Chapter 5 )
Assuring Chatbot Relevance at Syntactic e
Level

Abstract In this chapter we implement relevance mechanism based on similarity of
parse trees for a number of chatbot components including search. We extend the
mechanism of logical generalization towards syntactic parse trees and attempt to
detect weak semantic signals from them. Generalization of syntactic parse tree as a
syntactic similarity measure is defined as the set of maximum common sub-trees and
performed at a level of paragraphs, sentences, phrases and individual words. We
analyze semantic features of such similarity measure and compare it with semantics
of traditional anti-unification of terms. Nearest neighbor machine learning is then
applied to relate a sentence to a semantic class.

Using syntactic parse tree-based similarity measure instead of bag-of-words and
keyword frequency approaches, we expect to detect a weak semantic signal other-
wise unobservable. The proposed approach is evaluated in four distinct domains
where a lack of semantic information makes classification of sentences rather
difficult. We describe a toolkit which is a part of Apache Software Foundation
project OpenNLP.chatbot, designed to aid search engineers and chatbot designers
in tasks requiring text relevance assessment.

5.1 Introduction

Ascending from the syntactic to semantic level is an important component of natural
language (NL) understanding, and has immediate applications in tasks such infor-
mation extraction and question answering (Allen 1987; Cardie and Mooney 1999;
Ravichandran and Hovy 2002). A number of studies demonstrated that increase in
the complexity of information retrieval (IR) feature space does not lead to a
significant improvement of accuracy. Even application of basic syntactic templates
like subject-verb-object turns out to be inadequate for typical TREC IR tasks
(Strzalkowski et al. 1999). Substantial flexibility in selection and adjustment of
such templates for a number of NLP tasks is expected to help. A tool for automated
treatment of syntactic templates in the form of parse trees would be desirable.

In this chapter we develop a tool for high-level semantic classification of natural
language sentences based on full syntactic parse trees. We introduce the operation of
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syntactic generalization (SG) which takes a pair of parse trees and finds a set of
maximal common sub-trees. We tackle semantic classes which appear in information
extraction and knowledge integration problems usually requiring deep natural lan-
guage understanding (Dzikovska et al. 2005; Galitsky 2003; Banko et al. 2007). One
of such problems is opinion mining, in particular detecting sentences or their parts
which express self-contained opinion ready to be grouped and shared. We want to
separate informative/potentially useful opinion sentences like ‘The shutter lag of this
digital camera is annoying sometimes, especially when capturing cute baby
moments’ which can serve as recommendations, from uninformative and /or irrele-
vant opinion expressions such as ‘I received the camera as a Christmas present from
relatives and enjoyed it a lot.” The former sentence characterizes a parameter of a
camera component, and in the latter, one talks about circumstances under which a
person was given a camera as a gift (Fig. 5.1).

What kind of syntactic and/or semantic properties can separate these two
sentences into distinct classes? We assume that the classification is done in a
domain-independent manner, so no knowledge of ‘digital camera’ domain is sup-
posed to be applied. Both these sentences have sentiments, the semantic difference
between them is that in the former sentiment is attached to a parameter of the camera,
and in the letter sentiment is associated with the form in which the camera was
received by the author. Can the latter sentence be turned into a meaningful one by
referring to its particular feature (e.g. by saying ‘. . .and enjoyed its LCD a lot’)? No,
because then its first part (‘received as a present’) is not logically connected to its
second part (‘I enjoyed LCD because the camera was a gift’). Hence we observe that
in this example belonging to positive and negative classes constitute somewhat
stable patterns.

Learning based on syntactic parse tree generalization is different from kernel
methods which are non-parametric density estimation techniques that compute a
kernel function between data instances. These instances can include keywords as
well as their syntactic parameters, and a kernel function can be thought of as a
similarity measure. Given a set of labeled instances, kernel methods determine the
label of a novel instance by comparing it to the labeled training instances using this
kernel function. Nearest neighbor classification and support-vector machines
(SVMs) are two popular examples of kernel methods (Fukunaga 1990; Cortes and
Vapnik 1995). Compared to kernel methods, syntactic generalization (SG) can be
considered as structure-based and deterministic; linguistic features retain their struc-
ture and are not represented as numeric values (Galitsky 2017a).

In this chapter we will be finding a set of maximal common sub-trees for a pair of
parse trees for two sentences as a measure of similarity between them. It will be done
using representation of constituency parse trees via chunking; each type of phrases
(NP, VP PRP etc.) will be aligned and subject to generalization. In studies (Galitsky
and Kuznetsov 2008; Galitsky et al. 2009) it was demonstrated that graph-based
machine learning can predict plausibility of complaint scenarios based on their
argumentation structure. Also, we observed that learning communicative structure
of inter-human conflict scenarios can successfully classify the scenarios in a series of
domains, from complaint to security-related domains. These findings make us
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Fig. 5.1 Syntactic parse tree for informative (on the top, positive class) and uninformative
(negative, on the bottom) sentences

believe that applying similar graph-based machine learning technique to syntactic
parse trees, which has even weaker links to high-level semantic properties in
comparison with other domains, can nevertheless deliver satisfactory semantic
classification results.

Most current learning research in NLP employs particular statistical techniques
inspired by research in speech recognition, such as hidden Markov models (HMMs),
neural networks and probabilistic context-free grammars (PCFGs). A variety of
learning methods including decision tree and rule induction, neural networks,
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instance-based methods, Bayesian network learning, inductive logic programming,
explanation-based learning, and genetic algorithms can also be applied to natural
language problems and can have significant advantages in particular applications
(Moreda et al. 2007). In addition to specific learning algorithms, a variety of general
ideas from traditional machine learning such as active learning, boosting, reinforce-
ment learning, constructive induction, learning with background knowledge, theory
refinement, experimental evaluation methods, PAC learnability, etc., may also be
usefully applied to natural language problems (Cardie and Mooney 1999). In this
chapter we employ nearest neighbor type of learning, which is relatively simple, to
focus our investigation on how expressive can similarity between syntactic struc-
tures be to detect weak semantic signals. Other more complex learning techniques
can be applied, being more sensitive or more cautious, after we confirm that our
measure of semantic similarity between texts is adequate.

The computational linguistics community has assembled large data sets on a
range of interesting NLP problems. Some of these problems can be reduced to a
standard classification task by appropriately constructing features; however, others
require using and/or producing complex data structures such as complete parse trees
and operations on them. In this chapter we introduce the operation of generalization
on the pair of parse tree for two sentences and demonstrate its role in sentence
classification. Operation of generalization is defined starting from the level of
lemmas to chunks/phrases and all the way to paragraphs/texts (Galitsky 2017b).

This chapter introduces four distinct problems of different complexity where one
or another semantic feature has to be inferred from natural language sentences. Then
we define syntactic generalization, describe the algorithm and provide a number of
examples of SG in various settings. The chapter is concluded by the comparative
analysis of classification in selected problem domains, search engine description, a
brief review of other studies with semantic inference and the open source
implementation.

Learning syntactic parse trees allows performing semantic inference in a domain-
independent manner without using thesauri. At the same time, in contrast to the most
semantic inference projects, we will be restricted to a very specific semantic domain
(limited set of classes), solving a number of problems a usable chatbot needs to
solve.

5.2 Syntactic Generalization in Search and Relevance
Assessment

In this chapter we leverage parse tree generalization technique for automation of
content management and delivery platform (Chap. 9) that combines data mining of
web (Chap. 8) and social networks (Chap. 12), content aggregation, reasoning,
information extraction (Galitsky et al. 2011b), question/answering (Chap. 6) and
advertising to support a number of chatbot components. The chatbot answers
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questions and provides recommendations based on previous postings of human users
determined to be relevant. The key technological requirements is based on finding
similarity between various kinds of texts, so use of more complex structures
representing text meaning is expected to benefit the accuracy of relevance assess-
ment. SG has been deployed at content management and delivery platforms at a few
web portals and data science service providers in Silicon Valley USA including
Datran.com, Zvents.com, StubHub.com, Become.com, Ligadata.com, Sysomos.
com and RichRelevance.com. We will present evaluation of how the accuracy of
relevance assessment has been improved (Sects. 5.4 and 5.5).

We focus on four following problems which are essential for various chatbot
components:

1. Differentiating meaningful from meaningless sentences in opinion mining
results;

2. Detecting appropriate expressions for automated building of ads as an advertise-
ment management platform of virtual forums;

3. Classifying user posting in respect to her epistemic state: how well she under-
stands her product needs and how specific is she currently with her product
choice;

4. Classifying search results in respect to being relevant and irrelevant to search
query.

In all these tasks it is necessary to relate a sentence into two classes:

. informative vs uninformative opinion;

. suitable vs. unsuitable for ad generation;
. knowledgeable vs unknowledgeable user;
. relevant vs irrelevant answer.

B W =

In all of these tasks, a decision about belonging to a class cannot be made given
occurrence of specific word forms; instead, peculiar and implicit linguistic informa-
tion needs to be taken into account. It is rather hard to formulate and even to imagine
classification rules for all of these problems based on keyword; however finding
plentiful examples for respective classes is quite easy. We now outline each of these
four problems.

As to the first one, traditionally, an opinion mining problem is formulated as
finding and grouping a set of sentences expressing sentiments about given features of
products, extracted from customer reviews of products. A number of comparison
shopping sites are now showing such features and the ‘strength’ of opinions about
them as a number of occurrences of such features. However, to increase user
confidence and trust in extracted opinion date, it is advisable to link aggregated
sentiments for a feature to the original quotes from customer reviews; this signifi-
cantly backs up review-based recommendations by comparative shopping sites.

Among all sentences mentioning the feature of interest, some of them are indeed
irrelevant to this feature, does not really express customer opinion about this
particular features (and not about something else). For example, ‘I don 't like touch
pads’ in reviews on Dell Latitude notebooks does not mean that this touchpad of
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these notebook series is bad, instead, we have a general customer opinion about a
feature that is not expected to be interesting to another user. One can see that this
problem for an opinion sentence has to be resolved for building highly trusted
opinion mining applications.

We believe this classification problem is rather hard one and require a sensitive
treatment of sentence structure, because a difference between meaningful and
meaningless sentence with respect to expressed opinion is frequently subtle. A
short sentence can be meaningless, its extension become meaningful, but its further
extension can become meaningless again. We selected this problem to demonstrate
how a very weak semantic signal concealed in a syntactic structure of sentence can
be leveraged; obviously, using keyword-based rules for this problem does not seem
plausible.

As to the second problem of ad generation, its practical value is to assist business/
website manager in writing ads for search engine marketing. Given the content of a
website and its selected landing page, the system needs to select sentences which are
most suitable to form an ad.

For example, from the content like

At HSBC we believe in great loan deals, that’s why we offer 9.9% APR
typical on our loans of $7,500 to $25,000%*. It’s also why we pledge to pay
the difference if you’re offered a better deal elsewhere.

What you get with a personal loan from HSBC:

* An instant decision if you’re an Online Banking customer and get your
money in 3 hours, if acceptedf

* Our price guarantee: if you’re offered a better deal elsewhere we’ll pledge to
pay you the difference between loan repayments™**

* Apply to borrow up to $25,000

* No fees for arrangement or set up

* Fixed monthly payments, so you know where you are

* Optional tailored Payment Protection Insurance.

We want to generate the following ads

Great Loan Deals

9.9% APR typical on loans of
$7,500 to $25,000. Apply now!
Apply for an HSBC loan

We offer 9.9% APR typical
Get your money in 3 hours!
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We show in bold the sentences and their fragments for potential inclusion into an
ad line (positive class). This is a semantic IE problem where rules need to be formed
automatically (a similar class of problem was formulated in Stevenson and Green-
wood 2005). To form criteria for an expression to be a candidate for an ad line, we
will apply SG to the sentences of the collected training sets, and then form templates
from the generalization results, which are expected to be much more sensitive than
just sets of keywords under traditional keyword-based IE approach.

The third problem of classification of epistemic states of a forum user is a more
conventional classification problem, where we determine what kind of response a
user is expecting:

* general recommendation,
» advice on a series of products, a brand, or a particular product,
* response and feedback on information shared, and others.

For each epistemic state (such as a new user, a user seeking recommendations, an
expert user sharing recommendations, a novice user sharing recommendation) we
have a training set of sentences, each of which is assigned to this state by a human
expert. For example (epistemic states are italicized),

‘I keep in mind no brand in particular but I have read that Canon makes good
cameras’ [a user with one brand in mind), ‘I have read a lot of reviews but still have
some questions on what camera is right for me [experienced buyer]. We expect the
proper epistemic state to be determined by syntactically closest representative
sentence.

Transitioning from keywords match to SG is expected to significantly improve
the accuracy of epistemic state classification, since these states can be inferred from
the syntactic structure of sentences rather than explicitly mentioned most of times.
Hence the results of SGs of the sentences form the training set for each epistemic
state will serve as classification templates rather than common keywords among
these sentences.

The fourth application area of SG is associated with improvement of search
relevance by measuring similarity between query and sentences in search results
(or snapshots) by computing SG. Such syntactic similarity is important when a
search query contains keywords which form a phrase, domain-specific expression,
or an idiom, such as “shot to shot time”, “high number of shots in a short amount of
time”. Usually, a search engine is unable to store all of these expressions because
they are not necessarily sufficiently frequent, however make sense only if occur
within a certain natural language expression (Galitsky and Botros 2015).

In terms of search implementation, this can be done in two steps:

1. Keywords are formed from query in a conventional manner, and search hits are
obtained by TF*IDF also taking into account popularity of hits, page rank and
others.

2. The above hits are filtered with respect to syntactic similarity of the snapshots of
search hits with search query. Parse tree generalization comes into play here
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Hence we obtain the results of the conventional search and calculate the score of the
generalization results for the query and each sentence and each search hit snapshot.
Search results are then re-sorted and only the ones syntactically close to search query
are assumes to be relevant and returned to a user.

Let us consider an example of how the use of phrase-level match of a query with
its candidate answers instead of keywords-based comparison helps. When a query is
relatively complex, it is important to perform match at phrase level instead of
keywords level analysis (even taking into account document popularity, TF*IDF,
and learning which answers were selected by other users for similar queries
previously).

For the following example from 2016 http://www.google.com/search?q=how+to
+pay+foreign+business+tax+if+I+live+in+the+US most of the search results are
irrelevant. However, once one starts taking into account the syntactic structure of
the query phrases, ‘pay-foreign-business-tax’, ‘I-live-in-US’, the irrelevant answers
(where the keywords co-occur in phrases in a different way than in the query) are
filtered out.

5.3 Generalizing Portions of Text

To measure of similarity of abstract entities expressed by logic formulas, a least-
general generalization was proposed for a number of machine learning approaches,
including explanation based learning and inductive logic programming. Least gen-
eral generalization was originally introduced by (Plotkin 1970). It is the opposite of
most general unification (Robinson 1965) therefore it is also called anti-unification.
Anti-unification was first studied in (Robinson 1965; Plotkin 1970). As the name
suggests, given two terms, it produces a more general one that covers both rather
than a more specific one as in unification. Let E| and E, be two terms. Term E is a
generalization of E| and E, if there exist two substitutions ¢, and o, such that o
(E) = E; and 6,(E) = E,. The most specific generalization of E; and E, is called their
anti-unifier. Here we apply this abstraction to anti-unify such data as text, tradition-
ally referred to as unstructured.

For two words with the same POS, their generalization is the same word with
POS. If lemmas are different but POS is the same, POS stays in the result. If lemmas
are the same but POS is different, lemma stays in the result but not POS.

In this chapter, to measure similarity between portions of text such as sentences
and phrases, we extend the notion of generalization from logic formulas to sets of
syntactic parse trees of these portions of text (Amiridze and Kutsia 2018). If it were
possible to define similarity between natural language expressions at pure semantic
level, least general generalization would be sufficient. However, in horizontal search
domains where construction of full thesauri for complete translation from NL to
logic language is not plausible, extension of the abstract operation of generalization
to syntactic level is required. Rather than extracting common keywords,
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generalization operation produces a syntactic expression that can be semantically
interpreted as a common meaning shared by two sentences.

Let us represent a meaning of two NL expressions by logic formulas and then
construct unification and anti-unification of these formulas. Some words (entities)
are mapped into predicates, some are mapped into their arguments, and some other
words do not explicitly occur in logic form representation but indicate the above
instantiation of predicates with arguments. How to express a commonality between
the expressions?

e camera with digital zoom
e camera with zoom for beginners

To express the meanings we use logic predicates camera(name_of feature,
type_of _users) (in real life, we would have much higher number of arguments),
and zoom(type_of zoom). The above NL expressions will be represented as:

camera(zoom(digital), AnyUser)
camera(zoom(AnyZoom), beginner),

where variables (uninstantiated values, not specified in NL expressions) are capital-
ized. Given the above pair of formulas, unification computes their most general
specialization camera(zoom(digital), beginner), and anti-unification computes their
most specific generalization, camera(zoom(AnyZoom), AnyUser).

At syntactic level, we have generalization of two noun phrases as:

{NN-camera, PRP-with, [digital], NN-zoom [for beginners]}.

We eliminate expressions in square brackets since they occur in one expression
and do not occur in another. As a result, we obtain

{NN-camera, PRP-with, NN-zoom]}, which is a syntactic analog as the semantic
generalization above.

Notice that a typical scalar product of feature vectors in a vector space model
would deal with frequencies of these words, but cannot easily express such features
as co-occurrence of words in phrases, which is fairly important to express a meaning
of a sentence and avoid ambiguity.

Since the constituent trees keep the sentence order intact, building structures
upward for phrases, we select constituent trees to introduce our phrase-based
generalization algorithm. A dependency tree has the word nodes at different levels
and each word modifies another word or the root. Because it does not introduce
phrase structures, a dependency tree has fewer nodes than a constituent tree and is
less suitable for generalization. Constituent tree explicitly contains word alignment-
related information required for generalization at the level of phrases. We use
(openNLP 2018) system to derive constituent trees for generalization (chunker and
parser). Dependency-tree based, or graph-based similarity measurement algorithms
(Bunke 2003; Galitsky et al. 2008) are expected to perform as well as the one we
focus on in this chapter.
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5.3.1 Generalizing at Various Levels: From Words
to Paragraphs

The purpose of an abstract generalization is to find commonality between portions of
text at various semantic levels. Generalization operation occurs on the following
levels:

o Text

» Paragraph

¢ Sentence

¢ Phrases (noun, verb and others)
¢ Individual word

At each level except the lowest one, individual words, the result of generalization of
two expressions is a set of expressions. In such set, for each pair of expressions so
that one is less general than other, the latter is eliminated. Generalization of two sets
of expressions is a set of sets of expressions which are the results of pair-wise
generalization of these expressions.

We first outline the algorithm for two sentences and then proceed to the specifics
for particular levels. The algorithm we present in this chapter deals with paths of
syntactic trees rather than sub-trees, because it is tightly connected with language
phrases. In terms of operations on trees we could follow along the lines of (Kapoor
and Ramesh 1995).

Being a formal operation on abstract trees, generalization operation nevertheless
yields semantic information about commonalities between sentences. Rather than
extracting common keywords, generalization operation produces a syntactic expres-
sion that can be semantically interpreted as a common meaning shared by two
sentences.

1. Obtain parsing tree for each sentence. For each word (tree node) we have
lemma, part of speech and form of word information. This information is
contained in the node label. We also have an arc to the other node.

2. Split sentences into sub-trees which are phrases for each type: verb, noun,
prepositional and others; these sub-trees are overlapping. The sub-trees are
coded so that information about occurrence in the full tree is retained.

3. All sub-trees are grouped by phrase types.

4. Extending the list of phrases by adding equivalence transformations (Sect.

5.3.2).

For the set of the pairs of sub-trees for both sentences for each phrase type.

6. For each pair in 5) yield an alignment (Gildea 2003), and then generalize
each node for this alignment. For the obtained set of trees (generalization
results), calculate the score.

2

(continued)
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7. For each pair of sub-trees for phrases, select the set of generalizations with
the highest score (least general).

8. Form the sets of generalizations for each phrase types whose elements are
sets of generalizations for this type.

9. Filtering the list of generalization results: for the list of generalization for
each phrase type, exclude more general elements from lists of generaliza-
tion for given pair of phrases.

For a given pair of words, only a single generalization exists: if words are the
same in the same form, the result is a node with this word in this form. We refer to
generalization of words occurring in syntactic tree as word node. If word forms are
different (e.g. one is single and other is plural), then only the lemma of word stays. If
the words are different but only parts of speech are the same, the resultant node
contains part of speech information only and no lemma. If parts of speech are
different, generalization node is empty.

For a pair of phrases, generalization includes all maximum ordered sets of
generalization nodes for words in phrases so that the order of words is retained. In
the following example

To buy digital camera today, on Monday
Digital camera was a good buy today, first Monday of the month

Generalization is {<JJ-digital, NN-camera>,<NN- today, ADV,Monday>}, where
the generalization for noun phrases is followed by the generalization by adverbial
phrase. Verb buy is excluded from both generalizations because it occurs in a
different order in the above phrases. Buy — digital — camera is not a generalization
phrase because buy occurs in different sequence with the other generalization nodes.

As one can see, multiple maximum generalizations occur depending on how
correspondence between words is established. Hence multiple generalizations are
possible; a totality of generalizations forms a lattice. To obey the condition of being
maximal set, we introduce a score on generalization. Scoring weights of generaliza-
tions are decreasing, roughly, in following order: nouns and verbs, other parts of
speech, and nodes with no lemma but part of speech only.

To optimize the calculation of generalization score, we conducted a computa-
tional study to determine the POS weights to deliver the most accurate similarity
measure between sentences possible (Galitsky et al. 2012). The problem was
formulated as finding optimal weights for nouns, adjectives, verbs and their forms
(such as gerund and past tense) such that the resultant search relevance is maximum.
Search relevance was measured as a deviation in the order of search results from the
best one for a given query (delivered by Google); current search order was deter-
mined based on the score of generalization for the given set of POS weights (having
other generalization parameters fixed). As a result of this optimization performed in
(Galitsky et al. 2010), we obtained Wy = 1.0, W3 = 0.32, Wgg = 0.71,
Wep = 0.64, Wyg = 0.83, Wprp = 0.35 excluding common frequent verbs like
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get/take/set/put for which Wypcommon = 0.57. We also set that W_pgg «» = 0.2
(different words but the same POS), and W_+ yora> = 0.3 (the same word but occurs
as different POSs in two sentences).

Generalization score (or similarity between sentences sent;, sent,) then can be
expressed as sum through phrases of the weighted sum through words

WOVden:; and word gep:
score(sent;, sent;) = Y (xp, vp, .12, Wpos word_generalization(word e, word
sentZ)-

(Maximal) generalization can then be defined as the one with the highest score. This
way we define a generalization for phrases, sentences and paragraphs.

Result of generalization can be further generalized with other parse trees or
generalization. For a set of sentences, totality of generalizations forms a lattice: the
order on generalizations is set by the subsumption (subtree) relation and generali-
zation score. We enforce the associativity of generalization of parse trees by means
of computation: it has to be verified and resultant list extended each time new
sentence is added. Notice that such associativity is not implied by our definition of
generalization.

5.3.2 Equivalence Transformation on Phrases

We have manually created and collected from various resources rule base for generic
linguistic phenomena. Unlike text entailment system, for our setting we do not need
a complete transformation system as long as we have sufficiently rich set of
examples. Transformation rules were developed under the assumption that informa-
tive sentences should have a relatively simple structure (Romano et al. 2006).

Syntactic-based rules capture entailment inferences associated with common
syntactic structures, including simplification of the original parse tree, reducing it
into canonical form, extracting embedded propositions, and inferring propositions
from non-propositional sub-trees of the source tree (Table 5.1), see also (Zanzotto
and Moschitti 2006).

Valid matching of sentence parts embedded as verb complements depends on the
verb properties, and the polarity of the context in which the verb appears (positive,
negative, or unknown). We used a list of verbs for communicative actions from
(Galitsky and Kuznetsov 2008) which indicate positive polarity context; the list was
complemented with a few reporting verbs, such as say and announce, since opinions in
the news domain are often given in reported speech, where an information is usually
considered reliable (Galitsky et al. 2011a). We also used annotation rules to mark
negation and modality of predicates (mainly verbs), based on their descendent modifiers.

An important class of transformation rules involves noun phrases. For a single
noun group, its adjectives can be re-sorted, as well as nouns except the head one. A
noun phrase which is a post-modifier of a head noun of a given phrase can be merged
to the latter; sometimes the resultant meaning might be distorted by otherwise we
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Table 5.1 Rules of graph reduction for generic linguistic structure. Resultant reductions are
italicized

Category Original/transformed fragment

Conjunctions | ‘Camera is very stable and has played an important role in filming their
wedding’

Clausal ‘Flash was disconnected as children went out to play in the yard’

modifiers

Relative ‘I was forced to close the LCD, which was blinded by the sun’

clauses

Appositives ‘Digital zoom, a feature provided by the new generation of cameras, dramati-

cally decreases the image sharpness’.

Determiners My customers use their (‘an’) ‘auto focus camera for polar expedition’
(their = > an)

Passive Cell phone can be easily grasped by a hand palm (‘Hand palm can easily grasp
the cell phone’)

Genitive Sony’s LCD screens work in sunny environment as well as Canon’s (‘LCD of

modifier Sony. .. as well as of Canon’)

Polarity It made me use digital zoom for mountain shots (‘I used digital zoom. ..”)

would miss important commonalities between expressions containing noun phrases.
An expression ‘NP; < of or for > NP,’ we form a single NP with the head noun head
(NP,) and head(NP;) playing modifier role, and arbitrary sort for adjectives.

Sentence compression (Zhao et al. 2018), a partial case of sentence equivalence
transformation, shortens a sentence into a compression while retaining syntactic and
preserving the underlying meaning of the original sentence. Previous works discov-
ered that linguistic features such as parts-of-speech tags and dependency labels are
helpful to compression generation. The authors introduced a gating mechanism and
proposed a gated neural network that selectively exploits linguistic knowledge for
deletion-based sentence compression.

5.3.3 Simplified Example of Generalization of Sentences

We present an example of generalization operation of two sentences. Intermediate
sub-trees are shown as lists for brevity. Generalization of distinct values is denoted
by “*’. Let us consider three following sentences:

I am curious how to use the digital zoom of this camera for filming insects.
How can I get short focus zoom lens for digital camera?
Can I get auto focus lens for digital camera?

We first draw the parsing trees for these sentences and see how to build their
maximal common sub-trees:

One can see that the second and third trees are rather similar, so it is straight-
forward to build their common sub-tree as an (interrupted) path of the tree (Fig. 5.2):
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Fig. 5.2 Parse trees for three sentences. The curve shows the common sub-tree (a single one in this
case) for the second and third sentence
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Fig. 5.3 Generalization results for second and third sentence

{MD-can, PRP-I, VB-get, NN-focus, NN-lens, IN-for JJ-digital NN-camera}. At the
phrase level, we obtain:

Noun pharses: [ [NN-focus NN-* ], [JJ-digital NN-camera ]]

Verb phrases: [ [VB-get NN-focus NN-* NN-lens IN-for
JJ-digital NN-camera ]] (Fig. 5.3)

One can see that common words remain in the maximum common sub-tree,
except ‘can’ which is unique for the second sentence, and modifiers for ‘lens’ which
are different in these two sentences (shown as NN-focus NN-* NN-lens). When
sentences are not as similar as sentences 2 and 3, and we proceed to their general-
ization on phrase-by-phrase basis. Below we express the syntactic parse tree via
chunking (Abney 1991), using the format <position (POS — phrase)>.

Parse 1 0(S-I am curious how to use the digital zoom of this
camera for filming insects), 0(NP-I), 2 (VP-am curious how to
use the digital zoom of this camera for filming insects),

2 (VBP-am) ,

5 (ADJP-curious), 5(JJ-curious),

13 (SBAR-how to use the digital zoom of this camera for
filming insects), 13 (WHADVP-how), 13 (WRB-how), 17(S-to use
the digital zoom of this camera for filming insects) ,

17 (VP-to use the digital zoom of this camera for filming
insects), 17 (TO-to),

20 (VP-use the digital zoom of this camera for filming
insects), 20 (VB-use),

24 (NP-the digital zoom of this camera), 24 (NP-the digital
zoom) , 24 (DT-the) ,

28 (JJ-digital),
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36 (NN-zoom) , 41 (PP-of this camera), 41 (IN-of), 44 (NP-this
camera) , 44 (DT-this),

49 (NN-camera) , 56 (PP-for filming insects), 56 (IN-for) ,

60 (NP-filming insects), 60 (VBG-filming), 68 (NNS-insects)

Parse 2 [0 (SBARQ-How can I get short focus zoom lens for digi-
tal camera), 0 (WHADVP-How) , O (WRB-How) , 4 (SQ-can I get short
focus zoom lens for digital camera), 4 (MD-can), 8(NP-I), 8
(PRP-I), 10 (VP-get short focus zoom lens for digital camera),
10(VB-get), 14 (NP-short focus zoom lens), 14 (JJ-short), 20
(NN-focus), 26 (NN-zoom) , 31 (NN-lens),

36 (PP-fordigital camera), 36 (IN-for), 40 (NP-digital cam-
era), 40(JJ-digital), 48 (NN-camera) ]

Now we group the above phrases by the phrase type [NP, VP, PP, ADJP,
WHADVP. Numbers encode character position at the beginning. Each group con-
tains the phrases of the same type, since the match occurs between the same type.

Grouped Phrases 1 [[NP [DT-the JJ-digital NN-zoom IN-of
DT-this NN-camera ], NP [DT-the JJ-digital NN-zoom ], NP
[DT-this NN-camera ], NP [VBG-filming NNS-insects 117,
[VP [VBP-am ADJP-curious WHADVP-how TO-to VB-use DT-the
JJ-digital NN-zoom IN-of DT-this NN-camera IN-for
VBG-filming NNS-insects ], VP [TO-to VB-use DT-the JJ-digital
NN-zoom IN-of DT-this NN-camera IN-for VBG-filming
NNS-insects ], VP [VB-use DT-the JJ-digital NN-zoom IN-of
DT-this NN-camera IN-for VBG-filming NNS-insects 11, [],
[PP [IN-of DT-this NN-camera ], PP [IN-for VBG-filming
NNS-insects 11, [1, [1, []]

Grouped Phrases 2 [ [NP [JJ-short NN-focus NN-zoomNN-lens ], NP
[JJ-digital NN-camera ]], [VP [VB-get JJ-short NN-focus
NN-zoom NN-lens IN-for JJ-digital NN-camera ]], [1,
[PP [IN-for JJ-digital NN-camera ]], [], [], [SBARQ [WHADVP-
How MD-can NP-I VB-get JJ-short NN-focus NN-zoom NN-lens
IN-for JJ-digital NN-camera ], SQ [MD-can NP-I VB-get
JJ-short NN-focus NN-zoom NN-lens IN-for JJ-digital
NN-camera ]]]

Sample Generalization Between Phrases

At the phrase level, generalization starts with finding an alignment between two
phrases, where we attempt to set a correspondence between as many words as
possible between two phrases. We assure that the alignment operation retains phrase
integrity: in particular, two phrases can be aligned only if the correspondence
between their head nouns is established. There is a similar integrity constraint for
aligning verb, prepositional and other types of phrases (Fig. 5.4).
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[VB-use DT-the JJ-digital NN-zoom IN-of DT-this NN-camera IN-for VBG-
fiflming NNS-insec

VB-get JJ-short NN-focus NN-zoom NN-lens IN-for JJ-digital NN-camera ]

[
[VB=-* JJ-* NN-zoom NN-* IN-for NN-* ]

Fig. 5.4 Alignment between words for two sentences

NP [ [JJ-* NN-zoom NN-* 1], [JJ-digital NN-camera ]]

VP [ [VBP-* ADJP-* NN-zoom NN-camera ], [VB-* JJ-* NN-zoom NN-*
IN-for NN-* ]

PP [ [IN-* NN-camera ], [IN-for NN-* ]]

score (NP) = (W<pos,*> *Wyny +Wepos, > ) + (Way + Wy ) = 3.4,

score (VP) = (2* Wepos,*> + 2*Wwy )+ (4Wepog,»> +Wyny +Werp) = 4.55,
and

score (PRP) = (Wepos, +>+ Wyn ) + (WprptWyy) = 2.55,

hence score = 10.5.

Fig. 5.5 Generalization results and their score

Here we show the mapping between either words or respective POS to explain
how generalization occurs for each pair of phrases for each phrase type. Six mapping
links between phrases correspond to six members of generalization result links. The
resultant generalization is shown in bold in the example below for verb phrases
VP. We specifically use an example of very different phrases now to demonstrate
that although the sentences have the same set of keywords, they are not included in
generalization (Fig. 5.5) because their syntactic occurrence is different.

One can see that that such common concept as ‘digital camera’ is automatically
generalized from the examples, as well as the verb phrase “be some-kind-of zoom
camera” which expresses the common meaning for the above sentences. Notice the
occurrence of expression [digital-camera] in the first sentence: although digital does
not refer to camera directly, we merge two noun group and digital becomes one of
the adjective of this resultant noun group with its head camera. It is matched against
the noun phrase reformulated in a similar way (but with preposition for) from the
second sentence with the same head noun camera. We present more complex
generalization examples in Sect. 5.4.

5.3.4 From Syntax to Inductive Semantics

To demonstrate how the SG allows us to ascend from syntactic to semantic level, we
follow Mill’s Direct method of agreement (induction) as applied to linguistic
structures. British philosopher JS Mills wrote in his 1843 book “A System of
Logic”: ‘If two or more instances of the phenomenon under investigation
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have only one circumstance in common, the circumstance in which alone all the
instances agree, is the cause (or effect) of the given phenomenon.” (Ducheyne
2008).

Consider a linguistic property A of a phrase f. For A to be a necessary condition of
some effect E, A must always be present in multiple phrases that deal with E. In the
linguistic domain, A is a linguistic structure and E is its meaning. Therefore, we
check whether linguistic properties considered as ‘possible necessary conditions’ are
present or absent in the sentence. Obviously, any linguistic properties As which are
absent when the meaning E is present cannot be necessary conditions for this
meaning E of a phrase.

For example, the method of agreement can be represented as a phrase f; where
words {A B C D} occur together with the meaning formally expressed as <w x y z>.
Consider also another phrase f> where words {A E F G} occur together with the same
meaning <w tu v> as in phrase f;. Now by applying generalization to words {A B C
D} and {A E F G} we obtain {A} (here, for the sake of example, we ignore the
syntactic structure of f; and f>). Therefore, here we can see that word A is the cause
of w (has meaning w). Throughout this chapter we do take into account linguistic
structures covering A B C D in addition to this list itself, applying the method of
agreement.

Hence we can produce (inductive) semantics applying SG. Semantics cannot be
obtained given just syntactic information of a sample; however, generalizing two or
more phrases (samples), we obtain an (inductive) semantic structure, not just
syntactic one. Viewing SG as an inductive cognitive procedure, transition from
syntactic to semantic levels can be defined formally. In this work we do not mix
syntactic and semantic features to learn a class: instead we derive semantic features
from syntactic according to above inductive framework.

5.3.5 Nearest Neighbor Learning of Generalizations

To perform a classification, we apply a simple learning approach to parse tree
generalization results. The simplest decision mechanism can be based on maximiz-
ing the score of generalization for an input sentence and a member of the training
class. However, to maintain deterministic flavor of our approach we select the
nearest neighbor method with limitation for both class to be classified and foreign
classes. The following conditions hold when a sentence U is assigned to a class R*
and not to the other class R™:

1. U has a nonempty generalization (having a score above threshold) with a positive
example R". It is possible that the U has also a nonempty common generalization
with a negative example R, its score should be below the one for R* (This would
mean that the tree U is similar to both positive and negative examples, with a
higher score for the former than for the latter).
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2. For any negative example R™, if U is similar to R~ (i.e., U * R~ # J) then
generalization(U, R™) should be a sub-tree of generalization(U, R*). This condi-
tion introduces the partial order on the measure of similarity. It says that to be
assigned to a class, the similarity between the current sentence U and the closest
(in terms of generalization) sentence from the positive class should be higher than
the similarity between U and each negative example.

Condition 2 is important to properly handle the nonmonotonic nature of such feature
as meaningfulness of an opinion-related sentence. As a sentence gets extended, it can
repetitively become meaningless and meaningful over and over again, so we need
this condition that the parse tree overlap with a foreign class is covered by the parse
tree overlap with the proper class.

In this project we use a modification of nearest neighbor algorithm to tree learning
domain. In our previous studies (Galitsky et al. 2009) we explained why this
particular algorithm is better suited to graph data, supporting the learning
explainability feature (Chap. 3). We apply a more cautious approach to classification
compared to the tradition K-nearest neighbor, and some examples remain unclassi-
fied due to condition 2).

5.4 Evaluation of a Generalization-Based Search Engine

We evaluate how search precision improves, as search results obtained by default
search model are re-ranked based on syntactic generalization of search. This problem
is frequently referred to as passage re-ranking. The search engine covers many
application areas, from document search to opinion search, and relies on various
default search models from TF*IDF to location- or popularity-based search.

5.4.1 User Interface of Search Engine

The user interface is shown at Fig. 5.6. To search for an opinion, a user specifies a
product class, a name of particular products, a set of its features, specific concerns
and needs or interests. A search can be narrowed down to a particular source;
otherwise, multiple sources of opinions (review portals, vendor-owned reviews,
forums and blogs available for indexing) are combined.

Opinion search results are shown on the bottom-left. For each result, a snapshot is
generated indicating a product, its features which are attempted by the system to
match user opinion request, and sentiments. In case of multiple sentence queries, a
search result contains combined snapshot of multiple opinions from multiple
sources, dynamically linked to match these queries.
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Automatically generated product advertisement compliant with Google spon-
sored links format are shown on the right. Phrases in generated advertisements are
extracted from original product web pages and possibly modified for compatibility,
compactness and appeal to potential users. There is a one-to-one correspondence
between products in opinion hits on the left and generated advertisements on the
right (unlike in Google, where sponsored links list different websites from those on
the left). Both respective business representatives and product users are encouraged
to edit and add advertisements, expressing product feature highlights and usability
opinions respectively.

Search phrase may combine multiple sentences, for example: “I am a beginner
user of digital camera. [ want to take pictures of my kids and pets. Sometimes I take it
outdoors, so it should be waterproof to resist rain”. Obviously, this kind of specific
opinion request can hardly be represented by keywords like ‘beginner digital camera
kids pets waterproof rain’. For a multi-sentence query (Galitsky et al. 2013) the
results are provides as linked search hits:

Take Pictures of Your Kids? ... Canon 400D EOS Rebel XTI digital SLR
camera review < [ am by no means a professional or long time user of SLR
cameras.

How To Take Pictures Of Pets And Kids ... Need help with Digital slr
camera please!!!? — Yahoo! Answers <> I am a beginner in the world of the
digital SLR ...

Canon 400D EOS Rebel XTI digital SLR camera review (Website Design
Tips) / Animal, pet, children, equine, livestock, farm portrait and stock < I
am a beginner to the slr camera world. < I want to take the best picture
possible because I know you. Call anytime.

Linking («+) is determined in real time to address each part in a multi-sentence
query which can be, for example, a blog posting seeking advice. Linked search
results are providing comprehensive opinion on the topic of user interest, obtained
from various sources.

5.4.2 Qualitative Evaluation of Search

Obviously, the generalization-based search performance is higher for longer key-
word queries and natural language queries, where high sensitivity comparison of
query and search results allows finding semantic relevancy between them.

We start with the example query “National Museum of Art in New York”
(Fig. 5.7) which illustrates a typical search situation where a user does not know
an exact name of an entity. We present the results as ordered by the generalization-
based search engine, retaining the information from the original order obtained for
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NATIONAL MUSEUM OF CATHOLICART & HISTORY  -New  York, NY (#5)
NATIONAL MUSEUM OF CATHOLIC ART & HISTORY - inNew York, NY. Get
contact info, directions and more at YELLOWPAGES.COM

National Academy Museum & School of Fine Arts(#18)

He is currently represented by Ameringer Yohe Fine Artin New York....© 2007
National Academy Museum & School of Fine Arts, New York. Join Our Mailing List ...
International Council of Museums: Art Galleries(#29)

( In French and English.) National Museum of Modern Art. Musée du ... Metropolitan
Museum of Art, New York City. One of the largest art museums in the world. ...
Virtual NYC Tour: New York City Museums(#23)

National Museum of the American Indian (New York branch) ... Cloisters is one of
the museums of the Metropolitan Museum of Art in New York City. ...

Great Museums - SnagFilms(#9)

Founded in 1870, the Metropolitan Museum of Art in New York City is a

three ... Home Base: The National Baseball Hall of Fame and Museum ...

National Contemporary Art Museum Gets Seoul Venue(#2)

... nearby example is the National Museum of Art in Deoksu Palace," said ... can also
refer to the MoMA's (Museum of Modern Art) annex PSI in New York," he said. ...
National Lighthouse Museum New York City.com : Arts ...(#1)

NYC.com information, maps, directions and reviews

on National Lighthouse Museum and other Museums in New York City. NYC.com,
the authentic city site, also offer a ...

National Academy Museum New York City.com : Arts ...(#0)

NYC.com information, maps, directions and reviews

on National Academy Museum and other Museums in New York City. NYC.com, the
authentic city site, also offer a ...

Fig. 5.7 Sample search results for generalization-based search engine

this query on Yahoo.com (#x). Notice that the expected name of the museum is
either Metropolitan Museum of Art or National Museum of Catholic Art & History.

The match procedure needs to verify that ‘National’ and ‘Art’ from the query
belong to the noun group of the main entity (museum), and this entity is linguistically
connected to ‘New York’. If these two conditions are satisfied, we get the first few
hits relevant (although mutually inconsistent, it is either museum or academy). As to
the Yahoo sort, we can see that first few relevant hits are numbered as #5, #18, #29.
Yahoo’s #0 and #1 are on the far bottom of generalization-based search engine, the
above condition for ‘National’ and ‘Art’ are not satisfied, so these hits do not seem to
be as relevant. Obviously, conventional search engines would have no problems
delivering answers when the entity is mentioned exactly (Google does a good job
answering the above query; it is perhaps achieved by learning what other people
ended up clicking through).

Hence we observe that generalization helps for the queries where important
components and linguistic link between them in a query has to be retained in the
relevant answer abstracts. Conventional search engines use a high number of
relevancy dimensions such as page rank, however for answering more complex
questions syntactic similarity expressed via generalization presents substantial
benefits.


http://yahoo.com
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Table 5.2 Evaluation of general web search relevance improvement by SG

Relevancy of Yahoo Relevancy of re-sorting by Relevancy
Type of search, %, averaging generalization, %, averaging compared to
search query | over 10 over 10 baseline, %
3—4 word 77 77 100.0
phrases
5-7 word 79 78 98.7
phrases
8-10 word 77 80 103.9
single
sentences
2 sentences, 77 83 107.8
>8 words
total
3 sentences, 75 82 109.3
>12 words
total

We perform our quantitative evaluation of search re-ranking performance with
two settings (neither relies on ML):

1. General web search. WE compute SG score and re-rank online according to this
score. We increase the query complexity and observe the contribution of SG;

2. Product search in a vertical domain. We analyze various query types and evaluate
how automated SG, as well as the one augmented by manually constructed
templates, help to improve search relevance.

5.4.3 Evaluation of Web Search Relevance Improvement

Evaluation of search included an assessment of classification accuracy for search
results as relevant vs irrelevant. Since we used the generalization score between the
query and each hit snapshot, we drew a threshold of five highest score results as
relevant class and the rest of search results as irrelevant. We used the Yahoo search
API and also Bing search API and applied the generalization score to find the highest
score hits from first 50 Yahoo and Bing search results (Table 5.2). We selected
400 queries for each set from the log of searches for eBay products and eBay
entertainment, which were phrased as broad web searches. For each query, the
relevance was estimated as a percentage of correct hits among the first ten, using
the values: {correct, marginally correct, incorrect}. Evaluation was conducted by
the authors. Third and second rows from the bottom contain classification results for
the queries of 3—4 keywords which is slightly more complex than an average one
(3 keywords); and significantly more complex queries of 5—7 keywords respectively.

For a typical search query containing 3—4 words, SG is not in use. One can see
that for a 5-7 word phrases SG decreases the accuracy and should not be used.
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However, for longer queries the results are encouraging (almost 4% improvement),
showing a visible improvement over current Yahoo and Bing searches once the
results are re-ranked based on SG. Substantial improvement can be seen for multi-
sentence queries as well.

5.4.4 Evaluation of Product Search

We conducted evaluation of relevance of SG — enabled search engine, based on
Yahoo and Bing search engine APIs. This evaluation was based on eBay product
search domain, with a particular focus on entertainment / things-to-do related
queries. Evaluation set included a wide range of queries, from simple questions
referring to a particular product, a particular user need, as well as a multi-sentence
forum-style request to share a recommendation. In our evaluation we split the totality
of queries into noun-phrase class, verb-phrase class, how-to class, and also inde-
pendently split in accordance to query length (from 3 keywords to multiple
sentences). The evaluation was conducted by the authors, based on proprietary
search quality evaluation logs.

For an individual query, the relevance was estimated as a percentage of correct
hits among the first ten, using the values: {correct, marginally correct, incorrect}.
Accuracy of a single search session is calculated as the percentage of correct search
results plus half of the percentage of marginally correct search results. Accuracy of a
particular search setting (query type and search engine type) is calculated, averaging
through 20 search sessions. This measure is more suitable for product-related
searches delivering multiple products, than Mean Reciprocal Rank (MRR), calcu-
lated as

]/nZizlmn] /rki

where n is the number of questions, and rk; is the rank of the first correct answer to
question . MRR is used for evaluation of a search for information, which can be
contained in a single (best) answer, whereas a product search might include multiple
valid answers.

For each type of phrase for queries, we formed a positive set of 2000 correct
answers and 10,000 incorrect answers (snippets) for training; evaluation is based on
20 searches. These answers were formed from the quality assurance dataset used to
improve existing production search engine before the current project started. To
compare the relevance values between search settings, we used first 100 search
results obtained for a query by Yahoo and Bing APIs, and then re-sorted them
according to the score of the given search setting (SG score). The results are shown
in Table 5.3.
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The answers we select by SG from our evaluation dataset can be a false positive,
for example ‘Which US president conducted a war in Iraq?’ answered by ‘The rabbit
is in the bush’, or a false negative in case it is not available or SG operation with the
correct answer failed.

To further improve the product search relevance in eBay setting, we added
manually formed templates that are formed to enforce proper matching with popular
questions which are relatively complex, such as

see-VB *-JJ -*{movie-NN U picture-NN U film-NN } of-PRP best-JJ {director-NN U
producer-NN U artist-NN U academy-NN} award-NN [for-PRP], to match ques-
tions with phrases

Recommend me a movie which got academy award for best director

Cannes Film Festival Best director award movie

Give me a movie with National Film Award for Best Producer

Academy award for best picture

Movies of greatest film directors of all time

Totally 235 templates were added, 10-20 per each entertainment category or
genre. Search relevance results for manual templates are shown in Table 5.3 column
6.

One can observe that for rather complex queries, we have 64—-67% relevance
improvement, using manually coded templates, compared to baseline horizontal
product search provided by Yahoo and Bing APIs. Automated relevance learning
has 30% improvement over baseline for simpler question, 39% for more complex
phrases and 36% for multi-sentence queries.

It is worth comparing our search re-ranking accuracy with other studies of
learning parse trees, especially statistical approach such as tree kernels (Galitsky
et al. 2014). In the TREC dataset of question, (Moschitti 2008) used a number of
various tree kernels to evaluate the accuracy of re-ranking of Google search results.
In Moschitti’s approach, questions are classified as relevant or irrelevant based on
building tree kernels from all common sub-trees, and using SVM to build a boundary
between the classes. The authors achieved 65% over the baseline (Google in 2008) in
a specific domain of definitional questions by using word sequences and parsing
results-based kernel. In our opinion these results for an educational domain are
comparable with our results of real-world product related queries without manual
templates. As we demonstrate in this chapter, using manual templates in product
searches further increases search relevance for complex multi-phrased questions.

In some learning setting tree kernel approach can provide explicit commonality
expressions, similar to the SG approach. (Pighin and Moschitti 2009) show the
examples of automatically learned commonality expressions for selected classifica-
tion tasks, which are significantly simpler than commonality structures. Definitional
questions from TREC evaluation (Voorhees 2004) are frequently less ambiguous
and better structured than longer queries of real-world users. The maximal common
sub-trees are linear structures (and can be reduced to common phrases) such as

president-NN (very specific)
and (VP(VBD)(NP)(PP(IN)(NP)))(very broad).
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5.5 Evaluation of Text Classification Problems

5.5.1 Comparative Performance Analysis in Text
Classification Domains

To evaluate expressiveness and sensitivity of SG operation and associated scoring
system, we applied the nearest neighbor algorithm to the series of text classification
tasks outlined in Sect. 5.2 (Table 5.4). We form a few datasets for each problem,
conduct independent evaluation for this dataset and then average the resultant
accuracy (F-measure). Building of the training and evaluation datasets of texts, as
well as class assignments, was done by the authors. Half of each set was used for
training, and the other half for evaluation; the spilt was random but no cross-
validation was conducted. Due to the nature of the problem, the positive sets are
larger than the negative sets for sensible/meaningless and ad line problems. For
epistemic state classification, the negative set includes all other epistemic states or no
state at all.

For digital camera reviews, we classify each sentence with respect to sensible/
meaningless classes by two approaches:

* A baseline WEKA C4.5, as a popular text classification approach;
* SG - based approach.

We demonstrate that a traditional text classification approach poorly handles such a
complex classification task, in particular due to slight differences between phrasings
for these classes, and the property of non-monotonicity. Using SG instead of WEKA
C4.5 brought us 16.1% increase in F-measure for the set of digital camera reviews. In
other domains in Table 5.4, being more traditional for text classification, we do not
expect as dramatic improvement (not shown).

Rows 4-7 contain classification data for the reviews on different products, and
variability in accuracies can be explained by various levels of diversity in phrasings.
For example, the ways people express their feelings about cars is much more diverse
than that of about kitchen appliances. Therefore, the accuracy of the former task is
lower than that of the latter task. One can see that it is hard to form verbalized rules
for the classes, and the hypotheses are mostly domain-dependent; therefore, sub-
stantial coverage of varieties of phrasing is required.

To form the training set for ad lines information extraction, we collected positive
examples from existing Google ads, scraping more than 2000 ad lines. The precision
for extraction of such lines for the same five categories of products is higher than the
one for the above tasks of sensible/meaningless classes. A the same time, the recall
of the former is lower than that of the latter, and the resultant F-measure is slightly
higher for ad lines information extraction, although the complexity of this problem is
significantly lower. In can be explained by a rather high variability of acceptable ad
lines (‘sales pitches’) which have not been captured by the training set.

Overall, the recognition accuracy of the epistemic state classification is higher
than for the other two domains because manually built templates for particular states
cover a significant portion of cases. At the same time, recognition accuracy for
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Table 5.4 Accuracies of text classification problems

Data set size (# Precision Recall
Problem pos/ #neg in each | relating to | relating to | F-
domain Dataset of two classes) a class, % aclass, % | measure
Sensible/ Digital camera 120/40 58.8% 54.4% 56.5%
meaningless reviews/processed
by WEKA C4.5
Digital camera 120/40 58.8% 74.4% 65.6%
reviews
Cell phone 400/100 62.4% 78.4% 69.5%
reviews
Laptop reviews 400/100 74.2% 80.4% 77.2%
Kitchen appliances | 400/100 73.2% 84.2% 78.3%
reviews
Auto reviews 400/100 65.6% 79.8% 72.0%
Averages for sensible/meaningless 65.5% 75.3% 69.9%
performed by SG
Good for ad Digital camera 2000/1000 88.4% 65.6% 75.3%
line/inappropri- | webpages
ate for ad line | Wireless services | 2000/1000 82.6% 63.1% 71.6%
webpages
Laptop webpages | 2000/1000 69.2% 64.7% 66.9%
Auto sales 2000/1000 78.5% 63.3% 70.1%
webpages
Kitchen appliances | 2000/1000 78.0% 68.7% 73.1%
webpages
Averages for appropriateness for ad 79.3% 65.1% 71.4%
line recognition
Epistemic Beginner 30/200 77.8% 83.5% 80.6%
state: User with average | 44/200 76.2% 81.1% 78.6%
experience
Pro or semi-pro 25/200 78.7% 84.9% 81.7%
user
Potential buyer 60/200 73.8% 83.1% 78.2%
Open-minded 55/200 71.8% 79.6% 75.5%
buyer
User with one 38/200 74.4% 81.9% 78.0%
brand in mind
Averages for epistemic state 75.5% 82.4% 78.7%
recognition

particular epistemic states significantly varies from state to state and is mostly
determined by how well various phrasings are covered in the training dataset. We
used the same set of reviews as we did for evaluation of the meaningless sentences
classification and manually selected sentences where the epistemic state of interest
was explicitly mentioned or can be unambiguously inferred. For the evaluation
dataset, we recognized which epistemic state exists in each of 200 sentences.
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Frequently, there are two or more of such states (without contradictions) per
sentence. Note also that epistemic states overlap. Low classification accuracy occurs
when classes are defined approximately and the boundary between them are fuzzy
and beyond of what can be expressed in NL. Therefore, we observe that SG gives us
some semantic cues which would be hard to obtain at the level of keywords or
superficial parsing.

5.5.2 Example of Recognizing Meaningless Sentences

We use two sorts of training examples to demonstrate typical classes of meaningless
sentences which express customer opinions. The first class is specific to the expres-
sion of the type <entity — sentiment — for — possible_feature>. In most cases, this
possible_feature is related to entity, characterizes it. However, in this sentence it is
not the case: ‘For the remainder of the trip the camera was just fine; not even a crack
or scratch’. Here possible_feature = ‘remainder of the trip’ which is not a feature of
entity="camera’ so we want all sentences similar to this one to be classified as
meaningless. To obtain a hypothesis for that, we generalize the above phrase with a
sentence like ‘For the whole trip we did not have a chance to use this nice camera’:

{ [for — DT — trip], [camera ]}

The latter sentence can be further generalized with ‘I bought Sony in Walwart but did
not use this adorable thing’. We obtain {[not — use]} which gives a new meaning of
meaningless sentences, where an entity is ‘was not used’ and therefore the sentiment
is irrelevant.

What is important for classification is that generalizations obtained from negative
examples are not annihilated in positive examples such as ‘I could not use the
camera’, so the expected positive hypothesis will include {[sentiment — NN]
(NN=entity)} where ‘could not use’ as a subtree should be substituted as <senti-
ment> placeholder. Hence the generalization of the sentence to be classified ‘I didn 't
have time to use the Canon camera which is my friend’s’ with the above negative
hypothesis is not a subsumption of (empty) generalization with the above positive
hypothesis (and will not be classified as a meaningful opinion sentence).

As one can see, the main barrier to high classification accuracy is the fact that the
feature of being meaningless is not monotonic with respect to expanding sentence. A
short sentence ‘I liked the Panasonic camera’ is meaningful, its extension ‘I liked the
Panasonic camera as a gift of my friend’ is not because the sentiment is now
associated with gift. The further expansion of this sentence ‘I liked the Panasonic
camera as a gift of my friend because of nice zoom’ is meaningful again since nice
zoom is informative.

This case of montonicity can be handled by nearest neighbor learning with
moderate success, and it is a very hard case for kernel-based methods because a
positive area occurs inside a negative area in turn surrounded by a broader positive
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area; therefore it can not be separated by hyperplanes, so non-linear SVM kernels
would be required (which is not a typical case for text classification types of SVM).

There is another application area such as programming in NL where recognition
of meaningless sentences is essential (Galitsky and Usikov 2008).

5.6 Implementation of OpenNLP.Similarity Component

OpenNLP.Similarity component performs text relevance assessment, accepting two
portions of texts (phrases, sentences, paragraphs) and returning a similarity score.

Similarity component can be used on top of search to improve relevance,
computing similarity score between a question and all search results (snippets).
Also, this component is useful for web mining of images, videos, forums, blogs,
and other media with textual descriptions. Such applications as content generation
and filtering meaningless speech recognition results are included in the sample
applications of this component. The objective of Similarity component is to give
an application engineer a tool for text relevance that can be used as a black box, so
that no deep understanding of computational linguistics or machine learning is
required.

5.6.1 First Use Case of Similarity Component: Search

To start with this component, please refer to
SearchResultsProcessorTest.java in package opennlp.tools.
similarity.apps
public void testSearchOrder () runs web search using Bing API and
improves search relevance.
Look at the code of

public List<HitBase> runSearch (String query)
and then at

private BingResponse calculateMatchScoreResortHits (BingResponse
resp, String searchQuery)

which gets search results from Bing and re-ranks them based on computed
similarity score.
The main entry to Similarity component is
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SentencePairMatchResult matchRes = sm.assessRelevance (snapshot,
searchQuery) ;

where we pass the search query and the snapshot and obtain the similarity
assessment structure which includes the similarity score.
To run this test you need to obtain search API key from Bing at https://
docs.microsoft.com/en-us/azure/ and specify it in

public class BingQueryRunner in
protected static final String APP_ID.

5.6.2 Solving a Content Generation Problem

To demonstrate the usability of Similarity component to tackle a problem which is
hard to solve without a linguistic-based technology, we introduce a content gener-
ation component:

RelatedSentenceFinder.java
The entry point here is the function call
hits = f.generateContentAbout ("Albert Einstein") ;

which writes a biography of Albert Einstein by finding sentences on the web
about various kinds of his activities (such as ‘born’, ‘graduate’, ‘invented’ etc.).
The key here is to compute similarity between the seed expression like “Albert
Einstein invented relativity theory” and search result like

Albert Einstein College of Medicine | Medical Education | Biomedical . . .
www.einstein.yu.edu/Albert Einstein College of Medicine is one of the nation’s premier
institutions for medical education, . ..

and filter out irrelevant search results like this one.
This is done in function

public HitBase augmentWithMinedSentencesAndVerifyRelevance (HitBase
item, String originalSentence,
List<String> sentsAll)
SentencePairMatchResult matchRes = sm.assessRelevance
(pageSentence + " " + title, originalSentence) ;

You can consult the results in ‘gen.txt’, where an essay on Einstein bio is written.


https://docs.microsoft.com/en-us/azure
https://docs.microsoft.com/en-us/azure
http://www.einstein.yu.edu/Albert
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5.6.3 Filtering Out Meaningless Speech Recognition Results

Speech recognitions SDKs usually produce a number of phrases as results, such as

‘remember to buy milk tomorrow from trader joes’,
‘remember to buy milk tomorrow from 3 to jones’

One can see that the former is meaningful, and the latter is meaningless (although
similar in terms of how it is pronounced). We use web mining and Similarity
component to detect a meaningful option (a mistake caused by trying to interpret
meaningless request by a query understanding system such as Siri for iPhone can be
costly).

SpeechRecognitionResultsProcessor. java does the job:
public List<SentenceMeaningfullnessScore>
runSearchAndScoreMeaningfulness (List<String> sents)

re-ranks the phrases in the order of decrease of meaningfulness.

Similarity component internals are in the package opennlp.tools.
textsimilarity.chunker2matcher

ParserChunker2MatcherProcessor.java does parsing of two por-
tions of text and matching the resultant parse trees to assess similarity between

these portions of text.

To run ParserChunker2MatcherProcessor

private static String MODEL DIR = "resources/models";

needs to be specified.

The key function

public SentencePairMatchResult assessRelevance (String paral, String
para?2)

takes two portions of text and does similarity assessment by finding the set of all
maximum common subtrees of the set of parse trees for each portion of text. It splits
paragraphs into sentences, parses them, obtained chunking information and pro-
duces grouped phrases (noun, verb, prepositional etc.):

public synchronized List<List<ParseTreeChunks>>
formGroupedPhrasesFromChunksForPara (String para)

and then attempts to find common subtrees:

ParseTreeMatcherDeterministic.java
List<List<ParseTreeChunk>> res = md.
matchTwoSentencesGroupedChunksDeterministic (
sentlGrpLst, sent2GrpLst)

Phrase matching functionality is in package
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opennlp.tools.textsimilarity;
ParseTreeMatcherDeterministic.java:

Here is the key matching function which takes two phrases, aligns them and finds
a set of maximum common sub-phrase

public List<ParseTreeChunks>
generalizeTwoGroupedPhrasesDeterministic

Package structure is as follows:

opennlp.tools.similarity.apps: 3 main applications
opennlp.tools.similarity.apps.utils: utilities for above applications

opennlp.tools.textsimilarity.chunker2matcher: parser which
converts text into a form for matching parse trees

opennlp.tools.textsimilarity: parse tree matching functionality.

5.6.4 Comparison with Bag-of-Words Approach

We first demonstrate how similarity expression for DIFFERENT cases have
too high score for bagOfWords

String phrasel = "How to deduct rental expense from
income ";

String phrase2 = "How to deduct repair expense from
rental income.";

List<List<ParseTreeChunk>> matchResult = parser.

assessRelevance (phrasel,
phrase2) .getMatchResult () ;
assertEquals (
matchResult.toString() ,
"[[ [NN-expense IN-from NN-income ], [JJ-rental NN-*
], [NN-income ]], [ [TO-to VB-deduct JJ-rental NN-* ],
[VB-deduct NN-expense IN-from NN-income ]]11") ;
System.out.println (matchResult) ;
double matchScore = parseTreeChunklListScorer
.getParseTreeChunkListScore (matchResult) ;
double bagOfWordsScore = parserBOW.
assessRelevanceAndGetScore (phrasel,

(continued)
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phrase2) ;
assertTrue (matchScore + 2 < bagOfWordsScore) ;
System.out.println ("MatchScore is adequate ( = " +
matchScore
+ ") and bagOfWordsScore = " + bagOfWordsScore + " is
too high") ;

We now demonstrate how similarity can be captured by POS and cannot be
captured by bagOfWords

phrasel = "Way to minimize medical expense for my
daughter";

phrase2 = "Means to deduct educational expense for my
son'";

matchResult = parser.assessRelevance (phrasel,
phrase2) .getMatchResult () ;

assertEquals (

matchResult.toString(),

"[[ [JJ-* NN-expense IN-for PRPS-my NN-* ], [PRPS$-my
NN-* 1], [ [TO-to VB-* JJ-* NN-expense IN-for PRPS-my
NN-*]]]");

System.out.println (matchResult) ;
matchScore = parseTreeChunkListScorer

.getParseTreeChunkListScore (matchResult) ;

bagOfWordsScore = parserBOW.
assessRelevanceAndGetScore (phrasel, phrase2) ;
assertTrue (matchScore > 2 * bagOfWordsScore) ;

System.out.println("MatchScore is adequate ( = " +
matchScore

+ ") and bagOfWordsScore = " + bagOfWordsScore + " is
too low") ;

5.7 Related Work

Most work in automated semantic inference from syntax deals with much lower
semantic level than the semantic classes we manage in this chapter. de Salvo Braz
et al. (2005) present a principled, integrated approach to semantic entailment. The
authors developed an expressive knowledge representation that provides a hierar-
chical encoding of structural, relational and semantic properties of the text and
populated it using a variety of machine learning based tools. An inferential mech-
anism over a knowledge representation that supports both abstractions and several



5.7 Related Work 155

levels of representations allowed them to begin to address important issues in
abstracting over the variability in natural language. Certain reasoning patterns
from this work are implicitly implemented by parsing tree matching approach
proposed in the current study.

Notice that the set of semantic problems addressed in this chapter is of a much
higher semantic level compared to semantic role labeling; therefore, more sensitive
tree matching algorithm is required for such semantic level. Semantic role labeling
does not aim to produce complete formal meanings, in contrast to our approach. Our
classification classes such as meaningful opinion, proper extraction and relevant/
irrelevant search results are at rather high semantic level, but cannot be fully
formalized; it is hard to verbalize criteria for these classes even for human experts.

Usually, classical approaches to semantic inference rely on complex logical
representations. However, practical applications usually adopt shallower lexical or
lexical-syntactic representations, but lack a principled inference framework.
Bar-Haim et al. (2005) proposed a generic semantic inference framework that
operates directly on syntactic trees. New trees are inferred by applying entailment
rules, which provide a unified representation for varying types of inferences. Rules
are generated by manual and automatic methods, covering generic linguistic struc-
tures as well as specific lexical-based inferences. The current work deals with
syntactic tree transformation in the graph learning framework (compare with
Chakrabarti and Faloutsos 2006, Kapoor and Ramesh 1995), treating various phras-
ings for the same meaning in a more unified and automated manner.

Traditionally, semantic parsers are constructed manually, or are based on manu-
ally constructed semantic ontologies, but these are is too delicate and costly. A
number of supervised learning approaches to building formal semantic representa-
tion have been proposed (Zettlemoyer and Collins 2005). Unsupervised approaches
have been proposed as well, however they applied to shallow semantic tasks (e.g.,
paraphrasing (Lin and Pantel 2001), information extraction (Banko et al. 2007), and
semantic parsing (Poon and Domingos 2008). The problem domain in the current
study required much deeper handling syntactic peculiarities to perform classification
into semantic classes. In terms of learning, our approach is closer in merits to
unsupervised learning of complete formal semantic representation. Compared to
semantic role labeling (Carreras and Marquez 2004) and other forms of shallow
semantic processing, our approach maps text to formal meaning representations,
obtained via generalization.

In the past, unsupervised approaches have been applied to some semantic tasks.
For example, DIRT (Lin and Pantel 2001) learns paraphrases of binary relations
based on distributional similarity of their arguments; TextRunner (Banko et al. 2007)
automatically extracts relational triples in open domains using a self-trained extrac-
tor; SNE system applies relational clustering to generate a semantic network from
TextRunner triples (Kok and Domingos 2008). While these systems illustrate the
promise of unsupervised methods, the semantic content they extract is nonetheless
shallow and we believe it is insufficient for the benchmarking problems presented in
this chapter.



156 5 Assuring Chatbot Relevance at Syntactic Level

A number of semantic-based approaches have been suggested for problems
similar to the four ones used for evaluation in this work. Lamberti et al. (2009)
proposed a relation-based page rank algorithm to augment Semantic Web search
engines. It employs data extracted from user query and annotated resource. Rele-
vance is measured as the probability that retrieved resource actually contains those
relations whose existence was assumed by the user at the time of query definition. In
this chapter we demonstrated how such problem as search results ranking can be
solved based on semantic generalizations based on local data — just queries and
search result snippets.

Statistical learning has been applied to syntactic parse trees as well. Statistical
approaches are generally based on stochastic models (Zhang et al. 2008). Given a
model and an observed word sequence, semantic parsing can be viewed as a pattern
recognition problem and statistical decoding can be used to find the most likely
semantic representation.

Convolution kernels are an alternative to the explicit feature design which we
performed in this chapter. They measure similarity between two syntactic trees in
terms of their sub-structures (e.g. Collins and Duffy 2002). These approaches use
embedded combinations of trees and vectors (e.g. all vs all summation, each tree and
vector of the first object are evaluated against each tree and vector of the
second object) and have given optimal results (Moschitti et al. 2006) handling the
semantic rolling tasks. For example, given the question “What does S.O.S stand
for?”, the following representations are used, where the different trees are: the
question parse tree, the bag-of-words tree, the bag-of-POS-tags tree and the predicate
argument tree

1. (SBARQ (WHNP (WP What))(SQ (AUX does)(NP (NNP S.0.5.)
(VP (VB stand)(PP (IN for)));

2. (What *)(does *)(S.0.S. *)(stand *)(for *)(? *);

3. (WP #*)(AUX *)(NNP *)(VB *)(IN *)(. *);

4. (ARGO (R-A1 (What *)))(ARG1 (A1 (S.0.S. NNP)))(ARG?2 (rel stand)).

Although statistical approaches will most likely find practical application, we
believe that currently structural machine learning approaches would give a more
explicit insight on important featured of syntactic parse trees.

Web-based metrics that compute the semantic similarity between words or terms
(Iosif and Potamianos 2009) are complementary to our measure of similarity. The
fundamental assumption is used that similarity of context implies similarity of
meaning, relevant web documents are downloaded via a web search engine and
the contextual information of words of interest is compared (context-based similarity
metrics). It is shown that context-based similarity metrics significantly outperform
co-occurrence based metrics, in terms of correlation with human judgment.
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5.8 Conclusions

In this chapter we demonstrated that such high-level sentences semantic features as
being meaningful, informative and relevant can be learned from the low level
linguistic data of complete parse tree. Unlike the traditional approaches to multilevel
derivation of semantics from syntax, we explored the possibility of linking low level
but detailed syntactic level with high-level pragmatic and semantic levels directly.

For a few decades, most approaches to NL semantics relied on mapping to First
Order Logic representations with a general prover and without using acquired rich
knowledge sources. Significant development in NLP, specifically the ability to
acquire knowledge and induce some level of abstract representation is expected to
support more sophisticated and robust approaches. A number of recent approaches
are based on shallow representations of the text that capture lexico-syntactic rela-
tions based on dependency structures and are mostly built from grammatical func-
tions extending keyword matching (Durme et al. 2003). Such semantic information
as WordNet’s lexical chains (Moldovan et al. 2003) can slightly enrich the repre-
sentation. Learning various logic representations (Thompson et al. 1997) is reported
to improve accuracy as well. de Salvo Braz et al. (2003) makes global use of a large
number of resources and attempts to develop a flexible, hierarchical representation
and an inference algorithm for it. However, we believe neither of these approaches
reaches the high semantic level required for practical application.

Moschitti et al. (2008) proposed several kernel functions to model parse tree
properties in kernel-based machines such as perceptrons or support vector machines.
In this chapter, instead of tackling a high dimensional space of features formed from
syntactic parse trees, we apply a structural machine learning approach to learn
syntactic parse trees themselves, measuring similarities via sub-parse trees and not
distances in the feature space. Moschitti et al. (2008) define different kinds of tree
kernels as general approaches to feature engineering for semantic role labeling and
conduct experiments with such kernels to investigate their contribution to individual
stages of the semantic role labeling architecture both in isolation and in combination
with other traditional manually coded features. The results for boundary recognition,
classification, and re-ranking stages provide systematic evidence about the signifi-
cant impact of tree kernels on the overall accuracy, especially when the amount of
training data is small. Structure-based methods of this chapter can leverage limited
amount of training cases too.

The tree kernel method assumes we are dealing with arbitrary trees. In this
chapter we are interested in properties of linguistic parse trees only, so the method
of matching is specific to them. We use the tree rewrite rules specific to parse trees,
significantly reducing the dimension of feature space we operate with. In our other
studies Galitsky et al. (2011b) we used ontologies, further reducing the size of
common subtrees. Table 5.5 performs the further comparative analysis of tree kernel
and SG approaches.

Structural method allows combining learning and rule-based approaches to
improve the accuracy, visibility and explainability of text classification.
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Table 5.5 Comparative analysis of two approaches to parse tree learning

Feature\approach

Tree Kernels SVM-based

SG based

Phrase rewriting and
normalization

Not applied and is expected to
be handled by SVM

Rewriting patterns are obtained from
literature. Rewriting/normalization
significantly reduces the dimension
of learning.

Handling semantics

Semantic features are extracted
and added to feature space for
syntactic features.

Semantics is represented as logic
forms. There is a mechanism to build
logic forms from generalizations.

Expressing similarity
between phrases,
sentences, paragraphs

Distance in feature space

Maximal common sub-object,
retaining all common features:
sub-phrase, sub-sentence,
sub-paragraph

Ranking search results

By relevance score, classifying
into two classes: correct and
incorrect answers

By score and by finding entities

Integration with logic
form-based reasoning
components

N/A

Results of generalization can be fed
to a default reasoning system,
abduction/inductive reasoning sys-
tem like JSM (Galitsky et al. 2007),
domain-specific reasoning system
like reasoning about actions

Combining search with
thesaurus

Should be a separate thesaurus-
based relevance engine

SG operation is naturally combined
with thesaurus tree matching opera-
tion (Galitsky et al. 2011b)

Using manually
formed relevance rules

Should be a separate compo-
nent, impossible to alter SVM
feature space explicitly

Relevance rules in the form of gen-
eralizations can be added, signifi-
cantly reducing dimension of feature
space where learning occurs.

Explainability of machine learning results is a key feature in industrial environment.
Quality assurance personnel should be able to verify the reason for every decision of
automated system.

Visibility show all intermediate generalization results, which allows tracking of
how class separation rules are built at each level (pair-wise generalization, general-
ization ” sentence, generalization A generalization, (generalization * generalization)
A generalization, etc.). Among the disadvantages of SVM (Suykens et al. 2003) is a
lack of transparence of results: it is hard to represent the similarity as a simple
parametric function, since the dimension of feature space is rather high. While the
tree kernel approach is statistical Al, the proposed approach follows along the line of
logical Al traditionally applied in linguistics two—three decades ago.

Parsing and chunking (conducted by OpenNLP) followed by SG are significantly
slower than other conventional operations in a content management system such as
indexing and comparable with operations like duplicate search. Verifying relevance,
application of SG should be preceded by statistical keyword-based methods. In real
time application components, such as search, we use conventional TF*IDF based
approach (such as SOLR/Lucene) to find a set of candidate answers of up to



5.8 Conclusions 159

100 from millions of documents and then apply SG for each candidate. For off-line
components, we use parallelized map/reduce jobs (Hadoop) to apply parsing and SG
to large volumes of data. This approach allowed a successful combination of
efficiency and relevance for serving more than ten million unique site users monthly
at datran.com/allvoices.com, zvents.com and stubhub.com.

Proposed approach is tolerant to errors in parsing. For more complex sentences
where parsing errors are likely, using OpenNLP, we select multiple versions of
parsings and their estimated confidence levels (probabilities). Then we cross-match
these versions and if parsings with lower confidence levels provide a higher match
score, we select them.

In this chapter we manually encoded paraphrases for more accurate sentence
generalizations. Automated unsupervised acquisition of paraphrase has been an
active research field in recent years, but its effective coverage and performance
have rarely been evaluated. Romano et al. (2006) proposed a generic paraphrase-
based approach for a specific case such as relation extraction to obtain a generic
configuration for relations between objects from text. There is a need for novel
robust models for matching paraphrases in texts, which should address syntactic
complexity and variability. We believe the current study is a next step in that
direction.

Similarly to the above studies, we address the semantic inference in a domain-
independent manner. At the same time, in contrast to most semantic inference
projects, we narrow ourselves to a very specific semantic domain (limited set of
classes), solving a number of practical problems for chatbots. Learned structures
would significantly vary from one semantic domain to another, in contrast to general
linguistic resources designed for horizontal domains.

Complexity of SG operation is constant. Computing relation I, < I'; for arbitrary
graphs I and I'; is an NP-complete problem (since it is a generalization of the
subgraph isomorphism problem from (Garey and Johnson 1979)). Finding X #
Y = Z for arbitrary X, Y, and Z is generally an NP-hard problem. In (Ganter and
Kuznetsov 2001) a method based on so-called projections was proposed, which
allows one to establish a trade-off between accuracy of representation by labeled
graphs and complexity of computations with them. Pattern structures consist of
objects with descriptions (called patterns) that allow a semilattice operation on
them. Pattern structures arise naturally from ordered data, e.g., from labeled graphs
ordered by graph morphisms. It is shown that pattern structures can be reduced to
formal contexts; in most cases processing the former is more efficient and obvious
than processing the latter. Concepts, implications, plausible hypotheses, and classi-
fications are defined for data given by pattern structures. Since computation in
pattern structures may be intractable, approximations of patterns by means of pro-
jections are introduced. It is shown how concepts, implications, hypotheses, and
classifications in projected pattern structures are related to those in original ones
(Strok et al. 2014; Makhalova et al. 2015).

In particular, for a fixed size of projections, the worst-case time complexity of
computing operation * and testing relation < becomes constant. Application of pro-
jections was tested in various experiments with chemical (molecular) graphs
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(Kuznetsov and Samokhin 2005) and conflict graphs (Galitsky et al. 2009). As to the
complexity of tree kernel algorithms, they can be run in linear average time O(m + n),
where m and n are number of nodes in a first and second trees (Moschitti 2008).

Using semantic information for query ranking has been proposed in (Aleman-
Meza et al. 2003; Ding et al. 2004). However, we believe the current study is a
pioneering one in deriving semantic information required for ranking from syntactic
parse tree directly. In our further studies we plan to proceed from syntactic parse
trees to higher semantic level and to explore applications which would benefit
from it.

The code for SG is available at https://github.com/bgalitsky/relevance-based-on-
parse-trees/tree/master/src/main/java/opennlp/tools/textsimilarity.
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