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Abstract Structural Health Monitoring functionalities are aimed at constantly
assessing the health of a building in order to prevent dramatic consequence of a dam-
age. This work describes a well-defined wireless sensor network system installed
over a steel beam capable to perform modal parameters estimation, such as natural
vibration frequencies and modal shapes. Signal Processing Techniques were aimed
at computing Power Spectral Density of the acceleration signals acquired, dealing
with parametric and non parametric approaches. Algorithms in frequency domain,
together with the Second Order Blind Identification method were implemented for
modal shapes reconstruction. Beside a satisfactory agreement between the theoretical
model and the output response of the algorithms implemented, versatility, easiness of
reconfiguration, scalability and compatibility with long term installation are among
the most powerful advantages of the architecture proposed. Light weight, low power
consumption also enhance the capabilities of the system to provide real-time infor-
mation in a relatively cheap way.
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1 Introduction

The actual trends in civil engineering increased the capability to build complex
structures, designing elements which are characterized either by the peculiarity of
their architectural properties or by composing materials. This evolution in structural
development requires continuous information to be extracted and analyzed in order to
assess the integrity of buildings, preferably according to automatic techniques which

F. Zonzini (B) · L. De Marchi · N. Testoni
DEI, University of Bologna, Viale Del Risorgimento 2, 40136 Bologna, Italy
e-mail: federica.zonzini@studio.unibo.it

L. De Marchi
e-mail: l.demarchi@unibo.it

N. Testoni
e-mail: nicola.testoni@unibo.it

© Springer Nature Switzerland AG 2019
B. Andò et al. (Eds.) Sensors, Lecture Notes in Electrical Engineering 539,
https://doi.org/10.1007/978-3-030-04324-7_45

361

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04324-7_45&domain=pdf
mailto:federica.zonzini@studio.unibo.it
mailto:l.demarchi@unibo.it
mailto:nicola.testoni@unibo.it
https://doi.org/10.1007/978-3-030-04324-7_45


362 F. Zonzini et al.

simplify and accelerate data acquisition and management. Furthermore, power con-
sumption, costs and weight shall be minimized not only for energetic reasons but
also to make the presence of devices as unobtrusive as possible. Historical buildings
can also benefit from these studies, since nowadays most of them are used for dif-
ferent purposes. Consequently, evaluating the robustness of infrastructures becomes
fundamental for human safety.

In such a scenario, electronic devices have been designed according to Structural
HealthMonitoring (SHM) requirements, primarilywith the intent of providing a con-
stant monitoring of the structure under test and correspondingly identifying damages
in case of occurrence. These two aspects together enable to generate periodic reports
about the state of the structure over a wide period of time, mainly related to the effects
that usual stresses (i.e. wind, weather) can evoke. Traditional systems performance
and requirements have primarily demonstrated to produce expensive designs and
steady deployment, connected respectively to the high accuracy and sensitivity of
sensors and to the fixed positions associated to each of them. Moreover, problems
arise when dealing with long-term acquisition phases due to the presence of piezo-
electric transducers whose cost compel researchers to limit the duration of experi-
mental campaigns and reuse them. Another important aspects to be underlined is a
strongest consciousness of the fact that the signals recorded by piezoelectric devices
are not completely suited to investigate the dynamic behavior and the stability of
infrastructures with sufficient precision.

Recently, evident improvements have brought about distributed sensor network
solutions which provide embedded data processing, mainly achieved by installing
a certain number of nodes along the whole structure. The usage of Micro-Electro
Mechanic (MEM) sensors provides, among the many benefits, versatility, scalabil-
ity, non-invasiveness and long-term analysis. Positions can be changed, acquisition
process reconfigured digitally without any particular consequence for the structure,
hence containing obtrusiveness. Synchronized vibrations recorded by inertial ele-
ments within nodes installed in any point of the building can be examined in order to
compute modal parameters, which consists of natural frequencies, damping ratio and
modal shapes. The basic idea of SHM is to continuously analyze the internal vibra-
tion features of a building and compare them to structural properties measured under
nominal conditions, thus revealing possible changes in normal modes of oscillation
which may differ for number, width and frequency. In particular, when damages do
not occur, the behavioral dynamics is unchanged and only minimal drifts can be
noticed.

This work focuses on a sensor network with embedded data processing for real-
time SHM, specifically developed to copewith low power consumption, light weight,
small size requirements. In order to assess the functionality of the system, vibrational
measurements were recorded from a steel beam undergoing a mechanical stress. The
presented setup is simple but efficient for these purposes, being very common in
modal analysis scenarios. In the second section a general overview of the node is
presented, followedbySect. 3 inwhich the description of the algorithms implemented
to evaluate natural frequencies andmodal shapes of the experimental setting, proving
the reliability of the nodes in a SHM context.
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Fig. 1 Experimental setup for modal analysis verification and comparison

(a) Schematic diagram (b) Prototype

Fig. 2 Developed sensor node

2 Sensor Node

In this paper, a simple but effective setup for modal analysis was developed to assess
the capability of the proposed sensor node network to cope with Real-time Structural
Health Monitoring (SHM) functionalities. The importance of this discipline relies
on the capability to periodically analyze the vibration features of a structure through
a network of smart sensors acquiring information from a plurality of transducers.
Whenever a change is detected with respect to the ordinary structural properties,
the state of the entire system under test can be inferred. As reported in Fig. 1, five
sensor nodes equally spaced were installed in the first half of a L = 1900mm steel
beam with cross-section base b = 60mm and height h = 10mm in free vibrations
conditions.

Each sensor is roughly 30mm × 23mm, drawing power from a Sensor Area Net-
work (SAN) bus based on Data-over-Power (DoP) communication which simultane-
ously allows for data transmission and power supply. At an architectural level, four
main blocks cooperate to achieve data collection and processing as schematically
depicted in Fig. 2.

Following the flow of information, real-time acceleration samples are recorded
by means of a ST Microelectronics LSM6DSL iNEMO Inertial Measurement Unit
(IMU) with a 3D accelerometer characterized by a maximum dynamic range of
±16 g. They are subsequently sent to a ST Microelectronics Microcontroller Unit
(MCU) which is the core unit of this device, especially designed for low consump-
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tion even in nominal condition. It includes a 40KiB SRAM memory for temporary
storage of the samples, but also an embedded 256KiBFLASHmemory is present giv-
ing the opportunity to implement signals preprocessing capabilities. The presence
of a Serial Peripheral Interfaces (SPI) and Universal Synchronous Asynchronous
Receiver Transmitter (USART) enables to transmit input/output serial data indepen-
dently of the nominal execution of tasks. Collected data are sent to an external SRAM
memory which is mainly inserted to expand the storage capability of the device. A
ST XCVR transceiver interfaces the MCU to the bus thanks to a mesh of passive
elements. Additionally, recordings flow through a gateway to be sent to a user defined
cloud system. A Low-Drop Out regulator provides energy, establishing the voltage
to 3.3V. The sensor node so far described performs an overall consumption lower
than 40mW, with small size and light weight, being it less than 5 g. Considering
that five sensors have been installed, the global power in continuous monitoring does
not go over 300mW, weighing less than 50 g. The overall properties explained are
enforced by the extreme scalability and versatility of the sensor node implemented,
considering that up to 64 elements can be connected and managed sharing the same
bus.

3 Modal Estimation

3.1 Natural Frequency Estimation

Signal Processing Techniques have been applied to the raw acquired signals to extract
natural frequencies and modal shapes. The results of the implemented algorithms
were compared with the theoretical predictions obtained from the physical model
of the beam to assess the performances of the designed circuitry. In particular, the
extracted three natural frequencies are compared with the nominal values estimated
as 5.28, 21.14, and 47.51Hz through the theoretical formula:

fn = 1

2π

(n · π)2

L2

√
E · I
A · ρ

(1)

whereρ = 7880 kg/m3 is the density of the steel, A = bh and I = bh3/12 are respec-
tively the cross-section area andmoment of inertia respectively, and n is the frequency
index. Here, for accurately measured beam dimensions and weight, a value of the
Youngs modulus E = 195GPa was assumed to minimize the error on f1.

The evaluation of the modal parameters in a phase when no damage occurs is
of extreme importance because it creates a set of benchmark values that must be as
accurate as possible in order to prevent potential errors during the real-time estimation
stage.
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Fig. 3 Error distribution in vibrational modes extractions comparing different techniques of PSD
estimation

Several procedures were considered to compute the Probability Density Func-
tion (PSD) of the data series, based on non-parametric and parametric approaches.
Among the former, we considered the Frequency Domain Decomposition (FDD) [1]
periodogram estimation [2] Welch evaluation [2] whilst the latter refer to Autore-
gressive (AR), and AR+Noise models [2] which are suited for modal analysis in
presence of strong acquisition noise.

Results The analysis of the results obtained can be deployed at two different levels.
First, according to the relative error depicted in Fig. 3, we may consider that the
error is not uniformly distributed over the whole spectrum, since it is mostly relevant
at higher frequencies where Signal to Noise Ratio (SNR) is worse and the overall
energy of the structure is lower. Second, it is worth noticing that AR models seem to
have the best performance, allowing to assert that noise may affect the measurements
and it has to be correctly considered. Percentages are always lower than 2.5%, thus
assessing the reliability of the architecture proposed. Furthermore, since the second
vibrational mode of the structure is detected with the lowest precision, it is possible
to argue that it may be related to the solicitation induced over the beam. Generally,
the PSD computed with the techniques mentioned, demonstrates that, for the first
part of the spectrum, there is an evident vertical alignment between the frequencies
computed and those expected, meanwhile the output is less precise when frequency
increases. Furthermore, as predicted by the model and clarified by the spectrum
reported in Fig. 4, an additional frequency near 97Hz can be detected. This fourth
vibrational mode was not considered for further studies since it is close to Nyquists
frequency. For this reason, the errors can creep due to the scarcity of samples to be
used in order to recreate the associated modal shapes, notwithstanding the fact that
it can be extracted from the spectrum itself.
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Fig. 4 Example of PSD estimation with parametric and non parametric approaches

3.2 Modal Shapes Reconstruction

Beside data and power communication, the bus connecting the sensor nodes also
natively allows for data acquisition time base synchronization and consequently the
output-only estimation of modal shapes. For this purpose, algorithms in frequency
domain were developed, followed by the application of the Second Order Blind
Identification (SOBI) method, a strategy which reveals independent components
hidden within a set of measured signal mixtures [3].

Frequency DomainDecomposition Technique Frequency Domain Decomposition
(FDD) method identifies modal parameters of a dynamic system by applying the
Singular Value Decomposition (SVD) technique to the output spectral density matrix
[1]. This algorithmworks as an output-only estimation technique,whose computation
merely consists of two different steps: given a data set, it estimates the PSD and
consequently filters n dominating peaks, where n refers to the degree of freedom
of the system under consideration. Formally, its operating principle relies on the
key-function named Frequency Response Function (FRF) matrix:

[Gyy(ω)] = [H(ω)][Gxx (ω)][H(ω)]H (2)

where [Gxx (ω)] and [Gyy(ω)] denote respectively PSD matrix of the inputs and the
outputs, [H(ω)] represents FRF matrix and H is the conjugate transpose operator.
Applying the SVD to the output spectrum [Gyy(ω)], it is obtained

[Gyy(ω)] = [U][V][U]H (3)



A Small Footprint, Low Power, and Light Weight Sensor Node … 367

with [U] being the orthogonal matrix of the singular vectors and [V] is the singular
value diagonal matrix organized by column. Concerning the recorded data we have
that

y(t) = [�]q(t) (4)

where the response of the structure y(t) comes from the decomposition of these
output signals into participations from the different modes [�] expressed via the
modal coordinates q(t). Using the Correlation matrix and applying the SVD to it, it
is finally demonstrated that

[Gyy(ω)] = [�][Gqq(ω)][�]H (5)

The assumptions are that [Gyy(ω)] is a diagonal matrix, i.e. the modal coordinates
are uncorrelated, and that the mode shapes (the columns in [�]) are orthogonal.
Comparing (3)–(5) and assuming that the decomposition described by (3) is unique,
it follows that the singular vectors coincide with the estimation of the mode shapes
and the corresponding singular values present the response of each mode (Single
Degree of Freedom systems) expressed by the spectrum of each modal coordinate.

Second Order Blind Identification Technique SOBI algorithms found their theo-
retical formulation on the assumption that the second order momentum, that is the
expected covariances, is completely representative of the observed data. Consider-
ing a set of acquired signals y(t), (6) defines covariances between the values of two
different signals yi (t) and y j (t), where τ is the time-lag or delay:

[Cτ
y]i, j = cov(yi (t + τ )y j (t)) (6)

Furthermore, for i = j , (6) turns into the auto-covariances [Cτ
y]i between the

same signal yi (t) at different time steps. Combining together these quantities, this
technique exploits the diagonalization of the time-lagged covariancematrix, resulting
as in (7)

[Cτ
x ] = E

{
x(t + τ )xH (t)

}
(7)

where H denotes the conjugate transpose operator.
The time structure introduced contributes to relax the requirement of non Gaus-

sianity for the Independent Components (ICs), replaced by the condition that all
the independent sources have different and nonzero auto-covariances. As described
in [3], imposing that the covariances for τ = 0 have zero value, the decorrelation
between the observed signals y(t) can be assured. As a consequence, the obtained
signals satisfy the following property:

[Cτ
x ] = 0, τ = 0 (8)
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Nevertheless, the correlation matrix does not contain enough information for the
separation. In fact, due to the independence property of the ICs, all their lagged
covariances, and not only one, should be zero:

[Cτ
x ] = 0,∀τ (9)

The SOBI estimation is therefore performed starting from the assumption that
each observed data y(t) is obtained as a linear combination of unknown sources x(t)
through a mixing matrix [A]:

y(t) = [A]x(t) (10)

enforcing that time-lagged covariances are zero as well. This leads to

E
{
yi (t + τ )y j (t)

} = 0,∀ i, j, τ (11)

The problem is solved whenever [A] is computed [3]. Modal shapes are contained
in the column of the mixing matrix, thus enabling the reconstruction process.

Results The results depicted in Fig. 5 display the first three mode shapes extracted
with two different techniques superimposed to the theoretical mode shapes. The
experimental behavior of the structure fits the model almost perfectly at low fre-
quency, whereas the deviation is more remarkable going up in the spectrum. This
behavior is justified by the fact that SNR is not sufficient to discriminate among
true signal and noise, especially for the higher components which mainly suffer
from this effect. According to Fig. 4, the first vibrational mode contains almost the

Fig. 5 Modal shapes extracted with different techniques: FDD, SOBI. It is worth noting that the
experimental curves fit the model almost perfectly at low frequencies, whereas the deviation is
some-how more evident at higher frequencies
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overall energy of the acquired acceleration, appearing to be almost 40 dB higher
than the other analyzed modes. It is also important to highlight that, although the
SOBImethod is totally unsupervised, its performances are almost equivalent to FDD,
making it suitable for autonomous damage detection system. Being almost equal the
outcome of the tested algorithms, it is necessary to underline the advantages that a
blind strategy can produce. As a matter of fact, the computation of a Blind Source
Separation (BSS) method relies on a restricted a-priori knowledge about the nature
of the extracted signal, therefore it is entirely independent from the observed phe-
nomenon. In addition, this technique is a completely unsupervised estimation which
does not require to be supplied with users information about the expected frequency,
such as in FDD. Moreover, being the SVD an expensive algorithmic process to be
computed, especially when the dimension of data is very large, the computational
cost associated to frequency methods cannot be forgotten.

Some aspects have to be underlined when dealing with the idea of embedding
real-time signal processing capabilities in a low power sensor node, thus making
realistic the possibility to offer an immediate estimation of modal parameters and
consequently testing the health state of a given structure. The first point to be faced
is connected with the data sources every algorithm requires, dividing the techniques
between single-sensor driven methods and sensor-array driven estimators. For exam-
ple, FDD naturally works with matrices, where every column (row) is a collection of
samples provided by a single sensor over the global acquisition time. On the contrary,
parametric methods for vibrational modes estimation can be applied onto single vec-
tors, therefore they are best suited for single nodes. The second relevant aspect is
ruled by the specificity of the processed samples. Indeed, SOBI performances are
ideal when data under test refer only to the natural damped decaying of signals,
whereas other techniques performance improves when samples cover a wide time-
interval. In such a scenario, there are two different possibilities to exploit real-time
estimation, simply derived from the intrinsic nature of the algorithms tested. In a
master-slave architecture, a specifically crafted sensor node can perform the whole
computation starting from samples provided by all the other sensors. A different
strategy is based on the hypothesis of a multi-master system in which the process-
ing phase is provided by each node separately and finally the outcomes are merged.
The choice of strategy impacts on the algorithmic complexity and the computational
requirements needed, which have to reach the best trade-off between power con-
sumption and computational time, especially in terms of synchronization, coherency
and storage capability.

4 Conclusions

The presented experiments reveal the potentialities of the implemented sensor net-
work for SHM applications thanks to its versatility and high scalability, becoming
a suitable candidate for a relatively cheap and low consumption system capable to
provide real-time information.
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