
Chapter 9
A Content Management System
for Chatbots

Abstract In this chapter we describe the industrial applications of our linguistic-
based relevance technology for processing, classification and delivery of a stream of
texts as data sources for chatbots. We present the content pipeline for eBay enter-
tainment domain that employs this technology, and show that text processing
relevance is the main bottleneck for its performance. A number of components of
the chatbot content pipeline such as content mining, thesaurus formation, aggrega-
tion from multiple sources, validation, de-duplication, opinion mining and integrity
enforcement need to rely on domain-independent efficient text classification, entity
extraction and relevance assessment operations.

Text relevance assessment is based on the operation of syntactic generalization
(SG, Chap. 5) which finds a maximum common sub-tree for a pair of parse trees for
sentences. Relevance of two portions of texts is then defined as a cardinality of this
sub-tree. SG is intended to substitute keyword-based analysis for more accurate
assessment of relevance that takes phrase-level and sentence-level information into
account. In the partial case of SG, where short expression are commonly used terms
such as Facebook likes, SG ascends to the level of categories and a reasoning
technique is required to map these categories in the course of relevance assessment.

A number of content pipeline components employ web mining which needs SG
to compare web search results. We describe how SG works in a number of compo-
nents in the content pipeline including personalization and recommendation, and
provide the evaluation results for eBay deployment. Content pipeline support is
implemented as an open source contribution OpenNLP.Similarity.

9.1 Introduction

Building a relevant and efficient content management system (CMS) is a key to
successful consumer application such as chatbot. In recent years, a number of
scalable, adjustable, and intelligent platforms have been built for content processing,
providing an effective information access for users. These platforms are capable of
collecting relevant information, filtering out low quality unreliable pieces of content,
de-duplication, aggregating it from multiple sources, achieving integrity between
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various data components, and generating search, recommendation and personaliza-
tion results. Moreover, these platforms support search engine optimization, mobile
application, share content with partner network, and other functionality. In this
chapter that is written as a report from the field, we share the experience building
a CMS for eBay.com entertainment, with the focus on text relevance. This CMS has
also been providing entertainment content for indexing by Bing.com.

The main limitation of currently available CMSs such as WordPress, Atlassian,
Kentico, Drupal, Hubspot and others is a quality, authenticity and integrity of
content obtained from various sources including the web, text relevance analysis,
relevance assessment to potential user intent and other sematic features. The other
shortcoming is that these CMS are not well suited to handle conversational data for
chatbots.

Content is a key to a chatbot acceptance by a user audience. Content quality is
essential at many levels—ranging from FAQ pages to hard-coded chatbot dialogues
to an extended, comprehensive content delivered to a user. Also, there is a unique set
of restrictions and user needs associated with chatbot content. Nowadays, developers
are using legacy tools and repurposing or retrofitting legacy content into chatbots, so
in a lot of cases users are unimpressed. The challenge here is that in many cases the
authors of chatbot content rely on yesterday’s tools for building content for the
modern, state-of-the-art interfaces. Properly designed chatbot content is not a plain
structure but instead a well designed conversations (Tneogi 2018). Content that is
designed for bots must have short and precise pieces of text that are quick to
consume, emojis for meaningful, visual attention, and a high ratio of images and
gifs in chatbot utterances.

For manual content creation for chatbots, one would need a wsyiwig editor. It is a
system in which content, text and graphics, can be edited in a form closely resem-
bling its appearance when printed or displayed as a finished product, such as a
printed document, web page, or slide presentation. Such editor is designed for
writing short pieces of content, internal emoji and image content-driven suggestions.
The editor would need to be enabled with visualizing the content as it is created in
various bot platform interfaces and a smart way to adapt it to different needs. Also,
this CMS would need a speech-to-text engine built for the ability to support voice
bot. Finally, such CMS would need a text analysis and relevance tool at runtime that
helps authors ensure their content style is conversational. This is the focus of this
chapter. Figure 9.1 shows a front end of a simple chatbot CMS that manages intent-
response pairs of dialogflow.com. For a robust chatbot, a much more complex form
of association between requests and responses is needed, combining search engi-
neering (Chaps. 5, 6, 7, and 8) and dialogue management (Chaps. 10 and 11).

In a domains such as entertainment or finance, a significant portion of content
cannot be structured or formalized, so needs to be handled as text. If the relevance
recall is low, users’ access to products and services is limited; they do not get search,
recommendation and personalization results they are expecting. If, on the contrary,
precision is low, users get lower quality results than potentially available. Also, the
users would lose trust in a web portal such as eBay.com (Galitsky et al. 2011). In this
chapter we demonstrate how a use of linguistic technology such as machine learning
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syntactic parse trees for relevance assessment can benefit a CMS. To systematically
learn linguistic structures, we rely the syntactic generalization (SG, Chap. 5) oper-
ation which finds a common maximum sub-trees for parse trees of sentences. For
paragraphs of text, we extend this operation to such structures as parse thicket,
expressing information on how sentences are connected in a paragraph, in addition
to parse trees of this paragraph (Galitsky 2014).

The input of the content pipeline presented here is a stream of international
entertainment events, ranging from concerts to shows, from sports to industry
meet-ups, which are coming at a speed of up to 6000 per day. An event data,
obtained from various sources, frequently inconsistent, need to come through the
content pipeline as fast as possible. It should appear in the index for search and
recommendation to become available to users. Ticket availability stream at the scale
of eBay is massive data as well, but will not be considered in this chapter. Event data
from different sources varies a lot in structure and the kind of information available,
and mostly occur in the form of unstructured text. Opinion data on events, per-
formers and venues are even more diverse in terms of structure and linguistic
phrasing. Also, data distribution between the sources, and data nature varies with
seasons, travels of performers and unexpected circumstances such as political
situations in various countries. The content pipeline should be able to adapt to abrupt
variations in volume and linguistic properties of incoming content stream (Galitsky
2003). Solving classification problems is an important task of the content pipeline,
and these problems need to be solved in the dynamically changing environments
(Brzezinski and Stefanowski 2011; Kuncheva 2004), especially adapting to partic-
ular user interests. Required text mining technology needs to be expressive, sensitive
and domain-independent at the same time (Sidorov 2014). Using keyword-level
classifiers for our domain would lead to a huge classification dimension and possibly

Fig. 9.1 A trivial CMS for
a chatbot. Associations
between intents and
responses are maintained
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over-fitting, so we need a more accurate representation of linguistic data such as
parse trees and machine learning means for them (Galitsky et al. 2012).

Typically, relevance in content pipelines is achieved via statistics of keywords.
As fast and efficient processing becomes more available in industry, parsing and
learning of its results becomes plausible. Platforms like Hadoop and their
implementations such as Cascading (2013) and Mahout (2013) are capable of
parsing and learning a large amount of textual data, but the relevance and semantic
features are left behind. We will evaluate how an implementation of machine
learning of parse trees can improve a number of automated CMS tasks. Also, an
open source implementation for relevance has been built, so it can be integrated and
tested in other arbitrary content pipelines.

In contrast to content pipelines performing in restricted domains such as customer
relationship management (Galitsky and de la Rosa 2011) or a vertical product
domain, relevance cannot be based on domain knowledge in such a broad domain
as eBay entertainment. It is not plausible to build thesaurus for all kinds of enter-
tainments, maintain and update it to achieve relevance (Galitsky 2013). Instead, we
mostly rely on domain-independent linguistic information. We show that once
domain-independent efficient text matching component is developed, taking advan-
tage of the rich linguistic information available for learning of parse tree, the same
component is used to solve a spectrum of relevance-related problems. Although a
number of distributed systems including the open-source ones have been built to
address the scalability problem, the relevance for content processing and delivery is
still a major bottleneck for effective content-based systems.

9.1.1 From Search to Personalized Recommendations
to Chatbots

One of the purposes of the content pipeline is to provide user recommendations. In
this section we introduce a social profile-based personalized recommendation task. It
relies on a special case of SG where instead of syntactic information we use the
thesaurus of categories. However, we use the terms SG for all text relevance tasks in
the content pipeline.

In the eBay entertainment domain, recommendations include performances and
performers, movies and shows, as well as other things to do. Personalized recom-
mendations are becoming more and more popular to enable people to efficiently get
products and services. Internet entrepreneurs have started to believe that personal-
ization is one of the next big steps towards the semantic web. Everything users “like”
on sites like Facebook gives others information about the things users are interested
in. If one gets enough of that kind of data, as well as similar data from the people he
is connected to, he can effectively judge a person’s tastes and interests.

Social data-based personalization is an important feature of context-aware sys-
tems which can both sense and react, based on their environments. Although a high
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number of successful user interfaces employ user behavior, inter-personal trust and
attempt to recognize user intentions (Varshavsky et al. 2010), a context-aware
methodology of adjustment to prior knowledge about users is still to be developed.

While users are in the process of starting to appreciate the value of personalization
and learn to adjust their profiles for efficient online personalization, the relevance
and timeliness of personalization is still quite low nowadays. In this chapter we
address the root problem of personalization quality, propose a solution which
worked for Zvents.com of eBay, and evaluate it for a vertical recommendation
domain.

9.2 Relevance-Related Problems in a Content-Management
System

The content pipeline to be introduced was designed and implemented in eBay
Entertainment and ticket sales domain. The relevance technology that supports this
pipeline has been first deployed and evaluated at AllVoices.com. Then
SG-supported relevance was used at a things-to-do recommendation portal Zvents.
com, acquired by StubHub, the ticket sales site of eBay to serve as an entertainment
content provider. Although we evaluated relevance processing in the entertainment
domain only, the expectations are that relevance can be supported in any chatbot
domain by similar means.

The content pipeline includes data mining of web and social networks, content
aggregation, reasoning, information extraction, question answering and advertising.
The accuracy of search and recommendation is primarily determined by the quality
of content, which in turn depends on the accuracy of operations with content by each
pipeline component. The latter is essentially a relevance-based operation, therefore,
as its accuracy goes up, the performance of the overall content portal improves.

Our presentation is focused on the support of content pipeline units by the SG and
other engines: web mining, classification and rules. We enumerate the components
of content pipeline, and its units with the focus on those where relevance assessment
between various portions of texts is required. In Evaluation section we will do three
kinds of assessments for the contribution of SG:

1. How stand-alone performance of content units is affected by SG;
2. How the performance of the overall search and recommendation system is

affected by SG;
3. How search relevance itself is supported by SG.

In the production environment, SG component includes an implementation of
linguistic syntactic generalization algorithm only. In our evaluation settings, we
perform the comparison of SG versus tree kernel (TK) and also against the baseline
algorithms generally accepted in industry, such as Lucene TF*IDF and WEKA.
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9.2.1 Content Pipeline Architecture

The input for the content pipeline includes various sources of information that are
intended to be provided for users. The output is the search and recommendation
index which stores the refined information ready to be gives as a search or recom-
mendation result. Also, the content pipeline provides the feed for other search
engines that include the structured results in entertainment domain, such as Bing.
com (Fig. 9.2).

We first enumerate the four components in the content pipeline, then their units,
followed by enumerating problems being solved by an SG or other engines within
each unit.

The chatbot content pipeline includes the four following component (Fig. 9.2):

1. Content collection from multiple sources (automated finding content on the web
relevant to given topic, feed processing;

2. Content aggregation, cleaning, enrichment (deduplication, cleaning, entity
extraction, forming links between different pieces of content with the same entity,
auto-generation or discovering of missing pieces of content, compare with
(Mavridis and Symeonidis 2014));

3. Content transformation to a form for search and recommendation (coordinating
factual and opinionated content, building index for search and recommendation;

4. Content delivery (search and recommendation for web and mobile, personaliza-
tion, search engine marketing, sharing with partners).

The first component, Content Collection, uses various sources to collect pieces of
content to assure as broad and deep coverage of a domain as possible. It combines
feed from content partners, usually well structured, with content found on the web,
usually unstructured but timely and opinionated, frequently of higher interest to
users. Such content is collected from various sources on the web, from blogs and
forums to public chats and social network sources. Thesaurus of entities is built here
to support search (Chap. 8 and Galitsky and Kovalerchuk 2014).

Feeds, data 
from the web, 
user submitted 
data

Content Pipeline

Collection Transfor-
mation

Aggregation

SG

Index for search 
and 
recommendation

Feed for partners 
(Bing.com, 
regional online 
magazines)

Delivery

Fig. 9.2 Input, output and the components of content pipeline and its relevance support by SG
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The second component, Content Aggregation makes sure the pieces of content
are transformed into a cohesive form, without redundancies and duplications. Irrel-
evant, ambiguous portions of content need to be filtered, as well as the content
coming from the authors with low reputations and from the sources which are not
reputable. The opinionated content should be separated from the factual. Also,
pieces of content about entities should be coordinated, for example a description
of a concert, description of its performer, and a magazine article about this
performer.

The third component, Content Transformation concerns building the index for
search and recommendation. To do that, we need to take into account the strength of
association of the information with the entities, the factual vs the opinionated content
for an entity such as a performer (event data vs user feedback), entities position it
time and their geo-location (where and when a concert is happening). Content
inversion groups the portions of text by entertainment entities, better suitable for
recommendations. This step performs ranking of pieces of content with respect to
entities and their attributes (such as a performer and her music genre).

The fourth component, Content Delivery performs content distribution to users
and content partners. Users consume content in the active form (searching), passive
form (recommendation), individually adjusted form (personalization), based on
knowledge about this user, obtained, in particular, from social network sources.
Partners consume the content for further aggregation. Content delivery occurs on the
web and via mobile, and for the latter a web mining support for speech recognition is
required, to filter out meaningless speech recognition results.

This chatbot CMS can be viewed as the one converting arbitrary unstructured
content on the web to a well-structured, tagged, rated content (Galitsky and Levene
2007) with properly inter-connected pieces (referential integrity), ready to be con-
sumed by users and content partners. For example, Bing consumes pipeline content
as a set of structured text fields, tagged with types of user interest, with ratings in
such dimensions as kids vs adult, professional vs amateur. However, at the same
time, Bing is the source of this content: it is mined from the web using Bing search
engine API. For Bing, the content pipeline converts arbitrary pieces of text distrib-
uted in the web (and indexed by Bing) into a structured, organized form.

Each of the above components contains a number of processing units, and some
of them need to rely on SG and other engines. We view the content pipeline from the
standpoint of how relevance assessments are supported by SG engine (Fig. 9.3).
When we have to establish a relation between two portions of texts, varying from a
phrase to a paragraph, we use the SG component. For the de-duplication component,
we need a very close distance between texts to confirm respective items as being
identical. Conversely, for an article-item match component, which finds an internal
item (such as an event) in an arbitrary article on the web, the distance between texts
for content relatedness can be rather high. On the other hand, harvesting, automated
finding content on the web, domain thesaurus, inversion of content, building search
index and other components are supported by other engines.
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9.2.2 The Engines Assuring CMS Relevance

We enumerate content processing engines, each of which supports a number of units
in the content pipeline:

1. Syntactic Generalization (SG) engine which computes similarity between por-
tions of text.

2. Rule Engine (RE) which deals with rule systems for information extraction,
sentiment analysis, and personalization units when the rules are inconsistent
and the results of rule application depend on the order the rules are applied.

Fig. 2: The detailed content pipeline architecture

Content transformation to a form for search & 
recommendation

Aggregation & cleaning

Content delivery
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images, videos, 
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De-duplication
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Fig. 9.3 Detailed architecture of the content pipeline. The content processing components are on
left and the engines are on the right
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3. Web Mining (WM) engine which uses search engine API to look for information
on a particular topic, extracts information from the web on a given entity, and also
compares webpages related to entities on the web to establish a correlation
between them.

4. Text classification engine (CE), which takes a text and classifies it, given a set of
texts for positive and negative training sets. In the opinion mining unit, it is
necessary to relate a sentence into two classes, e.g. informative vs uninformative
opinion. In ad generation unit, the classes of suitable vs. unsuitable are a basis for
ad generation. In the Knowledge state of a user assessment unit, the classes are
highly knowledgeable or unknowledgeable users. Other classification tasks
include relevant/irrelevant answer, and plausible/implausible speech recognition
result. In these tasks, decision about belonging to a class cannot be made given
occurrence of the specific keywords or their frequency patters; instead, peculiar
and implicit linguistic information needs to be taken into account. It is rather hard
to formulate and even to imagine keyword-based classification rules for these
problems, hence SG is used; however finding plentiful examples for respective
classes is quite easy.

9.2.3 Content Processing Units

9.2.3.1 Harvesting Unit

Providing detailed information on local events which are less popular on a global
scale but fairly important to locals, is a key competitive advantage of the personal-
ization technology being described. The system runs a web search for event theme
keywords and location-based keywords (WM support), and then finds web search
results which looks like events, according to certain rules (RE support). These rules
include time and date constraints, price information, and some linguistic patterns
specific to event descriptions (CE support). We have formed the training dataset, and
machine learning helps to filter out search results (and web domains) which are not
events. Using this technology, we can add local events not available via feeds or the
event fetching procedure, where we extract events from the page with known format.
This component is capable of harvesting tail events since we do not need to know
specific web domains or web page formats.

Since the events are obtained by the content acquisition system from multiple
sources, they are frequently presented to users apart from their context. When content
comes from feed or manually entered, frequently background knowledge on events,
venues and performers is missing or limited. It is sometimes hard for a user to judge
how interesting and appealing a given event is, first just by looking at title, short
description, and a single image of a performer (if available). To enhance the user
experience, we harvest additional visual and opinion data to provide more information
about similar events, performers and locations.We mine for images and videos relying
on major search engines and apply additional relevance verification, making sure
entities from image captions are the same as performers, locations and other entities of
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events. Five-ten thumbnail images assist as well in the go vs. no-go decision of a user.
Verification of entities, obtained via WM, is based on SG engine. What people write
about their experience with similar events in past, how they like the performance is an
important data which supports personalized recommendations. We use major blog
search engines and also verify relevance of posting to the event by SG.

9.2.3.2 Content Mining Unit

Content mining units rely on Web Mining engine which takes an entity and searches
for its instances on the web, for given location and time. For example, entity¼ ‘fairs
& festivals’ and location ¼ ‘Boston’. Web mining component runs search engine
API, such as Bing, Yahoo, Google or Yandex to obtain search results for (fair OR
festival) AND Boston. Then web mining unit needs to classify search result into
events vs not events, and for events verify that they are indeed fairs or festivals, and
that they indeed occur in Boston.

It is of utmost importance that the content includes the latest and most accurate
information on performers and venues. For the latter, we use web mining and search
result filtering to confirm that currently stored information for a venue is correct. We
filter out search engine-optimized results trying to find an original source of venue
data, avoiding aggregator sites. A number of machine-learned rules are in action to
verify venue address from the most authentic source found.

For performers, we verify how then are represented in a number of entertainment-
related websites, assess the consistency of information among them and compute the
estimate of popularity.

9.2.3.3 Thesaurus Unit

Thesauri are used to filter out irrelevant search results by verifying that important
keywords from a query are also in a search result (Chap. 8). The thesaurus construction
process starts from the seed entities and mines available source domains for new
entities associated with these seed entities. New entities are formed by applying the
machine learning of syntactic parse trees (their generalizations) to the search results for
existing entities to form commonalities between them. These commonality expres-
sions then form parameters of existing entities, and are turned into new entities at the
next learning iteration. SG is used to form these commonality expressions.

To use the thesaurus to filter out irrelevant answers, we search for a thesaurus path
(down to a leaf node, if possible) that is closest to the given question in terms of the
number of entities from this question. Then, this path and leaf node most accurately
specifies the meaning of the question, and constrains which entities must occur and
which should occur in the answer, to be considered relevant. If the n-th node entity
from the question occurs in the answer, then all k < n entities should occur in it as
well. Example thesaurus related to CMS entities is shown in Fig. 9.4. More details
are available in Chap. 8.
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9.2.3.4 Opinion Mining Unit

One of the purpose of opinion mining is to support product recommendation. When
a user searches for a product, we provide the information about this product in the
form of opinions from other users. If a user is unsure which product to choose, we
provide recommendation based on experience of other users, similar to the given
user (if such user data is available). Hence we need to extract sentences containing
opinions about products, which can form an appropriate recommendation basis.
There are the following steps in forming the review quotes for recommendation:

1. For a given sentence, confirm that it contains an opinion about a product, and
therefore is appropriate for recommendation. Sentences which contain sentiments
about entities other than product usability should be filtered out.

2. For a given opinionated sentence, determine the knowledge state of a user to be
provided with recommendation. If the user is very knowledgeable about a
product, this sentence needs to be more specific. If the user is a beginner, this
sentence should be of rather general nature. Hence each recommendation sen-
tence needs to be classified into a class with respect to a user knowledge state.

3. Sentiment analysis, where polarity and topicality needs to be determined. Using
topicality (a product name, its feature or a category of features) is required to
assign a given sentence to a product being recommended. A polarity is important
to back up recommendation: a given product is recommended because associated
sentiment is positive and other products, whose sentiments are negative, is not
being recommended.

Fig. 9.4 CMS thesaurus
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Traditionally, the opinion mining problem is formulated as finding and grouping a
set of sentences expressing sentiments about given features of products, extracted
from customer reviews of products. A number of comparison shopping sites are
showing such features and the ‘strength’ of opinions about them as a number of
occurrences of such features. However, to increase user confidence and trust in
extracted opinion date, it is advisable to link aggregated sentiments for a feature to
original quotes from customer reviews; this significantly backs up review-based
recommendations by a shopping portal.

Among all sentences mentioning the feature of interest, some of them happen to
be irrelevant to this feature, does not really express customer opinion about this
particular features (and not about something else). For example, ‘I don’t like touch
pads’ in reviews on Dell Latitude notebooks does not mean that this touchpad of
these notebook series is not good. Instead, we have a general customer opinion on a
feature which is not expected to be interesting to another user. One can see that this
problem for an opinion sentence has to be resolved for building highly trusted
opinion mining applications.

We believe this classification problem, identifying irrelevant opinions, is rather
hard one and requires a sensitive treatment of sentence structure, because a differ-
ence between a meaningful and a meaningless sentence with respect to expressed
opinion is frequently subtle. A short sentence can be meaningless, its extension
become meaningful, but its further extension can become meaningless again.

The problem of classification of knowledge states of a user who is a recipient of
recommendation is a more conventional classification problem, where we determine
what kind of response a user is expecting:

• A general recommendation;
• An advice on a series of products, a brand, or a particular product;
• A response and feedback on information shared, and others.

For each knowledge state (such as a new user, a user seeking recommendations,
an expert user sharing recommendations, a novice user sharing recommendation)
we have a training set of sentences, each of which is assigned to this state by a human
expert. For example (knowledge states are in square brackets):

‘I keep in mind no brand in particular but I have read that Canon makes good
cameras’ [user with one brand in mind], ‘I have read a lot of reviews but still have
some questions on what camera is right for me’ [experienced buyer]. We expect the
proper knowledge state to be determined by syntactically closest representative
sentence.

Transitioning from keywords match to SG is expected to significantly improve
the accuracy of knowledge state classification, since these states can be inferred from
the syntactic structure of sentences, rather than explicitly mentioned most of times.
Hence the results of SGs of the sentences form the training set for each knowledge
state will serve as classification templates rather than common keywords among
these sentences.
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9.2.3.5 De-duplication Unit

De-duplication is an essential component of any content pipeline. All entities like
performers, events and venues are subject to de-duplication. We use a rather
sophisticated rule system with multiple layers of exceptions, implemented via
nonmonotonic reasoning–based architecture of RE, machine learning and web
mining. WM takes advantage of the experience web search engines have accumu-
lated on how people search refer to performers, events and venues in various ways,
based on which search results they actually used.

When we have a pair of similar titles for a data item such as an event, a performer,
a venue, we want to determine if they are the same entities or different. We search
them on the web using search engine API and compare how similar search results
are. This transition from the level of short titles, where it is hard to determine the
identity, to the web search results, where we can compare one set of these against the
other, is a key to high recall de-duplication. If search results do not overlap much, it
means that items are not duplicates, and if they do, the items are duplicates. SG can
be applied to the titles and descriptions of the candidate duplicate items, but the
results are much more accurate if SG is applied to the sets of search result snippets.

We also look up the entities being de-duped at various entertainment domain-
specific sites and social network sites to make sure most possible phrasings to
express each entity is covered. We compute what we call “similarity in web search
space” among the search results for a pair of entities to reject/confirm that they are
identical.

For venues, the system extracts the relationship of being a sub-venue (like a room
in a building) or a sibling between venues, which is important to provide a precise
location for events and clarify how multiple events occurring in a given location are
related to each other. A number of rules which are based on thesaurus of terms in
venue titles, as well as address normalization rules, are applied, and being constantly
machine learned to improve the accuracy and integrity of content (Galitsky et al.
2011).

The value of this unit is high because besides providing index for Zvents.com and
eBay.com entertainment search, it also provides the stream of events for Bing.com
entertainment search.

9.2.3.6 Chatbot Search Engine Marketing unit

We build 3-line advertisements (ads) in a specific format to mimic ads for search
engine paid advertisement. The ad is automatically built from an arbitrary product
page, published with the content mined by the above units. Features of products or
services as described on the landing page are extracted along with ‘advertising’
language such as positive sentiment and calls to action. The formulation of ad relies
on appropriate product/service descriptions from the landing page (Fig. 9.5).
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Its practical value is to assist search engine marketing (SEM) personnel in writing
ads. Given the content of a website and its selected landing page, the system needs to
select sentences which are most suitable to form an ad (Fig. 9.5). The regular search
results are on the top, and auto generated ads from these pages are on the bottom.

This is a semantic information extraction problem where rules need to be formed
automatically. To form criteria for an expression to be a candidate for an advert line,
we apply SG to the sentences of the collected training sets, and then form templates
from the generalization results, which are expected to be much more accurate and
less sensitive to a broad range of possible phrasings than just sets of keywords under
traditional keyword-based IE approach. Also, using a database of existing adverts on
Google, the system is capable of finding the closest ad and adjusting it to the given
web page.

We combine two following techniques implemented as parallel sub-units:

1. Syntactic information extraction problem is formulated as extracting and modi-
fying a triple of expressions from a web pages such that these expressions:

• serve as a page abstract, express its main topic, are as close as possible to the
content of the page. Every line of an ad contains one of the important messages

the cheapest waterproof digital camera with plastic case

Fig. 9.5 SEM unit for automated generation of ads from a webpage
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from the webpage, and may include the name of brands, companies and
products from this page;

• obey the conventional ad style: certain meaning is shared between them, one
of these expression should be imperative, all of them should be positive and
mention important well understood product parameters.

2. Template-based approach; it finds a series of existing ad mined on the web, which
are semantically close to the given webpage, and modifies them to form original
ad with the lines matching the content of this webpage. This component assures
that resultant advert is a typical ad in terms of phrasing.

For example, for a fragment of a webpage like

At Smartbankwe believe in great loan deals, that’s why we offer 5.9%APR
typical on our loans of $27,500 to $35,000.. It’s also why we pledge to pay
the difference if you’re offered a better deal elsewhere.
What you get with a personal loan from Smartbank:

* An instant decision if you’re an Online Banking customer and get your
money in 3 hours, if accepted{

* Our price guarantee: if you’re offered a better deal elsewhere we’ll pledge to
pay you the difference between loan repayments***

* Apply to borrow up to $35,000
* No fees for arrangement or set up
* Fixed monthly payments, so you know where you are
* Optional tailored Payment Protection Insurance.

We generate two ads:

Great Loan Deals
5.9% APR typical on loans of
$27,500 to $35,000. Apply now!
Apply for a Smartbank loan
We offer 5.9% APR typical
Get your money in 3 h

9.2.3.7 Speech Recognition Semantics Unit

This unit assures we have reliable speech recognition, for example when searching
for events via a mobile app. A typical speech recognition SDK such as the one from
Google gives a number of candidates for a given utterance, so that some of them are
meaningful phrases and some of them are not.
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remember to buy milk tomorrow from trader joes,
remember to buy milk tomorrow from 3 to jones

One can see that the former is meaningful, and the latter is meaningless (although
similar in terms of how it is pronounced). A mistake caused by trying to interpret a
meaningless request by a query understanding system such as Siri for iPhone can be
costly. For event search by voice, this component significantly improved the accu-
racy (not evaluated in this chapter).

WM engine supported by SG comes into play: if for a given phrase its web search
results are similar to this phrase (someone has said something similar somewhere),
we can assume the phrase is meaningful. If we cannot find anything on the web
expressed in a similar way, then we can assume that this expression is meaningless.
For the more accurate analysis, this algorithm is applied to sub-phrases as well. The
key here is to assess the similarity between the recognized candidate phrase and the
web search results, which is performed by SG.

9.2.3.8 Search Unit

SG engine improves search relevance by measuring similarity between query and
sentences in search results (or their snapshots) by computing SG. Such syntactic
similarity is important when a search query contains keywords which form a phrase,
domain-specific expression, or an idiom, such as “shot to shot time”, “high number
of shots in a short amount of time”. Usually, a search engine is unable to store all of
these expressions in its phrase thesaurus because they are not necessarily sufficiently
frequent. SG is essential when these phrases are interpretable only when they occur
within a certain natural language expression. Further details are provided in Chap. 5
and Galitsky 2012.

9.2.3.9 Personalization Unit

Personalization of search results to take into account user interest and user profile is
becoming a must feature in todays content delivery systems. In particular, a number
of recommendation systems use social profile to tailor search results to the needs of a
given user. Nowadays, when integration and access control with social sites like
Facebook has been mostly solved, the main reason for low relevance is the existence
of inconsistent mappings between the categories of interests as specified in social
sites like Facebook and LinkedIn, and the internal categories of content providers
such as eBay product categories. In fact, there is strong disagreement between how
the set of user interests are stored in social sites and how such interests are associated
with categories of product in a vertical domain of a recommendation system. In
particular, Facebook stores user interests at individual level (user likes) and at the
category level (categories of user likes) for the wide range of interests. Since our
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recommendation engine is focused on the ‘things to do’, most of the existing
Facebook categories are irrelevant, but those which are relevant are too coarse and
provide limited and uneven coverage of our domain of events. Hence we need a
systematic way to map horizontal domain categories and individual “likes” into the
product attributes and categories in a vertical domain. In this section, we use
Defeasible Logic Programming (García and Simari 2004), an argumentative frame-
work based on logic programming to define such mapping where categories
expressed in the same worlds frequently have different meanings and are therefore
inconsistent.

The main purpose of personalized recommendation delivery in dynamic domain
as attending events includes:

– A user specifies her interests only once (in her Facebook profile) but thoroughly
so that personalized recommendation can be produced in a wide variety of
domains, from things to do to consumer products.

– Selecting an event for a given date, a user does not have to manually run queries
for all kinds of events she is interested in; instead, she logs in with her personal
profile and sees what is happening according to her interests.

– Personalization is expected to impress customers with unique treatment of inter-
ests of themselves and their friends supporting such social features as trust.

In terms of search implementation, this can be done in two steps:

1. Keywords are formed from query in a conventional manner, and search hits are
obtained by TF*IDF also taking into account popularity of hits, page rank and
others.

2. The above hits are filtered with respect to syntactic similarity of the snapshots of
search hits with search query. Parse tree generalization comes into play here

Hence we obtain the results of the conventional search and calculate the score of
the generalization results for the query and each sentence and each search hit
snapshot. Search results are then re-sorted and only the ones syntactically close to
search query are assumes to be relevant and returned to a user.

9.3 Generalization of Expressions of Interest

In SG algorithm, default operation is a matching of parse trees for two texts. The
only exception is when one of these texts is a canonic social profile expression, such
as Facebook likes, and another is a regular text to be matched with, such as a
candidate event name. Once we have a canonic social profile expression, we don’t
need to act on the syntactic level since we know what kind of entity it is. Instead, we
need to do a category mapping between Facebook likes and names of entities, such
as event names.
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9.3.1 Personalization Algorithm as Intersection of Likes

We can define vertical personalization as finding a set of recommendations which
are the overlap of two sets:

• InterestSet: all possible subjects of user interests (all events) we believe a user
would be interested in according to what she specified;

• LocationDateSet: all events available at a specified location at a specific time.

In this setting, we can define a new set Recommendation ¼ InterestSet \
LocationDateSet. Since InterestSet is specified as two sets of <Likes, Categories>,
as long as LocationDateSet can be tagged with the same tags and categories, the
problem is solved. If overlap of likes is too small (unimportant), events with
categories of likes will be formed as the desired intersection. Note that <Likes,
Categories > is frequently redundant: Likes derive Categories unambiguously but
not the other way around.

Without personalization, using a conventional search engine, a user would have
to explicitly search for each of her <Likes, Categories>, or form a respective OR
query, to find this intersection. This is happening today when a user is searching the
web for ‘things to do’ this weekend. However, not all Facebook likes are equally
meaningful. Some of the likes were specified because the user is confident in her
interests, whereas another set of likes is encouraged by various Facebook apps and
therefore not as indicative of real user interest, and might be too unimportant. We use
the following mechanism to differentiate between these two classes of likes (impor-
tant/unimportant):

1. Using friends: all likes shared by friends;
2. Using dynamics of how likes appeared: initial set of likes are assumed to be

important, clusters of likes encouraged by various Facebook apps are
unimportant, likes of weakly represented categories are unimportant as well,
whereas well-represented categories of likes are important.

Once we have <Likes, Categories > of InterestSet, we first try to find important
likes, then unimportant likes, and finally different likes but from Categories in
LocationDateSet.

The remaining problem is to map two set of categories for Likes, CategoriesSrc
for source and CategoriesDest for destination. For this problem we will apply
argumentation techniques for dealing with potentially inconsistent and contradictory
information.

9.3.2 Mapping Categories of Interest/Thesauri

Facebook likes for the domain of entertaining events are as follows:
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CategorySrc ¼ {Retail, Consumer_products, Sports_athletics, Sports_teams, Ath-
lete, Television, Comedian, Clubs, Food_beverage, Musicians, Health_beauty,
Actor, Writer, Restaurants, Fashion, Comedian, Musician/band, Games, Musi-
cians, Movie, Tv show, Television, Album, Actor/director, Film, Bars, Education,
Nonprofit, Song}.

As the reader can see, these categories are overlapping, and belong to various
level of generalization and granularity. These categories have to be mapped into
types of events, venues such as restaurants and theaters, and particular music genres:

CategoryDest ¼ {Arts & Crafts, Community, Business & Tech, Dance, Fairs &
Festivals, Food & Dining, Music, Performing Arts, Sports & Outdoors, Visual
Arts} (higher-level categories) [

{Fairs & Festivals/{sport festivals} excluding other kinds of festivals} [ {sub-
categories including Jazz, R&B and Soul, Rock, Techno & Dance, Country,
Classical, Folk & Traditional . . . .}

Mapping between categories can be described as

Sports_athletics ! Sports & Outdoors/{soccer, hiking . . .}
excluding {camping, bird-watching} [ Dance/{gymnastics} excluding other kinds

of dance [
Fairs & Festivals/ {sport festivals} excluding other kinds of festivals}

As an essentially deterministic categorization, we would avoid applying statisti-
cal and fuzzy mapping here; instead, we prefer a systematic way to handle incon-
sistencies between source and target categorizations. Deterministic mapping better
fits current software development methodology, making this mapping fully control-
lable and therefore well-suited for commercial environments (compare with
approaches to reasoning related to argumentation in (Bordini and Braubach 2006;
Rahwan and Amgoud 2006).

The rules (clauses) for the target category above would look like:
sports_outdoors: – sports_athletics OR (outdoors, ┐camping, ┐bird-watching)
OR (dance, gymnastics) OR ( fairs_festivals & sport_festival). We now proceed to
the systematic treatment of inconsistencies among such rules using Defeasible Logic
Programming, an argumentative framework based on logic programming (García
and Simari 2004).

9.3.3 Defeasible Logic Programming-Based Rule Engine

To deal with inconsistent rules, the rule engine need to implement a mechanism of
rule justification, rejecting certain rules in the situation when other rules have fired.
We select Defeasible Logic Programming (DeLP, García and Simari 2004) approach
and present an overview of the main concepts associated with it. One of the key
applications of the rule engine is category mapping, and we will show an example of
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how categories can be mapped in order to determine recommendation categories
given social profile categories.

A Defeasible logic program is a set of facts, strict rules Π of the form (A:-B), and
a set of defeasible rules Δ of the form A- < B, whose intended meaning is “if B is the
case, then usually A is also the case”. A Category mapping DeLP program includes
facts which are formed from likes, and strict and defeasible clauses where the heads
and bodies corresponds to the sets Category1 and Category2. A given DeLP includes
a part from a social profile that contains facts (likes), and a fixed set of mapping rules
which include positive and negative occurrences of categories.

Let P¼ (Π,Δ) be a DeLP program and L a ground literal. A defeasible derivation
of L from P consists of a finite sequence L1, L2, . . ., Ln ¼ L of ground literals, such
that each literal Li is in the sequence because:

(a) Li is a fact in Π, or
(b) there exists a rule Ri in P (strict or defeasible) with head Li and body B1,B2, . . .,

Bk and every literal of the body is an element Lj of the sequence appearing before
Lj (j < i).

Let h be a literal, and P ¼ (Π, Δ) a delp program. We say that <A, h > is an
argument for h, if A is a set of defeasible rules of Δ, such that:

1. there exists a defeasible derivation for h from ¼ (Π [ A)
2. the set (Π [ A) is non-contradictory, and
3. A is minimal: there is no proper subset A0 of A such that A0 satisfies conditions

(1) and (2).

Hence an argument <A, h > is a minimal non-contradictory set of defeasible rules,
obtained from a defeasible derivation for a given literal h associated with a
program P.

We say that <A1, h1 > attacks < A2, h2 > iff there exists a sub-argument <A, h > of
<A2, h2 > (A � A1) such that h and h1 are inconsistent (i.e. Π [ {h, h1} derives
complementary literals). Our analysis will be focused on those attacks corresponding
to defeaters. When comparing attacking arguments, we will assume a partial
preference ordering on arguments (given e.g. by specificity as in (García and Simari
2004).

Specificity, for example, is a syntactic criterion preferring those arguments that
are more direct (ie. requiring less inference steps) or more informed (those based on
more premises are preferred over those based on less information). This preference
criterion is modular in DeLP, and in fact other criteria are possible, where numerical
values are propagated via modus ponens and used for comparing arguments).

We will say that <A1, h1> defeats <A2, h2> if <A1, h1> attacks <A2, h2> at a
sub-argument <A, h> and <A1, h1> is strictly preferred (or not comparable to) <A,
h>. In the first case we will refer to <A1, h1> as a proper defeater, whereas in the
second case it will be a blocking defeater. Defeaters are arguments which can be in
their turn attacked by other arguments, as is the case in a human dialogue. An
argumentation line is a sequence of arguments where each element in a sequence
defeats its predecessor. In the case of DeLP, there are a number of acceptability
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requirements for argumentation lines in order to avoid fallacies (such as circular
reasoning by repeating the same argument twice).

Based on the previous notions, DeLP queries are solved in terms of a dialectical
tree, which subsumes all possible argumentation lines for a given query. The
definition of dialectical tree provides us with an algorithmic view for discovering
implicit self-attack relations in users’ claims. Let <A0, h0> be an argument from a
program P. A dialectical tree for <A0, h0> is defined as follows:

1. The root of the tree is labeled with <A0, h0>
2. Let N be a non-root vertex of the tree labeled <An, hn> and

Λ ¼ [<A0, h0>, <A1, h1>, . . ., <An, hn>] the sequence of labels of the path from
the root to N. Let [<B0, q0>, <B1, q1>, . . ., <Bk, qk>] all attack <An, hn>. For each
attacker <Bi, qi > with acceptable argumentation line [Λ, <Bi, qi>], we have an arc
between N and its child Ni.

A marking on the dialectical tree can be then performed as follows:

1. All leaves are to be marked as U-nodes (undefeated nodes).
2. Any inner node is to be marked as U-node whenever all its associated children

nodes are marked as D-nodes.
3. Any inner node is to be marked as D-node whenever at least one of its associated

children nodes is marked as U-node.

After performing this marking, if the root node of the tree is marked as a U-node,
the original argument at issue (and its conclusion) can be deemed as justified or
warranted.

Let us now build an example of a dialectical tree of category mapping. Imagine
we have a following set of mapping clauses and available categories obtained from
likes (Table 9.1).

In this category mapping to DeLP, the literal sports_outdoors is supported by <A,
sports_outdoors>¼

<{(sports_outdoors – <sports_athletics), (sports_athletics – <exercise_facility)},
sports_outdoors> and there exist three defeaters for it with three respective argu-
mentation lines: <B1, ┐sports_athletics> ¼ < {(┐sports_athletics –

<exercise_facility, yoga)}, sports_athletics>.
<B2,┐sports_athletics> ¼ <{(┐ sports_athletics – <exercise_facility, commu-

nity), (community – <food_dining)}, sports_athletics>.
<B3, ┐sports_athletics > ¼ < {(┐sports_athletics – < chess)}, sports_athletics>.

The first two are proper defeaters and the last one is a blocking defeater. Observe that
the first argument structure has the counter-argument, <{sports_athletics – <
exercise_facility}, sports_athletics), but it is not a defeater because the former is
more specific.

Thus, no defeaters exist and the argumentation line ends there.
B3 above has a blocking defeater <{(sports_athletics – < exercise_facility)},

sports_athletics > which is a disagreement sub-argument of <A, sports_outdoors >
and it cannot be introduced since it gives rise to an unacceptable argumentation line.
B2 has two defeaters which can be introduced: <C1, ┐community >, where C1 ¼
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{(┐community – < food_dining, music),(music – < rock)}, a proper defeater, and <
C2, ┐community >, where C2 ¼ {(┐community – < business_tech)} is a blocking
defeater. Hence one of these lines is further split into two; C1 has a blocking defeater
that can be introduced in the line <D1, ┐music >, where D1 ¼ <{(┐music – <
visual_arts)}. D1 and C2 have a blocking defeater, but they cannot be introduced,
because they make the argumentation line not acceptable. Hence the target category
sports_outdoor cannot be accepted for the given user, as the argument supporting the
literal sports_outdoor is not warranted. The dialectical tree for A is shown in Fig. 9.6.

Having shown how to build dialectic tree, we are now ready to outline the
algorithm for category mapping:

1. Get the list of likes from the social profile, and their list of categories
CategoriesSrc;

2. Filter out unimportant categories and likes following criteria outlined above;
3. Add resultant set of facts to the fixed set of defeasible rules for category

mappings;
4. Build a dialectic tree for each expected target category and accept/reject it based

of defeasibility criterion;
5. Form the list of resultant target categories CategoriesDest.

We manually constructed 34 classical rules and 55 defeasible rules to cover the
mapping of entertainment categories. A test-driven development methodology was
used: first the test cases for rule mapping were constructed, followed by implemen-
tation of mapping rules which were immediately tested against these test cases.

Table 9.1 An example of a Defeasible Logic Program for modeling category mapping

Defeasible Rules

sports_outdoors – < sports_athletics

sports_athletics – < exercise_facility.

┐ sports_athletics – < exercise_facility, yoga.

┐ sports_athletics – < chess.

┐community – < food_dining, music. (commercial, not a community event)

music – < rock..

┐ sports_athletics – < exercise_facility, community (where people do stuff different from sport)

community – < food_dining.

┐community – < business_tech.

┐music – < visual_arts.

Facts (facts are obtain from explicit likes)

exercise_facility.

yoga.

chess.

rock.

business_tech.

food_dining.

visual_arts.
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9.4 The Algorithms for High-Relevance CMS

In this section we provide the algorithm details in a more formal way. Thesaurus
building, de-duplication, sentiment analysis, SEM information extraction and SG
engine are the components where the algorithm implementation details are fairly
important.

9.4.1 De-duplication Algorithms

We now describe the algorithms of de-duplication based on web mining. The idea is
to assess a similarity of web search results for two entities, to decide whether they are
the same entities. Since the search engines have accumulated experience on what
people search for and which search results people click on, we leverage it to verify
for two entities, if their corresponding search results are rather similar, then these
entities are the same.

Matching Algorithm 1 finding common expression and confirming that it consti-
tutes an entity

Input: A pair of strings
Output: decision on whether this pair is the same entity ¼ > merge them, or

different entities

1. Get a set of candidate pairs;
2. Compare entity names: select overlap keywords;

(a) See if common keywords are common words, or entity-specific words;
(b) Retain overlap words which are entity specific, subtract stop words for given

duplicate-item type ({event, venue, performer});

Fig. 9.6 Dialectical tree for category sports_outdoor using the DeLP Category Mapping
(Table 9.1)
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(c) Normalize remaining words;

3. Filter out cases of too short list of overlap words, or those including all common
English words;

4. Verify that 2c) is an entity by searching for it in web space;

(a) Collect all title of search results and observe how the candidate searched
entity occur in title;

(b) Filter out search results so that the candidate searched entity occurs in them in
a ‘distorted’ way: there is no alignment between searched entity and obtained
title;

(c) Filter out cases where words other than {nouns, adjectives and gerunds}
occur in the sub-title which corresponds to searched entity;

5. Count the number of all accepted search results titles for a formed entity and
compare with threshold for the minimum number of such titles. If it is above the
threshold, confirm that the overlap words constitute an entity;

6. If overlap words constitute an entity confirm duplication, otherwise confirm that
candidate pair are different entities.

Matching Algorithm 2 comparing possibly identical entities in web search space

1. Get a set of candidate pairs.
2. Form search expressions for the pair of entities to verify if they are identical in

search space.

(a) For events, just take their names;
(b) For venues, add address and city;
(c) For performers, possibly add tags and/or genres if available.

3. Filter our common words from both entity names which do not bring additional
constraint, such as “Monday poetry night at Blue Lagoon” “poetry night at Blue
Lagoon”

4. Apply additional set of normalization rules for both entities in the current pair
5. Run search for each entity in the pair and compare search results.
6. For venues, the comparison score includes the similarity in URL, address

and city.
7. For a set of search results for first entity, find the closest search result for the

second entity, and verify if results is identical:

(a) By syntactic match
(b) By string edit distance
(c) Do it for title and also snippet
(d) If similarity is above the threshold, accept a unit of similarity in search space

8. Sum up the total number of units of similarity in search space and compare with
threshold. If above the threshold, confirm the similarity between two entities,
otherwise reject.

276 9 A Content Management System for Chatbots



9.4.2 Analyzing Sentiments by Parse Tree Navigation

One of the most important and most difficult tasks in marketing is to estimate how
consumers view various products. A simple example illustrates the problem to be
solved. Let us consider an example of a supplier of LCD screens for personal digital
assistants (PDAs), and we need to figure out what positive and negative impressions
the public holds about your product. The available dataset includes 300,000 cus-
tomer support reviews about an entire product line. The objective is to determine
what aspects of this product line are viewed favorably or unfavorably, without trying
to manually read all these reviews to understand the public sentiment.

When purchasing online, consumers are interested in researching the product or
service they are looking to purchase. Currently, this means reading through reviews
written on websites of different vendors that happen to offer the product or service.
For example, if the consumer is interested in purchasing a digital camera, several
on-line vendors allow consumers to post reviews of cameras on the website.
Gathering information from such reviews is still a very time-consuming process as
there is little way to sort the reviews for the features that are of interest to any one
potential buyer so the potential buyer must read through them manually. Sometimes
reviewers rate a product with a given number of stars in addition to making
comments. An average high or low number of stars is not necessarily very informa-
tive to a potential buyer, especially if she is concerned about certain features on the
camera. For example, a potential buyer may want a camera from which the photo-
graphs come out with very true colors as opposed to oversaturated colors. Other
features, such as the weight of the camera or the complexity of the controls are of
lesser concern to this potential buyer.

To provide a product recommendation, we extract expressions of user needs
about products and services. User needs are extensions of what is referred to as
topicality in sentiment analysis and are extracted as attachments to a sentiment
expressions. To extract them, we need to use syntactic tree, where both vertices
(lemmas) and edges (syntactic links) are labeled. In a sentence, we first identify
sentiment as a node (single word like ‘good’), or subtree (‘did not work for me’) and
then proceed to the sub-tree which is dependent (linked to) the main node in
sentiment sub-tree. Over the years, we accumulated our own domain-independent
vocabulary of English sentiments, coded as parsing sub-trees to be identified at
parsing trees.

Let us consider the domain of digital cameras, and focus on a particular class of
usability needs associated with taking pictures at night. We use a pair of tags: night
þ specific night-related need sub-category:

night – picture (general, overall – taking pictures at night)
night > cloud (how to film clouds at night),
night > cold (how to film at night in cold conditions

(continued)

9.4 The Algorithms for High-Relevance CMS 277



night > recommend (which measures are recommended at night, general
issues)
night > dark (filming in dark conditions)
night > set (what and how needs to be set)
night > inconsistent (for some cameras, setting seemed inconsistent to some
users)
night > shot (peculiarities about night shot)
night > tripod (use of tripod at night)
night > mode(switch to specific filming modes for night shots)

As one can see, the meanings for needs of filming at night vary in generality and
semantic roles, and phrasings include nouns, adjectives and verbs. So the criteria of
being a user need indeed have to be formulated in terms of a sub-tree, satisfying
certain syntactic (tree) conditions (see (Galitsky et al. 2012) for more details). For a
horizontal (unlimited) domain (like electronics, which is rather wide), all terms from
need expressions cannot be defined via a thesaurus. Therefore, semantics of a need
expression has to be inferred from the syntactic one.

Our assumption is that if there is at least one author who attaches sentiment to an
expression (which we know now as an expression for need), then other people might
have the same need, so it is worth storing and analyzing. In terms of syntactic tree, if
a lemma for sentiment is dependent of a term T and does not have its own dependent
vertices, the need expression is a sub-tree dependent on T.

The examples of extraction of two need expressions are shown at Fig. 9.7. For the
sentiment ‘great’, we have a sub-tree ‘in-daylight-bright’ which is a need expression
(use of digital cameras can be ‘great’, or ‘not so good’ in ‘bright daylight’. For the
sentiment ‘not. . . good’, we have a need ‘indoor-in-setting-dim’. In the latter case
sentiment is expressed by ‘don’t expect it to get good’, where the main node is ‘be’,
and the need expression is branching from the vertex ‘get’.

Once the need expressions are extracted, they need to be normalized and grouped.
Normalization transforms need expressions into sequences of words in the normal
form, without prepositions and articles. After that, the need expressions are grouped
by the main noun of expression (the closest noun to the trunk of the need expression
as a sub-tree).

Let us consider an example of a group with noun viewfinder (Fig. 9.8), with the
second word in grouped expression, all keywords in need expression, and original
sentence. We have four need sub-categories {bright, electronic, large, lcd} for the
need category viewfinder. These subcategories categorize viewfinder from very
different aspects. Notice that both syntactic relations between viewfinder and second
word vary, as well as semantic relations; however, we ignore that for the sake of
forming categories and sub-categories.

Four sentences above come from different sources, the common thing between
them is the product and a category of user needs about viewfinder in connection to
this product.
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Whereas category noun is identified by a rule, a sub-category word is obtained
by clustering category into clusters (Makhalova et al. 2015); sub-category word
should not be a category word and should occur in more than one need expres-
sions within a category. For more accurate identification of sub-category word

Fig. 9.7 Syntactic parse tree for sentences about digital camera with two pairs of sentiment-need
expressions (circumscribed)

Fig. 9.8 Drilling in associated category of needs
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more advanced methods could be used, combining machine learning and statisti-
cal analysis; it could produce higher percentage of word pairs where the meaning
can be obtained just from this pair.

Inversion of content is a transformation of corpus of text to a set of interactive
textual components where each component includes all content about given need for
a given product. These components are hyperlinked to drill in and out of need
categories associated with each other.

9.4.3 Agglomerative Clustering of Search Results

Search queries that express broad user intent frequently return fairly large result sets
so that a user needs to navigate them. The idea of clustering search results into
semantically similar groups in real time and presenting descriptive summaries of
these groups to the user is almost three decades old. The clustering allows search
user to identify useful subset of the results, when can in turn be clustered to identify
narrower subsets (Tunkelang 2018). Clustering helps the user to quickly navigate to
the relevant subset of the search results; this subset can in turn be clustered to
navigate to even narrower subsets.

Clustering search results need to meet the following criteria to be usable. Firstly,
each cluster should be associated with a meaning communicated with the user
(by labels, snippets or individual search results indicative of this cluster). Secondly,
search results of the same cluster should have a similarity with each other. Each
cluster needs to be a coherent subset of possible search intents. Thirdly, search
results assigned to different clusters should be substantially different from one
another. Each cluster needs to contain a distinct subset of search intents.

The main difficulties in clustering search results are defining the similarity
function, adjusting the clustering algorithm, and producing informative snippets
for the obtained clusters. It is straight-forward to determine whether two search
results are near-duplicates. However, determining that two results are semantically
similar is a much harder problem, dependent on an appropriate similarity threshold
that consistently derives systematic, distinct clusters.

A search result clustering algorithm needs to address the following issues
(Leouski and Croft 1996):

1. Implement clustering as a classification of a document into a cluster. Documents
can be treated as vectors of weight-term pairs. The system designer needs to
decide on which terms to chose and whether to use the whole document or only a
part of it as the source of terms;

2. Select the classification algorithm. The existing clustering techniques vary in
accuracy, robustness, speed and storage requirements;

3. Engineer the output of the classifier, or cluster representations. The classification
process results in a set of clusters, where every cluster contains documents about a
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unique topic. Clusters can be represented using a selected document or term list,
and more creativity with cluster representation is needed;

4. Determine the evaluation settings. After the classification tool is created, the
results need to be analyzed and performance evaluated its from the effectiveness
and efficiency viewpoint. The evaluation of how the effective are clustering
results in comparison with the flat list is fairly difficult.

Typical clustering approaches involve embedding documents into a vectors and
then computing a geometric function on them, such as cosine, to measuring their
similarity. While such approaches have a solid theoretical foundation, the results are
frequently random and illogical, highly subject to the peculiarities of the documents
being clustered.

Hierarchical clustering algorithms are either top-down or bottom-up (Manning
et al. 2008). The former class of algorithms tackles each document as a singleton
cluster at the outset and then successively merge (or agglomerate) pairs of clusters
until all clusters have been merged into a single cluster that contains all documents.
Bottom-up hierarchical clustering is therefore called hierarchical agglomerative
clustering. Top-down clustering requires a method for splitting a cluster, doing it
recursively until individual documents are reached.

9.4.3.1 Description of GreedySearch Algorithm

The input of the algorithm is a user query q in NL and a subset of snippets A*
last

ranked by their relevance for the last successful refined query, each snippet a 2 A*
last

has a particular real-valued weight w 2 R. These weights are assigned to snippets by
a search engine and reflect not only relevance to the query, but also might take into
account the user’s profile, item popularity, geo-location, his search history, etc. The
input at the initial call is a user query q and the empty set of snippets A*

last. We first
present the search function GreedySearch followed by the clustering algorithm
AgglomerativeClustering towards the end of this subsection.

At the first step (line 1) the request is sent to a search engine. Then, a function δ is
applied to the set of returned snippets A and the request q in order to obtain their
unique formal representations δ(q) and Aδ ¼ {δ(a) | a 2 A}, respectively. This
representation makes texts comparable to each other.

GreedySearch algorithm, a strategy for specification of queries looks as follows:

Input: query q in NL, snippet set for the last relevant refinement A*
last

Output: ordered set of answers A* in natural language A* ¼ GreedySearch(q,
A*

last)
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To compute clusters (line 4) of similar snippets we use two matrices: the matrix of
syntactic similarity S and search relevance similarity matrix W with the entries

sij ¼ sim(δ(ai),δ(aj)), i,j ¼ 1,. . .,|A| and
wij ¼ rel_sim(wi,wj), i,j ¼ 1,. . .,|A|, respectively.

We assume that the values of both similarity matrices are scaled to [0,1].
Centroids of the computed clusters C are the candidates for a new refined request.
Specific information about the clusters is being presented to the user until a cluster
with relevant specification is found (lines 7–22). The interaction with the user is
carried out in 4 steps:

1. The biggest clusters C is chosen, i.e., C ¼ argmaxC2C|{δ(a) | δ(a) 2 C} (line 8);
2. The added information in C w.r.t. q is computed. In can be done formally by

computing the difference between a centroid of cluster C and δ(q) (see
ComputeDifference function, line 9);
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3. The computed difference is translated into a set of phrases T ;
4. T is shown to the user and feedback r 2 {ShowDetails, Relevant, Irrelevant} is

received. The feedback defines the further strategy of the chatbot.

ShowDetails means that the user has found the information she searched for and
all the snippets/documents corresponding to the cluster will be returned to the user
ranked by their relevance weights (line 25) assigned by the search engine. Relevant
answer is the case where the user has found a proposed query specification quite
useful, but not enough (i.e., the further query specification is required), in this case a
new augmented query qaug is sent to the search engine (line 27) via the recursive call
ofGreedySearch(qaug, A

*), Irrelevant answer describes the case where specifications
do not contain relevant information. When all proposed specifications in C are
irrelevant, the algorithm returns a subset of snippets from a cluster with the last
relevant specification (line 31).

9.4.3.2 Agglomerative Clustering Algorithm

Agglomerative clustering is applied to the snippets to get short specifications of a
request. The termination criteria ensures that each centroid of clusters (i.e., the
shared information of snippets in a cluster) will be the shortest specification of the
request. We denote a cluster by capital letter C and the corresponding centroid by
lower case letter c. For the sake of convenience we define some functions that will be
used in listing of the AgglomerativeClustering algorithm.

As mentioned above, requests and snippets are given in NL. We define a mapping
δ: L! V that maps a text in natural language to a unique formal representation, L is a
space of all possible texts in natural language, V is a space of their formal represen-
tations. Further we consider the examples of spaces V and discuss how the functions
defined in this section can be rewritten for the considered spaces.

sim: V � V ! [0,1] � R is a function that evaluates similarity between two
objects, the similarity between an object and its copy is equal to 1.

merge: V � V ! V is a function that returns a shared description of its two
arguments, the shared description is in the same space as the merged arguments.
is_included: V � V! {True, False} is a function that returns True if the description
of the first argument is included in the description of the second one, False
otherwise.

rel_sim: R � R ! [0,1] � R is a function that evaluates relevance similarity
between two objects by their relevance weights, the similarity between an object and
its copy is equal to 1.

Input: query δ(q), snippet set Aδ

Output: set of subsets of snippets {A*|A*� A}¼ AgglomerativeClustering(δ(q), Aδ)
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Agglomerative clustering receives a query δ(q) and a snippet set Aδ as input,
represented in the space where sim, merge and is_included functions are defined.
Initially, each snippet a 2 Aδ is an individual cluster centroid in C. Pairwise syntactic
similarity between cluster centroids is stored in a matrix S of the size | C | � | C |, the
relevance similarity is stored in matrix W of the same size | C | � | C |. On each
iteration, the most similar cluster centroids are chosen (line 11) to compute a new
centroid c, which is their shared description (line 12). The weight of a new cluster
C is the maximal relevance weight of its members, i.e., wC ¼ max{wa | δ(a) 2 C}.
Here we use capital letters for clusters and lowercase letters for their centroids,
i.e. C � Aδ for a cluster and c for its centroid.

To compute similarity between centroids, both syntactic and relevant similarities
are taken into account. We use a weighted average of the similarities, i.e., similarity
between centroids ci and cj is defined as k1sij + k2wij, where k1,k2 2 R are coefficients
of importance of syntactic and relevance similarities, respectively. If a newly created
centroid contains the description of the original query (i.e., it retains complete
information about the query) the two merged centroids are replaced by their shared
description, the weight of the cluster is the maximal weight of the members of the
merged clusters, i.e., wC ¼ max{wa | δ(a) 2 Ci [ Cj}. When all the centroids that do
not lose the information from the original query are computed (the centroids that
includes as much snippets as possible and retain information from the query), the
subsets of snippets corresponding to the computed centroids are returned.

9.4.3.3 Similarity Used by Clustering

Vector Space Model Let us consider the simplest model of text representation. Once
the snippets are received, a new set of terms from A [ {q} is computed. The N found
terms correspond to the vector entries. Each text is represented by a vector of sizeN and
filled with 0 s and 1 s. The “1” at i means that the ith term is contained in the text.
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1. merge(d1,d2) ¼ d1 � d2
2. sim(d1,d2):

(a) sim(d1,d2) ¼ JaccardSimilarity(d1,d2)
(b) sim(d1,d2) ¼ CosineSimilarity(d1,d2)
(c) sim(d1,d2) ¼ SimpleMatchingCoefficent(d1,d2)

3. is_included(d1,d2) ¼ d1 � d2 � merge(d1,d2) ¼ d1

The following similarity measure is based on Parse Thickets (Chap. 7)

1. merge(d1,d2) ¼ d1 u d2
2. sim(d1,d2):

(a) simmax d1; d2ð Þ≔maxchunk2 d1ud2ð ÞScore chunkð Þ
(b) simavg d1; d2ð Þ≔ 1

d1ud2ð Þj j
P

chunk2 d1ud2ð ÞScore chunkð Þ

3. is_included(d1,d2) ¼ d1 v d2

(a) Relevance Similarity

rel sim wi;wj

� �
¼ 1� wi�w jj j

maxi,j21, ..., Aj jwij

We have observed that search results clustering is a well-established approach for
presenting and organizing search result sets, and the search engineering community
have continued to work on improving it. Clustering sounds great in theory but in
practice turns out to be not always effective, logical and crisp. Overall, clustering is a
valuable tool to respond to the queries with broad intent scope.

9.5 Building Conclusive Answers

9.5.1 Concluding a Question Answering Session

In this section we focus on the issue of how to conclude a chatbot session in a
comprehensive manner, to satisfy a user with detailed extended answer. For a
question-answering session, the goal is to enable a user with thorough knowledge
related to her initial question, from a simple fact to a comprehensive explanation.
Sometimes, a short and concise answer such as account balance or person name
suffices. However, frequently, a longer answer including multimedia content com-
piled from multiple sources is most appropriate. This answer is expected to be a
comprehensive source of information on a topic, including definitions, recipes and
explanations. In this section we focus on the algorithm of forming such answers.

After an initial question of a user, a number of clarification steps usually follow.
Then, once the chatbot collected all necessary information, it can decide on what
kind of answer is most suitable for a given session. For a factoid question, a brief
specification of the value of the parameters or attributes in question is delivered.
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Otherwise, a final answer about an entity mentioned in question, such as introduction
of a bank account or a rule for how to close it, is issued.

Traditional chatbots do not possess this feature. Deterministic chatbots instead
provide short replies by texts indexed in a typical search index. Statistical learning
and especially deep learning – based chatbots attempt to use learning to tailor its
answers to user session, but only brief texts can be obtained as a result. Even if they
are meaningful, texts obtained as a result of such learning are short and not
comprehensive. In a machine learning environment, typically each reply is obtained
as a result of learning, and no special attention is given to a concluding answer.

These are the requirements for the complete, comprehensive answer that gives a
user a chance to get a deep understanding of an entity/topic and a good way to
conclude a dialogue:

1. An answer has to be compiled from multiple sources to assure an unbiased,
objective description. If it is opinionated, multiple opinions from a broad spec-
trum of perspectives must be compiled in a coherent manner. This dialogue
conclusive answer has to be comprehensive to provide sufficient information
for a user to be satisfied with a chatbot session. If the further questions based on
this answer arise, the user can start a new chatbot session keeping in mind a
specific focus;

2. An answer should be as easy to perceive and as intuitive as possible. Therefore
combination of images, videos and audio files is beneficial. The answer compi-
lation method should be domain – independent and adhere to certain presentation
standards;

3. An answer should have a table of content and references, if it spans over multiple
pages.

An example of a conclusive answer for a brief dialogue is shown in Fig. 9.9. The
user requested a recommendation about investment, received it and expressed her
doubts. The chatbot provides the comprehensive conclusive answer entitled ‘Why a
61% revenue growth is not enough for Alibaba’ with detailed information on
competitiveness including the charts. In this section we explore technologies for
automated building of such answers.

One of the essential problem to be solved building a conclusive answer is to form
its logical structure from the logic of a dialogue (Galitsky and Ilvovsky 2017) and
user interests, intentions and possible misunderstanding expressed in it.

9.5.2 Building a Structure of Conclusive Answer

An answer flow should reflect the structure of preceding dialogue, if it is available
and non-trivial. Also, if some controversial intermediate questions and/or answers
lead to it, they should be reflected in the structure of this conclusive answer. This
answer should constitute a document with section structure reflecting either the
generally accepted sequence of topics for this type of entity (such as a biography
for a person or account usage rules) or the logical flow of a dialogue occurred so far
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(such as why first attribute, the value of the second attribute, and why the value is
such and such for the third attribute). An example for the latter case would be a
certain credit card, its overdraft fee amounts, reasons the card can be cancelled and
possibilities for interest rate increases.

For most basic questions like product features such documents are available and
do not need to be constructed. However, for a broad number of topics and issues,
when a user interest is beyond the definition and rules, selecting an existing
pre-written document is insufficient and a specific one tailored to demands of a
given user needs to be constructed.

Hence there are two kinds of sources/options for building a document structure,
or its table of content (TOC):

1. If a user does not indicate in a dialogue a preference for a specific issues
associated with entity, a default structure is provided. It can be mined from the

Fig. 9.9 A conclusive answer to a client having a doubt concerning investment recommendation
by a chatbot
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general web sources such as Wikipedia and domain-specific sources such as
Investopedia.com. For example, the TOC for the topic Adjusted Gross Margin
would use the section structure from the respective Investopedia page https://
www.investopedia.com/terms/a/adjusted-gross-margin.asp such as the main def-
initions, treatment in depth, associated topics and others. In this case it is possible
to build TOC in a hierarchical manner.

2. If a user has a specific concern about an entity, such as ‘Why banks can increase
APR without advance notice’, then the TOC is built from multiple documents’
section titles. These documents are identified on the web or intranet to be relevant
not just to the main entity but also to the Why part. A document can start with a
section on APR but then proceed to various cases on how banks increased the
APRs and associated issues.

We use a high-level discourse structure of human-authored text to automatically
build a domain-dependent template for given topic, such as event description,
biography, political news, chat and blog. In case of a dialogue or a text containing
some kind of argumentative structure, this template is based on a sequence of
communicative actions. In a general case we follow a certain epistemic structure
extracted from multiple texts in a particular domain (for example, for a music event
we present a performer biography, previous concerts, previous partnerships, and
future plans).

Let us consider the following dialogue and its conclusive answer (Table 9.2).
The reader can see that this dialogue leads to Option 2 rather than to Option

1, since the user is frustrated about the NSF and is trying to understand why it
happened and how to avoid it. A generic answer about an entity would probably
upset this chatbot user further since he believes he knows general stuff about NSF.
Therefore the conclusive answer should focus on a specific user issue/misunder-
standing exposed in the previous utterances of a dialogue.

Table 9.2 Two options for dialogue flow

C(customer): Why was I charged a Non-sufficient fund fee (NSF)?

Bank: Paying out of your account, you made your balance negative at some point

C: But I first made a deposit and then made a payment for a lower amount

Bank: Your deposit might not has been processed by the time you made your payment

C: How can I stay positive on my account balance?

Bank (with conclusive answer):

Option 1: Generic Answer about an entity Option 2: Answer specifically addressing cus-
tomer concern

Non-sufficient Fund Fee (NSF) Non-sufficient Fund Fee (NSF): making sure
your balance is positive

Definition: Non-sufficient Fund Fee is a fee
charged by the bank. . .

Check deposits. . .

Amount. . . Processing time. . .

Ways to avoid. . . Inter-bank transactions. . .

Why banks charge NSF. . . Link accounts. . .
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To form a TOC from the above dialogue, the following phrases from user
utterances need to be used as queries to establish the section structure of the
conclusive answer:

1. Non-sufficient fund fee (NSF)
2. Why was I charged
3. Make a deposit
4. Make a payment for a lower amount

These phrases (extended with synonyms) should match some section structures of
certain documents about NSF and banking customer support logs: they will form a
skeleton of the resultant answer.

A good way to discover attributes for entities to form a structure of a document is
an auto-complete feature for web search. If an entity in the preceding dialogue is
‘Edison invented’ then the final concluding document can have the following TOC
(Fig. 9.10). These auto-complete results (Google 2018) are the queries to the
document index on the one hand and the section titles on the other hand.

To build a hierarchical TOC, we form search queries as entity (document title)
plus the discovered section title: {‘Edison invented the light bulb’, ‘Edison invented
the phonograph’, . . .}.

For the first query, we visualize the types of light bulbs (following Google search)
which can form subsections of the section ‘Light bulbs’ (Fig. 9.11 on the top). For
the second query, we obtain the search results and attempt to extract noun phrases
sound as section titles (on the bottom). Such noun phrases should include two-three
modifiers (three-four words total) and do not include very specific infrequent words,
non-English words and non-alphanumeric tokens.

The infrastructure for preparing content for building answers is shown in
Fig. 9.12. Various available sources are used, including the written documents and
web pages explaining entities, their attributes and specifying business rules. Case-
based information can be available in the form of customer support logs, various
forms of corresponding with customers or internal issue logs. All these sources with
diverse structures need to be converted into a unified form which adheres to the
following:

• A chunk of text needs to contain a paragraph-size text: two to six sentences,
60–150 words;

• This chunk of text should be self-contained; it should neither start with a reference
to a previous paragraph nor end with a reference to a following one.

Fig. 9.10 Auto-complete
feature to discover the
attributes of entities to build
section structure
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This assessment can be made by means of discourse-level analysis (Chaps. 7 and
11) or in a simpler, string – based manner. Chunk-of-text extractor performs the task
according to the above requirements. Once chunks of text are extracted from various
sources, they are put into the index so they can be combined in a chatbot answer
document.

Fig. 9.11 A visualization of attributes for an entity (on the top). Extracting phrases for topics from
search results (on the web, intranet or an arbitrary document index, on the bottom)
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Chunks of text to be inserted into an answer document need to be extracted from a
proper area at a webpage or a proper section of a document, and cleaned. We follow
(Baroni et al. 2008, Cai et al. 2003 and Pasternack and Roth 2009) for the algorithm
of text extraction from a webpage. Given a page, we need to decide if the page
contains an article with desired content, and if it does, find a contiguous block of
HTML in the webpage starting with the first word in the article and ending with the
last. Finally, we need to remove everything other than the article text (and its
included markup tags) itself, such as ads, from the extracted block and output the
result. When the first word or last word is nested within one or more pairs of tags, the
relevant opening and ending tags are appended to the beginning and ending of the
extracted block, respectively. Otherwise, when this nesting is not as above, this one
or more pairs of tags can be left open, disrupting the article text’s formatting, so we
ignore this case.

A chart for the algorithm for building the structure of a conclusive answer is
shown in Fig. 9.13. Firstly, a right step in the dialogue to conclude it needs to be
determined (a component on the top). Also, a conclusive comprehensive answer is
not always a good end for a dialogue. If a dialogue leads to a transaction or a user
seems to be knowledgeable enough then no comprehensive answer would be
required: the dialogue will be concluded with a transaction confirmation and user
knowledge confirmation respectively.

Depending on dialogue type, we build the structure of a conclusive answer
(Option 1 and Option 2 from Table 9.2). On the left, we build sections of conclusive

Index including 
all sources in 
unified form: 

paragraph-size 
chunks with 

possibly titles,  
hyperlinks, 

associated images 
and videos

Documents 

Web pages 

Customer support 
conversation logs 

Internal issue 
resolution logs 

Paragraph-
sized text

title

Correspondence 
with customers 

Video

Chunk of 
text extractor

- Identify style 
for each 
document 
section.

- Remove 
document 
portions 
unsuitable for 
text chunks

- Split plain 
text areas into 
paragraphs  

Fig. 9.12 Preparing available content for building answers as documents
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answer from the structure of how entity and its attributes are introduced. On the right,
we follow the questions, disagreements and misunderstanding of user utterances
about an entity.

9.5.3 Content Compilation Algorithm

The chart for text fragment mining algorithm is shown in Fig. 9.14. We start with the
seed, one or multiple sentences each of which will form one or more paragraphs about
the respective topics of the TOC. These seed sentences can be viewed as either headers
or informational centroids of content to be compiled. We now iterate through each
original sentence, build block of content for each and then merge all blocks, preceded
by their seed sentences together, similar to (Sauper and Barzilay 2000).

  Determine that it is 
a good time for 
concluding answer 

  Determine that a document is a 
suitable form for a concluding 
answer about entity E

  Document type?: default about an entity vs 
special issues addressed in dialogue need to 
be included 

Current dialogue

Section 1: What is E

Section 2: E and its attribute A

Section 3: E and its attribute A1 
and how it is related to A

Section 4: E and how it is 
related to another entity E1

Section 1: What is E: the topic of 
the initial query

Section 2: Why E has its attribute 
A: the first user clarification request

Section 3: E and its attribute A1 
and is it similar to  A: the second user 
clarification request

Section 4: E and how it is similar to 
another entity E1: the user expressed 
her concern about E2

  Resultant document as a
conclusive comprehensive
answer

Fig. 9.13 An algorithm for relying on the current dialogue to form a conclusive answer
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Input is a seed text: 
a short phrase, a 

sentence or a paragraph

Extract 
main entity or 

entities

Identify a page 
on the web to 
borrow TOC

Build TOC for 
the main entity 
from the seed

For each 
seed 

sentence

Extract noun phrase from each sentence
Noun phrase obeys a number of criteria: 

number of words (3), POS, named entities (2-4
tokens)
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extracted phrase and 

run it via Search 
Engine API

Split search result snippets into sentences and insert 
markers for incomplete ones to be substituted 
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For each 
search result

For each candidate 
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Extend the snippet sentence from the 
downloaded text. Possibly include preceding and 

consecutive sentence to form a candidate text 
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Download
a doc or 
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Perform relevance verification:
• Access similarity between the candidate fragment and seed sentence
• If similarity is low then compute similarity for preceding or

consecutive sentence

Perform the measurement of how ‘opinionated’ this fragment is:
• In what degree the candidate fragment express opinion or argument 

of fact, based on mental states and/or communicative actions

Perform appropriateness verification:
• How it is different from an ad or sales pitch
• It should contain verbs but not in imperative form

Reformat and re-style accepted text fragments

Accepted or rejected?

Obtain a list of text fragment for given seed to prepare to 
combining them in a sequence and forming paragraphs

For each 
search result

For given fragment, identify an optimal fragment to follow by 
classifying pairs as cohesive vs incoherent. Build a sequence of text 

fragment for a paragraph and section of a document

Combine  sections in the document, including mined images. Add 
reference section for each accepted fragment

Output is a documents 
with TOC, Section structure
and  images with captions

Fig. 9.14 A chart of the content compilation algorithm
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To find relevant sentences on the web for a seed sentence, we form query as
extracted significant noun phrases from this seed sentence: either longer one (three or
more keywords, which means two or more modifiers for a noun, or an entity, such as a
proper noun). If such queries do not deliver significant number of relevant sentences
formed from search results, we use the whole sentence as a search engine query,
filtering our content that is a duplicate to the seed (Galitsky and Kuznetsov 2013).

The formed queries are run via search engine API or scraped, using Bing; search
results are collected. We then loop through the parts of the snippets to see which
sentences are relevant to the seed one and which are not. For all sentences obtained
from snippets, we verify appropriateness to form content on one hand, and relevance
to the seed sentence on the other hand. Appropriateness is determined based on
grammar rules: to enter a paragraph cohesively, a sentence needs to include a verb
phrase and be opinionated (Galitsky et al. 2009). We filter out sentences that look
like one or another form of advertisement, a call to buy a product, or encourages
other user activity by means of an imperative verb.

Relevance is determined based on the operation of syntactic generalization
(Galitsky et al. 2012), where the bag-of-words approach is extended towards
extracting commonalities between the syntactic parse trees of seed sentence and
the text mined on the web. Syntactic generalization score is computed as a cardinal-
ity of maximal common sub-graph between the parse trees of the seed and candidate
sentences or text fragments. Syntactic generalization allows a domain-independent
semantic measure of topical similarity, delivering stronger relevance than the search
engine itself or the keyword statistics.

In addition to syntactic generalization, the tool verifies the common entities
between seed and mined sentence, and applies general appropriateness metric. The
overall score includes syntactic generalization score (the cardinality of maximal set
of common syntactic sub-trees, Chap. 5) and appropriateness score to filter out less
suitable sentences. Finally, mined sentences are re-styled and re-formatted to better
fit together. The following section explains how paragraphs are formed from text
fragments.

To find relevant sentences on the web for a seed sentence, we form a query as
extracted significant noun phrases from this seed sentence: either longer one (three or
more keywords, which means two or more modifiers for a noun, or an entity, such as
a proper noun). If such queries do not deliver significant number of relevant
sentences formed from the search results, we use the whole sentence as a search
engine query, filtering our the content that is duplicate to the seed.

The formed queries are run via search engine API or scraped, using Bing, Yahoo
API or Google, as well as their ‘/news’ or ‘/blogs’ subdomains depending on the
topic of generated content; the search results are collected. We then loop through the
parts of the snippets to see which sentences are relevant to the seed one and which
are not. If only a fragment of sentence occurs in the snippet, we need to go to the
original page, download it, find this sentence and extract it.

For all sentences obtained from snippets, we verify appropriateness to form a
conclusive answer text on one hand, and relevance to the seed sentence on the other
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hand. Appropriateness is determined based on grammar rules: to enter a paragraph
cohesively, a sentence needs to include a verb phrase and/or be opinionated; mental
space of cohesive information flow has been explored, for example, in (Galitsky
et al. 2008). Relevance is determined based on the operation of syntactic generali-
zation (Galitsky et al. 2010), where the bag-of-words approach is extended towards
extracting commonalities between the syntactic parse trees of a seed sentence and the
one mined on the web. Syntactic generalization allows a domain-independent
semantic measure of topical similarity between a pair of sentences. Without syntactic
generalization, a combination of sentences mined on the web would not necessarily
form a meaningful text.

In addition to syntactic generalization, the tool verifies common entities between
the seed and the mined sentence, and applies a general appropriateness metric. The
overall score includes the syntactic generalization score (the cardinality of the
maximal common system of the syntactic sub-trees) and the appropriateness score
to filter out less suitable sentences. Finally, the mined sentences are modified and
re-formatted to better fit together, and are joined to form paragraphs.

9.5.4 A Brief Example of the Content Generation Flow

Imagine we have a user utterance (seed):
(S) ‘Give me a break, there is no reason why you can’t retire in ten years if you

had been a rational investor and not a crazy trader’.
We start with building TOC for the main entity here, rational investor. The other

candidates for the main entity are rejected since they are too broad (such as retire, a
single-word concept), or occur with a negation not a crazy trader.

Searching Wikipedia, we find a page for rational investor with redirect to Homo
economicus https://en.wikipedia.org/wiki/Homo_economicus, where the following
TOC is scraped:

1. History of the term
2. Model
3. Criticisms
4. Responses
5. Perspectives
6. Homo sociologicus

. . .

The items which can appear on the bottom such as References are common for all
entities.
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For each TOC item, we add a section title keyword to the seed expression. For the
default section (here, Model), we just use the seed. We need to form queries which
contain the main entities from the utterance, retain the meaning but are not too
restrictive at the same time.

The main entity here is retirement in the form of the verb retire and it needs to be
constrained by the noun phrase that follows rational investor. To form the second
query, we combine rational investor and the next noun phrase, not a crazy trader.
Notice that just a single noun phrase with two words is not restrictive enough, and a
part of sentence, such as elementary discourse unit, like there is no reason why you
can’t retire in ten years would be too restrictive. Four-five keywords in a query are
optimal. Hence two following queries are formed for search engine API:

(Q1) þ retire þ rational þ investor
(Q2) þ rational þ investor not þ crazy þ trader

This is not a frequent user query, so web search results need to be further
processed: https://www.google.com/search?q¼%2Bretireþ%2Brationalþ%
2Binvestor.

The following snippet is selected as a candidate to be included in a conclusive
answer, since it contains all keywords from Q1.

How to Make Rational Investing Decisions | Sound Mind Investing
https://soundmindinvesting.com/articles/.../how-to-make-rational-investing-
decisions
Nov 1, 2014 – How to Make Rational Investing Decisions . . . pleasant and
you’ll probably have more money to spend in retirement and leave to your
heirs.

We download this webpage, extract text from it and find a paragraph that
corresponds to the above snippet. We do that for all search results which contains
all keywords from the query.

We consider two text fragments from the search results:
(A1a) If you take the time to understand the psychology of rational investing,

you’ll make your life more pleasant and you’ll probably have more money to spend
in retirement and leave to your heirs.

(A1b) One needs many years of relevant data before deciding if a fund manager
is truly skilled in rational investing or just lucky. Hence, by the time you have
enough statistically relevant data to rely on, the manager is likely nearing
retirement.

We now show the sentence similarity assessment via generalization operator
(Chap. 5):

A ^ A1a ¼ RST-Condition (VP (. . ., NP rational investing), *- retire)
A ^ A1b ¼ NP rational investing), *- retire.
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One can see that in the first search result A1a retire and rational investing are
connected in the similar way to the seed S: relational investing is connected by the
rhetorical relation Condition to the phrase including retire. In A1b the syntactic
matching part is the same but these phrases occur in two different sentences and are
related in a much more complex indirect way than in the seed. Hence A1a is a good
fragment to include in the conclusive answer and A1b is not so good.

Once we obtain an unordered list of text fragments for a section, we need to find
an optimal order to form the section text. For example, if both above text fragments
are accepted (not just the first one), the second should follow the first since it
contains the conclusion . . .Hence. . . . And both these fragments are related to the
same main entity. Still, the resultant text would not read well since there is a strong
deviation of topics towards finding an account manager, which is not the main topic
of this section. Given an unordered set of text fragments or paragraphs, we cannot
assure cohesiveness of the resultant text but instead at least find an optimal order for
these fragments, to minimize a disturbance of content flow and a coherence of the
resultant text.

To solve the problem of an optimal sequence, we rely on discourse analysis. It
turns out that certain features of logical organization of text encoded via discourse
trees are much more stronger criteria of text cohesiveness in comparison with
maintaining a topic, as most content generation algorithms do. We devote
Chaps. 7, 10 and 11 to this topic, being the focus of this book.

9.5.5 Modeling the Content Structure of Texts

In this section, we consider the problem of modeling the content structure of texts
within a specific domain, in terms of the attributes of an entity this texts expresses
and the order in which these topics appear. Some research intended to characterize
texts in terms of domain-independent rhetorical elements, such as schema items
(McKeown 1985) or rhetorical relations (Mann and Thompson 1988; Marcu 1997).
Conversely, (Barzilay and Lee 2004) focus on content, domain-dependent dimen-
sion of the structure of text. They present an effective knowledge-lean method for
learning content models from un-annotated documents, utilizing a novel adaptation
of algorithms for Hidden Markov Models. The authors apply their approach to two
complementary tasks: information ordering and extractive summarization. The
experiments showed that incorporating content models in these applications gives
a substantial improvement.

In general, the flow of text is determined by the topic change: how attributes of an
entity evolve. (Barzilay and Lee 2004) designed a model that can specify, for
example, that articles about mountains typically contain information about height,
climate, assents, and climbers. Instead of manually determining the evolution of
attributes (the topics for a given domain), a distributional view can be taken. It is
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possible to machine learn these patterns of attribute evolution directly from
un-annotated texts via analysis of word distribution patterns. (Harris 1982) wrote
that a number of word recurrence patterns are correlated with various types of
discourse structure type.

Advantages of a distributional perspective include both drastic reduction in
human effort and recognition of “topics” that might not occur to a human expert
and yet, when explicitly modeled, aid in applications. A success of the distributional
approach depends on the existence of recurrent patterns. In arbitrary document
collections, such recurrent patterns might be too variable to be easily detected by
statistical means. However, research has shown that texts from the same domain tend
to exhibit high similarity (Wray 2002). At the same time, from the cognitive science
perspective, this similarity is not random and is instead systematic, since text
structure facilitates a text comprehension by readers and their capability of recall
(Bartlett 1932).

We assume that text chunks convey information about a single attribute of an
entity (a single topic). Specifying the length of text chunks can defines the granu-
larity of the induced attribute/topic: we select the average paragraph length. We
build a content model as a Hidden-Markov Model in which each state s corresponds
to a distinct topic and generates sentences relevant to that topic according to a state-
specific language model ps. Note that standard n-gram language models can there-
fore be considered to be degenerate (single-state) content models. State transition
probabilities give the probability of changing from a given topic to another, thereby
capturing constraints attribute evolution (topic shift).

We rely on the bigram language models, so that the probability of an n-word
sentence x ¼ w1 w2 . . .wn being generated by a state s

ps xð Þ ¼
Yn

i¼1
ps wijwi�1ð Þ

We will now describe state bigram probabilities ps (wi | wi-1)
To initialize a set of attributes by partitioning all of the paragraphs (or text

chunks) from the documents in a given domain-specific collection into clusters,
we do the following. First, we create clusters via complete-link clustering, measuring
sentence similarity by the cosine metric using word bigrams as features. Then, given
our knowledge that documents may sometimes discuss new and/or irrelevant content
as well, we create an AUX cluster by merging together all clusters containing #
paragraphs < t (selected threshold). We rely on the assumption that such clusters
consist of “outlier” sentences.

Given a set ¼ c1, c2,. . ., cm of m clusters, where cm is the AUX cluster, we
construct a content model with corresponding states s1, s2,. . ., sm. we refer to sm as
the insertion state.

For each state si i < m bigram probabilities (which induce the state’s sentence-
emission probabilities) are estimated using smoothed counts from the corresponding
cluster
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psi w
0 jw

� �
¼def

f ci ww
0� �
þ δ1

f ci wð Þ þ δ1 Vj j ,

where f c1 (y) is the frequency with which word sequence y occurs within the
sentences in cluster ci, and V is the vocabulary.

We want the insertion state sm to simulate digressions or unseen attributes. We
ignore the content of AUX cluster and force the language model to be complemen-
tary to those of the other states by setting

psm w
0 jw

� �
¼def

1�maxi:i<mpsi w
0 jw

� �
P

u2V 1�maxi:i<mpsi ujwð Þ
� � :

Our state-transition probability estimates arise from considering how the para-
graphs from the same document are distributed across the clusters. For two clusters
c and c’ we define D(c, c’) as the number of documents in which a paragraph from
c immediately precedes one from c’. D(c) is the number of documents containing
paragraphs from c. For any two states si and sj, i,j < m, we rely on the following
smooth estimate of the probability of transitioning from si to sj:

p s jjsi
� �

¼
D ci; c j

� �
þ δ2

D cið Þ þ δ2m
:

Programming in NL is another area where the content structure of text is essential
(Galitsky and Usikov 2008).

Building Answer Document Based on Similarity and Compositional Semantics
The vector representations of the desired document can be obtained using a para-
graph vector model (Le and Mikolov 2014) that computes continuous distributed
vector representations of varying-length texts. The source documents’ section that
are semantically close (or similar) to the desired document is identified in this vector
space using cosine similarity. The structure of similar articles can then be emulated,
the important sections identified and assign relevant web-content or intranet content
assigned to the sections.

We utilize the entire Wikipedia to obtain a D-dimensional representations of
words/entities as well as documents using the paragraph vector distributed memory
model (Le and Mikolov 2014). Similar articles are identified using cosine similarity
between the vector representations of the missing entity and representations of the
existing entities (entities that have corresponding articles). Content from the similar
articles are used to train multi-class classifiers that can assign web-retrieved content
on the red-linked entity to relevant sections of the article. The architecture of such
system is shown in Fig. 9.15. The paragraph vector distributed memory model is
used to identify similar documents to rely upon on one hand and also to make an
inference of vector representations of new paragraphs retrieved from the web on the
other hand.
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We take a sequence of words from a similar document and approach the last word
that can be reused. Then we attempt to predict the next word using PV-DM. The
PV-DM model is based on the principle that several contexts sampled from the
paragraph can be used to predict the next word. Given a sequence of Twords (w1, w2,
. . . ., wT), the task is to maximize the average log probability. In the top equation, c is
the size of the context (number of words before and after the current word to be used
for training). The conditional probability of wt þ j given wt can be obtained by the
softmax function (Bridle 1990) in the equation below, where vwt þ j and vw refers to
the output and the input vector representations of the word w, respectively. W refers
to the total number of words in the vocabulary

F ¼ 1
T

Xt¼T

t¼1

X
�c�j�c,j6¼0

logp wtþjjwt

� �

p wtþjjwt

� �
¼

exp v
0
wtþj

Tvwt

� �

XW
w¼1

exp v
0

wTvwt

� �

9.5.6 Related Work on Conclusive Answers

Whereas chatbot algorithms in general belong to such computer science discipline as
search engineering and general-purpose NLP, automated building of conclusive

Fig. 9.15 Document generation approach based on similar document and wikipedia content
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answers fall under the content generation area of AI. Automating answer creation, it
is hard to compete with how human domains experts would do it; however, chatbots
are expected to be capable of building tens of thousands of conclusive answer per
vertical domain on the fly.

In the modern society, writing and creating content is one of the most frequent
human activities. An army of content creators, from students to professional writers,
produce various kinds of documents for various audiences. Not all of these docu-
ments are expected to be innovative, break-through or extremely important. The
target of the tool being proposed is assistance with routine document creation
process where most information is available on the web and needs to be collected,
integrated and properly referenced (Galitsky and Kuznetsov 2013).

A number of content generation software systems are available in specific
business domains (Johnson 2016). Most of content generation software are
template-based which limits their efficiency and volume of produced content
(Hendrikx et al. 2013). An interesting class of content generation system is based
on verbalizing some numerical data. Also, content generation for computer game
support turned out to be fruitful (Liapis et al. 2013). Deep-learning – based gener-
ation of a sequence of words has a limited applicability for large-scale content
production industrial systems. In (Galitsky 2016) we built a content compilation
assistance system that was suitable for producing a report that can be subject to and
manual editing by students, researchers in various fields in science, engineering,
business and law.

Previous work on content generation in general and specifically related to web
content relied heavily on manually annotated information of Wikipedia categories
(Sauper and Barzilay 2009; Banerjee and Mitra 2016). Articles in Wikipedia consist
of sections. (Sauper and Barzilay 2009) retrieved content from the web on articles
belonging to a certain category of diseases by using the most frequent section titles
as keywords to retrieve relevant web search snippets, utilizing web mining, similar to
what we do for chatbot answers. The most informative excerpts were selected using
a perceptron-based framework and populated into the built web article. In a recent
work, (Banerjee and Mitra 2016) proposed WikiKreator where contents in the
Wikipedia sections were represented by topic-distribution features using Latent
Dirichlet Allocation (LDA, Blei et al. 2003).

To build a document from multiple sources, sentences selected and paraphrased
from multiple documents must be ordered such that the resulting article is coherent.
Existing summarization systems did not tackle coherence, so discourse level con-
sideration proposed in Chap. 10 needs to be utilized.

The discourse tree representation used in our content compilation system is a
reduction of what is called parse thicket (Chap. 7), a combination of parse trees for
sentences with discourse-level relationships between words and parts of the sentence
in one graph. The straight edges of this graph are syntactic relations, and curvy arcs –
discourse relations, such as anaphora, same entity, sub-entity, rhetoric relation and
communicative actions. This graph includes much richer information than just a
combination of parse trees for individual sentences would.

9.5 Building Conclusive Answers 301

https://doi.org/10.1007/978-3-030-04299-8_10
https://doi.org/10.1007/978-3-030-04299-8_7


Galitsky (2016) introduced the tool has been advertised using Google AdWords
and used by thousand of users searching for “free essay writing” to compile content
for a variety of domains, including natural sciences and humanities. In this section
the proposed and evaluated technique found a new application area in building
answers for chatbots.

9.6 Evaluation

In this section we will present the evaluation results for the units of the content
pipeline which are supported by SG and other engines. Some of the units we
described in Sect. 9.2 perform regular processing and do not require a special
technology; these were tested as regular software units. We evaluate separately the
content preparation units, and user experience-related units, proceeding from
de-duplication to sentiment analysis and SEM, and then to personalization recom-
mendation and search.

To run the SG and TK code we used for evaluation, the reader would need to
build an open source project which the part of OpenNLP Similarity component
available at https://github.com/bgalitsky/relevance-based-on-parse-trees.

To perform SG based on Stanford NLP parsing and tagging results, one need to
load /src/main/java/opennlp/tools/parse_thicket/matching/Matcher.java, and to
apply it to OpenNLP results, src/main/java/opennlp/tools/textsimilarity/
chunker2matcher/ParserChunker2MatcherProcessor.java.

To run the TK, the reader needs https://github.com/bgalitsky/relevance-based-on-
parse-trees/blob/master/src/main/java/opennlp/tools/parse_thicket/kernel_interface/
MultiSentenceKernelBasedSearchResultsProcessor.java.

9.6.1 Performance Analysis of the Content Pipeline
Components

We selected to evaluate the de-duplication unit because its performance is a bottle-
neck for high quality content, and the opinion mining unit due to its importance for
convincing a potential user to attend an event. We form a few datasets for each unit
being evaluated, conduct independent evaluation for this dataset and then average
the resultant (F-measure). Training and evaluation dataset of texts, as well as class
assignments, was done by the quality assurance personnel.

One way to measure inter-annotator agreement between the quality assurance
personnel is by using α measure of (Krippendorff 2004), which treats the annotators
as interchangeable and measures the difference between disagreement expected by
chance vs observed disagreement:
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α ¼ 1� Dobserved

Dchance
¼ 1� σ2within

σ2total

where σwithin is standard deviation of the differences within the annotations for the
same text, σtotal is standard deviation of the overall difference between all annota-
tions. The threshold of α 	 0.80 indicates reliable judgments, while α 	 0.67 is
recommended as a limit to support conclusions about reliability of annotation,
because the value of α below this limit makes conclusions drawn from such data
not significant from the statistical viewpoint. In this section we present the evalua-
tion settings where α exceeds 0.70.

Half of each set was used for training, and the other half for evaluation; the split
was random but no cross-validation was conducted. Due to the nature of the problem
positive sets are larger than negative sets for sensible/meaningless & ad line prob-
lems. We use WEKA C4.5 algorithm as a baseline approach, performing keyword-
based classification.

9.6.1.1 De-duplication: From String Distance to SG-Supported Web
Mining

We compared the baseline approach of string distance with that of TK-supported and
SG-supported web mining. We used the set of 1000 pairs of string for entities
(performers and performances). We observed the improvement in de-duplication
F-measure (is it the same entity or different entity?) proceeding from string-based
algorithms to web mining with keyword match and then web mining with SG match
(Chap. 5). Analysis is performed varying the number of keywords from 1 to
5 (Table 9.3).

The baseline computation relied on (Levenshtein 1966) and (Jaccard 1912) string
distance computations.

The de-duplication quality is computed as F-measure given the precision and
recall. For the quality of content, false positives (entities are determined to be the
same, but they are not) in de-duplications damage the content in a higher degree,

Table 9.3 Evaluation results for de-duplication unit

# of
keywords
in entity

Baseline
(F-measure,
%)

Searching for
entities in web
space and
computing
common keyword
(F-measure, %)

Searching for entities
in web space and
computing TK
between search
results (F-measure,
%)

Searching for entities
in web space and
computing SG
between search
results (F-measure,
%)

1 84.3 83.2 84.1 83.5

2 81.1 82.7 86.2 84.2

3 79.7 82.1 84.5 84.7

4 74.6 80.5 84.1 82.1

5 75.9 79.2 84.4 82.3
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since non-existent merged entities appear. False negatives (should be merged, but
have not been merged) are not as bad but annoying to the users.

One can observe that the using web mining improves the F-measure of
de-duplication by 4.5% on average for all entities, and SG gives further 2% when
analyzing similarity of entities via web search results. Improvement of
de-duplication by web mining is not helpful for single-keyword entities, but
becomes noticeable for longer entity names. Contribution of web mining on its
own is significantly stronger than that of SG for similarity assessment of search
results of phrases. However, since we use SG to support other units anyway, we
leverage it to gain extra 2% in F-measure. The SG-based web mining can be
improved by 1.5% by the TK-based web mining.

9.6.1.2 Sentiment Analysis for Product Recommendation

Sentiment analysis problem is traditionally formulated as finding a polarity of
opinion for a text or short sentence like tweet. For the purpose of recommendation
we focus on evaluation of the other accompanying problems: recognizing meaning-
ful sentences to show to a user, and to recognize user knowledge state to provide a
proper level of details.

For reviews, we classify each sentence with respect to sensible/meaningless
classes by two approaches:

• A baseline WEKA C4.5, as a popular text classification approach
• SG – based approach.

We demonstrate that a traditional text classification approach poorly handles such
a complex classification task, in particular due to slight differences between phras-
ings for these classes, and the property of non-monotonicity. Using SG instead of
WEKA C4.5 brought us 16.1% increase in F-measure for the set of digital camera
reviews (Table 9.4).

One can see that SG improves the classification F-measure by 8.2%. Notice that
recognizing meaningless sentences and recognizing knowledge state of a user is
different problem to a sentence-level sentiment polarity analysis, fairly popular
problem nowadays, especially applied to twitter data (Go et al. 2009; Pak and
Paroubek 2010).

To recognize a knowledge state of a user to make recommendation more appro-
priate, we classified the texts users post as a question or as a sharing message in
social network site such as Facebook. We manually did the assignment of user
knowledge states, and use quality assurance personnel to evaluate the classification
results. The same training dataset was used by Weka C4.5 as a baseline and by SG to
assess a potential improvement.

The Rows of Table 9.5 contain classification data for the reviews on different
products, and variability in accuracies can be explained by various levels of
diversity in phrasings. For example, the ways people express their feelings about
cars is much more diverse than that about kitchen appliances. Therefore,
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F-measure of the former task is lower than that of the latter. One can see that it is
hard to form verbalized rules for the classes, and hypotheses are mostly domain-
dependent; therefore, substantial coverage of varieties of phrasing is required.

Overall recognition F-measure of knowledge state classification is higher than for
the other two domains because manually built templates for particular states cover a
significant portion of cases. At the same time, recognition F-measure for a particular
knowledge states significantly varies from state to state and was mostly determined
by how well various phrasings are covered in the training dataset. We used the same

Table 9.5 Evaluation of sentiment analysis: recognizing a knowledge state of a user

Knowledge
state

Data set size (#
positive /
#negative
examples)

Baseline
F-measure,
obtained by
WEKA C4.5

SG
precision
relating to a
class, %

SG Recall
relating to a
class, %

SG
F-measure,
%

Beginner 30/200 72.3% 77.8% 83.5% 80.6%

User with
average
experience

44/200 73.2% 76.2% 81.1% 78.6%

Pro or semi-
pro user

25/200 70.0% 78.7% 84.9% 81.7%

Potential
buyer

60/200 71.6% 73.8% 83.1% 78.2%

Open-
minded
buyer

55/200 69.4% 71.8% 79.6% 75.5%

Table 9.4 Evaluation of sentiment analysis: meaningful vs meaningless sentences

Domain

Data set size (#
positive /
#negative
examples)

Baseline
F-measure,
obtained by
WEKA C4.5

SG Precision
relating to a
class, %

SG Recall
relating to a
class, %

SG
F-measure

Digital
camera
reviews

220/60 51.4% 58.8% 54.4% 56.5%

Wireless
services
reviews

120/80 62.7% 58.8% 74.4% 65.6%

Laptop
reviews

300/100 65.0% 62.4% 78.4% 69.5%

Auto
reviews

250/100 69.2% 74.2% 80.4% 77.2%

Kitchen
appliances
reviews

200/100 72.3% 73.2% 84.2% 78.3%
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set of reviews as we did for evaluation of meaningless sentences classification and
manually selected sentences where the knowledge state was explicitly mentioned or
can be unambiguously inferred. For evaluation dataset, we recognized which knowl-
edge state exists in each of 200 sentences. Frequently, there are two or more of such
states (without contradictions) per sentence: note that knowledge states overlap. Low
classification F-measure occurs when classes are defined approximately and the
boundary between them are fuzzy and beyond expressions in natural language.
Therefore we observe that SG gives us some semantic cues that would be hard to
obtain at the level of keywords or superficial parsing.

On average, there is a 10.7% improvement of classification F-measure by SG. It
can be interpreted as one extra correct (adjusted to user knowledge state) recom-
mendation per 10 users.

For the sentiment polarity assessment, we used the sentiment detector (Socher
et al. 2013) as a baseline. It was improved by enforcing the sentiment polarity
templates for special cases of negations and combinations of negations. SG was
used in a nearest neighbor setting (Jindal and Taneja 2017) to overwrite the decision
of (Socher et al. 2013) when a given sentence gives a substantial overlap with one of
the templates via SG (Table 9.6).

SG-based templates improves the sentiment recognition F-measure by 8.0%. The
baseline approach handled negative cases better than the positive ones, and the SG

Table 9.6 Evaluation of sentiment analysis: polarity assessment

Domain

Data set
size (#
positive /
#negative
examples)

Baseline
F-measure,
obtained by
Stanford
NLP
Sentiment
analyzer,
positive

Baseline
F-measure,
obtained by
Stanford
NLP
Sentiment
analyzer,
negative

Stanford NLP
Sentiment þ SG-
based rules,
F-measure,
positive

Stanford NLP
Sentiment þ SG-
based rules,
F-measure,
negative

Digital
camera
reviews

220/60 56.4% 51.8% 61.3% 53.9%

Wireless
services
reviews

120/80 61.5% 59.8% 66.4% 62.7%

Laptop
reviews

300/100 63.8% 65.2% 71.2% 70.8%

Auto
reviews

250/100 59.6% 68.1% 67.6% 68.3%

Kitchen
appliances
reviews

200/100 60.9% 64.8% 68.4% 70.3%
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template – enabled approach experienced more difficulties with negative sentiments
than with positive.

9.6.1.3 Evaluation of Search Engine Marketing Unit

We selected the evaluation dataset of 1000 webpages related to the same products we
used for the above evaluations. We then applied the information extraction algorithm
Sect. 9.5.5 to form candidate sentences for inclusion in an ad line. The training
dataset of 10,000 sentences was formed from Google sponsored links scraped from
search results for product-related searches. Each candidate sentence is classified as
appropriate or inappropriate to form an ad line. WEKA C4.5 is used for the baseline,
and nearest neighbor-based SG is used to estimate an improvement of classification
into these two classes (Table 9.7).

For the SG-supported classification, there is a modest 2.4% improvement is
classification, once candidate expression is extracted. It turns out that a bag-of-
words approach has a satisfactory performance, measuring the similarity of candi-
date sentences with the elements of the training set. We believe that a better
extraction technique might have a higher impact on the overall quality of built ad
lines, extracted from webpages.

Precision for extraction of ad lines for the same five categories of products is
higher than the one for the above tasks of sensible/meaningless classes. A the same
time recall of the former is lower than that of the latter, and resultant F-measure is
slightly higher for ad lines information extraction, although the complexity of

Table 9.7 Evaluation of SEM tool: candidate expression classification F-measure to form an
ad line

Domains

Classification data set
size (# positive /
#negative examples)

Baseline
F-measure,
obtained by
WEKA C4.5

SG
precision
relating to a
class, %

SG recall
relating to
a class, %

SG
F-measure

Digital
camera
webpages

200/800 77.1% 88.4% 65.6% 75.3%

Wireless
services
webpages

200/800 70.7% 82.6% 63.1% 71.6%

Laptop
webpages

200/800 63.0% 69.2% 64.7% 66.9%

Auto sales
webpages

200/800 67.5% 78.5% 63.3% 70.1%

Kitchen
appliances
webpages

200/800 70.2% 78.0% 68.7% 73.1%
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problem is significantly lower. In can be explained by a rather high variability of
acceptable ad lines (‘sales pitches’) which have not been captured by the
training set.

9.6.2 Performance Analysis of Personalized
Recommendations

In this section we perform evaluation of personalized recommendations. Since this
component is the consumer of the content pipeline, this evaluation can be viewed as
the one for the overall system. User interface of apps.facebook.com/discover_zvents
is shown in Fig. 9.16.

For evaluation of personalization we split the set of personalization users into the
following five groups with respect to how complete their Facebook profile, how
many likes they have and how representative they are of user interests:

1. Novice or inactive user.
2. Intermediate user with some relevant categories (music, outdoor).
3. Intermediate users with a number of categories and likes.
4. Advanced user accumulating many likes and systematically managing them.
5. Advanced user accumulating many likes and not managing them.

For each above group, we conduct evaluation of the portion of relevant events
suggested by the recommendation system. We use two recommendation scenarios:

1. A user does not specify any query and all available events are personalized.
Rather larger set of events is subject to reduction (Table 9.8).

Fig. 9.16 User interface of personalization system. It gets user geo-location from her IP and its
preferences from her Facebook profile. List of recommended events for a given user changes as the
location changes
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2. A user specifies search query for a certain type of Events (Table 9.9). Then we
personalize events which satisfy the user condition; a rather small set of events is
subject to reduction for personalization.

In our evaluation, each user produced a set of twenty requests and received ten
events on average for each recommendation. The left columns of Tables 9.8 and 9.9
indicate the percentages of events found satisfactory when most popular (for every-
one) events were recommended, and the right two columns for personalization
results show the satisfaction percentages for the events personalized for a given
user. The first personalization column shows a naïve personalization which does not
use generalization and relies solely on matching likes as keywords. This is our
personalization baseline. The second, rightmost column shows the satisfaction
percentage for the personalization algorithm presented in the previous section.

What we can see in general is that the more detailed Facebook profile is, the
higher the improvement in the percentage of relevant events. This is true for both
sessions with search and without search. However, when there is a high number of
likes in diverse categories which are not managed, it is hard to assess the validity of
each likes and one can observe a decrease of relevance improvement by means of
personalization (last rows of both columns).

Overall, one can conclude that personalization delivers recommendations for
products which would not be discovered by users otherwise: they would have to
manually run multiple searches per each of their current likes/interests to discover if
a relevant event is happening at their location.

Table 9.8 Evaluation of increase of the % of relevant recommendation without initial search query

Satisfaction
Satisfaction without
personalization,%

Satisfaction with personalization,%

Without generalization
of likes

With generalization
of likes

Group 1 67 61 58

Group 2 64 69 76

Group 3 63 76 82

Group 4 71 86 89

Group 5 69 68 73

Table 9.9 Evaluation of increase of the % of relevant recommendation with a search query for
specific kind of events

Satisfaction
Satisfaction without
personalization,%

Satisfaction with personalization,%

Without generalization
of likes

With generalization
of likes

Group 1 64 56 59

Group 2 68 68 74

Group 3 66 73 81

Group 4 69 79 87

Group 5 68 72 80
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One of the advantages of social network-based personalization is that a user
becomes aware of much more events she would discover otherwise. We evaluate the
proportion of events which would be exposed to a user, and call it event accessibility
measure:

1. Using email notification (passive approach, users get email notifications with
events they would potentially attend);

2. Using search (active approach, users try to find events they might want to attend);
3. Using personalization (passive, but expected to be a high-relevance approach);

For each user we build a total set T of events we believe are of interest to a person,
using means other than personalization-related. We selected a ticket purchase data
and user click data as most relevant and averaged through users with similar interest
to derive T for the total set of potentially interesting events for a given class of users.
Then we evaluate the size of E1, E2 and E1 as subsets of T according to our definition
above.

We selected 15 major metropolitan areas and 5 averaged users with their favorite
categories of events. For each of these users, we calculated E1 value based on search
result by location and then filtering out events with foreign categories for a given
user. E2 is calculated assuming average category-based search session of 5 queries,
and E3 is obtained as a result of personalization to the selected averaged customer
profiles.

One can see that personalization gives increase of 37% over the set of events that
is being sent to an average user by email. A search session gives less than a quarter of
events of potential interest offered by personalization (Table 9.10).

9.6.3 Performance Analysis of SG-Supported Search
Relevance

We conducted evaluation of relevance of SG – enabled search engine, based on
Yahoo and Bing search engine APIs, used as a baseline. We base our evaluation on
external APIs to avoid dependence on previous components of the content pipeline
and focus on how SG and thesaurus improve search without taking into account
content quality.

For our evaluation, we use customers’ queries to eBay entertainment and product-
related domains. We started from simple questions referring to a particular product, a
particular user sentiment/need. We then proceeded to multi-sentence forum-style
request to share a recommendation. To perform a comparison of SG-based search
with the baseline, we used web search engines instead of eBay’s on search, but ran
the product-oriented queries. In our evaluation we split the totality of queries into
noun-phrase class, verb-phrase class, how-to class, and also independently split in
accordance to query length (from 3 keywords to multiple sentences). The evaluation
was conducted by the quality assurance personnel.
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To compare the relevance values between search settings, we used first 100 search
results obtained for a query by Yahoo and Bing APIs, and then re-sorted them
according to the score of the given search setting (syntactic generalization score and
thesaurus-based score). To evaluate the performance of a hybrid system, we used the
weighted sum of these two scores (the weights were optimized in an earlier search
sessions). Accuracy of a particular search setting (query type and search engine type)
is calculated, averaging through 20 search sessions. This measure is more suitable
for product-related searches delivering multiple products, than Mean Reciprocal
Rank (MRR), calculated as 1/n Σi ¼ 1. . .n 1/rki where n is the number of questions,
and rki is the rank of the first correct answer to question i.MRR is used for evaluation
of a search for information, which can be contained in a single (best) answer,
whereas a product search might include multiple valid answers.

For each type of phrase for queries, we formed a positive set of 2000 correct
answers and 10,000 incorrect answers (snippets) for training; evaluation is based on
20 searches. These answers were formed from the quality assurance dataset used to
improve existing production search engine before the current project started. To
compare the relevance values between search settings, we used first 100 search
results obtained for a query by Yahoo and Bing APIs, and then re-sorted them
according to the score of the given search setting (SG score). The results are shown
in Table 9.11.

Table 9.10 Categories of most popular events in cities with the highest numbers of events

Location T E1 E2 E3

New York 13,092 120.50 41.80 245.00

San Francisco 5522 57.53 18.77 105.95

Las Vegas 4282 47.99 15.02 40.58

Los Angeles 4102 43.15 14.02 51.12

Boston 3798 41.85 12.52 59.66

Chicago 3515 41.03 11.61 40.70

Houston 3075 38.42 10.85 32.03

Atlanta 2757 27.68 9.05 36.88

Nashville 2693 27.96 9.37 30.10

Austin 2574 24.22 9.14 66.30

Denver 2518 26.31 8.02 32.03

Lexington 2140 23.17 6.88 18.04

Charleston 2131 23.33 7.24 18.01

Philadelphia 2062 18.00 6.71 27.12

San Diego 1930 23.17 6.06 21.07

St Louis 1910 17.58 6.35 17.23

Washington 1875 17.30 6.53 9.10

Fresno 1867 20.01 6.53 14.70

Seattle 1861 15.65 5.52 30.42

Average 3352.8 34.40 11.10 47.10

Percentage personalization improves the number of dis-
covered events

137% 423% 100%
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To further improve the product search relevance in eBay setting, we added
manually formed templates that are formed to enforce proper matching with popular
questions which are relatively complex, such as

see-VB *-JJ -*{movie-NN [ picture-NN [ film-NN} of-PRP best-JJ {director-NN
[ producer-NN [ artist-NN [ academy-NN} award-NN [for-PRP], to match ques-
tions with phrases

Recommend me a movie which got academy award for best director
Cannes Film Festival Best director award movie
Give me a movie with National Film Award for Best Producer
Academy award for best picture
Movies of greatest film directors of all time

Totally 235 templates were added, 10–20 per each entertainment category or
genre.

We observe that using SG only improves the relevance of search in cases where
query is relatively complex. For shorter sentences there is just a slight improvement
in accuracy, for medium-length queries of 5–10 keywords we get &lt;2% improve-
ment, and &lt; 5% improvement for multi-sentence query. As the absolute perfor-
mance of search naturally drops when queries become more complex, relative
contribution of syntactic generalization increases. TK outperformed the stand-
alone SG by 4% but is well below the hybrid SG þ thesaurus search accuracy.

Notice that in a vertical domain of eBay entertainment where the thesaurus
coverage is good (most questions are mapped well into thesaurus), SG usually
improves the relevance on its own, and as a part of hybrid system. However there
are cases with no improvement. The thesaurus-based method is always helpful in a
vertical domain, especially for short queries (where most keywords are represented
in the thesaurus) and multi-sentence queries (where the thesaurus helps to find the
important keywords for matching with a question). We can conclude for a vertical
domain that a thesaurus should be definitely applied, and SG possibly applied, for
improvement of relevance for all kinds of questions. Relevance of the hybrid system
is improved by about 15%.

9.7 Related Work and Discussions

From the semantic standpoint, SG can be viewed as semantic inference for classi-
fication. Most work in automated semantic inference from syntax deals with much
lower semantic level then semantic classes we manage in this work. (de Salvo Braz
et al. 2005) presents a principled, integrated approach to semantic entailment. The
authors developed an expressive knowledge representation that provides a hierar-
chical encoding of structural, relational and semantic properties of the text and
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populated it using a variety of machine learning based tools. An inferential mech-
anism over a knowledge representation that supports both abstractions and several
levels of representations allowed them to begin to address important issues in
abstracting over the variability in natural language. Certain reasoning patterns
from this work are implicitly implemented by parsing tree matching approach
proposed in Chap. 5.

The special issue of Information Sciences Journal on Intelligent knowledge-based
models and methodologies for complex information systems (Cuzzocrea 2012)
provides a good comparison framework for this chapter. Generalized association
rule extraction is a powerful tool to discover a high level view of the interesting
patterns hidden in the analyzed data (Baralis et al. 2012). However, since the patterns
are extracted at any level of abstraction, the mined rule set may be too large to be
effectively exploited in the decision making process. Thus, to discover valuable and
interesting knowledge a post-processing step such as additional generalization
control of rules is usually required (Galitsky 2015). In case of the associated rules
for text in the form of trees with nodes for words and/or POS, SG is capable of
maintaining the proper generality of the extracted association rules, and can be
viewed as an alternative approach.

SemEval Conference is an adequate forum to compare text similarity approaches.
(Gomez et al. 2015) describes the approach for the Community Question Answering
Task, which was presented at the SemEval 2015. The transforms the answers of the
training set into a graph based representation for each answer class, which contains
lexical, morphological, and syntactic features. The answers in the test set are also
transformed into the graph based representation individually. After this, different
paths are traversed in the training and test sets in order to find relevant features of the
graphs. As a result of this procedure, the system constructs several vectors of
features: one for each traversed graph. (Zarrella et al. 2015) explored mixtures of
string matching metrics for similarity measures, alignments using tweet-specific
distributed word representations, recurrent neural networks for modeling similarity
with those alignments, and distance measurements on pooled latent semantic fea-
tures. Logistic regression was applied to integrate these component into the hybrid
architecture. For Twitter data, which is much noisier and has higher variability than
the text for the pipeline in this chapter, the authors achieved F-measure of 71.6. It is
significantly lower of F-measure of above 90% achieved in the current study for
search. (Vo et al. 2015) submitted three runs for SemEval 2015, Task #2 “Semantic
Textual Similarity”, English subtask, combining typical features (lexical similarity,
string similarity, word n-grams, etc.) with syntactic structure features, outperforming
the best system of the 2014 dataset.

Table 9.12 helps to compare our results of the subtasks of the sentiment analysis
tasks with those of SemEval. Whereas sentiments are extracted from all texts
(including tweets) in the major evaluation tasks, for the industrial applications it is
essential to only showmeaningful sentences for the purpose of recommendation, and
tailor them to the knowledge state of a user receiving recommendation.

Until recently, most approaches to semantics involve one or another form of
mapping into first order logic forms without using acquired rich knowledge sources.
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A concise Frege-type graph language programmed as a tool for logic programming
is presented in (Redey 1993), implementing the principle that the logical structure of
NL statements can be constructed in a language equivalent of the first-order logic
established solely via the basic natural grammatical relations. (Nagarajan and
Chandrasekar 2014) proposed a new sentiment analysis algorithm that achieves
high accuracy results by taking into account the expectations of the customers
along with the inclusion of neutral words for analysis.

A number of methods measure text similarity numerically, similarly to SG score.
(Wenyin et al. 2010) proposed a method to collect short text snippets to measure the
similarity between pairs of snippets. The method takes account of both the semantic
and statistical information within the short text snippets, and consists of three steps.
Given a set of raw short text snippets, it first establishes the initial similarity between
words by using a lexical database. The method then iteratively calculates both word
similarity and short text similarity. Finally, a proximity matrix is constructed based
on word similarity and used to convert the raw text snippets into vectors. Word
similarity and text clustering experiments show that the proposed short text model-
ing method improves the performance of IR systems.

Proposed approach is tolerant to errors in parsing. For more complex sentences
where parsing errors are likely, using OpenNLP, we select multiple versions of
parsings and their estimated confidence levels (probabilities). Then we cross-match
these versions and if parsings with lower confidence levels provide a higher match
score, we select them.

It must be remarked that integrating argumentation and recommender systems is a
recent research topic. DeLP has proven to be an efficient tool for achieving this
integration, as exemplified in (Chesñevar et al. 2009). Sagui et al. (2009)
implemented intelligent processing of web-based forms and intelligent robotic
soccer (Ferretti et al. 2007), among many other applications.

DeLP has also been used for modeling thesaurus reasoning. Standard approaches
to reasoning with description logics ontologies require them to be consistent.
However, as ontologies are complex entities and sometimes built upon other
imported ontologies, inconsistencies can arise. Gomez et al. (2010) presents
δ-ontologies, a framework for reasoning with inconsistent ontologies, expressing
them as defeasible logic programs. Given a query posed w.r.t. an inconsistent
thesaurus, a dialectical analysis is performed on a DeLP program obtained from
such thesaurus, where all arguments in favor and against the final answer of the

Table 9.12 A comparison between the different systems using the Twitter training corpus pro-
vided by the SemEval Sentiment Analysis task (Rosenthal et al. 2014)

Experiment

Twitter

SMS LiveJournalDev Test Sarcasm

Majority 29.19 34.64 27.73 19.03 27.21

Purchase-based system 62.09 64.74 40.75 56.86 62.22

Tweet-level system 62.4 63.73 42.41 69.54 69.44

Combined system 64.6 65.42 40.02 59.84 68.79
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query will be taken into account. The current chapter presents an industrial system
for handling a special case of thesaurus inconsistencies by using a different mech-
anism of mapping, but similar underlying logic of argumentation.

Defeasible reasoning is a rule-based approach for efficient reasoning with incom-
plete and inconsistent information. Such reasoning is, among others, useful for
thesaurus integration, where conflicting information arises naturally; and for the
modeling of business rules and policies, where rules with exceptions are often used.
Category mapping is an (example of such domain, where we need to systematically
treat exceptions. (Antoniou et al. 2001) describes these scenarios with rules with
exceptions in more detail, and reports on the implementation of a system for
defeasible reasoning on the Web. The system is:

• syntactically compatible with RuleML;
• based on strict and defeasible rules and priorities;
• based on a translation to logic programming with declarative semantics;
• flexible and adaptable to different intuitions within defeasible reasoning.

Tree Kernel methods (TK) for text learning are becoming popular. This data
includes keywords as well as their syntactic parameters. A kernel function can be
thought of as a text similarity measure: given a set of labeled instances, kernel
methods determine the label of an unassigned instance by comparing it to the labeled
training instances using this kernel function. Compared to kernel methods, syntactic
generalization (SG) can be considered as structure-based and deterministic; linguis-
tic features retain their structure and are not represented as values. We will be
forming a set of maximal common sub-trees for a pair of parse tree for two sentences
as a measure of similarity between them. It will be done using representation of
constituency parse trees via chunking; each type of phrases (NP, VP PRP etc.) will
be aligned and subject to generalization.

A number of authors including (Cumby and Roth 2003; Moschitti 2008; Kong
and Zhou 2011) proposed several kernel functions to model parse tree properties in
kernel-based machines such as perceptrons or support vector machines. In this
chapter, instead of tackling a high dimensional space of features formed from
syntactic parse trees, we apply a more structural machine learning approach to
learn syntactic parse trees themselves, measuring similarities via sub-parse trees
and not distances in this space. The authors define different kinds of tree kernels as
general approaches to feature engineering for semantic role labeling, and experi-
ments with such kernels to investigate their contribution to individual stages of an
SRL architecture both in isolation and in combination with other traditional manu-
ally coded features. The results for boundary recognition, classification, and
re-ranking stages provide systematic evidence about the significant impact of tree
kernels on the overall accuracy.

In our studies (Galitsky et al. 2012: Galitsky 2017) we approached the text
learning problem as parse tree learning one based on syntactic generalization. The
motivation was to explore how a richer set of linguistic features such as constituency
parse trees can provide richer semantic information and therefore provide more
accurate and efficient solution for text classification. We also applied graph learning
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to other domains (Galitsky et al. 2005, 2009) such as understanding complex
dialogues with conflicts. We performed the comparative analysis for the accuracies
of SG versus tree kernel (TK) methods in a number of applied NLP tasks (Galitsky
et al. 2015) including search, text classification and information retrieval and
evaluation benchmark tasks including discourse analysis. In most cases the accuracy
of SG and TK are similar, since the overall accuracy is determined by the richness of
the feature space rather than the learning framework. In this study we implement
both SG and TK and perform the joint evaluation of these techniques in industrial
settings with the baseline approaches.

In (Galitsky et al. 2013) and Chap. 7 we built a paragraph-level structure which is
a sum of parse trees of sentences and called it parse thicket. In this chapter we rely on
the operation of generalization on the pair of parse trees (syntactic generalization,
SG) for two sentences and demonstrate its role in sentence classification and other
text similarity assessment tasks. Operation of generalization is defined starting from
the level of lemmas to chunks/phrases and all the way to paragraphs/texts.

The issue of fake content has been rising dramatically in recent years. Motivated
by a number of reasons, content aggregator distorts the content and make
unsubstantiated claims with attribution for their advantage. In Fig. 9.17 we see an
original Garner post mentioning 25% by 2020 (on the top), and the medium.com
representation of Gartner claim boosted to 85%.

Fig. 9.17 Original source of information and its misrepresentation by a content aggregator
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9.8 Conclusions

9.8.1 From Search Engines to Chatbots

The fields of relevance support for CMS have become critical to a modern work-
place. Finding, documenting, and knowing things in an environment where data is
dispersed, employees are always on the fly, and career paths change fast must be
intuitive, simple, and seamless (Wade 2018). Finding content in a site structure
requires a mental roadmap of where things live. Search may provide good results,
but not direct answers; the answer is usually in the file it returns, meaning more time
digesting to understand. Chatbots give users a chance to jump straight to the answer
while pointing the to the source for reference, saving everyone time and bridging
what is becoming a major gap in CMS (Fig. 9.18).

In a default site and library hierarchy, the files can be well organized using a
strong folder or metadata structure. The effectiveness of the file hierarchy depends
on the strategy used for initially organizing the content and how well the owner of
the hierarchy has maintained the structure and the content over time. With search, the
content is not organized before it gets to an inverse index. A search engine will
provide multiple results in an organic fashion based on keyword matches, any
metadata refiners, and, past popularity of the search results and other considerations.
This can provide an efficient access when the users have no idea where to find the
information of interest or intend to save time.

With a chatbot, the CMS manager is expected to predict what users want to see
and provide direct responses and direct answers. From the users standpoint, the
information is not organized either (even though on the back end it is) nor does it

Fig. 9.18 From sites and libraries to search and to chatbots
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provide organic options like search. Instead, the chatbot gives the best answer it has
and also does it in a conversational way. This direct method of providing information
means the user does less work for the same information gain and can perform the
task over and over as necessary.

With search, the users are given the results that just recently combined everything
that they have access to. Even a user who knows searching best practices on top of a
system with a smart search setup including promoted ones and customer refined
personalized ones, the user still has to deal with extraneous results that just are not
always relevant. From keywords that overlap (e.g., “extension” for files info or
telephone numbers) to outdated information, one must sift through plenty of hits in
search due to the nature of its organic results. It can lead to an overall negative
impact on the overall search experience.

With chatbots, the information available is fully specified by the developers who
tune the information in the bot CMS. Chatbot developers direct users to the source
information they seek. A good chatbot with relevant CMS has answers to most
common questions for each group or department in an organization, actually answers
the question being asked (rather than solely providing a source for the answer), and
links back to the source as a reference for further information.

9.8.2 Relevance in a CMS

In this chapter, reporting from industry, we addressed an issue of relevance in a
content pipeline for a chatbot. Although a limitation of keyword-based approach for
content collection, cleaning, aggregation and indexing is well understood (Sidorov
2013), there is no plausible alternative with proved performance is currently avail-
able. A full-scale linguistic processing (which is thought to be non-scalable for
search and recommendation on an industrial scale) turned out to be essential to
provide relevance in a domain-independent manner. We demonstrated that a wide
range of content pipeline components can rely on matching of syntactic parse trees
for sentences (Chap. 5), phrases and paragraphs (Chap. 7) to maintain relevance. We
conducted a comparative analysis of syntactic generalization, tree kernel and statis-
tical approaches and selected the former as superior for industrial applications, based
on our evaluation of their performances.

The explosion of chatbot applications and machine learning provides a new
approach to real-time, personalized customer experiences. In comparison with
search engines, chatbots are the ultimate culmination of the universal content
management and personalization efforts. Organizations which do not acknowledge
the transformative value of chatbots are expected to experience difficulties in
reaching and retaining customers.

Vo and Popescu (2016) proposed a four-layer system that leverages word align-
ment, sentence structure and semantic word similarities for relevance assessment.
Recently, Adidas’ chatbot achieved a retention rate of 60%, far better than their app
(Simplea 2018); Just Eat’s chatbot saw a conversion rate of 266% higher than their
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average social ad; and CONVRG’s chatbot received a response rate 3 times that of
their email survey.

According to new research from Juniper, banking, healthcare, social, eCommerce
and retail organizations saved $20 million this year, with a savings of $8 billion per
year expected by 2022. Making content accessible and versatile is now more
important than ever for content producers. According to (Gartner 2018), chatbots
will power 25% of all customer service interactions by the year 2020.

Unlike TK, the structural approach of SG shows all intermediate generalization
results, which allows tracking of how class separation rules are built at each level
(pair-wise generalization, generalization ^ sentence, generalization ^ generalization,
(generalization ^ generalization) ^ generalization, etc.) Although SVM can handle a
high number of features including noisy ones, it can hardly outperform the situations
where selected features are meaningful. Among other disadvantages of SVM
(Suykens et al. 2003) are a lack of transparence of results: it is hard to represent
the similarity as a simple parametric function, since the dimension of feature space is
rather high. Also, SVM is subject to over-fitting when a number of training examples
is low compared to the number of features; results are very sensitive to a choice of
kernel. It is hard to adapt SVM to multi-class classification settings. Overall, a tree
kernel approach can be thought as statistical AI, and proposed approach follows
along the line of logical AI traditionally applied in linguistics two-three decades ago.
The current study suggests that the latter one is more suitable for traditional software
development methodology for industrial applications.

Parsing and chunking (conducted by OpenNLP) followed by SG are significantly
slower than other operations in a content management system and comparable with
operations like duplicate search. Verifying relevance, application of SG should be
preceded by statistical keyword-based methods. In real time application compo-
nents, such as search, we use conventional TF*IDF based approach (such as SOLR/
Lucene, see also (Erenel and Altınçay 2012)) to find a set of candidate answers of up
to 100 from millions of documents and then apply SG for each candidate. For
off-line components, we use parallelized map/reduce jobs (Hadoop) to apply parsing
and SG to large volumes of data. This approach allowed a successful combination of
efficiency and relevance for serving more than 10 million unique site users monthly
at datran.com/allvoices.com, zvents.com and eBay.com.

Our solution of the meaningful vs meaningless opinionated sentence problem
demonstrates how a very weak semantic signal concealed in a syntactic structure of
sentence can be leveraged. Obviously, using keyword-based rules for this problem
does not look promising.

We observed that contribution of SG to classification tasks varies with the
problem formulation, classification settings and domain. Whereas SM tool shows
an insignificant contribution of SG, other classification tasks leverages SG notice-
ably due to the importance of weaker syntactic signals.

Proposed approach is tolerant to errors in parsing. For more complex sentences
where parsing errors are likely, using OpenNLP (2018), we select multiple versions
of parsings and their estimated confidence levels (probabilities). Then we cross-
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match these versions and if parsings with lower confidence levels provide a higher
match score, we select them.

Presented content pipeline can be applied to other languages besides English as
long as search engine APIs and linguistic models are available for them. Web portals
like http://www.become.com, http://www.become.co.jp/ used similar content pipe-
line to the one presented in this chapter and supported German, French, Italian and
other languages. Also, besides entertainment, similar content pipeline has been
applied to a broad range of products and services at these web portals.

Using semantic information for query ranking has been proposed in (Aleman-Meza
et al. 2003; Ding et al. 2004). However, we believe the current study is a pioneering
one in deriving semantic information required for ranking from syntactic parse tree
directly. In our further studies we plan to proceed from syntactic parse trees to higher
semantic level and to explore other applications that would benefit from it.

The rough set theory can be used to measure similarity between texts as well.
(Janusz et al. 2012) present a research on the construction of a new unsupervised
model for learning a semantic similarity measure from text corpora. Two main
components of the model are a semantic interpreter of texts and a similarity function
whose properties are derived from data. The first one associates particular documents
with concepts defined in a knowledge base corresponding to the topics covered by
the corpus. It shifts the representation of a meaning of the texts from words that can
be ambiguous to concepts with predefined semantics. With this new representation,
the similarity function is derived from data using a modification of the dynamic rule-
based similarity model, which is adjusted to the unsupervised case.

In evaluation of this study we demonstrated how Facebook users of various level
of activity and sophistication benefits from personalization in a variety of degrees.
Users with limited number of Facebook categories, or a high number of adjusted set
of Facebook likes, leverages personalization the most.

In this chapter we argue that the hardest personalization component is to map
Facebook categories into ones of the system providing recommendation, given its
content and set of products/services. We tackled this problem by introducing
defeasibility relation between category mapping rules, which allowed for inconsis-
tent rules to be defeated and retain only rules which deliver more relevant
recommendations.

There are statistical approaches to category mapping for search such as (Rubiolo
et al. 2012) who presented an ANN-based thesaurus matching model for knowledge
source discovery on the Semantic Web. With the emergence of the Semantic Web a
high number of domain ontologies were developed, which varied not only in their
structure. However a lack of an integrated view of all web nodes and the existence of
heterogeneous domain ontologies drive new challenges in the discovery of knowl-
edge resources which are relevant to a user’s request. New approaches have recently
appeared for developing web intelligence and helping users avoid irrelevant results
on the web. In this study we used deterministic approach to category mapping which
can be viewed in a broader framework of thesaurus mapping.

Aggregating likes from friends is another important area supporting personaliza-
tion, where adequate treatment of product categories is the key. The value of enables
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retailers/service providers and buyers/users alike to utilize the influence of trusted
friends and family within the shopping experience has been demonstrated. Similar to
the presented system, retailers and manufacturers using (iGoDigital 2013) product
recommendation platform, can leverage a consumers’ social network to provide an
added layer of personalization and relevancy within their shopping experience.
Consumers benefit from immediate access to product recommendations and opin-
ions from their social network as they research, browse, and complete purchases,
adding relevance and authenticity.

Our evaluation demonstrates that using personalized instead of traditional rec-
ommendations, we significantly increase:

• Overall user satisfaction with recommendation system, because users have to deal
much less with irrelevant recommendations

• The number of attended events, including ones requiring ticket purchase.

Hence personalized recommendation dramatically improves efficiency and effec-
tiveness of the user decision process on which events to attend. The recommendation
component presented in this chapter is oriented to work with Facebook; however,
other social network profiles can be handled in a similar manner, including interna-
tional social profiles in various languages.

There are an open source SG and TK component available at https://github.com/
bgalitsky/relevance-based-on-parse-trees as a part of (OpenNLP 2018), a machine
learning system for natural language processing. It can support content pipelines,
providing such functionality as SG-supported web mining and speech recognition,
assistance with creative writing, thesaurus building and search. It includes a request
handler for SOLR which makes it linguistically enabled, so that a search engineer
can apply it to her domain and easily observe if relevance is improved or not. The
project has a detailed documentation including (Galitsky 2012) and an extensive set
of tests to quickly grasp its functionality and application areas.

In this study we described the content pipeline with a high rate and amount of
incoming data on events, which cannot be handled by a conventional keyword-based
computer system. To be able to combine efficient storage, processing and analysis
requirement with desired relevance, a more efficient text processing technique is
required, based on richer linguistic information. Furthermore, the data on events
come in a wide spectrum of forms, including social networks and opinions, so that
the text processing operation also needs to support not only linguistic generalization
but also perform at the level of categories of entities.

We also demonstrated that once domain-independent efficient SG component is
developed to tackle textual date, leveraging rich linguistic information available for
learning of parse tree, the same component has been used for a wide number of
distinct problems.

The evaluation version of both SG and TK are available at https://github.com/
bgalitsky/relevance-based-on-parse-trees/tree/master/src/main/java/opennlp/tools/
parse_thicket/kernel_interface and https://github.com/bgalitsky/relevance-based-on-
parse-trees/tree/master/src/main/java/opennlp/tools/textsimilarity.
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