
Chapter 9
Green Liner Shipping Network Design

Erik Hellsten, David Pisinger, David Sacramento, and Charlotte Vilhelmsen

Abstract Green Liner Shipping Network Design refers to the problems in green
logistics related to the design of maritime services in liner shipping with a focus on
reducing the environmental impact. This chapter discusses how to more efficiently
plan the vessel services with the use of mathematical optimization models. A brief
introduction to the main characteristics of Liner Shipping Network Design is given,
as well as the different variants and assumptions that can be considered when
defining this problem. The chapter also includes an overview of the algorithms and
approaches that have been presented in the literature to design such networks.

Acronyms and Abbreviations

ECA Emission Control Areas
IMO International Maritime Organization
LNG Liquid Natural Gas
LP Linear Programming
LSNDP Liner Shipping Network Design Problem
LSP Liner Service Planning
MARPOL International Convention for the Prevention of Pollution from Ships
MCFP Multi-Commodity Flow Problem
MIP Mixed Integer Programming
SSSCRP Simultaneous Ship Scheduling and Cargo Routing Problem
TEU Twenty-Foot Equivalent Units
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TSP Traveling Salesman Problem
UNCTAD United Nations Conference on Trade and Development
VNS Variable Neighborhood Search
VRP Vehicle Routing Problem

1 Introduction

The liner shipping industry is a vital part of the global economy, constituting one of
the greenest modes of cargo transport. In full load, the new mega-vessels emit only
3 g of CO2 for transporting 1 metric tonne of cargo 1 kilometer (Maersk 2017); in
comparison, trains average on 18 g and flights on 560 g (see Fig. 9.1). Today, around
90% of the global trade, by volume, is carried out by seaborne transportation, a
number which is expected to continue rising. During the last three decades, the
volume of containerized cargo has grown by more than 8% per year, and more than
5.150 container vessels were in operation worldwide in 2017. The largest vessels
carry more than 20.000 20-foot equivalent units (TEU), and during 2016, a container
volume of around 140.000.000 TEU was estimated to pass through this vast network
(Unctad 2017a,b). In this chapter we will show how optimization techniques can be
used to design more efficient liner shipping networks in order to further decrease
the environmental footprint of liner shipping.

The liner shipping industry is built up by so-called services. A service is a
fixed cyclic itinerary, sailed by a number of similar vessels. Services usually have
weekly or biweekly departures, to add consistency and regularity for the customers.
The vessels are operated by shipping companies called carriers, where the largest
carriers operate over 600 vessels. As larger vessels are more energy efficient (see
Fig. 9.2), the trend is to build ever-larger vessels. To efficiently utilise those very
large liner vessels, each region typically has a few larger ports, called hubs, where
the liner ships pick up and deliver containers. From the hubs, the containers are then
transported to other ports by smaller, more flexible vessels, called feeder vessels.
Transshipments occur both between larger vessels and smaller vessels but also
between larger vessels when no suitable service connects the origin and destination

Fig. 9.1 Estimated CO2 emission for transporting 1 tonne of goods 1 kilometer for different
transportation modes (Source: Maersk 2017)
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Fig. 9.2 Estimated cost per 1000 container miles for different vessel sizes. The vessels are
assumed to sail at 19 knots and the bunker price is estimated as 750$/tonne. We see that bunker
represents the largest cost and that transporting containers on larger vessels requires significantly
less fuel (Source: Germanischer Lloyd)

hub. While transshipments add flexibility, they tend to be costly, as the cargo needs
to be unloaded, stored until the arrival of the new vessel and then reloaded again.

Another major constraint in liner shipping is cabotage rules. To protect the
national trade business, many countries forbid foreign carriers to ship cargo between
two ports within the country. See Brouer et al. (2014a) for examples of cabotage
rules.

The major costs for the carriers are vessel acquirement and bunker. But other
costs, like canal fees, port costs and transshipment costs, are also highly significant.
Most papers in the literature presumes that fuel consumption is frequently estimated
as a cubic function of the speed (see Fig. 9.3). Psaraftis and Kontovas (2013) point
out that the fuel consumption is given as a complex function depending on many
ship parameters and that the cubic approximation on terms of the sailing speed is
valid for tankers and bulk carriers, whereas higher exponents should be considered
in liner shipping. As the speed has such an impact on the fuel consumption, slow
steaming is often used to reduce the consumption, i.e., operating the container
vessels at speeds, significantly lower than their maximum speed. Especially after the
financial crisis in 2008, maritime shipping companies implemented slow steaming
policies for cost-cutting purposes. The drawback with slow steaming is, however,
that more vessels are required to keep the regularity with respect to weekly
departures and also that transit times become longer, yielding a lower level of service
for the customers. In general, services has two directions, head- and backhaul,
where most of the cargo is transported in the head-haul direction. A good example
of this is the trade between Europe and Asia, where most of the goods are delivered
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Fig. 9.3 Estimated fuel consumption as a function of steaming speed and vessel size (Source:
Notteboom and Vernimmen 2009)

from Asia to Europe. In this case, vessels are slow steaming in the backhaul direction
where less customers are affected by the increased transit time.

Due to the ability to transport large numbers of containers with each vessel, liner
shipping is one of the most energy-efficient transportation forms. Nonetheless, due
to the large volumes transported, the shipping industry contributes significantly to
the global CO2 emissions. According to the IMO Green House Gas Study 2014,
in 2012 the international shipping industry was estimated to account for 2.2% of
the global greenhouse gas emissions, of which approximately a quarter was caused
by container vessels, which corresponds to around a billion tonnes of CO2 annually.
These emissions are further expected to increase between 50% and 250% in the next
30 years (IMO 2014).

Although liner shipping is the most efficient transportation mode in terms of
CO2, the vessels commonly operate using “dirty” fuel, emitting various pollutants
which are harmful for the environment and the human health. In 2013, it was
estimated that, in Europe, ships accounted for 18% of the nitrogen oxides (NOx),
18% of the sulfur oxides (SOx) and 11% of the particle matter (PM2.5) of the total
annual emissions, respectively (Wan et al. 2016). Measures to control SOx and PM
emissions are being applied through the International Convention for the Prevention
of Pollution from Ships (also known as MARPOL) and Emission Control Areas
(ECA). The emission percentages, of these gases, from seaborne trade are currently
much higher than from other modes of transportation, such as rail or aviation. The
maximum permitted level of sulfur content contained in marine fuels is currently
3.5%, but it will be reduced to 0.5% by 2020 (IMO 2014).
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There are several measures which could be applied to counteract these polluting
emissions in the maritime industry. Cleaner practices and maritime policies should
be imposed, both by industry and by governments, to control the environmental
impact. It is important, however, to emphasize that maritime companies follow long-
term strategic plans, where the vessel fleet has a long life expectancy, around 25 to
30 years, since building new vessels is a huge investment. Therefore, it takes a long
time before green innovations regarding engines or vessel design can be applied in
practice.

Instead, one of the major roads toward a greener shipping industry must be
through more efficient utilization of the current assets. If a more efficient service
structure can be developed, the same vessels could transport the same amount of
cargo while running at a lower speed. This far, the literature on pure green liner
shipping network design is highly limited. However, as the bunker cost is one of the
major costs for the carriers, reducing the cost is strongly correlated to reducing the
fuel consumption. Hence, reducing the cost can, indirectly, be seen as contributing
to the green objective. Further, increasing the level of service would likely result in
that transportation changes to shipping from other modes. As the CO2 emissions of
liner shipping are lower, an increase in the level of service could also be expected
to result in a more sustainable overall transportation system. All in all, to make a
greener shipping industry, it would be of great value to develop models, solution
algorithms and decision support tools for liner shipping network design.

1.1 Liner Shipping Network Design Problem

The Liner Shipping Network Design Problem (LSNDP) can informally be defined
as follows: given a collection of ports, a fleet of container vessels and a group of
origin-destination demands, construct a set of services for the container vessels such
that the overall operational expenses are minimized while ensuring that all demands
can be routed through the resulting network, respecting the capacity of the vessels.

In this section, we present some notation of the LSNDP. For a complete model,
see Brouer et al. (2014a). The set of ports is denoted by N and represents the set
of physical ports in the problem. The set of arcs A represents all possible sailings
between two ports. To each port, there is a corresponding port call cost ci

P, as well as
a berthing time bi , for the port call. The set of commodities to transport is denoted by
K , and for each commodity k ∈ K , there is an origin port ok , a destination port dk

and a quantity δk measured in TEUs. Finally, the set V denotes the set of vessel
classes with the corresponding cargo capacities qv , available quantity Mv , fuel
consumption gv per nautical mile and additional speed limitations. Furthermore,
for convenience, the demand of the commodities in the ports are defined as:
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ξk
i =

⎧
⎪⎪⎨

⎪⎪⎩

δk if port i is the origin port of commodity k

−δk if port i is the destination port of commodity k

0 otherwise.

(9.1)

There is a limited fleet of container vessels, but not all vessels need to be
used. The deployment of a vessel has an associated charter cost cv . Additionally,
there exist other costs related to the resulting network, such as the sailing cost cv

ij

associated with each vessel and each arc, which is given as a combination of the
port call cost c

j

P and the fuel consumption for the corresponding leg. Furthermore,
handling costs of containers in the ports are considered as well, incurring a cost ci

L
(ci

U) per unit of container (un)loaded in the port. Containers can also be transferred

from one vessel to another in the ports, which incurs a unit transshipment cost c
i,k
T .

One of the main traits of the liner shipping industry is the regular operation of
services under a pre-established schedule. It is imposed that all services should have
weekly operations, meaning that if a round trip takes 8 weeks to complete, then eight
similar vessels need to be deployed to the service in order to ensure that each port is
visited once a week. In addition, services must be cyclic, visiting a sequence of ports
before returning to the original port. However, a service is allowed to be non-simple,
meaning that a port can be visited several times, since this may improve transit
times. Services where only one port is visited twice are called butterfly services, and
the port which is visited twice is denoted the butterfly port.

The variants of the LSNDP, which have been studied in the literature, vary mainly
in the following four aspects:

• Transit time constraints As described above, the transit time of each commodity
has an associated time limit that must be respected. If the transit time is not
respected, perishable goods may become unsalable. Many early models for
LSNDP did not consider this constraint.

• Transshipment costs Several early models for LSNDP did not consider trans-
shipment costs. However, the costs of transshipments are a significant part of the
operational costs (Karsten 2015), so it is generally important to represent these
costs properly in the model.

• Rejected demands Although the formulation of LSNDP states that all com-
modities must be flowed through the network, many models allow rejection of
commodities and instead impose a penalty.

• Speed optimization There are three main categories of models regarding speed
optimization: models which have constant speed for all services, models which
choose a speed for each service and models which choose a speed on each
individual leg in each service. As the fuel consumption depends non-linearly
on the speed, it is common to choose between a number of discrete speed
alternatives, each with a corresponding cost.

Most models for the LSNDP design a network without a specific schedule. Hence
the route for each vessel is defined, but not the exact day of arrival/departure.



9 Green Liner Shipping Network Design 313

This is typically done in a later step, where port availabilities are negotiated and
transshipment times at ports are adjusted.

For a detailed review of the research on liner shipping optimization problems,
see the survey papers Ronen (1983, 1993), Christiansen et al. (2004, 2013), Meng
et al. (2014), Brouer et al. (2016, 2017) and Lee and Song (2017).

1.2 Measuring and Calculating Transportation Emissions

The environmental effects associated with the maritime industry are becoming a
major concern. The large amount of pollution produced by container vessels has
not gone unnoticed, due to considerable emissions of various types of pollutants
such as SOx, NOx, PM and CO2. The International Maritime Organization (IMO) is
investigating the possibility of reducing these emissions by establishing regulatory
policies.

The maritime industry is an economy-dependent industry, and the minimization
of the operational cost is paramount. As noted by Notteboom (2006), the price of
fossil fuels is one of the largest in maritime transportation. Ronen (2011) estimates
that the bunker cost makes up more than 75% of the total operating cost of a vessel.
The fuel cost is strongly related to the operating speed of the vessels, where there
exists an important trade-off. Based on this, the estimation of greenhouse gases such
as CO2 can be given by an energy approach, which can be obtained from the fuel
consumption and an appropriate emission factor to convert carbon content of the
fuel into CO2 emissions. These conversion factors have been established by IMO
according to the type of fuel used by the container vessel (IMO 2014). The default
values are given on the basis of gram CO2 per gram fuel, being 3.114 g CO2/g for
heavy fuel oil and 3.206 g CO2/g for marine diesel and marine gas oils. An estimate
Eijv of the total CO2 emissions for a vessel v in a leg trip between port i and j can
be obtained as:

Eijv =
∑

z∈Z

αv,z

[

g
v,z
S

(
sv
ij

s∗
v

)n

dz
ij + g

v,z
I bz

j

]

(9.2)

where Z is the set of bunker types, indexed by z; αv,z is the corresponding
conversion factor for vessel v according to the type of fuel z; g

v,z
S and g

v,z
I is the

fuel consumption of vessel v when sailing and idle at the port with bunker type z,
respectively; sv

ij is the operational speed of the vessel between the ports; and s∗
v is the

design speed of the vessel. The exponent n is usually approximated to be around 3,
meaning that the fuel consumption varies cubically with the speed (Stopford 2009).
Moreover, dz

ij is the sailing distance between the ports in nautical miles, and bz
j is

the berthing time at the port j for the vessel with bunker type z. This estimate is a
simple representation of how CO2 emissions can be calculated for its incorporation
into a mathematical model.
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Although sustainable maritime transportation is gaining more importance in
Operations Research, the literature is still very scarce. In the context of routing
and scheduling, there are a few papers dealing with green maritime transportation.
Kontovas (2014) presents different approaches that can be considered when incor-
porating environmental dimensions: through the minimization of total emissions,
internalizing the external cost of emissions and adding constraints to limit the
produced emissions. The author remarks that minimizing fuel consumption is not
equivalent to minimizing the total emissions, since vessels are generally equipped
with main and auxiliary engines, which usually use different types of fuel. Another
way to reduce the greenhouse gas emissions is to introduce ECAs, which are
predefined areas where vessels are not allowed to use fuels with high sulfur content.
Fagerholt et al. (2015) and Dithmer et al. (2017) present mathematical formulations
introducing these emission control regulations. In the latter case, in a similar way as
described in Kontovas (2014), the authors also study the approach of internalizing
the external costs of emissions, making it possible to analyze the routing and
scheduling of the services if a tax system is implemented in the future.

1.3 The LINER-LIB Test Instances

In order to make it easier to compare algorithms for liner shipping network, (Brouer
et al. 2014a) published the LINER-LIB benchmark suite. The test instances in
LINER-LIB are based on real-life data from leading shipping companies along
with several other industry and public stakeholders. The benchmark suite contains
data on ports including port call cost; cargo handling cost and draft restrictions;
distances between ports considering draft and canal traversal; vessel-related data for
capacity, cost, speed interval and bunker consumption; and finally a commodity set
with quantities, revenue and maximal transit time. The commodity data is intended
to reflect the differentiated revenue associated with the current imbalance of world
trade.

The LINER-LIB benchmark suite consists of seven instances described in Brouer
et al. (2014a) and is available at http://www.linerlib.org. They range from smaller
networks suitable for optimal methods to large-scale instances spanning the globe.
Table 9.1 gives an overview of these instances.

Each of the instances can be used in a low, base and high capacity case depending
on the fleet of the instance. For the low capacity case, the fleet quantity and the
weekly vessel costs are adjusted to fewer vessels with a higher vessel cost. For the
high capacity case, the adjustments are reversed.

Currently, most papers only report results for the six first instances, with
(Krogsgaard et al. 2018) being the only to report results for the WorldLarge instance.

http://www.linerlib.org
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Table 9.1 The seven test instances included in LINER-LIB with indication of the number of
ports (|N |), the number of origin-destination pairs (|K|), the number of vessel classes (|V |), the
minimum (min v) and maximum number of vessels (max v)

Instance Category |N | |K| |V | min v max v

Baltic Single-hub 12 22 2 5 7

West Africa (WAF) Single-hub 19 38 2 33 51

Mediterranean Multi-hub 39 369 3 15 25

Pacific Trade-Lane 45 722 4 81 119

AsiaEurope Trade-Lane 111 4000 6 140 212

WorldSmall Multi-hub 47 1764 6 209 317

WorldLarge Multi-hub 197 9630 6 401 601

1.4 Outline

This chapter is organized as follows. In Sect. 2 we discuss the challenges in
designing an energy-efficient liner shipping network and show that algorithms
roughly can be split into four different families, which are studied in Sects. 3, 4, 5,
and 6. In Sect. 3 we give an overview of integrated MIP models, while Sect. 4 studies
two-stage algorithms where the routes are constructed in a first step, and containers
are flowed through the resulting network in the second step. Section 5 considers
algorithms for selecting a subset of proposed candidate routes. In Sect. 6 we consider
algorithms based on first flowing containers and then designing routes. Finally,
Sect. 7 shows how speed optimization can be used to lower energy consumption in
liner shipping. The chapter is concluded in Sect. 8 with a short discussion of future
trends and challenges.

2 Overview of Algorithms

Designing a green liner shipping network is a difficult task, embracing several
decisions: not only do we need to construct the individual routes, but we should
also deploy vessels of the right size to each route and ensure that there is sufficient
capacity in the network to transport all containers from their origin to their
destination. Designing the individual routes is an NP -hard problem, as proved in
Brouer et al. (2014a), but also routing the containers through a given network subject
to time constraints for each container can be recognized as a time-constrained multi-
commodity flow problem, which is NP -hard.

The problem is further complicated by the fact that ports often are visited several
times in the same route. This is obviously the case for pendulum routes where a
vessel is sailing back and forth along the same route, but multiple visits to a port
(typically a hub) often take place to ensure faster transportation times. However,
formulating the problem as MIP model becomes more difficult.
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Finally, one should notice that transshipment costs represent the majority of
the cost of routing the containers through the network according to Psaraftis and
Kontovas (2015). It is therefore important to carefully model which containers are
transshipped and at which costs. This adds further complexity to the problem and
makes a graph formulation huge and difficult to solve.

Algorithms for liner shipping network design can roughly be divided into the
following four groups:

• MIP-based algorithms These algorithms are based on a unified MIP model that
designs routes and flows containers through the resulting network. In order to
handle this task, two sets of variables are needed: variables to select edges in a
route and variables to denote the flow on each edge. If multiple visits to a node
are allowed (butterfly nodes), then an additional index is needed to indicate the
visit number at each node. Several MIP-based models have been presented in the
literature, including Álvarez (2009), Reinhardt and Pisinger (2012), Plum et al.
(2014) and Wang and Meng (2014).

• Two-stage algorithms As the name suggests, these algorithms solve the problem
in two steps: designing the routes and flowing containers through the resulting
network. Frequently, these algorithms contain a feedback mechanism, where
output from the second-stage flow model is used as input to improve the routes
in the first stage. Successful applications of this approach include Agarwal and
Ergun (2008), Álvarez (2009), Brouer et al. (2014a,b), Karsten et al. (2017b),
Thun et al. (2017) and Neamatian Monemi and Gelareh (2017).

• Subset of routes Both Meng and Wang (2011b) and Balakrishnan and Karsten
(2017) suggest a method for generating a network by having a list of candidate
routes as input. The idea behind these algorithms is to use the experience from
existing planners to design a large number of promising candidate routes. The
algorithm then selects a subset of the candidate routes to form a network. Many
shipping companies and customers do not want the network to be completely
restructured, in which case proposing small variations to each route may be a
useful method.

• Backbone flow The idea behind this approach is that it can be difficult to design
the individual routes without knowing how the containers will flow through the
network. Hence reverse the order of the subproblems in the two-stage algorithms,
and start by finding an initial flow (a so-called backbone network) where cargo is
flowed through a complete network with all connections between ports available.
The connections are priced such that they are expensive at low loads and cheap
at high loads, in order to make the cargo gather at fewer connections. The initial
flow can be seen as an accomplishment of the physical Internet (Montreuil 2011)
where point-to-point transport has been replaced by multisegment intermodal
transport. A successful application of the backbone network idea was presented
in Krogsgaard et al. (2018).

Many of the MIP-based algorithms can in principle solve the LSNDP to optimality.
However, due to the intrinsic complexity, only smaller instances can be solved to
proven optimality within a reasonable time frame; hence the algorithms will often
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return a suboptimal solution. The subset-of-routes-based algorithms also solve the
problem to optimality given that only the proposed candidate routes are valid. In
practice, however, there may be an exponential number of valid routes, and we
cannot expect to get all routes as input. If only a subset of all valid routes is
given as input, the found solution may be suboptimal. The two-stage algorithms and
backbone-network algorithms are both heuristics, since they first solve one stage
and then optimize the second stage with the first-stage decisions fixed.

3 Mixed Integer Programming Models

The design of a liner shipping network includes numerous decisions, such as the
routing of containers, the fleet deployment and the service design. The design of
shipping networks is beyond the limited capacity of human planners, and it requires
the use of several complex decision support tools. Mixed Integer Programming and
graph-based models will be used in the subsequent sections to define the network
design problem mathematically. Several MIP formulations of the LSNDP have
been proposed during the last decades. We will give an overview of some of the
formulations and discuss their advantages and limitations.

3.1 Service Formulation for LSNDP

Liner Shipping is based on the operation of services, which are defined by a
sequence of ports that are visited by the vessel under a previously established
schedule. The main objective of LSNDP is to design the shipping network by
selecting services for the vessels so that the demand can be flowed at minimum cost
while the overall benefit is maximized. Considering this fact, the first mathematical
formulation is introduced in this section, which models the problem based on a
service formulation, i.e. where the set of all feasible services are predefined in the
model.

Before introducing the mathematical models presented in the literature, we
briefly introduce a simple mathematical model based on a service formulation for
better understanding. We will consider the notation presented in the introduction in
Sect. 1.1 but with a small extension. Let G = (N,A) be a directed graph, where N

is the set of ports and A is the set of arcs connecting the ports. We now define the set
S as the set of all feasible services in the model. Notice that S may be exponentially
large. Let cs be the cost of operating service s ∈ S, ck

ij the unit cost per commodity
k ∈ K for traversing arc (i, j) ∈ A, v(s) the corresponding vessel class v ∈ V for
the service s ∈ S, mv(s) the required number of vessels of class v(s) for operating
service s ∈ S and as

ij a binary parameter indicating if the arc (i, j) ∈ A is traversed

in service s ∈ S. Finally, let xks
ij be a continuous variable indicating the amount of
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commodity k ∈ K transported in service s ∈ S through the arc (i, j) ∈ A and ys a
binary variable for the selection of service s ∈ S in the network. Now, the service
formulation of the LSNDP can be expressed as:

min
∑

s∈S

csys +
∑

k∈K

∑

(i,j)∈A

ck
ij

∑

s∈S

xks
ij (9.3a)

s.t.
∑

s∈S

∑

j :(i,j)∈A

xks
ij −

∑

s∈S

∑

j :(j,i)∈A

xks
ji = ξk

i i ∈ N, k ∈ K (9.3b)

∑

s∈S
v(s)=v

mv(s)ys ≤ Mv v ∈ V (9.3c)

∑

k∈K

xks
ij ≤ qv(s)a

s
ij ys (i, j) ∈ A, s ∈ S (9.3d)

xks
ij ≥ 0 (i, j) ∈ A, k ∈ K, s ∈ S (9.3e)

ys ∈ {0, 1} s ∈ S. (9.3f)

The objective function (9.3a) minimizes the total operational cost of the network.
The first term accounts for the total fixed cost of the selected services, whereas the
second term accounts for the sailing cost of shipping the demand. Constraints (9.3b)
are the flow conservation constraints, constraints (9.3c) ensure that the deployed
vessels on the services do not exceed the available fleet, and the flow capacity of
the selected services has to be respected, which is described by constraints (9.3d).
Finally, the domain of the variables is defined by constraints (9.3e) and (9.3f).

A successful implementation, based on a service formulation, was presented
by Álvarez (2009). Álvarez extends the previous formulation to define the Liner
Shipping Network Design at the tactical level, where the formulation combines
the routing and deployment of a fleet of container vessels. The formulation relies
on the set of all feasible services, which are given as a combination of a vessel
type, its corresponding speed and the route structure. Therefore, it is possible to
accommodate services that are proposed externally by the planners as services
generated internally by a solution algorithm, meaning that any type of non-simple
services can be considered in the set S of services. However, as the size of
the problem increases, the number of feasible services in the problem grows
exponentially, making the model intractable to solve.

Moreover, for a better utilization of the capacity of the vessels, the model allows
the rejection of cargo incurring a goodwill penalty, where continuous variables
are defined to account for the demand that is delivered and rejected by the liner
company. With reference to the above, Álvarez also defines continuous variables
for the amount of cargo that is transported along an arc on a service as well as
continuous variables for different operations of loading and unloading containers
in ports on specific services. These variables can be used to identify the amount
of containers that are transshipped between services. However the model is unable
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to accurately calculate the transshipment cost of non-simple services. Finally, the
model considers the fleet deployment of the available fleet, using integer variables
to control the amount of vessels deployed for a chosen service. The model includes
many relevant parameters in the objective function to correctly represent the
operational cost of the selected services over a tactical planning horizon, and it is
one of the first formulations to consider transshipment when designing the shipping
network.

3.2 Arc Formulation for LSNDP

The main problem with a service-based formulation is that generating all services
S is non-trivial, due to the high number of combinatorial possibilities. This process
can be inefficient and very time-consuming. Therefore, an alternative mathematical
formulation is introduced in this section, which is based on an arc formulation. The
set of services S is no longer considered in the problem, but the services are instead
designed as part of the problem.

Next, we will present a simple mathematical model based on an arc formulation.
For this we will again use the notation presented in the introduction, Sect. 1.1, with
small extensions. Let G = (N,A) be a directed graph, where N is the set of ports
and A is the set of arcs connecting the ports. Moreover, let V be defined as the set of
vessel classes and cv the cost for deploying a vessel belonging to class v ∈ V . We
will introduce the set Sv as the set of services for the vessel class v ∈ V . We also
introduce tvij and cv

ij as the sailing time and cost by a vessel of type v ∈ V traversing
arc (i, j) ∈ A, respectively, and bj the berthing time at port j ∈ N . Finally, let
xks
ij be a continuous variable denoting the flow of a commodity k ∈ K on an arc

(i, j) ∈ A in the service s ∈ Sv belonging to vessel class v ∈ V , ysv
ij a binary

variable for the selection of an arc (i, j) ∈ A in the service s ∈ Sv operated by the
vessel class v ∈ V , τ s

i a continuous variable for the time in service s ∈ Sv of a
vessel class v ∈ V arriving at port i ∈ N , and mv

s an integer variable indicating the
number of vessels from class v ∈ V needed to be deployed to maintain the weekly
frequency in the service s ∈ Sv . Now, the arc formulation of the LSNDP can be
expressed as follows:

min
∑

v∈V

∑

s∈Sv

cvmv
s +

∑

v∈V

∑

s∈Sv

∑

(i,j)∈A

cv
ij y

sv
ij +

∑

k∈K

∑

(i,j)∈A

ck
ij

∑

v∈V

∑

s∈Sv

xks
ij (9.4a)

s.t.
∑

v∈V

∑

s∈Sv

∑

j :(i,j)∈A

xks
ij −

∑

v∈V

∑

s∈Sv

∑

j :(j,i)∈A

xks
ji = ξk

i i ∈ N, k ∈ K (9.4b)

∑

j :(i,j)∈A

ysv
ij −

∑

j :(j,i)∈A

ysv
ji = 0 i ∈ N, v ∈ V, s ∈ Sv (9.4c)
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∑

k∈K

xks
ij ≤ qv · ysv

ij (i, j) ∈ A, v ∈ V, s ∈ Sv (9.4d)

τ s
j ≥ (τ s

i + tvij + bj )y
sv
ij i, j ∈ N, v ∈ V, s ∈ Sv (9.4e)

∑

(i,j)∈A

ysv
ij (tvij + bj ) ≤ 24 · 7 · ms v ∈ V, s ∈ Sv (9.4f)

∑

s∈Sv

mv
s ≤ Mv v ∈ V (9.4g)

xks
ij ≥ 0 (i, j) ∈ A, k ∈ K, v ∈ V, s ∈ Sv

(9.4h)

ysv
ij ∈ {0, 1} (i, j) ∈ A, v ∈ V, s ∈ Sv (9.4i)

mv
s ∈ Z

+ v ∈ V, s ∈ Sv (9.4j)

τ s
i ≥ 0 i ∈ N, v ∈ V, s ∈ Sv (9.4k)

The objective function (9.4a) minimizes the cost of deploying the vessels and
designing the services and the cost for transporting the commodities through
the network. The flow conservation constraints for the cargo variables are given
in constraints (9.4b), whereas the flow conservation constraints for the routing
variables are given in constraints (9.4c). The flow of cargo on an edge (i, j)

cannot exceed the capacity qv of a vessel, as expressed in (9.4d). If the vessel
is not used for the given edge, i.e., ysv

ij = 0, then the capacity is zero. The
subtour elimination constraints for the routing variables are given by the time
variables in constraints (9.4e). Note that it is required to linearize these constraints,
as they are non-linear. Moreover, the weekly frequency of the services and the
deployment of the fleet is limited by constraints (9.4f). The availability of the fleet
is limited by constraints (9.4g). Finally the domain of the variables is defined in
constraints (9.4h), (9.4i), (9.4j) and (9.4k).

The model presented above is a simple representation of the arc formulation
for the LSNDP. It is a fairly easy adaptation of a variant of the Vehicle Routing
Problem (VRP) (Toth and Vigo 2015). However, this model can be extended to
consider all the assumptions that can occur in Liner Shipping. Reinhardt and
Pisinger (2012) proposed a MIP model based on an arc-flow formulation where the
network design and the fleet assignment are combined; however, in this case, cargo
rejection is not considered. As argued in Agarwal and Ergun (2008), transshipment
is the core of liner shipping; hence, these operations should not be ignored when
designing the network. Reinhardt and Pisinger (2012) include these operations into
the formulation and accounts correctly for the transshipment cost in the intermediate
ports. Moreover, one of the main considerations of the model is the inclusion of
butterfly services, where it is allowed to visit a single port twice during the service.
Due to the allowance of butterfly services, the model requires the definition of extra
binary variables for the identification of the unique centre point, i.e. the hub port
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in the vessel route, and the finding of the first and last arc visiting the hub port,
respectively. Similarly, as proposed by Miller et al. (1960), positive integer variables
are defined for enumerating the arcs in the vessel route to avoid the formation of
subtours in the services. The definition of these variables will be used to model the
transshipment of cargo in hub ports. Furthermore, the model also considers the fleet
deployment with a heterogeneous fleet. It is possible to define service-dependent
capacities according to the time horizon and the frequency.

The high level of detail in the model allows a fairly realistic representation of
the problem, making it possible to design efficient services reducing the overall
operational costs and CO2 emissions. Nonetheless, the model is NP -hard and also
in practice very difficult to solve. The model includes several “big-M” constraints,
resulting in weak bounds from LP relaxation. The proposed method to solve this
problem is Branch-and-Cut, as it has presented good results to the VRP and other
transportation network design problems. The idea is to solve the previous relaxed
problem without the transshipment constraints and the connectivity constraints in
butterfly nodes and, then, gradually add cuts to the formulation whenever they are
violated. The implemented method is tested against the CPLEX MIP solver on a set
of test instance with up to 15 ports. The results show that the developed branch-and-
cut method clearly outperforms the solver, even though some test instances are not
solved to optimality. This method is not suitable for solving real-life instances such
as LINER-LIB; however it provides promising results for smaller feeder services in
liner shipping network design problems.

3.3 Port Call Formulation for LSNDP

The majority of the models for LSNDP are defined using an arc formulation, but
such formulations can be problematic when formulating non-simple services, as it
requires the inclusion of many extra variables in the model, as seen in Reinhardt
and Pisinger (2012). Alternatively, the problem can be defined with a service
formulation, but the number of variables will increase exponentially with the size
of the problem, as seen in Álvarez (2009). Plum et al. (2014) propose a new
mathematical formulation based on a service formulation, where the set of all
services S are defined beforehand. The set of services can handle several calls to
the same port during the same route, i.e., it can include the non-simple routes,
which better represents the services operated by liner shipping companies in the
real world. In order to do that, the authors define the set of port calls B, and a
service is defined to consist of a number of port calls. The model is defined with
a series of continuous flow variables that represent the amount of demand that is
transported on a certain port call leg of a service, among other flow variables which
represent the flow of cargo from and to a specific port call in the different ports of
the problem. This formulation allows the rejection of part of the demand, which is
subtracted from the objective function incurring a penalty for not flowing the cargo.
The model defines the decision variables in such a way that the flow of containers
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from one service to another can be considered correctly and transshipment can be
modelled. Furthermore, the model imposes the services to have weekly frequency
while limiting the fleet deployment according to the available fleet. Finally, the
authors present an objective function where the operator’s profit of the flowed cargo
on the operating network is maximized, while the operational cost of the services
and the cost for handling the cargo are minimized.

3.4 Outbound-inbound Principle with Transit Time
Constraints

Wang and Meng (2014) incorporate the transit time constraints when designing
the network in liner shipping problems. However, transshipment between services
is excluded in this approach as they define the ship routes with the outbound-
inbound principle. The problem is defined with a set R of geographical ship
routes, which is an itinerary of port calls, using binary variables for the selection
of these itineraries. The proposed model is a mixed-integer non-linear and non-
convex programming model with an exponential number of decision variables, and it
determines the network design and cargo routing of containers through the network.
Binary variables are defined for assignment of arcs to the ship routes in order
to construct feasible geographical ship routes. Furthermore, there exists a limited
available fleet, and the fleet deployment is controlled by integer variables. Demand
can be split among different vessels, and the model defines continuous variables for
the amount of demand flowing through the arcs. These variables allow the model
to define feasible patterns of the demand on the selected geographical ship routes.
Additionally, binary variables are defined to ensure that the transit times of the
cargoes are not violated. Finally, the model defines the port time as a function of
the number of containers handled at the port. This is taken into account when the
route length is enforced to have weekly frequencies. The problem is proved to be
strongly NP -hard by reduction from the Bin Packing Problem, and Wang and Meng
(2014) describe a column generation-based algorithmic scheme for its resolution.
The approach efficiently finds high-quality solutions that can help planners to design
better liner shipping networks.

4 Two-Stage Algorithms

The LSNDP consists of two tightly interrelated problems – the vessel service
network design and the container flow problem. One of the most successful
approaches so far, for finding good solutions to the LSNDP, has been to use
heuristics exploiting this two-tier structure.

The idea, in general, is to first generate a set of services for the vessels and
then to solve the container flow problem, given the set of services. It is then
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commonplace to use information from the container flow to update the services.
This way a feedback loop is created, iteratively improving the services and solving
the container flow. The different frameworks, in which this has been used, range
from column generation and Benders’ decomposition (Agarwal and Ergun 2008) to
various matheuristics (Álvarez 2009; Brouer et al. 2014b). This section will discuss
some of those methods. Various versions of the LSNDP will be featured, both with
and without transshipment costs, transit time constraints and rejection of demand.

4.1 The Container Flow Problem

Before going into the full two-stage algorithms, let us briefly discuss the container
flow problem, which is the lower-tier problem in the LSNDP two-tier structure. In
general, for a given set of services, the container flow problem reduces to a multi-
commodity flow problem (MCFP), with fractional flows allowed.

Let G = (N,A) be a directed graph, where N represents the ports and A

represents the arc set that connects the ports. Let K be the set of commodities with
corresponding parameters as defined in Sect. 1.1. To each arc (i, j) ∈ A, further,
define the corresponding cost, ck

ij , of transporting one unit of commodity k through
(i, j) and its corresponding flow capacity, uij . The arc set A and its corresponding
costs ck

ij and capacities uij are defined by the vessel services, designed in the upper-

tier problem. Lastly, let xk
ij be a continuous variable denoting the flow of commodity

k through arc (i, j). The MCFP can then be expressed as:

min
∑

(i,j)∈A

∑

k∈K

ck
ij x

k
ij (9.5a)

s.t.
∑

(i,j)∈A:i=p

xk
ij −

∑

(i,j)∈A:j=p

xk
ij = ξk

p p ∈ N, k ∈ K (9.5b)

∑

k∈K

xk
ij ≤ uij (i, j) ∈ A (9.5c)

xk
ij ≥ 0 (i, j) ∈ A, k ∈ K. (9.5d)

Here, the objective, (9.5a), is to minimize the total cost. Constraints (9.5b) are
the flow conservation constraints, constraints (9.5c) are the capacity constraints, and
constraints (9.5d) define the domain of the variables xk

ij .
When fractional flows are allowed, the MCFP is solvable in polynomial time,

but for larger instances, it is still computationally demanding. As it generally has
to be solved a multitude of times in the presented two-tier solutions to the LSNDP,
efficient solution methods to the MCFP are essential.

One of the most common solution approaches is to exploit its block-angular
constraint matrix and apply Dantzig-Wolfe decomposition (Ahuja et al. 1993;
Karsten et al. 2015). First reformulate the problem to a path-flow formulation,
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where the goal is to allocate the commodities onto a number of flow paths from the
commodity origins to their destinations while respecting the capacity constraints
on the arcs. Let P k be the set of all paths for commodity k ∈ K , from ok to
dk , and let P k

a be the set of paths for commodity k, which uses the arc a. For
each path, p, define its cost cp = ∑

a∈A:p∈P k
a

ck
a , and a corresponding decision

variable fp, deciding the flow through path p. The path-flow formulation can then be
expressed as:

min
∑

k∈K

∑

p∈P k

cpfp (9.6a)

s.t.
∑

p∈P k

fp = ξk
p k ∈ K (9.6b)

∑

p∈⋃
k∈K P k

a

fp ≤ ua a ∈ A (9.6c)

fp ≥ 0 k ∈ K,p ∈ P k. (9.6d)

The objective function, (9.6a), is to minimize the cost. Constraints (9.6b) ensure that
all commodities are delivered and constraints (9.6c) assert that the arc capacity is
not exceeded. Lastly, constraints (9.6d) define the domain of the variables.

The path formulation has a very large number of variables, but generally, only
a few of them are needed for the optimal solution. Using column generation, the
problem can be restricted to only consider a limited amount of paths for each
commodity, and new paths can then be generated dynamically. This way, the path
formulation can generally be solved faster than the arc formulation, described above.
The path formulation makes it relatively easy to implement transit time constraints
as they can be handled in the pricing problem.

Another efficient method of solving the MCFP (without time constraints) is by
using so-called interior point methods, as is done by Álvarez (2009). In contrast
to the simplex method, which searches through the vertices of the solution space,
interior point methods search through solutions in its interior.

4.2 Matheuristics Methods for the LSNDP

While the lower-tier container flow problem is solvable in polynomial time (when
no transit time constraints are imposed), the upper-tier service selection problem
is NP -hard, and just to calculate the objective value of a given solution, one has
to solve the container flow problem. This makes the service selection problem
difficult to solve optimally, and instead several matheuristics have been developed
to find good solutions to larger instances. A matheuristic is a method that employs
heuristics together with methods from linear and integer programming. In the case
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of the LSNDP, the most common procedure is to use linear programming tools to
solve the MCFP and then various heuristics to update the vessel services.

The first two-stage algorithms for liner shipping network design were presented
by Agarwal and Ergun (2008) that solved the simultaneous ship scheduling and
cargo routing problem (SSSCRP) with a column generation and a Benders’
decomposition heuristic. As the name implies, they also took the ship scheduling
into account which has been more or less neglected since. They did not, however,
account for transshipment costs. The column generation heuristic was designed such
that the cargo routing was solved in the master problem, and the dual variables
were then utilized to generate and choose new services for the vessels. As column
generation solves only the LP relaxation of the problem, once no more services with
negative reduced cost could be found, they used the generated columns to find an
integer solution using branch-and-bound. In the Benders’ decomposition heuristic,
the container flow problem was solved in the subproblem to add optimality cuts
for the service generation in the master problem. In both cases they found it most
efficient to generate new services using a labeling algorithm. They reported good
results for instances of up to 20 ports and 100 vessels.

Another prominent approach was presented by Álvarez (2009) that used a
matheuristic which perturbed the services with a tabu-search scheme, solved the
container flow problem using an interior point method and generated new services
from the dual variables from the container flow solutions. Álvarez’s model included
the cost of transshipments and also allowed for butterfly routes. The moves
considered in the tabu-search for the services were deletion, change in vessel speed
and change in number of vessels assigned. To guide the search, from the solution
of the commodity flow problem, information about which services were under-
/overutilized was used to increase/decrease the number of vessels and the speed.
The paper presents computational results for up to 100 available vessels and 120
ports.

Another tabu-search approach was presented by Brouer et al. (2015), which was
later improved upon by Karsten et al. (2017b), by adding time constraints for the
commodities. As it is computationally costly to solve the full cargo flow problem,
both papers instead developed a method to estimate the impact of a change in the
service structure. Their solution method is then based on an improvement heuristic,
first presented by Archetti and Speranza (2014), in which in each iteration, an integer
program is solved to update the current services.

Here follows a brief description of the algorithm from Brouer et al. (2015). Let
G = (N,A) be a complete directed graph, where N represents the ports and A

represents the possible connections between ports. Let S denote the set of services,
where each service, s ∈ S, visits a set of ports, Ns ⊆ N , and has a corresponding
vessel class vs , a number of assigned vessels ms and a duration τs . The algorithm is
initialized, using a greedy knapsack heuristic to generate an initial set of services.
The change in revenue and time by including or excluding ports from the current
services is estimated by solving a set of shortest path problems. Let us define r+

is

(r−
is ) to be the estimated revenue change and t+is (t−is ) to be the estimated duration
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change from including (excluding) port i ∈ N in (from) service s ∈ S. Denote
the weekly cost of using a vessel of the vessel class vs by cs and the number of
free vessels of the type vs by Ms . Lastly, let us define the binary variables λ+

is and
λ−

is , which control the inclusion and removal, respectively, of port i from service s,
and the integer variable ωs , which denotes the number of vessels to add to/subtract
from service s. We also define a maximum number of inclusions, γ +

s , and removals
γ −
s and a number of locksets Li . For each service s ∈ S, we can then define the

following mixed-integer program:

max
∑

i∈Ns

r+
is λ

+
is +

∑

i∈N\Ns

r−
is λ

−
is − csωs (9.7a)

s.t. τs +
∑

i∈Ns

t+is λ
+
is +

∑

i∈Fs

t−is λ
−
is ≤ 24 · 7 · (ms + ωs) (9.7b)

ωs ≤ Ms (9.7c)
∑

i∈Ns

λ+
is ≤ γ +

s (9.7d)

∑

i∈Fs

λ−
is ≤ γ −

s (9.7e)

∑

j∈Li

λ−
js ≤ |Li |(1 − λ+

is) i ∈ Ns (9.7f)

∑

j∈Li

λ−
js ≤ |Li |(1 − λ−

is) i ∈ N \ Ns (9.7g)

λ+
is ∈ {0, 1}, i ∈ Ns λ−

is ∈ {0, 1}, i ∈ N \ Ns ωs ∈ Z,

(9.7h)

where the objective (9.7a) is to maximize the increase in revenue. Constraint (9.7b)
ensures that there are enough vessels assigned to keep the weekly frequency,
and constraint (9.7c) specifies that no more than the number of free vessels
can be added to the service. Constraints (9.7d) and (9.7e) set a limit on the
number of insertions and removals and (9.7f) and (9.7g) enforce the locksets Li .
Constraints (9.7d), (9.7e), (9.7f) and (9.7g) are defined to limit the amount of
changes which can be applied, as the revenue and time change estimates are made
for one or a few changes and deteriorate rapidly when multiple changes are applied.
Li are defined such that if a port i is to be inserted in between two ports, then neither
of those are allowed to be removed and if inserting a new port means that a new
commodity is transported, then the origin and destination nodes, of this commodity,
are not allowed to be removed. Lastly, (9.7h) defines the domains of the variables.

The algorithm works such that each service, one by one, is updated according
to the solution of the above-defined mixed-integer problem, and then the MCFP
is solved to update the total revenue, and the effect of new changes is once again
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estimated with the shortest path procedure. To diversify the solutions, every tenth
iteration the services with the lowest utilization are removed, and new services are
created using the greedy construction heuristic.

Brouer et al. (2015) report satisfactory solutions for 6 out of 7 instances from
the LINER-LIB benchmark set where the largest solved instance, the world small,
contains 47 ports and 317 available vessels.

5 Subset of Routes

Balakrishnan and Karsten (2017) suggest a method for generating a network by
selecting a subset of sailing services from an initial pool of candidate services given
in advance by expert planners. The problem is therefore reduced from service design
to service selection. Limits on the number of transshipments for each container are
included in the model, and rejection of demand is allowed. This profit-maximizing
problem is denoted the Liner Service Planning (LSP) problem.

The transportation network consists of a set of ports N indexed by i and j and a
set of candidate services S where each service s ∈ S has Ns port calls. Associated
with each candidate service s ∈ S is a set of sailing arcs a ∈ As where each arc
represents the part of a ship’s itinerary between two successive ports on the service
route. The fleet is composed of several vessel classes and V denotes the set of these
classes. There are Mv available vessels of each class v ∈ V , and for each service
s ∈ S we let ms

v denote the required number of vessels of class v ∈ V . Associated
with each service s ∈ S is also a cost cs and for each arc a ∈ As a capacity ga .

K denotes the set of commodities where an origin port ok , a destination port dk

and a demand δk are associated with each commodity k ∈ K . It is allowed to split
the flow of each commodity, and a penalty cost cr

k per container is used to penalize
rejected demand of commodity k.

Given a commodity’s route, a sub-path is defined as the part of the route in which
the container travels on a single service. If this part is from port i to port j on service
s, the sub-path is denoted 〈i, j, s〉. The set Hs denotes the full set of sub-paths for
service s, i.e. the set contains one sub-path 〈i, j, s〉 for each combination of ports
i and j included in service s. These sub-paths are used to introduce an augmented
multi-commodity flow network in order to incorporate the limits on the number of
transshipments and their associated costs. This modeling approach falls somewhere
between the two more traditional modeling approaches of either using arc-flow, i.e.
over sailing edges, or path-flows, i.e. origin-to-destination paths.

The augmented network contains one node for each port and one link for each
sub-path of each service. The sub-path structure also extends to more complex
routes, e.g. butterfly routes. As

ij denote the set of sailing arcs of service s included
in sub-path 〈i, j, s〉. The cost of routing one container of commodity k on sub-path
〈i, j, s〉 is denoted ck

ijs . Finally, hk denote the maximum allowed number of sub-
paths on which commodity k can travel. Note that hk must be one larger than the
maximum permitted number of transshipments to enforce this constraint.
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Balakrishnan and Karsten (2017) present a multi-commodity model based on
flows along sub-paths in the augmented network. The binary variable ys is equal to
1 if service s ∈ S is selected, and 0 otherwise. The flow of commodity k using sub-
path 〈i, j, s〉 as the hth stage is described by the variable xhk

ijs for s ∈ S, 〈i, j, s〉 ∈
As and h = 1, 2, . . . , hk . Finally, zk is equal to the unmet demand (number of
containers) for commodity k ∈ K .

The LSP problem can then be described by the following mixed-integer program:

min
∑

s∈S

csys +
∑

k∈K

∑

s∈S

hk∑

h=1

ck
ijsx

hk
ijs +

∑

k∈K

cr
kzk (9.8a)

s.t.
∑

s∈S

∑

〈ok ,j,s〉∈Hs

x1k
okjs + zk = δk ∀k ∈ K, (9.8b)

∑

s∈S

∑

i:〈i,j,s〉∈Hs

xhk
ijs −

∑

s∈S

∑

l:〈j,l,s〉∈Hs

x
h+1,k
j ls = 0 ∀k ∈ K, j ∈ N \ {ok, dk}, h = 1, . . . , hk − 1,

(9.8c)

∑

k∈K

hk∑

h=1

∑

〈i,j,s〉∈Hs :a∈As
ij

xhk
ijs ≤ gays ∀s ∈ S, a ∈ As (9.8d)

∑

s∈S

ms
vys ≤ Mv ∀v ∈ V, (9.8e)

xhk
ijs ≥ 0 ∀k ∈ K, s ∈ S, 〈i, j, s〉 ∈ Hs, h = 1, . . . , hk,

(9.8f)

zk ≥ 0 ∀k ∈ K, (9.8g)

ys ∈ {0, 1} ∀s ∈ S. (9.8h)

The objective function (9.8a) minimizes total cost comprised of fixed costs for
the selected services, the cost of transporting commodities along each sub-path
and finally the penalties incurred for rejected demand. By including penalties,
the problem is formulated as a cost minimization problem as opposed to a
profit maximization problem where cr

k would instead represent the revenue for
transporting one unit of commodity k.

Constraints (9.8b) ensure that the flow of each commodity k is assigned to sub-
paths incident to the corresponding origin port ok . They also ensure that this flow out
of the origin port in combination with the unmet demand for commodity k adds up to
the total demand for commodity k. Constraints (9.8c) are flow-balancing constraints
for intermediate ports. Together with constraints (9.8b), these constraints ensure
that for each commodity k the demand subtracted any unmet demand will arrive
at the destination port using at most hk sub-paths, i.e. fulfilling the constraint on a
maximum number of transshipments.

Constraints (9.8d) impose capacity constraints on the sailing arcs and ensure that
only sub-paths from the selected services can be used. Constraints (9.8e) ensure
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that no more than the available vessels are used. Finally, constraints (9.8f), (9.8g)
and (9.8h) impose non-negativity and binary restrictions on the respective decision
variables.

The LSP model formulation is flexible enough to allow incorporation of several
practical container routing issues such as cabotage rules, regional policies and
embargoes. The incorporation of many of these constraints can be handled during
preprocessing simply by removing sub-paths that are no longer permitted.

Balakrishnan and Karsten (2017) show that the LSP problem is NP -hard. A
problem reduction procedure to eliminate or combine variables is outlined, and
valid inequalities for increasing the lower bounds of its linear programming (LP)
relaxation are described.

5.1 Optimization-Based Heuristic Procedure

Balakrishnan and Karsten (2017) propose an optimization-based heuristic algorithm
to generate good initial solutions. The heuristic iteratively solves the LP relaxation
of the problem and fixes service selection variables, ys , that are integer in the
corresponding solution, and rounds service selection variables, ys , that are frac-
tional. The highest or lowest fractional variable is selected in each iteration and
rounded up or down correspondingly. The heuristic procedure first rounds down
low y-values before rounding up high y-values. Thereby, unattractive services are
eliminated early in the process. If rounding a variable up causes a violation of the
fleet availability constraint, the variable is instead set to zero. The LP relaxation is
then re-solved. When all ys variables assume binary values, the procedure stops.

Balakrishnan and Karsten (2017) test their solution method on four data sets from
the LINER-LIB benchmark suite with at most two transshipments per container. The
initial pool of candidate services was generated using the matheuristic from Brouer
et al. (2014b). The LP-based heuristic yields solutions that are close to optimality in
relatively short time. This method can therefore be used as a stand-alone tool or to
warm-start an exact solution procedure.

6 Backbone Flow

The main idea in a backbone flow algorithm, as presented by Krogsgaard et al.
(2018), is to reverse the order of two-phase algorithms by first flowing the containers
and then constructing services that cover the flow.

In order to find the backbone flow, an artificial network G = (N,A) is used
where N is the set of ports and A is a complete, directed graph. There are no
capacities associated with the edges, but the cost of using an edge (i, j) depends
on how many containers in total are flowing on the edge. This can be expressed as
a concave function f (x) of the flow x reflecting the economy of scale for flowing



330 E. Hellsten et al.

more containers: there is a large cost associated with opening an arc (i.e. deploying
a vessel), while the cost per container decreases as the flow (and hence vessel size)
is increased. See Fig. 9.2 for an illustration of the costs. The cost function implicitly
aims at aggregating the flow on fewer arcs. Sun and Zheng (2016) also use a concave
function to optimize the container flow.

Let the set of commodities K and demands ξk
i be defined as in (9.1), and let xk

ij

denote the flow of commodity k on edge (i, j). Then the backbone flow problem
becomes a non-linear MCFP as given by

min
∑

(i,j)∈A

f (
∑

k∈K

xk
ij ) (9.9a)

s.t.
∑

(i,j)∈A

xk
ij −

∑

(j,i)∈A

xk
ji = ξk

i i ∈ N, k ∈ K (9.9b)

xk
ij ≥ 0 (i, j) ∈ A, k ∈ K. (9.9c)

As before, the objective, (9.9a), is to minimize the total cost, and constraints (9.9b)
are the flow conservation constraints. Constraints (9.9c) define the domain of the
variables.

Since the model is non-linear, (Krogsgaard et al. 2018) solve the problem
heuristically through a randomized greedy algorithm. As the arc costs depend on
previously flowed containers, the result of the flow will be very dependent on the
order in which containers are flown. Generally, the first containers are more decisive
for the arcs used heavily in the final solution than the last containers flown. It is
thus necessary to run several iterations of the problem, with a random order of the
containers, to achieve a reasonable average picture of the backbone flow. Running
ten iterations for the demand matrix of the WorldSmall instance gives the average arc
loads shown in Fig. 9.4. The figure clearly shows that only a fraction of the possible
arcs is used in the solution.

6.1 Greedy Heuristic for Generating Services

Having found a backbone flow, Krogsgaard et al. (2018) present a greedy heuristic
for generating services. The idea is to add one arc at a time to a service until all
services have reached their maximum duration.

To generate a service, the unserved arc with the largest flow is selected as the first
arc in the service, and a return arc is added to close the service. While the service
is at or below the desired duration, a new arc is added to the service to expand it,
and this arc replaces the return arc. The new arc is the unserved arc with the largest
demand that either starts at the same port as the return arc, which is to be replaced,
or ends at the same port as the return arc. A new return arc is added to close the
service. The selection process continues until it is not possible to add a new arc
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Fig. 9.4 Typical backbone flow for the WorldSmall instance (Source: Krogsgaard et al. 2018)

without exceeding the maximum duration of the service. After this, the creation of
the next service starts.

To obtain a number of different start solutions to select from, the algorithm is
repeated a number of times with random settings on the maximum service length for
every service. The length is selected in a predefined interval depending on the size of
the vessel, such that larger vessels, typically traveling between continents, get longer
services than smaller vessels doing feeder service. For every service generated, a
duration is selected in the interval at random, and the service is constructed. This is
repeated until all available resources have been exhausted.

In the computational study by Krogsgaard et al. (2018), it is shown that usable
solutions can be found in reasonable time. Using the WorldSmall instance, the
authors generate 20 different sets of services by running the above algorithm where
the containers are flown in random order. This can be done in about 80 s and results
in profitable solution, although the resulting network is far from optimal.

6.2 Network Optimization

In order to improve the initial services found by the greedy heuristic, Krogsgaard
et al. (2018) use a Variable Neighborhood Search (VNS) algorithm to reach a high-
quality network. The general idea in VNS, as presented by Hansen and Mladenovic
(2014), is to apply different neighborhood structures throughout the search to exploit
the benefits from neighborhood changes. When a local optimum is encountered, it
is escaped by doing a random move, a shake, from the best known solution and
do hill climbing from here until a new local optimum is reached. If this solution
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is better than the previously best known, the search is continued from here with a
new shake; otherwise the search returns to the previously best known solution and
searches from here again after a new shake. The pseudocode of the metaheuristic is
given in Algorithm 1.

Algorithm 1 Improvement Algorithm
1: Initialisation: Find an initial solution x

2: while stopping criterion not met do
3: generate a new solution x′ from x (shake)
4: while any neighbourhood in N is unused (local search) do
5: choose at random an unused neighbourhood and search from x′
6: if an improved solution x′′ is found then
7: Set x′ := x′′ and set all neighbourhoods unused
8: if x′ is better than x (test solution) then
9: Set x := x′

10: return x

As can be seen from the pseudocode, the local search procedure terminates
after all neighborhoods have been tested without yielding an improving solution, as
a local optimum with respect to all neighborhoods must then have been encountered.
The shake procedure is applied less frequently than in a standard VNS framework.
A lower degree of randomness is preferable here, because the evaluations are
relatively expensive. It is thus desirable to search directly for a local optimum with
respect to all neighborhoods before randomly altering the solution.

Although the local search only accepts moves that have an expected improve-
ment, some moves may turn out to be degrading when calculating the real objective
function. These moves are nevertheless kept on to progress the search. This can,
however, lead to cycling in the local search, as it might both be expected to be an
improvement to first insert a port and to remove it afterward. To break such cycles,
only 20 loops are allowed in the local search part, after which the algorithm
must continue to test solution.

If a cycle is encountered or a local optimum has been reached, the shake
procedure is applied to progress the search from another point in the solution space.
The procedure must change the solution sufficiently to escape the local optimum,
but should, on the other hand, not destroy good characteristics of the solution.
Preliminary studies show that there is a high risk of changing the solution too much
to be able to return to a good solution, and a relatively modest shake procedure is
thus implemented. This procedure modifies a number of services by either inserting
or removing a port randomly, without considering the effect on objective value.
To avoid inserting an obviously irrelevant port, a distance requirement is enforced
such that only ports relatively close to the service can be inserted. The number of
modified services is 10% of the total number of services and a least one.

In each iteration of local search, a neighborhood is randomly selected,
and one or more services are altered through that neighborhood. Six different
neighborhoods are applied: Insert port, Service omission, Service unserved port,
Remove port, Simple remove port and Create feeder services.
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In order to select the best move, delta evaluation is used to avoid time-consuming
evaluations of the multi-commodity flow for the entire graph. Instead, a small graph
(rotation graph) is constructed, covering only the rotation currently being altered.
As this graph is much faster to evaluate, more moves can be tested before one is
selected for implementation. See Krogsgaard et al. (2018) for a detailed description
of the neighborhoods.

Promising computational results using the LINER-LIB instances are reported
in Krogsgaard et al. (2018). The WorldLarge instance can be solved within 1
hour, while the smaller instances have much tighter CPU time limits. The authors
report that they can improve the solutions of Brouer et al. (2014a,b), for instances
WestAfrica, WorldSmall and WorldLarge. Perhaps the most important result is
that the number of transshipments in general is very low, being below 1.14 per
commodity. For the smaller instances, the number of transshipments is below 0.5
per commodity. Fewer transshipments mean shorter port stays, and hence vessels
are not as likely to be restricted by the maximum transit times.

7 Speed Optimization

As described in Brouer et al. (2017), a key tool in achieving lower fuel consumption
in liner shipping is to reduce the sailing speed between the serviced ports. However,
a lower sailing speed will increase the transit times for containers, and more vessels
are needed to transport the same amount of cargo as it takes longer time to complete
a rotation.

Bunker consumption for a vessel profile is often modelled as a cubic function
of speed, but in practice it depends not only on the speed of operation but also on
wind and currents, the vessel type, the draft of the vessel, the time since the hull was
cleaned and the number of reefer containers powered by the vessel’s engine. During
a round trip, the vessel may sail at different speeds between ports. The vessel may
slow steam to save bunker fuel or increase speed to meet a crucial transit time.
Hence speed optimization is a complex trade-off between these two criteria. A good
strategy is to speed up when the vessel is fully loaded (and hence many containers
need to meet their transit time), while slow steaming can be used when the load is
low.

Several recent papers study speed optimization with increasing complexity and
integration with routing decisions. Ronen (2011) presents a simple model where
the speed and number of allocated vessels are optimized to minimize cost on a
single predefined service and a single speed for the full service is assumed. Meng
and Wang (2011a) also work with a single service but use a more detailed model,
taking, for example, transit times into account. Further, the speed is optimized for
each individual leg. Wang and Meng (2012) consider a liner shipping network with
multiple predefined services and present a non-linear MIP model to optimize the
ship deployment and speed of those services and the container routing through this
network. The sailing speeds are optimized on each leg individually. In this model,
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however, no transit time constraints are considered. Kim (2013) presents a model to
determine the speed and bunkering ports for a single vessel on a predetermined path.
There are no transit time constraints, but a cost is imposed for each day a container
is on the ship.

Another appearance of speed optimization is in the paper by Álvarez (2009),
in which it is integrated with liner shipping network design. However, the model
assumes a single speed for the full service, and the model has no transit time
constraints.

Reinhardt et al. (2016) present a model for speed optimization of an existing
liner shipping network which adjusts berthing times to minimize the overall bunker
consumption. It is assumed that all services, as well as the number of deployed
vessels, are fixed and that all containers are flowed along the same route as before
speed optimization. Moreover, transit time constraints are taken into account. When
rescheduling the berthing times, the overall transit time of a demand may change.
Hence a constraint is imposed for each commodity ensuring that the transit time
is within an acceptable range. A penalty is paid for each change in port calls to
keep the schedule similar to the original one. Reinhardt et al. (2016) report that the
model is able to save around 2% of bunker consumption while keeping all transit
times unchanged. If transit times can be extended by up to 48 h, a saving of around
6–7% can be achieved.

Karsten et al. (2018) present a more advanced speed optimization model, where
the services are fixed, but the speed on each leg is allowed to vary, and hence
commodities may take a different route if speed changes allow for a cheaper or faster
route than currently available. The problem is solved using Benders’ decomposition,
and results indicate that the flow changes significantly when the speed on the
individual legs is changed.

Finally, Karsten et al. (2017a) consider a complete network design problem with
speed optimization on individual legs, by extending the matheuristic from Karsten
et al. (2017b). The leg speeds are iteratively calculated for each single service based
on the current flow of containers. The method adjusts speed to the required transit
times of the current container routings throughout the round trip. The individual leg
speeds are calculated by solving a MIP model with the objective of minimizing the
bunker consumption. A piece-wise linear function is used to approximate the cubic
bunker consumption function.

8 Conclusion

Liner shipping is the backbone of international trade; hence it is important to
develop decision support tools that can help designing more energy-efficient routes
and balance several objectives. This includes finding the right trade-off between
speed, transportation times, number of transshipments and operational costs.

Slow steaming together with larger vessels has proven to be an efficient tool
for reducing energy consumption. However, slow steaming decreases the capacity
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of vessels, since they cannot transport as much cargo per time unit as before.
Hence, more vessels are needed in order to maintain the same capacity, straining
the environment. Bigger vessels tend to be more energy efficient per container, but
the increased capacity results in longer port stays, making it necessary to speed up
between the port stays. It is therefore necessary to design routes such that fewer
transshipments are needed while still ensuring a good utilization of the mega-
vessels.

Although liner shipping generally is one of the most energy-efficient modes of
transportation per kilometer, the shipping industry emits large quantities of SOx and
NOx.

In the future we will see container vessels operating with new, greener, propul-
sion types. Electric vessels may operate shorter routes, while liquid natural gas
(LNG) may be used for operating longer routes. The new propulsion types will
make it necessary to completely rethink route net design, since refueling/recharging
will be more complicated, and vessels will have a more limited range of operation.

Nearly every vessel will be delayed in one or more ports during a round trip.
Instead of just speeding up (and hence using more energy), advanced disruption
management tools need to be developed that can ensure timely arrival to the end
customer with the lowest possible energy consumption. Some studies along this
path include Brouer et al. (2014a) and Li et al. (2015), but more work needs to be
done in this area.

Vessel sharing agreements are an important tool for making it possible to operate
larger and more energy-efficient vessels. In a vessel sharing agreement, two or more
companies share the capacity of a vessel throughout the full rotation or on certain
legs. Vessel sharing agreements, however, substantially increase the complexity of
designing a network, since some legs and capacities are locked according to the
agreement.
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