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Abstract. In this paper, we present a novel motion-based behavioral
biometric-based user authentication solution - SNAPAUTH, for Android-
based smartwatch. SNAPAUTH requires the user to perform finger-
snapping (Snapping (or clicking) one’s fingers is the act of creating a
snapping or clicking sound with one’s fingers. Primarily this is done by
building tension between the thumb and another (middle, index, or ring)
finger and then moving the other finger forcefully downward so it hits
the palm of the same hand at a high speed [4].) action, while wearing the
smartwatch to perform the authentication. SNAPAUTH profiles the arm-
movements by collecting data from smartwatch’s built-in accelerometer
and gyroscope sensors, while the user performs this action. We imple-
mented and evaluated SNAPAUTH on Motorola Moto 3G smartwatch.
SNAPAUTH could be widely accepted by users as it utilizes the users’
familiarity with the very common finger-snapping action and users do
not need to remember any secret.
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1 Introduction

The use of smartwatches is steadily and constantly increasing in recent years.
Since, they are typically a personal device that users hold all the time, they are
an obvious candidate device to support authentication of its owner.

Authentication is the process of restricting the device access to the legitimate
users, only.

Classical authentication schemes, such as PIN/password establish the iden-
tity with what the user remembers. These solutions are neither considered
secure [1] nor usable [2,3], because they require users to remember their secret
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and enter it every time they need to use the device. Additionally, entering text
or sketching a graphical password on smartwatches could be extremely difficult
because of the small size of the touchscreen.

Biometric-based authentication establish the identity through biological
modalities, such as face, fingerprint, retina, etc. These solutions have already
been implemented on recent smartphones, e.g., Apple Face ID [5] and fingerprint
sensors in iPhones [6], however, these schemes, being non-transparent, have still
the main disadvantage of annoying the user [7]. Further, the data of some of
these modalities can be stolen as easily as passwords [10].

Behavioral biometric, e.g., swiping, touch-dynamics, etc., seems a bet-
ter option for the development of user authentication schemes for the new
generation of personal devices, because they are dependent on the person-
specific user actions and habits, which makes them more attractive towards
implicit /unobtrusive user authentication [11].

Fig. 1. Finger-snapping in 3d space

In this work, we present a motion-based finger-snapping gesture-based user
authentication scheme - SNAPAUTH, for smartwatch unlocking. The scheme col-
lects the arm movements fingerprints through the accelerometer and gyroscope
sensors in three dimensions, while the user performs the finger-snapping gesture
(as depicted in Fig. 1), and performs user profiling. More specifically SNAPAUTH
collects the arm-movement generated data, from accelerometer and gyroscope,
for the short duration, during finger-snapping gesture, at a sample rate of 50
samples/s and performs the identity confirmation. SNAPAUTH, using simple, yet
effective, state-of-the-art machine learning classifiers, decides if the smartwatch
is worn by the legitimate user or by an impostor. Access to the smartwatch is
granted in case the user is confirmed as the legitimate user otherwise its denied.
SNAPAUTH neither requires any token or password from the user, thus, the
scheme is completely unobtrusive, and usable for smartwatch unlocking. We val-
idated SNAPAUTH on a real device (Motorola Moto 3G) and obtained promising
results.
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The main contributions of this paper are:

— The proposal of SNAPAUTH - an arm-motion-based user authentication
scheme for Android smartwatch. The scheme authenticates the users based on
the differences in the arm-movements generated while user performs finger-
snapping action.

— Proof-of-the-concept prototype implementation of the scheme on a smart-
watch.

2 Related Work

Behavioral biometric-based user authentication using smartwatches has been
already explored by few papers. Draw-a-pin [12] leverages the user behaviour
while drawing a PIN and the correctness of the PIN, to authenticate the user.
Authors achieved 20.36% average error rate on their collected dataset of 30
participants, in two activities, i.e., sitting, walking, in lab settings using Samsung
Gear Live smartwatch.

Lewis et al. [13] proposed a motion-based authentication solution for smart-
watch users. The system exploits the free-form arm movement as a behavioral
biometric modality for user authentication. By applying DTW as a classifier on
their collected dataset of 5 users, authors achieved the accuracy up to 84.6%.
Similarly, the other relevant study “VeriNET”, takes motion signals as pass-
word, and uses the deep recurrent neural network to authenticate the users [15].
Authors evaluated their scheme on 310 participants on ~60k passcode entries and
achieved an Equal Error Rate (EER) of 7.17% on PINs and 6.09% on Android
lock patterns.

We consider the study by Kumar et al. [14] very relevant to our work. Authors
proposed four variants of continuous user authentication design based on users
arm movements while walking. The design incorporated smartwatchs accelerom-
eter and gyroscope sensor data, individually as first and second variants, and
then, applied feature and score-level fusion as the third and fourth variant. The
system was tested under 3 different environments, i.e., intra-session (40 users
dataset), inter-session (40 users dataset), and inter-phase (12 users dataset) using
4 classifiers, namely, k nearest neighbors (k-NN) with Euclidean distance, Logis-
tic Regression, Multilayer Perceptrons, and Random Forest resulting in a total
of sixteen authentication mechanisms. They achieved the mean dynamic False
Accept Rate (DFAR) of 0% and Dynamic False Reject Rate (DFRR) of 0% for
all of the twelve authentication mechanisms in the intra-session environment.
In the inter-session environment, k-NN performed best with a mean DFAR of
2.2% and DFRR of 4.2% for a feature level fusion-based design. Whereas, in the
inter-phase environment, the DFAR and DFRR increased to 15.03% and 14.62%
respectively for the same feature level fusion-based design with the k-NN classi-
fier.

SNAPAUTH is different from existing state-of-the-art authentication solutions
in the following ways: (i) it leverages a novel finger-snapping action that is easy
to perform, and (ii) the data collection is fully unobtrusive making it suitable
for designing frictionless user authentication solutions.
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3 Methodology

In this section, we discuss the steps taken to design SNAPAUTH.

3.1 Considered Hardware

This work uses the Motorola Moto 360 smartwatch for implementation of the
proposed authentication scheme. For both data collection and the validation
phase, the considered sensors offered by the smartwatch are used for the gener-
ation of raw sensor data.

3.2 Smartwatch Sensors

Android categorizes built-in sensors in three types, i.e. motion, environmental
and positional, in their API guide on sensors'. To capture gestures, applications
in this work uses two built-in motion sensors available on the Moto 360 to mea-
sure the acceleration, and rotation during the performance of a gesture. Moto
360 delivers a 50 Hz sampling rate for both the accelerometer and gyroscope
meaning that both sensors are able to ideally generate 50 samples per second
with an error margin around 43 samples per second.

3.3 Data Collection

We developed a customized Android application, namely Snap Collector to collect
the finger-snapping gesture. SnapCollector can be installed on any Android-
based smartwatch having Android version 4.4 or higher, installed. We collected
accelerometer and gyroscope readings at highest sample rate (50Hz) because
this sample rate was found empirically suitable for authentication purposes, in
recent studies [18]. Figure 2 shows the main screen of our developed application.

Fig. 2. Main screen and settings

We recruited 11 volunteers (8 males) to participate in our three-day long
three-session experiment. The participants had a background in computer sci-
ence. We asked them about the natural hand and in which wrist they usually
wear their watch.

We collected data from an experiment spanned over three-sessions. We
ensured that all the recruited participants had to participate in these sessions
on three consecutive days. The motivation was to check the performance of the
gesture in intra-session and inter-session analysis (Fig. 3).

! https://developer.android.com/guide/topics/sensors/sensors_overview.html.
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(a) (©)

Fig. 3. (a) start of data recording & (b) data recording (c) recording complete.

3.4 Feature Extraction

The collected raw data from both accelerometer and gyroscope sensors is three
dimensional, i.e., streams in X, Y, and Z dimensions. We also computed another
dimension using the following equation and termed it as Magnitude.

Sm:./si—i—s%—&—s%

where S, represents the magnitude of sensor S and s, s, and s, represent the
values of the X, Y and Z stream respectively from sensor S. We extracted four
statistical features, namely, mean(u), standard deviation(o), skewness(y) and
kurtosis(y'), from every acquired raw stream and concatenate them to form a
feature vector.

3.5 Omne-Class Classifier Selection

We chose three simple, yet effective state-of-the-art machine learning classifiers,
namely, Bayes NET (BN); Multilayer Perceptron (MLP); and Random Forest
(RF) to perform the classification. We chose these classifiers because they were
found extremely accurate in the previous studies [16-18]. We used Weka work-
bench and used meta-class classifier - the OneClassClassifier?, for our analysis.

4 Analysis

We collected 10 observations per activity per user (in total 50 observations in 5
activities). In first iteration, we picked the first two observations from each activ-
ity (just 10, in total) and trained the chosen classifiers on those observations.
Remaining 40 observations were used as the testing set to perform the classifi-
cation. In the second iteration, we picked 3 observations from each activity (15,
in total) and trained the classifier on them, and the remaining 35 observations
were used to test the classifier. We used max 15 observations for training, for two
reasons: firstly because its common to get less number of training samples from

2 http://weka.sourceforge.net/doc.packages,/oneClassClassifier /weka,/classifiers/
meta/OneClassClassifier.html.
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users in real world, i.e., signature samples in banks, and secondly the users are
reluctant to provide more training samples and might get annoyed if the system
requires more training samples.

User authentication on smart devices is essentially a one-class classification
problem where the data from one user - “the owner” is used to train the classifier
and later that classifier is tested on the remaining samples of that one user - to
obtain True Accept Rate (TAR) and False Reject Rate (FRR), and on the data
of all the would-be adversaries (to obtain False Accept Rate (FAR) and True
Reject Rate (TRR) [17]. We followed the above-mentioned scheme and trained
all the chosen classifiers on the data of one user and tested in two settings (as
mentioned above). The process is repeated for all the 11 users and the obtained
average results are reported. Figure4 drawn in the KnowledgeFlow module of
Weka to perform both training and verification of One-class classifiers.
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Fig. 4. Authentication scheme

5 Results

The accuracy of any biometric-based authentication system is normally reported
in terms of TAR, FRR, FAR, or EER. We are reporting our obtained results in
terms of TAR and FAR only as TAR =1— FRR and FAR = 1—TRR. Figure5
depicts our obtained results (with default settings of all the classifiers) on full
features.

MLP classifier performed comparatively better (see Fig.5) as compared to
its counterparts, i.e., BN and RF. We obtained 66.14% TAR at ~27% FAR
with default settings on just 10 training samples. TAR further improved with
the increase in the number of training samples, i.e., training on 15 samples,
provided 82.34% TAR, however, the FAR also increased (34.25%). The reason
behind the increase of FAR is the less number of training samples and this could
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Fig. 5. Results of all the classifiers on 10 (a) & 15 (b) training samples.

further be improved if the training is performed over the significant number of
training samples, i.e., 25.

SNAPAUTH is clearly in initial stages and thus a bit less accurate (but enough
to prove the initial intuition that fingersnaps can be used to authenticate users).
We expect its accuracy to be improved using more testers and fine tuning the
classifier.

6 Conclusions

This work proposes a simple, unobtrusive, and novel motion-based smartwatch
user authentication scheme. The scheme exploits the very common human behav-
ior for user authentication purposes. It authenticates users based on the dif-
ferences in the arms’ micro-movements, collected through smartwatch sensors,
while the user performs the finger-snapping action. SNAPAUTH is user-friendly
and easy for the users because they do not require any secret to remember and/or
to type. The scheme leverages the built-in hardware, so it does not require any
additional dedicated hardware and hence avoids additional costs.

As future work, we are planning to repeat the experiments in the wild, pos-
sibly using a crowd-sourcing platform, thus increasing considerably the number
of testers. We will also investigate and report the performance and usability of
our scheme by performing usability related experiments. We will also perform
accurate tests about the security of the scheme and how easy is for an attacker
to spoof or mimic the behavior of legitimate users.
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