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Abstract. This paper develops a novel approach to automatic maritime
target recognition in the framework of near real-time maritime video-
surveillance using super-resolved (i.e.; 4K) videos captured either with a
static or with a moving video camera. The challenge of achieving a robust
4K video-based surveillance system is twofold. Firstly, the 4K video res-
olution (3840 × 2160 px.) constrains considerably the amount of video-
processing for meeting the near real-time requirement. Secondly, mar-
itime environment is very dynamic and highly unpredictable, thereby,
rendering target extraction a difficult task. Therefore, the proposed app-
roach attempts to leverage both temporal and spatial video information
for achieving fast and accurate target extraction. In fact, since, the object
rigidity assumption is implemented parsimoniously, i.e.; at key video
locations, its real-time implementation, first, enables to quickly extract
potential (sparse) target locations. Furthermore, we have shown, exper-
imentally using many maritime videos, that maritime targets generally
exhibit richer textural variations than dynamic background at different
scales. Thus, secondly, a still image based multi-scale texture discrimi-
nation algorithm carried out around previously extracted key video loca-
tions allows to achieve final target extraction. An experimental study we
have conducted both using our own maritime video datasets and pub-
licly available video datasets have demonstrated the feasibility of the
proposed approach.

Keywords: Maritime videosurveillance · 4K video
Spatiotemporal approach

1 Introduction

With the important recent advances in camera technologies and in computing
resources, maritime videosurveillance has become an important research topic.
The latter finds several real-world applications among which we can mention
optimal monitoring of maritime traffic [3,9,21], seacoast security [18], prevention
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of fraudulent maritime activities [7,16], situation awareness and prevention of
asymetric threats (i.e.; a commercial or military ship being threatened by small
maritime vehicles such as jetskis and inflatable boats). For instance, in the latter
context, it is highly desired to be able to detect as early as possible small targets,
hence, the need for highly performing computer vision hardware (e.g.; 4K video
cameras) and software.

Although videosurveillance in controlled environments using conventional
(e.g.; CIF) video formats is, now, a quite well understood computer vision
topic, maritime videosurveillance still poses many challenges to the computer
vision community. Indeed, traditionally, background subtraction algorithms
[13,20,24,25] have achieved best state of the art performances in terms of detec-
tion accuracy and computational efficiency. Furthermore, in the goal of account-
ing for low video SNR, thereby, achieving more accurate object recognition,
robust background subtraction algorithms–attempting to exploit small image
neighborhoods, instead of single pixels–have been developed [6]. When the cam-
era is moving and if the background is static, then a coupling of a background
subtraction technique with a fast motion compensation algorithm, generally,
yields very good results [23]. Nevertheless, the latter category of approaches is
hardly applicable in maritime video-surveillance because of the dynamic back-
ground (e.g.; sea). Alternative approaches attempting to take advantage of spa-
tiotemporal coherence of objects have been proposed [14,15]. More recently, deep
learning based approaches have achieved astounding results in various appli-
cation contexts, and in maritime vision in particular [4,8]. Nevertheless, our
experiments have shown that the latter only achieve mitigated performances on
maritime videos, above all, for detection of small and lowly contrasted targets.
This can be partly explained by the fact that the latter category of techniques
do not attempt to take advantage of the temporal video dimension in the goal
of accounting for low maritime object contrast, and hence, for achieving better
maritime object recognition performances.

In the contexts of maritime situation awareness and airborne maritime video-
surveillance, every bit of a maritime scene is moving, including the camera, the
background (i.e.; sea) and, obviously, maritime objects. Clearly, in such a con-
text, none of the aforementioned techniques is suited. Consequently, novel com-
puter vision algorithms using as little assumptions as possible are needed. Indeed,
this work is part of a bigger research project aiming at developing state of the
art maritime videosurveillance algorithms to automated situation awareness, and
especially, for the fight against asymetric threats. Obviously, early detection of
small ships requires near real-time processing of high definition video, typically
4K videos in our case. Therefore, in the remainder of this paper, we describe
the approach that we have developed for maritime object extraction using 4K
videos. The main contribution of this paper resides in the fact that video pro-
cessing is carried out around key video locations while taking advantage both
of the spatial and temporal video dimensions for achieving accurate and fast
maritime target extraction.
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2 General Method Overview

The main idea behind the proposed spatiotemporal approach to object recog-
nition using 4K videos is motivated as follows. On the one hand, what mostly
distinguishes a real-world object from a dynamic background is rigidity. On the
other hand, we first hypothesize, then, we show experimentally using several
maritime video datasets that maritime objects, generally, present richer textural
features than maritime background. Furthermore, in the goal of achieving a near
real-time 4K maritime videosurveillance system, we have efficiently implemented
the latter idea with respect to the temporal and spatial dimensions of a video,
respectively. Basically, a temporal algorithm allows to extract potential target
keypoint locations as rigid ones using long-term keypoint tracking. Then, a spa-
tial algorithm performs texture discrimination in the vicinity of the latter in the
goal of achieving final target extraction. The workflow of the proposed approach
is outlined in Fig. 1.

Fig. 1. Workflow of the proposed spatiotemporal approach.

3 Rigidity Analysis via Long-Term Keypoint Tracking

The key idea of exploiting the object rigidity hypothesis to achieve object extrac-
tion in video is not new. For instance, the authors in [22] have proposed a fun-
damental matrix based approach for performing multiple objects extraction in
video. However, a major drawback of the fundamental matrix based type of
approaches lays in their combinatorial nature, plus, in the difficulty of estab-
lishing enough “good” keypoint inter-frame correspondences. The latter issue is
aggravated when the background is dynamic and/or the camera is moving which
turns out to be, generally, the case in maritime videos. An alternative approach
proposed in [2] attempts to estimate a dense rigidity criterion based on a timely
3D analysis of dense optical flow. But, the latter is hardly applicable in our case
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due to unreliability of optical flow. Thus, we have proposed an alternative app-
roach to rigidity analysis restricted to key video locations via keypoint tracking.
Indeed, extraction of keypoints in individual frames, and establishment of their
inter-frame correspondences is an easy, fast, and reliable process. Moreover, it
makes sense to hypothesize that rigid object pixels tend to undergo less textural
change in the course of time than dynamic background. Therefore, our approach
to rigidity analysis using video consists in assessing the temporal textural vari-
ation at video keypoint locations via their long-term tracking as it will be in
described in detail, hereafter.

3.1 Keypoint Extraction

The proposed approach to rigidity analysis in video begins with the extraction
of key video locations. The latter are further tracked over time before they
are declared as potential object keypoints, otherwise, permanently abandoned
because they are, eventually, ranked as background. We have tested different
existing keypoint extraction algorithms including SURF [1], ORB [19], and SIFT
[11]. However, our experiments– using several maritime videos–have shown that
SIFT outperforms considerably other existing keypoint extraction techniques
both in terms of accuracy and repeatability, thus, we have finally opted for SIFT.
The SIFT descriptor is, first, convolved with a 1D Gaussian profile (σ = 2), then,
transformed into a probability distribution via mere division by a normalization
constant, finally, stored in a discrete histogram of 128 bins.

3.2 Keypoint Tracking

For the sake of computational efficiency, the extracted SIFT keypoints in the
first video frame are tracked individually between frames using optical flow and
the Kalman filter. The state vector of the Kalman filter consists here of the
concatenation of the subpixel position (xt, yt) of a SIFT keypoint and its 2D
velocity vector (ut, vt), in such a way that, the sate vector of the Kalman filter
writes as Yt = (xt, yt, ut, vt)T , but, of which one may only observe a noisy version
denoted by Zt. Thus, the SIFT keypoint dynamic model writes as

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

xt+1 = xt + ut + ε
(1)
t+1

yt+1 = yt + vt + ε
(2)
t+1

ut+1 = ut + w
(1)
t+1

vt+1 = vt + w
(2)
t+1

Zt+1 = Yt+1 + Wt+1

where it has been assumed that ε
(1)
t+1, ε

(2)
t+1,

(1)
t+1, and w

(2)
t+1 stand for four indepen-

dent Gaussian random variables, WT stands a 4-dimensional random Gaussian
vector, last, subscript t denotes the time. Furthermore, we have used the method
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developed in [5] for achieving robust optical flow estimation, and hence, accurate
SIFT keypoint tracking. In short, such an optical flow estimation technique is
based on the inversion of the Hessian matrix and which just happens to be well
conditioned at SIFT keypoints. We refer the reader to [5,11] for more details.

Fig. 2. Sparse rigidity estimation based on keypoint tracking. (a) Tracking of SIFT
keypoints across 250 4K frames; (b) Temporal evolution of the proposed rigidity mea-
sure for different classes of SIFT keypoints. In blue: wave; in green: wake; in red: object.
(Color figure online)

3.3 Keypoint Rigidity Analysis and Classification

As aforementioned, SIFT keypoint classification as object versus background is
based on the estimation of the long-term variation of the dynamic of the SIFT
descriptor. Furthermore, since, we have modeled the latter in our approach as
a probability distribution, it makes sense to use the Kullback-Leibler pseudo-
Distance (KLpD) for deriving a measure of normalized SIFT keypoint textural
variation. For obvious reasons, the latter is fairly correlated with any measure of
rigidity, for rigid object regions are bound to undergo little textural change over
time. Moreover, by basing a rigidity measure on a distance between probability
distributions, one guarantees invariability against common geometric deforma-
tions of objects.

In fact, we have proposed a slight modification to the original KLpD for
obtaining a symmetric and robust measure of textural variation over time, and
which, overall, can account for the possible presence of near-zero values in a
normalized SIFT descriptor, and slight shifts in the latter(mainly due to dis-
cretization). Thus, suppose two probability distributions P and Q, and define
the divergence measure between P and Q as DKL(P ||Q) =

∑
i Di(P,Q) where

one has ∀i:

Di(P,Q) = inf
{ ∣

∣P (i) log
P (i)
Q(i)

∣
∣ ,

∣
∣Q(i) log

Q(i)
P (i)

∣
∣
}

Robustness of DKL(P ||Q) resides in that, given any couple of real positive
numbers x and y, if inf{x, y} → 0, then inf{|x log x

y |, |y log y
x |} → 0, thereby,

mitigating the contributions from too distinct couples of bins of P and Q,
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respectively. Next, assume an arbitrary SIFT keypoint at time t, and denote
by Pt the corresponding normalized SIFT descriptor. Then, a real-time imple-
mentation of above formula is achieved keypoint-wise by simply propagating it
across frames via the moving average trick according to the following update

scheme: D̂KL(t) =

{
DKL(P1||P0), if t = 1
αDKL(Pt||Pt−1) + (1 − α)D̂KL(t − 1),∀t = 2, . . .

, where

α ∈ (0, 1) stands for a real parameter that we have experimentally tuned to 0.1.
An example of temporal textural variation for three classes of SIFT keypoints
(wave, wake, and object) in a 4K maritime video is presented in Fig. 2. One
can notice, indeed, that the temporal KLpD profile of object keypoints quickly
decreases, whereas, its wave and wake counterparts keep higher values over time.

Fig. 3. Results of texture discrimination in a maritime video. In green: image blocks
ranked as background; in blue: image blocks ranked as object. (Color figure online)

The final stage, then, consists, in merely classifying every tracked SIFT key-
point either as object or background based on its estimated value of D̂KL(t).
Such a classification algorithm, thus, attempts to divide the set of real (1D)
points consisting of all the values of D̂KL(t) for each SIFT keypoint into two
separate clusters (i.e.; as background vs object). This is efficiently achieved by
means of the expectation maximization (EM) algorithm by computing the mix-
ture of two Gaussians which best fits the set of keypoint-wise values of D̂KL(t).

4 Spatial Texture Discrimination

Since, the above rigidity based approach only yields sparse object regions, one,
moreover, needs perform some image processing in order to identity full object
zones. As mentioned earlier, this is achieved in the present approach based on the
analysis of texture. The intuition behind the latter consists in that objects exhibit
much richer textural features (e.g.; discontinuities, etc) independently of the
scale, whereas, dynamic background is generally characterized with monotonous
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texture, and hence, poorer textural variation. In this paper, we have used the
RFA descriptor [10] which has the advantage to be invariant against rotation
and translation. The latter is computed in small overlapping image regions for
capturing textural features across an image. Next, in order to capture textural
variation, we perform a PCA on the matrix consisting of a column-wise align-
ment of the RFA vectors in a given image region in the goal of extracting the
main directions of textural variation. Our experiments have demonstrated that,
generally, only two or three principal components are enough for summing up
most (i.e.; ≥ 90%) of the textural information. Thus, we have opted for the latter
value (3), in such a way that, the output of this step consists of a 3D vector
containing the three most significant eigen values of the PCA matrix. The latter
is further used to feed a K-means classifier for computing two clusters, likely,
corresponding to object and background, respectively.

Final maritime object extraction is merely achieved by merging image blocks–
ranked as object by the texture discrimination algorithm and containing at least
one stable SIFT keypoint– using the connected components algorithm. Further-
more, for the sake of accuracy and efficiency, we have implemented the latter
algorithm using a multi-resolution scheme. In a nutshell, this consists in running
the algorithm on a pyramid of downscaled images (by a factor of 2 with respect
to each image dimension), before finally merging the results found at different
scales of a 4K image for extracting full object zones. An example of the obtained
results of the latter approach on a 4K maritime video is presented in Fig. 3.

5 Experimental Work

The proposed method is implemented in C++ using the OpenCV library1, and
runs in near real-time for 4K videos at an average rate of 6 images per min on
an Intel CPU architecture (i5 2.2Gh).

We have chosen to show in Fig. 4 results of the proposed method using a mar-
itime videos we have captured using a 4K fix security camera, and that we have
named Video 4, throughout this experimental section. One can observe that,
despite the fact that the camera is not moving, in contrast to our method, the
KNN method produces awful oversegmentations resulting in many false detec-
tions. This can be explained by the fact that the mixture of Gaussians model is
not well suited to maritime background.

We have also conducted a comparative study of the proposed approach
against some existing well known videosurveillance approaches [25] [24], Lin et
al. [10], and Moo Yi et al. [23]. However, since, we have not found any publicly
available 4K video datasets with ground truth, we have only been able to test the
proposed method using the following publicly available lower resolution videos:

1 http://opencv.org/downloads.html.

http://opencv.org/downloads.html
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– Singapore Maritime Dataset (SMD) [17]: this dataset provides several onshore
RGB video sequences captured with a 70D Canon camera (1080 × 1920 px.)
and showing vessels evolving in a maritime scene,

– UCSD Background Subtraction dataset [12]: this dataset provides several
videosurveillance sequences (344×224 px.) presenting dynamic backgrounds.

We have chosen to use the F-measure of which formula is given by

F-measure =
1
n

n∑

i=1

2 ∗ Preci ∗ Reci
Preci + Reci

where i stands for the frame index, Preci = TPi/TPi + FPi and Reci =
TPi/TPi + FNi where TP, FP and FN stand for the number of true positives,
the number of true negatives and the number of false negatives, respectively.

The comparison results are summed up in Table 1 (using our 4K video
datasets ), Tables 2 and 3 (using publicly available video datasets).

One can observe that our method achieves best performances in terms of the
F-measure which, in some sense, means that it achieves the best false positive
vs. false negative trade-off. This can be explained by the fact that, in contrast to
other existing approaches, the proposed approach in this paper is based on the
useful rigid nature of maritime objects as opposed to non-rigidity of maritime
background, moreover, such a rigidity hypothesis turns out to be particularly
useful for eliminating wake regions.

Table 1. F-measure results using 4K videos.

Seq Frame number Our method KNN

Video1 94 0.81 6.27e−7

Video2 95 0.93 1.55e−7

Video3 64 0.6 1.5e−6

Video4 95 1 5.7e−6

Table 2. F-measure results using the Singapore maritime dataset

Seq Num. frame Our method

MVI 1610 VIS 537 0.727642

MVI 1646 VIS 514 0.656212
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Table 3. F-measure results using the UCSD dataset.

Seq. bottle jump skiing birds

Num. frame 25 75 105 65

Our method 0.76 0.64 0.33 0.36

RFA 0.58 0.63 0.18 0.1

KNN [25] 0.54 0.39 0.08 0.048

MOG2 [24] 0.259 0.27 0.02 0.015

Dual-mode SGM 0.004 0.0032 0.027 0.09

(a) T = 0 (b) T = 100

(c) T = 200

Fig. 4. Results of the proposed approach using Video 4.

6 Conclusion

We have described a novel spatiotemporal approach to maritime target recogni-
tion approach using 4K maritime videos. The approach is mainly based on the
notion of object rigidity and the property that, generally, maritime objects are
texturally richer than maritime background. Moreover, for the sake of computa-
tional efficiency, first, we have proposed a parsimonious implementation of the
rigidity measure by assessing the temporal deformation of the SIFT descriptor
at key video locations. Second, we have developed a multi-resolution scheme for
extracting full object zones based both on rigidity analysis and spatial discrim-
ination. The present method has been implemented on a CPU architecture and
achieves near real-time performances, however, the former is highly paralleliz-
able. Thus, as future work, we will develop a GPU implementation of the present
approach for achieving real-time maritime video-surveillance using 4K videos.
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