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Preface

This textbook is a translation of the third German edition of Grundkurs
Theoretische Physik (A Basic Course on Theoretical Physics), originally published
by Teubner, Stuttgart, Germany. Actually, this edition is much more than a typical
textbook since it offers a mixture of basic and advanced material of all of the
fundamental disciplines of theoretical physics in one volume, whence it may well
serve also as a reference book. The large number of cross-references will guide the
reader from the basic experimental observations to the construction of a “unified”
theory, and the present compactness should ensure that the reader does not get lost
along the way.

A wide range of problems invite the reader to tackle further applications at
various stages of sophistication, and a list of textbooks offers the way forward to
possible open questions.

The material itself and the way it is presented is due to the late Albrecht Lindner.
My contribution is restricted merely to the translation into the English language; in
fact, my sincerest gratitude goes to Dr. Steven Lyle who corrected the translation in
manly places; whatever remains of insufficient vocabulary or grammar is due to my
limited mastery of the language. The only changes I have made are to adjust to the
publisher’s requirements, made some changes in the numerical tables as to be
expected from May 2019 on, and adapt the list of textbooks to an English-speaking
readership.

I am proud, nevertheless, to present this book to the English-speaking
community.

Regensburg, Germany Dieter Strauch
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Preface to the First German Edition

Like the standard course in theoretical physics, the present book introduces the
physics of particles under the heading Classical Mechanics, the physics of fields
under Electromagnetism, quantum physics under Quantum Mechanics I, and sta-
tistical physics under Thermodynamics and Statistics. Besides these branches,
which would form a curriculum for all students of physics, there is a complement
entitled Quantum Mechanics II, for those who wish to obtain a deeper under-
standing of the theory, which discusses scattering problems, quantization of fields,
and Dirac theory (as an example of relativistic quantum mechanics).

The goal here is to stress the interrelations between the individual subjects. In an
introductory chapter, there is a summary of the most important parts mathematical
tools repeatedly needed in the different branches of physics. These constitute the
mathematical foundation for rationalizing our practical experience, since we wish
to describe our observations as precisely as possible.

The selection of material was mainly inspired by our local physics diploma
curriculum. Only in a few places did I go beyond those limits, e.g., in Sect. 4.6
(quantum theory and dissipation), Sect. 5.2 (three-body scattering), and Sect. 5.4
(quasi-particles, quantum optics), since I have the impression that the essentials can
also be worked out rather easily in these areas.

Section 5.5 on the Dirac equation also differs from the standard presentation,
because I prefer the Weyl representation over the standard representation—despite
my intention to avoid any special representation as far as possible. In this respect, I
am grateful to my colleagues Till Anders (Munich), Dietmar Kolb (Kassel), und
Gernot Miinster (Miinster) for their valuable comments on my drafts.

Thanks go also to numerous students in Hamburg and especially to Dr. Heino
Freese and Dr. Adolf Kitz for many questions and suggestions, and various forms
of support. The general interest in my notes encourages me to present these now to
a larger community.

(Notes on figure production are left out here—D.S.)

Hamburg, Germany Albrecht Lindner
Fall 1993
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Preface to the Second German Edition

The text has been improved at many places, in particular in Sects. 3.5 and 5.4, and
all figures have been inserted with pstricks. In addition, three-dimensional objects
now appear in central instead of of parallel perspetive.

Hamburg, Germany Albrecht Lindner
Summer 1996
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Preface to the Third German Edition

The Basic Course (Grundkurs) was discovered in a third, extensively revised
edition, after Albrecht Lindner, a passionate teacher, unexpectedly passed away. As
one of those rare textbooks which presents a complete curriculum of theoretical
physics in a single volume—compact and simultaneously profound—it should be
offered to the teacher and student community. In the present third edition the
material has been revised in many places, and the number of figures has been
approximately doubled. Also in this edition is an additional chapter containing
numerous problems.

My contribution here is restricted to adjusting the material to the changed
appearance required by the Teubner publishing company.

Regensburg, Germany Dieter Strauch
Spring 2011
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Chapter 1 ®)
Basics of Experience oo

1.1 Vector Analysis

1.1.1 Space and Time

Space and time are two basic concepts which, according to Kant, inherently or
innately determine the form of all experience in an a priori manner, thereby making
possible experience as such: only in space and time can we arrange our sensations.
[According to the doctrines of evolutionary cognition, what is innate to us has devel-
oped phylogenetically by adaption to our environment. This is why we only notice
the insufficiency of these “self-evident” concepts under extraordinary circumstances,
e.g., for velocities close to that of light (cy) or actions of the order of Planck’s quan-
tum 4. We shall tackle such “weird” cases later—in electromagnetism and quantum
mechanics. For the time being, we want to make sure we can handle our familiar
environment. ]

To do this, we introduce a continuous parameter 7. Like every other physical
quantity it is composed of number and unit (for example, a second 1 s = 1 min/60
=1 h/3600). The larger the unit, the smaller the number. Physical quantities do not
depend on the unit—likewise equations between physical quantities. Nevertheless,
the opposite is sometimes seen, as in: “We choose units such that the velocity of light
c assumes the value 1”. In fact, the concept of velocity is thereby changed, so that
instead of the velocity v, the ratio v/c is taken here as the velocity, and ct as time or
x/c as length.

The zero time (f = 0) can be chosen arbitrarily, since basically only the time
difference, i.e., the duration of a process, is important. A differentiation with respect to
time (d/d¢) is often marked by a dot over the differentiated quantity, i.e., dx/df = x.

In empty space every direction is equivalent. Here, too, we may choose the zero
point freely and, starting from this point, determine the position of other points in
a coordinate-free notation by the position vector r, which fixes the distance and
direction of the point under consideration. This coordinate-free type of notation is
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particularly advantageous when we want to exploit the assumed homogeneity of
space. However, conditions often arise (i.e., when there is axial or spherical sym-
metry) which are best taken care of in special coordinates. We are free to choose a
coordinate system. We only require that it determine all positions uniquely. This we
shall treat in the next section.

Besides the position vector r, there are other quantities in physics with both
value and direction, e.g., the velocity v = r, the acceleration a = v, the momentum
p = mv, and the force F = p. The appropriate means to handle such quantities is
vector algebra, with which we shall be extensively concerned in this section. This
method allows us to encompass both the value and the direction of the quantities
under consideration much better than using components, which, moreover, depend
on the coordinate system.

For the time being—namely for plane and three-dimensional problems—we
understand a vector as a quantity with value and direction, which can be repre-
sented as an arrow of corresponding length. (Generally, vectors are mathematical
entities, which can be added together or multiplied by a number, with the usual rules
of calculation being valid.) Sometimes they are denoted by a letter with an arrow
atop. The value (the length) of a is denoted by a or |a |.

1.1.2  Vector Algebra

From two vectors a and b, their sum a + b may be formed according to the con-
struction of parallelograms (as the diagonal), as shown in Fig. 1.1. From this follows
the commutative and associative law of vector addition:

a+b=b+a, (a+b)+c=a+((b+c).
The product of the vectors a with a scalar (i.e., directionless) factor « is understood
as the vector @ a = a o with the same (for « < 0 opposite) direction and with value

|| a. In particular, a and —a have the same value, but opposite directions. For o = 0
the zero vector 0 results, with length 0 and undetermined direction.

— N —+
b atb

—b a—b

Fig. 1.1 Sum and difference of vectors a and b. The vectors may be shifted in parallel, e.g., a—b
can also lie on the dashed straight line
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Fig. 1.2 Scalar and vector products: e - a is the component of a in the direction of the unit vector
e,and |a x b| is the area shown

The scalar product (inner product) a - b of the two vectors a and b is the product
of their values times the cosine of the enclosed angle ¢, (see Fig. 1.2 left):

a-b=ab cos¢, .

The dot between the two factors is important for the scalar product—if it is missing,
then itis the tensor product of the two vectors, which will be explained in Sect. 1.2.4—
witha-bc #ab-c,ifa and ¢ have different directions, i.e., if a is not a multiple
of ¢. Consequently, one has

a-b=>b-a

and
a-b=0 = alb or a=0 or b=0.

If the two vectors are oriented perpendicularly to each other (a L b), then they are
also said to be orthogonal. Obviously, a - a = a? holds. Vectors with value 1 are
called unit vectors. Here they are denoted by e. Given three Cartesian, i.e., pairwise
perpendicular unit vectors ey, e,, €., all vectors can be decomposed in terms of these:

a=e,a,+ea,+e;a;,
with the Cartesian components
ar =e.-a, a, =e,-a, a, =e;-a.

Here the components will usually be written after the unit vectors. This is particularly
useful in quantum mechanics, but also meaningful otherwise, since the coefficients
depend on the expansion basis. Since for a given basis a is fixed by its three compo-
nents (ay, ay, a;),ais thus often given as this row vector, or as a column vector, with
the components written one below the other. However, the coordinate-free notation
a is in most cases more appropriate to formal calculations, e.g., a + b combines the
three expressions a, + by, a, + by, and a, + b,. Because e, -e; =1, e, -e, =0
(and cyclic permutations e, - e, = 1, e, - €, = 0 and so on), one clearly has

a-b=a, b +a,b,+a;,b,.

Hence it also follows thata- (b+c¢) =a-b+a-c.
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The vector product (outer product) a x b of the two vectors a and b is another
vector which is oriented perpendicularly to both and which forms with them a right-
hand screw, like the thumb, forefinger, and middle finger of the right hand. Its value
is equal to the area of the parallelogram spanned by a and b (see Fig. 1.2 right):
laxb|=absing,, .
Hence it also follows that

axb=—-bxa, ax(b+c)=axb+axc,

and
axb=0 = allb or a=0 or b=0.

Using a right-handed Cartesian coordinate system, we have
e, x e, =e¢; (and cyclic permutations e, x e, =€, ...),
and also e, x e, = 0, etc., whence
axb=e(a,b,—a.b))+e (a.b, —a,b;)+e. (a,b,—a,by).

This implies
ax(bxc)=(cxb)yxa=bc-a—ca-b.

(This decomposition also follows without calculation because the product depends
linearly upon its three factors, lies in the plane spanned by b and ¢, vanishes for
b « ¢, and points in the direction of b forc = a L b.) According to the last equation,
every vector a can be decomposed into its component along a unit vector e and its
component perpendicular to it:
a—ee-a—ex(exa).
In addition, it satisfies the Jacobi identity (note the cyclic permutation)
ax(bxc)+bx(exa)+ex((@axhb)y=0.
The scalar product of a vector with a vector product, viz.,
a-(bxc)=b-(cxa)=c-(axb),
is called the (scalar) triple product of the three vectors. It is positive or negative, if

a, b, and ¢ form a right- or left-handed triad, respectively. Its value gives the volume
of the parallelepiped with edges a, b, and ¢. In particular, e, - (e, x e;) = 1.
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In this context, the concept of a matrix isuseful. An M x N matrix A is understood
as an entity made of M x N “matrix elements”, arranged in M rows and N columns:

AnGefll, ..., MLkell,..., N}, eg.,
A A Az ~ Al Azr Az
A=| Ay An An = A= | Ap Ap Ay
Azl Az Azz A3 Az Azz

The transposed matrix A just introduced has elements Zik = Ay;, hence N rows and
M columns. We shall mainly be concerned with square matrices, which have equal
numbers of rows and columns, i.e., M = N. The matrix product of A and B is

N
C=AB with Cix=) AyBj .
j=1
which is, of course, defined only if the number of columns of A is the same as the
number of rows of B. We have AB = B A.

If we now combine the 3x3 Cartesian components of the vectors a, b, and ¢ in
the form of a matrix, its determinant

ay ay a;
by by b, | = ay (byc, — b,cy) +ay, (b,cy — byc;) + a; (bycy — bycy)
Cx ¢y C;

= a, (byc; — b.cy) + by (cya; — c.ay) + ¢, (ayb, — a;b,)

is equal to the triple product a - (b x ¢). For determinants, we have
detA=detA and det(AB) =detA x detB .

Therefore, also

a-fa-ga-h
a-(bxc) f-(gxh)y=|b-fb-gb-h
c-fc-gc-h

Moreover, from (a x b) - ¢ = a - (b x ¢) and replacing ¢ by ¢ x d, it follows that

(@axb)y-(cxd)=(G@-c)b-d)—(a-d)(b-¢c) =

a-ca-d
b-cb-d

the determinant of a 2x 2 matrix, and in particular,
(axb)-(axb)=a’h?—(a-b)?,

which, of course, follows from sinzq&ab =1 —cos’pup.
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Table 1.1 Space-inversion

. Type Original image Mirror image
behavior
Polar vector 0 N
Axial vector -1 - -1 -

It is not allowed to divide by vectors—neither scalar products nor vector products
can be decomposed uniquely in terms of their factors, as can be seen from the
examplesa-b=0anda x b =0.

In the context of the vector product, we have to consider the fact that only in
three-dimensional space can a third vector be assigned uniquely as a vector normal
to two vectors. Otherwise a perpendicular direction cannot be fixed uniquely, and
no direction can be given in the sense of the right-hand rule. In fact, in Sect. 3.4.3,
in order to extend the three-dimensional space to the four-dimensional space-time
continuum of the theory of special relativity, we change from the vector product to
a skew-symmetric matrix (or a tensor of second rank) which, in three-dimensional
space, has three independent elements, just like every vector.

Actually, we also have to distinguish between polar vectors (like the position
vector r and the velocity v = 1) and axial vectors (e.g., the vector product of two
polar vectors), because they behave differently under a space inversion (with respect
to the origin): the direction of a polar vector is reversed, while the direction of an
axial vector is preserved. Correspondingly the triple product of three polar vectors is
a pseudo-scalar, because it changes its sign under space inversion. Axial vectors can
actually be viewed as rotation axes with sense of rotation and not as arrows—they
are pseudo-vectors (Table 1.1).

Inversion involves a special change of coordinates: it cannot be composed of
infinitesimal transformations, like rotations and translations. General properties of
coordinate transformations will be treated in the next section. Until then we will
thus assume only right-handed Cartesian coordinate systems with e, x e, = e, (and
cyclic permutations).

1.1.3 Trajectories

If a vector depends upon a parameter, then we speak of a vector function. The vector
function a () is continuous at f, if it tends to a (fy) for 1 — 1. With the same limit
t — ty, the vector differential da and the first derivative da/d¢ is introduced. These
quantities may be formed for every Cartesian component, and we have

d(a+b)=da+db, d(ea) =ada+ado,
d(a-b)=a-db+b-da, d(axb)=axdb—bxda.

Obviously, a - da/dr = %d(a -a)/dt = %daz/dt = a da/dt holds. In particular the
derivative of a unit vector is always perpendicular to the original vector—if it does
not vanish.



1.1 Vector Analysis 7

As an example of a vector function, we investigate r (¢), the path of a point as
a function of the time . Thus we want to consider also the velocity v = r and the
acceleration a = F rather generally. The time is not important for the trajectories as
geometrical lines. Therefore, instead of the time ¢ we introduce the path length s as
a parameter and exploit ds = |dr | = vdt.

We now take three mutually perpendicular unit vectors er, ey, and eg, which are
attached to every point on the trajectory. Here et has the direction of v:

tangent vector e = — =

For a straight path, this vector is already sufficient for the description. But in general
the

d’r
ds?

deT
ds

path curvature  « =

is different from zero. In order to get more insight into this parameter we consider a
plane curve of constant curvature, namely, the circle withs = R ¢. Forr (¢) =1y +
R (cosg e, +sing e,), we have k = |d’>r/d(Rp)?| = R~". Instead of the curvature
Kk, its reciprocal, the

curvature radius R =

&=

can also be used to determine the curve. Hence as a further unit vector we have the

deT d21‘
normal vector en=R — =R — .
ds ds?
Since it has the direction of the derivative of the unit vector er, itis perpendicular to er.
Now we may express the velocity and the accelerations because ér = (der/ds) v =
(v/R) ey as follows:

2
vV=r=ver, aE'fz\'zeT—i—EeN.

Thus there is a tangential acceleration a - ey = ay = v, if the value of the veloc-
ity changes, and a normal acceleration a - ey = aN = v2 /R, if the direction of the
velocity changes. From this decomposition we can also see why motions are often
investigated either along a straight line or along a uniformly traveled circle—then
only ar or only ay appears.

If the curve leaves the plane spanned by et and ey, then the

binormal vector eg = e X ey

also changes with s. Because det/ds = xey, its derivative with respect to s is equal
to er x dey/ds. This expression (perpendicular to et) must be proportional to ey,
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because derivatives of unit vectors do not have components in their direction. Since
enN = eg X er, besides

der . dep den

— =k ey, thederivatives — =—-7ey and — =T eg — K er

ds ds ds
appear with the rorsion t, also called the winding or second curvature. For a right-
hand thread, one has T > 0, and for a left-hand thread, T < 0. The relation

ds  ds?2/ ds3

also holds, because of T = ep - (dey/ds) and eg = er x ey. (Here it is unimportant
for the winding whether the curvature depends upon s.)
With the Darboux vector
d=«xeg+Ter,

the expressions just obtained for the derivatives of the three unit vectors with respect
to the curve length s (Frenet—Serret formulas) can be combined to yield

de,
ds

=§xe, with e, €{er,en,ep}.

As long as neither the first nor the second curvature changes along the curve, the Dar-
boux vector is constant: dk /ds = 0 = dt/ds = dd/ds = 0, because x deg/ds =
—t der/ds. The curve winds around it. An example will follow in Sect. 2.2.5,
namely the spiral curve of a charged particle in a homogeneous magnetic field:
in this case the Darboux vector is § = —gB/(mv). The curves with constant § thus
depend upon the initial velocity vo. Among these are also circular orbits (perpen-
dicular to &) and straight lines (along +§), where admittedly a straight line has
vanishing curvature (¢« = 0), and the concept of the second curvature (winding)
thus has no meaning. The quantities § and v, yield the winding t = § - vo/vp and
curvature x (> 0) because of 8> = k2 4 2. The radius # and the helix angle «
(with || < %n) of the associated thread follow from & = «/ 8?2 and @ = arctan t /K.
[Withr =ro+ h(cosgpe, +sinpe, +tanape;) and s cosa = h ¢ and because
of tanw = t/k, the scalar triple product expression for t yields the equation
cos®a = h/R.] The geometrical meaning of the curvature radius R and radius &
is thus the reciprocal of the length of the Darboux vector (see Fig. 1.3).

If the curve traveled is given by the functions y(x) and z(x) in Cartesian coordi-
nates, then we have

dzr_ d (dr>_ d (dr dx) dx
ds2 ~ ds \ds/ ~ dx \dx ds/ ds’

and because ds? = dx? 4 dy? + dz?, we also have dx /ds = 1//1 + y'2 + 7’2 with
y' = dy/dx and 7’ = dz/dx. Hence, the square of the path curvature is given by
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Fig. 1.3 Spiral curve around the constant Darboux vector § oriented to the right (constant curvature
and winding, here with ¥ = 7). Shown are also the tangent and binormal vectors of the moving
frame and the tangential circle. Not shown is the normal vector ey = ep x e, which points toward
the symmetry axis

K2 _ (y/Z// _ y//Z/)z + y//2 + Z//2
- (1 +y/2 _|_Z/2)3

and the torsion by
" m "1
1

R S S S
- (1+y/2+zl2)3 K2

For the curvature, we have « > 0, while t is negative for a left-hand thread.

1.1.4 Vector Fields

If a vector is associated with each position, we speak of a vector field. With scalar
fields, a scalar is associated with each position. The vector field a (r) is only contin-
uous at ry if all paths approaching ry have the same limit. For scalar fields, this is
already an essentially stronger requirement than in one dimension.

Instead of drawing a vector field with arrows at many positions, it is often visu-
alized by a set of field lines: at every point of a field line the tangent points in the
direction of the vector field. Thus a || dr and a x dr = 0.

For a given vector field many integrals can be formed. In particular, we often
have to evaluate integrals over surfaces or volumes. In order to avoid double or triple
integral symbols, the corresponding differential is often written immediately after
the integral symbol: dV for the volume, df for the surface integral, e.g., [ df x a
instead of — ['a x df (in this way the unnecessary minus sign is avoided for the
introduction of the curl density or rotation on p. 13). Here df is perpendicular to the
related surface element. However, the sign of df still has to be fixed. In general, we
consider the surface of a volume V, which will be denoted here by (V). Then df
points outwards. Corresponding to (V), the edge of an area A is denoted by (A).

An important example of a scalar integral is the line integral [ dr - a(r) along
a given curve r (). If the parameter 7 determines the points on the curve uniquely,
then the line integral
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d = dtd—l~ @)
/r-a(r)_/ dt.a r(t)

is an ordinary integral over the scalar product a - dr/d¢. Another example of a scalar
integral is the surface integral [ df - a (r) taken over a given area A or over the surface
(V) of the volume V.

Besides the scalar integrals, vectorial integrals like [ dV a, [ df x a,and [ dr x a
can arise, e.g., the x-component of [ dV a is the simple integral [ dV a,.

Different forms are also reasonable through differentiation: vector fields can be
deduced from scalar fields, and scalar fields (but also vector fields and tensor fields)
from vector fields. These will now be considered one by one. Then the operator V
will always turn up. The symbol V, an upside-down A, resembles an Ancient Greek
harp and hence is called nabla, after W. R. Hamilton (see 122).

1.1.5 Gradient (Slope Density)

The gradient of a scalar function v (r) is the vector field
grad y =Vy, with V¢ .-dr=dy = ¢ (r+dr) — ¢ (r).

This is clearly perpendicular to the area i = const. at every point and points in
the direction of dy» > 0 (see Fig. 1.4). The value of the vector Vi is equal to the
derivative of the scalar function v (r) with respect to the line element in this direction.
In Cartesian coordinates, we thus have

e, —+e, —+e —
ox | "8y+ 9z

Vx/fzex%—i—e,%—i—ez%:( 0 9 a)w.
X y 9z

Fig. 1.4 Gradient Vi of a scalar field ¥ (r) represented by arrows. Contour lines with constant v
are drawn as continuous red and field lines (slope lines) of the gradient field as dashed blue. In the
example considered here, both families of curves contain only hyperbolas (and their asymptotes)
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Here 0v//0dx is the partial derivative of {(x, y, z) with respect to x for constant
y and z. (If other quantities are kept fixed instead, then special rules have to be
considered, something we shall deal with in Sect. 1.2.7.)

The gradient is also obtained as a limit of a vectorial integral:

Vi = lim l/ df y(r) .
vV Jw

V—0

If we take a cube with infinitesimal edges dx, dy, and dz, we have on the right-hand
side as x-component (dxdydz)~'{dydz ¢ (x +dx,y,z) —dydz ¥(x,y,2)} =
Y /dx, and similarly for the remaining components. Hence, also

/dvvw= df v |
1% 1%

because a finite volume can be divided into infinitesimal volume elements, and for
continuous ¥, contributions from adjacent planes cancel in pairs. With this surface
integral the gradient can be determined even if v is not differentiable (singular) at
individual points—the surface integral depends only upon points in the neighbour-
hood of the singular point, where everything is continuous. (In Sect. 1.1.12, we shall
consider the example ¥ = 1/r.)

Corresponding to dyr = (dr - V) v, we shall also write in the following

oa

9 9
da=(dr-V)a=dr = +dy 2 44z
ox ay 9z

We also attribute a meaning to the operation V a, but notice that there is no scalar
product between V and a (rather it is the dyadic or tensor product, as shown in the
next section), but there is a scalar product between dr and V. Then for a Taylor
series, we may write

Y@ +dr) =y @) +dr- V)Y +5dr-V>y 4o

where all derivatives are to be taken at the position r.

1.1.6 Divergence (Source Density)

While a vector field has been derived from a scalar field with the help of the gradient,
the divergence associates a scalar field with a vector field:

1
diva=V-a=lim —f df -a.
V-0 (V)
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For the same cube as in the last section, the right-hand expression yields

—dd X d77 —Ux\AS ),
dxdydz[y z{ar(x+dx, y,2) —ax(x, y, 2)}

+dZ d-x {ay(-xv y+dyv Z) _ay(-xv Y, Z)}
da, 9da, da;

8x+3y+8_z7

+dx dy {a,(x, y,z+dz) —a,(x,y,2)}] =

as suggested by the notation V - a, i.e., a scalar product between the vector operator
V and the vector a. With this we have also proven Gauss’s theorem

deV~a=/ df -a,
Vv V)

since for any partition of the finite volume V into infinitesimal ones and for a contin-
uous vector field a, the contributions of adjacent planes cancel in pairs. The integrals
here may even enclose points at which a (r) is singular (see Fig. 1.5 left). We shall
discuss this in more detail in Sect. 1.1.12.

The integral [ df - a over an area is called the flux of the vector field a (r) through
this area (even if a is not a current density). In this picture, the integral over the closed
area (V) describes the source strength of the vector field, i.e., how much more flows
into V than out. The divergence is therefore to be understood as a source density.
A vector field is said to be source-free if its divergence vanishes everywhere. (If the
source density is negative, then “drains” predominate.)

The concept of a field-line tube is also useful (we discussed field lines in
Sect. 1.1.4). Its walls are everywhere parallel to a (r). Therefore, there is no flux
through the walls, and the flux through the end faces is equal to the volume integral
of V - a. For a source-free vector field (V - a = 0), the flux flowing into the field-line
tube through one end face emerges again from the other.

Fig. 1.5 Fields between coaxial walls. On the left and in the center, the walls are drawn as con-
tinuous lines and the field lines as dashed lines. On the left, the field is curl-free and has sources
on the walls, while in the center it is source-free and has curls on the wall, if in both cases the field
strength |a| = a decays with increasing distance R from the axis as shown in the right-hand graph,
i.e., in such a way that a R is constant
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1.1.7 Curl (Vortex Density)

The curl (rotation) of the vector field a (r) is the vector field

1
rotaEanElim—/ df x a.
V=0V Jy,

For the above-mentioned cube with the edges dx, dy, dz, the x-component of the
right-hand expression is equal to

1
dZ [+dde {az(x’Y‘i‘de Z) _aZ(-xs )’1 Z)}

dx dy
da, Oda,
—dxdy {ay(x,y,z+dz) —a,(x,y, )} = — — —.
ay 0z
With 9; = 1/0x;, we thus have
8az 3ay aax 8az 8aV aax €x ey €;
a1t () () S
dy 9z 9z dx ax 9y ‘aa
x Uy Uz

which is the vector product of the operators V and a. This explains the notation
V x a. Moreover, we have

/dVan:/ df x a
Vv V)

for all continuous vector fields, although they may become singular point-wise, and
even along lines, as will become apparent shortly.
An important result is Stokes’s theorem

/df-(an):f dr-a,
A (A)

where df is taken in the rotational sense on the edge (A) and forms a right-hand screw.
The right-hand side is the rotation (curl) of a, that is, the line integral of a along
the edge of A. In order to get an insight into the theorem, consider an infinitesimal
rectangle in the yz-plane. On the left, we have

da da,
df - (v = [dydz (= -=2),
/A (V xa) /yZ(ay az)

and on the right
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f dr'a=/dyay(x,y,z)—/dyay(x,y,erdz)
(A)

+/dzaz(x,y+dy,z)—/dzaz(x,y,z)-

The first two integrals on the right-hand side together result in — [ dy (da,/9z) dz,
the last two in [ dz (da./dy) dy. This implies

ad a
/ dr~a=/dydz(ﬁ—&).
(A) By aZ

The theorem holds thus for an infinitesimal area. A finite area can be divided into
sufficiently small ones, where adjacent lines do not contribute, since the integration
paths from adjacent areas are opposite to each other.

According to Stokes’s theorem we may also set

1
eA'(an)ziirr})Xf dr-a,
- (A)

where the unit vector e, is perpendicular to the area A and dr forms a right-hand
screw with e,4. The curl density V x a can be introduced more pictorially with this
equation than with the one mentioned first, and even for vector fields which are
singular along a line (perpendicular to the area). Therefore, the inner “conductor” in
Fig. 1.5 may even be an arbitrarily thin “wire”.

For V x a # 0, the vector field has a non-vanishing rotation, or vortex. If V x a
vanishes everywhere, then the field is said to be curl-free (vortex-free).

1.1.8 Rewriting Products. Laplace Operator

Given various fields, the linear differential operators gradient, divergence, and rota-
tion assign other fields to them. They have the following properties:

Vey)=¢Vy+y Vo,

V.-WWay=¢v V-a+a-Vy,
Vx(ra)=¢vvVxa—axVy,
V.(axb)y=b-(Vxa)—a-(Vxb),
Vx(axb)y=Mm-V)a—-b(V-a)y—(a-V)b+a (V-b),

V@-b)=0m-V)a+bx(Vxa)+@-V)b+ax(Vxh).

All these equations can be proven by decomposing into Cartesian coordinates and
using the product rule for derivatives. For the last three, however, it is better to refer
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to Sect. 1.1.2 (and the product rule) and place V between the other two vectors, so
that this operator then acts only on the last factor (see Problem 3.1). Since

V.r=3, Vxr=0, (a@a-V)r=a
(Problem 3.2), we find in particular

V. ) =3y +r-Vy,
Vx@r)=-rxVy,
@-Vyyr=ay+r(@- - Vy),

and

V-(axr)y=r-(V xa),
Vx@xr)y=2a+@-V)a—r(V-a),
V@-ry=a+((r-V)a+rx(Vxa).

These equations are generally applicable and save us lengthy calculations—we shall
use them often. Besides these, we also have

not only for integer numbers n, but also for fractions. Furthermore, if v and a
have continuous derivatives with respect to their coordinates, then the order of the
derivatives may be interchanged, viz.,

VxVy =0 ad V. .(Vxa)=0.

Hence, gradient fields are curl-free (vortex-free), and curl fields are source-free.
Point-like singularities do not alter these results.
The operator A in the expression

AY =V Vi

is called the Laplace operator. For a final reformulation, we make use once again of
aresultin Sect. 1.1.2, namely b-ca =c¢ (b-a) —b x (¢ x a), whence

Aa=V.-Va=V(V.a)-V x(V xa).

Therefore, this operator can act on scalars v (r) and vectors a (r). In Cartesian coor-
dinates it reads in both cases
92 92 92

a2 T ez
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According to Gauss’s theorem,

1
/ df~V1//:/dVA1/f, thus Alﬁ:lim—/ df - vy .
W) v V=0V Jw)
The Laplace operator is thus to be understood as the limit of a surface integral. It
is apparently only different from zero if Vi changes on the surface (V). A further
important relation is

V-V —-9VYy) =y Ap - Ay,

which can be derived from the above equations.

According to Gauss’s theorem a source- and curl-free field has to vanish every-
where, if it vanishes on the surface (“at infinity”). Every curl-free vector field can
be represented as a gradient field Vi, where i obeys the Laplace equation Ay =
0 everywhere, because the field is also taken to be source-free. Hence, we have
V -y Vy = Vi - Vi, according to Gauss’s theorem [, df - Yy Vyr = [, dV V-
V. The left-hand side has to be zero, and on the right the integrand is nowhere
negative, whence it has to vanish everywhere.

1.1.9 Integral Theorems for Vector Expressions

The concepts gradient, divergence, and rotation follow from the equations

/dVVI//: df
v V)

/ dVV.a= / df -a  (Gauss’s theorem),
v )

/dVan:/ df x a.
1% V)

Dividing a finite volume into infinitesimal parts, the contributions of adjacent planes
cancel in pairs. Corresponding to these, we found in Sect. 1.1.7 [the first expression
is, of course, also equal to fA (df x V) - a]

/ df - (V xa) = / dr-a  (Stokes’s theorem),
A (A)

/dfol/fz dr .
A (A)
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The last equation can be proven like Stokes’s theorem. Likewise, we may also derive
the following equation:

/(dfo)xa:/ dr xa.
A (A)

If we take the area element df = e, dy dz once again, then using the vector product

expansion on p. 4, the integrand on the left-hand side is equalto V (e, - a) — e, V - a.

On the right, one has the same, namely, dz e, x (da/dy)dy — dye, x (da/dz) dz.
In addition, since V - (Yya) = ¢ V -a+ a - Vi Gauss’s theorem implies

/ df-lﬁaZ/dV(¢V~a+a-V¢).
) v

(Here the left- and right-hand sides should be interchanged, i.e., the triple integral
should be simplified to a double integral.) Hence, we deduce the first and second
Green theorems

/ df-d/V(j):/dV (W Ap+Vop-Vy),
W) v
/ df - (y Vo —¢ V) = / dV (y Ap — 9 AY) .
V) 14
Taking 1 as the Cartesian component of a vector b, we may also infer
(df-a)b:/dV{b(V-a)+(a-V)b}.
W) |4
Sinceb =rand (a- V) r = a, it also follows that
dea: (df-a)r—der(V-a).
v ) 14

The volume integral over a source-free vector field a is thus always zero if a vanishes
on the surface (V) .
Finally, we should mention the equation

f dfxwa:/dV(t/foa—awa),
) 14

where we have used V x (Ya) =% V xa—a x Vy.
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1.1.10 Delta Function

In the following, we shall often use the Dirac delta function. Therefore, its properties
are compiled here, even though it does not actually belong to vector analysis, but to
general analysis (and in particular to integral calculus).

We start with the Kronecker symbol

5. _{0 fori # k
k=11 fori==k.

It is useful for many purposes. In particular we may use it to filter out the k th element

of a sequence { f; }:
fo=Y_ fi S

Here, of course, within the sum, one of the { has to take the value k. Now, if we
make the transition from the countable (discrete) variables i to a continuous quantity
x, then we must also generalize the Kronecker symbol. This yields Dirac’s delta
function §(x — x'). It is defined by the equation

b
fxh = / Fx)8(x —x)dx fora <x’ <b, zerootherwise ,

where f(x) is an arbitrary continuous test function. If the variable x (and hence also
dx) is a physical quantity with unit [x], the delta function has the unit [x]~".

Obviously, the delta function § (x — x’) is not an ordinary function, because it has
to vanish for x # x’ and it has to be singular for x = x’, so that the integral becomes
J 8(x —x’) dx = 1. Consequently, we have to extend the concept of a function:
8(x — x') is a distribution, or generalized function, which makes sense only as a
weight factor in an integrand, while an ordinary function y = f(x) isamap x — y.
Every equation in which the delta function appears without an integral symbol is an
equation between integrands: on both sides of the equation, the integral symbol and
the test function have been left out.

The delta function is the derivative of the Heaviside step function:

0r — ,)_{O forx < x’
PTY)E0 forx > o

o 8(x) =€'(x) .

At the discontinuity, the value of the step function is not usually fixed, although the
mean value 1/2 is sometimes taken, whence it becomes point symmetric. The step
function is often called the theta function and noted by 6 (or ®) instead of & (con-
trary to the [UPAP recommendation). The derivative of the step function vanishes for
x # x', while fab g(x—x)Ydx=¢e(b—x")—¢e(a—x") is equal to one for
a < x' < b and zero for other values of x’.
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Hence, using

1 X
e(x) == + — hm arctan —
—+0 &

we find the important equations

1 1 1 1 1
S0 = — lim —o = — lim( __ )57( _ )
T e—4+0x24+62 27w e>4+0\x —ie  x +ie 27i \x —io  x+io

We may thus represent the generalized function §(x) as a limit of ordinary functions
which are concentrated ever more sharply at only one position. According to the last
equation it is practical here to decompose the delta function in the complex plane
into two functions with the same pole for +io with opposite residues, then to take
the limit o — +0.

Clearly, we also have

i i 1 1

x +io _zné(x)_’_x—io =7+ 2 (x—i—io +x—io> ’

if we make use of 7 §(x) = %i {(x +1i0)~! — (x —i0)~"} for the second reformu-
lation. Here, the expression in the last bracket vanishes for x% « 0%, while it turns
into 2x /(x2 + 0?) &~ 2/x for x> > 0°. This can be exploited for the principal-value
integral (the principal value) P. . ., a kind of opposite to the delta function, because
it leaves out the singular position x’ in the integration, with equally small paths on
either side of it:

b x'—¢ b
d d
b f(x)leim</ +/>f(x)x.
a X=X e=>+0 \Jg e/ X —X
Like the delta function, the symbol P also makes sense only in the context of an

integral. Hence we may also write the equation above as

1
x io

P_.
=—Fird(x).
b

This result is obtained rather crudely here, because the infinitesimal quantity o is
supposed to be arbitrarily small, but nevertheless different from zero. It can be proven
using the residue theorem from the theory of complex functions. To this end, we
consider

/“’O J(x) dx i/“’o f(x) dx / f(z)dz

oo X — (x' —i0) oo X — (¥’ +10) a X Z—Z/ ’

with the two integrations running from left to right because of C; (above) and C,
(below the symmetry axis) in Fig. 1.6 for regular test functions f(z). In the complex
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Fig. 1.6 Integration paths C| and C; (continuous lines) to determine the principal value and the
residues. The (real) symmetry axis is shown by the dashed line

z-plane the integrand only has the pole at 7/ = x" — io in the lower half-plane and at
x" 4 1o in the upper half-plane, whence the indicated integrations can be performed.

The difference between the two integrals is equal to — 9§ Ffx) (x —x)"dx,
according to the residue theorem, thus equal to —2mi f(x’). In the sum of the two
integrals the contributions from the half circles cancel, since for z = 7z’ + ¢ exp(i¢),
we have dz = i exp(ip) d¢p = i(z — z) d¢, and what remains is twice the princi-
pal value, which is what was to be shown. Hence, we have proven our claim that
(x £io) ' =Px ' Finr (x).

Since x §(x) = 0, the integrand may even be divided by functions which have
Zeros:

A B
A=B — —=—4+Céx).
X X

The constant C in the integrals can be fixed, provided that we also fix the integration
path across the singularity (e.g., as for the principal value integral).
An important property of the delta function is

Slax) = L §(x),
|al

because both sides are equal to de(y)/dy for y = ax. In particular, the delta function
is even, i.e., §(—x) = §(x). Hence we can even infer fooo S(x)dx = % If instead of
ax we take a function a(x) as argument, and if a (x) has only one-fold zeros x,,, then

it follows that 5( )
X — X,
da(x)) = ; m s
and in particular also that §(x? — x0%) = {8(x — x0) + 8(x + x0)}/(2|x0)).
In addition, [[ f(x)8(x —y)8(y —x)dxdy=[f(»s(y—x)dy=f(x) =
J f(x)8(x — x") dx delivers the equation

/6<x )80y — &) dy = 8(x —x) .

This is similar to the defining equation of the delta function, in which we allowed
only for ordinary, continuous functions as test functions.

For the n th derivative of the delta function, n partial integrations (fora < x’ < b,
zero otherwise) result in
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b
/ Fx) 8 (x —x)dx = ()" fP),

because the limits do not contribute. It thus follows that x §'(x) = —§&(x), which we
shall need in quantum theory (Sect. 4.3.2) for the real-space representation of the
momentum operator, viz., P = (h/i) V.

If, in the interval a < x < b, we have a complete orthonormal set of functions
{g,(x)}, i.e., a series of functions with the properties

b
/ gn*(x) gn’(x) dx = S

aswell as f(x) =), g.(x) f, for all (square-integrable) functions f(x), then after
interchange of summation and integration, we have f, = fa b g,*(x) f(x) dx for

the expansion coefficients, and hence ), fab gn(X") g.*(x) f(x) dx = f(x’), which
leads to

§x—x) = & () galx) .

Each complete set of functions delivers a representation of the delta function, i.e., it
can be expanded in terms of ordinary functions.

In particular, we can expand the delta function in the interval —a <x <a
in terms of a Fourier series: we have g,(x) = 1/+/2a exp(inxm/a) with n €
{0, +1, %2, ...} and (the result is even in x — x")

1 i —x’
8(x—x/)=g Zexpw for —a<x<a.

n

Fora — oo, we can even go over to a Fourier integral. For very large a, the sequence
k, = nm/a becomes nearly continuous. Therefore, we replace the sum >, f (k,) Ak
with Ak = m/a by its associated integral

1 [o¢]
6(x—x')=g/ exp{ik(x —x)}dk  for —oc0o <x < 00.

o.¢]

For the Fourier expansion, we therefore take g(k, x) = 1/ V2r exp(ikx). We now
have the basics for the Fourier transform, which we shall discuss in the next section.

The integral from —oo to +oo can be decomposed into the one from —oo to
0 plus the one from 0 to 4+-o0. But with k — —k, we have fi)oo exp (ikx) dk =
f0°° exp (—ikx) dk, so this part delivers the complex-conjugate of the other part.
Therefore, we infer Re f0°° exp (ikx) dk = m §(x) or

sin kx
k

1 [ 1 1 [
s(x) = —/ coskxdk and e(x)=-+ —/ dk .
T Jo 2 T Jo
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On the other hand, the usual integration rules for fo exp (ikx) dk deliver the expres-
sion (ix)~!exp (1kx)| i—o - For real x, this is undetermined for k — oco. But if x
contains an (even very small) positive imaginary part, then it vanishes for k — oo.
We include this small positive imaginary part of x as before through x + io (with
real x):

<o i P
exp(ikx) dk = —— =mwd(x) +1i—.
0 X +10 X

We have already proven this for the real part of the integral, because the real part
of the right-hand side has turned out to be equal to 7 §(x). But then the equation
holds also for the imaginary part, because the proof used only general properties of
integrals.

1.1.11 Fourier Transform

If the region of definition is infinite on both sides, we use

f(x)=/ gk, x) f(k) dk , f(k)=/ (k. x) FO0 dx |

[e¢] ]

with g(k, x) = 1/+/27 exp(ikx):

Fo) = J% /_ : exp(dikx) f(k) dk .
fk) = «/LZ_H/OO exp(—ikx) f(x) dx .

Generally, f(x) and f (k) are different functions of their arguments, but we would
like to distinguish them only through their argument. [The less symmetric notation
f(x) = [exp(ikx) F (k) dk with F(k) = f(k)/~/27 is often used. This avoids the
square root factor with the agreement that (27r)~! always appears with dx.] Instead
of the pair of variables x <> k, the pair t <> w is also often used.
Important properties of the Fourier transform are

fx) = f*(x) — [l = [k,
f(x)=gx) h(x) <= [fk) = —/ g(k—K') h(k') dk"
fx) =gx—x) <= f(k) = exp(—ikx’) g(k) .
For a periodic function f(x) = f(x — I) the last relation leads to the condition k,, =

27 n/l withn € {0, £1, £2, ... }, thus to a Fourier series instead of the integral.
In addition, by Fourier transform, all convolution integrals [ g(x — x') h(x') dx’ can
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clearly be turned into products V2r g(k) h(k) (Problem 3.9), which are much easier
to handle.

If f(x) vanishes forall x < 0,then f(x) = e(x) f(x) holds with the step function
mentioned in the last section, e.g., for “causal functions” f(¢), which depend upon
the time ¢. Then the Fourier transform yields the relation

i > o S
@ =) f) = fl) =~ P/ aw

T Jow k—k
Here, due to the factors i in the Fourier transformed f (k), the real and imaginary
parts are related to each other in such a way that only the one or the other (for all
k) needs to be measured. This relation is sometimes called the Kramers—Kronig or
dispersion relation, even though it also actually exploits the fact that f(x) is real,
whence the integration has to be performed over just half the region, viz., 0 to co.

Another result that is often useful is Parseval’s equation

/00 dx g*(x) h(x) = /OO dk g* (k) h(k) .

oo —0Q

In order to prove it, we expand the left-hand side according to Fourier and obtain
the integral (27r)~" [ dx dk dk’ expfi(k — k')x} g*(k’) h(k). After integration over
x, we encounter the delta function 27 §(k — k") and can then also integrate easily
over k', which yields the right-hand side. In particular, [ dx | f(x) 1> = Jdk | f (k) 2.

Table 1.2 shows some of the Fourier transforms commonly encountered. To prove
the last relation in the table, we have to use a square addition in the exponent and the
integral ffooo exp (—x2) dx = /7, the latter following from

o0 o0 1
// exp(—x2—y2)dxdy=2nf e’szds=7r, with s =r2 =x>+y2.
—00 0

Table 1..2 Some functions fx) k)
and their Fourier transforms
5( y exp (—ikx’)
X —Xx _—
V2
1 1 sin(ak)
_ 2 _,2 _
2a &(a ) V27 ak
1 1
e(x) exp (—ix —— —— ifReA >0
(x) exp (—Ax) N
N2 _A212
exp % A exp exp(—ikx")
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2a f(x) V2r f(k)

N\ N

L J Wl Wzl
. . K ign. Mz \_/2 3 4 ak
-2 0 2 xz/a

Fig. 1.7 Fourier transform (left, red) of the box function (right, blue). This is useful, e.g., for the
refraction from a slit

f(z)

1O ¢

1

-2 0 2 Ar

Fig. 1.8 Fourier transform (right) of the truncated exponential function f(x) = e(x) exp(—Ax)
(left). This is useful for decay processes, if x stands for the time and k for the angular frequency.
Here the dashed blue curve shows the real part and the continuous red curve the imaginary part of
Mf (k). The Kramers—Kronig relation relates these real and imaginary parts

From the first example with x” = 0, the Fourier transform of a constant is a delta
function, and from the fourth example with x” = 0, the Fourier transform of a Gaus-
sian function is a Gaussian function again. The second relation is represented in
Fig. 1.7 and the third in Fig. 1.8.

Correspondingly, in three dimensions with k as wave vector (more on p. 137), we
have

AN 1 Oo 3 : K.
s(k—k') = (2n)3f dr expi(k—k")-r},

—0Q

f(r) = ﬁ /Z d% exp(+ik-r) f(k),

1 oo
fk) = Wl / d¥ exp(—ik-r) f(r).

Here, d* is used for the volume element dV in real space and correspondingly d%
for the volume element in reciprocal space. In Cartesian coordinates, we then have
Sr—r)=8(x—x"86(y—y)8(z—72).
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From the expansion

1
V273

of a vector field a (r), since Fourier expansions are unique, it follows that

a(r) = /ﬁ%amknmm

Vxar=br) < ikxak =bk)

and
V-a(r)=>b() — ik-a(k) =b (k).

If, for example, the curly bracket in f d¥% exp(ik - r) {ik x a (k) — b(k)} vanishes
for all k, then of course the integral also does for all r. Rotation-free fields thus
have Fourier component a (k) in the direction of the wave vector (longitudinal field
Aiong)- In contrast, source-free fields have Fourier component a (k) perpendicular to
the wave vector (transverse field a,,s). According to p. 4, the decomposition

a(k) =e; (e, -a(k)) — e, x (¢, x a(k)), with e = % ,

therefore splits up into a longitudinal and a transverse part, i.e., into the vortex-free
and the source-free part.

Some important examples of Fourier transforms in the three-dimensional space
are listed on p. 410.

1.1.12 Calculation of a Vector Field from Its Sources
and Curls

Every vector field that is continuous everywhere and vanishes at infinity can be
uniquely determined from its sources and curls (rotations, vortices):

V' .a(’)
4dr|r —r’|

V' xa(’)
drir—r'|

a(r)=—V/dV’ —i—Vx/dV’

The first term here becomes fixed by the sources of a and, like every pure gradient
field, is vortex-free, while the second, like every pure vortex field, is source-free and
becomes fixed by the vortex of a. The operator V’ acts on the coordinate r’, while
V acts on the coordinate r and therefore may be interchanged with the integration.
The decomposition is unique. If there were two different vector fields a; and a,
with the same sources and curls, then a; — a, would have neither sources nor curls,
and in addition would vanish at infinity. But according to p. 16, a; = a; has to hold.
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To prove the claim, we evaluate V-aand V x a:

-1
V~a:—/dV’V’~a(r’)A
4

r—r’|’
-1 Mo , 1 V'xa(r’)
Vxa=_— [dv [an(r)A —V(V~—>}.
47 r —r’| r—r’|

Still, a (r) could contain a constant term, which would affect neither V - anor V x a,
but a = 0 has to hold at infinity and this fixes this term uniquely. Now we show—and
this is sufficient for the proof—that

1
Ir—r’|

=47 §(r—r'),

and that the last term in V X a does not contribute. With r’ = 0 and recalling from
Sect. 1.1.8 that V#" = nr"2 r, we have

A1 v Vl v r (V-r+ V1> <3+ —3r)
J— . - = — — = — r- — ) = —( — r-——J.
r r r3 r3 r3 r3 rd

This expression vanishes for r # 0. On the other hand, if we evaluate the source
strength at the origin using Gauss’s theorem with a sphere of radius r > 0 around it,

we have
1 1 1
/dVV~V—=/df-V—=——2/df-e,=—4n
r r r

This shows the first part of the proof, since §(r —r’) vanishes for r #r’ and
J/dV 8(r —r’) is equal to 1. In addition, with b = V’ x a(r’), which depends only
upon r’, but not upon r, we have

v (v |rfr,|)=V<b'Vﬁ)=(b~V)V|r_lr,|.

Since Vir —r’|™! = —V/|r —r’|7!, thisisequal to (b - V') V'|r — r’|~!, and using
f(v) df -ba=[,dV{aV b+ (b-V)a} (seep. 17), it therefore delivers

b 1
/dV’V(V-—/):de’(bV/)V’ /
v r —r’| v [r —r’|
1 1
:/ df’ bV’ /—de’V’ _V'.b.
V) r —r’| v r —r’|

Since V/-b =V’ (V' x a(r’)) = 0, the last integral does not contribute. For the
surface integral, we take a sphere with sufficiently large radius r’. Its surface area is
47r'”?, while V|r —r’|~! is equal to '~ there. Thus we only have to require that
V x a vanishes at the surface with r’ — oo and everything is proven.
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According to the relation Ajr — r’|~! = —4m §(r — r’) just proven, the solution
of the inhomogeneous differential equation A® = ¢ (r) (Poisson equation) can be
represented as an integral over the inhomogeneity ¢ (r) with suitable weight factor.
This is called the Green function G(r,r’) of the Laplace operator:

—1 1
AGr,r)=8r-1r) < Grr)=— .
4T |r —r’|

In particular, it yields the solutions of the differential equations
AP =¢(r) and AA=a(r),
ie,of V.V =¢pand of V(V-A) -V x (VxA)=awithd~0and A ~ 0

for r — oo. In electromagnetism, we shall meet them in the context of the scalar
potential (Sect. 3.1.3) and the vector potential (Sect. 3.2.8). These solutions are

d(r) = /dV’ Gr,r)¢@x®’) and A(r) = /dV’ G, r)a’).
By partial integration, they have the properties
Vo= /dV’ Gr,r) Vo',
V. A= /dV’ G, r)V .ax’,
V xA= /dV/ Gr,r)V xax’).

Here, we used the fact that ® and A vanish at infinity, whence the inhomogeneities
¢ and a vanish faster by two orders. Thus, if a is source- or curl-free, the solution A
of the Poisson equation AA = a is likewise.

The theorem proven in this section is called the principal theorem of vector anal-
ysis. It assumes that the source and curl densities are known everywhere—these fix
the vector fields.

1.1.13 Vector Fields at Interfaces

If V-aor V x a are different from zero only on a sheet, the volume integrals just
mentioned simplify to surface integrals. Correspondingly, insteadof V -aand V x a,
we now introduce the surface divergence and surface rotation. They have different
units from V -aand V x a, related to the area instead of the volume:



28 1 Basics of Experience

Fig. 1.9 View of a sheet of discontinuity of a vector field. Dashed red lines show the envelope

1
Diva=V,-a= lim —/ df -a,
V)
. 1
Rota=V, xa=lim — df x a.
(

Here, V is the volume of a thin layer, covering the latter surface A (see Fig. 1.9).
Even though A is infinitesimally small, it nevertheless has dimensions that are large
compared with the layer thickness, so only the faces contribute to the surface integrals
of the layer. With n as unit normal vector to the face, pointing “from minus to plus”,
we may then write

Va-a=mn-(ay —a ),
Vaxa=nx(a;y —a_).

Thus, if the vector field a changes in a step-like manner at a sheet (froma_ toa ), then
forda || n, ithasan area divergence (discontinuous normal component like, e.g., at the
interface on the left in Fig. 1.5) and for da L n, it has an area rotation (discontinuous
tangential component like, e.g., at the interface on the right in Fig. 1.5).

1.2 Coordinates

1.2.1 Orthogonal Transformations and Euler Angles

In order to perform sums, we now prefer to write e, e, e3 instead of e,, e,, e,.
In addition, the coordinate origin will be assumed fixed here for every coordinate
transformation. Displacements would be easy to include.

For the transition from a Cartesian frame {e;, e,, e3} to one rotated about the
origin {e;’, €', e3'}, we have
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e/ =) (& -e) e =) Die
k

k

and

A / !
e, = E (e -¢') e =§ D ¢ .
i i

Since e, - €, =8 =€ - ¢/,

Z D Djj = 6y = Z Dy; Dy, andin addition Dj, = D;* .

1 l

These equations may be written as matrix equations, if we understand D;; as the
element of the matrix D in row i and column k. Then, if D is the transpose of D
(with D;; = Dy;), we have

DD=1=DD (soD'=D), andinaddition D = D* .

This is called an orthogonal transformation. If D~ = D* = D', the transforma-
tion is unitary. Real unitary transformations are thus orthogonal transformations.
Because det (D, D) = det D, - det D; and det D =detD (see p. 5), orthogonal
transformations have det D = +£1. Depending on the sign, we distinguish between
proper orthogonal transformations with

det D = +1

and improper orthogonal transformations with det D = —1. Only the proper ones
are connected continuously to the identity and therefore correspond to rotations.
But if we go over from a right- to a left-handed frame, then this is an improper
transformation, in particular, D;; = —d;, i.e., D = —1, corresponds to a space
reflection (inversion or parity operation).

Carrying out two rotations D; and D, one after the other amounts to doing a single
rotation D = D, D, because DD = D>D, D,D, = 5152D2D1 —land DD =
D2D15152 = 1. However, the resulting rotation depends on the order, that is, in
general DD, # D, D, e.g., for finite rotations about different axes.

For the Cartesian components of a vector a, we have

ap =€ -a, a,»’ze,»’~a=2 Dikak-
k

Instead of going over to arotated coordinate system, we may also stick with the refer-
ence frame and rotate all objects. In both cases we change the Cartesian components
of every vector a. However, the rotation of an object through an angle o corre-
sponds to the opposite rotation of the coordinate systems, through the angle —«, and
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Fig. 1.10 The Euler angles a, B, y, used to describe the transition from unprimed to primed
coordinates. The dashed line is the line of nodes e; x e, . The sequence is black — blue — green
—> red. The initial equator is black and the last one red

vice versa. Therefore, with column matrices A" and A and with the rotation matrix
D, we write
A =DA, or aa=Da.

Here, the second equation refers to a rotation of the vectors, because a and a’ should
be fixed independently of the coordinate system. Correspondingly, we may also write
the scalar product a - b as a matrix product AB of a row and of a column vector, for
which their Cartesian components are necessary. Then we find DADB = ADDB =
AB, implying that a’ - b’ = a - b, as it should be for a scalar product. (In the next
section, we will obtain the scalar product for other coordinate systems.)

Because of 1= 1 the requirement DD = 1 constitutes six conditions in three
dimensions, and 1 5 N(N + 1) conditions in N dimensions. Consequently, orthogonal
transformations in three dimensions depend upon three real parameters. A rotation
can be fixed uniquely by specifying these, e.g., by specifying the (axial) rotation
vector in the direction of the rotation axis, with value equal to the rotation angle,
or by specifying the three Euler angles «, 8, y, with which one goes over from the
original frame {e,, e,, €.} to the rotated one {e,/, e, e} (see Fig. 1.10):

e The first Euler angle « fixes the azimuth, i.e., {e,, e,, €.} — {e;, e;, e:} with
e; = e,, while the other axes move in a horizontal plane P;.

e The second Euler angle 8 describes the polar distance (motion of the z-direction),
ie., {ez, e5, e;} — {ew, ey, ey}, with ey = e5. The new ey and ey axes span
a plane P, inclined at an angle B to the horizontal. The two planes P; and P,
intersect along ey = ej.

e The third Euler angle y describes the rotation about the new 7’ direction, that is,
{ex, ey, ez} — {e,, ey, €.}, with ez = e,, and the other axes moving on the
plane P,. The common axis is along ez = e, the so-called line of nodes.
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The first two Euler angles are called the azimuth and polar distance of the new z-axis
in the old system, while the third Euler angle gives the angle between the new y-axis
and the line of nodes. This line of nodes forms a right-handed system with the old
and the new z-axes.

In some cases the Euler angles are defined differently, namely with a left-handed
frame or the angles between the line of nodes and the x-axes instead of the y-axes,
but the simple assignment of « to the azimuth of the new z-axis is then lost.

‘We now have

D =D, Dy D,
with
cosa —sina 0 cosf O sinp
Dy = |sina cosa 0], Dg= 0 1 0 ,
0 0 1 —sin B 0 cos B

and D, like D,, but y instead of «, because D, and D, describe rotations about
the (old) z-axis, Dg a rotation about the y-axis. If it were the coordinate system that
were rotated, then every sine would have the opposite sign, because of the opposite
rotation. Of course, starting from the Euler angles, we can evaluate the rotation vector,
and vice versa, but we shall not discuss that here. Further properties are derived in
Problems 2.1-2.3.

1.2.2 General Coordinates and Their Base Vectors

So far all quantities have been written in a coordinate-free manner as far as possible—
Cartesian coordinates and unit vectors have occasionally been useful only for con-
versions. Sometimes curvilinear coordinates are more appropriate, e.g., spherical
coordinates (r, 8, ¢) or cylindrical coordinates (r, ¢, z), where circles also appear as
coordinate lines. Still, for these two examples the coordinates are orthogonal to each
other everywhere. We are thus dealing here with curvilinear rectangular coordinates.
But we would like to allow also for oblique coordinates. These are convenient, e.g.,
for crystallography, and they also provide with a suitable framework for relativity
theory. Curvilinear oblique coordinates are what restrict us the least.

Even though a three-dimensional space is assumed throughout the following, most
of the discussion can be transferred easily to higher dimensions. We shall hint at the
special features of three-dimensional space in the appropriate place, namely, for axial
vectors.

As usual, from now on we will write (x!, x2, x3) = {x?} for the coordinate triple of
coordinates, despite the risk here of confusing i with a power. In addition, instead of
the Cartesian unit vectors, we introduce two sorts of base vectors. In crystal physics,
g; is called a lattice vector and g' (except for a factor of 27) a reciprocal lattice
vector, but restricted to linear coordinates with constant base vectors:

2
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7 | L O T T U T o |
A-‘J" 0 1

g'

Fig. 1.11 Oblique coordinates are indicated here by lines with 8x' = 1. Shown are their covariant
base vectors g; and also their contravariant base vectors g’. If g and g, form an angle y and if
these vectors have lengths g1 and g», respectively, then the lengths of the contravariant base vectors
are g = 1/(g;siny) (from g’ - g; = 8;;). Oblique coordinates appear, e.g., if for unequal masses
two-body coordinates are transformed to center-of-mass and relative coordinates (see Fig. 2.7)

or

covariant base vectors (g i down) g; = P
. X
contravariant base vectors (g i up) g =Vx'.

In these equations the index i on the right-hand side is really a lower or upper index.

The covariant base vector g; is tangent to the coordinate line x’ (all other coor-
dinates remain fixed), and the contravariant base vector g' is perpendicular to the
surface x’ = const. (all other coordinates may change) (see Fig. 1.11). For rectangu-
lar coordinates, g; and g’ have the same direction, but for oblique ones, they do not.
For rectangular coordinates the two base vectors generally have different lengths.
Only for Cartesian coordinates are covariant and contravariant base vectors equal,
viz., to the corresponding unit vectors (see Problems 3.10 to 3.12).

The two scalar products

or ar

gikEgi'gk:W T axk

gikEgi'ngin'kangi,

= 8ki >

depend on the chosen coordinates (because all base vectors depend on them), but not
the scalar products of covariant and contravariant base vectors,
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or _8xk X 0 fori #k,

ok — ok g — ko - 2 _ gk
g g g & Vx Ixi 9x! 8’ [l fori =k.

Covariant and contravariant base vectors each form an expansion basis. Therefore,
also
a=) g @ =) g @- a,
i i

in particular, g = D8 ", g = > & gix,and

D osis =g-g =6

This very decisively generalizes the decomposition into Cartesian unit vectors, not
only to curvilinear, but also to oblique coordinates. With the useful concepts

covariant componentofa: a; =g;-a
and contravariant componentofa: a' =g -a

andwitha= ), g a' =), g a;, we thus obtain
a,-:Zg,-kak, ai:Zgikak, and a-b:Zaibi.
k k i

Covariant and contravariant components can be converted into each other, referred to
as raising and lowering indices. With the scalar product, covariant and contravariant
components always appear. We shall always meet sums of products where the index
in the factors appears one up and one down. Therefore, we generally use Einstein’s
summation convention, according to which, for these index positions, the summation
symbol is left out. This is indeed what we shall do below (from Sect. 3.4.3 on).

1.2.3 Coordinate Transformations

New and old quantities are usually denoted with and without a prime, respectively.
In view of various indices being added, a bar will be used instead of the prime in this
book.

With a change of coordinates, the behavior depends decisively on the position
of the indices. Since 3/3%" = Y, (dx*/dx") (3/dx¥), on the one hand, and since
we also have g’ - dr = dx’ = ), (9x'/9x*) dx*, with dx* = g* - dr, on the other,
the transition x’ — ' is connected to the following equations, the order of factors
being irrelevant. Here the coefficients form a matrix, the row index being given by
the numerator and the column index by the denominator:
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_ axk _; axt
gi - - 8k 8)2" ) g = ; 3xk g
i axk ax
a; = ay — , a = — a .

Here, @, =a-g; and @ =a- g . With the change of coordinates, the base vectors
change, but not the other vectors a. Covariant and contravariant quantities have
transformation matrices inverse to each other:

ox axt x|
j{:'——— —=—=4".
axk 9x/  9x/ J

The system of equations dx’ = Y, (9x’/9x*) dx* can be written as a matrix equation:

9x' 9% ox!
di! dx! 9x2 9x3 dx!
dzz | 8% 8x2 ax? diz
diS 8)61 8x2 8x3 dx3

9x3 9x3 9x’
ax! 9x2 9x3

The transformation matrix is called the Jacobi matrix or functional matrix. Naturally,
it also exists for space dimensions other than three.

For two successive transformations, the two associated Jacobi matrices can be
combined in a single product matrix. If the second transformation is the transforma-
tion back to the original coordinates, then the result is the unit matrix: the inverse
transformation is described by the inverse matrix. This exists only if the Jacobi
determinant (functional determinant), viz.,

ax! ax! ax!
axl 9x2 9x3
0L ELE) | 9% 0% o
d(x,x2,x3) | ax! ax2 9x3
ax3 ax3 ax3

ax! 9x2 9x3

does not vanish, and likewise the determinant of the inverse Jacobi matrix, because
the two coordinate systems should be treated on an equal footing.
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1.2.4 The Concept of a Tensor

We generalize the expressions derived so far for a vector field and denote as a tensor
of rank n 4+ m (with n covariant and m contravariant indices) a quantity whose
components transform under a change of coordinates according to

3 9F  AEm axh axh o

. 3le o axjm aikl o a.ik“ ldy
J1eeikn

Pty
Tkl...kn -

Scalars are tensors of zeroth rank and vectors are tensors of first rank. If 7' (x) is a
scalar field, then the new function 7 (¥) should have the same value for the coordinates
X as the old function T (x) for the old coordinates x = f(x), whence we should have
T(x) = T(f(x)) without further transformation matrices. In contrast, for a gradient
field with VT; = VT - g;, because g; = dr/dx’ and VT; = 9T /dx’, we have

— AT (%) AT (x) ax' ax!
VT, = = — — = VT, —,
T D DR Z o3k
showing that this is a vector field.
Tensors of the same type can be added, and the (tensor) product of a tensor of nth
rank with a tensor of mth rank is a tensor of rank n + m:

Ti]...in Tk]...km _ Ti]...i,,kl...km

Of course, some covariant components may occur on the left- and right-hand sides.
But one can also lower the tensorial rank by contracting the tensor:

Z P ieim it
Y‘ikl...k,, - Tk]u.k” ’
i

because covariant and contravariant components transform inversely to each other.
(Here, too, the summation symbol is often left out, using the Einstein summation
convention.) A special case of this is the scalar product of two vectors,

Zaibi=a~b=2aibi=2&i5i.

Generally, a tensor of nth rank can be contracted with n vectors to produce a scalar.
This fixes tensors in a coordinate-free way. In Sect. 2.2.10, for example, we shall
introduce the moment of inertia /, which is a tensor of second rank. The tensor
product /w delivers the vector L (angular momentum) and % w - L a scalar (kinetic
energy), where [ is contracted twice with the vector w.
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The trace of a square matrix is the sum of its diagonal elements: Y, I, = tr [,
which is the contraction of a tensor of second rank to a scalar. In fact, tr / remains
unchanged under a change of coordinates.

The change of coordinates under a rotation on p. 30 led to the matrix equation
A’ = DA for a column vector A. Correspondingly, L = Iw reads L = IQ2 as a
matrix equation where L and 2 are column matrices and / is a square matrix. For a
rotationwehave L' = DL, Q' = DQ,and Q = D~'Q/, respectively, and hence L' =
DID™'Q,so L' = I'Q' with I’ = DID~'. Here we now write L' = Y, I’ »* and

- ax’ ax! 9x' ax/ ,
Il = ——Ij, Wlth —4—_:51 .
¢ XI: axi oxk ! X]: dxJ dxk g
The last equation corresponds to DD~ = 1.
The quantities g'* and g;; introduced above are tensors of second rank. Since

Jr or .
dr~dr=2§ oo dx =" gy e’ dx*
ik i

we call (g;x) the metric tensor. The matrices (g;;) and (gik) are diagonal for rectan-
gular coordinates, but not for oblique coordinates. With Cartesian coordinates, they
are unit matrices.

The indices of all tensors can be raised or lowered using the tensors g and g'¥,
as we have seen already in Sect. 1.2.2 for vectors. Similarly,

Zglj Tk thjgle]’

and similarly, Ty = )~ gijguT’.

If an equation holds in Cartesian coordinates and if it holds as a tensor equation,
then it holds also in general coordinates. If a tensor of second rank is symmetric or
antisymmetric, T = +T* then it has this property in every coordinate system.

The (scalar) triple product of the three base vectors g;, g», g3 is denoted by &/23.
Generally, we have

or ar ar a(x,y,2)
Cijk = 8i - (8 X &) = 3x’ . (@ X m) = —a(xi,xj,xk) .

This is the totally anti-symmetric (Levi-Civita) tensor of third rank. Under a change
of coordinates, ¢;j; transforms like a tensor with three lower indices and changes
sign for the interchange of two indices. Therefore, we only need to evaluate &;,3.
This component can be traced back to the determinant of (g;z) because, according
to p. 5, we have
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g 8 8 "8 8 8
{gi- (g xg)) =g 28 88 &
88 88 88k

The (scalar) triple product of three real vectors is always real, and only zero if they are
coplanar (in which case the coordinates would be useless). Therefore, the determinant
is positive. We thus have

ei3 =+/g, with g = det(gy) >0,

where the plus sign corresponds to a right-handed coordinate system and the minus
sign to a left-handed one. (In particular, for a “reflection at the origin”, i.e., for
x' — —x' for all i, the sign of &1,3 switches.) In addition,

N S a(xt, x/, x*)
(;‘ljk:l~ ]Xk:—
g (g xg) 00 y.2)
and hence, according to p. 5,
8¢ 8 8!
gijx €M = 3;. 8 on
8¢ 8% O

We deduce that 1,3 ¢!2* = 1, but also

imn
E Eijk € =
i

5 8"
5 O

and
E Eijk 8””:282.
ij

This equation is often useful.

The last paragraph is true only in three-dimensional space. Only there is the
vector product determined uniquely—otherwise the direction perpendicular to two
given directions is not determined. (But a totally antisymmetric tensor can also be
introduced for spaces of different dimensions via the functional determinant.)

Hence, in three dimensions we have

F:48 xg,:Zgi giw  and aXb:Zgiakblgikl-
i ikl
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