing. That is, if we say a triangle has area a, it may have area 1/2a.
Recall that, by Lemma 2, consistent scaling has no further implications.

Proposition 3. Let T be a triangulation, A an area assignment, and f a face
of T . Then A is realizable if and only if aeq(T,A, F \ {f}) has a real solution.

The key idea is that a (scaled) vertex placement of an A-realizing drawing is a
real solution of aeq(T,A, F \{f}) and vice versa. The main task is to guarantee
crossing-freeness of the induced drawing; it follows from the following neat fact.

Lemma 4. Let D be a vertex placement of a triangulation T where the ori-
entation of each inner face in D coincides with the orientation in T . Then D
represents a crossing-free straight-line drawing of T .

A proof of Lemma 4 can be found in [2, in the end of the proof of Lemma 4.2].
An alternative proof relies on the properties of the determinant, in particular,
on the fact that for any vertex placement D the area of the triangle formed by
its outer vertices evaluates to

area(fo,D) =
∑

f∈F ′
area(f,D). (2)
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Equation (2) shows that for every face f ∈ F ′, the equation systems
aeq(T,A, F ′) and aeq(T,A, F \ {f}) are equivalent. This fact is also used for
Proposition 3.

Remark 1. In fact, Lemma 4 and Proposition 3 generalize to inner triangula-
tions, i.e., 2-connected plane graphs where every inner face is a triangle.

3 Area-Universality of Triangulations with p-orders

We consider planar triangulations with the following property: An order of the
vertices (v1, v2, . . . , vn), together with a set of predecessors pred(vi) ⊂ N(vi) for
each vertex vi, is a p-order if the following conditions are satisfied:

– pred(vi) ⊆ {v1, v2, . . . , vi−1}, i.e., the predecessors of vi have an index < i,
– pred(v1) = ∅, pred(v2) = {v1}, pred(v3) = pred(v4) = {v1, v2}, and
– for all i > 4: |pred(vi)| = 3, i.e., vi has exactly three predecessors.

Note that pred(vi) specifies a subset of preceding neighbors. Moreover, a p-order
is defined for a planar graph independent of a drawing. We usually denote a
p-order by P and state the order of the vertices; the predecessors are then implic-
itly given by pred(vi). Figure 2 illustrates a p-order.

i pred(vi)
5 {v1, v3, v4}
6 {v3, v4, v5}
7 {v3, v4, v6}
8 {v2, v4, v7}
9 {v2, v7, v8}

v3

v2v1

v4

v5
v6 v7

v9
v8

eP

Fig. 2. A plane 4-connected triangulation with a p-order P. In an almost realizing
vertex placement constructed with P, all face areas are realized except for the two
faces incident to the unoriented (dashed) edge eP of OP (Lemma 8).

We pursue the following one-degree-of-freedom mechanism to construct real-
izing drawings for a plane triangulation T with a p-order (v1, v2, . . . , vn) and an
area assignment A:

– Place the vertices v1, v2, v3 at positions realizing the area equation of the
face v1v2v3. Without loss of generality, we set v1 = (0, 0) and v2 = (1, 0).

– Insert v4 such that the area equation of face v1v2v4 is realized; this is fulfilled
if y4 equals A(v1v2v4) while x4 ∈ R is arbitrary. The value x4 is our variable.
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– Place each remaining vertex vi with respect to its predecessors pred(vi) such
that the area equations of the two incident face areas are respected; the
coordinates of vi are rational functions of x4.

– Finally, all area equations are realized except for two special faces fa and fb.
Moreover, the face area of fa is a rational function f of x4.

– If f is almost surjective, then there is a vertex placement D respecting all face
areas and orientations, i.e., D is a real solution of aeq(T,A, F ).

– By Proposition 3, D guarantees the realizability of A.
– If this holds for enough area assignments, then T is area-universal.

3.1 Properties of p-orders

A p-order P of a plane triangulation T induces an orientation OP of the edges:
For w ∈ pred(vi), we orient the edge from vi to w, see also Fig. 2. By Proposition
2, we may restrict our attention to 4-connected triangulations. We note that
4-connectedness is not essential for our method but yields a cleaner picture.

Lemma 5. Let T be a planar 4-connected triangulation with a p-order P. Then
OP is acyclic, OP has a unique unoriented edge eP , and eP is incident to vn.

It follows that the p-order encodes all but one edge which is easy to recover.
Therefore, the p-order of a planar triangulation T encodes T . In fact, T has a
p-order if and only if there exists an edge e such that T − e is 3-degenerate.

Convention. Recall that a drawing induces an orientation of each face. We follow
the convention of stating the vertices of inner faces ccw and of the outer face
in cw direction. This convention enables us to switch between different plane
graphs of the same planar graph without changing the order of the vertices. To
account for our convention, we redefine A(fo) := −ΣA for the outer face fo.
Then, for different embeddings, only the right sides of the aeqs change.

The next properties can be proved by induction and are shown in Fig. 3.

Lemma 6. Let T be a plane 4-connected triangulation with a p-order P specified
by (v1, v2, . . . , vn) and let Ti denote the subgraph of T induced by {v1, v2, . . . , vi}.
For i ≥ 4,

– Ti has one 4-face and otherwise only triangles,
– Ti+1 can be constructed from Ti by inserting vi+1 in the 4-face of Ti, and
– the three predecessors of vi can be named (pf, pm, pl) such that pfpmvi and

pmplvi are (ccw inner and cw outer) faces of Ti.

Remark 2. For every (non-equivalent) plane graph T ′ of T , the three predeces-
sors (pf, pm, pl) of vi in T ′ and T coincide.

Remark 3. Lemma 6 can be used to show that the number of 4-connected planar
triangulations on n vertices with a p-order is Ω(2n/n).
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pF

pL

vipM

viv3

v2v1

v4

pM

pL

pF

Fig. 3. Illustration of Lemma 6: (a) T4, (b) vi is inserted in
an inner 4-face, (c) vi is inserted in outer 4-face.

qL

va

b

�b

�a
qF

qM

Fig. 4. Illustration
of Lemma 7.

3.2 Constructing Almost Realizing Vertex Placements

Let T be a plane triangulation with an area assignment A. We call a vertex
placement D of T almost A-realizing if there exist two faces fa and fb such that D
is a real solution of the equation system aeq(T,A, F̃ ) with F̃ := F \ {fa, fb}. In
particular, we insist that the orientation and area of each face, except for fa and
fb be correct, i.e., the area equations are fulfilled. Note that an almost realizing
vertex placement does not necessarily correspond to a crossing-free drawing.

Observation. An almost A-realizing vertex placement D fulfilling the area
equations of all faces except for fa and fb, certifies the realizability of A if
additionally the area equation of fa is satisfied.

We construct almost realizing vertex placements with the following lemma.

Lemma 7. Let a, b ≥ 0 and let qf, qm, ql be three vertices with a non-collinear
placement in the plane. Then there exists a unique placement for vertex v such the
ccw triangles qfqmv and qmqlv fulfill the area equations for a and b, respectively.

Proof. Consider Fig. 4. To realize the areas, v must be placed on a specific line
�a and �b, respectively. Note that �a is parallel to the segment qf, qm and �b is
parallel to the segment qm, ql. Consequently, �a and �b are not parallel and their
intersection point yields the unique position for vertex v. The coordinates of v

are specified by the two equations Det(qf, qm, v) != a and Det(qm, ql, v) != b.

Note that if �a and �b are parallel and do not coincide, then there is no
position for v realizing the area equations of the two triangles. Based on Lemma
7, we obtain our key lemma.

Lemma 8. Let T be a plane 4-connected triangulation with a p-order P specified
by (v1, v2, . . . , vn). Let fa, fb be the faces incident to eP and f0 := v1v2v3. Then
there exists a constant c > 0 such that for a dense subset AD of Ac, every A ∈ AD

has a finite set B(A) ⊂ R, rational functions xi(·,A), yi(·,A), f(·,A) and a
triangle 
, such that for all x4 ∈ R \ B(A), there exists a vertex placement
D(x4) with the following properties:

(i) f0 coincides with the triangle 
,
(ii) D(x4) is almost realizing, i.e., a real solution of aeq(T,A, F \ {fa, fb}),
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(iii) every vertex vi is placed at the point
(
xi(x4,A), yi(x4,A)

)
, and

(iv) the area of face fa in D(x4) is given by f(x4,A).

The idea of the proof is to use Lemma 7 in order to construct D(x4) induc-
tively. Therefore, given a vertex placement v1, . . . , vi−1, we have to ensure that
the vertices of pred(vi) are not collinear. To do so, we consider algebraically
independent area assignments. We say an area assignment A of T is algebraically
independent if the set {A(f)|f ∈ F ′} is algebraically independent over Q. In fact,
the subset of algebraically independent area assignments AI of Ac is dense when
c is transcendental.

We call the function f, constructed in the proof of Lemma 8, the last face
function of T and interpret it as a function in x4 whose coefficients depend on A.

3.3 Almost Surjectivity and Area-Universality

In the following, we show that almost surjectivity of the last face function implies
area-universality. Let A and B be sets. A function f : A → B is almost surjective
if f attains all but finitely many values of B, i.e., B \ f(A) is finite.

Theorem 1. Let T be a 4-connected plane triangulation with a p-order P and let
AD,Ac, f be obtained by Lemma 8. If the last face function f is almost surjective
for all area assignments in AD, then T is area-universal.

Proof. By Lemma 3, it suffices to show that every A ∈ AD is realizable. Let f0
be the triangle formed by v1, v2, v3 and A

+ := A
≤2c|f0→A(f0). By Proposition

1, A is realizable if every open neighborhood of A in A
+ contains a realizable

area assignment. Let fa and fb denote the faces incident to eP and a := A(fa).
Lemma 8 guarantees the existence of a finite set B such that for all x4 ∈ R \ B,
there exists an almost A-realizing vertex placement D(x4). Since B is finite and
f is almost surjective, for every ε with 0 < ε < c, there exists x̃ ∈ R \ B such
that a ≤ f(x̃) ≤ a+ ε, i.e., the area of face fa in D(x̃) is between a and a+ ε. (If
fa and fb are both inner faces, then the face fb has an area between b − ε and
b, where b := A(fb). Otherwise, if fa or fb is the outer face, then the total area
changes and face fb has area between b and b + ε.) Consequently, for some A′ in
the ε-neighborhood of A in A

+, D(x̃) is a real solution of aeq(T,A′, F \ {fb})
and Proposition 3 ensures that A′ is realizable. By Proposition 1, A is realizable.
Thus, T is area-universal.

To prove area-universality, we use the following sufficient condition for almost
surjectivity. We say two real polynomials p and q are crr-free if they do not have
common real roots. For a rational function f := p

q , we define the max-degree of f

as max{|p|, |q|}, where |p| denotes the degree of p. Moreover, we say f is crr-free
if p and q are. The following property follows from the fact that polynomials of
odd degree are surjective.

Lemma 9. Let p, q : R → R be polynomials and let Q be the set of the real roots
of q. If the polynomials p and q are crr-free and have odd max-degree, then the
function f : R\Q → R, f(x) = p(x)

q(x) is almost surjective.
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For the final result, we make use of several convenient properties of alge-
braically independent area assignments. For A, let fA denote the last face func-
tion and d1(fA) and d2(fA) the degree of the numerator and denominator poly-
nomial of fA in x4, respectively. Since fA is a function in x4 whose coefficients
depend on A, algebraic independence directly yields the following property.

Claim 1. For two algebraically independent area assignments A,A′ ∈ AI of a
4-connected triangulation with a p−order P, the degrees of the last face functions
fA and fA′ with respect to P coincide, i.e., di(fA) = di(fA′) for i ∈ [2].

In fact, the degrees do not only coincide for all algebraically independent area
assignments, but also for different embeddings of the plane graph. For a plane
triangulation T , let T ∗ denote the corresponding planar graph and [T ] the set
(of equivalence classes) of all plane graphs of T ∗.

Claim 2. Let T be a plane 4-connected triangulation with a p-order P. Then
for every plane graph T ′ ∈ [T ], and algebraically independent area assignments
A of T and A′ of T ′, the last face functions fA and f′A′ with respect to P have
the same degrees, i.e., di(fA) = di(f′A′) for i ∈ [2].

This implies our final result:

Corollary 1. Let T be a plane triangulation with a p-order P. If the last face
function f of T is crr-free and has odd max-degree for one algebraically indepen-
dent area assignment, then every plane graph in [T ] is area-universal.

4 Applications

We now use Theorem 1 and Corollary 1 to prove area-universality of some classes
of triangulations. The considered graphs rely on an operation that we call dia-
mond addition. Consider the left image of Fig. 5. Let G be a plane graph and
let e be an inner edge incident to two triangular faces that consist of e and the
vertices u1 and u2, respectively. Applying a diamond addition of order k on e
results in the graph G′ which is obtained from G by subdividing edge e with k
vertices, v1, . . . , vk, and inserting the edges viuj for all pairs i ∈ [k] and j ∈ [2].
Figure 5 illustrates a diamond addition on e of order 3.

u1

e

u2

G

v1 v2 v3

G′ u1

u2

Fig. 5. Obtaining G′ from G by a diamond addition of order 3 on edge e.
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4.1 Accordion Graphs

An accordion graph can be obtained from the plane octahedron graph G by a
diamond addition: Choose one edge of the central triangle of G as the special
edge. The accordion graph K� is the plane graph obtained by a diamond addition
of order � on the special edge of G. Consequently, K� has �+6 vertices. We speak
of an even accordion if � is even and of an odd accordion if � is odd. Figure 1
illustrates the accordion graphs Ki for i ≤ 3. Note that K0 is G itself and K1 is the
unique 4-connected plane triangulation on seven vertices. Due to its symmetry,
it holds that [K�] = {K�}.

Theorem 2. The accordion graph K� is area-universal if and only if � is odd.

Proof (Sketch). Performing a diamond addition of order � on some plane graph
changes the degree of exactly two vertices by � while all other vertex degrees
remain the same. Consequently, if � is even, all vertices of K� have even degree,
and hence, K� as an Eulerian triangulation is not area-universal as shown by the
author in [15, Theorem 1].

It remains to prove the area-universality of odd accordion graphs with the
help of Theorem 1. Consider an arbitrary but fixed algebraically independent
area assignment A. We use the p-order depicted in Fig. 6 to construct an almost
realizing vertex placement. We place the vertices v1 at (0, 0), v2 at (1, 0), v3 at
(1, ΣA), and v4 at (x4, a) with a := A(v1v2v4). Consider also Fig. 6.

Fig. 6. A p-order of an accordion graph (left) and an almost realizing vertex placement
(right), where the shaded faces are realized.

We use Lemma 8 to construct an almost realizing vertex placement. Note
that for all vertices vi with i > 5, the three predecessors of vi are pf = v3,
pm = vi−1 and pl = v4. One can show that the vertex coordinates of vi can
be expressed as xi = Nx

i /Di and yi = Ny
i /Di, where N x

i ,N y
i ,Di are polynomials

in x4. Moreover, the polynomials fulfill the following crucial properties.

Lemma 10. For all i ≥ 5, it holds that |D5| = 1 and

|N x
i+1| = |Di+1| = |N y

i+1| + 1 = |Di| + 1.
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Consequently, |N x
i | = |Di| is odd if and only if i is odd. In particular, for

odd �, |N x
n | = |Dn| is odd since the number of vertices n = � + 6 is odd.

Lemma 11. For all i ≥ 5 and ◦ ∈ {x, y}, it holds that N ◦
i and Di are crr-free.

Consequently, the area of the ccw triangle v2v3vn in D(x4) is given by the
crr-free last face function

f(x) := Det(v2, v3, vn) = ΣA(1 − xn) = ΣA
(

1 − N x
n

Dn

)

.

Since |N x
n | and |Dn| are odd, the max-degree of f is odd. Thus, Lemma 9 ensures

that f is almost surjective. By Theorem 1, K� is area-universal for odd �.
This result can be generalized to double stacking graphs.

4.2 Double Stacking Graphs

Denote the vertices of the plane octahedron G by ABC and uvw as depicted
in Fig. 7. The double stacking graph H�,k is the plane graph obtained from G
by applying a diamond addition of order � − 1 on Au and a diamond addition
of order k − 1 on vw. Note that H�,k has (� + k + 4) vertices. Moreover, H�,1

is isomorphic to K�−1; in particular, H1,1 equals G. Note that [H�,k] usually
contains several (equivalence classes of) plane graphs.

v

1 ... �

1

...

k

C

A B

C

A B

u w

v

Fig. 7. A double stacking graph H�,k.

Theorem 3. A plane graph in [H�,k] is area-universal if and only if � ·k is even.

If � · k is odd, every plane graph in [H�,k] is Eulerian and hence not area-
universal by [15, Theorem 1]. If � · k is even, we consider an algebraically inde-
pendent area assignment of H�,k, show that its last face function is crr-free and
has odd max-degree. Then we apply Corollary 1.

Theorem 3 implies that

Corollary 2. For every n ≥ 7, there exists a 4-connected triangulation on n
vertices that is area-universal.
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5 Discussion and Open Problems

For triangulations with p-orders, we introduced a sufficient criterion to prove
area-universality of all embeddings of a planar graph which relies on checking
properties of one area assignments of one plane graph. We used the criterion
to present two families of area-universal triangulations. Since area-universality
is maintained by taking subgraphs, area-universal triangulations are of spe-
cial interest. For instance, the area-universal double stacking graphs are used
in [10,17] to show that all plane quadrangulations with at most 13 vertices are
area-universal. The analysis of accordion graphs showns that area-universal and
non-area-universal graphs can be structural very similar. The class of accordion
graphs gives a hint why understanding area-universality seems to be a difficult
problem. In conclusion, we pose the following open questions:

– Is area-universality a property of plane or planar graphs?
– What is the complexity of deciding the area-universality of triangulations?
– Can area-universal graphs be characterized by local properties?

Acknowledgements. I thank Udo Hoffmann and Sven Jäger for helpful comments.
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Technische Universität Berlin (2018)

14. Kawaguchi, A., Nagamochi, H.: Orthogonal drawings for plane graphs with spec-
ified face areas. In: Theory and Applications of Model of Computation (TAMC),
pp. 584–594 (2007). https://doi.org/10.1007/978-3-540-72504-6 53

15. Kleist, L.: Drawing planar graphs with prescribed face areas. J. Comput. Geom.
(JoCG) 9(1), 290–311 (2018). https://doi.org/10.20382/jocg.v9i1a9

16. Kleist, L.: On the area-universality of triangulations. preprint, ArXiv:1808.10864v2
(2018). http://arxiv.org/abs/1808.10864v2

17. Kleist, L.: Planar graphs and face areas - area-universality. PhD thesis, Technische
Universität Berlin (2018)

18. Nusrat, S., Kobourov, S.: The state of the art in cartograms. In: Computer Graph-
ics Forum, vol. 35, pp. 619–642. Wiley Online Library (2016). https://doi.org/10.
1111/cgf.12932

19. Ringel, G.: Equiareal graphs. In: Bodendiek, R. (ed.) Contemporary Methods in
Graph Theory, pp. 503–505. BI Wissenschaftsverlag Mannheim (1990). In honour
of Prof. Dr. K. Wagner

20. Stein, S.K.: Convex maps. Proc. Am. Math. Soc 2(3), 464 (1951). https://doi.org/
10.1090/S0002-9939-1951-0041425-5

21. Thomassen, C.: Plane cubic graphs with prescribed face areas. Comb. Probab.
Comput. 1(4), 371–381 (1992). https://doi.org/10.1017/S0963548300000407

22. Wagner, K.: Bemerkungen zum Vierfarbenproblem. Jahresbericht der Deutschen
Mathematiker-Vereinigung 46, 26–32 (1936). https://gdz.sub.uni-goettingen.de/
id/PPN37721857X 0046

23. Wimer, S., Koren, I., Cederbaum, I.: Floorplans, planar graphs, and layouts. IEEE
Trans. Circuits Syst. 35, 267–278 (1988). https://doi.org/10.1109/31.1739

https://doi.org/10.1016/j.comgeo.2017.06.010
https://doi.org/10.1016/j.comgeo.2017.06.010
https://doi.org/10.7155/jgaa.00320
https://doi.org/10.1007/978-3-540-72504-6_53
https://doi.org/10.20382/jocg.v9i1a9
http://arxiv.org/abs/1808.10864v2
http://arxiv.org/abs/1808.10864v2
https://doi.org/10.1111/cgf.12932
https://doi.org/10.1111/cgf.12932
https://doi.org/10.1090/S0002-9939-1951-0041425-5
https://doi.org/10.1090/S0002-9939-1951-0041425-5
https://doi.org/10.1017/S0963548300000407
https://gdz.sub.uni-goettingen.de/id/PPN37721857X_0046
https://gdz.sub.uni-goettingen.de/id/PPN37721857X_0046
https://doi.org/10.1109/31.1739


Monotone Drawings of k-Inner Planar
Graphs

Anargyros Oikonomou and Antonios Symvonis(B)

School of Applied Mathematical and Physical Sciences,
National Technical University of Athens, Athens, Greece
ar.economou@outlook.com, symvonis@math.ntua.gr

Abstract. A k-inner planar graph is a planar graph that has a plane
drawing with at most k internal vertices, i.e., vertices that do not lie
on the boundary of the outer face of its drawing. An outerplanar graph
is a 0-inner planar graph. In this paper, we show how to construct a
monotone drawing of a k-inner planar graph on a 2(k + 1)n × 2(k + 1)n
grid. In the special case of an outerplanar graph, we can produce a planar
monotone drawing on a n × n grid, improving the results in [2,11].

1 Introduction

A straight-line drawing Γ of a graph G is a mapping of each vertex to a distinct
point on the plane and of each edge to a straight-line segment between the
vertices. A path P = {p0, p1, . . . , pn} is monotone if there exists a line l such
that the projections of the vertices of P on l appear on l in the same order as
on P . A straight-line drawing Γ of a graph G is monotone, if a monotone path
connects every pair of vertices. We say that an angle θ is convex if 0 < θ ≤ π.
A tree T is called ordered if the order of edges incident to any vertex is fixed.
We call a drawing Γ of an ordered tree T rooted at r near-convex monotone if
it is monotone and any pair of consecutive edges incident to a vertex, with the
exception of a single pair of consecutive edges incident to r, form a convex angle.

Monotone graph drawing has been lately a very active research area and sev-
eral interesting results have appeared since its introduction by Angelini et al. [1].
In the case of trees, Angelini et al. [1] provided two algorithms that used ideas
from number theory (Stern-Brocot trees [3,15] [6, Sect. 4.5]) to produce mono-
tone tree drawings. Their BFS-based algorithm used an O(n1.6) × O(n1.6) grid
while their DFS-based algorithm used an O(n)×O(n2) grid. Later, Kindermann
et al. [12] provided an algorithm based on Farey sequence (see [6, Sect. 4.5]) that
used an O(n1.5) × O(n1.5) grid. He and He in a series of papers [7–9] gave algo-
rithms, also based on Farey sequences, that eventually reduced the required grid
size to O(n)×O(n). Their monotone tree drawing uses a 12n×12n grid which is
asymptotically optimal as there exist trees which require at least n

9 × n
9 area [8].

In a recent paper, Oikonomou and Symvonis [14] followed a different approach
from number theory and gave an algorithm based on a simple weighting method
and some simple facts from geometry, that draws a tree on an n × n grid.
c© Springer Nature Switzerland AG 2018
T. Biedl and A. Kerren (Eds.): GD 2018, LNCS 11282, pp. 347–353, 2018.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04414-5_24&domain=pdf
https://doi.org/10.1007/978-3-030-04414-5_24


348 A. Oikonomou and A. Symvonis

Hossain and Rahman [11] showed that by modifying the embedding of a
connected planar graph we can produce a planar monotone drawing of that
graph on an O(n) × O(n2) grid. To achieve that, they reinvented the notion of
an orderly spanning tree introduced by Chiang et al. [4] and referred to it as
good spanning tree. Finally, He and He [10] proved that Felsner’s algorithm [5]
builds convex monotone drawings of 3-connected planar graphs on O(n) × O(n)
grids in linear time.

A k-inner planar graph is a planar graph that has a plane drawing with at
most k inner vertices, i.e., vertices that do not lie on the boundary of the outer
face of its drawing. An outerplanar graph is a 0-inner planar graph. In this paper,
we show how to construct a monotone drawing of a k-inner planar graph on a
2(k+1)n×2(k+1)n grid. This yields monotone drawings for outerplanar graphs
on a 2n× 2n grid, improving the results in [2,11]. Due to space limitation, some
proofs appear in the arXiv version of the paper [13].

2 Preliminaries

Let T be a tree rooted at a vertex r. Denote by Tu the sub-tree of T rooted
at vertex u. By |Tu| we denote the number of vertices of Tu. In the rest of the
paper, we assume that all tree edges are directed away from the root.

Our algorithm for obtaining a monotone plane drawing of a k-inner planar
graph in based on our ability: (i) to produce for any rooted tree a compact
monotone drawing that satisfies specific properties and (ii) to identify for any
planar graph a good spanning tree.

Theorem 1 (Oikonomou, Symvonis [14]). Given an n-vertex tree T rooted
at vertex r, we can produce in O(n) time a monotone drawing of T where: (i)
the root r is drawn at (0, 0), (ii) the drawing in non-strictly slope-disjoint1, (iii)
the drawing is contained in the first quadrant, and (iv) it fits in an n × n grid.

By utilizing and slightly modifying the algorithm that supports Theorem. 1,
we can obtain a specific monotone tree drawing that we later use in our algorithm
for monotone k-inner planar graphs.

Theorem 2. Given an n-vertex tree T rooted at vertex r, we can produce in
O(n) time a monotone drawing of T where: (i) the root r is drawn at (0, 0), (ii)
the drawing in non-strictly slope-disjoint, (iii) the drawing is near-convex, (iv)
the drawing is contained in the second octant (defined by two half-lines with a
common origin and slope π

4 and π
2 , resp.), and (v) it fits in a 2n × 2n grid.

The following definition of a good spanning tree is due to Hossain and Rah-
man [11]. Let G be a connected embedded plane graph and let r be a vertex
of G lying on the boundary of its outer face. Let T be an ordered spanning
tree of G rooted in r that respects the embedding of G. Let P (r, v) = 〈u1(=
r), u2, ..., uk(= v)〉 be the unique path in T from the root r to a vertex v �= r.

1 See [14] for the definition of non-strictly slope-disjoint drawings of trees.
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Fig. 1. A good spanning tree.
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Fig. 2. Dependencies between leader edges.

The path P (r, v) divides the children of ui (1 ≤ i < k), except ui+1, into two
groups; the left group L and the right group R. A child x of ui is in group L and,
more specifically in a subgroup of L denoted by uL

i , if the edge (ui, x) appears
before edge (ui, ui+1) in clockwise order of the edges incident to ui when the
ordering starts from edge (ui, ui−1). Similarly, a child x of ui is in group R and
more specifically in a subgroup of R denoted by uR

i if the edge (ui, x) appears
after edge (ui, ui+1) in clockwise order of the edges incident to ui when the
ordering starts from edge (ui, ui−1). A tree T is called a good spanning tree of G
if every vertex v (v �= r) of G satisfies the following two conditions with respect
to P (r, v) (see Fig. 1 for an example of a good spanning tree (solid edges)):

C1: G does not have a non-tree edge (v, ui), i < k; and
C2: The edges of G incident to vertex v, excluding (uk−1, v), can be partitioned

into three disjoint (and possibly empty) sets Xv, Yv and Zv satisfying the
following conditions:
a Each of Xv and Zv is a set of consecutive non-tree edges and Yv is a set

of consecutive tree edges.
b Edges of Xv, Yv and Zv appear clockwise in this order after edge (uk−1, v).
c For each edge (v, v′) ∈ Xv, v′ ∈ Tw for some w ∈ uL

i , i < k, and for each
edge (v, v′) ∈ Zv, v′ ∈ Tw for some w ∈ uR

i , i < k.

Theorem 3 ([4,11]). Let G be a connected planar graph of n vertices. Then G
has a planar embedding Gφ that contains a good spanning tree. Furthermore, Gφ

and a good spanning tree T of Gφ can be found in O(n) time.

Consider an embedded plane graph G for which a good spanning tree T
exists. We say that a non-tree edge e of G covers vertex u if u lies in the inner
face delimited by the simple cycle formed by tree-edges of T and e. Vertices on
the cycle are not covered by edge e.

Lemma 1. If a planar graph G has a k-inner embedding, then G has a k′-inner
embedding which contains a good spanning tree T , where k′ ≤ k. Moreover, each
non-tree edge covers at most k of T ’s leaves.
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3 k-inner Monotone Drawings

The general idea for producing a monotone drawing of plane k-inner graph G
which has a good spanning tree T is to first obtain a monotone drawing of T
satisfying the properties of Theorem2 and then to insert the remaining non-tree
edges in a way that the drawing remains planar. The insertion of a non-tree edge
may require to slightly adjust the drawing obtained up to that point, resulting
in a slightly larger drawing. As it turns out, the insertion of a subset of the
non-tree edges may violate the planarity of the drawing and, moreover, if these
edges are considered in a proper order, the increase on the size of the drawing
can be kept small (up to a factor of k for each dimension).

Consider a plane graph G that has a good spanning tree T . For any non-
tree edge e of G, we denote by C(e) the set of leaf-vertices of T covered by e.
A non-tree edge e is called a leader edge if C(e) �= ∅ and there doesn’t exist
another edge e′ such that C(e) = C(e′) with e′ lying in the inner of the cycle
induced by the edges of T and e. In Fig. 1, leader edges are drawn as dashed
edges. We also have that C(e1) = C(e2) = C(e3) = {v1}, C(e4) = {v1, v2},
C(e5) = C(e6) = {v3, v4}, and C(e7) = {v3, v4, v5}.

Lemma 2. Let G be a k-inner plane graph that has a good spanning tree. Then,
there exist at most k leader edges in G.

Proof (Sketch). Firstly observe that a boundary vertex of G that is a leaf-vertex
in T cannot be covered by any edge of G. That is, the set C(e), for any non-tree
edge e, contains only inner-vertices of G, and thus, |C(e)| ≤ k. The proof then
easily follows by observing that for any two distinct leader edges e1, e2, exactly
one of the following statements holds: (i) C(e1) ⊂ C(e2), (ii) C(e2) ⊂ C(e1),
(iii) C(e1) ∩ C(e2) = ∅. 
�
Lemma 3. Let G be a plane graph that has a good spanning tree T and let ΓT

be a monotone drawing of T that is near-convex and non-strictly slope-disjoint.
Let ΓL be the drawing produced if we add all leader edges of G to ΓT and Γ be
the drawing produced if we add all non-tree edges of G to ΓT . Then, ΓL is planar
if and only if Γ is planar.

Lemma 3 indicates that we only have to adjust the original drawing of T so
that after the addition of all leader edges it is still planar. Then, the remaining
non-tree edges can be drawn without violating planarity. Note that, for the proof
of Lemma 3, it is crucial that the original drawing ΓT of T is near-convex.

Consider the near-convex drawing of a good spanning tree T rooted at r that
is non-strictly slope-disjoint. Assume that T is drawn in the first quadrant with
its root r at (0, 0). Let u �= r be a vertex of T and pu be its parent. Vertices
u and pu are drawn at grid points (ux, uy) and (pu

x, pu
y ), resp. We define the

reference vector of u with respect to its parent in T , denoted by −→u , to be vector−→u = (ux − pu
x, uy − pu

y ). We emphasize that the reference vector −→u of a tree
vertex u is defined wrt the original drawing of T and does not change even if the
drawing of T is modified by our drawing algorithm.
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The elongation of edge (pu, u) by a factor of λ, λ ∈ N
+, (also referred to as

a λ-elongation) translates the drawing of subtree Tu along the direction of edge
(pu, u) so that the new length of (pu, u) increases by λ times the length of the
reference vector −→u of u. Since the elongation factor is a natural number, the new
drawing is still a grid drawing. Let −→u = (ud

x, ud
y). After a λ-elongation of (pu, u),

vertex u is drawn at point u′ = (ux + λud
x, uy + λud

y). A 0-elongation leaves the
drawing unchanged. Note that, by appropriately selecting the elongation factor
λ for an upward tree edge (pu, u), we can reposition u so that it is placed above
any given point z = (zx, zy).

If we insert the leader edges in the drawing of the good spanning tree in
an arbitrary order, we may have to adjust the drawing more than one time for
each inserted edge. This is due to dependencies between leader edges. Figure 2
describes the two types of possible dependencies. In the case of Fig. 2(a), the
leader edge must by inserted first since C(e1) = {v5} ⊂ {v3, v4, v5} = C(e2).
Inserting leader e1 so that it is not intersected by any tree edge can be achieved
by elongating edges (v2, v3) and (v2, v4) by appropriate factors so that vertices
v3 and v4 are both placed at grid points above (i.e., with larger y coordinate)
vertex v5.

In the case of Fig. 2(b), we have that C(e1) = {u4}, C(e2) = {u8}, and
C(e1) ∩ C(e2) = ∅. However, leader e1 must be inserted first since one of its
endpoints (u3) is an ancestor of an endpoint (u5) of e2. Again, inserting leader
e1 so that it is not intersected by any tree edge can be achieved by elongating
edges (u1, u2) and (u1, u3) by appropriate factors so that vertices u2 and u3 are
both placed at grid points above vertex u4.

Lemma 4. Let G be a plane graph that has a good spanning tree T and let ΓT

be a drawing of T that satisfies the properties of Theorem2. Then, there exists
an ordering of the leader edges, such that if they are inserted into ΓT (with the
appropriate elongations) in that order they need to be examined exactly once.

Our method for producing monotone drawings of k-inner planar graphs is
summarized in Algorithm 1. A proof that the produced drawing is actually a
monotone plane drawing follows from the facts that (i) there is always a good
spanning tree with at most k inner vertices (Lemma 1), (ii) there is a monotone
tree drawing satisfying the properties of Theorem2, (iii) the operation of edge
elongation on the vertices of a near-convex monotone non-strictly slope-disjoint
tree drawing maintains these properties, (iv) the ability to always insert the
leader edges into the drawing without violating planarity (through elongation),
and (v) the ability to insert the remaining non-tree edges (Lemma3).

Let −→u = (ud
x, ud

y) and −→v = (vd
x, vd

y) be the reference vectors of u and v,
resp. When we process leader edge e = (u, v) (lines 9–15 of Algorithm 1), factors
λu = max

(
0,

⌈
wy−uy

ud
y

⌉)
and λv = max

(
0,

⌈
wy−vy

vd
y

⌉)
are used for the elongation

of edges (pu, u) and (pv, v), resp. The use of these elongation factors ensures that
both u and v are placed above vertex w, and thus the insertion of edge e leaves
the drawing planar. When the leader edges are processed in the order dictated
by their dependencies (line 6 of Algorithm1), we can show that:
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Algorithm 1. Monotone drawing of k-inner planar graphs
1: procedure k-InnerPlanarMonotoneDrawing(G)
2: Input: An n-vertex planar graph G and an embedding of G with k inner vertices.
3: Output: A monotone planar drawing of G on a 2(k + 1)n × 2(k + 1)n grid.
4:
5: Let Gφ be an embedding of G that has a good spanning tree T .
6: L ← List of the leader edges of G, ordered wrt their dependencies (Lemma 4).
7: ΓT ← Monotone drawing of T satisfying all properties of Theorem 2.
8: Γ ← ΓT

9: while L is not empty do
10: Let e = (u, v) be the next edge in L. Remove e from L.
11: Let w be the vertex of C(e) (drawn in Γ at (wx, wy)) with the largest
12: y-coordinate.
13: Let pu and pv be the parents of vertices u and v in T , resp.
14: Elongate Line edges (pu, u) and (pv, v) by appropriate factors so that u and
15: v are placed in Γ above vertex w.
16: Insert edge e into drawing Γ .

17: Insert all remaining non-tree edges into drawing Γ .
18: Output Γ .

Lemma 5. Let ΓT be the drawing of the good spanning tree T satisfying the
properties of Theorem2 and let Γ(u,v) be the drawing of G immediately after the
insertion of leader edge e = (u, v) by Algorithm1. Let u and v be drawn in ΓT

at points (ux, uy) and (vx, vy), resp. Then, in Γ(u,v) the drawings of Tu and Tv

are contained in (2n − ux) × (2n − uy) and (2n − vx) × (2n − vy) grids, resp.

Based on Lemma 5, we can easily show the main result of our paper.

Theorem 4. Let G be an n-vertex k-inner planar graph. Algorithm1 produces
a planar monotone drawing of G on a 2(k + 1)n × 2(k + 1)n grid.

A corollary of Theorem4 is that for an n-vertex outerplanar graph G Algo-
rithm1 produces a planar monotone drawing of G on a 2n × 2n grid. However,
we can further reduce the grid size down to n × n.

Theorem 5. Let G be an n-vertex outerplanar graph. Then, there exists an
n × n planar monotone grid drawing of G.

Proof. Simply observe that since an outerplanar graph has no leader edges, the
drawing produced by Algorithm1 is identical to that of the original drawing of
the good spanning tree T . In Algorithm 1 we used a 2n× 2n drawing of T in the
second octant in order to simplify the elongation operation. Since outerplanar
graphs have no leader edges, they require no elongations and we can use instead
the (first quadrant) n×n monotone tree drawing of [14], appropriately modified
so that it yields a near-convex drawing. 
�
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4 Conclusion

We defined the class of k-inner planar graphs which bridges the gap between
outerplanar and planar graphs. For an n-vertex k-inner planar graph G, we
provided an algorithm that produces a 2(k + 1)n × 2(k + 1)n monotone grid
drawing of G. Building algorithms for k-inner graphs that incorporate k into
their time complexity or into the quality of their solution is an interesting open
problem.
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On L-Shaped Point Set Embeddings
of Trees: First Non-embeddable Examples

Torsten Mütze and Manfred Scheucher(B)

Institut für Mathematik, Technische Universität Berlin, Berlin, Germany
{muetze,scheucher}@math.tu-berlin.de

Abstract. An L-shaped embedding of a tree in a point set is a planar
drawing of the tree where the vertices are mapped to distinct points
of the set and every edge is drawn as a sequence of two axis-aligned
line segments. Let fd(n) denote the minimum number N of points such
that every n-vertex tree with maximum degree d ∈ {3, 4} admits an
L-shaped embedding in every point set of size N , where no two points
have the same abscissa or ordinate. The best known upper bounds for
this problem are f3(n) = O(n1.22) and f4(n) = O(n1.55), respectively.
However, no lower bound besides the trivial bound fd(n) ≥ n is known
to this date. In this paper, we present the first examples of n-vertex trees
for n ∈ {13, 14, 16, 17, 18, 19, 20} that require strictly more points than
vertices to admit an L-shaped embedding, proving that f4(n) ≥ n + 1
for those n. Moreover, using computer assistance, we show that every
tree on n ≤ 11 vertices admits an L-shaped embedding in every set of
n points, proving that fd(n) = n, d ∈ {3, 4}, for those n.

Keywords: L-shaped embedding · Point set · Tree · SAT

1 Introduction

An L-shaped embedding of a tree in a point set is a planar drawing of the
tree where the vertices are mapped to distinct points of the set and every edge
is drawn as a sequence of two axis-aligned line segments; see Fig. 1. Here and
throughout this paper, all point sets are such that no two points have the same
abscissa or ordinate. The investigation of L-shaped embeddings was initiated
in [5–7]. In particular, Di Giacomo et al. [5] showed that O(n2) points are always
sufficient to embed any n-vertex tree, and they asked for a tree that does not
admit an L-shaped embedding. Note that an L-shaped embedding of a tree is
possible only if the maximum degree of the tree is at most 4. Moreover, if the
maximum degree is 2, then the tree is a path and can be embedded greedily on
any point set of the same size. Formally, let fd(n) denote the minimum number N
of points such that every n-vertex tree with maximum degree d ∈ {3, 4} admits
an L-shaped embedding in every point set of size N .
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Fig. 1. An L-shaped embedding of a tree in a given point set.

The second author’s master’s thesis [11] proposed a method to recursively
construct an L-shaped embedding of any n-vertex tree in any point set of
size O(n1.58) (see also [1]). Biedl et al. [3] gave a more precise analysis of this
method, proving that f3(n) = O(n1.22) and f4(n) = O(n1.55) points are enough.
No lower bound besides the trivial bound fd(n) ≥ n is known to this date. How-
ever, the authors of the aforementioned paper also considered a more restrictive
setting, where the cyclic order of the edges around each vertex in the embed-
ding is prescribed. For this setting they presented a 14-vertex tree which does
not admit an L-shaped embedding in a particular point set of size 14, and they
raised the problem to find an infinite family of such non-embeddable trees.1 All
of our results in this paper are for the unrestricted setting, that is, there are no
constraints on the cyclic order of the edges around each vertex.

Besides the problem of finding L-shaped embeddings of arbitrary trees in arbi-
trary point sets, various special classes of trees and point sets have also been stud-
ied. For instance, perfect binary and perfect ternary n-vertex trees can be embed-
ded in any point set of size O(n1.142) or O(n1.465), respectively [3]. Moreover,
trees with pathwidth k can be embedded in any set of 2kn points [11, Chap. 3.3.2]
(see also [1]). When point sets are chosen uniformly at random (i.e., the y-
coordinates are a random permutation), it is known that O(n log n(log log n)2)
and O(n1.332) points are enough to embed any tree with maximum degree 3 or
degree 4, respectively, with probability at least 1/2 [11, Chap. 4] (see also [1]).

2 Our Results

To search for n-vertex trees that do not admit an L-shaped embedding in certain
point sets of size n, we formulated a SAT instance to test a given pair of tree and
point set for embeddability; see Sect. 4. The solver found an embedding of all
pairs of trees and point sets up to size n ≤ 11. Moreover, we found a 13-vertex
tree that does not admit an embedding in a particular point set.

Theorem 1 (Computer-assisted). Every tree on n ≤ 11 vertices admits an
L-shaped embedding in every set of n points, hence fd(n) = n for n ≤ 11 and
d ∈ {3, 4}.
Theorem 2. The tree T13 in Fig. 2 does not admit an L-shaped embedding in
the point set P13 shown in the figure, hence f4(13) ≥ 14.

1 Specifically, their counterexample is the 14-vertex caterpillar with 6 vertices on the
spine and a pending edge on each side of the four inner vertices of the spine. The
point set is a (4, 6, 4)-staircase in our terminology (see Definition 1).
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Fig. 2. The tree T13 (left) that does not admit an L-shaped embedding in the staircase
point set P13 (right). Each block of P13 is depicted with a different color. (Color figure
online)

Even though the 13-vertex tree T13 was found using the help of a SAT solver,
a human-verifiable proof of Theorem2 is not hard to obtain; see Sect. 3. Besides
the pair (T13, P13), we also found pairs of trees and point sets that do not admit
an embedding for larger values of n; see the full version [9]. Overall, we found
trees with n ∈ {13, 14, 16, 17, 18, 19, 20} vertices, showing that f4(n) ≥ n + 1 for
those values of n. For n = 15, however, our computer search did not yield any
non-embeddable example. We remark that all known non-embeddable trees are
lobsters (i.e., trees with pathwidth 2) and they contain T13 as a subtree.

As it turns out, the point sets that appear to be difficult for embedding have
a regular staircase shape; see Fig. 2.

Definition 1 (Staircase point set). For any partition n = a1 + . . . + ak

with k, a1, . . . , ak ∈ N, the (a1, . . . , ak)-staircase is the point set consisting of
a sequence of k blocks, ordered from top-left to bottom-right, and the i-th block
contains a sequence of ai points with increasing x- and y-coordinate.

3 Proof of Theorem2

Consider the tree T13 and the point set P13 depicted in Fig. 2. We label the
degree 3 vertex of T13 by Y and the three degree 4 vertices of T13 as X1,X2,X3,
respectively. Moreover, we label the blocks in the (2, 2, 2, 1, 2, 2, 2)-staircase point
set P13 from left to right by B−3, B−2, . . . , B3. Note that T13 is symmetric, as
the removal of Y leaves three isomorphic trees. Moreover, P13 has reflection
symmetries along both diagonals of the grid.

For the sake of contradiction, we assume that an L-shaped embedding of T13

to P13 exists. We first derive three lemmas that capture to which blocks the ver-
tices X1,X2,X3, Y can be mapped in such an embedding, and we then complete
the proof by distinguishing two main cases.

Lemma 1. Neither of the four vertices X1,X2,X3, Y is mapped to B−3 (black)
or to B3 (purple).
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Proof. All points in B−3 and B3 lie on the bounding box of the point set, so if
one of the Xi is mapped onto such a point, then one of the four edges incident
with Xi would leave the bounding box, which is impossible. Moreover, Y cannot
be mapped onto one of these two blocks, as otherwise one of the Xi, which are
the only neighbors of Y in T13, would be mapped onto the other point of that
same block. ��
Lemma 2. Each of the Xi is mapped to a distinct block (distinct color).

Proof. Assume that Xi and Xj are mapped to the same block. By symmetry, we
may assume that Xj is right above Xi, and that Y is right below of Xi and Xj ;
see Fig. 3(a). Note that the edge Y Xi enters Xi from below and the edge Y Xj

enters Xj from the right. As Xi and Xj both have degree 4, and their block only
contains two points, the edge leaving Xi to the right and the edge leaving Xj to
the bottom must cross, a contradiction. ��
Lemma 3. Not all three points X1,X2,X3 lie on the same side (above, below,
left or right) of Y .

Proof. It suffices to prove one of the statements, then the others follow by sym-
metry. Suppose for the sake of contradiction that X1,X2,X3 all lie above Y . As
one edge leaving Y has to go right, one of the Xi, say X3, is mapped to the
same block, and Y is left below of X3 in that block; see Fig. 3(b). Moreover, the
edge Y X3 enters X3 at the bottom. As X3 has degree 4, and each block contains
at most two points, the edge that leaves Y on the top towards X1 or X2 crosses
the edge that leaves X3 to the left, a contradiction. ��

Xi

Xj

Y(a)

X3

Y

X1, X2

(b)

Fig. 3. Illustration of the
proofs of (a) Lemma 2
and (b) Lemma 3. Cross-
ing edges are highlighted
red. (Color figure online)

By Lemmas 1 and 3, Y is mapped to one of the
blocks B−1 (orange), B0 (yellow), or B1 (green). By
Lemma 2 we may assume that X1,X2,X3 appear in dis-
tinct blocks in exactly this order from left to right and
also from top to bottom, and none of them is in B−3

(black) or B3 (purple). Moreover, from Lemma 3 we
conclude that X1 and X3 are in other blocks than Y ,
so at most Y and X2 are in the same block. We now
distinguish two cases.

Case 1: Y and X2 are mapped to the same block. By
symmetry, we may assume that they are mapped to B1

(green) and that X2 lies right above Y . Then the ver-
tex X3 must be mapped to the block B2 (blue); see
Fig. 4(a). If the edge Y X3 would leave Y to the right,
then the edge leaving X2 at the bottom would cross
the edge Y X3. It follows that the edge Y X3 leaves Y
at the bottom and enters X3 from the left. Note that
the edge that leaves X2 to the right can only connect
to a leaf L that is mapped to B2 ∪ B3, and L must
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Y
X2

X3

L

B1

B2

B3

Y

X2

X1

L

(b)(a)

Fig. 4. Illustration of the proof of Theorem 2 in (a) Case 1 and (b) Case 2. (Color
figure online)

be mapped to the right of X3, as otherwise the edges X2L and Y X3 would
cross. The edges leaving X3 at the bottom and right can only connect to points
from B2 ∪ B3, so together with X3 and L we already have four vertices that are
mapped to B2 ∪ B3. Consequently, the edge leaving X3 at the top must connect
to a point outside of B1 ∪B2 ∪B3, and therefore this edge crosses the edge X2L,
a contradiction.

Case 2: Y and X2 are mapped to distinct blocks, so all four points X1,X2,X3, Y
are in different blocks. By symmetry, we assume that X1 and X2 both lie above
and left of Y , and X3 lies below and right of Y . Moreover, we assume that the
edge Y X1 enters X1 from below and that the edge Y X2 enters X2 from the right;
see Fig. 4(b). Note that X2 cannot connect to any points right of Y , and X1 can
only connect to such points by the edge leaving it to the right. As Y is either
mapped to B0 (yellow) or B1 (green), there are at most 7 points left above of Y .
Therefore, as X1 and X2 together with their leaves form a set of 8 points, Y
must be mapped to B1 (green), and exactly one leaf L of X1 is mapped to a
point right of Y , connected to X1 by the edge that leaves X1 to the right. Note
that X2 cannot be mapped to B0 (yellow), as then the edge leaving X2 at the
bottom could not connect to any point without either crossing Y X1 or Y X2.
Consequently, X2 is mapped to B−1 (orange). However, as B−1 and B0 together
contain only 3 points, and X2 together with its leaves form a set of 4 vertices,
at least one of the two edges that leave X2 to the left or top must connect to a
point above or left of X1, and this edge will cross either the edge Y X1 or X1L,
again a contradiction.

In both cases we obtain a contradiction to the assumption that T13 admits an
L-shaped embedding on the point set P13. This completes the proof of Theorem 2.

4 The SAT Model

To test whether a given tree with vertex set {1, . . . , n} admits an L-shaped
embedding on a given point set {P1, . . . , Pn}, we formulated a Boolean satisfia-
bility problem that has a solution if and only if the tree admits an embedding in
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the point set. Our SAT model has variables xi,j to indicate whether the vertex i
is mapped to the point Pj , and for every edge ab in the tree a variable ya,b to
indicate whether the edge is connected horizontally to a (otherwise it is con-
nected vertically to b). The following constraints are necessary and sufficient to
guarantee the existence of an L-shaped embedding:

(i) Injective mapping from vertices to points: Each vertex is mapped to a point,
and no two vertices are mapped to the same point.

(ii) L-shaped edges: For each edge ab of the tree, a is either connected horizon-
tally or vertically to b.

(iii) No overlapping edge segments: For each pair of adjacent edges ab and ac, if b
and c are mapped to the right of a, then a cannot be connected horizontally
to both b and c. An analogous statement holds if b and c are both mapped
to the left, above, or below a.

(iv) No crossing edge segments: For each pair of edges ab and cd, the vertices
a, b, c, d must not be be mapped so that segments cross. More specifically,
for each four points p, q, r, s (to which a, b, c, d may map), there are at most
four cases that have to be forbidden in the mapping, depending on the
relative position of p, q, r, s.

The resulting CNF formula thus has Θ(n2) variables and Θ(n4) clauses.
Our Python program that creates a SAT instance for a given pair of tree and

staircase point set is available online [10]. The resulting instances can be solved,
e.g., using the solver PicoSAT [4].

5 Discussion

Theorems 1 and 2 leave open whether all 12-vertex trees embed in all point sets
of the same size. In our experiments we were only able to test all 12-vertex
trees on certain symmetric point sets of that size. Hence, we would not be sur-
prised if T13 is indeed a minimal non-embeddable example. We currently do not
know of any infinite family of trees which do not always admit an L-shaped
embedding. Moreover, since all examples that we know are lobsters (trees with
pathwidth 2), it would be interesting to know whether caterpillars (trees with
pathwidth 1) always admit an L-shaped embedding. So far we only know of trees
with maximum degree 4 which do not always admit an L-shaped embedding —
the question for trees with maximum degree 3 remains open [5–7]. Kano and
Suzuki [7] even conjectured that f3(n) = n.

A more general class of embeddings are orthogeodesic embeddings, where the
edges are drawn with minimal �1-length and consist of segments along the grid
induced by the point set [2,5,8,11]. The best known bounds are due to Bárány
et al. [2] who showed that every n-vertex tree with maximum degree 4 admits
an orthogeodesic embedding on every point set of size �11n/8	. Unfortunately,
our example T13 allows an orthogeodesic embedding on P13 (see the full ver-
sion [9]), so the question whether n points are always sufficient to guarantee an
orthogeodesic embedding of any n-vertex tree [2,5], is still open.
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Abstract. We study compact straight-line embeddings of trees. We
show that perfect binary trees can be embedded optimally: a tree with
n nodes can be drawn on a

√
n by

√
n grid. We also show that test-

ing whether a given binary tree has an upward embedding with a given
combinatorial embedding in a given grid is NP-hard.

1 Introduction

Let T = (V,E) be combinatorial tree; that is, a connected graph without cycles.
A straight-line embedding of T onto a grid is an injective map f : V → Z

2.
An embedding is planar if for every pair of edges (v1, v2), (w1, w2) ∈ E the
line segments f(v1)f(v2) and f(w1)f(w2) do not intersect except at common
endpoints. The size or dimensions of an embedding (or, with slight abuse of
terminology, the size of the grid) is the width and height of the portion of Z2

used by f ; that is,

dimf (T ) =
(

max
v∈V

xf(v) − min
v∈V

xf(v) + 1,max
v∈V

yf(v) − min
v∈V

yf(v) + 1
)

.

We are interested in finding embeddings with as small a size as possible.
A rooted tree is a tree T with a special vertex r ∈ V marked as root. Because

a tree has no cycles, a rooted tree has an induced partial order on its vertices:
for two vertices v, w ∈ V , we say v ≺ w if and only if v lies on the path from
r to w. An embedding is upward if, for all v, w ∈ V with v ≺ w, we have
yf(v) > yf(w). An embedding is weakly upward if, for all v, w ∈ V with v ≺ w,
we have yf(v) ≥ yf(w).

Related Work. Drawing graphs with small area has a long and rich history [7].
By now, we are starting to have some understanding of when graphs admit
drawings with linear area (a graph with n nodes can be embedded on a w × h
grid with wh ∈ O(n)), and when superlinear area is required. Chan [5] shows
that every tree admits a drawing with n2O(

√
log log n log log log n) area, improving

the long-standing O(n log n) bound one obtains by a simple divide-and-conquer
layout algorithm.
c© Springer Nature Switzerland AG 2018
T. Biedl and A. Kerren (Eds.): GD 2018, LNCS 11282, pp. 361–367, 2018.
https://doi.org/10.1007/978-3-030-04414-5_26
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However, not much is known about the exact minimum area requirements
for graphs that do admit linear-area drawings. It is clear that not every tree
admits a perfect drawing on a grid with exactly n points: for instance, when
the graph is a star, some grid points are “blocked” and cannot be used. The
star graph can be drawn on a linear-area grid: Euler already showed that the
fraction of points visible from the center of a square grid tends to 6

π2 more than
300 years ago [8]. For graphs of bounded degree, there is hope that we can do
better. Clearly, every path admits a perfect drawing. Garg and Rusu [9,10] show
that trees of degree d = O(nδ) with δ < 1/2, and in particular of degree 3, have
linear-area drawings onto a square grid, and even onto grids of different aspect
ratio; their main concern is studying the relation between the aspect ratio and
the area, but they do not give concrete bounds on the constant factor.

We conjecture that every degree 3 tree admits a perfect drawing onto a square
grid, and we prove here that this is the case for perfect binary trees.

When drawing rooted trees, a natural restriction is to require drawings to
be upward. In this case, clearly, perfect drawings are impossible unless the tree
is a path, but we may still investigate almost-perfect drawings that leave only
few grid points unused. Chan [5] shows that for strictly upward drawings, we
cannot do better than Θ(n log n) area. He does give an improved bound for
weakly upward drawings.

Biedl and Mondal [4] proved NP-hardness for strictly upward unordered
straight-line high-degree trees. Later, Biedl [3] gave an algorithm to find for
every ternary tree T a strictly upward order-preserving straight-line grid draw-
ing of optimum width.

Contribution. We have the following results.

– It is NP-hard to test whether binary trees with fixed combinatorial embedding
admit upward drawings on a given grid.

– Perfect binary trees with n vertices admit drawings on a
√

n × √
n grid.

2 Optimal Embeddings of Perfect Binary Trees

We consider the following setting. Given a
√

n × √
n grid and a tree with n

vertices, can we draw it with straight non-crossing edges? Clearly this is not
always possible, for instance if the tree is a star.

Conjecture 1. If the tree has max degree 3, it is always possible.

In particular, if n = 2k+1, a perfect binary tree of odd height k with additional
parent of the root (to make the number of vertices exactly n) can be drawn on the√

n×√
n grid. We use a recursive strategy to show it. Similar approaches recur-

sively embedding trees have been previously used to show asymptotic bounds
(but disregarding smaller order terms); in particular to prove that perfect binary
trees and Fibonacci trees can be upward drawn in linear area [6] and to bound
the area of complete ternary and 7-ary trees on the 8-grid [2].
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Theorem 1. The perfect binary tree on n = 2k+1 − 1 vertices with k odd can
be embedded in the

√
n × √

n square grid.

Proof. We will recursively argue that perfect binary trees can be embedded in
square grids in two ways. Let Tk be the perfect binary tree on n = 2k+1 − 1
vertices. We will recursively define two straight-line crossing-free drawings, Fk

and Gk, of Tk. The vertices in these drawings are placed in the grid points
{(x, y) ∈ Z

2 : 1 ≤ x ≤ 2(k+1)/2, 1 ≤ y ≤ 2(k+1)/2}.
We first list the required properties of Fk and Gk, also illustrated in Fig. 1a:

(i) both Fk and Gk map the root of Tk to the point (2(k−1)/2 + 1, 2(k−1)/2);
(ii) both Fk and Gk do not place any edges in the vertical strip between x =

2(k−1)/2 and x = 2(k−1)/2 + 1, except for the edges incident to the root
of Tk;

(iii) Fk leaves the point (2(k−1)/2, 1) unused; and
(iv) Gk leaves the point (1, 1) unused.

Observe that F1 = G1 is trivial to draw: both are drawings of a path of
length 2, drawn by connecting the point (1, 2) to the point (2, 1) to the point
(2, 2).

What remains is to argue that we can recursively draw Fk and Gk using
drawings of Fk−2 and Gk−2. The argument is illustrated in Fig. 1; the detailed
proof can be found in the full version [1]. �	
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Fig. 1. Recursive embedding of perfect binary trees.
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3 Upward Embedding of Trees in a Given Grid is
NP-Hard

Recall that an embedding of a rooted tree is upward if the y-coordinate of a node
is strictly greater than the y-coordinate of its children. A combinatorial embed-
ding is given by a circular order of incident edges around each vertex. In this
section we show that deciding if a rooted binary tree with a fixed combinatorial
embedding can be drawn upward and without crossings in a given square grid
is NP-complete.

Theorem 2. Deciding whether an upward planar straight-line drawing of a fixed
combinatorial embedding of a rooted binary tree on a grid of given size (w × h)
exists is NP-complete.

Fig. 2. Reduction from 3-SAT. (Color figure online)

Proof. The problem is in NP since a geometric drawing of a tree with k vertices
in the grid can be expressed in O(k) size by assigning vertices to grid points.
Checking whether the drawing is an embedding can trivially be done in O(k2)
time by checking pairwise edge crossings. Checking whether the drawing pre-
serves the given rotation system takes O(k2) time and checking whether it is
upward can be done in O(k) time.
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We prove NP-hardness by a reduction from 3SAT which is an NP-complete
problem [11]. An instance of 3SAT is given by a set {x1, . . . , xn} of n variables
and a set {c1, . . . , cm} of m clauses. Each variable can assume one of two values
in {true, false}. Each clause is defined by 3 literals, i.e., positive or negative
copies of a variable. A clause is satisfied if at least one of its literals is true. The
problem 3SAT asks for an assignment from the variables to {true, false} that
satisfies all clauses. We give an arbitrary order for the variables and say that
xi appears before xj if i < j. The first (resp., second, resp., third) literal of a
clause is the literal (among the 3 literal that define the clause) of the variable
that appears first (resp., second, resp., third) in the order assigned to variables.
Given an instance of 3SAT we build a rooted tree with O(m2 +mn) vertices and
set w = 4m + 4 and h = 
lg(4m + 4)� + 5n + 4m + 1.

Overview. Refer to Fig. 2. This paragraph gives a brief informal overview of
the reduction. The following paragraphs will give a full proof. The reduction is
divided into 3 parts. The top part (spanning the top 
lg(4m+4)� rows in Fig. 2)
is a perfect binary tree with 2�lg(4m+4)�−1 leaves. The middle part (spanning the
next 5n rows in Fig. 2) is where the variables are assigned a boolean value. The
bottom part (spanning the last 4m+1 rows in Fig. 2) enforces that every clause
of the original instance of 3SAT is satisfied. Each variable is represented by a
red subtree with two long paths that have to span all but one row below the
least common ancestor. The left (resp., right) path represents a positive (resp.,
negative) literal of the variable. The construction forces one of the paths to be
drawn one unit above the other and that encodes the boolean assignment. If
the left path does not span the last row, then the variable is set to true. The
variable is set to false otherwise. In Fig. 2, x2 and x3 (resp., x1 and x4) are
set to true (resp., false). The blue subtrees encode the clauses by allowing the
rest of the construction to occupy specific extra grid positions. The incidence
of a variable in a clause is encoded by an extra leaf child in one of the paths
that represent the incident literal corresponding to the variable. If none of the
incident literals of a clause are set to true, the drawing would require the use
of an extra row or column. Otherwise, the extra leaves can be accommodated
exactly by the space provided by the blue subtrees.

Construction. There are exactly 4m+4 subtrees attached to the perfect binary
tree on the top of the construction. The fixed combinatorial embedding prescribes
a left-to-right order of such subtrees. For each variable xi, do the following. Set
the 4(i − 1) + 1-th subtree to be a path p of length 5n + 4m; attach another
path of length 5n + 4m − 5(i − 1) − 4 to the right of the 5(i − 1) + 4-th vertex of
p. Attach a right child to the second to last vertex of p. Set the 4(i − 1) + 2-th
subtree to be a path of length 5(i − 1) + 1. Set the 4(i − 1) + 3-th subtree to be
a path of length 5(i − 1). At the end of the path, attach two paths pt and pf of
length 5(n − i + 1) + 4m − 2 each as left and right subtrees respectively. Attach
a right (resp., left) child to the first vertex of pt (resp., pf ). We now describe
the position of the vertices that encode the incidence of a variable in a clause.
We call such vertices literal leaves. If xi (resp., xi) is the first or second literal
of cj , then add a right child �i,j to the 5(n − i + 1) + 4(m − 1)-th vertex of pt
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(resp., pf ). If xi (resp., xi) is the third literal of cj , then add a left child �i,j to
the 5(n− i+1)+4(m−1)-th vertex of pt (resp., pf ). The 4(i−1)+3-th subtree
is shown in red in Fig. 2. Set the 4(i − 1) + 4-th subtree to be a path of length
5(i− 1). Finally, we describe the four last subtrees (shown in blue in Fig. 2). Set
the 4m + 1-th, 4m + 2-th, and 4m + 3-th subtrees to be paths of length 5n + 4m
each. For every clause cj , attach a right leaf child to the 5n + 4j-th vertex of
the 4m + 3-th subtree. Set the last subtree to be a path of length 5n. For each
variable xi, attach a right leaf child to the 5i − 4-th vertex of the path. This
finalizes the construction.

Correctness. We argue that the construction is correct, by showing that every
satisfiable 3SAT instance can indeed be embedded in a w × h grid, and that
every drawing that fits in a w × h grid must correspond to a satisfiable 3SAT
instance. The details can be found in the full version [1]. �	

4 Conclusions

We studied tree drawings in small areas.
For arbitrary drawings, we gave a construction for embedding a perfect binary

tree on a square grid. The main remaining open question here is whether every
low-degree tree with wh vertices (or fewer) can be embedded on an w × h grid.
We conjecture that this is the case when w = h. Another intriguing question is
whether, for general trees, testing if they can be embedded on a given grid is
computationally tractable.

For upward drawings, we showed that even for bounded-degree trees, testing
whether a given tree can be embedded in a w × h rectangle is already NP-hard,
if the combinatorial embedding of the tree is fixed. It would be interesting to
know whether the same is true when one can freely choose the combinatorial
embedding. Another question is whether the problem is also NP-hard for weakly
upward drawings, where adjacent vertices may be embedded using the same
y-coordinate.
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Abstract. We study the question whether a crossing-free 3D morph
between two straight-line drawings of an n-vertex tree can be constructed
consisting of a small number of linear morphing steps. We look both at
the case in which the two given drawings are two-dimensional and at the
one in which they are three-dimensional. In the former setting we prove
that a crossing-free 3D morph always exists with O(log n) steps, while
for the latter Θ(n) steps are always sufficient and sometimes necessary.
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1 Introduction

A morph between two drawings of the same graph is a continuous transformation
from one drawing to the other. Thus, any time instant of the morph defines a
different drawing of the graph. Ideally, the morph should preserve the properties
of the initial and final drawings throughout. As the most notable example, a
morph between two planar graph drawings should guarantee that every inter-
mediate drawing is also planar; if this happens, then the morph is called planar.

Planar morphs have been studied for decades and find nowadays appli-
cations in animation, modeling, and computer graphics; see, e.g., [11,12]. A
planar morph between any two topologically-equivalent1 planar straight-line2

drawings of the same planar graph always exists; this was proved for maximal
planar graphs by Cairns [8] back in 1944, and then for all planar graphs by
Thomassen [16] almost forty years later. Note that a planar morph between two
planar graph drawings that are not topologically equivalent does not exist.

It has lately been well investigated whether a planar morph between any
two topologically-equivalent planar straight-line drawings of the same planar
graph always exists such that the vertex trajectories have low complexity. This
is usually formalized as follows. Let Γ and Γ ′ be two topologically-equivalent
planar straight-line drawings of the same planar graph G. Then a morph M is a
sequence 〈Γ1, Γ2, . . . , Γk〉 of planar straight-line drawings of G such that Γ1 = Γ ,
Γk = Γ ′, and 〈Γi, Γi+1〉 is a planar linear morph, for each i = 1, . . . , k − 1.
A linear morph 〈Γi, Γi+1〉 is such that each vertex moves along a straight-line
segment at uniform speed; that is, assuming that the morph happens between
time t = 0 and time t = 1, the position of a vertex v at any time t ∈ [0, 1] is
(1 − t)Γi(v) + tΓi+1(v). The complexity of a morph M is then measured by the
number of its steps, i.e., by the number of linear morphs it consists of.

A recent sequence of papers [3–6] culminated in a proof [2] that a planar
morph between any two topologically-equivalent planar straight-line drawings
of the same n-vertex planar graph can always be constructed consisting of Θ(n)
steps. This bound is asymptotically optimal in the worst case, even for paths.

The question we study in this paper is whether morphs with sub-linear com-
plexity can be constructed if a third dimension is allowed to be used. That is:
Given two topologically-equivalent planar straight-line drawings Γ and Γ ′ of the
same n-vertex planar graph G does a morph M = 〈Γ = Γ1, Γ2, . . . , Γk = Γ ′〉
exist such that: (i) for i = 1, . . . , k, the drawing Γi is a crossing-free straight-line
3D drawing of G, i.e., a straight-line drawing of G in R

3 such that no two edges
cross; (ii) for i = 1, . . . , k − 1, the step 〈Γi, Γi+1〉 is a crossing-free linear morph,
i.e., no two edges cross throughout the transformation; and (iii) k = o(n)? A
morph M satisfying properties (i) and (ii) is a crossing-free 3D morph.

1 Two planar drawings of a connected graph are topologically equivalent if they define
the same clockwise order of the edges around each vertex and the same outer face.

2 A straight-line drawing Γ of a graph G maps vertices to points in a Euclidean space
and edges to open straight-line segments between the images of their end-vertices.
We denote by Γ (v) (by Γ (G′)) the image of a vertex v (of a subgraph G′ of G, resp.).
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Our main result is a positive answer to the above question for trees. Namely,
we prove that, for any two planar straight-line drawings Γ and Γ ′ of an n-vertex
tree T , there is a crossing-free 3D morph with O(log n) steps between Γ and Γ ′.
More precisely the number of steps in the morph is linear in the pathwidth of T .
Notably, our morphing algorithm works even if Γ and Γ ′ are not topologically
equivalent, hence the use of a third dimension overcomes another important
limitation of planar two-dimensional morphs. Our algorithm morphs both Γ
and Γ ′ to an intermediate suitably-defined canonical 3D drawing; in order to do
that, a root-to-leaf path H of T is moved to a vertical line and then the subtrees
of T rooted at the children of the vertices in H are moved around that vertical
line, thus resembling a pole dance, from which the title of the paper comes.

We also look at whether our result can be generalized to morphs of crossing-
free straight-line 3D drawings of trees. That is, the drawings Γ and Γ ′ now live
in R

3, and the question is again whether a crossing-free 3D morph between Γ
and Γ ′ exists with o(n) steps. We prove that this is not the case: Two crossing-
free straight-line 3D drawings of a path might require Ω(n) steps to be morphed
one into the other. The matching upper bound can always be achieved: For any
two crossing-free straight-line 3D drawings Γ and Γ ′ of the same n-vertex tree
T there is a crossing-free 3D morph between Γ and Γ ′ with O(n) steps.

The rest of the paper is organized as follows. In Sect. 2 we deal with crossing-
free 3D morphs of 3D tree drawings. In Sect. 3 we show how to construct 2-step
crossing-free 3D morphs between planar straight-line drawings of a path. In
Sect. 4 we present our main result about crossing-free 3D morphs of planar tree
drawings. Finally, in Sect. 5 we conclude and present some open problems.

Because of space limitations, some proofs are omitted or just sketched; they
can be found in the full version of the paper.

2 Morphs of 3D Drawings of Trees

In this section we give a tight Θ(n) bound on the number of steps in a crossing-
free 3D morph between two crossing-free straight-line 3D tree drawings.

Theorem 1. For any two crossing-free straight-line 3D drawings Γ , Γ ′ of an
n-vertex tree T , there exists a crossing-free 3D morph from Γ to Γ ′ that consists
of O(n) steps.

Proof (sketch). The proof is by induction on n. The base case, in which n = 1,
is trivial. If n > 1, then we remove a leaf v and its incident edge uv from T ,
Γ , and Γ ′. This results in an (n − 1)-vertex tree T ′ and two drawings Δ and
Δ′ of it. By induction, there is a crossing-free 3D morph between Δ and Δ′.
We introduce v in such a morph so that it is arbitrarily close to u throughout
the transformation; this significantly helps to avoid crossings in the morph. The
number of steps is the one of the recursively constructed morph plus one initial
step to bring v close to u, plus two final steps to bring v to its final position. ��
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(a) (b)

Fig. 1. Illustration for the proof of Theorem 2: (a) The drawing Γ of P , with n = 26;
(b) the link obtained from Γ ; the invisible edges are dashed.

Theorem 2. There exist two crossing-free straight-line 3D drawings Γ, Γ ′ of an
n-vertex path P such that any crossing-free 3D morph from Γ to Γ ′ consists of
Ω(n) steps.

Before proving Theorem 2, we review some definitions and facts from knot
theory; refer, e.g., to the book by Adams [1]. A knot is an embedding of a circle
S1 in R

3. A link is a collection of knots which do not intersect, but which may
be linked together. For links of two knots, the (absolute value of the) linking
number is an invariant that classifies links with respect to ambient isotopies.
Intuitively, the linking number is the number of times that each knot winds
around the other. The linking number is known to be invariant with respect
to different projections of the same link [1]. Given a projection of the link, the
linking number can be determined by orienting the two knots of the link, and
for every crossing between the two knots in the projection adding +1 or −1 if
rotating the understrand respectively clockwise or counterclockwise lines it up
with the overstrand (taking into account the direction).

Proof (Theorem 2). The drawing Γ of P is defined as follows. Embed the first
�n/2� edges of P in 3D as a spiral of monotonically decreasing height. Embed the
rest of P as a same type of spiral affinely transformed so that it goes around one
of the sides of the former spiral. See Fig. 1a. The drawing Γ ′ places the vertices
of P in order along the unit parabola in the plane y = 0.

Cut the edge joining the two spirals (the bold edge in Fig. 1a). Removing
an edge makes morphing easier so any lower bound would still apply. Now close
the two open curves using two invisible edges to obtain a link of two knots;
see Fig. 1b. It is easy to verify that the (absolute value of the) linking number
of this link is Ω(n2): indeed, determining it by the above procedure for the
projection given by Fig. 1 results in the linking number being equal to the number
of crossings between the two links in this projection. In the drawing Γ ′, each of
the two halves of P (and their invisible edges) are separated by a plane and so
their linking number is 0.

In a valid linear morph, the edges of P cannot cross each other, but they can
cross invisible edges. However, during a linear morph between two straight-line
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3D drawings of a graph G any two non-adjacent edges of G intersect O(1) times.
Thus each invisible edge can only be crossed O(n) times during a linear morph.
A single crossing can only change the linking number by 1. Therefore the linking
number can only decrease by O(n) in a single linear morph. ��

3 Morphing Two Planar Drawings of a Path in 3D

In this section we show how to morph two planar straight-line drawings Γ and
Γ ′ of an n-vertex path P := (v0, . . . vn−1) into each other in two steps.

The canonical 3D drawing of P , denoted by C(P ), is the crossing-free straight-
line 3D drawing of P that maps each vertex vi to the point (0, 0, i) ∈ R

3, as shown
in Fig. 2. We now prove the following.

z = 0
y

x

v2

v7

(a) (b)

2

y

x

v2
z = 0

z z

v0 v1

v2
v7

v0

v1

Fig. 2. (a) A straight-line planar drawing Γ of an n-vertex path P and (b) a morph
from Γ to C(P ). The vertex trajectories are represented by dotted lines.

Theorem 3. For any two planar straight-line drawings Γ and Γ ′ of an n-vertex
path P , there exists a crossing-free 3D morph M = 〈Γ, C(P ), Γ ′〉 with 2 steps.

Proof. It suffices to prove that the linear morph 〈Γ, C(P )〉 is crossing-free, since
the morph 〈C(P ), Γ ′〉 is just the morph 〈Γ ′, C(P )〉 played backwards.

Since 〈Γ, C(P )〉 is linear, the speed at which the vertices of P move is uniform
(though it might be different for different vertices). Thus the speed at which their
projections on the z-axis move is uniform as well. Since vi moves uniformly from
(xi, yi, 0) to (0, 0, i), at any time during the motion (except at the time t = 0) we
have z(v0) < z(v1) < . . . < z(vn−1). Therefore, in any intermediate drawing any
edge (vi, vi+1) is separated from any other edge by the horizontal plane through
one of its end-points. Hence no crossing happens during 〈Γ, C(P )〉. ��
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4 Morphing Two Planar Drawings of a Tree in 3D

Let T be a tree with n vertices, arbitrarily rooted at any vertex. In this section
we show that any two planar straight-line drawings of T can be morphed into one
another by a crossing-free 3D morph with O(log n) steps (Theorem 4). Similarly
to Sect. 3, we first define a canonical 3D drawing C(T ) of T (see Sect. 4.1), and
then show how to construct a crossing-free 3D morph from any planar straight-
line drawing of T to C(T ). We describe the morphing procedure in Sect. 4.2;
then in Sect. 4.3 we present a procedure Space() that carries out the computa-
tions required by the morphing procedure; finally, in Sect. 4.4 we analyze the
correctness and efficiency of both procedures.

Before proceeding, we introduce some necessary definitions and notation. By
a cone we mean a straight circular cone induced by a ray rotated around a fixed
vertical line (the axis) while keeping its origin fixed at a point (the apex) on this
line. The slope φ(C) of a cone C, is the slope of the generating ray as determined
in the vertical plane containing the ray. By a cylinder we always mean a straight
cylinder having a horizontal circle as a base. Such cones or cylinders are uniquely
determined, up to translations, respectively by their apex and slope or by their
height and radius.

For a tree T , let T (v) denote the subtree of T rooted at its vertex v. Also let
|T | denote the number of vertices in T . The heavy-path decomposition [15] of a
tree T is defined as follows. For each non-leaf vertex v of T , let w be the child
of v in T such that |T (w)| is maximum (in case of a tie, we choose the child
arbitrarily). Then (v, w) is a heavy edge; further, each child z of v different from
w is a light child of v, and the edge (v, w) is a light edge. Connected components
of heavy edges form paths, called heavy paths, which may have many incident
light edges. Each path has a vertex, called the head, that is the closest vertex
to the root of T . See Fig. 3 for an example. A path tree of T is a tree whose
vertices correspond to heavy paths in T . The parent of a heavy path P in the
path tree is the heavy path that contains the parent of the head of P . The root
of the path tree is the heavy path containing the root of T . It is well-known [15]
that the height of the path tree is O(log n). We denote by H(T ) the root of the
path tree of T ; let v0, . . . , vk−1 be the ordered sequence of the vertices of H(T ),
where v0 is the root of T . For i = 0, . . . , k − 1, we let v0

i , . . . , v
ti
i be the light

children of vi in any order. Let L(T ) = u0, u1, . . . , ul−1 be the sequence of the
light children of H(T ) ordered so that: (i) any light child of a vertex vj precedes
any light child of a vertex vi, if i < j; and (ii) the light child vj+1

i of a vertex vi
precedes the light child vj

i of vi. When there is no ambiguity we refer to H(T )
and L(T ) simply as H and L, respectively.

4.1 Canonical 3D Drawing of a Tree

We define the canonical 3D drawing C(T ) of a tree T as a straight-line 3D drawing
of T that maps each vertex v of T to its canonical position C(v) defined as follows
(see Fig. 3b). Note that our canonical drawing is equivalent to the “standard”
straight-line upward drawing of a tree [7,9,10].
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Fig. 3. (a) A tree T ; (left) its heavy edges (bold lines) forming the heavy paths
H = H(T ), H0, . . . , H4, and (right) the path tree of T ; (b) C(T ) for the tree T
in (a).

First, we set C(v0) = (0, 0, 0) for the root v0 of T . Second, for each i =
1, . . . , k − 1, we set C(vi) = (0, 0, zi−1 + |T (vi−1)| − |T (vi)|), where zi−1 is the
z-coordinate of C(vi−1). Third, for each i = 1, . . . , k−1 and for each light child vj

i

of vi, we determine C(vj
i ) as follows. If j = 0, we set C(vj

i ) = (1, 0, 1 + zi), where
zi is the z-coordinate of C(vi); otherwise, we set C(vj

i ) = (1, 0, zj−1
i + |T (vj−1

i )|),
where zj−1

i is the z-coordinate of C(vj−1
i ). Finally, in order to determine the

canonical positions of the vertices in T (vj
i ) \ {vj

i }, we recursively construct the
canonical 3D drawing C(T (vj

i )) of T (vj
i ), and translate all the vertices by the

same vector so that vj
i is sent to C(vj

i ).

Remark 1. Notice that the canonical position C(v) of any vertex v of T is
(dpt(v), 0,dfs(v)). Here dpt(v) is the depth, in the path tree of T , of the node
that corresponds to the heavy path of T that contains v; and dfs(v) is the position
of v in a depth-first search on T in which the children of any vertex are visited
as follows: first visit the light children in reverse order with respect to L, and
then visit the child incident to the heavy edge.

The following lemma is a direct consequence of the construction of C(T ).

Lemma 1. The canonical 3D drawing C(T ) of T lies on a rectangular grid in
the plane y = 0, where the grid has height n and width equal to the height
h = O(log n) of the path tree of T . Moreover, C(T ) is on or above the line z = x.

Remark 2. In the above definition of the canonical 3D drawing C(T ), instead
of the heavy-path decomposition of T , we can use the decomposition based on the
Strahler number of T , see [7] where the Strahler number is used under the name
rooted pathwidth of T . With this change, the width of C(T ) will be equal to the
Strahler number of T , which is the instance-optimal width of an upward drawing
of a tree [7]. Moreover, since the Strahler number is linear in the pathwidth of T ,
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so is the width of C(T ) defined this way. This is clearly not worse, and, for some
instances, much better than the width given by the heavy-path decomposition.

In the below description of the morph we use heavy paths, however we can use
the paths given by Remark 2 instead, without any modification.

4.2 The Procedure Canonize(Γ )

Let Γ = Γ (T ) be a planar straight-line drawing of a tree T . Below we give a
recursive procedure Canonize(Γ ) that constructs a crossing-free 3D morph from
Γ to the canonical 3D drawing C(T ). We assume that Γ is enclosed in a disk
of diameter 1 centered at (0, 0, 0) in the plane z = 0, and that the root v0 of
T is placed at (0, 0, 0) in Γ . This is not a loss of generality, up to a suitable
modification of the reference system.

Step 1 (set the pole). The first step of the procedure Canonize(Γ ) aims
to construct a linear morph 〈Γ, Γ1〉, where Γ1 is such that the heavy path
H = (v0, . . . , vk−1) of T lies on the vertical line through Γ (v0) and the sub-
trees of T rooted at the light children of each vertex vi lie on the horizontal
plane through vi. More precisely, the vertices of T are placed in Γ1 as follows.
For i = 0, . . . , k − 1, place vi at the point C(vi). Every vertex that belongs to a
subtree rooted at a light child of vi is placed at a point such that its trajectory
in the morph defines the same vector as the trajectory of vi.3 Below we refer to
Γ1(H) as the pole. The pole will remain still throughout the rest of the morph.

Step 2 (lift). The aim of the second step of the procedure Canonize(Γ ) is to
construct a linear morph 〈Γ1, Γ2〉, where Γ2 is such that the drawings of any two
subtrees T (ui) and T (uj) rooted at different light children ui and uj of vertices in
H are vertically and horizontally separated. The separation between Γ2(T (ui))
and Γ2(T (uj)) is set to be large enough so that the recursively computed morphs
Canonize(Γ2(T (ui))) and Canonize(Γ2(T (uj))) do not interfere with each other.

We describe how to construct Γ2. As anticipated, Γ2(vi) = Γ1(vi), for each
vertex vi in H. In order to determine the placement of the vertices not in H
we use l cones C in

u0
, . . . ,C in

ul−1
and l cones Cout

u0
, . . . ,Cout

ul−1
, namely one cone

C in
ut

and one cone Cout
ut

per vertex ut in L. We also use, for each ut, a cylinder
Space(Γ2(T (ut))) that bounds the volume used by Canonize(Γ2(T (ut))). We
defer the computation of these cones and cylinders to Sect. 4.3, and for now
assume that they are already available. For each t = 0, . . . , l−1 and for each j =
0, . . . , t − 1, assume that Γ2(T (uj)) has been computed already – this is indeed
the case when t = 0. Let Pt be the horizontal plane z = |T | − 1 +

∑t−1
j=0 h(uj),

where h(uj) is the height of the cylinder Space(Γ2(T (uj))). The drawing Γ2 maps
the subtree T (ut) to the plane Pt, just outside the cone C in

ut
and just inside the

3 Since the morph 〈Γ, Γ1〉 is linear, the trajectory of any vertex v is simply the line
segment connecting the positions of v in Γ and in Γ1. To define a vector, we orient
the segment towards the position of v in Γ1.
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cone Cout
ut

. See Fig. 4. We proceed with the formal definition of Γ2. Let v be any
vertex of T (ut) and let (vx, vy, vz) be the coordinates of Γ1(v). Then Γ2(v) is
the point (vx rt

r , vy
rt
r , zt). Here zt is the height of the plane Pt, rt is the radius

of the section of C in
ut

by the plane Pt, and r is the distance from Γ1(vi) to its
closest point of the drawing Γ1(T (ut)), where vi is the parent of ut. See Fig. 4.
Note that the latter closest point can be a point on an edge.

v1

v2

u3

u0

u2

u1

v4

u3
u2

u3

C in
u0

C in
u1

z

x
yv0

v4

i

v2v2u0
v3

Fig. 4. The vertices v0, v1, v2, v3, v4 are in the heavy path H of T . The lower gray disk
has its center at v1 and has radius equal to the distance from Γ1(vi) to its closest point
in Γ1(T (u1)). Blue arrows show the mapping of vertices in subtrees T (u0) and T (u1).

Step 3 (recurse). For each ut ∈ L, we make a recursive call Canonize(Γ2(T (ut))).
The resulting morphs are combined into a unique morph 〈Γ2, . . . , Γ3〉, whose
number of steps is equal to the maximum number of steps in any of the recur-
sively computed morphs. Indeed, the first step of 〈Γ2, . . . , Γ3〉 consists of the
first steps of all the recursively computed morphs that have at least one step;
the second step of 〈Γ2, . . . , Γ3〉 consists of the second steps of all the t recursively
computed morphs that have at least two steps; and so on.

Step 4 (rotate, rotate, rotate). The next morph transforms Γ3 into a drawing Γ4

such that each vertex ut ∈ L is mapped to the intersection of the cone C in
ut

, the
planes y = 0, Pt, and the half-space x > 0. Note that going from Γ3 to Γ4 in
one linear crossing-free 3D morph is not always possible. Refer to Lemma 2 for
the implementation of the morph from Γ3 to Γ4 in O(1) steps. After Step 4 the
whole drawing lies on the plane y = 0.

Step 5 (go down). This step consists of a single linear morph 〈Γ4, Γ5〉, where Γ5

is defined as follows. For every vertex vi in H, Γ5(vi) = Γ4(vi); further, for every
vertex ut ∈ L, all the vertices of T (ut) have the same x- and y-coordinates in Γ5

as in Γ4, however their z-coordinate is decreased by the same amount so that ut

lies on the horizontal plane through C(ut).
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Step 6 (go left). The final part of our morphing procedure consists of a single
linear morph 〈Γ5, Γ6〉, where Γ6 is the canonical 3D drawing C(T ) of T . Note
that this linear morph only moves the vertices horizontally.

4.3 The Procedure Space(Γ )

In this section we give a procedure to compute the cylinders and the cones which
are necessary for Steps 2 and 4 of the procedure Canonize(Γ ).

We fix a constant c ∈ R with c > 1, which we consider global to the pro-
cedure Canonize(Γ ) and its recursive calls; below we refer to c as the global
constant. The global constant c will help us to define the cones so that Step 4 of
Canonize(Γ ) can be realized with O(1) linear morphs, see Lemma 2.

The procedure Space(Γ ) returns a cylinder that encloses all the intermediate
drawings of the morph determined by Canonize(Γ ). At the same time, Space(Γ )
determines the cones C in

ut
and Cout

ut
for every vertex ut ∈ L.

We now describe Space(Γ ). Let Γ1 be the result of the application of Step 1
of Canonize(Γ ). Figure 5 illustrates our description.

If T is a path, i.e., T = H, return the cylinder of height |T | − 1 and radius 1.
In particular, if T is a single vertex, return the disk of radius 1. Otherwise,
construct the cylinder and the cones in the following fashion:

– Set the current cone C to be an infinite cone of slope 1. The apex of C is
determined as follows: starting with the apex being at the highest point of
the pole, slide C vertically downwards until it touches the drawing Γ1(T (u0)).
That is, the apex of C is at the lowest possible position on the pole such that
the whole drawing Γ1(T (u0)) is outside of C. See Fig. 5a.

– Set the current height h to be |T | − 1.
– Iterate through the light children of H in the order as they appear in L. For

every ut in L:
• Set C in

ut
to be the current cone C.

• Add the height of Space(Γ2(T (ut))) to the current height h.
• Let C ′ be the cone with the same apex as C and with a slope defined

so that the drawing Γ1(T (ut)) is in-between C and C ′, and C is
well-separated from C ′ with the global constant c. That is, φ(C ′) =
min (φ(C)/Sp(ut, Γ1), φ(C)/c), where Sp(ut, Γ1) is the spread of the
drawing Γ1(T (ut)) with respect to the parent vi of ut in H. Namely
Sp(ut, Γ1) is the ratio between the outer and the inner radius of the min-
imum annulus centered at vi and enclosing the drawing Γ1(T (ut)). See
Fig. 5a.

• Let St be the cylinder Space(Γ2(T (ut))) translated so that the center of
its lower base is at the point Γ2(ut).

• Decrease φ(C ′) so that C ′ encloses the entire cylinder St.
• Set Cout

ut
to be the cone C ′.

• If ut is not the last element of L (i.e., t < l − 1), then let ut = vj
i and

define an auxiliary cone C̃ as follows. The apex of C̃ is at Γ1(vx) where
vx is the parent of ut+1; note that vx = vi iff j > 0. The slope of C̃ is the
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maximum slope that satisfies the following requirement: (i) the slope of
C̃ is at most the slope of C ′. In addition, only for the case when vx = vi,
we require: (ii) in the closed half space z ≤ h, the portion of C̃ encloses
the portion of C ′. See Fig. 5b. Update the cone C to be the lowest vertical
translate of C̃ so that Γ1(T (ut+1)) is still outside the cone.

– Return the cylinder of height h (the current height), and radius equal to the
radius of the section of the current cone C cut by the plane z = h.

4.4 Correctness of the Morphing Procedure

In this section, we analyze the correctness and the efficiency of the procedure
Canonize(Γ ) (see Theorem 4) and we give the details of Step 4 (see Lemma 2).

(a)

C C ′z
CC̃ C ′

TranslatedTT C ′

vk

St

(b)

Fig. 5. Illustration for Space(Γ ): (a) construction of C and C′; (b) construction of C̃.

Fig. 6. (a) Annuli for the subtrees rooted at u0 and u1; (b) top view of the annuli.

Lemma 2. Step 4 of the procedure Canonize(Γ ) can be realized as a crossing-
free 3D morph whose number of steps is bounded from above by a constant that
depends on the global constant c.
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Proof. Let At be the annulus formed by the section of C in
ut

and Cout
ut

cut by the
plane Pt. See Fig. 6. The morph performed in Step 4 consists of a sequence of
linear morphs; in each of these morphs all the vertices of T (ut) are translated
by the same vector. This is done so that ut stays in At during the whole Step
4. Thus, the trajectory of ut during Step 4 defines a polygon inscribed in At.
Since the ratio between the outer and the inner radius of At is at least the global
constant c, we can inscribe a regular O(1)-gon in At, and the trajectory of ut can
be defined so that it follows this O(1)-gon plus at most one extra line segment.

We now prove that since each ut ∈ L stays in At, all the steps of the above
morph are crossing-free. Recall that at any moment during the morph, the draw-
ing of T (ut) is a translation of the canonical 3D drawing C(T (ut)). By Lemma 1,
the space below the line of slope 1 passing through ut in plane y = 0 does not
contain any point of C(T (ut)). Since the slope of Cout

ut
is at most 1, the drawing

of T (ut) is enclosed in Cout
ut

as long as ut is in At. By conditions (i) and (ii) of
Space(Γ ), the cone C in

ut+1
encloses Cout

ut
in the closed half-space above Pt. Hence

the edge connecting ut+1 to the pole never touches Cout
ut

above Pt. ��
Theorem 4. For any two plane straight-line drawings Γ, Γ ′ of an n-vertex tree
T , there exists a crossing-free 3D morph from Γ to Γ ′ with O(log n) steps.

Proof (sketch). A 3D morph from Γ to Γ ′ can be constructed as the concate-
nation of Canonize(Γ ) with the reverse of Canonize(Γ ′). Hence, it suffices to
prove that Canonize(Γ ) is a crossing-free 3D morph with O(log n) steps.

It is easy to see that Steps 1, 5, and 6 of Canonize(Γ ) are crossing-free linear
morphs. The proof that Step 2 is a crossing-free linear morph is more involved.
In particular, for any two light children us and ut with s < t of the same vertex
vi of H, the occurrence of a crossing between the edge vius and an edge of T (ut)
during Step 2 can be ruled out by arguing that the same two edges would also
cross in Γ1; this argument exploits the uniformity of the speed in a linear morph
and that the horizontal component of the morph of Step 2 is a uniform scaling.
Lemma 2 ensures that Step 4 is a crossing-free 3D morph with O(1) steps. Thus,
Steps 1, 2, 4, 5, and 6 require a total of O(1) steps. Since the number of morphing
steps of Step 3 of Canonize(Γ ) is equal to the maximum number of steps of any
recursively computed morph and since, by definition of heavy path, each tree
T (ut) for which a recursive call Canonize(Γ2(T (ut))) is made has at most n/2
vertices, it follows that Canonize(Γ ) requires O(log n) steps. ��

5 Conclusions and Open Problems

In this paper we studied crossing-free 3D morphs of tree drawings. We proved
that, for any two planar straight-line drawings of the same n-vertex tree, there
is a crossing-free 3D morph between them which consists of O(log n) steps.

This result gives rise to two natural questions. First, is it possible to bring
our logarithmic upper bound down to constant? In this paper we gave a positive
answer to this question for paths. In fact our algorithm to morph planar straight-
line tree drawings has a number of steps which is linear in the pathwidth of the
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tree (see Remark 2), thus for example it is constant for caterpillars. Second, does
a crossing-free 3D morph exist with o(n) steps for any two planar straight-line
drawings of the same n-vertex planar graph? The question is interesting to us
even for subclasses of planar graphs, like outerplanar graphs and planar 3-trees.

We also proved that any two crossing-free straight-line 3D drawings of an
n-vertex tree can be morphed into each other in O(n) steps; such a bound is
asymptotically optimal in the worst case. An easy extension of our results to
graphs containing cycles seems unlikely. Indeed, the existence of a deterministic
algorithm to construct a crossing-free 3D morph with a polynomial number
of steps between two crossing-free straight-line 3D drawings of a cycle would
imply that the unknot recognition problem is polynomial-time solvable. The
unknot recognition problem asks whether a given knot is equivalent to a circle
in the plane under an ambient isotopy. This problem has been the subject of
investigation for decades; it is known to be in NP [13] and in co-NP [14], however
determining whether it is in P has been an elusive goal so far.
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Abstract. We prove that the following problem is complete for the exis-
tential theory of the reals: Given a planar graph and a polygonal region,
with some vertices of the graph assigned to points on the boundary of
the region, place the remaining vertices to create a planar straight-line
drawing of the graph inside the region. A special case is the problem of
extending a partial planar graph drawing, which was proved NP-hard
by Patrignani. Our result is one of the first showing that a problem of
drawing planar graphs with straight-line edges is hard for the existential
theory of the reals. The complexity of the problem is open for a simply
connected region.

We also show that, even for integer input coordinates, it is possible
that drawing a graph in a polygonal region requires some vertices to be
placed at irrational coordinates. By contrast, the coordinates are known
to be bounded in the special case of a convex region, or for drawing a
path in any polygonal region.

1 Introduction

There are many examples of structural results on graphs leading to beautiful and
efficient geometric representations. Two highlights are: Tutte’s polynomial-time
algorithm [31] to draw any 3-connected planar graph with convex faces inside
any fixed convex drawing of its outer face; and Schnyder’s tree realizer result [28]
that provides a drawing of any n-vertex planar graph on an n × n grid.

On the other hand, there are geometric representations that are intractable,
either in terms of the required coordinates or in terms of computation time.
As an example of the former, a representation of a planar graph as touching
disks (Koebe’s theorem) is not always possible with rational numbers, nor even
with roots of low-degree polynomials [5]. As an example of the latter, Patrignani
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considered a generalization of Tutte’s theorem and proved that it is NP-hard
to decide whether a graph has a straight-line planar drawing when part of the
drawing is fixed [25]. He was unable to show that the problem lies in NP because
of coordinate issues.

This, and many other geometric problems, most naturally lie not in NP, but
in a larger class, ∃R, defined by formulas in existentially quantified real (rather
than Boolean) variables. Showing that a geometric representation problem is
complete for ∃R is a stronger intractability result, often implying lower bounds on
coordinate sizes. For example, McDiarmid and Müller [20] showed that deciding
if a graph can be represented as intersecting disks is ∃R-complete. The relaxation
from touching disks (Koebe’s theorem) to intersecting disks implies that disk
centers and radii can be restricted to integers, but McDiarmid and Müller show
that an exponential number of bits may be required.

In this paper we prove that an extension of Tutte’s problem is ∃R-complete.
We call it the “Graph in Polygon” problem. See Fig. 1. The input is a graph
G and a closed polygonal region R (not necessarily simply connected), with
some vertices of G assigned fixed positions on the boundary of R. The question
is whether G has a straight-line planar drawing inside R respecting the fixed
vertices. We regard the region R as a closed region which means that boundary
points of R may be used in the drawing. A straight-line planar drawing (see
Fig. 2(a, b)) means that vertices are represented as distinct points, and every
edge is represented as a straight-line segment joining its endpoints, and no two
of the closed line segments intersect except at a common vertex. (In particular,
no vertex point may lie inside an edge segment, and no two segments may cross.)

Fig. 1. The Graph in Polygon problem. Left: a polygonal region with one hole and a
graph to be embedded inside the region. The three vertices on the boundary are fixed;
the others are free. Right: a straight-line embedding of the graph in the region. Note
that we allow an edge of the drawing (in red) to include points of the region boundary.
(Color figure online)

Furthermore, we give a simple instance of Graph in Polygon with integer
coordinates where a vertex of G may need irrational coordinates in any solution,
thus defeating the naive approach to placing the problem in NP.

The Graph in Polygon problem is a very natural one that arises in prac-
tical applications such as dynamic and incremental graph drawing. Questions
of the coordinates (or grid size) required for straight-line planar drawings of
graphs are fundamental and well-studied [33]. It is surprising that a problem as
simple and natural as Graph in Polygon is so hard and requires irrational
coordinates.
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We state our results below, but first we give some background on existential
theory of the reals and on relevant graph drawing results. In particular, we
explain that our problem is a generalization of the problem of extending a partial
drawing of a planar graph to a straight-line drawing of the whole graph, called
Partial Drawing Extensibility. See Fig. 2(c, d).

(a) (b) (c) (d) (e)

s
t

Fig. 2. (a) A planar graph G. (b) a straight-line drawing of G. (c) a partial drawing Γ
of G. (d) extension of Γ to a straight-line drawing of G. (e) A minimum-link s-t path
in a polygonal region.

Existential Theory of the Reals. In the study of geometric problems, the com-
plexity class ∃R plays a crucial role, connecting purely geometric problems and
real algebra. Whereas NP is defined in terms of Boolean formulas in existentially
quantified Boolean variables, ∃R deals with first-order formulas in existentially
quantified real variables.

Consider a first-order formula over the reals that contains only existen-
tial quantifiers, ∃x1, x2, . . . , xn : Φ(x1, x2, . . . , xn), where x1, x2, . . . , xn are real-
valued variables and Φ is a quantifier-free formula involving equalities and
inequalities of real polynomials. The Existential Theory of the Reals

(ETR) problem takes such a formula as an input and asks whether it is satisfi-
able. The complexity class ∃R consists of all problems that reduce in polynomial
time to ETR. Many problems in combinatorial geometry and geometric graph
representation naturally lie in this class, and furthermore, many have been shown
to be ∃R-complete, e.g., stretchability of a pseudoline arrangement [19,23,27],
recognition of segment intersection graphs [17] and disk intersection graphs [20],
computing the rectilinear crossing number of a graph [6], etc. For surveys on
∃R, see [8,19,26]. A recent proof that the Art Gallery Problem is ∃R-
complete [2] provides the framework we follow in our proof.

Planar Graph Drawing. The field of Graph Drawing investigates many ways
of representing graphs geometrically [24], but we focus on the most basic repre-
sentation of planar graphs, with points for vertices and straight-line segments
for edges, such that segments intersect only at a common endpoint. By Fáry’s
theorem [12], every planar graph admits such a straight-line planar drawing.

In Tutte’s famous paper, “How to Draw a Graph,” he gave a polynomial time
algorithm to find a straight-line planar drawing of a graph by first augmenting
to a 3-connected graph. Given a combinatorial planar embedding (a specification
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of the faces) of a 3-connected graph and given a convex polygon drawing of the
outer face of the graph, his algorithm produces a planar straight-line drawing
respecting both by reducing the problem to solving a linear system involving
barycentric coordinates for each internal vertex. Tutte proved that the linear
system has a unique solution and that the solution yields a drawing with convex
faces. The linear system can be solved in polynomial time. For a discussion of
coordinate bit complexity see Sect. 4.

There is a rich literature on implications and variations of Tutte’s result. We
concentrate on the aspects of drawing a planar graph in a constrained region,
or when part of the drawing is fixed. (We leave aside, for example, the issue of
drawing graphs with convex faces, which also has an extensive literature.)

Our focus will be on straight-line planar graph drawings, but it is worth
mentioning that without the restriction to straight-line drawings, the problem
of finding a planar drawing of a graph (with polygonal curves for edges) in a con-
strained region is equivalent to the problem of extending a partial planar drawing
(with polygonal curves for edges), and there is a polynomial time algorithm for
the decision version of the problem [3]. Furthermore, there is an algorithm to
construct such a drawing in which each edge is represented by a polygonal curve
with linearly many segments [10].

For the rest of this paper we assume straight-line planar drawings, which
makes the problems harder. The problem of drawing a graph in a con-
strained region is formalized as Graph in Polygon, defined above, and
more precisely in Subsect. 1.1. The problem of finding a planar straight-
line drawing of a graph after part of the drawing has been fixed is called
Partial Drawing Extensibility in the literature—its complexity was for-
mulated as an open question in [7].

The relationship between the two problems is that Graph in Polygon gen-
eralizes Partial Drawing Extensibility, as we now argue. Given an instance
of partial drawing extensibility, for graph G with fixed subgraph H, we construct
an instance of Graph in Polygon by making a point hole for each vertex
of H and assigning the vertex to the point. Then an edge of H can only be
drawn as a line segment joining its endpoints, so we have effectively fixed H.
To complete the bounded region R, we enclose the point holes in a large box.
Clearly, we now have an instance of Graph in Polygon, and that instance
has a solution if and only if G has a planar straight-line drawing that extends
the drawing of H. There is no easy reduction in the other direction because
Graph in Polygon involves a closed polygonal region, so an edge may be
drawn as a segment that touches, or lies on, the boundary of the region, and
it is not clear how to model this as Partial Drawing Extensibility. How-
ever, the version of Graph in Polygon for an open region is equivalent to
Partial Drawing Extensibility.

We now summarize results on Partial Drawing Extensibility, begin-
ning with positive results. Besides Tutte’s result that a convex drawing of the
outer face can always be extended, there is a similar result for a star-shaped
drawing of the outer face [14]. There is also a polynomial-time algorithm to
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decide the case when a convex drawing of a subgraph is fixed [21]. Urhausen [32]
examined the case when a star-shaped drawing of one cycle in the graph is given,
and proved that there always exists an extension with at most one bend per edge.
Gortler et al. [13] gave an algorithm, extending Tutte’s algorithm, that succeeds
in some (not well-characterized) cases for a simple non-convex drawing of the
outer face. The Partial Drawing Extensibility problem was shown to be
NP-hard by Patrignani [25]. This implies that Graph in Polygon is NP-hard.
However, there are two natural questions about partial drawing extensibility that
remain open: (a) does the problem belong to the class NP (discussed in detail by
Patrignani [25]), and (b) does the problem remain NP-hard when a combinato-
rial embedding of the graph is given and must be respected in the drawing. Our
results shed light on these questions for the more general Graph in Polygon

problem: the problem cannot be shown to lie in NP by means of giving the vertex
coordinates, and the problem is still ∃R-hard when a combinatorial embedding
of the graph is given.

Besides Tutte’s result, there is another special case of Graph in Polygon

that is well-solved, namely when the graph is just a path with its two endpoints
s and t fixed on the boundary of the region. See Fig. 2(e). This problem is
equivalent to the Minimum Link Path problem—to find a path from s to t
inside the region with a minimum number of segments. This is because a path of
k edges can be drawn inside the region if and only if the minimum link distance
between s and t is less than or equal to k. Minimum link paths in a polygonal
region can be found in polynomial time [22], and in linear time for a simple
polygon [29]. The complexity of the coordinates is well-understood (see Sect. 4).

1.1 Our Contributions

Our problem is defined as follows.

Graph in Polygon
Input: A planar graph G and a polygonal region R with some vertices of G
assigned to fixed positions on the boundary of R.
Question: Does G admit a planar straight-line drawing inside R respecting
the fixed vertices?

The graph may be given abstractly, or via a combinatorial embedding which
specifies the cyclic order of edges around each vertex, thus determining the faces
of the embedding. When a combinatorial embedding is specified then the final
drawing must respect that embedding.

Note that we regard R as a closed region. Thus, points on the boundary of
R may be used in the drawing of G. In particular, an edge of G may be drawn
as a segment that touches, or lies on, the boundary of R. See Fig. 1. Note that
we still require the drawing of G to be “simple” in the conventional sense that
no two edge segments may intersect except at a common endpoint.
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Our first result is that solutions to Graph in Polygon may involve irra-
tional points. This will in fact follow from the proof of our main hardness result,
but it is worth seeing a simple example.

Theorem 1. There is an instance of Graph in Polygon with all coordinates
given by integers, in which some vertices need irrational coordinates.

Note that the theorem does not rule out membership of the problem in NP,
since it may be possible to demonstrate that a graph can be drawn in a region
without giving explicit vertex coordinates. We prove Theorem 1 by adapting an
example from Abrahamsen, Adamaszek and Miltzow [1] that proves a similar
irrationality result for the Art Gallery Problem. Further discussion of bit
complexity for special cases of the problem can be found in Sect. 4.

Our main result is the following, which holds whether the graph is given
abstractly or via a combinatorial embedding.

Theorem 2. Graph in Polygon is ∃R-complete.

We prove Theorem 2 using a reduction from a problem called ETR-INV
which was introduced and proved ∃R-complete by Abrahamsen, Adamaszek and
Miltzow [2].

Definition 1 (ETR-INV). In the problem ETR-INV, we are given a set of
real variables {x1, . . . , xn}, and a set of equations of the form x = 1, x + y =
z, x ·y = 1, for x, y, z ∈ {x1, . . . , xn}. The goal is to decide whether the system
of equations has a solution when each variable is restricted to the range [1/2, 2].

Reducing from ETR-INV, rather than from ETR, has several crucial advan-
tages. First, we can assume that all variables are in the range [1/2, 2]. Second,
we do not have to implement a gadget that simulates multiplication, but only
inversion, i.e., x ·y = 1. For our purpose of reducing to Graph in Polygon, we
will find it useful to further modify ETR-INV to avoid equality and to ensure
planarity of the variable-constraint incidence graph, as follows:

Definition 2 (Planar-ETR-INV*). In the problem Planar-ETR-INV∗, we
are given a set of real variables {x1, . . . , xn}, and a set of equations and inequal-
ities of the form x = 1, x + y ≤ z, x + y ≥ z, x · y ≤ 1, x · y ≥ 1, for x, y, z ∈
{x1, . . . , xn}. Furthermore, we require planarity of the variable-constraint inci-
dence graph, which is the bipartite graph that has a vertex for every variable and
every constraint and an edge when a variable appears in a constraint. The goal
is to decide whether the system of equations has a solution when each variable
is restricted to lie in [1/2, 4].

As a technical contribution, we prove the following.

Theorem 3. Planar-ETR-INV∗ is ∃R-complete.

The proof, which is in the long version [18], builds on the work of Dobbins,
Kleist, Miltzow and Rz ↪ażewski [11] who showed that ETR-INV is ∃R-complete
even when the variable-constraint incidence graph is planar. We cannot use their
result directly, but follow similar steps in our proof.
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2 Irrational Coordinates

Theorem 1. There is an instance of Graph in Polygon with all coordinates
given by integers, in which some vertices need irrational coordinates.

In fact, the result follows from our proof of Theorem 2, but it is interesting
to have a simple explicit example, which is given in Fig. 4. This example is
adapted from a result of Abrahamsen et al. [1]. Details can be found in the
long version [18], but we outline the idea here. Abrahamsen et al. studied the
Art Gallery Problem, where given a polygon P and a number k, and we
want to find a set of at most k guards (points) that together see the entire
polygon. We say a guard g sees a point p if the entire line-segment gp is contained
inside the polygon P . Abrahamsen et al. gave a simple polygon with integer
coordinates such that there exists only one way to guard it optimally, with
three guards. Those guards have irrational coordinates. See Fig. 3 for a sketch of
their polygon. A key ingredient of their construction is to create notches in the
polygon boundary that force there to be a guard on each of the three so-called
guard segments. The coordinates of the polygon then force the guards to be at
irrational points.

a

x

y
z

Fig. 3. A sketch of the polygon from Abrahamsen et al. the three guards (black dots)
must lie on the guard segments (dashed lines).

We adapt their example by using variable segments (shown in green) instead
of guard segments, and vertices instead of guards. By placing notches in the poly-
gon boundary with fixed vertices of the graph in the notches, we can force there
to be a vertex on each variable segment. We create two cycles that replicate the
guarding constraints, and use a hole in order to keep our graph drawing planar.
From their proof we show that x′, y′ and z′ must be at irrational coordinates.

3 ∃R-completeness

Theorem 2. Graph in Polygon is ∃R-complete.



394 A. Lubiw et al.

Proof. First note that Graph in Polygon lies in ∃R since we can express it
as an ETR formula. To prove that the problem is ∃R-hard we give a reduction
from Planar-ETR-INV∗. Let I be an instance of Planar-ETR-INV∗. We will
build an instance J of Graph in Polygon such that J admits an affirmative
answer if and only if I is satisfiable. The idea is to construct gadgets to rep-
resent variables, and gadgets to enforce the addition and inversion inequalities,
x+y ≤ z, x+y ≥ z, x·y ≤ 1, x·y ≥ 1. We also need gadgets to copy and replicate
variables—“wires” and “splitters” as conventionally used in reductions. There-
after, we have to describe how to combine those gadgets to obtain an instance
J of Planar-ETR-INV∗.

Encoding Variables. We will encode the value of a variable in [1/2, 4] as the
position of a vertex that is constrained to lie on a line segment of length 3.5,
which we call a variable-segment. One end of a variable-segment encodes the
value 1

2 , the other end encodes the value 4, and linear interpolation fills in the
values between. Figure 5 shows one side of the construction that forces a vertex
to lie on a variable-segment. The other side is similar.

a′

x′
y′

z′
x′ y′ z′

a′

Fig. 4. Left: an instance of Graph in Polygon based on Fig. 3 that requires vertices
at irrational coordinates. Right: the graph, with small dots indicating the fixed vertices.

1
2

a

b

p v s

Fig. 5. Variable v is represented as a point on variable-segment s (shown in green).
The construction of one end of s is illustrated. In the graph, vertex v is adjacent to
fixed vertices a and b on the boundary of a hole of the region (shaded). Adjacency with
a forces v to lie on the line of s. Adjacency with b forces v to lie at, or to the right
of, point p which is associated with the value 1/2. Note that p is not a vertex. (Color
figure online)
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By slight abuse of notation, we will identify a variable and the vertex repre-
senting it, if there is no ambiguity. For the description of the remaining gadgets,
our figures will show variable-segments (in green) without showing the polygonal
holes that determine them.

x y

z1

z2

4

4

4

4

1
2

1
2

1
2

1
2

x

x

1
2

1
24

4

Fig. 6. Copying. Left: a gadget to enforce x ≤ x′. Right: the full gadget enforcing x = y.

Copy Gadget. Given a variable-segment for a variable x, we will need to
transmit its value along a “wire” to other locations in the plane. We do this
using a copy gadget in which we construct a variable-segment for a new vari-
able y and enforce x = y. We show how to construct a gadget that ensures
x ≤ x′ for a new variable x′, and then combine four such gadgets, enforcing
x ≤ z1, z1 ≤ y, x ≥ z2, z2 ≥ y. This implies x = y.

The gadget enforcing x ≤ x′ is shown at the left of Fig. 6. It consists of two
parallel variable-segments. In general, these two segments need not be horizon-
tally aligned. In the graph we connect the corresponding vertices by an edge.
The left and the right variables are encoded in opposite ways, i.e., x increases
as the vertex moves up and x′ increases as the corresponding vertex goes down.
We place a hole of the polygonal region (shaded in the figure) with a vertex at
the intersection point of the lines joining the top of one variable-segment to the
bottom of the other. The hole must be large enough that the edge from x to x′

can only be drawn to one side of the hole. An argument about similar triangles,
or the “intercept theorem”, also known as Thales’ theorem, implies x ≤ x′.

We combine four of these gadgets to construct our copy gadget, as illustrated
on the right of Fig. 6.

Splitter Gadget. Since a single variable may appear in several constraints, we
may need to split a wire into two wires, each holding the correct value of the
same variable. Figure 7 shows a gadget to split the variable x to variables y1 and
y2. The gadget consists of two copy gadgets sharing the variable-segment for x.
We can construct the two copy gadgets to avoid any intersections between them.
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x

y1 y2

Fig. 7. Splitting. The variables y1, y2 have both the same value as x.

Turn Gadget. We need to encode a variable both as a vertical and as a hori-
zontal variable-segment. To transform one into the other we use a turn gadget.

x

y

z1

z2

1
2 4

1
2

4

x

z1
2

4

y

z

1
2 4

Fig. 8. Turning. Left: gadget to encode x ≤ f(z). Middle: symmetric gadget to encode
y ≥ f(z). Right: four gadgets of the previous type combined to enforce x = y, for x
and y on a vertical and horizontal variable-segment, respectively.

The key idea is to construct two diagonal variable-segments for variables
z1 and z2, and then transfer the value of the vertical variable-segment to the
horizontal variable-segment using z1, z2. This is in fact very similar to the copy
gadget, except that the intermediate variable-segments are placed on a line of
slope 1. We do not know if it is possible to enforce the constraint x ≤ z directly.
However, it is sufficient to enforce x ≤ f(z) for some function f . See the left side
of Fig. 8. Interestingly, we don’t even know the function f . However, we do know
that f is monotone and we can construct another gadget enforcing y ≥ f(z),
for the same function f , by making another copy of the first gadget reflected
through the line of the variable-segment for z.

Combining four such gadgets, as on the right of Fig. 8, yields the following
inequalities: x ≤ f1(z1), f1(z1) ≤ y, y ≤ f2(z2), f2(z2) ≤ x. This implies x = y.

Addition Gadget. The gadget to enforce x + y ≥ z is depicted in Fig. 9.
Important for correctness is that the gaps between the dotted auxiliary lines have
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x y
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4 4
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1
2

1
2

1
2

4

Fig. 9. Addition. The three vertices x, y, z can only be connected to u if x + y ≥ z
holds.

equal lengths. This is essentially the same gadget that was used by Abrahamsen
et al. [2, Lemma 31]. An alternative proof can be found in the long version [18].

Lemma 1 ([2]). The gadget in Fig. 9 enforces x + y ≥ z.

The gadget that enforces x + y ≤ z is just a mirror copy of the previous gadget.

Inversion Gadget. The inversion gadgets to enforce x · y ≤ 1 and x · y ≥ 1 are
depicted in Fig. 10. We use a horizontal variable-segment for x and a vertical
variable-segment for y and align them as shown in the figure, 1.5 units apart
both horizontally and vertically. We make a triangular hole with its apex at
point q as shown in the figure. The graph has an edge between x and y.

x 1

0

y

23 x

Δ1

Δ2

1
2

1
1
2

4

y
1
1
2

123 1
2

4

qq 3/2

3/2

Fig. 10. Inversion. Left: gadget enforcing x · y ≥ 1. Right: gadget enforcing x · y ≤ 1.

For correctness, observe that if x and y are positioned so that the line segment
joining them goes through point q, then, because triangles Δ1 and Δ2 (as shown
in the figure) are similar, we have x

1 = 1
y , i.e. x · y = 1. If the line segment goes
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above point q (as in the left hand side of Fig. 10) then x · y ≥ 1, and if the line
segment goes below then x · y ≤ 1.

Putting it all Together. It remains to show how to obtain an instance of
Graph in Polygon in polynomial time from an instance of Planar-ETR-INV∗.

Let I be an instance of Planar-ETR-INV∗. As a first step we modify the
planar variable-constraint incidence graph so that a variable vertex of degree d
is replaced by “splitter” vertices of degree at most 3 to create d copies. Then we
compute a plane rectilinear drawing D of the resulting planar graph, which can
be done in polynomial time using rectilinear planar drawing algorithms [24]. The
edges of D act as wires and we replace each horizontal and vertical segment by a
copy gadget, and replace every 90◦ corner, by a turn gadget. Every splitter vertex
and constraint vertex will be replaced by the corresponding gadget, possibly
using turn gadgets. We add a big square to the outside, to ensure that everything
is inside one polygon. See the long version [18] for an illustration.

It is easy to see that this can be done in polynomial time, as every gadget has
a constant size description and can be described with rational numbers, although,
we did not do it explicitly. In order to see that we can also use integers, note that
we can scale everything with the least common multiple of all the denominators
of all numbers appearing. This can also be done in polynomial time. ��

4 Vertex Coordinates

Since we have shown that Graph in Polygon may require irrational coordi-
nates for vertices in general, it is interesting to examine bounds on coordinates
for special cases. In this section we discuss the bit complexity of vertex coordi-
nates needed for two well-solved special cases of Graph in Polygon.

Tutte’s algorithm [30] finds a straight-line planar drawing of a graph inside
a fixed convex drawing of its outer face. Suppose the graph has n vertices and
each coordinate of the convex polygon uses t bits. Tutte’s algorithm runs in
polynomial time, but the number of bits used to express the vertex coordinates
is a polynomial function of t and n. The dependence on n means that the drawing
uses “exponential area.” Chambers et al. [9] gave a different algorithm that uses
polynomial area—the number of bits for the vertex coordinates is bounded by a
polynomial in t and log n.

The other well-solved case of Graph in Polygon is the minimum link path
problem. Here we have a general polygonal region with holes, R, but the graph is
restricted to a path with endpoints s and t fixed on the boundary of R. Based on
a lower bound result of Kahan and Snoeyink [15], Kostitsyna et al. [16] proved
a tight bound of Θ(n log n) bits for the coordinates of the bends on a minimum
link path. Note that the dependence on n means that this bound is exponentially
larger than the bound for drawing a graph inside a convex polygon. Problem 3
below asks about the complexity of drawing a tree in a polygonal region.
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5 Conclusion and Open Questions

Our result that Graph in Polygon is ∃R-complete is one of the first ∃R-
hardness results about drawing planar graphs with straight-line edges—along
with a recent result about drawings with prescribed face areas [11]. We conclude
with some open questions:
1. Our proofs of Theorems 1 and 2 used the fact that the polygonal region may
have holes and may have collinear vertices. Is Graph in Polygon polynomial-
time solvable for a simple polygon (a polygonal region without holes) whose
vertices lie in general position (without collinearities)?
2. Our proofs also used the assumption that the polygonal region is closed. For
an open region, the problem Graph in Polygon is equivalent to the problem
Partial Drawing Extensibility. Is this problem ∃R-hard? There are two
versions, depending on whether the graph is given abstractly or via a combina-
torial embedding. In the first case the problem is known to be NP-hard [25], but
in the second case even that is not known.
3. What is the complexity of Graph in Polygon when the graph is a tree?
Can vertex coordinates still be bounded as for the minimum link path problem?
When the tree is a caterpillar, the problem might be related to the minimum
link watchman tour problem, which is known to be NP-hard [4].

Acknowledgment. We would like to thank Günter Rote, who discussed with the
second author the turn gadget in the context of the Art Gallery Problem.
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19. Matoušek, J.: Intersection graphs of segments and ∃R. CoRR abs/1406.2636 (2014).
http://arxiv.org/abs/1406.2636

20. McDiarmid, C., Müller, T.: Integer realizations of disk and segment graphs. J.
Comb. Theory Ser. B 103(1), 114–143 (2013)
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Abstract. The algorithm to insert an edge e in linear time into a planar
graph G with a minimal number of crossings on e [10], is a helpful tool for
designing heuristics that minimize edge crossings in drawings of general
graphs. Unfortunately, some graphs do not have a geometric embedding
Γ such that Γ + e has the same number of crossings as the embedding
G + e. This motivates the study of the computational complexity of the
following problem: Given a combinatorially embedded graph G, compute
a geometric embedding Γ that has the same combinatorial embedding
as G and that minimizes the crossings of Γ +e. We give polynomial-time
algorithms for special cases and prove that the general problem is fixed-
parameter tractable in the number of crossings. Moreover, we show how
to approximate the number of crossings by a factor (Δ − 2), where Δ is
the maximum vertex degree of G.

1 Introduction

Crossing minimization is an important task for the construction of readable
drawings. The problem of minimizing the number of crossings in a given graph
is a well-known NP-complete problem [8]. A very successful heuristic for mini-
mizing the number of crossings in a topological drawing of a graph G is to start
with a spanning planar subgraph H of G and to iteratively insert the remaining
edges into a drawing of H. The edge insertion problem for a planar graph G
and two vertices s, t ∈ V (G) asks to find a drawing Γ + st of G + st with the
minimum number of crossings such that the induced drawing Γ of G is planar.
The problem comes with several variants depending on whether the drawing Γ
can be chosen arbitrarily or is fixed [9,10]. In the planar topological case both
problems can be solved in linear time. More general problems such as insert-
ing several edges simultaneously [2] or inserting a vertex together with all its
incident edges [1] have also been studied.
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All these approaches have in common that they focus on topological drawings
where edges are represented as arbitrary curves between their endpoints. By con-
trast, we focus on geometric embeddings, i.e., planar straight-line drawings, and
the corresponding rectilinear crossing number. In this scenario we are only aware
of a few heuristics that compute straight-line drawings of general graphs [12,13].
Clearly, if a geometric embedding Γ of the input graph G is provided as part of
the input, there is no choice left; we can simply insert the straight-line segment
from s to t into the drawing and count the number of crossings it produces. If,
however, only the combinatorial embedding is specified, but one may still choose
the outer face and choose the vertex positions so that this results in a straight-
line drawing with the given combinatorial embedding, then the problem becomes
interesting and non-trivial. We call this problem geometric edge insertion.

Contribution and Outline. We show several results on the complexity of
geometric edge insertion with a fixed combinatorial embedding. Namely, we give
a linear-time algorithm for the case that the maximum degree Δ of G is at most 5
(Sect. 3). For the general case, we give a (Δ − 2)-approximation that runs in
linear time. Moreover, we give an efficient algorithm for testing in special cases
whether there exists a way to insert the edge st so that it does not produce more
crossings than when we allow to draw it as an arbitrary curve (Sect. 4). Finally,
we give a randomized FPT algorithm that tests in O(4kn) time whether an edge
can be inserted with at most k crossings (Sect. 5).

ee�
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(b)(a)

Fig. 1. (a) The extended dual (red + blue) of the primal graph (grey) and the red
vertices corresponding to s and t. (b) Labeling induced by the blue path. (Color figure
online)

2 Preliminaries

Let G = (V,E) be a planar graph with a given combinatorial embedding where
only the choice of the outer face is free. Additionally, let s and t be two distinct
vertices with st �∈ E. Denote by G + st the graph G together with the edge st.
We want to insert the edge st into the embedded graph G. That is, we seek a
straight-line drawing Γ of G (with the given embedding) such that st can be
inserted into Γ with a minimum number of crossings. In Γ , the edge st starts at
s, traverses a set of faces and ends in t. Topologically, this corresponds to a path
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p(Γ ) from s to t in the extended dual G�
st of G, i.e., in the dual graph G� plus

s and t connected to all vertices of their dual faces; see Fig. 1a. The number of
crossings in Γ + st corresponds to the length of the path minus two. However,
not all st-paths in G�

st are of the form p(Γ ) for a straight-line drawing Γ of G.

s
v

t

s

t

v

(a) (b)

Fig. 2. Ratio between length of the shortest st path and the length of a shortest
consistent st-path. The solid black edges induce a graph of maximum degree 6. Red
vertices have label L, blue vertices have label R. (a) The shortest path from s to t in
G�

st is not consistent. (Color figure online)

A labeling of G is a mapping l : V → {L,R} that labels vertices as either left
or right. Consider an edge uv of G that is crossed by a path p such that u and
v are to the left and to the right of p, respectively. The edge uv is compatible
with a labeling l if l(u) = L and l(v) = R. A path p of G�

st and a labeling l of G
are compatible if l is compatible with each edge that is crossed by p. A path p is
consistent if there is a labeling of G that is compatible with p. Eades et al. [4]
show the following result.

Proposition 1 (Eades et al. [4],Theorem 1). An st-path in G�
st is of the

form p(Γ ) if and only if it is consistent, where Γ is a geometric embedding of G.

In order to minimize the number of crossings of Γ +st, we look for a consistent
st-path of minimum length in G�

st. Given a path p, it is easy to check whether
p is consistent. Figure 2 shows that the ratio between the length of a shortest
st-path and the length of a shortest consistent st-path can be arbitrarily large.
Thus, our goal is to find short consistent st-paths.

Let H = (V ′, E′) be a directed acyclic graph. A path p = 〈v1, v2, . . . , vk〉 is
a directed path if for each 1 ≤ i < k, vivi+1 ∈ E′. It is undirected if for each
1 ≤ i < k, either vivi+1 ∈ E′ or vi+1vi ∈ E′. We refer to the number |p| of edges
of a path as the length of p. Two paths p and p′ are edge-disjoint if they do not
share an edge. Two paths p and p′ of an embedded graph are non-crossing if at
each common vertex v, the edges of p and p′ incident to v do not alternate in
the cyclic order around v in the graph induced by p and p′. We denote by p[u, v]
the subpath of a path p from u to v.

3 Bounded Degree

The shortest st-path of the graph in Fig. 2a is not consistent. Note that the
maximum vertex degree is 6. In this section, we show that every shortest st-path
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in graphs of bounded degree 3 is consistent, and that in each planar graph with
vertex degree at most 5, there is a shortest st-path that is consistent. Finally,
we prove that there is a consistent st-path of length (Δ − 2)l in a graph with
maximum vertex degree Δ and a shortest st-path of length l in G�

st.
Let p be an st-path in G�

st and let e� be an edge of p. An endpoint u of the
primal edge e of e� is left of e� if it is locally left of p on e (Fig. 1b). A vertex v of
G is left (right) of p if v is left (right) of an edge of p. We now consider a labeling
extended by two more labels LR,⊥. We define the labeling lp induced by p as
follows. Each vertex that is left and right of p gets the label LR. The remaining
vertices that are either left or right of p get labels L and R, respectively. Vertices
neither left nor right of p get the label ⊥. Obviously, there is a labeling l of G
compatible with p if and only if lp does not use the label LR. The proof of the
following lemma can be found in the full verison on arXiv [14].

Theorem 2. Let G be a planar embedded graph of degree at most 3. Then every
shortest st-path in G�

st is consistent.

Theorem 3. Let G be a planar embedded graph with maximum degree 5. Then
there is a shortest st-path in G�

st that is consistent.

e1

e2

e3

e4

f1 f2

f3f4

v

t

s
e′

e

e1

e4

v t

e′

e

e2

e3

e5

f1
f2

f3
f4f5

(a) (b) e1

e2

e4

e5 v
t

s
e′

e

e3

f1 f2
f3

f4f5

(c)

Fig. 3. Inconsistent path around (a) a degree-4 vertex and (b,c) a degree-5 vertex.

Proof. Let p be a shortest st-path in G�
st. We call an edge e of p good if the

vertices left and right of it do not have label LR in the labeling lp induced by p.
If p is not consistent, then let e denote the last edge of p that is not good.

Then an endpoint v of the primal edge corresponding to e has label LR. Without
loss of generality, we may assume that v lies left of e. Since lp(v) = LR, there is
an edge e′ of p that has v to its right. By the choice of e, it follows that e′ lies
before e on p. We now distinguish cases based on the degree of v.

If deg(v) ≤ 3, then we find that p enters or leaves a face twice, which con-
tradicts the assumption that it is a shortest st-path.

If deg(v) = 4, we denote the edges around v in clockwise order as e1, . . . , e4
such that e′ crosses e1. Moreover, we denote the faces incident to v in clockwise
order as f1, . . . , f4 where f1 is the starting face of e′.
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Since no face has two incoming or two outgoing edges of p, it follows that e′ =
f1f2 crosses e1 and e = f4f3 crosses e3; see Fig. 3a. Let p′ be the path obtained
from p by replacing the subpath p[f1, f4] by the edge f1f4 that crosses e4. Since
p is a shortest path, it follows that f2 = f4. By construction, it is lp′(v) = L.
Observe that p′[f4, t] = p[f4, t] lies inside the region ρ bounded by p[f1, f4] and
a curve connecting f1 and f4 that crosses e4. The only vertex inside this region
whose label changed is v. Therefore, the path p′[f1, t] consists of good edges, and
we have thus increased the length of the suffix of the shortest path that consists
of good edges.

Now assume that deg(v) = 5. We denote the edges around v as e1, . . . , e5 in
clockwise order such that e′ crosses e1. We further denote the faces incident to
v in clockwise order as f1, . . . , f5 such that e′ starts in f1. Since no face has two
incoming or two outgoing edges, it follows that either e crosses e4 from f5 to f4
or e crosses e3 from f4 to f3.

If e crosses e3, then we consider the path p′ obtained from p by replacing the
subpath p[f2, f3] by the edge that crosses e3; see Fig. 3b. As above, it follows
that f2 = f4 and v is a cutvertex and that p′[f1, t] consists of good edges.

If e crosses e4, then we obtain p′ by replacing p[f1, f5] by the single edge that
crosses e5; see Fig. 3c. As above, we find that f2 = f5 and v is a cutvertex and
that p′[f1, t] consists of good edges.

Thus, in all cases, we increase the length of the suffix of the shortest path
consisting of good edges. Eventually, we thus arrive at a shortest path whose
edges are all good and that hence is consistent. 	

Theorem 4. Let G = (V,E) a planar embedded graph with maximum vertex-
degree Δ and let p be a shortest st-path in G�

st with s, t ∈ V . Then there is a
consistent path of length at most (Δ − 2)|p|.

t

fi+1

fi
s

fj

f2f1fk

y
ρ

v

Fig. 4. Inconsistent path around a degree k vertex.

Proof. Let p be an st-path in G�
st. Assume that p is not consistent. Then there

is a shortest prefix p2 = p[s, f2] = p[s, f1] · f1f2 of p that is not consistent; refer
to Fig. 4. Let v be a vertex incident to the primal edge of f1f2 with lp2(v) = LR.
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Without loss of generality let f1, f2, . . . , fk be the faces around v in counter-
clockwise order, i.e., v lies left of f1f2.

Since p2 is not consistent, there is a second edge of p2 that crosses a primal
edge incident to v. Let e be the last edge of p[s, f1] that crosses a primal edge
incident to v. Since p2 is the shortest inconsistent prefix of p, v lies right of e,
i.e., e = fi+1fi for some i with 2 < i ≤ k − 1. Moreover, let fj be the first vertex
in clockwise order from fi that lies on the path p[f2, t]. Note that such a vertex
fj exists, since at the latest f2 satisfies the condition.

Let q be the path fifi−1 · · · fj . We obtain a path p′ from p by replacing
p[fi, fj ] by q, i.e., p′ = p[s, fi] · q · p[fj , t]. Note that, since fj is the first vertex in
clockwise order on p[f2, t], p′ is a simple path. Since q does not contain the edges
fkf1 and f1f2, and p[fi, fj ] contains at least one edge, the path p′ has length at
most |p| + (k − 2) − 1. We claim that the prefix p′

j = p′[s, fj ] is consistent.
Then, since p′[fj , t] is a subpath of p[f2, t] and p′[s, fj ] is consistent, it follows

that we have decreased the maximum length of a suffix of the path whose removal
results in an inconsistent path. Since this suffix has initially length at most |p|,
we inductively find a consistent st-path of length at most (Δ − 2)|p|.

It remains to prove that p′[s, fj ] is consistent. Since p[s, f2] is the shortest
inconsistent prefix of p, the prefix p[s, f1] is consistent. Therefore, v is right of
p[s, fi] = p′[s, fi]. By construction, v is right of q. Thus, we have lp′

j
(v) = R.

The only vertices w of G with lp′
j
(w) = LR can be neighbors of v, as otherwise

p[s, f1] would not be consistent.
Consider the region ρ enclosed by the path p[fi, f1] and f1, fk, . . . , fi that

contains v; refer to Fig. 4. The prefix p[s, f1] = p′[s, f1] lies outside of ρ and the
path q lies entirely in ρ. Moreover, in case that vw is crossed by p′[s, fi], w lies
outside of ρ. On the other hand, if q crosses an edge vw, then w lies inside ρ.
Thus, in both cases we immediately get that lp′

j
(w) = L. Therefore, the prefix

p′[s, fj ] is consistent. 	


4 Consistent Shortest st-paths

In Sect. 3 we showed that every shortest st-path in the extended dual G�
st of a

graph G with vertex degree at most 3 is consistent. For every graph of maxi-
mum degree 5, there is a shortest st-path G�

st that is consistent. On the other
hand, Fig. 2 shows that, starting from degree 6, there are graphs whose short-
est st-paths are not consistent. In this section we investigate the problem of
deciding whether G�

st contains a consistent shortest st-path. As a consequence
of Proposition 1 this problem is in NP.

In Lemma 5 we show that finding a consistent st-path p in G�
st is closely

related to finding two edge-disjoint paths in G. Especially, we are interested in
two edge-disjoint paths where the length of one is minimized. Eilam-Tzoreff [5]
proved that this problem is in general NP-complete. In planar graphs the sum
of the length of two vertex-disjoint paths can be minimized efficiently [11]. In
general directed graphs the problem is NP-hard [7]. Finding two edge-disjoint
paths in acyclic directed graphs is NP-complete [6].
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The closest relative to our problem is certainly the work of Eilam-Tzoreff. In
fact their result can be modified to show that it is NP-hard to decide whether
a graph contains two edge-disjoint st-paths such that one of them is a shortest
path. We study this problem in the planar setting with the additional restriction
that s and t lie on a common face of the subgraph Gsp of G�

st that contains all
shortest paths from s to t.

Lemma 5. An st-path p in G�
st is consistent if and only if there is an st-path

p′ in G�
st that is edge-disjoint from p and that does not cross p.

s t s t

(a) (b)

Fig. 5. (a) The green regions are right of p (blue) and the blue left of p. (b) The outer
region that is not bounded by maximal subpaths of p and p′. (Color figure online)

Proof. The paths p and p′ define a set of regions in the plane. Since p and
p′ are non-crossing, each region is bounded by one maximal subpath of p and
one maximal subpath of p′ (Fig. 5). We label each region ρ with either L or R,
depending on whether ρ lies left or right of the unique maximal subpath of p on
its boundary. We define a labeling l of G by giving each vertex v the label of the
region ρ that contains it. We claim that l is compatible with p.

Since p and p′ are edge-disjoint, every primal edge connects vertices of the
same or adjacent regions. Moreover, by construction, vertices of adjacent regions
have different labels. Thus all vertices left of p have label L and all vertices right
of p have label R. That is l is compatible with p, i.e., p is consistent.

s t
g

s′ t′

u v

p

p′

p′[u, v]

pμ[u, v](a) (b)

Fig. 6. (a) The line g through the segment st induces a path in G�
st. (b) Modification

of the undirected path p′ edge-disjoint from p.

Conversely, assume that p is consistent. By Proposition 1 there is a straight-
line drawing of G such that the segment st intersects the same edges as p and
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in the same order (Fig. 6a). Let g be the line that contains the segment st. Each
edge of G intersects g at most once. Thus, the complement of st in g defines a
path from s to t in G�

st that is edge-disjoint from p and does not cross p. 	

Thus, we now consider the problem of finding a consistent shortest st-path as

an edge-disjoint path problem in G�
st. Our proof strategy consists of three steps.

Step (1) We first show that the problem is equivalent to finding two edge-disjoint
paths p and q in a directed graph

−→
Gst such that p is directed and q is undirected.

Step (2) We modify
−→
Gst such that p is a path in a specific subgraph Gsp and q

lies in the subgraph Gsp. These two graphs may share an edge set Ê such that
each edge in Ê can be an edge of p or of q. Moreover, we find pairs of edges e
and e′ in Ê such that the path p in Gsp (the path q in Gsp) contains either e or
e′. Step (3) Finally, we use these properties to reduce our problem to 2-SAT.

We begin with Step 1. A directed graph
−→
Gst = (V ′∪{s, t}, E′) is st-friendly if

G�
st contains a consistent shortest st-path if and only if

−→
Gst contains a directed

st-path p and an undirected st-path p′ that is edge-disjoint from p and does
not cross p. We obtain an st-friendly graph

−→
Gst = (

−→
V ,

−→
E ) from G�

st as follows.
Denote by Gsp the directed acyclic graph that contains all shortest paths from
s to t in G�

st = (V,E). If an edge uv ∈ E is an edge of Gsp, we add it to
−→
Gst.

For all remaining edges uv, we add a subdivision vertex x to
−→
Gst and add the

directed edges xu, xv to
−→
Gst in this direction. We claim that

−→
Gst is st-friendly.

Let p be a consistent shortest st-path in G�
st. By Lemma 5 there is a path

p′ in G�
st that is edge-disjoint from p and does not cross p. By construction p

corresponds to a directed path in Gsp and p corresponds to an undirected path in−→
Gst. Conversely, due to the directions of the edges xv, xu, every directed st-path
q in

−→
Gst is a directed path in Gsp, and therefore it is a shortest st-path in G�

st.
If there is an undirected path q′ that is edge-disjoint from q and does not cross
q, we obtain a path p′ from q′ by contracting edges incident to split vertices x.
Hence,

−→
Gst is st-friendly.

We consider the following special case, where s and t lie on a common face
o of the subgraph Gsp of

−→
Gst. Without loss of generality, let o be the outer face

of Gsp and let t lie on the outer face of
−→
Gst. We denote by pμ and pλ the upper

and lower st-path of Gsp on the boundary of o. A vertex v of Gsp is an interior
vertex if v does not lie on o. An edge uv of Gsp is an interior edge if u and v are
interior vertices. An edge e of Gsp is a chord if both its endpoints lie on o but e
is not an edge on the boundary of o.

Lemma 6. For a directed st-path p and an undirected st-path p′, that are edge-
disjoint and non-crossing, there is an undirected st-path p′′ that is edge-disjoint
from p, does not cross p, and that does not use interior vertices of Gsp.

Proof. Since p and p′ are non-crossing, there are two distinct vertices u, v on pλ

or on pμ, say pμ, such that the inner vertices of p′[u, v] lie in the interior of Gsp;
refer to Fig. 6b. Moreover, since p′ and p are non-crossing, the region enclosed
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by p′[u, v] and pμ[u, v] does not contain a vertex of p in its interior. Therefore,
we obtain p′′ by iteratively replacing pieces in the form of p′[u, v] by pμ[u, v]. 	


v

v′

s tx zy

pμ

pλ

v

s tx z

pλ

pμ

a bc

(a) (b)

Fig. 7. (a) The red directed path can be circumvented with the blue directed path via
vertex v. (b) The red path consists of avoidable edges. (Color figure online)

This finishes Step 1, and we continue with Step 2. In the following, we itera-
tively simplify the structure of Gsp while preserving st-friendliness of

−→
Gst. Due

to Lemma 6, the graph Gsp/e, obtained from contracting an edge e of Gsp, is
st-friendly, if e is an interior edge. This may generate a separating triangle xyz.
Let v be a vertex in the interior of xyz and let p be a directed st-path that con-
tains v. Then, p contains at least two vertices of x, y, z. Hence, p can be rerouted
using an edge of xyz. Thus, the graph after removing all vertices in the interior
of xyz is st-friendly. After contracting all interior edges of Gsp, each neighbor
of an interior vertex of Gsp lies either on pλ or on pμ. The remaining edges are
edges on pλ ∪ pμ and chords.

Consider three vertices x, y, z that lie in this order on pλ (pμ) and two interior
vertices v and v′, with xv, v′y, vz ∈ −→

E ; refer to Fig. 7a. Note that v and v′ can
coincide. Then, every directed st-path p that contains y also contains x and
z. Hence, p can be rerouted through the edges xv, vz and as a consequence of
Lemma 6, the graph Gsp − v′y is st-friendly. Analogously, if Gsp contains the
edge yv′, Gsp − yv′ remains st-friendly. We call such edges circumventable.

We refer to edges of a subpath pλ[x, z] (pμ[x, z]) as avoidable if there exists an
interior vertex v with xv, vz ∈ −→

E (Fig. 7b). If there exists a directed path p that
uses an avoidable edge ab it can be rerouted by replacing the corresponding path
pλ[x, z] with the edges xv, vz. Thus, we can split the edge ab with a vertex c
and we direct the resulting edges from c towards a and b, respectively, and
remove the edge ab from

−→
Gst. Finally, we iteratively contract edges incident to

vertices with in- and out-degree 1, and we iteratively remove vertices of degree
at most 1, except for s and t. Since all interior edges of Gsp are contracted,
circumventable interior edges are removed and avoidable edges are replaced,
each 2-edge connected component of Gsp is an outerplanar graph whose weak
dual (excluding the outer face) is a path; compare Fig. 8a. Each face f of Gsp,
with f �= o, contains at least one edge eλ of pλ and one edge eμ on pμ. Moreover,
every directed st-path contains either eλ or eμ. We refer to the edge sets Ef,λ =
E(f) ∩ E(pλ) and Ef,μ = E(f) ∩ E(pμ) as interior partners.
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f2 f ′

1
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Fig. 8. (a) Interior partners decoded by color of 2-edge connected component of Gsp.
(b) Split a vertex x on the boundary of H�

st.

Property 7. Choosing a directed st-path in Gsp is equivalent to choosing for each
face f of Gsp one of the interior partners Ef,μ or Ef,λ such that the following
condition holds. Let f1, f2 be two adjacent faces that are separated by a chord
e that ends at pλ (pμ) such that f1 is right of e (left of e), then the choice of
Ef2,μ (Ef2,λ) implies the choice of Ef1,μ (Ef1,λ).

In the following, we modify the exterior of
−→
Gst, i.e., Gsp =

−→
Gst − E(Gsp),

with the aim to obtain an analog property for the choice of the undirected path.
We refer to edges of Gsp as exterior edges. A vertex in V (Gsp) \ V (Gsp) is an
exterior vertex.

Since the undirected path is not allowed to cross the directed path, we split
each cut vertex x into an upper copy xμ and a lower copy xλ. We reconnect edges
of pλ and pμ incident to x to xλ and xμ, respectively. Exterior edges incident
to x that are embedded to the right of pλ are reconnected to xλ. Likewise,
edges embedded to the left of pμ are reconnected to xμ. Note that this operation
duplicates bridges of Gsp. Thus, we forbid the undirected path to traverse these
duplicates. Observe that after this operation the outer face o of Gsp is bounded
by a simple cycle.

Let x be a vertex on o that is incident to an exterior edge. In this case, we
insert a vertex y to

−→
Gst and we remove each exterior edge ux from

−→
Gst and

insert as a replacement edges yx and yu; see Fig. 8b. We refer to the edge yx as
a barrier. Since the barrier yx is directed from y to x, the modification preserves
the st-friendliness of

−→
Gst. We now exhaustively contract exterior edges that are

not barrier edges, and remove vertices in the interior of separating triangles.
Recall that s and t lie on a common face o of the subgraph Gsp of

−→
Gst and t

lies on the outer face of Gsp. Let v be an exterior vertex such that its neighbor
x comes before its neighbor y on pi, i = λ, μ, refer to Fig. 9a. Let z be a vertex
between x and y on pi that is connected to a vertex v′ such that the edge v′z (zv′)
lies in the interior of the region bounded by yvx and pi[x, y]. Consider a directed
st-path p in Gsp and an undirected st-path p′ in

−→
Gst that is edge-disjoint from

p, that does not cross p and that contains v′. Due to Lemma 6 we can assume,
that p′ does not contain an interior vertex of Gsp. Thus, it contains x and y. We
obtain a new path p′′ by replacing the subpath p′[x, y] by vx, vy. Since vx, vy
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v

v′

x y
z

s t

s
to

(a) (b)

Fig. 9. (a) If the undirected path contains z, it can be rerouted to use vertex v. (b)
The color coding of the faces indicate the exterior partners.

are exterior edges, p′′ and p are edge-disjoint and non-crossing. Thus, the graph−→
Gst − v′z (

−→
Gst − zv′) is st-friendly. After removing all such edges, for any two

neighbors x and y of an exterior vertex v, the paths o[x, y] and o[y, x] each
contains either s and t. Hence, the region bounded by yvx and o[x, y] contains
a second exterior vertex v′ if and only if o[x, y] contains either s or t.

Hence, the dual of Gsp, with the dual vertex of o removed, is a caterpillar
C, refer to Fig. 9b. In case that s or t is incident to an exterior vertex v, we can
assume that the undirected path p′ contains the edge sv (vt). Thus, for simplicity,
we now assume that neither s nor t is connected to an exterior vertex. Let a and
b be the vertices in C whose primal faces are incident to s and t, respectively.
Then every undirected st-path in Gsp from s to t traverses the primal faces of the
simple path q from a to b in C. Let f be a primal face of a vertex on q. Since we
inserted the barrier edges to

−→
Gst, every face contains at least one edge eλ of pλ

and one edge eμ of pμ. Therefore, every undirected st-path in Gsp either contains
eλ or eμ. We refer to the sets Ef,λ = E(f) ∩ E(pλ) and Ef,μ = E(f) ∩ E(pμ) as
exterior partners.

Property 8. Choosing an undirected st-path in Gsp is equivalent to choosing for
each face f �= o of Gsp one of the exterior partners Ef,λ or Ef,μ.

This finishes Step 2, and we proceed to Step 3. The problem of finding a
directed st-path p and an undirected st-path p′ in

−→
Gst reduces to a 2-SAT

instance as follows. For each exterior and interior partner we introduce variables
xf and xg, respectively, where f and g correspond to the faces of the partners. If
xf is true, p′ contains the edge of Ef,λ, otherwise it contains Ef,μ. The conditions
on the choice of p in Property 7 can be formulated as implications. Let Ef,μ an
Ef,λ be exterior partners and let Eg,μ and Eg,λ be interior partners. In case that
Ef,λ ∩ Eg,λ �= ∅, either p can contain edges of Eg,λ or p′ can contains edges of
Ef,λ but not both. Thus, xf and xg are not allowed to be true at the same time,
i.e., xf = xg. Hence, we have the following Theorem.

Theorem 9. If s and t lie on a common face of Gsp, it is decidable in polynomial
time whether

−→
Gst has a directed st-path and an undirected st-path that are edge-

disjoint and non-crossing.
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Corollary 10. If s and t lie on a common face of Gsp, it is decidable in poly-
nomial time whether G�

st contains a consistent shortest st-path.

5 Parametrized Complexity of Short Consistent st-Paths

In this section we show that edge insertion can be solved in FPT time with
respect to the minimum number of crossings of a straight-line drawing of G + st
where G is drawn without crossings and has the specified embedding. Let l be
an arbitrary labeling of G. Observe that l defines a directed subgraph of G�

st

by removing each edge whose dual edge has endpoints with the same label and
by directing all other edges e such that the endpoint of its primal edge left
of e has label L and its other endpoint has label R. We denote this graph
by G�

st(l). Obviously, a shortest st-path in G�
st(l) is compatible with l, and thus

a corresponding drawing exists. Clearly, given the labeling l a shortest st-path
in G�

st(l) can be computed in linear time by a BFS.
Now assume that the length of a shortest consistent path in G�

st is k. We
propose a randomized FPT algorithm with running time O(4kn) for finding a
shortest consistent path in G�

st, based on the color-coding technique [3].
The algorithm works as follows. First, we pick a random labeling of G by

labeling each vertex independently with L or R with probability 1/2. We then
compute a shortest path in G�

st(l). We repeat this process 4k times and report
the shortest path found in all iterations.

Clearly the running time is O(4kn). Moreover, each reported path is consis-
tent, and therefore the algorithm outputs only consistent paths. It remains to
show that the algorithm finds a path of length k with constant probability.

Consider a single iteration of the procedure. If the random labeling l is
compatible with p, then the algorithm finds a path of length k. Therefore the
probability that our algorithm finds a consistent path of length k is at least
as high as the probability that p is compatible with the random labeling l.
Let VL, VR ⊆ V denote the vertices of V that are left and right of p, respec-
tively. Clearly it is |VL|, |VR| ≤ k. A random labeling l is consistent with p if
it labels all vertices in VL with L and all vertices in VR with R. Since vertices
are labeled independently with probability 1/2, it follows that Pr[p is consistent
with l] = (1/2)|VL| · (1/2)|VR| ≥ (1/2)2k = (1/4)k.

Therefore, the probability that no path of length k is found in 4k iterations
is at most (1 − (1/4)k)4

k

, which is monotonically increasing and tends to 1/e ≈
0.368. Thus the algorithm succeeds with a probability of 1 − 1/e ≈ 0.632. The
success probability can be increased arbitrarily to 1 − δ, δ > 0 by repeating
the algorithm log(1/δ) times. The probability that each iteration fails is then
bounded from above by (1/e)log 1/δ = 1/elog 1/δ = δ. E.g., to reach a success
probability of 99%, it suffices to do log 100 ≤ 5 repetitions. The algorithm can
be derandomized with standard techniques [3].

Theorem 11. There is a randomized algorithm A that computes a consistent
path of length k if one exists with a success probability of 1 − δ. The running
time of A is O(log(δ−1)4kn).
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6 Conclusion

We have shown that the problem of finding a short consistent st-paths in G�
st

is tractable in special cases and fixed-parameter tractable in general. Whether
G�

st has a short consistent st-path is equivalent to the question of whether G�
st

has two edge-disjoint and non-crossing st-paths, where the length of one path
is minimized. Surprisingly, this is related to yet another purely graph theoretic
problem: does a directed graph G have two edge-disjoint paths where one is
directed and the other is only undirected? By the result of Eilam-Tzoreff [5] the
former problem is in general NP-hard. For planar graphs the computational
complexity of these problems remains an intriguing open question.

In this paper, we only considered planar graphs with a fixed combinatorial
embedding. Allowing for arbitrary embeddings opens new perspectives on the
problem and is interesting future work.
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Abstract. We consider the problem of extending the drawing of a sub-
graph of a given plane graph to a drawing of the entire graph using
straight-line and polyline edges. We define the notion of star complexity
of a polygon and show that a drawing ΓH of an induced connected sub-
graph H can be extended with at most min{h/2, β + log2(h) + 1} bends
per edge, where β is the largest star complexity of a face of ΓH and h
is the size of the largest face of H. This result significantly improves the
previously known upper bound of 72|V (H)| [5] for the case where H is
connected.We also show that our bound is worst case optimal up to a
small additive constant. Additionally, we provide an indication of com-
plexity of the problem of testing whether a star-shaped inner face can
be extended to a straight-line drawing of the graph; this is in contrast
to the fact that the same problem is solvable in linear time for the case
of star-shaped outer face [9] and convex inner face [12].

1 Introduction

In this paper we study the problem of extending a given partial drawing of a
graph. In particular, given a plane graph G = (V,E), i.e. a planar graph with a
fixed combinatorial embedding and a fixed outer face, a subgraph H of G and
a planar straight-line drawing ΓH of H, we ask whether ΓH can be extended
to a planar straight-line drawing of G (see Fig. 1). We study both the decision
question and the relaxed variation of using bends for the drawing extension.

It is known that a drawing extension always exists even if H = (V, ∅), where
each edge is represented by a polyline with at most 120n bends, here n = |V | [14].
This bound was improved to 3n+2 by Badent et al. [1]. These upper bounds are
asymptotically optimal as there are instances that require Ω(n) bends on Ω(n)
edges [1]. In terms of the size of the pre-drawn graph H, Chan et al. [5] showed
that a drawing extension with 72|V (H)| bends per edge is possible for a general
subgraph H.

In order to pinpoint the source of multiple necessary bends for the drawing
extension we define the notion of a β-star (resp. β-outer-star), a polygon where
β bends are necessary and sufficient to reach the kernel of the polygon (resp.

c© Springer Nature Switzerland AG 2018
T. Biedl and A. Kerren (Eds.): GD 2018, LNCS 11282, pp. 416–429, 2018.
https://doi.org/10.1007/978-3-030-04414-5_30
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Fig. 1. An embedding of a plane graph alongside a fixed drawing of an inner face (blue)
as a star-shaped polygon (gray). (Color figure online)

infinity). We study the upper bounds on the number of bends in a drawing
extension as a function of β. We show that a drawing ΓH of an induced connected
subgraph H can be extended with at most min{h/2, β + log2(h) + 1} bends per
edge if each face of H is represented in ΓH as a β-(outer)-star and h is the size
of the largest face of H (Theorem 7). We show that this bound is worst case
optimal up to a small additive constant. We observe that in case both G and H
are trees a closer to optimal bound of 1 + 2�|V (H)|/2� bends per edge had been
provided by Di Giacomo et al. [7].

In case a planar embedding is not provided as a part of the input, it is NP-
hard to test whether a straight-line drawing extension exists [15]. The problem
is not known to belong to the class NP, as a possible solution may have coordi-
nates which can not be represented with a polynomial number of bits [15]. Very
recently, Lubiw et al. have studied a related problem of drawing a graph inside
a (not-necessarily simply connected) closed polygon [11]. They showed that this
problem can not be shown to lie in NP by the mean of providing vertex coor-
dinates, as these are sometimes irrational numbers. They have also shown that
the problem is hard for the existential theory of reals (∃R-hard) even if a planar
embedding of the graph is provided as a part of the input. This problem would be
equivalent to partial graph drawing extendability, if the polygon would be open,
however this situation has not been investigated. Bekos et al. [2,3] have studied
the problem of extending a given partial drawing of bipartite graphs, where one
side of the bipartition is pre-drawn. They have shown that this problem lies in
NP if each free vertex is required to lie in the convex hull of its pre-drawn neigh-
bors. Regarding drawing extensions with bends, it is NP-hard to test whether a
drawing extension with at most k bend per edge exists [2,8].

Despite all the hardness results, it is long known that a straight-line drawing
extension always exists if H is the outer face and ΓH is a convex polygon [4,
16]; and H is a chordless outer face and ΓH is a star-shaped polygon [9]. An
existence of a straight-line drawing extension can be checked by the mean of
necessary and sufficient conditions in case where H is an inner face and ΓH is
a convex polygon [12]. As an extension of this work, and with the general goal
to better understand the boundary between the easy and the difficult cases, we
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investigated the question of testing whether a straight-line drawing extension
exists for an inner face H drawn as a star-shaped polygon ΓH . We observe
that one can not test whether such an extension exists by just checking each
vertex individually, as in the case for a convex inner face, and show that there
exists an instance such that the region where a vertex of V (G) \ V (H) can lie
to allow for a straight-line drawing extension is bounded by a curve of degree
2Ω(|H|)(Theorem 8).

Contribution and Outline. We start with the necessary definitions in Sect. 2.
In Sect. 3, we show that a star-shaped drawing of an inner face can be extended
with at most 1 bend per edge. Section 4 is devoted to the study of generalizations
of stars. In Sect. 4.1, we start with a generalization of star-shaped polygons to
β-star and β-outer-star polygons (β is referred to as star complexity), and show
that the number of bends per edge necessary for a drawing extension of an inner
face H with a star complexity β is not bounded in terms of β (Theorems 2 and
3). Motivated by the proof of Sect. 3 we define the notion of planar-β-star and
planar-β-outer-star (this β is referred to as planar star complexity) and show that
the planar star complexity determines the number of bends per edge in a drawing
extension (Theorems 4 and 5). In Sect. 4.2, we study the planar star complexity
of an arbitrary simple polygon and the relationship between the star complexity
and the planar star complexity of a polygon. In particular, we show that every
β-star with n vertices is a planar-β + δ-star where δ ≤ log2(n) (Theorem 6). In
Sect. 5, we state the implications of Sect. 4 to the drawing extension of (induced)
connected subgraphs. In particular, we prove that a drawing ΓH of an induced
connected subgraph H can be extended with at most min{h/2, β + log2(h) + 1}
bends per edge if the star complexity of ΓH is β and h is the size of the largest
face of H (Theorem 7). Last but not least, in Sect. 6 we provide an indication
of complexity of the problem of testing whether a star-shaped inner face H
admits a straight-line drawing extension. In particular, we prove that there exists
an instance such that the region where a vertex of V (G) \ V (H) can lie to
allow a straight-line drawing extension is bounded by a curve of degree 2Ω(|H|)

(Theorem 8). All omitted proofs can be found in the full version [13].

2 Preliminaries

Basic Geometric Terms. The segment (resp. line) induced by two points a and
b is designated by s(a, b) (resp. l(a, b)). We denote a curve between a and b by
c(a, b). We refer to the ray along l(a, b) starting at a and (not) containing b as
r(a, b) (q(a, b)). For a polyline c, #c designates the number of bends on c.

Let P be a polygon. Two points a, b see each other if the open segment s(a, b)
does not intersect the boundary of P . A simple polygon P is convex if each pair
of points inside P see each other. A simple polygon P is star-shaped or a star if
there is a non-empty set of points K called the kernel inside the polygon such
that any point of the kernel can see any vertex of the polygon. By assuming that
the vertices of P are in general position, we have that a kernel of P contains an
open ball of positive radius.



β-Stars or On Extending a Drawing of a Connected Subgraph 419

Graphs and Drawings of Graphs. A drawing Γ of a graph is a function that
assigns to each vertex a unique point in the plane and to each edge {a, b} a
curve connecting the points assigned to a and b. A drawing is straight-line (resp.
k-bend) if each edge is drawn as a segment (resp. a polyline with at most k
bends). A graph is planar if it has a planar drawing, i.e. a drawing without
edge crossings. A planar drawing Γ subdivides the plane into connected regions
called faces; the unbounded region is the outer and the other regions are the
inner faces. The cyclic ordering of the edges around each vertex of Γ together
with the description of the outer face of Γ characterize a class of drawings with
the same combinatorial properties, which is called an embedding of G. A planar
graph G with a planar embedding is called plane graph. A plane subgraph H of
G is a subgraph of G together with a planar embedding that is the restriction of
the embedding of G to H. A plane graph G is (internally) triangulated if each
(inner) face of G is a triangle. For a given cycle, a chord is an edge between two
non-consecutive vertices of the cycle.

Let G be a plane graph and let H be a plane subgraph of G. Let ΓH be
a planar straight-line drawing of H. We say that the instance (G,ΓH) admits
a k-bend (resp. straight-line) extension if drawing ΓH can be completed to a
planar k-bend (resp. straight-line) drawing ΓG of the plane graph G. We refer
to k as the curve complexity of the drawing ΓG.

For a given graph G = (V,E), let N(v) = {w ∈ V | {v, w} ∈ E} be the
neighbors of v ∈ V . For a plane graph G and a face F , let NF (v) = N(v) ∩ F =
(w1, w2, . . . , w�) be the sequence of neighbors of v that belong to F . For v outside
F , let the list NF (v) be ordered clockwise around F with w1 chosen such that
the area delimited by the cycle C composed of edges {v, w1}, {v, w�} and the
clockwise path H from w1 to w� in F does not contain F (see Fig. 2a). A vertex
z ∈ V \ V (F ) lying in the cycle C is said to be enclosed by vertex v.

Let F be a face of G and ΓF its planar drawing. The feasibility area of
a vertex v ∈ V \ V (F ) is the set of all possible positions of v, such that the
implied straight-line drawing of F ∪ {v} can be extended to a planar straight-
line drawing of V (F ) ∪ {v} ∪ Qv, where Qv is the set of all vertices enclosed
by v.

3 Star-Shaped Polygons

Let G be a plane graph with n vertices, F be a chordless face of G with h vertices
and ΓF a star-shaped drawing of F . In this section we prove that the instance
(G,ΓF ) admits a 1-bend-extension. While the proof itself is rather straight-
forward, we still present it here as it motivates a specific way to generalize
star-shaped polygons by considering planarity issues.

In our construction we place vertices V \V (F ) one by one with the property
that a vertex is placed only after all vertices enclosed by it have already been
placed. This property is achieved by a canonical ordering [10] that lists vertices
starting from the face F . The following lemma can be proven along the same lines
as the existence of a usual canonical ordering [10]. We say G \ F is triangulated
if each face of G is triangulated with the exception of the face F .
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Lemma 1. Let G = (V,E) be a plane graph, |V | = n, and let F be an inner
face with h vertices of G, such that G \ F is triangulated. There is an ordering
J = (v1, . . . , vn−h) of the vertices of V \V (F ), such that for each j, 1 ≤ j ≤ n−h,
the following holds: (1) the graph Gj induced by the vertices {v1, . . . , vj} ∪ F is
biconnected, (2) Gj \ F is internally triangulated, (3) vj+1 lies in the outer face
of Gj, (4) vertices N(vj+1) ∩ V (Gj) belong to the outer face of Gj.

w1

w2

w3

w4

v

z

w�

r′

w1

Kj

Kj+1a1

a�

p

vj+1

(b)(a)

Fig. 2. (a) Yellow area contains vertices enclosed by v. (b) Proof of Theorem 1. (Color
figure online)

Theorem 1. Each instance (G = (V,E),ΓF ) where ΓF is a star-shaped drawing
of a chordless inner face F allows a 1-bend-extension.

Proof. We start with triangulating G by placing a vertex in each non-triangular
face and connecting it to the vertices of the face. We delete the added vertices and
edges after the triangulated graph has been drawn. We refer to the new graph
as G as well. Let J = (v1, . . . , vn−h) be an ordering of the vertices V \ V (F ) as
defined by Lemma 1. For 1 ≤ j ≤ n − h = |V (G)| − |V (F )|, let Gj be the graph
as defined by Lemma 1 and let Fj be the outer face of Gj . Additionally we set
G0 = F0 = F .

We prove the theorem by induction. Assume that for a 0 ≤ j ≤ n−h we have
a drawing of Gj , such that Fj forms a star-shaped polygon Pj with kernel Kj .
This is true for j = 0. Let vj+1 be the next vertex according to J and let p
be a point of the kernel of the already drawn star-shaped polygon Pj . For each
w ∈ NFj

(vj+1) consider the ray q(p,w). Due to Pj being star-shaped and due
to property (4) of Lemma 1, they all lie outside of Pj . Since Gj is biconnected,
vj+1 has at least two neighbors, i.e. � = |NFj

(vj+1)| ≥ 2.
Now we consider the ray r′ that is the bisector of the clockwise angle formed

by the rays q(p,w1) and q(p,w�), see Fig. 2b. If we place vj+1 sufficiently far away
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from p on r′, vj+1 sees q(p,w1) and q(p,w�), i.e. ∃a1 ∈ q(p,w1), a� ∈ q(p,w�),
with s(vj+1, a1) ∩ Pj = ∅ = s(vj+1, a�) ∩ Pj . This is due to the fact that the
angles between q(p,w1) and r′ and between q(p,w�) and r′ are strictly smaller
than π.

Since vj+1 is between q(p,w1) and q(p,w�), vj+1 also sees a point ai on the
ray q(p,wi), i = 2, . . . , �− 1. For each i ∈ {1, . . . , �} we draw the edge {wi, vj+1}
using the segments s(wi, ai) and s(ai, vj+1). Observe that the points a1, . . . , a�

should be chosen so that they appear around vj+1 in a counterclockwise order.
The lines l(p,w1) and l(p,w�) separate the plane into four quadrants. The

new kernel Kj+1 of the polygon Pj+1 is the intersection of the old kernel Kj and
the quadrant containing vj+1. Since the kernel Kj was an open set, p could not
have been on the boundary of Kj , therefore Kj+1 is a non-empty open set. ��

We observe that, according to the proof of Theorem 1, the class of the poly-
gons that allows a 1-bend-extension is wider than stars. In particular, these are
the polygons from the vertices of which we can shoot rays to infinity which nei-
ther intersect mutually nor intersect the polygon itself. We call such polygons
planar outer-stars. This gives the following:

Corollary 1. Each instance (G,ΓF ) where F is a chordless inner face and ΓF

is a planar outer-star, allows a 1-bend-extension.

4 Generalization of Stars

In this section we generalize the notion of stars and planar outer-star polygons
and investigate the lower and upper bounds for the number of bends per edge
in the drawing extensions.

4.1 β-Stars

A simple polygon P is a β-star if there is an open set of points K called the
kernel inside P with the following property: for each point p ∈ K and for each
vertex v of P there is a polyline c(v) connecting v and p with at most β bends
such that c(v) touches P only at v. The smallest such β is referred to as star
complexity of the polygon P . This set of curves is referred to as curve-set C of
P and p is the center of C. In the literature this kernel is also known as the
link center of the polygon and it can be calculated in O(n log n) time [6]. The
straight-forward extension of this definition to act “outside” the polygons is as
follows: a simple polygon P is a β-outer-star if for each vertex v of P there is
an infinite polyline c(v) outside of P starting at v with at most β bends. The
smallest such β is referred to as outer star complexity of the polygon P. Again,
C = {c(v) | v ∈ P} is called curve-set. The center of this set is a point at infinity.
One can think about β-outer-star as of β-star with the kernel in infinity.

While β-star and β-outer-star are straight-forward ways to extend the notion
of a star inside and outside, and these definitions capture an inherent complexity
of the polygon, we can show that restricting the fixed inner face to be a 1-star
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is not sufficient to ensure a c-bend-extension for any constant c (Theorem 2).
Even more, restricting the fixed inner face to a β-outer-star still does not imply
the existence of a c+β-bend-extension for any constant c (Theorem 3).

Theorem 2. There exist instances (G,ΓF ) where F is an inner face with h
vertices and ΓF is a 1-star such that any drawing extension of (G,ΓF ) contains
an edge with at least h−3

2 � bends.

Theorem 3. There exist instances (G,ΓF ) where F is an inner face with h
vertices and ΓF is a β-outer-star such that any drawing extension of (G,ΓF )
has an edge with at least β + log2(

h+5
6 ) + 1 bends.

The above lower bounds and the fact that a planar outer-star admits an
extension with one bend per edge guided us to extend definitions of β-star and
β-outer star to include planarity. A simple polygon P is a planar-β-star if there
is an open set of points K called the kernel inside P with the following property:
for a fixed point p ∈ K and for each vertex v of P there is an oriented polyline
c(v) inside P from v to p with at most β bends such that for any v and v′, c(v)
and c(v′) share the single point p.

A simple polygon P is a planar-β-outer-star if for each vertex v of P there
is an oriented infinite polyline c(v) outside of P starting at v with at most β
bends such that for any v and v′, c(v) and c(v′) neither cross nor touch each
other. The smallest such β is referred to as planar (outer) star complexity of the
polygon P . The set of curves are referred to as planar curve-set centered at the
fixed point p. Due to these definitions the following two theorems can be proven.

Theorem 4. Each instance (G,ΓF ) where F is a chordless outer face and ΓF

is a planar-β-star allows a β-bend-extension.

Theorem 5. Each instance (G,ΓF ) where F is a chordless inner face and ΓF

is a planar-β-outer-star allows a β + 1-bend-extension.

4.2 Planar Star Complexity of Polygons

While planar (outer) star complexity nicely bounds the required number of bends
per edge in a drawing extension, it does not represent a simple and inherent
polygon characteristic. Thus, in the following we first provide an upper bound on
the planar (outer) star complexity of a polygon in terms of the size of the polygon
(Lemma 2). Then, after preliminary results, we provide an upper bound of a
planar (outer) star complexity in terms of (outer) star complexity (Theorem 6).

Lemma 2. A simple polygon with h vertices is a planar h−2
2 -star and a planar

h−2
2 -outer-star.

Proof. For the interior, we set a kernel K to be an intersection of the interior
of P with an ε-ball around a vertex u of P . Let p be a point in K. Notice,
that by just following the boundary of the polygon it is possible to reach p from
any vertex v �= u with a polyline c(v) with at most h−2

2 bends. A set of such
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curves {c(vi)|vi ∈ P}, drawn in an appropriate order in order to avoid mutual
intersections, represents a planar curve-set of P .

For the exterior, observe that by following the boundary of the polygon from
any vertex u of P it is possible to reach a vertex belonging to the convex hull of
P with a polyline c(u) with at most h−4

2 bends because the convex hull contains
at least three vertices. A set of such curves, drawn in appropriate order in order
to avoid mutual crossing, augmented by infinite rays, result in a planar curve-set
of P with curve complexity at most h−2

2 . ��
Observe that, in general, the planar star complexity of a polygon may be

much lower than h−2
2 . Thus, in the following we aim to bound the planar star

complexity in terms of the star complexity. We rely on the following definitions:
let C be a planar curve-set of a planar-β(-outer)-star. For a curve c(v) from C
and a point p on c(v), we denote by cv(p) the part of the curve split at p, not
containing v and by #cv(p) the number of bends on cv(p). Furthermore, c(v, p)
designates the part of the curve c(v) between v and p. An intersection between
the curves c(v) and c(w) of C at a point p is called avoidable if one of the curves
has more bends after the intersection than the other, i.e. if #cv(p) �= #cw(p).
The term “avoidable” stems from the fact that if #cv(p) > #cw(p), we can
modify c(v) by rerouting it along c(w) starting just before the point p and this
way eliminate the intersection without increasing the number of bends per curve.
Concerning said avoidable intersections the following holds:

Lemma 3. For a given β(-outer)-star P there is a curve-set of P with at most
β bends each without avoidable intersections.

In order to resolve all remaining intersections we consider pairs of curves a
and b intersecting at a point p, such that p is the first intersection for both a
and b. In that case we call p initial intersection. However, we first have to show
that if there are intersections, then there is always at least one initial intersec-
tion. We formalize this in the following definition and Lemma 4. A sequence of
vertices (w1, . . . , wm) of P , with respective curves (c(w1), . . . , c(wm)) is called
cyclic ordering, if for each 1 ≤ j ≤ m, the first curve that c(wj) intersects is the
curve c(w(j mod m)+1). We can prove the following:

Lemma 4. For a given polygon P with a curve-set {c(v) | v ∈ V (P )} without
avoidable intersections there is no cyclic ordering.

Using Lemmas 3 and 4 we prove a relation between β-stars and planar-β-
stars.

Theorem 6. Every β-star (resp. outer-star) with n vertices is a planar-(β +δ)-
star (resp. outer-star), where δ ≤ log2(h).

Proof. Let P be a β(-outer)-star with h vertices. By Lemma 3, P has a curve-
set with at most β bends per curve without avoidable intersections. Let p be
an initial intersection of two curves, which exists by Lemma 4. We resolve the
intersection p by adding a bend to one of the curves and rerouting it along and
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sufficiently close to the other to ensure that they have the same intersections
with other curves. We call such curves that follow each other after a resolved
intersection a group. We then repeat resolving intersections of groups until there
are no more intersections. As a final part of the proof we show that during this
process for each curve at most log2(h) bends have been added.

For a curve c, let #ac be the number of bends that were added to c during this
algorithm. During the execution of the algorithm we maintain a set of groups
G. Each group Gri ∈ G is a set of curves. For each group Gri let #aGri be
the maximum number of additional bends over all curves in Gri, i.e. #aGri =
maxc∈Gri

(#ac). In the beginning each curve is in its own group, that means we
start with G = {{c(v)} | v ∈ V (P )} and for each Gri ∈ G, #aGri = 0.

The following step is repeated until there are no more intersections. Let p be
an initial intersection of two groups Gri and Grj . We reroute the curves of one
of Gri and Grj . If we choose to reroute Grj , then we add a bend to each curve
of Grj and then the curves of Grj follow along the curves of Gri, thus increasing
#ac by one for each c ∈ Grj . Resolving the intersection p creates a new group
Grk = Gri ∪ Grj . In order to keep #aGrk bounded we apply the following strategy:
if #aGri �= #aGrj , then we reroute the group with less additional bends and get
#aGrk = max{#aGri,#aGrj}. Otherwise, #aGri = #aGrj and we arbitrarily
choose one of the groups, so #aGrk = #aGrj +1. With each resolved intersection
two groups are merged into one, thus the overall number of groups reduces by
one. As a result, after at most h − 1 resolved crossings between groups this
iteration stops.

After the above procedure no two curves intersect, thus P is a planar-β+
δ-star (resp. outer-star) with δ = maxGr∈G(#aGr). In the following we prove
by induction over the group size that for each group Gr it holds that #aGr ≤
log2(|Gr|). For the induction base we observe that if |Gr| = 1 we have #aGr = 0 =
log2(|Gr|). As an induction hypothesis, assume that for a k ≥ 1 and each group Gr
with |Gr| ≤ k, it holds that #aGr ≤ log2(|Gr|). Let Grl be a group with |Grl| = k+
1, which is the result of merging two groups Gri and Grj . Since |Gri|, |Grj | < |Grl|,
the induction hypothesis holds for both Gri and Grj . If #aGri �= #aGrj , we have
#aGrl = max{#aGri,#aGrj} ≤ log2(max{|Gri|, |Grj |}) < log2(|Grl|). Otherwise,
if #aGri = #aGrj , lets assume w.l.o.g. |Gri| ≥ |Grj |, and therefore |Grl| ≥ 2|Grj |.
We have #aGrl = #aGrj + 1 ≤ log2(|Grj |) + 1 ≤ log2(|Grl|/2) + log2(2) =
log2(|Grl|).

Since for each v of P the curve c(v) appears in exactly one group, we have
that the maximum size of a group is h. It follows that P is a planar-β+δ-star
(resp. outer-star) with δ = maxGr∈G(#aGr) ≤ log2(h). ��

5 Drawing Extensions of Connected Subgraphs

In this section we apply the results from the previous section to provide a tight
upper bound on the number of bends in a drawing extension of a connected
subgraph.
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Theorem 7. Each instance (G,ΓH) where H is an induced connected subgraph
of G allows a min{h/2, β+log2(h)+1}-bend-extension, where h is the maximum
face size of H and β is the maximum (outer) star complexity of a face in ΓH .
This bound is tight up to an additive constant.

Above theorem implies an upper bound on the number of bends in case of a
non-induced subgraph by simply subdividing the induced edges by dummy ver-
tices and removing them after construction. The tightness of the bound follows
from the fact that the lower bound proofs (Theorems 2 and 3) can easily be
adapted to work for chords.

Corollary 2. Each instance (G,ΓH) where H is a connected subgraph of G,
allows a min{h+1, 2β +2 log2(h)+3}-bend-extension, where h is the maximum
face size of H and β is the maximum star complexity of a face in ΓH . This bound
is tight up to an additive constant.

6 Extending Stars with Straight Lines

Let G = (V,E) be a plane graph and F a chordless face, fixed on the plane as a
star-shaped polygon ΓF . In this section we study the question whether (G,ΓF )
admits a straight-line extension. Note that for F being the outer face of G, Hong
and Nagamochi [9] showed that (G,ΓF ) always admits a straight-line extension.
In the following F is an inner face.

If F is an inner face fixed as a convex polygon ΓF , Mchedlidze et al. [12]
showed that it can easily be tested if an instance (G,ΓF ) admits a straight-line
extension. In their case a necessary and sufficient condition for an extension to
exist is that for each vertex individually there is a valid position outside ΓF . For
stars a comparable result is not possible. Even if each vertex could be drawn
individually this does not mean that the whole instance admits a straight-line
extension. Even more, testing whether pairs of vertices can be drawn together
would not be sufficient as the construction in Fig. 3 suggests.

a

b

c

d

Fig. 3. The drawing cannot be extended to a straight-line drawing of the entire graph,
even though this is not revealed when testing individual parts. (Color figure online)

In case of ΓF being a convex inner face [12], the feasibility area of a vertex
adjacent to the fixed face is just a wedge, formed by the intersection of two half
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planes induced by two edges of ΓF . In this section we show that the situation for
the star shaped inner face is dramatically different, thus there exists an instance
for which the feasibility area of a vertex is partially bounded by a curve of
exponential complexity.

Theorem 8. There is an instance (G,ΓF ) where ΓF is a star-shaped inner face,
such that the feasibility area of some vertex v ∈ G is partially bounded by a curve
whose implicit representation is a polynomial of degree 2Ω(|V |).

Sketch of Proof. A curve is i-exponentially-complex if it has a parametric repre-
sentation of the form

{(
r(t)
u(t) ,

s(t)
u(t)

)
| t ∈ I

}
where r, s and u are polynomials of

degree 2i and I is an interval. In the following we describe an instance (G,ΓF ),
for which a feasibility area of a vertex v is bounded by an 2Ω(|V |)-exponentially-
complex curve. By slightly pertubing the positions of the vertices of ΓF to achieve
points in general position we have that the implicit representation of this curve
is a polynomial of degree at least 2Ω(|V |).

Let k ≥ 1 be a fixed integer. Figure 4a displays the plane graph Gk = (V,E)
and the drawing of its inner face as a star-shaped polygon. The vertices vi and
wi still need to be drawn. For 0 ≤ i ≤ k, the feasibility area of vi is denoted
by Ai and the boundary of Ai is referred to as Bi. We show that Bk contains a
2k-exponentially-complex curve. The proof is by induction on 0 ≤ i ≤ k.

b3

v0

α γ

β a1b1
c1

d1

b2

e3
c3

d3

a2

e1

c2

d2 e2

a3

v1
w1

w0

w2

v3

v2

(a) (b)

p

v0

α γ

β

Fig. 4. (a) Graph G3, the fixed face is drawn in gray. The vertices in the green area
are part of the base case. (b) The base case. The green curve C0 is on the boundary
B0 of the feasibility area A0 of v0. (Color figure online)

As the base of the induction we consider the boundary B0 of vertex v0 as
shown in Fig. 4b. The feasibility area of v0 is the upper quadrant formed by
the lines l(α, β) and l(γ, β). Let p = (−1/2, 1) be a point on the left boundary
of A0. Let C0 be the segment s(β, p) not containing the point p. It holds that
C0 = {( −t

t+1 , 2t
t+1 ) | t ∈ I = [0, 1)}. The curve C0 is 0-exponentially-complex. An

implicit equation of l(β, p) is y + 2x = 0.
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In the following we assume that the feasibility area Ai−1 of vi−1 is partially
bounded by an i − 1-exponentially-complex curve satisfying additional invari-
ants and prove that the feasibility area Ai of vi is partially bounded by an
i-exponentially-complex curve that also satisfies these invariants. The invariants
are given in three groups, the universal invariants, holding after each inductive
step, the even and the odd invariants holding after each even and odd step i ≥ 0,
respectively. Below are the universal and even invariants, with the odd invariants
being symmetric.

Universal Invariants

UI.1: Ai is partially bounded by an i-exponentially-complex curve Ci = {vi(t) =
(vx

i (t), vy
i (t)) | t ∈ I}, where I = [0, Imax) and Imax > 0,

UI.2: vy
i (t) is strictly increasing for t ∈ [0, Imax).

Even Invariants

EI.1: bx
i+1 < vx

i (0) < ax
i+1 and vy

i (0) = 0,
EI.2: Ai is on the right of Ci,
EI.3: Ray q(ai+1, vi(0)) intersects no point of Ai to the left of vi(0).

We observe that universal and even invariants hold for the base case i = 0.
Let Ci−1 =

{
vi−1(t) =

(
r(t)
u(t) ,

s(t)
u(t)

)
| t ∈ I

}
. The position wi−1(t) of vertex

wi−1 is described as the intersection of the rays q(vi−1(t), bi) and q(di, ci). The
position vi(t) of vi is described as q(ai, vi−1(t)) ∩ q(ei, wi−1(t)).

Using this we calculate the curve Ci, i.e. we calculate the position of vi

as a function of t. This can be done by calculating the equation of the line
l(vi−1(t)), bi), the position of the vertex wi−1(t) and then the equations if the
lines l(ai, vi−1(t)) and l(ei, wi−1(t)). The intersection of the latter lines is vi(t)
and we obtain Ci = {( ri(t)

ui(t)
, si(t)

ui(t)
) | t ∈ I}, where each of ri(t), si(t), ui(t)

is quadratic in r(t), s(t) and u(t). By induction hypothesis, Ci−1 is an i − 1-
exponentially complex curve, i.e. u(t), s(t), r(t) contain terms t2

i−1
. So the curve

Ci is i-exponentially complex, provided that the coefficients of highest degree
do no cancel themselves out, which can be avoided by slightly perturbing the
position of vertex ei. This proves Invariant UI.1. A proof that the remaining
invariants hold after the induction step concludes the proof of the theorem. ��

7 Conclusion

We have shown that a drawing ΓH of an induced connected subgraph H can
be extended with at most min{h/2, β + log2(h) + 1} bends per edge if the star
complexity of ΓH is β and h is the size of the largest face of H and that this
bound is tight up to a small additive constant. In the event of a disconnected
subgraph H the known upper bound is 72|V (H)|. It is tempting to investigate
whether the constant 72 can be lowered and to provide a matching lower bound.
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We have proven that there is an instance (G,ΓF ) where ΓF is a star-shaped
inner face, such that the feasibility area of some vertex v ∈ G is partially bounded
by an exponential degree curve. This is an indication that for a given instance
(G,ΓF ) it is difficult to test whether (G,Γ) admits a straight-line extension. It
would be interesting to establish the computational complexity of this problem.
We were not able to show the NP-hardness of the problem. Due to its similarity
with visibility and stretchability problems we conjecture that the problem is as
hard as the existential theory of reals.
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Abstract. Symmetry is an important factor in human perception in
general, as well as in the visualization of graphs in particular. There are
three main types of symmetry: reflective, translational, and rotational.
We report the results of a human subjects experiment to determine what
types of symmetries are more salient in drawings of graphs. We found sta-
tistically significant evidence that vertical reflective symmetry is the most
dominant (when selecting among vertical reflective, horizontal reflective,
and translational). We also found statistically significant evidence that
rotational symmetry is affected by the number of radial axes (the more,
the better), with a notable exception at four axes.

1 Introduction

Many objects in nature, from plants and animals to crystals and snowflakes, have
symmetric patterns. Humans and other animals have a nearly perfect reflective
symmetry along a single axis; sea stars and snowflakes have repetitive patterns
along two or more radial axes; leaves and flowers often have translational patterns
of symmetry; see Fig. 1.

The perception of symmetry is one of the key concepts in Gestalt theory
which studies how humans perceive different types of objects. Symmetry has also
been considered an important feature of well-drawn graphs, on the basis that
depicting symmetries will reveal a graph’s structure and properties [8]. A natural
question that arises is: which types of symmetry are easier to perceive and how
does this affect drawings of graphs? In this study we investigate this question,
focusing on the reflective (also called “mirror”), translational and rotational (also
called “radial”) types of symmetries:

– Vertical: A pattern is reflected across a vertical axis (reflective symmetry)
– Horizontal: A pattern is reflected across an horizontal axis (reflective sym-
metry with a 90 ◦ rotation)

– Translational: A pattern is repeated and shifted in the space
– Rotational: A pattern is repeated across radial axes with a given angle
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Fig. 1. Symmetry in nature: (a) reflective, (b) translational, (c) rotational.

We used synthetically generated graph drawings in a human subjects exper-
iment to answer several questions related to the perception of symmetry. Specif-
ically, we created graph layouts that exhibit different types of symmetries and
asked our participants to select the more symmetric ones. We found statisti-
cally significant evidence that vertical reflective symmetry is the most dominant
(when selecting among vertical, horizontal and translational). We also found sta-
tistically significant evidence that rotational symmetry is affected by the number
of radial axes (the more, the better) with a notable exception at four axes.

2 Related Work

Gestalt theorists studied how objects are perceived, their view being that the
perception of a whole object cannot be reduced to the sum of the perception of its
parts [17]. They focused on describing the patterns we see in visual stimuli [2,30],
and in how we distinguish background from foreground [23], devising a set of laws
describing fundamental perceptual phenomena. Well-known Gestalt principles
include proximity (things that are close together are perceived as being in a
group), similarity (things that look “similar” are perceived as being in a group),
closure (closed shapes are preferred to open shapes), and symmetry, which we
discuss in more detail next.

Giannouli [9] defines symmetries on the plane as “transformations that pre-
serve equal geometric distance,” and identifies the three standard types: trans-
lational, rotational and reflective symmetries. Each of these have variations: the
distance and direction of the transposition for translational symmetry, the num-
ber of times around a circle the object is repeated (known as its “order”) for
rotational symmetry, and the angle of the axis (with horizontal and vertical
being the most common) for reflective symmetry.

The human perception of symmetry has been studied in different contexts.
For example, there is evidence that people remember figures as more symmetric
and closer than they really are [28] and that symmetry aids in the recall of
abstract patterns [12,26].

Several studies compare the effectiveness of different types of symmetry. An
early experiment by Corbalis and Roldan [7] compared vertical reflective sym-
metry with translation symmetry (limited to only horizontal translation). They
compared these two conditions in two forms – where the two components were
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touching each other (i.e., creating a single holistic visual object) or where there
was a horizontal distance between the two components (i.e., they were per-
ceived as two separate objects). They concluded that vertical symmetry was
more salient in the holistic case, but translation more salient when the two com-
ponents are disjoint. Other early work [3] concluded that vertical symmetry is
easier to detect than translational symmetry. Royer [24] prioritizes horizontal
and vertical reflective symmetry over diagonal reflection, with “centric” (loosely
comparable to rotational, despite Royer’s stimuli being square in form) per-
forming worse. The work by Palmer and Hemenway [18] confirms the ordering:
vertical reflective, horizontal reflective, diagonal reflective.

Cattaneo et al. [6] investigate the neurological basis for the perception of
vertical and horizontal reflective symmetry and conclude that there is a “par-
tial” difference between the regions of the brain used in detecting these two
symmetries. Giannouli’s [9] review of research on the visual perception of sym-
metry finds that vertical reflective symmetry is more readily perceived than any
other type. Similar findings are reported in an earlier review by Wageman [29],
who ranks reflective symmetries as follows: vertical produces better recognition
performance (faster or more accurate) than horizontal, which in turn performs
better than diagonal.

Jennings and Kingdom [10] conducted experiments to compare the perception
of different orders of rotational symmetry (3, 5 and 7), together with a vertical
reflection condition. They conclude that it is easier to detect rotational symmetry
as the order increases (as measured by response time), and that, in comparison
with rotational symmetry, the vertical reflective symmetry condition performs
better than 3rd order, the same as 5th order, and worse than 7th order.

Note that none of this work involved graphs or drawings of graph.
While some researchers have considered the application of Gestalt principles

to graph drawing, such work is rather fragmented. Wong and Sun [27] create key
criteria for the depiction of UML class diagrams based on the Gestalt theories,
and then evaluate three UML diagram tools based on these criteria. Bennet et
al. [1] review the literature on graph drawing aesthetics with reference to Nor-
man’s [16] stages of perception (visceral, behavioral and reflective), including
the Gestalt theories in the visceral stage. They conclude that more work needs
to be done to validate the common graph drawing aesthetic criteria with respect
to perceptual theories. Nesbitt and Freidrich [15] discuss some of the Gestalt
theories in relation to graphs that evolve over time, although symmetry is not
explicitly considered. Lemon et al.’s experiments [13] show that the principles of
similarity, proximity and continuity affect the comprehension of complex soft-
ware diagrams. Rusu et al. [25] focus on the principle of continuity, and proposed
a method for reducing visual clutter created by edge crossings by creating gaps in
the edges. This is embodied in the partial edge drawing algorithms of Bruckdorfer
et al. [4] and Burch et al. [5]. Marriott et al. [14] conduct an experiment looking
at what features of small graph drawings made them most memorable. Their
experimental conditions explicitly relate to the Gestalt principles of symmetry,
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continuity, orientation and proximity and their finding indicate that drawings
that exhibit symmetry and continuity are amongst those most readily recalled.

Eades advocates the use of algorithms that aim to draw graphs with “as
much symmetry as possible” [8]. Early experiments investigating the relative
importance of different graph drawing aesthetics find support for the depiction
of symmetry in terms of performance on graph-reading tasks [20,21]. Two com-
putational methods have been proposed for measuring the extent of symmetry
in a graph drawing, a non-trivial task in and of itself. The method proposed by
Purchase [19] considers only reflective symmetry. It generates potential axes of
symmetry between all pairs of vertices, and determines the existence of symmet-
ric sub-graphs (edges reflected around the axis, with a tolerance) for each axis.
Klapaukh’s method [11] uses an edge-based metric that includes rotational and
translation symmetries in addition to vertical ones. Welch and Kobourov [31]
studied which of these two algorithms best correlates with the human percep-
tion of symmetry, with results that suggest that a graph drawing with vertical
symmetry is considered more symmetric than the identical drawing presented at
a slightly different orientation, and that the greater the extent of symmetry in
a drawing, the faster the participants’ response.

While there has been extensive experimental research in the perception liter-
ature comparing the different types of symmetry in a variety of artificial stimuli,
no comparable work has been performed to investigate the perception of symme-
try in graph drawings. We therefore extend the work done so far by conducting
experiments that specifically considers which of the three types of symmetry are
more salient in drawings of graphs, including several additional variations.

3 Research Questions

We investigate the perception of graph drawings that exhibit three types of
symmetry: reflective (vertical and horizontal), translational and rotational.
Rather than attempting to draw existing graphs that embody such symmetries
(a difficult task), we create symmetric graph drawings by duplicating graph-
substructures. Specifically, we draw a small graph, make a duplicate, place the
duplicate(s) appropriately (according to the type of symmetry), and join the
components together to create a graph drawing that exhibits the desired sym-
metry.

Since rotational symmetry is visually very different from reflective and trans-
lational symmetry, we address two separate research questions:

1. What is the relative ranking of reflective and translational symmetries for
drawings of graphs?

2. What is the impact of the number of axes (order) for rotational symmetry?

3.1 The Symmetric Graph Drawings

Our experiment considers several different types of symmetry: horizontal (H),
horizontal with rotation (Hr), vertical (V), vertical with rotation (Vr), trans-
lational (T), translational with rotation (Tr), rotational with fixed components
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(RC) and rotational with fixed vertices (RV). For a baseline, we also have a
non-symmetric version (NS); see Fig. 2. We consider two variants of rotational
symmetry (RC and RV) in order to take into account the effect of the number
of rotational axes and the effect of different graph sizes.

Ideally, all the stimuli should represent exactly the same graph, but since
this would be impossible (especially for the rotational drawings), we attempt to
impose some consistency by using the same “base graph” from which the larger
graphs are derived.

(a)

(b)
(c)

(d) (e) (f) (g) (h)

Fig. 2. Example layouts in the dataset: (a) base graph, and its (b) H, (c) Hr, (d) V,
(e) Vr, (f) T, (g) Tr, and (h) NS.

We create the horizontal, vertical and translational drawings (HVT, for short)
as follows. Let Gb = (Vb, Eb) be a base graph drawn with a random layout such
that each vertex vb ∈ Vb has positive coordinates; see Fig. 2a. Let Gc = (Vc, Ec)
be a copy of Gb with the same layout. Then Gs = (Vb∪Vc, Eb∪Ec∪E) is created
from the two graphs together with edge set E connecting the vertices in Vb to
their copied version in Vc. We fix |E| = 3 and the vertices that are chosen for the
connection are chosen at random. We use Gs to create the layouts of the graphs
in the HVT set by changing the coordinates of the vertices vc ∈ Vs as follows:

– H: If vb = (x, y) then vc = (x,−y); see Fig. 2b.
– Hr: H version with a rotation with angle in [0, 45]; see Fig. 2c.
– V: If vb = (x, y) then vc = (−x, y); see Fig. 2d.
– Vr: V version with a rotation with angle in [0, 45]; see Fig. 2e.
– T: If v = (x, y) then vc = (x − δ, y) where δ is a shifting factor such that the

bounding boxes of Vb and Vs do not overlap; see Fig. 2f.
– Tr: T version with a rotation with angle in [0, 45]; see Fig. 2g.
– NS: Non symmetric (random) placement of the vertices in Vs; see Fig. 2h.

We have two types of rotational drawings: maintaining the base graph com-
ponent (the “fixed component” version), and limiting the maximum number of
vertices (the “fixed vertices” version). We use both methods in order to control
for the possible confounding factor of different graph sizes in the first variant.

The rotational fixed component (RC for short) versions are symmetric layouts
that repeat the base graph drawing around each axis. The base graph Gb =
(Vb, Eb) is a component of the layout of the symmetric graph Gs and we create
the different graphs as follows:
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– RC{X}: The drawing of each component is replicated on each of the
X = [4, . . . , 10] axes of symmetry. By choosing two random vertices from
a component, we connect each pair of rotationally consecutive components
with edges to the corresponding vertices; see Fig. 3.

(a) (b) (c) (d) (e) (f) (g)

Fig. 3. Example of rotational layouts with fixed components: (a) RC4, (b) RC5, (c)
RC6, (d) RC7, (e) RC8, (f) RC9, and (g) RC10.

Table 1. RV sizes

V Avg E

RV4 40 52

RV5 50 65

RV6 48 60.3

RV7 49 60.9

RV8 48 59.6

RV9 45 55.8

RV10 50 62

The rotational fixed vertices (RV for short) versions are
symmetric layouts with a limited maximum number of total
vertices. They are created as follows:

– RV{X}: The base graph is reduced in size by removing
as many vertices (at random) as needed so that when it
is replicated on each of the X = [4, . . . , 10] axes of sym-
metry, the total number of vertices does not exceed 50.
As before, we connect each pair of rotationally consec-
utive components with two edges; see Fig. 4. Inevitably,
the graphs in this set are not exactly of the same size,
but they are within 20% of each other; Table 1 shows the
number of vertices and average number of edges.

(a) (b) (c) (d) (e) (f) (g)

Fig. 4. Example of rotational layout with fixed number of vertices: (a) RV4, (b) RV5,
(c) RV6, (d) RV7, (e) RV8, (f) RV9, and (g) RV10.

We use small and sparse base graphs (|V | = 10 and |E| = 11) as these
would be copied and interconnected when creating the various experimental sets.
Each base graph is drawn by placing the vertices at random, to avoid accidental
symmetries within the base graph and in order to focus on the symmetries
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created by the base graph replication. We use two (RC and RV) or three (HVT)
edges to connect the replicated components for the same reasons.

By construction, all pairs of HVT graphs used as stimuli are the same,
while pairs of RC and RV graphs are structurally different. We used the yFiles
library [32] to generate and draw our stimuli.

4 Experimental Methodology

We conducted three separate experiments: Reflective and Translational (RT),
Rotational Fixed Component (RFC) and Rotational Fixed Vertices (RFV). We
used the same methodology but different sets of stimuli. The participants’ task
was to look at a series of pairs of graph drawings, and, for each pair, indicate
which one of them they thought was “more symmetric.” This task was designed
to address the following experimental questions:

– Q1: Which type of symmetry among H, V, T, Hr, Vr, Tr is most recognizable
as symmetry?

– Q2: How many rotations is most recognizable as rotational symmetry, using
the fixed-component generation method?

– Q3: How many rotations is most recognizable as rotational symmetry, using
the fixed-vertices generation method?

For Q1, we expected vertical symmetry (V) will be most prominent,
with horizontal (H) being noticed more than translational (T), and that
non-rotated versions will be easier to detect than the corresponding rotated
versions [3,24,29].

For Q2 and Q3 we expected that the higher the degree, the greater the extent
of symmetry recognition [10]. We were unsure about the effect of the additional
visual clutter inherent in the RC drawings (as the size of graph increases with
the degree) but anticipated that both should follow the same trend.

4.1 Stimuli

Each experiment uses five base graphs. Specifically, we generated 20 random
simple graphs, called base graphs (each with 10 vertices and 11 edges), and
drew them using a random layout. We randomly chose five of these base graphs
as generators for the stimuli in each experiment.

Reflective and Translational (RT): There are 7 conditions in this experiment:
horizontal (H), vertical (V), translational (T), horizontal rotated (Hr), vertical
rotated (Vr), translational rotated (Tr), and non-symmetric (NS). In this exper-
iment, all drawings are of the same graph; they are all based on the same base
component. With 5 different versions of the base graph, we have 5 ∗ 7 = 35
stimuli for this experiment.
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Rotational Fixed Component (RFC): There are 7 conditions in this experiment:
rotational orders of 4−10 (designated as RC4, . . . , RC10). Since the number of
incidences of the base component drawing is increased for each order, and two
edges are added every time a new base component is added, the size of the graph
increases with every order. With 5 different base graphs, we have 5 ∗ 7 = 35
stimuli for this experiment.

Rotational Fixed Vertices (RFV): There are 7 conditions in this experiment:
rotational orders of 4−10 (designated as RV4, . . . , RV10). Here, the number
of vertices in each graph varies from 40 to 50, as described in Table 1. With
5 different versions of the base graph, we have 5 ∗ 7 = 35 stimuli for this
experiment.

5 Experimental Process

We use a “two-alternative forced choice” methodology, where a pair of stimuli are
presented and participants must choose one of them. Specifically, the participants
are asked to select the drawing that they considered “more symmetric.” In each
experiment, we show all possible pairs twice (switching between left and right
for the second presentation); with 7 stimuli we get 2 ∗ (7 ∗ 6)/2 = 42 pairs and
this is done for each of the 5 different versions of the base graph for a total of
5 ∗ 42 = 210 trials. As a within-participants’ experiment, all participants see
all 210 pairs. To mitigate against the learning effect, the experimental stimuli
are preceded by 10 practice trials for which the data is not collected (using a
sixth version of the base graph), and each participant is presented with the 210
trials in a different random order. We collected data on the choice made by the
participant for each pair, and the time taken to make the choice.

The experiment is conducted online with the online system randomly assign-
ing one of the three experiments, and randomly selecting 5 base graphs from the
20 available for that participant-experiment combination. By asking each partic-
ipant to do only one of the three experiments and by choosing only five versions
of the base graph, we anticipated that the experiment would not be too lengthy
(therefore minimizing the chance of participants not finishing the experiment).
We expected the experiment to take approximately 10 min.

Participants are required to give consent at the start, and a set of instructions
followed before the practice trials began. A self-timed break is offered every 20
trials. At the end of the experiment, participants are asked to give demographic
data: gender, age, educational background, familiarity with networks and with
symmetries. As a reward for taking part of the study, statistics about the par-
ticipant’s answers in relation to the answers of other participants are presented.
These statistics show an example of the layout used in the task, the number
of selections from the participants and from the specific participant grouped by
each version, the number of clicks for any pair of versions, the number of left and
right clicks, and the average answer time for the current and all participants.

Participants are not given details about the problem we are considering or
the task that they would perform and we are intentionally vague: we just ask
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them to “choose the layout that looks more symmetric” between the proposed
pair of layouts. We do not provide information about the concept of symmetry or
our interpretations thereof, so as to not accidentally influence the participants.

5.1 Pilot Study

We use a simple online system made of four main parts: an introduction page,
the main experiment, a demographics page (gender, age, graph expertise, sym-
metry expertise), and the statistics page. We conducted a pilot study to test
our setup. In its early stages our system had an introductory screen with a brief
description about the concept of “graphs” and “graph drawings” but several par-
ticipants suggested to use “network” instead, as it is more common and easier
to understand. We also added information about the expected duration of the
experiment. Initially we showed pairs of graphs starting from 10 base graphs
for a total of 420 pairs, but the pilot study showed that this resulted in a test
that was too long. We decided to reduce the number of base graphs to 5 and
to introduce a break every 20 pairs. The demographics page was augmented to
allow for feedback from the participants. The end of the study was modified from
a “Thank you” page to a page that provides statistics about the participants
results in comparison to the average previous participants. Finally, following
feedback from the pilot study, we changed the background color from white to
light-gray and added a black border to highlight the selected image.

6 Data Analysis

We used Reddit [22] and personal communications to crowdsource our study.
We collected data from a total of 97 participants.

6.1 Experimental Conduct

We removed data from all participants who did not complete the full experiment
(n = 39). It’s disappointing that so many people did not finish experiment
(which was intended to take less than ten minutes); informal feedback from
participants are that they found the task boring and, in some cases, difficult. One
participant in the RT experiment gave an exceptionally high number of votes to
the non-symmetric drawing; we removed this participant from our analysis. Two
response times were particularly higher than others (17 s and 100 s) - these data
points were replaced by the mean of the other response times for the respective
participants. One participant gave almost exactly the same votes to all conditions
in the RFV experiment: we removed this participant’s data. This left us with 19
participants for RT, 19 for RFC and 18 for RFV. The demographic information
of the 56 participants (13 female and 43 male) is summarized in Fig. 5.
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Fig. 5. Participants demographic information (a) age, (b) education level, (c) graph
familiarity, and (d) symmetry familiarity.

6.2 Analysis Process

We (conveniently) have seven conditions for each of the three experiments, so
the form of the data is the same. Since we include only those participants who
completed the entire experiment, each participant “voted” 210 times, each vote
being associated with one of the seven conditions. We also have an average
response time associated with each vote. For both response times and votes,
we use ANOVA and adjusted planned comparison pair-wise tests between the
pairs of conditions of interests to determine which conditions are (a) favored
over the others, and (b) responded to most quickly. We use a significance level of
0.05 throughout, adjusted as appropriate for the number of planned comparisons
made. We do not compare all pairs of conditions, only those of interest to our
research question as doing this reduces the extent of required adjustments. The
mean vote and mean response time (over all participants) charts are depicted in
Fig. 6, while the exact values are shown in Table 2.

Fig. 6. Mean votes charts for (a) RT (b) RFC, (c) RFV and mean response time charts
for (d) RT (e) RFC, and (f) RFV.
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Voting Responses
Reflective and Translational (RT): A repeated-measures ANOVA reveals a sig-
nificant difference between the average votes (F = 240.5, df = 6, p < 0.001 ).
Five pairwise comparisons (at adjusted p = 0.01), reveal the following results;

– H obtained significantly more votes than Hr (p < 0.001)
– V obtained significantly more votes than Vr (p < 0.001)
– T obtained significantly more votes than Tr (p < 0.001)
– V obtained significantly more votes than H (p < 0.001)
– H obtained significantly more votes than T (p < 0.001)

Rotational Fixed Component (RFC): A repeated-measures ANOVA reveals a
significant difference between the average votes (F = 12.2, df = 6, p < 0.001).
Two pairwise comparisons (at adjusted p = 0.025), reveal the following results;

– RC6 obtained significantly more votes than RC5 (p < 0.001)
– No significant difference is between the votes for RC4 and RC5 (p = 0.050)

Rotational Fixed Vertices (RFV): A repeated-measures ANOVA reveals a sig-
nificant difference between the average votes (F = 10.9, df = 6, p < 0.001). Two
pairwise comparisons (at adjusted p = 0.025), reveal the following results;

– RV6 obtained significantly more votes than RV5 (p = 0.021)
– No significant difference is between the votes for RV4 and RV5 (p = 0.63)

Table 2. Mean vote and mean response time for each task.

Number of
participants

H Hr V Vr T Tr NS

Mean vote 19 45.63 36.89 52.16 41.74 18 13.63 1.95

Mean response time (s) 19 2.05 2.53 2.03 2.25 3.27 3.41 1.93

RC4 RC5 RC6 RC7 RC8 RC9 RC10

Mean vote 19 23.63 15.11 26.42 29.05 35.21 38.32 42.26

Mean response time (s) 19 2.30 2.21 1.98 1.96 2.36 2.18 2.24

RV4 RV5 RV6 RV7 RV8 RV9 RV10

Mean vote 18 20.78 18.67 28.78 29.44 35.22 37.72 39.39

Mean response time (s) 18 2.89 3.15 3.25 3.58 2.94 2.65 2.93

Response Time
Reflective and Translational (RT): A repeated-measures ANOVA reveals a signif-
icant difference between the average response time (F = 4.84, df = 6, p < 0.001).
Five pairwise comparisons (at adjusted p = 0.01), reveal;

– The response time for H is significantly less than that for T (p < 0.001)
– No significant differences between the response times for the following pair-

ings: H/Hr; V/Vr; T/Tr; V/H.
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Rotational Fixed Component (RFC): A repeated-measures ANOVA reveals no
significant difference between the average response time (F = 1.29, df = 6,
p = 0.267).

Rotational Fixed Vertices (RFV): A repeated-measures ANOVA reveals no sig-
nificant difference between the average response time (F = 1.535, df = 6,
p = 0.174).

7 Discussion

With respect to question Q1, we found statistically significant effects confirming
that vertical symmetry is more recognizable as symmetry, followed by horizontal
and translational. In all three variants adding even slight rotation has a signifi-
cant effect. Vertical symmetry is more recognizable than vertical with rotation,
horizontal is more recognizable than horizontal with rotation, and translational
is more recognizable than translational with rotation. Mean response time also
follows this trend, although we have only one statistically significant finding that
horizontal is faster than translational. An immediate implication of this is that
vertical symmetry is the best perceived because it is frequently seen by people
and that can be exploited in future graph layout algorithms.

The RFC and RFV experiments helped us answer questions Q2 and Q3.
Our experimental results provide evidence of a greater symmetry recognition for
high number of rotation axes. We believe that this is due to the fact that layouts
with high number of rotational axes tend to become more and more circular,
and the circle is a very symmetric shape. We also find that the increased size of
the graphs in the RFC experiments does not seem to affect the better perception
for high number of rotational axes as the results for RFC and RFV are similar.

Of particular interest is one exception: RC4 is considered more symmetric
than the RC5, which goes against the general trend of better perception for high
number of rotation axes. We discuss possible explanations below.

8 Conclusions and Future Work

The conclusions from our experiments are limited by the specifics of our study;
e.g., we only consider graphs of similar sizes, starting with a base graph of a
fixed size, and connecting copies thereof in symmetric sub-structures using two
or three edges. Despite such limitations, our experiment does provide potentially
useful information about the relative effects of different types of symmetries in
drawings of graphs. The results from our study suggest that humans recognize
vertical reflective symmetry over all other types of symmetry, followed by hori-
zontal and translational symmetries and that rotational symmetry is affected by
the number of radial axes. These findings can help guide algorithms that identify
features to be displayed using these types of symmetries. Vertical symmetry can
be used to call attention to isomorphic subgraphs and cycles can be highlighted
by laying them out as regular n-gons that have high rotational symmetry.
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The results of our experiment, in particular for the RFC and RFV tasks, show
that a rotationally symmetric layout with 4 axes is considered more symmetric
than that with 5 axes, which goes against the general tendency of recognizability
towards higher number of axes. This leads to an interesting question: what is it
about these rotationally symmetric layouts that gives such different results? Is
it because of something in particular about the layout with 5 axes or the one
with 4? Is it because rotational 4 is not perceived as a rotational symmetry but
as a combination of horizontal and vertical symmetries? If so, is the rotational
symmetry with many axes perceived better than the reflective and translational
ones? Answers to such questions can help guide the design of algorithms that
visualize symmetries. It would also be interesting to repeat this study using
different base graphs that were not drawn with random layout.
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Abstract. In this paper, we consider the problem of approximately
aligning/matching two graphs. Given two graphs G1 = (V1, E1) and
G2 = (V2, E2), the objective is to map nodes u, v ∈ G1 to nodes
u′, v′ ∈ G2 such that when u, v have an edge in G1, very likely their
corresponding nodes u′, v′ in G2 are connected as well. This problem
with subgraph isomorphism as a special case has extra challenges when
we consider matching complex networks exhibiting the small world phe-
nomena. In this work, we propose to use ‘Ricci flow metric’, to define
the distance between two nodes in a network. This is then used to define
similarity of a pair of nodes in two networks respectively, which is the
crucial step of network alignment. Specifically, the Ricci curvature of an
edge describes intuitively how well the local neighborhood is connected.
The graph Ricci flow uniformizes discrete Ricci curvature and induces
a Ricci flow metric that is insensitive to node/edge insertions and dele-
tions. With the new metric, we can map a node in G1 to a node in G2

whose distance vector to only a few preselected landmarks is the most
similar. The robustness of the graph metric makes it outperform other
methods when tested on various complex graph models and real world
network data sets (Emails, Internet, and protein interaction networks)
(The source code of computing Ricci curvature and Ricci flow metric are
available: https://github.com/saibalmars/GraphRicciCurvature).

1 Introduction

Given two graphs G1 and G2 with approximately the same graph topology,
we want to find the correspondence of their nodes – node v in G1 is mapped
to a node f(v) in G2 such that whenever u, v is connected in G1, f(u), f(v)
are likely to be connected in G2 as well. This is called the network alignment
problem and has been heavily studied [10] with numerous applications includ-
ing database schema matching [17], protein interaction alignment [9,13,42,56],
ontology matching [55], pattern recognition [45] and social networks [20,68].

Network alignment is a hard problem. A special case is the classical prob-
lem of graph isomorphism, in which we test whether or not two graphs have
c© Springer Nature Switzerland AG 2018
T. Biedl and A. Kerren (Eds.): GD 2018, LNCS 11282, pp. 447–462, 2018.
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exactly the same topology under a proper correspondence. The most recent
breakthrough by Babai [3] provides an algorithm with quasi-polynomial run-
ning time O(exp ((log n)O(1))), where n is the number of nodes. It still remains
open whether the problem is NP-complete or not. For special graphs, polynomial
time algorithms have been developed (e.g. trees [2], planar graphs [25], graphs of
bounded valence [40]). For general graphs what has been commonly used include
heuristic algorithms such as spectral methods [1,51,56], random walks [60], opti-
mal cost matching method [29] and software packages such as Nauty, VF, and
VF2, see [11,44]. The subgraph isomorphism problem, i.e., testing whether one
graph is the subgraph of the other, is NP-complete and has been heavily studied
as well. See the survey [10,14,66].

For practical settings, the problem is often formulated as finding a matching
in a complete bipartite graph H = (V1, V2, E), in which V1 are nodes in G1, V2

are nodes in G2, and edges E carry weights that indicate similarity of the two
nodes. Here similarity can be either attribute similarity or structural similar-
ity (quantifying their positions in the network). The two graphs are aligned by
taking a matching of high similarity in graph H. Many algorithms use this app-
roach and they differ by how to define node similarity: L-Graal [43], Natalie [12],
NetAlignMP++ [6], NSD [32], and IsoRank [56]. In this paper, our main contri-
bution is to provide a new method to compute node structural similarity using
the idea of graph curvature and curvature flow.

Our Setting. We mainly focus on complex networks that appear in the real
world. Consider the Internet backbone graphs captured at two different points
in time, we wish to match the nodes of the two graphs in order to understand how
the network has evolved over time. Or, consider two social network topologies
on the same group of users. It is likely that when two users are connected by
a social tie in one network (say LinkedIn), they are also connected in the other
network (say Facebook). A good alignment of two networks can be useful for
many applications such as feature prediction [16], link prediction [64], anomaly
detection [48], and possibly de-anonymization [19,52].

We work with the assumption that a small number k (say 2 or 3) of nodes,
called landmarks, are identified. Often a small number of landmarks could be
discovered by using external information or properties of the networks. For exam-
ple, in networks with power law degree distributions, there are often nodes with
really high degree that can be identified easily. Given the landmarks, we can find
a coordinate for each node u as [d(u, �1), d(u, �2), · · · , d(u, �k)], where d(u, �i) cap-
tures the similarity of u with the ith landmark. This coordinate vector captures
the structural position of a node in the network and can be used in the network
alignment problem – two nodes u1 ∈ V1 and u2 ∈ V2 can be aligned if their
respective coordinates are similar. This approach is motivated by localization in
the Euclidean setting, in which three landmarks are used to define the barycen-
tric coordinates of any node in the plane. In the complex network setting, this
approach faces two major challenges that need to be addressed.

First, a proper metric that measures the distance from any node to the
landmarks in the network is needed. The easiest metric is probably the hop
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Fig. 1. An example of Ricci curvature on the karate club graph before and after Ricci
flow. The colors represent the Ricci curvature while the thickness represents the edge
weight. Ricci flow deformed the edge weights until Ricci curvatures converged (−0.0027
in this case). (Color figure online)

count – the number of edges on the shortest path connecting two nodes in the
network. While the hop count is often used for communication networks, for
complex networks it is less helpful as these networks often have a small diameter.
To look for a better measure, edges shall be properly weighed which is highly
application dependent. For the Internet setting [36], measures such as Round-
Trip Time (RTT) are used. In a social network setting, it is natural to weight
each edge by its tie strength. But these weights are not easy to obtain. Many
graph analysis methods use measures that capture local graph structures by
common neighborhood, statistics generated by random walks [21,53], etc.

Second, the approach of using distances to landmarks to locate a node in the
network is truly geometric in nature [18,30]. But a fundamental question is to
decide what underlying metric space shall be used. Low-dimensional Euclidean
spaces are often used [23,34] and spectral embedding or Tutte embedding are
popular. But it is unclear what is the dimensionality of a general complex net-
work and robustness of these embeddings is not fully understood.

Our Approach. We address the above problems by using the tool of graph
curvature and curvature flow. In the continuous setting of a two dimensional
surface, the curvature of a point captures how much it deviates from being flat
at the point. The tip of a bump has positive curvature and a saddle point has
negative curvature. Curvature flow is a process that deforms the surface (chang-
ing the metric) and eventually makes the curvature to be uniform everywhere.
In our setting, we look at discrete curvatures and curvature flow defined on a
graph and argue that by curvature one can encode and summarize graph struc-
tures. As will be explained later in more details and rigor, edges that are in a
densely connected ‘community’ are positively curved while edges that connect
two dense communities are negatively curved. Further, we can define curvature
flow (which is an adaptation of surface Ricci flow to the graph setting) such
that weights are given to the edges to make all edges have the same curvature.
This process in some sense ‘uniformizes’ the network and can be imagined as
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Fig. 2. A comparison of stretch ratios under different metrics started from node 4
labeled in yellow. Here the stretch ratio defined by the ratio of shortest path changed
when nodes or edges are removed from graph. For graph G and G \ {v2v7, v26v29}, the
stretch ratios of shortest paths from node 4 to all other nodes are labeled in color.
Here the top five stretches paths are labeled by its ratios next to the nodes. With just
two edges removed, the stretch ratios of spring and spectral metric changed drastically
while RF metric remains stable. (Color figure online)

embedding the network in some intrinsic geometric space. These weights are
again intuitive – edges in a dense community are short while edges that connect
two far away communities are long, see Fig. 1. We call the shortest path length
under such weights as the Ricci flow metric. The Ricci flow metric is designed
to improve robustness under insertions and deletions of edges/nodes – when an
edge is removed, the shortest path distance between the two endpoints in the
original graph can possibly change a lot and Ricci flow reduces such imbalance.
This is useful for matching two graphs that are different topologically.

Our curvature based coordinates depend only on the network topology and
thus are purely structural. But they can also be combined with node attributes
(when available) to produce an alignment score. In our evaluation we have
focused on methods that use structural similarities and embeddings such as
hop counts, metrics induced by spectral embedding [41] or spring/Tutte embed-
ding [61], and topology based network alignment algorithm IsoRank [56] and
NSD [32]. We evaluated our network alignment algorithms on a variety of real
world data sets (Internet AS graphs [57], Email networks [22,33], protein net-
works [16,33]) and generated model networks (random regular graphs, Erdös-
Rényi graphs [15], preferential attachment model [5] and Kleinberg’s small world
model [31]). Experimental evaluations show that the Ricci flow metric greatly
outperforms other alternatives. In particular, most of the embedding methods
perform poorly on random regular graphs due to identical node degree. Meth-
ods using hop counts suffer from the problem of not being descriptive, especially
when there are only a small number of landmarks. There might be too many
nodes with same coordinate under the landmark based coordinates. The spec-
tral embedding and the spring embedding are less robust under edge insertion
and deletion. IsoRank compares local similarity in a pair of graphs. In a large
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complex network, it is possible to have nodes that look similar in terms of local
structures but globally should not be matched. This may explain why IsoRank
does not scale well.

In the following, we first present background knowledge on curvature and
Ricci flow [24,59]. We then present graph curvature and curvature flow, how
they are used in network alignment, and empirical evaluations.

2 Background

Curvature and Ricci Flow on Surfaces. Curvature is a measure of the
amount by which a geometric object deviates from being flat/straight and has
multiple definitions depending on the context. Ricci flow was introduced by
Richard Hamilton for Riemannian manifolds in 1982 [24]. A surface Ricci flow
is the process to deform the Riemannian metric of the surface, proportional to
the Gaussian curvature, such that the curvature evolves like heat diffusion and
becomes uniform at the limit. Intuitively, this behaves as flattening a piece of
crumpled paper. Surface Ricci flow is a key tool in the proof of the Poincaré con-
jecture on 3-manifolds, and has numerous applications in image and shape anal-
ysis. In engineering fields, surface Ricci flow has been broadly applied on a tri-
angulated surface setting for tackling many important problems, such as param-
eterization in graphics [27] and deformable surface registration in vision [67].

Discrete Ricci Curvature. Curvatures for general graphs have only been stud-
ied over the past few years [4,7,8,37,39,50,58]. The definitions of curvatures that
are easier to generalize to a discrete graph setting are sectional curvature and
Ricci curvature. Consider a point x on a surface M and a tangent vector v at
x whose endpoint is y. Take another tangent vector wx at x and imagine trans-
porting wx along vector v to be a tangent vector wy at y. Denote the endpoints
of wx, wy as x′, y′. If the surface is flat, then x, y, x′, y′ would constitute a paral-
lelogram. Otherwise, the distance between x′, y′ differs from |v|. The difference
can be used to define sectional curvature [50].

Sectional curvature depends on two tangent vectors v, w. Averaging sectional
curvature over all directions w gives the Ricci curvature which only depends on v.
Intuitively, if we think of a direction w at x as a point on a small ball Sx centered
at x, on average Ricci curvature controls whether the distance between a point
of Sx and the corresponding point of Sy is smaller or larger than the distance
d(x, y). To allow for a general study, Ollivier [50] defined a Ricci curvature by
using a probability measure mx to represent the ball Sx. Later Ollivier Ricci
curvature has been applied in different fields, for distinguishing between cancer-
related genes and normal genes [54], for understanding phylogenetic trees [65],
and for detecting network features such as backbone and congestions [28,46,
47,62,63]. There was very limited amount of theory on discrete Ollivier-Ricci
curvature on graphs, and nearly none on graph Ricci flow. In the future work
section of [49] Ollivier suggested that people should study the discrete Ricci flow
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in a metric space (X, d) by evolving the distance d(x, y) on X according to the
Ricci curvature κ(x, y) between two points x, y ∈ X:

d

dt
d(x, y) = −κ(x, y)d(x, y).

We are the first to study Ollivier-Ricci flow in the graph setting. We also suggest
variants of the Ollivier-Ricci curvature that admits much faster computation
and empirically evaluate properties of the Ricci flow metrics and applications in
network alignment.

3 Theory and Algorithms

Ricci Curvature on Graphs. For an undirected graph G = (V,E), the
Ollivier-Ricci curvature of an edge xy is defined as follows. Let πx denote the
neighborhood of a node x ∈ V and Deg(x) is the degree of x. For a parameter
α ∈ [0, 1], define a probability measure mα

x :

mα
x(xi) =

⎧
⎪⎨

⎪⎩

α if xi = x

(1 − α) /Deg(x) if xi ∈ πx

0 otherwise,

Suppose w(x, y) is the weight of edge xy and d(x, y) the shortest path length
between x and y in the weighted graph. The optimal transportation distance
(OTD) between mα

x and mα
y is defined as the best way of transporting the mass

distribution mα
x to the mass distribution mα

y :

W (mα
x ,mα

y ) = inf
M

∑

xi,yj∈V

d(xi, yj)M(xi, yj)

where M(xi, yj) is the amount of mass moved from xi to yj along the shortest
path (of length d(xi, yj)) and we would like to take the best possible assign-
ment (transport plan) that minimizes the total transport distance. The discrete
Ollivier-Ricci curvature [50] is defined as follows

κw(x, y) = 1 − W (mα
x ,mα

y )
d(x, y)

.

In this paper, κw(x, y) is called the OTD-Ricci curvature.
The OTD-Ricci curvature describes the connectivity in the local neighbor-

hood of xy [47]. If xy is a bridge so the nodes in πx have to travel through
the edge xy to get to nodes in πy, W (mα

x ,mα
y ) > d(x, y) and the curvature of

xy is negative. Similarly, if the neighbors of x and the neighbors of y are well
connected (such that W (mα

x ,mα
y ) < d(x, y)), the curvature on xy is positive.
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The optimal transportation distance can be solved by linear programming
(LP) to find the best values for M(xi, yj):

Minimize:
∑

i,j

d(xi, yj)M(xi, yj)

s.t.
∑

j

M(xi, yj) = mα
x(xi),∀i and

∑

i

M(xi, yj) = mα
y (yj),∀j

The computation of the linear program on large networks may be time-
consuming. To address the computational challenges, we define a variant of
the OTD-Ricci curvature by using a specific transportation plan instead of the
optimal transportation plan. We take the average transportation distance
(ATD) A(mα

x ,mα
y ), in which we transfer an equal amount of mass from each

neighbor xi of x to each neighbor yj of y and transfers the mass of x to y. One
could easily verify that this is a valid transportation plan. Thus, the discrete
Ricci curvature by the average transportation distance (ATD) is defined as:

κa(x, y) = 1 − A(mα
x ,mα

y )
d(x, y)

,

Since we remove the LP step in the computation, the computational complexity
of the ATD-Ricci curvature is drastically improved. As will be presented later,
our experimental results show that computing discrete Ricci flow using the ATD-
Ricci curvature maintains and even enhances the robustness of graph alignment.
In this paper, we fix α = 0.5 and simplify the notation of discrete Ricci curvature
by κ(x, y) in the discussion of discrete Ricci flow.

Discrete Ricci Flow. Ricci flow is a process that deforms the metric while
the Ricci curvature evolves to be uniform everywhere. For any pair of adjacent
nodes x and y on a graph G = (V,E), we adjust the edge weight of xy, w(x, y),
by the curvature κ(x, y):

wi+1(x, y) = wi(x, y) − ε · κi(x, y) · wi(x, y), ∀xy ∈ E,

where κi(x, y) is computed using the current edge weight wi(x, y). The step size
is controlled by ε > 0 and we take ε = 1 in our experiment.

After each iteration we rescale the edge weights so the total edge weight in
the graph remains the same, since only relative distances between nodes matter
in a graph metric. A pseudo-code is presented in the appendix.

Ricci Flow Metric. When graph Ricci flow converges, each edge xy is given
a weight w(x, y). We denote the shortest path metric with such weights to be
the Ricci Flow Metric, denoted as d(x, y). To understand the metric, notice that
when the Ricci flow converges the following is true. Here we take step size ε = 1:

(w(x, y) − κ(x, y) · w(x, y)) · N ≈ w(x, y)

where

N =
|E|

∑
xy∈E(w(x, y) − κ(x, y)w(x, y))

.
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Denote the transportation distance between the two probability measures mα
x

and mα
y to be T (x, y), we have

κ(x, y) ≈ 1 − T (x, y)
d(x, y)

,
T (x, y)
d(x, y)

≈ 1
N

.

To understand what this means, recall that T (x, y) represents the distances
from x’s neighborhood to y’s neighborhood. Before we run Ricci flow, this value
for different edges can vary a lot – in the neighborhood of positively curved edges
there are many ‘shortcuts’ making T (x, y) to be significantly shorter than d(x, y),
while in the neighborhood of negatively curved edges T (x, y) is longer than
d(x, y). The purpose of Ricci flow is to re-adjust the edge weights to reduce such
imbalance. Suppose we remove an edge xy with negative curvature before Ricci
flow and break the shortest path from x′ (a neighbor of x) to y′ (a neighbor of
y). The alternative path from x′ to y′ in the neighborhood of xy tends to become
much longer, as T (x, y)/d(x, y) is large. Thus, the change to the shortest path
metric is significant. However, after the Ricci flow, with the new edge weights, the
alternative path from x′ to y′ in the neighborhood of xy may still get longer but
not as long. Thus, the change in the shortest path length is less significant. The
Ricci flow metric is more robust when edges and nodes are randomly removed.
To capture this property, we define the uniformity of graph metric using the
variation of T (x, y)/d(x, y) for different edges xy.

Definition 1 (Metric Uniformity). Given a graph G = (V,E) with edge
weight w(x, y) on xy ∈ E, the metric uniformity is defined by the interquar-
tile range (IQR), i.e., of T (x, y)/d(x, y) over all edges, the difference between
75th and 25th percentiles.

The metric uniformity measures the diversity of T (x, y)/d(x, y) over all edges
around the median. Lower metric uniformity indicates that T (x, y)/d(x, y) are
less dispersed about the median. Therefore, the corresponding metric is more
robust upon node/edge insertions and deletions.

4 Network Alignment by Ricci Flow Metric

Given two graphs G1 and G2, suppose there are k landmarks L = {�i|i =
1, 2, · · · , k} in both G1 and G2 with known correspondence, k is a small con-
stant such as 3 or 4. These landmarks may be known beforehand by external
knowledge. We use these landmarks to find the correspondence of nodes in G1

and G2. Specifically, we represent each node v ∈ Gj by its relative positions
to the landmarks vL = [dj(v, �1), dj(v, �2), · · · , dj(v, �k)], where dj(v, �i) denotes
the shortest distance from v to �i in graph Gj using the Ricci flow metric. We
define the cost of matching u ∈ G1 with v ∈ G2 by the 2-norm of the difference
between uL and vL,

Cuv = ||uL − vL||2.
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The smaller Cuv is, the more similar u, v are. The alignment problem can be
formulated as finding a low-cost matching in the complete bipartite graph H =
(V1 ∪ V2, E) where the edge in E connecting u ∈ V1 and v ∈ V2 has weight Cuv.

Matching Algorithms. To find a low cost matching in the bipartite graph or
a similarity matrix, we can apply the following two algorithms.

– The Hungarian min-cost matching algorithm [26] finds a matching which
minimizes

∑
u∈G1,v∈G2

Cuv in O(|V |3) time.
– A greedy matching method iteratively locates the minimal Cuv, records the

node pair (u, v), and removes all elements involving either u or v, until the
nodes of either G1 or G2 are all paired.

We note that in prior network alignment algorithms, such as IsoRank and NSD,
greedy matching was unanimously selected due to its efficiency. We tested both
algorithms with the results on Hungarian algorithms presented in the appendix.

Matching Accuracy. To evaluate the accuracy of the matching results, one
idea is to count how many nodes are correctly matched with respect to their
IDs in the ground truth. But this measure may be too strict. For example, if
G1 and G2 are both complete graphs of the same size, any matching of nodes
in G1 and nodes in G2 should be considered to be correct. It is well known that
social networks have community structures and many different levels of node
equivalence and symmetry. There are different definitions for two nodes u, v in
a graph G to be equivalent:

– Structural equivalence: u and v have exactly the same set of neighbors;
– Automorphic equivalence: if we relabel the nodes in an automorphic transfor-

mation (i.e., the graph after relabeling is isomorphic to the original graph),the
labels of u, v are exchanged;

– Regular equivalence [38]: u, v are connected if they are equally related to
equivalent others. That is, regular equivalence sets are composed of nodes
who have similar relations to members of other regular equivalence sets.

Regular equivalence is the least restrictive of the three definitions of equivalence,
but probably the most important for the sociologists as it captures the sociologi-
cal concept of a “role”. Previous quantitative measures of regular equivalence [35]
unfortunately, are not very effective in identifying the global symmetric struc-
tures. For example, the two terminal nodes of a path graph cannot be classified
to the same regular equivalence class.

Connected Equivalence. Motivated by regular equivalence, we would like to
consider two nodes to be connected equivalence if they have similar connections
to other nodes. Specifically, we compute the length of shortest paths (using the
Ricci flow metric) from u and v to all other nodes, except u, v themselves, in a
fixed order in G1 or G2, and denote the results by two vectors uL and vL. If the
two vectors are similar (i.e., ||uL − vL||2 < ε for some small ε > 0), then we say
that u, v are equivalent and the matching of u to v is correct.
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5 Evaluation

In this section, we demonstrate the performance of Ricci flow metric and its
power on network alignment. Since Ricci flow metric only used topology fea-
ture, we compare RF-OTD, RF-ATD with two topology based network align-
ment algorithms IsoRank [56] and NSD [32] (other network alignment algorithms
require node label/attributes), and three different embedding metrics: spectral
embedding, spring embedding, and hop count. We evaluated the performance of
these algorithms in both model graphs and real world data. Our main observa-
tions are as follows:

1. Ricci flow metrics (both RF-OTD and RF-ATD) are much more robust
against edge/node insertion and deletions compared to others on noisy graph
alignment problem.

2. Ricci flow metrics greatly outperform previous topological based network
alignment algorithms (IsoRank, NSD) as well as other metrics and similar-
ity measures on noisy graph alignment problem. In many experiments our
algorithm achieves more than 90% matching accuracy while other methods
achieve accuracy below 30%.

3. While greedy matching performs well in model graphs, min-cost matching
(i.e., Hungarian algorithm) is more suitable for real world graph.

Experiment Setup. Given a graph G1, we remove n nodes or edges (less than
1%) uniform randomly to create G2 as a noisy graph. We then perform the
alignment of G1 and G2. Notice that in this case, we can also regard G2 as a
graph with random noises added to G1. Therefore, we only present the results
of node deletion cases.

The graph alignment problem is solved in two steps. First we construct a
similarity matrix that records the cost of matching node i in G1 with node j in
G2 for all possible i, j; then we perform Hungarian algorithm or greedy matching
to match nodes in G1 with nodes in G2. We evaluate the algorithm performance
by using connected equivalence.

For IsoRank and NSD, the similarity matrix is the output of the algorithm;
for landmark based method, the similarity matrix is defined by �2 norm of their
landmark distance vectors. Here the distance metric is defined by RF-OTD and
RF-ATD1, distances induced by spectral embedding (dim = 2), spring embed-
ding, and hop count respectively. The performance of each metric is evaluated
by varying the number of removed nodes/edges n and the number of landmarks
k. To eliminate the dependency of landmark selection, the matching accuracy
is averaged by 10 experiments on different sets of landmarks. These landmarks
are chosen such that every newly added landmark is furthest away from the
landmarks chosen so far.

Metric Uniformity. We first analyze the metric uniformity over all metrics on
a random regular graph with 1000 nodes and 6000 edges. The box plot result
1 With 50 Ricci flow iterations, ε = 1, α = 0.5.
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Fig. 3. (a) Shows metric uniformity comparison of all metrics. The box plot is for
T (x, y)/w(x, y) with respect to each metric. We define the IQR (InterQuartile Range)
of the box plot to be the metric uniformity. The smaller the metric uniformity is, the
more robust the metric is under random edge removals. (b) Demonstrates a comparison
of the stretch ratios of shortest path length over all methods.

is illustrated in Fig. 3(a). RF-ATD yields the best metric uniformity with the
smallest IQR of 2e−5. RF-OTD also performs well with IQR as 0.002. Spectral
and spring embedding behave poorly. These performances are directly related
to the accuracy in graph alignment. The metric with low metric uniformity is
more stable when nodes/edges are missing, see Fig. 2. Notice that hop count
metric generates a small IQR = 0.001. This is because there are often multiple
shortest paths (in terms of hop count) connecting two nodes in the network so
hop count is actually a fairly robust measure. But using it for graph alignment
is still limited by its lack of descriptive power.

For further analysis that metric uniformity indeed captures the robustness of
shortest path metric, we compute the stretch of the shortest path length between
a pair of nodes in a random regular graph when 10 edges are randomly removed,
shown in Fig. 3(b). Consider two nodes u, v in both G1 and G2, we denote the
length of the shortest path from u to v by dm

Gi
(u, v) under a metric m, where

i = 1, 2. We define the stretch ratio of G1 and G2 as s(u, v) = (dm
G1

(u, v) −
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Fig. 5. A comparison of noisy graph alignment results by Hungarian algorithm and
connected equivalence on a random regular graph (a) and protein-protein interaction
graph (b).

dm
G2

(u, v))/dm
G1

(u, v). The stretch ratio captures the changes of the shortest path
length. A larger stretch ratio means the shortest path length changes more. In
Fig. 3(b), we collect the stretch ratios from one random node to all of the other
nodes based on different metrics, and plot the distribution of these stretch ratios
as a histogram. It turns out that hop count, Ricci flow metric with OTD and
with ATD result in smaller stretch ratios, while spectral embedding is the most
vulnerable one with edge deletions.

Similarity Matrix. Here we test the similarity matrix of every pairwise node
similarity of two graphs G1, G2. G1 is a random regular graph with 1000 nodes
and 6000 edges and G2 removes 10 nodes randomly from G1. We check the
performance of the similarity matrix as follows. For every node n1 ∈ G1 and the
corresponding node n2 in G2 in the ground truth, we check the rank of n2 in the
sorted list ranked by similarity values with n1. A good similarity matrix should
rank n2 as the most similar one. A lower ranking indicates better performance
of the similarity matrix. We show the results in Fig. 4 with 2 landmarks. Thanks
to the metric uniformity, our method yields the best performance with average
similarity rank of 2 while other methods are at least 10 times higher.

Network Alignment. Here we demonstrate the matching accuracy results on
noisy graph alignment problem for a random regular graph (1000 nodes and
degree 12 as G1, and G2 by randomly removing 1 node and 12 edges from G1)
and a real word protein-protein interaction graph (to be aligned with a graph
of 10 edges randomly removed). Figure 5 shows that while most of the methods
failed to align the graph correctly, the Ricci flow metric performs well with only 2
landmarks. Here since IsoRank and NSD method do not require landmarks, the
performance over different landmark is shown as a straight line. The result shows
that RF-ATD, which is computationally much more efficient, performs equally
well as RF-OTD. Notice that the methods with poor metric uniformity as shown
in Fig. 3 also result in poor performance here. This supports the importance of
metric uniformity in network alignment. More evaluation on different model net-
works and real networks also support this claim. The performance of alignment
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accuracy also effected by the portion of nodes and edges added/removed, the
noisy graph alignment problem become harder with more noise.

6 Conclusion

In this paper, we have presented a framework to endow a graph with a novel
metric through the notion of discrete Ricci flow with an application to network
alignment. From the experimental results, we found that (1) the graph Ricci
curvature converges through the discrete Ricci flow and; (2) Ricci flow metric on
a graph is fairly stable when edges are inserted or removed. Providing theoretic
proofs of these observations are currently open and will be the next direction of
our future work.

Acknowledgement. The authors would like to thanks the funding agencies NSF
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Abstract. Data analysts commonly utilize statistics to summarize large
datasets. While it is often sufficient to explore only the summary statis-
tics of a dataset (e.g., min/mean/max), Anscombe’s Quartet demon-
strates how such statistics can be misleading. We consider a similar
problem in the context of graph mining. To study the relationships
between different graph properties and statistics, we examine all low-
order (≤10) non-isomorphic graphs and provide a simple visual analyt-
ics system to explore correlations across multiple graph properties. How-
ever, for graphs with more than ten nodes, generating the entire space of
graphs becomes quickly intractable. We use different random graph gen-
eration methods to further look into the distribution of graph statistics
for higher order graphs and investigate the impact of various sampling
methodologies. We also describe a method for generating many graphs
that are identical over a number of graph properties and statistics yet
are clearly different and identifiably distinct.

Keywords: Graph mining · Graph properties · Graph generators

1 Introduction

Fig. 1. Anscombe’s quartet: all four
datasets have the same mean and st. devi-
ation in x and y and (x, y)-correlation.

Statistics are often used to summa-
rize a large dataset. In a way, one
hopes to find the “most important”
statistics that capture one’s data. For
example, when comparing two coun-
tries, we often specify the population
size, GDP, employment rate, etc. The
idea is that if two countries have a
“similar” statistical profile, they are
similar (e.g., France and Germany
have a more similar demographic pro-
file than France and USA). However,
Anscombe’s quartet [3] convincingly
illustrates that datasets with the same
c© Springer Nature Switzerland AG 2018
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values over a limited number of statistical properties can be fundamentally dif-
ferent – a great argument for the need to visualize the underlying data; see
Fig. 1.

Fig. 2. These four graphs share the same 5 common
statistics: |V | = 12, |E| = 21, number of triangles
| � | = 10, girth = 3 and global clustering coefficient
GCC = 0.5. However, structurally the graphs are
very different: some are planar others are not, some
show regular patterns and are symmetric others are
not, and finally, one of the graphs is disconnected,
another is 1-connected and the rest are 2-connected.

Similarly, in the graph
analytics community, a vari-
ety of statistics are being
used to summarize graphs,
such as graph density, aver-
age path length, global clus-
tering coefficient, etc. How-
ever, summarizing a graph
with a fixed set of graph
statistics leads to the prob-
lem illustrated by Anscombe.
It is easy to construct several
graphs that have the same
basic statistics (e.g., num-
ber of vertices, number of
edges, number of triangles,
girth, clustering coefficient)
while the underlying graphs
are clearly different and iden-
tifiably distinct; see Fig. 2.
From a graph theoretical
point of view, these graphs
are very different: they dif-
fer in connectivity, planarity,
symmetry, and other struc-
tural properties.

Recently, Matejka and
Fitzmaurice [31] proposed a
dataset generation method that can modify a given 2-dimensional point set (like
the ones in Anscombe’s quartet) while preserving its summary statistics but sig-
nificantly changing its visualization (what they call “graph”). Given the graphs
in Fig. 2, we consider whether it is also possible to modify a given graph and
preserve a given set of summary statistics while significantly changing other
graph properties and statistics. Note that the problem is much easier for 2D
point sets and basic statistics, such as mean, deviation and correlation, than for
graphs where many graph properties are structurally correlated (e.g., diameter
and average path length). With this in mind, we first consider how can we fix a
few graph statistics (such as number of nodes, number of edges, number of tri-
angles) and vary another statistic (such as clustering coefficient or connectivity).
We find that there is a spectrum of possibilities. Sometimes the “unrestricted”
statistic can vary dramatically, sometimes not, and the outcome depends on two
issues: (1) the inherent correlation between some statistics (e.g., density and
number of triangles), and (2) the bias in graph generators.
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We begin by studying the correlation between graph summary statistics
across the set of all non-isomorphic graphs with up to 10 vertices. The statistical
properties derived for all graphs for a fixed number of vertices provide further
information about certain “restrictions.” In other words, the range of one statis-
tic may be restricted if another statistical property is fixed. However, we cannot
explore the entire space of graph statistics and correlations. As the number
of vertices grows, the number of different non-isomorphic graphs grows super-
exponentially. For |V | = 1, 2 . . . 9 the numbers are 1, 2, 4, 11, 34, 156, 1044, 12346,
274668, but already for |V | = 16 we have 6 × 1022 non-isomoprhic graphs.

To go beyond ten vertices we use graph generators based on models, such
as Erdös-Rényi and Watts-Strogatz. However, different graph generators have
different biases and these can significantly impact the results. We study the
extent to which sampling using random generators can represent the whole graph
set for an arbitrary number of vertices with respect to their coverage of the graph
statistics. One way to evaluate the performance of random generators is based
on the ground-truth graph sets that are available: all non-isomorphic graphs
for |V | ≤ 10 vertices. If we randomly generate a small set of graphs (also for
|V | ≤ 10 vertices) using a given graph generator, we can explore how well the
sample and generator cover the space of graph statistics. In this way, we can
begin exploring the issues of “same stats, different graphs” for larger graphs.

Data and tools are available at http://vader.lab.asu.edu/sameStatDiff
Graph/. Specifically, we have a basic visual analytics system and basic explo-
ration tools for the space of all low-order (≤10) non-isomorphic graphs and
sampled higher order graphs. We also include a generator for “same stats, dif-
ferent graphs,” i.e., multiple graphs that are identical over a number of graph
statistics, yet are clearly different.

2 Related Work

We briefly review the graph mining literature, paying special attention to com-
monly collected graph statistics. We also consider different graph generators.

Graph Statistics: Graph mining is applied in different domains from bioin-
formatics and chemistry, to software engineering and social science. Essential to
graph mining is the efficient calculation of various graph properties and statis-
tics that can provide useful insight about the structural properties of a graph.
A review of recent graph mining systems identified some of the most frequently
extracted statistics. We list those, along with their definitions, in Table 1. These
properties range from basic, e.g., vertex count and edge count, to complex, e.g.,
clustering coefficients and average path length. Many of them can be used to
derive further properties and statistics. For example, graph density can be deter-
mined directly as the ratio of the number of edges |E| to the maximum number of
edges possible |V |× (|V |−1)/2, and real-world networks are often found to have
a low graph density [33]. Node connectivity and edge connectivity measures may

http://vader.lab.asu.edu/sameStatDiffGraph/
http://vader.lab.asu.edu/sameStatDiffGraph/
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Table 1. The set of graph statistics considered in this paper.

Name Formula Reference

Average clustering
coefficient

ACC(G) = 1
n

∑n
i=1 c(ui), ui ∈ V, n = |V | [10,11,25,27,34]

c(v) =
|{(u,w)|u,w∈Γ (v),(u,w)∈E}|

|Γ (v)|(|Γ (v)|−1)/2
, v, u, w ∈ V

Global clustering
coefficient

GCC(G) =
3×|triangles|

|connected triples| in the graph
[10,25]

Square clustering SCC(G) =

∑kv
u=1

∑kv
w=u+1 qv(u,w)

∑kv
u=1

∑kv
w=u+1[av(u,w)+qv(u,w)]

[28]

Average path length APL = ave{ n−1∑
v∈V d(u,v),u �=v

} [10,11,27,34]

Degree assortativity r =

∑
xy xy(exy−axby)

σaσb
[34,36]

Diameter diam(G) = max{dist(v, w), v, w ∈ V } [11,25,32,34]

Density den =
2|E|

|V |(|V |−1)

Ratio of triangles Rt =
|triangles|

|V |(|V |−1)/2

Node connectivity Cv: the minimum number of nodes to remove to
disconnect the graph

[17]

Edge connectivity Ce: the minimum number of edges to remove to
disconnect the graph

[17]

be used to describe the resilience of a network [9,29], and graph diameter [24]
captures the maximum among all pairs of shortest paths [2,8].

Other graph statistics measure how tightly nodes are grouped in a graph. For
example, clustering coefficients have been used to describe many real-world net-
works, and can be measured locally and globally. Nodes in a highly connected
clique tend to have a high local clustering coefficient, and a graph with clear
clustering patterns will have a high global clustering coefficient [18,19,26,37].
Studies have shown that the global clustering coefficient has been found to be
nearly always larger in real-world graphs than in Erdös-Rényi graphs with the
same number of vertices and edges [10,37,42], and a small-world network should
have a relatively large average clustering coefficient [13,15,44]. The average path
length (APL) is also of interest; small-world networks have APL that is loga-
rithmic in the number of vertices, while real-world networks have small (often
constant) APL [13,15,37,42–44].

Degree distribution is one frequently used property describing the graph
degree statistics. Many real-world networks, including communication, citation,
biological and social networks, have been found to follow a power-law shaped
degree distribution [6,10,37]. Other real world networks have been found to
follow an exponential degree distribution [22,40,45]. Degree assortativity is of
particular interest in the study of social networks and is calculated based on
the Pearson correlation between the vertex degrees of connected pairs [35]. A
random graph generated by Erdös-Rényi model has an expected assortative coef-
ficient of 0. Newman [35] extensively studied assortativity in real-world networks
and found that social networks are often assortative (positive assortativity), i.e.,
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vertices with a similar degree preferentially connect together, whereas techno-
logical and biological networks tend to be disassortative (negative assortativity)
implying that vertices with a smaller degree tend to connect to high degree ver-
tices. Assortativity has been shown to affect clustering [30], resilience [35], and
epidemic-spread [7] in networks.

Graph Generators: Basic graph statistics have been used to describe various
classes of graphs (e.g., geometric, small-world, scale-free) and a variety of algo-
rithms have been developed to automatically generate graphs that mimic these
various properties. Charkabati et al. [11] divide graph models and generators
into four broad categories:

1. Random Graph Models: The graphs are generated by a random process.
2. Preferential Attachment Models: In these models, the “rich get richer,” as

the network grows, leading to power law effects.
3. Optimization-Based Models: Here, power laws are shown to evolve when risks

are minimized using limited resources.
4. Geographical Models: These models consider the effects of geography (i.e.,

the positions of the nodes) on the topology of the network. This is relevant
for modeling router or power grid networks.

The Erdös-Rényi (ER) network model is a simple graph generation model [10]
that creates graphs either by choosing a network randomly with equal probability
from a set of all possible networks of size |V | with |E| edges [20] or by creating
each possible edge of a network with |V | vertices with a given probability p [16].
The latter process gives a binomial degree distribution that can be approximated
with a Poisson distribution. Note that fixing the number of nodes and using
p = 1/2 results in a good sampling of the space of isomorphic graphs. However,
this model (and others discussed below) does not sample well the space of non-
isomorphic graphs, which are the subject of our study.

Watts and Strogatz [44] addressed the low clustering coefficient limitation of
the ER model in their model (WS) which can be used to generate small-world
graphs. The WS model can generate disconnected graphs, but the variation
suggested by Newman and Watts [38] ensures connectivity. Models have also
been proposed for generating synthetic scale-free networks with a varying scal-
ing exponent(γ). The first scale-free directed network model was given by de
Solla Price [39]. Barabási and Albert (BA) [5] described another popular net-
work model for generating undirected networks. It is a network growth model in
which each added vertex has a fixed number of edges |E|, and the probability of
each edge connecting to an existing vertex v is proportional to the degree of v.
Dorogovtsev et al. [14] and Albert and Barabási [1] also developed a variation
of the BA model with a tunable scaling exponent.

Bach et al. [4] introduce an interactive system to create random graphs that
match user-specified statistics based on a genetic algorithm. The statistics con-
sidered are |V |, |E|, average vertex degree, number of components, diameter,
ACC, density, and the number of clusters (as defined by Newman and Gir-
van [21]). The goal is to generate graphs that get as close as possible to a set of
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target statistics; however, there are no guarantees that the target values can be
obtained. Somewhat differently, we are interested in creating graphs that match
several target statistics exactly, but differ drastically in other parameters.

3 Preliminary Experiments and Findings

In a recent study of the ability to perceive different graph properties such as edge
density and clustering coefficient in different types of graph layouts (e.g., force-
directed, circular), we generated a large number of graphs with 100 vertices.
Specifically, we generated graphs that vary in a controlled way in edge density
and graphs that vary in a controlled way in the average clustering coefficient [41].
A post-hoc analysis of this data (http://vader.lab.asu.edu/GraphAnalytics/),
reveals some interesting patterns among the statistics described in Table 1.

Fig. 3. Graph property correlation matrix plots for the edge density dataset (left) and
the ground truth set of all non-isomorphic graphs on |V | = 9 vertices (right). (Color
figure online)

The edge density dataset has 4,950 graphs and We compute all ten statis-
tics from Table 1 and compute Pearson correlation coefficients; see Fig. 3. We
observed high positive (blue) correlations and negative (yellow) correlations for
many property pairs. For example, the average clustering coefficient is highly
correlated with the global clustering coefficient, the number of triangles, and
graph connectivity.

Note, however, these graphs were created for a very specific purpose and cover
only limited space of all graphs with |V | = 100. The type of generators we used,
and the way we used them (some statistical properties were controlled), could
bias the results and influence the correlations. The fact that these correlations
exist when some properties are fixed indicates that we can keep certain graph
statistics fixed while manipulating others. This motivated us to conduct the
following experiments:

1. Generate all non-isomorphic lower order graphs (|V | ≤ 10) and analyze the
relationships between statistical properties. We consider this type of data as
ground truth due to its completeness.

http://vader.lab.asu.edu/GraphAnalytics/
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2. Use different graph generators and compare how well they represent the space
of non-isomorphic graphs and how well they cover the range of possible values
in the ground truth data.

An analysis of the set of 274,668 non-isomorphic graphs on |V | = 9 vertices
shows that the correlations are quite different than those in graphs from our
edge density experiment; see Fig. 3.

Fig. 4. Correlations between graph statistics in the ground truth for |V | = 5, 6, 7, 8, 9.
Note that for |V | = 9 there are already 274,668 points. Points are plotted to overlap,
with the largest sets plotted first (i.e., |V | = 9, . . . |V | = 5) to enable us to identify the
range of statistics that can be covered with a given number of vertices.

4 Analysis of Graph Statistics for Low-Order Graphs

We start the experiment by looking at pairwise relationship of graph statistics
of low-order graphs, where all non-isomorphic graphs can be enumerated. If
two statistics, say s1 and s2, are highly correlated, then fixing s1 is likely to
restrict the range of possible values for s2. On the other hand, if s1 and s2 are
independent, fixing s1 might not impact the range of values for s2, yielding same
stats (s1) different graphs (s2). With this in mind, we first study the correlations
between the statistics under consideration.

We compute all statistics for all non-isomorphic graphs on |V | = 4, 5, . . . , 10
vertices (we exclude graphs with fewer vertices as many of the statistics are
not well defined and there are only a handful of graphs). We then consider
the pairwise correlations between the different statistics and how this changes
as the graph order increases; see Fig. 4. To compare the coverage of statistics
with different |V |, we scale the statistic values into the same range. By defini-
tion, clustering coefficients (ACC, GCC, SCC) are in the [0, 1] range and degree
assortativity is in the [−1, 1] range. We keep their values and ranges without
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scaling. Edge density, number of triangles, diameter and connectivity measures
(Cv and Ce), are normalized into [0, 1] (dividing by the corresponding maximum
value). The last statistic, APL, is also normalized into [0, 1], subject to some
complications: we compute the exact average path length to divide by in our
ground truth datasets, but not when we use the generators, where we use the
maximal path length encountered instead (which may not be the same as the
maximum).

Fig. 5. The convex hull of graph coverage
across several statistical properties. Each row
(starting from the top) represents all graphs
for a fixed number of vertices (|V | = 5 . . . |V | =
10). Columns are pairs of graph properties.

It is easy to see that the cover-
age of values expands with increas-
ing |V |. Figure 5 shows this pat-
tern for three pairs of properties.
This indicates that we are more
likely to find larger ranges of differ-
ent statistics for graphs with more
vertices given the same set of fixed
statistics. With this in mind, we
consider graphs with more than
10 vertices, but this time rely-
ing on random graph generators.
Figure 6 shows how correlation val-
ues between all pairs of statis-
tics change when the number of
vertices increases. The blue trend
lines for the ground truth data
show the correlation values cal-
culated using the set of all pos-
sible graphs for a given number
of nodes. The orange trend lines
show the correlation values calcu-
lated from graphs generated with
the ER model. Specifically, the ER data is created as follows: for each value
of |V | = 5, 6, . . . , 15 we generate 100, 000 graphs with p selected uniformly at
random in the [0, 1] range.

For most of the cells in the matrix shown in Fig. 6, the correlation values seem
to converge as |V | becomes larger than 8. (both in the ground truth and the ER-
model generated graph sets). Moreover, for most of the cells, the pattern of the
change in correlation values appears to be the same for both sets. Analyzing the
trend lines of the ER-model, we observe four patterns of change in the correlation
values: convergence to a constant value, monotonic decrease, monotonic increase,
and non-monotonic change. These patterns are highlighted in Fig. 6 by enclosing
boxes of different colors. There are exceptions that do not fit these patterns,
e.g., (Sc, r) and in two cases, (r, Cv) and (r, Ce), the trend lines show different
patterns.
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Fig. 6. Trends in the correlations with increasing |V |: the x-axis shows the number of
vertices and the y-axis shows the correlation value for the pair of graph statistics.

5 Graph Statistics and Graph Generators

While we can explore statistical coverage and correlations in low-order graphs,
it is difficult to generate all non-isomorphic graphs with more than 10 vertices
due to the super-exponential increase in the number of different graphs (e.g., for
|V | = 16 we there are 6 × 1022 different graphs). However, these higher order
graphs are common in many domains. As such, we want to further explore this
issue of “same stats, different graphs” for larger graphs. As such, we turn to
graph generators to help us explore the same-stats-different-graphs problem.

We select four different random generators that cover the four categories [11]
of graph generation: the ER random graph model, the WS small-world model,
the BA preferential attachment model, and the geometric random graph model.

Coverage for Ground-Truth Graph Set: We use implementations of all four
generators (ER, WS, BA, geometric) from NetworkX [23], with three variants
of ER (p = 0.5, p selected uniformly at random from the [0, 1] range, and p
selected to match edge density in the ground truth). More details about the
graph generators and how well they perform for our tasks are provided in the
full version of the paper [12]. For each generator, we generate 1%, 0.1% and
0.01% of the total number of graphs in ground-truth graph set. We use low
sampling rates as for high order graphs the ground truth set is huge and any
sampling strategy will have just a fraction of the total. Our goal here is to explore
whether a small sample of graphs could be representative of the ground truth
set of non-isomorphic graphs and cover the space well.

We evaluate the different graph generators in two different ways. First we
want to see whether a graph generator is representative of the ground truth
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data, i.e., whether the generator yields a sample that with similar properties as
those in the ground truth. Second, we want to see whether a graph generator is
covering the complete range of values found in the ground truth data.

We measure how representative a graph generator is by comparing pairwise
correlations in the sample and in the ground truth. We measure how well a graph
generator covers the range of values in the ground truth data by comparing the
volumes of the generated data and the ground truth data. Specifically, for each
generator we compare the volumes of the 10-dimensional bounding boxes for the
ground truth set and the generated set. We consider a generator to be covering
the ground truth set well if this ratio is close to 100%; see Fig. 7.

Fig. 7. Coverage ratios, showing the average of 10 runs of the generators. (Color figure
online)

Both of these measures can be visualized by plotting each of the graphs in
ground-truth graph set as dots in the 2D matrix of correlations and then drawing
the generated graph set on top of the first plot to see how well the generator set
covers the ground-truth graph set. We color the ground-truth graph set in blue
and the generated data in red. Because the ground-truth graph set includes all
possible graphs for a fixed |V |, there is at least one blue point under each red
point. Detailed illustrations can be found in the full version of the paper [12]
but here we include one example of the most representative model: ER with
p = 0.5; see Fig. 8. From this figure it is easy to see that nearly all pairwise
correlations are very similar in the ground truth and in the generated data.
Note, however, that from the same figure we can also see that this generator
does not cover the range of possible values in the ground truth data well (e.g.,
in the columns corresponding to APL, r, diameter and density, the leftmost and
rightmost points in the plots are blue).

6 Finding Different Graphs with the Same Statistics

While our exploration of graph statistics, correlation, and generation revealed
some challenges, it is still possible to explore the fundamental question of whether
we can identify graphs that are similar across some statistics while being dras-
tically different across others. To find graphs that are identical over a number
of graph statistics and yet are different, we use the ground truth data for small
non-isomorphic graphs. For larger graphs, we use the graph generators together
with some filters.



Same Stats, Different Graphs 473

Fig. 8. Ground truth (blue) and ER with p = 0.5 (red). (Color figure online)

Finding Graphs in the Ground Truth: For |V | ≤ 10, we directly use all
possible non-isomorphic graphs as our dataset. In fact, we can fix different com-
binations of 5 statistics and still get multiple distinct graphs. We visualize this
with figures that encapsulate the variability of one statistic in 10 slots, covering
the ranges [0.0, 0.1], [0.1, 0.2], . . . [0.9, 1] and in each slot we show a graph (if it
exists) drawn by a spring layout; see Fig. 9.

For the first experiment, we fix |V | = 9, APL ∈ (1.42, 1.47), den ∈
(0.52, 0.57), GCC ∈ (0.5,0.6), Rt ∈ (0.15, 0.25). Since all our statistics are nor-
malized to [0, 1] and assortativity is in [−1, 1], each of the ten slots has a range
of 0.2. We find graphs for seven of the ten possible slots; see Fig. 9. This figure
also illustrates the output of our “same stats, different graphs” generator: fix
several statistics and generate graphs that vary in another statistic.

Fig. 9. Variability in assortativity.

Similarly, for the second experiment, we fix |V | = 9, APL ∈ (1.47, 1.69),
diam = 3, Cv = 2, Ce = 2, and r ∈ (−0.22,−0.29) to obtain GCC in the range
(0, 0.8); see Fig. 10.

Fig. 10. Variability in GCC.
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As a final example, we fix |V | = 9, SCC ∈ (0.75, 0.85), ACC ∈ (0.75, 0.8),
r ∈ (−0.3,−0.2), Rt ∈ (0.35, 0.45) and find graphs with Ce from 0 to 5; see
Fig. 11.

Fig. 11. Variability in edge connectivity.

Note that the graphs in Figs. 9, 10 and 11. are different in structure even
though they possess similar values for many properties.

Finding Graphs Using Graph Generators: This approach relies on gener-
ating many graphs and filtering graphs based on several fixed statistics. For the
two most important statistics of a graph, |V | and |E|, we generate all graphs
with a fixed |V | and choose |E| as follows:

1. uniform: select |E| uniformly from its range. This is equivalent to forcing the
edge density in the generated set to follow a uniform distribution;

2. population: select |E| by forcing the edge density in the generated set to
match the distribution in the ground truth (population) graph set.

Using both edge selection strategies for all four generators, we compare the
statistics distribution to the ground truth for |V | = 9. Figure 12 illustrates how
different statistics are distributed given uniform edge sampling and population-
based edge sampling for the ER model. It shows that although the population-
based sampling approach generates a distribution that is more similar to the

Fig. 12. Distribution of the ten statistics, including min/mean/max and standard devi-
ation. Ground truth is in blue, population ER in green, uniform ER in red. (Color figure
online)
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ground truth, it has a narrower coverage (larger min and smaller max) than the
uniform sampling. The WS and BA models also do not provide good coverage
of the various statistics.

7 Discussion and Future Work

Random graph generators have been designed to model different types of graphs,
but by design such algorithms sample the space of isomorphic graphs. For the
purpose of studying graph properties and structure, we need generators that
represent and cover the space of non-isomorphic graphs.

We considered how to explore the space of graphs and graph statistics that
make it possible to have multiple graphs that are identical in a number of graph
statistics, yet are clearly different. To “see” the difference, it often suffices to look
at the drawings of the graphs. However, as graphs get larger, some graph draw-
ing algorithms may not allow us to distinguish differences in statistics between
two graphs purely from their drawings. We recently studied how the perception
statistics, such as density and ACC, is affected by different graph drawing algo-
rithms [41]. The results confirm the intuition that some drawing algorithms are
more appropriate than others in aiding viewers to perceive differences between
underlying graph statistics. Further work in this direction might help ensure that
differences between graphs are captured in the different drawings.
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Abstract. Let G be a planar 3-graph (i.e., a planar graph with vertex
degree at most three) with n vertices. We present the first O(n2)-time
algorithm that computes a planar orthogonal drawing of G with the
minimum number of bends in the variable embedding setting. If either a
distinguished edge or a distinguished vertex of G is constrained to be on
the external face, a bend-minimum orthogonal drawing of G that respects
this constraint can be computed in O(n) time. Different from previous
approaches, our algorithm does not use minimum cost flow models and
computes drawings where every edge has at most two bends.

1 Introduction

A pioneering paper by Storer [22] asks whether a crossing-free orthogonal draw-
ing with the minimum number of bends can be computed in polynomial time.
The question posed by Storer is in the fixed embedding setting, i.e., the input
is a plane 4-graph (an embedded planar graph with vertex degree at most four)
and the wanted output is an embedding-preserving orthogonal drawing with
the minimum number of bends. Tamassia [23] answers Storer’s question in the
affirmative by describing an O(n2 log n)-time algorithm. The key idea of Tamas-
sia’s result is the equivalence between the bend minimization problem and the
problem of computing a min-cost flow on a suitable network. To date, the most
efficient known solution of the bend-minimization problem for orthogonal draw-
ings in the fixed embedding setting is due to Cornelsen and Karrenbauer [6], who
show a novel technique to compute a min-cost flow on an uncapacitated network
and apply this technique to Tamassia’s model achieving O(n

3
2 )-time complexity.

A different level of complexity for the bend minimization problem is encoun-
tered in the variable embedding setting, that is when the algorithm is asked
to find a bend-minimum solution over all planar embeddings of the graph. For
example, the orthogonal drawing of Fig. 1(c) has a different planar embedding
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(a) (b) (c)

Fig. 1. (a) A planar embedded 3-graph G. (b) An embedding-preserving bend-
minimum orthogonal drawing of G. (c) A bend-minimum orthogonal drawing of G.

than the graph of Fig. 1(a) and it has no bends, while the drawing of Fig. 1(b)
preserves the embedding but it is suboptimal in terms of bends.

Garg and Tamassia [13] prove that the bend-minimization problem for
orthogonal drawings is NP-complete for planar 4-graphs, while Di Battista et
al. [8] show that it can be solved in O(n5 log n) time for planar 3-graphs. Gen-
eralizations of the problem in the variable embedding setting where edges have
some flexibility (i.e., they can bend a few times without cost for the optimization
function) have also been the subject of recent studies by Bläsius et al. [2].

Improving the O(n5 log n) time complexity of the algorithm by Di Battista
et al. [8] has been an elusive open problem for more than a decade (see, e.g., [3]),
until a paper by Chang and Yen [4] has shown how to compute a bend-minimum
orthogonal drawing of a planar 3-graph in the variable embedding setting in
Õ(n

17
7 ) time, which can be read as O(n

17
7 logk n) time for a positive constant k.

Similar to [8], the approach in [4] uses an SPQR-tree to explore all planar
embeddings of a planar 3-graph and combines partial solutions associated with
the nodes of this tree to compute a bend-minimum drawing. Both in [8] and in [4],
the computationally most expensive task is computing min-cost flows on suitable
variants of Tamassia’s network. However, Chang and Yen elegantly prove that
a simplified flow network where all edges have unit capacity can be adopted to
execute this task. This, combined with a recent result [5] about min-cost flows
on unit-capacity networks, yields the improved time complexity.

Contribution and Outline. This paper provides new algorithms to compute
bend-minimum orthogonal drawings of planar 3-graphs, which improve the time
complexity of the state-of-the-art solution. We prove the following.

Theorem 1. Let G be an n-vertex planar 3-graph. A bend-minimum orthog-
onal drawing of G can be computed in O(n2) time. If either a distinguished
edge or a distinguished vertex of G is constrained to be on the external face, a
bend-minimum orthogonal drawing of G that respects the given constraint can be
computed in O(n) time. Furthermore, the computed drawings have at most two
bends per edge, which is worst-case optimal.

As in [8] and in [4], the algorithmic approach of Theorem 1 computes a
bend-minimum orthogonal drawing by visiting an SPQR-tree of the input graph.
However, it does not need to compute min-cost flows at any steps of the visit,
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which is the fundamental difference with the previous techniques. This makes it
possible to design the first quadratic-time algorithm to compute bend-minimum
orthogonal drawings of planar 3-graphs in the variable embedding setting.

The second part of the statement of Theorem 1 extends previous studies by
Nishizeki and Zhou [26], who give a first example of a linear-time algorithm in
the variable embedding setting for planar 3-graphs that are partial two-trees.
The bend-minimum drawings of Theorem 1 have at most two bends per edge,
which is a desirable property for an orthogonal representation. We recall that
every planar 4-graph (except the octahedron) has an orthogonal drawing with at
most two bends per edge [1,17], but minimizing the number of bends may require
some edges with a Ω(n) bends [8,24]. It is also proven that every planar 3-graph
(except K4) has an orthogonal drawing with at most one bend per edge [16], but
the drawings of the algorithm in [16] are not bend-minimum. Finally, a non-flow
based algorithm having some similarities with ours is given in [12]; it neither
computes bend-minimum drawings nor guarantees at most two bends per edge.

The paper is organized as follows. Preliminary definitions and results are in
Sect. 2. In Sect. 3 we prove key properties of bend-minimum orthogonal draw-
ings of planar 3-graphs used in our approach. Sect. 4 describes our drawing algo-
rithms. Open problems are in Sect. 5. All full proofs and more figures can be
found in [11].

2 Preliminaries

We assume familiarity with basic definitions on graph connectivity and planarity
(see Appendix A of [11]). If G is a graph, V (G) and E(G) denote the sets of
vertices and edges of G. We consider simple graphs, i.e., graphs with neither self-
loops nor multiple edges. The degree of a vertex v ∈ V (G), denoted as deg(v),
is the number of its neighbors. Δ(G) denotes the maximum degree of a vertex
of G; if Δ(G) ≤ h (h ≥ 1), G is an h-graph. A graph G is rectilinear planar if
it admits a planar drawing where each edge is either a horizontal or a vertical
segment (i.e., it has no bend). Rectilinear planarity testing is NP-complete for
planar 4-graphs [13], but it is polynomially solvable for planar 3-graphs [4,8] and
linear-time solvable for subdivisions of planar triconnected cubic graphs [18]. By
extending a result of Thomassen [25] on those 3-graphs that have a rectilinear
drawing with all rectangular faces, Rahman et al. [21] characterize rectilinear
plane 3-graphs. For a plane graph G, let Co(G) be its external cycle (Co(G) is
simple if G is biconnected). Also, if C is a simple cycle of G, G(C) is the plane
subgraph of G that consists of C and of the vertices and edges inside C. An
edge e = (u, v) /∈ E(G(C)) is a leg of C if exactly one of the vertices u and v
belongs to C; such a vertex is a leg-vertex of C. If C has exactly k legs and no
edge embedded outside C joins two of its vertices, C is a k-legged cycle of G.

Theorem 2. [21] Let G be a biconnected plane 3-graph. G admits an orthogonal
drawing without bends if and only if: (i) Co(G) contains at least four vertices of
degree 2; (ii) each 2-legged cycle contains at least two vertices of degree 2; (iii)
each 3-legged cycle contains at least one vertex of degree 2.
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Fig. 2. (a) A plane 3-graph G. (b) The SPQR-tree of G with respect to e; the skeletons
of a P-node ν and of an R-node μ are shown. (c) A different embedding of G obtained
by changing the embedding of skel(ν) and of skel(μ).

As in [21], we call bad any 2-legged and any 3-legged cycle that does not
satisfy Condition (ii) and (iii) of Theorem 2, respectively.

SPQR-Trees of Planar 3-Graphs. Let G be a biconnected graph. An SPQR-
tree T of G represents the decomposition of G into its triconnected components
and can be computed in linear time [7,14,15]. Each triconnected component
corresponds to a node μ of T ; the triconnected component itself is called the
skeleton of μ and denoted as skel(μ). A node μ of T can be of one of the following
types: (i) R-node, if skel(μ) is a triconnected graph; (ii) S-node, if skel(μ) is a
simple cycle of length at least three; (iii) P-node, if skel(μ) is a bundle of at
least three parallel edges; (iv) Q-nodes, if it is a leaf of T ; in this case the node
represents a single edge of the graph and its skeleton consists of two parallel
edges. Note that, neither two S- nor two P -nodes are adjacent in T . A virtual
edge in skel(μ) corresponds to a tree node ν adjacent to μ in T . If T is rooted at
one of its Q-nodes ρ, every skeleton (except the one of ρ) contains exactly one
virtual edge that has a counterpart in the skeleton of its parent: This virtual edge
is the reference edge of skel(μ) and of μ, and its endpoints are the poles of skel(μ)
and of μ. The edge of G corresponding to the root ρ of T is the reference edge of
G, and T is the SPQR-tree of G with respect to e. For every node μ �= ρ of T , the
subtree Tμ rooted at μ induces a subgraph Gμ of G called the pertinent graph of
μ, which is described by Tμ in the decomposition: The edges of Gμ correspond
to the Q-nodes (leaves) of Tμ. Graph Gμ is also called a component of G with
respect to the reference edge e, namely Gμ is a P-, an R-, or an S-component
depending on whether μ is a P-, an R-, or an S-component, respectively.

The SPQR-tree T rooted at a Q-node ρ implicitly describes all planar embed-
dings of G with the reference edge of G on the external face. All such embeddings
are obtained by combining the different planar embeddings of the skeletons of
P- and R-nodes: For a P-node μ, the different embeddings of skel(μ) are the
different permutations of its non-reference edges. If μ is an R-node, skel(μ) has
two possible planar embeddings, obtained by flipping skel(μ) minus its reference
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edge at its poles. See Fig. 2 for an illustration. The child node of ρ and its per-
tinent graph are called the root child of T and the root child component of G,
respectively. An inner node of T is neither the root nor the root child of T . The
pertinent graph of an inner node is an inner component of G. The next lemma
gives basic properties of T when Δ(G) ≤ 3.

Lemma 1. Let G be a biconnected planar 3-graph and let T be the SPQR-tree
of G with respect to a reference edge e. The following properties hold:
T1 Each P-node μ has exactly two children, one being an S-node and the other
being an S- or a Q-node; if μ is the root child, both its children are S-nodes.
T2 Each child of an R-node is either an S-node or a Q-node.
T3 For each inner S-node μ, the edges of skel(μ) incident to the poles of μ are
(real) edges of G. Also, there cannot be two incident virtual edges in skel(μ).

3 Properties of Bend-Minimum Orthogonal
Representations of Planar 3-Graphs

We prove relevant properties of bend-minimum orthogonal drawings of planar 3-
graphs that are independent of vertex and bend coordinates, but only depend on
the vertex angles and edge bends. To this aim, we recall the concept of orthogonal
representation [23] and define some types of “shapes” that we use to construct
bend-minimum orthogonal representations.

Orthogonal Representations. Let G be a plane 3-graph. If v ∈ V (G) and if
e1 and e2 are two (possibly coincident) edges incident to v that are consecutive
in the clockwise order around v, we say that a = 〈e1, v, e2〉 is an angle at v of G
or simply an angle of G. Let Γ and Γ ′ be two embedding-preserving orthogonal
drawings of G. We say that Γ and Γ ′ are equivalent if: (i) For any angle a of G,
the geometric angle corresponding to a is the same in Γ and Γ ′, and (ii) for any
edge e = (u, v) of G, the sequence of left and right bends along e moving from u
to v is the same in Γ and in Γ ′. An orthogonal representation H of G is a class
of equivalent orthogonal drawings of G; H can be described by the embedding
of G together with the geometric value of each angle of G (90, 180, 270◦)1 and
with the sequence of left and right bends along each edge. Figure 3(a) shows a
bend-minimum orthogonal representation of the graph in Fig. 2(a).

Let p be a path between two vertices u and v in H. The turn number of p is
the absolute value of the difference between the number of right and the number
of left turns encountered along p moving from u to v (or vice versa). The turn
number of p is denoted by t(p). A turn along p is caused either by a bend on an
edge of p or by an angle of 90/270 degrees at a vertex of p. For example, t(p) = 2
for the path p = 〈3, 4, 5, 6, 7〉 in the orthogonal representation of Fig. 3(a). We
remark that if H is a bend-minimum orthogonal representation, the bends along
an edge, going from an end-vertex to the other, are all left or all right turns [23].

1 Angles of 360 degrees only occur at 1-degree vertices; we can avoid to specify them.
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Fig. 3. (a) A bend-minimum orthogonal representation H with four bends of the graph
in Fig. 2(a). (b) The component Hν , which is L-shaped; the two poles of the component
are the white vertices. (c) The component Hμ, which is D-shaped.eps

Shapes of Orthogonal Representations. Let G be a biconnected planar 3-
graph, T be the SPQR-tree of G with respect to a reference edge e ∈ E(G), and
H be an orthogonal representation of G with e on the external face. For a node
μ of T , denote by Hμ the restriction of H to a component Gμ. We also call Hμ a
component of H. In particular, Hμ is a P-, an R-, or an S-component depending
on whether μ is a P-, an R-, or an S-component, respectively. If μ is the root
child of T , then Hμ is the root child component of H. Denote by u and v the
two poles of μ and let pl and pr be the two paths from u to v on the external
boundary of Hμ, one walking clockwise and the other walking counterclockwise.
These paths are the contour paths of Hμ. If μ is an S-node, pl and pr share some
edges (they coincide if Hμ is just a sequence of edges). If μ is either a P- or an
R-node, pl and pr are edge disjoint; in this case, we define the following shapes
for Hμ, depending on t(pl) and t(pr) and where the poles are external corners:

− Hμ is C-shaped, or -shaped, if t(pl) = 4 and t(pr) = 2, or vice versa;
− Hμ is D-shaped, or -shaped, if t(pl) = 0 and t(pr) = 2, or vice versa;
− Hμ is L-shaped, or -shaped, if t(pl) = 3 and t(pr) = 1, or vice versa;
− Hμ is X-shaped, or -shaped, if t(pl) = t(pr) = 1.

For example, Hν in Fig. 3(b) is -shaped, while Hμ in Fig. 3(c) is -shaped.
Concerning S-components, the following lemma rephrases a result in [8, Lemma
4.1], and it is also an easy consequence of Property T3 in Lemma 1.

Lemma 2. Let Hμ be an inner S-component with poles u and v and let p1 and
p2 be any two paths connecting u and v in Hμ. Then t(p1) = t(p2).

Based on Lemma 2, we describe the shape of an inner S-component Hμ in
terms of the turn number of any path p between its two poles: We say that Hμ is
k-spiral and has spirality k if t(p) = k. The notion of spirality of an orthogonal
component was introduced in [8]. Differently from [8], we restrict the definition of
spirality to inner S-components and we always consider absolute values, instead
of both positive and negative values depending on whether the left turns are more
or fewer than the right turns. For instance, in the representation of Fig. 3(a) the
two series with poles {1, 14} (the two filled S-nodes in Fig. 2(b)) have spirality
three and one, respectively; the series with poles {4, 8} (child of the R-node) has
spirality zero, while the series with poles {5, 7} has spirality two.

We now give a key result that claims the existence of a bend-minimum orthog-
onal representation with specific properties for any biconnected planar 3-graph.
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This result will be used to design our drawing algorithm. Given an orthogonal
representation H, we denote by H the orthogonal representation obtained from
H by replacing each bend with a dummy vertex: H is the rectilinear image of
H; a dummy vertex in H is a bend vertex. Also, if w is a degree-2 vertex with
neighbors u and v, smoothing w is the reverse operation of an edge subdivision,
i.e., it replaces the two edges (u,w) and (w, v) with the single edge (u, v).

Lemma 3. A biconnected planar 3-graph G with a distinguished edge e has a
bend-minimum orthogonal representation H with e on the external face such that:
O1 Every edge of H has at most two bends, which is worst-case optimal.
O2 Every inner P-component or R-component of H is either - or -shaped.
O3 Every inner S-component of H has spirality at most four.

Proof (sketch). We prove in three steps the existence of a bend-minimum orthog-
onal representation H that satisfies O1-O3. We start by a bend-minimum orthog-
onal representation of G with e on the external face, and in the first step we
prove that it either satisfies O1 or it can be locally modified, without chang-
ing its planar embedding, so to satisfy O1. In the second step, we prove that
from the orthogonal representation obtained in the first step we can derive a
new orthogonal representation (still with same embedding) that satisfies O2 in
addition to O1. Finally, we prove that this last representation also satisfies O3.

Step 1: Property O1. Suppose that H is a bend-minimum orthogonal repre-
sentation of G with e on the external face and having an edge g (possibly g = e)
with at least three bends. Let H be the rectilinear image of H, and let G be the
plane graph underlying H. Since H has no bend, G satisfies Conditions (i)−(iii)
of Theorem 2. Let v1, v2, v3 be three bend vertices in H that correspond to three
bends of g in H. Assume first that g is an internal edge of G and let G′ be the
plane graph obtained from G by smoothing v1. We claim that G′ still satisfies
Conditions (i) − (iii) of Theorem 2. Indeed, if this is not the case, there must
be a bad cycle in G′ that contains both v2 and v3. This is a contradiction,
because no bad cycle can contain two vertices of degree two. Hence, there exists
an (embedding-preserving) representation H ′ of G′ without bends, which is the
rectilinear image of an orthogonal representation of G with fewer bends than
H, a contradiction. Assume now that g is on the external cycle Co(G) of G. If
Co(G) contains more than four vertices of degree two, we can smooth v1 and
apply the same argument as above to contradict the optimality of H (note that,
such a smoothing does not violate Condition (i) of Theorem 2). Suppose vice
versa that Co(G) contains exactly four vertices of degree two (three of them
being v1, v2, and v3). In this case, just smoothing v1 violates Condition (i) of
Theorem 2. However, we can smooth v1 and subdivide an edge of Co(G)∩Co(G)
(such an edge exists since Co(G) has at least three edges and, by hypothesis and
a simple counting argument, at least one of its edges has no bend in H). The
resulting plane graph G′′ still satisfies the three conditions of Theorem 2 and
admits a representation H ′′ without bends; the representation of which H ′′ is
the rectilinear image is a bend-minimum orthogonal representation of G with at
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most two bends per edge. To see that two bends per edge is worst-case optimal,
just consider a bend-minimum representation of the complete graph K4.

Step 2: Property O2. Let H be a bend-minimum orthogonal representation
of G that satisfies O1 and let H be its rectilinear image. The plane underlying
graph G of H satisfies the three conditions of Theorem 2. Rhaman, Nishizeki, and
Naznin [21, Lemma 3] prove that, in this case, G has an embedding-preserving
orthogonal representation H ′ without bends in which every 2-legged cycle C is
either -shaped or -shaped, where the two poles of the shape are the two
leg-vertices of C. On the other hand, if Gμ is an inner P- or R-component, the
external cycle Co(Gμ) is a 2-legged cycle of G, where the two leg-vertices of
Co(Gμ) are the poles of Gμ. Hence, the representation H ′ of G whose rectilinear
image is H ′ satisfies O2, as H ′

μ is either -shaped or -shaped. Also, the bends
of H ′ are the same as in H, because the bend vertices of H coincide with those
of H ′. Hence, H ′ still satisfies O1 and has the minimum number of bends.

Step 3: Property O3. Suppose now that H is a bend-minimum orthogonal
representation of G (with e on the external face) that satisfies both O1 and O2.
More precisely, assume that H = H ′ is the orthogonal representation obtained
in the previous step, where its rectilinear image H is computed by the algorithm
of Rhaman et al. [21]. By a careful analysis of how this algorithm works, we
prove that each series gets spirality at most four in H (see Appendix B of [11]).

4 Drawing Algorithm

Let G be a biconnected 3-planar graph with a distinguished edge e and let T be
the SPQR-tree of G with respect to e. Section 4.1 gives a linear-time algorithm to
compute bend-minimum orthogonal representations of the inner components of
T . Section 4.2 handles the root child of T to complete a bend-minimum represen-
tation with e on the external face and it proves Theorem 1. Lemma 3 allows us to
restrict our algorithm to search for a representation satisfying Properties O1-O3.

4.1 Computing Orthogonal Representations for Inner Components

Let T be the SPQR-tree of G with respect to reference edge e and let μ be
an inner node of T . A key ingredient of our algorithm is the concept of ‘equiv-
alent’ orthogonal representations of Gμ. Intuitively, two representations of Gμ

are equivalent if one can replace the other in any orthogonal representation of
G. Similar equivalence concepts have been used for orthogonal drawings [8,10].
As we shall prove (see Theorem 3), for planar 3-graphs a simpler definition of
equivalent representations suffices. If μ is a P- or an R-node, two representations
Hμ and H ′

μ are equivalent if they are both -shaped or both -shaped. If μ is
an inner S-node, Hμ and H ′

μ are equivalent if they have the same spirality.

Lemma 4. If Hμ and H ′
μ are two equivalent orthogonal representations of Gμ,

the two contour paths of Hμ have the same turn number as those of H ′
μ.
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Fig. 4. (a) An orthogonal representation H; a D-shaped R-component with poles {w, z}
and an equivalent representation of it are in the blue frames. (b) A representation
obtained from H by replacing the R-component with the equivalent one; a 1-spiral
S-component with poles {u, v} and an equivalent one are shown in the red frames. (c)
The representation obtained by replacing the S-component with the equivalent one.

Suppose that Hμ is an inner component of H with poles u and v, and let
pl and pr be the contour paths of Hμ. Replacing Hμ in H with an equivalent
representation H ′

μ means to insert H ′
μ in H in place of Hμ, in such a way that:

(i) if Hμ and H ′
μ are -shaped, the contour path p′ of H ′

μ for which t(p′) = t(pl)
is traversed clockwise from u to v on the external boundary of H ′

μ (as for pl

on the external boundary of Hμ); (ii) in all cases, the external angles of H ′
μ at

u and v are the same as in Hμ. This operation may require to mirror H ′
μ (see

Fig. 4). The next theorem uses arguments similar to [8].

Theorem 3. Let H be an orthogonal representation of a planar 3-graph G and
Hμ be the restriction of H to Gμ, where μ is an inner component of the SPQR-
tree T of G with respect to a reference edge e. Replacing Hμ in H with an
equivalent representation H ′

μ yields a planar orthogonal representation H ′ of G.

We are now ready to describe our drawing algorithm. It is based on a dynamic
programming technique that visits bottom-up the SPQR-tree T with respect to
the reference edge e of G. Based on Lemma 3 and Theorem 3, the algorithm
stores for each visited node μ of T a set of candidate orthogonal representations
of Gμ, together with their cost in terms of bends. For a Q-node, the set of
candidate orthogonal representations consists of three representations, with 0,
1, and 2 bends, respectively. This suffices by Property O1. For a P- or an R-
node, the set of candidate representations consists of a bend-minimum -shaped
and a bend-minimum -shaped representation. This suffices by Property O2.
For an S-node, the set of candidate representations consists of a bend-minimum
representation for each value of spirality 0 ≤ k ≤ 4. This suffices by Property O3.
In the following we explain how to compute the set of candidate representations
for a node μ that is a P-, an S-, or an R-node (computing the set of a Q-node is
trivial). To achieve overall linear-time complexity, the candidate representations
stored at μ are described incrementally, linking the desired representation in the
set of the children of μ for each virtual edge of skel(μ).

Candidate Representations for a P-node. By property T1 of Lemma 1, μ
has two children μ1 and μ2, where μ1 is an S-node and μ2 is an S-node or a
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Q-node. The cost of the -shaped representation of μ is the sum of the costs of
μ1 and μ2 both with spirality one. The cost of the -shaped representation of
μ is the minimum between the cost of μ1 with spirality two and the cost of μ2

with spirality two. This immediately implies the following.

Lemma 5. Let μ be an inner P-node. There exists an O(1)-time algorithm that
computes a set of candidate orthogonal representations of Gμ, each having at
most two bends per edge.

Candidate Representations for an S-node. By property T3 of Lemma 1,
skel(μ) without its reference edge is a sequence of edges such that the first edge
and the last edge are real (they correspond to Q-nodes) and at most one virtual
edge, corresponding to either a P- or an R-node, appears between two real edges.
Let c0 be the sum of the costs of the cheapest (in terms of bends) orthogonal
representations of all P-nodes and R-nodes corresponding to the virtual edges of
skel(μ). By Property O2, each of these representations is either - or -shaped.
Let nQ be the number of edges of skel(μ) that correspond to Q-nodes and let
nD be the number of edges of skel(μ) that correspond to P- and R-nodes whose
cheapest representation is -shaped. Obviously, any bend-minimum orthogonal
representation of Gμ satisfying O2 has cost at least c0. We have the following.

Lemma 6. An inner S-component admits a bend-minimum orthogonal repre-
sentation respecting Properties O1-O3 and with cost c0 if its spirality k ≤
nQ + nD − 1 and with cost c0 + k − nQ − nD + 1 if k > nQ + nD − 1.

Note that the possible presence in skel(μ) of virtual edges corresponding to
P- and R-nodes whose cheapest representation is -shaped does not increase
the spirality reachable at cost c0 by the S-node. Lemma 6 also provides an
alternative proof of a known result ([8, Lemma 5.2]), stating that for a planar
3-graph the number of bends of a bend-minimum k-spiral representation of an
inner S-component does not decrease when k increases. Moreover, since for an
inner S-component nQ ≥ 2, a consequence of Lemma 6 is Corollary 1. It implies
that every bend-minimum k-spiral representation of an inner S-component does
not require additional bends with respect to the bend-minimum representations
of their subcomponents when k ∈ {0, 1}.

Corollary 1. For each k ∈ {0, 1}, every inner S-component admits a bend-
minimum orthogonal representation of cost c0 with spirality k.

Lemma 7. Let μ be an inner S-node and nμ be the number of vertices of skel(μ).
There exists an O(nμ)-time algorithm that computes a set of candidate orthogo-
nal representations of Gμ, each having at most two bends per edge.

Candidate Representations for an R-node. If μ is an R-node, its children
are S- or Q-nodes (Property T2 of Lemma 1). To compute a bend-minimum
orthogonal representation of Gμ that satisfies Properties O1-O3, we devise a
variant of the linear-time algorithm by Rahman, Nakano, and Nishizeki [19]
that exploits the properties of inner S-components.
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Lemma 8. Let μ be an inner R-node and nμ be the number of vertices of skel(μ).
There exists an O(nμ)-time algorithm that computes a set of candidate orthogo-
nal representations of Gμ, each having at most two bends per edge.

Proof (sketch). Let {u, v} be the poles of μ. Our algorithm works in two steps.
First, it computes an -shaped orthogonal representation and a -shaped
orthogonal representation of G̃μ = skel(μ) \ (u, v), with a variant of the
recursive algorithm in [19]. Then, it computes a bend-minimum -shaped rep-
resentation and a bend-minimum -shaped representation of Gμ, by
replacing each virtual edge eS in each of and with the representation in
the set of the corresponding S-node whose spirality equals the number of bends
of eS . Every time the algorithm needs to insert a degree-2 vertex along an edge of
a bad cycle, it adds this vertex on a virtual edge, if such an edge exists. By Corol-
lary 1, this vertex does not cause an additional bend in the final representation
when the virtual edge is replaced by the corresponding S-component.

4.2 Handling the Root Child Component

Let T be the SPQR-tree of G with respect to edge e = (u, v) and let μ be
the root child of T . Assuming to have already computed the set of candidate
representations for the children of μ, we compute an orthogonal representation
Hμ of Gμ and a bend-minimum orthogonal representation H of G (with e on
the external face) depending on the type of μ.

AlgorithmP-root-child. Let μ be a P-node with children μ1 and μ2. By Prop-
erty T1 of Lemma 1, both μ1 and μ2 are S-nodes. Let k1 (k2) be the maximum
spirality of a representation Hμ1 (Hμ2) at the same cost c0,1 (c0,2) as a 0-spiral
representation. W.l.o.g., let k1 ≥ k2. We have three cases:
Case 1: k1 ≥ 4. Compute a -shaped Hμ by merging a 4-spiral and a 2-spiral
representation of μ1 and μ2, respectively; add e with 0 bends to get H. Case
2: k1 = 3. Compute an -shaped Hμ by merging a 3-spiral and a 1-spiral
representation of μ1 and μ2, respectively; add e with 1 bend to get H. Case 3:
k1 = 2 or k2 = k1 = 1. Compute a -shaped Hμ by merging a 2-spiral and a
0-spiral representation of μ1 and μ2, respectively; add e with 2 bends to get H.

Lemma 9. P-root-child computes a bend-minimum orthogonal representation of
G with e on the external face and at most two bends per edge in O(1) time.

AlgorithmS-root-child. Let μ be an S-node. if Gμ starts and ends with one
edge, we compute the candidate orthogonal representations of Gμ as if it were
an inner S-node, and we obtain H by adding e with zero bends to the 2-spiral
representation of Gμ. Else, if Gμ only starts or ends with one edge, we add
e to the other end of Gμ, compute the candidate representations of Gμ ∪ {e}
as if it were an inner S-node, and obtain G by adopting the representation of
Gμ ∪ {e} with spirality 3 and by identifying the first and last vertex. Finally, if
skel(μ)\{e} starts and ends with an R- or a P-node, we add two copies e′, e′′ of e
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at the beginning and at the end of Gμ, compute the candidate representations of
Gμ ∪{e′, e′′} as if it were an inner S-node, and obtain H from the representation
of Gμ ∪ {e′, e′′} with spirality 4, by identifying the first and last vertex of Gμ ∪
{e′, e′′} and by smoothing the resulting vertex.

Lemma 10. S-root-child computes a bend-minimum orthogonal representation
of G with e on the external face and at most two bends per edge in O(nμ) time,
where nμ is the number of vertices of skel(μ).

AlgorithmR-root-child. Let μ be an R-node and let φ1 and φ2 be the two
planar embeddings of skel(μ) obtained by choosing as external face one of those
incident to e. For each φi, compute an orthogonal representation Hi of G by: (i)
finding a representation H̃i of skel(μ) (included e) with the variant of [19] given
in the proof of Lemma 8, but this time assuming that all the four designated
corners of the external face in the initial step must be found; (ii) replacing
each virtual edge that bends k ≥ 0 times in H̃i with a minimum-bend k-spiral
representation of its corresponding S-component. H is the cheapest of H1 and
H2. Since the variant of [19] applied to skel(μ) still causes at most two bends
per edge, with the same arguments as in Lemma 8 we have:

Lemma 11. R-root-child computes a bend-minimum orthogonal representation
of G with e on the external face and at most two bends per edge in O(nμ) time,
where nμ be the number of vertices of skel(μ).

Proof of Theorem 1. If G is biconnected, Lemmas 5, 7, 8, 9−11 yield an O(n)-
time algorithm that computes a bend-minimum orthogonal representation of G
with a distinguished edges e on the external face and at most two bends per
edge. Call BendMin-RefEdge this algorithm. An extension of BendMin-RefEdge
to a simply-connected graph G, which still runs in O(n) time, is easily derivable
by exploiting the block-cut-vertex tree of G (see Appendix C of [11]). Running
BendMin-RefEdge for every possible reference edge, we find in O(n2) time a bend-
minimum orthogonal representation of G over all its planar embeddings. If v is
a distinguished vertex of G, running BendMin-RefEdge for every edge incident to
v, we find in O(n) time a bend-minimum orthogonal representation of G with v
on the external face (recall that deg(v) ≤ 3). Finally, an orthogonal drawing of
G is computed in O(n) time from an orthogonal representation of G [7].

5 Open Problems

We suggest two research directions related to our results: (i) Is there an
O(n)-time algorithm to compute a bend-minimum orthogonal drawing of a 3-
connected planar cubic graph, for every possible choice of the external face? (ii)
It is still unknown whether an O(n)-time algorithm for the bend-minimization
problem in the fixed embedding setting exists [9]. This problem could be tackled
with non-flow based approaches. A positive result in this direction is given in [20]
for plane 3-graphs.
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Abstract. A drawing of a graph is greedy if for each ordered pair of ver-
tices u and v, there is a path from u to v such that the Euclidean distance
to v decreases monotonically at every vertex of the path. The existence of
greedy drawings has been widely studied under different topological and
geometric constraints, such as planarity, face convexity, and drawing suc-
cinctness. We introduce greedy rectilinear drawings, in which each edge
is either a horizontal or a vertical segment. These drawings have several
properties that improve human readability and support network routing.
We address the problem of testing whether a planar rectilinear represen-
tation, i.e., a plane graph with specified vertex angles, admits vertex
coordinates that define a greedy drawing. We provide a characterization,
a linear-time testing algorithm, and a full generative scheme for universal
greedy rectilinear representations, i.e., those for which every drawing is
greedy. For general greedy rectilinear representations, we give a combi-
natorial characterization and, based on it, a polynomial-time testing and
drawing algorithm for a meaningful subset of instances.

1 Introduction

In a greedy drawing of a graph in the plane every vertex is mapped to a distinct
point and, for each ordered pair of vertices u and v, there is a distance-decreasing
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path from u to v, i.e., a path such that the Euclidean distance to v decreases
monotonically at every vertex of the path. Greedy drawings have been originally
proposed to support greedy routing schemes for ad hoc wireless networks [20–
22]. In such schemes, a node that has to send a packet to a destination v just
forwards the packet to one of its neighbors that is closer to v than itself. In their
seminal work, Papadimitriou and Ratajczak [20,21] showed that 3-connected
planar graphs form the largest class of graphs for which every instance may admit
a greedy drawing, and they formulated two conjectures. Weak conjecture: Every
3-connected planar graph admits a greedy drawing. Strong conjecture: Every
3-connected planar graph admits a convex greedy drawing, i.e., a planar greedy
drawing with convex faces. Concerning the weak conjecture, Dhandapani [8]
provided an existential proof of greedy drawings for maximal planar graphs.
Later on, Leighton and Moitra [16] and Angelini et al. [4] independently settled
the weak conjecture positively, by also describing constructive algorithms. Da
Lozzo et al. [7] strengthened these results, showing that in fact every 3-connected
planar graph admits a planar greedy drawing. However, the strong conjecture
is still open. For graphs that are not 3-connected, Nöllenburg and Prutkin [18]
characterized the trees that admit a greedy drawing.

Greedy drawings have also been investigated in terms of succinctness, an
important property that helps to make greedy routing schemes work in practice.
A drawing is succinct if the vertex coordinates are represented by a polylogarith-
mic number of bits. Since there exist greedy-drawable graphs in the Euclidean
sense that do not admit a succinct greedy drawing [3], several papers also studied
succinct greedy drawings in spaces different from the Euclidean one or according
to a metric different from the Euclidean distance [11–14,17,24].

We finally mention another model, called self-approaching drawing, that rein-
forces the properties of greedy drawings [1,19]. A straight-line drawing is self-
approaching if for any ordered pair of vertices u and v, there exists a path P
from u to v such that, for any point p on P , the distance from u to p always
decreases while continuously moving along P in the drawing. Clearly, every self-
approaching drawing is greedy, but not vice versa. In particular, the dilation of
self-approaching drawings is bounded by a constant [15], while for greedy draw-
ings it may be unbounded [1]. The dilation (or “stretch-factor”) of a straight-line
drawing is the maximum value of the ratio between the length of the shortest
path between two vertices in the drawing and their Euclidean distance.

Motivation and Contribution. Our work is motivated by the rich litera-
ture on greedy drawings that satisfy some interesting topological or geometric
requirements, such as planarity [7] and face convexity [13,14,20,24]. We study
greedy drawings in the popular orthogonal drawing convention [9,10,23]: Ver-
tices are mapped to points and edges are sequences of horizontal and vertical
segments (each vertex has degree at most 4). More precisely, we introduce pla-
nar greedy rectilinear drawings, that is, crossing-free greedy drawings where each
edge is either a horizontal or a vertical segment. We address the following ques-
tion: “Let H be a planar rectilinear representation, i.e., a plane graph with
given values (90◦, 180◦, 270◦) for the geometric angles around each vertex; is it



Greedy Rectilinear Drawings 497

v

u

(a)

v

u

(b) (c)

v
u

(d)

v

(e)

Fig. 1. (a) A rectilinear drawing that is not greedy; (b) A greedy rectilinear drawing of
the same representation (the distance-decreasing paths between u and v are dashed).
(c) Drawing of a universal greedy rectilinear representation. (d)–(e) H is not greedy
realizable if an internal face is not a rectangle or the external face is not orthoconvex.

possible to assign coordinates to the vertices of H so that the resulting drawing
is greedy rectilinear?”. Figure 1a shows a rectilinear drawing that is not greedy;
however, the corresponding rectilinear representation has a greedy drawing, as
shown in Fig. 1b. Our question fits into the effective topology-shape-metrics app-
roach [5,23], which first computes a planar embedding of the graph, then finds
an embedding-preserving orthogonal representation, and finally assigns coordi-
nates to vertices and bends to complete the drawing; we address this last step,
but our representations have no bend. Our contribution is as follows.

Section 2 discusses basic properties of greedy rectilinear drawings. We prove
that the faces are convex and the dilation is bounded by a small constant, and
we show convex (non-rectilinear) greedy drawings in which every distance-
decreasing path between two nodes is arbitrarily longer than the Euclidean dis-
tance.

Section 3 focuses on planar universal greedy rectilinear representations for
which every drawing is greedy (see Fig. 1c). We give a linear-time recognition
algorithm that, in the positive case, computes a greedy drawing of minimum area
on an integer grid. We also describe a generative scheme for constructing any
possible universal greedy rectilinear representation starting from a rectangle.

Section 4 extends the study to general rectilinear greedy representations. We
give a non-geometric characterization of this class, which leads to a linear-time
testing algorithm for a meaningful subset of instances. If the condition of the
characterization is satisfied, a greedy drawing of minimum area within that con-
dition can be computed in quadratic time. However, we show that in general
greedy rectilinear representations may require exponential area.

We assume familiarity with basic concepts of graph drawing and planarity [9];
for space reasons, terminology and some proofs are moved to the full version [2].

2 Basic Properties of Greedy Rectilinear Representations

We denote by x(v) and y(v) the x- and the y-coordinate of a vertex v in a drawing
Γ of a graph. For two vertices u and v of Γ , d(u, v) is the Euclidean distance
between u and v and a path from u to v in Γ is a u-v-path. The degree of v is
denoted as deg(v). If v has neighbors u1, u2, . . . , uh, the cell of v in Γ , denoted
as cell(v), is the (possibly unbounded) region of all points of the plane that are
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(a) (b) (c) (d) (e)

Fig. 2. Different types of cells (shaded regions) of a vertex v in a rectilinear drawing
of a graph: (a) deg(v) = 4; (b) deg(v) = 3; (c)–(d) deg(v) = 2, (e) deg(v) = 1.

closer to v than to any ui. Figure 2 shows all types of cells of a vertex v in a
rectilinear drawing, depending on deg(v) and on the angles at v; if deg(v) ≤ 3,
cell(v) is unbounded. The following geometric characterization is proven in [21].

Theorem 1 (Papadimitriou and Ratajczak [21]). A drawing of a graph is
greedy if and only if for every vertex v, cell(v) contains no vertex other than v.

If a rectilinear representation H admits a greedy rectilinear drawing, H is
greedy realizable or, equivalently, it is a greedy rectilinear representation. W.l.o.g.,
we shall assume that H comes with a fixed “rotation”, i.e., for any edge (u, v),
it is fixed whether u is to the left, to the right, above, or below v in every
rectilinear drawing Γ of H. A flat vertex of H (or of Γ ) is a vertex with a flat
angle (180◦). A flat angle formed by two horizontal segments is north-oriented
(south-oriented) if it is above (below) the two segments. A flat angle between
two vertical segments is either east-oriented or west-oriented.

We restrict our study to biconnected graphs, as otherwise the set of greedy
rectilinear drawings may be very limited (see the full version [2]). Lemma 1
(proved in the full version [2]) allows us to further restrict to convex rectilinear
representations, i.e., those having rectangular internal faces and an orthocon-
vex polygon as external boundary. Indeed, if H is not convex, there exist two
vertices u, v such that u ∈ cell(v) in any drawing of H (see also Figs. 1d–e).

Lemma 1. H is greedy realizable only if it is convex.

For a rectilinear drawing of a convex rectilinear representation H, let R(u, v)
denote the minimum bounding box (rectangle or segment) including u and v.
The next property immediately follows from the convexity of H.

Property 1. Let f be a face of H and w be any vertex of H with an angle of 90◦

inside f . Denote by u and v the two neighbors of w along the boundary of f . In
any rectilinear drawing of H, there is no vertex properly inside R(u, v).

We exploit Property 1 to prove that rectilinear greedy drawings have bounded
dilation, where the paths that determine the dilation are distance-decreasing.
An analogous statement does not hold for general convex greedy drawings; an
example of this fact is in the full version [2], together with the proof of Theorem 2.
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Fig. 3. (a) A greedy realizable convex rectilinear representation H that is not universal
greedy due to conflict {u, v}; (b)–(c) The DAGs Dx and Dy for H. (d) A non-convex
representation such that u ∈ cell(v) for any drawing, even though u ≺x v and u ≺y v.

Theorem 2. In a rectilinear greedy drawing on an integer grid, for every two
vertices s, t there is a distance-decreasing s-t-path of length at most 3

√
2 ·d(s, t).

Conflicts in Rectilinear Representations. We now define two directed
acyclic graphs (DAGs) Dx and Dy associated with H, already used for orthog-
onal compaction [6,23]. They are fundamental tools for the rest of the paper.
Dx is obtained from H by orienting the horizontal edges from left to right and
by contracting each maximal path of vertical edges into a node. Dy is defined
symmetrically on the maximal paths of horizontal edges; see Fig. 3. Dx and Dy

may have multiple edges and they are st-digraphs (they have a single source
and a single sink), since the external face of H is orthoconvex. For any vertex u
of H, we denote by cx(u) (cy(u)) the node of Dx (Dy) corresponding to the max-
imal vertical (horizontal) path containing u in H. If cx(u) �= cx(v), the notation
u ≺x v (u ⊀x v) denotes the existence (absence) of a directed path from cx(u)
to cx(v) in Dx. The notation u ∼x v means that either u ≺x v or v ≺x u holds,
while u �∼x v means that none of them holds. The notations u ≺y v, u ⊀y v,
u ∼y v, and u �∼y v are symmetric for Dy. Clearly, ≺x and ≺y are transitive
relations. The next lemma (proved in the full version [2]) states that there is a
directed path between any two vertices of H in at least one of Dx and Dy.

Lemma 2. For any two vertices u and v of a convex rectilinear representa-
tion H, at least one of the following holds: (i) u ∼x v or (ii) u ∼y v.

Let u and v be two vertices of H such that cx(u) �= cx(v) and cy(u) �= cy(v).
By Lemma 2, at least one of u ∼x v and u ∼y v holds, say the latter. If u ∼x v
also holds, the relative positions (left/right/top/bottom) of u and v are fixed
(they are the same in any drawing of H); in this case, we prove that none of
the two vertices lies in the cell of the other in any drawing of H (Lemma 3).
Conversely, this is not guaranteed if u �∼x v (Theorem 3), and we say that u
and v are in a conflict, denoted by {u, v}. In this case, suppose that u ≺y v
(the case v ≺y u is symmetric) and consider the topmost (flat) vertex u′ of the
vertical path corresponding to cx(u) and the bottommost (flat) vertex v′ of the
vertical path corresponding to cx(v). We say that u′ and v′ are responsible for
the conflict {u, v}. A conflict {u, v} is an x-conflict if u �∼x v and a y-conflict if
u �∼y v. In Fig. 3a, {u, v} is an x-conflict, with u′ = u and v′ = v. A conflict is
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resolved in a drawing Γ of H if none of the two vertices that are responsible for
it lies in the cell of the other. The proof of Lemma 3 is in the full version [2].

Lemma 3. Let H be a convex rectilinear representation of a biconnected
graph. A rectilinear drawing Γ of H is greedy if and only if every conflict is
resolved in Γ .

3 Universal Greedy Rectilinear Representations

A convex rectilinear representation H is conflict-free if it has no conflict. The
following concise characterization holds for universal rectilinear representations.

Theorem 3. Let H be a convex rectilinear representation of a biconnected plane
graph. H is universal greedy if and only if it is conflict-free.

Proof. By Lemma 3, if H is conflict-free, every rectilinear drawing of H is greedy
(note that a rectilinear representation may be conflict-free without being convex,
which would imply that it is not universal greedy; see Fig. 3d).

Suppose that H is universal greedy but not conflict-free. Let Γ be any rec-
tilinear drawing of H. Consider two vertices u and v that are responsible for a
conflict in H; assume w.l.o.g. that u �∼x v. We can further assume that there
is no vertex w such that x(u) < x(w) < x(v) in Γ . Indeed, if such a vertex w
exists (which implies w ⊀x u and v ⊀x w), at least one of u ⊀x w and w ⊀x v
holds, as otherwise u ≺x v. Hence, we could have selected either u and w or w
and v instead of u and v. If x(u) = x(v), Γ is not greedy, because u ∈ cell(v)
and v ∈ cell(u). If x(u) < x(v), we can transform Γ into a drawing Γ ′ by moving
u and all the vertices in its vertical path to the right until x(u) = x(v). Since
u and v are consecutive along the x-axis in Γ and since H is convex, Γ ′ is still
planar but not greedy, which contradicts the fact that H is universal greedy. �	
Theorem 4. Let H be a rectilinear representation of an n-vertex biconnected
plane graph. There exists an O(n)-time algorithm to test if H is universal greedy.

Proof. The algorithm first checks in linear time if H is convex. If not, the instance
is rejected. Otherwise, it checks whether both Dx and Dy contain a (directed)
Hamiltonian path, which can be done in linear time in the size of Dx and Dy,
which is O(n). Namely, since each of Dx and Dy is an st-digraph, computing
a longest path from s to t is done in O(n) time from a topological sorting. We
claim that H is universal greedy if and only if this test succeeds. By Theorem 3,
to prove this claim, it is enough to show that a DAG D contains a Hamiltonian
path if and only if for any two vertices u and v of D, there is a directed path
either from u to v or from v to u. If D has a Hamiltonian path π, a directed
path between any two vertices of D is a subpath of π. Conversely, if there is
a directed path between any two vertices of D, then a linear extension of a
topological sorting of the vertices corresponds to a Hamiltonian path. �	
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Since conflict-free rectilinear representations are a subclass of the turn-regular
orthogonal representations [6], for which a minimum-area drawing can be found
in linear time, we can also state the following.

Corollary 1. Let H be a universal greedy rectilinear representation. There is a
linear-time algorithm to compute a (greedy) drawing of H with minimum area.

Generative Scheme. Let H be a biconnected universal greedy rectilinear rep-
resentation. Each of the following operations on H produces a new biconnected
universal greedy rectilinear representation, which gives a generative scheme for
universal greedy rectilinear representations. The proof is in the full version [2].
− k-reflex vertex addition. Attach to the external face of H a path of 1 ≤ k ≤ 4
reflex vertices (corners) that forms a new rectangular internal face, provided that
the resulting representation is convex.
− flat vertex addition. Subdivide an external edge (u, v) of H with a flat vertex of
degree two, provided that the strip of the plane between the two lines orthogonal
to (u, v) and passing through u and v, respectively, has no vertices in its interior.

Theorem 5. Let H be a universal greedy rectilinear representation of a bicon-
nected planar graph. H can be obtained by a suitable sequence of k-reflex vertex
and flat vertex additions, starting from a rectangle.

4 General Greedy Rectilinear Representations

We now consider convex rectilinear representations H of biconnected plane
graphs that may contain conflicts, and investigate conditions under which they
are greedy realizable. We present a characterization (Theorem 6), which yields a
polynomial-time testing algorithm for a meaningful subclass of instances, namely
when Dx and Dy are series-parallel (Theorem 9). Proofs are in the full version [2].

Let D be one of the two DAGs Dx and Dy associated with H. Since D is
an st-digraph, it has an st-ordering S = v1, . . . , vm. For two indices i, j, with
1 ≤ i < j ≤ m, D〈i, j〉 denotes the subgraph of D induced by vi, . . . , vj . We say
that S is good if: (S.1) For any two indices i, j, with 1 ≤ i < j ≤ m, D〈i, j〉
has at most two connected components, and (S.2) if D〈i, j〉 has exactly two
components, then all nodes of one component precede those of the other in S.

Further, we say that a drawing of H respects an st-ordering Sx of Dx (Sy

of Dy) if for any two vertices u,w ∈ H, we have that u lies to the left of w
(below w) in the drawing if and only if cx(u) precedes cx(w) in Sx (cy(u) pre-
cedes cy(w) in Sy). Finally, when we refer to the x-coordinate (y-coordinate) of a
node vi of Dx (of Dy), we mean the one of all the vertices w ∈ H with cx(w) = vi

(with cy(w) = vi), as these vertices belong to the same vertical (horizontal) path.

Theorem 6. A convex rectilinear representation H of a biconnected plane graph
is greedy realizable if and only if both DAGs Dx and Dy admit good st-orderings.

We start by proving the necessity of Theorem 6.
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vi−1 vj+1

C2

C1

(a) Dx〈i, j〉 has two components

C1

C2

�

C3vi−1 vj+1

(b) Dx〈i, j〉 has three or more components

Fig. 4. Illustration for the proof of Lemma 4

Lemma 4. If Dx or Dy admits no good st-ordering, H is not greedy realizable.

Proof Sketch. If H admits a greedy drawing Γ respecting an st-ordering Sx of Dx

that is not good, there exist i, j, with 1 ≤ i < j ≤ m, such that Dx〈i, j〉 has at
least two connected components C1 and C2. First, note that the vertices of C1

and C2 are vertically separated by a horizontal line in Γ (say, C1 lies above C2;
see Fig. 4), as otherwise there would be at least a pair of vertical paths whose
corresponding nodes in Dx are joined by a directed path.

Since every internal face of H is rectangular, the vertices of the bottom (top)
boundary of C1 (C2) are part of a horizontal path, spanning all x-coordinates
between the ones of vi and vj . Thus, all vertices on the bottom (top) boundary
of C1 (C2) are south-oriented (north-oriented) flat vertices, and the union of their
cells is a connected region spanning all the x-coordinates between their leftmost
and rightmost vertices; see Fig. 4a. So, if a vertex of C1 appears between two
vertices of C2 in Sx, then it lies inside the cell of a vertex of C2 in Γ , and vice
versa. Thus, the vertices of each component are consecutive in Sx. Since Sx is not
good, there is at least another component C3 in Dx〈i, j〉; see Fig. 4b. Consider
the vertical line � that is horizontally equidistant to vi and vj in Γ . Any two
components of Dx〈i, j〉 must be separated by � in order for the cells of the vertices
of these components to be empty, which is not possible for three components. �	

To prove the sufficiency of Theorem 6, we assign the x- and y-coordinates in
two steps, which can be performed independently due to the following lemma.

Lemma 5. Let Γ1 and Γ2 be two drawings of H such that all x-conflicts are
resolved in Γ1 and all y-conflicts are resolved in Γ2. Then, the drawing Γ3 of H
in which the x-coordinate of each vertex is the same as in Γ1 and the y-coordinate
of each vertex is the same as in Γ2 is greedy.

We describe the assignment of the x-coordinates based on the good st-
ordering Sx = v1, . . . , vm of Dx. The assignment of the y-coordinates based
on the good st-ordering of Dy works symmetrically. We first prove in Lemma 6
that, to guarantee that every x-conflict is resolved, it suffices to resolve a specific
subset of them, which is called minimal. Namely, an x-conflict {u, v} dominates
an x-conflict {w, z}, with cx(u) = vi, cx(v) = vj , cx(w) = vk, and cx(z) = v�,
if k ≤ i < j ≤ �. A minimal x-conflict is not dominated by any x-conflict.

By Lemmas 3 and 6, we conclude that a greedy rectilinear drawing can be
obtained by resolving all the minimal conflicts. We finally give a constructive
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w

u′

Dx〈p, q〉
(a) w /∈ cell(u)

u u′

z

r

wC2

C1

(b) {z, r} is resolved

u

z

w

u′

r

(c) cx(u) is a sink

u

z

w

z′

u′

vi vj vk

(d) cx(u) is not a sink

Fig. 5. Illustration for the proof of Lemma 6

proof that this can always be done since Sx is good. In particular, we encode
that a minimal x-conflict is resolved with a single inequality on the horizontal
distances between the vertices in the x-conflict. Then, in Lemma 7, we prove that
for a minimal x-conflict {u, v} the nodes cx(u) and cx(v) of Dx are consecutive
in Sx. We use this property to show that the system of inequalities describing the
conditions for the minimal x-conflicts to be resolved always admits a solution.

Lemma 6. Let Γ be a rectilinear drawing of H respecting Sx. If every minimal
x-conflict dominating an x-conflict {u,w} is resolved in Γ , {u,w} is resolved.

Proof Sketch. We may assume that u and w are responsible for {u,w}. Let
vi = cx(u) and vj = cx(w), with i < j. Since Sx is good, graph Dx〈i, j〉 has at
most two connected components C1 and C2. Assume that vi ∈ C1.

Suppose first that vj ∈ C1. Let u′ be the right neighbor of u in H; see Fig. 5a.
Since vi, vj ∈ C1, node cx(u′) precedes cx(w) in Sx and cx(u′) ∈ C1. So, u′ lies
to the left of w in any drawing of H respecting Sx. Hence, the mid-point of edge
(u, u′), which defines the right boundary of cell(u), l ies to the left of w, and
thus w �∈ cell(u). Symmetrically, u �∈ cell(w).

Suppose now that vj ∈ C2. By symmetry, we assume that C1 lies above and
to the left of C2; see Fig. 5b. Let z (r) be the bottommost (topmost) vertex of the
vertical path corresponding to the last node cx(z) of C1 (first node cx(r) of C2)
in Sx, i.e., z and r are responsible for a minimal (and thus resolved) x-conflict.

We show that w �∈ cell(u) (by symmetry, u �∈ cell(w)). If u′ ∈ C1, the previous
case applies. Otherwise, u lies on the right boundary of C1. If cx(u) is a sink of C1,
then C1 contains only cx(u); see Fig. 5c. Thus, either cx(u) is not a sink of C1,
or cx(u) = cx(z). In the latter case, r /∈ cell(u), since the minimal x-conflict {z, r}
is resolved, which implies w /∈ cell(u). Hence, cx(u) �= cx(z) and cx(u) is not a
sink of C1; see Fig. 5d. Since u′ �∈ C1 and u is south-oriented, u lies below z.
Let z′ be the right neighbor of z, with cx(z′) = vk. If z′ is to the left of u′, Dx〈i, k〉
has two connected components; one contains vi and vk, the other contains vj ,
as (u, u′) cannot be crossed. This contradicts (S.2), as i < j < k. So, z′ is to the
right of u′. Since z is to the right of u, the right boundary of cell(z) is to the right
of the one of cell(u). Since r �∈ cell(z), also r �∈ cell(u), and thus w �∈ cell(u). �	
Lemma 7. For any two vertices u and w of H such that {u,w} is a minimal
x-conflict, we have that cx(u) and cx(w) are consecutive in a good st-ordering Sx.
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Fig. 6. Solving the inequalities of xi,i+1

implies u /∈ cell(w) and w /∈ cell(u).

x1 xi xm

x1,2

xm−1,mxi,i+1

Fig. 7. The relation graph defined
by the left and right inequalities

Proof. Suppose that there is a vertex z ∈ H such that cx(z) = vj lies
between cx(u) = vi and cx(w) = vk in Sx, i.e., i < j < k. If cx(u) and cx(w)
belong to the same connected component C of Dx〈i, k〉, then by definition, vi and
vk are a source and a sink of C, respectively. Since {u,w} is an x-conflict, we have
u ⊀x w; hence, there is another source cx(s) in C, for some vertex s ∈ H, such
that s ≺x w. Since cx(u) and cx(s) are different sources of C, we have u �∼x s,
and thus {u, s} is an x-conflict dominating the minimal x-conflict {u,w}; a con-
tradiction. If cx(u) and cx(w) belong to different components, then cx(z) does
not belong to the same component as one of them, say cx(u). Thus, u �∼x z, i.e.,
{u, z} is an x-conflict dominating {u,w}; a contradiction. �	

We now present our algorithm to assign x-coordinates so that all minimal
x-conflicts are resolved. We extend some definitions from vertices of H to nodes
of Dx. Namely, we say vi ≺x vj if there is a directed path in Dx from vi and vj .
Also, we say that there is a (minimal) x-conflict {vi, vj} in Dx if there is a
(minimal) x-conflict {u,w} in H such that cx(u) = vi and cx(w) = vj .

For 0 < i, j ≤ m, let xi,j := xj − xi be the x-distance between vi and vj .
To prove that a good st-ordering Sx allows for a greedy realization, we set up a
system of inequalities describing the geometric requirements for the x-distance
of consecutive nodes in Sx in a greedy drawing, and then prove that this system
always admits a solution since Sx is good. First note that, for every 0 < i < m
such that there is no minimal x-conflict {vi, vi+1}, we only require the x-distance
to be positive, so we define the trivial inequality xi,i+1 > 0.

For every 0 < i < m such that there is a minimal x-conflict {vi, vi+1}, we
define two inequalities that describe the necessary conditions for the x-conflict
to be resolved. Let u and w, with cx(u) = vi and cx(w) = vi+1, be responsible
for {vi, vi+1}. We assume that u ≺y w; the other case is symmetric.

By assumption, vi lies to the bottom left of vi+1, so we only have to con-
sider the part cell↙(w) of cell(w) to the bottom left of w (dark region in Fig. 6).
Let (w′, w) be the bottommost incoming edge of vi+1 with cx(w′) = v�i+1 . Then,
the left boundary of cell↙(w) is delimited by the vertical line through the mid-
point of (w′, w). Thus, we require xi,i+1 > x�i+1,i+1/2 ⇔ xi,i+1 > x�i+1,i. Sym-
metrically, we only consider the part cell↗(u) of cell(u) to the top right of u
(light region in Fig. 6), which is bounded by the vertical line through the mid-
point of the topmost outgoing edge (u, u′) of vi with cx(u′) = vri

. Thus, we
require xi,i+1 > xi,ri

/2 ⇔ xi,i+1 > xi+1,ri
. Since v�i+1 and vi (and vi+1 and vri

)
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are not necessarily consecutive in the st-ordering, we express the x-distance
x�i+1,i (and xi,ri

) as the sum of the x-distances between the consecutive nodes
between them in the st-ordering. This gives the left and the right inequality.

xi,i+1 >

i−1∑

j=�i+1

xj,j+1 (left inequality) xi,i+1 >

ri−1∑

j=i+1

xj,j+1 (right inequality)

Note that for every variable xi,i+1 there exists either a trivial inequality or a left
and right inequality. Consider the following triangulated matrices, where ci,j =
−1 if i > j ≥ �i+1 or i < j ≤ ri, where ci,j = 1 if i = j, and ci,j = 0 otherwise.

A =

⎛
⎜⎝

c1,1 0
...

. . .
cm−1,1 · · · cm−1,m−1

⎞
⎟⎠ B =

⎛
⎜⎝

c1,1 · · · c1,m−1

. . .
...

0 cm−1,m−1

⎞
⎟⎠ x =

⎛
⎜⎝

x1,2

...
xm−1,m

⎞
⎟⎠

We express the left and trivial (right and trivial) inequalities as Ax > 0 (as Bx >
0). Any vector x > 0 determines a unique rectilinear drawing: we assign to each
vertex the y-coordinate defined by Sy, we assign to v1 the x-coordinate x1 = 0
and to every other vi the x-coordinate xi = xi−1 + xi−1,i. Since x > 0, the
x-coordinates preserve the good st-ordering and resolve all x-conflicts.

Lemma 8. A vector x = (x1,2, . . . , xm−1,m)� > 0 solves both Ax > 0 and
Bx > 0 if and only if it determines a drawing where all x-conflicts are resolved.

Note that we can always solve Ax > 0 and Bx > 0 independently by solving
the linear equation systems Ax = 1 and Bx = 1 via forward substitution, since A
and B are triangular. We prove that there is always a vector x solving Ax > 0
and Bx > 0 simultaneously. Let C = A + B − Im−1 be the matrix defined by
the values of ci,j . Any solution to the linear inequality system Cx > 0 is also
a solution to both Ax > 0 and Bx > 0. We show that C can be triangulated.
For this, we define the relation graph corresponding to the adjacency matrix
Im−1 − C that contains a vertex ui for each interval xi,i+1, 1 ≤ i < m, and a
directed edge from a vertex ui to a vertex uj if and only if ci,j = −1; see Fig. 7.

Lemma 9. The relation graph of a good st-ordering is acyclic.

Proof Sketch. We show that a shortest cycle C in the relation graph has length 2,
finding a “shortcut” for every longer cycle. Then, we analyze the relative order
of the y-coordinates of the responsible vertices for the two minimal x-conflicts
in H corresponding to C, and find a contradiction for every combination. �	
Lemma 10. The matrix C is triangularizable.

Proof. By Lemma 9, the relation graph described by the matrix Im−1 − C is
acyclic. Hence, there is a permutation matrix P (corresponding to a topological
sort) such that P (Im−1 − C)P−1 is triangulated with only 0’s on the diagonal.
Thus, PIm−1P

−1 − PCP−1 = Im−1 − PCP−1 is triangulated with only 0’s on
the diagonal, so PCP−1 is triangulated with only 1’s on the diagonal. �	
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Since C is triangularizable by Lemma 10, the system of linear equations
Cx = 1 always has a solution, which solves Ax > 0 and Bx > 0 simultaneously.
This concludes the sufficiency proof for Theorem 6.

Note that the given construction ensures that all the coordinates are integer;
however, the area of the drawing is in general not minimum. A rectilinear greedy
drawing with minimum area respecting the given st-orderings can be constructed
in polynomial time by solving a linear program that minimizes

∑m−1
i=1 xi,i+1

under the constraints Ax ≥ 1 and Bx ≥ 1. We analyze the integrality of the
solution and the running time in the full version [2].

Theorem 7. Let H be a convex rectilinear representation of a biconnected plane
graph and let Sx and Sy be good st-orderings of Dx and Dy. We can compute a
greedy drawing of H that respects Sx and Sy with minimum area in O(n2) time.

Fig. 8. Exponential
area lower bound

Although minimum, the area of the drawings yielded by
our algorithm may be non-polynomial in some cases; The-
orem 8 states that there exist convex rectilinear represen-
tations (see Fig. 8) whose DAGs admit good st-orderings,
but there is no combination of them resulting in a succinct
greedy drawing, since the solutions of the corresponding sys-
tem of inequalities are always exponential in the input size.
On the contrary, every universal greedy rectilinear represen-
tation of an n-vertex graph is succinct, since by Corollary 1
it has a (greedy) drawing of minimum area on an integer
grid of size O(n2) [6,23].

Theorem 8. There exist rectilinear representations whose every greedy rectilin-
ear drawing has exponential area, even if Dx and Dy are series-parallel.

When Dx and Dy are series-parallel, the conditions can be tested efficiently.

Theorem 9. Let H be a convex rectilinear representation of a biconnected plane
graph. If Dx and Dy are series-parallel, we can test in O(n) time if H is greedy
realizable. If the test succeeds, a greedy drawing of H is computed in O(n2) time.

Proof Sketch. To find a good st-ordering for Dx, we recursively apply the follow-
ing procedure. Let Dx be composed of a set of subgraphs D1, . . . , Dk, forming a
parallel or a series composition. If D1, . . . , Dk form a parallel composition, then
either k = 2, or k = 3 and D3 is a single edge; otherwise, the graph violates
Condition (S.1). If we remove the sink and source from G, then, by Condi-
tion (S.2), we have a good st-ordering if and only if all nodes of D1 precede
all nodes of D2, there is exactly one sink in D1, and there is exactly one source
in D2. If D1, . . . , Dk form a series composition, we construct good st-orderings
of D1, . . . , Dk recursively and merge them in a good st-ordering of Dx. �	



Greedy Rectilinear Drawings 507

5 Open Problems

We introduced rectilinear greedy drawings, i.e., planar greedy drawings in the
orthogonal drawing style with no bends. Our work reveals several interesting
open problems. (1) What if we allow bends along the edges? (2) Can we always
test in polynomial time whether a planar DAG admits a good st-ordering? (3)
Given a biconnected plane graph G, what is the complexity of deciding whether G
admits a (universal) greedy rectilinear representation? This question pertains the
intermediate step of the topology-shape-metrics approach [23].
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Abstract. While orthogonal drawings have a long history, smooth
orthogonal drawings have been introduced only recently. So far, only
planar drawings or drawings with an arbitrary number of crossings per
edge have been studied. Recently, a lot of research effort in graph draw-
ing has been directed towards the study of beyond-planar graphs such
as 1-planar graphs, which admit a drawing where each edge is crossed at
most once. In this paper, we consider graphs with a fixed embedding. For
1-planar graphs, we present algorithms that yield orthogonal drawings
with optimal curve complexity and smooth orthogonal drawings with
small curve complexity. For the subclass of outer-1-planar graphs, which
can be drawn such that all vertices lie on the outer face, we achieve
optimal curve complexity for both, orthogonal and smooth orthogonal
drawings.

1 Introduction

Orthogonal drawings date back to the 1980’s, with Valiant’s [24], Leiserson’s [17]
and Leighton’s [16] work on VLSI layouts and floor-planning applications and
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have been extensively studied over the years. The quality of an orthogonal draw-
ing can be judged based on several aesthetic criteria such as the required area,
the total edge length, the total number of bends, or the maximum number of
bends per edge. While schematic drawings such as orthogonal layouts are very
popular for technical applications (such as UML diagrams) still to date, from
a cognitive point of view, schematic drawings in other applications like subway
maps seem to have disadvantages over subway maps drawn with smooth Bézier
curves, for example, in the context of path finding [19]. In order to “smoothen”
orthogonal drawings and to improve their readability, Bekos et al. [6] introduced
smooth orthogonal drawings that combine the clarity of orthogonal layouts with
the artistic style of Lombardi drawings [11] by replacing sequences of “hard”
bends in the orthogonal drawing of the edges by (potentially shorter) sequences
of “smooth” inflection points connecting circular arcs. Formally, our drawings
map vertices to points in R

2 and edges to curves of one of the following two types.

Orthogonal Layout: Each edge is drawn as a sequence of vertical and hori-
zontal line segments. Two consecutive segments of an edge meet in a bend.

Smooth Orthogonal Layout [6]: Each edge is drawn as a sequence of vertical
and horizontal line segments as well as circular arcs: quarter arcs, semicircles,
and three-quarter arcs. Consecutive segments must have a common tangent.

The maximum vertex degree is usually restricted to four since every vertex
has four available ports (North, South, East, West), where the edges enter and
leave a vertex with horizontal or vertical tangents. In addition, the usual model
insists that no two edges incident to the same vertex can use the same port.
Throughout this paper, we restrict ourselves to graphs of maximum degree four.

The curve complexity of a drawing is the maximum number of segments used
for an edge. An OC k-layout is an orthogonal layout with curve complexity k,
that is, an orthogonal layout with at most k − 1 bends per edge. An SC k-layout
is a smooth orthogonal layout with curve complexity k. For results, see Table 1.

(a) OC3-layout (b) SC1-layout

Fig. 1. Two 2-planar drawings
of K5.

The well-known algorithm of Biedl and
Kant [7] draws any connected graph of max-
imum degree 4 orthogonally on a grid of size
n × n with at most 2n + 2 bends, bending
each edge at most twice (and, hence, yield-
ing OC3-layouts). For the output of their
algorithm applied to K5, see Fig. 1a. Note
that their approach introduces crossings to
the produced drawing. For planar graphs,
they describe how to obtain planar orthog-
onal drawings with at most two bends per
edge, except possibly for one edge on the outer face.

So far, smooth orthogonal drawings have been studied nearly exclusively for
planar graphs. Bekos et al. [5] showed how to compute an SC1-layout for any
maximum degree 4 graph, but their algorithm does not consider the embedding
of the given graph. For a drawing of K5 computed by their algorithm, see Fig. 1b.
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Also, in the produced drawings, the number of crossings that an edge may have is
not bounded. Bekos et al. also showed that, if one does not restrict vertex degrees,
many planar graphs do not admit (planar) SC1-layouts under the Kandinsky
model, where the number of edges using the same port is unbounded. They
proved, however, that all planar graphs of maximum degree 3 admit an SC1-
layout (under the usual port constraint). For the same class of graphs, Alam
et al. [1] showed how to get a polynomial drawing area (O(n2) × O(n)) when
increasing the curve complexity to SC2. Further, they showed that every planar
graph of maximum degree 4 admits an SC2-layout, but not every such graph
admits an SC1-layout where the vertices lie on a polynomial-sized grid. They also
proved that every biconnected outerplane graph of maximum degree 4 admits
an SC1-layout (respecting the given embedding).

In this paper, we study orthogonal and smooth orthogonal layouts of non-
planar graphs, in particular, 1-planar graphs. Recall that k-planar graphs are
those graphs that admit a drawing in the plane where each edge has at most k
crossings. Our goal is to extend the well-established aesthetic criterion ‘curve
complexity’ of (smooth) orthogonal drawings from planar to 1-planar graphs.

1-planar graphs, introduced by Ringel [18], probably form the most-studied
class of the beyond-planar graphs, which extend the notion of planarity. There
are recent surveys on both 1-planar graphs [15] and beyond-planar graphs [10].
Mostly, straight-line drawings have been studied for 1-planar graphs. While every
planar graph has a planar straight-line drawing (due to Fáry’s theorem), this
is not true for 1-planar graphs [12,23]. For the 3-connected case, the statement
holds except for at most one edge on the outer face [2]. Given a drawing of a 1-
planar graph, one can decide in linear time whether it can be “straightened” [14].

An important subclass of 1-planar graphs are outer-1-planar graphs. These
are the graphs that have a 1-planar drawing where every vertex lies on the outer
(unbounded) face. They are planar graphs, can be recognized in linear time [4,
13], and can be drawn with straight-line edges and right-angle crossings [9].

We are specifically interested in 1-plane and outer-1-plane graphs, which
are 1-planar and outer-1-planar graphs together with an embedding. Such an
embedding determines the order of the edges around each vertex, but also which
edges cross and in which order. By the layout of a 1-plane graph we mean that
the layout respects the given embedding, without stating this again. In contrast,
the layout of a 1-planar graph can have any 1-planar embedding.

Our Contribution. Previous results and our contribution on (smooth) orthogonal
layouts are listed in Table 1. We present new layout algorithms for 1-planar
graphs in the orthogonal model (Sect. 3) and in the smooth orthogonal model
(Sect. 4), achieving low curve complexity and preserving 1-planarity. We study
1-plane graphs as well as the special case of outer-1-plane graphs, where all
vertices lie on the outer face. We conclude with some open problems; see Sect. 5.

In particular, we show that all 1-plane graphs admit OC4-layouts (Theo-
rem 2) and SC3-layouts (Theorem 5). We also prove that all biconnected outer-
1-plane graphs admit OC3-layouts (Theorem 4) and SC2-layouts (Theorem 7).
Three out of these four results are worst-case optimal: There exist biconnected



512 E. Argyriou et al.

1-plane graphs that do not admit an OC3-layout (Theorem 1) and biconnected
outer-1-plane graphs that do not admit OC2-layouts (Theorem 3) and SC1-
layouts (Theorem 6).

Table 1. Comparison of our results to previous work. The model K(andinsky)-SC1

does not restrict the number of edges per port to one. (�) except for the octahedron
(OC4). “Super-poly” means that the drawings are not known to be of polynomial size.

Graph class Max. deg. Curve complexity Drawing area Reference

Orthogonal drawings

General 4 OC3 n × n [7]

Planar 4 OC3 (�) n × n [7]

1-plane 4 �⊆ OC3 Theorem 1

4 OC4 O(n) × O(n) Theorem 2

Biconnected outer-1-plane 4 �⊆ OC2 Theorem 3

4 OC3 O(n) × O(n) Theorem 4

Smooth orthogonal drawings

Planar 4 SC2 super-poly [1]

Planar, poly-area 4 �⊇ SC1 — [1]

Planar, OC2 4 �⊆ SC1 — [1]

Planar 3 SC2 �n2/4� × �n/2� [1]

Planar 3 SC1 super-poly [5]

Biconnected outerplane 4 SC1 super-poly [1]

General (non-planar) 4 SC1 2n × 2n [5]

Planar ∞ �⊆ K-SC1 [6]

∞ K-SC2 O(n) × O(n) [5]

Biconnected 1-plane 4 SC3 O(n) × O(n2) Theorem 5

Biconnected outer-1-plane 4 �⊆ SC1 Theorem 6

4 SC2 super-poly Theorem 7

2 1-Planar Bar Visibility Representation

As an intermediate step towards orthogonal drawings, we introduce 1-planar bar
visibility representations: Each vertex is represented as a horizontal segment –
called bar – and each edge is represented as either a vertical segment or a polyline
composed of a vertical segment and a horizontal segment between the bars of its
adjacent vertices. Edges must not intersect other bars. If an edge has a horizontal
segment, we call it red. The horizontal segment of a red edge must be on top of
its vertical segment and crosses exactly one vertical segment of another edge –
which is called blue. The vertical segment of a red edge must not be crossed; see
Fig. 2. We consider every edge as a pair of two half-edges, one for each of its two
endpoints. Red edges are split at their bend – the construction bend, such that
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each half-edge consists of either a vertical or a horizontal segment. Observe that
horizontal half-edges are always red. We show that every 1-planar graph has a
1-planar bar visibility representation, following the approach of Brandenburg [8]:

For a 1-planar embedding, we define a kite to be a K4 induced by the end
vertices of two crossing edges with the property that each of the four triangles
induced by the crossing point and one end vertex of each of the two crossing
edges is a face. A crossing is caged if its end vertices induce a kite. Let now G be
a 1-planar graph. As a preprocessing step, G is augmented to a not necessarily
simple graph G′, with the property that any crossing is caged and no planar
edge can be added to G′ without creating a new crossing or a double edge [2].

After the preprocessing step, all crossing edges are removed and a bar visi-
bility representation for the produced plane graph Gp is computed [20,22]. To
this end an st-ordering of a biconnected supergraph of Gp is computed, i.e., an
ordering s = v0, v1, . . ., vn−2, vn−1 = t of the vertices such that each vertex
except s and t is adjacent to both, a vertex with a greater and a lower index.
The st-number is the index of a vertex. The y-coordinate of each bar is chosen
to be the st-number of the respective vertex.

Faces of size four that correspond to the kites of G have three possible con-
figurations: left/right wing or diamond configuration. Figure 2 shows the config-
urations and how to insert the crossing edges in order to obtain a 1-planar bar
visibility representation of G′. Removing the caging edges results in a 1-planar
bar visibility representation of G.

(a) left wing (b) right wing (c) diamond

Fig. 2. Different configurations for kites in a 1-planar bar visibility representation
(Color figure online).

An edge is a left, right, top or bottom edge for a bar if it is attached to the
respective side of that bar. Note that only red edges of G can be left or right edges
for exactly one of their endpoints (and top edge for their other endpoint). If a
bar has no bottom (top) edges, it is a bottom (top) bar, respectively. Otherwise
it is a middle bar. For a bottom (top) bar, consider the x-coordinates of the
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touching points of its edges. We define its leftmost and rightmost edge to be
the edge with the smallest and largest x-coordinate, respectively. If such a bar
has a left or right edge then, by the previous definition, this is its leftmost or
rightmost edge, respectively. Note that by the construction of the bar visibility
representation, each bar has at most one left and at most one right red edge.

3 Orthogonal 1-Planar Drawings

In this section, we examine orthogonal 1-planar drawings. In particular, we give a
counterexample showing that not every biconnected 1-plane graph of maximum
degree 4 admits an OC3-layout. On the other hand, we prove that every 1-
plane graph of maximum degree 4 admits an OC4-layout that preserves the
given embedding. For biconnected outer-1-plane graphs we achieve optimal curve
complexity 3.

3.1 Orthogonal Drawings for General 1-Planar Graphs

Theorem 1. Not every biconnected 1-plane graph of maximum degree 4 admits
an OC3-layout. Moreover, there is a family of graphs requiring a linear number
of edges of complexity at least 4 in any OC4-layout respecting the embedding.

Proof. Consider the 1-planar embedding of a K5 as shown in Fig. 3a. The outer
face is a triangle T and all vertices have their free ports in the interior of T .
Hence, T has at least 7 bends, and at least one edge of T has at least 3 bends.

For another example refer to Fig. 3b, where vertices a, b, and c create a
triangle with the same properties. We use t copies of the graph of Fig. 3b in a
column and glue them together by connecting the top and bottom gray vertices
of consecutive copies with an edge, as well as the topmost vertex of the topmost
copy and the bottommost vertex of the bottommost copy. The graph has n = 9t
vertices and at least t edges of complexity at least 4. ��

(a) K5

a b

c

(b) a 9-vertex graph

Fig. 3. Biconnected 1-plane graphs without OC3-layout

In order to achieve an OC4-layout for 1-plane graphs, we will use a general
property of orthogonal drawingsof planar graphs: Consider two consecutive
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bends on an edge e with an incident face f . We say that the pair of bends
forms a U-shape if they are both convex or both concave in f and an S-shape,
otherwise. It follows from the flow model of Tamassia [21] that if a planar graph
has an orthogonal drawing with an S-shape then it also has an orthogonal draw-
ing with the identical sequence of bends on all edges except for the two bends of
the S-shape that are removed. Thus, by planarization, any pair of S-shape bends
can be removed as long as the two bends are not separated by crossings.

Theorem 2. Every n-vertex 1-plane graph of maximum degree 4 admits an
OC4-layout on a grid of size O(n) × O(n).

Proof. Let G be a 1-planar graph of maximum degree 4 and consider a 1-planar
bar visibility representation of G. If G is not connected, we draw each connected
component separately, therefore we assume that G is connected.

Each vertex is placed on its bar. Figures 4 and 5 indicate how to route the
adjacent half-edges. Recall that the S-shape bend pairs can be eliminated. Thus,
a horizontal half-edge gets at most one extra bend and a vertical half-edge gets at
most two extra bends; see Fig. 5. We call a half-edge extreme if it was horizontal
and got one bend or vertical and got two bends that create a U-shape.

(a) (b) (c)

(d) (e) (f)

Fig. 4. Replacing a middle bar with a vertex in the presence of (a)–(c) zero, (d)–(e) one,
and (f) two horizontal half-edges

It suffices to show that the edges can be routed such that no edge is composed
of two extreme half-edges. Even for red edges where we have the construction
bend, we either get one extra bend from the horizontal (extreme) half-edge or
two extra bends from the vertical (extreme) half-edge. Observe that an edge is
extreme if and only if it is the rightmost or leftmost edge of a bottom or top bar,
respectively, and it is attached to the bottom or top of the vertex, respectively.
For each bottom or top bar we have the free choice to set either its rightmost
or leftmost half-edge to become extreme. Consider the following bipartite graph
H. The vertices of H are the top and bottom bars, as well as their leftmost and
rightmost edges. A bar-vertex and an edge-vertex are adjacent in H if and only
if the bar and the edge are incident. Observe that each bar-vertex has degree two
and each edge-vertex has degree at most two, thus H is a union of disjoint paths
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(a) (b) (c)

(d) (e)

Fig. 5. Replacing a bottom bar of degree 4 with a vertex.

and cycles and there is a matching of H in which each bar-vertex is matched.
This matching defines the extreme half-edges. It assigns exactly one half-edge to
every bottom or top-bar and matches at most one half-edge of each edge. ��

3.2 Orthogonal Drawings of Outer-1-Plane Graphs

Since outer-1-planar graphs are planar graphs [4], a planar orthogonal layout
could be computed with curve complexity at most three. For example, in Fig. 6a
we can see an outer-1-plane graph with a planar embedding in Fig. 6b. Arguing
similarly as we did for the proof of Theorem 1 it follows that there will be at
least two bends on an edge of the outer face. In this particular case, Fig. 6c
shows an outer-1-planar drawing of the same graph with at most two bends per
edge. In the following we compute 1-planar orthogonal layouts for biconnected
outer-1-planar graphs with optimal curve complexity three that also preserve
the initial outer-1-planar embedding.

(a) outer-1-planar embedding (b) planar embedding (c) OC3-layout

Fig. 6. An outer-1-plane graph.

Theorem 3. Not every biconnected outer-1-plane graph of maximum degree 4
admits an OC2-layout.

Proof. K4 is a biconnected outer-1-plane graph. Actually, it has a unique OC2-
layout as shown in Fig. 7a. When connecting two copies of K4 by two intersecting
edges as in Fig. 7b, it is not possible to draw the resulting graph such that the
connector edges intersect and have curve complexity two. ��
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(a) K4 (b) two biconnected copies of K4

Fig. 7. Constructing a biconnected outer-1-plane graph that does not admit an OC2-
layout with the same embedding.

Theorem 4. Every biconnected outer-1-plane graph of maximum degree 4
admits an OC3-layout in an O(n)×O(n) grid, where n is the number of vertices.

Proof (sketch). Let G be an outer-1-planar graph of maximum degree 4. Observe
that all crossings can be caged without changing the embedding: A maximal
outer-1-planar graph always admits a straight-line outer-1-planar drawing in
which all faces are convex [9,12]. We would directly obtain the required curve
complexity if there were no top or bottom bars of degree 4. Instead, our proof
is based on a 1-planar bar visibility representation of G produced by a specific
st-ordering. Let s and t be two vertices on the outer face. Define Sl and Sr to
be the sequences of vertices on the left path and on the right path from s to t
along the outer face of G, respectively. We choose s, Sl, Sr, t as our st-ordering.
Observe that this is also an st-ordering of the caged and planarized graph Gp.

We process middle bars as in the algorithm of Theorem 2. For the top and
bottom bars of degree 4 we choose differently which half-edge will be attached
to the north or south port, respectively. Let v be a vertex such that b(v) is a top
or bottom bar of degree 4. Let el = (v, vl) and er = (v, vr) be its leftmost and
rightmost edge, respectively. Assume that v ∈ Sl ∪{s} and b(v) is a bottom bar.
If vl ∈ Sl, we choose edge el to be attached to the south port of v, otherwise we
choose edge er. If b(v) is a top bar of degree 4 we choose its leftmost edge el to
be attached to the north port of v. Symmetrically, if v ∈ Sr ∪ {t} and b(v) is a
top bar, we choose er for the north port of v if vr ∈ Sr, otherwise we choose el.
If b(v) is a bottom bar we choose its rightmost edge er for the south port of v.

The above choice has the following property (see the full version [3] for a
detailed proof): Any edge with three or four bends contains two consecutive
bends that create an S-shape. The two bends are always connected with a vertical
segment. If this is an uncrossed edge of G, the S-shape can be eliminated. For
crossing edges, we prove that only one edge per crossing may have more than
two bends. If the vertical segment connecting the two bends of the S-shape is
crossed, we apply the flow technique of Tamassia [21] around the crossing point
and reduce the number of bends (for details see the full version [3]). ��

4 Smooth Orthogonal 1-Planar Drawings

In this section we examine smooth orthogonal 1-planar drawings. In particular,
we show that every 1-plane graph of maximum degree 4 admits an SC3-layout
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(a) (b) (c)

Fig. 8. Smoothing process of U-shapes created by top (bottom) bars.

that preserves the given embedding. For biconnected outer-1-plane graphs, we
achieve SC2, which is optimal for this graph class.

4.1 Smooth Orthogonal Drawings for General 1-Planar Graphs

Theorem 5. Every 1-plane graph of maximum degree 4 admits an SC3-layout
in O(n) × O(n2) area.

Proof. We compute an SC3-layout based on an OC4-layout computed by the
algorithm of Theorem 2. Observe that in the OC4-layouts calculated by our
approach, the area bounded U-shaped half-edges created at top and bottom
bars is vertex-free (see gray area in Fig. 8a), and, each vertex is located on a
separate level. We replace one bend of each U-shaped half-edge by a dummy
vertex; see Fig. 8a. By doing so, we split each U-shaped half-edge into a vertical
edge and an L-shaped half-edge. In the following, we treat the L-shaped half-edge
as if the bend was on an L-shaped half-edge incident to the dummy vertex. We
process V = {v1, v2, . . . , vn} in the ascending vertical order of vertices (including
dummy vertices). For vi, let Δ↑

i be the largest horizontal distance between vi
and any bend on incident L-shaped half-edges leading to neighbors with larger
index. Let Δ↓

i be the corresponding value for bends at incident L-shaped half-
edges and construction bends of red edges incident to edges leading to neighbors
with smaller index. We increase the y-coordinate of all vj with j ≥ i by Δ↓

i

units and then the y-coordinate of all vk with k > i by Δ↑
i units. Bends on L-

shaped half-edges and construction bends of red edges leading to neighbors with
smaller index will be moved together with the corresponding vertex. Note that
the region enclosed by U-shapes created at top and bottom bars remains empty;
see Fig. 8b. After the stretching, we remove the additional dummy vertices.

Each U-shaped half-edge will be replaced by a semi-circle which fits into the
corresponding stretched empty region. We place the semi-circle directly incident
to the endpoint which created the U-shape; see Fig. 8c. Then we replace each
intersected S-shaped half-edge formed by a construction bend of a red edge by
two consecutive quarter arcs incident to the top endpoint of the edge. Recall
that if a red edge has an S-shape from its top vertex, it has no bend from its
bottom vertex. Further we replace each remaining bend by a quarter arc starting
at the corresponding endpoint. Arcs at the two endpoints will be connected by a
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vertical segment. The correctness follows from the fact that the regions stretched
to make space for drawing arcs were empty in the initial drawing.

The area of the resulting drawing is O(n) × O(n2) as the input drawing had
O(n) × O(n) area and for every vertex the stretching operation increases the
height by at most the length of the longest horizontal segment (i.e. O(n)). ��

4.2 Smooth Orthogonal Drawings for Outer-1-Plane Graphs

We focus on smooth layouts of outer-1-plane graphs. We demonstrate that curve
complexity one is not always possible, but curve complexity two can be achieved
for biconnected outer-1-plane graphs. We start with the following observation.
The complete graph on four vertices with free ports towards its outer face has
a unique SC1-layout, shown in Fig. 9a. Removing one edge and restricting all
ports towards its outer face, there exist two SC1-layouts, see Figs. 9b and c.

(a) (b) (c) (d) (e) (f) (g)

Fig. 9. (a) SC1-layouts for K4 and (b)–(c) for K4 − e with restricted ports. (d) A
biconnected outer-1-plane graph that does not have an SC1-layout. (e)-(g) SC1-layouts
of a subgraph of (d).

Theorem 6. Not every biconnected outer-1-plane graph of maximum degree 4
has an SC1-layout.

Proof. Take the graph in Fig. 9d. It has two subgraphs isomorphic to K4 − e
(with restricted ports) that share a vertex. Combining two drawings for both
copies gives rise to the three drawings in Figs. 9e–g in which the edge between
the two highlighted vertices cannot be added with curve complexity one. ��

To achieve SC2-layouts for biconnected outer-1-plane graphs (see Fig. 11 for
an example), we modify the algorithm of Alam et al. [1] for outerplane graphs;
see the full version [3] for details.

Theorem 7. Every biconnected outer-1-plane graph of maximum degree 4 has
an SC2-layout. The drawing area may be super-polynomial.

Proof (sketch). The algorithm of Alam et al. [1] processes the faces of the graph
along the weak-dual, i.e., the dual graph omitting the outer face and rooted at
some inner face. For the next face, one of its edges (the reference edge) is already
drawn and imposes the drawing of the face. Figures 10a–f show the different
cases.
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We define an auxiliary graph G′: Let G be a biconnected outer-1-plane graph,
and let Gp be the planarized graph of G, where crossing points are replaced
with dummy vertices. Three types of dummy vertices exist in Gp: dummy-cuts
(cut vertices), in-dummies (only incident to inner faces), and out-dummies. G′

contains all in-dummy and out-dummy vertices of Gp, while dummy-cuts are
replaced by a caging cycle. The face inside a caging cycle is called a cut-face. All
other faces are called normal. Faces are processed along a traversal of the weak
dual of G′. As G′ may not be outerplanar, its weak dual does not have to be
acyclic. It contains cycles of length four around in-dummies (see Fig. 10m). The
auxiliary graph G′ also contains virtual edges that are red. These are edges added
for caging dummy-cuts and edges added to complete the process of faces around
an in-dummy. Figures 10g–j show how to process normal faces not appearing in
Alam et al. [1]. When processing a cut-face, we draw the crossing edges instead
of the caging cycles; see Figs. 10k–l for two out of ten cases. Finally, in order
to draw the fourth face around an in-dummy, we ensure that the edge-segments
incident to the dummy vertex have the same length; see Fig. 10n for an example.

��

v u

(a)

u

v

(b)

u

v

(c)

v u

(d)

u

v

(e)

v

u

(f)

v

u

(g)

v

u

(h)

v

u

(i)

v

u

(j)

uu′

v

v′

(k)

v′
v

u

u′

(l)

v′

v

x

u′

u

f1

f2

f3

f4

(m)

u

v′
x

v
u′

(n)

Fig. 10. Constructing an SC2-drawing of biconnected outer 1-planar graphs (Color
figure online).
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Fig. 11. SC2-layout of an outer-1-plane graph produced by our algorithm, which is
based on the algorithm of Alam et al. [1]. The largest 3/4-arc is only partially drawn.

5 A List of Open Problems

– Can we improve our curve complexity bounds if we restrict ourselves to more
strongly connected classes of graphs (of maximum degree 4)?

– Candidate subclasses of outer-1-plane graphs for SC1-layouts are for example
outer-IC-plane graphs where crossings are independent. A possible variant
would be to allow degenerate layouts where pairs of edges can touch but not
cross.

– Is there a 1-plane graph that does not admit an SC2-layout?
– Do biconnected outer-1-plane graphs admit an SC2-layout with polynomial

drawing area?
– Do similar results also hold for 2-planar graphs and more generally beyond-

planar graphs?
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Abstract. An ortho-polygon visibility representation Γ of a 1-plane
graph G (OPVR of G) is an embedding preserving drawing that maps
each vertex of G to a distinct orthogonal polygon and each edge of G
to a vertical or horizontal visibility between its end-vertices. The repre-
sentation Γ has vertex complexity k if every polygon of Γ has at most
k reflex corners. It is known that 3-connected 1-plane graphs admit an
OPVR with vertex complexity at most twelve, while vertex complexity
at least two may be required in some cases. In this paper, we reduce this
gap by showing that vertex complexity five is always sufficient, while
vertex complexity four may be required in some cases. These results are
based on the study of the combinatorial properties of the B-, T-, and
W-configurations in 3-connected 1-plane graphs. An implication of the

upper bound is the existence of a Õ(n
10
7 )-time drawing algorithm that

computes an OPVR of an n-vertex 3-connected 1-plane graph on an
integer grid of size O(n)×O(n) and with vertex complexity at most five.

1 Introduction

Let G be a graph embedded in the plane. An ortho-polygon visibility represen-
tation of G (OPVR of G) is an embedding preserving drawing that maps every
vertex of G to a distinct orthogonal polygon and every edge of G to a vertical or
horizontal visibility between its end-vertices (it is assumed the ε-visibility model,
where the visibilities can be replaced by strips of non-zero width, see also [8]).
The vertex complexity of an OPVR of G is the minimum k such that every poly-
gon has at most k reflex corners. For example, Fig. 1(b) shows an OPVR Γ of
the graph G of Fig. 1(a). All vertices of Fig. 1(b) are rectangles except vertex u,
and thus the vertex complexity of Γ is one.

The notion of ortho-polygon visibility representation generalizes the classical
concept of rectangle visibility representation, that is, in fact, an OPVR with
vertex complexity zero (see, e.g., [2,6,14,18,19]). In this context, Biedl et al. [2]
characterize the 1-plane graphs that admit a rectangle visibility representation
in terms of forbidden subgraphs, called B-, T-, and W-configurations (see Fig. 2
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for examples and Sect. 2 for definitions). We recall that 1-plane graphs are graphs
embedded in the plane such that every edge is crossed by at most one other edge,
and that the 1-planar graphs are those graphs that admit such an embedding;
these graphs are a classical subject of investigation in the constantly growing
research field called graph drawing beyond-planarity (refer to [1,9,15]).

Partly motivated by the result of Biedl et al. [2], Di Giacomo et al. [8]
study the vertex complexity of ortho-polygon visibility representations of 1-plane
graphs. They prove that an OPVR of a 1-plane graph may require Ω(n) vertex
complexity. However, if the graph is 3-connected, then vertex complexity twelve
is always sufficient, while vertex complexity two is sometimes necessary.

The idea behind the approach of Di Giacomo et al. [8] to prove a constant
upper bound can be shortly described as follows. Let G be a 3-connected 1-plane
graph. For each crossing in G, one of the two edges that form the crossing is
suitably chosen and removed from G. The removed edges are such that each
vertex of G is incident to at most six of them. After this edge removal, the
obtained graph is planar, and hence it admits a bar-visibility representation Γ
(vertices are represented as horizontal bars and edges as vertical visibilities) [7].
An OPVR of G is now computed by turning the bars of Γ into orthogonal
polygons and by inserting horizontal visibilities for the (at most six per vertex)
removed edges. The paper shows how to compute a transformation of the bars
that adds at most two reflex corners per removed edge, which implies a vertex
complexity of at most twelve. Reducing the gap between the upper bound of
twelve and the lower bound of two is left as an open problem in [8], and it is the
question that motivates our research. We prove the following theorem.

uv

w

xy

z

(a)

u
v

w

x
y

z

(b)

Fig. 1. (a) A 1-plane graph G; (b) An OPVR of G with vertex complexity one.

Theorem 1. Let G be a 3-connected 1-plane graph with n vertices. There exists
an Õ(n

10
7 )-time algorithm that computes an ortho-polygon visibility represen-

tation of G with vertex complexity at most five on an integer grid of size
O(n) × O(n). Also, there exists an infinite family of 3-connected 1-plane graphs
such that any ortho-polygon visibility representation of a graph in the family has
vertex complexity at least four.

Concerning the upper bound stated in Theorem 1, the main difference
between our approach and the one in [8] is that we do not aim at removing all
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crossings so to make G planar. Instead, we define a subset F of the B-, T-, and
W-configurations of G such that F has two fundamental properties: (i) Remov-
ing the elements of F removes all B-, T-, and W-configurations from G; and (ii)
Each vertex of G can be associated with at most five elements of F . We remove
F from G and compute a rectangle visibility representation by using the algo-
rithm of Biedl et al. [2]. We then carefully reinsert the removed configurations
by “bending” each rectangle with at most five reflex corners. We remark that
the study of the combinatorial properties of the B-, T-, and W-configurations in
3-connected 1-plane graphs is a contribution of independent interest that fits in
the rich literature about the properties of 1-plane graphs (see, e.g. [15]).

Finally, we recall that some authors recently studied OPVRs with fixed vertex
complexity. Evans et al. [11] consider OPVRs of directed acyclic graphs where
vertices are L-shapes (i.e., with vertex complexity one). OPVRs with L-shapes
are also studied in [16], where it is shown that a particular subclass of 1-planar
graphs admits such a representation. Brandenburg [4] studies OPVRs where
vertices are T-shapes (i.e., with vertex complexity two) and proves that all 1-
planar graphs admit such a representation if the embedding of the input graph
can be changed, and hence the final representation may be not 1-planar.

The rest of the paper is organized as follows. Preliminaries are in Sect. 2.
The lower bound and the upper bound on the vertex complexity are proved in
Sect. 3 and in Sect. 4, respectively. Section 5 contains open problems. For space
reasons some proofs have been omitted or sketched, and can be found in [17]
(the corresponding statements are marked with [*]).

2 Preliminaries

We assume familiarity with basic graph drawing terminology (see, e.g. [7]). Let
G be a 1-plane graph, let (u, v) be a crossed edge of G, and let p be the crossing
along (u, v). We call edge fragments the two parts of (u, v) from u to p and from
p to v, and we denote them by (u, p) and (p, v) respectively. Three edges (u, v),
(w, z), (u, z) of G form a B-configuration with poles u, z, denoted by b(u, z), if
(i) (u, v) and (w, z) cross at a point p, and (ii) vertices v, z lie inside the external
boundary of b(u, z), i.e., the closed region delimited by the edge fragment (u, p),
the edge fragment (p, z), and the edge (u, z); see Fig. 2(a). Four edges (u, v),

u
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(a) b(u, z)
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(c) t(u, x, z)

Fig. 2. (a) B-configuration; (b) W-configuration; (c) T-configuration.
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(w, z), (u, x), (y, z) of G form a W-configuration with poles u, z, denoted by
w(u, z), if (i) (u, v) and (w, z) cross at a point p, (ii) (u, x), (y, z) cross at a
point q, (iii) vertices v, w, x, y lie inside the external boundary of w(u, z), i.e.,
the closed region delimited by the edge fragments (u, p), (p, z), (z, q), and (q, u);
see Fig. 2(b). Finally, six edges (u, v), (w, z), (u, y), (x,w′), (z, y′), and (v′, x)
of G form a T-configuration with poles u, x, z, denoted by t(u, x, z), if (i) (u, v)
and (w, z) cross at a point p, (ii) (u, y), (x,w′) cross at a point q, (iii) (z, y′)
and (v′, x) cross at a point r, (iv) vertices v, v′, w, w′, y, y′ lie inside the external
boundary of t(u, x, z), i.e., the closed region delimited by edge fragments (u, p),
(p, z), (u, q), (q, x), (x, r), and (r, z); see Fig. 2(c). For example, the graph G of
Fig. 1(a) contains the T-configuration t(u, v, w) and hence any OPVR of G has at
least one reflex corner. A 1-plane graph has a rectangle visibility representation
(RVR) if and only if it contains no B-, no T-, and no W-configurations [2].

3 Lower Bound on the Vertex Complexity

Let S(i) be the nested triangle graph with i levels, i.e., a maximal plane graph
with 3i vertices recursively defined as follows [10]. Graph S(1) is a triangle.
Denote by u1, u2, and u3 the vertices on the outer face of S(i − 1). Graph S(i)
is obtained by adding three vertices v1, v2, v3 on the outer face of S(i − 1) and
edges (u1, v1), (u2, v2), (u3, v3), (u1, v2), (u2, v3), and (u3, v1). Also, we mark as
T-faces a set of faces of S(i) such that: (1) S(i) has 3i − 2 T-faces, and (2)
no two T-faces share an edge. All other faces of S(i) are marked as NT-faces.
Figure 3(a) shows an assignment for S(3) that satisfies these two conditions (the
T-faces are gray, while the NT-faces are white). Graph G(3i) is the 3-connected
1-plane graph with 3i poles obtained from S(i) as follows. For each T-face of
S(i), whose boundary contains the three vertices u, x, z, we add in its interior a
T-configuration t(u, x, z) and three B-configurations b(u, x), b(u, z) and b(x, z)
as shown in Fig. 3(b). The resulting graph is 1-plane and it has 3i poles. In
particular, we have one B-configuration for each of the 3(3i) − 6 edges of S(i),
and we have 3i− 2 T-configurations. However, this graph is not 3-connected. To
achieve 3-connectivity, for each NT-face of S(i), whose boundary contains the
three vertices u, v, w, we first add a vertex c in its interior and we then connect
it to one vertex that is not a pole for each of b(u, v), b(u,w), and b(v, w); the
added edges are crossed exactly once each by an edge on the boundary of the
NT-face, as shown in Fig. 3(c). Finally, we add crossing-free edges until all faces
are triangles. One can easily verify that the resulting graph is 3-connected.

Theorem 2. For every np > 8 with np (mod 3) = 0, there exists a 3-connected
1-plane graph G(np) whose OPVRs all have vertex complexity at least four.

Proof. Consider the graph G(np) described above, with np > 8. Let Γ be any
OPVR of G. We first prove that, for each forbidden configuration f of G(np), Γ
contains at least one reflex corner on one of the poles of f and that this reflex
corner lies inside the interior region of f , i.e., inside the bounded region of Γ
delimited by the external boundary of f . We follow an argument similar to the
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(a)

u

x z

(b)

u

v w

c

(c)

Fig. 3. (a) The graph S(3); the T-faces are gray while the NT-faces are white. (b)
Insertion of a T-configuration and three B-configurations in a T-face. (c) Insertion of
a vertex in an NT-face to achieve 3-connectivity.

one in [2]. Suppose first that f is a B-configuration b(u, z). Consider a closed
walk in clockwise direction along the external boundary of b(u, z) in Γ . The
crossing point is a left turn, as well as any attaching point of a visibility to a
polygon, while the corners of the polygons are right turns. Since the external
boundary is an orthogonal polygon, the number of right turns equals the number
of left turns plus four. Let a be the number of attaching points of a visibility to
a polygon, let k be the number of crossings, and let r be the number of corners.
We have that r = k + a + 4. Since k = 1 and a ≥ 4, we have that r ≥ 9, which
implies that at least one of the two polygons representing u and z, say u, has
at least five corners. As a consequence, there exists at least one reflex corner
along the polygon of u that lies inside the interior region of b(u, z). Similarly, for
a T-configuration t(u, x, z), we have that k = 3 and a ≥ 6, which implies that
r ≥ 13, and thus at least one of its poles has a reflex inside the interior region of
t(u, x, z). Since G(np) contains 4np − 8 forbidden configurations, and since any
pair of forbidden configurations of G(np) is such that the intersection of their
two interior regions is empty, it follows that Γ contains at least 4np − 8 distinct
reflex corners distributed among its np poles. Let c be the maximum number
of reflex corners on a polygon of G(np), it follows that c np ≥ 4np − 8, which
implies c ≥ 4 − 8/np > 3 because np > 8. �

4 Upper Bound on the Vertex Complexity

In this section, we first show the existence of an assignment between the set of
forbidden configurations in G and their poles such that each pole is assigned at
most five forbidden configurations (Sect. 4.1). Then we make use of this assign-
ment and of a suitable modification of the algorithm in [2] to obtain an OPVR
of G with vertex complexity at most ten (Sect. 4.2). Finally, we apply a post-
processing step to reduce the vertex complexity to five (Sect. 4.3).

4.1 Forbidden Configurations in 3-Connected 1-Plane Graphs

Two forbidden configurations of a 3-connected 1-plane graph G are called inde-
pendent if they share no crossing (although they may share poles), while they
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are called dependent otherwise. The next lemma proves some basic properties of
the independent forbidden configurations in G.

Lemma 1. [∗] Let G be a 3-connected 1-plane graph and let G′ ⊆ G. The fol-
lowing properties hold. P1: There are no three independent forbidden configu-
rations of G′ that share a pair of poles. P2: If G′ contains a W-configuration
w(u, z), all vertices of G′, except u and z, are inside w(u, z). P3: If G′ contains
a W-configuration w(u, z), no other forbidden configuration of G′ that is inde-
pendent of w(u, z) has u, z as poles. P4: There are no two B-configurations of G′

sharing their two poles. The only exception is when two B-configurations form
a W-configuration. P5: Two T-configurations of G′ that are dependent share
exactly one pair of crossing edges.

u z

x

Fig. 4. A non-redundant
set contains only b(u, x).

Intuitively, two dependent forbidden configurations
may be drawn by inserting only one reflex corner on a
common pole. By following this intuition, our goal is to
find a set of forbidden configurations that “cover” all
others and such that they can be drawn by introducing
only a small number of reflex corners per vertex. To
formalize this idea, we give the following definition. A
set F of forbidden configurations of G is non-redundant
if it contains: (1) all B-configurations of G; (2) all T-
configurations of G independent of B-configurations;
(3) zero, one, or two copies of the W-configuration in
G (there is at most one by P2), if the W-configuration
exists and has two, one, or zero, respectively, dependent B-configurations. For
example, in the graph of Fig. 4, t(u, x, z) and b(u, x) are dependent, and thus
b(u, x) ∈ F while t(u, x, z) /∈ F .

A T-configuration t of G is separating if G contains a pole v that is not a
pole of t and that lies in the interior region of t (i.e., inside the bounded region
delimited by the external boundary of t). Let β, τ , and ω be the number of
B-/T-/W-configurations in F , respectively. Note that, if G is (a subgraph of)
a 3-connected 1-plane graph, F contains at most one W-configuration by P2,
i.e., ω ≤ 1. It follows that, if F contains zero or one copy of the (at most one)
W-configuration of G, we have |F | = β + τ + ω, else |F | = β + τ + ω + 1.

Lemma 2. Let G be (a subgraph of) a 3-connected 1-plane graph, let F be a
set of non-redundant forbidden configurations of G, and let P be the set of its
poles. If G has no separating T-configurations, then |F | ≤ 4|P | − 8 if ω = 0
and |F | ≤ 4|P | − 7 otherwise. Also, if ω = 0, then |F | = 4|P | − 8 if and only if
β = 3|P | − 6 and τ = |P | − 2.

Proof. By Lemma 1, properties P1–P5 hold for G. We define an auxiliary graph
GA whose edges represent the crossings of the forbidden configurations in F .
More precisely, let f be a forbidden configuration. For each crossing k of f there
exist two poles of f , denoted by uk and zk, such that the edge fragments (uk, k)
and (k, zk) belong to the external boundary of f . Let GA be the graph with
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nA = |P | vertices and mA edges obtained from G as follows; see, e.g., Fig. 5.
Remove first all edges of G and then all vertices of G that are not poles of any
forbidden configuration. For each forbidden configuration f of F and for each
crossing k of f , draw an edge (uk, zk) on the external boundary of f by following
the two edge fragments (uk, k) and (k, zk). Note that GA is plane and may have
parallel edges. By P1, each pair of adjacent vertices of GA is connected by at
most two parallel edges, that is, mA ≤ 2(3nA−6) = 6nA−12. Also, GA contains
an edge for each B-configuration, two edges for the W-configuration (if it exists),
and three edges for each T-configuration in F . A B-configuration does not share
an edge with a T-configuration by construction of F , also, two B-configurations
do not share an edge by P4, and finally, no two T-configurations share an edge
as otherwise one of them would be a separating T-configuration (they would
be two dependent T-configurations such that one has a pole inside the interior
region of the other). On the other hand, a W-configuration can share an edge
with a B- or with a T-configuration. Let 0 ≤ s ≤ 2 be the number of edges of
GA that a W-configuration shares with other configurations. From the argument
above, it follows that mA = β + 3τ + 2ω − s ≤ 6nA − 12.

u

x

z

(a) G

u

x

z

(b) GA

Fig. 5. Illustration for the proof of Lemma 2: Construction of the auxiliary graph GA

from G. The vertices of G that are not poles are smaller, and the edges of G that
are not part of forbidden configurations are thinner. The edges of GA are drawn by
following the remaining (bold) pairs of crossing edges of G.

If ω = 0 (and hence s = 0), then |F | = β + τ and mA = β + 3τ ≤ 6nA − 12.
Also, β ≤ 3nA − 6 by P4. For a fixed value of nA (note that nA ≥ 2 if |F | >
0), consider the function f(β, τ) = β + τ in the domain defined by the two
inequalities β + 3τ ≤ 6nA−12 and β ≤ 3nA−6. By studying the function f(β, τ),
it is easy to verify that its maximum value in the above domain is 4nA − 8, and
that this value is obtained if and only if β = 3nA − 6 and τ = nA − 2. If ω = 1
then either |F | = β +τ +1 and β = 3nA −6, or |F | = β +τ +2 and β ≤ 3nA −7.
In both cases |F | ≤ 4nA − 7. �

Theorem 3. Let G be a 3-connected 1-plane graph and let F be a set of non-
redundant forbidden configurations of G. For each configuration f ∈ F , it is
possible to assign f to one of its poles such that every pole is assigned at most
five elements of F .
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Proof. Let H = (F ∪P,E ⊆ F ×P ) be the bipartite graph with vertex set F ∪P
(where P is the set of poles of G), and having an edge (f, u) with f ∈ F and
u ∈ P if u is a pole of f . A k-matching from F into P is a set M ⊆ E such
that each vertex in F is incident to exactly one edge in M and each vertex in P
is incident to at most k edges in M . For a subset F ′ ⊆ F , we denote by N(F ′)
the set of all vertices in P that are adjacent to a vertex in F ′. We prove the
existence of a 5-matching of F into P by using Hall’s theorem [13], i.e., we show
that ∀F ′ ⊆ F : |F ′| ≤ 5|N(F ′)|.

Let G′ be any subgraph of G that contains all and only the forbidden config-
urations in F ′. By Lemma 1, G′ of G satisfies P1–P5. The proof is by induction
on the number h of separating T-configurations of G′. Let G′

A be the auxiliary
graph of G′ constructed as in the proof of Lemma 2. In the base case h = 0, we
have that |F ′| ≤ 4|N(F ′)| − 7 by Lemma 2. Suppose now that the claim holds
for h − 1 > 0. Let t(u, x, z) be a separating T-configuration of G′ such that it
does not contain any other separating T-configuration in its interior. Let G′

IN be
any subgraph of G′ containing t(u, x, z) and all and only the forbidden configu-
rations of F ′ that are inside t(u, x, z), that is, its auxiliary graph G′

A,IN is the
subgraph of G′

A having the three edges of t(u, x, z) as outer face. Note that G′
A

may contain some of the possible B-configurations b(u, x), b(u, z), and b(x, z),
but their corresponding edges of G′

A are not part of G′
A,IN . We denote by F ′

IN

the set of forbidden configurations of F ′ in G′
IN . Let G′

OUT be any subgraph
of G′ containing all and only the forbidden configurations of F ′ except those in
F ′
IN , but including t(u, x, z). We denote by F ′

OUT the set of forbidden configu-
rations of F ′ in G′

OUT . Since G′
OUT contains h − 1 separating T-configurations,

by induction we have that |F ′
OUT | ≤ 5|N(F ′

OUT )|. On the other hand, G′
IN

does not contain separating T-configurations and it is a subgraph of G, thus
|F ′

IN | ≤ 4|N(F ′
IN )|−7 by Lemma 2. In particular, G′

IN does not contain any W-
configuration, since G can have at most one and it must be part of its outer face.
Hence, |F ′

IN | ≤ 4|N(F ′
IN )| − 8, and in particular |F ′

IN | = 4|N(F ′
IN )| − 8 if and

only if its number of B-configurations is such that βIN = 3|F ′
IN |−6 (Lemma 2).

However, the (at most) three B-configurations b(u, x), b(u, z), and b(x, z) are
not part of G′

IN by construction, and therefore |F ′
IN | ≤ 4|N(F ′

IN )| − 11. Since
|N(F ′

IN )| + |N(F ′
OUT )| = |N(F ′)| + 3 (we have to consider the three vertices

u, x, z that are poles in both graphs), and since |F ′
IN | + |F ′

OUT | ≥ |F ′|, it fol-
lows that |F ′| ≤ |F ′

IN | + |F ′
OUT | ≤ 4|N(F ′

IN )| − 11 + 5|N(F ′
OUT )|, and thus

|F ′| ≤ 5|N(F ′)| + 4 − |N(F ′
IN )|, which implies that |F ′| ≤ 5|N(F ′)| when

|N(F ′
IN )| ≥ 4. Since t(u, x, z) is a separating T-configuration, G′

IN contains
at least one pole more than u, x, z, thus |N(F ′

IN )| ≥ 4. �

4.2 Proving Vertex Complexity at Most 10

We briefly recall an algorithm by Biedl et al. [2], called 1P-RVDrawer, which
takes as input a 1-plane graph with no forbidden configurations and that returns
an RVR of this graph. First, the planarization Gp of G is computed. The plane
graph Gp is then triangulated in such a way that the degree of dummy vertices
remains four, i.e., avoiding the addition of edges incident to dummy vertices. The
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resulting graph Gt does not contain any planarized forbidden configuration (i.e.,
any subgraph such that by replacing dummy vertices with crossings we obtain
a forbidden configuration). Moreover, if G is 3-connected, Gt does not contain
parallel edges (and hence is 3-connected as well). As next step, 1P-RVDrawer
decomposes Gt into its 4-connected components, it computes an RVR for each 4-
connected component, and finally it patches the drawings by suitably identifying
the outer face of each component with the corresponding inner face of its parent
component. The algorithm guarantees that each dummy vertex is represented by
a rectangle having one visibility on each of its four sides. This property allows to
replace that rectangle with a crossing. Also, we observe that for each 4-connected
component C of Gt, 1P-RVDrawer chooses one edge e on the outer face of C
called the surround edge of C. This edge is chosen so to satisfy the following
two conditions: (1) The inner face of C containing e on its boundary consists
of the two end-vertices of e plus a third vertex which is not dummy; (2) If the
surround edge of the parent component C′ of C (if C′ exists) is an edge e′ of the
outer face of C, then e = e′. The feasibility of this choice is guaranteed by the
absence of planarized forbidden configurations in Gt. The resulting RVR is such
that all edges of C incident to an end-vertex of e are represented by horizontal
visibilities.

Lemma 3. [∗] Every 3-connected 1-plane graph admits an OPVR with vertex
complexity at most ten.

u
z

w
v

k

s

(a)

u z
vw

s

(b)

u

z

v

w
ss′

(c)

u

z

v

w
s

(d)

Fig. 6. Illustration for Lemma 3: (a) Inserting a subdivision vertex (orange) to remove
a forbidden configuration; (b–d) The separating triangles (bold) facing the subdivision
vertices in (b) T-, (c) W-, and (d) B-configurations. (Color figure online)

Sketch of Proof. Let G∗ be a 3-connected 1-plane graph. Let P be the set of
poles of G∗, and let F be a set of non-redundant forbidden configurations of G∗.
By Theorem 3, there exists a 5-matching of F into P . Let f be a forbidden con-
figuration of F , and let u be the pole of P matched with f . Let (u, v) and (w, z)
be two crossing edges of f such that z is another pole of f , and denote by k their
crossing. Note that this pair of edges is unique if f is a B-configuration, while if
f is a T-configuration there are two such pairs. Also, if f is a W-configuration,
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by construction of F we have that each of its two crossings is matched with
one of its two poles. We subdivide the edge fragment (k, u) with a subdivision
vertex s and we add the uncrossed edges (z, s) and (s, w); see Fig. 6(a) for an
illustration. It is easy to verify that this operation removes f from G∗ and it
does not introduce any new forbidden configuration. Let G be the 1-plane graph
obtained by introducing a subdivision vertex for each forbidden configuration
of F ; one can show that G does not contain any forbidden configuration and is
3-connected; hence, it admits an RVR γ. In particular, it is possible to compute
γ such that every subdivision vertex introduced when going from G∗ to G is
incident to a face containing a surround edge of Gt. Recall that Gt is a triangu-
lated plane graph and that dummy vertices have degree four (see the description
of 1P-RVDrawer above and [2] for details), which implies that every dummy
vertex is inside a 4-cycle of uncrossed edges (called kite in [2]). In particular,
it can be shown that every forbidden configuration f whose matched pole is
denoted by u, whose subdivision vertex is denoted by s (which is incident to u),
and whose other pole adjacent to s is denoted by z, is such that there exists a
separating triangle Δf in Gt having u and z as two of its vertices (for ease of
description, we view the outer face of Gt as a separating triangle) and such that
(u, z) can be chosen as surround edge.

u z

v

w

s

(a)

u z

v

w

(b)

Fig. 7. Illustration for Lemma 3: Replacing a subdivision vertex, denoted by s in (a),
with a spoke, which is represented in (b) with a dashed fill.

We finally turn γ into an OPVR Γ of G∗ with vertex complexity at most ten.
Let u be a pole of G∗ and let r(u) be the rectangle representing it in γ. Observe
that, since u has at most five matched forbidden configurations, u is adjacent to
at most five subdivision vertices of G. On the other hand, in order to turn γ into
the desired OPVR, we need to replace all u’s visibilities towards subdivision
vertices with visibilities towards the other endpoints of the subdivided edges.
To this aim, we attach on a side of r(u) a rectangle so that r(u) becomes an
orthogonal polygon with two reflex corners for each attached rectangle. Let s
be a subdivision vertex adjacent to u and let (u, v) be the edge subdivided by
s. Also, let (w, z) be the edge that crosses (u, v). From the argument above,
(u, z) is a surround edge and all visibilities incident to u and z are horizontal.
We can remove r(s) from γ, and attach to r(u) a spoke, i.e., a rectangle around
the visibility (u, s) (see the shaded blue region in Fig. 7(a)) so that the visibility
between r(s) and r(v) is now attached to this spoke, as shown in Fig. 7(b). By
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repeating this procedure for all poles and for all their subdivision vertices, we
obtain the desired OPVR Γ of G. In particular, since each pole u is adjacent to
at most five subdivision vertices in G∗, we attached to r(u) at most five spokes,
hence we created at most ten reflex corners along the boundary of r(u). �

4.3 Reducing the Vertex Complexity to 5

An OPVR can be interpreted as a planar orthogonal drawing whose vertices
are the corners of the polygons, the crossing points, and the attaching points
between visibilities and polygons, and whose edges are (pieces of) sides of the
polygons and (pieces of) visibilities. We now recall a well-known method used to
modify an orthogonal drawing in order to move a desired set of vertices and edges
while keeping stationary all other elements of the drawing. This can be achieved
with zig-zag-bend-elimination-slide curves [3]. Any such a curve D contains: (1)
a horizontal segment sh that intersects neither edges nor vertices of the drawing;
(2) an “upward” vertical half-line hl that originates at the leftmost endpoint of
sh and whose points are above it; and (3) a “downward” vertical half-line hr

that originates at the rightmost endpoint of sh and whose points are below it.
The two half-lines can intersect edges and vertices of the drawing. The region to
the right of D is the set of all points that are in the y-range of hl and strictly to
the right or on hl, and all points in the y-range of hr and strictly to the right of
hr. If such a curve D exists, we can move all points in the region to the right of
D by any given δ > 0 and leave stationary all other points [3].

Theorem 4. Every 3-connected 1-plane graph with n vertices admits an OPVR
with vertex complexity at most five. Also, such OPVR can be computed in Õ(n

10
7 )

time on an integer grid of size O(n) × O(n).
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Fig. 8. Illustration for Theorem 4: Removing reflex corners through zig-zag-bend-
elimination curves. The spoke g is bold and its free side is red. (Color figure online)

Proof. Let G be a 3-connected 1-plane graph with n vertices. Let Γ be an OPVR
of G with vertex complexity at most 10, which exists by Lemma 3. We show
how to reduce the number of reflex corners around a vertex by using the above
defined zig-zag-bend-elimination-slide curves. Let p(u) be a polygon representing
a vertex u of G in Γ . Note that p(u) is either a rectangle, or a polygon obtained
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by attaching spokes (rectangles) on the sides of an initial rectangle r(u) in the
intermediate RVR (see the proof sketch of Lemma 3). Moreover, each spoke g of
p(u) has only one visibility attached to it on a side, while the opposite side of g
does not have any visibility, and we say it is free. Suppose that p(u) contains 0 <
k ≤ 5 spokes and hence 2k reflex corners. We apply k zig-zag-bend-elimination-
slide curves in order to remove k reflex corners. Since the application of a zig-zag-
bend-elimination-slide curve on a spoke may alter the shape of another spoke,
in what follows a spoke g is more generally defined as a chain of segments in
p(u) such that g contains exactly one reflex corner followed by two inflex corners
and by one more reflex corner. The free side of g is hence a segment of g that
is between a reflex and an inflex corner and that does not contain any visibility
on it. Consider any spoke g of p(u). Without loss of generality, we can assume
that the free side s of g is horizontal and is the topmost side of g (up to a
mirroring/rotation of the drawing). Let [x1, x2] be the x-range of g, and let
ε > 0 be a value smaller than the smallest distance between any two points on
the boundary of two distinct polygons of Γ . Let α be the first angle encountered
when walking along p(u) counter-clockwise, starting from the leftmost point of s.
Consider the zig-zag-bend-elimination curve D constructed by using a horizontal
segment above s by ε and with x-range [x1 + ε, x2 + ε], as shown in Fig. 8(a).
We move all points in the region to the right of D by δ = |x2 − x1|. After this
operation, there is no polygon above s (other than p(u)), as shown in Fig. 8(b).
Hence, we can modify p(u) as shown in Figs. 8(c)–(d) if α is an inflex corner,
or as shown in Figs. 8(e)–(f) if α is a reflex corner. In both cases, after this
operation, p(u) contains exactly one less reflex corner and one less spoke.

By repeating this argument for all vertices of Γ , we obtain an OPVR Γ ′ of G
with at most five reflex corners per polygon. It remains to show how to compute
an OPVR of G with vertex complexity at most five in time Õ(n

10
7 ) time and on

an integer grid of size O(n)×O(n). Di Giacomo et al. described an algorithm that
computes an OPVR of G with minimum vertex complexity (which is at most
five as shown above) in time O(n

7
4
√

log n) and on an integer grid of O(n)×O(n)
(Theorem 5 in [8]). This algorithm requires the computation of a feasible flow in
a flow network with O(n) nodes and edges. For such a flow network, Di Giacomo
et al. used the min-cost flow algorithm of Garg and Tamassia [12], whose time
complexity is O(χ

3
4 n

√
log n), where χ is the cost of the flow, which is O(n).

Instead, we can use a recent result by Cohen et al. [5] as follows. We first replace
all arcs of the flow network with capacity k > 1 with k arcs having unit capacity
(note that k ∈ O(1)). Then the unit-capacity min-cost flow problem can be solved
on the resulting flow network in Õ(n

10
7 log W ) time, where W is the maximum

cost of an arc, which is O(1). Thus, we can compute an OPVR in Õ(n
10
7 ) time

on an integer grid of size O(n) × O(n), as desired. �

Theorem 4, together with Theorem 2, proves Theorem 1.
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5 Open Problems

We conclude by mentioning three open problems that are naturally suggested
by the research in this paper. (i) Close the gap between the lower bound and the
upper bound stated in Theorem 1. (ii) Can the time complexity of Theorem 1 be
improved? (iii) An immediate consequence of Theorem 3 is that a 3-connected 1-
plane graph G with |P | poles has a set of non-redundant forbidden configurations
whose size is at most 5|P |. Is this upper bound tight?
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Abstract. We investigate the graphs formed from the vertices and
creases of an origami pattern that can be folded flat along all of its
creases. As we show, this is possible for a tree if and only if the inter-
nal vertices of the tree all have even degree greater than two. However,
we prove that (for unbounded sheets of paper, with a vertex at infinity
representing a shared endpoint of all creased rays) the graph of a folding
pattern must be 2-vertex-connected and 4-edge-connected.

1 Introduction

This work concerns the following question: Which graphs can be drawn as the
graphs of origami flat folding patterns?

In origami and other forms of paper folding, a flat folding is a type of con-
struction in which an initially-flat piece of paper is folded so that the resulting
folded shape lies flat in a plane and has a desired shape or visible pattern. This
style of folding may be used as the initial base from which a three-dimensional
origami figure is modeled, or it may be an end on its own. Flat foldings have been
extensively studied in research on the mathematics of paper folding. The folding
patterns that can fold flat with only a single vertex have been completely char-
acterized, for standard models of origami [1–8], for rigid origami in which the
paper must continuously move from its unfolded state to its folded state with-
out bending anywhere except at its given creases [9], and even for single-vertex
folding patterns whose paper does not form a single flat sheet [10]. However, the
combinatorics of multi-vertex flat folding patterns is much less well understood,
and testing whether a multi-vertex pattern folds flat is NP-hard [11].

From the point of view of graph drawing, origami folding patterns can be
thought of as planar graphs, drawn with straight line edges in the Euclidean
plane, with each edge representing a crease that must be folded. For instance,
the familiar bird base, a starting point for the classic three-dimensional origami
crane, can be thought of as a graph drawing of a planar graph with 13 vertices
(Fig. 1). This naturally raises the question (analogous to similar questions for
other types of geometric graphs such as Voronoi diagrams [12]): which graphs
can be drawn this way? The NP-completeness of recognizing multi-vertex flat
folding patterns does not extend to this question, because the completeness result
is for folding patterns that have already been embedded with a given geometry
c© Springer Nature Switzerland AG 2018
T. Biedl and A. Kerren (Eds.): GD 2018, LNCS 11282, pp. 541–554, 2018.
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and its proof depends on the specific geometry of the embedding. Here, instead,
we ask whether an embedding exists. We do not resolve this question, but we
provide partial answers to it in two different directions.

Fig. 1. Origami bird base (as illustrated by Fred the Oyster at https://commons.
wikimedia.org/wiki/File:Bird base.svg) and the corresponding folding pattern, inter-
preted as a graph drawing. The black lines indicate the final creases of the bird base.
Temporary creases made while folding the base but later flattened out are not included.
Blue dashed lines indicate the boundary of the sheet of paper; these lines are not con-
sidered as edges of the graph because they are not creased. (Color figure online)

First, we investigate the trees that may be drawn as flat folding patterns. For
this problem, we make the simplifying assumption that the sheet of paper to be
folded is infinite, with internal vertices of the tree at points where multiple creases
come together, and with the leaves of the tree corresponding to creases along
infinite rays. Cutting the infinite paper of such a drawing along a square that
surrounds all the internal vertices would produce a finite representation of the
same tree with its leaves on the boundary of the square, like the representation of
a non-tree graph in Fig. 1. Similar tree-drawing styles, with infinite rays for the
leaves of the trees, have been used in past work on drawings of trees as Voronoi
diagrams [12], straight skeletons [13],1 or with optimized angular resolution [15].
For this model of origami folding and tree realization, we provide a complete
characterization: a tree may be drawn in this way if and only if all of its internal
vertices have even degree greater than two.

Second, we investigate the connectivity restrictions on the graphs that may
be drawn as flat folding patterns. This type of constraint has proven very fruitful
in past questions about the geometric realizations of planar graphs, providing
complete characterizations of the graphs of convex polyhedra (Steinitz’s theo-
rem) [16], drawings with rectangular faces (“rectangular duals”) [17–20], orthog-
onal polyhedra [21], and two-dimensional soap bubble clusters [22].

Trees are not highly connected, and may be drawn as flat folding diagrams,
but it turns out that these diagrams remain highly connected through the bound-
1 Straight skeletons have also been used to construct folding patterns [14]. However,

this technique adds extra folds to the skeleton, so the realizations of trees as straight
skeletons do not yield realizations of the same trees as flat folding patterns.

https://commons.wikimedia.org/wiki/File:Bird_base.svg
https://commons.wikimedia.org/wiki/File:Bird_base.svg
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ary of the drawing. To capture this boundary connectivity, we modify our math-
ematical model of flat folding. We again assume an infinite sheet of paper, but we
treat creases along infinite rays as all having a single shared endpoint at infinity,
which forms another vertex of the graph. In this model, the tree foldings of the
other model become series-parallel graphs, in which all the leaves of the tree
have been merged into a single supervertex.

We prove that, for this model of graphs as folding patterns, the graphs that
may be realized are highly restricted, beyond even the graphs of polyhedra and
beyond the immediate restriction (from the one-vertex case) that all vertices have
even degree. In particular, they are necessarily 2-vertex-connected and 4-edge-
connected. More strongly, the vertex at infinity is not an articulation vertex, and
any subset of vertices that separates the graph and does not include the vertex at
infinity must include at least four other vertices. These connectivity restrictions
hold even for a weaker model of local flat foldability in which we seek a piecewise
linear map from the folding pattern to its folded state in the plane without
regard to whether this folding can be embedded without self-intersections into
three-dimensional space. Our realizations of trees as flat folding patterns show
that the 2-vertex-connectivity and 4-edge-connectivity conditions are both tight:
no higher restriction on connectivity is possible.

2 Preliminaries

2.1 Mathematical Model of Folding

Departing from the usual square-paper model of origami in order to avoid com-
plications from its boundary conditions, we model the sheet of paper to be folded
as the entire Euclidean plane. We first define a local flat folding. This is a highly
simplified model of how a piece of paper might be folded that only takes into
account local constraints (the paper can only be folded, not stretched, sheared,
or crumpled), does not prevent self-intersections, and does not even represent the
most basic information about how the folding might occur in three dimensions,
such as whether a given fold is a mountain fold or a valley fold.

Definition 1. We define a continuous function ϕ from the plane to itself to be
a local flat folding if every point p of the plane has one of the following three
types:

– An unfolded point of a local flat folding is a point p such that ϕ is a local isom-
etry: there is a neighborhood of p that is mapped by ϕ in a distance-preserving
way (necessarily a combination of translation, rotation, or reflection of the
plane).

– A crease point of a local flat folding is a point p that has a neighborhood N
that can be covered by two subsets, each containing p and each mapped by
ϕ in a different distance-preserving way. Necessarily, the boundary between
these two subsets must be a line containing p. To preserve continuity of the
mapping, the two distinct isometric mappings for the two subsets must be
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reflections of each other across the image of this line. The points within N
that belong to this fold line are also crease points, and the other points within
N are unfolded points.

– A vertex point of a local flat folding is a point p that has a neighborhood N that
can be covered by finitely many (and at least three) subsets, each containing
p and each mapped by ϕ in a distance-preserving way so that there are at
least three distinct isometric mappings among these subsets. Necessarily, each
subset must be a wedge. The points within N that belong to the rays between
pairs of wedges are crease points, and the points within N that do not belong
to these rays are unfolded points.

Then, as stated above, a local flat folding is a continuous function φ such that
all points of the plane are unfolded points, crease points, and vertex points. We
add one more restriction: we consider only local flat foldings that have at least
one vertex point. We do not require the number of vertex points to be finite.

As a simple example, consider the function ϕ : (x, y) �→ (f(x), f(y)) where
f(x) = |(xmod 2) − 1|. Here f is a continuous function that maps the intervals
[2i, 2i + 1] to [0, 1] in reverse order, and that maps the intervals [2i + 1, 2i + 2]
to [0, 1] linearly. ϕ corresponds to a folding pattern in which we pleat the plane
along the integer-coordinate vertical lines (that is, we create a sequence of folds
that alternates between mountain and valley folds, like an accordion; see [23,
p. 31]), and then we pleat it again along the integer-coordinate horizontal lines,
so that the whole plane is mapped to the unit square. Its folding pattern has
vertex points at points of the plane where both coordinates are integers, crease
points at points with one integer coordinate, and unfolded points everywhere
else. That is, it is a drawing of the infinite square grid graph.

In general, the graph of a local flat folding is almost a graph drawing, in
that its vertex points form a discrete set, connected in pairs by line segments
consisting of crease points. For the grid example, it is a graph drawing. However,
for other local flat foldings, some of the crease points may belong to semi-infinite
rays rather than forming bounded line segments. To make a graph that also
includes these rays as edges, we add a special vertex ∞ that is not represented
by any geometric point, and we treat this special vertex as an endpoint of each
ray of crease points.

Definition 2. We define the graph of a local flat folding ϕ to be a graph G that
has a vertex for each vertex point of ϕ and (if ϕ includes any infinite rays of
crease points) another special vertex ∞. Two vertex points form adjacent vertices
in G when the line segment between them consists only of crease points. A vertex
point p and the special vertex ∞ are adjacent when there exists a ray with apex
p consisting only (other than at its apex) of crease points. This graph may have
multiple adjacencies between ∞ and other vertices (for instance, it will do so in
any one-vertex flat folding pattern) but it can have at most one edge between any
two vertex points.

The folding pattern provides a topological planar embedding for the whole
graph G, and a geometric straight-line planar embedding for all vertices
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except ∞. As usual, we call the maximal regions of the plane that are disjoint
from the vertices and edges of the embedding (the vertex and crease points of
ϕ) the faces of the embedding. These are possibly-unbounded polygonal regions,
the connected components of the unfolded points of ϕ. Because the action of ϕ
on each face of the graph is determined from its action on adjacent faces, the
embedding of G completely determines the mapping of ϕ, up to a congruence
transformation of the whole plane.

For our realizations of trees, we will use a slightly different graph, that can
be derived from the graph of the folding. (It will not be interesting to study the
graph connectivity of this graph, because it will have many degree-one vertices.)

Definition 3. We define the truncated graph of a local flat folding to be the
graph formed in either of the following two equivalent ways:

– From the graph of the folding, subdivide each edge incident to ∞, and then
delete vertex ∞.

– Form a graph with a vertex for each vertex point of the folding and another
vertex for each ray of crease points of the folding. Connect two vertex points
by an edge if the line segment between them consists only of crease points.
Add an edge for each ray of crease points, connecting the vertex point at the
apex of the ray to the additional vertex for the same ray.

Truncated graphs of local flat foldings can also be interpreted as the type
of graph drawn in Fig. 1 for a folding pattern on a sheet of square paper with
the additional property that the creases reaching the boundary form diverging
rays. However, the folding pattern in Fig. 1 has creases that instead meet at the
boundary, and it is also possible to form converging pairs of rays. Therefore the
type of graph shown in the figure, of a folding pattern on a bounded square of
paper, is somewhat more general. However, for the purposes for which we use
truncated graphs (realization of trees), a less general model is better, as any
realization in such a model will also be a realization for the more general model.

It remains to define a mathematical model of foldings as global structures,
accounting for how paper can fold in three dimensions and how some parts of
the paper can block other parts of paper from passing through them (disallowing
self-intersections). It is possible to model precisely the above-below relation of
the faces of ϕ, and the nesting structure of the folding at the creases of ϕ; see,
for instance, [10] for a similar model of lower-dimensional flat-folded structures.
However, we will forgo the complexity of such a model in favor of the following
simpler topological approach.

Definition 4. A global flat folding is a local flat folding ϕ with the additional
property that, for every ε > 0, there exists a topological embedding ϕε : R2 →
R

3 (without self-intersections) such that composing ϕε with the coordinatewise
vertical projection from R

3 to R
2 produces a mapping that, for every point p, is

within distance ε of the mapping given by ϕ.

Intuitively, a global flat folding is a local flat-folding that, for every ε > 0, is
ε-close to a topological embedding of the plane into three-dimensional space.
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2.2 Single-Vertex Restrictions

The geometry of single-vertex folding patterns, such as the one in Fig. 2, is
characterized by Maekawa’s theorem and Kawasaki’s theorem [1–8]. These apply
as well to each vertex of a multi-vertex folding pattern.

Theorem 1 (Maekawa’s theorem for one-vertex folding patterns with-
out mountain-valley assignments). Each vertex point of a folding pattern
must be incident to an even number of creases.

This follows easily from the observation that, at each crease, the paper alter-
nates between having its top side up (a region within which ϕ is an orientation-
preserving isometric mapping) and having its bottom side up (a region within
which ϕ is an orientation-reversing isometric mapping).

Fig. 2. A single-vertex flat folding and its pattern, demonstrating Maekawa’s theorem
(the number of folds is even) and Kawasaki’s theorem (the face-up orange total angle
equals the bottom-up white total angle). Image by the author for Wikipedia, 2011.
(Color figure online)

Theorem 2 (Kawasaki’s theorem). At each vertex point of a folding pattern,
the alternating sum of wedge angles totals to zero.

This again follows from the fact that, near the vertex in the flat-folded state
of the pattern, each point is covered by equal numbers of upward-facing and
downward-facing regions, so the total amount of upward-facing paper must equal
the amount of downward-facing paper.

Corollary 1. Each wedge of a vertex point of a flat folding has angle strictly less
than π. Therefore, each face of a flat folding pattern is a (possibly unbounded)
convex polygon.
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3 Realization of Trees

Let T be any plane tree. Then by Maekawa’s theorem, if T is to be realized
as the truncated graph of a local flat folding, its internal vertices must have
even degree greater than two. Our purpose in this section is to prove that this
condition is necessary as well as sufficient.

Fig. 3. A tree folding pattern that can be locally flat folded, but not globally flat
folded.

We are interested here in global flat foldings, not just local flat foldings, and
for this reason some care must be taken. It is not sufficient merely to embed T
as a graph in the plane, with its leaf edges drawn as rays, and with each internal
vertex meeting the angle sum condition of Kawasaki’s theorem. Figure 3 depicts
a counterexample. It obeys Kawasaki’s theorem, and can be locally flat folded,
but not globally flat folded. The four heavier diagonal lines of the figure can
be flat folded in only one way up to combinatorial equivalence. Their folding
is obtained by first folding along one diagonal line, and then along the other.
The four creases of this fold are then modified by subsidiary folds that are each
individually possible. But one of the four heavier creases must be nested tightly
within another one. The two subsidiary creases of these two nested creases are
arranged in such a way that, no matter which crease is nested within the other,
the subsidiary crease of one will be blocked by the paper from the other nested
crease. (Try it!)

To evade this problem, we seek a stronger type of realization, one in which
each crease is “protected” by a wedge surrounding it, within which we can add
modifications (such as the subsidiary wedges of Fig. 3) without interfering with
other parts of the folding.

Theorem 3. Let T be any finite tree with all internal vertices having even degree
greater than two. Then T can be realized as the truncated graph of a global flat
folding.
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Proof. We use induction on the number of internal nodes of T to prove a stronger
statement: that T can be realized in such a way that each ray r of T is associated
with a wedge Wr, satisfying the following properties:

– Ray r and wedge Wr have the same apex, and r is the median ray of its
wedge.

– Each two rays have interior-disjoint wedges. Each edge of T that is not a ray
is disjoint from all of the wedges.

– There exists a three-dimensional folded state such that the two halves of each
wedge Wr are placed touching each other, with no other paper between them.

The third property above is phrased informally, so let us relate it to our earlier
topological definition of a global flat folding. Recall that, in order to formalize
the notion of a “three-dimensional folded state” we really have a parameterized
family of three-dimensional embeddings. That is, we have both a folding map
ϕ : R

2 → R
2 and, for each ε > 0, a topological embedding ϕε : R

2 → R
3

whose vertical projection to R
2 is ε-close to ϕ. We formalize the “no other paper

between them” constraint, again up to ε-closeness: for each point p ∈ R
2 at a

distance of ε or more from the boundary of ϕ(Wr), the preimage of p (according
to the vertical projection) in ϕε(R2) should have two points from the two sides
of Wr consecutive with each other in the vertical ordering of the points.

Fig. 4. The base case for realizing a one-internal-vertex tree (here with degree d = 6),
showing the wedge Wr for one of the rays r both in the folding pattern and in the
folded state.

The base case of the induction is a tree T with one internal node v of even
degree d greater than four. In this case, we let θ = π/(d + 1). We draw T as
a set of d rays, all meeting at a common point. We make two of the angles
between consecutive rays of T equal to 3θ, and all remaining angles equal to 2θ.
For instance, when d = 7, we get θ = π/7 and six rays separated by angles of
3π/7, 3π/7, 2π/7, 2π/7, 2π/7, 2π/7. We fold this in three dimensions by placing
the two wider wedges on the top and bottom of the folded pattern, and pleating
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the remaining wedges between them. For this fold, we make each wedge Wr for
a ray r of the folding pattern be the wedge centered on that ray with opening
angle 2θ. This opening angle is sufficient to make all the wedges interior-disjoint,
and it is straightforward to verify that the 3D realization of this fold places no
paper between the two halves of any wedge. This case is depicted in Fig. 4.

Otherwise, if T has more than one internal vertex, let v be any internal
vertex that has only a single non-leaf neighbor. (For instance, v may be found
by choosing any vertex u arbitrarily and letting v be an internal vertex that is
maximally far from u.) Let T ′ be the tree formed from T by removing the leaf
neighbors of v, so that v itself becomes a leaf. Then by the induction hypothesis,
T ′ can be realized by a global flat folding, with a ray r that is associated with its
leaf v and that is surrounded by a wedge Wr, whose two halves touch each other
without being blocked by other paper in the folding. Let θ denote the opening
angle of wedge Wr. Suppose also that, in T , v has degree d, and therefore it also
has d − 1 leaf children.

Then we modify the folding that represents T ′ to form a folding representing
T , as follows. We place v at an arbitrarily chosen point along r (for instance,
at the point a unit distance away from the apex of ray r). Then, we form d − 1
creases, along d− 1 rays with v as apex, to represent the d− 1 leaf children of r.
We choose the angles of these rays so that they are separated from each other
and from the two boundary rays of Wr by an angle of θ/d. Finally, we assign
each of these rays its own wedge, with v as its apex and with opening angle θ/d.
(See Fig. 5.)

Fig. 5. Adding a vertex v to the folding of T ′ to create a folding for T . We choose the
angles of the new rays incident to v so that they and the two boundary rays of the
outer wedge Wr are equally spaced. The wedge surrounding each new ray has opening
angle equal to the spacing of the rays. The crease pattern of the figure corresponds to
a tree with two degree-four internal nodes.

The 3D folding of the crease pattern for T ′ can also be modified in the same
way to form a 3D folding for the crease pattern for T . At v, the rays and segments
representing incident edges of T form d wedges, two of which have opening angle
greater than π and the rest of which have opening angle θ/d. As before, we fold
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this part of the paper so that the two large wedges are outermost and the other
wedges are pleated between them. The angles of the creased rays are chosen so
that, after this pleat, the creases that are folded to become the closest to the
boundary rays of Wr (such as the middle ray of the figure) become parallel to
these boundary rays. Because of this, the folded state stays within the region of
R

3 previously occupied by the paper for wedge Wr, and the empty space between
the two sides of that wedge, so it does not interfere with any other part of the
global flat folding. Each of the wedges of opening angle θ/d surrounding the new
rays of the folding has its two sides mapped directly above and below each other
in the pleating, maintaining the invariant of the induction. ��

We remark that, because the pleating pattern used for this realization does
not ever tightly nest one crease inside another, it is possible to find a 3D realiza-
tion that projects exactly to the two-dimensional local flat folding, rather than
approaching it through ε-approximations.

4 Connectivity

Although we have seen that truncated graphs of flat foldings may be trees (graphs
that are not very highly connected), we now show that the full graph, includ-
ing the special vertex ∞, is (when finite) always well connected. We assume
throughout this section that the full graph has at least one finite vertex; oth-
erwise, as a one-vertex graph, the full graph is trivially k-vertex-connected and
k-edge-connected for all k.

Lemma 1. Let G be the graph of a local flat folding. Then the special vertex ∞
is not an articulation vertex of G.

Proof. If it were, some two components of G−∞ would necessarily be separated
by an infinite face of the folding pattern. However, because all faces are convex
each connected component of the boundary of an infinite face forms a convex
polygonal chain, ending in two rays that span an angle (within the face) of less
than π with each other. It is not possible for two such chains to bound a single
face without crossing each other, so the boundary of the face can have only one
connected component. ��
Lemma 2. Let u and v be two vertex points of a local flat folding ϕ that belong
to the same face of ϕ and let d denote Euclidean distance. Then d(u, v) =
d(ϕ(u), ϕ(v)).

Proof. Because the faces of ϕ are strictly convex, the line segment between u
and v must either consist entirely of crease points (on an edge of the graph of
the folding) or unfolded points (if u and v are not consecutive on their shared
face). In either case this line segment is mapped to an equal-length line segment
by ϕ. ��
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Lemma 3. Let G be the finite graph of a local flat folding. Then removing up to
three of the vertex points of the folding from G cannot cause the remaining graph
to become disconnected.

Proof. Suppose for a contradiction that S is a set of at most three vertex points
whose removal disconnects G. Since G is a plane graph, there must exist a simple
closed curve C in the plane that passes through S and is otherwise disjoint from
the vertices and edges of G, with at least one vertex inside the curve and at least
one vertex outside the curve. (For folding patterns that include a ray of crease
points, we count ∞ as being outside all such curves.) But as we show in the case
analysis below, this is not possible:

– If |S| = 1, any curve C through the single vertex of S that is otherwise
disjoint from G must remain within a single convex face of G, and cannot
enclose anything.

– If S consists of two non-adjacent vertices, they can only have one face of G in
common. Any curve C through these two vertices that is otherwise disjoint
from G must remain within that face, and cannot enclose anything.

– If S consists of two adjacent vertices, then a curve C through the two vertices
u and v of S that is otherwise disjoint from G can either stay within one of
the two faces incident to edge uv (not enclosing anything) or have one arc
in one of these two faces and one arc in the other of the two faces, enclosing
edge uv but not enclosing any vertices.

– If S consists of three collinear vertex points, then curve C must visit each
of these three points in turn. But the outermost of these two vertex points
cannot belong to any convex face of the folding pattern (because this face
would also contain the middle point), and cannot be connected by an arc
of C.

– If S consists of three non-collinear vertex points u, v, and w, then C can only
enclose any vertex points that might lie interior to triangle uvw. However,
triangle uvw is mapped by the local flat folding map ϕ to a congruent triangle,
by Lemma 2 and by the fact that there is only one Euclidean triangle (up to
congruence) for any triple of distances between its vertices. In order to avoid
stretching, every line segment formed by intersecting a line with triangle uvw
must be mapped by ϕ to the corresponding line segment of the image triangle.
In particular, there can be no creases within triangle uvw, because whenever
a line segment properly crosses a crease of a local flat folding, it is not mapped
to a congruent line segment. Therefore, every point inside triangle uvw must
be an unfolded point, and C cannot contain a vertex point.

Because there is no way to construct curve C, the hypothesized set S cannot
exist. ��

The assumption that G is finite is used in the existence of C. If G could be
infinite, our tree realization construction could be used to construct a realization
of an infinite tree in which ∞ is a degree-one leaf. This does not have the
connectivity described by the lemma, but this is not a contradiction because it
does not meet the assumptions of the lemma.
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Theorem 4. If G is the finite graph of a local flat folding ϕ, then G is 2-vertex-
connected and 4-edge-connected.

Proof. G can have no articulation vertex, because neither ∞ nor any vertex
point of ϕ can be an articulation vertex (Lemma 1 and Lemma 3 respectively).

Assume for a contradiction that G could have three edges e1, e2, and e3 whose
removal disconnects G. Choose a vertex point vi as one of the two endpoints of
each of these edges (as each edge in G has at least one vertex point as its
endpoint). The separation of G caused by the removal of the edges ei cannot
separate any subset of the three vertices vi from the rest of G, because G has
minimum degree four and, in a graph of this degree, any set of up to three vertices
is connected to the rest of the graph by at least four incident edges. Therefore,
there must be at least one vertex of G on each side of the separation that is
not one of the three chosen vertices vi. However, this implies that these three
vertices also separate G, contradicting Lemma 3. This contradiction implies that
our assumption is false, and therefore that G is 4-edge-connected. ��

We remark that our realizations of 4-regular trees show that both 2-vertex-
connectivity and 4-edge-connectivity are tight: some graphs that can be realized
as global flat foldings are neither 3-vertex-connected nor 5-edge-connected.

5 Conclusions

We have shown that trees can be realized as the (truncated) graphs of flat fold-
ing patterns, and that despite this the (non-truncated) graphs of flat folding
patterns must be highly connected. However we have not succeeded in com-
pletely characterizing the graphs of flat folding patterns. We leave the following
questions as open for future research:

– Which plane graphs (with specified vertex ∞) are the graphs of global flat
foldings?

– What is the computational complexity of recognizing and realizing these
graphs?

– Is there any graph-theoretic difference between the graphs of global flat fold-
ings and the graphs of local flat foldings? In particular does the folding-
assignment version of Maekawa’s theorem, that each vertex must have two
more mountain folds than valley folds or vice versa, impose any nontrivial
constraints on the graphs of flat foldings?

– In the full version of this paper (arXiv:1808.06013) we describe another class
of graphs, the dual orthotrees, that can always be realized as the graphs of
local flat foldings. Can they always be realized as the graphs of global flat
foldings?

– What (if anything) changes when we consider folding patterns on a square
sheet of paper (or other bounded shape) rather than on an infinite sheet? In
the full version we begin a preliminary investigation of this case, in the special
case where we restrict the vertex points to the boundary of the paper. On

https://arxiv.org/abs/1808.06013
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circular paper, all outerplanar graphs are possible, but on square paper, not
even all trees can be folded; we find an exact characterization of the foldable
trees, different from the characterization in Sect. 3. However, similar questions
without the restriction to boundary points remain open.

– Previously we studied algorithms for realizing trees as convex subdivisions
of the plane while optimizing the angular resolution of the resulting tree
drawing [15]. Can we use similar ideas to optimize the angular resolution of
a folding pattern realization of a tree?
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Abstract. An arrangement of pseudocircles is a collection of simple
closed curves on the sphere or in the plane such that any two of the curves
are either disjoint or intersect in exactly two crossing points. We call an
arrangement intersecting if every pair of pseudocircles intersects twice.
An arrangement is circularizable if there is a combinatorially equivalent
arrangement of circles.

In this paper we present the results of the first thorough study of
circularizability. We show that there are exactly four non-circularizable
arrangements of 5 pseudocircles (one of them was known before). In the
set of 2131 digon-free intersecting arrangements of 6 pseudocircles we
identify the three non-circularizable examples.

Most of our non-circularizability proofs depend on incidence theorems
like Miquel’s. In other cases we contradict circularizability by considering
a continuous deformation where the circles of an assumed circle repre-
sentation grow or shrink in a controlled way.

The claims that we have all non-circularizable arrangements with the
given properties are based on a program that generated all arrangements
up to a certain size. Given the complete lists of arrangements, we used
heuristics to find circle representations. Examples where the heuristics
failed were examined by hand.

Keywords: Circularizability · Incidence theorems
Great-(pseudo)circles

1 Introduction

Arrangements of pseudocircles generalize arrangements of circles in the same
vein as arrangements of pseudolines generalize arrangements of lines. The study
of arrangements of pseudolines was initiated by Levi [12] in 1918. Since then
arrangements of pseudolines were intensively studied. The handbook article on
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the topic [5] lists more than 100 references. To the best of our knowledge the
study of arrangements of pseudocircles was initiated by Grünbaum [8] in the
1970s.

A pseudocircle is a simple closed curve in the plane or on the sphere. An
arrangement of pseudocircles is a collection of pseudocircles with the property
that the intersection of any two of the pseudocircles is either empty or consists
of two points where the curves cross. Other authors also allow touching pseudo-
circles, e.g. [1]. A cell of the arrangement with k crossings on its boundary is a
k-cell. A 2-cell is also called a digon (some authors call it a lens), and a 3-cell is
also called a triangle. An arrangement A of pseudocircles is

simple, if no three pseudocircles of A intersect in a common point;
connected , if the graph of the arrangement is connected;
intersecting , if any two pseudocircles of A intersect.

In this paper we assume that arrangements are simple and connected.
Two arrangements A and B are isomorphic if they induce homeomorphic

cell decompositions of the compactified plane, i.e., on the sphere. In particular,
the isomorphism class of an arrangement of pseudocircles in the plane is closed
under changes of the unbounded cell.

Figure 1 shows the three connected arrangements of three pseudocircles. We
call the unique digon-free intersecting arrangement the Krupp1. The second
intersecting arrangement is the NonKrupp; this arrangement has digons. The
non-intersecting arrangement is the 3-Chain.

)a( )c()b(

Fig. 1. The 3 connected arrangements of n = 3 pseudocircles. (a) Krupp,
(b) NonKrupp, (c) 3-Chain.

Every triple of great-circles on the sphere induces a Krupp arrangement,
hence, we call an arrangement of pseudocircles an arrangement of great-pseudo-
circles if every subarrangement induced by three pseudocircles is a Krupp.

Some authors think of arrangements of great-pseudocircles when they speak
about arrangements of pseudocircles, this is e.g. common practice in the theory of
oriented matroids. In fact, arrangements of great-pseudocircles serve to represent
rank 3 oriented matroids, cf. [2].

Definition 1. An arrangement of pseudocircles is circularizable if there is an
isomorphic arrangement of circles.
1 This name refers to the logo of the Krupp AG, a German steel company. Krupp was

the largest company in Europe at the beginning of the 20th century.
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Preceeding our work there have been only few results about circularizabil-
ity of arrangements of pseudocircles. Edelsbrunner and Ramos [4] presented an
intersecting arrangement of 6 pseudocircles (with digons) which has no realiza-
tion with circles, i.e., it is not circularizable. Linhart and Ortner [13] found a
non-circularizable non-intersecting arrangement of 5 pseudocircles with digons
(see Fig. 2(b)). They also proved that every intersecting arrangement of at most 4
pseudocircles is circularizable. Kang and Müller [9] extended the result by show-
ing that every arrangement of at most 4 pseudocircles is circularizable. They also
proved that deciding circularizability for connected arrangements is NP-hard.

2 Overview

In Sect. 3 we present some background on arrangements of pseudocircles and
provide tools that will be useful for non-circularizability proofs.

In Sect. 4 we study arrangements of great-pseudocircles – this class of arrange-
ments of pseudocircles is in bijection with projective arrangements of pseudo-
lines. Our main theorem in this section is the Great-Circle Theorem which allows
the transfer of knowledge regarding arrangements of pseudolines to arrangements
of pseudocircles.

Theorem 1 (Great-Circle Theorem). An arrangement of great-
pseudocircles is circularizable (i.e., has a circle representation) if and only if
it has a great-circle representation.

In the last two sections we present the full classification of circularizable and
non-circularizable arrangements among all connected arrangements of 5 pseudo-
circles and all digon-free intersecting arrangements of 6 pseudocircles. With the
aid of computers we generated the complete lists of connected arrangements of
n ≤ 6 pseudocircles and of intersecting arrangements of n ≤ 7 pseudocircles. The
respective numbers are shown in Table 1. Given the complete lists of arrange-
ments, we used automatized heuristics to find circle representations. Examples
where the heuristics failed had to be examined by hand.

Computational issues and algorithmic ideas are omitted here – we refer the
interested reader to the full version of this paper [7]. The encoded lists of arrange-
ments of up to n = 6 pseudocircles and circle representations are available on
our webpage [6].

The list of circle representations at [6] together with the non-circularizability
proofs given in Sect. 5 yields the following theorem.

Theorem 2. The four isomorphism classes of arrangements N 1
5 , N 2

5 , N 3
5 ,

and N 4
5 (shown in Fig. 2) are the only non-circularizable ones among the 984

isomorphism classes of connected arrangements of n = 5 pseudocircles.

Note that N 1
5 is the only non-circularizable intersecting arrangement on

5 pseudocircles. Non-circularizability of N 2
5 was previously shown by Linhart

and Ortner [13]. We give an alternative proof which also shows the non-
circularizability of N 3

5 . Jonathan Wild and Christopher Jones, contributed
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(a) (b) (c) (d)

Fig. 2. The four non-circularizable arrangements on n = 5 pseudocircles: (a) N 1
5 ,

(b) N 2
5 , (c) N 3

5 , and (d) N 4
5 .

Table 1. Number of combinatorially different arrangements of n pseudocircles.

n 3 4 5 6 7

connected 3 21 984 609 423 ?

+digon-free 1 3 30 4 509 ?

intersecting 2 8 278 145 058 447 905 202

+digon-free 1 2 14 2 131 3 012 972

great-p.c.s 1 1 1 4 11

sequences A250001 and A288567 to the On-Line Encyclopedia of Integer
Sequences (OEIS). These sequences count certain classes of arrangements of
circles and pseudocircles. Wild and Jones also looked at circularizability and
independently found Theorem 2 (personal communication).

Concerning arrangements of 6 pseudocircles, we were able to fully classify
digon-free intersecting arrangements.

Theorem 3. The three isomorphism classes of arrangements N Δ
6 , N 2

6 , and N 3
6

(shown in Fig. 3) are the only non-circularizable ones among the 2131 isomor-
phism classes of digon-free intersecting arrangements of n = 6 pseudocircles.

In Sect. 6, we give non-circularizability proofs for N Δ
6 , N 2

6 , and N 3
6 . In fact,

for the non-circularizability of N Δ
6 and N 2

6 , respectively, we have two proofs of
different flavors: One proof (see Sect. 6) uses continuous deformations similar to
the proof of the Great-Circle Theorem (Theorem 1) and the other proof (omitted
in this version) is based on an incidence theorem. The incidence theorem used
for N Δ

6 may be of independent interest.
It may be worth mentioning that, by enumerating and realizing all arrange-

ment of n ≤ 4 pseudocircles, we have an alternative proof of the Kang and
Müller result, that all arrangements of n ≤ 4 pseudocircles are circularizable [9].

In the full version [7] we have further results, for example, non-
circularizability proofs for some intersecting arrangements on n = 6 pseudo-
circles with digons.
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(a) (b) (c)

Fig. 3. The three non-circularizable digon-free intersecting arrangements for n = 6:
(a) N Δ

6 , (b) N 2
6 , and (c) N 3

6 . Inner triangles are colored gray. Note that in (b) and (c)
the outer face is also a triangle.

3 Preliminaries: Basic Properties and Tools

Stereographic projections map circles to circles (if we consider a line to be a
circle containing the point at infinity), therefore, circularizability on the sphere
and in the plane is the same concept. Arrangements of circles can be mapped to
isomorphic arrangements of circles via Möbius transformations. In this context,
the sphere is identified with the extended complex plane C ∪ {∞}.

Let C be an arrangement of circles represented on the sphere. Each circle of C
spans a plane in 3-space, hence, we obtain an arrangement E(C) of planes in R

3.
In fact, with a sphere S we get a bijection between (not necessarily connected)
circle arrangements on S and arrangements of planes with the property that
each plane of the arrangement intersects S.

Consider two circles C1, C2 of a circle arrangement C on S and the corre-
sponding planes E1, E2 of E(C). The intersection of E1 and E2 is either empty
(i.e., E1 and E2 are parallel) or a line �. The line � intersects S if and only if C1

and C2 intersect, in fact, � ∩ S = C1 ∩ C2.
With three pairwise intersecting circles C1, C2, C3 we obtain three planes

E1, E2, E3 intersecting in a vertex v of E(C). It is notable that v is in the interior
of S if and only if the three circles form a Krupp in C.

Lemma 1. Let C be an arrangement of circles represented on the sphere. Three
circles C1, C2, C3 of C form a Krupp if and only if the three corresponding planes
E1, E2, E3 intersect in a single point in the interior of S.

Digons are also nicely characterized: A pair C1, C2 of circles forms a digon
of C if and only if the segment of � in the interior of S contains no vertex of E(C).

3.1 Incidence Theorems

The smallest non-stretchable arrangements of pseudolines are closely related
to the incidence theorems of Pappos and Desargues. A construction already
described by Levi [12] is depicted in Fig. 4(a). Pappos’s Theorem states that, in
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a configuration of 8 lines as shown in the figure in black, the 3 white points are
collinear, i.e., a line containing two of them also contains the third. Therefore,
the arrangement including the red pseudoline has no corresponding arrangement
of straight lines, i.e., it is not stretchable.

Miquel’s Theorem asserts that, in a configuration of 5 circles as shown in
Fig. 4(b) in black, the 4 white points are cocircular, i.e., a circle containing three
of them also contains the fourth. Therefore, the arrangement including the red
pseudocircle cannot be circularized.

)b()a(

Fig. 4. (a) A non-stretchable arrangement of pseudolines from Pappos’s Theorem.
(b) A non-circularizable arrangement of pseudocircles from Miquel’s Theorem. (Color
figure online)

Next we state an incidence theorem that will be used in later proofs of non-
circularizability. In the course of the paper we will meet further incidence theo-
rems, e.g. Lemmas 4 and 5. (For a proof, see the full version [7].)

Lemma 2 (First Four-Circles Incidence Lemma). Let C be an arrange-
ment of four circles C1, C2, C3, C4 such that none of them is contained in the
interior of another one, and such that (C1, C2), (C2, C3), (C3, C4), and (C4, C1)
are touching. Then there is a circle C∗ passing through these four touching points
in the given cyclic order.

3.2 Flips and Deformations of Pseudocircles

Let C be an arrangement of circles. Imagine that the circles of C start moving
independently, i.e., the position of their centers and their radii depend on a time
parameter t in a continuous way. This yields a family C(t) of arrangements with
C(0) = C. Let us assume that the set T of all t for which C(t) is not simple or
contains touching circles is discrete and for each t ∈ T the arrangement C(t) con-
tains either a single point where 3 circles intersect or a single touching. If t1 < t2
are consecutive in T , then all arrangements C(t) with t ∈ (t1, t2) are isomor-
phic. Selecting one representative from each such class, we get a list C0, C1, . . . of
simple arrangements such that two consecutive (non-isomorphic) arrangements
Ci, Ci+1 are either related by a triangle flip or by a digon flip.
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We will make use of controlled changes in circle arrangements, in particular,
we grow or shrink specified circles of an arrangement to produce touchings or
points where 3 circles intersect. The following lemma will be of use frequently.
(For a proof, see the full version [7].)

Lemma 3 (Digon Collapse Lemma). Let C be an intersecting arrangement
of n ≥ 3 circles in the plane and let C be a circles from C. If C has no incident
triangle in its interior, then we can shrink C into its interior such that the com-
binatorics of the arrangement remain the same except that two digons collapse
to touchings. Moreover, the two corresponding circles touch C from the outside.

In the following we will sometimes use the dual version of the lemma, whose
statement is obtained from the Digon Collapse Lemma by changing interior to
exterior and outside to inside. The validity of the dual lemma is seen by applying
a Möbius transformation which exchanges interior and exterior of C.

Triangle flips and digon flips are also central to the work of Snoeyink and
Hershberger [17]. They have shown that an arrangement C of pseudocircles can
be swept with a sweepfront γ starting at any pseudocircle C ∈ C, i.e., γ0 = C.
The sweep consists of two stages, one for sweeping the interior of C, the other for
sweeping the exterior. At any fixed time t the sweepfront γt is a closed curve such
that C ∪ {γt} is an arrangement of pseudocircles. Moreover, this arrangement is
simple except for a discrete set T of times where sweep events happen. The sweep
events are triangle flips or digon flips involving γt.

4 Arrangements of Great-Pseudocircles

Central projections map between arrangements of great-circles on a sphere S and
arrangements of lines on a plane. Changes of the plane preserve the isomorphism
class of the projective arrangement of lines. In fact, arrangements of lines in
the projective plane are in one-to-one correspondence to arrangements of great-
circles.

Fig. 5. Obtaining an arrangement
of great-pseudocircles from an
Euclidean arrangement L of pseu-
dolines and its mirrored copy. The
gray boxes highlight the arrange-
ment L and its mirrored copy.

In this section we generalize this con-
cept to arrangements of pseudolines and show
that there is a one-to-one correspondence
to arrangements of great-pseudocircles. As
already mentioned, this correspondence is not
new (see e.g. [2]).

An Euclidean arrangement of n pseudo-
lines can be represented by x-monotone pseu-
dolines, see e.g [5]. As illustrated in Fig. 5,
an x-monotone representation can be glued
with a mirrored copy of itself to form an
arrangement of n pseudocircles. The result-
ing arrangement is intersecting and has no
NonKrupp subarrangement, hence, it is an
arrangement of great-pseudocircles.
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For a pseudocircle C of an arrangement of n great-pseudocircles the cyclic
order of crossings on C is antipodal, i.e., the infinite sequence corresponding
to the cyclic order crossings of C with the other pseudocircles is periodic of
order n− 1. If we consider projections of projective arrangements of n pseudo-
lines, then this order does not depend on the choice of the projection. In fact,
projective arrangements of n pseudolines are in bijection with arrangements of
n great-pseudocircles.

Projective arrangements of pseudolines are also known as projective abstract
order types or oriented matroids of rank 3. The precise numbers of such arrange-
ments are known for n ≤ 11, see [10,11]. Hence the numbers of great-pseudocircle
arrangements given in Table 1 are not new.

4.1 The Great-Circle Theorem and Its Applications

Let A be an arrangement of great-pseudocircles and let L be the corresponding
projective arrangement of pseudolines. Central projections show that, if L is real-
izable with straight lines, then A is realizable with great-circles, and conversely.
In fact, due to Theorem 1, it is sufficient that A is circularizable to conclude
that A is realizable with great-circles and L is realizable with straight lines.

Proof (of Theorem 1). Consider an arrangement of circles C on the unit sphere
S that realizes an arrangement of great-pseudocircles. Let E(C) be the arrange-
ment of planes spanned by the circles of C. Since C realizes an arrangement of
great-pseudocircles, every triple of circles forms a Krupp, hence, the point of
intersection of any three planes of E(C) is in the interior of S.

Imagine the planes of E(C) moving towards the origin. To be precise, for time
t ≥ 1 let Et := {1/t · E : E ∈ E(C)}. Since all intersection points of the initial
arrangement E1 = E(C) are in the interior of the sphere S, the circle arrangement
obtained by intersecting the moving planes Et with the sphere S remains the
same (isomorphic). Moreover, every circle in this arrangement converges to a
great-circle as t → +∞, and the statement follows. 	


From the theorem it follows that an arrangement of pseudolines is stretchable
if and only if the corresponding arrangement of great-pseudocircles is circulariz-
able. Since deciding stretchability is known to be ∃R-complete (see e.g. [14,15]),
the hardness of stretchability directly carries over to hardness of circularizability.

It is known that all (not necessarily simple) arrangements of n ≤ 8 pseudo-
lines are stretchable and that the simple non-Pappos arrangement is the unique
non-stretchable simple projective arrangements of 9 pseudoline, see e.g. [5]. This
again carries over to arrangements of great-pseudocircles. Bokowski and Sturm-
fels [3] have shown that infinite families of minimal non-stretchable arrangements
of pseudolines exist, i.e., non-stretchable arrangements where every proper sub-
arrangement is stretchable. Again, this carries over to arrangement of pseudo-
circles.
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5 Arrangements of 5 Pseudocircles

On the webpage [6] we have the data for circle realizations of 980 out of the 984
connected arrangements of 5 pseudocircles. The remaining four arrangements
in this class are the four arrangements of Theorem 2. Since all arrangements
with n ≤ 4 pseudocircles have circle representations, there are no disconnected
non-circularizable examples with n ≤ 5. Hence, the four arrangements N 1

5 , N 2
5 ,

N 3
5 , and N 4

5 are the only non-circularizable arrangements with n ≤ 5.
For the non-circularizability proof of N 1

5 we need the following additional
incidence lemma. (A proof is given in the full version [7].)

Lemma 4 (Second Four-Circles Incidence Lemma). Let C be an arrange-
ment of four circles C1, C2, C3, C4 such that every pair of them is touching or
forms a digon, and every circle is involved in at least two touchings. Then there
is a circle C∗ passing through the digon or touching point of each of the following
pairs of circles (C1, C2), (C2, C3), (C3, C4), and (C4, C1) in this cyclic order.

C3
C4

C1 C2

C5

C∗

C5p12

p23

p34

p41

C3

C4

C1

C2

Fig. 6. An illustration of the non-circularizability proof of N 1
5 . The auxiliary circle

C∗ is drawn dashed.

Proof (non-circularizability of N 1
5 ). Suppose for a contradiction that there is

an isomorphic arrangement C of circles. We apply the Digon Collapse Lemma
(Lemma 3) to shrink C2, C3, and C4 into their respective interiors. We also use
the dual of the Digon Collapse Lemma for C1. In the resulting subarrangement
C′ formed by these four transformed circles C ′

1, C
′
2, C

′
3, C

′
4, each of the four circles

is involved in at least two touchings. Moreover, since the intersection of C ′
i and

C ′
j in C′ is contained in the intersection of Ci and Cj in C, each of the four

points p12, p23, p34, and p41 lies in the original digons of C which respectively
are touching points or points from the digons of (C ′

1, C
′
2), (C ′

2, C
′
3), (C ′

3, C
′
4), and

(C ′
4, C

′
1). It follows that the circle C5 has p12 and p34 in its interior but p23 and

p41 in its exterior. Figure 6 gives an illustration.
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By applying Lemma 4 to C′ we obtain a circle C∗ which passes through the
points p12, p23, p34, and p41 (in this order). Now the two circles C5 and C∗

intersect in four points. This is impossible, and hence N 1
5 is not circularizable.

	


C3C2

C4C1

C5

C5

C1

C4 C2

C3

C∗
C2

C3

C4
C1

C5

(c)(b)(a)

Fig. 7. An illustration of the non-circularizability proofs of (a) N 2
5 , (b) N 3

5 , and (c) N 4
5 .

The auxiliary circle C∗ is drawn dashed.

Proof (non-circularizability of N 2
5 and N 3

5 ). Suppose for a contradiction that
there is an isomorphic arrangement C of circles. We label the circles as illustrated
in Figs. 7(a) and (b). Since C5 is not incident to any digon, applying the Digon
Collapse Lemma (Lemma 3) to C1 and C3 yields an arrangement C′ with four
touching points p12, p23, p34, p41, where pij is the touching of C ′

i and C ′
j . To be

precise, since C is not intersecting, we first shrink C1 in the arrangement C\{C3}
and then C3 in the arrangement C \ {C1}. Since the respective interiors of C1

and C3 are disjoint, we obtain the desired arrangement.
From Lemma 2 it follows that there is a circle C∗ which passes trough the

points p12, p23, p34, and p41 in this cyclic order. Since the point pij lies inside the
digon formed by Ci and Cj in the arrangement C, it follows that the circle C5

has p12, p34 in its interior and p23, p41 in its exterior. Therefore, the two circles
C5 and C∗ intersect in four points. This is impossible and, therefore, N 2

5 and
N 3

5 are not circularizable. 	

To prove the non-circularizability of N 4

5 , we make use of the following inci-
dence lemma. (A proof and an illustration of this lemma can be found in the full
version [7].)

Lemma 5 (Third Four-Circles Incidence Lemma). Let C be an arrange-
ment of four circles C1, C2, C3, C4 such that (C1, C2), (C2, C3), (C3, C4), and
(C4, C1) are touching, moreover, C4 is in the interior of C1 and the exterior of
C3, and C2 is in the interior of C3 and the exterior of C1. Then there is a circle
C∗ passing through the four touching points in the given cyclic order.

Proof (non-circularizability of N 4
5 ). Suppose there is an isomorphic arrangement

of circles C. Referring to the labeling as shown in Fig. 7(c) we shrink the cir-
cles C2 and C4 such that the pairs (C1, C2), (C2, C3), (C3, C4), (C4, C1) (which
form digons in C) touch. With these touchings the four circles C1, C2, C3, C4
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form the configuration of Lemma 5. Hence there is a circle C∗ containing the
four touching points in the given cyclic order. Now the two circles C∗ and C5

intersect in four points. This is impossible and, therefore, N 4
5 is not circulariz-

able. 	


6 Arrangements of 6 Pseudocircles

On the webpage [6] we have the data of circle realizations of all 2131 intersecting
digon-free arrangements of 6 pseudocircles except for the three arrangements
mentioned in Theorem 3.

The arrangement N Δ
6 (shown in Fig. 3(a)) is an intersecting digon-free

arrangement. Since each of the eight triangles of N Δ
6 is a NonKrupp, the non-

circularizability of N Δ
6 is an immediate consequence of the following theorem:

Theorem 4. Let A be a connected digon-free arrangement of pseudocircles. If
every triple of pseudocircles which forms a triangle is NonKrupp, then A is not
circularizable.

Proof. Assume for a contradiction that there exists an isomorphic arrangement
of circles C on the unit sphere S. Let E(C) be the arrangements of planes spanned
by the circles of C. Imagine the planes of E(C) moving away from the origin. To
be precise, for time t ≥ 1 let Et := {t · E : E ∈ E(C)}. Consider the arrangement
induced by intersecting the moving planes Et with the sphere S. Since C has
NonKrupp triangles, it is not a great-circle arrangement and some planes of
E(C) do not contain the origin. All planes from E(C), which do not contain the
origin, will eventually lose the intersection with S, hence some event has to
happen.

When the isomorphism class of the intersection of Et with S changes, we see
a triangle flip, or a digon flip, or some isolated circle disappears. Since initially
there is no digon and no isolated circle, the first event is a triangle flip. Triangles
of C correspond to NonKrupp subarrangements, hence, the intersection point of
their planes is outside of S (Lemma 1). This shows that a triangle flip event is
also impossible. This contradiction implies that A is non-circularizable. 	


The arrangement N 2
6 (shown in Fig. 3(b)) is intersecting, not an arrangement

of great-pseudocircles, and each triangle in N 2
6 is Krupp. The following theorem

is of the same flavor as Theorem 4 and directly implies the non-circularizability
of N 2

6 .

Theorem 5. Let A be an intersecting arrangement of pseudocircles which is
not an arrangement of great-pseudocircles. If every triple of pseudocircles which
forms a triangle is Krupp, then A is not circularizable.

We outline the proof: Suppose a realization of A exists on the sphere. Contin-
uously move the planes spanned by the circles towards the origin. The induced
arrangement will eventually become isomorphic to an arrangement of great-
circles. Now consider the first event that occurs. As the planes move towards the
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origin, there is no digon collapse. Since A is intersecting, no digon is created,
and, since all triangles are Krupp, the corresponding intersection points of their
planes is already inside S. Therefore, no event can occur – a contradiction.

The arrangement N 3
6 is shown in Figs. 3(c) and 8(b). To prove its non-

circularizability, we again use an incidence lemma.
The following lemma is mentioned by Richter-Gebert as a relative of Pappos’s

Theorem, cf. [16, p. 26]. Figure 8(a) gives an illustration.

Lemma 6. Let �1, �2, �3 be lines, C1, C2, C3 be circles, and p1, p2, p3, q1, q2, q3 be
points, such that for {i, j, k} = {1, 2, 3} point pi is incident to line �i, circle Cj,
and circle Ck, while point qi is incident to circle Ci, line �j, and line �k. Then
C1, C2, and C3 have a common point of intersection.

)b()a(

p1

C1

C3

C2

�3

p3

q3
p2

�1

q2

q1

�2

p3

p1

p′
1

p′
2

p2

p′
3

C6

C1

C3

C2

C4

C5

Fig. 8. (a) An illustration for Lemma 6. (b) The non-circularizable arrangement N 2
6

with 3 dashed pseudolines illustrating the proof.

Proof (non-circularizability of N 3
6 ). Suppose that N 3

6 has a representation C as
a circle arrangement in the plane. We refer to circles and intersection points via
the label of the corresponding object in Fig. 8(b). As in the figure, we assume
without loss of generality that the triangular cell spanned by C4, C5, and C6 is
the outer cell of the arrangement.

Consider the region R := R24 ∪ R35 where Rij denotes the intersection of
the respective interiors of Ci and Cj . The two straight-line segments p1p

′
1 and

p3p
′
3 are fully contained in R35 and R24, respectively, and have alternating end

points along the boundary of R, hence they cross inside the region R24 ∩ R35.
From rotational symmetry we obtain that the three straight-line segments

p1p
′
1, p2p

′
2, and p3p

′
3 intersect pairwise.

For i = 1, 2, 3, let �i denote the line spanned by pi and p′
i, let qi denote

the intersection-point of �i+1 and �i+2, and let C ′
1 denote the circle spanned by

qi, pi+1, pi+2 (indices modulo 3). Note that �i contains pi, qi+1, qi+2. These are
precisely the conditions for the incidences of points, lines, and circles in Lemma 6.
Hence, the three circles C ′

1, C ′
2, and C ′

3 intersect in a common point.
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Let T be the triangle with corners p1, p2, p3. Since p2 and p3 are on C1, and
q1 lies inside of C1, we find that the intersection of the interior of C ′

1 with T is
a subset of the intersection of the interior of C1 with T . The respective contain-
ments also hold for C ′

2 and C2 and for C ′
3 and C3. Moreover, since C ′

1, C ′
2, and

C ′
3 intersect in a common point, the union of the interiors of C ′

1, C ′
2, and C ′

3

contains T . Hence, the union of interiors of the C1, C2, and C3 also contains T .
This shows that in C there is no face corresponding to the gray triangle; see
Fig. 8(b). This contradicts the assumption that C is a realization of N 3

6 , whence
the arrangement is not circularizable. 	
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Abstract. We consider the question of whether a given graph drawing
Γ of a triconnected planar graph G is a weighted barycenter drawing.
We answer the question with an elegant arithmetic characterisation using
the faces of Γ . This leads to positive answers when the graph is a Halin
graph, and to a polynomial time recognition algorithm when the graph
is cubic.

1 Introduction

The barycenter algorithm of Tutte [15,16] is one of the earliest and most elegant
of all graph drawing methods. It takes as input a graph G = (V,E), a subgraph
F0 = (V0, E0) of G, and a position γa for each a ∈ V0. The algorithm simply
places each vertex v ∈ V −V0 at the barycenter of the positions of its neighbours.
The algorithm can be seen as the grandfather of force-directed graph drawing
algorithms, and can be implemented easily by solving a system of linear equa-
tions. If G is a planar triconnected graph, F0 is the outside face of G, and the
positions γa for a ∈ V0 are chosen so that F0 forms a convex polygon, then the
drawing output by the barycenter algorithm is planar and each face is convex.

The barycenter algorithm can be generalised to planar graphs with positive
edge weights, placing each vertex i of V − V0 at the weighted barycenter of the
neighbours of i. This generalisation preserves the property that the output is
planar and convex [8]. Further, weighted barycenter methods have been used in
a variety of theoretical and practical contexts [4,5,11,13]. Examples of weighted
barycenter drawings (the same graph with different weights) are in Fig. 1.

In this paper we investigate the following question: given a straight-line pla-
nar drawing Γ of a triconnected planar graph G, can we compute weights for
the edges of G so that Γ is the weighted barycenter drawing of G? We answer
the question with an elegant arithmetic characterisation, using the faces of Γ .
This yields positive answers when the graph is a Halin graph, and leads to a
polynomial time algorithm when the graph is cubic.

Our motivation in examining this question partly lies in the elegance of the
mathematics, but it was also posed to us by Veronika Irvine (see [2,10]), who
needed the characterisation to to create and classify “grounds” for bobbin lace
c© Springer Nature Switzerland AG 2018
T. Biedl and A. Kerren (Eds.): GD 2018, LNCS 11282, pp. 569–575, 2018.
https://doi.org/10.1007/978-3-030-04414-5_40
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drawings; this paper is a first step in this direction. Further, we note that our
result relates to the problem of morphing from one planar graph drawing to
another (see [1,9]). Previous work has characterised drawings that arise from
the Schnyder algorithm (see [3]) in this context. Finally, we note that this paper
is the first attempt to characterise drawings that are obtained from force-directed
methods.

Fig. 1. Weighted barycenter drawings of the same graph embedding with different
weights.

2 Preliminaries: The Weighted Barycenter Algorithm

Suppose that G = (V,E) denotes a triconnected planar graph and w is a weight
function that assigns a non-negative real weight wij to each edge (i, j) ∈ E. We
assume that the weights are positive unless otherwise stated. We denote |V | by
n and |E| by m. In this paper we discuss planar straight-line drawings of such
graphs; such a drawing Γ is specified by a position γi for each vertex i ∈ V . We
say that Γ is convex if every face is a convex polygon.

Throughout this paper, F0 denotes the outer face of a plane graph G. Denote
the number of vertices on F0 by f0. In a convex drawing, the edges of F0 form a
simple convex polygon P0. Some terminology is convenient: we say that an edge
or vertex on F0 is external ; a vertex that is not external is internal ; a face F
(respectively edge, e) is internal if F (resp. e) is incident to an internal vertex,
and strictly internal if every vertex incident to F (resp. e) is internal.

The weighted barycenter algorithm takes as input a triconnected planar graph
G = (V,E) with a weight function w, together with F0 and P0, and produces
a straight-line drawing Γ of G with F0 drawn as P0. Specifically, it assigns a
position γi to each internal vertex i such that γi is the weighted barycenter of
its neighbours in G. That is:

γi =
1

∑
j∈N(i) wij

∑

j∈N(i)

wijγj (1)

for each internal vertex i. Here N(i) denotes the set of neighbours of i. If γi =
(xi, yi) then (1) consists of 2(n − f0) linear equations in the 2(n − f0) unknowns
xi, yi. The Eq. (1) are called the (weighted) barycenter equations for G. Noting
that the matrix involved is a submatrix of the Laplacian of G, one can show that
the equations have a unique solution that can be found by traditional (see for
Example [14]) or specialised (see for Example [12]) methods.
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The weighted barycenter algorithm, which can be viewed as a force directed
method, was defined by Tutte [15,16] and extended by Floater [8]; the classic
theorem says that the output is planar and convex:

Theorem 1. (Tutte [15,16], Floater [8]) The drawing output by the weighted
barycenter algorithm is planar, and each face is convex.

3 The Weighted Barycenter Recognition Problem

This paper discusses the problem of finding weights wij so that a given drawing
is the weighted barycenter drawing with these weights. More precisely, we say
that a drawing Γ is a weighted barycenter drawing if there is a positive weight
wij for each internal edge (i, j) such that for each internal vertex i, Eq. (1) hold.

The Weighted Barycenter Recognition Problem
Input: A straight-line planar drawing Γ of a triconnected plane graph G =

(V,E), such that the vertices on the convex hull of {γi : i ∈ V } form a face
of G.

Question: Is Γ a weighted barycenter drawing?

Thus we are given the location γi = (xi, yi) of each vertex, and we must compute
a positive weight wij for each edge so that the barycenter Eq. (1) hold for each
internal vertex.

Theorem 1 implies that if Γ is a weighted barycenter drawing, then each face
of the drawing is convex; however, the converse is false, even for triangulations
(see appendix on arXiv [6]).

4 Linear Equations for the Weighted Barycenter
Recognition Problem

In this section we show that the weighted barycenter recognition problem can be
expressed in terms of linear equations. The equations use asymmetric weights
zij for each edge (i, j); that is, zij is not necessarily the same as zji. To model
this asymmetry we replace each undirected edge (i, j) of G with two directed
edges (i, j) and (j, i); this gives a directed graph

−→
G = (V,

−→
E ). For each vertex i,

let N+(i) denote the set of out-neighbours of i; that is, N+(i) = {j ∈ V : (i, j) ∈−→
E }.

Since each face is convex, each internal vertex is inside the convex hull of its
neighbours. Thus each internal vertex position is a convex linear combination of
the vertex positions of its neighbours. That is, for each internal vertex i there
are non-negative weights zij such that

∑

j∈N+(i)

zij = 1 and γi =
∑

j∈N+(i)

zijγj . (2)
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The values of zij satisfying (2) can be determined in linear time. For a specific
vertex i, the zij for j ∈ N+(i) can be viewed as a kind of barycentric coordinates
for i. In the case that |N+(i)| = 3, these coordinates are unique.

Although Eqs. (1) and (2) seem similar, they are not the same: one is directed,
the other is undirected. In general zij �= zji for directed edges (i, j) and (j, i),
while the weights wij satisfy wij = wji. However we can choose a “scale factor”
si > 0 for each vertex i, and scale Eq. (2) by si. That is, for each internal vertex i,

γi =
1

∑
j∈N+(i) sizij

∑

j∈N+(i)

sizijγj . (3)

The effect of this scaling is that we replace zij by sizij for each edge (i, j).
We would like to choose a scale factor si > 0 for each internal vertex i such

that for each strictly internal edge (i, j) ∈ E, sizij = sjzji; that is, we want to
find a real positive si for each internal vertex i such that

sizij − sjzji = 0 (4)

for each strictly internal edge (i, j).
It can be shown easily that the existence of any nontrivial solution to (4)

implies the existence of a positive solution (see appendix in arXiv version).
We note that any solution of (4) for strictly internal edges gives weights wij

such that the barycenter Eq. (1) hold. We choose wij = sizij for each (directed)
edge (i, j) that is incident to an internal vertex i. Equation (4) ensure that
wij = wji for each strictly internal edge. For edges which are internal but not
strictly internal, we can simply choose wij = sizij for any value of si, since zji

is undefined.
Thus if Eq. (4) have a nontrivial solution, then the drawing is a weighted

barycenter drawing.

The Main Theorem. We characterise the solutions of Eq. (4) with an arith-
metic condition on the faces of Γ . This considers the product of the weights zij

around directed cycles in G: if the product around each strictly internal face
in the clockwise direction is the same as the product in the counter-clockwise
direction, then Eq. (4) have a nontrivial solution.

Theorem 2. Equation (4) have a nontrivial solution if and only if for each
strictly internal face C = (v0, v1, . . . , vk−1, vk = v0) in G, we have

k−1∏

i=0

zvi,vi+1 =
k∏

i=1

zvi,vi−1 . (5)

Proof. For convenience we denote zji

zij
by ζij for each directed edge (i, j); note

that ζij = 1/ζji. Equation (4) can be re-stated as

si − ζijsj = 0 (6)
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for each strictly internal edge (i, j), and the Eq. (5) for cycle C can be re-stated
as

k−1∏

i=0

ζvi,vi+1 = 1. (7)

First suppose that Eq. (6) have nontrivial solutions si for all internal vertices i,
and C = (v0, v1, . . . , vk−1, vk = v0) is a strictly internal face in G. Now applying
(6) around C clockwise beginning at v0, we can have:

sv0 = ζv0,v1sv1 = ζv0,v1ζv1,v2sv2 = ζv0,v1ζv1,v2ζv2,v3sv3 = . . .

We can deduce that

sv0 =

(
j−1∏

i=0

ζvi,vi+1

)

svj
=

(
k−1∏

i=0

ζvi,vi+1

)

svk
=

(
k−1∏

i=0

ζvi,vi+1

)

sv0

and this yields Eq. (7).
Now suppose that Eq. (7) holds for every strictly internal facial cycle of G.

We first show that Eq. (7) holds for every strictly internal cycle. Suppose that
(7) holds for two cycles C1 and C2 that share a single edge, (u, v), and let C3

be the sum of C1 and C2 (that is, C3 = (C1 ∪ C2) − {(u, v)}). Now traversing
C3 in clockwise order gives the clockwise edges of C1 (omitting (u, v)) followed
by the clockwise edges of C2 (omitting (v, u)). But from Eq. (7), the product of
the edge weights ζij in the clockwise order around C1 is one, and the product of
the edge weights ζi′j′ in the clockwise order around C2 is one. Thus the product
of the edge weights ζij in clockwise order around C3 is 1

ζuvζvu
= 1. That is, (7)

holds for C3. Since the facial cycles form a cycle basis, it follows that (7) holds
for every cycle.

Now choose a reference vertex r, and consider a depth first search tree T
rooted at r. Denote the set of directed edges on the directed path in T from i to
j by Eij . Let sr = 1, and for each internal vertex i �= r, let

si =
∏

(u,v)∈Eri

ζuv. (8)

Clearly Eq. (6) holds for every edge of T . Now consider a back-edge (i, j) for T
(that is, a strictly internal edge of G that is not in T ), and let k denote the least
common ancestor of i and j in T . Then from (8) we can deduce that

si

sj
=

∏
(u,v)∈Eri

ζuv
∏

(u′,v′)∈Erj
ζu′v′

=

∏
(u,v)∈Eki

ζuv
∏

(u′,v′)∈Ekj
ζu′v′

. (9)

Now let C be the cycle in Γ that consists of the reverse of the directed path in
T from k to j, followed by the directed path in T from k to i, followed by the
edge (i, j). Since Eq. (7) holds for C, we have:

1 =

⎛

⎝
∏

(v′,u′)∈Ejk

ζv′u′

⎞

⎠

⎛

⎝
∏

(u,v)∈Eki

ζuv

⎞

⎠ ζij =

( ∏
(u,v)∈Eki

ζuv
∏

(u′v′)∈Ekj
ζu′v′

)

ζij (10)
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Combining Eqs. (9) and (10) we have si = ζijsj and so Eq. (6) holds for each
back edge (i, j). We can conclude that (6) holds for all strictly internal edges. ��

5 Applications

We list some implications of Theorem 2 for cubic, Halin [7] and planar graphs
with degree larger than three. Proofs of the corollaries below are straightforward.

Corollary 1. A drawing Γ of a cubic graph is a weighted barycenter drawing if
and only if Eq. (4) have rank smaller than n − f0. ��
Corollary 2. For cubic graphs, there is a linear time algorithm for the weighted
barycenter recognition problem. ��

For cubic graphs, the weights zij are unique, and thus Eq. (4) give a complete
characterisation of weighted barycenter drawings. One can use Theorem 2 to test
whether a solution of Eq. (4) exists, checking Eq. (5) in linear time.

Corollary 3. Suppose that Γ is a convex drawing of a Halin graph such that
the internal edges form a tree. Then Γ is a weighted barycenter drawing. ��

Graphs with Degree Larger Than Three. For a vertex i of degree di > 3,
solutions for Eq. (2) are not unique. Nevertheless, these equations are linear,
and we have 3 equations in di variables. Thus, for each vertex i, the solution
zij , j ∈ N(i), form a linear space of dimension at most di − 3. In this general
case, we have:

Corollary 4. A drawing Γ of a graph G is a weighted barycenter drawing if
and only if there are solutions zij to Eq. (2) such that the cycle Eq. (5) holds for
every internal face. ��

Although Corollary 4 is quite elegant, it does not lead to an immediately
practical algorithm because the Eq. (5) are not linear.

6 Conclusion

Force-directed algorithms are very common in practice, and drawings obtained
from force-directed methods are instantly recognisable to most researchers in
Graph Drawing. However, this paper represents the first attempt to give algo-
rithms to recognise the output of a particular force-directed method, namely the
weighted barycenter method. It would be interesting to know if the results of
other force-directed methods can be automatically recognised.

Acknowledgements. We wish to thank Veronika Irvine for motivating discussions.
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Abstract. In this paper we present a new approach to visualize directed
graphs and their hierarchies that completely departs from the classical
four-phase framework of Sugiyama and computes readable hierarchical
visualizations that contain the complete reachability information of a
graph. Additionally, our approach has the advantage that only the nec-
essary edges are drawn in the drawing, thus reducing the visual com-
plexity of the resulting drawing. Furthermore, most problems involved
in our framework require only polynomial time. Our framework offers a
suite of solutions depending upon the requirements, and it consists of
only two steps: (a) the cycle removal step (if the graph contains cycles)
and (b) the channel decomposition and hierarchical drawing step. Our
framework does not introduce any dummy vertices and it keeps the ver-
tices of a channel vertically aligned. The time complexity of the main
drawing algorithms of our framework is O(kn), where k is the number
of channels, typically much smaller than n (the number of vertices).

1 Introduction

The visualization of directed (often acyclic) graphs is very important for many
applications in several areas of research and business. This is the case because
such graphs often represent hierarchical relationships between objects in a
structure (the graph). In their seminal paper of 1981, Sugiyama, Tagawa, and
Toda [21] proposed a four-phase framework for producing hierarchical drawings
of directed graphs. This framework is known in the literature as the “Sugiyama”
framework, or algorithm. Most problems involved in the optimization of vari-
ous phases of the Sugiyama framework are NP-hard. In this paper we present a
new approach to visualize directed graphs and their hierarchies that completely
departs from the classical four-phase framework of Sugiyama and computes read-
able hierarchical visualizations that contain the complete reachability informa-
tion of a graph. Additionally, our approach has the advantage that only the
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necessary edges are drawn in the drawing, thus reducing the visual complexity
of the resulting drawing. Furthermore, most problems involved in our framework
require polynomial time.

Let G = (V,E) be a directed graph with n vertices and m edges. The
Sugiyama Framework for producing hierarchical drawings of directed graphs
consists of four main phases [21]: (a) Cycle Removal, (b) Layer Assignment, (c)
Crossing Reduction, and (d) Horizontal Coordinate Assignment. The reader can
find the details of each phase and several proposed algorithms to solve various
of their problems and subproblems in Chap. 9 of the Graph Drawing book of [2].
Other books have also devoted significant portions of their Hierarchical Drawing
Algorithms chapters to the description of this framework [13,14].

The Sugiyama framework has also been extensively used in practice, as man-
ifested by the fact that various systems have chosen it to implement hierarchical
drawing techniques. Several systems such as AGD [17], da Vinci [5], GraphViz
[7], Graphlet [8], dot [6], and others implement this framework in order to hierar-
chically draw directed graphs. Even commercial software such as the Tom Sawyer
Software TS Perspectives [20] and yWorks [23] essentially use this framework
in order to offer automatic hierarchical visualizations of directed graphs. More
recent information regarding the Sugiyama framework and newer details about
various algorithms that solve its problems and subproblems can be found in [14].

Even tough this framework is very popular, it has several limitations: as dis-
cussed above, most problems and subproblems that are used to optimize the
results of each phase have turned out to be NP-hard. Several of the heuris-
tics employed to solve these problems give results that are not bounded by
any approximation. Additionally, the required manipulations of the graph often
increase substantially the complexity of the graph itself (such as the number of
dummy vertices in phase b can be as high as O(nm)). The overall time com-
plexity of this framework (depending upon implementation) can be as high as
O((nm)2), or even higher if one chooses algorithms that require exponential
time. Finally, the main limitation of this framework is the fact that the heuris-
tic solutions and decisions that are made during previous phases (e.g., crossing
reduction) will influence severely the results obtained in later phases. Neverthe-
less, previous decisions cannot be changed in order to obtain better results.

In this paper we propose a new framework that departs completely from the
typical Sugiyama framework and its four phases. Our framework is based on the
idea of partitioning the vertices of a graph G into channels, that we call channel
decomposition of G. Namely, after we partition the vertices of G into channels,
we compute a new graph Q which is closely related to G and has the same
reachability properties as G. The new graph consists of the vertices of G, channels
edges that connect vertices that are in the same channel, and cross edges that
connect vertices that belong to different channels. Our framework draws either
(a) graph G without the transitive “channel edges” or (b) a condensed form of
the transitive closure of G. Our idea is to compute a hierarchical drawing of Q
and, since Q has the same reachability properties as G, this drawing contains
most edges of G and gives us all the reachability information of G. The “missing”
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incident edges of a vertex can be drawn interactively on demand by placing the
mouse on top of the vertex and its incident edges will appear at once in red
color.

Our framework offers a suite of solutions depending upon the requirements
of the user, and it consists of only two steps: (a) the cycle removal step (if
the graph contains cycles) and (b) the channel decomposition and hierarchical
drawing step. Our framework does not introduce any dummy vertices, keeps the
vertices of a channel vertically aligned and it offers answers to reachability queries
between vertices by traversing at most one cross edge. Let k be the number of
channels and m′ be the number of cross edges in Q. We show that m′ = O(nk).
The number of bends we introduce is at most O(m′) and the required area is
at most O(nk). The number of crossings between cross edges and channels can
be minimized in O(k!k2) time, which is reasonable for small k. If k is large, we
present linear-time heuristics that find a small number of such crossings. The
total time complexity of the algorithms of our framework is O(kn) plus the time
required to compute the channel decomposition of G, which depends upon the
type of channel decomposition required.

Our paper is organized as follows: the next section presents necessary prelim-
inaries including a brief description of the phases of the Sugiyama framework,
the time complexity of the phases, and a description of “bad” choices. In Sect. 3
we present the concept of path decomposition of a DAG and of path graph
(i.e., when the channels are required to be paths of G) and we present the
new algorithm for hierarchical drawing which is based on any (computed) path
decomposition of a DAG. Section 4 presents the concepts of channel decomposi-
tion of a DAG and of channel graph (where channels are not paths) and the new
algorithm for hierarchical drawing which is based on any (computed) channel
decomposition of a DAG. In Sect. 5 we present the properties of the drawings
obtained by our framework, we offer comparisons with the drawings obtained
by traditional techniques, and present our conclusions. Due to space limitations,
we present the techniques on minimizing the number of crossings between cross
edges and channels in [16].

2 Sugiyama Framework

Let G = (V,E) be a directed graph with n vertices and m edges. A Hierarchical
drawing of G requires that all edges are drawn in the same direction upward
(downward, rightward, or leftward) monotonically. If G contains cycles this is
clearly not possible, since in a drawing of the graph some edges have to be
oriented backwards. The Sugiyama framework contains the Cycle Removal Phase
in which a (small) subset of edges is selected and the direction of these edges is
reversed. Since it is important to maintain the character of the input graph, the
number of the selected edges has to be minimum. This is a well known NP-hard
problem, called the Feedback Arc Set problem. A well known approximation
algorithm, called Greedy-Cycle-Removal, runs in linear time and produces sets
that contain at most m/2−n/6 edges. If the graph is sparse, the result is further
reduced to m/3 edges [2].
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Since the input graph G may contain cycles our framework also needs to
remove or absorb them. One approach is to use a cycle removal algorithm (similar
to Sugiyama’s first step) but instead of reversing the edges, we propose to remove
them, since reversing them could lead to an altered transitivity of the original
graph. This is done because the reversed edge will be a transitive edge in the
new graph and hence it may affect the drawing. By the way, this is another
disadvantage of Sugiyama’s framework. Since the removal and/or reversal of
such edges will create a graph that will have a “different character” than the
original graph we propose another possibility that will work well if the input
graphs do not contain long cycles. It is easy to (a) find the Strongly Connected
Components (SCC) of the graph in linear time, (b) cluster and collapse each
SCC into a supernode, and then the resulting graph G′ will be acyclic. Even if
both techniques are acceptable, we believe that the second one might be able
to better preserve the character of the input graph. On the other hand, this
technique would not be useful if most vertices of a graph are included in a very
long cycle. From now on, we assume that the given graph is acyclic after using
either of the techniques described above.

In the Layer Assignment Phase of the Sugiyama framework the vertices are
assigned to a layer and the layering is made proper, see [2,14,21]. In other words,
long edges that span several layers are broken down into many smaller edges by
introducing dummy vertices, so that every edge that starts at a layer terminates
at the very next layer. Clearly, in a graph that has a longest path of length O(n)
and O(m) transitive edges, the number of dummy vertices can be as high as
O(nm). This fact will impact the running time (and space) of the subsequent
phases, with heaviest impact on the next phase, Crossing Reduction Phase.

The Crossing Reduction Phase is perhaps the most difficult and most time-
consuming phase. It deals with various difficult problems that have attracted a
lot of attention both by mathematicians and computer scientists. It is outside
the scope of this paper to describe the various techniques for crossing reduc-
tion, however, the reader may see [2,14] for further details. The most popular
technique for crossing reduction is the Layer-by-Layer Sweep [2,14]. This tech-
nique solves multiple problems of the well known Two-Layer-Crossing Problem
by considering the layers in pairs going up (or down). Of course, a solution for
a specific two layer crossing problem “fixes” the relative order of the vertices
(real and dummy) for the next two layer crossing problem, and so on. Therefore,
“bad” choices may propagate. Please notice that each two layer crossing prob-
lem is NP-complete [4]. The heuristics employed here tend to reduce crossings
by various techniques, but notice that the number of crossings may be as high as
O(M ′2), where M ′ is the number of edges between the vertices of two adjacent
layers.

Finally, in the last phase the exact x-coordinates of the vertices are computed
by quadratic-programming techniques [2,14], which require considerable compu-
tational resources. The dummy vertices are replaced by bends. This implies that
the number of bends is about equal to the number of dummy vertices (except
when the edge segments are completely aligned).
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3 Path Constrained Hierarchical Drawing

Let G = (V,E) be a DAG. In this paper we define a path decomposition of G as
a set of vertex-disjoint paths Sp = {P1, ..., Pk} such that V (P1), ..., V (Pk) is a
partition of V (G). A path Ph ∈ Sp is called a decomposition path. The vertices
in a decomposition path are clearly ordered in the path, and we denote by vj

i the
fact that v is the jth vertex of path Pi. The path decomposition graph, or simply
path graph, of G associated with path decomposition Sp is a graph H = (V,A)
such that e = (u, v) ∈ A if and only if e ∈ E and (a) u, v are consecutive in a path
of Sp (called path edges) or (b) u and v belong to different paths (called cross
edges). In other words, an edge of H is a path edge if it connects two consecutive
vertices of the same decomposition path, else it is a cross edge. Notice that the
edges belonging to G but not to H are transitive edges between vertices of the
same path of G.

A path constrained hierarchical drawing (PCH drawing) Γ of G given Sp

is a hierarchical drawing of H such that two vertices are drawn on the same
vertical line (i.e., same x-coordinate) if and only if they belong to the same
decomposition path. In this section we propose an algorithm that computes
PCH drawings assigning to each vertex the x-coordinate of the path it belongs
to and for y-coordinate we will use its rank in a topological sorting. We will
prove that this assignment lets us obtain good results in terms of both area and
number of bends.

Next we present Algorithm PCH-Draw that computes a PCH drawing Γ of
G such that every edge of G bends at most once. We denote by X(Ph) the x-
coordinate of Path Ph and by X(v), Y (v) the x-coordinate and the y-coordinate
of any vertex v. Let Pv be the path of Sp containing v. By definition of PCH
drawing we have that X(v) = X(Pv). Suppose that the vertices of G are topo-
logically ordered and let T (v) be the position of v in a topological order of V .
PCH-Draw associates to every path, and consequently to every vertex of the
path, an x-coordinate that is an even number and to every vertex a y-coordinate
that corresponds to its topological order, i.e., Y (v) = T (v) (Steps 1–4). The algo-
rithm draws every edge e = (u, v) as a straight line if the drawn edge doesn’t
intersect a vertex w different from u and v in Γ (Steps 5–7). Otherwise it draws
edge e with one bend be such that: its x-coordinate X(be) is equal to X(u)+1 if
X(u) < X(v), or X(u) − 1 if X(u) > X(v). The y-coordinate of bend be Y (be)
is equal to Y (v) − 1 (Steps 8–14).

Algorithm PCH-Draw(G = (V,E), Sp = {P1, P2, ..., Pk}, H = (V,A))
1. For i = 1 to k do
2. X(Pi) = 2i
3. For any v ∈ V
4. (X(v), Y (v)) = (X(Pv), T (v))
5. For any e = (u, v) ∈ A
6. If the straight line drawing of e does not intersect a vertex different

from u, v:
7. Draw e as a straight line
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8. Else:
9. If X(u) < X(v):
10. X(be) = X(u) + 1
11. Else:
12. X(be) = X(u) − 1
13. Y (be) = Y (v) − 1
14. Draw e with one bend at point (X(be), Y (be))

In Fig. 1 we show an example of a drawing computed by Algorithm PCH-Draw.
In (a) we show the drawing of a graph G as computed by Tom Sawyer Perspec-
tives (a tool of Tom Sawyer Software) which follows the Sugiyama Framework.
In (b) we show the drawing Γ of H computed by Algorithm PCH-Draw. The
path decomposition that we used to compute the drawing is Sp = {P1, P2, P3},
where: P1 = {0, 1, 4, 7, 12, 13, 15, 16, 17, 20, 22, 24, 25, 26, 29, 30}; P2 = {2, 5, 9, 11,
23, 27}; P3 = {3, 6, 8, 10, 14, 18, 19, 21, 28}. Edge e = (21, 25) is the only one
bending. In grey we show edge e drawn as straight line, intersecting vertex 23.

Any drawing Γ computed by Algorithm PCH-Draw has several interesting
properties. First, the area of Γ is typically less than O(n2). By construction, Γ
has height n−1 and width of 2k−1. Hence Area(Γ ) = O(kn). Given Sp and the
topological order of the vertices of G, every vertex need O(1) time to be placed.
Every edge e = (u, v) needs O(k) time to be placed, since before drawing it we
need to check if its straight line drawing would intersect a vertex different from
u, v (Step 6). Since the drawing of e must be monotonous, it can intersect at
most one edge per path, so we just need to check if in correspondence of every
path placed between the path of u and v in Γ the drawing of e intersects some
vertex. Hence we have:

Theorem 1. Algorithm PCH-Draw computes a drawing Γ of a DAG G in O(n+
mk) time. Furthermore, Area(Γ ) = O(kn).

The proofs of Lemma 1 and Lemma 2 are in [16]:

Lemma 1. A cross edge e = (u, v) does not intersect a vertex different from u
and v in Γ .

Lemma 2. Let e = (u, v) and e′ = (u′, v′) be two cross edges drawn with a bend
in Γ . Their bends are placed in the same point if and only if u and u′ are in the
same decomposition path and v = v′.

In the case described by the above lemma, two edges have overlapping segments
(be, v) and (be′ , v). We consider this feature acceptable, or even desirable for two
edges that have the same endpoint. This typical merging of edges has been used
in the past, see for example [1,11,18]. However, in case that this feature is not
desirable, we propose two alternative solutions that avoid this overlap. The price
to pay is larger area, or less edges drawn:

1. Larger area option: We can shift horizontally by one unit the position of
bend be′ and all the vertices v and bends b such that X(v) > X(be) and
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Fig. 1. (a)Drawing of a dag G computed by Tom Sawyer Perspectives (a tool of Tom
Sawyer Software) (b) PCH drawing of H computed by Algorithm PCH-draw.

X(b) > X(be). In this case we have no overlaps, but the area of Γ can be as
large as O(knm).

2. Less edges option: We can define the path decomposition graph differently by
removing some transitive cross edges from H. For every vertex v we remove
the edge (u, v) if there exists an edge (u′, v) such that u′ and u are in the same
decomposition path P and u precedes u′ in the order of P . It is easy to prove
that H ′ is a subgraph of H and that A − A′ contains only transitive edges of
G. By definition of H ′, given a decomposition path P , for any vertex v there
exists at most one cross edge e = (u, v) such that u ∈ P . According to Lemma
2, there are no bends overlapping. The area of a drawing Γ computed using
H ′ is Area(Γ ′) = O(kn). However, we pay for the absence of overlapping
bends by the exclusion from the drawing of some transitive cross edges of G.

In Fig. 2 we show an example of the edge overlap described above in a drawing of
H. Part (a) shows a simple drawing where two edges, e1 = (u, v) and e2 = (u′, v),
overlap. In grey the drawings of e1, e2 as straight lines, please notice that both of
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them intersect a vertex. In part (b) we shift horizontally the drawing, removing
the overlap but, of course, increasing the area. Part (c) shows the drawing of H ′,
where edge (u, v) is removed since u′ has a higher order in their path.

u′

u

v

u′

u

v

u′

u

v

(a) (b) (c)

Fig. 2. Examples of bend and edge overlaps in a drawing of H.

Alternatively we propose to draw every cross edge with a bend. In this case
we can avoid Step 6, so we can obtain the drawing in O(n + m). Of course, we
pay the reduced time complexity by having more bends in the drawing.

Notice that graphs H and H ′ are computed from G by simply removing some
transitive edges. Hence we have the following:

Theorem 2. The path decomposition graphs H and H ′ have the same reacha-
bility properties of G.

Theorem 2 is rather simple, but it is very important, since it tells us that visu-
alizing a hierarchical drawing of H or H ′ we do read and understand correctly
any reachability relation between the vertices of G.

A path decomposition Sp of a DAG G with a small number of paths lets
us compute a readable PCH drawing of G, since the number of decomposition
paths influences the area of the drawing and its number of bends. Indeed, since
a cross edge can intersect at most one vertex of every decomposition path, the
number of decomposition paths influences the number of bends of the drawing.
Furthermore, the number of paths k clearly influences the time to find the min-
imum number of crossings between cross edges and paths, as it is described in
[16]. Several algorithms solve the problem of finding a path decomposition of
minimum size [9,12,15,19]. The algorithm of [12] is the fastest one for sparse
and medium DAGs. In the next section we introduce a relaxed definition of
path, the channel, and a way to obtain hierarchical drawings based on a channel
decomposition. Notice that, since paths are constrained versions of channels, we
expect the minimum size of a channel decomposition to be lower than or in the
worst case equal to the minimum size of a path decomposition. Therefore, we
now turn our attention to the concept of a channel decomposition.
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4 Channel Constrained Hierarchical Drawing

Let G = (V,E) be a DAG. A channel C is an ordered set of vertices such that
any vertex u ∈ C has a path to each of its successors in C. In other words, given
any two vertices v, w ∈ C, v precedes w in the order of channel C if and only if
w is reachable from v in G. A channel can be seen as a generalization of a path,
since a path is always a channel, but a channel may not be a path. A channel
decomposition Sc = {C1, ..., Ck} is a partition of the vertex set V of the graph
into channels. If vertex v belongs to channel Ci we write vj

i if v is the jth vertex
of channel Ci. The channel decomposition graph H ′′ and a channel constrained
hierarchical drawing (CCH drawing) of G are defined in a similar fashion as
we defined the path decomposition graph H and the PCH drawing of G in the
previous section. Notice that, since the channel is a generalization of a path,
the concepts of channel decomposition graph and CCH drawing are a general-
ization of the concepts of path decomposition graph and PCH drawing. We can
define Algorithm CCH-Draw in a similar fashion as Algorithm PCH-draw, and
its pseudocode is similar to the pseudocode of Algorithm PCH-draw. The only
difference is that Algorithm CCH-Draw takes as input a channel decomposition
instead of a path decomposition and that its output is a CCH drawing instead of
a PCH drawing. Algorithm CCH-Draw is clearly a generalization of Algorithm
PCH-Draw. Because of space limitations we do not discuss the complete details
of Algorithm CCH-Draw here.

Now we introduce a “special” transitive closure, called compressed transitive
closure, which is based on the concept of channel decomposition. This transitive
closure is obtained from an ordinary transitive closure by removing some of
its transitive edges. Next, we will define a graph Q, based on the compressed
transitive closure, that will let us obtain more readable drawings.

Compressed Transitive Closure (CTC): Let Lv be a list of vertices asso-
ciated with a vertex v ∈ V such that: Lv contains at most one vertex of any
decomposition channel; a vertex w is reached from v in G if and only if list Lv

contains a vertex w′ such that: w and w′ are in the same decomposition channel
and w′ precedes w in the order of that decomposition channel.

The compressed transitive closure (CTC) of G is the set of all the lists Lv.
In [10] it is shown how to compute the CTC of a graph in O(mk) time. Next
we show how we can store the CTC in O(nk) space and that it contains the
complete reachability information of G.

We define the compressed transitive closure graph (CTC graph) Q = (V, I)
such that (u, v) ∈ I if and only if u is the highest vertex in the order of its channel
such that v ∈ Lu. Notice that an edge of Q may not exist in the original graph G,
as is the case in the ordinary transitive closure graph Gc of G. Furthermore, an
edge of G may not be included in Q, while Gc contains all the edges of G. Please
notice that Q has the same reachability properties (i.e., the same transitive
closure) as G, since it is computed directly from the CTC of G. We denote by
channel edge an edge of Q connecting two vertices of the same channel, else it
is a cross edge, similar to the definition of the previous section.
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Fig. 3. (a)Drawing of a dag G computed by Tom Sawyer Perspectives (a tool of Tom
Sawyer Software) (b) CCH drawing of Q computed by Algorithm CCH-draw.

Let uj
i be a vertex. The list Lu contains by definition the vertex vj+1

i , since
it is the lowest vertex in the channel Ci reachable from u. Hence we have the
following property:

Lemma 3. (u, v) ∈ I for any uj
i , v

j+1
i .

Lemma 3 implies that the channel decomposition Sc of G is a path decom-
position of Q, so a CCH drawing of Q is essentially also a PCH drawing and
hence we can compute it using Algorithm CCH-Draw or Algorithm PCH-Draw
since in this case the two algorithms produce the same result.

In Fig. 3 an example of a CCH drawing of G computed by Algorithm
CCH-Draw using Q as an input is shown: Part (a) shows the original graph
G drawn as computed by Tom Sawyer Perspectives that uses the Sugiyama
Framework. A channel decomposition of this graph is Sc = {C1, C2, C3, C4},
where: C1 = {0, 2, 3, 7, 8, 12, 15, 16, 19}; C2 = {1, 4, 9, 17}; C3 = {5, 10, 13, 18};
C4 = {6, 11, 14}. In part (b) we show the drawing of Q as computed by Algo-
rithm CCH-Draw. The dotted edges are edges that do not exist in G. Some
channel edges are dotted, since a channel may not be a path of G.
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There is one list Lv for every vertex v and every list contains O(k) elements.
Since every element of a list Lv corresponds to (at most) one edge of Q we have
that Q contains O(nk) edges. Hence we have the following:

Theorem 3. The number of edges of Q is O(nk).

The above theorem implies that the number of edges of Q is linear if k is a
constant. Also, it requires only O(nk) space to be stored. As we did in the
previous section, we denote by cross edge an edge of Q connecting two vertices
belonging to two different channels. We denote by mono channel path (mc-path)
a path of Q such that all the edges of it are in the same channel, while we denote
by double channel path (dc-path) a path of Q composed by two mc-paths and a
cross edge.

Theorem 4. Let v and u be any pair of vertices such that v is reachable from
u. Then there exists either an mc-path or a dc-path from u to v in Q.

Proof. Suppose that u and v are in the same channel Ci. In this case there exists
an mc-path from u to v as a consequence of Lemma 3. Suppose that u and v
are in two different channels Ci and Cj . If u reaches v, by definition of Q, there
must be a vertex u′ ∈ Ci that is a successor of u in Ci and a vertex v′ ∈ Cj

which is predecessor of v in Cj , such that (u′, v′) ∈ I. Let p1 be the mc-path
from u to u′ and p2 be the mc-path from v′ to v. The path p = p1 + (u′, v′) + p2
is a dc-path from u to v.

We claim that such a CCH drawing of Q is a very useful instrument to visualize
the reachability properties of G. Indeed, if we want to check if a vertex reaches
another vertex in Q (and consequently in G) we just need to check if there
exists an mc-path or a dc-path connecting them (Lemma 4). Moreover, finding
an mc-path or a dc-path in Γ is very easy, since every mc-path is drawn on a
vertical line and every dc-path is drawn as two different vertical lines connected
by a cross edge. Moreover since Q has an almost-linear number of edges (O(nk))
by Theorem 3 it makes Q easier to visualize and so it gives us a clear way to
visualize the reachability properties of G. The price we have to pay is that we do
not visualize many edges of the original graph G. These edges can be visualized
(in red) on demand by moving the mouse over a given query vertex.

A channel decomposition with a small number of channels lets us compute a
readable CCH drawing of G. The width b of a DAG G is the maximum cardinality
of a subset of V of pairwise incomparable vertices of G, i.e., there is no path
between any two vertices in the subset. In [3] it is proved that the minimum
value of the cardinality of Sc, is b and in [10] an algorithm is given to compute
Sc with k = b in O(n3) time. The time complexity is improved to O(bn2) in [22].
Clearly, since paths are a restricted type of channels, the minimum size of Sc is
less than or equal to the minimum size of Sp.

5 Comparisons and Conclusions

We discussed the results of our algorithms in terms of bends and area. The
framework we present in this paper produces results that are far superior to
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the results produced by the Sugiyama framework with respect to the number of
crossings, number of bends, area of the drawing and visual clarity of the existing
paths and reachability. Namely, because the hierarchical drawings produced by
the Sugiyama framework have (a) many crossings (a bound is not possible to be
computed), (b) the total number of bends is large and it depends heavily on the
number of dummy vertices introduced, (c) the area is large because the width of
the drawing is negatively influenced by the number of dummy vertices, (d) the
number of bends per edge is also influenced by the number of dummy vertices on
it (although the last phase tries to straighten the edges by aligning its segments,
at the expense of the area, of course), (e) most problems and subproblems of
each phase are NP-hard, and many of the heuristic are very time consuming,
and (f) the reachability information in the graph is not easy to detect from the
drawing.

Our framework produces hierarchical drawings that are far superior of the
ones produced by the Sugiyama framework in all measures discussed above.
Namely, our drawings have (a) a minimum number of channel crossings as an
upper bound (see [16]), (b) the total number of bends is low since we introduce at
most one bend for some (not all) cross edges, (c) the area is precisely bounded by
a rectangle of height n − 1 and width O(k), where k is typically a small fraction
of n, (d) the reachability and path information is easily visible in our drawings
since any path is deduced by following at most one cross edge (which might
have at most one bend), (e) the vertices in each channel are vertically aligned
and there is a path from each vertex in the channel to all the vertices that are
at higher y-coordinates, (f) all our algorithms run in polynomial time (with the
exception of the minimization of the number of channel crossings, which requires
O(k!k2) time), and finally, (g) the flexibility of our framework allows a user to
decide to have their specified paths as channels, thus allowing for user paths to
be drawn aligned.

The only drawback of the drawings produced by our framework is the fact
that it does not draw all the edges of the graph, which might be important
for some applications. This might be considered as an advantage by some other
users since it offers drawings that are not cluttered by the edges. In any case,
we offer the remedy to visualize all the edges incident to a vertex interactively
when the mouse is placed on top of a vertex.

We believe that the above comparison is convincing of the power of the new
framework. Hence we do not offer experimental results here. However, in the
future we plan to contact user studies in order to verify that the users we will
benefit from the aforementioned properties by showing higher understanding and
ease of use of the new drawing framework. We plan to work on allowing to include
user specified channels (or paths), and still find the minimum number of channels
in a channel decomposition. It would be interesting to find specific topological
orderings and/or sophisticated layer assignment that will reduce the height, the
number of crossings and the number of bends of the computed drawing. Finally,
it would be desirable to avoid the exponential in k (i.e., k!) factor in the time
complexity of finding the best order of the channels.
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Abstract. How to draw the vertices of a complete multipartite graph G
on different points of a bounded d-dimensional integer grid, such that the
sum of squared distances between vertices of G is (i) minimized or (ii)
maximized? For both problems we provide a characterization of the solu-
tions. For the particular case d = 1, our solution for (i) also settles the
minimum-2-sum problem for complete bipartite graphs; the minimum-
2-sum problem was defined by Juvan and Mohar in 1992. Weighted cen-
troidal Voronoi tessellations are the solution for (ii). Such drawings are
related with Laplacian eigenvalues of graphs. This motivates us to study
which properties of the algebraic connectivity of graphs carry over to the
restricted setting of drawings of graphs with integer coordinates.

1 Introduction

Let r, d be positive integers. Let n1 ≤ · · · ≤ nr be positive integers such that∑
ni = (2M +1)d for some integer M . We consider straight line drawings of the

complete r-partite graph Kn1,...,nr
into the d-dimensional integer grid

P :=
{
(x1, . . . , xd) ∈ Z

d : −M ≤ xi ≤ M
}

.

No two vertices of the graph are drawn on the same grid point. Note that such
a drawing corresponds to a coloring of the points of P with r colors, such that
color i appears ni times, for i = 1, . . . , r. The goal is to find the assignment
of colors to the points of P such that the sum of squared distances between
points of different colors is (i) minimized or (ii) maximized. The motivation for
this problem stems from the following relation between drawings of a graph and
spectral theory:

c© Springer Nature Switzerland AG 2018
T. Biedl and A. Kerren (Eds.): GD 2018, LNCS 11282, pp. 593–605, 2018.
https://doi.org/10.1007/978-3-030-04414-5_42

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04414-5_42&domain=pdf
https://doi.org/10.1007/978-3-030-04414-5_42


594 R. Fabila-Monroy et al.

Let G = (V,E) be a graph with vertex set V = {1, . . . , N}, and let deg(i)
denote the degree of vertex i. The Laplacian matrix of G is the N × N matrix,
L = L(G), whose entries are

Li,j =

⎧
⎨

⎩

deg(i), if i = j,
−1, if i �= j and ij ∈ E,
0, if i �= j and ij /∈ E.

Let λ1(G) ≤ λ2(G) ≤ · · · ≤ λN (G) be the eigenvalues of L. The algebraic
connectivity (also known as the Fiedler value [9]) of G is the value of λ2(G). It
is related to many graph invariants (see [9]), and in particular to the size of the
separator of a graph, giving rise to partitioning techniques using the associated
eigenvector (see [14]). Spielman and Teng [14] proved the following lemma:

Lemma 1 (Embedding Lemma).

λ2(G) = min

∑
ij∈E ‖vi − vj‖2
∑

i∈V ‖vi‖2 ,

and

λN (G) = max

∑
ij∈E ‖vi − vj‖2
∑

i∈V ‖vi‖2 ,

where the minimum, respectively maximum, is taken over all tuples (v1, . . . ,vN )
of vectors vi ∈ R

d with
∑N

i=1 vi = 0, and not all vi are zero-vectors 0.

In fact, Spielman and Teng [14] proved the Embedding Lemma for λ2(G), but
the result for λN (G) follows by very similar arguments; when adapting the
proof of [14] we have to replace the last inequality given there by the inequality∑

i xi/
∑

i yi ≤ maxi
xi

yi
, for xi, yi > 0.

Let v = (v1, . . . ,vN ) be a tuple of positions defining a drawing of G (vertex
i is placed at vi). Let

λ(v) :=

∑
ij∈E ‖vi − vj‖2
∑

i∈V ‖vi‖2 . (1)

Note that ‖vi − vj‖2 is equal to squared length of the edge ij in the drawing
defined by v. Lemma 1 provides a link between the algebraic connectivity of G
and its straight line drawings. Clearly

λ2(G) ≤ λ(v) ≤ λN (G).

We remark that in dimension d = 1, optimal drawings v are eigenvectors of L(G)
and λ(v) is the well known Rayleigh quotient.

In this paper we study how well we can approximate λ2(G) and λN (G)
with drawings with certain restrictions. First, we restrict ourselves to draw-
ings in which the vertices are placed at points with integer coordinates and
no two vertices are placed at the same point. Since λ(αv) = λ(v) for α ∈
R \ {0}, we have that λ2(G) and λN (G) can be approximated arbitrarily
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Fig. 1. The best way to minimize the sum of squared distances between points of
different colors on a 51 × 51 integer grid. Left: for r = 2 colors with 1/3 of the points
in red and 2/3 of the points in blue. Right: for r = 3 colors, with 1359 red points, 724
blue points, and 518 green points. (Color figure online)

closely with straight line drawings with integer coordinates of sufficiently large
absolute value. We therefore bound the absolute value of such drawings and
consider only drawings in the bounded d-dimensional integer grid P . Juvan
and Mohar [10,11] already studied drawings of graphs with integer coordi-
nates for d = 1. More precisely, the authors consider the minimum-p-sum-
problem: for 0 < p < ∞, a graph G and a bijective mapping Ψ from V to

{1, . . . , N}, define σp(G,Ψ) =
(∑

uv∈E(G) |Ψ(u) − Ψ(v)|p
)1/p

, and for p = ∞,
let σp(G,Ψ) = maxuv∈E(G) |Ψ(u) − Ψ(v)|. The quantity σp(G) = minΨ σp(G,Ψ)
(where the minimum is taken over all bijective mappings) is then called the
minimum-p-sum of G, and if p = ∞, it is also called the bandwidth of G.
In [11] relations between the min-p-sum and λ2(G) and λN (G) are analyzed,
and also polynomial-time approximations of the minimum-p-sum based on the
drawing suggested by the eigenvector corresponding to λ2(G) are given. In [10]
the minimum-p-sums and its relations to λ2(G) and λN (G) are studied for the
cases of random graphs, random regular graphs, and Kneser graphs. For a survey
on the history of these problems, see [5] and [6].

The use of eigenvectors in graph drawing has been studied for instance in [12],
and we also mention [13] as a recent work on spectral bisection.

In the next two sections we characterize the optimal drawings v for complete
multipartite graphs Kn1,...,nr

which minimize/maximize λ(v). The assumption
N =

∑r
i=1 ni = (2M +1)d made in the beginning is to ensure that every drawing

satisfies the condition
∑N

i=1 vi = 0. The Laplacian eigenvalues of Kn1,...,nr
are

known to be, see [4],

01, (N − nr)nr−1, (N − nr−1)nr−1−1, . . . , (N − n2)n2−1, (N − n1)n1−1, Nr−1

where the superindexes denote the multiplicities of the eigenvalues. Therefore,
N − nr ≤ λ(v) ≤ N.

Two examples of optimal drawings in dimension d = 2 which minimize λ(v)
are given in Fig. 1. Figures 2 and 3 show examples which maximize λ(v).
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Fig. 2. The best way to maximize the sum of squared distances between points of
different colors on a 51 × 51 integer grid. Left: for r = 2 colors with 3/4 of the points
in blue and 1/4 of the points in red. Right: for r = 3 colors, with 1359 red points, 724
blue points, and 518 green points. (Color figure online)

Fig. 3. The best way to maximize the sum of squared distances between points of
different colors on a 101 × 101 integer grid. Left: for r = 6 colors, with 1701 purple
points and 1700 points of every other color. Right: for r = 7 colors, with 1459 yellow
points and 1457 points of every other color. (Color figure online)

We mention that we obtained all these drawings with computer simulations,
using simulated annealing. The solution for minimizing λ(v) shown in Fig. 1
consists of concentric rings and applies to the case when all color classes have
different size. While this solution is unique, we will show that if the color classes
have the same size, then there are exponentially many drawings that minimize
λ(v). In that case, the solutions are characterized as those drawings where for
each color class all its points sum up to 0. As can be observed in Figs. 2 and 3
(and proved in Sect. 3), the solution for maximizing λ(v) is given by (weighted)
centroidal Voronoi diagrams, which are related to clustering [7]. Let us give the
definition of a centroidal Voronoi tessellation, according to [7]. Given an open set
Ω ⊆ R

d, the set {Vi}r
i=1 is called a tessellation of Ω if Vi ∩ Vj = ∅ for i �= j and

∪r
i=1Vi = Ω. Given a set of points {ci}r

i=1 belonging to Ω, the Voronoi region V̂i

corresponding to the point ci is defined by
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V̂i = {x ∈ Ω | ||x − ci|| < ||x − cj || for j = 1, . . . , r, j �= i}.

The points {ci}r
i=1 are called generators or sites. The set {V̂i}r

i=1 is a Voronoi
tessellation or Voronoi diagram. A Voronoi diagram is multiplicatively weighted,
see [3], if each generator ci has an associated weight wi > 0 and the weighted
Voronoi region of ci is

V̂i = {x ∈ Ω | ||x − ci||wj < ||x − cj ||wi for j = 1, . . . , r, j �= i}.

A Voronoi tessellation is centroidal if the generators are the centroids for each
Voronoi region. Voronoi diagrams have also been defined for discrete sets P
instead of regions Ω [7].

Finally, in Sect. 4 we focus on graph drawings in dimension d = 1 and treat
the question on what can be said about approximations of eigenvectors with
bounded integer vectors. In particular, we study the relation between the alge-
braic connectivity and an integer version of the algebraic connectivity and the
minimum-2-sum. We think analogous relations should also hold for drawings in
higher dimension; we leave this for further research.

2 Optimal Drawings for Minimizing λ(v)

In the following we give bounds on λ(v). Note that in Equation (1), the term∑
i∈V ‖vi‖2 is the same for all drawings on P . Let S :=

∑
v∈P ‖v‖2. We first

calculate the value of S which we need later on.

Proposition 1.

S = 2d(2M + 1)d−1 M(M + 1)(2M + 1)
6

.

The proof can be found in the full version [8].
Let A1, . . . , Ar be the partition classes of Kn1,...,nr

with |Ai| = ni (for 1 ≤
i ≤ r). Let N = (2M + 1)d =

∑r
i=1 ni. Let v be a fixed straight line drawing

of Kn1,...,nr
. In what follows we abuse notation and say that a point v ∈ P is in

Ai if a vertex of Ai is mapped to v. We also use Ai to refer to the image of Ai

under v.
Let A and B be two finite subsets of Rd. We define

A · B :=
∑

v∈A
w∈B

v · w,

where · is the dot product. We will need the following property:

Proposition 2. Let A1, . . . , Ar be r ≥ 2 finite subsets of Rd such that

r∑

i=1

∑

v∈Ai

v = 0.
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Then
r−1∑

i=1

r∑

j=i+1

Ai · Aj = −1
2

r∑

i=1

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∑

v∈Ai

v

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

.

The proof can be found in the full version [8].

Lemma 2. Let v be a fixed straight line drawing of G = (V,E) = Kn1,...,nr
.

Then

λ(v) = N +
1
S

r∑

i=1

(

−ni

∑

v∈Ai

‖v‖2
)

+
1
S

r∑

i=1

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∑

v∈Ai

v

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

.

Proof.

λ(v) =
1
S

∑

(v,w)∈E

‖v − w‖2 =
1
S

∑

(v,w)∈E

(‖v‖2 + ‖w‖2 − 2v · w
)
.

Since in the complete multipartite graph each v ∈ Ai is adjacent to all vertices
but the ni vertices of its class Ai, this further equals

λ(v) =
1
S

r∑

i=1

(

(N − ni)
∑

v∈Ai

‖v‖2
)

− 2
S

∑

i�=j

Ai · Aj

= N +
1
S

r∑

i=1

(

−ni

∑

v∈Ai

‖v‖2
)

+
1
S

r∑

i=1

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∑

v∈Ai

v

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

.

�
The following theorem provides best possible drawings whenever one can

draw Kn1,...,nr
on P such that for each class Ai we have

∑
v∈Ai

v = 0. This can
be achieved for instance if |Ai| is even for all but one of the classes, and for each
point v ∈ Ai in the drawing, also −v ∈ Ai, and the remaining vertex is drawn at
0. If all |Ai| are even, then the theorem also holds under the assumption that no
vertex is drawn at 0 (recall that |P | is odd). Otherwise, the best drawings are
such that

∑r
i=1

∣
∣
∣
∣∑

v∈Ai
v
∣
∣
∣
∣2 is minimized, and the drawing in the second case

of the theorem only gives an approximation.

Theorem 1. Let v be a straight line drawing of Kn1,...,nr
that minimizes λ(v).

If n1 = n2 = . . . = nr, then v minimizes
∑r

i=1

∣
∣
∣
∣∑

v∈Ai
v
∣
∣
∣
∣2; in particular, if∑

v∈Ai
v = 0, for all 1 ≤ i ≤ r, then λ(v) = N − nr. If n1 < n2 < . . . < nr,

then v has the following structure: For each i = 1, . . . , r − 1, the union of the
smallest i color classes,

⋃i
j=1 Aj, forms a ball centered at 0.

Proof. Consider first the case when all classes Ai have the same number of points
n = ni. Take a drawing v. By Lemma 2,

λ(v) = N+
1
S

r∑

i=1

(

−ni

∑

v∈Ai

‖v‖2
)

+
1
S

r∑

i=1

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∑

v∈Ai

v

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

= N−n+
1
S

r∑

i=1

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

∑

v∈Ai

v

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

2

.
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Then λ(v) is minimized if
∑r

i=1

∣
∣
∣
∣
∑

v∈Ai
v
∣
∣
∣
∣2 is minimized. If there are drawings

v such that
∑

v∈Ai
v = 0 for each class, then

∑r
i=1

∣
∣
∣
∣∑

v∈Ai
v
∣
∣
∣
∣2 = 0. Since the

algebraic connectivity of Kn,n...,n (with N = r · n) is N − n, such a drawing
is best possible. Consider then the case n1 < n2 < . . . < nr. By Lemma 2,
v minimizes λ(v) if

∑r
i=1

∣
∣
∣
∣
∑

v∈Ai
v
∣
∣
∣
∣2 is minimized and

∑r
i=1

(
ni

∑
v∈Ai

‖v‖2)
is as large as possible. Both conditions can be guaranteed at the same time.
∑r

i=1

∣
∣
∣
∣∑

v∈Ai
v
∣
∣
∣
∣2 can be kept small (or equal to 0) when drawing each Ai

in a symmetric way around the origin. The quantity
∑r

i=1

(
ni

∑
v∈Ai

‖v‖2) is
maximized when the smallest class A1 is drawn such that

∑
v∈A1

‖v‖2 is as
small as possible, which is the case when the vertices of A1 are drawn as close
as possible to the origin; then, in an optimal drawing the vertices of the second
smallest class A2 are drawn as close as possible to the origin on grid points
which are not occupied by A1. In the same way, iteratively, for the i-th smallest
class all grid points closest to the origin, that are not yet occupied by smaller
classes, are selected. This results in a drawing with concentric rings around the
origin. �
Remark 1. If some of the classes have the same number of elements, then the
optimal solutions are given by a combination of the two cases of Theorem 1.
That is, several classes with the same number of elements can form one of the
concentric rings in the drawing which satisfies

∑
v∈Ai

v = 0 for all color classes.

We show next that the number of optimal drawings of Kn1,...,nr
that minimize

λ(v) can be exponential if some classes have the same number of elements. For
the sake of simplicity of the exposition, we show this only for the case K1,2m,2m

and dimension d = 1. The argument can be adapted to the general case.

Proposition 3. Let d = 1, and P = {−2m,−2m + 1, . . . , 2m − 1, 2m}. There
exists a constant c > 0 such that the number N of straight line drawings v of
K1,2m,2m on P which minimize λ(v) satisfies c16m/m5 < N < 16m.

Proof. Let A1, A2, A3 be the classes of K1,2m,2m, with n1 = 1 and n2 = n3 = 2m.
Theorem 1 characterizes the optimal drawings as all drawings that satisfy∑

v∈Ai
v = 0. Then the only vertex of class A1 is drawn at position 0 in any

optimal drawing. For the upper bound, the number of such drawings is at most(
4m
2m

)
< 16m, since there are at most

(
4m
2m

)
choices for mapping the vertices of

A2 to P\{0}, and then the positions of the vertices in A3 are already deter-
mined. Regarding the lower bound, in order to have

∑
v∈A2

v = 0, we must
have

∑
v∈A2,v<0 −v =

∑
v∈A2,v>0 v. We may thus consider only drawings with

exactly m elements v of A2 with v > 0. There are at most
∑2m

i=1 i = 2m2 + m
different sums that can be obtained by

∑
v∈A2,v>0 v, and the same holds for

∑
v∈A2,v<0 −v. Thus, one of these sums, call it s, appears in at least (2mm )

2m2+m
of all the drawings of {v ∈ A2, v > 0}, and by symmetry, the same sum s

appears also at least (2mm )
2m2+m times when considering

∑
v∈A,v<0 −v. Any drawing

for which at the same time we have
∑

v∈A2,v>0 v = s and
∑

v∈A2,v<0 −v = s is
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an optimal drawing. There are at least
(

(2mm )
2m2+m

)2

= Ω
(
16m

m5

)
such drawings,

where we use the asymptotic estimate
(
2m
m

) ∼ 4m√
πm

. Hence the lower bound
follows. �

3 Optimal Drawings for Maximizing λ(v)

We now study drawings of Kn1,...,nr
that maximize λ(v). The following solu-

tion as a Voronoi diagram has to be considered as an approximation, due to
the discrete setting and due to the given bounding box. However, the bigger
the numbers ni, the better the approximation to the boundary curves between
adjacent Voronoi regions.

Theorem 2. Let v be a straight-line drawing of Kn1,...,nr
on P that maximizes

λ(v). If n1 = n2 = . . . = nr, then v defines a centroidal Voronoi diagram. If
the ni are not all the same, then v defines a multiplicatively weighted centroidal
Voronoi diagram.

Proof. We make use of the following fact: let Q be an arbitrary set of n points
p1, . . . , pn in R

d. Let c be the centroid of Q, c = 1
n

∑n
i=1 pi. Then, see [2],

n−1∑

i=1

n∑

j=i+1

||pi − pj ||2 = n

n∑

i=1

||pi − c||2. (2)

In the case of our theorem, let v be a drawing of Kn1,...,nr
drawn on

P =
{
(x1, . . . , xd) ∈ Z

d : −M ≤ xi ≤ M
}

.

Denote by cA1 , . . . , cAr
the centroids of the classes A1, . . . , Ar, respectively. Then,

from Equation (1) and S =
∑

v∈P ‖v‖2 we get

λ(v)|S| =
∑

(v,w)∈E

‖v − w‖2 =
∑

i<j

∑

v∈Ai
w∈Aj

||v − w||2

=
∑

v,w∈P

||v − w||2 −
r∑

i=1

∑

v,w∈Ai

||v − w||2

=
∑

v,w∈P

||v − w||2 −
r∑

i=1

ni

∑

v∈Ai

||v − cAi
||2,

where in the last equation we use (2). The quantity
∑

v,w∈P ||v − w||2 is the
same for each drawing of Kn1,...,nr

, and
∑r

i=1 ni

∑
v∈Ai

||v − cAi
||2 is minimized

if for each class Ai, its vertices are drawn as close as possible to its centroid
cAi

. Then the union of the r regions defined by A1, . . . , Ar forms a centroidal
Voronoi tessellation, see [7]. Note that when the n′

is are different, then this is a
multiplicatively weighted Voronoi diagram, see [3]. �
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4 An Integer Variant of the Algebraic Connectivity

In this section we consider drawings in dimension d = 1 of graphs G = (V,E)
with V = {1, . . . , N}, that is, drawings v where the vertices of G are mapped to
different points of P = {−�N/2�,−�N/2� + 1, . . . , �N/2�}. If N is even, then in
order to satisfy the condition

∑N
i=1 vi = 0 (recall the definition of (1) and the

Embedding Lemma), no vertex is mapped to the origin. We denote by

λI
2(G) = min λ(v),

where the minimum is taken over all drawings v of G on P . Note that when
N is odd, then λI

2(G) is equivalent to the square of the minimum-2-sum, σ2
2(G)

(recall the definition of minimum-2-sum in the introduction).
Continuing the investigations by Juvan and Mohar mentioned in the intro-

duction (see [10,11]), we are here interested in properties and bounds for λI
2(G),

similar in spirit to bounds and properties of λ2(G). First, the following relation,
analogous to the one for λ2(G) from [9] is obtained easily.

Proposition 4. If G and H are edge-disjoint graphs with the same set of ver-
tices, then

λI
2(G) + λI

2(H) ≤ λI
2(G ∪ H).

The proof is immediate from the definition of λI
2(G) and the Embedding Lemma,

by splitting the sum of the edge weights for G∪H into two sums of edge weights,
one for G and one for H.

Denote by G + e the graph obtained from the graph G with N vertices by
adding an edge e. It is known (see [1]) that λ2(G) ≤ λ2(G + e) ≤ λ2(G) + 2. We
have a result in the same spirit for λI

2(G):

Proposition 5. Denote by G + e the graph obtained from the graph G with N
vertices by adding an edge e. Then

λI
2(G) +

1

2
∑�N/2�

i=1 i2
≤ λI

2(G + e) ≤ λI
2(G) +

N2

2
∑�N/2�

i=1 i2
.

Again, the proof is immediate; adding an edge to a drawing of G increases the
edge weight by at least 1 and by at most N2.

Let us then consider the Cartesian product of graphs. Recall that the Carte-
sian product G × H is defined as follows: V (G × H) = V (G) × V (H), and
(u, u′)(v, v′) ∈ E(G × H) iff either u = v and u′v′ ∈ E(H), or u′ = v′ and
uv ∈ E(G). For the Cartesian product of two graphs G and H, Fiedler [9] proved
the relation λ2(G × H) = min{λ2(G), λ2(H)}. The analogous relation does not
hold for λI

2(G); λI
2(G×H) can be strictly larger than min{λI

2(G), λI
2(H)} as can

be seen by the example of C3 × P2, the Cartesian product of a triangle with an
edge.

In the following, the number of vertices of a graph G is also denoted by |G|.
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Proposition 6. Let G and H be two graphs such that |G| and |H| are odd
numbers. Then we have

λI
2(G × H) ≤ λI

2(G)
( |G|2 − 1

|G|2|H|2 − 1

)

+ λI
2(H)

( |G|2(|H|2 − 1)
|G|2|H|2 − 1

)

(3)

i ii
-4 -3 -2 -1 0 1 2 3 4

Fig. 4. A drawing of the Cartesian product of cycle C3 and path P3. Some straight
line edges are drawn as arcs for better visibility.

Proof. We present a drawing of G × H which attains the claimed bound. First
consider an optimal drawing Hopt of H which gives λI

2(H), and then replace each
vertex of H by |G| vertices. More precisely, the |H| · |G| vertices of G × H are
drawn on P in such a way that we have |H| consecutive copies Gi of G (each
copy Gi occupies an interval of |G| consecutive points of P ). Within each Gi

the vertices are ordered in the same way such that the drawing of Gi is best
possible (minimizing the sum of squared edge lengths); denote this drawing of
Gi as Gopt. Figure 4 shows such a drawing of G × H for G = C3 and H = P3.
From Proposition 1, with 2M + 1 = |G||H| and d = 1, we have

∑

i∈V

||vi ||2 =
1
12

(|G|2|H|2 − 1
)
(|G|) (|H|) .

Between two consecutive copies of a vertex i of H there are exactly |G|−1 points
of P . Then an edge e ∈ Hopt with squared length e2 has squared edge length
(e|G|)2 in our drawing of G × H. We get

λI
2(G × H) ≤

|H|
∑

e∈Gopt

e2

1
12 (|G|2|H|2 − 1) (|G|) (|H|) +

|G|
∑

e∈Hopt

(e|G|)2

1
12 (|G|2|H|2 − 1) (|G|) (|H|)

=

|H|
∑

Gopt

e2

1
12 (|G|) (|H|) (|G|2 − 1)

(
|G|2|H|2−1

|G|2−1

) +

|G|3
∑

Hopt

e2

1
12 (|G|) (|H|) (|H|2 − 1)

(
|G|2|H|2−1

|H|2−1

)

= λI
2(G)

( |G|2 − 1
|G|2|H|2 − 1

)

+ λI
2(H)

( |G|2(|H|2 − 1)
|G|2|H|2 − 1

)

.

�
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Corollary 1. Let G and H be two graphs such that |G| = |H| is an odd number.
Then we have

λI
2(G × H) ≤ λI

2(G) + λI
2(H)

2
.

Proof. This follows from the proof of Proposition 6, by interchanging the role of
G and H in the drawing, and then by summing the two inequalities. �
Corollary 2. If λI

2(G) = λ2(G) and |G| is odd, then

λI
2(G × G) = λI

2(G).

Proof. On the one hand, λI
2(G × G) ≥ λ2(G × G) = λ2(G) = λI

2(G). On the
other hand, by Corollary 1, λI

2(G × G) ≤ λI
2(G). �

The assumption of |G| and |H| being odd numbers in Proposition 6 simplifies
the calculations. We believe that a similar bound holds when |G| or |H| are even.
Indeed, the drawing for G × H explained in the proof of Proposition 6 can be
optimal when |G| and |H| are even. We illustrate this with the hypercube and
mention that its eigenvalues and eigenvectors are well known.

Proposition 7. For QN , the hypercube on N vertices, λI
2(QN ) = λ2(QN ) = 2.

Proof. To see this, note that QN = QN/2 × P2. In this case an optimal drawing
of QN can be obtained from two copies of an optimal drawing for QN/2 using
ideas of the drawing of Proposition 6: indeed, one can take an optimal drawing of
QN/2 once shifted towards {1, . . . , N/2} (corresponding to vertices of the hyper-
cube having 0 in the first dimension), and once shifted towards {−N/2, . . . ,−1}
(corresponding to vertices of the hypercube having 1 in the first dimension), and
then connecting them by a matching. This drawing is similar to the one described
in Proposition 6; in fact, the only difference is that no vertex is mapped to the
origin. �
Proposition 8. There are graphs G with λI

2(G × G) < λI
2(G).

Proof. Let G be the graph consisting of a triangle, with labels of the vertices
1, 2, 3, and a path of length 2 attached to vertex 3; label these vertices 4, 5, in
this order. Clearly, the function f : V (G) → {−2, . . . , 2} given by f(i) = i − 3,
1 ≤ i ≤ 5, defines an optimal drawing of G, yielding λI

2(G) = 8
10 . On the other

hand, consider the drawing g : V (G) × V (G) → {−12, . . . , 12} given as follows:
g(i, j) = −12+3(i− 1)+ (j − 1) for 1 ≤ i, j ≤ 3, g(i, j) = −3+2(i− 1)+ (j − 4)
for 1 ≤ i ≤ 3, 4 ≤ j ≤ 5, and g(i, j) = 3 + 5(i − 4) + (j − 1) for 4 ≤ i ≤ 5, 1 ≤
j ≤ 5. The drawing given by g gives an upper bound on λI

2(G × G), and hence
λI
2(G × G) ≤ 775

1300 < 0.6. �
Whereas it is obvious that for graphs G with an odd number N of vertices,

the optimal drawings of λI
2(G) and σ2

2(G) coincide, this is not always the case
for N even.
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Proposition 9. There exist graphs G with |G| even, for which the optimal draw-
ings of λI

2(G) and σ2
2(G) are different.

Proof. Consider the graph G shown in Fig. 5. An optimal drawing for σ2
2(G) is

given by ordering the vertices in the order 12354678 or 12345678. Indeed, in any
drawing, the five edges incident to vertex 5 together have squared edge length
at least 2 · 12 + 2 · 22 + 32 and the other two edges have squared edge length at
least 1. It is easily checked that for λI

2(G), 18275346 is a better embedding than
12354678 or 12345678. �

1 2 3 4 5 6 7 8

Fig. 5. A graph G which has different drawings for λI
2(G) and for σ2

2(G).

5 Conclusion

In this paper we gave drawings minimizing as well as maximizing λ(v), and we
analyzed properties of an integer variant of the algebraic connectivity. It would
be interesting to characterize the class of graphs G for which λ2(G) = λI

2(G).
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Abstract. This report describes the 25th Annual Graph Drawing Con-
test, held in conjunction with the 26th International Symposium on
Graph Drawing and Network Visualization (GD’18) in Barcelona, Spain.
The mission of the Graph Drawing Contest is to monitor and challenge
the current state of the art in graph-drawing technology.

1 Introduction

This year, the Graph Drawing Contest was divided into two parts: the creative
topics and the live challenge.

The creative topics had two graphs: the first one was a graph about char-
acters in the Game of Thrones television series, and the second one described
adviser-advisee relationships between mathematicians. The data sets were pub-
lished a year in advance, and contestants submitted their drawings before the
conference started. Submissions were evaluated according to aesthetic appeal,
domain-specific requirements, and how well the data was visually represented.

The live challenge took place during the conference in a format similar to a
typical programming contest. Teams were presented with a collection of challenge
graphs and had one hour to submit their highest scoring drawings. This year’s
topic was to maximize the smallest crossing angle in a straight-line drawing of
a graph with vertex locations restricted to a grid.

Overall, we received 44 submissions: 31 submissions for the creative topics
and 13 submissions for the live challenge.

2 Creative Topics

The two creative topics for this year were a graph about Game of Thrones
and a mathematics genealogy graph. The goal was to visualize each graph with

c© Springer Nature Switzerland AG 2018
T. Biedl and A. Kerren (Eds.): GD 2018, LNCS 11282, pp. 609–617, 2018.
https://doi.org/10.1007/978-3-030-04414-5_43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04414-5_43&domain=pdf
https://doi.org/10.1007/978-3-030-04414-5_43
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complete artistic freedom, and with the aim of communicating the data in the
graph as well as possible.

We received 23 submissions for the first topic, and 8 for the second. For each
topic, we selected between 3 and 5 contenders for the prizes, which were printed
on large poster boards and presented at the Graph Drawing Symposium. Out of
those contenders, we selected the winning submissions. We will now review the
top three submissions for each topic (for a complete list of submissions, refer to
http://www.graphdrawing.de/contest2018/results.html).

2.1 Game of Thrones

The TV show “Game of Thrones” is based on the book series“A Song of Ice and
Fire” by George R. R. Martin and is one of the most popular TV shows in the
previous years. For the contest, we extracted the relations between some of the
most important characters in the show as of the end of Season 7 from the Game
of Thrones Wiki1. The graph consists of 84 characters and 216 relations.

Third Place: Velitchko Filipov, Davide Ceneda, Michael Koller,
Alessio Arleo, and Silvia Miksch (TU Vienna). The committee likes the
overall aesthetics of the drawing, and the clever combination of using both the
interior and exterior space for routing edges in this radial layout.

Second Place: Marian Amann, Philipp de Col, and Markus Wallinger
(TU Vienna). The committee likes the clarity of this layout, with a good
global overview of the graph structure, as well as showing lower-level connections
between different individual characters.

1 http://gameofthrones.wikia.com/wiki/Game of Thrones Wiki.

http://www.graphdrawing.de/contest2018/results.html
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Winner: Evmorfia Argyriou, Michael Baur, Anne Eberle, and Armin
Gufler (yWorks). The committee likes the overall clarity of this drawing,
and the use of symbols representing houses and individuals. It is a nice idea to
use different drawing styles to visualize clusters of family relations, “peaceful”
relations, and killings, allowing the viewer to focus on each of these as almost
separate subgraphs. The visualization and an explanation of the drawing process
is available online: http://yworks.com/got.

http://yworks.com/got
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In our Game of Thrones visualization we grouped the characters accord-
ing to their house and placed them on radial layers that depict gener-
ations. In each house, solid edges between characters show marriages,
love interests and parenthood. Loyalty and family ties of characters of
different houses are condensed into dotted and solid edges between the
new house nodes in the central circle, while the blood-red edges on radial
paths in the outskirts represent killings.
Evmorfia Argyriou

2.2 Mathematics Genealogy

The Mathematics Genealogy Project2 is an initiative of the North Dakota State
University to track all advisor-advisee relationships in the broader field of math-
ematics since the earliest records that are available. The database has 222,360
scientists on record as of today.

In 2016, Cosmin Ionita and Pat Quillen of MathWorks analyzed the graph.
The main component had 7323 root vertices and 137,155 leaves, and contained
90% of the vertices. There were 7639 isolated vertices and 1962 components of
size two. The graph has some cycles, but is generally very tree-like.

For the contest, we have selected the subgraph containing only the 2277 sci-
entists who graduated before the year 1900, but retaining the number of descen-
dants in the full graph. We also kept the year and country of each graduation.

Third Place: Yixuan Wang (Uni-
versity of Sydney). The commit-
tee really likes the idea of drawing
this graph with approximately geo-
located nodes, which allows the user
to interpret vertex locations while still
allowing sufficient freedom in the ver-
tex placement to see the actual graph
structure. The use of a color gradient
for the year of graduation nicely com-
plements this choice, as well as using
vertex size to visualize the number of
descendants.

2 https://www.genealogy.math.ndsu.nodak.edu.

https://www.genealogy.math.ndsu.nodak.edu
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Second Place: Gesa Behrends, Maria
Hartmann, Johannes Janssen, Artsem
Kavaleuski, Andre Mazal Krauss, Duc
Do Minh, Alexander Zachrau, Hong
Zhu, and Günter Rote (FU Berlin).
The committee was impressed by the clar-
ity of this drawing, given the large data size
and the authors’ decision to include all indi-
vidual names on a single poster. The use of
large empty regions help the viewer to see
the global graph structure at a glance, while
individual clusters and relationships can still
be distinguished.

Winner: Florian Grötschla, Tamar Mirbach, Christian Ortlieb,
Tamara Mchedlidze, and Marcel Radermacher (KIT). The committee
was impressed by this interactive visualization. The website has some nice func-
tionality; especially the highlighting of advisors and students and the additional
information display on hovering over a node should be emphasized. This makes
it a great way to explore the data. The drawing can be explored here: https://
mathematics-genealogy.de.

https://mathematics-genealogy.de
https://mathematics-genealogy.de
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The large size of the genealogy graph, and the fact that it is denser
than a tree, defeated our tries to create a readable standalone node-link
diagram. Thus, we decided to avoid the display of the edges and instead
design an interactive visualization tool where one can focus on smaller
portions of the visualization using zooming operation, investigate the
relations between mathematicians using an interactive highlight tool and
still obtain a big picture of the data, which is enhanced by the coloring
of the nodes according to the country of graduation. To keep the node
proximity meaningful (connected nodes are close and non-connected far
apart) and to express the time of graduation, we employed the Sugiyama
framework for the node positions, where horizontal layers correspond to
the graduation date.
Florian Grötschla

3 Live Challenge

The live challenge took place during the conference and lasted exactly one hour.
During this hour, local participants of the conference could take part in the man-
ual category (in which they could attempt to solve the graphs using a supplied
tool3), or in the automatic category (in which they could use their own software
to solve the graphs). At the same time, remote participants could also take part
in the automatic category.

The challenge focused on maximizing the minimum crossing angle in a
straight-line embedding of a given graph, with vertex locations restricted to a
grid. The results were judged solely with respect to the minimum crossing angle;
other aesthetic criteria were not taken into account. This allows an objective
way to evaluate each drawing.

3.1 The Graphs

In the manual category, participants were presented with seven graphs. These
were arranged from small to large and chosen to highlight different types of
graphs and graph structures. In the automatic category, participants had to solve
the same seven graphs as in the manual category, and in addition another seven
larger graphs. Again, the graphs were constructed to have different structure.

For illustration, we include the third graph in its initial state, the best manual
solution we received (by team ToBeDecided), and the best automatic solution
we received (by team TübingenColdShower).

3 http://graphdrawing.de/tool.

http://graphdrawing.de/tool
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For the complete set of graphs and submissions, refer to the contest website
at http://www.graphdrawing.de/contest2018/results.html.

From the resulting drawings, the committee reenforces its conclusion from the
previous year; namely that, if the minimum crossing angle is an indicator of the
legibility of a graph visualization, it must be so only when combined with other
criteria; for instance, penalizing low distances between vertices. The committee
also observed that manual (human) drawings of graphs often display a deeper
understanding of the underlying graph structure than automatic drawings of the
same graph, even when the automatic drawing scores equally high or higher.

3.2 Results: Manual Category

We are happy to present the full list of scores for all teams. The numbers listed
are the smallest crossing angle in degrees in each graph; the horizontal bars
visualize the corresponding scores.

The runner-up teams are team PUK (3rd place), consisting of Paul Jungeblut,
Jérôme Urhausen, and Peter Stumpf; and team NonAustrianAustrians (2nd

http://www.graphdrawing.de/contest2018/results.html
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place), consisting of Fabian Klute and Irene Parada. The winning team is team
Scho, consisting of Myroslav Kryven and Johannes Zink.

Our strategy was as follows: we started by trying to reduce the number
of crossings (and thinning dense areas) as best as we could. While doing
so we rather ignored the current worst angle. After this first phase, we
were pursuing the seemingly obvious strategy of iteratively improving
the current worst crossing angle locally. In one of the given instances, we
were also trying to orient all edges either horizontally or vertically such
that the crossings occurred only between these types of edges. Besides
competing against strong and experienced other teams, we faced another
tough opponent: the time. Since we spent much of it on the first graphs,
we had to give up our aforementioned strategy towards the end. On the
last graph, we had only spent a few moments to improve the worst angles
locally before we submitted it some seconds before the end of the time.
In spite of this last bad result, it turned out that we managed to keep
our lead barely. Finally, if you are wondering about our team name it is
both the Ukrainian word for “what?” and the Franconian-German word
for “indeed”.
Johannes Zink

3.3 Results: Automatic Category

We are happy to present the full list of scores for all teams. The numbers listed
are the smallest crossing angle in degrees in each graph; the horizontal bars
visualize the corresponding scores.

The runner-up teams are team Arizona Anglers (3rd place), consisting of Reyan
Ahmed and Sabin Devkota; and team CoffeeVM+ (2nd place), consisting of
Almut Demel, Dominik Dürrschnabel, Lasse Wulf, Tamara Mchedlidze, and Mar-
cel adermacher. The winning team is team TübingenColdShower, consisting of
Amadäus Spallek, Christian Geckeler, Henry Förster, and Michalis Bekos!
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After our last year’s failure on the exact same topic, we decided to com-
pletely change our approach to become more competitive. It turned out
that our new probabilistic hill climbing approach performed way better
than our previous force-directed algorithm, and thus the result for the

ehtniretawehtsadnikemasehtfotonsawmaetrewohSdloCnegnibüT
shower earlier the same day.
Christian Geckeler

Acknowledgments. The contest committee would like to thank the organizing com-
mittee of the conference for printing the posters and providing a room with hardware
for the live challenge; the generous sponsors of the symposium, in particular Springer
for contributing prizes; and all the contestants for their participation. Further details
including all submitted drawings and challenge graphs can be found at the contest
website:

http://www.graphdrawing.de/contest2018/results.html
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The development of software systems for the analysis of economic and financial
networks is a fundamental activity to contrast tax evasion, fiscal frauds, and
money laundering phenomena (see, e.g., [3, 6, 8]). Of particular interest in this
context is the design of visual analytics systems (see, e.g., [1, 4, 5, 7]).

In this poster, we present TeFNet, a new system specifically designed to
support public officers in tax evasion discovery and risk analysis. It is an evolu-
tion of TaxNet [4]: A visual analytics decision support system for tax evasion
discovery. TeFNet inherits all the TaxNet’s functionalities while overcom-
ing its main limitation: The lack of a native support for temporal queries and
visualizations. TeFNet’s main ingredients are: (i) a network data model to
represent time-varying relationships between taxpayers, called temporal fiscal
network ; (ii) a visual query language to easily define and search for suspicious
(time-dependent) patterns in a temporal fiscal network; (iii) visualization func-
tionalities to interactively explore the subgraphs that match a pattern. Both the
visual query language and the graph visualization techniques rely on a suitable
timeline approach [2, 9], which maps the time dimension to a space dimension.

Temporal Fiscal Networks. A temporal fiscal network is a directed graph
G, whose nodes represent taxpayers (persons or companies), and whose edges
represent oriented relationships between pairs of taxpayers, such as economic
transactions, shareholdings and legal acts. Each element (node or edge) of G
exists in a specific time interval (the validity period) going from an initial date
to an ending date. In addition, an element can have one or more associated
attributes, which can be static (time-independent), temporal (time-dependent),
or periodical, i.e., time-dependent according to fiscal or business calendar periods.

Visual Query Language. The visual query language of TeFNet allows
the user to define time-dependent patterns to be matched in G. A pattern p is a
pair 〈Gp, Rp〉, where Gp is a graph that defines the topology of p, and Rp is a set
of rules on the nodes and on the edges of Gp. The user can restrict the analysis
to data within a desired time range and specify a time slicing unit (e.g., year
or month) to partition the time range into intervals (slices) of the same length.

Work in cooperation with the Italian Revenue Agency (IRV). We thank in particular
Carlo Palumbo, Mario Landolfi, and Giuseppe De Luca for their support.
Research supported in part by the project: “Algoritmi e sistemi di analisi visuale di reti
complesse e di grandi dimensioni” - Ricerca di Base 2018, Dipartimento di Ingegneria
dell’Università degli Studi di Perugia.

c© Springer Nature Switzerland AG 2018
T. Biedl and A. Kerren (Eds.): GD 2018, LNCS 11282, pp. 621–623, 2018.
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Fig. 1. Visual query language interface of TeFNet for graph pattern definition.

She can also define, in a specific time slice or in the time range, temporal rules
on nodes, edges and related attributes. For example, in the pattern of Fig. 1, the
timeline edge e1 is used to express the presence of economic transactions from
a node n1 to a node n2 in the year 2012. This rule is defined by means of the
quantity operator ANY and it is visually conveyed in Gp by a solid filling of
the corresponding slice. Other quantity operators for a slice are SINGLE -
only one relation in that slice and NONE - no relation in that slice. A slice
without quantity operators is visually conveyed with a chess filling .

Fig. 2. Visualization of a subgraph
after some exploration steps.

Visual Exploration. In response to
a user query, TeFNet returns all the sub-
graphs that match the specified pattern.
The analysis of a result is performed
through interactive visual exploration.
Edges can be visually displayed in a stan-
dard mode or as timeline edges. A time-
line edge is visually split into slices as
in the query interface. Each slice is filled
with a color whose intensity is proportional to the value of some desired function,
which may represent the weight of the edge, e.g., the amount of the transaction,
or the presence/absence of relations. This makes it possible for the user to easily
capture in a unique view the trend of a specific parameter over the time range of
analysis. The user can also expand the analysis of a result by introducing other
neighbors in the current visualization. For example, Fig. 2 shows a visualization
of a subgraph after some exploration steps, starting from a result of the pattern
defined in Fig. 1.

We tested TeFNet in a real working environment on a real 3-year fiscal
network of approximately 800 K nodes and 1.9M edges. The experimental tasks
were performed by expert tax officers, who were asked to find subjects having
specific time-varying relations with a given taxpayer. The results show that using
TeFNet may significantly improve time and accuracy of the analysis at the IRV.
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An upward-planar drawing is a planar drawing where each edge is drawn as a
strictly y-monotone curve. While testing upward planarity of a graph is an NP-
complete problem in general [11], efficient algorithms are known for single-source
graphs and for embedded graphs [5, 6]. One notable specialization of upward
planarity is that of level planarity. A level graph is a directed graph G = (V,E)
together with a level assignment γ : V → Z that assigns an integer level to each
vertex and satisfies γ(u) < γ(v) for all (u, v) ∈ E. A drawing of G is level planar
if it is upward planar, and for the y-coordinate of each vertex v ∈ V it holds
that y(v) = γ(v). Level-planarity testing and embedding is feasible in linear time
for single-source graphs and graphs with multiple sources, the latter case being
considerably more complex [9, 13]. There exist further level-planarity variants
on the cylinder and on the torus [1, 3] and there has been considerable research
on further-constrained versions of level planarity [2, 7, 10, 12, 14].

We introduce and study the multilevel-planarity testing (Mlpt) problem,
which is a generalization of upward planarity and level planarity. Let G = (V,E)
be a directed graph and let � : V → P(Z) be a function that assigns a finite set
of integers to each vertex. A multilevel-planar drawing of G is an upward planar
drawing of G such that the y-coordinate of each vertex v ∈ V satisfies y(v) ∈ �(v).

We present linear-time algorithms for testing multilevel planarity of embed-
ded graphs with a single source (sT -graphs) and for oriented cycles. To this
end, we characterize multilevel-planar sT -graphs as subgraphs of certain planar
graphs with a single source and a single sink (st-graphs). Similar characteri-
zations exist for upward planarity and level planarity [9, 15]. The idea behind
our characterization is that we can insert edges into any given multilevel-planar
drawing of a graph so as to make it an st-graph while maintaining multilevel
planarity. This technique is similar to the one found by Bertolazzi et al. [6]
for upward planarity, and in fact is built on top of it. For the obtained st-
graphs, we may assume without loss of generality that the multilevel assign-
ment � has normal form, i.e., for all (u, v) ∈ E it is min �(u) < min �(v) and
max �(u) < max �(v). Then, we can test multilevel planarity by greedily attempt-
ing to place the vertices of G in topological order on the lowest possible level.
For oriented cycles, we identify sets of vertices of minimal cardinality that have
to be placed on the lowest and highest possible levels. Assuming a multilevel-
planar drawing exists, the remaining vertices can then be placed greedily as low
as possible between them. Both algorithms test multilevel planarity in linear
time and generate a multilevel-planar drawing within the same running time.

c© Springer Nature Switzerland AG 2018
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Fig. 1. (a) The sT -graph formed by three task gadgets (red, green and blue sub-
graphs). (b) A rectilinear embedding of a planar monotone 3-SAT instance. E-shapes
above/below the variables are clauses containing only negative/positive literals. (c) The
gadget for a positive clause. (d) The gadget for a negative clause.

Complementing these algorithmic results, we show that Mlpt is NP-complete
even in very restricted cases, namely for sT -graphs without a fixed embedding,
for trees and for general embedded ST -graphs (graphs with multiple sources and
sinks). This contrasts both the upward planar and level planar setting, where
these problems are solvable in polynomial time (see Table 1 for a full comparison).

The first two reductions use the strongly NP-complete single-processor
scheduling problem with individual release times, deadlines and processing times.
For a set of tasks there exists a non-preemptive one-processor schedule if and
only if a crossing free nesting of the task gadgets in the sT -graph shown in
Fig. 1(a) exists. Using similar gadgets, this sT -graph can be transformed into a
tree. Here the release time and deadline of a task define the interval of possible
levels for each of the gadgets vertices. The number of vertices in the gadget is
the processing time.

To show NP-completeness for embedded ST -graphs, we give a polynomial
reduction from planar monotone 3-SAT [8]. Given a rectilinear embedding of
the variables and clauses as in Fig. 1(b), we substitute the E-shaped clauses by
the gadgets shown in Fig. 1(c,d). Now there is a multilevel-planar drawing, if
and only if there is a truth assignment of the planar monotone 3-SAT instance.

Table 1. Result overview

Not embedded Fixed combinatorial embedding

Trees sT -graph Cycle sT -graph ST -graph

Upward planarity O(1) [4] O(n) [6] O(n) [5] O(n) [5] P [5]

Multilevel planarity NPC NPC O(n) O(n) NPC

Level planarity O(n) [13] O(n) [13] O(n) [13] O(1) [13] ?
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1 Introduction

Regional landmarks play an important role in facilitating wayfinding and orien-
tation in navigation tasks [7]. Information such as “the route goes around the
city center” or “there is a right turn after going along the park” represent spa-
tial relations between polygonal objects and a route. Schematic visualizations
are used for the cognitively adequate representation of such spatial relations
[4]. Some commercial schematic maps make use of regional landmarks (urban
areas, parks, lakes, forests). In contrast to topographic maps, they change shape,
orientation and scale of the polygons to emphasize their topological function.

Although regional landmarks are used in commercial maps, related work
focusing on route [1, 3] or network schematization [5, 6, 10] does not consider such
landmarks at all. Publications addressing schematization of regional landmarks
or subdivisions [2, 9] do not consider their spatial relation with paths. Since such
landmarks are more important as references in route maps for drivers than in
transit maps, there is a need for an algorithm that can produce route maps with
regional landmarks, highlighting their correct spatial relation with the path.

In this contribution, we describe a new approach for drawing polygonal land-
marks over an already schematized route. For the topological correct schema-
tization, the method makes use of affine transformations and an adaptation of
Nöllenburg-Wolff’s Mixed Integer Programming (MIP) for metro map drawing
[6]. The advantage of using MIP over Buchin et al. method for polygon schema-
tization [2] is that it allows results with higher level of abstraction by enforcing
the correct topology with hard constraints while aesthetics are optimized in the
objective function. We are able to emphasize crossings by constraining angles,
and line alongness1 by manipulating control points. The results resemble regional
landmarks drawn by designers in commercial schematic maps.

2 Approach

To test the proposed method we read and planarize OpenStreetMap route data
and polygonal geometries in its surrounding area, such as parks, lakes, urban

This research was supported by the ERC StRG Grant Agreement No 637645.
1 Line alongness: the ratio of the region boundary being parallel to a path.
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areas. For polygons overlapping the route, extra vertices are added at each cross-
ing dividing the polygon into paths (sections). For polygons disconnected from
the route, we select two vertices of the polygon as control points and two cor-
responding extra vertices are added to the route in order to hold their relative
positions. The control points are selected based on their distance to the route (d),
and the distance to the beginning/end of the linear referencing of the polygon
against the route (l). We want d and l to be simultaneously minimized.

After the planarization process is completed the route is schematized. The
schematization rescales the route parts, restricts edges orientation to the octi-
linear angles, forces fixed angles at decision points, while bends and shape dis-
tortion are minimized at the same time. Details on route schematization process
are omitted for space reasons but we use similar approach as in [3].

With the newly calculated schematic position of the route vertices, we use
affine transformation to transpose the polygons. For polygons crossed by the
route, the transformation is made to their resulting paths independently, and the
crossings themselves are used as references by the transformation. For polygons
disconnected from the route, the pair of control points and their correspondent
vertices in the route are used to readjust their position. We allow this adjustment
to be looser or tighter depending on the spatial relation we want to highlight.

After the affine transformation is applied to the polygons or their sub-
sections, the transposed geometries are submitted to the schematization process.
The schematized geometry of the route is sent to the polygon schematization
process to preserve their mutual topology. For the schematization process, we
adapt Nöllenburg-Wolff’s MIP inequalities. We use the hard constraints for octi-
linearity and edge spacing [6] to ensure the correct topology with the route. One
limitation of the edge spacing constraint, is that it requires the route and the
polygons to have the same edge orientation restriction.

For the objective function, we combine three soft constraints that are summed
together and can be weighted by independent parameters. To enhance similar-
ity to the original shape of the polygon, we use Nöllenburg-Wolff’s function
to preserve relative positions. Additionally, we add a new function that pre-
serve location by minimizing distance between old and the new polygon vertices
position in the L1-norm. To enhance abstraction, we use a similar bend cost
function as Nöllenburg-Wolff’s one, which penalizes bends along the resulting
polygon shape. That way similarity and abstraction is balanced by adjusting
the parameters.

3 Conclusion and Future Work

Using our application and real data of Münsterland-Germany, we were able to
create drawings of schematized regional landmarks that emphasizes particular
spatial relations with a route (e.g, line alongness and crossings). Next, we want to
formalize the approach for the ten groups of path-polygon topological relations
described by Shariff et al. [8], and later extend the method to be applicable with
more complex street networks. Finally, we want to develop empirical experiments
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with participants to test how the spatial relations are interpreted and recalled
in navigation tasks as compared to topographic maps.
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Abstract. We study beyond-planarity for graphs of low degree. In par-
ticular, we aim at establishing tight bounds for values of d such that every
graph of degree at most d belongs to a certain beyond-planarity class.

Beyond-planarity is a central topic in graph drawing, studying algorithmic
and combinatorial properties of non-planar graphs. The most-studied beyond-
planarity classes include: (i) k-planar graphs, where each edge crosses at most
k edges, (ii) quasiplanar graphs, which disallow 3 mutually crossing edges, (iii)
fan-planar graphs, where an edge only crosses a fan (a set of edges incident to a
common vertex), (iv) fan-crossing-free graphs, where no edge crosses a fan, and
(v) RAC k-bend graphs, where crossings happen at right angles and edges have
at most k bends. For further definitions and state of the art, see [11].

Our goal is to establish upper and lower bounds for values of d such that
every graph of degree at most d belongs to a certain beyond-planarity class.
Table 1 summarizes the state of the art, including our results.

To prove that for any fixed k > 0 there exists an infinite family of bipartite
Hamiltonian degree-3 graphs whose members are not k-planar, we employ an
argument based on the crossing number of the n-vertex 3-regular graph known
in the literature [14] as cube-connected cycles CCCn. This graph is constructed
starting from the n-regular hypercube graph [12] Qn = (Vn, En), whose 2n ver-
tices are denoted by distinct n-digit binary numbers; then, two vertices are joined

Table 1. The largest (second column) and smallest (third) value of d such that all
(not all) degree-d graphs belong to certain beyond-planarity classes.

Graph class Feasible Infeasible

k-planar Hamiltonian bipartite 2 3 (CCCn, Theorem1)

fan-planar Hamiltonian bipartite 2 3 (CCCn, Corollary 1)

quasi-planar 4 [2] 10 (K11, ref. [1])

RAC (0-bend) 2 4 (K4,4, ref. [10])

RAC (0-bend) Hamiltonian 3 [5] 4 (K4,4, ref. [10])

RAC 1-bend 3 [4] 9 (K10, ref. [3])

RAC 2-bends 6 [4] 148 (K149, ref. [6])

fan-crossing-free 3 [2] 5 (K5,5, Theorem 2)
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by an edge in En if and only if their binary representations differ in a single digit.
To obtain CCCn, each vertex v of Qn is replaced with a cycle of length n.

Graph CCCn has n2n vertices and 3n2n−1 edges, and its crossing number is
known [15] to be larger than 1

204n−(9n+1)2n−1. Hence, there is an edge with at
least

⌈
1
15

2n

n − 6 − 2
2n

⌉
crossings, which shows that, for every k ≥ 1, graph CCCn

is not k-planar for every n so that k <
⌈

1
15

2n

n − 6 − 2
2n

⌉
. Since, for even values

of n ≥ 6, graph CCCn is bipartite and Hamiltonian [13], we have the following.

Theorem 1. For every k ≥ 1, there exist infinitely many bipartite Hamiltonian
3-regular graphs that are not k-planar.

Note that Theorem 1 could also be derived from random graph theory [8].
As observed in [2], every degree-4 graph is quasiplanar, since it has thickness

2. Thus, Theorem 1 provides an alternative proof that, for any fixed k, there
exist quasiplanar graphs that are not k-planar [7]. Further, since every fan-planar
drawing of a 3-regular graph is a 3-planar drawing, we have the following.

Corollary 1. There exist infinitely many 3-regular bipartite Hamiltonian graphs
that are not fan-planar.

Alam et al. [2] observed that every degree-3 graph that can be decomposed
into a matching and a set of cycles is fan-crossing-free and quasiplanar at the
same time. This result can be extended to every degree-3 graph as follows1. First,
contract vertices of degree at most 2 and remove self-loops and bridges, to obtain
a 3-regular bridgeless simple graph, which admits the required decomposition
by Petersen’s theorem; then, reinsert the contracted or removed edges while
maintaining the fan-crossing-free and quasi-planarity properties.

We prove that this result cannot be extended to degree-5 graphs, by showing
that the 5-regular complete bipartite graph K5,5 is not fan-crossing free. We
prove this by means of a stronger result, namely a characterization of the com-
plete bipartite fan-crossing-free graphs, analogous to existing characterizations
for other beyond-planarity classes [9, 10].

Theorem 2. The complete bipartite graph Ka,b, with a ≤ b, is fan-crossing-free
if and only if (i) a ∈ {1, 2}, or (ii) a ∈ {3, 4} and b ≤ 6. In particular, K5,5 is
not fan-crossing-free.

We pose as future goal to further narrow the gaps between the bounds
described in Table 1. In particular, the main open question is whether degree-3
graphs are RAC; this long-standing question has been posed already several
times and is the one that first triggered our study. Note that the fan-crossing-
free and quasiplanarity properties are necessary conditions for a graph to be
RAC. In this sense, the extension of the result by Alam et al. [2] to all degree-
3 graphs is an important step towards an answer to this question. Another
intriguing question that stems from our results is whether degree-4 graphs are
fan-crossing-free. Finally, the upper bounds for d concerning quasiplanar, RAC
1 We thank an anonymous reviewer of GD’18 for suggesting this extension.
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1-bend, and RAC 2-bend graphs presented in Table 1 descend from the known
upper bounds on the maximum edge density of graphs in these classes [1, 3,
6]; it would be interesting to prove the existence of some low-degree graphs not
belonging to these classes by exploiting direct arguments.
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1 Introduction

The crossing number of a graph G, denoted by cr(G), is the minimum number
of edge-crossings over all drawings of G on the plane. To date, even the crossing
numbers of complete and complete bipartite graphs are open. For the crossing
number of the complete bipartite graph Zarankiewicz [6] showed that

cr(Km,n) ≤
⌊
n

2

⌋⌊
n − 1
2

⌋⌊
m

2

⌋⌊
m − 1

2

⌋

,

and conjectured that equality holds. Harary and Hill [4] and independently
Guy [3] conjectured that the crossing number of the complete graph Kn is

cr(Kn) =
1
4

⌊
n

2

⌋⌊
n − 1
2

⌋⌊
n − 2
2

⌋⌊
n − 3
2

⌋

=: H(n).

The construction of Harary and Hill is a so-called cylindrical drawing, in
which the vertices lie on the circles of a cylinder, and edges of the graph cannot
cross the circles. Towards the Zarankiewicz Conjecture, these drawings can be
restricted to bipartite cylindrical drawings, in which each set of the vertex par-
tition lies on its own circle. A k-circle drawing of a graph G is a drawing of G
in the plane where the vertices are placed on k disjoint circles and the edges do
not cross the circles. The k-circle crossing number of a graph G is the minimum
number of crossings in a k-circle drawing of G. For the special case when G is a
c© Springer Nature Switzerland AG 2018
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k-partite graph, we can further require that each of the k vertex classes is placed
on one of the k circles. The corresponding crossing number is called the k-partite-
circle crossing number and is denoted by cr k©(G). Richter and Thomassen [5]

showed that cr 2©(Kn,n) = n
(
n
3

)
. Ábrego, Fernández-Merchant, and Sparks [1]

generalized this result for m ≤ n to

cr 2©(Kn,m) =
(
n

2

)(
m

2

)

+
∑

0≤i<j≤m−1

(⌊ n

m
j
⌋

−
⌊ n

m
i
⌋) (⌊ n

m
j
⌋

−
⌊ n

m
i
⌋

− n
)
.

2 Our Results

We investigate the tripartite-circle crossing number of the complete tripartite
graph. Drawings that minimize the number of crossings are good, i.e., no edge
crosses itself and any two edges share at most one point. We develop methods to
count the number of crossings in good drawings and provide concrete drawings
to obtain upper bounds.

Theorem 1. For any integers m, n, and p,
∑

{x,y}∈({m,n,p}
2 )

z∈{m,n,p}\{x,y}

(

cr 2©(Kx,y) + xy

⌊
z

2

⌋⌊
z − 1
2

⌋)

≤ cr 3©(Km,n,p)

≤
∑

{x,y}∈({m,n,p}
2 )

z∈{m,n,p}\{x,y}

((
x

2

)(
y

2

)

+ xy

⌊
z

2

⌋⌊
z − 1
2

⌋)

.

For the balanced case, Fig. 1 illustrates the drawing, and the formulas simplify
to

3n
(
n

3

)

+ 3n2

⌊
n

2

⌋ ⌊
n − 1
2

⌋

≤ cr 3©(Kn,n,n) ≤ 3
(
n

2

)2

+ 3n2

⌊
n

2

⌋ ⌊
n − 1
2

⌋

.

C

A B

Fig. 1. A tripartite-circle drawing of Kn,n,n proving the upper bound.
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Connection to the Harary-Hill Conjecture The drawings of Kn presented by
Harary and Hill [4] have H(n) crossings and consist of a 2-circle drawing of
Kn/2,n/2 together with all straight line segments joining vertices on the same
circle. Moreover, Blažek and Koman [2] presented a 1-circle drawing of Kn with
H(n) crossings. Therefore it has been asked whether a 3-circle drawing ofKn

3 ,n3 ,n3
together with all straight line segments joining vertices on the same circle can
achieve H(n) crossings. Our result proves that such a drawing does not exist.
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1. Ábrego, B.M., Fernández-Merchant, S., Sparks, A.: The cylindrical crossing number
of the complete bipartite graph (2017, preprint)
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In the 18th century Euler discovered his famous polyhedron formula, which can
be used to bound the edge density for planar graphs. Let G = (V,E) be a
simple and planar graph with |V | ≥ 3, then |E| ≤ 3|V |−6. Turán co-established
Extremal Graph Theory, a branch in which extremal graphs are investigated
under the assumption of specified properties. He studied the edge density of
graphs which are not necessarily planar but do not contain cliques of fixed size.

For several beyond-planar graph classes Turán-type results were discovered:

– k-planar graphs, for which there exists a drawing where no edge is crossed
more than k times are studied in [2, 5, 10–12, 15, 16].

– k-quasi-planar graphs with no set of k pairwise crossing edges are investigated
in [1, 3–5, 12, 13, 18, 19].

– Fan-planar graphs, where edges can be crossed by one fan, a set of edges
sharing one common endpoint [5, 6, 8, 9, 14].

We consider the edge density of (non-) simple k-planar graphs. A simple
graph does not contain loops or parallel edges. A non-simple multigraph has
a drawing without homotopic parallel edges and self-loops. Bodendiek et al.
first bounded the edge density of 1-planar graphs [10]. Pach and Tóth [16] gave
bounds for k-planar graphs with 0 ≤ k ≤ 4, namely |E| ≤ (k+3)(|V |−2), includ-
ing Euler’s result for planar graphs. Edge density of k-planar graphs strongly
relates to the Crossing Lemma which provides a lower bound on the crossing
number cr(G) for any graph G. They [16] used their bounds to improve it to
cr(G) ≥ 1

33.75 · |E|3
|V |2 . Later Pach et al. [15] improved the bound for 3-planar graphs

to |E| ≤ 5.5(|V |−2). A charging argument by Ackerman [2] improves the bound
for 4-planar graphs to |E| ≤ 6(|V | − 2), proving the current best constant

(
1
29

)

for the Crossing Lemma. For k ≥ 5 only a general bound has been established:
considering the number of crossings C, a lower bound by the Crossing Lemma
and an upper bound from k-planarity yields (1) and gives |E| ≤ 3.807

√
k|V |.

1
29

|E|3
|V |2 ≤ cr(G) ≤ C ≤ |E| · k

2
(1)

Pach et al. [17] recently proved a Crossing Lemma for multigraphs using
another constant (≈ 10−7), so a similar inequality to (1) leads to the following
bound on the edge density of non-simple k-planar graphs. Curiously, this appears
to be the first and only upper bound known for arbitrary k.
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Fig. 1. True planar skeletons for different values of k (left-to-right):
k = 4 [15]; 5 ≤ k ≤ 6; 7 ≤ k ≤ 9; 10 ≤ k ≤ 12.

Table 1. Bounds on the number of edges for non-simple and simple graphs; similar
bounds can also be obtained for larger values of k.

Simple [2, 16] Non-simple [Theorem 1]

k Lower bound Upper bound Lower bound Upper bound

5 6.00|V | − 16.00 8.51|V | 6.20|V | − 12.40 5000|V |
6 6.80|V | − 23.60 9.32|V | 7.00|V | − 14.00 5478|V |
7 7.00|V | − 20.00 10.07|V | 7.33|V | − 14.67 5917|V |
8 7.33|V | − 20.67 10.77|V | 7.67|V | − 15.33 6325|V |
9 7.67|V | − 21.33 11.42|V | 8.00|V | − 16.00 6709|V |
10 7.71|V | − 23.43 12.04|V | 8.14|V | − 16.29 7072|V |
11 8.00|V | − 24.00 12.63|V | 8.43|V | − 16.86 7417|V |
12 8.57|V | − 25.14 13.19|V | 9.00|V | − 18.00 7746|V |

Theorem 1. For k ≥ 1, a non-simple k-planar graph G has |E| < 2237
√
k|V |.

We also construct lower bound examples based on the structure of optimal k-
planar graphs (k ≤ 3), i.e., k-planar graphs with maximum edge density. Namely,
Bekos et al. [7] showed that every optimal non-simple 2-planar (3-planar) graph
has a regular true planar skeleton: a spanning subgraph consisting of a set of
crossing-free edges with only pentagonal (hexagonal) faces. In the original graph,
every such face is (almost) a clique, having five (eight) edges inside.

The idea of the true planar skeleton leads us to lower bounds on edge density.
Using the patterns in Fig. 1 for 4 ≤ k ≤ 12 and adding all possible edges in every
face respecting k-planarity produces a family of non-simple k-planar graphs, i.e.,
establishing lower bounds on the edge density. To use these skeletons for lower
bounds on simple k-planar graphs, we have to carefully consider how to avoid
multi edges when inserting edges. In particular, by using skeletons such as those
shown in Fig. 1, we obtain new bounds for both simple and non-simple k-planar
graphs – all discovered bounds can be found in Table 1.

Observe that the general upper bounds on the edge density of k-planar graphs
rely on a naive upper bound on the number of crossings; see (1). Additionally,
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our current best lower bound examples are based on true planar skeletons. These
remarks lead to the following questions:

Q1 Is there a better bound on the crossing number for optimal k-planar graphs?
Q2 Can we obtain better lower bounds if we do not use true planar skeletons?
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Recently an edge bundling technique known as confluent� drawing was applied
to general graphs by Bach et al. [2] by leveraging power graph decomposition (a
form of edge compression that groups similar vertices together, merging edges
shared among group members). We explore the technique further by demon-
strating the equivalence between confluent drawing and the hierarchical edge
bundling of Holten [3], thereby opening the door for existing hierarchical cluster-
ing algorithms to be used instead of power graphs to produce confluent drawings
for general graphs. We investigate various popular hierarchical clustering meth-
ods, and present a qualitative experimental comparison between them. We also
introduce a new distance measure for agglomerative clustering that outperforms
previous measures, and make recommendations for using the method in practice.

Creating the Routing Graph. The method of bundling we consider consists
of two steps: first, we find a suitable auxiliary routing graph; second, we find a
layout for this new graph, and then draw the original edges back on top, using
invisible routing nodes as spline control points. An example of this can be seen
in Fig. 1.

Fig. 1. An example of a simple graph (left), its potential routing graph (middle), and
the resultant drawing with edges bundled through routing nodes (right).

This should not be confused with the routing graph used by Pupyrev et al.
[4] in their paper on metro-style bundling, which generates a routing based on
curving around fixed node positions. Our routing is generated using the topology
of the graph itself. The benefit of this is that the bundling reflects the actual

The original definition of confluent by Dickerson et al. [1] forbids edge crossings, while
Bach et al. [2] recognize but do not strictly follow this. We continue the use of such
terminology here for consistency, but recognize its imprecise usage. A more suitable
name for the general edge bundling method of using an auxiliary routing graph should
be adopted in the future.

c© Springer Nature Switzerland AG 2018
T. Biedl and A. Kerren (Eds.): GD 2018, LNCS 11282, pp. 640–642, 2018.
https://doi.org/10.1007/978-3-030-04414-5

https://doi.org/10.1007/978-3-030-04414-5


Confluent* Drawings by Hierarchical Clustering 641

structure of the data, rather than a potentially arbitrary spatial positioning. On
the other hand, the popular method of Holten [3] generates its routing using a
hierarchy already included in the data, which is easily converted into a graph
through a tree representation, where original vertices are the leaves and groups
within the hierarchy are branch nodes.

The primary purpose of this poster is to show that the work on confluent
drawings by Bach et al. [2] is also based on a routing graph, and therefore should
be classified with these previous two techniques, rather than within the realm of
confluent drawing. As such, the routing graphs generated here may also be used
to produce metro-style bundles [4].

As noted by Bach et al. [2] in their original paper, we also find that power
graph decomposition performs poorly on graphs where clusters or cliques are a
common motif, producing fractal-like artifacts (see poster for example). To alle-
viate this issue, we investigate the use of hierarchical clustering to generate the
routing instead. This requires the definition of a dissimilarity measure between
pairs of vertices, a popular choice being the Jaccard distance measure

dij = 1 − |N(i) ∩ N(j)|
|N(i) ∪ N(j)| (1)

where N(i) is the set of neighbours of vertex i. However, simply using Jaccard
distance only captures the dissimilarity of vertices with shared neighbours, and
any pair of vertices more than two hops away is automatically given a distance
dij = 1. We introduce a method of capturing such longer range dissimilarities, by
simply multiplying dij by the shortest path between them. A visual comparison
between the two can be seen in the poster, along with a further example using
a popular divisive clustering method.

Drawing the Bundled Graph. The result of a hierarchical clustering algo-
rithm is a dendrogram (a rooted tree used to describe hierarchical relationships)
which needs to be converted to a routing graph. One could simply assign unit
edge lengths to the branches, but the output of agglomerative methods also
includes a merging cost between clusters. We encode this using varying edge
lengths, and therefore require a force-directed method that explicitly includes
this. In our case we use a multidimensional scaling approach i.e. the popular
Kamada-Kawai layout. This was recently improved by Zheng et al. [5] by mak-
ing use of stochastic gradient descent, and can also be used to easily produce
optimal radial layouts (see poster for example).

The original edges are then drawn of top of this layout using b-splines con-
trolled along the shortest path through the routing graph. To improve the draw-
ing aesthetically, we also reduce the bundling strength as in Holten [3], while
full strength bundling can be used to reproduce the confluent effect utilised by
Bach et al. [2].
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Chaplick et al. [2] defined the l-dimensional affine line cover number ρld(G), for
1 ≤ l < d and an arbitrary graph G, as the minimum number of l-dimensional
planes in R

d such that G admits a crossing-free straight-line drawing whose
vertices and edges are contained in the union of these planes. The l-dimensional
weak affine line cover number πl

d(G) also counts such planes but insists only
that the vertices are covered by their union. In particular, the weak line cover
number π1

2(G) is the minimum number of lines in the plane that are necessary
to cover the vertices of a planar graph G.

Firman et al. [3] asked whether π1
2 has a sublinear upper bound for the class of

planar graphs. In the following we restrict their open problem further and make
some progress in characterizing the class of graphs that can be drawn on two lines
in the plane (further referred to as drawable). In order to verify conjectures (such
as Conjecture 1 below), we needed a drawability test. Given that drawability is
NP-hard to decide [1], we contented ourselves with exponential-time approaches.

First, we formulated drawability as an integer linear program (ILP). The
solution of the ILP yields a drawing on two lines. Without loss of generality, we
consider the case that the two lines are perpendicular and view their intersection
point as the origin of a Euclidean coordinate system with four quadrants each
incident to two half-axes. There are Boolean variables for every combination of
a vertex and a half-axis describing whether they are incident. Other variables
represent the order of the vertices on a given half-axis. The constraints ensure
that every vertex is mapped to exactly one half-axis, that the ordering on each
half-axis is transitive, and that the resulting drawing is planar.

Second, we transformed our ILP formulation into a Boolean formula in CNF
that can be tested by a SAT solver. The ILP formulation uses only binary vari-
ables and was therefore easy to transform. Our hope was that the SAT formula-
tion could be evaluated more efficiently than the ILP formulation. On our test
suite with 824 solvable and 304 unsolvable graphs, the SAT solver MiniSat (ver-
sion 2.2.0) was indeed always faster than the ILP solver IBM ILOG CPLEX
Optimization Studio (12.8.0.0). Both in terms of total computation time and
only solving time, the difference in speed was an order of magnitude.

Our experiments suggest the following.

Conjecture 1. Every planar graph with maximum degree 3 is drawable.

However, David Eppstein found a 3-regular counterexample with 26 vertices;
see Fig. 3. We verified it using our SAT formulation.
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We can show that any graph that contains nested triangles in each of its
planar embeddings is not drawable. For graphs with maximum degree 3, this
case does not arise as they can always be embedded such that there are no
nested triangles due to their low connectivity, see Fig. 1. On the other hand,
triangulations are not drawable – apart from the tetrahedron and graphs that
extend the tetrahedron in a specific way; see Fig. 2. The graph with the dashed
edges in Fig. 1 shows that not all 2-outerplanar and not all graphs of maximum
degree 4 are drawable. We also managed to extend our nested-triangle condition
to nested cycles; this yielded quadrangulations (which are obviously triangle-
free) that are not drawable.

Fig. 1. The triangular prism (solid
edges, left) is drawable (right), but its
4-regular supergraph with the dashed
edges is non-drawable.

Fig. 2. The tetrahedron (in gray) and a
family of drawable triangulations based
on it.

Fig. 3. David Eppstein’s
3-regular graph that is not
drawable on two lines.

Fig. 4. The truncated hexahedron (a 3-regular graph
with 24 vertices) drawn on two lines not using their inter-
section – and its representation as an Archimedean solid.

Our experiments also showed that all tested graphs of maximum degree 3
except the tetrahedron are not only drawable, but can be drawn on two lines
such that no edge contains the intersection of the two lines; see, for example,
Fig. 4. This could help in finding a strategy for distributing vertices on two
lines. Under this additional condition no triangulation we tested was drawable,
including any of those in Fig. 2.
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Abstract. A graph is 1-gap planar if it admits a drawing such that each
crossing can be assigned to one of the two involved edges in such a way
that each edge is assigned at most one crossing. We show that K3,14,
K4,10 and K6,6 are not 1-gap planar.

1 Introduction

A graph is 1-gap planar if it admits a drawing such that each crossing can
be assigned to one of the two involved edges in such a way that each edge is
assigned at most one crossing. The motivation comes from edge casings, where
one creates a small gap in one of the edges involved in each crossing to increase
the readability. In a 1-gap planar drawing each edge receives at most one such
gap. This notion was introduced in GD’17 by Bae et al. [1]. Among others they
showed that a 1-gap planar graph on n vertices has at most 5n − 10 edges and
this is tight. They further show that the complete graph Kn is 1-gap planar if
and only if n ≤ 8. An important observation of Bae et al. is that every 1-gap
planar graph G satisfies cr(G) ≤ |E| (since each crossing is assigned to one of the
edges). For complete bipartite graphs, they gave 1-gap planar drawings for K3,12,
K4,8 and K5,6, whereas they exclude K3,15, K4,11 and K6,7 by observing that
their crossing number is strictly greater than their edge number. They leave the
remaining complete bipartite graphs as an open problem. We show the following
theorem.

Theorem 1. The graphs K3,14, K4,10 and K6,6 are not 1-gap planar.

This shrinks the open cases to K3,13 and K4,9. We note that for all the graphs
we exclude, the crossing number equals the edge number [2]. Thus, we know that
in a 1-gap planar drawing of such a graph each edge has at least one crossing.

2 Proof Strategy

Our proof strategy is an extension of the one of Bae et al., who encountered a
similar situation when treating the case of K9, which has 36 edges and whose
crossing number is 36. For convenience, we briefly sketch their argument. Assume
for the sake of contradiction that Γ is a 1-gap planar drawing of K9, and consider
c© Springer Nature Switzerland AG 2018
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the planarization Γ � of this drawing, where all crossings are replaced by dummy
vertices. Observe that Γ has precisely cr(K9) = |E(K9)| = 36 crossings [1]. If
two vertices of K9 share a face in Γ �, we can reroute the edge between them
without crossings in this face, thus obtaining a drawing with fewer crossings,
which is not possible. Thus, for any two original vertices their incident faces
of Γ � are disjoint. This gives a lower bound of 72 faces. On the other hand, from
Euler’s formula it follows that Γ � has only 65 faces; a contradiction.

In contrast, for complete bipartite graphs, vertices may share a face of the
planarization if they are independent. Let G = (R

.∪B,E) be a complete bipartite
graph with cr(G) = |E| = |R| · |B|. The vertices in R and B are red and blue,
respectively. As before, we consider a hypothetical 1-gap planar drawing Γ of G,
for which we know that it has cr(Γ ) = cr(G) = |E| crossings, and we denote the
planarization by Γ �. Let F denote the set of faces of Γ � and let FR, FB ⊆ F be
the faces that are incident to a red and a blue vertex, respectively. If FR∩FB �= ∅,
then there is a face in F that is incident to both a red and a blue vertex. We can
route the edge between them without crossings and thus reach a contradiction as
in the case of K9. By assumption, Γ � has |R|+|B|+|E| vertices and |R|·|B|+2·|E|
edges, and hence |F | = 2 · |R| · |B| − |R| − |B| + 2 faces.

Consider the auxiliary bipartite graph GR = (R ∪ FR, ER) where a face
and a vertex are adjacent if and only if they are incident in Γ �. The graph
GB = (B ∪FB, EB) is defined analogously. Observe that |ER| = |EB | = |R| · |B|
since each vertex in R has degree |B| and vice versa. We argue that either GR

and GB are both trees, or one of them, say GR, is a cycle decorated with leaves
in FR and the other one, GB , is a forest with two connected components.

In the former case, we obtain |ER| = |R| + |FR| − 1, which gives |FR| =
|R| · |B| − |R| + 1 and likewise |FB | = |R| · |B| − |B| + 1. Hence |FB | + |FR| =
2 · |B| · |R| − |R| − |B| + 2 = |F |. In the latter case, the number of faces in
FR decreases by 1, but the number of faces in FB increases by 1. In all cases
we find that |FR| + |FB | = |F |, i.e., each face of Γ � is either in FR or in FB.
A contradiction is reached by showing that there exists at least one white face
of Γ � that is not incident to any red or blue vertex.

First it follows from the fact that each edge has a gap that there is a cycle C
in Γ � that only contains dummy vertices. This can be seen as follows. We start
in any dummy vertex and follow the edge that does not have its gap there to
its own gap. Repeating this step eventually produces the desired cycle C. If all
red and blue vertices lie inside (outside) C, then C contains a white face in its
exterior (interior). Otherwise it separates a component of GR from a component
of GB . Further analysis yields a contradiction. The details vary depending on
whether G is K3,14, K4,10 or K6,6 as well as on the size and structure of the
components that are separated by C.

3 Conclusion

We have shown that K3,14, K4,10 and K6,6 are not 1-gap planar. We leave open
the cases of K3,13 and K4,9. It seems difficult to adapt our proof technique
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to these cases since their crossing numbers are strictly smaller than their edge
number, which results in additional freedom for possible 1-gap planar drawings.
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The Harary-Hill Conjecture states that the crossing number of the complete
graph Kn is equal to:

H(n) =
1
4

⌊
n

2

⌋⌊
n − 1
2

⌋⌊
n − 2
2

⌋⌊
n − 3
2

⌋

.

In general, if S is the unit sphere in R
3, then a spherical drawing of a graph

G is one in which the vertices of G are represented as distinct points in S, and
every edge is a shortest-arc connecting its corresponding ends. Although the
Harary-Hill Conjecture is known to be true for certain classes of drawings of
Kn, it is yet unknown that spherical drawings have at least H(n) crossings.

In the proofs of [1,3] showing that rectilinear drawings of Kn have at least
H(n) crossings, a crucial point was to relate the number of crossings in a given
drawing to the separation properties of the

(
n
2

)
lines extending the edges. Under-

standing these separation properties, but for the curves extending the edges in
spherical drawings, serve as our motivation for studying arrangement of pseudo-
circles extending the edges of a drawing.

An arrangement of pseudocircles is a set of simple closed curves in the sphere
in which every two curves intersect at most twice, and every intersection is a
crossing. If γ is a simple closed curve, then a side of γ is one of the two disks in
S bounded by γ. In spherical drawings, the great circles extending the edge-arcs
form an arrangement of pseudocircles.

With the aim of finding a combinatorial extension of spherical drawings anal-
ogous to how pseudolinear drawings extend rectilinear drawings, there have been
two significant questions under active consideration:

(Q1) Do the edges of every good drawing of Kn in the sphere extend to an
arrangement of pseudocircles?

(Q2) If the edges of a drawing of Kn extend to an arrangement of pseudocircles,
is there an extending arrangement in which any two pseudocircles intersect
exactly twice?
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These questions were indeed considered by a working group at the 2015
Crossing Number Workshop in Rio de Janeiro.

In this work, we answer these questions by showing that (1) there is a drawing
of K10 (Fig. 1c) in which there is no extension of its edges into an arrangement
of pseudocircles; and (2) there is a drawing of K9 in which there is an extension
of its edges into an arrangement of pseudocircles, but no such extension exists
for which any two curves cross exactly twice.

(a) (b) (c)

Fig. 1. Construction of a K10 with whose edges cannot be extended to an arrangement
of pseudocircles.

To construct the examples we consider the basic gadget in Fig. 1a. This has the
property that if we extend its three edges into an arrangement of pseudocircles,
then either the pseudocircle extending the edge with two degree 1 vertices is
drawn in the bounded face of the drawing or the two pseudocircles extending the
other two edges are drawn in the bounded face. Overlapping two basic gadgets
as in Fig. 1b yields a drawing not extendible to an arrangement of pseudocircles;
Fig. 1b can be enlarged to the non-extendible drawing of K10 in Fig. 1c. A similar
construction, but using two disjoint copies of the basic gadget, yields the drawing
of K9 answering (Q2) in the negative form.

Among the five non-isomorphic drawings of K5 in the sphere, there are two
that are non-rectilinear. The class of convex drawings of Kn is obtained by for-
bidding the two non-rectilinear K5s. Convex drawings (or locally rectilinar draw-
ings) were introduced in [2] in the context of the Harary-Hill Conjecture, where
it is shown that there is a possibility that every optimal drawing of Kn is convex.

In this work we show that every h-convex drawing, a special kind of convex
drawing, can be extended into an arrangement of pseudocircles. Furthermore,
the extension satisfies that if two vertices x and y are on the same side of a
curve extending an edge, then the edge xy is drawn on that side of the curve.
Moreover, we prove that any drawing of Kn with a pseudocircular extension of
such kind is h-convex.

Related to (Q2), we also show that h-convex drawings have a “better” exten-
sion in which pseudocircles are pairwise intersecting. This, and the fact that
h-convex drawings can be decomposed into two pseudolinear drawings, suggest
that h-convex is, possibly, the right definition for pseudospherical drawings of
Kn.
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1 Introduction

We propose a new graph kernel for graph classification and comparison using
Ollivier Ricci curvature. The Ricci curvature of an edge in a graph describes the
connectivity in the local neighborhood. An edge in a densely connected neigh-
borhood has positive curvature and an edge serving as a local bridge has negative
curvature. We use the edge curvature distribution to form a graph kernel which
is then used to compare and cluster graphs. The curvature kernel uses purely the
graph topology and thereby works for settings when node attributes are not avail-
able. The computation of the curvature for an edge uses only information within
two hops from the edge and a random sample of O(1/ε2 log 1/ε + 1/ε2 log 1/δ)
edges in a large graph can produce a good approximation to the curvature dis-
tribution with error bounded by ε with probability at least 1 − δ. Thus, one can
compute the graph kernel for really large graphs that some other graph kernels
cannot handle. This Ricci curvature kernel is extensively tested on graphs gen-
erated by different generative models as well as standard benchmark datasets
from bioinformatics and Internet AS network topologies.

Graph classification and comparison are widely applied in bioinformatics,
vision and social network analysis. One of the most popular approaches in prac-
tice is using graph kernels which compute the similarity of two graphs in terms
of subgraph structures. Many graph kernels have been developed, which differ
by the subgraph structures they focus on, such as random walks [2], shortest
paths [1], subtrees [5], and cycles [3]. Graph kernels have been extensively tested
on benchmark datasets from bioinformatics to chemistry [1, 4].

In our work, we focus on the setting of unlabeled graphs and propose a new
graph kernel based on discrete Ricci curvature which takes only the network
topology as an input. Our work is motivated by the use of curvature related
kernels in shape matching. Curvature on a smooth surface defines the amount
by which a geometric object deviates from being flat or straight. It is a local
measure at each point but nevertheless has deep connections to global topology
and structures. Despite the success in shape matching, curvature has not been
used much for comparing graphs. In this paper, we propose to use curvature
distribution of graphs to build new graph kernels. The goal is to demonstrate
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Fig. 1. The 2D Ricci Curvature histogram of MUTAG graphs which describes the cur-
vature distribution for pairs of neighboring edges. A suitable choice of mass distribution
on the neighborhood results in curvature always ranging between [−1, 1]. Graphs in
the same class tend to have similar histogram distributions. Here MUTAG:22 and
MUTAG:24 belong to the same class, while MUTAG:182 and MUTAG:183 belong to
another class.

that the Ricci curvature distribution and kernels can be efficiently computed
and capture interesting graph properties. They add to the family of graph fea-
tures and kernels, could be combined with other attributes, and used for other
classifiers.

2 Discrete Ricci Curvature

For an edge uv, define a distribution mu,mv on the neighborhood of u, v respec-
tively (such as uniform mu and mv). Now compute the Earth Mover Distance
W (u, v) from mu to mv, where the cost of moving mass from a neighbor ui of u
to a neighbor vj of v is the shortest path distance in the graph. Here the edges are
unweighted unless they inherit weights arising from the application domain, such
as tie strength or distances. For example, W (u, v) will be upper bounded by 2 for
unweighted graph if we allocate 50% mass to the node’s neighbor. The Ollivier-
Ricci curvature is defined as w(uv) = 1 − W (u, v)/d(u, v), where d(u, v) is the
length of edge uv. Intuitively the curvature captures the structural properties of
the local neighborhood. If uv stays in a well connected, dense neighborhood, the
curvature is positive; if uv is locally a bridge, its curvature is negative.

3 Ricci Curvature Graph Kernel

We define the Ricci Curvature Kernel as the following. Denote the curvature
distribution of all edges in G by D(G) and that of G′ by D(G′). We use the
standard Gaussian RBF kernel: k(G,G′) = exp(−||D(G) − D(G′)||22/2σ2), where
||D(G) − D(G′)||2 is the �2 norm of two vectors D(G), D(G′). Since the kernel
depends on the curvature distribution, the distribution is less robust statistically
for small graphs. We could boost up the kernel by considering the curvature dis-
tribution for pairs of neighboring edges {(w(e), w(e′))}. It appears to be more
effective in practice. See Fig. 1 for an example. When the graph is really large,
computing the curvature distribution might be costly (O(|G.E| ∗ n3) where n is
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the size of concerned neighborhood). Random sampling can be used to approx-
imate the curvature distribution. Taking O(1/ε2 log 1/ε + 1/ε2 log 1/δ) edges
uniformly at random from the graph G, it can be shown that D̂(G), the curva-
ture distribution on the sampled edges, is a good approximation of D(G) with
error bound ε with probability 1−δ. Notice that the running time does not even
depend on the size of the graph n.

References

1. Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs. In: Proceedings
of the Fifth IEEE International Conference on Data Mining (ICDM 2005), pp. 74–
81. IEEE Computer Society, Washington, DC (2005). http://dx.doi.org/10.1109/
ICDM.2005.132
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3. Horváth, T., Gärtner, T., Wrobel, S.: Cyclic pattern kernels for predictive graph
mining. In: Kim, W., Kohavi, R., Gehrke, J., DuMouchel, W. (eds.) Proceedings
of the 10th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD 2004), 22–25 August 2004, Seattle, WA, USA, pp. 158–167.
ACM Press, New York (2004). http://doi.acm.org/10.1145/1014052.1014072

4. Ralaivola, L., Swamidass, S.J., Saigo, H., Baldi, P.: Graph kernels for chemical
informatics. Neural Netw. 18(8), 1093–1110 (2005). http://dx.doi.org/10.1016/j.
neunet.2005.07.009
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1 Introduction

Nowadays many big complex networks are abundant in various application
domains, such as the internet, finance, social networks, and systems biology.
Examples include web graphs, AS graphs, Facebook networks, Twitter networks,
protein-protein interaction networks and biochemical pathways. However, com-
puting good visualization of big complex networks is extremely challenging due
to scalability and complexity.

Recent work for visualizing big graphs uses a proxy graph approach [3]: the
original graph is replaced by a proxy graph, which is much smaller than the
original graph. The challenge for the proxy graph approach is to ensure that the
proxy graph is a good representation of the original graph.

Eades et al. [2] presented proxy graphs using the spectral sparsification app-
roach. Spectral sparsification is a technique to reduce the number of edges in a
graph, while retaining its structural properties, introduced by Spielman et al. [5].

More specifically, they present a method for computing proxy graphs, called
DSS (Deterministic Spectral Sampling), by selecting edges with high resistance
values [5]. Their experimental results confirmed the promises by Spielman et al.:
i.e., the spectral sparsification based methods are more effective than Random
Edge sampling based method.

It was left as an open problem to compare the spectral sparsification based
proxy graph approach with other graph sampling based proxy graph methods.

2 Our Results

In this poster, we introduce a new method called Spectral Sparsification Vertex
(SSV-I) for computing proxy graphs using the spectral sparsification approach.
Roughly speaking, we define resistance values for vertices, using the sum of
resistance values of incident edges then we select vertices with high resistance
values.

Suppose that G = (V,E) is a graph with a vertex set V (n = |V |) and an
edge set E (m = |E|). Let r(v) represents a resistance value of a vertex v, and
r(e) represents a resistance value of an edge e. Let deg(v) represents a degree of
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a vertex v (i.e., the number edges incident to v), and let Ev represents a set of
edges incident to a vertex v.

More specifically, we define resistance value for each vertex v as below:

r(v) =
∑

e∈Ev

r(e)

We now describe a new method called SSV-I (Spectral Sparsification Vertex)
for computing spectral sparsification based proxy graph G′ = (V ′, E′) of G =
(V,E). Let V ′ consist of the n′ of largest effective resistance. Then G′ be the
subgraph of G induced by V ′.

Our experimental results with both benchmark real-world graphs and
synthetic graphs using graph sampling quality metrics, visual comparison with
various graph layouts and proxy graph quality metrics [3] show significant
improvement by the SSV-I method over the Random Vertex (RV) sampling
method.

Our main contribution and findings can be summarised as follows:

1. We introduced a new method called Spectral Sparsification Vertex (SSV-I)
for computing proxy graphs using the spectral sparsification approach.

2. Experimental results with sampling metrics confirm that the SSV-I shows sig-
nificant improvement over RV method. To be precise, around 35% improve-
ment SSV-I over RV method on average in most metrics.

3. We observed that the Backbone layout [4] shows better structure for Bench-
mark graphs (i.e., real-world data), esp. scale-free graphs, and the Organic
layout [1] produces better shape for Black-hole graphs (i.e., synthetic graphs).

4. Visual comparison of proxy graphs computed by SSV-I and RV using Bench-
mark, GION, and Black-hole data sets using the Backbone and Organic lay-
outs confirms that our new SSV-I method produces proxy graphs with better
connectivity structure with similar visual structure to the original graph than
RV.

5. Experimental results confirm our hypothesis that the SSV-I method performs
better than RV in proxy quality metrics, esp., when the relative density is
low.

6. We observed that the Backbone layout performs better than the Organic
layout in terms of the improvement in proxy quality metrics computed by
SSV-I over RV method.
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1 Introduction

Recent work for visualizing large graphs uses a proxy graph method [3]:
the original graph is replaced by a proxy graph, which is much smaller than
the original graph. The challenge for the proxy graph approach is to ensure that
the proxy graph is a good representation of the original graph. However, previous
work to compute proxy graphs using the random sampling methods often fail to
preserve the important global skeletal structure and connectivity of the original
graph [4, 5].

For example, Zhang et al. presented experimental comparison of different
sampling algorithms under various sampling metrics [5]. Wu et al. presented
user studies to investigate how sampling methods influence graph visualization,
in terms of human perception of high degree vertices, clusters and coverage
area; it was recommended to use Random Walk (RW) for high degree vertex,
Random Jump for clustering, but to avoid Random Vertex (RV) sampling [4].
In particular, Random Vertex and Random Edge sampling often produce a set
of disconnected proxy graphs [4].

The BC (Block Cut-vertex) proxy graph methods, based on the BC tree
decomposition of a connected graph into biconnected components, produced
better results than the random sampling based methods. However, the bottle-
neck was when graphs have giant biconnected components [2]. In particular, the
performance gain for real-world graphs was smaller, due to the existence of single
dominant component in real-world graphs.

Therefore, it was left as an open problem and future work is to conduct
further experiments, by combining with other graph partitioning methods [2].

2 The SPQR Tree

The SPQR tree of a biconnected undirected graph G represents the decompo-
sition of G into triconnected components [1], which can be computed in linear
time.

We use basic terminology of SPQR trees; for details, see [1]. Each triconnected
component consists of real edges (i.e., edges in the original graph) and virtual
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edges. (i.e., edges introduced during the decomposition process, which represents
the other triconnected components, sharing the same virtual edges defined by
cut-pairs).

Each node ν in the SPQR tree is associated with a graph called the skeleton
of ν, denoted by σ(ν), which corresponds to a triconnected component. There
are four types of nodes ν in the SPQR tree: (i) S-node, where σ(ν) is a simple
cycle with at least three vertices; (ii) P-node, where σ(ν) consists of two vertices
connected by at least three edges; (iii) Q-node, where σ(ν) consists of two vertices
connected by two (real and virtual) edges; and (iv) R-node, where σ(ν) is a simple
triconnected graph with at least four vertices.

In this poster, we use the SPR tree, a simplified version of the SPQR tree
without Q-nodes, since the Q-node consists of two vertices and edges.

3 Our Results

This poster introduces new SPQR proxy graph methods, integrating graph sam-
pling methods with the SPQR tree [1] to maintain the important global connec-
tivity structure of the original graph.

We present two new families of proxy graph methods SPQR-W and SPQR-E,
each contains the five most popular sampling methods, including RV (Random
Vertex), RE (Random Edge), IRE (Induced Random Edge), RP (Random Path)
and RW (Random Walk), used in previous work [2–5].

More specifically, we first include the separation pairs of the original graph to
proxy graphs, since separation pairs are structurally important vertices in terms
of connectivity. Then, SPQR-W proxy graph methods perform sampling using the
original sampling algorithms.

SPQR-E algorithm is a Divide and Conquer algorithm that uses SPQR-W algo-
rithms: it first selects separation pairs, and then performs SPQR-W algorithms for
each triconnected component νi, i = 1, . . . , k of G to compute a proxy graph G′

i

of σ(νi), the skeleton of ν. Finally, it merges G′
i, i = 1, . . . , k, into the final proxy

graph G′ of G.
Note that the skeleton σ(ν) consists of virtual edges and real edges. Since

such virtual edges do not exist in the original graph, we only sample real edges
of σ(ν).

The main contribution of this poster is summarized as follows:

1. We present two new families of proxy graph methods SPQR-W (SPQR-Whole)
and SPQR-E (SPQR-Each). Each family consists of five new methods, inte-
grating the SPQR tree decomposition with the most popular five sampling
methods, used in the sampling-based proxy graph method [2, 3].

2. Experimental results using graph sampling quality metrics, proxy quality met-
rics [3] and visual comparison with real world graphs show that our new SPQR
proxy graph methods produce significantly better results than the previous
methods [2, 3].
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1 Introduction

The classic Knight’s Tour Problem asks for a sequence of knight moves in an n×n
chess board that allows the knight to visit every square exactly once and return to
the starting position. There is a long history of algorithms for producing knight
tours (e.g., see [1, 3]). However, most of them produce complex tours. We consider
the problem of finding knight’s tours minimizing two metrics of complexity: the
number of turns and the number of crossings. A turn is when two consecutive
knight moves in the tour go in different directions (i.e., when the three cells
involved are not collinear); a crossing is when the line segment connecting the
cells of two knight moves intersect. To the best of our knowledge, these metrics
are new in this context, but they are often studied in geometric contexts and,
in the case of crossings, in graph drawing. (However, people have looked at the
related problem of the longest knight path without any crossings [2].)

We use a novel approach to produce a family of knight’s tours for n×n boards
(where n is even, since, otherwise, a tour does not exist) with a near-optimal
number of turns and crossings (see Results). Our approach also has several other
good qualities: (i) the knight move at any given cell can be determined in con-
stant time without constructing the tour explicitly; (ii) it can be generalized to
rectangular boards (as long as both sides do not have odd length, in which case
a tour does not exist), and (iii) it the tours are easy to visualize and construct
without the need of computers or calculations.

Results. Our tours have 10.75n + O(1) turns and 13n + O(1) crossings, where
the constant factors are quite small but vary slightly depending on n mod 8.
For instance, if n ≡ 2 mod 8, the constants are 40.5 and 91, respectively. Since
a knight must turn at any cell next to the edge of the board, any knight tour
must have at least 4n turns.1 Similarly, by examining the ways to cover the first
two rows (or columns) on each side of the board, we can show that there is at
least one crossing per column per side. Therefore, the number of crossings must
be also be at least 4n. Therefore (for sufficiently large values of n) our tours are
within a factor of ≈ 2.7 and 3.25 of the minimum.
1 This lower bound can be improved to 4.25n by observing that cells close to the

center of the board must be part of a sequence of moves that must contain a turn
that is not in one of the cells along the boundary. We omit this slight improvement
for brevity.
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Fig. 1. (a) Knight’s tour on a 34 × 34 chess board with 320 turns and 429 cross-
ings (Other dimensions at [4]). (b) Corresponding sequence of “formation moves”.
(c)“formation moves” for a group of 2 × 2 knights. In half straight moves only two of
the four knights move maintaining the 2 × 2 formation (d) corner constructions that
pair up four knight paths into two connected paths (solid and dashed).

2 Construction

We begin by covering the board (except two corners) with four knights arranged
in a 2 × 2 formation. By using the “formation moves” depicted in Fig. 1c, they
can cover the board while remaining in formation (see Fig. 1b). The main idea is
to move in zig-zag along diagonals, because diagonal moves do not create turns
or crossings. A little care must be put when selecting the moves along the bottom
and top edges of the board to make sure that every cell is visited; nonetheless, it
is not hard to do so. The issue of how to transform the four knights into a single
knight’s tour is resolved by using a special construction at the bottom-left and
top-right corners of the board (see Fig. 1d). This construction pairs up the four
knights into two connected paths at each of these two corners. This results in
either a valid knight’s tour or two disjoint cycles. However, note that there are
two alternative corners which pair up different knights; therefore, it is always
possible to set the corners to make a valid knight tour.
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