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Abstract. While Human-Centered Multimedia Computing (HCMC)
improves upon traditional multimedia computing paradigms by account-
ing for the differences among populations of humans, inter-personal dif-
ferences between, and intra-personal differences within, populations have
created the need for a new paradigm which is sensitive to the needs of
a specific user, task and environment. The paradigm of Person-Centered
Multimedia Computing (PCMC) addresses this challenge by focusing
the design of a system on a single user and challenge, shifting the focus
to the individual. It is proposed that this paradigm can then extend
the applicability of multimedia technology from the individual user to
the broader population through the application of adaptation and inte-
gration. These concepts are discussed within the context of disability,
where variations among individuals are particularly prevalent. Examples
in domain adaptation and autonomous rehabilitative training are pre-
sented as proofs-of-concept to illustrate this process within PCMC.

Keywords: Person-centric computing · Coadaptive design
Human-computer interaction · Domain adaptation

1 Introduction

For decades of its existence, multimedia design research has emphasized the
development of technology to serve the broader population. In doing so, solutions
to challenges at the highest level of user homogeneity had prevailed in favor of
encompassing as large a user base as possible. Far from being all-encompassing,
however, these solutions have often left many users unable to fully benefit from
their use, and still more unable to use them entirely. In perhaps no greater a
scenario is this more prevalent than that of users with disabilities; since the
focus of design had been on the technology itself rather than the one using it,
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those who did not match the ambiguous template of “user”, whether due to the
inability to interface with the technology or to do so as effectively as other users
who did not share their disability, found themselves at a disadvantage.

To address this fragmentation in the population benefiting from multimedia
technology, new computing paradigms have emerged to restore the equilibrium
between user and technology in design. The first of these paradigms is that of
Human-Centered Multimedia Computing (HCMC) [16]. Human-Centered Mul-
timedia Computing emphasizes the human as the central focus of the pro-
cess of designing a computing interface. In doing so, this philosophy forces the
researcher and designer to be sensitive to the characteristics that define popula-
tions of human beings. For example, we differ in our cultures, societal attributes,
economies, behaviors, needs, goals and environments. The key advancement of
HCMC is the ability for technology to be able to detect, adapt to and accommo-
date these variations between humans [6]. It is critical to note that this paradigm
shift did not occur spontaneously; it is the result of years of advancement in
technology and multimedia research, yielding new technologies that have the
capability of capturing and utilizing a great deal of information about their
users.

Despite the dramatic improvement yielded by HCMC in the applicability
of multimedia solutions to a larger variety of individuals, there is still a gap
in usability and accessibility that emerges from the fact that in many cases,
users of technology vary greatly even at the individual level, and beyond this,
even a single individual can change significantly over time. The paradigm of
Person-Centered Multimedia Computing (PCMC) addresses this challenge by
fully transitioning the focus of design from the technology to the individual [24].
Where HCMC seeks to incorporate inter-societal and inter-population variations
in design, PCMC seeks instead to account for inter-personal and even intra-
personal variations. The goal of this paradigm is to begin the design process
with a challenge posed by a specific individual, yielding a design process wherein
the two are integrated at every step. Hence, the technology developed using
PCMC guarantees accessibility, usability, and often optimality for an individual.
Typically, this fine-tuned design comes at the price of rendering the technology
inflexible toward a broader audience. However, it is proposed that individually-
inspired design which meets the explicit needs of individuals, using the methods
of adaptation and integration, can also meet the implicit needs of a much broader
audience. To demonstrate how these two methods expand the impact of the
PCMC paradigm beyond what is possible even in HCMC, two example solutions
from the Center for Cognitive Ubiquitous Computing are presented, along with
the findings in each.

2 Person-Centric Multimedia in Disability Research

The field of disability research is a perfect platform for the application of person-
centric design because it is one of the richest sources of intrapersonal variation.
Disability is not necessarily a status that divides populations binarily; any indi-
vidual may be abled in a given context or environment and disabled in another.
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For example, in a dark environment, an individual who is blind may actually
have a significant advantage in ability over his or her sighted peers due to the
heightened sensitivity of the other senses developed as a result of the condi-
tion [26]. Hence, disability is largely a matter of the individual, the task and
the context, and with this understanding, not only are there variations between
individuals but also within a single individual over time. Nevertheless, even by
the standard policies used to define disability in today’s society, it affects a
significant portion of the world’s population. In the United States alone, an esti-
mated 12.8 percent of the population are classified as individuals with disabilities
(www.disabilitystatistics.org). To these individuals, it is of critical importance
that an interface is accessible, yet in interfaces designed without the individ-
ual nature of disability in mind, accessibility is often nothing more than an
afterthought, if it is considered at all [30].

Fig. 1. The process by which person-centric design accounts for disability to provide
an accessible, usable interface.

An overview of how person-centric computing weaves accessibility into the
design process is given in Fig. 1. Two critical components of the process, adap-
tation and integration, allow for the applicability of the solution to transition
smoothly from context to context. These components are defined and explained
below within the example scenarios of domain adaptation and autonomous at-
home rehabilitative training.

3 Adaptation: Transition to the Broader Public

Within person-centric computing, it is assumed that with any given technology
or interface, it is inevitable that an individual will adapt, or attempt to adapt, to
a particular technology over the duration of its use. For example, a new update
to an individual’s smart phone interface may change the layout of the menu,
requiring that the user learn the latest way to navigate the software on the
device. Person centric computing puts into practice the notion that a machine
should also be able to detect and respond to variations in a user or context,
and to constantly and frequently learn about and adapt to the user in a similar
manner to which the user adapts to the machine. As the human and computer

http://www.disabilitystatistics.org/
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coadapt in this manner, a more reliable and robust interaction between the two
is formed [12]. Therefore, when the task, the context, or even the user change,
the system designed under PCC principles should evolve in turn to handle this
change.

Adaptation in a system can manifest itself in a variety of ways, depending on
the intended goal. For example, in the case of accessibility, adaptation might be
applied at the input/output level, where the system may, for example, include
redundancy of information in feedback across multiple modalities [17] or allow
the user to control the way information is exchanged in the interaction [18].
Within a single user, the interface may change in complexity over time as it
detects that the user’s skill level or comfort level increases [1]. In addition to
users, a system may, for example, adapt to a variety of domains, as presented in
the following example of domain adaptation.

4 Example: Domain Adaptation

Data driven models in machine learning do not generalize well across different
domains of data. For example, an autonomous driving car trained with data
having only sunny-day traffic will fail to perform well when tested during the
night. This is on account of the domain difference between the training data and
the test environment data. Domain adaptation algorithms transfer knowledge
from the source domain to a target domain in the form of models, feature rep-
resentations and classifiers in order to develop efficient classification models for
the target domain. These algorithms play a crucial role in being able to adapt
systems across different data distributions. Person-centered algorithms trained
using annotated data from a single individual can similarly be adapted to data
from a wider population even in the absence of annotations. In this section,
we discuss a model for unsupervised domain adaptation that adapts a classi-
fier trained on a source dataset to data from a target domain with a different
distribution. We evaluate this adaptation algorithm with face-expression and
head-pose estimation datasets.

4.1 Nonlinear Domain Alignment

We first outline the problem of domain adaptation by considering two domains;
source domain Ds and target domain Dt. The source domain consists of data
points XS = [xs

1, . . . ,x
s
ns

] ∈ R
d×ns with associated labels YS = [ys

1, . . . , y
s
ns

].
The target domain has data points XT = [xt

1, . . . ,x
t
nt

] ∈ R
d×nt and associated

labels which are unknown; YT = [yt
1, . . . , y

t
nt

]. The data points xs
i and xt

i ∈ R
d

and the labels ys
i and yt

i ∈ {1, . . . , C}. We define X := [x1, . . . ,xn] = [XS ,XT ]
with n = ns +nt. The goal is to estimate the labels YT under the constraint that
the source and target data come from different joint distributions; PS(X,Y ) �=
PT (X,Y ).

A common procedure to align the features of the source and the target is
by projecting them to a subspace. The Kernel-PCA (KPCA) estimates a non-
linear basis to account for nonlinear variations in the data. Data is mapped to
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an infinite-dimensional subspace defined by Φ(X) = [φ(x1), . . . , φ(xn)] before
estimating the projection. φ : Rd → H is the mapping function and H is the
reproducing kernel hilbert space (RKHS). The similarity between data points x
and y is represented by the dot product between the mapped representations
k(x,y) = φ(x)�φ(y). The similarities between all pairs of points is denoted by
the kernel matrix K = Φ(X)�Φ(X) ∈ R

n×n. The kernel matrix is used to esti-
mate the projection matrix A which is then used to project the data points to
a common subspace. The projection matrix A is estimated by solving,

max
A�A=I

tr(A�KHK�A), (1)

where, H is the n × n dimension centering matrix given by H = I − 1
n1, and I

is an identity matrix and 1 is an n × n dimension matrix of 1s. The projection
matrix A ∈ R

n×k, is the matrix of coefficients and the nonlinear projected data
is given by Z = [z1, . . . , zn] = A�K ∈ R

k×n.
In order to reduce the source and target domain disparity, we apply Maximum

Mean Discrepancy (MMD) [14], to align the projected features of the source and
target. Incorporating the MMD, the projection matrix can now be estimated
using the formulation,

min
A
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H
= tr(A�KMK�A), (2)

where M, is the MMD matrix which is given by,

(M)ij =

⎧

⎪⎨

⎪⎩

1
nsns

, xi,xj ∈ Ds

1
ntnt

, xi,xj ∈ Dt

−1
nsnt

, otherwise,
(3)

Since the goal is to estimate the target data labels, YT , we need to estimate
a projection where the data points are easily classified. We introduce laplacian
eigenmaps to perform similarity based embedding. We cluster data points based
on label similarity where data points having the same class label are clustered
together ensuring easy classification. Data point similarity is captured using the
(n × n) adjacency matrix W, where,

Wij :=

{

1 ys
i = ys

j or i = j

0 ys
i �= ys

j or labels unknown.
(4)

When the sum of squared distances between projected data points (weighted
by the adjacency matrix) is minimized, the projected data is clustered by class
labels. This is expressed as a minimization problem,

min
Z
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tr(A�KLK�A). (5)
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where, L, denotes the symmetric positive semi-definite graph laplacian matrix
with L := I − D−1/2WD−1/2, I is an identity matrix and D, the (n × n)
dimension diagonal matrix with the diagonal entries given by di =

∑

k Wik

and dj =
∑

k Wjk. Here, ||zi/
√

di − zj/
√

dj ||2, is the normalized squared
Euclidean distance between the projected data points zi and zj , which are clus-
tered together when Wij = 1, (as they belong to the same category). The
projected data is given by Z = A�K.

4.2 Optimization Problem

We bring together the concepts of projection, domain alignment and similarity
embedding to determine the projection matrix in the following optimization
problem. Maximizing Eq. (1) while simultaneously minimizing Eqs. (2) and (5)
is achieved by maintaining Eq. (1) constant and minimizing Eqs. (2) and (5). The
optimization problem is defined as,

min
A�KDK�A=I

tr(A�KMK�A) + tr(A�KLK�A) + ||A||2F . (6)

where, the last term is the regularizer (Frobenius norm) ensuring a smooth pro-
jection matrix. The constraint on A (in place of equation A�KHK�A = I), is
introduced to avoid the projection mapping onto a trivial subspace whose dimen-
sions are less than k, [3]. Equation (6) is solved by introducing the Lagrangian
given by,

L(A,Λ) =tr
(

A�KMK�A
)

+ tr(A�KLK�A)

+ ||A||2F + tr((I − A�KDK�A)Λ), (7)

with Lagrangian constants denoted by the diagonal matrix, Λ =
diag(λ1, . . . , λk). Setting the derivative ∂L

∂A to 0, we arrive at the generalized
eigen-value problem,

(

KMK� + KLK� + I
)

A = KDK�AΛ. (8)

The k-smallest eigen-vectors of Eq. (8) yield the projection matrix A. The
domain aligned projected features are then obtained by Z = A�K. We note
that a classifier can be trained with only the source data points in the projected
data because we only have labels for the source data. However, since the source
and target data points are aligned using MMD, we can assume that the source
classifier can be used to determine the labels for the projected target data.

4.3 Experiments

In our original work [34], we test our model across different applications like
digit recognition, object recognition, facial expression recognition and head-pose
recognition. We present only a subset of the results that are relevant for social
interaction. At CUbiC, we have spent over a decade designing social assistive aids
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for individuals who are blind in order to make social situations more accessible
for these users. Our work focuses on vision-based analysis of facial expressions
and other visual non-verbal social cues such as gestures and gaze. These cues are
extracted from video, captured using a discreet wearable camera, and conveyed
to the user through haptics and/or audio. The optimization problem in [34]
is also a more generalized version of Eq. (6) and the results are based on the
generalized model. For our experiments, we evaluated our model using facial
expression recognition and head-pose applications that are relevant for social
interaction.

MMI-CKPlus Datasets: The MMI [25], and CKPlus [21] are Facial Expres-
sion recognition datasets from which we choose 6 categories of facial expression,
viz., anger, disgust, fear, happy, sad and surprise. We generate two domains,
CKPlus and MMI, by selecting video frames with the most intense expressions
from the two datasets. A pre-trained deep neural network (VGG-F [4]), was used
to extract features (4096-dimensional) from the fc7 layer. PCA was applied to
reduce the feature dimensions to 500.

PIE Dataset: The “Pose, Illumination and Expression” (PIE) dataset consists
of face images ( 32 × 32 pixels) of 68 individuals with varying head-pose, illu-
mination and expression. Along the lines of [20], we create 3 domains based on
head-pose, viz. P05 (C05, left pose), P07 (C07, upward pose), P09 (C09, down-
ward pose).

Table 1. Classification accuracies (%) for domain adaptation experiments on facial
expression and head pose datasets. {CK+ → MMI implies CK+ is source domain and
MMI is the target domain. The best results in every experiment (col) are highlighted
in bold.

ExptCK+→MMIMMI→CK+P05→P07P05→P09P07→P05P07→P09P09→P05P09→P07Avg

SA 31.12 39.75 26.64 27.39 25.42 47.24 23.26 41.87 32.84

CA 31.89 37.74 40.33 41.97 41.51 53.43 35.47 47.08 41.18

GFK28.75 37.94 26.21 27.27 25.27 47.37 21.88 43.09 32.22

TCA32.72 31.33 40.76 41.79 41.78 51.47 34.69 47.70 40.28

TJM30.35 40.62 10.80 7.29 16.63 21.69 14.98 27.26 21.20

JDA 29.78 28.39 58.81 54.23 57.62 62.93 50.96 57.95 50.08

NET29.97 45.83 77.84 70.96 74.55 77.08 73.98 79.01 66.15

In our experiments, we compare the target data recognition accuracies with
popular domain adaptation methods such as, Subspace Alignment (SA) [10]
Correlation Alignment (CA) [31], Geodesic Flow Kernel (GFK) [13], Transfer
Component Analysis (TCA) [23], Transfer Joint Matching (TJM) [19] and Joint
Distribution Adaptation (JDA) [20]. Our model is denoted as Nonlinear Embed-
ding Transform (NET). The results we present are based on the generalized
model discussed in [34]. The recognition accuracies are depicted in Table 1. The
table contains entries for the target data recognition accuracies. The source and
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target data are projected to a common domain based on solving Eq. (8). A clas-
sifier is trained using the projected source data and the labels for the target data
are estimated with this classifier. The NET algorithm provides the best target
data classification accuracies compared to the other methods.

The NET algorithm has a straightforward procedure to transfer facial expres-
sion recognition and head-pose estimation algorithms across different users. We
can apply the NET algorithm to adapt a classification model trained for one user
to other users (broader population). This is especially relevant when there is a
lack of annotated data in the target dataset. Domain adaptation algorithms help
to transfer knowledge from models trained on a population subset to broader
populations in the absence of annotated data.

5 Integration: Stealth in Coadaptive Design

While it is of critical importance to design a system which can adapt to a user,
it is just as critical to ensure that this adaptation is performed in a way which
seamlessly integrates with the task and context under which the user interacts
with this system. This integration should account for the complexity of the
task and the interests of the user, and attempt to unify these components in a
way that minimizes the burden of adaptation of the user to the technology. For
example, the user’s task of adapting to haptic feedback from a system designed
to convey facial expressions is far less daunting when the haptic patterns are
representative of natural facial expressions and directly map to those expressions
[2]. When this integration is correctly performed, the adaptation mechanisms of
a system are abstracted from the user in such a way that he or she may be
completely unaware that they are being used, leading to a state called “stealth
adaptation”, named after the concept of “stealth assessment” [28].

In general, the most effective way to integrate stealth adaptation into a sys-
tem is to find the most natural abstraction of the intended task of an individual
given the interaction medium and its constraints and limitations, and to leverage
these in design. How complex is the user’s input? What metaphors can be drawn
to ease the task of learning on the user? These challenges are presented here in
the context of at-home upper extremity motor rehabilitation in the development
of a system known as the Autonomous Training Assistant.

5.1 Example: The Autonomous Training Assistant

Overview. The Autonomous Training Assistant (ATA) is a system designed
for the automation of guided at-home motor exercise during rehabilitation. The
need for this system arose from the explicit need of a single individual, who was
hemiparetic as a result of cerebral palsy resulting in one impaired arm and one
fully-functioning arm, to complete a series of stick training exercises at home
assigned by his martial arts trainer who uses self-defense training as a context
for rehabilitative therapy. For this individual, conventional at-home repetitive
practice did not provide the in-depth feedback on performance that was provided
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Fig. 2. Overview illustration of the Autonomous Training Assistant system (right) and
example game (left).

by the trainer in live exercise sessions between the two individuals, resulting in
a less effective learning environment at-home.

Consequently, the two individuals expressed the need for a system that could
utilize serious games [9] to deliver a guided, automated exercise experience at
home. While this was an explicit need exhibited by this individual, it touches
upon a greater challenge in the world of rehabilitation: while frequent exercise
in the home is necessary for steady recovery [29], lack of guidance in this envi-
ronment can lead to reduced compliance to at-home exercise in the long term
and, by extension, can slow the progress of the rehabilitation program [27] by
dropping the individual outside of the zone of proximal development [35].

A system was developed consisting of a game interface using the Unity plat-
form, a Microsoft Kinect V2 sensor to allow the system to track an individual’s
joint movements and facial expressions in real-time, and custom exercise equip-
ment, entitled “The Intelligent Stick”, equipped with an accelerometer and gyro-
scope for real-time motion trajectory tracking and haptic motors for vibrotactile
feedback on performance as a user attempts an exercise task.

An overview of the ATA system, as originally shown in [32], is illustrated
in Fig. 2. To use the system, the user simply picks up the Intelligent Stick and
activates the game on Unity. The system then integrates the user’s assigned at-
home exercises into a game environment where the exercises are used as input
to complete the game, and performance in the game is directly reflective of
performance at the motion task. Three categories of feedback, as previously
derived in [33], are provided to the user. Feedback on posture indicates how
correctly the user’s body is aligned during exercise, while feedback on progression
indicates how accurately the motion itself is performed and pacing indicates how
close to the ideal speed the user is moving.

Person-Centric Design. Person-centric design and adaptation principles were
employed extensively throughout the creation of the ATA system. The Intelligent
Stick device was designed to be modular, allowing for parts to be swapped in
and out as necessary. This allows, for example, the use of customized grips for
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users with a variety of grip strengths, or various shapes and sizes to match
the task and context for each user’s training. The inspiration for this design
was that the main user in this project required a custom grip with a strap so
that his impaired hand could be secured on the stick during use. It was evident
from this stage of the design process that the input mechanism to the system
should be flexible enough to account for high individual variability both between
individuals who have various tasks and upper extremity strength levels, and
within a single individual’s grip strength and exercise types over time.

Furthermore, the mechanism for feedback was designed with the individual in
mind. The categories of posture, progression and pacing were derived by directly
observing live sessions between the individual and trainer and recording the type
of feedback provided by the trainer to the individual during these sessions. The
goal of this process was to construct a framework for the evaluation of upper-
extremity motor performance that was detailed enough to accurately capture
the training program of this particular individual while being broad and flexible
enough to encompass some of the most popular standard assessment methods
in the field [11,36]. The process of extracting these metrics is detailed in [33].

Finally, the game design process reflected person-centric philosophy by tai-
loring gameplay specifically to the individual and the task, as described below.

Stealth Adaptation. The approach taken toward stealth integration of adap-
tation elements in this work draws upon work by Shute et al. entitled “stealth
assessment” in academic serious games, where assessment of the subject was per-
formed behind the scenes and integrated directly into the gameplay [28]. To do
this, the Evidence Centered Design (ECD) framework is applied [22]. This con-
sists of three models: a task model specifying the type of real task that needs to
be performed, a competency model specifying the metrics that indicate compe-
tency at that task (in this case, posture, progression and pacing) and an evidence
model linking in-game metrics to task performance metrics in the competency
model.

In this work, we extend this model to include adaptation. Three popular
forms of Dynamic Difficulty Adaptation (DDA) [15] are explored: Bayes net
refers to the usage of a Bayesian network to independently track each category
of performance and to adapt independently to that category, while hit-rate sta-
bilization refers to the attempt to stabilize the subject at a particular hit-rate,
or success rate with respect to the task being performed, and clustering refers
to the assignment of a skill level of “high”, “normal” or “low” to a user’s per-
formance based on his or her history of performance at the same motor task. In
all three cases, high performance results in an increase in difficulty to maintain
challenge while low performance results in a reduction of difficulty.

Evaluation. To evaluate the system for the subject, the ECD framework was
employed as the main method of integration. The subject was asked by the
trainer to complete a swinging arc motion from the lower right to the upper left
of the body. Due to the complexity of this motion, the fruit slicing game pictured
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Fig. 3. Screenshot of the Island Fruit game in the case study of the ATA.

in Fig. 3 was developed wherein the sword would be abstracted virtually as a
sword intended to slice fruit. Three fruit objects were deployed in the air in each
round of a session, and these fruit adapted to the subject’s pacing requirement
by changing their falling speed, the progression requirement by changing their
size, and the postural requirement by being unslicable when the user’s impaired
arm was off of the intelligent stick. The task of completing the arc motion was
thus abstracted to the task of slicing three fruit objects as they fall through the
air in virtual space. Three forms of adaptation (Bayes-net, hit-rate stabilization
with target hit-rate = 2 fruit sliced, and clustering) and one control condition
with no adaptation were experienced by the subject. The subject began with a
1-min tutorial, then played in four 5-min sessions with 10-min breaks inbetween
sessions to account for possible learning or fatigue effects.

To determine how well each of the adaptation styles described above fit the
needs of the user in this case study, an evaluation was performed using “flow-
state”, or the ratio in which the subject is considered fully engaged in gameplay
to total game time.“Flow” in this context is simply the state in which an indi-
vidual is given the appropriate level of difficulty in gameplay to match his or her
skill level, facing challenges that are neither too difficult (resulting in frustration)
or too easy (resulting in boredom) for the player [5]. Flow-state was extracted
in this study by leveraging the real-time facial tracking of the Kinect camera.
Facial data was fed into a process which would determine the individual’s facial
expression as a vector of 7 values representing its belief that the user is express-
ing each of the seven basic emotions contained within the Facial Action Coding
System (FACS) [8]. This data was then mapped into a single flow-state output
using a method similar to [7]. For each 5-min session, one flow-state value (either
“boredom”, “anxiety”, “flow” or “unknown”) was extracted every ten seconds
of gameplay for a total of 30 samples in each session.
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Fig. 4. Flow-state ratio for three adaptation methods (Bayes-net, Hit-rate stabilization,
and Clustering) and control condition for Island Fruit game.

Results. Results of the study are shown in Fig. 4. The highest flow-state ratio of
0.300 was yielded in the condition wherein the user was evaluated independently
on posture, progression, and pacing using a Bayes net, and each component of
performance was then adapted to separately. This finding was also validated
by the fact that the subject also demonstrated the highest performance in this
condition, and provided the most positive subjective feedback and self-reporting
of engagement during gameplay in this particular session. While these results
are not reflective of the general effectiveness of these adaptation approaches
over larger populations, they have indicated that there is a potential relation-
ship worthy of exploring between the implementation of stealth adaptation in
rehabilitative games to the level of engagement and long-term compliance, by
extension, of an individual using such a system.

6 Conclusions

The works presented here serve as proofs-of-concept for the highly successful
application of person-centric computing within the disability space. With care-
ful design, it is demonstrated that solutions inspired by unique individuals in
multimedia need not restrict themselves to those individuals, and can instead
benefit the broader population in the same manner that many interfaces which
were originally designed to target particular individuals with disabilities have
done historically. Under this novel paradigm, individual empowerment fostered
by a smart, learning, coadapting interface can redefine the way we view disability
in human-computer interaction. Specifically, it can be interpreted in this domain
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as a spectrum of ability which can be modulated both by the individual and by
the technology to create a space in which any individual is “able” to benefit from
interacting with this technology.
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