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Abstract. Navigation is one of the most complex daily activities we
engage in. Partly due to its complexity, navigational abilities are vulner-
able to many conditions including Topographical Agnosia, Alzheimer’s
Disease, and vision impairments. While navigation using solely vision
remains a difficult problem in the field of assistive technology, emerging
methods in Deep Reinforcement Learning and Computer Vision show
promise in producing vision-based navigational aids for those with nav-
igation impairments. To this effect, we introduce GraphMem, a Neural
Computing approach to navigation tasks and compare it to several state
of the art Neural Computing methods in a one-shot, 3D, first-person
maze solving task. Comparing GraphMem to current methods in navi-
gation tasks unveils insights into navigation and represents a first step
towards employing these emerging techniques in navigational assistive
technology.
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1 Introduction

From navigating the rooms and hallways of one’s own home to navigating a large
city, the cognitive functions involved in negotiating an environment to arrive at
a predetermined destination are delicate, complex, and in many ways innate.
Specialized components of the brain (head direction cells, place cells, grid cells,
and border cells) have been shown to be integral to navigation [25]. Although
the ability to navigate endows people with independence and self determination,
many circumstances can lead to complications in navigation, and a surprising
number of people experience such complications. The World Health Organization
estimates that 253 million people worldwide have a vision impairment [4] and
21 to 25 million people have Alzheimer’s Disease worldwide [7], both of which
are known to cause navigation issues [24] among many other conditions.
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Navigation itself is a complicated processes, requiring multisensory integra-
tion over time and space and a strong dependence on memory. Researchers have
determined that efficiently storing and recalling the relationship of landmarks in
space is essential to spacial cognition, and thus navigation [24]. There also exists
large individual differences in navigation performance: an individual’s acuity
towards environmental cues, computational mechanisms, and spatial represen-
tations that are involved in navigation all are responsible for their navigational
aptitute [30]. With so many factors affecting navigational ability, there exists
real demand for assistive technology in the space of navigational aids. While the
advent of ubiquitous GPS has already benefited many with navigational impair-
ments, small scale and indoor navigation remains a challenge. There does though
exist promise in the application of emerging computer vision based technologies
for navigational aids.

Deep Learning (DL) and Convolutional Neural Networks (CNNs) have
recently emerged to solve complex vision-based tasks [16,18]. Coupled with rein-
forcement learning, these methods have been shown to learn increasingly complex
behavior solely from images [3,22,23,29], from playing Atari games to continuous
control. This begs the question: can deep reinforcement learning techniques be
employed in assistive technology to aid in navigation? In this paper, we survey
the state of the art in Deep Reinforcement Learning methods suited for the high
complexity of visual navigation, and present our own technique, GraphMem,
designed for such tasks. We also compare the performance of these methods
with our own first-person, vision based navigation task built on the ViZDoom
3D research platform [17], shown in Fig. 1. Our results provide insight into how
assistive devices can benefit from emerging methods in Artificial Intelligence and
provide a platform for future integration into assistive technology.

Fig. 1. Agent’s point of view in ViZDoom.

2 Related Works

While Deep Q-Networks, Policy Gradients, and related deep reinforcement learn-
ing (DRL) methods [3,21] have achieved super-human performance in many
previously difficult domains, some seemingly simple tasks have remained out of
reach. Specifically, problems with long-term temporal dependencies have proven
difficult [28]. Navigation is one such problem; for example, in a first-person maze
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solving task, it is essential to recognize where you have already been in order to
effectively trim the search space.

Several recent papers have validated the ability of deep networks to make
sense of 3D environments using visual information, specifically with a focus on
navigation tasks. Supervised methods have been developed such as [11], where
authors trained a network to infer space through which a robot may travel
unobstructed, in order to generate a trajectory for navigating the environment.
While there has been success with supervized methods, reinforcement learning
paradigms are of predominant interest to our goal, because agent-environment
interaction is integral to navigation. Such approaches can be found in the work
of [31], where the authors used a double-Q network (D3QN) to achieve obstacle
avoidance and path planning in a reinforcement learning setting. DeepMind also
showed in “Learning to Navigate in Cities Without a Map” [19] how natural
images can be tamed with CNNs paired with LSTMs in vision-based navigation
problems. Researchers in [32] also explored transfer between navigation tasks,
training the model to navigate one environment and subsequently transferring
its learning to a new environment in which the walls and objective have been
modified. This work is similar to RL2 [6], a model which achieves a sizable
performance increase of 25.5% between the first and second attempts at the
same maze. Our task is similar, but with the added complexity of random start
positions between the first and second attempt at a maze. While RL2 was able
to store information in its hidden state, it did not make use of addressable
external memory. Due to the complexity of spacial navigation tasks in terms
of relational connectivity, we chose to explore methods with the capacity for
more complex computation: Memory Augmented Neural Networks (MANNs).
DeepMind’s work in “Learning to Navigate in Complex Environments” [20] used
a stacked LSTM model to solve randomized mazes. While the authors do not
employ MANNs in their tests, they stress their applicability to problems of this
complexity.

MANNs, sometimes termed “Neural Computers”, are characterized by mod-
els utilizing an external and addressable memory space [8,9]. This allows them to
store and recall information relevant to solving problems that require integrating
and processing information over time and space more effectively than standard
recurrent networks. For this reason MANNs trained in a Reinforcement Learning
setting will be the focus of this work. Specifically, we selected the Differential
Neural Computer (DNC) [9] and TARDIS [10] as MANNs to compare to our
model, GraphMem. As a baseline, we also compare to a standard feed-forward
multilayered perceptron (MLP) and an LSTM [13] based model. There has been
work on MANNs used in navigation problems: in [26], authors used a MANN,
similar to a Neural Turing Machine [8]. The model was tested in a Minecraft-style
maze with discrete movement [15]. Authors also emphasized the use of memory
in reinforcement learning tasks in [12], demonstrating the ability of Neural Com-
puters to learn memory-based control tasks. Of these, the most pertinent to the
task discussed in this paper is the “water maze” task, in which the agent must
first find a hidden objective through random exploration and then subsequently
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find it again, taking advantage of memories from the initial exploration. Taking
inspiration from graph-based representations [2,27], we propose a MANN with
graph-like external memory, with the intuition that the spacial connectedness of
3D environments lends itself to a graph-like representation, hence GraphMem.

3 Proposed Method

3.1 GraphMem

In this section we introduce GraphMem, a Memory Augmented Neural Network
(MANN) with a novel graph-like external memory (Fig. 2). The choice of a graph
structure for the external memory was inspired by the notion that the strong
spacial connectivity of 3D environments would be best represented in memory
with strong connectivity. Like most MANNs, GraphMem takes in an observation
xt at time t from the environment and outputs a distribution on actions at to
take at time step t + 1. The magnitude of the ith element at[i] corresponds to
the model’s confidence in that action relative to all other actions. Observations
are transformed into action probabilities by feeding the observation into a CNN,
producing state representation vector φt ← CNN(xt). The representation is fed
through the Memory Module generating a context vector ct ← MM(φt). The
context vector represents information read from the memory that is relevant to
the current observation. The context vector and state representation are then
both fed to the policy (a fully connect neural network), which outputs action
probabilities at ← π(ct, φt). When the state representation φt passes through the
Memory Module, the module reads from and writes to the memory, determining
what to store from φt and where to store it. Information can thus be stored to
be recalled when necessary. This process is outlined below.

Fig. 2. GraphMem’s memory consists of nodes and edges. Information can both be
stored in nodes and edges, encouraging relational reasoning.

GraphMem extends the memory structure of the Neural Turing Machine and
its successors [8–10] by modelling external memory as a fully connected graph,



70 B. Fakhri et al.

illustrated in Fig. 2, instead of a sequential array. In practice, the memory graph
consists of two arrays, one containing the node data and the other containing
the edge data. Figure 3 illustrates the substructures of the memory graph. The
node array Node ∈ R

N×(A+W ) is of size N × (A + W ) where N is the number
of nodes, A is the address field size, and W is the word size. The edge array
Edge ∈ R

N2×W is of size N2 × W , each edge connects a distinct pairs of nodes.
The node array’s address field is initialized with unique, sparse random vectors.
The content field is initialized with zeros, as well as the edge array. At each time
step, GraphMem writes to a single graph node and a single graph edge. The node
it writes to is based on a content addressing scheme based on content, while the
edge it writes to must be the edge connecting the node written to during the
previous time step and the node being written to at the current time step. For
example, if GraphMem writes to Node[i] at time t and Node[j] at time t+1, the
edge it writes to at time t+1 is Edge[i, j]. The discrete and graph-like addressing
forces GraphMem to discritize its observations and encourages the network to
store information relating observations made in close proximity in both time and
space in the edges, an ability indispensable to modeling 3D environments.

Fig. 3. Memory architecture: node data array (left), edge data array (right).

Similar to TARDIS [10], we use the Gumbel Softmax reparameterization trick
[14] for discrete memory addressing to retain the ability to differentiate end-to-
end. During memory reads and writes, the state representation vector φt passes
through the Memory Module read/write heads (LSTMs) resulting in address
logits vector wt ← RW(φt). This vector describes the categorical probabilities of
reading from or writing to a specific node. Equations 1 and 2 describe how the
address logits vector wt is transformed into a one-hot vector mt ∈ R

N describing
the memory address of the node to read or write from.

gt ← gumbel(wt) (1)

mt = (one hot(argmax(gt)) − gt) + gt (2)
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Equation 2 features an argmax and one hot operation, which are not differ-
entiable. To circumvent this, the gradient only flows through gt, the last term,
bypassing (one hot(argmax(gt))−gt). This estimates the derivative while allow-
ing backpropagation through a discrete addressing mechanism. Details of the
Gumbel Softmax function are described in [14].

3.2 Maze Task

The ViZDoom maze task was designed to reveal how effectively an agent can
re-navigate to a location it has been to before, having started at a new location.
Figure 4 shows a bird’s eye view of the map and screenshots of the agent’s point
of view. Notice, the maze is not “simply connected” as it features detached walls
that can fool more simple maze solving algorithms. The goal of this task is to
find the “health pack” hidden in the maze. Each episode consists of two phases.
For each phase the agent spawns in a random room and must search the maze for
a “health pack”. The agent is rewarded, on a per-episode basis, proportionally
to the number of steps it takes to reach the goal (“health pack”). The fewer
total steps taken (phase1 + phase2), the higher the agent’s reward. In both
phases of an episode the agent is given the same maze, so that the agent can
make use of what was learned about the maze in Phase 1 when looking for the
“health pack” in Phase 2. It is important to note that the agent is rewarded in
proportion to the summation of steps taken in each phase. The agent will thus
learn to minimize the total number of steps and in no way is directed to use its
memory to optimize the second encounter. At the conclusion of an episode, both
the locations of the “health pack” and furniture in the rooms is randomized,
so that the agent must learn a policy that memorizes the maze’s composition
using its external memory only. This is to prevent the agent from memorizing
the maze using the parameters of the model, which is slow and poorly replicates
a real navigation scenario.

Fig. 4. Blueprint of the maze (left) Screenshots of the rooms (middle, right).

The maze environment consists of 9 rooms connected by hallways (shown in
Fig. 4). All of the walls are identical. The only unique features in the rooms are
pieces of “furniture” placed in the rooms, one piece of furniture per room. The
goal is also placed in a random room at a random offset from the center of the
room. This makes seeing the goal from across the maze non-trivial. Because the
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hallways are narrower than the rooms, furniture and the goal are not necessarily
visible from another room. The agent may also get “caught” on the walls of
the room, so the agent must learn efficient movement as well as an efficient
exploration policy to maximize its reward. The maze was designed to be non-
simply connected, meaning agents that cannot identify and address loop closures
may loop indefinitely.

3.3 Training

We trained all of the models using the Asynchronous Advantage Actor-Critic
(A3C) algorithm [22], which allows for training a model using many distinct
instances of the environment in parallel. Parameter updates from the distinct
instances are applied asynchronously to a master copy of the policy, which is
periodically copied down to the worker copies of the policy that are interacting
with the environment. The gradient is describe in Eq. 3, with policy π, return
Rt, value function V , and model parameters θ. The model entropy H(π(xt; θ′))
is also considered in the gradient to discourage premature convergence to sub-
optimal policies (scaled by hyperparameter β = 10−4).

∇θ′ log π(at|xt; θ′)(Rt − V (xt; θv)) + β∇θ′H(π(xt; θ′)) (3)

The models were trained on a 12-core Xeon machine with an Nvidia GTX
1080ti using TensorFlow 1.3.0 [1]. Each model was trained for 30 million time
steps (∼12 h). Figure 5 shows the training graphs for all models. It is interesting
to note that all models show meager performance until 10–15M time steps of
training. For our tests, we used the DeepMind implementation of the Differential
Neural Computer [9]. The LSTM and MLP models used were public A3C [22]
implementations proven to work on OpenAI Gym benchmark suite [5] environ-
ments. We used our own implementation of TARDIS as a public version was not
available at the time of writing.

Fig. 5. Training graphs for all models.
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4 Results

After training, all models were subjected to 123456 episodes of testing. During
testing, the parameters of the network were frozen by disabling backpropaga-
tion and the models were subjected to the maze environment for evaluation.
Figure 6 illustrates the average number of steps taken by the models in solving
the maze tasks as well as the percentage improvement of steps between Phase 1
and Phase 2 of an episode. TARDIS and DNC proved to be the fastest models,
while GraphMem was the slowest and the MLP and LSTM remain in middle of
the pack. With regards to leveraging memory, GraphMem saw the greatest per-
centage improvement (percentage difference in number of steps between Phase
1 and Phase 2) of all the models, followed by LSTM. It is surprising to note
that the two other MANNs were unable to capitalize on having already seen
the maze, both models performed about as well as the memoryless MLP model
(Table 1).

Fig. 6. Average steps to goal (left) percent improvement from Phase 1 to Phase 2
(right) both with 95% confidence intervals.

Table 1. Results with 95% confidence intervals.

Phase1 µ̄steps Phase2 µ̄steps Steps sum Improvement

TARDIS 248.92 ± 2.82 245.67 ± 2.88 494.59 ± 4.03 1.29 ± 1.61%

DNC 312.97 ± 3.39 314.06 ± 3.34 627.03 ± 4.75 −0.36 ± 1.52%

MLP 414.54 ± 6.57 412.27 ± 6.68 826.81 ± 9.37 0.52 ± 2.33%

LSTM 364.74 ± 4.85 353.56 ± 4.74 718.31 ± 6.78 3.05 ± 1.83%

Ours 1060.24 ± 8.43 938.76 ± 7.95 1999.00 ± 11.59 11.45 ± 1.41%
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5 Conclusion and Future Work

Vision-based navigation remains a difficult problem in assistive technology.
While Deep Reinforcement Learning methods for navigation are still in their
infancy, this work highlights some promising approaches towards that goal.
Improved methods will be beneficial in compensating for navigational difficul-
ties faced by people with disabilities. Future work will emphasize memory access
and content analysis - with the goal of human interpretable memory contents.
We also intend to explore integrating this work or similar models with wearable
computers, in order to provide real-time navigational assistance to users that
are blind or have other vision impairments.
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