
Chapter 3
Explainable Machine Learning
for Chatbots

Abstract Machine learning (ML) has been successfully applied to a wide variety of
fields ranging from information retrieval, data mining, and speech recognition, to
computer graphics, visualization, and human-computer interaction. However, most
users often treat a machine learning model as a black box because of its incompre-
hensible functions and unclear working mechanism (Liu et al. 2017). Without a
clear understanding of how and why a model works, the development of high
performance models for chatbots typically relies on a time-consuming trial-and-
error process. As a result, academic and industrial ML chatbot developers are
facing challenges that demand more transparent and explainable systems for better
understanding and analyzing ML models, especially their inner working
mechanisms.

In this Chapter we focus on explainability. We first discuss what is explainable
ML and how its features are desired by users. We then draw an example chatbot-
related classification problem and show how it is solved by a transparent rule-based
or ML method. After that we present a decision support-enabled chatbot that shares
its explanations to back up its decisions and tackles that of a human peer. We
conclude this chapter with a learning framework representing a deterministic induc-
tive approach with complete explainability.

3.1 What Kind of Machine Learning a Chatbot Needs

3.1.1 Accuracy vs Explainability

The question of whether accuracy or explainability prevails in an industrial machine
learning systems is fairly important. The best classification accuracy is typically
achieved by black-box ML models such as Support Vector Machine, neural net-
works or random forests, or complicated ensembles of all of these. These systems are
referred to as black-boxes and their drawbacks are frequently cited since their inner
workings are really hard to understand. They do not usually provide a clear expla-
nation of the reasons they made a certain decision or prediction; instead, they just
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output a probability associated with a prediction. One of the major problem here is
that these methods typically require extensive training sets.

On the other hand, ML methods whose predictions are easy to understand and
interpret frequently have limited predictive capacity (inductive inference, linear
regression, a single decision tree) or are inflexible and computationally cumbersome,
such as explicit graphical models. These methods usually require less data to train
from, but give lower classification accuracies.

Our claim in this study for industrial applications of ML is as follows. Whereas
companies need to increase an overall performance for the totality of users, individ-
ual users mostly prefer explainability. Users can tolerate wrong decisions made by
the companies’ ML systems as long as they understand why these decisions were
made. Customers understand that any system is prone to errors (Galitsky and de la
Rosa 2011), and they can be positively or negatively impressed by how a company
rectifies these errors. In case an error is made without an explanation, and could not
be fixed reasonably well and communicated properly, customers frequently want to
stop being customers of this business.

We will back up this observation, automatically analyzing customer complaints.
To do that, we develop a machinery to automatically classify customer complaints
with respect to whether explanation was demanded or not. This is a nontrivial
problem since complaint authors do not always explicitly write about their intent
to request explanation. We then compare the numbers of customers just complaining
about problems associated with products and services and those requesting expla-
nations associated with these problems. We estimate the proportion of those com-
plaints, which require explanations.

3.1.2 Explainable vs Unexplainable Learning

To tackle the challenges associated with the lack of explainability of most popular
modern ML algorithms, there are some initial efforts on interactive model analysis.
These efforts have shown that interactive visualization plays a critical role in
understanding and analyzing a variety of machine learning models. Recently,
DARPA (2016) released Explainable Artificial Intelligence proposal to encourage
research on this topic. The main goal of XAI is to create a suite of machine learning
techniques that produce explainable models to enable users to understand, trust, and
manage the emerging generation of AI systems (Gilpin et al. 2018).

There have been attempts to augment the learning models intrinsically lacking
explainability with this feature. ML models can be trained to automatically map
documents into abstract concepts such as semantic category, writing style, or senti-
ment, allowing categorizing a large corpus. Besides predicting the text’s category, it is
essential to understand how the categorization process arrived to a certain value.
(Arras et al. 2017) demonstrate that such understanding can be achieved by tracing
the classification decision back to individual words using layer-wise relevance prop-
agation, a recently developed technique for explaining predictions of complex
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non-linear classifiers. The authors trained two word-based ML models, a CNN and a
bag-of-words SVM classifier, on a topic categorization task and applied the layer-wise
relevance propagation method to decompose the predictions of these models onto
words. Resulting scores indicate how much individual words contribute to the overall
classification decision. This enables one to distill relevant information from text
documents without an explicit semantic information extraction step. The authors
further used the word pair-wise relevance scores for generating novel vector-based
document representations which capture semantic information. Based on these docu-
ment vectors, a measure of model explanatory power was introduced and showed that,
although the SVM and CNN models perform similarly in terms of classification
accuracy, the latter exhibits a higher level of explainability which makes it more
comprehensible for humans and potentially more useful for other applications.

Although ML models are widely used in many applications due to high accuracy,
they fail to explain their decisions and actions to users. Without a clear understand-
ing, it may be hard for users to leverage their knowledge by their learning process
and achieve a better prediction accuracy. As a result, it is desirable to develop more
explainable machine learning models, which have the ability to explain their ratio-
nale and convey an understanding of how they behave in the learning process. The
key challenge here is to design an explanation mechanism that is tightly integrated
into the ML model. Accordingly, one interesting future work is to discover which
parts in an ML model structure explains its different functions and plays a major role
in the performance improvement or decline at each iteration. One possibility is to
better back up both the model and the decisions made. In particular, (Lake et al.
2015) proposed a probabilistic program induction algorithm, having developed a
stochastic program to represent concepts, which are formed compositionally from
parts and spatial relations. (Lake et al. 2015) showed that their algorithm achieved
human-level performance on a one-shot classification task. However, for the tasks
that have abundant training data, such as object and speech recognition, deep
learning approaches still outperform (Lake et al. 2015) algorithm. There is still a
long path to proceed towards more explainable deep learning decisions.

Following a recent progress in deep learning, ML scientists are recognizing the
importance of understanding and interpreting what goes on inside these black box
models. Recurrent neural networks have recently improved speech recognition and
translation, and these powerful models would be very useful in other applications
involving sequential data. However, adoption has been slow in domains such as law,
finance, legal and health, where current specialists are reluctant to let an explanation-
less engine make crucial decisions. (Krakovna and Doshi-Velez 2016) suggests to
make the inner workings of recurrent neural networks more interpretable so that
more applications can benefit from their power.

Convolutional neural networks have achieved breakthrough performance in
many pattern recognition tasks such as image classification. However, the develop-
ment of high-quality deep models typically relies on a substantial amount of trial-
and- error, as there is still no clear understanding of when and why a deep model
works. (Liu et al. 2017) presents a visual analytics approach for better understanding,
diagnosing, and refining deep convolutional neural networks. The authors simulated
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convolutional neural networks as a directed acyclic graph. Based on this formula-
tion, a hybrid visualization is developed to visualize the multiple facets of each
neuron and the interactions between them. The authors also introduced a hierarchical
rectangle-packing algorithm and a matrix re-shuffling method to show the derived
features of a neuron cluster. They also proposed a bi – clustering-based edge
merging algorithm to minimize visual distortion caused by a large number of
connections between neurons.

3.1.3 Use Cases for the ML System Lacking Explainability

Although ML is actively deployed and used in industry, user satisfaction is still not
very high in most domains. We will present three use cases where explainability and
interpretability of machine learning decisions is lacking and users experience dis-
satisfaction with certain cases.

A customer of financial services is appalled when he traveled and his credit cards
were canceled without an obvious reason (Fig. 3.1). The customer explains what had
happened in details and his Facebook friends strongly support his case again the
bank. Not only the bank made an error in its decision, according to what the friends
write, but also it is unable to rectify it and communicate it properly.

If this bank used a decision-making system with explainability, there would be a
given cause of its decision. Once it is established that this cause does not hold, the bank
is expected to be capable of reverting its decision efficiently and retaining the customer.

An example of a popular machine learning system is shown in Fig. 3.2. The
system translates the term coil spring (in Russian) into spring spring. This example
shows problem in the simplest case of translation where a meaning of two words
needs to be combined. A simple meta-reasoning system, a basic grammar checking
component or an entity lookup would prevent this translation error under appropriate
compartmental ML architecture with explainability. However, a black-box imple-
mentation of machine translation breaks even in simple cases like this. Inverse
translation is obviously flawed as well (in the middle of Fig. 3.2). The bottom
shows the fragment of a Wikipedia page for the entity.

Search engine is another application area for ML where relevance score is a major
criterion to show certain search results (Fig. 3.3). Having a highest relevance score
does not provide an explanation that the results are indeed relevant. Typical rele-
vance score such as TF*IDF is hardly interpretable; search highlighting features are
helpful but the search engine needs to be able to explain why it ignored certain
keywords like non-sufficient funds. A better phrase handling would also help: the
system should recognize the whole expression non-sufficient funds fee and if it does
not occur in search results, explain it.

To investigate how important it is for a customer to have a company’s decision
explained, to have a decision associated with financial service interpretable and
compatible with common sense, we need the following. A high number of scenarios
of financial service failure have to be accumulated and a proportion of those requiring
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explanation from the company in one form or another has to be assessed. To do that,
we form a dataset of customer complaint scenarios and build an automated assessment
framework to detect the cases where explainability is requested.

Fig. 3.1 A customer is confused and his peers are upset when his credit card is canceled but no
explanation is provided
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Fig. 3.2 Translation results for a simple phrase shows the problems in handling context

Fig. 3.3 A search engine shows results very far from what a user is asking and do not attempt to
explain how they were obtained
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3.1.4 Automated Detection of a Request to Explain

Obviously, just relying on keywords, using keyword rules is insufficient to detect
implicit request to explain. Hence an ML approach is required with the training
dataset with text including a request to explain and not including one. Not just syntax
level but discourse-level features are required when a request to explain is not
explicitly mentioned. We select the Rhetoric Structure Theory (Rhetoric Structure
Theory (RST, Mann and Thompson 1988) as a means to represent discourse features
associated with affective argumentation (Galitsky et al. 2009).

Once we developed our algorithm for explanation request detection, we want to
train it, test it and verify how consistent its results are across the domains. We also
test how recognition accuracy varies for cases of different complexity.

Detection accuracy for explanation request for different types of evidence is
shown in Table 3.1. We consider simpler cases where the detection occurs based
on phrases, in the top row. Typical expressions here have an imperative form such as
please explain/clarify/motivate/comment. Also, there are templates here such as you
did this but I expected that . . . you told me this but I received that.

The middle row contains the data on higher evidence implicit explanation request
case, where multiple fragments of DTs indicate the class. Finally, in the bottom row,
we present the case of the lower confidence for a single occurrence of a DT
associated with an explanation request. The second column shows the counts of
complaints per case. The third column gives examples of expressions (which include
keywords and phrase types) and rhetorical relations which serve as criteria for
implicit explanation request. Fourth, fifth and sixth columns presents the detection
rates where the complaints for a given case is mixed with a 100 of complaints
without explanation request, representing the real-world situation.

Recognition accuracies, bank-specific topics of complaints and an overall proportion
of the complaints with explanation request are shown in Table 3.2. We used 200 com-
plaints for each bank to assess the recognition accuracies for explanation request.
82 � 3% looks like a reasonable estimate for recognition accuracy for explanation
request. The last column on the right shows that taking into account <20% error rate in
explanation request recognition, 25 � 4% is an adequate estimate of complaints
requiring explainability in implicit or explicit form, given the set of 800 complaints.
Hence the explanation request (ER) rate is about a quarter of all complaints.

Table 3.1 Cases of explanation requests and detection accuracies for model development and
evaluation

Evidence # Criteria P R F1

Imperative expression with
communicative action explain

44 Keywords: explain, clarify, make
clear, why did they act-VP, why was it

92 94 93.0

Double, triple+ implicit
mention

67 Multiple rhetoric relation of contrast,
attribution, sequence, cause

86 83 84.5

Single implicit mention 115 A pair of rhetoric relation chains for
contrast and cause

76 80 77.9
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Finally, we ran our explanation request detection engine against the set of 10,000
complaints scraped from PlanetFeedback.com and observed that 27% of complain-
ants explicitly or implicitly require explainability from companies for their deci-
sions. There is a single complaint per author. Our observation is that since almost a
quarter of customers strongly demand and rely on explainability of the companies’
decisions, these customers are strongly affected by the lack of explainability and
may want to switch to another service. Hence the companies need to employ ML
algorithms with explainability feature. A very small number of customers
complained about errors in decisions irrespectively of how these errors were com-
municated (a manual analysis). Hence we conjecture that customers are affected by a
lack of explainability in a much higher degree than by an error rate (such as extra
10%, based on anecdotal evidence) of a company’s decision-making system.

This explainability feature is more important than the recognition accuracy for the
customers, who understand that all businesses make errors in the course of normal
operations. Typically, when a company makes a wrong decision via ML but then
rectifies it efficiently, a complaint does not arise. The most important means for
customer retention is then properly communicating with them both correct and
possibly erroneous customer decisions (not quantitatively evaluated in this study).

Having presented the value of explainability and transparency in an ML system,
we proceed to an example of a hybrid rule-based classification system. It possesses
desired features and performs an essential task for chatbot functioning.

3.2 Discriminating Between a User Question and User
Request

One of the essential capabilities of a chatbot is to discriminate between a request to
commit a transaction and a question to obtain some information (Galitsky and
Ilvovsky 2017). Usually, these forms of user activity follow each other.

Before a user wants chatbot to perform an action (such as open a new bank
account) she would want to know the rules and conditions for this account. Once the

Table 3.2 Discovering explanation request rates for four banks

Source # Main topics of complaints P R F1
ER
rate

Bank of
America

200 NSF, credit card interest rate raise 82 84 83.0 28.5

Chase Bank 200 NSF, foreclosure, unexpected card
cancellation

80 82 81.0 25.8

Citibank 200 Foreclosure, mortgage application,
refinancing,

79 83 81.0 23.8

American
express

200 Card application, NSF, late payment 83 82 82.5 27.0

60 3 Explainable Machine Learning for Chatbots

http://planetfeedback.com


user knowledge request is satisfied, she makes a decision and orders a transaction.
Once this transaction is completed by the chatbot, the user might want to know her
list of options available and asks a question (such as how to fund this new account).
Hence user questions and transactional requests are intermittent and need to be
recognized reliably.

Errors in recognizing questions vs transactional requests are severe. If a question
is misinterpreted and an answer to a different question is returned, the user can
reformulate it and ask again. If a transactional request is recognized as a different
(wrong) transaction, the user will understand it when the chatbot issues a request to
specify inappropriate parameters. Then the user would cancel her request, attempt to
reformulate it and issue it again. Hence chatbot errors associated with wrongly
understood questions and transactional requests can be naturally rectified. At the
same time, chatbot errors recognizing questions vs transactional requests would
break the whole conversation and the user would be confused on how to continue
conversation. Therefore, the chatbot needs to avoid this kind of errors by any means.

Recognizing questions vs transactional requests must be domain-independent.
In any domain a user might want to ask a question or to request a transaction, and
this recognition should not depend on the subject. Whereas a chatbot might need
training data from a chatbot developer to operate in a specific domain (such as
personal finance), recognizing questions vs transactional requests must be a capa-
bility built in advance by a chatbot vendor, before this chatbot will be adjusted to a
particular domain.

We also target recognition of questions vs transactional requests to be in a
context-independentmanner. Potentially there could be any order in which questions
are asked and requests are made. A user may switch from information access to a
request to do something and back to information access, although this should be
discouraged. Even a human customer support agent prefers a user to first receive
information, make a decision and then request an action (make an order).

A request can be formulated explicitly or implicitly. Could you do this may mean
both a question about the chatbot capability as well as an implicit request to do this.
Even a simple question what is my account balancemay be a transactional request to
select an account and execute a database query. Another way to express a request is
via mentioning of a desired state instead of explicit action to achieve it. For example,
utterance “I am too cold” indicates not a question but a desired state that can be
achieved by turning on the heater. If no available action is associated with “cold” this
utterance is classified as a question related to “coldness”. To handle this ambiguity in
a domain-independent manner, we differentiate between a questions and a transac-
tional requests linguistically, not pragmatically.

Although a vast training dataset for each class is available, it turns out the a rule-
based approach provides an adequate performance. For an utterance, classification
into a request or question is done by a rule-based system on two levels:

1. Keyword level
2. Linguistic analysis of phrases level
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The algorithm chart includes four major components (Fig. 3.4):

• Data, vocabularies, configuration
• Rule engine
• Linguistic Processor
• Decision Former

Data, vocabularies, configuration components included leading verbs indicating
that an utterance is a request. It also includes expressions used by an utterance author
to indicate the he wants something from a peer, such as ‘Please do . . . for me’. These
expressions also refer to information request such as ‘Give me MY . . .’ such as
account information. For a question, this vocabulary includes the ways people address
questions, such as ‘please tell me. . .’.

Fig. 3.4 The architecture for question vs transaction request recognition. The class labels on the
bottom correspond to the decision rules above
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Rule engine applies a sequence of rules, both keyword-based, vocabulary-based
and linguistic. The rules are applied in certain order, oriented to find indication of a
transaction. If main cases of transactions are not identifies, only then the rule engine
applies question rules. Finally, if question rules did not fire, we classify the utterance
as unknown, but nevertheless treat it as default, a question. Most rules are specific to
the class of requests: if none of them fire then the decision is also a question.

Linguistic processor targets two cases: imperative leading verb and a reference to
“my” object. Once parsing is done the first word should be a regular verb in present
tense, active voice, neither modal, mental (Galitsky 2016) or a form of be. These
constraints assure this verb is in the imperative form ‘Drop the temperature in the
room’. The second case addresses utterance related to an object the author owns or is
associated too, such as ‘my account balance’ and ‘my car’. These utterances are
connected with an intent to perform an action with these objects or request for an
information on them (versus a question which expresses a request to share general
knowledge, not about this particular, my object).

Decision former takes an output of the Rule Engine and outputs one out of three
decisions, along with an explanation for each of them. Each fired keyword-based
rule provides an explanation, as well as each linguistic rule. So when a resultant
decision is produced, there is always a detailed back up of it. If any of the
components failed while applying a rule, the resultant decision is unknown.

If no decision is made, the chatbot comes back to the user asking for explicit
clarification: ‘Please be clearer if you are asking a question or requesting a
transaction’.

3.2.1 Examples of Questions and Transactional Requests

We present examples for each class together with the rules which fired and delivered
the decision (shown in []).

Questions

If I do not have my Internet Banking User ID and Password, how can I login? [if and
how can I – prefix]

I am anxious about spending my money [mental verb]
I am worried about my spending [mental verb]
I am concerned about how much I used [mental verb]
I am interested how much money I lost on stock [mental verb]
How can my saving account be funded [How+my]
Domestic wire transfer [no transactional rule fired therefore question]
order replacement/renewal card not received [no transactional rule fired therefore

question]

Transactional Requests

Open iWish – a Flexible Recurring Deposit [leading imperative verb]
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Cancel a Fixed Deposit using ICICI Bank VISA Debit Card [leading imperative
verb]

Help me to Login and raise a Service Request [leading imperative verb]
Turn the light on [postfix]
Put wiper rate on high [postfix]
Transfer funds from checking to saving [leading imperative verb]
Move funds from saving to mortgage [leading imperative verb]
Fund my investment account from checking [leading imperative verb + my without

How]
Wiremoney frommy checking to investment [leading imperative verb +mywithout

How]
too loud, quieter please [leading adjective prefix]
set the security system to off [postfix]
close the garage door [leading imperative verb]
do western union [leading imperative verb do]
give me the check deposited in Bank Account but not credited [leading imperative

verb + me]

3.2.2 Nearest Neighbor-Based Learning for Questions vs
Transactional Requests Recognition

If a chatbot developer/vendor intends to overwrite the default questions vs transac-
tional requests recognition rules, he would need to supply a balanced training set
which includes samples for both classes. To implement a nearest-neighbor function-
ality, we rely on information extraction and search library (Lucene 2018). The
training needs to be conducted in advance, but in real time when a new utterance
arrives the following happens:

1. An instant index is created from the current utterance;
2. We iterate through all samples from both classes. For each sample, a query is built

and search issued against the instant index;
3. We collect the set of queries which delivered non-empty search results with its

class and aggregate this set by the classes;
4. We verify that a certain class is highly represented by the aggregated results and

the other class has significantly lower presentation. Then we select this highly
represented class as a recognition result. Otherwise, the system should refuse to
accept a recognition result and issue Unknown.

Lucene default TF*IDF model will assure that the training set elements is the
closest in terms of most significant keywords (from the frequency perspective, (Tan
2005; Salton and Yang 1973)). (Trstenjak et al. 2013) present the possibility of using
a nearest neighbor (KNN) algorithm with TF*IDF method for text classification.
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This method enables classification according to various parameters, measurement
and analysis of results. Evaluation of framework was focused on the speed and
quality of classification, and testing results showed positive and negative character-
istics of TF*IDF-KNN algorithm. Evaluation was performed on several categories of
documents in online environment and showed stable and reliable performance. Tests
shed the light on the quality of classification and determined which factors have an
impact on performance of classification.

3.3 A Decision Support Chatbot

We propose an active learning framework for a decision support where a user expert
presents her decision first in an explicit manner. This framework allows the machine
learning component leverage the explainable decision presented by the expert first
and then produce an explainable decision comparable with the manual one. This type
of active learning framework is expected to improve the quality of the resultant,
hybrid decision and constantly maintain the decision skill level of the human expert.

In spite of the high success of the existing decision support systems (DSS)
(Newman et al. 2000; Hartono et al. 2007; Galitsky et al. 2009), their expert users
rely on them more and more, obtain and use a DSS result and become detached from
a decision process itself. The issue here is a lack of responsibility of these expert
users for the final decision, as well as an accuracy of future decisions (Goldberg et al.
2008). It is well known that a drop of accuracy of DSS system is caused by domain
evolution, where the training occurred on the original, old data and the current, new
data may significantly deviate. The rate of this domain evolution, concept drift
(Krawczyk et al. 2017), can be much higher that the self re-training capabilities of
the DSS. Hence it is fairly important that this DSS produces an adequate explanation
of its decision so that the human expert can assess this decision with respect to recent
data (Shklovskiy-Kordi et al. 2005).

European Union’s new General Data Protection Regulation also control the
applicability of machine learning (https://eugdpr.org/). These regulations restrict
automated individual decision-making (that is, algorithms that make decisions
based on user-level predictors) which “significantly affect” users. The law
effectively creates a right to explanation, whereby a human user can request an
explanation of an algorithmic decision that was made about them (Goodman and
Flaxman 2017).

In this Section we focus on interactions between a DSS-enabled chatbot and a
human expert that goes beyond the active learning framework. For an extended set
of features, a decision support session starts with a delivery of a human expert
decision to the chatbot, given a set m < <n of features this human expert relied his
decision upon. Then the chatbot would have to explain disagreement of its decision
with the human experts’ prior decision, presenting the set d of features employed in
DSS decision.
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There are two reasons decision agents including humans and machines make
mistakes:

1. recognition model;
2. distortion of parameter values due to measurement errors and cognitive bias.

In most cases, humans are subject to errors associated with their sentiments.
Both machines and humans learn and generalize from data and both make errors

(Galitsky and Parnis 2017). (Goldberg et al. 2007) has been investigating this in a
medical decision support domain. However, unlike machines, humans possess
ontologies and are capable of applying them to assess their decisions. Humans
usually learn from a smaller set of examples but the accuracy of their decisions is
achieved by applying ontologies on top of generalizations. Even when a machine has
an ontology, we assume that it is limited in scope and cannot cover all cases. For
humans, all cases are covered by some kind of ontological knowledge.

As an example, we use a case of visual recognition of images of dogs and wolves.
Generalizing from available data, machines build a model where if there is a snow in
background, it is a wolf. Although this turns out to cover the training set well, human
ontology hints that this generalization is prone to errors since dog images can have
snow in background as well.

We design dialogue management in our chatbot to facilitate interactions between
the DSS and human expert. A sample session is shown in Fig. 3.5.

Meta-agent does not have its own model of a phenomenon; instead, it controls the
information exchange between the DSS and human expert in the form of a decision
and its explanation as a set of parameters and their values.

3.3.1 Example of a Decision Support Session

We present a classification problem for three animals: a wolf, a dog and a coyote,
relying on the following parameters: animal length, skin color, height, speed, tail
length and tail direction (Table 3.3).

Human agent and DSS have different models of a phenomenon such as an animal.
They cannot exchange model parameters but instead they can encourage each other
to pay attention to particular parameters they think are important for recognition.

Step 1. A human expert takes a sample and attempts to solve a problem. Let us
imagine the following parameters as identified by her:

Length ¼ 115 sm with the range of possible errors [100–130]
Color ¼ ‘light grey’ with the range [white . . . grey]
Height ¼ 70 sm with the range [55–85]
Speed ¼ 40 km/h with the range [35–45]
Tail.length ¼ long with the range [average]
Tail.direction ¼ down with range [straight]
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Step 2. Expert decides that it is a wolf, since (Step 3):

Length ¼ 115
Color ¼ light grey
Height ¼ 70 sm
Tail.direction ¼ down

Fig. 3.5 A high-level schema of a dialogue for a DSS chatbot
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Step 4. DSS: If turn length ¼ 115sm into 100sm and height ¼ 70sm into
55 ) coyote

If Tail.direction ¼ straight )dog
If without correction ) wolf
Chatbot is asking human about the tail:
Tail.direction ¼ straight and Tail.length ¼ average, nevertheless ) wolf.
Now the new set of feature values:
Tail.length ¼ average with the range [short. . .long]
Tail.direction ¼ straight with range [down. . .up]

Step 5. DSS ) dog since (Step 6)

Tail.direction ¼ straight
Speed ¼ 40 km/Ec
(Explanation only for dog vs. wolf)
Expert: what if Tail.direction ¼ down?
DSS: still dog since can only be wolf, not coyote
Speed ¼ 40 km/h
Tail.length ¼ average
Expert: What if both Tail.direction ¼ down and speed ¼ 35 km/h?
DSS: then it becomes wolf
Expert: What if Tail.direction ¼ down and tail.length ¼ long?
DSS: wolf

Step 7. Now the human expert can do the final judgment.

3.3.2 Computing Decisions with Explanations

Let x¼ (x1, x2, .., xn) be the n input parameters to the algorithm. xi can be continuous
(numerical) or categorical (Boolean) variables. Let X be a set of x. Let v ¼ (v1, . . .,
vn) be the particular input values entered by the user.

Let D ¼ {αj}, j ¼ 1,..., k be the set of k possible decisions or output classes.
Let αU 2 D be the initial unassisted decision of the user.
Additionally we allow the user to mark a subset of input parameters (v1, . . ., vm)

m � n as being particularly important to their decision αU

Table 3.3 Classification
features

Wolf Coyote Greyhound

Length, sm 100–160 75–100 100–120

Height, sm 80–85 45–55 68–76

Color Gray Light gray Any

Speed, km/h Up to 60 Up to 70 70

Tail length, sm Long Average Long

Tail direction Down Down Not down
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We define the decision function f which maps an input vector v and a class α 2
D to confidence c 2 [0, 1]:

f α; xð Þ : α, x ! 0; 1½ �:

Let αml be the algorithm decision based on the user-provided input values v.

f αml; vð Þ ¼ max f α; xð Þð Þfor all α 2 D:

For any parameter of x, its value ximay have bias or error so we define Ω(xi) such
that Ω(xi) > (Ω(xi)�& Ω(xi) < Ω (xi)

+) as the set of values which are considered
within the error bounds for xi. The bias includes the uncertainty of an object and
uncertainty of the assessor. When there is an uncertainty in assessing a feature, we
have the phenomena of “confirmation bias” and “selective perception” (Plous 1993;
Lee et al. 2013).

We introduce a feature normalization xi
new for each i-th dimension, set based on

the following four thresholds: а0i, а1i, а2i, а3i, а4i (Shklovsky-Kordi et al. 2005):

хi < а0i : strong deviation : xi
new ¼ 0þ хi=а0i

а1i < хi < а2i : abnormal : xi
new ¼ 1þ хi � а1 j

� �
= а2i � а1ið Þ

а2i < хi < а3i : normal : xi
new ¼ 2þ хi � а2 j

� �
= а3i � а2ið Þ

а3i < хi < а4i : abnormal : xi
new ¼ 3þ хi � а3 j

� �
= а4i � а3ið Þ

a4i < xi < a4i : strong deviation : xi
new ¼ 4þ xi=ða4iÞ

Based on this definition, we compute X ! Xnew and Xnew ! X. Now we define
the similarity between the object x and y as a vector distance ||x – y||.

Division of the measured value by the accepted average value accomplishes the
normalization. The calculation is executed separately for normal, abnormal and
strong_deviation value. To define a range of sub-normal values, a team of experts
empirically established the score of acceptable parameters. They are determined for
certain combination of features and certain objects. If a parameter stays within the
defined abnormal or normal range, no special action is required. The
strong_deviation range covers all the zone of possible values beyond the abnormal
values.

Algorithm for Steps 4: Stability Assessment
Let us consider a n-dimensional space Ω(v1),. . ., Ω(vm), vm + 1,. . . .,vn. In dimensions
1 to m it is a parallelepiped, and in dimension m + 1..n it is a plane.

Let Ω(v) be set of points where for each dimension Ω(vi)
� < Ω(vi) < Ω (vi)

+ for
i < m + 1 and vifor i > m.

Let α be the decision of DSS where f(α, x) – f(αU, x) > 0 with x2 Ω(v) and α 2 D.
Out of these pairs, let us select the pair (αml, y) which relies on a minimum number of
important dimensions 1..m.
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Algorithm for Steps 5: Discovering Deviations in Parameters for αU
The user expert is then suggested to consult parameter i delivering maximum value
(yi

new
– vi

new), i¼ 1,..m, yi – i-th dimension of vector y, when feature normalization
procedure is fixed. If human decision deviates from the DSS decision in initial data,
meta-agent needs to focus on a single parameter value from {v1,. . . . vn,} that would
direct the human expert towards the DSS decision. This is how to find this feature.

What is the worst feature dimension for a human decision? To find it we first
identify the best feature value (we call it typical) for αU for all i:

vi
typ (αU) ¼ maxj f(αU,[v1,. . . ., vi-1, xj, vi + 1,. . . ., vn]) over all values xj of i-th

dimension. For example, x1 ¼ ‘white’, x2 ¼ ‘light grey’,

x3 ¼ ‘grey’,x4 ¼ ‘dark grey’,x5 ¼ ‘black’,j ¼ 1::5:

vi
typ αUð Þ : color ¼ ‘grey’whenαU ¼ ‘wolf ’:

We do it for all dimensions i.
Now we proceed to the dimension i best for the DSS decision.

maxi f αml, v1, ...:, vi�1, ; vi; viþ1, ...:, vn½ �ð Þ � f αml, v1, ...:, vi�1, vi
typ αUð Þ; viþ1, ...:, vn½ �ð Þð

Here, the feature could be as follows

vi : color ¼ ‘light grey’, vi
typ(αU) : color ¼ ‘grey’when αU ¼ ‘wolf’.

Algorithm for Step 6: Explainability of DSS
This algorithm attempts to explain the DSS decision for human expert in the same
way as has been done by humans. DSS delivers most important features for its
decision.

Let us use a random generator with vnew as average value and (1,..,1)-vector as
standard deviation to select in Хnew, where.

�ε < f αml; xð Þ � f αU ; xð Þ < 0

Then we take a point z delivering the minimum || znew – vnew||. Then in the cube,
we randomly select a point z’ around z in where -ε < f (αml, x) – f (αU, x) < 0 such that
z’ gives us a minimum of || z’new – vnew||. We iteratively set z ¼ z’ and do the above
iteratively till the distance || z’new – vnew|| stops decreasing.

Feature i which do not belong to Ω(z’i) is important for decision making of DSS
to obtain the decision αml that different from αU. Most important features i are those
where zi

new
– vi

new) > ¼ 1.
Here is the user interaction flow (Fig. 3.6):

1st Step:
User input: v ¼ [v1, . . ., vn] 2 X.
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2nd Step:
Initial unassisted decision αU of the user

3nd Step:
User indicates m out of n input values as being particularly important to his decision

αU [v1,... vm] m < <n

4th Step:
Now DSS verified the decisions of user αU without sharing αml.
In order to determine how stable αU is relatively to perturbations of v within error

bounds Ω, we compute αml by means of Stability Assessment Algorithm.
If αml does not match αU, go to Step 5.
If αml matches αU, then αU is selected as a preliminary solution, and we proceed to

Step 6.
5th Step:
Since αU 6¼ αml we iteratively work with the user to see if we can converge on a

stable decision. We apply Discovering abnormal parameters Algorithm.

We could, at this point, just show αml to the user, but we specifically avoid doing
this in order to prevent the user from unthinkingly changing their decision to αml.
Instead we use a more nuanced, indirect approach where we try to find the parameter
whose value vi, from the ones indicated by the user to be in the set proving αU,vi, is
such that its possible deviation affects αU in the highest degree.

After finding this parameter, we report to the user that the value they provided for
this parameter is to some degree inconsistent with αU. We then give the user the
option to change their initial αU.

N input parameters

Final decision by
user Expert

Chatbot
computes decision
       (not shown to user)

Chatbot
computes decision
(shown to user)

Chatbot's unassisted
decision based on input
parameters

User
Expert

User’s unassisted
decision based on
input parameters

validation and
correction for
possible a priori
user biases

validation and
correction for
possible a priori
biases

Fig. 3.6 Architecture of a decision support chatbot
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If the user maintains the same decision αU, αU is set as a preliminary decision and
we proceed go to Step 6.

If user changes their decision, go to Step 2 (unless this point is reached a third
time, in which case go to Step 6 to avoid an overly long interaction loop).

6th Step:
Compute decision αml based on unchanged input values f(αml,v). αml is set as a

decision of DSS and is shown to the human expert along with the set of key
features which has yielded αml instead of αU. Explainability of DSS algorithm is
in use here.

7th Step:
The human expert can modify v and observe respective decisions of DSS. DSS can

in turn change its decision, and provide an updated explanation. Once the human
expert obtained DSS decision for all cases of interest, she obtains the final
decision.

Hence in the third step the human explains its decision, and in the sixth step the
DSS explains its decision. In the fifth step DSS assesses the stability of human
experts’ decision with respect to selected features. In the seventh step the human
expert does the same with DSS decisions. So the sixth step is inverse to the third and
the seventh is inverse to the fifth.

Hence we constructed a goal –oriented chatbot that instead of answering factual
questions or performing transactions conducts a decision support.

For a chatbot to handle explainable decision support, explanation format should
be simple and have a natural representation, as well as match the intuition of a human
expert. Also, it should be easy to assess DSS explanation stability with respect to
deviation of decision features. Available methods such as (Baehrens et al. 2010)
where DSS is a black box, similar to the current setting, do not obey all of these
requirements.

3.4 Explanation-Based Learning System Jasmine

We describe a deterministic inductive learning system Jasmine configured to predict
an utterance in a dialogue. This system belongs to the class of Inductive Logic
Programming and Explanation Based learning systems operating with data which is
fully formalized and made sense of. Originally, Jasmine was designed to support
learning in a number of domains which require learning explainability: not just a
correct classification or prediction needs to be made, but also it needs to be explained
in terms of which samples and which rules were employed in the decision (Galitsky
et al. 2007).

The foundation of learning and cognition is an inductive reasoning pattern. If we
want to recognize a specific kind of dialogs and distinguish it from other kinds, we
want to find a common feature (phrase, entity) shared by at least two dialog
instances. This feature should not be present in other kinds of dialogs. The principle
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of induction states that a commonality of features between the patterns (such as
‘deny responsibility’ response) causes the target feature (the utterance that includes a
‘threat of proceeding to a Better Business Bureau claim’). This principle is referred
to as the direct method of agreement.

If two or more instances of the phenomenon under investigation have only one circumstance
in common, the circumstance in which alone all the instances agree, is the cause (or effect)
of the given phenomenon (Mills 1843).

3.4.1 A Reasoning Schema

Jasmine is based on a learning model called JSM-method (Anshakov et al. 1989, in
honor of John Stuart Mill, the English philosopher who proposed schemes of
inductive reasoning in the nineteenth century). JSM-method to be presented in this
section implements Mill’s direct method of agreement stating that similar effects
(associated features, target features) are likely to follow common causes (attributes),
as well as abduction in the form of explainability. JSM attempts to solve the problem
of inductive bias, a means to select one generalization over another. It is hard for an
automated learning system to find a proper generalization level, making decisions in
the real world.

The task of Jasmine is to predict or recognize a target feature (phrases in a dialog
utterance to follow) given the observable features (phrases and entities in the previous
utterances). These features are observed in the objects of a training set so that a target
feature of new, unknown object can be recognized or predicted (Galitsky et al. 2007).

Given the features of objects of a training set, we intend to obtain a logical
expression for the target feature that includes all positive examples and excludes all
negative examples, given some initial formalized background knowledge. In the
Explanation-based Learning setting such expression for the target feature is a logical
consequence of background knowledge and training dataset; however, this condition
is not always viable in a domain of human learning from with experimental obser-
vations. Explanation-based Learning is designed to generalize form a single exam-
ple; however, in human learning domains one would prefer more reliable
conclusions from multiple observations. These multiple observations (examples)
may introduce inconsistencies; and the desired machine learning technique should
be capable of finding consistent explanations linking possibly mutually inconsistent
observations with the target feature.

Within Jasmine first-order language, objects are atoms, and known features and
the target feature are the terms which include these atoms. For a given target feature,
a term for a feature of an object can be as follows:

• Positive
• Negative
• Inconsistent
• Unknown
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In our case, building (predicting) a dialog step, objects are utterances and object
features are phrases of these utterances.

An inference to obtain this target feature (satisfied or not) can be represented as
one in a respective four-valued logic (Anshakov et al. 1989). The predictive machin-
ery is based on building hypotheses in the form of clauses

target_feature(O):- feature1(O, . . .), . . .,featuren(O, . . .), that separate examples,

where target_feature(O) is to be predicted, and features1, . . .,featuren2features are
the features the target feature is associated with; O ranges over objects.

Desired separation is based on the similarity of objects in terms of features they
satisfy (according to the direct method of agreement above). Usually, such similarity
is domain-dependent. However, building the general framework of inductive-based
prediction, we use the anti-unification of formulas that express the totality of features
of the given and other objects (our features (causes) do not have to be unary
predicates; they are expressed by arbitrary first-order terms). We assume the
human learning to be as general and flexible as this operation of anti-unification,
to be introduced.

Figure 3.7 is an example of a learning setting, where features, objects, the target
feature and the knowledge base are given. We keep using the conventional PRO-
LOG notations for variables and constants.

In a numerical, statistical learning similarity between objects is expressed by a
number. In deterministic, structured learning with explainability of results similarity
is a structure. Similarity between a pair of objects is a hypothetical object which
obeys the common features of this pair of objects. In handling similarity Jasmine is
close to Formal Concept Analysis (Ganter and Wille 1999; Ganter and Kuznetsov

features([e1, e2, e3, e4, e5, e6, oa1, oa2, ap1, ap2, ap3, ap4, f1, f2,  
cc4, cc5, cc6, cc7, cb5, cb7]). % dialog phrases

objects([o1, o2, o3, o4, o5, o6, o7, o8, o9, o10, o11, o12, o13, o14,  
o15, o16, o17, o18]). % utterances

target_feature [cb5]). % a phrase to be included in an utterance
% Beginning of knowledge base %

e1(o1). oa1(o1). ap1(o1). ap3(o1). f1(o1).  cc5(o1). cb5(o1).
e1(o2). oa1(o2). ap1(o2). ap3(o2). f1(o2).  cc5(o2). cb5(o2).
e2(o8). oa2(o8). ap2(o8). ap1(o8). f1(o8).  cc5(o8). cb5(o8).
e3(o10). oa1(o10). a3(o10). ap2(o10). f1(o10). cc4(o10). 
e3(o11). oa1(o11). a3(o11). ap2(o11). f1(o11). cc4(o11). cb5(o11). cb7(o11).
e4(o16). oa1(o16). a1(o16). ap1(o16). f1(o16). cc5(o16). cb5(o16). 
e5(o17). oa1(o17). a4(o17). ap2(o17). f1(o17). cc6(o17). cb7(o17). 
e6(o18). oa1(o18). a1(o18). ap2(o18). f1(o18). cc4(o18). cb7(o18). 

%% End of knowledge base
unknown(cb5(o10)). % Should the current utterance, o10, include the phrase 
‘cb5’?

Fig. 3.7 A sample knowledge base for high-level mining of protein sequence data
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2001), where similarity is the meet operation of a lattice (called concept lattice)
where features are represented by unary predicates only. For the arbitrary first-order
formulas for objects in Jasmine we choose the anti-unification of formulas which
expresses features of the pair of objects to derive a formula for similarity sub-object
(Chap. 5, Galitsky 2017). Below we will be using the predicate

similar(Object1, Object2, CommonSubObject) which yields the third argument
given the first and the second arguments.

The reasoning procedure of Jasmine is shown in Fig. 3.8. Note that the prediction
schema is oriented to discover which features cause the target feature and how (the
causal link) rather than just searching for common features for the target feature
(which would be much simpler, 6 units on the top). The respective clauses (1–4) and
sample results for each numbered unit (1–4) are presented in Fig. 3.9.

Let us build a framework for predicting the target feature V of objects set by the
formulas X expressing their features: unknown(X, V). We are going to predict
whether V(x1, . . ., xn) holds or not, where x1, . . ., xn are variables of the formula
set X (in our example, X ¼ cb5(o10), x1 ¼ o10).

We start with the raw data, positive and negative examples, rawPos(X, V) and
rawNeg(X, V), for the target feature V, where X range over formulas expressing
features of objects. We form the totality of intersections for these examples
(positive ones, U, that satisfy iPos(U,V), and negative ones, W, that satisfy iNeg
(W,V), not shown):

iPos U;Vð Þ : �rawPos X1;Vð Þ,rawPos X2;Vð Þ,X1\ ¼ X2, similar X1;X2;Uð Þ,U\ ¼ ½ �:
ð3:1Þ

iPos(U,V) : � iPos(U1,V ), rawPos(X1,V ), similar(X1,U1,U ), U\ ¼ [ ]. Above
are the recursive definitions of the intersections. As the logic program clauses which
actually construct the lattice for the totality of intersections for positive and negative
examples, we introduce the third argument to accumulate the currently obtained
intersections (the negative case is analogous):

iPos U;Vð Þ : �iPos U;V ;ð Þ:

iPos(U,V,Accums) : � rawPos(X1,V ), rawPos(X2,V ), X1\ ¼ X2, similar(X1,
X2,U ), Accums ¼ X1;X2½ �,U\ ¼ ½ �:

iPos(U,V,AccumsX1) : � iPos(U1,V,Accums), ! , rawPos(X1,V ), not member
(X1,Accums), similar(X1, U1, U), U\ ¼ [], append
(Accums, [X1],AccumsX1).

As one can see, there is a “symmetric” treatment of positive and negative
examples and hypotheses: Jasmine uses negative examples to falsify hypotheses
that have counter-examples. On the contrary, a simplified Explanation-based
Learning uses only positive examples and can be viewed as just the left side of
Figure 3.8.
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To obtain the actual positive posHyp and negative negHyp hypotheses from the
intersections derived above, we filter out the inconsistent hypotheses which belong
to both positive and negative intersections inconsHyp(U, V):

inconsHyp U;Vð Þ : �iPos U;Vð Þ, iNeg U;Vð Þ: ð3:2Þ
posHyp U;Vð Þ : �iPos U;Vð Þ, not inconsHyp U;Vð Þ:

negHyp(U,V ) : � iNeg(U,V ), not inconsHyp(U,V ).

Finding the totality of 
intersections between features 
of all objects (positive)

Finding the totality of 
intersections between features 
of all objects (negative)

Among the above 
intersections, select  those 
which describe only positive 
objects

Among the above 
intersections, select those 
which describe only 
negative objects

Form positive hypotheses 
from the above intersections

Form negative hypotheses 
from the above intersections

Instantiate 
positive 
hypotheses by 
objects

Obtaining objects 
with unknown target 
which satisfy both 
positive and 
negative hypotheses 
(remain unknown)

Instantiate 
negative 
hypotheses by 
objects

Obtaining objects with 
unknown target which 
satisfy positive hypotheses

Obtaining objects with 
unknown target which 
satisfy negative hypotheses

Remaining objects with unknown 
target: inconsistent prediction

1

2

3

4

Add obtained prediction into domain theory 
as defeasible clauses and attempt to resolve 
inconsistencies

Fig. 3.8 The chart for reasoning procedure of Jasmine
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Here U is the formula expressing the features of objects. It serves as a body of
clauses for hypotheses V: – U.

The following clauses deliver the totality of objects so that the features expressed
by the hypotheses are included in the features of these objects. We derive positive

1. Intersections 
Positive: [[e1(_),oa1(_),ap1(_),ap3(_),f1(_),cc5(_)],
[ap1(_),f1(_),cc5(_)],[ap1(_),f1(_)],[oa1(_),f1(_)], [oa1(_),ap1(_),f1(_),cc5(_)],
[e2(_),e3(_),oa2(_),ap1(_),ap2(_),f1(_)],[e3(_),ap2(_),f1(_)],[e4(_),oa1(_),ap1(

_),
f1(_),cc5(_)]]
Negative: [[oa1(_),ap2(_),f1(_),cb7(_)]]
Unassigned examples:

2. Hypotheses
Positive:[e1(_),oa1(_),ap1(_),ap3(_),f1(_),cc5(_)],[ap1(_),f1(_),cc5(_)],   
[ap1(_),f1(_)],[oa1(_),f1(_)],[oa1(_),ap1(_),f1(_),cc5(_3B60)], 
[e2(_),e3(_),oa2(_),ap1(_),ap2(_),f1(_)], [e3(_),ap2(_),f1(_)],
[e4(_),oa1(_),ap1(_),f1(_),cc5(_)]]
Negative: [[oa1(_),ap2(_),f1(_),cb7(_)]]
Contradicting hypotheses: []

The clauses for hypotheses here are: 
cb5(X)>-
e1(X),oa1(X),ap1(X),ap3(X),f1(X),cc5(X);ap1(X),f1(X),cc5(X);ap1(X),f1(X).
cb5(X)>- not ( oa1(X),ap2(X),f1(X),cb7(X)).   Note that all intersections are 
turned into hypotheses because there is no overlap between positive and negative 
ones    

3. Background (positive and negative objects with respect to the target feature 
cb5)

Positive:
[[e1(o1),oa1(o1),ap1(o1),ap3(o1),f1(o1),cc5(o1)],[e1(o2),oa1(o2),ap1(o2),ap3(

o2),f1(o2),cc5(o2)], 
[e2(o7),e3(o7),oa2(o7), ap1(o7),ap2(o7),f1(o7),cc5(o7)],
[e2(o8),e3(o8),oa2(o8),ap1(o8),ap2(o8),f1(o8)],
[e3(o11),oa1(o11),ap2(o11),f1(o11),cc4(o11),cb7(o11)],[e4(o15), 

oa1(o15),ap1(o15),f1(o15),cc5(o15)], 
[e4(o16),oa1(o16),ap1(o16),f1(o16),cc5(o16)]] 
Negative: 
[[e5(o17),oa1(o17),ap2(o17),f1(o17),cc6(o17),cb7(o17)],[e6(o18),oa1(o18),ap

2(o18),f1(o18),cc4(o18),cb7(o18)]] 
Inconsistent: []
4. Prediction for cb5 (objects o10)
Positive: [[e3(o10),oa1(o10),ap2(o10),f1(o10),cc4(o10)]]
Negative:[]              
Inconsistent: []
Uninstantiated derived rules (confirmed hypotheses)
cb5(O):- e3(O), oa1(O),ap2(O), f1(O), cc4(O).

Fig. 3.9 The Jasmine prediction protocol. Steps are numbered in accordance to the units in Fig. 3.8

3.4 Explanation-Based Learning System Jasmine 77



and negative hypotheses reprObjectsPos(X, V) and reprObjectsNeg(X, V) where X is
instantiated with objects (V is positive and negative respectively). The last clause
(with the head reprObjectsIncons(X, V)) implements the search for the objects to be
predicted so that the features expressed by both the positive and negative hypotheses
are included in the features of these objects.

reprObjectsPos X;Vð Þ : �rawPos X;Vð Þ, posHyp U;Vð Þ, similar X;U;Uð Þ: ð3:3Þ

reprObjectsNeg (X,V ) : � rawNeg(X,V ), negHyp(U,V ), similar(X,U,U ).
reprObjectsIncons(X,V ) : � unknown(X,V ), posHyp(U1,V ), negHyp(U2,V ),

similar(X,U1,U1), similar(X,U2,U2).

Two clauses above (top and middle) do not participate in prediction directly; their
role is to indicate which objects deliver what kind of prediction.

Finally, we approach the clauses for prediction. For the objects with unknown
target features, the system predicts that they either satisfy these target features, do not
satisfy these target features, or that the fact of satisfaction is inconsistent with the raw
facts. To deliver V, a positive hypothesis has to be found so that the set of features
X of an object has to include the features expressed by this hypothesis, and X should
not be from reprObjectsIncons(X, V). To deliver ØV, a negative hypothesis has to be
found so that a set of features X of an object has to include the features expressed by
this hypothesis and X is not from reprObjectsIncons(X, V). No prediction can be
made for the objects with features expressed by X from the third clause,

predictIncons(X,V).

predictPos X;Vð Þ:2 unknown X;Vð Þ, posHyp U;Vð Þ, similar X;U;Uð Þ, ð3:4Þ
not reprObjectsIncons(X,V).

predictNeg X;Vð Þ : �unknown X;Vð Þ, negHyp U;Vð Þ, similar X;U;Uð Þ,
not reprObjectsIncons(X,V ).

predictIncons X;Vð Þ : �unknown X;Vð Þ, not predictPos X;Vð Þ,
not predictNeg(X,V ), not reprObjectsIncons(X,V ).

The first clause above (shown in bold) will serve as an entry point to predict
(choose) a given target feature among a generated list of possible target features that
can be obtained for the current state. The clause below is an entry point to Jasmine if
it is integrated with other applications and/or reasoning components.

predict_target_feature_by_learning(GoalConceptToBePredicted,S):-.
findAllPossibleGoalConcepts (S,As), loadRequiredSamples(As),
member(EffectToBePredicted,As),
predictPos X;GoalConceptToBePredictedð Þ,X\ ¼ ½ �:

Predicate loadRequiredSamples(As) above forms the training dataset. If for a
given dataset a prediction is inconsistent, it is worth eliminating the objects from the
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dataset which deliver this inconsistency. Conversely, if there are an insufficient
number of positive or negative objects, additional ones are included in the dataset.
A number of iterations may be required to obtain a prediction, however the iteration
procedure is monotonic and deterministic: the source of inconsistency/insufficient
data cases are explicitly indicated at the step where predicates reprObjectsPos and
reprObjectsNeg introduced above are satisfied. This is the solution to the so called
blame assignment problem, where by starting at the erroneous or inconsistent
conclusion and tracking backward through the explanation structure, it is possible
to identify pieces of domain knowledge that might have caused an error or incon-
sistency (Galitsky et al. 2007).

When the set of obtained rules posHyp and negHyp for positive and negative
examples (together with the original domain theory) is applied to a more extensive
(evaluation or exploration) dataset, some of these rules may not always hold. If at the
first run 1)-4) Jasmine refuses to make predictions for some objects with unknown
target features, then a repetitive iteration may be required, attempting to use newly
generated predictions to obtain objects’ target features which are currently
unavailable. The arrows on the right of Fig. 3.8 illustrate this kind of iterative
process.

For example, for the knowledge base Fig. 3.7 above, we have the following
protocol and results (Fig. 3.9):

Hence cb5(o10) holds, which means that the sequence o10 has the length of loop
of 5 amino acids.

3.4.2 Computing Similarity Between Objects

The quality of Jasmine-based prediction is dramatically dependent on how the
similarity of objects is defined. Usually, high prediction accuracy can be achieved
if the measure of similarity is sensitive to object features which determine the target
feature (explicitly or implicitly, Galitsky and Shpitsberg 2016). Since most of times
it is unclear in advance which features affect the target feature, the similarity measure
should take into account all available features. If the totality of selected features
describing each object is expressed by formulas, a reasonable expression of
similarity between a pair of objects is the following. It is a formula that is the least
common generalization of the formulas for both objects, which is anti-unification,
mentioned in the previous section. Anti-unification is the inverse operation to the
unification of formulas in logic programming. Unification is the basic operation
which finds the least general (instantiated) formula (if it exists), given a pair of
formulas. Anti-unification was used in as a method of generalization; later this work
was extended to form a theory of inductive generalization and hypothesis formation.
Anti-unification, in the finite term case, was studied as the least upper bound
operation in a lattice of terms.
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For example, for two formulas p(a, X, f(X)) and p(Y, f(b), f(f(b))) their anti-
unification (least general generalization) is p(Z1, Z2, f(Z2)). Conversely, unification
of this formulas, p(a, X, f(X)) ¼ p(Y, f(b), f(f(b))) will be p(a, f(b), f(f(b))). Our logic
programming implementation of anti-unification for a pair of conjunctions, which
can be customized to a particular knowledge domain, is presented in Fig. 3.10.

Although the issue of implementation of the anti-unification has been addressed
in the literature, we present the full code to have this book self-contained (Galitsky
2014). In a given domain, additional constraints on terms can be enforced to express
a domain-specific similarity. Particularly, certain arguments can be treated
differently (should not be allowed to change if they are very important, or should
form a special kind of constant). A domain – specific code should occur in the line
shown in bold.

There are other Jasmine-compatible approaches to computing similarities except
the anti-unification. In particular, it is worth mentioning the graph-based approach of
finding similarities between scenarios. The operation of finding the maximum
common subgraphs serves the purpose of anti-unification in such the domain
(Chap. 5, Galitsky 2015). This operation was subject to further refinement
expressing similarities between scenarios of multiagent interaction, where it is
quite important to take into account different roles of edges of distinct sorts.

Novice users of Jasmine are advised to start building the similarity operation as
an intersection between objects’ features (unordered set of features) and obtain an
initial prediction. Then, when the explanations for predictions are observed, the
users may feel that less important features occur in these explanations too frequently,
and anti-unification expression should be introduced so that less important features
are nested deeper into the expressions for objects’ features. Another option is to
build a domain-specific Prolog predicate that computes unification, introducing
explicit conditions for selected variables (bold line in the Fig. 3.10).

3.5 Conclusions

The ML community expects to see more deep learning models whose internal
memory (bottom-up knowledge learned from the data) is enriched with an external
memory (top-down knowledge inherited from a thesaurus). Integrating symbolic
(explainable) and sub-symbolic (partially-explainable) AI will be a key towards
natural language understanding. Relying on ML is fruitful to make a good guess
employing the past experience, because sub-symbolic methods encode correlation
and their decision-making process is probabilistic (Young et al. 2018). Natural
language understanding, however, requires much more than that. According to
Noam Chomsky, “you do not get discoveries in the sciences by taking huge amounts
of data, throwing them into a computer and doing statistical analysis of them: that’s
not the way you understand things, you have to have theoretical insights”.
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In this chapter we focused on explainable machine learning, which has become
less popular in comparison with statistical and deep learning approaches frequently
thought of as central in modern AI. We demonstrated that unlike the academic
community of machine learners, end users strongly prefer explainable AI. We
focused on a chatbot focused on explaining its decisions, presented a logic program-
ming based ML framework and conclude that it is beneficial for a chatbot to perform
its dialogue management relying on an explainable ML. We will draw a further
comparison on statistical and rule-based methods in Chap. 4 in relation to a NL
access to a database, one of the essential chatbot skills.

similar(F1, F2, F):- antiUnifyFormulas(F1, F2, F).
antiUnifyFormulas(F1, F2, F):- clause_list(F1, F1s), clause_list(F2, F2s), 

findall( Fm, (member(T1, F1s), member(T2, F2s),
antiUnifyTerms(T1, T2, Fm)), Fms), %finding pairs
%Now it is necessary to sort out formulas which are not
% most general within the list

findall( Fmost, (member(Fmost, Fms), 
not ( member(Fcover, Fms), Fcover \= Fmost,

antiUnifyTerms(Fmost, Fcover, Fcover)) ), Fss),
clause_list(F, Fss). % converting back to clause

antiUnifyTerms(Term1, Term2,Term):-
Term1=..[Pred0|Args1],len(Args1, LA),% make sure predicates

Term2=..[Pred0|Args2],len(Args2, LA),% have the same arity
findall( Var, (  member(N,  [0,1,2,3,4,5,6,7,8,9,10 ]), % not more than 10 

arguments
[! sublist(N, 1, Args1, [VarN1]), %loop through arguments        

sublist(N, 1, Args2, [VarN2]),   
string_term(Nstr,N), VarN1=..[Name|_],   string_term(Tstr,Name),    
concat(['z',Nstr,Tstr],ZNstr),    atom_string(ZN, ZNstr) !], 

% building a canonical argument to create a variable 
% as a result of anti-unification    

ifthenelse( not (VarN1=VarN2), 
ifthenelse(( VarN1=..[Pred,_|_],VarN2=..[Pred,_|_]),

ifthenelse( antiUnifyConst(VarN1, VarN2, VarN12),
%going deeper into a subterm when an argument is a term

(Var=VarN12),     Var=ZNstr) ), 
%OR domain-specific code here for special treatment of certain arguments
% various cases: variable vs variable, or vs constant, or constant vs constant  

Var=ZNstr),Var=VarN1) ), Args),
Term=..[Pred0|Args].  

Fig. 3.10 The clauses for logic program for anti-unification (least general generalization) of two
formulas (conjunctions of terms). Predicate antiUnify(T1, T2, Tv) inputs two formulas (scenarios in
our case) and outputs a resultant anti-unification
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