
Chapter 4
Developing Conversational Natural
Language Interface to a Database

Abstract In this Chapter we focus on a problem of a natural language access to a
database, well-known and highly desired to be solved. We start with the modern
approaches based on deep learning and analyze lessons learned from unusable
database access systems. This chapter can serve as a brief introduction to neural
networks for learning logic representations. Then a number of hybrid approaches are
presented and their strong points are analyzed. Finally, we describe our approach
that relies on parsing, thesaurus and disambiguation via chatbot communication
mode. The conclusion is that a reliable and flexible database access via NL needs
to employ a broad spectrum of linguistic, knowledge representation and learning
techniques. We conclude this chapter by surveying the general technology trends
related to NL2SQL, observing how AI and ML are seeping into virtually everything
and represent a major battleground for technology providers.

4.1 Introduction

With the rapid proliferation of information in modern data-intense world, many
specialists across a variety of professions need to query data stored in various
relational databases. While relational algebra and its implementations in modern
querying languages, such as SQL, support a broad spectrum of querying mecha-
nisms, it is frequently hard for people other than software developers to design
queries in these languages. Natural language (NL) has been an impossible dream of
query interface designers, believed to be unreliable, except in limited specific
circumstances. A particular case, NL interface to databases is considered as the
goal for a database query interface; a number of interfaces to databases (NL2SQL)
have been built towards this goal (Androutsopoulos et al. 1995; Agrawal et al.
2002; Galitsky 2005; Li et al. 2006; Bergamaschi et al. 2013).

NL2SQL have many advantages over popular query interfaces such as structured
keyword-based search, form-based request interface, and visual query builder. A
typical NL2SQL would enable naive users to specify complex queries without exten-
sive training by database experts. On the other hand, single level keywords are
insufficient to convey complex query logic, form-based interfaces can be used only
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for a limited set of query types and where queries are predictable. For a novice user to
employ a visual query builder, some training and solid knowledge of a database schema
is required. Conversely, using an NL2SQL system, even naive users are expected to be
able to accomplish logically complex query tasks, in which the target SQL statements
include comparison predicates, conjunctions, quantifications, multi-level aggregations,
nestings, and various types of joins, among other things.

Although NL2SQL is strongly desirable, it has not been extensively deployed yet.
Microsoft has been distributing English Query product that has never become
popular because of low robustness and substantial efforts in using the provided
tools to build a rule-based NL model and mapping for a database. Oracle never had
its database accessed via NL by a broad audience. The main reason is that it is rather
hard to “understand” an NL query in a broad sense and to map a user phrase into
given database field in particular (Galitsky and Grudin 2001).

A relationship between databases and chatbots is that of a mutual aid. A database
is an important source of data for a chatbot. At the same time, a chatbot is a tool that
facilitates error rectification in language understanding required to query databases.
As a natural language query to a database is being interpreted, ambiguities arise and
need to be resolved by asking a user which database table and fields she meant with
her phrase.

The goal of this chapter is to explore what works and what does not work for
NL2SQL. We will start with the most recent approach based on learning of a formal
sequence (NL) to sequence(SQL) encoder via a neural network (Goldberg 2015).
After that we consider classical approaches of 2000s based on token mappings of
query words into names of tables, columns and their values. We then go deeper into
the anatomy of how NL represents logic forms in general and SQL in particular, and
focus on linguistic correlates of SQL. Having analyzed the shortcomings of these
approaches, we formulate the one most plausible in industrial settings and dive into
the steps of building SQL from text.

4.1.1 History

There is a series of ups and downs in attempts to access databases in NL. Natural
language query interfaces have been attempted for decades, because of their great
desirability, particularly for non-expert database users. However, it is challenging for
database systems to interpret (or understand) the semantics of natural language
queries. Early interactive NL2SQLs (Kupper et al. 1993) mainly focus on generating
cooperative responses from query results (over-answering). Li et al. (2005) takes a
step further, generating suggestions for the user to reformulate his query when it is
beyond the semantic coverage. This strategy greatly reduces the user’s burden in
query reformulation. However, the fact that the input query is within the coverage of
a prepared semantic model does not necessary mean it will be processed correctly.
As new NLP techniques arise, there are new attempts to apply them to NL2SQL, not
necessarily advancing a state-of-the-art but enabling the domain with new ideas and
intuition of what has worked and what has not.
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Early NL2SQL systems depended on hand crafted semantic grammars tailored to
each individual database, which are hard to transport to other databases. Conversely,
the system to be presented in the end of this chapter targets a generic query language
such as SQL, as the translation goal, in an arbitrary domain with unrestricted
vocabulary, as long as words in a query correspond to field names and values. We
intend to build a database-independent system that learns the database structure
online and prepares NL2SQL interface automatically.

Popescu et al. (2004) suggested to focus on a limited set of queries (semantically
tractable) with unambiguous mapping into relations, attributes and values, and
employ statistical semantic parsing. (Galitsky and Usikov 2008; Quirk et al. 2015)
proposed a framework of natural language programming beyond NL2SQL, where a
compiler inputs an NL description of a problem and forms a code according to this
description. Galitsky et al. (2011) defined sentence generalization and generalization
diagrams via a special case of least general generalization as applied to linguistic
parse trees, which is an alternative way for query formation from NL expressions. Li
and Jagadish (2016) proposed an NL2SQL comprising three main components: a
first component that transforms a natural language query to a query tree, a second
component that verifies the transformation interactively with the user, and a third
component that translates the query tree into a SQL statement.

In most implementation, each SQL statement is composed from the ground
up. When a query log, which contains natural language queries and their
corresponding SQL statements, is available, an NL2SQL system can benefit from
reusing previous SQL statements. When the new query is in the query log, NL2SQL
system can directly reuse the existing SQL statement. When the new query is
dissimilar to any previous queries, it can be composed from the ground up. It is
promising to achieve somewhere in between, finding similar queries in the query log,
reusing some of the SQL fragments, and completing the remaining parts.

A number of recent approaches have given up on feature engineering and attempt
to learn NL2SQL as a sequence of symbols, via logic forms or directly (Zhong et al.
2017).

We conclude this section with a list of industrial NL2SQL Systems:

1. DataRPM, datarpm.com/product
2. Quepy (Python framework), quepy.machinalis.com
3. Oracle ATG (2010 commerce acquisition), docs.oracle.com/cd/E23507_01/

Search.20073/ATGSearchQueryRef/html/s0202naturallanguagequeries01.html
4. Microsoft PowerBI, https://powerbi.microsoft.com/en-us/blog/power-bi-q-and-a-

natural-language-search-over-data/
5. Wolfram natural language understanding, www.wolfram.com/natural-language-

understanding/
6. Kueri allows users to navigate, explore, and present their Salesforce data with

using a Google style as-you-type auto-complete suggestions. This platform is a
complete library you can download and use commercially for free. The platform
was developed especially for developers who would like to offer end-users the
ability to interact with data using Natural Language. UX includes as-you-type
smart suggestions.
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4.2 Statistical and Deep Learning in NL2SQL Systems

Reinforcement Learning approach (Zhong et al. 2017) propose Seq2SQL, a deep
neural network for translating natural language questions to corresponding SQL
queries. This approaches takes advantage of the structure of SQL queries to signif-
icantly reduce the output space of generated queries. The rewards from in-the-loop
query execution over the database support learning a policy to generate unordered
parts of the query, which are shown to be less suitable for optimization via cross
entropy loss.

Zhong et al. (2017) published WikiSQL, a dataset of relatively simple 80 k hand-
annotated examples of questions and SQL queries distributed across 24 k tables from
Wikipedia. Labeling was performed by Amazon Mechanical Turk. Each query
targets a single table, and usually has a single constraint. This dataset is required
to train the model and is an order of magnitude larger than comparable datasets.
Attentional sequence to sequence models were considered as a baseline and deliv-
ered execution accuracy of 36% and logical form accuracy of 23%.

By applying policy-based reinforcement learning with a query execution envi-
ronment to WikiSQL, Seq2SQL model significantly outperforms the baseline and
gives corresponding accuracies of to 59.4% and 48.3%. Hence in spite of the huge
dataset required for the accuracy, it is still fairly low. The training is very domain-
dependent since the system does not differentiate between the words related to
logical operations vs the words which are domain atoms. Therefore, for a real
customer deployment, an extensive collection of a training set would be required,
which is not very plausible. Hence we believe NL2SQL problem cannot do without
an extensive feature engineering that makes it domain-independent and applicable to
an arbitrary database.

One can apply RNN models for parsing natural language queries to generate SQL
queries, and refine it using existing database approaches. For instance, heuristic rules
could be applied to correct grammar errors in the generated SQL queries. The
challenge is that a large amount of (labeled) training samples is required to train
the model. One possible solution is to train a baseline model with a small dataset, and
gradually refining it with user feedback. For instance, users could help correct the
generated SQL query, and this feedback essentially serves as labeled data for
subsequent training.

The approaches purely based on deep learning models may not be very effective.
If the training dataset is not comprehensive enough to include all query patterns
(some predicates could be missing), then a better approach would be to combine
database solutions and deep learning.

Converting NL to SQL can be viewed from a more general framework of building
a logical form representation of text, given a vast set of pairs. Semantic parsing aims
at mapping natural language to machine interpretable meaning representations
(Berant et al. 2002). Traditional approaches rely on high-quality lexicons,
manually-built templates, and linguistic features which are either domain or
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representation-specific. Deep learning attention-enhanced encoder-decoder model
encodes input utterances into vector representations, and generate their logical forms
by conditioning the output sequences or trees on the encoding vectors. Dong and
Lapata (2016) show that for a number of datasets neural attention approach performs
competitively well without using hand-engineered features and is easy to adapt
across domains and meaning representations. Obviously, for practical application a
fairly extensive training dataset with exhaustive combination of NL expressions –
logic forms pars would be required.

Although long short-term memory and other neural network models achieve
similar or better performance across datasets and meaning representations, without
relying on hand-engineered domain- or representation-specific features, they cannot
be incrementally improved for a given industrial domain unless hundred or
thousand-times larger training datasets (compared to the available ones) are
obtained.

4.2.1 NL2SQL as Sequence Encoder

Semantic parsing aims at mapping natural language to machine interpretable mean-
ing representations. Traditional approaches rely on high-quality lexicons, manually-
built templates, and linguistic features which are either domain or representation-
specific. There is a possibility of neural network based encoder-decoder model to
perform semantic parsing. Utterances can be subject to vector representations, and
their logical forms can be obtained by conditioning the output sequences or trees on
the encoding input vectors.

It is possible to apply a machine learning approach to such a complex problem as
semantic parsing because a number of corpora containing utterances annotated with
formal meaning representations are available.

4.2.1.1 Sequence-to-Sequence Model

Encoder-decoder architectures based on recurrent neural networks allows for bridg-
ing the gap between NL and logical form with minimal domain knowledge. The
general encoder-decoder paradigm can be applied to the semantic parsing task. Such
model can learn from NL descriptions paired with meaning representations; it
encodes sentences and decodes logical forms using recurrent neural networks with
long short-term memory (LSTM) units.

This model regards both input q and output a as sequences. The encoder and
decoder are two different L-layer recurrent neural networks with long short-term
memory (LSTM) units which recursively process tokens one by one (Fig. 4.1).
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Dong and Lapata (2016) build a model which maps natural language input q¼ x1
���x|q| to a logical form representation of its meaning a ¼ y1 ���y|a|. The conditional
probability p(a|q) is defined as:

p ajqð Þ ¼
Yjaj

t¼1
p ytjy<t; qð Þ

where y<t ¼ y1 ���yt � 1. The method consists from an encoder which encodes NL
input q into a vector representation and a decoder which learns to generate y1,���,y|a|
conditioned on the encoding vector.

The first |q| time steps belong to the encoder, while the following |a| time steps
belong to the decoder. Let hlt 2 Rn denote the hidden vector at time step t and layer l.
hlt is then computed by:

hlt ¼ LSTM h l
t�1; h

l�1
t

� �

where LSTM refers to the LSTM function being used. LSTM memory cell is
depicted in Fig. 4.2. The architecture described in Zaremba et al. (2015) is fairly
popular, For the encoder, h0t¼Wqe(xt) is the word vector of the current input token,
withWq 2 Rn � |Vq| being a parameter matrix, and e(�) the index of the corresponding
token. For the decoder, h0t¼Wae(yt � 1) is the word vector of the previous predicted
word, where Wa 2 Rn � |Va|. Notice that the encoder and decoder have different
LSTM parameters.

Once the tokens of the input sequence x1,���,x|q| are encoded into vectors, they are
used to initialize the hidden states of the first time step in the decoder. Next, the
hidden vector of the topmost LSTM hLt in the decoder is used to predict the t-th
output token as:

p ytjy<t; qð Þ ¼ softmax WohL
t

� �T
e ytð Þ ð4:1Þ

whereWo 2 R|Va| � n is a parameter matrix, and e(yt) 2 {0,1}|Va| a one-hot vector for
computing yt’s probability from the predicted distribution.

Fig. 4.1 Input utterances and their logical forms are encoded and decoded with neural networks.
An attention layer is used to learn soft alignments
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We augment every sequence with a “start-of-sequence” <s> and “end-of-
sequence” </s> token. The generation process terminates once </s> is predicted.
The conditional probability of generating the whole sequence p(a|q) is then obtained.

4.2.1.2 Sequence-to-Tree Model

The SEQ2SEQ model has a potential drawback in that it ignores the hierarchical
structure of logical forms. As a result, it needs to memorize various pieces of
auxiliary information (e.g., bracket pairs) to generate well-formed output. In the
following we present a hierarchical tree decoder that better represents the composi-
tional nature of meaning representations. A schematic description of the model is
shown in Fig. 4.3.

The present model shares the same encoder with the sequence-to-sequence model
described, learning to encode input q as vectors. However, tree decoder is funda-
mentally different as it generates logical forms in a top-down manner. In order to
represent tree structure, a “nonterminal” <n> token is defined to indicate a subtree.
As shown in Fig. 4.4, the logical form “lambda $0 e (and (>(account balance $0)
1600:ti) (withdraw from $0 saving:ci))” is converted into a tree by replacing tokens
between pairs of brackets with nonterminals. Special tokens <s> and < (> denote the
beginning of a sequence and nonterminal sequence, respectively. It is not shown in
Fig. 4.4. Token </s> represents the end of sequence.

After encoding input q, the hierarchical tree decoder uses recurrent neural net-
works to generate tokens at depth 1 of the subtree corresponding to parts of logical
form a. If the predicted token is <n>, the sequence is decoded by conditioning on the
nonterminal’s hidden vector. This process terminates when no more nonterminals

Fig. 4.2 A graphical representation of LSTM memory cells
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are emitted. In other words, a sequence decoder is used to hierarchically generate the
tree structure.

In contrast to the sequence decoder described in Sect. 4.2.1.1, the current hidden
state does not only depend on its previous time step. In order to better utilize the
parent nonterminal’s information, we introduce a parent-feeding connection where
the hidden vector of the parent nonterminal is concatenated with the inputs and fed
into LSTM.

Fig. 4.3 Sequence-to-
sequence model with
two-layer recurrent neural
networks

Fig. 4.4 Sequence-to-tree model with a hierarchical tree decoder
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As an example, Fig. 4.5 shows the decoding tree corresponding to the logical
form “X Y (Z)”, where y1 ���y6 are predicted tokens, and t1 ���t6 denote different time
steps. Span “(C)” corresponds to a subtree. Decoding in this example has two steps:
once input q has been encoded, we first generate y1 ���y4 at depth 1 until token </s> is
predicted; next, y5,y6 sequence is generated by conditioning on nonterminal t3’s
hidden vectors. The probability p(a|q) is the product of these two sequence decoding
steps:

p ajqð Þ ¼ p y1y2y3y4jqð Þp y5y6jy�3; qð Þ

where Eq. (4.1) is used for the prediction of each output token.

4.2.1.3 Attention Mechanism and Model Training

As shown in Eq. (4.1), the hidden vectors of the input sequence are not directly used
in the decoding process. However, it makes intuitively sense to consider relevant
information from the input to better predict the current token. Following this idea,
various techniques have been proposed to integrate encoder-side information (in the
form of a context vector) at each time step of the decoder (Bahdanau et al. 2015).

In order to find relevant encoder-side context for the current hidden state hLt of
decoder, its attention score is computed with the k-th hidden state in the encoder as:

s tk ¼
exp hL

k � hL
t

� �
P qj j

j¼1 exp hL
j � hL

t

n o

wherehL
1 , � � �,hL

qj j are the top-layer hidden vectors of the encoder (Fig. 4.6). Then, the
context vector is the weighted sum of the hidden vectors in the encoder:

ct ¼
Xqj j

k¼1

s tkh
L
k

Fig. 4.5 A sequence to tree
decoding example for the
logical form “X Y (Z)”
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Employing (4.1), this context vector is further used. It acts as a summary of the
encoder to compute the probability of generating yt as:

hatt
t ¼ tanh W1hL

t þW2ct
� �

p ytjy<t; qð Þ ¼ softmax Wohatt
t

� �T
e ytð Þ

whereWo 2 R|Va| � n andW1,W2 2 Rn�n are three parameter matrices, and e(yt)
is a one-hot vector used to obtain the probability of yt.

The goal here is to maximize the likelihood of the generated logical forms given
NL utterances as input. So the objective function is:

minimize�
X

ðq, aÞ2D
log pðajqÞ

where D is the set of all natural language-logical form training pairs, and p(a|q) is
computed as shown in Eq. (4.1).

Dropout operators are used between different LSTM layers and for the hidden
layers before the softmax classifiers. This technique can substantially reduce
overfitting, especially on datasets of small size. The dropout operator should be
applied to the non-recurrent connections (Fig. 4.7). The dashed arrows indicate
connections where dropout is applied, and the solid lines indicate connections
where dropout is not applied.

The dropout operator corrupts the information carried by the cells, forcing them
to perform their intermediate computations more robustly. At the same time, we do
not want to erase all the information from the units. It is especially important that the
units remember events that occurred many timesteps in the past. An information can
flow from an event that occurred at time step t � 2 to the prediction in timestep t + 2
in our implementation of dropout. This information is distorted by the dropout
operator L + 1 times, and this number is independent of the number of time steps
traversed by the information. Standard dropout perturbs the recurrent connections,

Fig. 4.6 Attention scores
are computed by the current
hidden vector and all the
hidden vectors of encoder.
Then, the encoder-side
context vector ct is obtained
in the form of a weighted
sum, which is further used to
predict yt
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which makes it difficult for the LSTM to learn to store information for long periods
of time. By not using dropout on the recurrent connections, the LSTM can benefit
from dropout regularization without sacrificing its valuable memorization ability.

The logical forms are predicted for an input utterance q by:

aˆ ¼ arga’maxp a
0 jq

� �

where a0 represents a candidate output. However, it is impractical to iterate over all
possible results to obtain the optimal prediction. According to Eq. (4.1), we decom-
pose the probability p(a|q) so that we can use greedy search (or beam search) to
generate tokens one by one.

Decoding algorithm takes a NL statement and produces a logic form. It includes
the following steps:

• Push the encoding result to a queue
• Decode until no more nonterminals

– Call sequence decoder
– Push new nonterminals to the queue

• Convert decoding tree to output sequence

Fig. 4.7 Regularized multilayer RNN
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4.2.2 Limitations of Neural Network Based Approaches

Having presented the LSTM approach, we enumerate its limitations:

1. Lack of explainability and interpretability;
2. Necessity to obtain huge dataset;
3. Unable to perform incremental development;
4. Cannot compartmentalize a problem and solve each case separately;
5. Hard to reuse: need to be re-trained even for insignificant update in training set;
6. Hard to make discoveries in data, find correlations and causal links;
7. Hard to integrate with other types of decisions;
8. Computational complexity;
9. Requires a special platform;

10. Does not allow solving a problem once and forever. For example, it takes a
single person significant mental efforts to build an NL2SQL. But once it is done,
minimum efforts would be required. On the contrary, LSTM – based NL2SQL
developed for one domains (such as banana-related queries) would require a
totally different training set for queries in another (apple) domains, since nobody
“explained” to the system what are words for SQL and what are domain specific
word (as it is done for a rule-based system).

4.3 Advancing the State-of-the-Art of NL2SQL

4.3.1 Building NL2SQL via Multiword Mapping

We first address the problem that some words in an NL query may correspond to
values, attributes and relations at the same time, so some constraint optimization
needs to be applied to obtain a correct mapping. This mapping is a partial case to
what is usually referred to as semantic parsing (Kate et al. 2005; Liang and Potts
2015). For some queries, this correct mapping is unique; Popescu et al. (2003) call
them semantically tractable queries.

Many questions in natural language specify a set of attribute/value pairs as well as
‘independently’ standing values whose attributes are implicit (unknown).

A db-multiword is a set of word stems that matches a database element. For
instance, multiword {require, advance, rental} and {need, advance, rent, request}
match the database attribute film.advance_rental_request. Each db-multiword has a
set of possible types (e.g. value multiword, attribute multiword) corresponding to the
types of the database elements it matches. A syntactic marker (such as “this”) is an
element of a fixed set of database - independent multiwords that is used indirectly
and whose semantic role to the interpretation of a question is limited. For a NL query
to be mapped into SQL, we require that some set of db-multiwords exists such that
every word in the query appears in exactly one db-multiword. We refer to any such
db-multiword set as a complete db-multiword representation of query.
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In order for a query to be interpreted in the context of the given database (without
a need for clarification), at least one complete db-multiword representation must map
to some set of database elements E as follows:

1. each db-multiword matches a unique database element in E;
2. each db-multiword for an attribute corresponds to a unique value word. This

means that

(a) the database attribute matching the attribute multiword and the database value
matching the value word are compatible; and

(b) the db-multiword for an attribute and the value token can be mapped into each
other.

3. each db-multiword for relation corresponds to either an attribute multiword or a
value multiword. This means that

(a) the database relation matching the relation multiword and the database
element matching the attribute or value multiword are compatible; and

(b) the db-multiword for relation is mapped to the corresponding attribute or
value token.

Otherwise, if these conditions do not hold, NL2SQL system needs to act in the
chatbot mode.

Popescu et al. (2003) present an implementation of NL2SQL for what they call
tractable NL queries, and prove the completeness and coverage statements.

The Tokenizer removes syntactic markers and produces a single db-multiword of
this question: (what, Java, process, Unix, system, Fig. 4.8. By looking up the tokens
in the lexicon (which also contains synonym information), the system retrieves the
set of matching database elements for every word. In this case, what, Java and Unix
are db-multiwords for values, system is an attribute token and process is a relation

Fig. 4.8 The transformation of the query ‘What are the Java processes on a Unix system?’ to an
SQL query, in the context of a database containing a single relation, process, with attributes
Description, Source and Operating_system

4.3 Advancing the State-of-the-Art of NL2SQL 97



word (see Fig. 4.1). The problem of finding a mapping from a complete tokenization
of the query to a set of database elements such that the semantic constraints imposed
by conditions (1–3) above are satisfied is reduced to a graph matching problem
(Fig. 4.9, Galitsky et al. 2010).

After the Tokenizer builds the individual mappings into db-multiwords, the
Matcher builds the attribute-value graph (Fig. 4.8). The leftmost column in this
figure is a source node. The Value word column contains db-multiwords matching
database values, which are found in the third column from the right. Some
db-multiwords can be ambiguous as they match multiple attributes: for example,
‘mem’ can be a value of attribute description and also a value of attribute memory.
The edges go from each value word to each matching database value. The Matcher
also connects each database value with its corresponding attribute which is then
connected to its matching attribute words and also the node I for implicit attributes
(E denote explicit attributes in the rightmost column). Hence the Matcher reduces
NL interpretation problem to a graph (maximum-bipartite-matching) problem with
the constraints demanding that all db-multiwords nodes for attributes and values
need to occur in this match.

Finally, we present the chart for simple NL2SQL architecture (Fig. 4.10).
The limitations of this NL2SQL approach with the focus on resolving multiword

mapping ambiguities are as follows:

• It does not provide a machinery to form individual clause, including an operation
between a variable and a value

• It is not easy to integrate graph matching with thesaurus browsing
• it does not help establish assertions between the clauses, such as conjunction,

disjunction or sub-query.

Fig. 4.9 The attribute-value graph for the query ‘What are the Java processes on a Unix system?’
(on the top) and the relation graph for the query ‘What are the Java processes on a Unix system with
memory leaks?’
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4.3.2 Sketch-Based Approach

Yaghmazadeh et al. (2017) also use semantic parsing to translate the user’s English
description into what they call a query sketch (skeleton). Since a query sketch only
specifies the shape instead of the full SQL query content, the semantic parser does
not need to know about the names of relations, attributes and values (database tables/
columns). Hence, the use of query allows a semantic parser to effectively translate
the English description into a suitable formal representation without requiring any
database-specific training (Fig. 4.11).

Once a query skeleton is generated, Yaghmazadeh et al. (2017) employ type-
directed program synthesis to complete the sketch. NL2SQL system forms well-
typed completions of the query skeleton with the aid of the underlying database
schema. Since there are typically many well-typed terms, this approach assigns a
confidence score to each possible completion of the sketch. The synthesis algorithm
uses both the contents of the database as well as natural language hints embedded in
the sketch when assigning confidence scores to SQL queries.

For the query ‘Find the number of users who rented Titanic in 2016’ the semantic
parser returns the sketch

Fig. 4.10 Basic NL2SQL
architecture

Fig. 4.11 Sketch repair – based approach to building better query representation
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SELECT count(?[users]) FROM??[film] WHERE? ¼ “Titanic 2016”.

Here, ‘??’ represents an unknown table, and ? represent unknown columns.
Where present, the words written in square brackets represent so-called “hints” for
the corresponding placeholder.

Starting from the above sketch the system enumerates all well-typed completions
of this sketch, together with a score for each completion candidate. In this case, there
are many possible well-typed completions of this sketch; however, none of the those
meet the confidence threshold. For instance, one of the reasons for it is that there is
no entry called “Titanic 2016” in any of the database tables. We need to perform a
fault localization to identify the root cause of not meeting confidence threshold. In
this case, we determine that the likely root cause is the predicate? ¼ “Titanic 2016”
since there is no database entry matching “Titanic 2016” (The Cameron’s movie
was done in 1997, and 2016 is a rental date, not movie creation date). The system
repairs the sketch by splitting the where clause into two separate conjuncts:

SELECT count(?[users]) FROM??[film] WHERE? ¼ “Titanic” AND ? ¼ 2016”.

On the next step, the system tries to complete the refined sketch S but it again fails
to find a high-confidence completion of the above representation. In this case, the
problem is that there is no single database table that contains both the entry “Titanic”
as well as the entry “2016”. We try to repair it by introducing a join. As a result, the
new sketch now becomes:

SELECT count(users.id) FROM users JOIN? ON ?¼? [film] WHERE?¼ “Titanic”
AND ? ¼ “2016”.

Finally, we arrive at the resultant query representation:

SELECT count(users.id) FROM users JOIN film ON users.rental_film_id ¼ film.id

WHERE film.title ¼ “Titanic” AND users.rental_date ¼ “2016”.

4.3.3 Extended Relational Algebra to Handle Aggregation
and Nested Query

To map aggregation operation references form NL to SQL, we need a special version
of a relational algebra (Fig. 4.12, Yaghmazadeh et al. 2017). Here c are column
names; f denotes an aggregate function, and v denotes a value. Relations, denoted as

Fig. 4.12 A version of
relational algebra oriented
towards representing
database queries in NL
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T in the grammar, include tables t stored in the database or views obtained by
applying the following relational algebra operators:

1. projection (Π). ProjectionΠL(T) takes a relation T and a column list L and returns
a new relation that only contains the columns in L.

2. selection (σ). The selection operation σφ(T) yields a new relation that only
contains rows satisfying φ in T.

3. join (◃▹)..The join operation T1 c1◃▹c2 T2 composes two relations T1, T2 such that
the result contains exactly those rows of T1 � T2 satisfying c1 ¼ c2, where c1, c2
are columns in T1, T2 respectively.

We assume that every column in the database has a unique name. Note that we
can easily enforce this restriction in practice by appending the table name to each
column name. Second, we only consider equi-joins because they are the most
commonly used join operator, and it is easy to extend our techniques to other
kinds of join operators (e.g., θ-join). Notice that the relational algebra allows nested
queries. For instance, selections can occur within other selections and joins as well as
inside predicates φ.

Unlike standard relational algebra, the relational algebra variant shown in
Fig. 4.12 also allows aggregate functions as well as a group-by operator. For
conciseness, aggregate functions

f 2 AggrFunc ¼ {max, min, avg, sum, count} are specified as a subscript in the
projection operation. In particular, Πf(c)(T) yields a single aggregate value
obtained by applying f to column c of relation T. Similarly, group-by operations
are also specified as a subscript in the projection operator. Specifically, Πg(f(c1),
c2)(T) divides rows of T into groups g1 based on values stored in column c2 and,
for each g1, it yields the aggregate value f(c1).

The logical forms used for NL2SQL take the form of query skeletons, which are
produced according to the grammar from Fig. 4.12. Intuitively, a query skeleton is a
relational algebra term with missing table and column names. Query skeletons as the
underlying logical form representation are used because it is extremely hard to
accurately map NL queries to full SQL queries without training on a specific
database. In other words, the use of query skeletons allows us to map English
sentences to logical forms in a database-agnostic manner.

In Fig. 4.13 ‘?h’ represents an unknown column with hint h, which is just a
natural language description of the unknown. Similarly,??h represents an unknown
table name with corresponding hint h. If there is no hint associated with a hole, we
simply write? for columns and?? for tables.

Fig. 4.13 Sketch Grammar
for NL2SQL
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Given a query sketch generated by the semantic parser, this sketch needs to be
completed by instantiating the placeholders with concrete table and column names
defined in the database schema. The sketch completion procedure is type- directed
and treats each database table as a record type.

{(c1: β1),. . .(cn: βn)},

where ci is a column name and βi is the type of the values stored in column ci. The
sketch completion algorithm need to select the best completion based on scoring,
which takes into account semantic similarity between the hints in sketch and the
names of tables and columns.

Let us consider the tables Customers and films tables from Fig. 4.14. Here,

Πavg(num_of_films) (Customers) ¼ 87, and Πg(avg(num_of_films), category_id)(Customers
film_id_fk ◃▹ film_id_fk films) gives the average number of films watched by cus-
tomers, who currently rent the films of a given category (Fig. 4.15).

To provide an example of nested queries, suppose that a user wants to retrieve all
film renting customers with the highest number of watched movies. We can express
this query as:

Πname (σnum_of_movies ¼ Πmax(num_of_movies) (customers) (customers))

For the tables from Fig. 4.14, this query yields a table with two rows, #5 and #6.
A limitation of this algebra-based approach is that a fairly complicated rule

system is required; most sophisticated rules would cover rather infrequent cases.
Even after a thorough coverage of various cases of mapping between words and
table/column names, ambiguity still arises in a number of situations.

id first_name num of films film_id_fk film_id film_name category_id
1 John 60 101 101 Name1 1001
2 Jack 80 102 102 Name2 1002
3 Jane 80 103 103 Name3 1001
4 Mike 90 104 104 Name4 1002
5 Peter 100 103
6 Alice 100 104
7 Julie 100 103

Fig. 4.14 Customers and Films tables to demonstrate aggregation

Film_category Avg(num_of_films)
1001 85
1002 90

Fig. 4.15 Aggregated data
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4.3.4 Interpreting NL Query via Parse Tree Transformation

Li and Jagadish (2016) proposed a way to correctly interpret complex natural
language queries through a carefully limited interaction with the user. Their
approach is inspired by how humans query each other, attempting to acquire certain
knowledge. When humans communicate with one another in NL, the query-response
cycle is not as rigid as in a traditional database system (Galitsky and Botros 2012). If
a human formulates a query that the addressee does not understand, he will come
back requesting clarification. The query author may do so by asking specific
questions back, so that the question-asker understands the point of potential confu-
sion. He may also do so by stating explicitly how she interpreted the query. Drawing
inspiration from this natural human behavior, Li and Jagadish (2016) design the
query mechanism to facilitate collaboration between the system and the user in
processing NL queries. First, the system explains how it interprets a query, from
each ambiguous word/phrase to the meaning of the whole sentence. These explana-
tions enable the user to verify the answer and to be aware where the system
misinterprets her query. Second, for each ambiguous part, multiple likely interpre-
tations are given to the user to choose from. Since it is often easier for users to
recognize an expression rather than to compose it, this query mechanism is capable
of achieving satisfactory reliability without giving the user too much routine tasks.

We follow along the lines of this study and make clarification systematic; clarifi-
cation request can be issued by a number of NL2SQL system components and layers.
In our approach a data source can be SQL or noSQL database, unstructured data such
as text and Q/A pairs, and transactional data such as a set of API calls.

4.3.4.1 Intermediate Representation Language

Due to the difficulties of directly translating a sentence into a general database query
languages using a syntax - based approach, the intermediate representation systems
were proposed. The idea is to map a sentence into a logical query language first, and
then further translate this logical query language into a general database query
language, such as SQL. In the process there can be more than one intermediate
meaning representation language. A baseline architecture based on parse tree trans-
formation is presented in Fig. 4.16.

Using predicate logic as the logical query language, an intermediate representa-
tion system could develop a semantic interpreter that maps the above sentence into
the following logical query:

‘Return users who watched more movies than Bob on Documentary after 2007’:

countBob ¼ count [rent(Bob , movie(movie_name, duration, rating, category, . . .),
rental_date), rental_date>2007]

for(User user: users){
if count[user]>count[Bob]
}

4.3 Advancing the State-of-the-Art of NL2SQL 103



4.3.4.2 Mapping the Nodes of Query Parse Tree

A linguistic mapping approach to NL2SQL would be to classify each parse tree node
as SQL command, reference to a table, field or value. Such approach identifies the
nodes in the linguistic parse tree that can be mapped to SQL components and
tokenizes them into different tokens. In the mapping process, some nodes may fail
in mapping to any SQL component. In this case, our system generates a warning to
the user, telling her that these nodes do not directly contribute in interpreting her
query. Also, some nodes may have multiple mappings, which causes ambiguities in
interpreting these nodes. For each such node, the parse tree node mapper outputs the
best mapping to the parse tree structure adjustor by default and reports all candidate
mappings to the interactive communicator.

Parse Tree Structure Adjustor After the node mapping (possibly with interactive
communications with the user), we assume that each node is understood by our
system. The next step is to correctly understand the tree structure from the database’s
perspective. However, this is not easy since the linguistic parse tree might be
incorrect, out of the semantic coverage of our system or ambiguous from the
database’s perspective. In those cases, Li and Jagadish (2014) adjust the structure
of the linguistic parse tree and generate candidate interpretations (query trees) for
it. In particular, the structure of the parse tree is adjusted in two steps. In the first step,
the nodes are reformulated in the parse tree to make it similar in structure to one of
the stored parse trees. If there are multiple candidate valid parse trees for the query,
the system chooses the best tree as default input for the second step and report top k
of them to the interactive communicator. In the second step, the chosen or default
parse tree is semantically processed and new tree nodes are inserted to make it more
semantically plausible. After inserting these implicit nodes, the system obtains the
exact tree interpretation for the query.

Sentence Parser

Logical Query
Language

Database Query
Generator

Database Query
Language

Parse Tree

Semantic
Interpreter

Fig. 4.16 A baseline architecture based on parse tree transformation for SQL interpretation
pipeline
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Interactive Communicator In case the system possibly “misunderstands” the user,
the interactive communicator explains how her query is processed, visualizing the
semantically plausible tree. Interactive communications are organized in three steps,
which verify the intermediate results in the parse tree node mapping, parse tree
structure reformulation, and implicit node insertion, respectively. For each ambigu-
ous part, a multiple choice selection panel is generated, in which each choice
corresponds to a different interpretation. Each time a user changes a choice, the
system immediately reprocesses all the ambiguities in later steps.

In Fig. 4.17 we show transformation steps for the query ‘Return users who
watched more movies than Bob on Documentary after 2007’. In the first step, a
parse tree T is obtained by Stanford NLP (on the top). In the second step, each query
word is mapped into a database operator, field or value.

In the third step, the parse tree adjustor reformulates the structure of the parse tree
T and generates a set of candidate parse trees. The interactive communicator explains
each candidate parse trees for the user to choose from. For example, one candidate is
explained as ‘return the users whose movies on Documentary after 2007 is more
than Bob’s.’ In the fourth step, this candidate tree is fully instantiated in the parse
tree structure adjustor by inserting implicit nodes (shown in the bottom-right of
Fig. 4.17). The resultant selected query tree is explained to the user as ‘return the
users, where the number of films in Documentary released after 2007 is more the
number of films rented by Bob in Documentary released after 2007’.

The overall architecture with Clarification Requester is shown in Fig. 4.18. The
system includes the query interpretation part, interactive communicator and query
tree translator. The query interpretation part, which includes parse tree node mapper
and structure adjustor, is responsible for interpreting an NL query and representing
the interpretation as a query tree. The interactive communicator is responsible for
communicating with the user to ensure that the interpretation process is correct. The

Fig. 4.17 Transformation steps for the query
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query tree, possibly verified by the user, is translated into a SQL statement in the
query tree translator and then evaluated against a DB.

4.4 Designing NL2SQL Based on Recursive Clause
Building, Employing Thesauri and Implementing Via
Chatbot

4.4.1 Selecting Deterministic Chatbot-Based Approach

An extensive corpus of work in NL2SQL showed that it is rather difficult to convert
all user queries into SQL mostly due to ambiguity of database field names and a
complex structure of practical database, in addition to query understanding diffi-
culty. Also, it is hard for NL2SQL problem to communicate with the user which NL
queries are acceptable and which are not. Even if 80% of user NL queries are
properly translated to SQL, which is hard to achieve, the usability is questionable.

To address this problem, we propose to implement NL2SQL as a chatbot, so that
the system can clarify every encountered ambiguity with the user right away. If a
confidence score for a given NL2SQL component is low, the chatbot asks the user to
confirm/clarify whether the interpretation of a query focus or a given clause is
correct. For example, interpreting a phrase movie actor name, the chatbot requests
user clarification if name refers to the actor last name, first name or film title.

The main highlights of the selected approach are as follows:

1. We extract a linguistic representation for a SQL clause in the form of table.
column assignment;

2. We build the sequence of SQL clauses in the iterative way;
3. We rely on thesauri, possibly web mining (Chap. 8) and other cues to build a

mapping from NL representation for a clause into table and column name;
4. We resolve all kinds of ambiguities in NL query interpretation as a clarification

request via chatbot.

Fig. 4.18 Overall architecture of a NL2SQL based on parse tree transformation with Clarification
Requester
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4.4.2 Interpreting Table.Field Clause

The input of Table.Field clause recognizer is a phrase that includes a reference to a
table and/or its field. Each word may refer to a field of one table and a name of
another table, only to a field, or only to a table, hence the query understanding
problem is associated with rather high ambiguity.

The fundamental problem in NL2SQL is that interpreting NL is hard in general
and understanding which words refer to which database field is ambiguous in nature
(Galitsky 2003). People may use slang words, technical terms, and dialect-specific
phrasing, none of which may be known to the NL2SQL system. Regretfully, even
with appropriate choice of words, NL is inherently ambiguous. Even in human-to-
human interaction, there are miscommunications.

One of the difficulties is substituting values for attributes of similar semantic
types, such as first and last name. For example, it is hard to build the following
mapping unless we know what first and last names are:

actor name John Doe ) actor.first_name ¼ . . . & actor.last_name ¼ . . .

There is a need for transformations beyond mapping phrase2table.field, such as a
lookup of English first names and knowledge that first and last name can be in a
single field, can be in various formats and orders, or belong to distinct fields, like in
the case of Sakila database (Oracle 2018).

When a user is saying ‘film name’ the system can interpret it as a table with
field ¼ ‘name’ when film.name does not exist. Although ‘name’ is a synonym of
‘title’, the phrase ‘name’ can be mapped into totally foreign table such as category.
name instead of actor.first_name. If a phrase includes ‘word1 word2’ it is usually
ambiguous since word2 can be table 1.field and also table2.word2 can be a field (or a
part of a field, as a single word) in another table. Hence we need a hypothesis
management system that proceeds from most likely to least likely cases, but is
deterministic so that the rule system can be extended.

We start with the rule that identify a single table name and make sure there are no
other table names mentioned (Fig. 4.19). Also, we need to confirm that no field name
is mentioned in the string to be mapped into a table name. Once a table is confirmed,
we select its default field such as ‘title’ or any other field with the name of entity
represented by this table.

If a pure table rule is not applicable, we proceed to the table + its field rule. The
system identifies a table and its field together. We iterate through all table-field
words and select the table-filed combination when a highest number of words are
matched against the phrase. If we do not find a good match for table-filed set of
keywords against the phrase, we proceed to matching a field only (the third step). At
this step we use ontology so expand a list of keywords for a field with synonyms.
Once we find a match for a field, we get a list of table this field can possibly
belong to.

In the second step, we try to find words in the phrase correlated with this table
name. In this step, for each of these tables we in turn obtain a list of their fields and
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verify that the original field from the step one of this unit is identified, not another
one. If the second step fails we stop on the first one, and if the verification of the third
step fails, we stop on the second step. The higher is the number of steps, the higher is
the confidence level.

4.4.3 Collecting Information on a Database and Thesaurus
for NL2SQL

The NL2SQL system is designed to automatically adjust to an arbitrary database
where table and column names are meaningful and interpretable. The following data
structures are used by Phrase2Table.Field and other algorithms

• Set fieldsForMatching: A set of fields;
• Map tablesFieldsForMatching gives a list of fields for a table;
• Map fieldsTableListsForMatching gives a list of tables for a field;
• Map fieldsTablesForMatching gives a selected table for a field. For some fields

such as entity name, there is just a single table for this entity.

Since terms in a user query can deviate from field names in a database, it is
necessary to mine for synonyms offline from sources like thesaurus.com or use
trained synonym models such as word2vec (Mikolov et al. 2015). Lists of synonyms
or similarity function are then used in phrase2table.field component of Query

Table only rule:
• Phrase includes only name of 

a single table
• No match of any field of any 

table

Field plus Table rule:
- Iterate through fields

-Iterate through tables for 
these fields
• Match a phrase using 

combined table + field 
expression with synonyms

• Get the best match and its 
score

Best field rule:
Iterate through fields
Match a phrase using field 

expression with synonyms.
Use whole word match and 

word form substitution match
Get the best match and its 

score

Table for best Field rule:
Get all tables for the best 

field
Find the best table match

If high score
⇒ stop

If high score
⇒ stop

Best Field for Best Table 
rule :

Once best table is identified, 
get all its fields and identify the 
best match with synonyms

Mined database 
metadata

• Table names
• Field names
• Tokens in table 

names
• Tokens in field 

names

Mined synonym 
data
• Synonyms for
Field names
• Synonyms for 

tokens in Field 
names

Obtained from 
thesaurus.com

Fig. 4.19 Phrase2Table.Field Unit
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understanding pipeline. The arrow in the right-middle shows communication with
the Phrase2Table.Field Unit of Fig. 4.19.

4.4.4 Iterative Clause Formation

Once a focus clause is identified, we consider the remaining of the NL query as a
Where clause (Figs. 4.21 and 4.22, Galitsky et al. 2013a, b). It is hard to determine
boundaries of clauses; instead, we try to identify the assignment/comparison word
(anchor) such as is, equals, more, before, as,which indicates the center of a phrase to
be converted into SQL clause. Once we find the leftmost anchor we attempt to build
the left side (attribute) and the right side (value).

To find the boundary of an attribute, we iterate towards the beginning the NL
query to the start of the current phrase. It is usually indicated by the prepositions with
or of, connective and, or a Wh-word. The value part is noun and/or a number,
possibly with an adjective. The same words mark the end of value part as the
beginning of next attribute part.

Once the clause is built, we subject the remaining part of the NL query to the same
clause identification algorithm, which starts with finding the anchor. If a structure of
phrase follows Fig. 4.21, it is processed by the middle-left component Clause
builder from phrase in the Fig. 4.20 chart. Otherwise, it there is no anchor word
and it is hard to establish where the phrases for attribute and values are, we apply the
Clause builder by matching the phrase with indexed row approach.

4.4.5 Clause Building by Matching the Phrase
with Indexed Row

We also refer to this alternative approach to building SQL query clauses as NL2SQL
via search engineering: it involves building a special index (not to confuse with
database own index) and executing a search of a part of user NL query against it. At
indexing time, we index each row of each table in the following format (top-right of
Fig. 4.20):

Table field1 value1 field2 value2 . . .

Associative tables and other ones which do not contain data for entities such as
customer of address are not indexed for matching. The index includes the fields for
search and for storing the values.

Once an NL query is obtained and Clause builder from phrase failed to build a
clause from a phrase expected to contain a Where clause, the search expression is
built from this phrase. This search expression includes the words which are expected
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Attribute (to be 
converted into 
table.field)

Anchor (is, 
equals, more, less, as)

Beginning of a 
clause (where, and, 
with)

Value (to be 
converted into 
table.field >= *)

end of a clause 
(beginning of the 
next one)

Fig. 4.21 A structure of a clause to be converted into table.field [¼/< / > / like] value

Input query 

Clause1Focus

Clause builder from phrase

Identify comparison or equality 
expression (Attribute <is more than> Value, 
Attribute <is> Value)

Identify Attribute phrase using 
Interpreting Table.Field expression unit

Obtain Table.Field expression for 
Attribute using Phrase2Table.Field 
algorithm

Identify Value sub-phrase
Build Table.Field <comp> Value clause

Split query into
Focus expression (select *)
Phrases so that each phrase would yield a 
Clause expressing conditions (‘where…’ 
part) 

DB records indexer
For each table
Form a search field for each table row
Table Field1 Value1 Field2 Value2…

Clause builder by matching the 
phrase with indexed row

Get a phrase and build a search query 
from it

For each search result:
Get a list of Attribute-Values and try to 

identify them in the phrase. Both token 
and fuzzy string match is attempted

Calculate match score as a product of 
TF*IDF search score and match score

Select the found row with the best 
match and form the list of Attribute-
Values

Clause2

If clause construction 
failed, try the matching 
approach

Recursive building of clause

Identify phrase for a clause
Build clause
Extract remaining part of the query
Launch Recursive building of 

clause for the remaining part of the 
query

Query builder from a list of clauses

Recursive building of clause
If all phrases yielded clauses, 
stop. 
Otherwise, apply Clause builder by 

matching the phrase with indexed row.
Build focus clause
Obtain additional linking tables and 

referential integrity clauses
Normalize/finalize the list of tables
Complete SQL query

     If clause is 
built, add it to 
the list of 
clauses

Constructed SQL query

Fig. 4.20 A high-level view of NL2SQL system. Integration of Phrase2Table.Field and Recursive
building of clause units is shown by step-arrows on the left
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to match tables, fields and values. Since we do not know what is what before search
results are obtained, the query is formed as conjunction of words first and then as a
disjunction of these words, if the conjunction query fails to give results. In a
disjunction queries, not all keywords have to be matched: some of them are just
used by the NL query author but do not exist in table data. To make search more
precise, we also form span-AND queries from entities identified in the phrase to be
converted, such as ‘Bank of America’.

Numbers need a special treatment. For a query of equal kind, finding an exact
number would make SQL query formation precise and in fact substitutes an execu-
tion of a resultant query. Since all numbers are indexed for search as string tokens,
real numbers need to be stored and searched with ‘.’ substituted to avoid splitting
string representation into two parts.

Once search results are obtained, we iterate through them to find the most likely
record. Although the default TF*IDF relevance is usually right, we compute out own
score based on the number of attribute-value pairs which occur in both the query and
a candidate search result (Fig. 4.23). Our own score also takes into account individ-
ual values without attribute occurrence in both the query and the record. String-level
similarity and multiword deviations between occurrences in the query and the record
are also taken into account (whether some words in a multiword are missing or occur
in a different form (such as plural for a noun or a tense for a verb).

Depending on the type of string for the value (numeric or string), we chose the
operation ‘¼’ or ‘like’ when the table.field < assignment > value clause is built.
Obviously, when this clause building method is employed we do not need to call the
phrase2Table.Field component.

Attribute (to be 
converted into 
table.field)

Anchor (is, 
equals, more, as)

Beginning of a 
clause (where, 
and, with)

Value (to be 
converted into 
table.field >= *)

end of a clause 

Attribute (to be 
converted into 
table.field)

Anchor (is, 
equals, more, as)

Beginning of a 
clause (where, 
and, with)

Value (to be 
converted into 
table.field >= *)

end of a clause 

Attribute (to be 
converted into 
table.field)

Anchor (is, 
equals, more, as)

Beginning of a 
clause (where, 
and, with)

Value (to be 
converted into 
table.field >= *)

end of a clause 

Attribute (to be 
converted into 
table.field)

Beginning of a 
focus clause / 
imperative 

Fig. 4.22 User query as a sequence of clauses: some of them follow the template on the top and are
processed by Clause builder from phrase, and some of them do not and are handled by Clause
builder by matching the phrase with indexed row
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4.4.6 Extracting Focus Clause

We refer to text which is converted into ‘select *’ statement as focus clause. We start
with Wh word and then extract the phrase that follows it. This phrase must be the
shortest one among those, which follow theWh word. Noun, verb, prepositional and
other kinds of phrases are acceptable. From this phrase, a clause will be built
applying phrase2table.field component. This clause will not have an assignment
but will possibly have a grouping term instead, such as ‘give me the maximum
temperature of water . . . ‘.

4.5 Resolving Ambiguities in Query Interpretation via
Chatbot

We have presented a rule-based architecture for query interpretation. Naturally, in
many processing components, ambiguities arise, such as table name, field name or
relationship. Instead of trying to find a most plausible representation of an NL query,

Fig. 4.23 A view of the index for matching the phrase with indexed row approach. Each database
record is stored for search (bottom-right) and data retrieval (in the middle)
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like most of NL2SQL systems do, we rely on the user to resolve ambiguities via
clarification requests. Our NL2SQL system gives the user the query phrase being
mapped into a table name, and enumerates possible tables, providing a clarification
request.

A chart for a chatbot wrapper for Phrase2Table.Field component is shown in
Fig. 4.24. When a single Table.Field is obtained, no disambiguation is necessary. To
disambiguate a phrase, the wrapper asks the user which mapping is correct. For
example, if a user is asking . . . ‘when guys name is ..’ the system identify the token
name and obtains a number of Table.Field candidates. Then the Phrase2Table.Field
wrapper offers actor.first_name / actor.last_name /staff.first_name / staff.last_name
| customer.first_name / customer.last_name options. Once the user selects the
correct mapping option, it is set by the Phrase2Table.Field component.

Fig. 4.24 Disambiguation of Phrase2Table.Field (Fig. 4.19) results via chatbot interaction
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4.6 A Sample Database Enabled with NL2SQL

To build an industrial-strength NL2SQL, we select a default database Sakila (Oracle
2018) that demonstrates a variety of MySQL capabilities. It is intended to provide a
standard schema that can be used for examples in tutorials and samples, and also
serves to highlight the latest features of MySQL such as Views, Stored Procedures,
and Triggers. The Sakila sample database was designed as a replacement to the
world sample database, which provides a set of tables containing information on the
countries and cities of the world and is useful for basic queries, but lacks structures
for testing MySQL-specific functionality and new features found in MySQL 5.

Notice that for NL2SQL we selected a fairly feature-rich database with a com-
plicated structure of relations (Fig. 4.25). The database structure is much more
complex than the ones used in academic studies to evaluate NL2SQL in Sects.
4.2, and 4.3.

These are the examples of NL query, logs for intermediate step, resultant SQL
representation and query results:

Query: ‘what is staff first name when her movie return date is after 2005-06-02
01:02:05’
looking for table.field for ‘[staff, first, name]’
found table.field ¼ staff.first_name
looking for table.field for ‘[movie, return, date]’
found table.field ¼ rental.return_date
Results: Mike
SQL: select staff.first_name from staff, rental where
rental.return_date > ‘2005-06-02 01:02:05’ and rental.
staff_id ¼ staff.staff_id

Query: ‘what film title has actor’s first name as Christian and category
Documentary’
looking for table.field for ‘[film, title]’
found table.field ¼ film.title
looking for table.field for ‘[actor, first, name]’
found table.field ¼ actor.first_name
Results: ACADEMY DINOSAUR |
CUPBOARD SINNERS |
MOD SECRETARY |
PRINCESS GIANT |
SQL: select film.title from film_category, film_actor,
film, actor, category where actor.first_name like ‘%Chris-
tian%’ and category.name ¼ ‘documentary’ and film_actor.
film_id ¼ film.film_id and film_actor.actor_id ¼ actor.

(continued)
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actor_id and film_actor.film_id ¼ film.film_id and
film_actor.actor_id ¼ actor.actor_id and film_category.
film_id ¼ film.film_id and film_category.category_id ¼ cat-
egory.category_id and film_category.film_id ¼ film.film_id
and film_category.category_id ¼ category.category_id.

Query: ‘What is actor fist name when movie category is Documentary and
special features are Behind the Scenes’
looking for table.field for ‘[actor]’
found table.field ¼ actor.first_name
looking for table.field for ‘[movie, category]’
found by table ONLY ¼ category.name
Results: PENELOPE |
CHRISTIAN |
LUCILLE |
SANDRA |
SQL: select actor.first_name from film_category, film_actor, film, actor,
category where category.name like ‘%Documentary%’ and film.
special_features like ‘%behind%the%scenes%’ and film_actor.film_id ¼
film.film_id and film_actor.actor_id ¼ actor.actor_id and film_actor.film_id
¼ film.film_id and film_actor.actor_id ¼ actor.actor_id and film_category.
film_id ¼ film.film_id and film_category.category_id ¼ category.category_id
and film_category.film_id ¼ film.film_id and film_category.category_id ¼
category.category_id.

Query: ‘What is a film category when film title is Ace Goldfinger’
looking for table.field for ‘[film, category]’
found table.field ¼ category.name
looking for table.field for ‘[film, title]’
found table.field ¼ film.title
Results:
Horror |
SQL: select category.name from film_category, film, category where film.title
like ‘%ACE GOLDFINGER%’ and film_category.film_id ¼ film.film_id and
film_category.category_id ¼ category.category_id

Notice that we do not require the user to highlight the parameter values versus
parameter names.

For the last, fourth example, the query could have been formulated as ‘What is a
category of film. . .’ but it would make it harder for NL2SQL system to determine the
fields of the tables referred to by the words category and film.

In many cases, when a reference to a table name is not mentioned in an NL query,
we attempt to identify it based on a column name. If multiple tables have this
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extracted column name, the chatbot mode is initiated and the user needs to pick up a
single table from the list of ones with this column name.

4.7 Conclusions

There are a number of issues with usability of NL2SQL systems (Nihalani et al.
2011). When NL2SQL system fails, it is frequently the case that the system does not
provide any explanation of what causes the system to fail. Some users may try to
rephrase the NL query or just move on to another query. Most of the time, it is up to
the users to determine of the causes the errors.

Also, customers may have false expectations, be misled by an NL2SQL system’s
ability to understand NL. Customers may assume that the system is intelligent and
overestimate its results. Instead of asking precise questions in database terms, they
may be tempted to ask questions that involve complex ideas, certain judgments,
reasoning capabilities, etc., which an NL2SQL system is not designed to properly
handle.

Each NL2SQL is limited to its coverage of acceptable NL expressions. Currently,
all NL2SQL systems can only handle some subsets of NL and it is not easy to define
these subsets. Some NL2SQL systems cannot even answer certain questions which
belong to their own subsets. This is not the case in a formal language. The formal
language coverage is obvious and any statements that follow the defined syntactic
rules are guaranteed to give the corresponding answer.

Despite these limitations, the NL2SQL chatbot that leverages the NL understand-
ing pipeline, interactivity in resolving ambiguities and domain-specific thesauri, is
an efficient and effective tool accessing data in a database by a broad audience of
users. As amount of data collected by various organization grows, NL2SQL
becomes a must big data technology.

We now proceed to surveying general technology trends related to NL2SQL. AI
and ML are seeping into virtually everything and represent a major battleground for
technology providers over the next 5 years. Also, there is a blending the digital and
physical worlds which creates an immersive, digitally enhanced environment. A
connections between an expanding set of people and businesses, as well as devices,
content and services to deliver digital business outcomes will be exploited. We
enumerate the recent technology trends, following (Cearley 2017).

Conversational Platforms They will shift in how humans interact with the digital
world. The routine activity of translating intent shifts from user to computer. The
platform takes a question or command from the user and then responds by executing
some function, presenting some content or asking for additional input. Over the next
few years, conversational interfaces will become a primary design goal for user
interaction and be delivered in dedicated hardware, core OS features, platforms and
applications.
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Upgrading Organizational Structure for Advanced Technologies Over the next few
years, creating software that learn, adapt and performs independently and autono-
mously is a major competitive battle ground for vendors. Relying on AI-based
decision making, upgraded business models and ecosystems, and enhanced cus-
tomer experience will yield the payoff for digital technologies over the next decade.
As AI and ML technologies are rapidly developing, companies will need to devote
significant attention to skills, processes and tools to successfully exploit these
technologies. The investment focus areas will include data collection, preparation,
cleaning, integration, as well as efforts into the algorithm and training methodologies
and model creation. Multiple specialists including data scientists, developers and
business process owners will need to form teams together.

Embedding AI into Apps Over next couple of years, some AI features will be
embedded into virtually every app, application and service. Some of these apps
will be obvious intelligent apps that rely on AI and ML 100%, whereas other apps
will be unpretentious users of AI that provide intelligence behind the scenes. a new
intelligent intermediary layer will be created between people and systems so that not
only new interaction modes will appear but also the nature of work and the structure
of the workplace will be transformed.

Intelligent apps augment human activity; they are not simply a way to substitute
humans. Also, analytics for augmented reality is a particularly strategic growing area
which uses machine learning to automate data preparation, insight discovery and
insight sharing for a broad range of business users, operational workers and citizen
data scientists. Enterprise resource planning is another area where AI is expected to
facilitate the next break-through. Packaged software and service providers need to
invent ways to use AI to extend business for advanced analytics, intelligent pro-
cesses and enhanced user experiences.

Intelligent Things and Everything These are physical things that go beyond the
execution of rigid programming models to exploit AI to deliver advanced behaviors
and interact more naturally with their surroundings and with people. AI stimulates the
development of new intelligent things (including, but not limited to autonomous vehicles,
robots and drones) and enables improved capability to many existing things such as
Internet of Things connected consumer and industrial systems (Galitsky andParnis 2019).

The use of autonomous vehicles in constrained, controlled settings is intensively
growing area of intelligent things. Autonomous vehicles will likely be employed in a
limited, well-defined and controlled roadways over next 5 years, but general use of
autonomous cars will likely require a driver to anticipate technology failures. As semi-
autonomous scenarios requiring a driver dominate, car producers will test the technol-
ogy more thoroughly, and meanwhile legal and regulatory issues will be resolved.

The Internet of Everything generalizes computer-to-computer communications for
the Internet of Things to a more complex system that also encompasses people, robots
andmachines. Internet of Everything connects people, data, process and things (Cham-
bers (2014), taking the waywe do business, transforming communication, job creation,
education and healthcare across the globe to the next level. Over next few years, more
than 70% of earth population will be connected with more than 50 billion things. With
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Internet of Everything systems people will be better served in education, healthcare and
other domains to improve their lives and have better experiences.

For a present overview of IoE, the Internet of things (IoT) is about connecting
objects to the network and enabling them to collect and share data” (Munro 2017). As
presently conceived, “Humans will often be the integral parts of the IoT system”

(Stankovic 2014). Internet of Everything, Internet of battlefields, Internet of themedical
arena and other domains will manifest themselves as heterogeneous and potentially
self-organizing complex-systems that define human processes, requiring interoperabil-
ity, just-in-time human interactions, and the orchestration of local-adaptation function-
alities in order to achieve human objectives and goals (Suri et al., 2016).

Digital Fingerprints They refer to the digital representation of a real-world entity or
system. Digital fingerprints in the IoT context projects are believed to be employed
over the next few years; properly designed digital fingerprints of entities have the
potential to significantly improve enterprise decision-making. These digital finger-
prints are linked to their real-world counterparts and are used to understand the state
of an entity, a thing or a system, respond to changes, improve operations and add
value. Organizations will implement digital fingerprints simply at first, then evolve
them over time, improving their ability to collect and visualize the right data, apply
the right analytics and rules, and respond effectively to business objectives. Various
professional from civil engineering to healthcare will all benefit from this paradigm
of the integrated digital twin world.
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