
Developing
Enterprise Chatbots

Boris Galitsky

Learning Linguistic Structures

Developing Enterprise Chatbots

Boris Galitsky

Developing Enterprise
Chatbots
Learning Linguistic Structures

Boris Galitsky
Oracle (United States)
San Jose, CA, USA

ISBN 978-3-030-04298-1 ISBN 978-3-030-04299-8 (eBook)
https://doi.org/10.1007/978-3-030-04299-8

Library of Congress Control Number: 2019932803

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Supplementary material and code is available at https://github.com/bgalitsky/relevance-
based-on-parse-trees

https://doi.org/10.1007/978-3-030-04299-8
https://github.com/bgalitsky/relevance-based-on-parse-trees
https://github.com/bgalitsky/relevance-based-on-parse-trees

Foreword

We launched Ask Jeeves in April 1997, with Yahoo!, Alta Vista, and Excite all
already in the market. We wanted to set ourselves apart from conventional search
engines with a special interface. Our team was building a library of “knowledge
capsules,” snapshots of answers to the most popular questions. For a user question,
we were trying to find the most similar one indexed in our system and return it along
with answers. If a question was not included in our index, then we would fall back to
a more general search.

Ask Jeeves was more relevant for users overwhelmed with pages of results
stemming from a simple search. Most queries were consumer-oriented – asking for
the best restaurants, sports scores, or pictures of Pamela Anderson – while others
required the kind of information associated with urgency and specialized knowledge,
such as “How to get rid of flu?”. This approach proved quite effective. People
enjoyed the direct, personalized navigation, and saw themselves as Ask Jeeves
loyalists.

As Google came to dominate the search engine market, search results became less
direct and personalized, and more optimized for advertisement revenues. In most
domains, it is hard to find specific information other than commercial messaging.
Social network platforms such as Facebook are increasingly oriented for advertise-
ment as well.

These days, chatbots are expected to provide users with a deep domain knowl-
edge, personalization, interactivity, and the level of understanding of user needs that
modern search engines are lacking. Since chatbots are not involved in the conflict of
interest between businesses and information gatekeepers (such as Google and
Facebook), they have the potential to provide unbiased and high-quality chunks of
information from reputable authors. Chatbots also implement social search, provid-
ing opinionated data from peers on request, perform personalization, recommenda-
tion, and allow easy navigation by drilling into and out of content. Incorporating
these features and reviving Ask Jeeves philosophy, chatbots are expected to become
mainstream medium for communication with businesses.

v

However, chatbots can only accomplish this mission if they are relevant and their
conversation is natural and efficient. Although there has been a great deal of interest
in chatbots over last few years, currently available tools and platforms provide only
limited search accuracy and dialogue management capabilities. This book is
intended to substantially improve chatbot engineering, providing the solid scientific
background for building sophisticated dialogue systems.

In particular, this book educates chatbot developers on building search engines
for chatbots with linguistically-enabled relevance, automatically formed thesauri,
and solid content management. With the focus on discourse analysis, this book
provides the techniques needed for answering complex, long, paragraph-sized ques-
tions and the tools which build logical structures for dialogue management. Comb-
ing syntactic, semantic, and discourse-level analyses with machine learning, this
book is a comprehensive source of state-of-the-art information for building
industrial-strength chatbots.

Co-founder of Ask Jeeves David Warthen
Emeryville, CA, USA

vi Foreword

Contents

1 Introduction . 1
1.1 Introduction . 1
1.2 Current Chatbot Trends . 3
1.3 Current Status of Bot Development . 4
1.4 How to Read This Book and Build a Chatbot

That Can Be Demoed . 8
References . 10

2 Chatbot Components and Architectures . 13
2.1 Introduction to Chatbots Architecture . 13

2.1.1 Definitions . 13
2.1.2 Dialogue Manager . 14
2.1.3 Multimodal Interaction . 18
2.1.4 Context Tracking . 19
2.1.5 Topic Detection . 20
2.1.6 Named Entities and Their Templates 20
2.1.7 Information Retrieval . 22
2.1.8 Personalization . 22
2.1.9 Architecture of a Task-Oriented Chatbot 23

2.2 History of Chatbots . 25
2.3 Deterministic Dialogue Management . 28

2.3.1 Handling Context . 29
2.3.2 Turn-Taking . 29
2.3.3 Action Selection . 31
2.3.4 Dialogue Management with Manually

Coded RULES . 31
2.3.5 Finite-State Machines . 33
2.3.6 Rule-Based Dialogue Management 34
2.3.7 Frame and Template-Based Dialogue Management 35

vii

2.4 Dialogue Management Based on Statistical Learning 36
2.4.1 Bayesian Networks . 37
2.4.2 Neural Networks . 38
2.4.3 Markov Models . 39

2.5 Dialogue Management Based on Example-Based,
Active and Transfer Learning . 41

2.6 Conclusions . 47
References . 47

3 Explainable Machine Learning for Chatbots 53
3.1 What Kind of Machine Learning a Chatbot Needs 53

3.1.1 Accuracy vs Explainability . 53
3.1.2 Explainable vs Unexplainable Learning 54
3.1.3 Use Cases for the ML System Lacking

Explainability . 56
3.1.4 Automated Detection of a Request to Explain 59

3.2 Discriminating Between a User Question and User Request 60
3.2.1 Examples of Questions and Transactional

Requests . 63
3.2.2 Nearest Neighbor-Based Learning for Questions

vs Transactional Requests Recognition 64
3.3 A Decision Support Chatbot . 65

3.3.1 Example of a Decision Support Session 66
3.3.2 Computing Decisions with Explanations 68

3.4 Explanation-Based Learning System Jasmine 72
3.4.1 A Reasoning Schema . 73
3.4.2 Computing Similarity Between Objects 79

3.5 Conclusions . 80
References . 82

4 Developing Conversational Natural Language Interface
to a Database . 85
4.1 Introduction . 85

4.1.1 History . 86
4.2 Statistical and Deep Learning in NL2SQL Systems 88

4.2.1 NL2SQL as Sequence Encoder 89
4.2.2 Limitations of Neural Network Based Approaches 96

4.3 Advancing the State-of-the-Art of NL2SQL 96
4.3.1 Building NL2SQL via Multiword Mapping 96
4.3.2 Sketch-Based Approach . 99
4.3.3 Extended Relational Algebra to Handle Aggregation

and Nested Query . 100
4.3.4 Interpreting NL Query via Parse Tree

Transformation . 103

viii Contents

4.4 Designing NL2SQL Based on Recursive Clause Building,
Employing Thesauri and Implementing Via Chatbot 106
4.4.1 Selecting Deterministic Chatbot-Based Approach 106
4.4.2 Interpreting Table.Field Clause 107
4.4.3 Collecting Information on a Database

and Thesaurus for NL2SQL . 108
4.4.4 Iterative Clause Formation . 109
4.4.5 Clause Building by Matching the Phrase

with Indexed Row . 109
4.4.6 Extracting Focus Clause . 112

4.5 Resolving Ambiguities in Query Interpretation via Chatbot 112
4.6 A Sample Database Enabled with NL2SQL 114
4.7 Conclusions . 117
References . 119

5 Assuring Chatbot Relevance at Syntactic Level 121
5.1 Introduction . 121
5.2 Syntactic Generalization in Search and Relevance

Assessment . 124
5.3 Generalizing Portions of Text . 128

5.3.1 Generalizing at Various Levels: From Words to
Paragraphs . 130

5.3.2 Equivalence Transformation on Phrases 132
5.3.3 Simplified Example of Generalization of Sentences . . . 133
5.3.4 From Syntax to Inductive Semantics 137
5.3.5 Nearest Neighbor Learning of Generalizations 138

5.4 Evaluation of a Generalization-Based Search Engine 139
5.4.1 User Interface of Search Engine 139
5.4.2 Qualitative Evaluation of Search 141
5.4.3 Evaluation of Web Search Relevance

Improvement . 143
5.4.4 Evaluation of Product Search 144

5.5 Evaluation of Text Classification Problems 147
5.5.1 Comparative Performance Analysis in Text

Classification Domains . 147
5.5.2 Example of Recognizing Meaningless Sentences 149

5.6 Implementation of OpenNLP.Similarity Component 150
5.6.1 First Use Case of Similarity Component: Search 150
5.6.2 Solving a Content Generation Problem 151
5.6.3 Filtering Out Meaningless Speech

Recognition Results . 152
5.6.4 Comparison with Bag-of-Words Approach 153

5.7 Related Work . 154
5.8 Conclusions . 157
References . 160

Contents ix

6 Semantic Skeleton Thesauri for Question Answering Bots 163
6.1 Introduction . 163
6.2 Defining Semantic Headers of Answers 165
6.3 Defining Semantic Skeletons for Common Sense 167
6.4 SSK Handling of Complex Questions . 169
6.5 Evaluation of Relevance Improvement Due to SSK 171
6.6 Discussion and Conclusions . 173
References . 174

7 Learning Discourse-Level Structures for Question Answering 177
7.1 Introduction . 177
7.2 Parse Thickets and Their Graph Representation 180

7.2.1 Extending Phrases to Span Across Sentences 181
7.2.2 Computing Structural Distance Between

a Question and an Answer . 182
7.3 Dimensions of Sentence-Level Generalization 187
7.4 Generalization of Parse Thickets . 188

7.4.1 A High-Level View . 189
7.4.2 Generalization for RST Arcs . 191
7.4.3 Generalization for Communicative Action Arcs 192
7.4.4 Kernel Learning for Parse Thickets 195
7.4.5 From Matching to Learning Parse Thickets 197

7.5 Evaluation of Search Relevance Improvement 198
7.5.1 Evaluation Settings . 199
7.5.2 Query Is a Sentence and Answer Is a Sentence 200
7.5.3 Query Is a Paragraph and Answer Is a Paragraph 201
7.5.4 Extended Tree Kernel Learning for Individual Search

Sessions . 203
7.5.5 Comparison of Search Performance

with Other Studies . 205
7.6 Implementation of Generalization at Many Levels 207
7.7 Related Work . 208
7.8 Conclusions . 214
References . 216

8 Building Chatbot Thesaurus . 221
8.1 Introduction . 221
8.2 Improving Chatbot Relevance by Thesauri 224

8.2.1 Defining the is_about Relation for a Query 224
8.2.2 Thesaurus-Based Answer Selection 225
8.2.3 Thesaurus-Based Relevance Verification

Algorithm . 229
8.3 Building Thesauri . 229

8.3.1 Thesaurus Construction as a Process of Learning and
Web Mining . 229

8.3.2 Thesaurus-Building Algorithm 232

x Contents

8.3.3 An Example of Thesaurus Learning Session 233
8.3.4 Thesaurus Snapshot . 234

8.4 Evaluation of Chatbot Relevance Boost 235
8.4.1 Evaluation of Search Relevance Improvement 235
8.4.2 Industrial Evaluation of Thesaurus-Based

Text Similarity . 242
8.5 Thesaurus Builder as a Part of OpenNLP 246

8.5.1 Running Thesaurus Learner . 246
8.6 Related Work . 247
8.7 Conclusions . 249
References . 250

9 A Content Management System for Chatbots 253
9.1 Introduction . 253

9.1.1 From Search to Personalized Recommendations
to Chatbots . 256

9.2 Relevance-Related Problems in a Content-Management
System . 257
9.2.1 Content Pipeline Architecture 258
9.2.2 The Engines Assuring CMS Relevance 260
9.2.3 Content Processing Units . 261

9.3 Generalization of Expressions of Interest 269
9.3.1 Personalization Algorithm as Intersection of Likes 270
9.3.2 Mapping Categories of Interest/Thesauri 270
9.3.3 Defeasible Logic Programming-Based Rule Engine . . . 271

9.4 The Algorithms for High-Relevance CMS 275
9.4.1 De-duplication Algorithms . 275
9.4.2 Analyzing Sentiments by Parse Tree Navigation 277
9.4.3 Agglomerative Clustering of Search Results 280

9.5 Building Conclusive Answers . 285
9.5.1 Concluding a Question Answering Session 285
9.5.2 Building a Structure of Conclusive Answer 286
9.5.3 Content Compilation Algorithm 292
9.5.4 A Brief Example of the Content Generation Flow 295
9.5.5 Modeling the Content Structure of Texts 297
9.5.6 Related Work on Conclusive Answers 300

9.6 Evaluation . 302
9.6.1 Performance Analysis of the Content Pipeline

Components . 302
9.6.2 Performance Analysis of Personalized

Recommendations . 308
9.6.3 Performance Analysis of SG-Supported

Search Relevance . 310

Contents xi

9.7 Related Work and Discussions . 313
9.8 Conclusions . 318

9.8.1 From Search Engines to Chatbots 318
9.8.2 Relevance in a CMS . 319

References . 323

10 Rhetorical Agreement: Maintaining Cohesive Conversations 327
10.1 Introduction . 327

10.1.1 Request and Response Utterances 329
10.1.2 Correct and Incorrect Response-Request Pairs 333

10.2 Communicative Discourse Trees . 333
10.2.1 Relying on VerbNet to Represent Communicative

Actions . 337
10.3 Classification Settings for Request-Response Pairs 339

10.3.1 Nearest Neighbor Graph-Based Classification 340
10.3.2 Tree Kernel Learning for CDT 342
10.3.3 Additional Rules for RR Agreement and RR

Irrationality . 343
10.4 Evaluation . 344

10.4.1 Evaluation Domains . 344
10.4.2 Recognizing Valid and Invalid Answers 345
10.4.3 Measuring RR Agreement in Our Evaluation

Domains . 347
10.5 Handling Natural Language Descriptions of Algorithms 349
10.6 Related Work . 351

10.6.1 Managing Dialogues and Question Answering 352
10.6.2 Dialog Games . 355
10.6.3 Rhetorical Relations and Argumentation 356

10.7 Conclusion . 358
References . 360

11 Discourse-Level Dialogue Management . 365
11.1 Introduciton . 365
11.2 Introduction: Maintaining Cohesive Session Flow 366

11.2.1 Limitations of Keyword Learning-Based
Approaches . 367

11.2.2 Datasets for Evaluation . 368
11.3 Dialogue Management via Extended Discourse Trees 369

11.3.1 Clarification-Based Domain Exploration Scenarios . . . 370
11.3.2 Navigating the Extended Discourse Tree 373
11.3.3 Example of Navigating an Extended Discourse

Tree for Three Documents . 375
11.3.4 Constructing EDT . 377
11.3.5 Manipulating with Discourse Trees 378
11.3.6 Multi-document Navigation Without

Discourse Trees . 381

xii Contents

11.3.7 Extended Discourse Tree for FAQ Pages 384
11.3.8 Evaluation: Information Access Efficiency

in Chatbots Versus Search Engines 385
11.3.9 Related Work on Discourse Disentanglement 387

11.4 Building Dialogue Structure from a Discourse Tree
of an Initial Question . 388
11.4.1 Setting a Dialogue Style and Structure

by a Query . 389
11.4.2 Building Dialogue Structure in Customer Support

Dialogues . 391
11.4.3 Finding a Sequence of Answers to Be in Agreement

with a Question . 394
11.4.4 Searching for Answers with Specified RR

for Dialogue Construction . 396
11.4.5 Evaluation of the Dialogue Construction

from the First Query . 397
11.5 Constructing Imaginary Discourse Trees for Dialogue

Management . 400
11.5.1 Answering Questions via Entities

and Discourse Trees . 401
11.5.2 Question Answer Filtering Algorithm 404
11.5.3 Experiments with Answering Convergent

Questions . 405
11.6 Dialogue Management Based on Lattice Walking 406

11.6.1 Formal Concept Analysis . 408
11.6.2 Pattern Structure and Projections 408
11.6.3 Measures for Pattern Concepts 409
11.6.4 Lattice Walker Example . 410
11.6.5 The Structure of the Datasets 412
11.6.6 Principles of Query Refinement 413

11.7 Related Work . 414
11.7.1 Visualization of Discourse Trees

and Discourse Features . 418
11.8 Open Source Implementation . 420
11.9 Conclusions . 421
References . 422

12 A Social Promotion Chatbot . 427
12.1 Introduction . 427
12.2 The Domain of Social Promotion . 430
12.3 CASP Architecture . 431
12.4 Use Cases of CASP . 433
12.5 Evaluation of Relevance . 435

Contents xiii

12.6 Evaluation of Extraction of Communicative Action 439
12.7 Evaluation of Trust . 440
12.8 Replying to Multiple Posts . 444

12.8.1 Introducing Lattice Querying 444
12.8.2 Sentence-Based Lattice Queries 446
12.8.3 Paragraph-Level Lattice Queries 448
12.8.4 Evaluation of Web Mining via Lattice Queries 450

12.9 Correction of Obtained Post Candidate 453
12.9.1 Meaningless Phrases Substitution Algorithm 454

12.10 More Examples of Conversations . 456
12.11 Discussion and Conclusions . 458
References . 461

13 Enabling a Bot with Understanding Argumentation
and Providing Arguments . 465
13.1 Introduction . 465
13.2 Finding Valid Argumentation Patterns and Identifying

Fake Content . 469
13.2.1 Handling Heated Arguments 477

13.3 Evaluation of Logical Argument Detection 479
13.3.1 Dataset for General Argumentation 479
13.3.2 Specific Argumentation Patterns Dataset 481
13.3.3 Evaluation Setup and Results 483
13.3.4 CDT Construction Task . 485

13.4 Evaluation of Affective Argument Detection 487
13.4.1 Detecting Sentiments at the Discourse Level 487
13.4.2 Dataset and Evaluation Setup 488
13.4.3 Extending Compositionality Semantics Towards

Discourse . 490
13.4.4 Evaluation Results . 491

13.5 Assessing Validity of the Extracted Argument Patterns
via Dialectical Analysis . 492
13.5.1 Building a Defeasible Logic Program 493
13.5.2 Evaluation of Validation of Arguments 498

13.6 Assessment of Text Integrity . 501
13.6.1 Discourse Structure and Text Integrity 503
13.6.2 Sentiment Profile of a Dialogue 504
13.6.3 Evaluation of Text Integrity Assessment 509

13.7 Tackling Noisy Discourse Trees . 510
13.7.1 Discourse Trees Alignment . 512
13.7.2 Example of Building NCDT 514
13.7.3 Evaluation of Learning Discourse Trees

for Noisy Text . 514
13.8 Related Work . 517

13.8.1 Argument Mining . 518
13.8.2 Logical Argument and Discourse Linguistics 519

xiv Contents

13.8.3 Discourse Structures and Sentiment Analysis 521
13.8.4 Discourse Parses and Ranking of Results 522
13.8.5 Text Readability . 523

13.9 Conclusions . 525
References . 526

14 Rhetorical Map of an Answer . 533
14.1 A Rhetorical Map of an Answer: Which DT-Answer Nodes

Should Match the Question and Which Should Not 533
14.1.1 From Discourse Tree to a Rhetorical Map

of an Answer . 534
14.1.2 Definition and Construction Algorithm 540
14.1.3 How Rhetorical Maps Improve Search Precision 541

14.2 A Rhetorical Map of an Answer: What to Index and
What Not to Index . 543
14.2.1 Informative and Uninformative Parts

of an Answer . 544
14.2.2 How a Discourse Tree Indicates What

to Index and What Not to Index 546
14.2.3 How Rhetorical Relations Determine

Indexing Rules . 549
14.2.4 Forming Alternative Questions 550
14.2.5 Classifying EDUs as Informative or Not 551

14.3 Conclusions . 553
References . 554

15 Conclusions . 557

Contents xv

Chapter 1
Introduction

Abstract This chapter is an Introduction to the book. We analyze a lack of
intelligence as a major bottleneck of current dialogue systems, briefly survey current
trends, discuss how to demo a chatbot and outline the pathway towards an industrial-
strength one.

1.1 Introduction

Dialogue system, conversational agents, chatbots, personal assistants and voice-
control robots are becoming increasingly popular and ubiquitous in the modern
world. Examples of these include personal assistants on mobile devices, customer
service in call centers, as well as online chatbots selling products and services.
However, building intelligent conversational agents remains a major unsolved
problem in artificial intelligence research.

Dialogue systems captured public imaginations in the 1990s with systems like
Cleverbot, Jabberwacky, and Splotchy which were fascinating to play with, but had
not been deployed in industry. Today, text based AI has been identified as the winner
over the keyword search. No longer are the users expected to type keywords into a
web search engine, browse through lists of text, and be affected by search results
ranking based on search engine optimization. No longer will businesses depend on
search engine optimization to deliver the best content as well. Search will be around
for a long time, but in the near future much more content will be delivered through
text-based messenger services and voice controlled systems. One has seen the early
stages of this change in products like Amazon’s Alexa, Apple’s Siri, Google Now
and Microsoft’s Cortana. There are chatbots implemented via common platforms
like Slack, Skype and Facebook Messenger. More than 70% of people who own a
voice-activated speaker say that their devices are frequently employed as parts of
their daily routine (Terdiman 2018).

Facebook has released its project M within its messenger app to allow users to
issue commands, access services, and make purchases through text input. The
remarkable thing about M is that Facebook has built a system with “humans in the
loop.” This means that when a service is accessed, perhaps by purchasing movie

© Springer Nature Switzerland AG 2019
B. Galitsky, Developing Enterprise Chatbots,
https://doi.org/10.1007/978-3-030-04299-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04299-8_1&domain=pdf

tickets, a human will fine tune the AI generated results for each transaction. There is
currently an understanding within the machine learning community that human
assisted training of these systems produces more accurate results but will also train
more robust systems going forward.

We are now approaching a world that Apple envisioned in 1987 with a mockup
system called the “Knowledge Navigator” that sought to give users an interactive
and intelligent tool to access, synthesize, present, and share information seamlessly.

In 2016, Amazon proposed an international university competition with the goal
of building a socialbot: a spoken conversational agent capable of conversing coher-
ently and engagingly with humans on popular topics, such as entertainment, fashion,
politics, sports, and technology. The socialbot converses through natural language
speech through Amazon’s Echo device (Stone and Soper 2014).

The motivation for participating has been to help research. To this end, the
competition has provided a special opportunity for training and testing state-of-
the-art machine learning in the wild algorithms with real users in a relatively
unconstrained setting. The ability to experiment with real users is unique in the AI
community, where the vast majority of work consists of experiments on fixed label
datasets and software simulations including game engines.

The winner of Amazon Socialbot (Fang et al. 2017) deviated in a certain sense
from socialbot paradigm and tried to make their chatbot focused on sharing valuable
information with a user. While there have been previous studies exploring develop-
ment of socialbots in an open domain setting, these have primarily involved “chit-
chat” conversations that are considered successful when generating responses that
are reasonable in context. With “Sounding Board”, the authors decided to treat their
socialbot as a more task-oriented problem, where the goal was to identify informa-
tive content and generate responses that fit user interests.

The conversation strategy Sounding Board has two key wins. First, it is content
driven, engaging the users by providing them with information that they may not
already know or perspectives that they may not have heard. Thus, information
retrieval is important to the chatbot. To cover a range of topics and user interests,
the authors draw from different information sources. Some chit-chat features were
included, but mainly for dialogue state transitions. Second, the dialogue policy is
highly user driven, and the system attempts to track the user mental state to adjust the
choice of conversation theme and interaction strategy. Sounding Board relies on a
multi-dimensional representation of the user utterance that includes sentiment and
stance as well as utterance intent, using a personality quiz to help guide topic
selection, and detecting user frustration to initiate topic change. Also, in system
design, a high priority is given to the precision of user intent recognition.

And yet it is very hard to find a chatbot demo working adequately . . . Can one
chat about taxes with IRS in USA or about product recommendation with Amazon,
or about your driving tickets with Department of Motor Vehicles, or with your
healthcare provider about your bills? Not really, most daily routine activities, where
chatbots could have helped a lot with, are still handled manually, in a traditional
way (Fig. 1.1).

2 1 Introduction

1.2 Current Chatbot Trends

Chatbots like Amazon Echo and Google Home are extensively used at homes to
perform simple tasks in limited domains, such as looking up today’s headlines and
setting reminders (Amazon Alexa 2018; Google Home 2018; Higashinaka et al.
2014). As these chatbots improve, users are demanding social conversation from
them, where the chatbot is expected to learn to personalize and produce natural
conversation style. Which some research groups are trying to make task oriented
chatbots more robust and extend their knowledge, other teams lean towards social
conversations which are not explicitly goal-driven in the same way. Many task-
oriented chatbots in both the written and spoken medium have been developed for
vertical domains such as restaurant information retrieval, booking a flight, diagnos-
ing a software issue, or providing automotive customer support (Hirschman 2000;
Henderson et al. 2014). These chatbot domains are frequently associated with
question answering, without much necessity for step-by-step conversation. Tem-
plates are often used for generation and state tracking, but since they are optimized
for the task at hand, the conversation can either become stale, or maintaining a
conversation requires the intractable task of manually authoring many different
social interactions that can be used in a particular context.

Task-oriented models relying on supervised learning, reinforcement learning and
an extensive domain-specific knowledge via explicitly provided features and model-
output restrictions (Williams et al. 2017) have been proposed. Another line of work
by (Young et al. 2013) approaches task-oriented chatbots with partially observable
Markov decision processes and reinforcement learning. Although the action spaces
are thoroughly designed, a high number of distinct action states often makes this
approach brittle and computationally intractable.

Eric et al. (2017) perform training in a strictly supervised fashion via a per
utterance token generative process, and the model does without a dialogue manager,
relying instead on latent neural embeddings for system response generation. How-
ever, task-oriented neural dialogue models struggle to effectively reason over and

Fig. 1.1 A conversation between a snake and a lizard. (Quach (2018) and Cowley (2018))

1.2 Current Chatbot Trends 3

incorporate knowledge base information while still preserving their end-to-end
trainability (Bordes and Weston 2016; Liu and Perez 2016). Also, neural models
often require explicit models for user dialogues with belief trackers and dialogue
state information, which necessitates additional data annotation and also breaks
differentiability.

Bowden et al. (2017) argue that socialbots should be spontaneous, and allow for
human-friendly conversations that do not follow a perfectly-defined trajectory. In
order to build such conversational dialogue system, the authors leverage the abun-
dance of human-human social media conversations, and develop methods informed
by natural language processing (NLP) modules that model, analyze, and generate
utterances that better suit the context.

A chatbot is expected to be capable of supporting a cohesive and coherent
conversation and be knowledgeable, which makes it one of the most complex
intelligent systems being designed nowadays. Designers have to learn to combine
intuitive, explainable language understanding and reasoning approaches with high-
performance statistical and deep learning technologies.

Today, there are two major approaches for chatbot design and deployment:

1. distribute a chatbot development platform with a spectrum of NLP and ML
functionality so that a domain developer (not an AI expert) builds a chatbot
instance for a particular enterprise and populates it with training data;

2. accumulate a huge set of training dialogue data, feed it to a deep learning network
and expect the trained chatbot to automatically learn “how to chat”.

Although these two approaches are reported to imitate some intelligent dialogues,
both of them are unsuitable for enterprise chatbots, being unreliable and too brittle.

The latter approach is based on a belief that some learning miracle will happen
and a chatbot will start functioning without a thorough feature and domain engi-
neering by an expert and interpretable dialog management algorithms.

1.3 Current Status of Bot Development

These days there is a lot of buzz about chatbots but it is hard to find an actual demo.
To get a status of industrial chatbot applications, we search Google for “online
chatbot demo” and attempt to find an actual demo in the first 100 results. Most of the
links do not contain a demo form so that one can start chatting. Some are extremely
limited in functionality so that it is hard to find what the chatbot actually knows
about (Fig. 1.2a).

A car-control bot (on the top-left) could not answer questions about tire pressure
or a navigator. It does not differentiate between ‘turning on’ and ‘turning off’ nor it
distinguishes between transactional and knowledge requests. Overall, current indus-
trial chatbots are fragile pattern-matching systems which are unable to maintain the
kind of flexible conversations that people desire.

4 1 Introduction

The only chatbot capable of supporting some form of conversation (not neces-
sarily meaningful but somewhat concise) was Mitsuku (Fig. 1.2b).

Overall, out of 100 search results for online demo:

• 5% bots can support some form of conversation so that information cannot
be acquired, but there is a feeling of cohesiveness (such as Mitsuku);

• 5% can answer questions like name, color, basic food and occupation but
not really support conversation. They avoid understanding more complex
questions by asking back;

• 15% of deep learning-based bots – hard to find any correlation between
questions and answers;

• 20% is a movie, not actual demo;
• The rest 55% are just websites talking about chatbots.

Fig. 1.2a Various chatbots with specific knowledge that is hard to figure out by a user

1.3 Current Status of Bot Development 5

Most major vendors such as Microsoft Bot Framework, IBM Bluemix and
Google’s DialogFlow are shy to demo chatbots build by their own teams or build
by their customers. Let us look at customer perception of Alexa Prize Socialbot
(Fig. 1.3).

It is convenient to consider deficiencies in chatbots from the standpoint of mental
disorders. A rule-based ontology-enabled chatbot displays autistic behavior: it
answers adequately questions it “knows” and performs actions which “sound famil-
iar” to it. Once an unknown domain or unanticipated kinds of conversation is
encountered, a rule-based chatbot tends to refuse answering questions and is reluc-
tant to interact in a new way. In a familiar domain, a child with autism and a rule-
based chatbot display a high accuracy and meaningfulness of answers and adequate
communication style.

Conversely, a deep learning-based (DL) chatbot instead displays a schizophrenic
behavior. It energetically answers all kinds of questions, supports all kinds of
conversations. However, the whole such conversation usually does not make
sense, it is spontaneous and irresponsible, with random topics. Patients with disor-
ganized schizophrenia are unable to form coherent or logical thoughts, and this is
signified by disorganized speech. During a conversation, such individual will be
unable to stick to the subject. They will leap from one topic to another. In severe
cases, speech may be perceived by others as unintelligible garble.

Fig. 1.2b Mitsuku chatbot – the only one the book author found to chat with in a somewhat
reasonable manner

6 1 Introduction

Disorganized thinking becomes apparent in patients and DL-chatbots’ speech
patterns as schizophrenia progresses. People and DL-chatbots lose their train of
thought during conversations, make loose associations of topics (tangentially
jumping from one topic to another apparently at random, or on the barest of
associations), and give answers to unrelated questions.

Disorganized behavior may include unpredictable and bizarre socially inappro-
priate outbursts; they may mutter to themselves continuously, etc. Speech is highly
circumstantial, meaning that affected people may speak continuously, providing
numerous irrelevant details and never getting to the point. Occasionally, speech is
so disorganized that it becomes a completely mixed up ‘word salad’ lacking a
meaning.

Statistical learning–based chatbots are frequently designed to support conversa-
tions for the sake of conversing. In most cases a user neither gains information nor
gets closer to her goal. Instead, a user is expected to be impressed that a conversation
with a machine resembles in some sense a conversation with a human from whom a
user wants something, some knowledge or some activity (Galitsky and Ilvovsky
2017b).

Whereas in the epoch of search engines debuts, in the end of 1990s, most web
searches had poor relevance but nevertheless usable, nowadays, chatbots are still a
subject of discussion rather than usage. Most articles about task-oriented bots
capable of conversing sound more like a fake news once one starts a conversation
with them (Fig. 1.1).

In 2016, the failure of Microsoft’s prototype chatbot, Tay, was not just a
problematic algorithm. This conceptual failure of an industry leader was a lack of
important perspective building a chatbot in a complex cultural and social

Fig. 1.3 Customer sentiments about Amazon socialbot

1.3 Current Status of Bot Development 7

environment. Tay, which stands for “thinking about you,”was the name given to this
chatbot for Twitter that was quickly corrupted by users and began spewing racist,
sexist, and homophobic sentiments. Some opponent users quickly came to conclu-
sions about the political views of Internet users, but failed to understand that this
hacking of Tay was in fact demonstration of a shortcoming of data-driven chatbots in
the real world. Users of Twitter were exposing a fundamental error made by the
chatbot development team. Because the system learned directly from user utterances
without conversation moderators, Tay was quickly trained to repeat slurs by users
who wanted to embarrass Microsoft (Pierson 2016).

Therefore we can conclude that it is so hard to build chatbots acceptable by the
users that there is a tendency towards talking about them rather then doing them and
offering demos to the public. Hence this issue is selected as a key goal of this book:
how to build the chatbot and circumscribe its domain so that it answers its users’
questions and perform their requests, meeting their expectations and impressing
them with intelligence. Such the chatbot needs to operate in a domain much more
complicated than, for example, restaurant reservation, to cross the chasm of intelli-
gent conversation.

1.4 How to Read This Book and Build a Chatbot That Can
Be Demoed

Enterprise high-performance chatbots with extensive domain knowledge require a
mix of statistical, inductive, deep machine learning and learning from the web,
syntactic, semantic and discourse NLP, ontology-based reasoning and a state
machine to control a dialogue. This book will provide a comprehensive source of
algorithms and architectures for building chatbots for various domains based on the
recent trends in computational linguistics and machine learning. The central part of
this book are applications of discourse analysis in text relevance assessment, dia-
logue management and content generation, which help to overcome the limitations
of platform-based and data driven-based approaches.

Since at the time of writing of this book the number of chatbot demoes available
to public is extremely limited, we set our goal to determine minimum chatbot
architecture and properties of components which would deliver certain intelligent
features sought by chatbot audience (Galitsky and Ilvovsky 2018). Now we will try
to enumerate the essential set of features a chatbot needs to possess, and respective
components.

• A chatbot needs to differentiate between a user asking it to do something versus
answer a question. This is a relatively simple classification problem outlined in
Chapter 3.

• A chatbot should be able to find answers in structured data and manipulate with it
performing transactions. Chap. 4 explains technique, from deep learning to rule-
based, to provide a NL access to a database.

8 1 Introduction

• For a chatbot in a given domain, all basic methods and components need to be
thoroughly considered and rejected only if there is sufficient evidence and
confidence. Please see Chap. 2 for major chatbot components and techniques
and Chap. 9 for content preparation pipeline: content is a king!

• A chatbot needs to assess relevance between a user question and an answer to be
provided in a meaningful, interpretable way, matching some formal representa-
tions of these instead of just computing a similarity in numerical space. The latter
would make the relevance measure non-interpretable and unexplainable. We
explain how to perform syntactic-level relevance in Chap. 5, semantic – in
Chap. 6 and discourse level – based for longer answers – in Chap. 7.

• Dialogue management is hard, and conducting a meaningful conversation leading
to a task completion is close to impossible in an open domain setting. Therefore at
least maintaining a pair of consecutive chatbot utterances with coreference will
do the job. A simple sequence of user questions ‘which option to chose’ followed
by ‘how long will it take’ should make the chatbot link option and it to properly
answer the second question. Frequently, simple dialogue management strategy
such as clarification requests and pre-built navigation patterns suffice. We will be
building representations linking utterances in Chap. 7.

• A chatbot needs to automatically learn stuff from various available sources such
as the web for all kinds of tasks, including entity extraction, understanding what
kind of entity it is and identifying relationships between entities. We demonstrate
how thesauri help question answering and show how they can be automatically
constructed in Chap. 8.

• A chatbot needs to maintain the cohesiveness of utterances in addition to topical
relevance. Answers need to match questions in style, level of expertize, address
doubts and controversy in user question. The notion of rhetoric agreement for
utterances is developed in Chap. 10.

• A content for chatbot needs to be well-prepared and organized, otherwise even
with high relevance and adequate dialogue management would be useless. We
design the content management system for chatbots in Chap. 9.

• One needs a systematic, interpretable way to build dialogues. Sometimes, even a
detailed initial utterance can give a hint on how to build a dialogue structure,
relying on discourse analysis in Chap. 11.

• As a bonus chatbot feature we explore how chatbots tackle argumentation in
Chap. 13.

• Some chatbots can be fairly specialized in an activity they perform, such as
decision support in Chap. 3 and social promotion in Chap. 12.

• A discourse tree of an answer sheds a light on how this answer needs to be
indexed for search. Chapter 14 explains why indexing the whole answers, as a
majority of search engines do, is not a good idea.

The goal of this book is to intrigue the reader with a diversity and depth of various
approaches to designing chatbots. A number of available developer guides such as
(Khan and Das 2017; Janarthanam 2017; Williams 2018) navigate a user through a
trivial bot design via a development platform being distributed by major vendors.

1.4 How to Read This Book and Build a Chatbot That Can Be Demoed 9

Playing with such platform will encourage a developer to get her hands dirty in
coding chatbot intents, but very soon the limitations will be discovered: user intent
paradigm such as Google’s (DialogFlow 2018) will take only that far towards
conversational intelligence. Once a developer exposes his intent-based chatbot to
an audience of users with real-world tasks and questions, this platform’ dialogue will
start looking as a top of an iceberg in the sea of technologies to handle a broad
possibility of ways requests are formulated.

Then the reader will feel that there is no way around deep linguistic and feature
engineering of machine learning to cover the manifold of ways users express
themselves to the bot. The reader is expected to get a solid understanding of what
kind of linguistic technology and which level of language analysis is required for a
specific search and conversational capability. Without becoming an expert in lin-
guistics and learning, the reader should be able to integrate and tune linguistic
components from (GitHub 2018) to enable his bot with certain desired kinds of
intelligence.

Whereas syntactic level analysis is most useful for relevance, discourse analysis
helps with a broad spectrum of dialogue management tasks (Galitsky and Ilvovsky
2017a). Semantic analysis is a key to “understand” utterances, represent them
formally, but is unfortunately domain-dependent, unlike the other two.

Acknowledgements The author is grateful to Dmitri Ilvovsky, Tatyana Machalova, Saveli Gold-
berg, Sergey O. Kuznetsov, Dina Pisarevskaya, Anna Parnis, Josep Lluis de la Rosa, Greg
Makowski and other co-authors for fruitful discussions on the topic.

The author appreciates the help of his colleagues from the Digital Assistant team at Oracle Corp.
Gautam Singaraju, Vishal Vishnoi, Anfernee Xu, Stephen McRitchie, Saba Teserra, Jay Taylor, Sri
Gadde and Sanga Viswanathan.

The author acknowledges substantial contribution of the legal team at Oracle to make this book
more readable, thorough and comprehensive. Kim Kanzaki, Stephen Due, Mark Mathison and
Johnny Tang worked on the patents described in this book and stimulated a lot of ideas which found
implementation in this book. The work of Dmitry Ilvovsky was supported by the Russian Science
Foundation under grant 17-11-01294 and performed at National Research University Higher School
of Economics, Russia.

References

Amazon Alexa (2018) https://www.amazon.com/Amazon-Echo-Bluetooth-Speaker-with-WiFi-
Alexa/dp/B00X4WHP5E.2

Bordes A, Weston J (2016) Learning end-to-end goal-oriented dialog. arXiv preprint arXiv.
1605.07683

Bowden K, Oraby S, Misra A, Wu J, Lukin S (2017) Data-driven dialogue systems for social
agents. In: International workshop on spoken dialogue systems

Cowley J (2018) Snake and lizard by Joy Cowley. https://www.eventfinda.co.nz/2010/oct/mangere/
snake-and-lizard-by-joy-cowley

DialogFlow (2018) DialogFlow.com

10 1 Introduction

https://www.amazon.com/Amazon-Echo-Bluetooth-Speaker-with-WiFi-Alexa/dp/B00X4WHP5E.2
https://www.amazon.com/Amazon-Echo-Bluetooth-Speaker-with-WiFi-Alexa/dp/B00X4WHP5E.2
https://www.eventfinda.co.nz/2010/oct/mangere/snake-and-lizard-by-joy-cowley
https://www.eventfinda.co.nz/2010/oct/mangere/snake-and-lizard-by-joy-cowley
http://dialogflow.com

Eric M, Krishnan L, Charette F, Manning CD (2017) Key-value retrieval networks for task-oriented
dialogue. In: Proceedings of the 18th annual SIGdial meeting on discourse and dialogue,
Saarbrucken, Germany, pp 37–49

Fang H, Cheng H, Clark E, Holtzman A, Sap M, Ostendorf M, Choi Y, Smith NA (2017) Sounding
Board – University of Washington’s Alexa Prize Submission. Alexa prize proceedings

Galitsky B, Ilvovsky D (2017a) Chatbot with a discourse structure-driven dialogue management,
EACL Demo Program

Galitsky B, Ilvovsky D (2017b) On a chat bot finding answers with optimal rhetoric representation.
Proc Recent Adv Nat Lang Process 2017:253–259. Varna, Bulgaria, Sept 4–6

Galitsky B, Ilvovsky D (2018) Building dialogue structure from an initial query. SCAI @ EMNLP
GitHub (2018) https://github.com/bgalitsky/relevance-based-on-parse-trees
Google Home (2018) https://madeby.google.com/home/features/
Henderson M, Thomson B, Williams J (2014) The second dialog state tracking challenge. In:

Proceedings of SIGDIAL. ACL Association for Computational Linguistics
Higashinaka R, Imamura K, Meguro T, Miyazaki C, Kobayashi N, Sugiyama H, Hirano T,

Makino T, and Matsuo Y (2014) Towards an open-domain conversational system fully based
on natural language processing. In: COLING-2014

Hirschman L (2000) Evaluating spoken language interaction: experiences from the DARPA spoken
language program 1990–1995. Spoken language discourse. MIT Press, Cambridge, MA, p 2000

Janarthanam S (2017) Hands-on chatbots and conversational UI development: build chatbots and
voice user interfaces with chatfuel, dialogflow, microsoft bot framework, Twilio, and Alexa
Skills. Packt Publishing, Birmingam/Mumbai

Khan R, Das A (2017) Build better chatbots: a complete guide to getting started with chatbots.
Springer, Cham

Liu F, Perez J (2016) Gated end-to-end memory networks. arXiv preprint arXiv. 1610.04211
Pierson RM (2016) What went so wrong with Microsoft’s Tay AI? Readwrite.com. https://

readwrite.com/2016/03/28/went-wrong-microsofts-tay-ai/
Quach K (2018) AI trained to sniff out fake news online may itself be fake news: Bot has mixed

results in classifying legit titles. Be careful who you read. https://www.theregister.co.uk/2018/
10/05/ai_fake_news/

Stone B, Soper S (2014) Amazon unveils a listening, talking, music-playing speaker for your home.
Bloomberg L.P. Retrieved 2018-11-07

Terdiman D (2018) Here’s how people say Google Home and Alexa impact their lives.
FastCompany https://www.fastcompany.com/40513721/heres-how-people-say-google-home-
and-alexa-impact-their-lives

Williams S (2018) Hands-On Chatbot Development with Alexa Skills and Amazon Lex: Create
custom conversational and voice interfaces for your Amazon Echo devices and web platforms.
Packt Publishing, Birmingam/Mumbai

Williams JD, Asadi K, Zweig G (2017) Hybrid code networks: practical and efficient end-to-end
dialog control with supervised and reinforcement learning. arXiv preprint arXiv. 1702.03274

Young S, Gasic M, Thomson B, Williams JD (2013) POMDP-based statistical spoken dialog
systems: a review. Proc IEEE 28(1):114–133

References 11

https://github.com/bgalitsky/relevance-based-on-parse-trees
https://madeby.google.com/home/features/
http://readwrite.com
https://readwrite.com/2016/03/28/went-wrong-microsofts-tay-ai/
https://readwrite.com/2016/03/28/went-wrong-microsofts-tay-ai/
https://www.theregister.co.uk/2018/10/05/ai_fake_news/
https://www.theregister.co.uk/2018/10/05/ai_fake_news/
https://www.fastcompany.com/40513721/heres-how-people-say-google-home-and-alexa-impact-their-lives
https://www.fastcompany.com/40513721/heres-how-people-say-google-home-and-alexa-impact-their-lives

Chapter 2
Chatbot Components and Architectures

Abstract In the Introduction, we discussed that chatbot platforms offered by
enterprises turned out to be good for simple cases, not really enterprise-level
deployments. In this chapter we make a first step towards industrial–strength
chatbots. We will outline the main components of chatbots and show various
kinds of architectures employing these components. The descriptions of these
components will be the reader’s starting points to learning them in-depth in the
consecutive chapters.

Building a chatbot for commercial use via data-driven methods poses two main
challenges. First is broad-coverage: modeling natural conversation in an unrestricted
number of topics is still an open problem as shown by the current concentration of
research on dialogues in restricted domains. Second is the difficulty to get a clean,
systematic, unbiased and comprehensive datasets of open-ended and task-oriented
conversations, which makes it difficult for chatbot improvement and limits the
viability of using purely data-driven methods such as neural networks.

We will explore the usability of rule-based and statistical machine learning -
based dialogue managers, the central component in a chatbot architecture. We
conclude this chapter by illustrating specific learning architectures, based on active
and transfer learning.

2.1 Introduction to Chatbots Architecture

2.1.1 Definitions

A chatbot (conversational agent, dialogue system) is a computer system that operates
as an interface between human users and a software application, using spoken or
written natural language as the primary means of communication. Chatbots Dialogue
systems interact with users, relying on connected natural language dialogues, where
the use of language goes way beyond a limited set of predefined commands. It is
claimed that spoken conversation with chatbots in a manner similar to that of human-
human dialogues allows for a natural, intuitive, robust, and efficient means to get
knowledge or to request a transaction. Chatbots are typically useful in assisting users

© Springer Nature Switzerland AG 2019
B. Galitsky, Developing Enterprise Chatbots,
https://doi.org/10.1007/978-3-030-04299-8_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04299-8_2&domain=pdf

interface with complex task-based systems where it is beneficial to offer a user-
centric interface (Lee et al. 2010) as opposed to having to learn interfacing languages
that lead the user to the system’s representation paradigms (Burgan 2017).

Chatbots are often represented, designed, and developed as a process flow
between several communicating components (Fig. 2.1). In most charts across this
book, boxes represent key processing stages and arrows link one stage to another—
arrow text highlights the form of data being sent between processes.

Natural language understanding (NLU) component produces a semantic repre-
sentation of user utterance (Jurafsky and Martin 2009) such as an intent class or a
logic form, extracting the “meaning” of an utterance (Skantze 2007). A major task of
the NLU is that of parsing, taking a string of words and producing a linguistic
structure for the utterance. The method by which an NLU parses input is
implementation-dependent and can utilizes context-free grammars, pattern
matching, or data-driven approaches. NLU results should be able to be tackled by
a dialogue manager (Lee et al. 2010).

2.1.2 Dialogue Manager

Following the NLU component in the chatbot process is the dialogue manager (DM),
an important module whose purpose is to coordinate the flow of the dialogue and
communicate with other sub-systems and components. DM is a meta-component of
a chatbot that facilitates the interaction between the chatbot and the user.

DM and a search engine are two major mission-critical components of the
chatbot. Frequently, when a business employs the chatbot, it already has its own
functioning search engine. Transition from the search engine to the chatbot interface
includes improving search relevance and building DM that fits the existing search
domain and adds transactional capabilities to the user interface.

In order to support the interaction between the chatbot and the user, DM must
receive a user input from the NLU and produce the system responses at a concept
level to the natural language generator (NLG). Which response DM chooses will
depend on the strategy that has been chosen. Strategies are related to maintaining
conversational state and the ability to model the dialogue structure beyond that of a
single utterance (Jurafsky and Martin 2009).

Text

Text

User

Dialogue
Management

Communicative Act

Natural
Language

Understanding

Natural
Language
Generation

Semantics of Input

Fig. 2.1 A high-level basic
flow/architecture of a
chatbot

14 2 Chatbot Components and Architectures

In order for chatbots to achieve flexible dialogues with users, DM needs to model
a formalized dialogue structure and to perform a contextual interpretation (compute
disambiguation and identify phrases connected by various kinds of references), to
support domain knowledge management (the skill to reason about the domain and
access information sources) and to select the chatbot actions.

Contextual interpretation usually requires keeping some form of dialogue context
which can be used to resolve anaphora. A context may have a number of constitu-
ents: dialogue history, task records, and other models (e.g. user models), which all
can be used as knowledge sources and together may be collectively referred to as a
dialogue model (McTear 2002). We will discuss further the issue of context, with
regard to dialogue management in Chap. 11. DM is expected to be capable of
reasoning about the domain in which it is placed; part of that involves the represen-
tation it keeps about the conversation domain.

The way in which a DM chooses its actions also has an effect on who has
initiative through the conversation. In chatbots, initiative refers to the participant
who has the control of the dialogue at any given time. Peers should be able to choose
how much to say and what to talk about. At one extreme, there exist a system-
initiative chatbot that leads the user through the conversation, prompting her at every
stage. At the other end, there are user-driven DMs that allow the user to have a
complete control over the flow of conversations. Some task-oriented systems are
fairly robust in how the user drives a dialogue. There also exist mixed-initiative
chatbots, in the middle of this range, which have an overall end-goal that must be
achieved. Driven for the DM, these chatbots will allow the user a higher degree of
freedom in how they proceed through a conversation. A number of methodologies to
select actions have been proposed in the literature, and they are presented in Sects.
2.3, 2.4 and 2.5. They include methodologies from the finite-state machines, used in
early chatbots, to machine learning techniques adopted in recent systems.

LuperFoy et al. (1998) enumerates the key capabilities of a DM:

1. Supports a mixed-initiative system by fielding spontaneous input from either
participant and routing it to the appropriate components;

2. Tackles a non-linguistic dialogue events by accepting them and routing them to
the Context Tracker, presented below;

3. Supports meta-dialogues between the chatbot itself and either peer. An example
might be a question of a dialogue participant about the status of the chatbot;

4. Acts as a central point for rectifying dialogue management errors;
5. DM builds reliable associations between the user utterances and the system’s

actions (which themselves may be utterances), and keeps track of information that
it leverages to reach that goal.

The key expected outcome of the DM is a semantic representation of a commu-
nicative action (Galitsky and Shpitsberg 2015). For example, DM interprets an
intention: ‘I need to ask the user for their name’ as ask(user, name).

NLG (natural language generator), an important component of a DM, receives a
communicative act from the DM and generates a matching textual representation.
There are two functions that the NLG must perform: content planning and language

2.1 Introduction to Chatbots Architecture 15

generation. Content planning involves deciding the semantic and pragmatic content,
a communicative action and its subject, what the system intends to convey to the
user. Language generation in contrast is the interpretation of the meaning by
choosing the syntactic structures and words needed to express the meaning:

1. The DM in a travel assistance chatbot decides that during the next turn it must
give the user traveler an update of their location in a city relative to the points of
interest.

2. The DM sends the conceptual representation (Galitsky and Kovalerchuk 2014) of
a communicative action, that it intends to fulfill its goal of informing the user.

3. The NLG, having received the communicative action, expands it into language by
forming a semantic representation: ‘Your position is at . . . and you are near town
. . .’ Here, it is the responsibility of the NLG to decide what information is
included in the response, and how it should be presented in language.

In the above example, the DM has decided the end state it intends to achieve
through communication (provide an update on the user’s situation), but it is the NLG
that decides how to get there by developing the language and content that will
be used.

We will focus on NLG in Chap. 8, developing an algorithm for building a
detailed, conclusive answer. In the remainder of this chapter we will focus on
deterministic, statistical learning, active learning and transfer learning-based DMs.
We then proceed to more advanced, discourse level – based DM in Chap. 11 (see
also Galitsky and Ilvovsky 2017).

DM is responsible for combining the response models together (Fig. 2.2); as
input, DM expects to be given a dialogue history. Preferably, a priority response is
given (the one which takes precedence over other responses), this response will be
returned by the system. For example, for the question ‘What is your goal’, the
response of a tax assistant will be ‘I am helping you with taxes’ is a priority response.

To generate a response, the dialogue manager follows a three-step procedure:

1. Using all response models to generate a set of candidate responses;
2. If there exists a priority response in the set of candidate responses (i.e. a response

which takes precedence over other responses), this response will be returned by
the system;

3. If there are no priority responses, the response is selected by the model selection
policy. It selects a response by scoring all candidate responses and picking the
highest-scored response. The overall process is illustrated in Fig. 2.3.

Any open-domain chatbot has to utilize many different types of modules, such as
modules for looking up information, modules for daily chit-chat discussions, mod-
ules for discussing movies, and so on. In this respect, the system architecture is
related to some of the recent general-purpose dialogue system frameworks. These
systems abstract away the individual modules into black boxes sharing the same
interface; this approach enables them to be controlled by a DM.

16 2 Chatbot Components and Architectures

Fig. 2.2 Architecture of a chatbot with multimodal answers (on the top). Architecture of a chatbot
implemented as a gesture-enabled robot (on the bottom)

2.1 Introduction to Chatbots Architecture 17

2.1.3 Multimodal Interaction

A chatbot may or may not attempt to imitate a human conversational agent. Cassell
et al. (2000) provides a useful definition for an embodied conversational agent
(ECA) as a chatbot in which the system is represented as a person and information
is conveyed to human users by multiple modalities such as voice and hand gestures
(Galitsky and Shpitsberg 2016). ECAs are based on cues controlling the dialogue
which comprise a set of nonverbal behaviors. Similarly to linguistic discourse,
interactional discourse functions are responsible for building and organizing of
communication means between dialogue agents.

The advantages of ECA for interacting with users are as follows. A human-like
conversation with the ECA provides a natural and intuitive interface to a chatbot.
Identifying, mimicking and constructing nonverbal behavior forms encourage the
user to interact with a chatbot. Dialogue acts other than verbal communication states
and actions can be produced through certain modalities without interrupting others
such as head nodding as the user is speaking or typing.

Visual systems are addressed in the ECA literature, employing various image and
video recognition techniques in order to obtain various assumptions about human
interlocutors. The majority of participants in human-human conversations have
access to visual cues and may use these cues deduce current dialogue features and
the properties of agents participating in a dialogue. The rationale for considering
emotion in a chatbot, supporting affective reasoning assures natural and intuitive
interactions between human users and the chatbot.

A sample architecture of a chatbot with multimodal skills is shown in Fig. 2.2 on
the top. The Multimodal Answer Generator is in charge of rendering the multimodal
output of the chatbot by coupling the speech output with the visual feedback (Griol
et al. 2014). The Gesture Selection module controls the incorporation of the ani-
mated character’s expressions. In order to do so, it selects the appropriate gestures

Fig. 2.3 Model selection policy

18 2 Chatbot Components and Architectures

from the database and plays them to the user. For each answer stored in this chatbot,
there is text and/or multimedia, as well as the positive and negative feedbacks and
hints to be provided to a user in the case he selects the answer. Notice the central role
of DM in controlling multimodal interactions.

Figure 2.2 on the bottom shows how the chatbot is implemented as a robot with
specific scripts which perform the monitoring of the user. If the gazes of the robot
and the user meet, then an interaction began and the main script initiated the chatbot
itself. During the dialogue, the user is being monitored, and if something like an
interruption happens, the robot reacts. Ideally the dialogue and gesture behavior are
run smoothly in parallel (Galitsky and de la Rosa 2011). Unfortunately, reactions
take some time to process while the dialogue is deactivated (Chabernaud 2017).

In human-chatbot interactions, the ability to detect signs of human emotions and
to properly react to them can enrich communication. For example, display of
empathetic emotional expressions enhanced user performance and led to an increase
in user satisfaction (Galitsky et al. 2005). Empathetic computer agent can contribute
to a more positive perception of the interaction, and many chatbot errors can be
played down if the chatbot is able to recognize the emotional state of the user and
responded to it sensitively.

The following example shows how emotional tags can help conducting a mean-
ingful dialogue:

User: Really bad day ever. I arrived wet because of the rain.
Default Seq2Seq: You were wet.
Affect-enabled chatbot (Like): I am always here to support you.
Affect-enabled chatbot (Happy): Keep smiling! Things will get better. You will

not be wet for long. . .
Affect-enabled chatbot (Sad): It’s depressing. To be wet.
Affect-enabled chatbot (Disgust): Sometimes life just sucks.
Affect-enabled chatbot (Angry): The rain is too bad!

2.1.4 Context Tracking

Context tracking is important for coreference resolution. When a sentence from a
user appears, the chatbot obtains the most recent utterances of that user from the chat
history database. The Stanford CoreNLP toolkit (Manning et al. 2014) can be used to
resolve coreference. The pronouns and mentions of entities in the new sentence are
replaced if a coreferent is identified.

In a typical chatbot architecture, the generated coreference chain is used to
modify the current input message by replacing pronouns with the entities they
refer to (Krause et al. 2017). One difficulty is that there can be multiple references

2.1 Introduction to Chatbots Architecture 19

for one pronoun, only some of which are suitable as a replacement. For example, if a
user first asks: ‘Do you know Italy?’, the chatbot replies: ‘Italy, officially the Republic
of Italy, is a country with territory in south-western Europe’. The user may then ask:
‘What’s the capital of it?’. All of Italy, the Republic of Italy and a country is a
coreference with it, but it is not helpful to replace it with a country. Heuristic
resolution rules can be applied here and choose the mention that appears first in the
context (Italy here). We rely on the assumption that human users usually use a clear
and explicit mention when an item is firstly referred. Poor coreference resolution can
lead to problems. If a user says: ‘I’ve never been to Spain.’, and the system replied
‘thank you for being the most incredible and inspiring woman I’ve ever met. love from
Spain! I miss you, can’t wait till June!’. The user may then ask ‘what’s the capital of
it’. The coreference resolution would mistakenly replace it with June.

2.1.5 Topic Detection

To guide the conversation on a more comfortable and engaging course, topic
detection is used to track context and topics over time. The topic detector uses a
text classifier such as random forest (Xu et al. 2012) to classify the input sentence
into one of several general topics including Politics, Life, Sports, Entertainment,
Technology andGeneral; probabilities are generated for each topic. When a sentence
is passed in, the module tokenizes the text and extracts informative keywords. The
keywords are converted into word vectors (Singaraju 2019) and used as classifier
features. While predicting the current topic, the classifier also takes previously
detected topics into consideration.

A good source of training data comes from Reddit comments. Reddit pages are
organized into area of interests, sub-Reddits, and for the topic-based multi-model
approach, chatbot designers decide on the topic of a comment according to its
sub-Reddit title. Bohus and Rudnicky (2009) trained their model on over 5000
samples and tested on 500 samples, with an overall accuracy over 90%. Predicting
the current topic, the classifier also takes previously detected topics into
consideration.

2.1.6 Named Entities and Their Templates

This module consists of a Named Entity Recognition and Disambiguation (NER)
model and a template selection model. NER (Haptik 2018) links entity mentioned in
a text to a dictionary or knowledge base, local or remote such as the whole web, to
make sense of an entity and know what it is. There is a hierarchy of entity types for
various domains, such as the one in Fig. 2.4. This is an essential step for allowing the
chatbot to understand conversation topics and generate appropriate replies, as it

20 2 Chatbot Components and Architectures

connects words with concepts and subtexts in the real word. Options are to use
StanfordNLP, TAGME (Ferragina and Scaiella 2010) or web mining via a search
engine API. TAGME takes input text and returns a list of entities with their
Wikipedia titles, which in turn can be converted to nodes in the Wikidata knowledge
graph. A threshold for a confidence level can be chosen to pick the top high-
confidence entities. This threshold can be on manually verifying the entities
extracted from previous conversation logs.

After generating a list of entities, (Liu et al. 2017a) use pre-authored templates to
generate conversation replies using the template selection model. For each men-
tioned entity, the authors retrieve its attributes in Wikidata knowledge graph, to get
the key information from the identified node to form a reply (Galitsky et al. 2009).
For example, if the entity is a movie director, the chatbot retrieves the director’s
gender, age, acted films list; if the entity is a city, the chatbots gets its location, which
country it belongs to, and famous people who lives in this city. Naturally, due to the
limited size of the knowledge graph, not all related information is always available.
Based on information need for each template and the attributes available for all the
entities, the system randomly selects one from related templates to promote diversity
in the conversation. An example of the process used to generate replies based on
templates is as follows:

1. User says ‘I think Titanic 1999 is the best action movie I’ve ever seen’;
2. Use TAGME to find entities and link to Wikipedia, which is ‘Titanic’ in this case;
3. Find the features of the entities by WikiData. Then query for the master entity

‘Titanic 1999’, find it has a feature type called ‘director’, whose value is ‘James
Cameron’. This yields: – Master entity: Titanic (Feature type: director – Feature
value: James Cameron’).

4. Get the templates for the relation, fill in the pair of entities. Given the templates
for the relation <film, director > and the pair of entity ‘<Titanic, James Cam-
eron>’, it finds a template (which is manually collected).

– Relation <typeof(master entity), feature type> e.g. <film, director>
– Pair of entity <master entity, feature value> e.g. <Rush Hour, Jackie Chan>
– Template e.g. ‘Last night I had a dream that I was [a director]. . . So. . . I think

I need to take a break from watching [film]’ Hence the system can fill in the
blanks and replies ‘Last night I had a dream that I was James Cameron. . .
So. . . I think I need to take a break from watching Titanic’.

entity

pattern

phone number email date time city location text

textualtemporal

Fig. 2.4 Sample hierarchy of entity types

2.1 Introduction to Chatbots Architecture 21

2.1.7 Information Retrieval

This module tries to provide more human-like, more concrete, and fresher replies
compared to the entity-based template and neural dialogue generation modules. The
source of information for this module can be the most recent tweets provided by
Twitter search API. Liu et al. (2017a) employed tweets as the source because they
are usually short sentences closer to verbal language of most users compared to long
written posts. Twitter data could also reflect trending topics and ideas quickly,
compared to locally stored corpora. The authors are explored additional information
sources, such as Quora and Reddit, which however would require different selection
strategies. From the Twitter search API, the top one hundred (the number of tweets
allowed by Twitter API) related English tweets in the recent seven days are retrieved.
The keywords used for queries are based on the entities in the sentence, which are
also extracted by using TAGME (Ferragina and Scaiella 2010). Hashtags, emoti-
cons, mentions, URLs and others are removed, as well as duplicate tweets. Consid-
ering that the language pattern on Twitter is sometimes different from English and
unsuitable for a chatbot, the sentences with too many “misspelled” words are
removed. The misspelled words might have special non-English characters, or
have special patterns such as ‘It’s tooooo booooring!’. Finally, a reply is randomly
selected from the remained tweets. Learning ranking methods to select more suitable
replies has been also explored.

For example, when a user asks ‘How did Neil Gorsuch do in his confirmation
hearings?’, TAGME links ‘Neil Gorsuch’ in Wikipedia, and ‘confirmation’ is linked
to ‘Advice and consent’. The query.

((“Neil Gorsuch”) AND (“Advice and consent” OR “confirmation”)) is given to
Twitter API. After cleaning and removing duplicates out of a hundred of search
results, 48 search results remain. Replies that have misspelled words are also
removed. Finally, 26 replies including ‘supreme court regain conservative tilt with
Gorsuch confirmation’ remain.

We give an example of linguistic phrases and specific templates which express
logical constructs in a user utterance (Table 2.1).

2.1.8 Personalization

Personalization is building a model of each user’s personality, opinions and inter-
ests. This will allow the chatbot to provide a better user experience by adapting the
DM response models to known attributes of the user. A state machine receives a user
id and retrieves the relevant information attributes of the user from a data source. If a
particular user attribute is missing, then the state machine asks the user for the
relevant information and stores it in this data source. One important user attribute is
the user name. If no name is found in the data source, the DM may ask the user what
they would like to be called and afterwards extracts the name from the user response.

22 2 Chatbot Components and Architectures

If a personal name is detected, it is stored in the data source to be shared with other
modules to insert into their responses. Name detection proceeds by matching an
utterance against a small collection of templates, such as “my name is . . .” or “call
me . . .”. Then POS tags and NER expressions of the resulting matches are applied to
extract the name as string. To avoid clipping the name too early due to wrong POS
tags, these strings should be matched against a lookup of common English names.

2.1.9 Architecture of a Task-Oriented Chatbot

A chart for a chatbot including the components described above is shown in Fig. 2.5.
The Natural Language Understanding Unit does preprocessing. It includes compo-
nents for topic detection, intent analysis, as well as an entity linking. The topic
detection component computes a probability for each covered topic based on the
sequence of preceding turns in the current conversation. Intent analysis component
will identify the user intent, so the system can handle the conversation with different
strategies based on the intents. The entity linking component matches entities
extracted from the input to Wikipedia article titles. Based on the NLU result, the
system then will follow different paths, according to its built-in conversational
strategies.

A layer of DM strategies follows the NLU. The strategies are divided into four
types. In order of priority, the strategies are rule-based, knowledge-based, retrieval-
based, and generative. The rule-based strategies are intent templates, backstory
templates, and entity-based templates ordered by their priorities. Because rule-
based strategies encode human knowledge into the form of templates, they provide
the most accurate replies. The system will adopt a template reply if input is

Table 2.1 Example of linguistic phrases

Linguistic clauses Sample utterance

Relative clauses Barber shops that are close to Chine City

Comparatives Open later than McDonald’s

Superlatives Best rated

Negation Find sandwiches downtown excluding Subway

Anaphora
(pronouns)

When does it open? which one is in the best location

Ordinals What is the average menu bill for the second one?

Cardinals +
superlatives

What are the three top restaurants in Girona?

Composed
superlatives

Find the best parking to the restaurant that is nearest to the Japanese Art
Museum

Ellipsis Which has more parking spaces than 100?

Quantifiers How late are each of the libraries in Girona open?

Conjunction Find the email and phone number of the nearest printing facility and send
them to all contacts

2.1 Introduction to Chatbots Architecture 23

recognized by one of these strategies. If there is no matching template for the input,
the system can try to get an answer from a knowledge-base question answering
(Q/A) engine (Chap. 5). Failing that, the input is handled by an ensemble of neural
network models and information retrieval modules to create a general conversation
output.

After going through one or more of strategies, the pipeline proceeds to the reply
generator. The reply generator will first apply a content filter out incoherent or
questionable candidates. If there are more than one valid replies, a ranking process
is used to reorder candidate utterances firstly according to the priority and then
according to the engagement ranking. Finally, the chatbot gives the selected utter-
ance to the Text to Speech to generate the final output. Simultaneously, all conver-
sations are tracked in a history. The task of context tracking module (Sect. 2.1.4) is to
enhance coherence using the context of the utterance and history of topic flow in the
current conversation to perform a coreference resolution and do topic weighting.
Since the NLU and the reply generator do not change frequently, most of the
difficulties are in the strategies layer. Chatbot designers start from simple rule-
based strategies and then add more complicated strategies, such as knowledge-
based strategies, retrieval-based strategies and generative strategies. The flexible
architecture allows plugging in or pulling out one specific strategy to evaluate its
contribution to system performance.

Fig. 2.5 Architecture of a chatbot (Liu et al. 2017a) that includes components outlined in this
section

24 2 Chatbot Components and Architectures

When there are multiple components in a chatbot delivering candidate utterances,
there is a task to select the best ones. We show an example of choosing responses
from multiple components.

Dialogue

Chatbot: Hi. This is a Terminator bot.

User: Hi

Chatbot: Do you have pests to terminate?

User: Yes, I have cockroaches and ants.

Candidate Responses

EscapePlan: I don’t have an answer for this.

Fact_Generator: Did you know that cockroaches and ants like to . . .

QuestionGenerator: How about other pests?

Initiator_bot: Do you believe someone would like < to have pets at home >?

NN_Classifier: Apr 13, 2012 Which food not to store at home to avoid pests

RedditNews: bye bye pests

RedditPolitics: Getting rid of your opponents

Template_bot: Hurrah! It could have been really bad if you got termites.

Elizabot: OK, but can you elaborate a bit?

RedditMovies: Hmm. Nope, never heard of it.

HelpResponse: I would really like to talk about news, politics or movies.

2.2 History of Chatbots

One of the earliest systems, and one of the most known, was the chatbot ELIZA
developed by Weizenbaum (1966) during the mid-1960s. It is based on a primitive
pattern matching technique to respond to the user’s statements, primarily in the role
of a Rogerian psychologist. ELIZA received an input from the user, inspected it for
keywords, and transformed the sentence to form an output based on rules associated
with those keywords—the set of keywords and their respective rules constituted the
script for the system. Despite these simplistic approaches, some users believed it to
be significantly more intelligent and realistic than it actually was, giving rise to what
would be termed the ELIZA effect.

The movie A Space Odyssey (2001) showed HAL 9000, one of the most iconic
characters in science fiction and AI. HAL demonstrated a number of interesting
features of chatbots (despite it murderous intent). HAL is capable to comprehend NL
sentences of crewmembers and respond in a human-like way: this is a milestone that
is yet to be matched to such a degree with current chatbots. The history of speech
recognition has shown improvement in accuracy of word detection, and text pro-
duction systems are becoming increasingly robust. One particular characteristic of
HAL is its ability to converse freely with humans in a much more complex, realistic

2.2 History of Chatbots 25

manner than a simple back-and-forth, question-answer paradigm. This level of
conversational skills has not yet been achieved by any known chatbot.

Chatbots became a topic of research interest since the appearance of ELIZA and
the popularization of AI as stimulated by HAL. We will briefly present the path of
chatbot development in a chronological order, mentioning some systems and their
specialties. We begin with a plan-based chatbot TRAINS (Allen and Schubert 1991),
that interacts with the user in a mixed-initiative dialogue with robust NLU, and
produces real-time plan reasoning and execution in the domain of cargo trains.
TRAINS formulates plans and monitors them, including interacting with agents,
human or software, in order to find out information about the world.

Many early dialogue systems did not focus on natural and human-like conversa-
tions, as they were designed simply as user interfaces to conduct actions within
complex systems. SpeechActs (Yankelovich and Baatz 1994) is one example of a
system targeting an exploration of conversations, but primarily from the point of
view of speech recognition and processing; its DM part is rather rudimentary.
SpeechActs included a discourse manager, a precursor to the DM component with
limited services such as the management of user and system information. The Philips
automatic train timetable information system (Allen and Perrault 1980) is another
example, which claimed to have some unspecified DM component in the planning
subsystem.

AutoTutor (Wiemer-Hastings et al. 1998) is a rule-based chatbot for the educa-
tional domain, based on curriculum script to be communicated with a trainee.
Decisions about which topic to focus on are made via production rules that consider
additional information regarding the skill level of a trainee the needs and goals of
both student and teacher, and other global variables. Its key research achievement is
recognition of the next system utterance.

The CommandTalk system (Stent et al. 1999) introduces the frames in the form of
user-system discourse pairs, as well as maintains context and handles semantic repre-
sentations of user input and system responses. Relying on finite-state machines for the
handling of different kinds of conversations, it is nevertheless fairly robust in the
domain of battle simulators. TrindiKit Dialogue Move Engine Toolkit (Larsson and
Traum 2000) appears to be the first to introduce the information-state update approach.
The focus for this approach is the recognition of key characteristics of dialogue that
change as the dialogue itself changes and, importantly, how they are changed.

RavenClaw (Bohus and Rudnicky 2009) is a hybrid of frame-based and agenda-
based DM methods, based on hierarchically structured set of information frames
(Sect. 2.3.7) which need to be filled from the user utterances. The benefit of this
system is that it results in a mixed-initiative dialogue that affords the user flexibility;
useful for domains that need to elicit information to perform extended queries (e.g.,
booking systems).

Statistical learning-based approaches to the choosing dialogue acts include (Lee
et al. 2010; Williams and Young 2007) with the goal to achieve a degree of
adaptation in dialogue management both to new conversational events and to new
users and also to allow error correction that can be difficult for human designers to
anticipate.

26 2 Chatbot Components and Architectures

Some dialogue systems such as is SEMAINE (Schröder 2010) have being
designed in the form of embodied conversational agents, explored multimodal
interaction, gesture input/output, facial signals during conversation, tracks the
user’s emotional state and eye contact.

In recent times, some proprietary systems have gained prestige, mostly because of
the companies that have provided the platform and competition between them. Siri,
Cortana, Alexa and Google Now are intelligent personal assistant software agents
developed by Apple, Microsoft, Amazon and Google, respectively. These systems
possess robust NLP and solid backend processing in order to answer direct user
queries. Frequently, these systems perform intent recognition well and provide
answers the user did not explicitly queried for. On the week side, as of 2018, these
systems do not perform dialogue management but instead only function in the Q/A
mode and therefore are not relevant for this Chapter.

Historically, chatbots have focused on goal-directed interaction (such as Bohus
and Rudnicky 2009) and this focus defined much of the work in the field of spoken
dialogue systems. More recently researchers have started to focus on non- goal-
oriented chatbots. They evolved from on-line, text-based, chat systems, originally
supporting human-human conversations and more recently finding acceptance as a
supplement to call centers. Chatbots have begun to resemble dialogue systems in
their use of natural language understanding and generation, as well as dialogue
management. By contrast, non task-oriented chatbots focus on social conversation
(where the goal is to interact while maintaining an appropriate level of engagement
with a human interlocutor). One consequence is that many of the assessment tools
that have been developed for task-oriented chatbots are not relevant any more. For
example, the purpose of a task oriented chatbot is to achieve a certain satisfactory
goal (e.g. retrieve parameters and execute a transaction) and to do so as rapidly and
accurately as practical. The goal of non task-oriented chatbots on the other hand is
almost the opposite: keep the human user engaged in the conversation for as
extended period of time as possible.

More recent attempts take a corpus-based approach (Su et al. 2015), where some
source of conversations (say movie dialogues) is indexed and features of user inputs
are used as retrieval keys. Deep Learning approaches such as (Vinyals and Le 2015;
Britz 2018; Burtsev et al. 2018; Chapter 4) have had some implementation success
for this task. A persistent limitation of these approaches is that they tend to reduce to
an equivalent of question answering: the immediately preceding user input and
perhaps the previous system turn are part of the retrieval key. This narrow window
necessarily reduces continuity and users struggle to follow a conversational thread.
A key research question is how to create conversations that initiate and develop in
ways similar to those found in human-human conversations.

Human conversations in social domain follow the structure that guides their
evolution over time. This structure includes elements familiar to participating inter-
locutors such as conventions for engagement and disengagement, a succession of
topics (with heuristics for identifying promising successors), as well as monitoring
engagement level and picking strategies for managing topic transitions (Galitsky
2013). Good conversational management also implies a nontrivial use of memory,

2.2 History of Chatbots 27

both within the conversation to support knowledge sharing utterances with back
references and general world knowledge via thesauri (Chap. 8) to generate proper
sequence of topics in utterances.

2.3 Deterministic Dialogue Management

In introducing the chatbot components, the dialogue manager (DM) was described as
being critical to choosing the chatbot responses and the overall direction of the
dialogue. In this section we expand upon the DM and its key skills. We begin with
the notion of context in dialogue and then identify the importance of turn-taking
strategies to decide the speaking order between interlocutors, and then the
approaches a DM may use to decide what it says next. Dialogue Management is
responsible for describing the flow inside a conversation and it is a growing research
field in computer studies. One can think about DM as finite state machines, where the
state transitions are based on the acquired information and the messages from the
interlocutors (Burgan 2017).

Chatbots are described with different roles, such as information providers,
recommenders, advisors, tutors, entertainers, conversational partners and can be
used for decision-making, multi-party interaction, persuasion and conflict resolution.
Likewise, parts of dialogue can be clusters as follows:

• Question then Answer;
• Propose then Accept/Reject/Challenge;
• Offer then Accept/Decline;
• Compliment then Refusal/Thanks;
• Greeting then Greeting back.

Thus clusters can further form global structures which can emerge from the
dialogs, for example Opening with greetings, Body with topics then Closing with
farewells. Finally, understanding topic transitions, the ability to switch contexts and
subjects, is a crucial part in developing more friendly conversations.

In a video game domain, players are frequently non-playing characters. They look
like human players, but they are programmed according to certain scripts. They are
implemented as simple bots to participate in specific task. Narrative video games are
expected to allow multiple decision paths; a good narrative game should feel
cohesive and unpredictable, with some illusions of a virtual world. In most cases,
the path taken by a player is set by a game developer. She would use tricks to
influence players’ choices to control the path on one hand but at the same time
keeping the illusion of the payers’ freedom of choice.

28 2 Chatbot Components and Architectures

2.3.1 Handling Context

The use of the term context is often encountered within the setting of chatbots, and
its purpose differs depending upon which stage in the process it is gathered and
applied. However, an overarching link may be drawn between these applications:
they supplement the understanding of the user’s communicative behaviors
(Galitsky 2016).

At the beginning of a chatbot’s process, context takes on the role of allowing a
chatbot to resolve speech recognition ambiguities by using previous utterances or
knowledge of the domain to improve hypotheses with low confidence scores.
McTear (2002) describes this potential in the context of a flight enquiry system
that could discard certain input hypotheses if they are found to be ‘contextually
irrelevant’ based on the domain. In that example the hypothesis ‘what time does the
white leaf’ would be flagged as irrelevant due to its use of terms outside the flight
domain and instead be left with hypotheses such as ‘what time does the flight leave’.

Context tracking as described by LuperFoy et al. (1998) is a component of
discourse processing alongside dialogue management and pragmatic adaptation,
although represented as following natural language processing. Used in this way,
context allows for the resolution of dependent forms present in the input and the
ability to produce context-dependent logical forms for achieving meaningful output.
The authors perceive context tracking as an independent process whose inputs and
outputs are logical forms, with dependent references resolved in the latter. Hence
proper handling of context is critical in aiding the understanding of the user;
allowing the DM to bring additional information to its processing of input.

2.3.2 Turn-Taking

In order to support a chatbot dialogue beyond single-utterances, a DM must be able
to decide at which point the chatbot or the user produces the next utterance. Turn-
taking behavior in a chatbot involves a set of rules that allow separate agents to
communicate efficiently by determining who is to stop producing her utterance and
who is to begin.

The designer decision for acceptable turn-taking strategies in a chatbot is quite
important. One can see that additional turns in a chatbot dialogue is costlier than in
human-human conversation. This is because of the greater disruption to dialogue.
Kronlid (2006) investigated turn-taking strategies of a multi-party scenario where
the communication between agents is not constrained. Turn-taking skills are critical
supporting chatbot negotiation, as they are correlated with making rapport and
forming solidarity, or expressing a position.

2.3 Deterministic Dialogue Management 29

The need for turn-taking has been noted in Raux and Eskenazi (2012). The
authors claimed that to support an effective conversation, peers need to make correct
decisions about not only what to say but also when to say. The parties of a dialogue
need to maintain a sequence and order to present their utterance.

One of the most popular to turn-taking in conversation is the model named after
(Sacks et al. 1974). The authors define a Turn Constructional Unit (TCU), which is a
phrase, clause, sentence or word with a predictable end. It approximately maps to an
utterance. The first possible completion of a TCU forms a transition relevance
position. It is a place where speaker-change is possible or preferred. The turn
transitions can be controlled by the explicit rules:

1. For any turn, at the first transition relevance position of the first TCU:

(a) The speaker may select the next speaker. In this case, the person selected is
the only one with the right and obligation to speak;

(b) Else, the next speaker may self-select. The first person to speak acquires the
right to a turn;

(c) Else, the current speaker may, but need not continue;

2. Rules 1 (a–c) apply for each next transition relevance position of this TCU until
transfer is effected

Conversation starter component (Krause et al. 2017) asks the user an open-ended
question to get the conversation started and increase the engagement of the user.
Examples of phrases include “What did you do today?”, “Do you have pets?” and
“What kind of news stories interest you the most?”. As a special case, the model can
also start the conversation by stating an interesting fact. In this case, the initiator
phrase is “Did you know that <fact>?”, where fact is replaced by a statement.

Before returning a response, the conversation starter first checks that it has not
already been triggered in the last two turns of the conversation. If the user gives a
greeting, then the conversation starter will return a response with priority. This is
important because the greetings often indicate the beginning of a conversation,
where the user does not have a particular topic they would like to talk about. By
asking a question, the chatbot controls the dialogue by taking an initiative.

The proactive component is intended to drive the conversation towards a state
that other components are better able to tackle. It does it by sampling from a set of
questions to ask the user. These questions are composed to probe the user to mention
a specific entity that the NER component will likely be able to match, or to ask a yes
or no question to focus user interest in a particular topic, followed by a question
encouraging the user to continue the conversation within that topic.

The proactive component is called when the other components have a low
confidence in what they derive. It is in general beneficial if one can probe the user
to mention specific entities related to the topics in available data, when interesting
opinions are available about specific entities. The proactive component is limited to
only returning a response once every few utterances to avoid excessive use. An
example interaction is shown below.

30 2 Chatbot Components and Architectures

Chatbot: ‘Did you enjoy the last Titanic movie?’
User: ‘Yes’
Chatbot: ‘I was hoping for you to say <yes>! What did you think of it?’

Multiagent question answering is another example when agents cooperate while
answering user question (Galitsky and Pampapathi 2005).

Kronlid (2006) built a turn manager design for use in chatbots, formalizing the
classes of events that such a component would be expected to handle: a user starting
or stopping, a user being expected to stop soon, or a user being addressed by
her peer.

2.3.3 Action Selection

Once an adequate method of turn-taking has been established, the chatbot should
have a skill to manage a dialogue as a sequence of turns. It should give each dialogue
participant a chance to produce an utterance. At the same time, the chatbot needs to
fill its own turns. This is the main problem of action selection, a focus of this
subsection.

Action selection is a process of choosing between possible dialogue acts, essen-
tially deciding ‘what to say next’ (Galitsky 2004). We distinguish between two kinds
of action selection methods: based on manual rules, and involving ML. The ability of
the former to decide what to say or do is based on decisions made during its
conception by human chatbot designer via rules or states, which are typically
retained during runtime. ML approaches represent dialogue in terms of Bayesian
or neural networks, Markov models and use techniques such as reinforcement
learning, so that the DM is capable of automatic acquisition of strategies from
datasets or from users in real time (Galitsky et al. 2009). Some chatbots are hybrid
systems which are combinations of separate approaches.

2.3.4 Dialogue Management with Manually Coded RULES

Handcrafted systems are based on manual rules and decisions that have been
specified by a chatbot designer. ELIZA was a system that processed an input
utterance and produced responses that were the result of transformation rules,
matched via keyword identification. ELIZA rules were static; they did not change
during the chatbot interaction with the user. The handcrafted rules or thesauri used to
represent the domains are conceptually simple (Burgan 2017). Because of this
inherent simplicity of manual rules, chatbots with handcrafted rules can be generated
and applied in a relatively short time. Once the rules have been developed, little
additional processing is necessary in real time as the chatbot performs navigation
according to its dialogue strategies.

2.3 Deterministic Dialogue Management 31

Predictability is high in chatbots with manually coded rules and this may be an
important aspect to consider in systems where such determinism is beneficial. These
systems are intended for critical domains that should be capable of reacting to each
event in a precise way. By using a chatbot that operates only according to the
specified manual rules, it is likely to properly respond to situations as per the
conditions and constraints placed upon it. But a formal verification of the chatbot
responses may still be required.

We start with the popular DM architecture of RavenFlow (Bohus and Rudnicky
2009 and Fig. 2.6), a two tier DM architecture which decouples the domain specific
aspects of dialogue control from belief updating and error handling. It represents a
dialogue as a set of hierarchal plans, possesses domain independent error handling
strategies, and generalizes the dialogue management framework across domains.

Fig. 2.6 Dialogue task specification

32 2 Chatbot Components and Architectures

RavenFlow implements an architectural tradeoffs between system and mixed initia-
tive dialogue management.

We will now present a review of some methods that have been used to implement
a DM with handcrafted action selection approaches.

2.3.5 Finite-State Machines

Finite-state machines (FSMs) are structures that have been extensively studied,
including how they apply to chatbots (Jurafsky and Martin 2009). FSMs set a
predefined sequence of steps that represent the states of the conversation at any
point. Each transition between states encode a communicative act the chatbot and
user can take (Fig. 2.7). FSMs are handcrafted design methods for DMs; they are
rigid in the strictest sense and target fully structured tasks with hard-coded dialogue
flows not allowing deviations (Lee et al. 2010).

Fig. 2.7 A state machine of a dialogue

2.3 Deterministic Dialogue Management 33

Each state in the graph of FSM represents actions and activities that the chatbot
must perform at a given step. For instance, the chatbot may request the user to
answer a question, ask a particular factoid question or decide what the user intends to
do next. FSM-based DM might appear unnatural; it is not a good representation of
the real-world conversations that occur between humans.

Adding states to a FSM is a simple, but it becomes fairly hard when the chatbot
domain is complex and extensive. In the cases where inter-domain support and
efficient rectification of chatbot errors is necessary, the FSM graph becomes intrac-
table very quickly and adding new skills to it becomes inefficient. It is a natural
observation that FSM based chatbots are oriented to a smaller vertical domains that
are not expected to be significantly extended and whose scope can be properly
circumscribed.

Some knowledge domains benefit strongly from using FSM. Conversation sce-
narios where chatbot errors must be handled systematically may leverage hard-coded
paths from utterance to utterance, which are deterministic. Predictability is an
important feature of such chatbots since any utterance produced by the chatbot can
be traced back to the prior state that caused it. Hybrids between a FSM- based DMs
and an information state based DMs to create the dialogue specification are fruitful.
Such chatbot domains as constructing mathematical proofs are well suited to the
FSM and its adoption of the information state that improves the rigidity of finite-
states alone.

2.3.6 Rule-Based Dialogue Management

Rule-based approaches, as applied to chatbots, are often compared with production
systems, an area of AI that includes logic programming clauses (head: - precondi-
tion) and If. . .Then rules implementing reasoning. The right part of a clause (pre-
conditions) of such rules may be instantiated from the user utterance or be triggered
by its pattern matching. A rule-based DM that performs this pattern matching via
satisfaction rules has been developed by (Smith et al. 2011). DM rules are satisfied if
their sequence of sub-goals is been satisfied, their actions have been executed, and
conditions have been consistently inferred. The DM navigates the tree structure of
such rules in order to determine the next action to execute.

The chatbot use of statistical rules is fruitful (Dragone 2015) because statistical
formalisms combine the expressiveness of both Bayesian inference and logical
deduction. These rules are leveraged in DM where one has to describe objects that
relate them to each other on one hand and tackle uncertainty of the dialogue state
variables on the other hand. Fuzzy rules can be employed in the environment with
scarcity of training data by utilizing the internal, implicit variables of dialogue
models. Relying on logical formulas to encode the conditions for a possible conver-
sation states in manual rules, it is possible to group the values of the variables into

34 2 Chatbot Components and Architectures

partitions, minimizing the number of parameters needed to infer the distribution of
outcome values. Hence the amount of data needed to learn the distribution can be
controlled (Burgan 2017).

The rule-based chatbots are more flexible than most script-based dialogue sys-
tems where dialogue must follow a fixed flow. At the same time, the rules expres-
siveness is not sufficiently rich to handle all sorts of variability and dynamics in
sequences of human utterances. Therefore the rules’ applicability is limited to the
domains where the users are constrained to a predetermined set of acts and phras-
ings. This is not true in cases where the user utterances are undirected such as in free
conversation. Chatbot developers can express a dialogue domain in a limited set of
rules with good readability by other system designers. The rule system also serves as
an abstraction to the application domain. Rules, although dependent upon imple-
mentation, can be specified generically such that they may be applied to any number
of similar scenarios, thereby achieving a level of abstraction such as dialogue acts.

Usually a rule-based component deterministically matches a user’s input and
returns a single output. Some of the examples of rule sets are as follows:

• Rules for the user identity and preferences. Rules ensure that identity information
remains anonymous for the moment, such as name and location. Most preferences
are personalized so to make the conversational agent more human-like;

• Rules to handle sensitive topics such as suicide, cancer or death of a close person,
which we carefully redirect to existing helplines when possible. Prompts
containing a list of sensitive and/or potentially offensive words are also handled
by a polite yet firm response (e.g. ‘This kind of talk makes me uncomfortable,
let’s talk about something else.’);

• Rules for topic adjustment, to recognize when the user intends to set a new topic
or update the current topic, or when the agent should shift away from controver-
sial topics, such as politics;

• Rules for other forms of engagement. These enable the agent to make jokes, to
play a small or short game, where the user has to report on markets, play lyrics of
popular songs, or to get a weather forecast, given the user’s location.

2.3.7 Frame and Template-Based Dialogue Management

Frame-based are those chatbots whose dialogue flow is determined only upon the
user utterances and the filled or empty status of remaining slots. When frames are
encoded via a logic program, we refer to the slot status as instantiation state. We call
the filled or empty slots instantiation state of a frame. Bohus and Rudnicky (2009)
describe a chatbot where DM encourages the user to specify values to a set of slots,
forming a complete sequence of key-value pairs. The dialogue models include a
number of dialogue task agents and APIs, arranged in a hierarchy; predefined agents
exist for atomic dialogue acts (i.e. inform, request, expect, and domain operation).

2.3 Deterministic Dialogue Management 35

Bohus and Rudnicky (2009) proposed an interesting way DM adopts to the
dialogue flow: the frames do not have to be browsed in the same way they were
specified; instead, frames can be triggered earlier (and this initiates a temporary jump
of context). This is achievable through what the authors call concept binding, where
information from the input can be bound to several slots (not just the slot the chatbot is
currently requesting to fill). This approach can tackle a mixed-initiative dialogue flow
since a user is free to provide more information than is required and at different times.

Frame-based chatbots are bound by a predefined set of information they must
elicit. Nevertheless, they give the users a higher degree of freedom than rules-based
chatbots. This freedom is higher in terms of the order the frames are instantiated: the
questions the system asks can be in a random order. If there is flexibility in how a
user does slot filling, then some tasks may be completed much more quickly than
usual. It is not necessary now to ask or confirm each slot filling event now.

Frame-based systems may lack the required expressivity to be used in poorly
formalized domains whose tasks are not defined well and where interactions with
the user cover much more than fulfilling a request for predefined information. In
certain knowledge sharing and negotiation scenarios, a usability of frame-based
chatbots is limited.

There are certain standard ways to specify templates. A chatbot can rely on a set
of AIML (artificial intelligence markup language) templates to produce a response
given the dialogue history and user utterance (Wallace 2009; Shawar and Atwell
2007). By default all templates generate non-highest priority responses, so one can
configure templates related to the chatbots name, age and location to output priority
responses. These templates can be modified to satisfy the chatbot objectives (e.g. to
avoid inappropriate language, to encourage a user to ask about certain topics, such as
news, politics and movies). Since the AIML templates repeat the user input utter-
ance, they are not always correct sentences. Therefore, it makes sense to use web
mining to form a plausible and grammatically correct sentence (Chap. 8).

Here are two example templates for personal questions which are meant to engage
the user to continue the conversation.:

1. “I am (.*)” ! “Did you come to me because you are . . .”
2. “What (.*)” ! “Why do you ask?”

The ellipses mark the parts of the response sentence that will be replaced with text
from the user utterance. The model identifies the proper template and selects the
corresponding response (if there are multiple templates, then a template is selected at
random). The model then runs the template response through a set of reflections to
better format the string for a response (e.g. I’d ! you would, your ! my).

2.4 Dialogue Management Based on Statistical Learning

In this section we describe the methods in which statistical learning techniques are
applied. Frequently these methods are termed data-driven because of to their use of
large datasets in order to learn dialogue strategies. These approaches fall under

36 2 Chatbot Components and Architectures

category of dynamic learners as they have the ability to apply their learning
algorithms in the course of interaction with the user. Notice that statistical learning
require some form of bootstrap process (in reinforced learning scenario) before they
can communicate usefully (Galitsky and Parnis 2017). Neural networks, for
instance, are composed of a number of nodes that may be built into an arbitrary
topology.

Different kinds of statistical ML methodologies exist for chatbot dialogue man-
agement systems; they differ a lot in learning scenarios. The output of each learning
scenario is a dialogue action to take next. Statistical ML techniques became popular
because they can automatically decide what dialogue act to choose at any point,
based on prior learning (such as a bootstrap process or prior conversation), hence
eliminating a need of domain experts to constantly add strategies and rules to the
dialogue management. Successful implementations of such systems take a corpus of
input data (e.g., conversational data relevant to the domain, (Galitsky 2017)) such
that the system can learn appropriate responses to certain input utterances from the
user. Statistical ML-based chatbot may learn with real users during runtime with its
feedback interpretation obtained from the user’s responses. Hence such chatbot
achieve adaptation and personalization to the users. Some ML chatbots may claim
to be extensible due to the learning processes being domain-independent; however,
the corpora from which they bootstrap is nevertheless strongly domain-dependent.

One of the primary disadvantages of these systems is their reliance upon data to
support the learning processes; if the system is not provided with substantial
datasets, then its action selection decisions will be inaccurate and result in incorrect
responses. System development complexity tends to increase in statistical ML
systems as they must be programmed and configured to conduct similarly complex
inference and calculations with significant mathematical overhead. Lastly, it
becomes extremely difficult to predict the output of a dialogue system that leverages
statistical ML algorithms as, due to their nature of making background calculations,
it is impractical to observe what values are being used and thus how a system came to
a particular conclusion (e.g., the choice of a certain dialogue act).

We now explain different statistical ML mechanisms that have been employed for
the selection of dialogue actions.

2.4.1 Bayesian Networks

Bayesian networks are probabilistic representations that model probabilistic distri-
butions between events (such as dialogue utterances) or variables, and consist from
two parts: a directed acyclic graph, and conditional probability tables for each node
(Wollmer et al. 2010). Bayesian networks are generally applied following the
observation that the environment in which chatbots operate is inherently noisy.
The utterances can be distorted due to errors in speech recognition. Bayesian
inference can assist in a number of cases including keyword and feature recognition,
as well as user modeling and intent recognition (Horvitz et al. 1998). The use of

2.4 Dialogue Management Based on Statistical Learning 37

Bayesian networks for selecting chatbot actions is usually assisted by other methods,
in particular Partially Observable Markov Decision Processes (POMDPs).

Lee et al. (2001) suggested the use of a Bayesian network in intent recognition for
a chatbot that relies on planning. A user model is constructed that creates causal
relationships between words in user utterances, and the likely associated intent the
user has (expressed by these words). This kind of chatbot contains a goal inference
module whose purpose is to deduce the goals of the user via Bayesian inference. If it
fails to obtain the user intent then the component could instruct the dialogue manager
to issue a correction action to the user.

In a similar way to manually build rule-based chatbots, the network structures in
Bayesian networks are designed by domain experts or developers and therefore are
associated with significant time and effort for development, as well as substantial
difficulties in extending domains (Lee et al. 2001). The graph topology of Bayesian
networks must be specified by a human developer, and the initial conditional
probabilities must also be computed in advance. These tasks must be done during
the system’s inception but also whenever its capabilities must be extended, including
if the domain must be changed entirely. There is a great value for chatbots to
automatically generate the Bayesian network structures, without human interven-
tion, and for probabilities to be created in a similar manner. Some critics of Bayesian
networks (Lim et al. 2010) explain that their ability to handle truly dynamic input is
limited, their predefined methodology is restrictive and they are unable to change
topics of utterances naturally.

2.4.2 Neural Networks

In the context of chatbots, neural network (NN) approaches contribute less in DM
but are especially prominent in speech recognition and natural language processing
areas for processes such as sequence matching (Hu et al. 2014), learning (Meng et al.
2015), and prediction (Mingxuan et al. 2015). NN – based techniques have been
applied to generate output utterances by means of corpus learning (Sordoni et al.
2015) in the domains like Twitter where the number of data sources is practically
unlimited. NN-based approaches turn out to be restricted to single iteration
responses; They are less suitable when conversational interaction is needed.

A chatbot capable of providing flexible mixed-initiative interaction with the use
of semantic networks, a global workspace theory, and representations of memory has
been proposed by Lim et al. (2010). The system can dynamically switch between
topics dictated by the operation of the semantic networks and what the authors call a
‘spreading activation process’.

Burgan (2017) believes that the use of NNs for action selection should be a future
goal for research, since some common applications of the sequence-to-sequence
learning technique are grounded in NLP. NNs may form one part of a hybrid chatbot
that assists in the bootstrapping process, by capturing models which can later be used

38 2 Chatbot Components and Architectures

to train Partially Observable Markov Decision Process models. It would reduce the
necessity to build a task-specific dialogue corpus (Serban et al. 2016).

2.4.3 Markov Models

In this chapter we use the term Markov model to refer to any of the following:
Markov Chain (MC), Hidden Markov Model (HMM), Markov Decision Process
(MDP), and (POMDP).

In Markov Decision Process (Fig. 2.8), at each time period t the system state
s 2{up, down} provides the decision maker with all the information necessary for
choosing an action a 2 {refresh, don’t refresh}. As a result of choosing an action, the
decision maker receives a reward r and the system evolves to a (possibly different)
state s’ with a probability p (labels of the arcs).

In a general case MDP consisting of a discrete set of states H, a discrete set of
actions A, a transition distribution function P, a reward distribution function R, and a
discount factor γ. As before, an agent aims to maximize its reward during each
episode. Let t denote the time step of an episode with length T. At time step t, the
agent is in state ht 2H and takes action at 2 A. Afterwards, the agent receives reward
rt � R(ht,at) and transitions to a new state ht þ 1 � P(ht|at).

Markov models have been applied many times in chatbots and DMs as a
mathematical framework for modeling levels of uncertainty within chatbots (Wil-
liams and Young 2007). POMDP used in dialogue management may also positively
affect robustness in terms of automatic speech recognition and natural language
understanding (Lee et al. 2010). Markov models allow a construction of a dialogue
as an optimization problem where a system must choose the optimal (in certain
sense) action at any given point in the dialogue. The metrics used to decide the
optimal action are usually the costs incurred by the system if it selects a particular

Fig. 2.8 States and actions for Markov Decision Process

2.4 Dialogue Management Based on Statistical Learning 39

action, but these costs differ between authors. Levin et al. (2000) suggest that
dialogue duration, resource access or use times, user satisfaction, and others.
POMDPs implicitly capture what system actions are desired by associating them
with large positive rewards, and negative rewards to ill-favored strategies (e.g.,
deleting information when the user wanted to save). Being specified by the chatbot
designer, costs and rewards are purposefully ambiguous.

In Fig. 2.9, for each time step t, zt is a discrete random variable which represents
the abstract state of the dialogue, ht represents the dialogue history, at represents the
action taken by the system (i.e. the selected response), yt represents the label given
by the annotator and rt represents the sampled reward. The model follows a
hierarchical structure at each time step. At time t, the agent is in state zt 2 Z, a
discrete random variable representing the abstract discourse state. This variable
only represents a few high-level properties related to the dialogue history. Serban
et al. (2016) define the set Z is the Cartesian product:

Z ¼ ZCA � ZUser sentiment � ZGeneric user utterance,

where ZCA, ZUser sentiment and ZGeneric user utterance are three discrete sets. The first set
consists of communicative actions and states:

ZCA¼ {Accept, Reject, Request, Politics, Generic_Question, Personal_Question,
Statement, Greeting, Goodbye}. These communicative actions represent the high-
level intention of the user’s utterance. The second set consists of sentiments types:
ZUser sentiment ¼ {Negative,Neutral,Positive}. The third set represent a binary vari-
able: ZGeneric user utterance ¼ {True,False}. This variable is True only when the user
utterance is generic and topic-independent (i.e. when the user utterance only contains
stop-words). A deterministic classifier can be built to map (fh!z) a dialogue history
to the corresponding classes in ZCA, ZUser sentiment and ZGeneric user utterance. It is trivial
to expand the abstract discourse state with other types of discrete or real-valued
variables.

Fig. 2.9 Probabilistic directed graphical model

40 2 Chatbot Components and Architectures

Given a sample zt, the MDP samples a dialogue history ht from a finite set of
dialogue histories H. In particular, ht is sampled at uniformly random from the set of
dialogue histories where the last utterance is mapped to zt:

ht � P hjH; f h!z; zt
� �def ¼ Uniform hjh 2 H and f h!z hð Þ ¼ zt

� �� �
:

In other words, ht is a dialogue history where dialogue act, user sentiment and
generic property is identical to the discrete variable zt.

Markov model-based systems require some form of training in order to learn
dialogue strategies based on supervised learning. It is possible to establish a direct
mapping from a machine state such as a class of user utterance to a system action
relying on a training set (Williams and Young 2007). Once an initial utterance
producing Markov model is obtained, it can be further updated using the same ML
techniques but in this case the training data is extracted from the real-time conver-
sations. Now the system states will be utterances of a real user, and the feedback for
the chatbot actions may be obtained by explicit or implicit means.

Papangelis et al. (2012) develop a reinforcement learning algorithms that relies on
MDPs as a model to learn optimal chatbot strategies. According to the authors, these
algorithms provide benefits such as simplicity of implementation, low computational
cost, and the ability to optionally use manually coded rules. The authors present an
example dialogue with the chtbot, before and after training with a particular rein-
forcement learning method, which shows clear improvements in terms of utterance
relevance and minimizinhg repetition.

Although Markov models and reinforcement algorithms have been extensively
used for calculating best dialogue strategies, there are a number of drawbacks.
Relying on DM strategies that have been created automatically, without insights
from the chatbot developer, the system does without a control from her to make sure
that dialogue flow is adequate and relevant (Lee et al. 2010). In the (Papangelis et al.
2012) chatbot, the system allows for the domain expert to create and apply manually
coded rules which grant the chatbot a better ability to adequately constrain its
conversation. A limitation of the series of data-driven approaches is their depen-
dence on an extensive corpus to train the chatbot in a given domain. If a suitable
corpus of conversational data is not available, then an ML system is not viable.

2.5 DialogueManagement Based on Example-Based, Active
and Transfer Learning

Example-based dialogue is one popular method for constructing chatbots (Murao
et al. 2001). Example-based DMs accumulate examples of dialogues, which consist
of pairs of an example initial utterance and a corresponding chatbot response, in a
database. Then these DMs generate system responses for input utterances based on
this database. Example-based DMs can be easily and flexibly modified by updating

2.5 Dialogue Management Based on Example-Based, Active and Transfer Learning 41

dialogue examples in the database, and thus are effective in situations where either
the domain or task of the dialogue system is frequently expanded, or constructing a
sophisticated DM in advance is difficult.

In the available corpus of research on chatbots, this type of DM has been used for
information retrieval-based chatbots (Nisimura et al. 2003), multi-domain chatbots
(Lee et al. 2009), and Q/A chatbots. Generally, in the construction of example-based
dialogue managers, a large number of dialogue examples are required to cover a
variety of inputs in the dialog. To deal with this problem, the above authors obtain
dialogue corpora acquired from the Web such as Twitter posts or movie scripts.
However, frequently, corpora on the Web include ungrammatical, noisy, inconsis-
tent, impolite examples that might have a negative influence on the chatbot perfor-
mance, and a manual filtering is required. Also, it is not always easy to find chatbot
corpora that match its domain and style. Therefore, an extensive manual creation of
dialogue examples is still required in the development of practical example-based
dialogue managers.

Hiraoka et al. (2017) proposed a method that reduces the human effort in creating
dialogue examples by using active learning to construct an example-based dialogue
manager. Given a pilot example-based chatbot with a small initial training dataset
and also input logs of the prototype system, active learning can be used to improve
this dataset in the prototype DM by adding new example pairs efficiently.

We describe the example-based DM, and the proposed active-learning framework
Galitsky and Shpitsberg (2016). Example-based DM relies on dialogue examples to
respond to input. Dialogue examplesD:¼ {hui, si i}|D| consist of pairs of an example
input ui (e.g., a user i ¼ 1 utterance or a chatbot dialogue state) and a corresponding
chatbot response si (left side of Fig. 2.10). Given the example base D, the DM
determines the system response s� to input u by the following steps:

1. Calculate the similarity sim(ui,u) between all example inputs ui in D, and input u.
This is often defined as TF*IDF weighed cosine similarity

Fig. 2.10 Example-based dialogue management

42 2 Chatbot Components and Architectures

sim ui; uð Þ≔ w uið Þ � w uð Þ
w uið Þj j � w uð Þj j

where the function w returns the vector representation of input (for example the
frequency vector of the content words) weighted according to TF*IDF;

2. Return system response s� whose corresponding example input u� has the highest
similarity with u:

u� ¼ argmax
ui2D

sim ui; uð Þ
s� ¼ {si| hui, sii 2 D ^ ui ¼ u�}

The left side of Fig. 2.10 shows how the chatbot determines a response for the user
input ‘That’s fun!’, calculating the similarity between this input and example user
inputs in D based on above equation. The similarity between ‘Fishing is fun!’ (u54)
and the user input is 0.6, which is the highest of the example inputs in D. Therefore,
based on Equations above, ‘Seems to be fun.’ (s54), which is the system utterance
corresponding to example user input u54, is selected as system response s�. This
method is commonly used in the core of example-based dialogue managers. In
Chap. 5 we will introduce linguistic similarity between phrases that allows solving
this problem much more accurately.

Given an example-based DM, it is necessary to evaluate the quality of its
responses. To maintain generality of the DM framework, one should avoid using a
domain specific evaluation framework (such as task-completion), and use reference-
based evaluation instead. Hiraoka et al. (2017) follow the evaluation framework of
Nio et al. (2014) and evaluate the dialogue system with test examples (right side of
Fig. 2.10). The test examples T consist of pairs of a test input um and the oracle
system response sm. Using these test examples, the authors calculate average simi-
larities between the dialogue system’s responses and the oracle system responses for
the evaluation. More concretely, given test examples T and the dialogue system S,
the performance p of S is calculated as follows:

p ¼ 1
Tj j

XTj j

m¼0

w s�m
� � � w smð Þ

w s�m
� ��� �� � w smð Þj j :

This is the average of cosine similarities between S’s response s�m, calculated ac-
cording to above equation for similarity and the golden-set system response sm over
the test examples. |T| represents the total number of pairs in test set T. In the example
in the right side of Fig. 2.10, the evaluation framework evaluates the system response
to the test user input ‘That’s fun!’ (u1). In this example, the system outputs ‘Seems to
be fun.’ as its response to u1. The similarity between ‘Seems to be fun.’ and the
golden-set system response ‘Definitely fun!’ is calculated according to the above
equation.

2.5 Dialogue Management Based on Example-Based, Active and Transfer Learning 43

Starting from a prototype example-based DM with a small number of dialogue
examples, the active learning problem is to improve the system as much as possible
with minimal human effort. We focus on the situation where there are input logs
collected by the prototype chatbot, and a human creator is required to create system
responses for these inputs (Fig. 2.11). Therefore, given the example dialogue D: ¼
{hui,ski}|D| and input i ¼ 1 log U: ¼ {huj i}|U |, the goal is to select the subset of
input that yields the greatest j ¼ 1 improvement in system performance from U to
present to the human creator. Algorithm 1 describes this active learning framework
in detail.

At first, an initial system S with example base D is built, and its performance based
on test data T using the equation above is evaluated. Then, the system continues to
incrementally update dialogue examples for S until training epoch e reaches a
particular threshold (from line four to line ten). Lines five and six chose and remove

Request a human to
create a system response to uj

Update dialog examples
with new pair 〈uj, sj〉

Human
creator

u2 : Hello.

u2 : Hello.

u1 : I’m good at running

u2 : Hello.

u1 : Often, I go to
watch swimming

s1 : Are you good
at swimming?

s2 : Hi, I was waiting for
you to talk to me.

i=1Example base D:= {〈ui, si〉}
|D|

Fig. 2.11 Active learning for updating the example base given input logs

44 2 Chatbot Components and Architectures

k inputs from U (i.e. {u1,. . .,uk}), and request a human to build chatbot responses for
these inputs (i.e. {s1,. . .,sk}). Then, lines seven and eight update the training dataset
D by adding created example pairs {hu1,s1i,. . .,huk,ski}, and reconstruct S with the
updated dialogue examples. Finally, line nine evaluates the performance of the
updated S on the test data T.

We proceed with another example of overall chatbot architecture leveraging
active learning from humans (Fig. 2.12, Krause et al. 2017).

The chatbot input is first processed through a pre-processing pipeline mainly for
tokenization and Named Entity Recognition (NER). Remaining preprocessing is
performed in parallel, comprising another NER, coreference resolution and simple
user-modeling. The second NER is done using DBpedia Spotlight API (Daiber et al.
2013) that extracts more information on the named entities from Wikipedia.
Coreference annotation is performed over the previous four turns (such as two
turns each from the user and the bot), using Stanford CoreNLP deterministic
implementation. The mentions linked by coreference relation are used to modify
the current input message by replacing pronouns with the entity mentions they refer
to. Finally, user-modeling is a simple rule-based implementation that catches explicit
mentions of the user’s likes and dislikes, as well as when the user would like to
change the topic. These preferences are matched to a list of topics and subtopics that
the chatbot can handle. Other system components are as follows:

1. A likes and dislikes component whose purpose is to answer questions about
chatbot opinions on entities and definitions that the rule-based component fails
to cover.

2. An active learning/proactive component which asks the user a question or series
of questions, in order to turn the conversation back to what the matching score
can handle. The use of this component is limited to avoid probing the user too
often, resulting in an unpleasant user experience.

Fig. 2.12 Edina Chatbot architecture

2.5 Dialogue Management Based on Example-Based, Active and Transfer Learning 45

3. A matching score component that selects responses from the dataset of dialogue
pairs, based on how close the context of the user conversation is to the context of
the response in the available training data. The matching score also returns a
confidence score that is used to better control its interaction with the other
components.

4. A neural network that always generates a response and is deployed if the other
components fail. It often gives general and vague on topic responses as compared
with the more specific responses of the matching score.

Having covered Active and Example-based learning paradigms for chatbots, we
proceed to Transfer Learning, the reuse of a pre-trained model on a new problem. It
is currently very popular in the field of Deep Learning because it enables a chatbot
developer to train neural networks with relatively small dataset (Liu et al. 2017b).
This is very useful since most real-world problems typically do not have millions of
labeled data samples to train such complex models.

Having trained a model to predict the sentence following a window of previous
sentences, it is viable to apply the transfer learning technique to shift the focus of the
model from prediction to generation, by re-training a trained model on conversation
data. We pass the dialogue Dt � 1 in as the sentence context and the immediately
previous response xt as the query. By forcing the model to predict the next response,
it learns to generate meaningful responses to queries through a methodology that
accounts for the contextual history of the conversation up to that point.

Transfer learning is an instrumental component of the training process, simply
due to the immense disparity in the amount of available data for learning a language
model from vast amount of raw text. At the same time, conversational AI data, being
highly unstructured, diverse, is comparatively rare. We theoretically justify this
approach through the intuition that having been trained to predict sentences on
large amounts of structured text, the model is forced to learn to represent sentences
in a continuous, meaningful way that captures some notion of the sentence’s
underlying linguistic meaning and relationship to neighboring lexemes and linguistic
constructs. By fixing the embedding matrices as constant, the network should be able
to learn to generate responses to queries in a supervised way that takes into account,
a priori, both the “meaning” of sentences in the conversation history as well as their
relationship to each other.

Evaluating open domain dialogue generation requires a human level of compre-
hension and background knowledge. There are different quality attributes to be
analyzed, such as the accuracy of the text synthesis (McTear et al. 2016), and the
following skills:

• to convey personality;
• to maintain themed discussion;
• to respond to specific questions,
• to read and respond to moods of human participants (Zhou et al. 2017),
• to show awareness of trends and social context (Applin and Fischer 2015);
• the ability to detect intent (Marschner and Basilyan 2014).

46 2 Chatbot Components and Architectures

2.6 Conclusions

To embark on an adventure of building a chatbot, a developer needs an inspiration,
knowledge of fairly diverse topics in AI and an availability of components to
integrate. This book is a comprehensive source of algorithms and architectures for
building chatbots for various domains based on the recent trends in computational
linguistics and machine learning, and this chapter is the first step in this direction,
outlining the chatbot classics. Enterprise, high-performance chatbots with extensive
domain knowledge require a mix of statistical, inductive, deep machine learning and
learning from the web, syntactic, semantic and discourse-level NLP, ontology- based
reasoning and a state machine to control a dialogue.

Building a chatbot that addresses real industry pain points is a combination of
design, engineering and research problem. While platforms and frameworks avail-
able for addressing engineering and design problems have unidirectional focus,
resources addressing research, including machine learning, linguistics and reasoning
for chatbots, are highly generic and scattered. In this chapter we attempted to
compile classical research directions of chatbots in one place. This chapter is a
starting point for building and customizing different machine learning modules
specifically focused on industrial chatbots operating in vertical domains. These
chatbots target a completion of a specific task such as making travel bookings, gift
recommendation, ordering, and lead generation for different businesses. In each
chatbot domains like personal assistance, e-commerce, insurance, healthcare, fitness,
and other there are many classes of approaches such as deep learning-based,
retrieval-based, heuristic-based and a specific combinations of components
described in this chapter.

Building industrial-strength chatbots requires incorporating insight into the pecu-
liarities of human conversations and employing different natural language
processing modules. A popular approach is to combine rule-based and data-driven
methods, analyzing and indexing large corpora of social media data, including
Twitter conversations, online debates, dialogues between friends, and blog posts.
This data is augmented with sentiment and style analysis, topic modeling, and
summarization to learn more nuanced human language and proceed from task-
oriented agents to more personable social bots. Nevertheless, all these sources and
processing modules are insufficient to make a chatbot smart, and in the following
chapters we will explore how learning abstract linguistic structures and knowledge
from the web can be leveraged.

References

Allen JF, Perrault CR (1980) Analyzing intention in utterances. Artif Intell 15(3):143–178
Allen JF, Schubert LK (1991) The TRAINS project TRAINS technical note. Department of

Computer Science/University of Rochester, Rochester

References 47

Applin SA, Fischer MD (2015) New technologies and mixed-use convergence: how humans and
algorithms are adapting to each other. In: Technology and Society (ISTAS), 2015 IEEE
international symposium on, IEEE, pp 1–6

Bohus D, Rudnicky AI (2009) The RavenClaw dialog management framework: architecture and
systems. Comput Speech Lang 23(3):332–361

Britz D (2018) Deep learning for chatbots. http://www.wildml.com/2016/04/deep-learning-for-
chatbots-part-1-introduction/

Burgan D (2017) Dialogue systems & dialogue management. DST Group TR-3331. https://www.
dst.defence.gov.au/sites/default/files/publications/documents/DST-Group-TR-3331.pdf

Burtsev M, Seliverstov A, Airapetyan R, Arkhipov M, Baymurzina D, Bushkov N, Gureenkova O,
Khakhulin T, Kuratov Y, Kuznetsov D, Litinsky A, Logacheva V, Lymar A, Malykh V,
Petrov M, Polulyakh V, Pugachev L, Sorokin A, Vikhreva M, Zaynutdinov M (2018)
DeepPavlov: open-source library for dialogue systems. In: ACL-system demonstrations, pp
122–127

Cassell J, Bickmore T, Campbell L, Vilhjálmsson H (2000) Human conversation as a system
framework: designing embodied conversational agents, Embodied conversational agents. MIT
Press, Boston, pp 29–63

Chabernaud F (2017) Multimodal interactions with a chatbot and study of interruption recovery in
conversation. Masters thesis. Heriot-Watt University

Daiber J, Max Jakob, Chris Hokamp, PN Mendes (2013) Improving efficiency and accuracy in
multilingual entity extraction. In: Proceedings of the 9th international conference on semantic
systems (I-Semantics)

Dragone P (2015) Non-sentential utterances in dialogue: experiments in classification and interpre-
tation. In: Proceedings of the 19th workshop on the semantics and pragmatics of dialogue,
Gothenburg, Sweden, pp 170–171. Gothenburg University

Ferragina P, Scaiella U (2010) Tagme: on-the-fly annotation of short text fragments (by Wikipedia
entities). In: Proceedings of the 19th ACM international conference on information and knowl-
edge management. ACM, New York, pp 1625–1628

Galitsky B (2004) A library of behaviors: implementing commonsense reasoning about mental
world. In: International conference on knowledge-based and intelligent information and engi-
neering systems, pp 307–313

Galitsky B (2013) Exhaustive simulation of consecutive mental states of human agents. Knowl-
Based Syst 43:1–20

Galitsky B (2016) Theory of mind engine. In: Computational autism. Springer, Cham
Galitsky B (2017) Matching parse thickets for open domain question answering. Data Knowl Eng

107:24–50
Galitsky B, de la Rosa JL (2011) Concept-based learning of human behavior for customer

relationship management. Inf Sci 181(10):2016–2035
Galitsky BA, Ilvovsky D (2017) Chatbot with a discourse structure-driven dialogue management.

EACL Demo E17-3022. Valencia, Spain
Galitsky B, Kovalerchuk B (2014) Improving web search relevance with learning structure of

domain concepts. Clusters Orders Trees: Methods Appl 92:341–376
Galitsky B, Pampapathi R (2005) Can many agents answer questions better than one? First Monday

10(1)
Galitsky BA, Parnis A (2017) How children with autism and machines learn to interact. In:

Autonomy and artificial intelligence: a threat or savior. Springer, Cham
Galitsky BA, Shpitsberg I (2015) Evaluating assistance to individuals with autism in reasoning

about mental world. Artificial intelligence applied to assistive technologies and smart environ-
ments: papers from the 2015 AAAI workshop

Galitsky B, Shpitsberg I (2016) Autistic learning and cognition, in computational autism. Springer,
Cham

Galitsky B, Kuznetsov SO, Samokhin MV (2005) Analyzing conflicts with concept-based learning.
International conference on conceptual structures, pp 307–322

48 2 Chatbot Components and Architectures

http://www.wildml.com/2016/04/deep-learning-for-chatbots-part-1-introduction/
http://www.wildml.com/2016/04/deep-learning-for-chatbots-part-1-introduction/
https://www.dst.defence.gov.au/sites/default/files/publications/documents/DST-Group-TR-3331.pdf
https://www.dst.defence.gov.au/sites/default/files/publications/documents/DST-Group-TR-3331.pdf

Galitsky B, González MP, Chesñevar CI (2009) A novel approach for classifying customer
complaints through graphs similarities in argumentative dialogue. Decis Support Syst:46,
717–43, 729

Griol D, Molina J, Sanchis de Miguel A (2014) Developing multimodal conversational agents for
an enhanced e-learning experience. ADCAIJ: Adv Dist Comput Artif Intell J 3:13. 10.14201

Haptik (2018) Open source chatbot NER https://haptik.ai/tech/open-sourcing-chatbot-ner/
Hiraoka T, Neubig G, Yoshino K, Toda T and Nakamura S (2017) Active learning for example-

based dialog systems. IWSDS
Horvitz E, Breese J, Heckerman D, Hovel D, Rommelse K (1998) The Lumiere project: Bayesian

user modeling for inferring the goals and needs of software users. In: Proceedings of the 14th
conference on uncertainty in artificial intelligence, Madison, Wisconsin. Morgan Kaufmann
Publishers Inc, San Francisco, pp 256–265

Hu B, Lu Z, Li H, Chen Q (2014) Convolutional neural network architectures for matching natural
language sentences. In: Proceedings of the advances in neural information processing systems,
Montréal, Canada, pp 2042–2050

Jurafsky D, Martin JH (2009) Speech and language processing (Pearson International), 2nd edn.
Pearson/Prentice Hall, Upper Saddle River. ISBN 978-0-13-504196-3

Krause B, Damonte M, Dobre M, Duma D, Fainberg J, Fancellu F, Kahembwe E, Cheng J, Webber
B (2017) Edina: building an open domain socialbot with self-dialogues. https://arxiv.org/abs/
1709.09816

Kronlid F (2006) Turn taking for artificial conversational agents. In: Proceedings of the interna-
tional workshop on cooperative information agents. Springer, Edinburgh, pp 81–95

Larsson S, Traum DR (2000) Information state and dialogue management in the TRINDI dialogue
move engine toolkit. Nat Lang Eng 6(3&4):323–340

Lee S-I, Sung C, Cho S-B (2001) An effective conversational agent with user modeling based on
Bayesian network. In: Proceedings of the web intelligence: research and development. Springer,
Maebashi City, pp 428–432

Lee C, Jung S, Kim S, Lee GG (2009) Example-based dialog modeling for practical multi-domain
dialog system. Speech Comm 51:466

Lee C, Jung S, Kim K, Lee D, Lee GG (2010) Recent approaches to dialog management for spoken
dialog systems. Journal of Computing Science and Engineering 4(1):1–22

Levin E, Pieraccini R, Eckert W (2000) A stochastic model of human-machine interaction for
learning dialog strategies. IEEE Trans Speech Audio Proces 8(1):11–23

Lim S, Oh K, Cho S-B (2010) A spontaneous topic change of dialogue for conversational agent
based on human cognition and memory. In: Proceedings of the international conference on
agents and artificial intelligence. Springer, Valencia, pp 91–100

Liu H, Lin T, Sun H, Lin W, Chang C-W, Zhong T, Rudnicky A (2017a) RubyStar: a non-task-
oriented mixture model dialog system. First Alexa Prise comptions proceedings

Liu M, Shi J, Li Z, Li C, Zhu J, Liu S (2017b) Towards better analysis of deep convolutional neural
networks. IEEE Trans Vis Comput Graph 23(1):91–100. https://doi.org/10.1109/TVCG.2016.
2598831

LuperFoy S, Loehr D, Duff D, Miller K, Reeder F, Harper L (1998) An architecture for dialogue
management, context tracking, and pragmatic adaptation in spoken dialogue systems. In: Pro-
ceedings of the 36th ACL and the 17th ACL-COLING, Montreal, Canada, pp 794–801

Manning CD, Surdeanu M, Bauer J, Finkel J, Bethard SJ, McClosky (2014) The stanford CoreNLP
natural language processing toolkit. Proceedings of 52nd Annual Meeting of the Association for
Computational Linguistics: System Demonstrations, pp 55–60, Baltimore, Maryland USA, June
23–24

Marschner C, Basilyan M (2014) Identification of intents from query reformulations in search. US
Patent App. 14/316,719 (June 26 2014)

McTear M (2002) Spoken dialogue technology: enabling the conversational user interface. ACM
Comput Surv 34(1):90–169

References 49

https://haptik.ai/tech/open-sourcing-chatbot-ner/
https://arxiv.org/abs/1709.09816
https://arxiv.org/abs/1709.09816
https://doi.org/10.1109/TVCG.2016.2598831
https://doi.org/10.1109/TVCG.2016.2598831

McTear M, Callejas Z, Griol D (2016) Evaluating the conversational interface. In: The conversa-
tional interface. Springer, Cham, pp 379–402

Meng F, Lu Z, Tu Z, Li H, Liu Q (2015) A deep memory-based architecture for sequence-to-
sequence learning. In: Proceedings of the ICLR workshop, San Juan, Puerto Rico

Mingxuan W, Zhengdong L, Li H, Jiang W, Liu WJQ (2015) A convolutional architecture for word
sequence prediction. In: Proceedings of the 53rd ACL, Beijing, China, pp 9

Murao H, Kawaguchi N, Matsubara S, Inagaki Y (2001) Example- based query generation for
spontaneous speech. Proceedings of ASRU

Nio L, Sakti S, Neubig G, Toda T, Nakamura S (2014) Utiliz- ing human-to-human conversation
examples for a multi domain chat-oriented dialog system. Trans IEICE E97:1497

Nisimura R, Nishihara Y, Tsurumi R, Lee A, Saruwatari H, Shikano K (2003) Takemaru-kun:
speech-oriented information system for real world re- search platform. In: Proceedings of LUAR

Papangelis A, Karkaletsis V, Makedon F (2012) Online complex action learning and user state
estimation for adaptive dialogue systems. In: Proceedings of the 24th IEEE international
conference on tools with artificial intelligence, Piraeus, Greece, pp 642–649. IEEE

Raux A, Eskenazi M (2012) Optimizing the turn-taking behavior of task-oriented spoken dialog
systems. ACM Trans Speech Lang Proces 9(1):1

Sacks H, Schegloff EA, Jefferson G (1974) A simplest systematics for the organization of turn-
taking for conversation. Language 50(4):696–735

Schröder M (2010) The SEMAINE API: towards a standards-based framework for building
emotion-oriented systems. Adv Hum Comput Interact 2010:319–406. https://doi.org/10.1155/
2010/319406

Serban IV, Sordoni A, Bengio Y, Courville A, Pineau J (2016) Building end-to-end dialogue
systems using generative hierarchical neural network models. In: Proceedings of the 30th AAAI
conference on artificial intelligence, Phoenix, Arizona, pp 3776–3783

Shawar BA, Atwell E (2007) Chatbots: are they really useful? LDV Forum 22:29–49
Skantze G (2007) Error handling in spoken dialogue systems-managing uncertainty, grounding and

miscommunication. Doctoral thesis in Speech Communication. KTH Royal Institute of Tech-
nology. Stockholm, Sweden

Smith C, Crook N, Dobnik S, Charlton D, Boye J, Pulman S, De La Camara RS, Turunen M,
Benyon D, Bradley J (2011) Interaction strategies for an affective conversational agent.
Presence Teleop Virt 20(5):395–411

Singaraju G (2019) Introduction to embedding in natural language processing. https://www.
datascience.com/blog/embedding-in-natural-languageprocessing

Sordoni A, Galle M, Auli M, Brockett C, Mitchell YM, Nie J-Y, Gao J, Dolan B (2015) A neural
network approach to context- sensitive generation of conversational responses, Proceedings of
NAACL

Stent A, Dowding J, Gawron JM, Bratt EO, Moore R (1999) The command talk spoken dialogue
system. In: Proceedings of the 37th annual meeting of the association for computational
linguistics on computational linguistics. Association for Computational Linguistics, College
Park, pp 183–190

Su P-H, Vandyke D, Gasic M, Kim D, Mrksic N, Wen T-H, Young S (2015) Learning from real
users: Rating dialogue success with neural networks for reinforcement learning in spoken
dialogue systems. In: INTERSPEECH

Vinyals O, Le QV (2015) A neural conversational model. In: ICML deep learning workshop
Wallace RS (2009) The anatomy of A.l.i.c.e, Parsing the Turing Test. pp 181–210
Weizenbaum J (1966) ELIZA—a computer program for the study of natural language communi-

cation between man and machine. Commun ACM 9(1):36–45
Wiemer-Hastings P, Graesser AC, Harter D, Group TR (1998) The foundations and architecture of

AutoTutor. In Proceedings of the International Conference on Intelligent Tutoring Systems, San
Antonio, Texas, pp 334–343. Springer

Williams JD, Young S (2007) Partially observable Markov decision processes for spoken dialog
systems. Comput Speech Lang 21(2):393–422

50 2 Chatbot Components and Architectures

https://doi.org/10.1155/2010/319406
https://doi.org/10.1155/2010/319406
https://www.datascience.com/blog/embedding-in-natural-languageprocessing
https://www.datascience.com/blog/embedding-in-natural-languageprocessing

Wollmer M, Schuller B, Eyben F, Rigoll G (2010) Combining long short-term memory and
dynamic Bayesian networks for incremental emotion-sensitive artificial listening. IEEE J Sel
Top Sig Proces 4(5):867–881

Xu B, Guo X, Ye Y, Cheng J (2012) An improved random forest classifier for text categorization.
JCP 7:2913–2920

Yankelovich N, Baatz E (1994) SpeechActs: a framework for building speech applications. In:
Proceedings of the American Voice I/O Society conference, San Jose, California, pp 20–23.
Citeseer

Zhou H, Huang M, Zhang T, Zhu X, Liu B (2017) Emotional chatting machine: emotional
conversation generation with internal and external memory. arXiv preprint arXiv. 1704.01074

References 51

Chapter 3
Explainable Machine Learning
for Chatbots

Abstract Machine learning (ML) has been successfully applied to a wide variety of
fields ranging from information retrieval, data mining, and speech recognition, to
computer graphics, visualization, and human-computer interaction. However, most
users often treat a machine learning model as a black box because of its incompre-
hensible functions and unclear working mechanism (Liu et al. 2017). Without a
clear understanding of how and why a model works, the development of high
performance models for chatbots typically relies on a time-consuming trial-and-
error process. As a result, academic and industrial ML chatbot developers are
facing challenges that demand more transparent and explainable systems for better
understanding and analyzing ML models, especially their inner working
mechanisms.

In this Chapter we focus on explainability. We first discuss what is explainable
ML and how its features are desired by users. We then draw an example chatbot-
related classification problem and show how it is solved by a transparent rule-based
or ML method. After that we present a decision support-enabled chatbot that shares
its explanations to back up its decisions and tackles that of a human peer. We
conclude this chapter with a learning framework representing a deterministic induc-
tive approach with complete explainability.

3.1 What Kind of Machine Learning a Chatbot Needs

3.1.1 Accuracy vs Explainability

The question of whether accuracy or explainability prevails in an industrial machine
learning systems is fairly important. The best classification accuracy is typically
achieved by black-box ML models such as Support Vector Machine, neural net-
works or random forests, or complicated ensembles of all of these. These systems are
referred to as black-boxes and their drawbacks are frequently cited since their inner
workings are really hard to understand. They do not usually provide a clear expla-
nation of the reasons they made a certain decision or prediction; instead, they just

© Springer Nature Switzerland AG 2019
B. Galitsky, Developing Enterprise Chatbots,
https://doi.org/10.1007/978-3-030-04299-8_3

53

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04299-8_3&domain=pdf

output a probability associated with a prediction. One of the major problem here is
that these methods typically require extensive training sets.

On the other hand, ML methods whose predictions are easy to understand and
interpret frequently have limited predictive capacity (inductive inference, linear
regression, a single decision tree) or are inflexible and computationally cumbersome,
such as explicit graphical models. These methods usually require less data to train
from, but give lower classification accuracies.

Our claim in this study for industrial applications of ML is as follows. Whereas
companies need to increase an overall performance for the totality of users, individ-
ual users mostly prefer explainability. Users can tolerate wrong decisions made by
the companies’ ML systems as long as they understand why these decisions were
made. Customers understand that any system is prone to errors (Galitsky and de la
Rosa 2011), and they can be positively or negatively impressed by how a company
rectifies these errors. In case an error is made without an explanation, and could not
be fixed reasonably well and communicated properly, customers frequently want to
stop being customers of this business.

We will back up this observation, automatically analyzing customer complaints.
To do that, we develop a machinery to automatically classify customer complaints
with respect to whether explanation was demanded or not. This is a nontrivial
problem since complaint authors do not always explicitly write about their intent
to request explanation. We then compare the numbers of customers just complaining
about problems associated with products and services and those requesting expla-
nations associated with these problems. We estimate the proportion of those com-
plaints, which require explanations.

3.1.2 Explainable vs Unexplainable Learning

To tackle the challenges associated with the lack of explainability of most popular
modern ML algorithms, there are some initial efforts on interactive model analysis.
These efforts have shown that interactive visualization plays a critical role in
understanding and analyzing a variety of machine learning models. Recently,
DARPA (2016) released Explainable Artificial Intelligence proposal to encourage
research on this topic. The main goal of XAI is to create a suite of machine learning
techniques that produce explainable models to enable users to understand, trust, and
manage the emerging generation of AI systems (Gilpin et al. 2018).

There have been attempts to augment the learning models intrinsically lacking
explainability with this feature. ML models can be trained to automatically map
documents into abstract concepts such as semantic category, writing style, or senti-
ment, allowing categorizing a large corpus. Besides predicting the text’s category, it is
essential to understand how the categorization process arrived to a certain value.
(Arras et al. 2017) demonstrate that such understanding can be achieved by tracing
the classification decision back to individual words using layer-wise relevance prop-
agation, a recently developed technique for explaining predictions of complex

54 3 Explainable Machine Learning for Chatbots

non-linear classifiers. The authors trained two word-based ML models, a CNN and a
bag-of-words SVM classifier, on a topic categorization task and applied the layer-wise
relevance propagation method to decompose the predictions of these models onto
words. Resulting scores indicate how much individual words contribute to the overall
classification decision. This enables one to distill relevant information from text
documents without an explicit semantic information extraction step. The authors
further used the word pair-wise relevance scores for generating novel vector-based
document representations which capture semantic information. Based on these docu-
ment vectors, a measure of model explanatory power was introduced and showed that,
although the SVM and CNN models perform similarly in terms of classification
accuracy, the latter exhibits a higher level of explainability which makes it more
comprehensible for humans and potentially more useful for other applications.

Although ML models are widely used in many applications due to high accuracy,
they fail to explain their decisions and actions to users. Without a clear understand-
ing, it may be hard for users to leverage their knowledge by their learning process
and achieve a better prediction accuracy. As a result, it is desirable to develop more
explainable machine learning models, which have the ability to explain their ratio-
nale and convey an understanding of how they behave in the learning process. The
key challenge here is to design an explanation mechanism that is tightly integrated
into the ML model. Accordingly, one interesting future work is to discover which
parts in an ML model structure explains its different functions and plays a major role
in the performance improvement or decline at each iteration. One possibility is to
better back up both the model and the decisions made. In particular, (Lake et al.
2015) proposed a probabilistic program induction algorithm, having developed a
stochastic program to represent concepts, which are formed compositionally from
parts and spatial relations. (Lake et al. 2015) showed that their algorithm achieved
human-level performance on a one-shot classification task. However, for the tasks
that have abundant training data, such as object and speech recognition, deep
learning approaches still outperform (Lake et al. 2015) algorithm. There is still a
long path to proceed towards more explainable deep learning decisions.

Following a recent progress in deep learning, ML scientists are recognizing the
importance of understanding and interpreting what goes on inside these black box
models. Recurrent neural networks have recently improved speech recognition and
translation, and these powerful models would be very useful in other applications
involving sequential data. However, adoption has been slow in domains such as law,
finance, legal and health, where current specialists are reluctant to let an explanation-
less engine make crucial decisions. (Krakovna and Doshi-Velez 2016) suggests to
make the inner workings of recurrent neural networks more interpretable so that
more applications can benefit from their power.

Convolutional neural networks have achieved breakthrough performance in
many pattern recognition tasks such as image classification. However, the develop-
ment of high-quality deep models typically relies on a substantial amount of trial-
and- error, as there is still no clear understanding of when and why a deep model
works. (Liu et al. 2017) presents a visual analytics approach for better understanding,
diagnosing, and refining deep convolutional neural networks. The authors simulated

3.1 What Kind of Machine Learning a Chatbot Needs 55

convolutional neural networks as a directed acyclic graph. Based on this formula-
tion, a hybrid visualization is developed to visualize the multiple facets of each
neuron and the interactions between them. The authors also introduced a hierarchical
rectangle-packing algorithm and a matrix re-shuffling method to show the derived
features of a neuron cluster. They also proposed a bi – clustering-based edge
merging algorithm to minimize visual distortion caused by a large number of
connections between neurons.

3.1.3 Use Cases for the ML System Lacking Explainability

Although ML is actively deployed and used in industry, user satisfaction is still not
very high in most domains. We will present three use cases where explainability and
interpretability of machine learning decisions is lacking and users experience dis-
satisfaction with certain cases.

A customer of financial services is appalled when he traveled and his credit cards
were canceled without an obvious reason (Fig. 3.1). The customer explains what had
happened in details and his Facebook friends strongly support his case again the
bank. Not only the bank made an error in its decision, according to what the friends
write, but also it is unable to rectify it and communicate it properly.

If this bank used a decision-making system with explainability, there would be a
given cause of its decision. Once it is established that this cause does not hold, the bank
is expected to be capable of reverting its decision efficiently and retaining the customer.

An example of a popular machine learning system is shown in Fig. 3.2. The
system translates the term coil spring (in Russian) into spring spring. This example
shows problem in the simplest case of translation where a meaning of two words
needs to be combined. A simple meta-reasoning system, a basic grammar checking
component or an entity lookup would prevent this translation error under appropriate
compartmental ML architecture with explainability. However, a black-box imple-
mentation of machine translation breaks even in simple cases like this. Inverse
translation is obviously flawed as well (in the middle of Fig. 3.2). The bottom
shows the fragment of a Wikipedia page for the entity.

Search engine is another application area for ML where relevance score is a major
criterion to show certain search results (Fig. 3.3). Having a highest relevance score
does not provide an explanation that the results are indeed relevant. Typical rele-
vance score such as TF*IDF is hardly interpretable; search highlighting features are
helpful but the search engine needs to be able to explain why it ignored certain
keywords like non-sufficient funds. A better phrase handling would also help: the
system should recognize the whole expression non-sufficient funds fee and if it does
not occur in search results, explain it.

To investigate how important it is for a customer to have a company’s decision
explained, to have a decision associated with financial service interpretable and
compatible with common sense, we need the following. A high number of scenarios
of financial service failure have to be accumulated and a proportion of those requiring

56 3 Explainable Machine Learning for Chatbots

explanation from the company in one form or another has to be assessed. To do that,
we form a dataset of customer complaint scenarios and build an automated assessment
framework to detect the cases where explainability is requested.

Fig. 3.1 A customer is confused and his peers are upset when his credit card is canceled but no
explanation is provided

3.1 What Kind of Machine Learning a Chatbot Needs 57

Fig. 3.2 Translation results for a simple phrase shows the problems in handling context

Fig. 3.3 A search engine shows results very far from what a user is asking and do not attempt to
explain how they were obtained

58 3 Explainable Machine Learning for Chatbots

3.1.4 Automated Detection of a Request to Explain

Obviously, just relying on keywords, using keyword rules is insufficient to detect
implicit request to explain. Hence an ML approach is required with the training
dataset with text including a request to explain and not including one. Not just syntax
level but discourse-level features are required when a request to explain is not
explicitly mentioned. We select the Rhetoric Structure Theory (Rhetoric Structure
Theory (RST, Mann and Thompson 1988) as a means to represent discourse features
associated with affective argumentation (Galitsky et al. 2009).

Once we developed our algorithm for explanation request detection, we want to
train it, test it and verify how consistent its results are across the domains. We also
test how recognition accuracy varies for cases of different complexity.

Detection accuracy for explanation request for different types of evidence is
shown in Table 3.1. We consider simpler cases where the detection occurs based
on phrases, in the top row. Typical expressions here have an imperative form such as
please explain/clarify/motivate/comment. Also, there are templates here such as you
did this but I expected that . . . you told me this but I received that.

The middle row contains the data on higher evidence implicit explanation request
case, where multiple fragments of DTs indicate the class. Finally, in the bottom row,
we present the case of the lower confidence for a single occurrence of a DT
associated with an explanation request. The second column shows the counts of
complaints per case. The third column gives examples of expressions (which include
keywords and phrase types) and rhetorical relations which serve as criteria for
implicit explanation request. Fourth, fifth and sixth columns presents the detection
rates where the complaints for a given case is mixed with a 100 of complaints
without explanation request, representing the real-world situation.

Recognition accuracies, bank-specific topics of complaints and an overall proportion
of the complaints with explanation request are shown in Table 3.2. We used 200 com-
plaints for each bank to assess the recognition accuracies for explanation request.
82 � 3% looks like a reasonable estimate for recognition accuracy for explanation
request. The last column on the right shows that taking into account <20% error rate in
explanation request recognition, 25 � 4% is an adequate estimate of complaints
requiring explainability in implicit or explicit form, given the set of 800 complaints.
Hence the explanation request (ER) rate is about a quarter of all complaints.

Table 3.1 Cases of explanation requests and detection accuracies for model development and
evaluation

Evidence # Criteria P R F1

Imperative expression with
communicative action explain

44 Keywords: explain, clarify, make
clear, why did they act-VP, why was it

92 94 93.0

Double, triple+ implicit
mention

67 Multiple rhetoric relation of contrast,
attribution, sequence, cause

86 83 84.5

Single implicit mention 115 A pair of rhetoric relation chains for
contrast and cause

76 80 77.9

3.1 What Kind of Machine Learning a Chatbot Needs 59

Finally, we ran our explanation request detection engine against the set of 10,000
complaints scraped from PlanetFeedback.com and observed that 27% of complain-
ants explicitly or implicitly require explainability from companies for their deci-
sions. There is a single complaint per author. Our observation is that since almost a
quarter of customers strongly demand and rely on explainability of the companies’
decisions, these customers are strongly affected by the lack of explainability and
may want to switch to another service. Hence the companies need to employ ML
algorithms with explainability feature. A very small number of customers
complained about errors in decisions irrespectively of how these errors were com-
municated (a manual analysis). Hence we conjecture that customers are affected by a
lack of explainability in a much higher degree than by an error rate (such as extra
10%, based on anecdotal evidence) of a company’s decision-making system.

This explainability feature is more important than the recognition accuracy for the
customers, who understand that all businesses make errors in the course of normal
operations. Typically, when a company makes a wrong decision via ML but then
rectifies it efficiently, a complaint does not arise. The most important means for
customer retention is then properly communicating with them both correct and
possibly erroneous customer decisions (not quantitatively evaluated in this study).

Having presented the value of explainability and transparency in an ML system,
we proceed to an example of a hybrid rule-based classification system. It possesses
desired features and performs an essential task for chatbot functioning.

3.2 Discriminating Between a User Question and User
Request

One of the essential capabilities of a chatbot is to discriminate between a request to
commit a transaction and a question to obtain some information (Galitsky and
Ilvovsky 2017). Usually, these forms of user activity follow each other.

Before a user wants chatbot to perform an action (such as open a new bank
account) she would want to know the rules and conditions for this account. Once the

Table 3.2 Discovering explanation request rates for four banks

Source # Main topics of complaints P R F1
ER
rate

Bank of
America

200 NSF, credit card interest rate raise 82 84 83.0 28.5

Chase Bank 200 NSF, foreclosure, unexpected card
cancellation

80 82 81.0 25.8

Citibank 200 Foreclosure, mortgage application,
refinancing,

79 83 81.0 23.8

American
express

200 Card application, NSF, late payment 83 82 82.5 27.0

60 3 Explainable Machine Learning for Chatbots

http://planetfeedback.com

user knowledge request is satisfied, she makes a decision and orders a transaction.
Once this transaction is completed by the chatbot, the user might want to know her
list of options available and asks a question (such as how to fund this new account).
Hence user questions and transactional requests are intermittent and need to be
recognized reliably.

Errors in recognizing questions vs transactional requests are severe. If a question
is misinterpreted and an answer to a different question is returned, the user can
reformulate it and ask again. If a transactional request is recognized as a different
(wrong) transaction, the user will understand it when the chatbot issues a request to
specify inappropriate parameters. Then the user would cancel her request, attempt to
reformulate it and issue it again. Hence chatbot errors associated with wrongly
understood questions and transactional requests can be naturally rectified. At the
same time, chatbot errors recognizing questions vs transactional requests would
break the whole conversation and the user would be confused on how to continue
conversation. Therefore, the chatbot needs to avoid this kind of errors by any means.

Recognizing questions vs transactional requests must be domain-independent.
In any domain a user might want to ask a question or to request a transaction, and
this recognition should not depend on the subject. Whereas a chatbot might need
training data from a chatbot developer to operate in a specific domain (such as
personal finance), recognizing questions vs transactional requests must be a capa-
bility built in advance by a chatbot vendor, before this chatbot will be adjusted to a
particular domain.

We also target recognition of questions vs transactional requests to be in a
context-independentmanner. Potentially there could be any order in which questions
are asked and requests are made. A user may switch from information access to a
request to do something and back to information access, although this should be
discouraged. Even a human customer support agent prefers a user to first receive
information, make a decision and then request an action (make an order).

A request can be formulated explicitly or implicitly. Could you do this may mean
both a question about the chatbot capability as well as an implicit request to do this.
Even a simple question what is my account balancemay be a transactional request to
select an account and execute a database query. Another way to express a request is
via mentioning of a desired state instead of explicit action to achieve it. For example,
utterance “I am too cold” indicates not a question but a desired state that can be
achieved by turning on the heater. If no available action is associated with “cold” this
utterance is classified as a question related to “coldness”. To handle this ambiguity in
a domain-independent manner, we differentiate between a questions and a transac-
tional requests linguistically, not pragmatically.

Although a vast training dataset for each class is available, it turns out the a rule-
based approach provides an adequate performance. For an utterance, classification
into a request or question is done by a rule-based system on two levels:

1. Keyword level
2. Linguistic analysis of phrases level

3.2 Discriminating Between a User Question and User Request 61

The algorithm chart includes four major components (Fig. 3.4):

• Data, vocabularies, configuration
• Rule engine
• Linguistic Processor
• Decision Former

Data, vocabularies, configuration components included leading verbs indicating
that an utterance is a request. It also includes expressions used by an utterance author
to indicate the he wants something from a peer, such as ‘Please do . . . for me’. These
expressions also refer to information request such as ‘Give me MY . . .’ such as
account information. For a question, this vocabulary includes the ways people address
questions, such as ‘please tell me. . .’.

Fig. 3.4 The architecture for question vs transaction request recognition. The class labels on the
bottom correspond to the decision rules above

62 3 Explainable Machine Learning for Chatbots

Rule engine applies a sequence of rules, both keyword-based, vocabulary-based
and linguistic. The rules are applied in certain order, oriented to find indication of a
transaction. If main cases of transactions are not identifies, only then the rule engine
applies question rules. Finally, if question rules did not fire, we classify the utterance
as unknown, but nevertheless treat it as default, a question. Most rules are specific to
the class of requests: if none of them fire then the decision is also a question.

Linguistic processor targets two cases: imperative leading verb and a reference to
“my” object. Once parsing is done the first word should be a regular verb in present
tense, active voice, neither modal, mental (Galitsky 2016) or a form of be. These
constraints assure this verb is in the imperative form ‘Drop the temperature in the
room’. The second case addresses utterance related to an object the author owns or is
associated too, such as ‘my account balance’ and ‘my car’. These utterances are
connected with an intent to perform an action with these objects or request for an
information on them (versus a question which expresses a request to share general
knowledge, not about this particular, my object).

Decision former takes an output of the Rule Engine and outputs one out of three
decisions, along with an explanation for each of them. Each fired keyword-based
rule provides an explanation, as well as each linguistic rule. So when a resultant
decision is produced, there is always a detailed back up of it. If any of the
components failed while applying a rule, the resultant decision is unknown.

If no decision is made, the chatbot comes back to the user asking for explicit
clarification: ‘Please be clearer if you are asking a question or requesting a
transaction’.

3.2.1 Examples of Questions and Transactional Requests

We present examples for each class together with the rules which fired and delivered
the decision (shown in []).

Questions

If I do not have my Internet Banking User ID and Password, how can I login? [if and
how can I – prefix]

I am anxious about spending my money [mental verb]
I am worried about my spending [mental verb]
I am concerned about how much I used [mental verb]
I am interested how much money I lost on stock [mental verb]
How can my saving account be funded [How+my]
Domestic wire transfer [no transactional rule fired therefore question]
order replacement/renewal card not received [no transactional rule fired therefore

question]

Transactional Requests

Open iWish – a Flexible Recurring Deposit [leading imperative verb]

3.2 Discriminating Between a User Question and User Request 63

Cancel a Fixed Deposit using ICICI Bank VISA Debit Card [leading imperative
verb]

Help me to Login and raise a Service Request [leading imperative verb]
Turn the light on [postfix]
Put wiper rate on high [postfix]
Transfer funds from checking to saving [leading imperative verb]
Move funds from saving to mortgage [leading imperative verb]
Fund my investment account from checking [leading imperative verb + my without

How]
Wiremoney frommy checking to investment [leading imperative verb +mywithout

How]
too loud, quieter please [leading adjective prefix]
set the security system to off [postfix]
close the garage door [leading imperative verb]
do western union [leading imperative verb do]
give me the check deposited in Bank Account but not credited [leading imperative

verb + me]

3.2.2 Nearest Neighbor-Based Learning for Questions vs
Transactional Requests Recognition

If a chatbot developer/vendor intends to overwrite the default questions vs transac-
tional requests recognition rules, he would need to supply a balanced training set
which includes samples for both classes. To implement a nearest-neighbor function-
ality, we rely on information extraction and search library (Lucene 2018). The
training needs to be conducted in advance, but in real time when a new utterance
arrives the following happens:

1. An instant index is created from the current utterance;
2. We iterate through all samples from both classes. For each sample, a query is built

and search issued against the instant index;
3. We collect the set of queries which delivered non-empty search results with its

class and aggregate this set by the classes;
4. We verify that a certain class is highly represented by the aggregated results and

the other class has significantly lower presentation. Then we select this highly
represented class as a recognition result. Otherwise, the system should refuse to
accept a recognition result and issue Unknown.

Lucene default TF*IDF model will assure that the training set elements is the
closest in terms of most significant keywords (from the frequency perspective, (Tan
2005; Salton and Yang 1973)). (Trstenjak et al. 2013) present the possibility of using
a nearest neighbor (KNN) algorithm with TF*IDF method for text classification.

64 3 Explainable Machine Learning for Chatbots

This method enables classification according to various parameters, measurement
and analysis of results. Evaluation of framework was focused on the speed and
quality of classification, and testing results showed positive and negative character-
istics of TF*IDF-KNN algorithm. Evaluation was performed on several categories of
documents in online environment and showed stable and reliable performance. Tests
shed the light on the quality of classification and determined which factors have an
impact on performance of classification.

3.3 A Decision Support Chatbot

We propose an active learning framework for a decision support where a user expert
presents her decision first in an explicit manner. This framework allows the machine
learning component leverage the explainable decision presented by the expert first
and then produce an explainable decision comparable with the manual one. This type
of active learning framework is expected to improve the quality of the resultant,
hybrid decision and constantly maintain the decision skill level of the human expert.

In spite of the high success of the existing decision support systems (DSS)
(Newman et al. 2000; Hartono et al. 2007; Galitsky et al. 2009), their expert users
rely on them more and more, obtain and use a DSS result and become detached from
a decision process itself. The issue here is a lack of responsibility of these expert
users for the final decision, as well as an accuracy of future decisions (Goldberg et al.
2008). It is well known that a drop of accuracy of DSS system is caused by domain
evolution, where the training occurred on the original, old data and the current, new
data may significantly deviate. The rate of this domain evolution, concept drift
(Krawczyk et al. 2017), can be much higher that the self re-training capabilities of
the DSS. Hence it is fairly important that this DSS produces an adequate explanation
of its decision so that the human expert can assess this decision with respect to recent
data (Shklovskiy-Kordi et al. 2005).

European Union’s new General Data Protection Regulation also control the
applicability of machine learning (https://eugdpr.org/). These regulations restrict
automated individual decision-making (that is, algorithms that make decisions
based on user-level predictors) which “significantly affect” users. The law
effectively creates a right to explanation, whereby a human user can request an
explanation of an algorithmic decision that was made about them (Goodman and
Flaxman 2017).

In this Section we focus on interactions between a DSS-enabled chatbot and a
human expert that goes beyond the active learning framework. For an extended set
of features, a decision support session starts with a delivery of a human expert
decision to the chatbot, given a set m < <n of features this human expert relied his
decision upon. Then the chatbot would have to explain disagreement of its decision
with the human experts’ prior decision, presenting the set d of features employed in
DSS decision.

3.3 A Decision Support Chatbot 65

https://eugdpr.org/

There are two reasons decision agents including humans and machines make
mistakes:

1. recognition model;
2. distortion of parameter values due to measurement errors and cognitive bias.

In most cases, humans are subject to errors associated with their sentiments.
Both machines and humans learn and generalize from data and both make errors

(Galitsky and Parnis 2017). (Goldberg et al. 2007) has been investigating this in a
medical decision support domain. However, unlike machines, humans possess
ontologies and are capable of applying them to assess their decisions. Humans
usually learn from a smaller set of examples but the accuracy of their decisions is
achieved by applying ontologies on top of generalizations. Even when a machine has
an ontology, we assume that it is limited in scope and cannot cover all cases. For
humans, all cases are covered by some kind of ontological knowledge.

As an example, we use a case of visual recognition of images of dogs and wolves.
Generalizing from available data, machines build a model where if there is a snow in
background, it is a wolf. Although this turns out to cover the training set well, human
ontology hints that this generalization is prone to errors since dog images can have
snow in background as well.

We design dialogue management in our chatbot to facilitate interactions between
the DSS and human expert. A sample session is shown in Fig. 3.5.

Meta-agent does not have its own model of a phenomenon; instead, it controls the
information exchange between the DSS and human expert in the form of a decision
and its explanation as a set of parameters and their values.

3.3.1 Example of a Decision Support Session

We present a classification problem for three animals: a wolf, a dog and a coyote,
relying on the following parameters: animal length, skin color, height, speed, tail
length and tail direction (Table 3.3).

Human agent and DSS have different models of a phenomenon such as an animal.
They cannot exchange model parameters but instead they can encourage each other
to pay attention to particular parameters they think are important for recognition.

Step 1. A human expert takes a sample and attempts to solve a problem. Let us
imagine the following parameters as identified by her:

Length ¼ 115 sm with the range of possible errors [100–130]
Color ¼ ‘light grey’ with the range [white . . . grey]
Height ¼ 70 sm with the range [55–85]
Speed ¼ 40 km/h with the range [35–45]
Tail.length ¼ long with the range [average]
Tail.direction ¼ down with range [straight]

66 3 Explainable Machine Learning for Chatbots

Step 2. Expert decides that it is a wolf, since (Step 3):

Length ¼ 115
Color ¼ light grey
Height ¼ 70 sm
Tail.direction ¼ down

Fig. 3.5 A high-level schema of a dialogue for a DSS chatbot

3.3 A Decision Support Chatbot 67

Step 4. DSS: If turn length ¼ 115sm into 100sm and height ¼ 70sm into
55) coyote

If Tail.direction ¼ straight)dog
If without correction) wolf
Chatbot is asking human about the tail:
Tail.direction ¼ straight and Tail.length ¼ average, nevertheless) wolf.
Now the new set of feature values:
Tail.length ¼ average with the range [short. . .long]
Tail.direction ¼ straight with range [down. . .up]

Step 5. DSS) dog since (Step 6)

Tail.direction ¼ straight
Speed ¼ 40 km/Ec
(Explanation only for dog vs. wolf)
Expert: what if Tail.direction ¼ down?
DSS: still dog since can only be wolf, not coyote
Speed ¼ 40 km/h
Tail.length ¼ average
Expert: What if both Tail.direction ¼ down and speed ¼ 35 km/h?
DSS: then it becomes wolf
Expert: What if Tail.direction ¼ down and tail.length ¼ long?
DSS: wolf

Step 7. Now the human expert can do the final judgment.

3.3.2 Computing Decisions with Explanations

Let x¼ (x1, x2, .., xn) be the n input parameters to the algorithm. xi can be continuous
(numerical) or categorical (Boolean) variables. Let X be a set of x. Let v ¼ (v1, . . .,
vn) be the particular input values entered by the user.

Let D ¼ {αj}, j ¼ 1,..., k be the set of k possible decisions or output classes.
Let αU 2 D be the initial unassisted decision of the user.
Additionally we allow the user to mark a subset of input parameters (v1, . . ., vm)

m � n as being particularly important to their decision αU

Table 3.3 Classification
features

Wolf Coyote Greyhound

Length, sm 100–160 75–100 100–120

Height, sm 80–85 45–55 68–76

Color Gray Light gray Any

Speed, km/h Up to 60 Up to 70 70

Tail length, sm Long Average Long

Tail direction Down Down Not down

68 3 Explainable Machine Learning for Chatbots

We define the decision function f which maps an input vector v and a class α 2
D to confidence c 2 [0, 1]:

f α; xð Þ : α, x ! 0; 1½ �:

Let αml be the algorithm decision based on the user-provided input values v.

f αml; vð Þ ¼ max f α; xð Þð Þfor all α 2 D:

For any parameter of x, its value ximay have bias or error so we define Ω(xi) such
that Ω(xi) > (Ω(xi)�& Ω(xi) < Ω (xi)

+) as the set of values which are considered
within the error bounds for xi. The bias includes the uncertainty of an object and
uncertainty of the assessor. When there is an uncertainty in assessing a feature, we
have the phenomena of “confirmation bias” and “selective perception” (Plous 1993;
Lee et al. 2013).

We introduce a feature normalization xi
new for each i-th dimension, set based on

the following four thresholds: а0i, а1i, а2i, а3i, а4i (Shklovsky-Kordi et al. 2005):

хi < а0i : strong deviation : xi
new ¼ 0þ хi=а0i

а1i < хi < а2i : abnormal : xi
new ¼ 1þ хi � а1 j

� �
= а2i � а1ið Þ

а2i < хi < а3i : normal : xi
new ¼ 2þ хi � а2 j

� �
= а3i � а2ið Þ

а3i < хi < а4i : abnormal : xi
new ¼ 3þ хi � а3 j

� �
= а4i � а3ið Þ

a4i < xi < a4i : strong deviation : xi
new ¼ 4þ xi=ða4iÞ

Based on this definition, we compute X ! Xnew and Xnew ! X. Now we define
the similarity between the object x and y as a vector distance ||x – y||.

Division of the measured value by the accepted average value accomplishes the
normalization. The calculation is executed separately for normal, abnormal and
strong_deviation value. To define a range of sub-normal values, a team of experts
empirically established the score of acceptable parameters. They are determined for
certain combination of features and certain objects. If a parameter stays within the
defined abnormal or normal range, no special action is required. The
strong_deviation range covers all the zone of possible values beyond the abnormal
values.

Algorithm for Steps 4: Stability Assessment
Let us consider a n-dimensional space Ω(v1),. . ., Ω(vm), vm + 1,. . . .,vn. In dimensions
1 to m it is a parallelepiped, and in dimension m + 1..n it is a plane.

Let Ω(v) be set of points where for each dimension Ω(vi)
� < Ω(vi) < Ω (vi)

+ for
i < m + 1 and vifor i > m.

Let α be the decision of DSS where f(α, x) – f(αU, x) > 0 with x2 Ω(v) and α 2 D.
Out of these pairs, let us select the pair (αml, y) which relies on a minimum number of
important dimensions 1..m.

3.3 A Decision Support Chatbot 69

Algorithm for Steps 5: Discovering Deviations in Parameters for αU
The user expert is then suggested to consult parameter i delivering maximum value
(yi

new
– vi

new), i¼ 1,..m, yi – i-th dimension of vector y, when feature normalization
procedure is fixed. If human decision deviates from the DSS decision in initial data,
meta-agent needs to focus on a single parameter value from {v1,. . . . vn,} that would
direct the human expert towards the DSS decision. This is how to find this feature.

What is the worst feature dimension for a human decision? To find it we first
identify the best feature value (we call it typical) for αU for all i:

vi
typ (αU) ¼ maxj f(αU,[v1,. . . ., vi-1, xj, vi + 1,. . . ., vn]) over all values xj of i-th

dimension. For example, x1 ¼ ‘white’, x2 ¼ ‘light grey’,

x3 ¼ ‘grey’,x4 ¼ ‘dark grey’,x5 ¼ ‘black’,j ¼ 1::5:

vi
typ αUð Þ : color ¼ ‘grey’whenαU ¼ ‘wolf ’:

We do it for all dimensions i.
Now we proceed to the dimension i best for the DSS decision.

maxi f αml, v1, ...:, vi�1, ; vi; viþ1, ...:, vn½ �ð Þ � f αml, v1, ...:, vi�1, vi
typ αUð Þ; viþ1, ...:, vn½ �ð Þð

Here, the feature could be as follows

vi : color ¼ ‘light grey’, vi
typ(αU) : color ¼ ‘grey’when αU ¼ ‘wolf’.

Algorithm for Step 6: Explainability of DSS
This algorithm attempts to explain the DSS decision for human expert in the same
way as has been done by humans. DSS delivers most important features for its
decision.

Let us use a random generator with vnew as average value and (1,..,1)-vector as
standard deviation to select in Хnew, where.

�ε < f αml; xð Þ � f αU ; xð Þ < 0

Then we take a point z delivering the minimum || znew – vnew||. Then in the cube,
we randomly select a point z’ around z in where -ε < f (αml, x) – f (αU, x) < 0 such that
z’ gives us a minimum of || z’new – vnew||. We iteratively set z ¼ z’ and do the above
iteratively till the distance || z’new – vnew|| stops decreasing.

Feature i which do not belong to Ω(z’i) is important for decision making of DSS
to obtain the decision αml that different from αU. Most important features i are those
where zi

new
– vi

new) > ¼ 1.
Here is the user interaction flow (Fig. 3.6):

1st Step:
User input: v ¼ [v1, . . ., vn] 2 X.

70 3 Explainable Machine Learning for Chatbots

2nd Step:
Initial unassisted decision αU of the user

3nd Step:
User indicates m out of n input values as being particularly important to his decision

αU [v1,... vm] m < <n

4th Step:
Now DSS verified the decisions of user αU without sharing αml.
In order to determine how stable αU is relatively to perturbations of v within error

bounds Ω, we compute αml by means of Stability Assessment Algorithm.
If αml does not match αU, go to Step 5.
If αml matches αU, then αU is selected as a preliminary solution, and we proceed to

Step 6.
5th Step:
Since αU 6¼ αml we iteratively work with the user to see if we can converge on a

stable decision. We apply Discovering abnormal parameters Algorithm.

We could, at this point, just show αml to the user, but we specifically avoid doing
this in order to prevent the user from unthinkingly changing their decision to αml.
Instead we use a more nuanced, indirect approach where we try to find the parameter
whose value vi, from the ones indicated by the user to be in the set proving αU,vi, is
such that its possible deviation affects αU in the highest degree.

After finding this parameter, we report to the user that the value they provided for
this parameter is to some degree inconsistent with αU. We then give the user the
option to change their initial αU.

N input parameters

Final decision by
user Expert

Chatbot
computes decision
 (not shown to user)

Chatbot
computes decision
(shown to user)

Chatbot's unassisted
decision based on input
parameters

User
Expert

User’s unassisted
decision based on
input parameters

validation and
correction for
possible a priori
user biases

validation and
correction for
possible a priori
biases

Fig. 3.6 Architecture of a decision support chatbot

3.3 A Decision Support Chatbot 71

If the user maintains the same decision αU, αU is set as a preliminary decision and
we proceed go to Step 6.

If user changes their decision, go to Step 2 (unless this point is reached a third
time, in which case go to Step 6 to avoid an overly long interaction loop).

6th Step:
Compute decision αml based on unchanged input values f(αml,v). αml is set as a

decision of DSS and is shown to the human expert along with the set of key
features which has yielded αml instead of αU. Explainability of DSS algorithm is
in use here.

7th Step:
The human expert can modify v and observe respective decisions of DSS. DSS can

in turn change its decision, and provide an updated explanation. Once the human
expert obtained DSS decision for all cases of interest, she obtains the final
decision.

Hence in the third step the human explains its decision, and in the sixth step the
DSS explains its decision. In the fifth step DSS assesses the stability of human
experts’ decision with respect to selected features. In the seventh step the human
expert does the same with DSS decisions. So the sixth step is inverse to the third and
the seventh is inverse to the fifth.

Hence we constructed a goal –oriented chatbot that instead of answering factual
questions or performing transactions conducts a decision support.

For a chatbot to handle explainable decision support, explanation format should
be simple and have a natural representation, as well as match the intuition of a human
expert. Also, it should be easy to assess DSS explanation stability with respect to
deviation of decision features. Available methods such as (Baehrens et al. 2010)
where DSS is a black box, similar to the current setting, do not obey all of these
requirements.

3.4 Explanation-Based Learning System Jasmine

We describe a deterministic inductive learning system Jasmine configured to predict
an utterance in a dialogue. This system belongs to the class of Inductive Logic
Programming and Explanation Based learning systems operating with data which is
fully formalized and made sense of. Originally, Jasmine was designed to support
learning in a number of domains which require learning explainability: not just a
correct classification or prediction needs to be made, but also it needs to be explained
in terms of which samples and which rules were employed in the decision (Galitsky
et al. 2007).

The foundation of learning and cognition is an inductive reasoning pattern. If we
want to recognize a specific kind of dialogs and distinguish it from other kinds, we
want to find a common feature (phrase, entity) shared by at least two dialog
instances. This feature should not be present in other kinds of dialogs. The principle

72 3 Explainable Machine Learning for Chatbots

of induction states that a commonality of features between the patterns (such as
‘deny responsibility’ response) causes the target feature (the utterance that includes a
‘threat of proceeding to a Better Business Bureau claim’). This principle is referred
to as the direct method of agreement.

If two or more instances of the phenomenon under investigation have only one circumstance
in common, the circumstance in which alone all the instances agree, is the cause (or effect)
of the given phenomenon (Mills 1843).

3.4.1 A Reasoning Schema

Jasmine is based on a learning model called JSM-method (Anshakov et al. 1989, in
honor of John Stuart Mill, the English philosopher who proposed schemes of
inductive reasoning in the nineteenth century). JSM-method to be presented in this
section implements Mill’s direct method of agreement stating that similar effects
(associated features, target features) are likely to follow common causes (attributes),
as well as abduction in the form of explainability. JSM attempts to solve the problem
of inductive bias, a means to select one generalization over another. It is hard for an
automated learning system to find a proper generalization level, making decisions in
the real world.

The task of Jasmine is to predict or recognize a target feature (phrases in a dialog
utterance to follow) given the observable features (phrases and entities in the previous
utterances). These features are observed in the objects of a training set so that a target
feature of new, unknown object can be recognized or predicted (Galitsky et al. 2007).

Given the features of objects of a training set, we intend to obtain a logical
expression for the target feature that includes all positive examples and excludes all
negative examples, given some initial formalized background knowledge. In the
Explanation-based Learning setting such expression for the target feature is a logical
consequence of background knowledge and training dataset; however, this condition
is not always viable in a domain of human learning from with experimental obser-
vations. Explanation-based Learning is designed to generalize form a single exam-
ple; however, in human learning domains one would prefer more reliable
conclusions from multiple observations. These multiple observations (examples)
may introduce inconsistencies; and the desired machine learning technique should
be capable of finding consistent explanations linking possibly mutually inconsistent
observations with the target feature.

Within Jasmine first-order language, objects are atoms, and known features and
the target feature are the terms which include these atoms. For a given target feature,
a term for a feature of an object can be as follows:

• Positive
• Negative
• Inconsistent
• Unknown

3.4 Explanation-Based Learning System Jasmine 73

In our case, building (predicting) a dialog step, objects are utterances and object
features are phrases of these utterances.

An inference to obtain this target feature (satisfied or not) can be represented as
one in a respective four-valued logic (Anshakov et al. 1989). The predictive machin-
ery is based on building hypotheses in the form of clauses

target_feature(O):- feature1(O, . . .), . . .,featuren(O, . . .), that separate examples,

where target_feature(O) is to be predicted, and features1, . . .,featuren2features are
the features the target feature is associated with; O ranges over objects.

Desired separation is based on the similarity of objects in terms of features they
satisfy (according to the direct method of agreement above). Usually, such similarity
is domain-dependent. However, building the general framework of inductive-based
prediction, we use the anti-unification of formulas that express the totality of features
of the given and other objects (our features (causes) do not have to be unary
predicates; they are expressed by arbitrary first-order terms). We assume the
human learning to be as general and flexible as this operation of anti-unification,
to be introduced.

Figure 3.7 is an example of a learning setting, where features, objects, the target
feature and the knowledge base are given. We keep using the conventional PRO-
LOG notations for variables and constants.

In a numerical, statistical learning similarity between objects is expressed by a
number. In deterministic, structured learning with explainability of results similarity
is a structure. Similarity between a pair of objects is a hypothetical object which
obeys the common features of this pair of objects. In handling similarity Jasmine is
close to Formal Concept Analysis (Ganter and Wille 1999; Ganter and Kuznetsov

features([e1, e2, e3, e4, e5, e6, oa1, oa2, ap1, ap2, ap3, ap4, f1, f2,
cc4, cc5, cc6, cc7, cb5, cb7]). % dialog phrases

objects([o1, o2, o3, o4, o5, o6, o7, o8, o9, o10, o11, o12, o13, o14,
o15, o16, o17, o18]). % utterances

target_feature [cb5]). % a phrase to be included in an utterance
% Beginning of knowledge base %

e1(o1). oa1(o1). ap1(o1). ap3(o1). f1(o1). cc5(o1). cb5(o1).
e1(o2). oa1(o2). ap1(o2). ap3(o2). f1(o2). cc5(o2). cb5(o2).
e2(o8). oa2(o8). ap2(o8). ap1(o8). f1(o8). cc5(o8). cb5(o8).
e3(o10). oa1(o10). a3(o10). ap2(o10). f1(o10). cc4(o10).
e3(o11). oa1(o11). a3(o11). ap2(o11). f1(o11). cc4(o11). cb5(o11). cb7(o11).
e4(o16). oa1(o16). a1(o16). ap1(o16). f1(o16). cc5(o16). cb5(o16).
e5(o17). oa1(o17). a4(o17). ap2(o17). f1(o17). cc6(o17). cb7(o17).
e6(o18). oa1(o18). a1(o18). ap2(o18). f1(o18). cc4(o18). cb7(o18).

%% End of knowledge base
unknown(cb5(o10)). % Should the current utterance, o10, include the phrase
‘cb5’?

Fig. 3.7 A sample knowledge base for high-level mining of protein sequence data

74 3 Explainable Machine Learning for Chatbots

2001), where similarity is the meet operation of a lattice (called concept lattice)
where features are represented by unary predicates only. For the arbitrary first-order
formulas for objects in Jasmine we choose the anti-unification of formulas which
expresses features of the pair of objects to derive a formula for similarity sub-object
(Chap. 5, Galitsky 2017). Below we will be using the predicate

similar(Object1, Object2, CommonSubObject) which yields the third argument
given the first and the second arguments.

The reasoning procedure of Jasmine is shown in Fig. 3.8. Note that the prediction
schema is oriented to discover which features cause the target feature and how (the
causal link) rather than just searching for common features for the target feature
(which would be much simpler, 6 units on the top). The respective clauses (1–4) and
sample results for each numbered unit (1–4) are presented in Fig. 3.9.

Let us build a framework for predicting the target feature V of objects set by the
formulas X expressing their features: unknown(X, V). We are going to predict
whether V(x1, . . ., xn) holds or not, where x1, . . ., xn are variables of the formula
set X (in our example, X ¼ cb5(o10), x1 ¼ o10).

We start with the raw data, positive and negative examples, rawPos(X, V) and
rawNeg(X, V), for the target feature V, where X range over formulas expressing
features of objects. We form the totality of intersections for these examples
(positive ones, U, that satisfy iPos(U,V), and negative ones, W, that satisfy iNeg
(W,V), not shown):

iPos U;Vð Þ : �rawPos X1;Vð Þ,rawPos X2;Vð Þ,X1\ ¼ X2, similar X1;X2;Uð Þ,U\ ¼ ½ �:
ð3:1Þ

iPos(U,V) : � iPos(U1,V), rawPos(X1,V), similar(X1,U1,U), U\ ¼ []. Above
are the recursive definitions of the intersections. As the logic program clauses which
actually construct the lattice for the totality of intersections for positive and negative
examples, we introduce the third argument to accumulate the currently obtained
intersections (the negative case is analogous):

iPos U;Vð Þ : �iPos U;V ;ð Þ:

iPos(U,V,Accums) : � rawPos(X1,V), rawPos(X2,V), X1\ ¼ X2, similar(X1,
X2,U), Accums ¼ X1;X2½ �,U\ ¼ ½ �:

iPos(U,V,AccumsX1) : � iPos(U1,V,Accums), ! , rawPos(X1,V), not member
(X1,Accums), similar(X1, U1, U), U\ ¼ [], append
(Accums, [X1],AccumsX1).

As one can see, there is a “symmetric” treatment of positive and negative
examples and hypotheses: Jasmine uses negative examples to falsify hypotheses
that have counter-examples. On the contrary, a simplified Explanation-based
Learning uses only positive examples and can be viewed as just the left side of
Figure 3.8.

3.4 Explanation-Based Learning System Jasmine 75

To obtain the actual positive posHyp and negative negHyp hypotheses from the
intersections derived above, we filter out the inconsistent hypotheses which belong
to both positive and negative intersections inconsHyp(U, V):

inconsHyp U;Vð Þ : �iPos U;Vð Þ, iNeg U;Vð Þ: ð3:2Þ
posHyp U;Vð Þ : �iPos U;Vð Þ, not inconsHyp U;Vð Þ:

negHyp(U,V) : � iNeg(U,V), not inconsHyp(U,V).

Finding the totality of
intersections between features
of all objects (positive)

Finding the totality of
intersections between features
of all objects (negative)

Among the above
intersections, select those
which describe only positive
objects

Among the above
intersections, select those
which describe only
negative objects

Form positive hypotheses
from the above intersections

Form negative hypotheses
from the above intersections

Instantiate
positive
hypotheses by
objects

Obtaining objects
with unknown target
which satisfy both
positive and
negative hypotheses
(remain unknown)

Instantiate
negative
hypotheses by
objects

Obtaining objects with
unknown target which
satisfy positive hypotheses

Obtaining objects with
unknown target which
satisfy negative hypotheses

Remaining objects with unknown
target: inconsistent prediction

1

2

3

4

Add obtained prediction into domain theory
as defeasible clauses and attempt to resolve
inconsistencies

Fig. 3.8 The chart for reasoning procedure of Jasmine

76 3 Explainable Machine Learning for Chatbots

Here U is the formula expressing the features of objects. It serves as a body of
clauses for hypotheses V: – U.

The following clauses deliver the totality of objects so that the features expressed
by the hypotheses are included in the features of these objects. We derive positive

1. Intersections
Positive: [[e1(_),oa1(_),ap1(_),ap3(_),f1(_),cc5(_)],
[ap1(_),f1(_),cc5(_)],[ap1(_),f1(_)],[oa1(_),f1(_)], [oa1(_),ap1(_),f1(_),cc5(_)],
[e2(_),e3(_),oa2(_),ap1(_),ap2(_),f1(_)],[e3(_),ap2(_),f1(_)],[e4(_),oa1(_),ap1(

_),
f1(_),cc5(_)]]
Negative: [[oa1(_),ap2(_),f1(_),cb7(_)]]
Unassigned examples:

2. Hypotheses
Positive:[e1(_),oa1(_),ap1(_),ap3(_),f1(_),cc5(_)],[ap1(_),f1(_),cc5(_)],
[ap1(_),f1(_)],[oa1(_),f1(_)],[oa1(_),ap1(_),f1(_),cc5(_3B60)],
[e2(_),e3(_),oa2(_),ap1(_),ap2(_),f1(_)], [e3(_),ap2(_),f1(_)],
[e4(_),oa1(_),ap1(_),f1(_),cc5(_)]]
Negative: [[oa1(_),ap2(_),f1(_),cb7(_)]]
Contradicting hypotheses: []

The clauses for hypotheses here are:
cb5(X)>-
e1(X),oa1(X),ap1(X),ap3(X),f1(X),cc5(X);ap1(X),f1(X),cc5(X);ap1(X),f1(X).
cb5(X)>- not (oa1(X),ap2(X),f1(X),cb7(X)). Note that all intersections are
turned into hypotheses because there is no overlap between positive and negative
ones

3. Background (positive and negative objects with respect to the target feature
cb5)

Positive:
[[e1(o1),oa1(o1),ap1(o1),ap3(o1),f1(o1),cc5(o1)],[e1(o2),oa1(o2),ap1(o2),ap3(

o2),f1(o2),cc5(o2)],
[e2(o7),e3(o7),oa2(o7), ap1(o7),ap2(o7),f1(o7),cc5(o7)],
[e2(o8),e3(o8),oa2(o8),ap1(o8),ap2(o8),f1(o8)],
[e3(o11),oa1(o11),ap2(o11),f1(o11),cc4(o11),cb7(o11)],[e4(o15),

oa1(o15),ap1(o15),f1(o15),cc5(o15)],
[e4(o16),oa1(o16),ap1(o16),f1(o16),cc5(o16)]]
Negative:
[[e5(o17),oa1(o17),ap2(o17),f1(o17),cc6(o17),cb7(o17)],[e6(o18),oa1(o18),ap

2(o18),f1(o18),cc4(o18),cb7(o18)]]
Inconsistent: []
4. Prediction for cb5 (objects o10)
Positive: [[e3(o10),oa1(o10),ap2(o10),f1(o10),cc4(o10)]]
Negative:[]
Inconsistent: []
Uninstantiated derived rules (confirmed hypotheses)
cb5(O):- e3(O), oa1(O),ap2(O), f1(O), cc4(O).

Fig. 3.9 The Jasmine prediction protocol. Steps are numbered in accordance to the units in Fig. 3.8

3.4 Explanation-Based Learning System Jasmine 77

and negative hypotheses reprObjectsPos(X, V) and reprObjectsNeg(X, V) where X is
instantiated with objects (V is positive and negative respectively). The last clause
(with the head reprObjectsIncons(X, V)) implements the search for the objects to be
predicted so that the features expressed by both the positive and negative hypotheses
are included in the features of these objects.

reprObjectsPos X;Vð Þ : �rawPos X;Vð Þ, posHyp U;Vð Þ, similar X;U;Uð Þ: ð3:3Þ

reprObjectsNeg (X,V) : � rawNeg(X,V), negHyp(U,V), similar(X,U,U).
reprObjectsIncons(X,V) : � unknown(X,V), posHyp(U1,V), negHyp(U2,V),

similar(X,U1,U1), similar(X,U2,U2).

Two clauses above (top and middle) do not participate in prediction directly; their
role is to indicate which objects deliver what kind of prediction.

Finally, we approach the clauses for prediction. For the objects with unknown
target features, the system predicts that they either satisfy these target features, do not
satisfy these target features, or that the fact of satisfaction is inconsistent with the raw
facts. To deliver V, a positive hypothesis has to be found so that the set of features
X of an object has to include the features expressed by this hypothesis, and X should
not be from reprObjectsIncons(X, V). To deliver ØV, a negative hypothesis has to be
found so that a set of features X of an object has to include the features expressed by
this hypothesis and X is not from reprObjectsIncons(X, V). No prediction can be
made for the objects with features expressed by X from the third clause,

predictIncons(X,V).

predictPos X;Vð Þ:2 unknown X;Vð Þ, posHyp U;Vð Þ, similar X;U;Uð Þ, ð3:4Þ
not reprObjectsIncons(X,V).

predictNeg X;Vð Þ : �unknown X;Vð Þ, negHyp U;Vð Þ, similar X;U;Uð Þ,
not reprObjectsIncons(X,V).

predictIncons X;Vð Þ : �unknown X;Vð Þ, not predictPos X;Vð Þ,
not predictNeg(X,V), not reprObjectsIncons(X,V).

The first clause above (shown in bold) will serve as an entry point to predict
(choose) a given target feature among a generated list of possible target features that
can be obtained for the current state. The clause below is an entry point to Jasmine if
it is integrated with other applications and/or reasoning components.

predict_target_feature_by_learning(GoalConceptToBePredicted,S):-.
findAllPossibleGoalConcepts (S,As), loadRequiredSamples(As),
member(EffectToBePredicted,As),
predictPos X;GoalConceptToBePredictedð Þ,X\ ¼ ½ �:

Predicate loadRequiredSamples(As) above forms the training dataset. If for a
given dataset a prediction is inconsistent, it is worth eliminating the objects from the

78 3 Explainable Machine Learning for Chatbots

dataset which deliver this inconsistency. Conversely, if there are an insufficient
number of positive or negative objects, additional ones are included in the dataset.
A number of iterations may be required to obtain a prediction, however the iteration
procedure is monotonic and deterministic: the source of inconsistency/insufficient
data cases are explicitly indicated at the step where predicates reprObjectsPos and
reprObjectsNeg introduced above are satisfied. This is the solution to the so called
blame assignment problem, where by starting at the erroneous or inconsistent
conclusion and tracking backward through the explanation structure, it is possible
to identify pieces of domain knowledge that might have caused an error or incon-
sistency (Galitsky et al. 2007).

When the set of obtained rules posHyp and negHyp for positive and negative
examples (together with the original domain theory) is applied to a more extensive
(evaluation or exploration) dataset, some of these rules may not always hold. If at the
first run 1)-4) Jasmine refuses to make predictions for some objects with unknown
target features, then a repetitive iteration may be required, attempting to use newly
generated predictions to obtain objects’ target features which are currently
unavailable. The arrows on the right of Fig. 3.8 illustrate this kind of iterative
process.

For example, for the knowledge base Fig. 3.7 above, we have the following
protocol and results (Fig. 3.9):

Hence cb5(o10) holds, which means that the sequence o10 has the length of loop
of 5 amino acids.

3.4.2 Computing Similarity Between Objects

The quality of Jasmine-based prediction is dramatically dependent on how the
similarity of objects is defined. Usually, high prediction accuracy can be achieved
if the measure of similarity is sensitive to object features which determine the target
feature (explicitly or implicitly, Galitsky and Shpitsberg 2016). Since most of times
it is unclear in advance which features affect the target feature, the similarity measure
should take into account all available features. If the totality of selected features
describing each object is expressed by formulas, a reasonable expression of
similarity between a pair of objects is the following. It is a formula that is the least
common generalization of the formulas for both objects, which is anti-unification,
mentioned in the previous section. Anti-unification is the inverse operation to the
unification of formulas in logic programming. Unification is the basic operation
which finds the least general (instantiated) formula (if it exists), given a pair of
formulas. Anti-unification was used in as a method of generalization; later this work
was extended to form a theory of inductive generalization and hypothesis formation.
Anti-unification, in the finite term case, was studied as the least upper bound
operation in a lattice of terms.

3.4 Explanation-Based Learning System Jasmine 79

For example, for two formulas p(a, X, f(X)) and p(Y, f(b), f(f(b))) their anti-
unification (least general generalization) is p(Z1, Z2, f(Z2)). Conversely, unification
of this formulas, p(a, X, f(X)) ¼ p(Y, f(b), f(f(b))) will be p(a, f(b), f(f(b))). Our logic
programming implementation of anti-unification for a pair of conjunctions, which
can be customized to a particular knowledge domain, is presented in Fig. 3.10.

Although the issue of implementation of the anti-unification has been addressed
in the literature, we present the full code to have this book self-contained (Galitsky
2014). In a given domain, additional constraints on terms can be enforced to express
a domain-specific similarity. Particularly, certain arguments can be treated
differently (should not be allowed to change if they are very important, or should
form a special kind of constant). A domain – specific code should occur in the line
shown in bold.

There are other Jasmine-compatible approaches to computing similarities except
the anti-unification. In particular, it is worth mentioning the graph-based approach of
finding similarities between scenarios. The operation of finding the maximum
common subgraphs serves the purpose of anti-unification in such the domain
(Chap. 5, Galitsky 2015). This operation was subject to further refinement
expressing similarities between scenarios of multiagent interaction, where it is
quite important to take into account different roles of edges of distinct sorts.

Novice users of Jasmine are advised to start building the similarity operation as
an intersection between objects’ features (unordered set of features) and obtain an
initial prediction. Then, when the explanations for predictions are observed, the
users may feel that less important features occur in these explanations too frequently,
and anti-unification expression should be introduced so that less important features
are nested deeper into the expressions for objects’ features. Another option is to
build a domain-specific Prolog predicate that computes unification, introducing
explicit conditions for selected variables (bold line in the Fig. 3.10).

3.5 Conclusions

The ML community expects to see more deep learning models whose internal
memory (bottom-up knowledge learned from the data) is enriched with an external
memory (top-down knowledge inherited from a thesaurus). Integrating symbolic
(explainable) and sub-symbolic (partially-explainable) AI will be a key towards
natural language understanding. Relying on ML is fruitful to make a good guess
employing the past experience, because sub-symbolic methods encode correlation
and their decision-making process is probabilistic (Young et al. 2018). Natural
language understanding, however, requires much more than that. According to
Noam Chomsky, “you do not get discoveries in the sciences by taking huge amounts
of data, throwing them into a computer and doing statistical analysis of them: that’s
not the way you understand things, you have to have theoretical insights”.

80 3 Explainable Machine Learning for Chatbots

In this chapter we focused on explainable machine learning, which has become
less popular in comparison with statistical and deep learning approaches frequently
thought of as central in modern AI. We demonstrated that unlike the academic
community of machine learners, end users strongly prefer explainable AI. We
focused on a chatbot focused on explaining its decisions, presented a logic program-
ming based ML framework and conclude that it is beneficial for a chatbot to perform
its dialogue management relying on an explainable ML. We will draw a further
comparison on statistical and rule-based methods in Chap. 4 in relation to a NL
access to a database, one of the essential chatbot skills.

similar(F1, F2, F):- antiUnifyFormulas(F1, F2, F).
antiUnifyFormulas(F1, F2, F):- clause_list(F1, F1s), clause_list(F2, F2s),

findall(Fm, (member(T1, F1s), member(T2, F2s),
antiUnifyTerms(T1, T2, Fm)), Fms), %finding pairs
%Now it is necessary to sort out formulas which are not
% most general within the list

findall(Fmost, (member(Fmost, Fms),
not (member(Fcover, Fms), Fcover \= Fmost,

antiUnifyTerms(Fmost, Fcover, Fcover))), Fss),
clause_list(F, Fss). % converting back to clause

antiUnifyTerms(Term1, Term2,Term):-
Term1=..[Pred0|Args1],len(Args1, LA),% make sure predicates

Term2=..[Pred0|Args2],len(Args2, LA),% have the same arity
findall(Var, (member(N, [0,1,2,3,4,5,6,7,8,9,10]), % not more than 10

arguments
[! sublist(N, 1, Args1, [VarN1]), %loop through arguments

sublist(N, 1, Args2, [VarN2]),
string_term(Nstr,N), VarN1=..[Name|_], string_term(Tstr,Name),
concat(['z',Nstr,Tstr],ZNstr), atom_string(ZN, ZNstr) !],

% building a canonical argument to create a variable
% as a result of anti-unification

ifthenelse(not (VarN1=VarN2),
ifthenelse((VarN1=..[Pred,_|_],VarN2=..[Pred,_|_]),

ifthenelse(antiUnifyConst(VarN1, VarN2, VarN12),
%going deeper into a subterm when an argument is a term

(Var=VarN12), Var=ZNstr)),
%OR domain-specific code here for special treatment of certain arguments
% various cases: variable vs variable, or vs constant, or constant vs constant

Var=ZNstr),Var=VarN1)), Args),
Term=..[Pred0|Args].

Fig. 3.10 The clauses for logic program for anti-unification (least general generalization) of two
formulas (conjunctions of terms). Predicate antiUnify(T1, T2, Tv) inputs two formulas (scenarios in
our case) and outputs a resultant anti-unification

3.5 Conclusions 81

References

Anshakov OM, Finn VK, Skvortsov DP (1989) On axiomatization of many-valued logics associ-
ated with formalization of plausible reasoning. Stud Logica 42(4):423–447

Arras L, Horn F, Montavon G, Müller K-R, Samek W (2017) What is relevant in a text document?:
an interpretable machine learning approach. PLoS One. https://doi.org/10.1371/journal.pone.
0181142

Baehrens D, Schroeter T, Harmeling S, Kawanabe M, Hansen K, Müller K-R (2010) How to
explain individual classification decisions. J Mach Learn Res 11(June):1803–1831

DARPA (2016) Explainable artificial intelligence (XAI). http://www.darpa.mil/program/explain
able-artificial-intelligence. Last downloaded November 2018

Galitsky B (2014) Learning parse structure of paragraphs and its applications in search. Eng Appl
Artif Intell 32:160–184

Galitsky B (2015) Finding a lattice of needles in a haystack: forming a query from a set of items of
interest. FCA4AI@ IJCAI, pp 99–106

Galitsky B (2016) Theory of mind engine. In: Computational autism. Springer, Cham
Galitsky B (2017) Matching parse thickets for open domain question answering. Data Knowl Eng

107:24–50
Galitsky B, de la Rosa JL (2011) Concept-based learning of human behavior for customer

relationship management. Inf Sci 181(10):2016–2035
Galitsky BA, Ilvovsky D (2017) Chatbot with a discourse structure-driven dialogue management.

EACL Demo E17–3022. Valencia
Galitsky B, Parnis A (2017) How children with autism and machines learn to interact. In: Autonomy

and artificial intelligence: a threat or savior. Springer, Cham
Galitsky B, Shpitsberg I (2016) Autistic learning and cognition. In: Computational autism.

Springer, Cham, pp 245–293
Galitsky B, Kuznetsov SO, Vinogradov DV (2007) Applying hybrid reasoning to mine for

associative features in biological data. J Biomed Inform 40(3):203–220
Galitsky B, González MP, Chesñevar CI (2009) A novel approach for classifying customer

complaints through graphs similarities in argumentative dialogue. Decis Support Syst 46
(3):717–729

Ganter B, Kuznetsov S (2001) Pattern structures and their projections. In: Stumme G, Delugach H
(eds) Proceedings of the 9th international conference on conceptual structures, ICCS’01.
Lecture Notes in Artificial Intelligence, 2120, pp 129–142

Ganter B, Wille R (1999) Formal concept analysis: mathematical foundations. Springer, Berlin
Gilpin LH, Bau D, Yuan BZ, Bajwa A, Specter M, Kagal L (2018) Explaining explanations: an

approach to evaluating interpretability of machine learning. https://arxiv.org/pdf/1806.00069.
pdf

Goldberg S, Shklovskiy-Kordi N, Zingerman B (2007) Time-oriented multi-image case history –

way to the “disease image” analysis. VISAPP (Special Sessions):200–203
Goldberg S, Niemierko A, Turchin A (2008) Analysis of data errors in clinical research databases.

AMIA Annu Symp Proc 6:242–246
Goodman B, Flaxman S (2017) European Union regulations on algorithmic decision-making and a

“right to explanation”. AI Mag 38(3):50–57
Hartono E, Santhanam R, Holsapple CW (2007) Factors that contribute to management support

system success: an analysis of field studies. Decis Support Syst 43(1):256–268
Krakovna V, Doshi-Velez F (2016) Increasing the interpretability of recurrent neural networks

using hidden markov models. CoRR. abs/1606.05320
Krawczyk B, Minku LL, Gama J, Stefanowski J, Wozniak M (2017) Ensemble learning for data

stream analysis: a survey. Inf Fusion 37:132–156
Lake BM, Salakhutdinov R, Tenenbaum JB (2015) Human-level concept learning through proba-

bilistic program induction. Science 350(6266):1332–1338

82 3 Explainable Machine Learning for Chatbots

https://doi.org/10.1371/journal.pone.0181142
https://doi.org/10.1371/journal.pone.0181142
http://www.darpa.mil/program/explainable-artificial-intelligence
http://www.darpa.mil/program/explainable-artificial-intelligence
https://arxiv.org/pdf/1806.00069.pdf
https://arxiv.org/pdf/1806.00069.pdf

Lee CJ, Sugimoto CR, Zhang G, Cronin B (2013) Bias in peer review. J Am Soc Inf Sci Tec
64:2–17

Liu M, Shi J, Li Z, Li C, Zhu J, Liu S (2017) Towards better analysis of deep convolutional neural
networks. IEEE Trans Vis Comput Graph 23(1):91–100

Mann W, Thompson S (1988) Rhetorical structure theory: towards a functional theory of text
organization. Text-Interdiscip J Stud Discourse 8(3):243–281

Mill JS (1843) A System of Logic 1843. Also available from University Press of the Pacific,
Honolulu, 2002

Newman S, Lynch T, A Plummer A (2000) Success and failure of decision support systems:
learning as we go. J Anim Sci 77:1–12

Plous S (1993) The psychology of judgment and decision making, p 233
Salton G, Yang CS (1973) On the specification of term values in automatic indexing. J Doc

29:351–372
Shklovskiy-Kordi N, Shakin VV, Ptashko GO, Surin M, Zingerman B, Goldberg S, Krol M (2005)

Decision support system using multimedia case history quantitative comparison and multivar-
iate statistical analysis. CBMS:128–133

Shklovsky-Kordi N, Zingerman B, Rivkind N, Goldberg S, Davis S, Varticovski L, Krol M,
Kremenetzkaia AM, Vorobiev A, Serebriyskiy I (2005) Computerized case history – an
effective tool for Management of Patients and Clinical Trials. In: Engelbrecht R et al (eds)
Connecting medical informatics and bio-informatics, vol 2005. ENMI, pp 53–57

Tan S (2005) Neighbor-weighted K-nearest neighbor for unbalanced text corpus. Expert Syst Appl
28:667–671

Trstenjak B, Sasa M, Donko D (2013) KNN with TF-IDF based framework for text categorization.
Procedia Eng 69:1356–1364

Young T, Devamanyu Hazarika, Soujanya Poria, Erik Cambria (2018) Recent trends in deep
learning based natural language processing. https://arxiv.org/pdf/1708.02709.pdf

References 83

https://arxiv.org/pdf/1708.02709.pdf

Chapter 4
Developing Conversational Natural
Language Interface to a Database

Abstract In this Chapter we focus on a problem of a natural language access to a
database, well-known and highly desired to be solved. We start with the modern
approaches based on deep learning and analyze lessons learned from unusable
database access systems. This chapter can serve as a brief introduction to neural
networks for learning logic representations. Then a number of hybrid approaches are
presented and their strong points are analyzed. Finally, we describe our approach
that relies on parsing, thesaurus and disambiguation via chatbot communication
mode. The conclusion is that a reliable and flexible database access via NL needs
to employ a broad spectrum of linguistic, knowledge representation and learning
techniques. We conclude this chapter by surveying the general technology trends
related to NL2SQL, observing how AI and ML are seeping into virtually everything
and represent a major battleground for technology providers.

4.1 Introduction

With the rapid proliferation of information in modern data-intense world, many
specialists across a variety of professions need to query data stored in various
relational databases. While relational algebra and its implementations in modern
querying languages, such as SQL, support a broad spectrum of querying mecha-
nisms, it is frequently hard for people other than software developers to design
queries in these languages. Natural language (NL) has been an impossible dream of
query interface designers, believed to be unreliable, except in limited specific
circumstances. A particular case, NL interface to databases is considered as the
goal for a database query interface; a number of interfaces to databases (NL2SQL)
have been built towards this goal (Androutsopoulos et al. 1995; Agrawal et al.
2002; Galitsky 2005; Li et al. 2006; Bergamaschi et al. 2013).

NL2SQL have many advantages over popular query interfaces such as structured
keyword-based search, form-based request interface, and visual query builder. A
typical NL2SQL would enable naive users to specify complex queries without exten-
sive training by database experts. On the other hand, single level keywords are
insufficient to convey complex query logic, form-based interfaces can be used only

© Springer Nature Switzerland AG 2019
B. Galitsky, Developing Enterprise Chatbots,
https://doi.org/10.1007/978-3-030-04299-8_4

85

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04299-8_4&domain=pdf

for a limited set of query types and where queries are predictable. For a novice user to
employ a visual query builder, some training and solid knowledge of a database schema
is required. Conversely, using an NL2SQL system, even naive users are expected to be
able to accomplish logically complex query tasks, in which the target SQL statements
include comparison predicates, conjunctions, quantifications, multi-level aggregations,
nestings, and various types of joins, among other things.

Although NL2SQL is strongly desirable, it has not been extensively deployed yet.
Microsoft has been distributing English Query product that has never become
popular because of low robustness and substantial efforts in using the provided
tools to build a rule-based NL model and mapping for a database. Oracle never had
its database accessed via NL by a broad audience. The main reason is that it is rather
hard to “understand” an NL query in a broad sense and to map a user phrase into
given database field in particular (Galitsky and Grudin 2001).

A relationship between databases and chatbots is that of a mutual aid. A database
is an important source of data for a chatbot. At the same time, a chatbot is a tool that
facilitates error rectification in language understanding required to query databases.
As a natural language query to a database is being interpreted, ambiguities arise and
need to be resolved by asking a user which database table and fields she meant with
her phrase.

The goal of this chapter is to explore what works and what does not work for
NL2SQL. We will start with the most recent approach based on learning of a formal
sequence (NL) to sequence(SQL) encoder via a neural network (Goldberg 2015).
After that we consider classical approaches of 2000s based on token mappings of
query words into names of tables, columns and their values. We then go deeper into
the anatomy of how NL represents logic forms in general and SQL in particular, and
focus on linguistic correlates of SQL. Having analyzed the shortcomings of these
approaches, we formulate the one most plausible in industrial settings and dive into
the steps of building SQL from text.

4.1.1 History

There is a series of ups and downs in attempts to access databases in NL. Natural
language query interfaces have been attempted for decades, because of their great
desirability, particularly for non-expert database users. However, it is challenging for
database systems to interpret (or understand) the semantics of natural language
queries. Early interactive NL2SQLs (Kupper et al. 1993) mainly focus on generating
cooperative responses from query results (over-answering). Li et al. (2005) takes a
step further, generating suggestions for the user to reformulate his query when it is
beyond the semantic coverage. This strategy greatly reduces the user’s burden in
query reformulation. However, the fact that the input query is within the coverage of
a prepared semantic model does not necessary mean it will be processed correctly.
As new NLP techniques arise, there are new attempts to apply them to NL2SQL, not
necessarily advancing a state-of-the-art but enabling the domain with new ideas and
intuition of what has worked and what has not.

86 4 Developing Conversational Natural Language Interface to a Database

Early NL2SQL systems depended on hand crafted semantic grammars tailored to
each individual database, which are hard to transport to other databases. Conversely,
the system to be presented in the end of this chapter targets a generic query language
such as SQL, as the translation goal, in an arbitrary domain with unrestricted
vocabulary, as long as words in a query correspond to field names and values. We
intend to build a database-independent system that learns the database structure
online and prepares NL2SQL interface automatically.

Popescu et al. (2004) suggested to focus on a limited set of queries (semantically
tractable) with unambiguous mapping into relations, attributes and values, and
employ statistical semantic parsing. (Galitsky and Usikov 2008; Quirk et al. 2015)
proposed a framework of natural language programming beyond NL2SQL, where a
compiler inputs an NL description of a problem and forms a code according to this
description. Galitsky et al. (2011) defined sentence generalization and generalization
diagrams via a special case of least general generalization as applied to linguistic
parse trees, which is an alternative way for query formation from NL expressions. Li
and Jagadish (2016) proposed an NL2SQL comprising three main components: a
first component that transforms a natural language query to a query tree, a second
component that verifies the transformation interactively with the user, and a third
component that translates the query tree into a SQL statement.

In most implementation, each SQL statement is composed from the ground
up. When a query log, which contains natural language queries and their
corresponding SQL statements, is available, an NL2SQL system can benefit from
reusing previous SQL statements. When the new query is in the query log, NL2SQL
system can directly reuse the existing SQL statement. When the new query is
dissimilar to any previous queries, it can be composed from the ground up. It is
promising to achieve somewhere in between, finding similar queries in the query log,
reusing some of the SQL fragments, and completing the remaining parts.

A number of recent approaches have given up on feature engineering and attempt
to learn NL2SQL as a sequence of symbols, via logic forms or directly (Zhong et al.
2017).

We conclude this section with a list of industrial NL2SQL Systems:

1. DataRPM, datarpm.com/product
2. Quepy (Python framework), quepy.machinalis.com
3. Oracle ATG (2010 commerce acquisition), docs.oracle.com/cd/E23507_01/

Search.20073/ATGSearchQueryRef/html/s0202naturallanguagequeries01.html
4. Microsoft PowerBI, https://powerbi.microsoft.com/en-us/blog/power-bi-q-and-a-

natural-language-search-over-data/
5. Wolfram natural language understanding, www.wolfram.com/natural-language-

understanding/
6. Kueri allows users to navigate, explore, and present their Salesforce data with

using a Google style as-you-type auto-complete suggestions. This platform is a
complete library you can download and use commercially for free. The platform
was developed especially for developers who would like to offer end-users the
ability to interact with data using Natural Language. UX includes as-you-type
smart suggestions.

4.1 Introduction 87

http://datarpm.com/product
http://quepy.machinalis.com
http://docs.oracle.com/cd/E23507_01/Search.20073/ATGSearchQueryRef/html/s0202naturallanguagequeries01.html
http://docs.oracle.com/cd/E23507_01/Search.20073/ATGSearchQueryRef/html/s0202naturallanguagequeries01.html
https://powerbi.microsoft.com/en-us/blog/power-bi-q-and-a-natural-language-search-over-data/
https://powerbi.microsoft.com/en-us/blog/power-bi-q-and-a-natural-language-search-over-data/
http://www.wolfram.com/natural-language-understanding/
http://www.wolfram.com/natural-language-understanding/

4.2 Statistical and Deep Learning in NL2SQL Systems

Reinforcement Learning approach (Zhong et al. 2017) propose Seq2SQL, a deep
neural network for translating natural language questions to corresponding SQL
queries. This approaches takes advantage of the structure of SQL queries to signif-
icantly reduce the output space of generated queries. The rewards from in-the-loop
query execution over the database support learning a policy to generate unordered
parts of the query, which are shown to be less suitable for optimization via cross
entropy loss.

Zhong et al. (2017) published WikiSQL, a dataset of relatively simple 80 k hand-
annotated examples of questions and SQL queries distributed across 24 k tables from
Wikipedia. Labeling was performed by Amazon Mechanical Turk. Each query
targets a single table, and usually has a single constraint. This dataset is required
to train the model and is an order of magnitude larger than comparable datasets.
Attentional sequence to sequence models were considered as a baseline and deliv-
ered execution accuracy of 36% and logical form accuracy of 23%.

By applying policy-based reinforcement learning with a query execution envi-
ronment to WikiSQL, Seq2SQL model significantly outperforms the baseline and
gives corresponding accuracies of to 59.4% and 48.3%. Hence in spite of the huge
dataset required for the accuracy, it is still fairly low. The training is very domain-
dependent since the system does not differentiate between the words related to
logical operations vs the words which are domain atoms. Therefore, for a real
customer deployment, an extensive collection of a training set would be required,
which is not very plausible. Hence we believe NL2SQL problem cannot do without
an extensive feature engineering that makes it domain-independent and applicable to
an arbitrary database.

One can apply RNN models for parsing natural language queries to generate SQL
queries, and refine it using existing database approaches. For instance, heuristic rules
could be applied to correct grammar errors in the generated SQL queries. The
challenge is that a large amount of (labeled) training samples is required to train
the model. One possible solution is to train a baseline model with a small dataset, and
gradually refining it with user feedback. For instance, users could help correct the
generated SQL query, and this feedback essentially serves as labeled data for
subsequent training.

The approaches purely based on deep learning models may not be very effective.
If the training dataset is not comprehensive enough to include all query patterns
(some predicates could be missing), then a better approach would be to combine
database solutions and deep learning.

Converting NL to SQL can be viewed from a more general framework of building
a logical form representation of text, given a vast set of pairs. Semantic parsing aims
at mapping natural language to machine interpretable meaning representations
(Berant et al. 2002). Traditional approaches rely on high-quality lexicons,
manually-built templates, and linguistic features which are either domain or

88 4 Developing Conversational Natural Language Interface to a Database

representation-specific. Deep learning attention-enhanced encoder-decoder model
encodes input utterances into vector representations, and generate their logical forms
by conditioning the output sequences or trees on the encoding vectors. Dong and
Lapata (2016) show that for a number of datasets neural attention approach performs
competitively well without using hand-engineered features and is easy to adapt
across domains and meaning representations. Obviously, for practical application a
fairly extensive training dataset with exhaustive combination of NL expressions –
logic forms pars would be required.

Although long short-term memory and other neural network models achieve
similar or better performance across datasets and meaning representations, without
relying on hand-engineered domain- or representation-specific features, they cannot
be incrementally improved for a given industrial domain unless hundred or
thousand-times larger training datasets (compared to the available ones) are
obtained.

4.2.1 NL2SQL as Sequence Encoder

Semantic parsing aims at mapping natural language to machine interpretable mean-
ing representations. Traditional approaches rely on high-quality lexicons, manually-
built templates, and linguistic features which are either domain or representation-
specific. There is a possibility of neural network based encoder-decoder model to
perform semantic parsing. Utterances can be subject to vector representations, and
their logical forms can be obtained by conditioning the output sequences or trees on
the encoding input vectors.

It is possible to apply a machine learning approach to such a complex problem as
semantic parsing because a number of corpora containing utterances annotated with
formal meaning representations are available.

4.2.1.1 Sequence-to-Sequence Model

Encoder-decoder architectures based on recurrent neural networks allows for bridg-
ing the gap between NL and logical form with minimal domain knowledge. The
general encoder-decoder paradigm can be applied to the semantic parsing task. Such
model can learn from NL descriptions paired with meaning representations; it
encodes sentences and decodes logical forms using recurrent neural networks with
long short-term memory (LSTM) units.

This model regards both input q and output a as sequences. The encoder and
decoder are two different L-layer recurrent neural networks with long short-term
memory (LSTM) units which recursively process tokens one by one (Fig. 4.1).

4.2 Statistical and Deep Learning in NL2SQL Systems 89

Dong and Lapata (2016) build a model which maps natural language input q¼ x1
���x|q| to a logical form representation of its meaning a ¼ y1 ���y|a|. The conditional
probability p(a|q) is defined as:

p ajqð Þ ¼
Yjaj

t¼1
p ytjy<t; qð Þ

where y<t ¼ y1 ���yt � 1. The method consists from an encoder which encodes NL
input q into a vector representation and a decoder which learns to generate y1,���,y|a|
conditioned on the encoding vector.

The first |q| time steps belong to the encoder, while the following |a| time steps
belong to the decoder. Let hlt 2 Rn denote the hidden vector at time step t and layer l.
hlt is then computed by:

hlt ¼ LSTM h l
t�1; h

l�1
t

� �

where LSTM refers to the LSTM function being used. LSTM memory cell is
depicted in Fig. 4.2. The architecture described in Zaremba et al. (2015) is fairly
popular, For the encoder, h0t¼Wqe(xt) is the word vector of the current input token,
withWq 2 Rn � |Vq| being a parameter matrix, and e(�) the index of the corresponding
token. For the decoder, h0t¼Wae(yt � 1) is the word vector of the previous predicted
word, where Wa 2 Rn � |Va|. Notice that the encoder and decoder have different
LSTM parameters.

Once the tokens of the input sequence x1,���,x|q| are encoded into vectors, they are
used to initialize the hidden states of the first time step in the decoder. Next, the
hidden vector of the topmost LSTM hLt in the decoder is used to predict the t-th
output token as:

p ytjy<t; qð Þ ¼ softmax WohL
t

� �T
e ytð Þ ð4:1Þ

whereWo 2 R|Va| � n is a parameter matrix, and e(yt) 2 {0,1}|Va| a one-hot vector for
computing yt’s probability from the predicted distribution.

Fig. 4.1 Input utterances and their logical forms are encoded and decoded with neural networks.
An attention layer is used to learn soft alignments

90 4 Developing Conversational Natural Language Interface to a Database

We augment every sequence with a “start-of-sequence” <s> and “end-of-
sequence” </s> token. The generation process terminates once </s> is predicted.
The conditional probability of generating the whole sequence p(a|q) is then obtained.

4.2.1.2 Sequence-to-Tree Model

The SEQ2SEQ model has a potential drawback in that it ignores the hierarchical
structure of logical forms. As a result, it needs to memorize various pieces of
auxiliary information (e.g., bracket pairs) to generate well-formed output. In the
following we present a hierarchical tree decoder that better represents the composi-
tional nature of meaning representations. A schematic description of the model is
shown in Fig. 4.3.

The present model shares the same encoder with the sequence-to-sequence model
described, learning to encode input q as vectors. However, tree decoder is funda-
mentally different as it generates logical forms in a top-down manner. In order to
represent tree structure, a “nonterminal” <n> token is defined to indicate a subtree.
As shown in Fig. 4.4, the logical form “lambda $0 e (and (>(account balance $0)
1600:ti) (withdraw from $0 saving:ci))” is converted into a tree by replacing tokens
between pairs of brackets with nonterminals. Special tokens <s> and < (> denote the
beginning of a sequence and nonterminal sequence, respectively. It is not shown in
Fig. 4.4. Token </s> represents the end of sequence.

After encoding input q, the hierarchical tree decoder uses recurrent neural net-
works to generate tokens at depth 1 of the subtree corresponding to parts of logical
form a. If the predicted token is <n>, the sequence is decoded by conditioning on the
nonterminal’s hidden vector. This process terminates when no more nonterminals

Fig. 4.2 A graphical representation of LSTM memory cells

4.2 Statistical and Deep Learning in NL2SQL Systems 91

are emitted. In other words, a sequence decoder is used to hierarchically generate the
tree structure.

In contrast to the sequence decoder described in Sect. 4.2.1.1, the current hidden
state does not only depend on its previous time step. In order to better utilize the
parent nonterminal’s information, we introduce a parent-feeding connection where
the hidden vector of the parent nonterminal is concatenated with the inputs and fed
into LSTM.

Fig. 4.3 Sequence-to-
sequence model with
two-layer recurrent neural
networks

Fig. 4.4 Sequence-to-tree model with a hierarchical tree decoder

92 4 Developing Conversational Natural Language Interface to a Database

As an example, Fig. 4.5 shows the decoding tree corresponding to the logical
form “X Y (Z)”, where y1 ���y6 are predicted tokens, and t1 ���t6 denote different time
steps. Span “(C)” corresponds to a subtree. Decoding in this example has two steps:
once input q has been encoded, we first generate y1 ���y4 at depth 1 until token </s> is
predicted; next, y5,y6 sequence is generated by conditioning on nonterminal t3’s
hidden vectors. The probability p(a|q) is the product of these two sequence decoding
steps:

p ajqð Þ ¼ p y1y2y3y4jqð Þp y5y6jy�3; qð Þ

where Eq. (4.1) is used for the prediction of each output token.

4.2.1.3 Attention Mechanism and Model Training

As shown in Eq. (4.1), the hidden vectors of the input sequence are not directly used
in the decoding process. However, it makes intuitively sense to consider relevant
information from the input to better predict the current token. Following this idea,
various techniques have been proposed to integrate encoder-side information (in the
form of a context vector) at each time step of the decoder (Bahdanau et al. 2015).

In order to find relevant encoder-side context for the current hidden state hLt of
decoder, its attention score is computed with the k-th hidden state in the encoder as:

s tk ¼
exp hL

k � hL
t

� �
P qj j

j¼1 exp hL
j � hL

t

n o

wherehL
1 , � � �,hL

qj j are the top-layer hidden vectors of the encoder (Fig. 4.6). Then, the
context vector is the weighted sum of the hidden vectors in the encoder:

ct ¼
Xqj j

k¼1

s tkh
L
k

Fig. 4.5 A sequence to tree
decoding example for the
logical form “X Y (Z)”

4.2 Statistical and Deep Learning in NL2SQL Systems 93

Employing (4.1), this context vector is further used. It acts as a summary of the
encoder to compute the probability of generating yt as:

hatt
t ¼ tanh W1hL

t þW2ct
� �

p ytjy<t; qð Þ ¼ softmax Wohatt
t

� �T
e ytð Þ

whereWo 2 R|Va| � n andW1,W2 2 Rn�n are three parameter matrices, and e(yt)
is a one-hot vector used to obtain the probability of yt.

The goal here is to maximize the likelihood of the generated logical forms given
NL utterances as input. So the objective function is:

minimize�
X

ðq, aÞ2D
log pðajqÞ

where D is the set of all natural language-logical form training pairs, and p(a|q) is
computed as shown in Eq. (4.1).

Dropout operators are used between different LSTM layers and for the hidden
layers before the softmax classifiers. This technique can substantially reduce
overfitting, especially on datasets of small size. The dropout operator should be
applied to the non-recurrent connections (Fig. 4.7). The dashed arrows indicate
connections where dropout is applied, and the solid lines indicate connections
where dropout is not applied.

The dropout operator corrupts the information carried by the cells, forcing them
to perform their intermediate computations more robustly. At the same time, we do
not want to erase all the information from the units. It is especially important that the
units remember events that occurred many timesteps in the past. An information can
flow from an event that occurred at time step t � 2 to the prediction in timestep t + 2
in our implementation of dropout. This information is distorted by the dropout
operator L + 1 times, and this number is independent of the number of time steps
traversed by the information. Standard dropout perturbs the recurrent connections,

Fig. 4.6 Attention scores
are computed by the current
hidden vector and all the
hidden vectors of encoder.
Then, the encoder-side
context vector ct is obtained
in the form of a weighted
sum, which is further used to
predict yt

94 4 Developing Conversational Natural Language Interface to a Database

which makes it difficult for the LSTM to learn to store information for long periods
of time. By not using dropout on the recurrent connections, the LSTM can benefit
from dropout regularization without sacrificing its valuable memorization ability.

The logical forms are predicted for an input utterance q by:

aˆ ¼ arga’maxp a
0 jq

� �

where a0 represents a candidate output. However, it is impractical to iterate over all
possible results to obtain the optimal prediction. According to Eq. (4.1), we decom-
pose the probability p(a|q) so that we can use greedy search (or beam search) to
generate tokens one by one.

Decoding algorithm takes a NL statement and produces a logic form. It includes
the following steps:

• Push the encoding result to a queue
• Decode until no more nonterminals

– Call sequence decoder
– Push new nonterminals to the queue

• Convert decoding tree to output sequence

Fig. 4.7 Regularized multilayer RNN

4.2 Statistical and Deep Learning in NL2SQL Systems 95

4.2.2 Limitations of Neural Network Based Approaches

Having presented the LSTM approach, we enumerate its limitations:

1. Lack of explainability and interpretability;
2. Necessity to obtain huge dataset;
3. Unable to perform incremental development;
4. Cannot compartmentalize a problem and solve each case separately;
5. Hard to reuse: need to be re-trained even for insignificant update in training set;
6. Hard to make discoveries in data, find correlations and causal links;
7. Hard to integrate with other types of decisions;
8. Computational complexity;
9. Requires a special platform;

10. Does not allow solving a problem once and forever. For example, it takes a
single person significant mental efforts to build an NL2SQL. But once it is done,
minimum efforts would be required. On the contrary, LSTM – based NL2SQL
developed for one domains (such as banana-related queries) would require a
totally different training set for queries in another (apple) domains, since nobody
“explained” to the system what are words for SQL and what are domain specific
word (as it is done for a rule-based system).

4.3 Advancing the State-of-the-Art of NL2SQL

4.3.1 Building NL2SQL via Multiword Mapping

We first address the problem that some words in an NL query may correspond to
values, attributes and relations at the same time, so some constraint optimization
needs to be applied to obtain a correct mapping. This mapping is a partial case to
what is usually referred to as semantic parsing (Kate et al. 2005; Liang and Potts
2015). For some queries, this correct mapping is unique; Popescu et al. (2003) call
them semantically tractable queries.

Many questions in natural language specify a set of attribute/value pairs as well as
‘independently’ standing values whose attributes are implicit (unknown).

A db-multiword is a set of word stems that matches a database element. For
instance, multiword {require, advance, rental} and {need, advance, rent, request}
match the database attribute film.advance_rental_request. Each db-multiword has a
set of possible types (e.g. value multiword, attribute multiword) corresponding to the
types of the database elements it matches. A syntactic marker (such as “this”) is an
element of a fixed set of database - independent multiwords that is used indirectly
and whose semantic role to the interpretation of a question is limited. For a NL query
to be mapped into SQL, we require that some set of db-multiwords exists such that
every word in the query appears in exactly one db-multiword. We refer to any such
db-multiword set as a complete db-multiword representation of query.

96 4 Developing Conversational Natural Language Interface to a Database

In order for a query to be interpreted in the context of the given database (without
a need for clarification), at least one complete db-multiword representation must map
to some set of database elements E as follows:

1. each db-multiword matches a unique database element in E;
2. each db-multiword for an attribute corresponds to a unique value word. This

means that

(a) the database attribute matching the attribute multiword and the database value
matching the value word are compatible; and

(b) the db-multiword for an attribute and the value token can be mapped into each
other.

3. each db-multiword for relation corresponds to either an attribute multiword or a
value multiword. This means that

(a) the database relation matching the relation multiword and the database
element matching the attribute or value multiword are compatible; and

(b) the db-multiword for relation is mapped to the corresponding attribute or
value token.

Otherwise, if these conditions do not hold, NL2SQL system needs to act in the
chatbot mode.

Popescu et al. (2003) present an implementation of NL2SQL for what they call
tractable NL queries, and prove the completeness and coverage statements.

The Tokenizer removes syntactic markers and produces a single db-multiword of
this question: (what, Java, process, Unix, system, Fig. 4.8. By looking up the tokens
in the lexicon (which also contains synonym information), the system retrieves the
set of matching database elements for every word. In this case, what, Java and Unix
are db-multiwords for values, system is an attribute token and process is a relation

Fig. 4.8 The transformation of the query ‘What are the Java processes on a Unix system?’ to an
SQL query, in the context of a database containing a single relation, process, with attributes
Description, Source and Operating_system

4.3 Advancing the State-of-the-Art of NL2SQL 97

word (see Fig. 4.1). The problem of finding a mapping from a complete tokenization
of the query to a set of database elements such that the semantic constraints imposed
by conditions (1–3) above are satisfied is reduced to a graph matching problem
(Fig. 4.9, Galitsky et al. 2010).

After the Tokenizer builds the individual mappings into db-multiwords, the
Matcher builds the attribute-value graph (Fig. 4.8). The leftmost column in this
figure is a source node. The Value word column contains db-multiwords matching
database values, which are found in the third column from the right. Some
db-multiwords can be ambiguous as they match multiple attributes: for example,
‘mem’ can be a value of attribute description and also a value of attribute memory.
The edges go from each value word to each matching database value. The Matcher
also connects each database value with its corresponding attribute which is then
connected to its matching attribute words and also the node I for implicit attributes
(E denote explicit attributes in the rightmost column). Hence the Matcher reduces
NL interpretation problem to a graph (maximum-bipartite-matching) problem with
the constraints demanding that all db-multiwords nodes for attributes and values
need to occur in this match.

Finally, we present the chart for simple NL2SQL architecture (Fig. 4.10).
The limitations of this NL2SQL approach with the focus on resolving multiword

mapping ambiguities are as follows:

• It does not provide a machinery to form individual clause, including an operation
between a variable and a value

• It is not easy to integrate graph matching with thesaurus browsing
• it does not help establish assertions between the clauses, such as conjunction,

disjunction or sub-query.

Fig. 4.9 The attribute-value graph for the query ‘What are the Java processes on a Unix system?’
(on the top) and the relation graph for the query ‘What are the Java processes on a Unix system with
memory leaks?’

98 4 Developing Conversational Natural Language Interface to a Database

4.3.2 Sketch-Based Approach

Yaghmazadeh et al. (2017) also use semantic parsing to translate the user’s English
description into what they call a query sketch (skeleton). Since a query sketch only
specifies the shape instead of the full SQL query content, the semantic parser does
not need to know about the names of relations, attributes and values (database tables/
columns). Hence, the use of query allows a semantic parser to effectively translate
the English description into a suitable formal representation without requiring any
database-specific training (Fig. 4.11).

Once a query skeleton is generated, Yaghmazadeh et al. (2017) employ type-
directed program synthesis to complete the sketch. NL2SQL system forms well-
typed completions of the query skeleton with the aid of the underlying database
schema. Since there are typically many well-typed terms, this approach assigns a
confidence score to each possible completion of the sketch. The synthesis algorithm
uses both the contents of the database as well as natural language hints embedded in
the sketch when assigning confidence scores to SQL queries.

For the query ‘Find the number of users who rented Titanic in 2016’ the semantic
parser returns the sketch

Fig. 4.10 Basic NL2SQL
architecture

Fig. 4.11 Sketch repair – based approach to building better query representation

4.3 Advancing the State-of-the-Art of NL2SQL 99

SELECT count(?[users]) FROM??[film] WHERE? ¼ “Titanic 2016”.

Here, ‘??’ represents an unknown table, and ? represent unknown columns.
Where present, the words written in square brackets represent so-called “hints” for
the corresponding placeholder.

Starting from the above sketch the system enumerates all well-typed completions
of this sketch, together with a score for each completion candidate. In this case, there
are many possible well-typed completions of this sketch; however, none of the those
meet the confidence threshold. For instance, one of the reasons for it is that there is
no entry called “Titanic 2016” in any of the database tables. We need to perform a
fault localization to identify the root cause of not meeting confidence threshold. In
this case, we determine that the likely root cause is the predicate? ¼ “Titanic 2016”
since there is no database entry matching “Titanic 2016” (The Cameron’s movie
was done in 1997, and 2016 is a rental date, not movie creation date). The system
repairs the sketch by splitting the where clause into two separate conjuncts:

SELECT count(?[users]) FROM??[film] WHERE? ¼ “Titanic” AND ? ¼ 2016”.

On the next step, the system tries to complete the refined sketch S but it again fails
to find a high-confidence completion of the above representation. In this case, the
problem is that there is no single database table that contains both the entry “Titanic”
as well as the entry “2016”. We try to repair it by introducing a join. As a result, the
new sketch now becomes:

SELECT count(users.id) FROM users JOIN? ON ?¼? [film] WHERE?¼ “Titanic”
AND ? ¼ “2016”.

Finally, we arrive at the resultant query representation:

SELECT count(users.id) FROM users JOIN film ON users.rental_film_id ¼ film.id

WHERE film.title ¼ “Titanic” AND users.rental_date ¼ “2016”.

4.3.3 Extended Relational Algebra to Handle Aggregation
and Nested Query

To map aggregation operation references form NL to SQL, we need a special version
of a relational algebra (Fig. 4.12, Yaghmazadeh et al. 2017). Here c are column
names; f denotes an aggregate function, and v denotes a value. Relations, denoted as

Fig. 4.12 A version of
relational algebra oriented
towards representing
database queries in NL

100 4 Developing Conversational Natural Language Interface to a Database

T in the grammar, include tables t stored in the database or views obtained by
applying the following relational algebra operators:

1. projection (Π). ProjectionΠL(T) takes a relation T and a column list L and returns
a new relation that only contains the columns in L.

2. selection (σ). The selection operation σφ(T) yields a new relation that only
contains rows satisfying φ in T.

3. join (◃▹)..The join operation T1 c1◃▹c2 T2 composes two relations T1, T2 such that
the result contains exactly those rows of T1 � T2 satisfying c1 ¼ c2, where c1, c2
are columns in T1, T2 respectively.

We assume that every column in the database has a unique name. Note that we
can easily enforce this restriction in practice by appending the table name to each
column name. Second, we only consider equi-joins because they are the most
commonly used join operator, and it is easy to extend our techniques to other
kinds of join operators (e.g., θ-join). Notice that the relational algebra allows nested
queries. For instance, selections can occur within other selections and joins as well as
inside predicates φ.

Unlike standard relational algebra, the relational algebra variant shown in
Fig. 4.12 also allows aggregate functions as well as a group-by operator. For
conciseness, aggregate functions

f 2 AggrFunc ¼ {max, min, avg, sum, count} are specified as a subscript in the
projection operation. In particular, Πf(c)(T) yields a single aggregate value
obtained by applying f to column c of relation T. Similarly, group-by operations
are also specified as a subscript in the projection operator. Specifically, Πg(f(c1),
c2)(T) divides rows of T into groups g1 based on values stored in column c2 and,
for each g1, it yields the aggregate value f(c1).

The logical forms used for NL2SQL take the form of query skeletons, which are
produced according to the grammar from Fig. 4.12. Intuitively, a query skeleton is a
relational algebra term with missing table and column names. Query skeletons as the
underlying logical form representation are used because it is extremely hard to
accurately map NL queries to full SQL queries without training on a specific
database. In other words, the use of query skeletons allows us to map English
sentences to logical forms in a database-agnostic manner.

In Fig. 4.13 ‘?h’ represents an unknown column with hint h, which is just a
natural language description of the unknown. Similarly,??h represents an unknown
table name with corresponding hint h. If there is no hint associated with a hole, we
simply write? for columns and?? for tables.

Fig. 4.13 Sketch Grammar
for NL2SQL

4.3 Advancing the State-of-the-Art of NL2SQL 101

Given a query sketch generated by the semantic parser, this sketch needs to be
completed by instantiating the placeholders with concrete table and column names
defined in the database schema. The sketch completion procedure is type- directed
and treats each database table as a record type.

{(c1: β1),. . .(cn: βn)},

where ci is a column name and βi is the type of the values stored in column ci. The
sketch completion algorithm need to select the best completion based on scoring,
which takes into account semantic similarity between the hints in sketch and the
names of tables and columns.

Let us consider the tables Customers and films tables from Fig. 4.14. Here,

Πavg(num_of_films) (Customers) ¼ 87, and Πg(avg(num_of_films), category_id)(Customers
film_id_fk ◃▹ film_id_fk films) gives the average number of films watched by cus-
tomers, who currently rent the films of a given category (Fig. 4.15).

To provide an example of nested queries, suppose that a user wants to retrieve all
film renting customers with the highest number of watched movies. We can express
this query as:

Πname (σnum_of_movies ¼ Πmax(num_of_movies) (customers) (customers))

For the tables from Fig. 4.14, this query yields a table with two rows, #5 and #6.
A limitation of this algebra-based approach is that a fairly complicated rule

system is required; most sophisticated rules would cover rather infrequent cases.
Even after a thorough coverage of various cases of mapping between words and
table/column names, ambiguity still arises in a number of situations.

id first_name num of films film_id_fk film_id film_name category_id
1 John 60 101 101 Name1 1001
2 Jack 80 102 102 Name2 1002
3 Jane 80 103 103 Name3 1001
4 Mike 90 104 104 Name4 1002
5 Peter 100 103
6 Alice 100 104
7 Julie 100 103

Fig. 4.14 Customers and Films tables to demonstrate aggregation

Film_category Avg(num_of_films)
1001 85
1002 90

Fig. 4.15 Aggregated data

102 4 Developing Conversational Natural Language Interface to a Database

4.3.4 Interpreting NL Query via Parse Tree Transformation

Li and Jagadish (2016) proposed a way to correctly interpret complex natural
language queries through a carefully limited interaction with the user. Their
approach is inspired by how humans query each other, attempting to acquire certain
knowledge. When humans communicate with one another in NL, the query-response
cycle is not as rigid as in a traditional database system (Galitsky and Botros 2012). If
a human formulates a query that the addressee does not understand, he will come
back requesting clarification. The query author may do so by asking specific
questions back, so that the question-asker understands the point of potential confu-
sion. He may also do so by stating explicitly how she interpreted the query. Drawing
inspiration from this natural human behavior, Li and Jagadish (2016) design the
query mechanism to facilitate collaboration between the system and the user in
processing NL queries. First, the system explains how it interprets a query, from
each ambiguous word/phrase to the meaning of the whole sentence. These explana-
tions enable the user to verify the answer and to be aware where the system
misinterprets her query. Second, for each ambiguous part, multiple likely interpre-
tations are given to the user to choose from. Since it is often easier for users to
recognize an expression rather than to compose it, this query mechanism is capable
of achieving satisfactory reliability without giving the user too much routine tasks.

We follow along the lines of this study and make clarification systematic; clarifi-
cation request can be issued by a number of NL2SQL system components and layers.
In our approach a data source can be SQL or noSQL database, unstructured data such
as text and Q/A pairs, and transactional data such as a set of API calls.

4.3.4.1 Intermediate Representation Language

Due to the difficulties of directly translating a sentence into a general database query
languages using a syntax - based approach, the intermediate representation systems
were proposed. The idea is to map a sentence into a logical query language first, and
then further translate this logical query language into a general database query
language, such as SQL. In the process there can be more than one intermediate
meaning representation language. A baseline architecture based on parse tree trans-
formation is presented in Fig. 4.16.

Using predicate logic as the logical query language, an intermediate representa-
tion system could develop a semantic interpreter that maps the above sentence into
the following logical query:

‘Return users who watched more movies than Bob on Documentary after 2007’:

countBob ¼ count [rent(Bob , movie(movie_name, duration, rating, category, . . .),
rental_date), rental_date>2007]

for(User user: users){
if count[user]>count[Bob]
}

4.3 Advancing the State-of-the-Art of NL2SQL 103

4.3.4.2 Mapping the Nodes of Query Parse Tree

A linguistic mapping approach to NL2SQL would be to classify each parse tree node
as SQL command, reference to a table, field or value. Such approach identifies the
nodes in the linguistic parse tree that can be mapped to SQL components and
tokenizes them into different tokens. In the mapping process, some nodes may fail
in mapping to any SQL component. In this case, our system generates a warning to
the user, telling her that these nodes do not directly contribute in interpreting her
query. Also, some nodes may have multiple mappings, which causes ambiguities in
interpreting these nodes. For each such node, the parse tree node mapper outputs the
best mapping to the parse tree structure adjustor by default and reports all candidate
mappings to the interactive communicator.

Parse Tree Structure Adjustor After the node mapping (possibly with interactive
communications with the user), we assume that each node is understood by our
system. The next step is to correctly understand the tree structure from the database’s
perspective. However, this is not easy since the linguistic parse tree might be
incorrect, out of the semantic coverage of our system or ambiguous from the
database’s perspective. In those cases, Li and Jagadish (2014) adjust the structure
of the linguistic parse tree and generate candidate interpretations (query trees) for
it. In particular, the structure of the parse tree is adjusted in two steps. In the first step,
the nodes are reformulated in the parse tree to make it similar in structure to one of
the stored parse trees. If there are multiple candidate valid parse trees for the query,
the system chooses the best tree as default input for the second step and report top k
of them to the interactive communicator. In the second step, the chosen or default
parse tree is semantically processed and new tree nodes are inserted to make it more
semantically plausible. After inserting these implicit nodes, the system obtains the
exact tree interpretation for the query.

Sentence Parser

Logical Query
Language

Database Query
Generator

Database Query
Language

Parse Tree

Semantic
Interpreter

Fig. 4.16 A baseline architecture based on parse tree transformation for SQL interpretation
pipeline

104 4 Developing Conversational Natural Language Interface to a Database

Interactive Communicator In case the system possibly “misunderstands” the user,
the interactive communicator explains how her query is processed, visualizing the
semantically plausible tree. Interactive communications are organized in three steps,
which verify the intermediate results in the parse tree node mapping, parse tree
structure reformulation, and implicit node insertion, respectively. For each ambigu-
ous part, a multiple choice selection panel is generated, in which each choice
corresponds to a different interpretation. Each time a user changes a choice, the
system immediately reprocesses all the ambiguities in later steps.

In Fig. 4.17 we show transformation steps for the query ‘Return users who
watched more movies than Bob on Documentary after 2007’. In the first step, a
parse tree T is obtained by Stanford NLP (on the top). In the second step, each query
word is mapped into a database operator, field or value.

In the third step, the parse tree adjustor reformulates the structure of the parse tree
T and generates a set of candidate parse trees. The interactive communicator explains
each candidate parse trees for the user to choose from. For example, one candidate is
explained as ‘return the users whose movies on Documentary after 2007 is more
than Bob’s.’ In the fourth step, this candidate tree is fully instantiated in the parse
tree structure adjustor by inserting implicit nodes (shown in the bottom-right of
Fig. 4.17). The resultant selected query tree is explained to the user as ‘return the
users, where the number of films in Documentary released after 2007 is more the
number of films rented by Bob in Documentary released after 2007’.

The overall architecture with Clarification Requester is shown in Fig. 4.18. The
system includes the query interpretation part, interactive communicator and query
tree translator. The query interpretation part, which includes parse tree node mapper
and structure adjustor, is responsible for interpreting an NL query and representing
the interpretation as a query tree. The interactive communicator is responsible for
communicating with the user to ensure that the interpretation process is correct. The

Fig. 4.17 Transformation steps for the query

4.3 Advancing the State-of-the-Art of NL2SQL 105

query tree, possibly verified by the user, is translated into a SQL statement in the
query tree translator and then evaluated against a DB.

4.4 Designing NL2SQL Based on Recursive Clause
Building, Employing Thesauri and Implementing Via
Chatbot

4.4.1 Selecting Deterministic Chatbot-Based Approach

An extensive corpus of work in NL2SQL showed that it is rather difficult to convert
all user queries into SQL mostly due to ambiguity of database field names and a
complex structure of practical database, in addition to query understanding diffi-
culty. Also, it is hard for NL2SQL problem to communicate with the user which NL
queries are acceptable and which are not. Even if 80% of user NL queries are
properly translated to SQL, which is hard to achieve, the usability is questionable.

To address this problem, we propose to implement NL2SQL as a chatbot, so that
the system can clarify every encountered ambiguity with the user right away. If a
confidence score for a given NL2SQL component is low, the chatbot asks the user to
confirm/clarify whether the interpretation of a query focus or a given clause is
correct. For example, interpreting a phrase movie actor name, the chatbot requests
user clarification if name refers to the actor last name, first name or film title.

The main highlights of the selected approach are as follows:

1. We extract a linguistic representation for a SQL clause in the form of table.
column assignment;

2. We build the sequence of SQL clauses in the iterative way;
3. We rely on thesauri, possibly web mining (Chap. 8) and other cues to build a

mapping from NL representation for a clause into table and column name;
4. We resolve all kinds of ambiguities in NL query interpretation as a clarification

request via chatbot.

Fig. 4.18 Overall architecture of a NL2SQL based on parse tree transformation with Clarification
Requester

106 4 Developing Conversational Natural Language Interface to a Database

4.4.2 Interpreting Table.Field Clause

The input of Table.Field clause recognizer is a phrase that includes a reference to a
table and/or its field. Each word may refer to a field of one table and a name of
another table, only to a field, or only to a table, hence the query understanding
problem is associated with rather high ambiguity.

The fundamental problem in NL2SQL is that interpreting NL is hard in general
and understanding which words refer to which database field is ambiguous in nature
(Galitsky 2003). People may use slang words, technical terms, and dialect-specific
phrasing, none of which may be known to the NL2SQL system. Regretfully, even
with appropriate choice of words, NL is inherently ambiguous. Even in human-to-
human interaction, there are miscommunications.

One of the difficulties is substituting values for attributes of similar semantic
types, such as first and last name. For example, it is hard to build the following
mapping unless we know what first and last names are:

actor name John Doe) actor.first_name ¼ . . . & actor.last_name ¼ . . .

There is a need for transformations beyond mapping phrase2table.field, such as a
lookup of English first names and knowledge that first and last name can be in a
single field, can be in various formats and orders, or belong to distinct fields, like in
the case of Sakila database (Oracle 2018).

When a user is saying ‘film name’ the system can interpret it as a table with
field ¼ ‘name’ when film.name does not exist. Although ‘name’ is a synonym of
‘title’, the phrase ‘name’ can be mapped into totally foreign table such as category.
name instead of actor.first_name. If a phrase includes ‘word1 word2’ it is usually
ambiguous since word2 can be table 1.field and also table2.word2 can be a field (or a
part of a field, as a single word) in another table. Hence we need a hypothesis
management system that proceeds from most likely to least likely cases, but is
deterministic so that the rule system can be extended.

We start with the rule that identify a single table name and make sure there are no
other table names mentioned (Fig. 4.19). Also, we need to confirm that no field name
is mentioned in the string to be mapped into a table name. Once a table is confirmed,
we select its default field such as ‘title’ or any other field with the name of entity
represented by this table.

If a pure table rule is not applicable, we proceed to the table + its field rule. The
system identifies a table and its field together. We iterate through all table-field
words and select the table-filed combination when a highest number of words are
matched against the phrase. If we do not find a good match for table-filed set of
keywords against the phrase, we proceed to matching a field only (the third step). At
this step we use ontology so expand a list of keywords for a field with synonyms.
Once we find a match for a field, we get a list of table this field can possibly
belong to.

In the second step, we try to find words in the phrase correlated with this table
name. In this step, for each of these tables we in turn obtain a list of their fields and

4.4 Designing NL2SQL Based on Recursive Clause Building, Employing. . . 107

http://film.name
http://category.name
http://category.name

verify that the original field from the step one of this unit is identified, not another
one. If the second step fails we stop on the first one, and if the verification of the third
step fails, we stop on the second step. The higher is the number of steps, the higher is
the confidence level.

4.4.3 Collecting Information on a Database and Thesaurus
for NL2SQL

The NL2SQL system is designed to automatically adjust to an arbitrary database
where table and column names are meaningful and interpretable. The following data
structures are used by Phrase2Table.Field and other algorithms

• Set fieldsForMatching: A set of fields;
• Map tablesFieldsForMatching gives a list of fields for a table;
• Map fieldsTableListsForMatching gives a list of tables for a field;
• Map fieldsTablesForMatching gives a selected table for a field. For some fields

such as entity name, there is just a single table for this entity.

Since terms in a user query can deviate from field names in a database, it is
necessary to mine for synonyms offline from sources like thesaurus.com or use
trained synonym models such as word2vec (Mikolov et al. 2015). Lists of synonyms
or similarity function are then used in phrase2table.field component of Query

Table only rule:
• Phrase includes only name of

a single table
• No match of any field of any

table

Field plus Table rule:
- Iterate through fields

-Iterate through tables for
these fields
• Match a phrase using

combined table + field
expression with synonyms

• Get the best match and its
score

Best field rule:
Iterate through fields
Match a phrase using field

expression with synonyms.
Use whole word match and

word form substitution match
Get the best match and its

score

Table for best Field rule:
Get all tables for the best

field
Find the best table match

If high score
⇒ stop

If high score
⇒ stop

Best Field for Best Table
rule :

Once best table is identified,
get all its fields and identify the
best match with synonyms

Mined database
metadata

• Table names
• Field names
• Tokens in table

names
• Tokens in field

names

Mined synonym
data
• Synonyms for
Field names
• Synonyms for

tokens in Field
names

Obtained from
thesaurus.com

Fig. 4.19 Phrase2Table.Field Unit

108 4 Developing Conversational Natural Language Interface to a Database

http://thesaurus.com

understanding pipeline. The arrow in the right-middle shows communication with
the Phrase2Table.Field Unit of Fig. 4.19.

4.4.4 Iterative Clause Formation

Once a focus clause is identified, we consider the remaining of the NL query as a
Where clause (Figs. 4.21 and 4.22, Galitsky et al. 2013a, b). It is hard to determine
boundaries of clauses; instead, we try to identify the assignment/comparison word
(anchor) such as is, equals, more, before, as,which indicates the center of a phrase to
be converted into SQL clause. Once we find the leftmost anchor we attempt to build
the left side (attribute) and the right side (value).

To find the boundary of an attribute, we iterate towards the beginning the NL
query to the start of the current phrase. It is usually indicated by the prepositions with
or of, connective and, or a Wh-word. The value part is noun and/or a number,
possibly with an adjective. The same words mark the end of value part as the
beginning of next attribute part.

Once the clause is built, we subject the remaining part of the NL query to the same
clause identification algorithm, which starts with finding the anchor. If a structure of
phrase follows Fig. 4.21, it is processed by the middle-left component Clause
builder from phrase in the Fig. 4.20 chart. Otherwise, it there is no anchor word
and it is hard to establish where the phrases for attribute and values are, we apply the
Clause builder by matching the phrase with indexed row approach.

4.4.5 Clause Building by Matching the Phrase
with Indexed Row

We also refer to this alternative approach to building SQL query clauses as NL2SQL
via search engineering: it involves building a special index (not to confuse with
database own index) and executing a search of a part of user NL query against it. At
indexing time, we index each row of each table in the following format (top-right of
Fig. 4.20):

Table field1 value1 field2 value2 . . .

Associative tables and other ones which do not contain data for entities such as
customer of address are not indexed for matching. The index includes the fields for
search and for storing the values.

Once an NL query is obtained and Clause builder from phrase failed to build a
clause from a phrase expected to contain a Where clause, the search expression is
built from this phrase. This search expression includes the words which are expected

4.4 Designing NL2SQL Based on Recursive Clause Building, Employing. . . 109

Attribute (to be
converted into
table.field)

Anchor (is,
equals, more, less, as)

Beginning of a
clause (where, and,
with)

Value (to be
converted into
table.field >= *)

end of a clause
(beginning of the
next one)

Fig. 4.21 A structure of a clause to be converted into table.field [¼/< / > / like] value

Input query

Clause1Focus

Clause builder from phrase

Identify comparison or equality
expression (Attribute <is more than> Value,
Attribute <is> Value)

Identify Attribute phrase using
Interpreting Table.Field expression unit

Obtain Table.Field expression for
Attribute using Phrase2Table.Field
algorithm

Identify Value sub-phrase
Build Table.Field <comp> Value clause

Split query into
Focus expression (select *)
Phrases so that each phrase would yield a
Clause expressing conditions (‘where…’
part)

DB records indexer
For each table
Form a search field for each table row
Table Field1 Value1 Field2 Value2…

Clause builder by matching the
phrase with indexed row

Get a phrase and build a search query
from it

For each search result:
Get a list of Attribute-Values and try to

identify them in the phrase. Both token
and fuzzy string match is attempted

Calculate match score as a product of
TF*IDF search score and match score

Select the found row with the best
match and form the list of Attribute-
Values

Clause2

If clause construction
failed, try the matching
approach

Recursive building of clause

Identify phrase for a clause
Build clause
Extract remaining part of the query
Launch Recursive building of

clause for the remaining part of the
query

Query builder from a list of clauses

Recursive building of clause
If all phrases yielded clauses,
stop.
Otherwise, apply Clause builder by

matching the phrase with indexed row.
Build focus clause
Obtain additional linking tables and

referential integrity clauses
Normalize/finalize the list of tables
Complete SQL query

 If clause is
built, add it to
the list of
clauses

Constructed SQL query

Fig. 4.20 A high-level view of NL2SQL system. Integration of Phrase2Table.Field and Recursive
building of clause units is shown by step-arrows on the left

110 4 Developing Conversational Natural Language Interface to a Database

to match tables, fields and values. Since we do not know what is what before search
results are obtained, the query is formed as conjunction of words first and then as a
disjunction of these words, if the conjunction query fails to give results. In a
disjunction queries, not all keywords have to be matched: some of them are just
used by the NL query author but do not exist in table data. To make search more
precise, we also form span-AND queries from entities identified in the phrase to be
converted, such as ‘Bank of America’.

Numbers need a special treatment. For a query of equal kind, finding an exact
number would make SQL query formation precise and in fact substitutes an execu-
tion of a resultant query. Since all numbers are indexed for search as string tokens,
real numbers need to be stored and searched with ‘.’ substituted to avoid splitting
string representation into two parts.

Once search results are obtained, we iterate through them to find the most likely
record. Although the default TF*IDF relevance is usually right, we compute out own
score based on the number of attribute-value pairs which occur in both the query and
a candidate search result (Fig. 4.23). Our own score also takes into account individ-
ual values without attribute occurrence in both the query and the record. String-level
similarity and multiword deviations between occurrences in the query and the record
are also taken into account (whether some words in a multiword are missing or occur
in a different form (such as plural for a noun or a tense for a verb).

Depending on the type of string for the value (numeric or string), we chose the
operation ‘¼’ or ‘like’ when the table.field < assignment > value clause is built.
Obviously, when this clause building method is employed we do not need to call the
phrase2Table.Field component.

Attribute (to be
converted into
table.field)

Anchor (is,
equals, more, as)

Beginning of a
clause (where,
and, with)

Value (to be
converted into
table.field >= *)

end of a clause

Attribute (to be
converted into
table.field)

Anchor (is,
equals, more, as)

Beginning of a
clause (where,
and, with)

Value (to be
converted into
table.field >= *)

end of a clause

Attribute (to be
converted into
table.field)

Anchor (is,
equals, more, as)

Beginning of a
clause (where,
and, with)

Value (to be
converted into
table.field >= *)

end of a clause

Attribute (to be
converted into
table.field)

Beginning of a
focus clause /
imperative

Fig. 4.22 User query as a sequence of clauses: some of them follow the template on the top and are
processed by Clause builder from phrase, and some of them do not and are handled by Clause
builder by matching the phrase with indexed row

4.4 Designing NL2SQL Based on Recursive Clause Building, Employing. . . 111

4.4.6 Extracting Focus Clause

We refer to text which is converted into ‘select *’ statement as focus clause. We start
with Wh word and then extract the phrase that follows it. This phrase must be the
shortest one among those, which follow theWh word. Noun, verb, prepositional and
other kinds of phrases are acceptable. From this phrase, a clause will be built
applying phrase2table.field component. This clause will not have an assignment
but will possibly have a grouping term instead, such as ‘give me the maximum
temperature of water . . . ‘.

4.5 Resolving Ambiguities in Query Interpretation via
Chatbot

We have presented a rule-based architecture for query interpretation. Naturally, in
many processing components, ambiguities arise, such as table name, field name or
relationship. Instead of trying to find a most plausible representation of an NL query,

Fig. 4.23 A view of the index for matching the phrase with indexed row approach. Each database
record is stored for search (bottom-right) and data retrieval (in the middle)

112 4 Developing Conversational Natural Language Interface to a Database

like most of NL2SQL systems do, we rely on the user to resolve ambiguities via
clarification requests. Our NL2SQL system gives the user the query phrase being
mapped into a table name, and enumerates possible tables, providing a clarification
request.

A chart for a chatbot wrapper for Phrase2Table.Field component is shown in
Fig. 4.24. When a single Table.Field is obtained, no disambiguation is necessary. To
disambiguate a phrase, the wrapper asks the user which mapping is correct. For
example, if a user is asking . . . ‘when guys name is ..’ the system identify the token
name and obtains a number of Table.Field candidates. Then the Phrase2Table.Field
wrapper offers actor.first_name / actor.last_name /staff.first_name / staff.last_name
| customer.first_name / customer.last_name options. Once the user selects the
correct mapping option, it is set by the Phrase2Table.Field component.

Fig. 4.24 Disambiguation of Phrase2Table.Field (Fig. 4.19) results via chatbot interaction

4.5 Resolving Ambiguities in Query Interpretation via Chatbot 113

4.6 A Sample Database Enabled with NL2SQL

To build an industrial-strength NL2SQL, we select a default database Sakila (Oracle
2018) that demonstrates a variety of MySQL capabilities. It is intended to provide a
standard schema that can be used for examples in tutorials and samples, and also
serves to highlight the latest features of MySQL such as Views, Stored Procedures,
and Triggers. The Sakila sample database was designed as a replacement to the
world sample database, which provides a set of tables containing information on the
countries and cities of the world and is useful for basic queries, but lacks structures
for testing MySQL-specific functionality and new features found in MySQL 5.

Notice that for NL2SQL we selected a fairly feature-rich database with a com-
plicated structure of relations (Fig. 4.25). The database structure is much more
complex than the ones used in academic studies to evaluate NL2SQL in Sects.
4.2, and 4.3.

These are the examples of NL query, logs for intermediate step, resultant SQL
representation and query results:

Query: ‘what is staff first name when her movie return date is after 2005-06-02
01:02:05’
looking for table.field for ‘[staff, first, name]’
found table.field ¼ staff.first_name
looking for table.field for ‘[movie, return, date]’
found table.field ¼ rental.return_date
Results: Mike
SQL: select staff.first_name from staff, rental where
rental.return_date > ‘2005-06-02 01:02:05’ and rental.
staff_id ¼ staff.staff_id

Query: ‘what film title has actor’s first name as Christian and category
Documentary’
looking for table.field for ‘[film, title]’
found table.field ¼ film.title
looking for table.field for ‘[actor, first, name]’
found table.field ¼ actor.first_name
Results: ACADEMY DINOSAUR |
CUPBOARD SINNERS |
MOD SECRETARY |
PRINCESS GIANT |
SQL: select film.title from film_category, film_actor,
film, actor, category where actor.first_name like ‘%Chris-
tian%’ and category.name ¼ ‘documentary’ and film_actor.
film_id ¼ film.film_id and film_actor.actor_id ¼ actor.

(continued)

114 4 Developing Conversational Natural Language Interface to a Database

actor_id and film_actor.film_id ¼ film.film_id and
film_actor.actor_id ¼ actor.actor_id and film_category.
film_id ¼ film.film_id and film_category.category_id ¼ cat-
egory.category_id and film_category.film_id ¼ film.film_id
and film_category.category_id ¼ category.category_id.

Query: ‘What is actor fist name when movie category is Documentary and
special features are Behind the Scenes’
looking for table.field for ‘[actor]’
found table.field ¼ actor.first_name
looking for table.field for ‘[movie, category]’
found by table ONLY ¼ category.name
Results: PENELOPE |
CHRISTIAN |
LUCILLE |
SANDRA |
SQL: select actor.first_name from film_category, film_actor, film, actor,
category where category.name like ‘%Documentary%’ and film.
special_features like ‘%behind%the%scenes%’ and film_actor.film_id ¼
film.film_id and film_actor.actor_id ¼ actor.actor_id and film_actor.film_id
¼ film.film_id and film_actor.actor_id ¼ actor.actor_id and film_category.
film_id ¼ film.film_id and film_category.category_id ¼ category.category_id
and film_category.film_id ¼ film.film_id and film_category.category_id ¼
category.category_id.

Query: ‘What is a film category when film title is Ace Goldfinger’
looking for table.field for ‘[film, category]’
found table.field ¼ category.name
looking for table.field for ‘[film, title]’
found table.field ¼ film.title
Results:
Horror |
SQL: select category.name from film_category, film, category where film.title
like ‘%ACE GOLDFINGER%’ and film_category.film_id ¼ film.film_id and
film_category.category_id ¼ category.category_id

Notice that we do not require the user to highlight the parameter values versus
parameter names.

For the last, fourth example, the query could have been formulated as ‘What is a
category of film. . .’ but it would make it harder for NL2SQL system to determine the
fields of the tables referred to by the words category and film.

In many cases, when a reference to a table name is not mentioned in an NL query,
we attempt to identify it based on a column name. If multiple tables have this

4.6 A Sample Database Enabled with NL2SQL 115

http://category.name
http://category.name
http://category.name
http://category.name

F
ig
.4

.2
5

T
he

st
ru
ct
ur
e
of

S
ak
ila

da
ta
ba
se

as
vi
su
al
iz
ed

by
M
yS

Q
L
W
or
kb

en
ch

116 4 Developing Conversational Natural Language Interface to a Database

extracted column name, the chatbot mode is initiated and the user needs to pick up a
single table from the list of ones with this column name.

4.7 Conclusions

There are a number of issues with usability of NL2SQL systems (Nihalani et al.
2011). When NL2SQL system fails, it is frequently the case that the system does not
provide any explanation of what causes the system to fail. Some users may try to
rephrase the NL query or just move on to another query. Most of the time, it is up to
the users to determine of the causes the errors.

Also, customers may have false expectations, be misled by an NL2SQL system’s
ability to understand NL. Customers may assume that the system is intelligent and
overestimate its results. Instead of asking precise questions in database terms, they
may be tempted to ask questions that involve complex ideas, certain judgments,
reasoning capabilities, etc., which an NL2SQL system is not designed to properly
handle.

Each NL2SQL is limited to its coverage of acceptable NL expressions. Currently,
all NL2SQL systems can only handle some subsets of NL and it is not easy to define
these subsets. Some NL2SQL systems cannot even answer certain questions which
belong to their own subsets. This is not the case in a formal language. The formal
language coverage is obvious and any statements that follow the defined syntactic
rules are guaranteed to give the corresponding answer.

Despite these limitations, the NL2SQL chatbot that leverages the NL understand-
ing pipeline, interactivity in resolving ambiguities and domain-specific thesauri, is
an efficient and effective tool accessing data in a database by a broad audience of
users. As amount of data collected by various organization grows, NL2SQL
becomes a must big data technology.

We now proceed to surveying general technology trends related to NL2SQL. AI
and ML are seeping into virtually everything and represent a major battleground for
technology providers over the next 5 years. Also, there is a blending the digital and
physical worlds which creates an immersive, digitally enhanced environment. A
connections between an expanding set of people and businesses, as well as devices,
content and services to deliver digital business outcomes will be exploited. We
enumerate the recent technology trends, following (Cearley 2017).

Conversational Platforms They will shift in how humans interact with the digital
world. The routine activity of translating intent shifts from user to computer. The
platform takes a question or command from the user and then responds by executing
some function, presenting some content or asking for additional input. Over the next
few years, conversational interfaces will become a primary design goal for user
interaction and be delivered in dedicated hardware, core OS features, platforms and
applications.

4.7 Conclusions 117

Upgrading Organizational Structure for Advanced Technologies Over the next few
years, creating software that learn, adapt and performs independently and autono-
mously is a major competitive battle ground for vendors. Relying on AI-based
decision making, upgraded business models and ecosystems, and enhanced cus-
tomer experience will yield the payoff for digital technologies over the next decade.
As AI and ML technologies are rapidly developing, companies will need to devote
significant attention to skills, processes and tools to successfully exploit these
technologies. The investment focus areas will include data collection, preparation,
cleaning, integration, as well as efforts into the algorithm and training methodologies
and model creation. Multiple specialists including data scientists, developers and
business process owners will need to form teams together.

Embedding AI into Apps Over next couple of years, some AI features will be
embedded into virtually every app, application and service. Some of these apps
will be obvious intelligent apps that rely on AI and ML 100%, whereas other apps
will be unpretentious users of AI that provide intelligence behind the scenes. a new
intelligent intermediary layer will be created between people and systems so that not
only new interaction modes will appear but also the nature of work and the structure
of the workplace will be transformed.

Intelligent apps augment human activity; they are not simply a way to substitute
humans. Also, analytics for augmented reality is a particularly strategic growing area
which uses machine learning to automate data preparation, insight discovery and
insight sharing for a broad range of business users, operational workers and citizen
data scientists. Enterprise resource planning is another area where AI is expected to
facilitate the next break-through. Packaged software and service providers need to
invent ways to use AI to extend business for advanced analytics, intelligent pro-
cesses and enhanced user experiences.

Intelligent Things and Everything These are physical things that go beyond the
execution of rigid programming models to exploit AI to deliver advanced behaviors
and interact more naturally with their surroundings and with people. AI stimulates the
development of new intelligent things (including, but not limited to autonomous vehicles,
robots and drones) and enables improved capability to many existing things such as
Internet of Things connected consumer and industrial systems (Galitsky andParnis 2019).

The use of autonomous vehicles in constrained, controlled settings is intensively
growing area of intelligent things. Autonomous vehicles will likely be employed in a
limited, well-defined and controlled roadways over next 5 years, but general use of
autonomous cars will likely require a driver to anticipate technology failures. As semi-
autonomous scenarios requiring a driver dominate, car producers will test the technol-
ogy more thoroughly, and meanwhile legal and regulatory issues will be resolved.

The Internet of Everything generalizes computer-to-computer communications for
the Internet of Things to a more complex system that also encompasses people, robots
andmachines. Internet of Everything connects people, data, process and things (Cham-
bers (2014), taking the waywe do business, transforming communication, job creation,
education and healthcare across the globe to the next level. Over next few years, more
than 70% of earth population will be connected with more than 50 billion things. With

118 4 Developing Conversational Natural Language Interface to a Database

Internet of Everything systems people will be better served in education, healthcare and
other domains to improve their lives and have better experiences.

For a present overview of IoE, the Internet of things (IoT) is about connecting
objects to the network and enabling them to collect and share data” (Munro 2017). As
presently conceived, “Humans will often be the integral parts of the IoT system”

(Stankovic 2014). Internet of Everything, Internet of battlefields, Internet of themedical
arena and other domains will manifest themselves as heterogeneous and potentially
self-organizing complex-systems that define human processes, requiring interoperabil-
ity, just-in-time human interactions, and the orchestration of local-adaptation function-
alities in order to achieve human objectives and goals (Suri et al., 2016).

Digital Fingerprints They refer to the digital representation of a real-world entity or
system. Digital fingerprints in the IoT context projects are believed to be employed
over the next few years; properly designed digital fingerprints of entities have the
potential to significantly improve enterprise decision-making. These digital finger-
prints are linked to their real-world counterparts and are used to understand the state
of an entity, a thing or a system, respond to changes, improve operations and add
value. Organizations will implement digital fingerprints simply at first, then evolve
them over time, improving their ability to collect and visualize the right data, apply
the right analytics and rules, and respond effectively to business objectives. Various
professional from civil engineering to healthcare will all benefit from this paradigm
of the integrated digital twin world.

References

Agrawal S, Chaudhuri S, Das G (2002) Dbxplorer: a system for keyword-based search over
relational databases. In: ICDE, pp 5–16

Androutsopoulos I, Ritchie GD, Thanisch P (1995) Natural language interfaces to databases – an
introduction. Nat Lang Eng 1(1):29–81

Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by jointly learning to align and
translate. In: Proceedings of the ICLR, San Diego, California

Berant J, Chou A, Frostig R, Liang P (2013) Semantic parsing on freebase from question-answer
pairs. In: EMNLP, pp 1533–1544

Bergamaschi S, Guerra F, Interlandi M, Lado RT, Velegrakis Y (2013) Quest: a keyword search
system for relational data based on semantic and machine learning techniques. PVLDB 6
(12):1222–1225

Cearley DW (2017) Assess the potential impact of technology trends. https://www.gartner.com/
doc/3823219?ref¼AnalystProfile&srcId¼1-4554397745

Chambers J (2014). Are you ready for the internet of everything? World Economic Forum, from
https://www.weforum.org/agenda/2014/01/are-you-ready-for-the-internet-of-everything/
(15 Jan 2014)

Dong L, Lapata M (2016) Language to logical form with neural attention. ACL
Galitsky B (2003) Natural language question answering system: technique of semantic headers.

Advanced Knowledge International, Australia
Galitsky B (2005) Natural language front-end for a database. Encyclopedia of database technolo-

gies and applications, p 5. IGI Global Pennsylvania USA
Galitsky B, S Botros (2012) Searching for associated events in log data. US Patent 8,306,967

References 119

https://www.gartner.com/doc/3823219?ref=AnalystProfile&srcId=1-4554397745
https://www.gartner.com/doc/3823219?ref=AnalystProfile&srcId=1-4554397745
https://www.gartner.com/doc/3823219?ref=AnalystProfile&srcId=1-4554397745
https://www.gartner.com/doc/3823219?ref=AnalystProfile&srcId=1-4554397745
https://www.weforum.org/agenda/2014/01/are-you-ready-for-the-internet-of-everything/

Galitsky B, M Grudin (2001) System, method, and computer program product for responding to
natural language queries. US Patent App. 09/756,722

Galitsky B and Parnis A (2019) Accessing Validity of Argumentation of Agents of the Internet of
Everything. In Lawless, W.F., Mittu, R., Sofge, D., and �Russell, S., Artificial Intelligence for
the Internet of Everything. Elsevier, Amsterdam

Galitsky B, D Usikov (2008) Programming Spatial Algorithms in Natural Language. AAAI
Workshop Technical Report WS-08-11.–Palo Alto, pp 16–24

Galitsky B, Dobrocsi G, De La Rosa JL, Kuznetsov SO (2010) From generalization of syntactic
parse trees to conceptual graphs. In: International conference on conceptual structures, pp
185–190

Galitsky B, De La Rosa JL, Dobrocsi G (2011) Mapping syntactic to semantic generalizations of
linguistic parse trees. In: Proceedings of the twenty-fourth international Florida artificial intel-
ligence research society conference

Galitsky B, D Ilvovsky, F Strok, SO Kuznetsov (2013a) Improving text retrieval efficiency with
pattern structures on parse thickets. In: Proceedings of FCAIR, pp 6– 21

Galitsky B, Kuznetsov SO, Usikov D (2013b) Parse thicket representation for multi-sentence
search. In: International conference on conceptual structures, pp 153–172

Goldberg Y (2015) A primer on neural network models for natural language processing. CoRR,
abs/1510.00726

Kate RJ, Wong YW, Mooney RJ (2005) Learning to transform natural to formal languages. In:
AAAI, pp 1062–1068

Kupper D, Strobel M, Rosner D (1993) Nauda – a cooperative, natural language interface to
relational databases. In: SIGMOD conference, pp 529–533

Li FH, Jagadish V (2014) Nalir: an interactive natural language interface for querying relational
databases. In: VLDB, pp 709–712

Li F, Jagadish HV (2016) Understanding natural language queries over relational databases.
SIGMOD Record 45:6–13

Li Y, Yang H, Jagadish HV (2005) Nalix: an interactive natural language interface for querying
xml. In: SIGMOD conference, pp 900–902

Li Y, Yang H, Jagadish HV (2006) Constructing a generic natural language interface for an XML
database. In: EDBT, pp 737–754

Liang P, Potts C (2015) Bringing machine learning and compositional semantics together. Ann Rev
Linguis 1(1):355–376

Mikolov T, Chen K, Corrado GS, Dean J (2015). Computing numeric representations of words in a
high-dimensional space. US Patent 9,037,464, Google, Inc

Munro K. (2017, 5/23), How to beat security threats to ‘internet of things’. From http://www.bbc.
com/news/av/technology-39926126/how-to-beat-security-threats-to-internet-of-things

Nihalani MN, Silakari DS, Motwani DM (2011) Natural language Interface for database: a brief
review. Int J Comput Sci Issues 8(2)

Popescu A-M, Etzioni O, Kautz HA (2003) Towards a theory of natural language interfaces to
databases. In: IUI, pp 149–157

Popescu A-M, Armanasu A, Etzioni O, Ko D, Yates A (2004) Modern natural language interfaces
to databases: composing statistical parsing with semantic tractability. In: COLING

Quirk C, Mooney R, Galley M (2015) Language to code: learning semantic parsers for if-this-then-
that recipes. In: ACL, pp 878–888

Stankovic JA (2014) Research directions for the internet of things. IEEE Internet Things J 1(1):3–9
Suri N, Tortonesi M, Michaelis J, Budulas P, Benincasa G, Russell S, Winkler R (2016) Analyzing

the applicability of internet of things to the battlefield environment. In: Military communications
and information systems (ICMCIS), 2016 international conference on. IEEE, pp 1–8

Yaghmazadeh N, Wang Y, Dillig I and Dillig T (2017) SQLizer: Query synthesis from natural
language. Proceedings of the ACM on Programming Languages, 1:63:1–63:26

Zaremba W, Sutskever I, Vinyals O (2015) Recurrent neural network regularization. In: Proceed-
ings of the ICLR, San Diego, California

Zhong V, Xiong C, Socher R (2017) Seq2SQL: generating structured queries from natural language
using reinforcement learning. https://arxiv.org/pdf/1709.00103.pdf

120 4 Developing Conversational Natural Language Interface to a Database

http://www.bbc.com/news/av/technology-39926126/how-to-beat-security-threats-to-internet-of-things
http://www.bbc.com/news/av/technology-39926126/how-to-beat-security-threats-to-internet-of-things
https://arxiv.org/pdf/1709.00103.pdf

Chapter 5
Assuring Chatbot Relevance at Syntactic
Level

Abstract In this chapter we implement relevance mechanism based on similarity of
parse trees for a number of chatbot components including search. We extend the
mechanism of logical generalization towards syntactic parse trees and attempt to
detect weak semantic signals from them. Generalization of syntactic parse tree as a
syntactic similarity measure is defined as the set of maximum common sub-trees and
performed at a level of paragraphs, sentences, phrases and individual words. We
analyze semantic features of such similarity measure and compare it with semantics
of traditional anti-unification of terms. Nearest neighbor machine learning is then
applied to relate a sentence to a semantic class.

Using syntactic parse tree-based similarity measure instead of bag-of-words and
keyword frequency approaches, we expect to detect a weak semantic signal other-
wise unobservable. The proposed approach is evaluated in four distinct domains
where a lack of semantic information makes classification of sentences rather
difficult. We describe a toolkit which is a part of Apache Software Foundation
project OpenNLP.chatbot, designed to aid search engineers and chatbot designers
in tasks requiring text relevance assessment.

5.1 Introduction

Ascending from the syntactic to semantic level is an important component of natural
language (NL) understanding, and has immediate applications in tasks such infor-
mation extraction and question answering (Allen 1987; Cardie and Mooney 1999;
Ravichandran and Hovy 2002). A number of studies demonstrated that increase in
the complexity of information retrieval (IR) feature space does not lead to a
significant improvement of accuracy. Even application of basic syntactic templates
like subject-verb-object turns out to be inadequate for typical TREC IR tasks
(Strzalkowski et al. 1999). Substantial flexibility in selection and adjustment of
such templates for a number of NLP tasks is expected to help. A tool for automated
treatment of syntactic templates in the form of parse trees would be desirable.

In this chapter we develop a tool for high-level semantic classification of natural
language sentences based on full syntactic parse trees. We introduce the operation of

© Springer Nature Switzerland AG 2019
B. Galitsky, Developing Enterprise Chatbots,
https://doi.org/10.1007/978-3-030-04299-8_5

121

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04299-8_5&domain=pdf

syntactic generalization (SG) which takes a pair of parse trees and finds a set of
maximal common sub-trees. We tackle semantic classes which appear in information
extraction and knowledge integration problems usually requiring deep natural lan-
guage understanding (Dzikovska et al. 2005; Galitsky 2003; Banko et al. 2007). One
of such problems is opinion mining, in particular detecting sentences or their parts
which express self-contained opinion ready to be grouped and shared. We want to
separate informative/potentially useful opinion sentences like ‘The shutter lag of this
digital camera is annoying sometimes, especially when capturing cute baby
moments’ which can serve as recommendations, from uninformative and /or irrele-
vant opinion expressions such as ‘I received the camera as a Christmas present from
relatives and enjoyed it a lot.’ The former sentence characterizes a parameter of a
camera component, and in the latter, one talks about circumstances under which a
person was given a camera as a gift (Fig. 5.1).

What kind of syntactic and/or semantic properties can separate these two
sentences into distinct classes? We assume that the classification is done in a
domain-independent manner, so no knowledge of ‘digital camera’ domain is sup-
posed to be applied. Both these sentences have sentiments, the semantic difference
between them is that in the former sentiment is attached to a parameter of the camera,
and in the letter sentiment is associated with the form in which the camera was
received by the author. Can the latter sentence be turned into a meaningful one by
referring to its particular feature (e.g. by saying ‘. . .and enjoyed its LCD a lot’)? No,
because then its first part (‘received as a present’) is not logically connected to its
second part (‘I enjoyed LCD because the camera was a gift’). Hence we observe that
in this example belonging to positive and negative classes constitute somewhat
stable patterns.

Learning based on syntactic parse tree generalization is different from kernel
methods which are non-parametric density estimation techniques that compute a
kernel function between data instances. These instances can include keywords as
well as their syntactic parameters, and a kernel function can be thought of as a
similarity measure. Given a set of labeled instances, kernel methods determine the
label of a novel instance by comparing it to the labeled training instances using this
kernel function. Nearest neighbor classification and support-vector machines
(SVMs) are two popular examples of kernel methods (Fukunaga 1990; Cortes and
Vapnik 1995). Compared to kernel methods, syntactic generalization (SG) can be
considered as structure-based and deterministic; linguistic features retain their struc-
ture and are not represented as numeric values (Galitsky 2017a).

In this chapter we will be finding a set of maximal common sub-trees for a pair of
parse trees for two sentences as a measure of similarity between them. It will be done
using representation of constituency parse trees via chunking; each type of phrases
(NP, VP PRP etc.) will be aligned and subject to generalization. In studies (Galitsky
and Kuznetsov 2008; Galitsky et al. 2009) it was demonstrated that graph-based
machine learning can predict plausibility of complaint scenarios based on their
argumentation structure. Also, we observed that learning communicative structure
of inter-human conflict scenarios can successfully classify the scenarios in a series of
domains, from complaint to security-related domains. These findings make us

122 5 Assuring Chatbot Relevance at Syntactic Level

believe that applying similar graph-based machine learning technique to syntactic
parse trees, which has even weaker links to high-level semantic properties in
comparison with other domains, can nevertheless deliver satisfactory semantic
classification results.

Most current learning research in NLP employs particular statistical techniques
inspired by research in speech recognition, such as hidden Markov models (HMMs),
neural networks and probabilistic context-free grammars (PCFGs). A variety of
learning methods including decision tree and rule induction, neural networks,

The determ

determ

determ

determ

attrib

attrib

coordin

coord-conj

modif

modif

compos

compos

compos

predic

predic

analyt

prepos

prepos

restr

restr

adverb

adverb

absol-conj

comp-conj

3-compl

1-compl

1-compl

1-compl

THE

LAG1

OF

BE

ANNOY

WHEN2

CAPTURE1

CUTE

BABY

I

RECEIVE

THE

AS1

AN1

CHRISTMAS

PRESENT3

FROM

RELATIVE2

MOMENT

SOMETIMES

ESPECIALLY

THIS1

CAMERA

CAMERA

DIGITAL

SHUTTER S,SG

S,SG

S,SG

S,NOM,SG

S,PL

S,PL

S,SG

S,SG

S,SG

S,SG

S,OBJ,SG

PR

V,PRS,SG,FIN,QFIN,TP

V,PST,FIN,QFIN

V,PST,FIN,QFIN

V,ING

V,ING

ADV

ADV

ART

ART

ADV

CONJ

CONJ

CONJ

PR

A

A

A

shutter

lag

of

this

digital

is

annoying

sometimes,

camera

camera

especially

when

cute

baby

moments

I

as

a

from

and

it

a lot.

enjoyed

relatives

present

Christmas

the

received

capturing

AND

ENJOY

IT

A$LOT

Fig. 5.1 Syntactic parse tree for informative (on the top, positive class) and uninformative
(negative, on the bottom) sentences

5.1 Introduction 123

instance-based methods, Bayesian network learning, inductive logic programming,
explanation-based learning, and genetic algorithms can also be applied to natural
language problems and can have significant advantages in particular applications
(Moreda et al. 2007). In addition to specific learning algorithms, a variety of general
ideas from traditional machine learning such as active learning, boosting, reinforce-
ment learning, constructive induction, learning with background knowledge, theory
refinement, experimental evaluation methods, PAC learnability, etc., may also be
usefully applied to natural language problems (Cardie and Mooney 1999). In this
chapter we employ nearest neighbor type of learning, which is relatively simple, to
focus our investigation on how expressive can similarity between syntactic struc-
tures be to detect weak semantic signals. Other more complex learning techniques
can be applied, being more sensitive or more cautious, after we confirm that our
measure of semantic similarity between texts is adequate.

The computational linguistics community has assembled large data sets on a
range of interesting NLP problems. Some of these problems can be reduced to a
standard classification task by appropriately constructing features; however, others
require using and/or producing complex data structures such as complete parse trees
and operations on them. In this chapter we introduce the operation of generalization
on the pair of parse tree for two sentences and demonstrate its role in sentence
classification. Operation of generalization is defined starting from the level of
lemmas to chunks/phrases and all the way to paragraphs/texts (Galitsky 2017b).

This chapter introduces four distinct problems of different complexity where one
or another semantic feature has to be inferred from natural language sentences. Then
we define syntactic generalization, describe the algorithm and provide a number of
examples of SG in various settings. The chapter is concluded by the comparative
analysis of classification in selected problem domains, search engine description, a
brief review of other studies with semantic inference and the open source
implementation.

Learning syntactic parse trees allows performing semantic inference in a domain-
independent manner without using thesauri. At the same time, in contrast to the most
semantic inference projects, we will be restricted to a very specific semantic domain
(limited set of classes), solving a number of problems a usable chatbot needs to
solve.

5.2 Syntactic Generalization in Search and Relevance
Assessment

In this chapter we leverage parse tree generalization technique for automation of
content management and delivery platform (Chap. 9) that combines data mining of
web (Chap. 8) and social networks (Chap. 12), content aggregation, reasoning,
information extraction (Galitsky et al. 2011b), question/answering (Chap. 6) and
advertising to support a number of chatbot components. The chatbot answers

124 5 Assuring Chatbot Relevance at Syntactic Level

questions and provides recommendations based on previous postings of human users
determined to be relevant. The key technological requirements is based on finding
similarity between various kinds of texts, so use of more complex structures
representing text meaning is expected to benefit the accuracy of relevance assess-
ment. SG has been deployed at content management and delivery platforms at a few
web portals and data science service providers in Silicon Valley USA including
Datran.com, Zvents.com, StubHub.com, Become.com, Ligadata.com, Sysomos.
com and RichRelevance.com. We will present evaluation of how the accuracy of
relevance assessment has been improved (Sects. 5.4 and 5.5).

We focus on four following problems which are essential for various chatbot
components:

1. Differentiating meaningful from meaningless sentences in opinion mining
results;

2. Detecting appropriate expressions for automated building of ads as an advertise-
ment management platform of virtual forums;

3. Classifying user posting in respect to her epistemic state: how well she under-
stands her product needs and how specific is she currently with her product
choice;

4. Classifying search results in respect to being relevant and irrelevant to search
query.

In all these tasks it is necessary to relate a sentence into two classes:

1. informative vs uninformative opinion;
2. suitable vs. unsuitable for ad generation;
3. knowledgeable vs unknowledgeable user;
4. relevant vs irrelevant answer.

In all of these tasks, a decision about belonging to a class cannot be made given
occurrence of specific word forms; instead, peculiar and implicit linguistic informa-
tion needs to be taken into account. It is rather hard to formulate and even to imagine
classification rules for all of these problems based on keyword; however finding
plentiful examples for respective classes is quite easy. We now outline each of these
four problems.

As to the first one, traditionally, an opinion mining problem is formulated as
finding and grouping a set of sentences expressing sentiments about given features of
products, extracted from customer reviews of products. A number of comparison
shopping sites are now showing such features and the ‘strength’ of opinions about
them as a number of occurrences of such features. However, to increase user
confidence and trust in extracted opinion date, it is advisable to link aggregated
sentiments for a feature to the original quotes from customer reviews; this signifi-
cantly backs up review-based recommendations by comparative shopping sites.

Among all sentences mentioning the feature of interest, some of them are indeed
irrelevant to this feature, does not really express customer opinion about this
particular features (and not about something else). For example, ‘I don’t like touch
pads’ in reviews on Dell Latitude notebooks does not mean that this touchpad of

5.2 Syntactic Generalization in Search and Relevance Assessment 125

http://datran.com
http://zvents.com
http://stubhub.com
http://become.com
http://ligadata.com
http://sysomos.com
http://sysomos.com
http://richrelevance.com

these notebook series is bad, instead, we have a general customer opinion about a
feature that is not expected to be interesting to another user. One can see that this
problem for an opinion sentence has to be resolved for building highly trusted
opinion mining applications.

We believe this classification problem is rather hard one and require a sensitive
treatment of sentence structure, because a difference between meaningful and
meaningless sentence with respect to expressed opinion is frequently subtle. A
short sentence can be meaningless, its extension become meaningful, but its further
extension can become meaningless again. We selected this problem to demonstrate
how a very weak semantic signal concealed in a syntactic structure of sentence can
be leveraged; obviously, using keyword-based rules for this problem does not seem
plausible.

As to the second problem of ad generation, its practical value is to assist business/
website manager in writing ads for search engine marketing. Given the content of a
website and its selected landing page, the system needs to select sentences which are
most suitable to form an ad.

For example, from the content like

At HSBC we believe in great loan deals, that’s why we offer 9.9% APR
typical on our loans of $7,500 to $25,000**. It’s also why we pledge to pay
the difference if you’re offered a better deal elsewhere.
What you get with a personal loan from HSBC:

* An instant decision if you’re an Online Banking customer and get your
money in 3 hours, if accepted{

* Our price guarantee: if you’re offered a better deal elsewhere we’ll pledge to
pay you the difference between loan repayments***

* Apply to borrow up to $25,000
* No fees for arrangement or set up
* Fixed monthly payments, so you know where you are
* Optional tailored Payment Protection Insurance.

We want to generate the following ads

Great Loan Deals
9.9% APR typical on loans of
$7,500 to $25,000. Apply now!
Apply for an HSBC loan
We offer 9.9% APR typical
Get your money in 3 hours!

126 5 Assuring Chatbot Relevance at Syntactic Level

We show in bold the sentences and their fragments for potential inclusion into an
ad line (positive class). This is a semantic IE problem where rules need to be formed
automatically (a similar class of problem was formulated in Stevenson and Green-
wood 2005). To form criteria for an expression to be a candidate for an ad line, we
will apply SG to the sentences of the collected training sets, and then form templates
from the generalization results, which are expected to be much more sensitive than
just sets of keywords under traditional keyword-based IE approach.

The third problem of classification of epistemic states of a forum user is a more
conventional classification problem, where we determine what kind of response a
user is expecting:

• general recommendation,
• advice on a series of products, a brand, or a particular product,
• response and feedback on information shared, and others.

For each epistemic state (such as a new user, a user seeking recommendations, an
expert user sharing recommendations, a novice user sharing recommendation) we
have a training set of sentences, each of which is assigned to this state by a human
expert. For example (epistemic states are italicized),

‘I keep in mind no brand in particular but I have read that Canon makes good
cameras’ [a user with one brand in mind], ‘I have read a lot of reviews but still have
some questions on what camera is right for me [experienced buyer]. We expect the
proper epistemic state to be determined by syntactically closest representative
sentence.

Transitioning from keywords match to SG is expected to significantly improve
the accuracy of epistemic state classification, since these states can be inferred from
the syntactic structure of sentences rather than explicitly mentioned most of times.
Hence the results of SGs of the sentences form the training set for each epistemic
state will serve as classification templates rather than common keywords among
these sentences.

The fourth application area of SG is associated with improvement of search
relevance by measuring similarity between query and sentences in search results
(or snapshots) by computing SG. Such syntactic similarity is important when a
search query contains keywords which form a phrase, domain-specific expression,
or an idiom, such as “shot to shot time”, “high number of shots in a short amount of
time”. Usually, a search engine is unable to store all of these expressions because
they are not necessarily sufficiently frequent, however make sense only if occur
within a certain natural language expression (Galitsky and Botros 2015).

In terms of search implementation, this can be done in two steps:

1. Keywords are formed from query in a conventional manner, and search hits are
obtained by TF*IDF also taking into account popularity of hits, page rank and
others.

2. The above hits are filtered with respect to syntactic similarity of the snapshots of
search hits with search query. Parse tree generalization comes into play here

5.2 Syntactic Generalization in Search and Relevance Assessment 127

Hence we obtain the results of the conventional search and calculate the score of the
generalization results for the query and each sentence and each search hit snapshot.
Search results are then re-sorted and only the ones syntactically close to search query
are assumes to be relevant and returned to a user.

Let us consider an example of how the use of phrase-level match of a query with
its candidate answers instead of keywords-based comparison helps. When a query is
relatively complex, it is important to perform match at phrase level instead of
keywords level analysis (even taking into account document popularity, TF*IDF,
and learning which answers were selected by other users for similar queries
previously).

For the following example from 2016 http://www.google.com/search?q¼how+to
+pay+foreign+business+tax+if+I+live+in+the+US most of the search results are
irrelevant. However, once one starts taking into account the syntactic structure of
the query phrases, ‘pay-foreign-business-tax’, ‘I-live-in-US’, the irrelevant answers
(where the keywords co-occur in phrases in a different way than in the query) are
filtered out.

5.3 Generalizing Portions of Text

To measure of similarity of abstract entities expressed by logic formulas, a least-
general generalization was proposed for a number of machine learning approaches,
including explanation based learning and inductive logic programming. Least gen-
eral generalization was originally introduced by (Plotkin 1970). It is the opposite of
most general unification (Robinson 1965) therefore it is also called anti-unification.
Anti-unification was first studied in (Robinson 1965; Plotkin 1970). As the name
suggests, given two terms, it produces a more general one that covers both rather
than a more specific one as in unification. Let E1 and E2 be two terms. Term E is a
generalization of E1 and E2 if there exist two substitutions σ1 and σ2 such that σ1
(E)¼ E1 and σ2(E)¼ E2. The most specific generalization of E1 and E2 is called their
anti-unifier. Here we apply this abstraction to anti-unify such data as text, tradition-
ally referred to as unstructured.

For two words with the same POS, their generalization is the same word with
POS. If lemmas are different but POS is the same, POS stays in the result. If lemmas
are the same but POS is different, lemma stays in the result but not POS.

In this chapter, to measure similarity between portions of text such as sentences
and phrases, we extend the notion of generalization from logic formulas to sets of
syntactic parse trees of these portions of text (Amiridze and Kutsia 2018). If it were
possible to define similarity between natural language expressions at pure semantic
level, least general generalization would be sufficient. However, in horizontal search
domains where construction of full thesauri for complete translation from NL to
logic language is not plausible, extension of the abstract operation of generalization
to syntactic level is required. Rather than extracting common keywords,

128 5 Assuring Chatbot Relevance at Syntactic Level

http://www.google.com/search?q=how+to+pay+foreign+business+tax+if+I+live+in+the+US
http://www.google.com/search?q=how+to+pay+foreign+business+tax+if+I+live+in+the+US
http://www.google.com/search?q=how+to+pay+foreign+business+tax+if+I+live+in+the+US

generalization operation produces a syntactic expression that can be semantically
interpreted as a common meaning shared by two sentences.

Let us represent a meaning of two NL expressions by logic formulas and then
construct unification and anti-unification of these formulas. Some words (entities)
are mapped into predicates, some are mapped into their arguments, and some other
words do not explicitly occur in logic form representation but indicate the above
instantiation of predicates with arguments. How to express a commonality between
the expressions?

• camera with digital zoom
• camera with zoom for beginners

To express the meanings we use logic predicates camera(name_of_feature,
type_of_users) (in real life, we would have much higher number of arguments),
and zoom(type_of_zoom). The above NL expressions will be represented as:

camera(zoom(digital), AnyUser)
camera(zoom(AnyZoom), beginner),

where variables (uninstantiated values, not specified in NL expressions) are capital-
ized. Given the above pair of formulas, unification computes their most general
specialization camera(zoom(digital), beginner), and anti-unification computes their
most specific generalization, camera(zoom(AnyZoom), AnyUser).

At syntactic level, we have generalization of two noun phrases as:

{NN-camera, PRP-with, [digital], NN-zoom [for beginners]}.

We eliminate expressions in square brackets since they occur in one expression
and do not occur in another. As a result, we obtain

{NN-camera, PRP-with, NN-zoom]}, which is a syntactic analog as the semantic
generalization above.

Notice that a typical scalar product of feature vectors in a vector space model
would deal with frequencies of these words, but cannot easily express such features
as co-occurrence of words in phrases, which is fairly important to express a meaning
of a sentence and avoid ambiguity.

Since the constituent trees keep the sentence order intact, building structures
upward for phrases, we select constituent trees to introduce our phrase-based
generalization algorithm. A dependency tree has the word nodes at different levels
and each word modifies another word or the root. Because it does not introduce
phrase structures, a dependency tree has fewer nodes than a constituent tree and is
less suitable for generalization. Constituent tree explicitly contains word alignment-
related information required for generalization at the level of phrases. We use
(openNLP 2018) system to derive constituent trees for generalization (chunker and
parser). Dependency-tree based, or graph-based similarity measurement algorithms
(Bunke 2003; Galitsky et al. 2008) are expected to perform as well as the one we
focus on in this chapter.

5.3 Generalizing Portions of Text 129

5.3.1 Generalizing at Various Levels: From Words
to Paragraphs

The purpose of an abstract generalization is to find commonality between portions of
text at various semantic levels. Generalization operation occurs on the following
levels:

• Text
• Paragraph
• Sentence
• Phrases (noun, verb and others)
• Individual word

At each level except the lowest one, individual words, the result of generalization of
two expressions is a set of expressions. In such set, for each pair of expressions so
that one is less general than other, the latter is eliminated. Generalization of two sets
of expressions is a set of sets of expressions which are the results of pair-wise
generalization of these expressions.

We first outline the algorithm for two sentences and then proceed to the specifics
for particular levels. The algorithm we present in this chapter deals with paths of
syntactic trees rather than sub-trees, because it is tightly connected with language
phrases. In terms of operations on trees we could follow along the lines of (Kapoor
and Ramesh 1995).

Being a formal operation on abstract trees, generalization operation nevertheless
yields semantic information about commonalities between sentences. Rather than
extracting common keywords, generalization operation produces a syntactic expres-
sion that can be semantically interpreted as a common meaning shared by two
sentences.

1. Obtain parsing tree for each sentence. For each word (tree node) we have
lemma, part of speech and form of word information. This information is
contained in the node label. We also have an arc to the other node.

2. Split sentences into sub-trees which are phrases for each type: verb, noun,
prepositional and others; these sub-trees are overlapping. The sub-trees are
coded so that information about occurrence in the full tree is retained.

3. All sub-trees are grouped by phrase types.
4. Extending the list of phrases by adding equivalence transformations (Sect.

5.3.2).
5. For the set of the pairs of sub-trees for both sentences for each phrase type.
6. For each pair in 5) yield an alignment (Gildea 2003), and then generalize

each node for this alignment. For the obtained set of trees (generalization
results), calculate the score.

(continued)

130 5 Assuring Chatbot Relevance at Syntactic Level

7. For each pair of sub-trees for phrases, select the set of generalizations with
the highest score (least general).

8. Form the sets of generalizations for each phrase types whose elements are
sets of generalizations for this type.

9. Filtering the list of generalization results: for the list of generalization for
each phrase type, exclude more general elements from lists of generaliza-
tion for given pair of phrases.

For a given pair of words, only a single generalization exists: if words are the
same in the same form, the result is a node with this word in this form. We refer to
generalization of words occurring in syntactic tree as word node. If word forms are
different (e.g. one is single and other is plural), then only the lemma of word stays. If
the words are different but only parts of speech are the same, the resultant node
contains part of speech information only and no lemma. If parts of speech are
different, generalization node is empty.

For a pair of phrases, generalization includes all maximum ordered sets of
generalization nodes for words in phrases so that the order of words is retained. In
the following example

To buy digital camera today, on Monday
Digital camera was a good buy today, first Monday of the month

Generalization is {<JJ-digital, NN-camera>,<NN- today, ADV,Monday>}, where
the generalization for noun phrases is followed by the generalization by adverbial
phrase. Verb buy is excluded from both generalizations because it occurs in a
different order in the above phrases. Buy – digital – camera is not a generalization
phrase because buy occurs in different sequence with the other generalization nodes.

As one can see, multiple maximum generalizations occur depending on how
correspondence between words is established. Hence multiple generalizations are
possible; a totality of generalizations forms a lattice. To obey the condition of being
maximal set, we introduce a score on generalization. Scoring weights of generaliza-
tions are decreasing, roughly, in following order: nouns and verbs, other parts of
speech, and nodes with no lemma but part of speech only.

To optimize the calculation of generalization score, we conducted a computa-
tional study to determine the POS weights to deliver the most accurate similarity
measure between sentences possible (Galitsky et al. 2012). The problem was
formulated as finding optimal weights for nouns, adjectives, verbs and their forms
(such as gerund and past tense) such that the resultant search relevance is maximum.
Search relevance was measured as a deviation in the order of search results from the
best one for a given query (delivered by Google); current search order was deter-
mined based on the score of generalization for the given set of POS weights (having
other generalization parameters fixed). As a result of this optimization performed in
(Galitsky et al. 2010), we obtained WNN ¼ 1.0, WJJ ¼ 0.32, WRB ¼ 0.71,
WCD ¼ 0.64, WVB ¼ 0.83, WPRP ¼ 0.35 excluding common frequent verbs like

5.3 Generalizing Portions of Text 131

get/take/set/put for which WVBcommon ¼ 0.57. We also set that W<POS,*> ¼ 0.2
(different words but the same POS), and W<*,word> ¼ 0.3 (the same word but occurs
as different POSs in two sentences).

Generalization score (or similarity between sentences sent1, sent2) then can be
expressed as sum through phrases of the weighted sum through words

wordsent1 and word sent2:
score(sent1, sent2) ¼ ∑ {NP, VP, . . .}∑ WPOS word_generalization(word sent1 word

sent2).

(Maximal) generalization can then be defined as the one with the highest score. This
way we define a generalization for phrases, sentences and paragraphs.

Result of generalization can be further generalized with other parse trees or
generalization. For a set of sentences, totality of generalizations forms a lattice: the
order on generalizations is set by the subsumption (subtree) relation and generali-
zation score. We enforce the associativity of generalization of parse trees by means
of computation: it has to be verified and resultant list extended each time new
sentence is added. Notice that such associativity is not implied by our definition of
generalization.

5.3.2 Equivalence Transformation on Phrases

We have manually created and collected from various resources rule base for generic
linguistic phenomena. Unlike text entailment system, for our setting we do not need
a complete transformation system as long as we have sufficiently rich set of
examples. Transformation rules were developed under the assumption that informa-
tive sentences should have a relatively simple structure (Romano et al. 2006).

Syntactic-based rules capture entailment inferences associated with common
syntactic structures, including simplification of the original parse tree, reducing it
into canonical form, extracting embedded propositions, and inferring propositions
from non-propositional sub-trees of the source tree (Table 5.1), see also (Zanzotto
and Moschitti 2006).

Valid matching of sentence parts embedded as verb complements depends on the
verb properties, and the polarity of the context in which the verb appears (positive,
negative, or unknown). We used a list of verbs for communicative actions from
(Galitsky and Kuznetsov 2008) which indicate positive polarity context; the list was
complemented with a few reporting verbs, such as say and announce, since opinions in
the news domain are often given in reported speech, where an information is usually
considered reliable (Galitsky et al. 2011a). We also used annotation rules to mark
negation andmodality of predicates (mainly verbs), based on their descendentmodifiers.

An important class of transformation rules involves noun phrases. For a single
noun group, its adjectives can be re-sorted, as well as nouns except the head one. A
noun phrase which is a post-modifier of a head noun of a given phrase can be merged
to the latter; sometimes the resultant meaning might be distorted by otherwise we

132 5 Assuring Chatbot Relevance at Syntactic Level

would miss important commonalities between expressions containing noun phrases.
An expression ‘NP1 < of or for > NP2’ we form a single NP with the head noun head
(NP2) and head(NP1) playing modifier role, and arbitrary sort for adjectives.

Sentence compression (Zhao et al. 2018), a partial case of sentence equivalence
transformation, shortens a sentence into a compression while retaining syntactic and
preserving the underlying meaning of the original sentence. Previous works discov-
ered that linguistic features such as parts-of-speech tags and dependency labels are
helpful to compression generation. The authors introduced a gating mechanism and
proposed a gated neural network that selectively exploits linguistic knowledge for
deletion-based sentence compression.

5.3.3 Simplified Example of Generalization of Sentences

We present an example of generalization operation of two sentences. Intermediate
sub-trees are shown as lists for brevity. Generalization of distinct values is denoted
by ‘*’. Let us consider three following sentences:

I am curious how to use the digital zoom of this camera for filming insects.

How can I get short focus zoom lens for digital camera?

Can I get auto focus lens for digital camera?

We first draw the parsing trees for these sentences and see how to build their
maximal common sub-trees:

One can see that the second and third trees are rather similar, so it is straight-
forward to build their common sub-tree as an (interrupted) path of the tree (Fig. 5.2):

Table 5.1 Rules of graph reduction for generic linguistic structure. Resultant reductions are
italicized

Category Original/transformed fragment

Conjunctions ‘Camera is very stable and has played an important role in filming their
wedding’

Clausal
modifiers

‘Flash was disconnected as children went out to play in the yard’

Relative
clauses

‘I was forced to close the LCD, which was blinded by the sun’

Appositives ‘Digital zoom, a feature provided by the new generation of cameras, dramati-
cally decreases the image sharpness’.

Determiners My customers use their (‘an’) ‘auto focus camera for polar expedition’
(their ¼ > an)

Passive Cell phone can be easily grasped by a hand palm (‘Hand palm can easily grasp
the cell phone’)

Genitive
modifier

Sony’s LCD screens work in sunny environment as well as Canon’s (‘LCD of
Sony. . . as well as of Canon’)

Polarity It made me use digital zoom for mountain shots (‘I used digital zoom. . .’)

5.3 Generalizing Portions of Text 133

Fig. 5.2 Parse trees for three sentences. The curve shows the common sub-tree (a single one in this
case) for the second and third sentence

134 5 Assuring Chatbot Relevance at Syntactic Level

{MD-can, PRP-I, VB-get, NN-focus, NN-lens, IN-for JJ-digital NN-camera}. At the
phrase level, we obtain:

Noun pharses: [[NN-focus NN-*], [JJ-digital NN-camera]]
Verb phrases: [[VB-get NN-focus NN-* NN-lens IN-for

JJ-digital NN-camera]] (Fig. 5.3)

One can see that common words remain in the maximum common sub-tree,
except ‘can’ which is unique for the second sentence, and modifiers for ‘lens’ which
are different in these two sentences (shown as NN-focus NN-* NN-lens). When
sentences are not as similar as sentences 2 and 3, and we proceed to their general-
ization on phrase-by-phrase basis. Below we express the syntactic parse tree via
chunking (Abney 1991), using the format <position (POS – phrase)>.

Parse 1 0(S-I am curious how to use the digital zoom of this
camera for filming insects), 0(NP-I), 2(VP-am curious how to
use the digital zoom of this camera for filming insects),

2(VBP-am),
5(ADJP-curious), 5(JJ-curious),
13(SBAR-how to use the digital zoom of this camera for

filming insects), 13(WHADVP-how), 13(WRB-how), 17(S-to use
the digital zoom of this camera for filming insects),

17(VP-to use the digital zoom of this camera for filming
insects), 17(TO-to),

20(VP-use the digital zoom of this camera for filming
insects), 20(VB-use),

24(NP-the digital zoom of this camera), 24(NP-the digital
zoom), 24(DT-the),

28(JJ-digital),

V,PRS,FIN,QFIN

V,MF,QFIN

S,NOM,SG

S,SG

S,SG

PR

A

CAN1

FOR1

I

GET

LENS

DIGITAL

CAMERA

predic

1-compl

1-compl

attrib

modif

prepos

Fig. 5.3 Generalization results for second and third sentence

5.3 Generalizing Portions of Text 135

36(NN-zoom), 41(PP-of this camera), 41(IN-of), 44(NP-this
camera), 44(DT-this),

49(NN-camera), 56(PP-for filming insects), 56(IN-for),
60(NP-filming insects), 60(VBG-filming), 68(NNS-insects)

Parse 2 [0(SBARQ-How can I get short focus zoom lens for digi-
tal camera), 0(WHADVP-How), 0(WRB-How), 4(SQ-can I get short
focus zoom lens for digital camera), 4(MD-can), 8(NP-I), 8
(PRP-I), 10(VP-get short focus zoom lens for digital camera),
10(VB-get), 14(NP-short focus zoom lens), 14(JJ-short), 20
(NN-focus), 26(NN-zoom), 31(NN-lens),

36(PP-for digital camera), 36(IN-for), 40(NP-digital cam-
era), 40(JJ-digital), 48(NN-camera)]

Now we group the above phrases by the phrase type [NP, VP, PP, ADJP,
WHADVP. Numbers encode character position at the beginning. Each group con-
tains the phrases of the same type, since the match occurs between the same type.

Grouped Phrases 1 [[NP [DT-the JJ-digital NN-zoom IN-of
DT-this NN-camera], NP [DT-the JJ-digital NN-zoom], NP
[DT-this NN-camera], NP [VBG-filming NNS-insects]],
[VP [VBP-am ADJP-curious WHADVP-how TO-to VB-use DT-the
JJ-digital NN-zoom IN-of DT-this NN-camera IN-for
VBG-filming NNS-insects], VP [TO-to VB-use DT-the JJ-digital
NN-zoom IN-of DT-this NN-camera IN-for VBG-filming
NNS-insects], VP [VB-use DT-the JJ-digital NN-zoom IN-of
DT-this NN-camera IN-for VBG-filming NNS-insects]], [],
[PP [IN-of DT-this NN-camera], PP [IN-for VBG-filming
NNS-insects]], [], [], []]

Grouped Phrases 2 [[NP [JJ-short NN-focus NN-zoom NN-lens], NP
[JJ-digital NN-camera]], [VP [VB-get JJ-short NN-focus
NN-zoom NN-lens IN-for JJ-digital NN-camera]], [],
[PP [IN-for JJ-digital NN-camera]], [], [], [SBARQ [WHADVP-
How MD-can NP-I VB-get JJ-short NN-focus NN-zoom NN-lens
IN-for JJ-digital NN-camera], SQ [MD-can NP-I VB-get
JJ-short NN-focus NN-zoom NN-lens IN-for JJ-digital
NN-camera]]]

Sample Generalization Between Phrases
At the phrase level, generalization starts with finding an alignment between two
phrases, where we attempt to set a correspondence between as many words as
possible between two phrases. We assure that the alignment operation retains phrase
integrity: in particular, two phrases can be aligned only if the correspondence
between their head nouns is established. There is a similar integrity constraint for
aligning verb, prepositional and other types of phrases (Fig. 5.4).

136 5 Assuring Chatbot Relevance at Syntactic Level

Here we show the mapping between either words or respective POS to explain
how generalization occurs for each pair of phrases for each phrase type. Six mapping
links between phrases correspond to six members of generalization result links. The
resultant generalization is shown in bold in the example below for verb phrases
VP. We specifically use an example of very different phrases now to demonstrate
that although the sentences have the same set of keywords, they are not included in
generalization (Fig. 5.5) because their syntactic occurrence is different.

One can see that that such common concept as ‘digital camera’ is automatically
generalized from the examples, as well as the verb phrase “be some-kind-of zoom
camera” which expresses the common meaning for the above sentences. Notice the
occurrence of expression [digital-camera] in the first sentence: although digital does
not refer to camera directly, we merge two noun group and digital becomes one of
the adjective of this resultant noun group with its head camera. It is matched against
the noun phrase reformulated in a similar way (but with preposition for) from the
second sentence with the same head noun camera. We present more complex
generalization examples in Sect. 5.4.

5.3.4 From Syntax to Inductive Semantics

To demonstrate how the SG allows us to ascend from syntactic to semantic level, we
follow Mill’s Direct method of agreement (induction) as applied to linguistic
structures. British philosopher JS Mills wrote in his 1843 book “A System of
Logic”: ‘If two or more instances of the phenomenon under investigation

[VB-use DT-the JJ-digital NN-zoom IN-of DT-this NN-camera IN-for VBG-
filming NNS-insects]

∩
[VB-get JJ-short NN-focus NN-zoom NN-lens IN-for JJ-digital NN-camera]
=
[VB-* JJ-* NN-zoom NN-* IN-for NN-*]

Fig. 5.4 Alignment between words for two sentences

NP [[JJ-* NN-zoom NN-*], [JJ-digital NN-camera]]
VP [[VBP-* ADJP-* NN-zoom NN-camera], [VB-* JJ-* NN-zoom NN-*
IN-for NN-*]
PP [[IN-* NN-camera], [IN-for NN-*]]

score(NP) = (W<POS,*> +WNN +W<POS,*>) + (WNN + WNN) = 3.4,
score(VP) = (2* W<POS,*> + 2*WNN)+ (4W<POS,*> +WNN +WPRP) = 4.55,
and
score(PRP) = (W<POS,*>+ WNN)+(WPRP+WNN) = 2.55,
hence score = 10.5.

Fig. 5.5 Generalization results and their score

5.3 Generalizing Portions of Text 137

have only one circumstance in common, the circumstance in which alone all the
instances agree, is the cause (or effect) of the given phenomenon.’ (Ducheyne
2008).

Consider a linguistic property A of a phrase f. For A to be a necessary condition of
some effect E, A must always be present in multiple phrases that deal with E. In the
linguistic domain, A is a linguistic structure and E is its meaning. Therefore, we
check whether linguistic properties considered as ‘possible necessary conditions’ are
present or absent in the sentence. Obviously, any linguistic properties As which are
absent when the meaning E is present cannot be necessary conditions for this
meaning E of a phrase.

For example, the method of agreement can be represented as a phrase f1 where
words {A B C D} occur together with the meaning formally expressed as <w x y z>.
Consider also another phrase f2where words {A E F G} occur together with the same
meaning <w t u v> as in phrase f1. Now by applying generalization to words {A B C
D} and {A E F G} we obtain {A} (here, for the sake of example, we ignore the
syntactic structure of f1 and f2). Therefore, here we can see that word A is the cause
of w (has meaning w). Throughout this chapter we do take into account linguistic
structures covering A B C D in addition to this list itself, applying the method of
agreement.

Hence we can produce (inductive) semantics applying SG. Semantics cannot be
obtained given just syntactic information of a sample; however, generalizing two or
more phrases (samples), we obtain an (inductive) semantic structure, not just
syntactic one. Viewing SG as an inductive cognitive procedure, transition from
syntactic to semantic levels can be defined formally. In this work we do not mix
syntactic and semantic features to learn a class: instead we derive semantic features
from syntactic according to above inductive framework.

5.3.5 Nearest Neighbor Learning of Generalizations

To perform a classification, we apply a simple learning approach to parse tree
generalization results. The simplest decision mechanism can be based on maximiz-
ing the score of generalization for an input sentence and a member of the training
class. However, to maintain deterministic flavor of our approach we select the
nearest neighbor method with limitation for both class to be classified and foreign
classes. The following conditions hold when a sentence U is assigned to a class R+

and not to the other class R�:

1. U has a nonempty generalization (having a score above threshold) with a positive
example R+. It is possible that the U has also a nonempty common generalization
with a negative example R�, its score should be below the one for R+ (This would
mean that the tree U is similar to both positive and negative examples, with a
higher score for the former than for the latter).

138 5 Assuring Chatbot Relevance at Syntactic Level

2. For any negative example R�, if U is similar to R� (i.e., U * R� 6¼ ∅) then
generalization(U, R�) should be a sub-tree of generalization(U, R+). This condi-
tion introduces the partial order on the measure of similarity. It says that to be
assigned to a class, the similarity between the current sentence U and the closest
(in terms of generalization) sentence from the positive class should be higher than
the similarity between U and each negative example.

Condition 2 is important to properly handle the nonmonotonic nature of such feature
as meaningfulness of an opinion-related sentence. As a sentence gets extended, it can
repetitively become meaningless and meaningful over and over again, so we need
this condition that the parse tree overlap with a foreign class is covered by the parse
tree overlap with the proper class.

In this project we use a modification of nearest neighbor algorithm to tree learning
domain. In our previous studies (Galitsky et al. 2009) we explained why this
particular algorithm is better suited to graph data, supporting the learning
explainability feature (Chap. 3). We apply a more cautious approach to classification
compared to the tradition K-nearest neighbor, and some examples remain unclassi-
fied due to condition 2).

5.4 Evaluation of a Generalization-Based Search Engine

We evaluate how search precision improves, as search results obtained by default
search model are re-ranked based on syntactic generalization of search. This problem
is frequently referred to as passage re-ranking. The search engine covers many
application areas, from document search to opinion search, and relies on various
default search models from TF*IDF to location- or popularity-based search.

5.4.1 User Interface of Search Engine

The user interface is shown at Fig. 5.6. To search for an opinion, a user specifies a
product class, a name of particular products, a set of its features, specific concerns
and needs or interests. A search can be narrowed down to a particular source;
otherwise, multiple sources of opinions (review portals, vendor-owned reviews,
forums and blogs available for indexing) are combined.

Opinion search results are shown on the bottom-left. For each result, a snapshot is
generated indicating a product, its features which are attempted by the system to
match user opinion request, and sentiments. In case of multiple sentence queries, a
search result contains combined snapshot of multiple opinions from multiple
sources, dynamically linked to match these queries.

5.4 Evaluation of a Generalization-Based Search Engine 139

F
ig
.5

.6
U
se
r
in
te
rf
ac
e
of

ge
ne
ra
liz
at
io
n-
ba
se
d
se
ar
ch

en
gi
ne

140 5 Assuring Chatbot Relevance at Syntactic Level

Automatically generated product advertisement compliant with Google spon-
sored links format are shown on the right. Phrases in generated advertisements are
extracted from original product web pages and possibly modified for compatibility,
compactness and appeal to potential users. There is a one-to-one correspondence
between products in opinion hits on the left and generated advertisements on the
right (unlike in Google, where sponsored links list different websites from those on
the left). Both respective business representatives and product users are encouraged
to edit and add advertisements, expressing product feature highlights and usability
opinions respectively.

Search phrase may combine multiple sentences, for example: “I am a beginner
user of digital camera. I want to take pictures of my kids and pets. Sometimes I take it
outdoors, so it should be waterproof to resist rain”. Obviously, this kind of specific
opinion request can hardly be represented by keywords like ‘beginner digital camera
kids pets waterproof rain’. For a multi-sentence query (Galitsky et al. 2013) the
results are provides as linked search hits:

Take Pictures of Your Kids? . . . Canon 400D EOS Rebel XTI digital SLR
camera review $ I am by no means a professional or long time user of SLR
cameras.
How To Take Pictures Of Pets And Kids . . . Need help with Digital slr
camera please!!!? – Yahoo! Answers $ I am a beginner in the world of the
digital SLR . . .
Canon 400D EOS Rebel XTI digital SLR camera review (Website Design
Tips) / Animal, pet, children, equine, livestock, farm portrait and stock $ I
am a beginner to the slr camera world. $ I want to take the best picture
possible because I know you. Call anytime.

Linking ($) is determined in real time to address each part in a multi-sentence
query which can be, for example, a blog posting seeking advice. Linked search
results are providing comprehensive opinion on the topic of user interest, obtained
from various sources.

5.4.2 Qualitative Evaluation of Search

Obviously, the generalization-based search performance is higher for longer key-
word queries and natural language queries, where high sensitivity comparison of
query and search results allows finding semantic relevancy between them.

We start with the example query “National Museum of Art in New York”
(Fig. 5.7) which illustrates a typical search situation where a user does not know
an exact name of an entity. We present the results as ordered by the generalization-
based search engine, retaining the information from the original order obtained for

5.4 Evaluation of a Generalization-Based Search Engine 141

this query on Yahoo.com (#x). Notice that the expected name of the museum is
either Metropolitan Museum of Art or National Museum of Catholic Art & History.

The match procedure needs to verify that ‘National’ and ‘Art’ from the query
belong to the noun group of the main entity (museum), and this entity is linguistically
connected to ‘New York’. If these two conditions are satisfied, we get the first few
hits relevant (although mutually inconsistent, it is either museum or academy). As to
the Yahoo sort, we can see that first few relevant hits are numbered as #5, #18, #29.
Yahoo’s #0 and #1 are on the far bottom of generalization-based search engine, the
above condition for ‘National’ and ‘Art’ are not satisfied, so these hits do not seem to
be as relevant. Obviously, conventional search engines would have no problems
delivering answers when the entity is mentioned exactly (Google does a good job
answering the above query; it is perhaps achieved by learning what other people
ended up clicking through).

Hence we observe that generalization helps for the queries where important
components and linguistic link between them in a query has to be retained in the
relevant answer abstracts. Conventional search engines use a high number of
relevancy dimensions such as page rank, however for answering more complex
questions syntactic similarity expressed via generalization presents substantial
benefits.

NATIONAL MUSEUM OF CATHOLIC ART & HISTORY - New York, NY (#5)
NATIONAL MUSEUM OF CATHOLIC ART & HISTORY - in New York, NY. Get
contact info, directions and more at YELLOWPAGES.COM
National Academy Museum & School of Fine Arts(#18)
He is currently represented by Ameringer Yohe Fine Art in New York. ... © 2007
National Academy Museum & School of Fine Arts, New York. Join Our Mailing List ...
International Council of Museums: Art Galleries(#29)
(In French and English.) National Museum of Modern Art. Musée du ... Metropolitan
Museum of Art, New York City. One of the largest art museums in the world. ...
Virtual NYC Tour: New York City Museums(#23)
National Museum of the American Indian (New York branch) ... Cloisters is one of
the museums of the Metropolitan Museum of Art in New York City. ...
Great Museums - SnagFilms(#9)
Founded in 1870, the Metropolitan Museum of Art in New York City is a
three ... Home Base: The National Baseball Hall of Fame and Museum ...
National Contemporary Art Museum Gets Seoul Venue(#2)
... nearby example is the National Museum of Art in Deoksu Palace,'' said ... can also
refer to the MoMA's (Museum of Modern Art) annex PSI in New York,'' he said. ...
National Lighthouse Museum New York City.com : Arts ...(#1)
NYC.com information, maps, directions and reviews
on National Lighthouse Museum and other Museums in New York City. NYC.com,
the authentic city site, also offer a ...
National Academy Museum New York City.com : Arts ...(#0)
NYC.com information, maps, directions and reviews
on National Academy Museum and other Museums in New York City. NYC.com, the
authentic city site, also offer a ...

Fig. 5.7 Sample search results for generalization-based search engine

142 5 Assuring Chatbot Relevance at Syntactic Level

http://yahoo.com

We perform our quantitative evaluation of search re-ranking performance with
two settings (neither relies on ML):

1. General web search. WE compute SG score and re-rank online according to this
score. We increase the query complexity and observe the contribution of SG;

2. Product search in a vertical domain. We analyze various query types and evaluate
how automated SG, as well as the one augmented by manually constructed
templates, help to improve search relevance.

5.4.3 Evaluation of Web Search Relevance Improvement

Evaluation of search included an assessment of classification accuracy for search
results as relevant vs irrelevant. Since we used the generalization score between the
query and each hit snapshot, we drew a threshold of five highest score results as
relevant class and the rest of search results as irrelevant. We used the Yahoo search
API and also Bing search API and applied the generalization score to find the highest
score hits from first 50 Yahoo and Bing search results (Table 5.2). We selected
400 queries for each set from the log of searches for eBay products and eBay
entertainment, which were phrased as broad web searches. For each query, the
relevance was estimated as a percentage of correct hits among the first ten, using
the values: {correct, marginally correct, incorrect}. Evaluation was conducted by
the authors. Third and second rows from the bottom contain classification results for
the queries of 3–4 keywords which is slightly more complex than an average one
(3 keywords); and significantly more complex queries of 5–7 keywords respectively.

For a typical search query containing 3–4 words, SG is not in use. One can see
that for a 5–7 word phrases SG decreases the accuracy and should not be used.

Table 5.2 Evaluation of general web search relevance improvement by SG

Type of
search query

Relevancy of Yahoo
search, %, averaging
over 10

Relevancy of re-sorting by
generalization, %, averaging
over 10

Relevancy
compared to
baseline, %

3–4 word
phrases

77 77 100.0

5–7 word
phrases

79 78 98.7

8–10 word
single
sentences

77 80 103.9

2 sentences,
>8 words
total

77 83 107.8

3 sentences,
>12 words
total

75 82 109.3

5.4 Evaluation of a Generalization-Based Search Engine 143

However, for longer queries the results are encouraging (almost 4% improvement),
showing a visible improvement over current Yahoo and Bing searches once the
results are re-ranked based on SG. Substantial improvement can be seen for multi-
sentence queries as well.

5.4.4 Evaluation of Product Search

We conducted evaluation of relevance of SG – enabled search engine, based on
Yahoo and Bing search engine APIs. This evaluation was based on eBay product
search domain, with a particular focus on entertainment / things-to-do related
queries. Evaluation set included a wide range of queries, from simple questions
referring to a particular product, a particular user need, as well as a multi-sentence
forum-style request to share a recommendation. In our evaluation we split the totality
of queries into noun-phrase class, verb-phrase class, how-to class, and also inde-
pendently split in accordance to query length (from 3 keywords to multiple
sentences). The evaluation was conducted by the authors, based on proprietary
search quality evaluation logs.

For an individual query, the relevance was estimated as a percentage of correct
hits among the first ten, using the values: {correct, marginally correct, incorrect}.
Accuracy of a single search session is calculated as the percentage of correct search
results plus half of the percentage of marginally correct search results. Accuracy of a
particular search setting (query type and search engine type) is calculated, averaging
through 20 search sessions. This measure is more suitable for product-related
searches delivering multiple products, than Mean Reciprocal Rank (MRR), calcu-
lated as

1=n
X

i¼1...n
1=rki

where n is the number of questions, and rki is the rank of the first correct answer to
question i. MRR is used for evaluation of a search for information, which can be
contained in a single (best) answer, whereas a product search might include multiple
valid answers.

For each type of phrase for queries, we formed a positive set of 2000 correct
answers and 10,000 incorrect answers (snippets) for training; evaluation is based on
20 searches. These answers were formed from the quality assurance dataset used to
improve existing production search engine before the current project started. To
compare the relevance values between search settings, we used first 100 search
results obtained for a query by Yahoo and Bing APIs, and then re-sorted them
according to the score of the given search setting (SG score). The results are shown
in Table 5.3.

144 5 Assuring Chatbot Relevance at Syntactic Level

T
ab

le
5.
3

E
va
lu
at
io
n
of

pr
od

uc
ts
ea
rc
h
w
ith

m
an
ua
l
re
le
va
nc
e
ru
le
s

Q
ue
ry

P
hr
as
e

su
b-
ty
pe

R
el
ev
an
cy

of
ba
se
lin

e
Y
ah
oo

se
ar
ch
,%

,
av
er
ag
in
g
ov

er
20

se
ar
ch
es

R
el
ev
an
cy

of
ba
se
lin

e
B
in
g

se
ar
ch
,%

,
av
er
ag
in
g
ov

er
20

se
ar
ch
es

R
el
ev
an
cy

of
re
-r
an
ki
ng

by
ge
ne
ra
liz
at
io
n,

%
,

av
er
ag
in
g
ov

er
20

se
ar
ch
es

R
el
ev
an
cy

of
re
-r
an
ki
ng

by
us
in
g
ge
ne
ra
liz
at
io
n
an
d

m
an
ua
lr
el
ev
an
ce

te
m
pl
at
es
,

%
,a
ve
ra
gi
ng

ov
er

20
se
ar
ch
es

R
el
ev
an
cy

im
pr
ov

em
en
t
fo
r

ge
ne
ra
liz
at
io
n
w
ith

m
an
ua
l

ru
le
s,
co
m
pa
re
d
to

ba
se
lin

e
(a
ve
ra
ge
d
fo
r
B
in
g
&

Y
ah
oo

)

3–
4
w
or
d

ph
ra
se
s

N
ou

n
ph

ra
se

67
.4

65
.1

75
.3

90
.6

1.
36

8

V
er
b

ph
ra
se

66
.4

63
.9

74
.3

88
.5

1.
35

8

H
ow

-t
o

ex
pr
es
si
on

65
.3

62
.7

73
.0

90
.3

1.
41

1

A
ve
ra
ge

66
.4

63
.9

74
.2

89
.8

1.
37

9

5–
10

w
or
d

ph
ra
se
s

N
ou

n
ph

ra
se

53
.2

54
.6

76
.3

91
.7

1.
70

1

V
er
b

ph
ra
se

54
.7

53
.9

75
.3

88
.2

1.
62

4

H
ow

-t
o

ex
pr
es
si
on

52
.6

52
.6

73
.2

88
.9

1.
69

0

A
ve
ra
ge

53
.5

53
.7

74
.9

89
.6

1.
67

2

2–
3

se
nt
en
ce
s

O
ne

ve
rb

on
e
no

un
ph

ra
se
s

52
.3

56
.1

72
.1

88
.3

1.
62

9

B
ot
h
ve
rb

ph
ra
se
s

50
.9

52
.6

71
.8

84
.6

1.
63

5

O
ne

se
nt

of
ho

w
-t
o

ty
pe

49
.6

50
.1

74
.5

83
.9

1.
68

3

A
ve
ra
ge

50
.9

52
.9

72
.8

85
.6

1.
64

8

5.4 Evaluation of a Generalization-Based Search Engine 145

The answers we select by SG from our evaluation dataset can be a false positive,
for example ‘Which US president conducted a war in Iraq?’ answered by ‘The rabbit
is in the bush’, or a false negative in case it is not available or SG operation with the
correct answer failed.

To further improve the product search relevance in eBay setting, we added
manually formed templates that are formed to enforce proper matching with popular
questions which are relatively complex, such as

see-VB *-JJ -*{movie-NN [picture-NN [film-NN } of-PRP best-JJ {director-NN [
producer-NN [artist-NN [academy-NN} award-NN [for-PRP], to match ques-
tions with phrases

Recommend me a movie which got academy award for best director
Cannes Film Festival Best director award movie
Give me a movie with National Film Award for Best Producer
Academy award for best picture
Movies of greatest film directors of all time

Totally 235 templates were added, 10–20 per each entertainment category or
genre. Search relevance results for manual templates are shown in Table 5.3 column
6.

One can observe that for rather complex queries, we have 64–67% relevance
improvement, using manually coded templates, compared to baseline horizontal
product search provided by Yahoo and Bing APIs. Automated relevance learning
has 30% improvement over baseline for simpler question, 39% for more complex
phrases and 36% for multi-sentence queries.

It is worth comparing our search re-ranking accuracy with other studies of
learning parse trees, especially statistical approach such as tree kernels (Galitsky
et al. 2014). In the TREC dataset of question, (Moschitti 2008) used a number of
various tree kernels to evaluate the accuracy of re-ranking of Google search results.
In Moschitti’s approach, questions are classified as relevant or irrelevant based on
building tree kernels from all common sub-trees, and using SVM to build a boundary
between the classes. The authors achieved 65% over the baseline (Google in 2008) in
a specific domain of definitional questions by using word sequences and parsing
results-based kernel. In our opinion these results for an educational domain are
comparable with our results of real-world product related queries without manual
templates. As we demonstrate in this chapter, using manual templates in product
searches further increases search relevance for complex multi-phrased questions.

In some learning setting tree kernel approach can provide explicit commonality
expressions, similar to the SG approach. (Pighin and Moschitti 2009) show the
examples of automatically learned commonality expressions for selected classifica-
tion tasks, which are significantly simpler than commonality structures. Definitional
questions from TREC evaluation (Voorhees 2004) are frequently less ambiguous
and better structured than longer queries of real-world users. The maximal common
sub-trees are linear structures (and can be reduced to common phrases) such as

president-NN (very specific)
and (VP(VBD)(NP)(PP(IN)(NP)))(very broad).

146 5 Assuring Chatbot Relevance at Syntactic Level

5.5 Evaluation of Text Classification Problems

5.5.1 Comparative Performance Analysis in Text
Classification Domains

To evaluate expressiveness and sensitivity of SG operation and associated scoring
system, we applied the nearest neighbor algorithm to the series of text classification
tasks outlined in Sect. 5.2 (Table 5.4). We form a few datasets for each problem,
conduct independent evaluation for this dataset and then average the resultant
accuracy (F-measure). Building of the training and evaluation datasets of texts, as
well as class assignments, was done by the authors. Half of each set was used for
training, and the other half for evaluation; the spilt was random but no cross-
validation was conducted. Due to the nature of the problem, the positive sets are
larger than the negative sets for sensible/meaningless and ad line problems. For
epistemic state classification, the negative set includes all other epistemic states or no
state at all.

For digital camera reviews, we classify each sentence with respect to sensible/
meaningless classes by two approaches:

• A baseline WEKA C4.5, as a popular text classification approach;
• SG – based approach.

We demonstrate that a traditional text classification approach poorly handles such a
complex classification task, in particular due to slight differences between phrasings
for these classes, and the property of non-monotonicity. Using SG instead of WEKA
C4.5 brought us 16.1% increase in F-measure for the set of digital camera reviews. In
other domains in Table 5.4, being more traditional for text classification, we do not
expect as dramatic improvement (not shown).

Rows 4–7 contain classification data for the reviews on different products, and
variability in accuracies can be explained by various levels of diversity in phrasings.
For example, the ways people express their feelings about cars is much more diverse
than that of about kitchen appliances. Therefore, the accuracy of the former task is
lower than that of the latter task. One can see that it is hard to form verbalized rules
for the classes, and the hypotheses are mostly domain-dependent; therefore, sub-
stantial coverage of varieties of phrasing is required.

To form the training set for ad lines information extraction, we collected positive
examples from existing Google ads, scraping more than 2000 ad lines. The precision
for extraction of such lines for the same five categories of products is higher than the
one for the above tasks of sensible/meaningless classes. A the same time, the recall
of the former is lower than that of the latter, and the resultant F-measure is slightly
higher for ad lines information extraction, although the complexity of this problem is
significantly lower. In can be explained by a rather high variability of acceptable ad
lines (‘sales pitches’) which have not been captured by the training set.

Overall, the recognition accuracy of the epistemic state classification is higher
than for the other two domains because manually built templates for particular states
cover a significant portion of cases. At the same time, recognition accuracy for

5.5 Evaluation of Text Classification Problems 147

particular epistemic states significantly varies from state to state and is mostly
determined by how well various phrasings are covered in the training dataset. We
used the same set of reviews as we did for evaluation of the meaningless sentences
classification and manually selected sentences where the epistemic state of interest
was explicitly mentioned or can be unambiguously inferred. For the evaluation
dataset, we recognized which epistemic state exists in each of 200 sentences.

Table 5.4 Accuracies of text classification problems

Problem
domain Dataset

Data set size (#
pos/ #neg in each
of two classes)

Precision
relating to
a class, %

Recall
relating to
a class, %

F-
measure

Sensible/
meaningless

Digital camera
reviews/processed
by WEKA C4.5

120/40 58.8% 54.4% 56.5%

Digital camera
reviews

120/40 58.8% 74.4% 65.6%

Cell phone
reviews

400/100 62.4% 78.4% 69.5%

Laptop reviews 400/100 74.2% 80.4% 77.2%

Kitchen appliances
reviews

400/100 73.2% 84.2% 78.3%

Auto reviews 400/100 65.6% 79.8% 72.0%

Averages for sensible/meaningless
performed by SG

65.5% 75.3% 69.9%

Good for ad
line/inappropri-
ate for ad line

Digital camera
webpages

2000/1000 88.4% 65.6% 75.3%

Wireless services
webpages

2000/1000 82.6% 63.1% 71.6%

Laptop webpages 2000/1000 69.2% 64.7% 66.9%

Auto sales
webpages

2000/1000 78.5% 63.3% 70.1%

Kitchen appliances
webpages

2000/1000 78.0% 68.7% 73.1%

Averages for appropriateness for ad
line recognition

79.3% 65.1% 71.4%

Epistemic
state:

Beginner 30/200 77.8% 83.5% 80.6%

User with average
experience

44/200 76.2% 81.1% 78.6%

Pro or semi-pro
user

25/200 78.7% 84.9% 81.7%

Potential buyer 60/200 73.8% 83.1% 78.2%

Open-minded
buyer

55/200 71.8% 79.6% 75.5%

User with one
brand in mind

38/200 74.4% 81.9% 78.0%

Averages for epistemic state
recognition

75.5% 82.4% 78.7%

148 5 Assuring Chatbot Relevance at Syntactic Level

Frequently, there are two or more of such states (without contradictions) per
sentence. Note also that epistemic states overlap. Low classification accuracy occurs
when classes are defined approximately and the boundary between them are fuzzy
and beyond of what can be expressed in NL. Therefore, we observe that SG gives us
some semantic cues which would be hard to obtain at the level of keywords or
superficial parsing.

5.5.2 Example of Recognizing Meaningless Sentences

We use two sorts of training examples to demonstrate typical classes of meaningless
sentences which express customer opinions. The first class is specific to the expres-
sion of the type <entity – sentiment – for – possible_feature>. In most cases, this
possible_feature is related to entity, characterizes it. However, in this sentence it is
not the case: ‘For the remainder of the trip the camera was just fine; not even a crack
or scratch’. Here possible_feature¼ ‘remainder of the trip’ which is not a feature of
entity¼’camera’ so we want all sentences similar to this one to be classified as
meaningless. To obtain a hypothesis for that, we generalize the above phrase with a
sentence like ‘For the whole trip we did not have a chance to use this nice camera’:

{ [for – DT – trip], [camera]}

The latter sentence can be further generalized with ‘I bought Sony in Walwart but did
not use this adorable thing’. We obtain {[not – use]} which gives a new meaning of
meaningless sentences, where an entity is ‘was not used’ and therefore the sentiment
is irrelevant.

What is important for classification is that generalizations obtained from negative
examples are not annihilated in positive examples such as ‘I could not use the
camera’, so the expected positive hypothesis will include {[sentiment – NN]
(NN¼entity)} where ‘could not use’ as a subtree should be substituted as <senti-
ment> placeholder. Hence the generalization of the sentence to be classified ‘I didn’t
have time to use the Canon camera which is my friend’s’ with the above negative
hypothesis is not a subsumption of (empty) generalization with the above positive
hypothesis (and will not be classified as a meaningful opinion sentence).

As one can see, the main barrier to high classification accuracy is the fact that the
feature of being meaningless is not monotonic with respect to expanding sentence. A
short sentence ‘I liked the Panasonic camera’ is meaningful, its extension ‘I liked the
Panasonic camera as a gift of my friend’ is not because the sentiment is now
associated with gift. The further expansion of this sentence ‘I liked the Panasonic
camera as a gift of my friend because of nice zoom’ is meaningful again since nice
zoom is informative.

This case of montonicity can be handled by nearest neighbor learning with
moderate success, and it is a very hard case for kernel-based methods because a
positive area occurs inside a negative area in turn surrounded by a broader positive

5.5 Evaluation of Text Classification Problems 149

area; therefore it can not be separated by hyperplanes, so non-linear SVM kernels
would be required (which is not a typical case for text classification types of SVM).

There is another application area such as programming in NL where recognition
of meaningless sentences is essential (Galitsky and Usikov 2008).

5.6 Implementation of OpenNLP.Similarity Component

OpenNLP.Similarity component performs text relevance assessment, accepting two
portions of texts (phrases, sentences, paragraphs) and returning a similarity score.

Similarity component can be used on top of search to improve relevance,
computing similarity score between a question and all search results (snippets).
Also, this component is useful for web mining of images, videos, forums, blogs,
and other media with textual descriptions. Such applications as content generation
and filtering meaningless speech recognition results are included in the sample
applications of this component. The objective of Similarity component is to give
an application engineer a tool for text relevance that can be used as a black box, so
that no deep understanding of computational linguistics or machine learning is
required.

5.6.1 First Use Case of Similarity Component: Search

To start with this component, please refer to
SearchResultsProcessorTest.java in package opennlp.tools.
similarity.apps

public void testSearchOrder() runs web search using Bing API and
improves search relevance.

Look at the code of

public List<HitBase> runSearch(String query)

and then at

private BingResponse calculateMatchScoreResortHits(BingResponse
resp, String searchQuery)

which gets search results from Bing and re-ranks them based on computed
similarity score.

The main entry to Similarity component is

150 5 Assuring Chatbot Relevance at Syntactic Level

SentencePairMatchResult matchRes = sm.assessRelevance(snapshot,
searchQuery);

where we pass the search query and the snapshot and obtain the similarity
assessment structure which includes the similarity score.

To run this test you need to obtain search API key from Bing at https://
docs.microsoft.com/en-us/azure/ and specify it in

public class BingQueryRunner in
protected static final String APP_ID.

5.6.2 Solving a Content Generation Problem

To demonstrate the usability of Similarity component to tackle a problem which is
hard to solve without a linguistic-based technology, we introduce a content gener-
ation component:

RelatedSentenceFinder.java

The entry point here is the function call

hits = f.generateContentAbout("Albert Einstein");

which writes a biography of Albert Einstein by finding sentences on the web
about various kinds of his activities (such as ‘born’, ‘graduate’, ‘invented’ etc.).

The key here is to compute similarity between the seed expression like “Albert
Einstein invented relativity theory” and search result like

Albert Einstein College of Medicine | Medical Education | Biomedical . . .
www.einstein.yu.edu/Albert Einstein College of Medicine is one of the nation’s premier
institutions for medical education, . . .

and filter out irrelevant search results like this one.
This is done in function

public HitBase augmentWithMinedSentencesAndVerifyRelevance(HitBase
item, String originalSentence,

List<String> sentsAll)
SentencePairMatchResult matchRes = sm.assessRelevance

(pageSentence + " " + title, originalSentence);

You can consult the results in ‘gen.txt’, where an essay on Einstein bio is written.

5.6 Implementation of OpenNLP.Similarity Component 151

https://docs.microsoft.com/en-us/azure
https://docs.microsoft.com/en-us/azure
http://www.einstein.yu.edu/Albert

5.6.3 Filtering Out Meaningless Speech Recognition Results

Speech recognitions SDKs usually produce a number of phrases as results, such as

‘remember to buy milk tomorrow from trader joes’,
‘remember to buy milk tomorrow from 3 to jones’

One can see that the former is meaningful, and the latter is meaningless (although
similar in terms of how it is pronounced). We use web mining and Similarity
component to detect a meaningful option (a mistake caused by trying to interpret
meaningless request by a query understanding system such as Siri for iPhone can be
costly).

SpeechRecognitionResultsProcessor.java does the job:
public List<SentenceMeaningfullnessScore>

runSearchAndScoreMeaningfulness(List<String> sents)

re-ranks the phrases in the order of decrease of meaningfulness.
Similarity component internals are in the package opennlp.tools.

textsimilarity.chunker2matcher
ParserChunker2MatcherProcessor.java does parsing of two por-

tions of text and matching the resultant parse trees to assess similarity between
these portions of text.
To run ParserChunker2MatcherProcessor

private static String MODEL_DIR ¼ "resources/models";
needs to be specified.

The key function

public SentencePairMatchResult assessRelevance(String para1, String
para2)

takes two portions of text and does similarity assessment by finding the set of all
maximum common subtrees of the set of parse trees for each portion of text. It splits
paragraphs into sentences, parses them, obtained chunking information and pro-
duces grouped phrases (noun, verb, prepositional etc.):

public synchronized List<List<ParseTreeChunk>>
formGroupedPhrasesFromChunksForPara(String para)

and then attempts to find common subtrees:

ParseTreeMatcherDeterministic.java
List<List<ParseTreeChunk>> res = md.

matchTwoSentencesGroupedChunksDeterministic(
sent1GrpLst, sent2GrpLst)

Phrase matching functionality is in package

152 5 Assuring Chatbot Relevance at Syntactic Level

opennlp.tools.textsimilarity;

ParseTreeMatcherDeterministic.java:

Here is the key matching function which takes two phrases, aligns them and finds
a set of maximum common sub-phrase

public List<ParseTreeChunk>
generalizeTwoGroupedPhrasesDeterministic

Package structure is as follows:

opennlp.tools.similarity.apps: 3 main applications
opennlp.tools.similarity.apps.utils: utilities for above applications

opennlp.tools.textsimilarity.chunker2matcher: parser which
converts text into a form for matching parse trees

opennlp.tools.textsimilarity: parse tree matching functionality.

5.6.4 Comparison with Bag-of-Words Approach

We first demonstrate how similarity expression for DIFFERENT cases have
too high score for bagOfWords

String phrase1 ¼ "How to deduct rental expense from
income ";

String phrase2 ¼ "How to deduct repair expense from
rental income.";

List<List<ParseTreeChunk>> matchResult ¼ parser.
assessRelevance(phrase1,

phrase2).getMatchResult();
assertEquals(

matchResult.toString(),
"[[[NN-expense IN-from NN-income], [JJ-rental NN-*

], [NN-income]], [[TO-to VB-deduct JJ-rental NN-*],
[VB-deduct NN-expense IN-from NN-income]]]");

System.out.println(matchResult);
double matchScore ¼ parseTreeChunkListScorer

.getParseTreeChunkListScore(matchResult);
double bagOfWordsScore ¼ parserBOW.

assessRelevanceAndGetScore(phrase1,

(continued)

5.6 Implementation of OpenNLP.Similarity Component 153

phrase2);
assertTrue(matchScore + 2 < bagOfWordsScore);
System.out.println("MatchScore is adequate (¼ " +

matchScore
+ ") and bagOfWordsScore ¼ " + bagOfWordsScore + " is

too high");
We now demonstrate how similarity can be captured by POS and cannot be
captured by bagOfWords

phrase1 ¼ "Way to minimize medical expense for my
daughter";

phrase2 ¼ "Means to deduct educational expense for my
son";

matchResult ¼ parser.assessRelevance(phrase1,
phrase2).getMatchResult();

assertEquals(
matchResult.toString(),
"[[[JJ-* NN-expense IN-for PRP$-my NN-*], [PRP$-my

NN-*]], [[TO-to VB-* JJ-* NN-expense IN-for PRP$-my
NN-*]]]");

System.out.println(matchResult);
matchScore ¼ parseTreeChunkListScorer

.getParseTreeChunkListScore(matchResult);
bagOfWordsScore ¼ parserBOW.

assessRelevanceAndGetScore(phrase1, phrase2);
assertTrue(matchScore > 2 * bagOfWordsScore);
System.out.println("MatchScore is adequate (¼ " +

matchScore
+ ") and bagOfWordsScore ¼ " + bagOfWordsScore + " is

too low");

5.7 Related Work

Most work in automated semantic inference from syntax deals with much lower
semantic level than the semantic classes we manage in this chapter. de Salvo Braz
et al. (2005) present a principled, integrated approach to semantic entailment. The
authors developed an expressive knowledge representation that provides a hierar-
chical encoding of structural, relational and semantic properties of the text and
populated it using a variety of machine learning based tools. An inferential mech-
anism over a knowledge representation that supports both abstractions and several

154 5 Assuring Chatbot Relevance at Syntactic Level

levels of representations allowed them to begin to address important issues in
abstracting over the variability in natural language. Certain reasoning patterns
from this work are implicitly implemented by parsing tree matching approach
proposed in the current study.

Notice that the set of semantic problems addressed in this chapter is of a much
higher semantic level compared to semantic role labeling; therefore, more sensitive
tree matching algorithm is required for such semantic level. Semantic role labeling
does not aim to produce complete formal meanings, in contrast to our approach. Our
classification classes such as meaningful opinion, proper extraction and relevant/
irrelevant search results are at rather high semantic level, but cannot be fully
formalized; it is hard to verbalize criteria for these classes even for human experts.

Usually, classical approaches to semantic inference rely on complex logical
representations. However, practical applications usually adopt shallower lexical or
lexical-syntactic representations, but lack a principled inference framework.
Bar-Haim et al. (2005) proposed a generic semantic inference framework that
operates directly on syntactic trees. New trees are inferred by applying entailment
rules, which provide a unified representation for varying types of inferences. Rules
are generated by manual and automatic methods, covering generic linguistic struc-
tures as well as specific lexical-based inferences. The current work deals with
syntactic tree transformation in the graph learning framework (compare with
Chakrabarti and Faloutsos 2006, Kapoor and Ramesh 1995), treating various phras-
ings for the same meaning in a more unified and automated manner.

Traditionally, semantic parsers are constructed manually, or are based on manu-
ally constructed semantic ontologies, but these are is too delicate and costly. A
number of supervised learning approaches to building formal semantic representa-
tion have been proposed (Zettlemoyer and Collins 2005). Unsupervised approaches
have been proposed as well, however they applied to shallow semantic tasks (e.g.,
paraphrasing (Lin and Pantel 2001), information extraction (Banko et al. 2007), and
semantic parsing (Poon and Domingos 2008). The problem domain in the current
study required much deeper handling syntactic peculiarities to perform classification
into semantic classes. In terms of learning, our approach is closer in merits to
unsupervised learning of complete formal semantic representation. Compared to
semantic role labeling (Carreras and Marquez 2004) and other forms of shallow
semantic processing, our approach maps text to formal meaning representations,
obtained via generalization.

In the past, unsupervised approaches have been applied to some semantic tasks.
For example, DIRT (Lin and Pantel 2001) learns paraphrases of binary relations
based on distributional similarity of their arguments; TextRunner (Banko et al. 2007)
automatically extracts relational triples in open domains using a self-trained extrac-
tor; SNE system applies relational clustering to generate a semantic network from
TextRunner triples (Kok and Domingos 2008). While these systems illustrate the
promise of unsupervised methods, the semantic content they extract is nonetheless
shallow and we believe it is insufficient for the benchmarking problems presented in
this chapter.

5.7 Related Work 155

A number of semantic-based approaches have been suggested for problems
similar to the four ones used for evaluation in this work. Lamberti et al. (2009)
proposed a relation-based page rank algorithm to augment Semantic Web search
engines. It employs data extracted from user query and annotated resource. Rele-
vance is measured as the probability that retrieved resource actually contains those
relations whose existence was assumed by the user at the time of query definition. In
this chapter we demonstrated how such problem as search results ranking can be
solved based on semantic generalizations based on local data – just queries and
search result snippets.

Statistical learning has been applied to syntactic parse trees as well. Statistical
approaches are generally based on stochastic models (Zhang et al. 2008). Given a
model and an observed word sequence, semantic parsing can be viewed as a pattern
recognition problem and statistical decoding can be used to find the most likely
semantic representation.

Convolution kernels are an alternative to the explicit feature design which we
performed in this chapter. They measure similarity between two syntactic trees in
terms of their sub-structures (e.g. Collins and Duffy 2002). These approaches use
embedded combinations of trees and vectors (e.g. all vs all summation, each tree and
vector of the first object are evaluated against each tree and vector of the
second object) and have given optimal results (Moschitti et al. 2006) handling the
semantic rolling tasks. For example, given the question “What does S.O.S stand
for?”, the following representations are used, where the different trees are: the
question parse tree, the bag-of-words tree, the bag-of-POS-tags tree and the predicate
argument tree

1. (SBARQ (WHNP (WP What))(SQ (AUX does)(NP (NNP S.O.S.))
(VP (VB stand)(PP (IN for)));

2. (What *)(does *)(S.O.S. *)(stand *)(for *)(? *);
3. (WP *)(AUX *)(NNP *)(VB *)(IN *)(. *);
4. (ARG0 (R-A1 (What *)))(ARG1 (A1 (S.O.S. NNP)))(ARG2 (rel stand)).

Although statistical approaches will most likely find practical application, we
believe that currently structural machine learning approaches would give a more
explicit insight on important featured of syntactic parse trees.

Web-based metrics that compute the semantic similarity between words or terms
(Iosif and Potamianos 2009) are complementary to our measure of similarity. The
fundamental assumption is used that similarity of context implies similarity of
meaning, relevant web documents are downloaded via a web search engine and
the contextual information of words of interest is compared (context-based similarity
metrics). It is shown that context-based similarity metrics significantly outperform
co-occurrence based metrics, in terms of correlation with human judgment.

156 5 Assuring Chatbot Relevance at Syntactic Level

5.8 Conclusions

In this chapter we demonstrated that such high-level sentences semantic features as
being meaningful, informative and relevant can be learned from the low level
linguistic data of complete parse tree. Unlike the traditional approaches to multilevel
derivation of semantics from syntax, we explored the possibility of linking low level
but detailed syntactic level with high-level pragmatic and semantic levels directly.

For a few decades, most approaches to NL semantics relied on mapping to First
Order Logic representations with a general prover and without using acquired rich
knowledge sources. Significant development in NLP, specifically the ability to
acquire knowledge and induce some level of abstract representation is expected to
support more sophisticated and robust approaches. A number of recent approaches
are based on shallow representations of the text that capture lexico-syntactic rela-
tions based on dependency structures and are mostly built from grammatical func-
tions extending keyword matching (Durme et al. 2003). Such semantic information
as WordNet’s lexical chains (Moldovan et al. 2003) can slightly enrich the repre-
sentation. Learning various logic representations (Thompson et al. 1997) is reported
to improve accuracy as well. de Salvo Braz et al. (2003) makes global use of a large
number of resources and attempts to develop a flexible, hierarchical representation
and an inference algorithm for it. However, we believe neither of these approaches
reaches the high semantic level required for practical application.

Moschitti et al. (2008) proposed several kernel functions to model parse tree
properties in kernel-based machines such as perceptrons or support vector machines.
In this chapter, instead of tackling a high dimensional space of features formed from
syntactic parse trees, we apply a structural machine learning approach to learn
syntactic parse trees themselves, measuring similarities via sub-parse trees and not
distances in the feature space. Moschitti et al. (2008) define different kinds of tree
kernels as general approaches to feature engineering for semantic role labeling and
conduct experiments with such kernels to investigate their contribution to individual
stages of the semantic role labeling architecture both in isolation and in combination
with other traditional manually coded features. The results for boundary recognition,
classification, and re-ranking stages provide systematic evidence about the signifi-
cant impact of tree kernels on the overall accuracy, especially when the amount of
training data is small. Structure-based methods of this chapter can leverage limited
amount of training cases too.

The tree kernel method assumes we are dealing with arbitrary trees. In this
chapter we are interested in properties of linguistic parse trees only, so the method
of matching is specific to them. We use the tree rewrite rules specific to parse trees,
significantly reducing the dimension of feature space we operate with. In our other
studies Galitsky et al. (2011b) we used ontologies, further reducing the size of
common subtrees. Table 5.5 performs the further comparative analysis of tree kernel
and SG approaches.

Structural method allows combining learning and rule-based approaches to
improve the accuracy, visibility and explainability of text classification.

5.8 Conclusions 157

Explainability of machine learning results is a key feature in industrial environment.
Quality assurance personnel should be able to verify the reason for every decision of
automated system.

Visibility show all intermediate generalization results, which allows tracking of
how class separation rules are built at each level (pair-wise generalization, general-
ization ^ sentence, generalization ^ generalization, (generalization ^ generalization)
^ generalization, etc.). Among the disadvantages of SVM (Suykens et al. 2003) is a
lack of transparence of results: it is hard to represent the similarity as a simple
parametric function, since the dimension of feature space is rather high. While the
tree kernel approach is statistical AI, the proposed approach follows along the line of
logical AI traditionally applied in linguistics two–three decades ago.

Parsing and chunking (conducted by OpenNLP) followed by SG are significantly
slower than other conventional operations in a content management system such as
indexing and comparable with operations like duplicate search. Verifying relevance,
application of SG should be preceded by statistical keyword-based methods. In real
time application components, such as search, we use conventional TF*IDF based
approach (such as SOLR/Lucene) to find a set of candidate answers of up to

Table 5.5 Comparative analysis of two approaches to parse tree learning

Feature\approach Tree Kernels SVM-based SG based

Phrase rewriting and
normalization

Not applied and is expected to
be handled by SVM

Rewriting patterns are obtained from
literature. Rewriting/normalization
significantly reduces the dimension
of learning.

Handling semantics Semantic features are extracted
and added to feature space for
syntactic features.

Semantics is represented as logic
forms. There is a mechanism to build
logic forms from generalizations.

Expressing similarity
between phrases,
sentences, paragraphs

Distance in feature space Maximal common sub-object,
retaining all common features:
sub-phrase, sub-sentence,
sub-paragraph

Ranking search results By relevance score, classifying
into two classes: correct and
incorrect answers

By score and by finding entities

Integration with logic
form-based reasoning
components

N/A Results of generalization can be fed
to a default reasoning system,
abduction/inductive reasoning sys-
tem like JSM (Galitsky et al. 2007),
domain-specific reasoning system
like reasoning about actions

Combining search with
thesaurus

Should be a separate thesaurus-
based relevance engine

SG operation is naturally combined
with thesaurus tree matching opera-
tion (Galitsky et al. 2011b)

Using manually
formed relevance rules

Should be a separate compo-
nent, impossible to alter SVM
feature space explicitly

Relevance rules in the form of gen-
eralizations can be added, signifi-
cantly reducing dimension of feature
space where learning occurs.

158 5 Assuring Chatbot Relevance at Syntactic Level

100 from millions of documents and then apply SG for each candidate. For off-line
components, we use parallelized map/reduce jobs (Hadoop) to apply parsing and SG
to large volumes of data. This approach allowed a successful combination of
efficiency and relevance for serving more than ten million unique site users monthly
at datran.com/allvoices.com, zvents.com and stubhub.com.

Proposed approach is tolerant to errors in parsing. For more complex sentences
where parsing errors are likely, using OpenNLP, we select multiple versions of
parsings and their estimated confidence levels (probabilities). Then we cross-match
these versions and if parsings with lower confidence levels provide a higher match
score, we select them.

In this chapter we manually encoded paraphrases for more accurate sentence
generalizations. Automated unsupervised acquisition of paraphrase has been an
active research field in recent years, but its effective coverage and performance
have rarely been evaluated. Romano et al. (2006) proposed a generic paraphrase-
based approach for a specific case such as relation extraction to obtain a generic
configuration for relations between objects from text. There is a need for novel
robust models for matching paraphrases in texts, which should address syntactic
complexity and variability. We believe the current study is a next step in that
direction.

Similarly to the above studies, we address the semantic inference in a domain-
independent manner. At the same time, in contrast to most semantic inference
projects, we narrow ourselves to a very specific semantic domain (limited set of
classes), solving a number of practical problems for chatbots. Learned structures
would significantly vary from one semantic domain to another, in contrast to general
linguistic resources designed for horizontal domains.

Complexity of SG operation is constant. Computing relation Γ2� Γ1 for arbitrary
graphs Γ2 and Γ1 is an NP-complete problem (since it is a generalization of the
subgraph isomorphism problem from (Garey and Johnson 1979)). Finding X ^
Y ¼ Z for arbitrary X, Y, and Z is generally an NP-hard problem. In (Ganter and
Kuznetsov 2001) a method based on so-called projections was proposed, which
allows one to establish a trade-off between accuracy of representation by labeled
graphs and complexity of computations with them. Pattern structures consist of
objects with descriptions (called patterns) that allow a semilattice operation on
them. Pattern structures arise naturally from ordered data, e.g., from labeled graphs
ordered by graph morphisms. It is shown that pattern structures can be reduced to
formal contexts; in most cases processing the former is more efficient and obvious
than processing the latter. Concepts, implications, plausible hypotheses, and classi-
fications are defined for data given by pattern structures. Since computation in
pattern structures may be intractable, approximations of patterns by means of pro-
jections are introduced. It is shown how concepts, implications, hypotheses, and
classifications in projected pattern structures are related to those in original ones
(Strok et al. 2014; Makhalova et al. 2015).

In particular, for a fixed size of projections, the worst-case time complexity of
computing operation ^ and testing relation � becomes constant. Application of pro-
jections was tested in various experiments with chemical (molecular) graphs

5.8 Conclusions 159

http://datran.com/allvoices.com
http://zvents.com
http://stubhub.com

(Kuznetsov and Samokhin 2005) and conflict graphs (Galitsky et al. 2009). As to the
complexity of tree kernel algorithms, they can be run in linear average time O(m þ n),
where m and n are number of nodes in a first and second trees (Moschitti 2008).

Using semantic information for query ranking has been proposed in (Aleman-
Meza et al. 2003; Ding et al. 2004). However, we believe the current study is a
pioneering one in deriving semantic information required for ranking from syntactic
parse tree directly. In our further studies we plan to proceed from syntactic parse
trees to higher semantic level and to explore applications which would benefit
from it.

The code for SG is available at https://github.com/bgalitsky/relevance-based-on-
parse-trees/tree/master/src/main/java/opennlp/tools/textsimilarity.

References

Allen JF (1987) Natural language understanding. Benjamin Cummings, Menlo Park
Abney S (1991) Parsing by chunks. In: Principle-based parsing. Kluwer Academic Publishers, pp

257–278
Aleman-Meza B. Halaschek C, Arpinar I Sheth A (2003) A Context-Aware Semantic Association

Ranking. In: Proceedings of first int’l workshop Semantic Web and Databases (SWDB ‘03),
pp. 33-50.

Amiridze N, Kutsia T (2018) Anti-unification and natural language processing fifth workshop on
natural language and computer science, NLCS’18, EasyChair Preprint no. 203

Banko M, Cafarella J, Soderland S, Broadhead M, Etzioni O (2007) Open information extraction
from the web. In: Proceedings of the twentieth international joint conference on artificial
intelligence. AAAI Press, Hyderabad, pp 2670–2676

Bar-Haim R, Dagan I, Greental I, Shnarch E (2005) Semantic inference at the lexical-syntactic level
AAAI-05.

Bunke H (2003) Graph-based tools for data mining and machine learning. Lect Notes Comput Sci
2734/2003:7–19

Cardie C, Mooney RJ (1999) Machine learning and natural language, Mach Learn 1(5)
Carreras X, Marquez L (2004) Introduction to the CoNLL-2004 shared task: semantic role labeling.

In: Proceedings of the eighth conference on computational natural language learning. ACL,
Boston, pp 89–97

Chakrabarti D, Faloutsos C (2006) Graph mining: laws, generators, and algorithms. ACM Comput
Surv 38(1)

Collins M, Duffy N (2002) New ranking algorithms for parsing and tagging: kernels over discrete
structures, and the voted perceptron. In: ACL02

Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297
Pighin D, Moschitti A (2009) Reverse engineering of tree kernel feature spaces. In: Proceedings of

the 2009 conference on empirical methods in natural language processing. Association for
Computational Linguistics, Singapore, pp 111–120

de Salvo Braz R, Girju R, Punyakanok V, Roth D, Sammons M (2005) An inference model for
semantic entailment in natural language, Proc AAAI-05

Ding L, Finin T, Joshi A, Pan R, Cost RS, Peng Y, Reddivari P, Doshi V, Sachs J (2004) Swoogle: a
search and metadata engine for the semantic web. In: Proceeding of the 13th ACM International
Conference on Information and Knowledge Management (CIKM’04), pp 652–659

160 5 Assuring Chatbot Relevance at Syntactic Level

https://github.com/bgalitsky/relevance-based-on-parse-trees/tree/master/src/main/java/opennlp/tools/textsimilarity
https://github.com/bgalitsky/relevance-based-on-parse-trees/tree/master/src/main/java/opennlp/tools/textsimilarity

Ducheyne S (2008) J.S. Mill’s canons of induction: from true causes to provisional ones. History
and Philosophy of Logic 29(4):361–376

Durme BV, Huang Y, Kupsc A, Nyberg E (2003) Towards light semantic processing for question
answering. HLT Workshop on Text Meaning

Dzikovska M., Swift M, Allen J, William de Beaumont W (2005) Generic parsing for multi-domain
semantic interpretation. International Workshop on Parsing Technologies (Iwpt05), Vancouver
BC.

Fukunaga K (1990) Introduction to statistical pattern recognition, 2nd edn. Academic Press
Professional, Inc., San Diego

Galitsky B, Josep Lluis de la Rosa, Gabor Dobrocsi (2011a) Building integrated opinion delivery
environment. FLAIRS-24, West Palm Beach FL May 2011

Galitsky B, Dobrocsi G, de la Rosa JL, Kuznetsov SO (2011b) Using generalization of syntactic
parse trees for taxonomy capture on the web. ICCS:104–117

Galitsky BA, G Dobrocsi, JL De La Rosa, SO Kuznetsov (2010) From generalization of syntactic
parse trees to conceptual graphs. International Conference on Conceptual Structures, 185-190.

Galitsky B (2003) Natural language question answering system: technique of semantic headers.
Advanced Knowledge International, Australia

Galitsky B, Kuznetsov SO (2008) Learning communicative actions of conflicting human agents. J
Exp Theor Artif Intell 20(4):277–317

Galitsky B, D Usikov (2008) Programming spatial algorithms in natural language. AAAIWorkshop
Technical Report WS-08-11.–Palo Alto, pp 16–24

Galitsky B, González MP, Chesñevar CI (2009) A novel approach for classifying customer
complaints through graphs similarities in argumentative dialogue. Decision Support Systems
46(3):717–729

Galitsky B, De La Rosa JL, Dobrocsi G (2012) Inferring the semantic properties of sentences by
mining syntactic parse trees. Data Knowl Eng 81:21–45

Galitsky B, Kuznetsov SO, Usikov D (2013) Parse thicket representation for multi-sentence search.
In: International conference on conceptual structures, pp 153–172

Galitsky B, Ilvovsky DI, Kuznetsov SO (2014) Extending tree kernels towards paragraphs. Int J
Comput Linguist Appl 5(1):105–116

Galitsky B, Botros S (2015) Searching for associated events in log data. US Patent 9,171,037
Galitsky B (2017a) Improving relevance in a content pipeline via syntactic generalization. Eng Appl

Artif Intell 58:1–26
Galitsky B (2017b) Matching parse thickets for open domain question answering. Data Knowl Eng

107:24–50
Ganter B, Kuznetsov S (2001) Pattern Structures and Their Projections, Proceedings of the 9th

International Conference on Conceptual Structures, ICCS’01, ed. G. Stumme and H. Delugach,
Lecture Notes in Artificial Intelligence, 2120, 129–142.

Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of
NP-completeness. Freeman, San Francisco

Gildea D (2003) Loosely tree-based alignment for machine translation. In: Proceedings of the 41th
annual conference of the Association for Computational Linguistics (ACL-03), Sapporo, pp
80–87

Iosif E, Potamianos A (2009) Unsupervised semantic similarity computation between terms using
web documents. IEEE Trans Knowl Data Eng 13

Kapoor S, Ramesh H (1995) Algorithms for Enumerating All Spanning Trees of Undirected and
Weighted Graphs. SIAM J Comput 24:247–265

Kok S, Domingos P (2008) Extracting semantic networks from text via relational clustering. In:
Proceedings of the nineteenth European conference on machine learning. Springer, Antwerp,
Belgium, pp 624–639

Kuznetsov SO, Samokhin, MV (2005) Learning closed sets of labeled graphs for chemical
applications. In: Inductive Logic Programming pp 190–208

Lamberti F, Sanna A, Demartini C (2009) A Relation-Based Page Rank Algorithm for Semantic
Web Search Engines. IEEE Trans Knowl Data Eng 21(1):123–136

References 161

Lin D, Pantel P (2001) DIRT: discovery of inference rules from text. In: Proceedings of ACM
SIGKDD conference on knowledge discovery and data mining 2001, 323–328

Makhalova T, Ilvovsky DI, Galitsky BA (2015) Pattern Structures for News Clustering. FCA4AI@
IJCAI, 35-42

Mill JS (1843) A system of logic, racionative and inductive, London
Moldovan D, Clark C, Harabagiu S, Maiorano S (2003) Cogex: a logic prover for question

answering. In: Proceedings of HLTNAACL 2003
Moreda P, Navarro B, Palomar M (2007) Corpus-based semantic role approach in information

retrieval. Data Knowl Eng 61:467–483
Moschitti A (2008) Kernel Methods, Syntax and Semantics for Relational Text Categorization. In:

Proceeding of ACM 17th Conference on Information and Knowledge Management (CIKM).
Napa Valley, California.

Moschitti A, Pighin D, Basili R (2006). Semantic role labeling via tree kernel joint inference. In
Proceedings of the 10th conference on computational natural language learning, New York,
USA

openNLP (2018) http://opennlp.apache.org/
Plotkin GD (1970) A note on inductive generalization. In: Meltzer B, Michie D (eds) Machine

Intelligence, vol 5. Elsevier North-Holland, New York, pp 153–163
Poon H, Domingos P (2008) Joint unsupervised coreference resolution with Markov logic. In:

Proceedings of the conference on empirical methods in natural language processing
(EMNLP’08). Association for Computational Linguistics, Stroudsburg, pp 650–659

Ravichandran D, Hovy E (2002) Learning surface text patterns for a Question Answering system.
In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics
(ACL 2002), Philadelphia, PA

Robinson JA (1965) A machine-oriented logic based on the resolution principle. J Assoc Comput
Mach 12:23–41

Romano L, Kouylekov M, Szpektor I, Dagan I, Lavelli A (2006) Investigating a generic paraphrase-
based approach for relation extraction. In: Proceedings of EACL, 409–416

Stevenson M, Greenwood MA (2005) A semantic approach to IE pattern induction. In: Proceedings
of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL 2005), Ann
Arbor

Strok F, Galitsky B, Ilvovsky D, Kuznetsov S (2014) Pattern structure projections for learning
discourse structures. International Conference on Artificial Intelligence: methodology, Systems,
and Applications. Springer, Cham, pp 254–260

Strzalkowski T, Carballo JP, Karlgren J, Tapanainen AHP, Jarvinen T (1999) Natural language
information retrieval: TREC-8 report. In: Text Retrieval conference

Suykens JAK, Horvath G, Basu S, Micchelli C, Vandewalle J (Eds.) (2003) Advances in learning
theory: methods, models and applications, vol. 190 NATO-ASI series III: computer and systems
sciences, IOS Press

Thompson C, Mooney R, Tang L (1997) Learning to parse NL database queries into logical form.
In: Workshop on automata induction, grammatical inference and language acquisition

Voorhees EM (2004) Overview of the TREC 2001 Question Answering track. In: TREC
Zanzotto FM, Moschitti A (2006) Automatic learning of textual entailments with cross-pair

similarities. In: Proceedings of the Joint 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Association for Computational Linguistics
(COLING-ACL), Sydney, Australia.

Zhang M, Zhou GD, Aw A (2008) Exploring syntactic structured features over parse trees for
relation extraction using kernel methods. Inf Process Manage Int J 44(2):687–701

Zhao Y, Shen X, Senuma H, Aizawa A (2018) A comprehensive study: sentence compression with
linguistic knowledge-enhanced gated neural network. Data Knowl Eng V117:307–318

Zettlemoyer LS, Collins M (2005) Learning to map sentences to logical form: structured classifi-
cation with probabilistic categorial grammars. In: Bacchus F, Jaakkola T (eds) Proceedings of
the twenty-first conference on uncertainty in artificial intelligence (UAI’05). AUAI Press,
Arlington, pp 658–666

162 5 Assuring Chatbot Relevance at Syntactic Level

http://opennlp.apache.org/

Chapter 6
Semantic Skeleton Thesauri for Question
Answering Bots

Abstract We build a question–answering (Q/A) chatbot component for answering
complex questions in poorly formalized and logically complex domains. Answers
are annotated with deductively linked logical expressions (semantic skeletons),
which are to be matched with formal representations for questions. We utilize a
logic programming approach so that the search for an answer is implemented as
determining clauses (associated with this answer) from which the formal represen-
tation of a question can be deduced. This Q/A technique has been implemented for
the financial and legal domains, which are rather sophisticated on one hand and
requires fairly precise answers on the other hand.

6.1 Introduction

Domain-specific thesauri are an important component of Q/A bots. While the
keyword search and open domain question answering target horizontal domains,
handling relatively simple, factoid questions containing an entity and its attribute,
this is not the case for a legal, financial or business Q/A. Representation of the above
knowledge, oriented to the general audience, is much less structured and requires
much richer set of entities than a natural language interface to SQL databases
(Maybury 2000; Popescu et al. 2003; Galitsky 2003, Chapter 4). Furthermore, the
structure of links between these entities is significantly more complex in such
domains.

Domain-specific thesaurus for Q/A must be designed in a way to deliver a limited
portion of information which:

1. is adjusted to a given question;
2. is linked to additional resources if they are necessary;
3. indicates its position in the taxonomy of a given Q/A domain;
4. is consistent with other answers and provides a uniform coverage of this Q/A

domain.

Earlier studies into design of natural language-based and expert systems showed
that adequate commonsense reasoning is essential for answering complex questions

© Springer Nature Switzerland AG 2019
B. Galitsky, Developing Enterprise Chatbots,
https://doi.org/10.1007/978-3-030-04299-8_6

163

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04299-8_6&domain=pdf

(Winograd 1972). A number of recent studies have shown how application of
advanced reasoning is helpful to compensate for a lack of linguistic or domain-
dependent knowledge answering questions in poorly structured domains (Ng et al.
2001; Moldovan et al. 2002; Pasca 2003; Rus and Moldovan 2002; Baral et al. 2004;
Galitsky 2004).

In our earlier studies we have explored what forms of reasoning can overcome the
bottleneck of a limited accuracy of delivered answers. Default logic has been shown
to provide a significant assistance disambiguating questions formed by a domain
non-expert (Galitsky 2005). An architecture for merging vertical search thesauri has
been proposed in (Galitsky and Pampapathi 2005). Parse thicket-based knowledge
representation assists in answering complex, multi-sentence questions (Galitsky
et al. 2014). In this chapter we continue our development of the knowledge repre-
sentation and reasoning technique for building sharable reusable thesauri for answer-
ing complex questions.

The technique of semantic headers (SH, Galitsky 2003) was intended to represent
and reason about poorly structured knowledge, manually extracted from text, and to
match it with formalized questions. Having undergone the commercial evaluation,
this technique demonstrated the superior performance in the market niche of expen-
sive question answering systems, requiring a substantial domain-representation
work of knowledge engineers. However, its accuracy and complexity of delivered
recommendations and information chunks is much higher than that of open-domain
question answering with automatic annotation (Galitsky et al. 2013a, b). SHs are
special logical forms oriented to represent partial (most important) information from
a textual document.

Semantic skeletons (SSK) extend the functionality of Q/A systems by means of
commonsense reasoning machinery. Designed for the above market niche, a seman-
tic skeleton – enabled knowledge domain provides a better coverage of a totality of
possible questions. This is due to the fact that an “emergent” question is expected to
be deductively linked to one or more of the existing annotated answers by applica-
tion of commonsense reasoning, inherent to SSK. Moreover, SSK expressions closer
follow natural language expressions than pure logical knowledge representations
which abstract away from natural language means. Hence SSK technique seems to
be a good candidate for building domain-specific thesauri for Q/A.

To illustrate the target complexity of questions the proposed repository will
provide knowledge for, we present questions from a mortgage domain. NLP system
needs to handle up to four entities; neither keyword search–based nor statistical nor
syntactic match can provide satisfactory information access in such vertical domains.

How much lower is an adjustable rate mortgage compared to a fixed rate loan?
Does the “start” rate quoted by lenders on a loan stay in effect for the whole
term of the mortgage?
How can I avoid negative amortization on an adjustable rate mortgage?
How risky is a 125% loan to value second mortgage?

164 6 Semantic Skeleton Thesauri for Question Answering Bots

The desired suite of features we are attempting to achieve by SSK–based knowl-
edge representation machinery is as follows:

1. simplicity and expressive power;
2. capability to reason with incomplete information;
3. existence of a well developed programming methodology;
4. availability of rather efficient reasoning features;
5. encoding defeasible relations, defaults, causal relations, argumentations, and

inheritance hierarchies (Galitsky 2005);
6. being elaboration-tolerant thesauri, i.e., be able to accommodate new knowledge

without doing large-scale modification.

6.2 Defining Semantic Headers of Answers

The problem of question answering in a vertical domain is posed as building a
mapping between formal representations of the fixed set of answers and formal
representations of possible questions. The technique of semantic headers is intended
to be the means of conversion of an abstract textual document into a form, appro-
priate to be associated with the formal representation for a question and to generate
an answer from the pre-designed textual components (Galitsky 2003). Only the data,
which can be explicitly mentioned in a potential query, occurs in semantic headers.
The rest of the information, which would unlikely occur in a question, but can
potentially form the relevant answer, does not have to be formalized. Finding a set of
answer is implemented as determining semantic headers (associated with this
answer) from which the formal representation of a question can be deduced.

Let us consider the Internet Auction domain, which includes the description of
bidding rules and various types of auctions.

Restricted-Access Auctions. This separate category makes it easy for you to find or avoid
adult-only merchandise. To view and bid on adult-only items, buyers need to have a credit
card on file with eBay. Sellers must also have credit card verification. Items listed in the
Adult-Only category are not included in the New Items

What is this paragraph about? It introduces the “Restricted-Access” auction as a
specific class of auctions, explains how to search for or avoid selected category of
products, presents the credit card rules and describes the relations between this class
of auctions and the highlighted sections of the Internet auction site. We do not
change the paragraph in order to adjust it to the potential questions answered within
it; instead, we consider all the possible questions this paragraph can serve as an
answer to:

What is the restricted-access auction? This question is raised when a customer
knows the name of the specific class of auction and wants to get more details
about it.

6.2 Defining Semantic Headers of Answers 165

What kind of auctions sells adult-only items? How to avoid adult-rated products for
my son? Do you sell adult items? These are similar questions, but the class of
auctions is specified implicitly, via the key attribute adult-only.

When does a buyer need a credit card on file? Why does a seller need credit card
verification? These are more specific questions about what kind of auctions
requires having credit cards on file, and what is the difference in credit card
processing for the auction seller/buyer. The above paragraph serves as an answer
to these questions as well, and since we are not dividing this paragraph into
smaller fragments, the question addressee will get more information than she has
directly requested; however, this additional information is relevant to that request.

Below is a fragment of a repository that lists the semantic headers for the above
answer:

auction(restricted_access):-addAnswer(restrAuction).
product(adult):-addAnswer(restrAuction).
seller(credit_card(verification,_),_):-

addAnswer(restrAuction).
credit_card(verification,_)):-addAnswer(restrAuction).
buyer(credit_card(reject(_,_),_),_):-

addAnswer(restrAuction).
bidder(credit_card(_,_),_):-addAnswer(restrAuction).
seller(credit_card(_,_),_):-addAnswer(restrAuction).
what_is(auction(restricted_access,_),_):-

addAnswer(restrAuction).

What happens when the system receives a question such as ‘What if buyers’ credit
card is not approved immediately when I shop at restricted access auction?’ Firstly,
it is translated into a logic form representation (we do not present the details here)

buyer(credit_card(_,_),
shop(auction(restricted_access,_),_).

Secondly, we search for a proof of this conjunction, given all available SHs,
including ones for the above answer. The first conjunctive member will be satisfied
by the clause

buyer(credit_card(reject(_,_),_),_):-
addAnswer(restrAuction).

Finally, the predicate addAnswer(restrAuction) is called and the above paragraph
is added to the current answer, which may consists of multiple pre-prepared ones.
The second conjunctive member might be satisfied with another SH, which would
deliver another answer.

166 6 Semantic Skeleton Thesauri for Question Answering Bots

Nowwe will briefly introduce a generic set of SHs for an entity. For an entity e, its
attributes c1, c2, . . ., variables over these attributes C, C1, as well as other involved
entities e1,. . ., and the ID of resultant answer, SHs look like the following:

e(A):-var(A), answer(id). This is a very general answer, introducing (defining)
the entity e. It is not always appropriate to provide a general answer (e.g. to
answer What is tax?), so the system may ask a user to be more specific:
e(A):-var(A), clarify([c1, c2, . . .]). If the attribute of e is unknown, a clarifica-
tion procedure is initiated, suggesting the choice of an attribute from the list c1,
c2,. . . to have the specific answer about e(ci) instead of general one for e(_)
(definition for e).
e(A):-nonvar(A), A ¼ c1, answer(id). The attribute is determined and the
system outputs the answer associated with the entity and its attribute.
e(e1(A)):-nonvar(A), A ¼ c1, e1(A).
e(e1(A),e2):-nonvar(A), A 6¼ c1, e2(_). Depending on the existence and values
of attributes, an embedded expression is reduced to its innermost entity that
calls another SH.
e(A,id). This (dead-end) semantic header serves as a constraint for the repre-
sentation of a complex query.

Note that var/1 and nonvar/1 are the built-in PROLOGmetapredicates that obtain
the respective status of variables.

From the perspective of logic, the choice of SHs to be matched against a formal
representation of a query corresponds to the search for a proof of this representation,
considering SHs as axioms.

Hence, SHs of answer are formal generalized representations of potential ques-
tions which contain the essential information from answers and serve to separate
them, being matched with formal representations of questions. SHs are built taking
into account the set of other semantically close answers, and the totality of relevant
questions, semantically similar to the generic questions above.

6.3 Defining Semantic Skeletons for Common Sense

Evidently, a set of SH represents the associated answer with the loss of information.
What kind of information can be saved given the formal language that supports
semantic headers?

When we extract the answer identifying information and construct the semantic
headers we intentionally lose some commonsense links between the entities and
objects used. This happens for the sole purpose of building the most robust and
compact expressions for matching with the query representations. Nevertheless, it
seems reasonable to retain the answer information that is not directly connected with

6.3 Defining Semantic Skeletons for Common Sense 167

potential questions, but is useful for completeness of knowledge being queried. A
semantic skeleton (SSK) can be considered as a combination of semantic headers
with mutual explanations of how they are related to each other from the answers
perspective. SSKs are domain-specific and coded manually by knowledge engineers.

SSKs serve the purpose of handling the queries not directly related to the
informational content of the answers, represented by semantic headers. For an
answer and a set of semantic headers, an SSK derives an additional set of virtual
headers to cover those questions which require a deductive step to be linked with this
answer. In other words, a semantic skeleton extends a set of questions that is covered
by existing semantic headers towards the superset of questions, deductively
connected with the former ones. It happens during a question answering session,
unlike the creation of regular SHs which are built in the course of domain
construction.

Yielding virtual SHs in a domain can be written as 8a SSK: {SH(a)}! {vSH(a)},
where {SH(a)} is the set of original semantic headers for an answer a, and {vSH(a)}
is the set of virtual semantic headers derived from SSK for this answer. A virtual
semantic header (vSH) can be yielded by multiple answers (Galitsky 2003). How-
ever, a vSH cannot be a regular header for another answer.

Note that two semantic headers for different answers are allowed to be deduc-
tively linked): 8a,a’ vSH(a) \ SH(a’) ¼ ∅. Hence, a vSH for a query is an
expression that enters a clause of this semantic skeleton and can be matched with
a representation of a query or with its conjunctive component. In the latter case, the
terms of this clauses must not match with the negations of the (conjunctive)
components of that query representation.

The idea of SSK is depicted in Fig. 6.1. The input query is matched against the
vSHs if there is no appropriate regular semantic header to match with. Virtual
semantic headers are obtained given the terms of SSK clauses. The SHs are assigned
to answers directly. However, vSHs are assigned to answers via clauses. Both
Answer1 and Answer2 may have other assigned regular and virtual SHs.

Input question

Formalized query

Virtual
semantic
header

Head :- Body1 Body2

Answer 2

Body3

Answer 1
Semantic
header

No match

Clause of semantic skeleton

Match

Fig. 6.1 Illustration for the idea of semantic skeletons

168 6 Semantic Skeleton Thesauri for Question Answering Bots

For example, imagine a semantic header tax(income) that is intended to handle
questions about tax brackets in the Tax domain: how the tax amount depends on
income. Evidently, this answer would be a relevant one to the question What would
my tax be if I lost my job last year? Since losing a job is not directly related to tax (the
former is deductively linked to the latter via income, job(lost) ! not income(_)), it
would be unreasonable to have a special semantic header to link tax and job-lost.
Therefore, the expression job(lost) serves as a virtual semantic header in the tax
domain, being generated dynamically from the clause job(lost) ! not income(_),
instead of being a regular one. If we do not use the regular semantic header instead of
the virtual one for the entities which are neither deductively nor syntactically linked
in a query, it would damage the domain structure and lead to an excess number of
semantic headers. Indeed, this used to happen before the concept of the SSK was
introduced.

At the same time, in the IRA domain the loosing job scenario is under special
consideration, and expressions ira(tax(income)) and ira(job(lost)) are expected to be
the semantic headers for different answers; one for calculating tax on IRA distribu-
tion amount that depends on income, and the other for the special case of tax on IRA
distribution under employment termination. Thus a pair (triple, etc.) of entities may
form a vSH that requires a SSK-clause that would yield, generally speaking, multiple
links between these entities. Alternatively, this pair of entities can form a regular
header, depending on whether these entities are directly semantically or syntactically
linked in a query. The clauses of the semantic skeleton are not directly used to
separate answers, so they can be built as complete as possible irrespectively on the
knowledge correlation with other answers. Furthermore, semantic skeletons for a
pair of answers may overlap, having some common clauses.

6.4 SSK Handling of Complex Questions

Semantic skeletons are helpful for formalizing queries which are conjunctions of
multiple terms. This happens for complex queries consisting of two or more com-
ponents, for example Can I qualify for a 15-year loan if I filed bankruptcy 2 years
ago with my partner?! loan(qualify)& bankruptcy(file, 2 years). If a term is either
matched against none of the SHs or delivers too many of them, then this term can
serve as a virtual SH. In the Table 6.1 below we analyze various cases of the
satisfaction (matching) of a translation formula with two terms against regular and
virtual SHs.

In a complex question, we distinguish two parts: leading and assisting. These
parts are frequently correlated with the syntactic components of questions. In
accordance to our observations (Galitsky 2003), the leading part is usually more
general than the assisting part. One of the canonical examples of a complex query is
as follows (note that we accent its semantic structure rather than its syntactic one):
How can I do this Action with that Attribute, if I am AdditionalAttribute1 of / by /
with / from/and AdditionalAttribute2. We enumerate the properties of our informa-
tional model above as follows:

6.4 SSK Handling of Complex Questions 169

Table 6.1 Various cases of matching (disagreements) for the leading and assisting components of
complex query. First and second columns enumerate matching possibilities for the leading and
assisting components

First term (leading)
Second term
(assisting) Resultant answer and comments

Matches with multi-
ple SHs

Matches with a single
SH(a)

The case for a “dead end” semantic header for
an assisting term, which reduces the number of
matched SHs for the first term, having the
common variable (answer Id). Answer a is
chosen in this situation which had required
special preparation

Matches with a single
SH(a)

Matches with multi-
ple SHs

Answer a from the leading term is taking over
the multiple ones delivered by the assisting
term. The confidence of that right decision
would grow if the assisting term matches with a
vSH of a; otherwise, we conclude that the
assisting component is unknown

Matches with a single
SH(a) or only vSH(a)

Matches with a single
SH(a) or only vSH(a)

The answer is a. Higher confidence in the
proper decision would be established if the
leading term matches with SH and the assisting
one with vSH

Matches with a set of
SH(a), a2A

Matches with a single
SH(a)

The answer is a. The assisting term matches
against a single semantic header and therefore
reduces the answers yielded by the leading term

Matches with a set of
SH(a), a2A

Matches with a vSH
(a) only

All answers from A. The fact that the assisting
term matches against a virtual semantic header
is insufficient evidence to reduce the answers
yield by the leading term

Matches with a set of
vSH(a), a2A

Matches with a single
SH(a)

The answer is a. The assisting term contributes
to that decision, consistent with the match of the
leading term

Matches with a set of
vSH(a), a2A

Matches with a vSH
(a) only

All answers from A. The resultant confidence
level is rather low and there is insufficient evi-
dence to reduce the answers yielded by the set
of vSH of the leading term

Matches with a single
SH(a)

Matches with a vir-
tual SH(a’) only

The answers are both a and a’ except in the case
when the first term matches with virtual SH(a’)
and the answer is just a

Matches with a vir-
tual SH(a) only

Matches with a vir-
tual SH(a’) only

All answers which are yielded by vSH(a). The
question is far from being covered by SH, so it
is safer to provide all answers, deductively
linked to the leading term and ignore the
assisting term

Matches with a set of
vSH(a): a2A

Matches with a set of
vSH(a’): a’2A’

We find the answer which delivers most of vSH
in {vSH(a)\ vSH(a’): a2A, a’2A’}

170 6 Semantic Skeleton Thesauri for Question Answering Bots

1. Action and its Attribute are more important (and more general) than
AdditionalAttribute1 and AdditionalAttribute2; they are more likely to point to
a specific topic (group of answers).

2. AdditionalAttribute1 or AdditionalAttribute2 are more specific and more likely to
point to an exact answer.

Therefore, if we mishandle the leading part, we would probably dissatisfy the
assisting one and find ourselves with a totally irrelevant answer. Conversely, if the
assisting part is mishandled when the leading part has been matched, we frequently
find ourselves in the situation where we have either a marginally relevant answer or
too many answers. In general the variety of assisting components is much higher
than that of the leading ones. Therefore, it is reasonable to represent assisting
expressions as vSHs. Proper domain coding is intended to achieve the coverage of
all leading components, so most of them are represented by SHs.

Assuming that the complete (linking all entities) SSK is built, we approach the
Table 6.1. It shows the rules for building SSK thesaurus to handle complex ques-
tions. There are a few additional models for complex questions. When a question
does not follow our two-part model, SHs and SSKs can be individually built to
handle particular asking schema. However, if no special means have been designed
for a (semantically) deviated question, the resultant answers may be irrelevant.

As a final SSK example, we show how to handle the question ‘What if my credit
card is not approved immediately when I shop at restricted access auction?’ to the
domain discussed above. If a buyer is mentioned in one way or another, SH
technique would deliver this answer, but not otherwise. A simple SSK

buyer(person,_):- shop(person, auction(Any,_))

is required to express knowledge that a shopper is a potential buyer. Obviously, such
kind of SSKs assures that a wide class of complex questions is properly represented.

6.5 Evaluation of Relevance Improvement Due to SSK

A series of tax return assisting, investment, mortgage and financial companies have
been using the Q/A system being presented with SSK-based knowledge representa-
tion in 1999–2002. SSK-based Q/A system can replace human agents, automatically
answering tax questions in up to 85% of all cases. Human agents were ready to get
involved in the Q/A process in case of a failure of the automatic system.

In particular, the suite of legal (family law) domain has been created, which
covers sufficient information for the general audience of using about 1000 answers
in the main and accompanying domains. This domain includes more than 240 entities

6.5 Evaluation of Relevance Improvement Due to SSK 171

and more than 2000 of their parameters in these sub-domains. More than 3000
semantic headers and semantic skeletons were designed to provide an access to these
answers. During the beta testing, the Family Law adviser was subject to evaluation
by a few hundred users. Customers had the options to provide the feedback to the
system concerning a particular answer if they were dissatisfied or not fully satisfied
with it (too long, non-relevant, partially relevant, etc.). With the answer size not to
exceed six paragraphs, the system correctly answers more than 70% of all queries, in
accordance to the analysis of the Q/A log by the experts. Even with 82% resultant
accuracy (Table 6.2), which is relatively low for traditional pattern recognition
systems, over 95% of customers and quality assurance personnel agreed that the
legal advisor is the preferable way of accessing information for non-professional
users.

Usually, customers tried to rephrase questions in case of the system’s misunder-
standing or failure to provide a response. Reiteration (rephrasing the question) was
almost always sufficient to obtain the required information. At the beginning of the

Table 6.2 The progress of question answering enhancement at consecutive steps of domain
development (%)

Development
step

Source of
questions

Correct
answer

No
knowledge

No
understanding Misunderstanding

Initial coding Initially designed
(expert) ques-
tions for SH

47 0 35 18

Testing and
reviewing of
initial coding

Initially designed
and accompany-
ing questions

52 18 21 9

Adjustment to
testers’
questions

Additional and
reformulated and
rephrased testers’
questions

60 15 10 15

Adding SSKs
without
Table1 rules

Domain-specific
knowledge

63 17 7 13

Adding SSKs
with Table1
rules

Domain-specific
knowledge

67 17 4 12

Adjustment to
content pro-
viders’
questions

More questions,
reflecting a dif-
ferent viewpoint

74 8 4 14

Adjustment to
users’
questions

No additional
questions

82 4 4 10

SSK step is shown in bold. Commonsense domain knowledge helps to yields questions which were
not encoded during initial phase of domain development, but are nevertheless relevant

172 6 Semantic Skeleton Thesauri for Question Answering Bots

evaluation period, the number of misunderstood question was significantly exceeded
by the number of answers not known by the system. This situation was dramatically
reversed later: a number of misunderstood questions was monotonically decreasing
in spite of an increase in overall represented knowledge.

The use of SSK allowed increasing the percentage of correctly answered ques-
tions from 60 to 67 (Table 6.2): about 7% of questions are indirect and require to
apply a commonsense reasoning to link these questions to formalized answer
components. In 2% of cases vSHs were built but they derived multiple inconsistent
SHs because of a lack of a specific knowledge (which has been added later). As one
would expect, applying SSK technique, the decrease of cases with a lack of
understanding (6%) was higher than (twice as much as) the decrease of cases with
misunderstanding (3%). To estimate the results of matching procedure without a
SSK, the reader may hypothetically replace matching with a virtual SH by “no
match” and track the number of situations with the lack of proper handling where
SSKs are not in use.

6.6 Discussion and Conclusions

Application of the SSK technique to Q/A chatbots showed the following. There is a
superior performance over the knowledge systems based on the syntactic matching
of NL queries with the previously prepared NL representation of canonical queries,
and the knowledge systems based on fully formalized knowledge. Moreover, the
domain coverage of SSK is better than that of SH (Galitsky 2003) because a new
question can be reduced to existing pre-coded ones by means of commonsense
reasoning. SSK can potentially include richer syntactic information; extended syn-
tactic representation for n-gram analysis helps in a number of NLP tasks (Sidorov
2014). SSK are also helpful in an answer triggering feature, enabling a Q/A systems
to detect whether there exists at least one valid answer in the set of candidate
sentences for the question; and if yes, select one of the valid answer sentences
from the candidate sentence set (Acheampong et al. 2016). A reduced version of
SSK representation can be automatically learned from the web (Galitsky and
Kovalerchuk 2014). SSK can be an alternative to soft computing and computing
with words, which operate with uncertain NL statements to make them more exact
(Kovalerchuk and Smigaj 2015), in particular, for matching Qs and As. The pro-
posed approach can be extended beyond the consumer search towards a log search
(Galitsky and Botros 2012).

The SSK approach to knowledge representation for Q/A gives a higher precision
in answers than the SH and syntactic matching - based ones because it involves a
semantic information in higher degree. The SSK technique gives more complete
answers, possesses higher consistency to context deviation and is more efficient than
a fully formalized thesaurus-based approach such as (Galitsky et al. 2010) because
all information in answers does not have to be obtained via reasoning.

6.6 Discussion and Conclusions 173

The achieved accuracy of providing an advice in response to a NL question is
much higher than an alternative approach to advising in a vertical domain would
provide, including open-domain question answering, an expert system on its own, a
keyword search, statistical or syntactic pattern matcher (Galitsky et al. 2013a, b).
Indeed, SSK technique approaches the accuracy of a Q/A in a fully-formalized
domain, assuming the knowledge representation machinery obeys the features
outlined in the Introduction.

In this chapter we described the design of a single Q/A domain. To merge
multiple vertical domains to form a horizontal one, we suggest a multiagent question
answering approach, where each domain is represented by an agent which tries to
answer questions taking into account its specific knowledge. The meta–agent con-
trols the cooperation between question answering agents and chooses the most
relevant answer(s). Back in 2000s (Galitsky and Pampapathi 2005) we argued that
the multiagent question answering is optimal in terms of access to business and
financial knowledge, flexibility in query phrasing, and efficiency and usability of
advice. These days, multi-agent Q/A such as Amazon Alexa Skills is a widely
accepted chatbot architecture.

In recent years, Q/A based on deep learning from a vast set of Q/A pairs became
popular (Rajpurkar et al. 2016, Chen et al. 2017). However, complexity of questions
being evaluated is way below that one of a real user asking questions in the domains
of the current study. Factoid, Wikipedia-targeted questions usually have fewer
entities and simpler links between entities than the ones where SSK technique is
necessary. At the same time, neural network – based approach require a huge
training set of Q/A pairs which is rarely available in industrial, practical Q/A
domains.

References

Acheampong KN, Pan Z-H, Zhou E-Q, Li X-Y (2016) Answer triggering of factoid questions: a
cognitive approach. In: 13th International Computer Conference on Wavelet Active Media
Technology and Information Processing (ICCWAMTIP)

Baral C, Gelfond M, Scherl R (2004) Using answer set programming to answer complex queries. In:
Workshop on pragmatics of question answering at HLT-NAAC2004

Chen D, A Fisch, J Weston, A Bordes (2017) Reading Wikipedia to answer open-domain questions.
https://arxiv.org/abs/1704.00051

Galitsky B (2003) Natural language question answering system: technique of semantic headers.
Advance Knowledge International, Australia

Galitsky B (2004) Use of default reasoning for disambiguation under question answering. In:
FLAIRS conference, pp 496–501

Galitsky B (2005) Disambiguation via default reasoning for answering complex questions. Intl J AI
Tools N1-2:157–175

Galitsky B, Botros S (2012) Searching for associated events in log data. US Patent 8,306,967
Galitsky B, Kovalerchuk B (2014) Clusters, orders, and trees: methods and applications, pp

341–376
Galitsky B, Pampapathi R (2005) Can many agents answer questions better than one? First Monday

10(1). http://firstmonday.org/issues/issue10_1/galitsky/index.html

174 6 Semantic Skeleton Thesauri for Question Answering Bots

https://arxiv.org/abs/1704.00051
http://firstmonday.org/issues/issue10_1/galitsky/index.html

Galitsky B, Dobrocsi G, De La Rosa JL, Kuznetsov SO (2010) From generalization of syntactic
parse trees to conceptual graphs. In: International conference on conceptual structures, pp
185–190

Galitsky B, Ilvovsky D, Strok F, Kuznetsov SO (2013a) Improving text retrieval efficiency with
pattern structures on parse thickets. In: Proceedings of FCAIR@IJCAI, pp 6–21

Galitsky B, Kuznetsov SO, Usikov D (2013b) Parse thicket representation for multi-sentence
search. In: International conference on conceptual structures, pp 153–172

Galitsky B, Ilvovsky D, Kuznetsov SO, Strok F (2014) Finding maximal common sub-parse
thickets for multi-sentence search. In: Graph structures for knowledge representation and
reasoning, IJCAI workshop, pp 39–57

Kovalerchuk B, Smigaj A (2015) Computing with words beyond quantitative words: incongruity
modeling. In: 2015 annual conference of the north American fuzzy information processing
society (NAFIPS). Redmond, WA

Maybury MT (2000) Adaptive multimedia information access – ask questions, get answers. In: First
international conference on adaptive hypertext AH 00, Trento, Italy

Moldovan D, Pasca M, Harabagiu S, Surdeanu M (2002) Performance issues and error analysis in
an open-domain question answering system. In: ACL-2002

Ng HT, Lai Pheng Kwan J, Xia Y (2001) Question answering using a large text database: a machine
learning approach. In: Proceedings of the 2001 conference on empirical methods in natural
language processing. EMNLP 2001, Pittsburgh

Pasca M (2003) Open-domain question answering from large text collections. CSLI Publication
series

Popescu A-M, Etzioni O, Kautz H (2003) Towards a theory of natural language interfaces to
databases. Intelligent user interface

Rajpurkar P, Zhang J, Lopyrev K, Liang P (2016) Squad: 100,000þ questions for machine
comprehension of text. https://arxiv.org/abs/1606.05250

Rus V, Moldovan D (2002) High precision logic form transformation. Int J AI Tools 11(3):437–454
Sidorov G (2014) Should syntactic N-grams contain names of syntactic relations? Int J Comput

Linguist Appl 5(1):139–158
Winograd T (1972) Understanding natural language. Academic, New York

References 175

https://arxiv.org/abs/1606.05250

Chapter 7
Learning Discourse-Level Structures
for Question Answering

Abstract Traditional parse trees are combined together and enriched with anaphora
and rhetoric information to form a unified representation for a paragraph of text. We
refer to these representations as parse thickets. They are introduced to support
answering complex questions, which include multiple sentences, to tackle as many
constraints expressed in this question as possible. The question answering system is
designed so that an initial set of answers, which is obtained by a TF*IDF or other
keyword search model, is re-ranked. Passage re-ranking is performed using
matching of the parse thickets of answers with the parse thicket of the question.
To do that, a graph representation and matching technique for parse structures for
paragraphs of text have been developed. We define the operation of generalization of
two parse thickets as a measure of semantic similarity between paragraphs of text to
be the maximal common sub-thicket of these parse thickets.

Passage re-ranking improvement via parse thickets is evaluated in a variety of
chatbot question-answering domains with long questions. Using parse thickets
improves search accuracy compared with the bag-of words, the pairwise matching
of parse trees for sentences, and the tree kernel approaches. As a baseline, we use a
web search engine API, which provides much more accurate search results than the
majority of search benchmarks, such as TREC. A comparative analysis of the impact
of various sources of discourse information on the search accuracy is conducted. An
open source plug-in for SOLR is developed so that the proposed technology can be
easily integrated with industrial search engines.

7.1 Introduction

Whereas a search engine operates at the level of phrases and sentences, a chatbot is
designed to handle text at the discourse level, to navigate a user through content
being delivered. A significant corpus of studies is devoted to learning sentence-level
linguistic structures starting from word statistics; however, chatbot engineering
requires a higher-level, logical, domain- and language-independent learning of
organization of text.

© Springer Nature Switzerland AG 2019
B. Galitsky, Developing Enterprise Chatbots,
https://doi.org/10.1007/978-3-030-04299-8_7

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04299-8_7&domain=pdf

According to Noam Chomsky, “the fundamental aim in the linguistic analysis of
a language is to separate the grammatical sequences which are the sentences of a
language, from the ungrammatical sequences, which are not sentences of this
language, and to study the structure of the grammatical sequences.” Parse trees
have become a standard form for representing these grammatical sequences, to
represent their syntactic structures (Seo and Simmons 1989). Such representation
is essential for structured comparisons of sentences; it also enriches the feature set of
learning. However, there is no generally accepted structure at the level of a text
paragraph that would play a similar role. Such a paragraph-level model needs to
involve a set of parse trees for each sentence of the paragraph and the paragraph-
level discourse information. We refer to the sequence of parse trees plus a number of
arcs for inter-sentence relations of the discourse type between the nodes for words as
a parse thicket. It is a graph that includes parse trees for each sentence, as well as
additional arcs for inter-sentence discourse relationships. In our earlier studies,
development of the parse thickets representation was stimulated by the task of
comparing two paragraphs of text in a way that is invariant to how the information
is divided among sentences. In this study, we explore how parse thickets of questions
and answers can be matched.

It is hard for web search engines to handle fairly long queries consisting of
multiple sentences because it is unclear which keywords are more important and
which are less important. In most cases, being fed with multi-sentence queries, web
search engines such as Google and Bing deliver either very similar, almost duplicate
documents or search results very dissimilar to the query, leaving almost all keywords
unmatched. This happens because it is difficult to learn user clicks–based ranking in
a higher-dimensional case for more than ten keywords (the number of longer queries
is fairly high). Hence, modern search engines require a technique that orders
potential answers based on minimization of their structural distance from the ques-
tion. This can be performed by applying graph-based representations of both ques-
tion and answer so that one can match not only parse trees with questions and
answers but also their entire discourse.

The demand for access to different types of information via a chatbot has led to a
renewed interest in answering questions posed in ordinary human language and
seeking exact, specific and complete answers. After having made substantial
achievements in fact-finding and list questions, the NLP community turned their
attention to more complex information needs that cannot be answered by simply
extracting named entities (persons, organization, locations, dates, etc.) from single
sentences in documents (Chali et al. 2009). Unlike simple fact-finding queries,
complex questions include multiple sentences; therefore, their keywords should
not be matched all together to produce a meaningful answer: the query representa-
tion must take its discourse information into account.

Most web search engines first attempt to find the occurrence of query keywords in
a single sentence, and when that is not possible or has a low TF*IDF score, a set of
keywords may be accepted spreading through more than one sentence (Kim et al.
2008). The indices of these search engines have no means to keep information on
whether found occurrences of the query keywords in multiple sentences are related

178 7 Learning Discourse-Level Structures for Question Answering

to one another, to the same entity, and, being in different sentences, are all related to
the query term. Once a linguistic representation goes beyond a bag-of-words, the
necessity arises for a systematic way to compare such representations, which go
beyond sentence boundaries for questions and answers. However, there is a lack of
formal models for comparing linguistic structures. In this chapter we propose a
mechanism for building a required search index that contains discourse-level con-
straints to improve search relevance.

Answering complex questions with keywords distributed through distinct
sentences of a candidate answer is a sophisticated problem requiring deep linguistic
analysis (Galitsky 2017a). If the question keywords occur in different sentences of
an answer in a linguistically connected manner, this answer is most likely relevant.
This is usually true when all of these keywords occur in the same sentence; then, they
should be connected syntactically. For the inter-sentence connections, these key-
words need to be connected via anaphora, refer to the same entity or sub-entity, or be
linked by rhetorical discourse.

If question keywords occur in different sentences, there should be linguistic cues
for some sort of connection between these occurrences. If there is no connection
between the question keywords in an answer, then different constraints for an object
expressed by a question may be applied to different objects in the answer text, and
this answer is therefore irrelevant to this question.

The main classes of discourse connections between sentences are as follows:

• Anaphora. If two areas of keyword occurrences are connected with an anaphoric
relation, the answer is most likely relevant.

• Communicative actions. If a text contains a dialogue, and some question key-
words are in a request and others are in the reply to this request, then then these
keywords are connected and the answer is relevant. To identify such situations,
one needs to find a pair of communicative actions and to confirm that this pair is
of request-reply type.

• Rhetorical relations. These indicate the coherence structure of a text (Mann and
Thompson 1988). Rhetorical relations for text can be represented by a discourse
tree (DT), which is a labeled tree in which the leaves of the tree correspond to
contiguous units for clauses (elementary discourse units, EDUs). Adjacent EDUs,
as well as higher-level (larger) discourse units, are organized in a hierarchy by
rhetorical relation (e.g., background, attribution). An anti-symmetric relation
involves a pair of EDUs: nuclei, which are core parts of the relation, and satellites,
which are the supportive parts of the rhetorical relation.

The most important class of discourse connection between sentences that we
focus on in this study is rhetorical. Once an answer text is split into EDUs and
rhetorical relations are established between them, it is possible to establish rules for
whether query keywords occurring in the text are connected by rhetorical relations
(and therefore this answer is likely relevant) or not connected (and this answer is
most likely irrelevant). Hence, we use the DT so that certain sets of nodes in the DT
correspond to questions where this text is a valid answer and certain sets of nodes
correspond to an invalid answer.

7.1 Introduction 179

In our earlier studies (Galitsky et al. 2010, 2012) and Chap. 5 we applied graph
learning to parse trees at the levels of sentences; here we proceed to the structured
graph-based match of parse thickets. Whereas for text classification problems
learning is natural (Wu et al. 2011), it is not obvious how one can learn by answering
a given question, given a training set of valid and invalid question-answer pairs. It
would only be possible either in a very narrow domain or by enforcing a particular
commonality in the question-answer structure, which has a very limited value. The
aim of this chapter is to support the domain-independent answering of complex
questions where keyword statistics possibilities are very restricted.

We have defined the least general generalization of parse trees (we call it syntactic
generalization), and in this study, we extend it to parse thickets. We have applied
generalizations of parse trees in search scenarios where a query is based on a single
sentence and candidate answers come from single sentences (Galitsky et al. 2012)
and multiple sentences (Galitsky et al. 2013). In these cases, to re-rank answers, we
needed pair-wise sentence-sentence generalization and sentence-paragraph general-
izations. In this chapter we rely on parse thickets to perform a paragraph-level
generalization, where both questions and answers are paragraphs of text. Whereas
a high number of studies applied machine learning techniques, such as convolution
kernels (Haussler 1999; Moschitti 2006) and syntactic parse trees (Collins and Duffy
2002), learning paragraph-level representation is an area to be explored.

This chapter is organized as follows. We demonstrate the necessity for using
discourse-level analysis to answer complex questions. We then introduce a general-
ization of parse thickets for question and answer as an operation that performs a
relevance assessment. Generalization operation occurs at the level of words, phrases,
rhetorical relations, communicative actions, sentences, and paragraphs. Tree kernels
for parse thickets are defined so that we can compare them to direct graph matching.
We then proceed to a simpler case where a query is a list of keywords and an answer
is a parse thicket and demonstrate that a rule-based approach based on the discourse
tree can handle the relevance. The chapter is concluded by the evaluation of search
improvements by the incremental addition of the sources of discourse information.

7.2 Parse Thickets and Their Graph Representation

In this section we define parse thickets, and in Sect. 7.3 – their generalization
operator. We intend to express similarity between texts via a commonality structure
between respective parse thickets. This is done for questions and answers with the
goal of re-ranking search results for Q/A. Additionally, this similarity measure can
be used for text classification and clustering when one cannot rely on keyword
statistics only, and discourse-level information needs to be leveraged by learning
(Galitsky 2017b).

180 7 Learning Discourse-Level Structures for Question Answering

7.2.1 Extending Phrases to Span Across Sentences

Once we have a sequence of parse trees for a question, and those for an answer, how
can we match these sequences against each other? A number of studies have
computed pair-wise similarity between parse trees (Collins and Duffy 2002;
Punyakanok et al. 2005). However, to rely upon the discourse structure of para-
graphs and to avoid dependence on how content is distributed through sentences, we
represent whole paragraphs of questions and answers as a single graph, a parse
thicket. To determine how good an answer for a question is, we match their
respective parse thickets and assign a score to the size of the maximal common
sub-parse thickets (the set of common sub-graphs). Computationally, this will be
implemented by finding sets of maximal common sub-phrases by means of their
alignment.

We extend the syntactic relations between the nodes of the syntactic dependency
parse trees (Sidorov et al. 2012) towards more general text discourse relations. Once
we have such relations as “entity-entity”, anaphora and rhetorical, we can extend the
notion of linguistic phrase across sentences to be matched between questions and
answers. In the case of single sentences, we match nouns, verbs, and other types of
phrases in questions and answers. In the case of multiple sentences in each, we
extend the phrases beyond sentence boundaries. As a result, relations between the
nodes of parse trees (which are other than syntactic) can merge phrases from
different sentences or from a single sentence that are not syntactically connected.
This is intended to significantly increase search recall: once these extended phrases
are formed, they can be matched against question to deliver additional answers. We
will refer to such extended phrases as thicket phrases.

We will consider two cases for text indexing, where establishing proper
coreferences inside and between sentences connects entities in an index for proper
match with a question:

A1: . . . Tuberculosis is usually a lung disease. It is cured by physicians
specializing in pulmonology.

A2: . . . Tuberculosis is a lung disease. . . Pulmonology specialist Jones was
awarded a prize for curing a special form of this disease.

Q: Which specialist physicians cure my tuberculosis?

In the first case, establishing the coreference link Tuberculosis ! disease ! ‘is
cured by physicians pulmonologists’ helps to match these entities with the ones from
the question. In the second case, this portion of text does not serve as a relevant
answer to the question, although it includes keywords from this question. Hence the
keywords should be chained to form a phrase (which we call extended) not just by
their occurrence in individual sentences, but additionally on the basis of
coreferences. If the words X and Y are connected by a coreference relation, a search

7.2 Parse Thickets and Their Graph Representation 181

index needs to include the chain of words X0, X1. . .X, Y0, Y1. . . Y, where chains X0,
X1. . .X and Y0, Y1. . . Y are already indexed (phrases including X and Y). Hence
establishing coreferences is important to extend index in a way to improve search
recall. Usually, keywords from different sentences in answers can only be matched
with query keywords with a low score (high score is delivered by inter-sentence
match). A1 is a correct answer for Q and A2 is not.

If we have two parse trees P1 and P2 of text T1, and an arc for a relation r:
P1i ! P2j between the nodes P1i and P2j, we can now match an extended phrase . . .,
P1i � 2, P1i � 1, P1i, P2j, P2j + 1, P2j + 2, . . .of T1 against a phrase of a single sentence
or a merged phrases of multiple sentences from T2.

To visualize building extended phrases, we use what we call an H-chart for a
jump rule (Fig. 7.1). If there are two sentences (vertical bars) connected with an
inter-sentence discourse arc (horizontal), two extended phrases are yielded:

• The first phrase starts in Sentence 1, then jumps along the discourse arc and
continues down in Sentence 2.

• The second phrase starts in Sentence 2, then jumps left along the discourse arc
and continues down in Sentence 1.

Extended trees, to be introduced in Sect. 7.3 to define parse thickets kernels, are
derived similarly to thicket phrases.

7.2.2 Computing Structural Distance Between a Question
and an Answer

To rank the search results or answers according to the relevance to a question, one
needs to have a measure of similarity between questions and answers. Once a
candidate set of answers is obtained by a keyword search (using, for example, the
TF*IDF model), we calculate the similarity between the question and each of its
candidate answers and rank the latter set in the order of similarity decrease. This

Sentence 1 Sentence 2

Extended
phrase 2

Extended
phrase 1

Fig. 7.1 H-chart to
visualize the construction of
thicket phrases

182 7 Learning Discourse-Level Structures for Question Answering

procedure is referred to as passage re-ranking. We compare the following
approaches to assessing the similarity of text paragraphs:

• Baseline: bag-of-words approach, which computes the set of common keywords/
n-grams and their frequencies;

• Syntactic generalization of parse thickets at a paragraph level, where parse
thickets are built for a pair of paragraphs and generalized.

The first approach is the most typical for industrial NLP applications today. Addi-
tionally, the pair-wise approach of sentence generalization has been explored in our
previous study (Galitsky et al. 2012). Under pair-wise sentence matching, we apply
syntactic generalization to each pair of sentences and sum up the resultant common-
alities. By contrast, in this chapter we treat each paragraph as a whole, performing a
similarity assessment. Kernel-based approaches to parse tree similarities (Moschitti
2006; Zhang et al. 2008), as well as tree sequence kernels (Sun et al. 2011), which
are tuned to parse trees of individual sentences, also belong to the sentence-level
family of methods.

We intend to demonstrate the richness of representation by parse thickets and the
robustness of syntactic generalization operation on them for search relevance. Our
first example is a web search query and its answers selected from the first page of a
Google search, Fig. 7.2. Although both answers A1 and A2 share very similar
keywords, we show that using discourse information helps to differentiate them,
relying on parse thicket representation and syntactic generalization operation with
query Q.

Q: I am buying a foreclosed house. A bank offered me to waive inspection;
however I am afraid I will not identify some problems in this property
unless I call a specialist.

A1: My wife and I are buying a foreclosure from a bank. In return for
accepting a lower offer, they want me to waive the inspection. I prefer to
let the bank know that I would not waive the inspection . . . Instead I would
agree that I would pay the costs involved for a proper and thorough home
inspection. . .

A2: I am a foreclosure specialist in a bank which is subject to an inspection.
FTC offered us to waive inspection if we can identify our potential prob-
lems with customers we lent money to buy their properties.

The reader can see that A2 is totally irrelevant, while A1 is relevant.
We selected the first Google search result (Fig. 7.2) for the correct answer and

composed a totally irrelevant answer with the same keywords to demonstrate the
role of discourse analysis. Notice that the second to fourth answers are incorrect as
well; we did not use them in our example since their keywords are significantly
different to A1.

7.2 Parse Thickets and Their Graph Representation 183

We will now show how the operation of syntactic generalization helps us to
accept the valid answer and reject the invalid one, in spite of the fact that both
answers share the same keywords. Througout the book, the operator ‘^’ in the
following example and in all the chapters denotes generalization operation. Describ-
ing parse trees, we use standard notation for constituency trees: [. . .] represents a
phrase, NN, JJ, NP etc. denote parts-of-speech and types of phrases, ‘*’ will be is a
placeholder for a word, part of speech, or an arbitrary graph node.

The list of common keywords gives us a hint that both documents are about a
relationship between the same entities, a house, a buyer and a bank in connection to
a foreclosure and an inspection. However one can see that the relations between
these entities in A1 and A2 are totally different. It is also obvious that something
beyond the keyword statistics and n-gram analysis needs to be done to figure out the
correspondence of the structure of these relations between A1 and Q, and A2 and Q.

Fig. 7.2 Google search results for the question

184 7 Learning Discourse-Level Structures for Question Answering

Buy, foreclosure, house, bank, wave, inspection, . . .

One can see that the key for the right answer here is rhetorical relation of contrast:
bank wants the inspection waved but the buyer does not. Parse thicket generalization
gives the detailed similarity picture which looks more complete than both the bag-of-
words approach and the pair-wise sentence generalization would give us. The
similarity between Q and A1 is expressed as a parse thicket expressed here as a list
of phrases.

[[NP [DT-a NN-bank], NP [NNS-problems], NP [NN*-property], NP
[PRP-i]], VP [VB-* TO-to NN-inspection], VP [NN-bank VB-offered
PRP-* TO-to VB-waive NN-inspection], VP [VB-* VB-identify
NNS-problems IN-* NN*-property], VP [VB-* {phrStr¼[], roles¼[A, *,
], phrDescr¼[]} DT-a NN-]]]

And similarity with the invalid answer A2 is expressed as a parse thicket formed as a
list of phrases

[[NP [DT-a NN-bank], NP [PRP-i]], [VP [VB-* VB-buying DT-a], VP [VB-*
PRP-me TO-to VB-waive NN-inspection], VP [VB-* {phrStr¼[], roles¼[],
phrDescr¼[]} PRP-i MD-* RB-not VB-* DT-* NN*-*],

The important phrases of the Q ^ A1 similarity are

VP [NN-bank VB-offered PRP-* TO-to VB-waive NN-inspection], VP [VB-*
VB-identify NNS-problems IN-* NN*-property],

that can be interpreted as a key topic of both Q and A1: bank and not another entity
should offer to waive inspection. This is what differentiates A1 from A2 (where these
phrases are absent). Although bank and problems do not occur in the same sentences
in Q and A1, they were linked by anaphora and rhetorical relations. Without any kind
of discourse analysis, it would be hard to verify whether the phrases containing bank
and problems are related to each other. Notice that in A2, problems are associated
with customers, not banks, and different rhetorical relations from the set of ones
common betweenQ and A1 help us figure that out. Notice the semantic role attributes
for verbs such as VB-* {phrStr¼[], roles¼[A, *, *], phrDescr¼[]} in generalization
result.

Parse thickets for Q, A1 and A2 are shown in Figs. 7.3, 7.4 and 7.5 respectively.
Stanford NLP visualization software is used for syntactic information and discourse
links are manually drawn. Notice the similarity in discourse structure of Q, A1 and
not in A2: the rhetorical relation of contrast arc. Also, there is a link for a pair of
communicative actions for Q, A1 (it is absent in A2): afraid-call and accept-want.

7.2 Parse Thickets and Their Graph Representation 185

Fig. 7.3 Parse thicket for question Q

Fig. 7.4 Parse thicket for the valid answer A1

Fig. 7.5 Parse thicket for the invalid answer A2

186 7 Learning Discourse-Level Structures for Question Answering

7.3 Dimensions of Sentence-Level Generalization

A baseline way to measure similarity of texts is to count their common words. There
are some technical tricks to make this measure more robust, removing stop words,
taking into account frequencies in a document and in a corpus. Instead of using the
bag-of-words approach as is traditionally performed in text learning, we search for a
set of common maximum sub-trees of parse trees to express a structural similarity. In
our previous studies (Galitsky et al. 2012; Galitsky 2012), we suggested a frame-
work for the structural learning of a parse tree, and here, we briefly describe it.

Let us represent a meaning of two NL expressions by using logic formulas and
then construct the generalization (^) of these formulas:

camera with digital zoom and camera with zoom for beginners

To express the meanings, we use the predicates camera(name_of_feature,
type_of_users) and zoom(type_of_zoom). The above NL expressions will be
represented as follows: camera(zoom(digital), AnyUser) ^
camera(zoom(AnyZoom), beginner), where the variables are capitalized. The gener-
alization is camera(zoom(AnyZoom), AnyUser). At the syntactic level, we have the
generalization of two noun phrases as follows: {NN-camera, PRP-with, NN-zoom]}.

The generalization operation occurs on the levels of Text/Paragraph/Sentence/
Phrases (noun, verb and others)/Individual word. At each level, except for the
lowest level (individual words), the result of the generalization of two expressions
is a set of expressions. In such a set, expressions for which less-general expressions
exist are eliminated. The generalization of two sets of expressions is a set of the sets
that are the results of the pair-wise generalization of the expressions in the original
two sets. The similarity between two sentences is expressed as a maximum common
subtree between their respective parse trees. The algorithm that we present in this
chapter concerns paths of syntactic trees rather than sub-trees because these paths are
tightly connected with language phrases.

Below we outline the algorithm on finding a maximal sub-phrase for a pair of
phrases, applied to the sets of thicket phrases for T1 and T2.

1. Split parse trees for sentences into sub-trees which are phrases for each type: verb,
noun, prepositional and others; these sub-trees are overlapping. The sub-trees are
encoded so that information about their occurrence in the full tree is retained;

2. All sub-trees are grouped by the phrase types;
3. Extending the list of phrases by adding equivalence transformations;
4. Generalize each pair of sub-trees for both sentences for each phrase type;
5. For each pair of sub-trees yield an alignment, and then generalize each node for

this alignment. For the obtained set of trees (generalization results), calculate the
score;

7.3 Dimensions of Sentence-Level Generalization 187

6. For each pair of sub-trees for phrases, select the set of generalizations with
highest score (least general);

7. Form the sets of generalizations for each phrase type whose elements are sets of
generalizations for this type;

8. Filtering the list of generalization results: for the list of generalization for each
phrase type, exclude more general elements from the lists of generalizations for
the given pair of phrases.

We conclude this section with enumeration of which sources are taken into account
generalizing texts (Fig. 7.6).

7.4 Generalization of Parse Thickets

In Sect. 7.2 we defined and showed how to construct parse thickets. We also
introduced the generalization of individual parse trees. Based on this, in this section
we introduce the generalization of parse thickets, which in turn involves generali-
zation of individual parse trees on the one hand and the generalization of discourse
structures on the other hand.

We will define a generalization operator on parse thickets which is intended to
find commonality between parse thickets for questions and answers, re-ranking
search results for question answering. Additionally, this similarity measure can be
used for text classification and clustering when one cannot rely on keyword statistics
only, and discourse-level information needs to be leveraged by learning (Galitsky
and Lebedeva 2015).

Phrases

Same entity / sub-entity / synonym relation

Types of noun entities

Semantic role patterns

Parts-of-speech

Sentiments

Anaphora

Rhetorical relation

Communicative
action relation

Fig. 7.6 Dimensions of matching parse thickets

188 7 Learning Discourse-Level Structures for Question Answering

7.4.1 A High-Level View

We will consider a second example of two texts, derive a parse thicket for each of
them, and then generalize them by finding a set of maximum common sub-parse
thickets (Fig. 7.7).

There are two parse thickets. One is on the top for text (T1) “Iran refuses to accept
the UN proposal to end the dispute over work on nuclear weapons. UN nuclear
watchdog passes a resolution condemning Iran for developing a second uranium
enrichment site in secret. A recent IAEA report presented diagrams that
suggested Iran was secretly working on nuclear weapons. Iran envoy says its
nuclear development is for peaceful purpose, and the material evidence against it
has been fabricated by the US”,

Another one is on the bottom for text (T2)

“UN passes a resolution condemning the work of Iran on nuclear weapons, in spite
of Iran claims that its nuclear research is for peaceful purpose. Envoy of Iran to
IAEA proceeds with the dispute over its nuclear program and develops an
enrichment site in secret. Iran confirms that the evidence of its nuclear weapons
program is fabricated by the US and proceeds with the second uranium enrich-
ment site”.

In Fig. 7.7, parse trees are shown as labeled straight edges, and discourse relations
are shown as arcs. Oval labels in straight edges denote the syntactic relations.
Lemmas are written in the boxes for the nodes, and lemma forms are written on
the right side of the nodes. The text that is represented by two parse thickets is
positioned in the left column.

There are four syntactic trees for the parse thicket on the top and three syntactic
trees for the parse thicket on the bottom. These trees are connected with arcs for
discourse relations. Discourse relations are denoted with curly arcs between the
nodes for lemmas. Their labels are shown without boxes. The solid arcs are for same
entity/sub-entity/anaphora relations, and the dotted arcs are for rhetorical relations
and communicative actions. Notice the chains of communicative actions, which
form a skeleton of the discourse: refuses – accept – proposal – dispute – condemn –
suggest – say. To form a complete formal representation of a paragraph, we attempt
to express as many links as possible: each of the discourse arcs produces a pair of
thicket phrases that can be a potential match. Notice that discourse relations give us a
substantially higher number of potential matches by crossing sentence boundaries.

The results of the generalization of the top and bottom parse thickets are three
sub-parse thickets of T1 and T2. Three clouds in T1 are connected with three clouds in
T2 by the arcs on the left. Notice that the members of the set of maximal common
sub-parse thickets cover distant parts of the same sub-tree (but the information is not
expanded beyond a single parse tree in this example).

7.4 Generalization of Parse Thickets 189

Fig. 7.7 Two complete parse thickets and their generalization shown as connected clouds

190 7 Learning Discourse-Level Structures for Question Answering

It is worth mentioning that RST (Mann et al. 1992) provides some limited
coverage for the discourse features of speech acts. However, we subject speech
acts to special treatment; we represent them by communicative actions within the
Speech Act theory (Searle 1969). We use our own model for extracting communi-
cative actions (Galitsky et al. 2013) and some rhetorical relations. We augment it
with the paragraph-level rhetorical parser of (Joty and Moachitti 2014).

7.4.2 Generalization for RST Arcs

If there is an RST relation within a sentence or between sentences, the thicket
phrases are formed by merging elementary discourse units, which are the arguments
of this relation. We form thicket phrases for both mononuclear and multi-nuclear
relations. When we generalize two parse thickets with the same RST relations, their
elementary discourse units are generalized in a pair-wise manner.

Only RST arcs of the same type of relation (presentation relation, such as
antithesis, subject matter relation, such as condition, and multinuclear relation,
such as list) can be generalized. We use N for a nucleus or situations presented by
this nucleus, and S for satellite or situations presented by this satellite,W for a writer,
and R, for a reader (hearer). Situations are propositions, completed actions or actions
in progress, and communicative actions and states (including beliefs, desires,
approve, explain, reconcile and others).

Generalization of two RST relations with the above parameters is expressed as

rst1(N1, S1, W1, R1) ^ rst2 (N2, S2, W2, R2)¼ (rst1^ rst2)(N1^N2, S1^S2, W1^W2, R1^
R2).

The texts in N1, S1, W1, R1 are subject to generalization as phrases.
The rules for rst1^ rst2 are as follows:

• If relation_type(rst1)! ¼ relation_type(rst2) then generalization is empty.
• Otherwise, we generalize the signatures of rhetorical relations as sentences (from

Mann and Taboada 2015):

sentence(N1, S1, W1, R1) ^ sentence (N2, S2, W2, R2).

For example, the meaning of rst-background ^ rst-enablement ¼ (S increases the
ability of R to comprehend an element in N) ^ (R comprehending S increases the
ability of R to perform the action in N)¼ increase-VB the-DT ability-NN of-IN R-NN
to-IN.

Two connected clouds in Fig. 7.7 show the generalization instance based on the
RST relation “RST-evidence”. This relation occurs between the phrases

evidence-for-what [Iran’s nuclear weapon program] and what-happens-with-evi-
dence [Fabricated by USA] on the right-bottom, and

7.4 Generalization of Parse Thickets 191

evidence-for-what [against Iran’s nuclear development] and what-happens-with-
evidence [Fabricated by the USA] on the right-top.

Notice that in the latter case, we need to merge (perform anaphora substitution)
the phrase ‘its nuclear development’ with ‘evidence against it’ to obtain ‘evidence
against its nuclear development’. Notice the arc it – development, according to
which this anaphora substitution occurred. Evidence is removed from the phrase
because it is the indicator of the RST relation, and we form the subject of this relation
to match. Furthermore, we need another anaphora substitution its- Iran to obtain the
final phrase.

As a result of generalizations of two RST relations of the same sort (evidence) we
obtain.

Iran nuclear NNP – RST-evidence – fabricate by USA.

Also notice that we could not obtain this similarity expression using sentence-level
generalization.

7.4.3 Generalization for Communicative Action Arcs

Communicative actions are used by text authors to indicate a structure of a dialogue
or a conflict (Searle 1969). The main observation concerning communicative actions
in relation to finding text similarity is that their subjects need to be generalized in the
context of these actions and that they should not be generalized with other “physical”
actions. Hence, we generalize the individual occurrences of communicative actions
together with their subjects, as well as their pairs, as discourse “steps”. Generaliza-
tion of communicative actions can also be thought of from the standpoint of
matching the verb frames, such as VerbNet (Palmer 2009). The communicative
links reflect the discourse structure associated with participation (or mentioning) of
more than a single agent in the text. The links form a sequence connecting the words
for communicative actions (either verbs or multi-words implicitly indicating a
communicative intent of a person). We refer to the communicative actions compo-
nent, which was modeled following the Speech Act Theory (Searle 1969), as
SpActT.

For a communicative action, we distinguish an actor, one or more agents being
acted upon, and the phrase describing the features of this action. We define com-
municative action as a function of the form.

verb (agent, subject, cause), where

– verb characterizes some type of interaction between involved agents (e.g.,
explain, confirm, remind, disagree, deny),

– subject refers to the information transmitted or object described, and
– cause refers to the motivation or explanation for the subject.

192 7 Learning Discourse-Level Structures for Question Answering

A scenario expressed by a text (labeled directed graph) is a sub-graph of a parse
thicket G ¼ (V, A), where

V ¼ {action1, action2,. . .,actionk} is a finite set of vertices corresponding to com-
municative actions, and

A is a finite set of labelled arcs (ordered pairs of vertices), classified as follows:

• Each arc (actioni; actionj) 2 Asequence corresponds to a temporal precedence of
two actions (vi, agi, si, ci) and (vj, agj, sj, cj) referring to the same subject (that
is, si ¼ sj) or different subjects;

• Each arc (actioni, actionj) 2 Acause corresponds to an attack relationship
between actioni and actioni indicating that the cause of actioni is in conflict
with the subject or cause of actionj.

Subgraphs SpActT of parse thickets associated with scenarios of interaction between
agents have some distinguishing features (Galitsky et al. 2009):

1. all vertices are ordered in time, so that there is one incoming arc and one outgoing
arc for all vertices (except the initial and terminal vertices);

2. for Asequence arcs, at most one incoming and only one outgoing arc are admissible;
3. for Acause arcs, there can be many outgoing arcs from a given vertex, as well as

many incoming arcs. The vertices involved may be associated with different
agents or with the same agent (i.e., when he contradicts himself). To compute
similarities between the parse thickets and their communicative action – induced
subgraphs (the sub-graphs of the same configuration with similar labels of arcs
and strict correspondence of vertices) need to be analyzed (Galitsky and
Kuznetsov 2008).

Hence analyzing the communicative actions’ arcs of a parse thicket, one can find
implicit similarities between texts. We can generalize:

1. one communicative actions with its subject from T1 against another communica-
tive action with its subject from T2 (communicative action arc is not used);

2. a pair of communicative actions with their subjects from T1 against another pair
of communicative actions from T2 (communicative action arcs are used).

In our example, we have the same communicative actions with subjects with low
similarity:

condemn [‘Iran for developing second enrichment site in secret’] vs condemn [‘the
work of Iran on nuclear weapon’], or different communicative actions with
similar subjects.

In Fig. 7.7 one can observe two connected clouds: the two distinct communicative
actions dispute and condemn have rather similar subjects: ‘work on nuclear
weapon’. Generalizing two communicative actions with their subjects follows the
rule: generalize communicative actions themselves, and ‘attach’ the result to gener-
alization of their subjects as regular sub-tree generalization. Two communicative
actions can always be generalized, which is not the case for their subjects: if

7.4 Generalization of Parse Thickets 193

their generalization result is empty, the generalization result of communicative
actions with these subjects is empty too. The generalization result here for the case
1 above is:

condemn^dispute [work-Iran-on-nuclear-weapon].

Generalizing two different communicative actions is based on their attributes and
is presented elsewhere (Galitsky et al. 2013).

which results in

condemn^proceed [enrichment site] <leads to> suggest^condemn [work Iran
nuclear weapon]

Notice that generalization

gives zero result because the arguments of condemn from T1 and T2 are not very
similar. Hence we generalize the subjects of communicative actions first before we
generalize communicative actions themselves.

To handle meaning of words expressing the subjects of CAs, we apply word to
vector models. To compute generalization between the subjects of communicative
actions, we use the following rule:

• if subject1¼subject2, subject1^subject2¼<subject1, POS(subject1), 1>. Here sub-
ject remains and score is 1.

• Otherwise, if they have the same part-of-speech (POS),

subject1^subject2¼<*, POS(subject1), word2vecDistance(subject1^subject2)>. ‘*’
denotes that lemma is a placeholder, and the score is a word2vec distance between
these words.

If POS is different, generalization is an empty tuple. It cannot be further
generalized.

As the reader can observe generalization results can be further generalized with
other subjects of communicative actions and with their generalizations.

194 7 Learning Discourse-Level Structures for Question Answering

7.4.4 Kernel Learning for Parse Thickets

In this section, we describe an alternative pathway for employing discourse-level
information for search. Instead of comparing the parse thickets of a question and the
parse thicket of an answer directly, we can try to convert discourse features into a
form for statistical machine learning and use it to rank answers. The framework
developed in this section will be assessed in Evaluation Sect. 7.4, along with parse
thicket-based support of relevance.

We measure the similarity between the question-answer pairs for question
answering instead of the question-answer similarity (Galitsky 2017b). The classifier
for correct vs incorrect answers processes two pairs at a time, <q1,a1> and <q2,a2>,
and compares q1with q2 and a1with a2, producing a combined similarity score. Such
a comparison allows it to determine whether an unknown question/answer pair
contains a correct answer or not by assessing its distance from another question/
answer pair with a known label. In particular, an unlabeled pair <q2,a2> will be
processed so that rather than “guessing” correctness based on words or structures
shared by q2 and a2, both q2 and a2 will be compared with their corresponding
components q1 and a1 of the labeled pair <q2, a2> on the grounds of such words or
structures. Because this approach targets a domain-independent classification of an
answer, only the structural cohesiveness between a question and answer is leveraged,
not ‘meanings’ of answers.

We take this idea further and consider an arbitrary sequence of sentences instead
of question-sentence and answer-sentence pairs for text classification. Our positive
training paragraphs are “plausible” sequences of sentences for our class, and our
negative training paragraphs are “implausible” sequences, irrespective of the
domain-specific keywords in these sentences. In our opinion, for candidate answer
selection tasks, such structural information is important but insufficient. At the same
time, for the text classification tasks just structure analysis can suffice for proper
classification.

We now proceed to define a kernel method for individual sentences and then
explain how it is extended to the case of parse thickets. Kernel methods are a large
class of learning algorithms based on inner product vector spaces, such as SVM.
Convolution kernels as a measure of similarity between trees compute the common
sub-trees between two trees T1 and T2. The convolution kernel does not have to
compute the whole space of tree fragments. Let the set T ¼ t1; t2; . . . ; t Tj j

� �
be the

set of sub-trees of an extended parse tree and χi(n) be an indicator function that is
equal to 1 if the subtree ti is rooted at a node n and is equal to 0 otherwise. A tree
kernel function over trees T1 and T2 is

TK T1; T2ð Þ ¼
X

n12NT1

X

n22NT2

Δ n1; n2ð Þ, ð7:1Þ

where NT1 and N T2 are the sets of T1 ‘s and T2 ‘s nodes, respectively and

7.4 Generalization of Parse Thickets 195

Δ n1; n2ð Þ ¼
XTj j

i¼1

χi n1ð Þχi n2ð Þ: ð7:2Þ

(7.2) calculates the number of common fragments with the roots in n1 and n2 nodes.
To define the tree kernel for a parse thicket, we extend the notion of a parse tree

for a sentence to incorporating a portion of the tree for another sentence that is linked
to the given sentence via a discourse arc.

For every arc that connects two parse trees, we derive the extension of these trees,
extending branches according to the arc (Fig. 7.8). In this approach, for a given parse
tree, we will obtain a set of its extension, so the elements of the kernel will be
computed for many extensions, instead of just a single tree. The problem here is that
we need to find common sub-trees for a much higher number of trees than the
number of sentences in the text; however, by subsumption (sub-tree relation) the
number of common sub-trees will be substantially reduced.

The algorithm for building an extended tree for a set of parse trees T is presented
below:

Input:

1. Set of parse trees T.
2. Set of relations R, which includes relations Rijk between the nodes of Ti and

Tj: Ti 2T, Tj 2T, Rijk 2R. We use index k to range over multiple relations
between the nodes of parse tree for a pair of sentences.

Output: the exhaustive set of extended trees E.

Set E ¼ ∅;
For each tree i ¼ 1:|T|

(continued)

P11

P1i P2j

P21

P2j+1

Fig. 7.8 An arc which
connects two parse trees for
two sentences in a text
(on the top) and the derived
set of extended trees (on the
bottom)

196 7 Learning Discourse-Level Structures for Question Answering

For each relation Rijk, k ¼ 1: |R|
Obtain Tj
Form the pair of extended trees Ti * Tj;
Verify that each of the extended trees do not have a super-tree in E
If verified, add to E;

Return E.

Notice that the resultant trees are not the proper parse trees for a sentence, but
nevertheless form an adequate feature space for tree kernel learning.

7.4.5 From Matching to Learning Parse Thickets

Parse thickets are rather expressive structures for representing a broad range of
linguistic information. The simplest scenario for utilizing this linguistic information
is a direct match between a candidate answer and a question. A number of studies
learn question-answer pairs to predict whether a given pair is correct or not
(Moschitti and Quarteroni 2011). It only works reliably in a narrow domain, so it
would need to be retrained in a domain-independent approach. For search, classifi-
cation and clustering tasks, parse thickets can be subject to statistical learning, such
as a tree kernel, yielding parse trees extended by discourse relations and forming a
feature space for SVM from the totality of subtrees (Galitsky et al. 2015). Parse
thickets can also be subject to kNN learning, having certain requirements for relating
to a class:

U 2 Pos if ∃ Posk U ^ Posk 6¼ ∅&∃ Negi 8Pos j U^Negið Þ ^ Pos j ¼ Pos j,

where U is to be predicted, Pos and Neg are members of positive and negative
datasets, respectively, and Posk and Posj are a pair of explanations for why U 2 Pos
(The case of parse thickets is designed with a much more ambitious goal than to
deliver a higher recognition accuracy because of a richer set of features. As a
structured representation, it allows deductive and abductive reasoning to comple-
ment the traditional learning with explainability features, so that a variety of data
exploration scenarios are supported (Chap. 3).

First, deduction is useful for normalizing a linguistic structure in a domain-
independent manner. For example, noun phrases, including the extended phrases
obtained via discourse links, can be normalized to a canonical form without
prepositions:

camera with digital zoom . . . also used with fast shutter! fast shutter digital zoom
camera

7.4 Generalization of Parse Thickets 197

Additionally, domain-specific thesauri can be applied to extend parse thickets to
produce multiple versions of the same to compensate for a lack of cases in a training
dataset.

Second, deduction can enrich the set of parse thickets to be matched against when
the size of a training set is limited. Solving a text classification problem before the
main recognition session, we split the training set according to the occurrence/not
occurrence of a certain keyword or an entity and try to derive a rule/hypothesis
expressed via parse thickets that would support this split. As a result we would
obtain a set of clauses for this entity. Finally, when we do the classification into the
main classes, these clauses are used to enrich the set of positive and negative parse
thickets. The higher the number of preliminary classification sessions, the higher the
potential number of additional parse thickets in positive and negative training sets,
enriched by deduction.

Additionally, abduction is a powerful mechanism to extend a training set on
demand. If a given member of a training set cannot be predicted to fit its label, having
been temporarily removed from this training set and assigned to unknown status,
then we need to derive its class as a result of learning. If we obtain an opposite class
or are unable to classify at all, it is necessary to obtain a similar training set
representative that would be classified properly. This can be performed by mining
for a text with desired keywords on the web or in a repository.

7.5 Evaluation of Search Relevance Improvement

Parse thickets and their matching are important for open-domain text relevance
assessment. We use a number of evaluation settings to track the relevance perfor-
mance of a full-scale parse thicket-supported search and its reduced forms, omitting
one or another source of discourse information. We show that search accuracy drops
when we do without a particular source such as anaphora, rhetorical relations or
communicative actions. In the end of this section, we compare the accuracy of the
full scale parse thicket system with other state-of-the-art Q/A systems answering
complex paragraph-size questions.

In our earlier studies (Galitsky et al. 2012, 2013) and Chap. 5 we explored the
cases for how generalization operation supports Q/A for single sentence question
against a single sentence answer, and also a single sentence question against multiple
sentences in an answer by pair-wise generalization. On the contrary, the focus of this
chapter’s evaluation is a paragraph-sized question against a paragraph-sized answer,
although the above cases will be re-assessed within the same relevance computing
framework.

We show that the stand-alone sentence generalization method not leveraging
discourse features can be outperformed, once parse thickets come into play. Having
formed a pair of parse thickets for Q and A, we will compare:

198 7 Learning Discourse-Level Structures for Question Answering

• Pair-wise sentence-sentence generalization (ignoring inter-sentence links) versus
full parse thicket generalization

• Phrase-based approximation of generalization versus finding maximum common
sub-parse thickets.

• Contribution of two sources of discourse structure: rhetoric, anaphora and com-
municative actions.

7.5.1 Evaluation Settings

We conducted evaluation of relevance of syntactic generalization – enabled search
engine, based on Bing search engine APIs. Instead of maintaining search index
ourselves, for the purpose of evaluation we relied on Bing index and baseline search
relevance. In terms of reproducibility of the experimental results in this chapter,
since we measure a relative relevance improvement compared to Bing’s baseline,
once we have a fixed publically available set of queries, it is acceptable. From Bing
search results, we get page titles, snippets, and also extract paragraphs of text from
the original webpage. Our search evaluation is similar to the ones conducted in
Chaps. 5, 8, and 9.

For an individual query, the relevance was estimated as a percentage of correct
hits among the first thirty, using the values: {correct, marginally correct, incorrect}.
Accuracy of a single search session is calculated as the percentage of correct search
results plus half of the percentage of marginally correct search results. Accuracy of a
particular search setting (query type and search engine type) is calculated, averaging
through 40 search sessions.

For our evaluation, we use customers’ queries to eBay entertainment and product-
related domains, from simple questions referring to a particular product, a particular
user need, as well as a multi-sentence forum-style request to share a recommendation
(Galitsky 2017b). In our evaluation we split the totality of queries into noun-phrase
class, verb-phrase class, how-to class, and also independently split in accordance to
query length (from 3 keywords to multiple sentences). The evaluation
was conducted by the authors. To compare the relevance values between search
settings, we used first 30 search results obtained for a query by Bing API, and then
re-ranked them according to the score of the given search setting (syntactic gener-
alization score).

The list of products which serves as a basis for the testing queries is available
(Google Code 2015). We took each product and found a posting somewhere on the
web (typically, a blog or forum posting) about this product, requesting a particular
information or addressing a particular user feature, need, or concern. From such
extended expression containing product names, we formed the list queries of desired
complexity.

7.5 Evaluation of Search Relevance Improvement 199

To estimate the statistical significance of results of relevance improvement, we
estimate the standard deviation σΔ of Δ, the difference between the baseline average
relevance and the one obtained by a particular re-ranking. For the evaluation set of
40 search sessions for both baseline and parse thicket-supported search, we have

σΔ ¼ √σbaseline2=40þ σPT2=40:

This is based on the assumption (Kohavi 1995) that the search accuracy can be
described by a normal distribution, and the number of searches is large enough.

7.5.2 Query Is a Sentence and Answer Is a Sentence

Our first evaluation setting, the pair-wise matching of parse tree for questions and
answers, shows that once parse trees are taken into account in addition to keywords,
relevance is increasing. This is a pre-parse thicket approach, where the discourse
information is not taken into account. Table 7.1 shows the search relevance evalu-
ation results for single-sentence answers:

• The first and second columns show the types of phrases/sentences serving as
queries.

• The third column shows the baseline Bing search relevancy.
• The fourth and fifth columns shows relevance of re-ranked search for snippets and

original paragraph(s) from the webpage, and the sixth column shows relevance
improvement compared with the baseline.

One can observe that the higher the query complexity, the higher the impact of
generalization for question and answer for re-ranking. For the simplest queries, there
is no improvement. For five to ten keywords in a query the improvement is visible
(4%). The improvement then reaches 7% and 8% for two/three sentence queries
respectively. As the search accuracy naturally deteriorates as queries become more
complex, relative contribution of syntactic generalization increases.

In most cases, using original text is slightly better than using snippets, by about
0.5% except the case of the simple queries. In the case of 3–5 keywords the use of
generalization is unreasonable, so the results can be even distorted and re-ranking by
generalization score is not meaningful.

We did not find a significant correlation between a query type, phrase type, and
search performance with and without syntactic generalization for these types of
phrases. The verb phrases in questions did well for the multi-sentence queries
perhaps because the role of verbs for such queries is more significant than for
simpler queries where verbs can be frequently ignored.

200 7 Learning Discourse-Level Structures for Question Answering

7.5.3 Query Is a Paragraph and Answer Is a Paragraph

When the length of a questions increases from one to two to three to four sentences,
the contribution of parse thicket increases by 12%, 13%, 14% and 14% respectively
(we did not discover increase in contribution proceeding from three to four sentences
in a query). As queries become longer, overall drop of PT-supported relevance is not
lower than the respective drop of baseline relevance; however the significance of the
relevance improvement by means of parse thickets is obvious (Table 7.2).

Table 7.1 Evaluation of pairwise-sentence generalization search

Query Answer

Relevancy
of baseline
Bing search,
%,
averaging
over
40 searches

Relevancy of
re-sorting by pair-
wise sentence
generalization
with snippets, %,
averaging over
40 searches

Relevancy of
re-sorting by
pair-wise
sentence
generalization
with text on
original page, %,
averaging

Relevancy
improvement:
re-sorted
relevance/for
Bing

Three–
four word
phrases

1
sentence

87.9 88.3 90.3 1.016

2
sentences

83.7 81.8 84.2 0.992

3
sentences

79.9 79.5 80.7 1.003

Average 83.83 83.20 85.07 1.00

Five–ten
word
phrases to
a sentence

1
sentence

82.9 84.5 84.4 1.019

2
sentences

79.5 83.1 83.7 1.049

3
sentences

77.5 82.2 83.2 1.067

Average 79.97 83.27 83.77 1.04

Two
sentences,
and in
each:

1
sentence

66.3 69.5 70.8 1.058

2
sentences

65.2 71 70.5 1.085

3
sentences

65.4 70.2 70.9 1.079

Average 65.63 70.23 70.73 1.07

Three
sentences,
and in
each:

1
sentence

62.1 67.3 68.1 1.090

2
sentences

60.4 65 65.4 1.079

3
sentences

59.9 64.7 64.2 1.076

Average 60.80 65.67 65.90 1.08

7.5 Evaluation of Search Relevance Improvement 201

T
ab

le
7.
2

R
el
ev
an
cy

im
pr
ov

em
en
t
fo
r
qu

er
y
an
d
an
sw

er
s
as

pa
ra
gr
ap
hs

Q
ue
ry

A
ns
w
er

B
as
el
in
e

B
in
g

se
ar
ch
,%

P
T
ge
ne
ra
liz
at
io
n

ba
se
d
on

co
re
fe
re
nc
es
,%

,
P
T
ge
ne
ra
liz
at
io
n

ba
se
d
on

R
S
T
,%

,

P
T
ge
ne
ra
liz
at
io
n

ba
se
d
on

S
pA

ct
T
,

%
,

R
el
ev
an
cy

of
re
-s
or
tin

g
by

hy
br
id

co
re
fe
re
nc
e
+
R
S
T
+
S
pA

ct
T
,%

Im
pr
ov

em
en
t,

%

T
w
o

se
nt
en
ce
s

2 se
nt
en
ce
s

75
.1

76
.8

75
.1

81
83

.4
1.
11

1

3 se
nt
en
ce
s

71
.1

75
.3

73
.7

78
.7

82
.7

1.
16

3

4 se
nt
en
ce
s

72
.1

75
.4

74
.2

75
.2

80
.9

1.
12

2

A
ve
ra
ge

72
.7
7

75
.8
3

74
.3
3

78
.3
0

82
.3
3

1.
13

2

T
hr
ee

se
nt
en
ce
s

2 se
nt
en
ce
s

72
.1

75
.5

74
74

.9
81

.5
1.
13

0

3 se
nt
en
ce
s

70
.9

74
.7

73
.1

75
.1

79
.9

1.
12

7

4 se
nt
en
ce
s

67
.1

72
.9

71
.2

73
.3

79
.3

1.
18

2

A
ve
ra
ge

70
.0
3

74
.3
7

72
.7
7

74
.4
3

80
.2
3

1.
14

6

F
ou

r
se
nt
en
ce
s

2 se
nt
en
ce
s

67
.7

70
.7

71
.9

72
.1

76
.1

1.
12

4

3 se
nt
en
ce
s

65
.4

70
.5

71
.5

73
.7

74
.7

1.
14

2

4 se
nt
en
ce
s

62
.1

68
.9

69
.2

71
72

.4
1.
16

6

A
ve
ra
ge

65
.0
7

70
.0
3

70
.8
7

72
.2
7

74
.4
0

1.
14

4

202 7 Learning Discourse-Level Structures for Question Answering

We observe that contribution of inter-sentence links decreases in the following
order: SpActT, coreferences, and RST, and for two sentence queries, and SpActT,
RST, and coreferences. Hence for longer queries and answers, the role of discourse
theories is higher than that of for simpler queries, where coreferences is found out to
be more important.

In the second column, we show the relevance of baseline search, in third to sixth
columns, relevance of re-sorting (averaged over 20 search sessions), and the last,
seventh column shows relevance improvement for parse thicket approach.

7.5.4 Extended Tree Kernel Learning for Individual Search
Sessions

In this section we evaluate how an extended tree kernel approach helps to improve
search relevance. To make an assessment as to whether additional high-level seman-
tic and discourse information contributes to the classical kernel based approach, we
compare two sources for trees:

• Regular parse trees;
• Extended parse trees.

To perform this estimation, we need a corpus, including a high number of short
texts similar to our example in Sect. 7.2. These texts should have high similarity
(otherwise the keyword approach would do well), a certain discourse structure, and
describe some entities in a meaningful application domain. Because we were unable
to identify such a corpus, for comparison of tree kernel performances, we decided to
use Bing search results, given the query, which is a short text (Galitsky et al. 2013).
Search results typically include texts of fairly high similarity, which are leveraged in
our evaluation. To formulate the classification problem on the set of texts obtained as
search results, we need to form positive and negative sets. To do that, we select the
first n search results as relevant (positive) and also n results towards the tail of the
search results lists as irrelevant (negative). In this case each search session yields an
individual training (and evaluation) dataset.

To do an assessment of precision and recall, we do an averaging through multiple
search sessions. To assure an abrupt change in relevance proceeding from the head to
the tail of search results lists, we use complicated queries including multiple
sentences, which are not handled well by modern search engines. The preparation
of search queries (which include multiple sentences) is based on the following steps:

(1) Forming the names of products and their short descriptions;
(2) Given (1), finding a text including an extended review or opinion regarding this

product;
(3) Texts (2) cannot be used as queries as they are. To form the queries from (2), we

need to extract the most significant phrases from them; otherwise, search engines

7.5 Evaluation of Search Relevance Improvement 203

are confused as to which keywords to choose and give either duplicate or
irrelevant results. These were the longest noun and selected verb phrases
from (2).

Analogous steps were conducted for Yahoo! Answers data. We manually selected
130 most interesting search queries for each domain. The training/evaluation
datasets are formed from the search results in the following way. We obtain the set
of the first 100 search results (or less if 100 are not available). We then select 1..20
(or the first 20%) of the search results as a positive set and 81..100 as a negative set.
Search results 21..80 form the basis of evaluation dataset, from which we randomly
select 10 texts to be classified into the classes of positive or negative. Hence, we have
the ratio 4:1 between the training and evaluation datasets.

To motivate our evaluation setting, we rely on the following observations. In the
case of searching for complex multi-sentence queries, relevance indeed drops
abruptly when proceeding from the first 10–20 search results, as search evaluation
results demonstrated (Galitsky et al. 2013). The order of search results in the first
20% and last 20% does not affect our evaluation. Although the last 20% of the
search results is not really a “gold standard”, it is nevertheless a set that can be
reasonably separated from the positive set. If such separation is too easy or too
difficult, it would be hard to adequately evaluate the difference between regular
parse trees and extended trees for text classification. A search-based approach to
collecting texts for evaluation of classification allows reaching the maximum
degree of experiment automation.

The use of tail search results as the negative set was discovered to help in
leveraging the high level semantic and discourse information. Negative examples,
as well as positive examples, include most keywords from the queries. At the same
time, the positive set of results include many more co-references and rhetorical
structures with a higher similarity to the query than those of the negative set. The
use of the extended trees was beneficial in the cases where phrases from queries are
distributed through multiple sentences in the search results.

We conducted two independent experiments for each search session, classifying
search result snippets and also original texts extracted from webpages. For the
snippets, we split them into sentence fragments and built extended trees for these
fragments of sentences. For original texts, we extracted all sentences related to the
snippet fragments and built extended trees for these sentences. Training and classi-
fication occur in an automated mode, and the classification assessment of the test
subset was done by the members of research group guided by the authors. The
assessors only consulted the query and answer snippets. We used the standard
parameters of tree sequence kernels from (Moschitti 2006). The latest version of
the tree kernel learner was also obtained from this author. The tree kernel is applied
to all tree pairs from the two forests. We used normalized Discounted Cumulative
Gain (NDCG) as a measure of search accuracy.

Evaluation results (Tables 7.3 and 7.4) show a noticeable improvement of
search accuracy achieved by extended trees. For Yahoo! Answers one can observe
that coreferences only provide a slight improvement of accuracy, whereas RST

204 7 Learning Discourse-Level Structures for Question Answering

added to coreferences gives a stronger improvement. A more significant increase
of recall in comparison to precision can be explained by the capability of extended
trees to match phrases from the search results distributed through multiple
sentences, with questions.

7.5.5 Comparison of Search Performance with Other Studies

In this section we evaluate the search task that is not specific to the given chapter, but
constitutes a standard test-bed for question answering systems. We obtained a list of
entity-based queries, some of which require an answer contained in multiple
sentences. The evaluation set of questions was obtained from (TREC 2005) data.
Since no Q/A evaluation dataset for complex queries such as explored in this study is
available, we had to compile the evaluation dataset ourselves. We took queries from
the list from (Li and Roth 2002) and converted into short phrases, longer phrases,
and extended by 1–2 sentences, to match the above evaluation cases. There are also
40 search sessions per query answer types.

These search evaluation settings for Table 7.3 followed along the lines of TREC
2010, whose goal was to perform entity-oriented search tasks on the web. Many user
information needs concern entities (people, organizations, locations, products, etc.)
which are better answered by returning specific objects instead of just any type of
documents. Like Trec 2010 Entity track, we used normalized Discounted Cumula-
tive Gain (NDCG).

Table 7.3 Evaluation results for products domain

Products Basic kernels Extended kernels (corefs + RST)

Text from the page Precision 0,5679 0,5868

Recall 0,7516 0,8458

F-measure 0,6485 0,6752

Snippets Precision 0,5625 0,6319

Recall 0,7840 0,8313

F-measure 0,6169 0,6695

Table 7.4 Evaluation results for popular answers domain

Answers
Basic
kernels

Extended kernels
(corefs)

Extended kernels
(corefs + RST)

Text from the
page

P 0,5167 0,5083 0,5437

R 0,7361 0,7917 0,8333

F 0,6008 0,5458 0,6278

Snippets P 0,5950 0,6264 0,6794

R 0,7329 0,7492 0,7900

F 0,6249 0,6429 0,7067

7.5 Evaluation of Search Relevance Improvement 205

In the third and fourth columns, we show the baseline, relevance of Yahoo! and
Bing searches respectively, computed according to NDCG@R, averaging over
20 searches. In the fifth and sixth columns, we show the relevance of re-sorting by
pair-wise sentence generalization, relevancy of re-sorting by the hybrid RST and
communicative actions, computed as NDCG@R, averaging over 40 searches.
Finally, in the seventh column, we show a relevance improvement for parse thicket
approach, compared to pair-wise generalization.

We compare the results of parse thicket-supported search with that of the TREC
Entity Track participants (Table 7.5). The best teams, BIT and FDWIM2010, had
slightly higher relevance, NDCG 0.37 and 0.27, respectively, and the rest of the
teams, including Purdue, NiCT, ICTNET, and UWaterlooEng obtained a lower
relevance compared to the current parse thicket-based approach. In the current

Table 7.5 Entity-based search evaluation

Query Answer
Yahoo
search

Bing
search

Re-sorting by
pair-wise
sentence
generalization,

Re-sorting by
hybrid
RST + SpActT

Improvement for
parse thicket
compared to
pair-wise
generalization

Three–
four
word
phrases

1
sentence

0.2771 0.2830 0.3006 0.3185 1.1373

2
sentences

0.2689 0.2759 0.3183 0.3065 1.1251

3
sentences

0.2649 0.2600 0.2680 0.3058 1.1651

Average 0.2703 0.2730 0.2957 0.3102 1.1422

Five–ten
word
phrases

1
sentence

0.2703 0.2612 0.2910 0.3062 1.1523

2
sentences

0.2641 0.2583 0.2761 0.3117 1.1933

3
sentences

0.2566 0.2602 0.2620 0.2908 1.1253

Average 0.2636 0.2599 0.2764 0.3029 1.1570

Single
sentence

1
sentences

0.2724 0.2674 0.2790 0.3123 1.1570

2
sentences

0.2535 0.2580 0.2742 0.3061 1.1970

3
sentences

0.2469 0.2444 0.2606 0.3057 1.2444

Average 0.2576 0.2566 0.2713 0.3080 1.1981

Two
sentences

1
sentence

0.2593 0.2557 0.2776 0.2888 1.1217

2
sentences

0.2516 0.2421 0.2615 0.2766 1.1207

3
sentences

0.2331 0.2530 0.2633 0.2885 1.1872

Average 0.2480 0.2502 0.2675 0.2846 1.1427

206 7 Learning Discourse-Level Structures for Question Answering

study for the hybrid RST + SpActT forest generalization approach we obtained
NDCG 0.3123, 0.3061, 0.3057 for 1-sentence answers, 2-sentence answers and
3-sentence answers respectively. It is worth mentioning that the above approaches
are oriented at answering entity-based questions whereas the current approach
targets the cases with multiple inter-connected entities where found keywords are
distributed through multiple sentenced in the search result snippet. This evaluation
covers the overlap of these two cases, and we believe parse thicket performance is
satisfactory here.

For the entity based search from the TREC Entity Track queries, the improvement
of search by using parse thickets and especially RST is higher than for the search in
Sect. 7.4, for both short and long queries. This is due to the fact that entity-based
questions take advantage of the coreferences and rhetorical relations such as Elab-
oration, which are typical in the paragraphs of text answering entity-based questions.
Since both short and long entity-based phrases heavily rely on the coreferences and
RST, there is a relatively uniform improvement of search accuracy, compared to the
search in previous evaluation subsections where contribution of parse thickets for
more complicated questions is higher.

Moschitti and Quarteroni (2011) report the accuracy (F1 measure) on the TREC-
QA dataset of 24.2 � 3.1% for a bag-of-words classifier and 39.1 � 6.9% for the
optimal combination of tree kernels. If one re-ranks (deteriorates) search engine
search results by keyword occurrence only, and then compares with the parse
thicket-supported relevance, a similar performance would be observed. Single-
sentence generalization relies on similar linguistic information about Q/A as tree
kernels do, and our extension of this linguistic information towards discourse
becomes noticeable compared to commercial search engine results rather than bag-
of-words baseline systems.

Over the past few years, complex questions have been the focus of much attention
in the automatic question-answering community. Most current complex QA evalu-
ations included the 2004 AQUAINT Relationship QA Pilot, the 2005 TREC Rela-
tionship QA Task, and the TREC 2010 entity task whose results we compared to
ours), 2006 and 2007 Document Understanding Conference (DUC). These evalua-
tions require systems to return unstructured lists of candidate paragraph-length
answers in response to a complex question that are responsive, relevant, and
coherent. For the DUC settings, (Chali et al. 2009) report just 2% improvement
(from 0.45 to 0.46) of parse tree similarity - based approach over keyword-based
(lexical) for the K-means framework. It is comparable to our performance improve-
ment of single sentence generalization-based search over the Bing baseline.

7.6 Implementation of Generalization at Many Levels

In the open source implemented version, application of parse thicket generalization
for search occurs according to the following scenarios. For the question and candi-
date answer, we build a pair of parse thickets. Then we perform generalization of
parse thickets, either without loss of information, finding a maximum common parse

7.6 Implementation of Generalization at Many Levels 207

thicket subgraph, or with the loss of information, approximating the paths of
resultant subgraph by generalizing thicket phrases. Search relevance score is com-
puted accordingly as a total number of vertexes in a common maximum subgraph in
the first case, and calculating the number of words in maximal common sub-phrases,
taking into account weight for parts of speech (Galitsky et al. 2012), in the second
case. Alternatively, the tree kernel technology applied to a parse thicket classifies an
answer into the class of valid or invalid.

The textual input is subject to a conventional text processing flow such as
sentence splitting, tokenizing, stemming, part-of-speech assignment, building of
parse trees and coreferences assignment for each sentence. This flow is implemented
by either OpenNLP or Stanford NLP, and the parse thicket is built based on the
algorithm presented in this chapter. The coreferences and RST component strongly
relies on Stanford NLP’s rule-based approach to finding correlated mentions, based
on the multi-pass sieves.

The system architecture serves as a basis of OpenNLP – similarity component,
accepting input from either OpenNLP or Stanford NLP. It converts parse thicket into
JGraphT (http://jgrapht.org/) objects which can be further processed by an extensive
set of graph algorithms (Fig. 7.9). In particular, finding maximal cliques is based on
(Bron and Kerbosch 1973) algorithm. Code and libraries described here are also
available at http://code.google.com/p/relevance-based-on-parse-trees and http://svn.
apache.org/repos/asf/opennlp/sandbox/opennlp-similarity/. The system is ready to
be plugged into Lucene library to improve search relevance for complex questions
(for two–four keyword query a linguistic technology is usually not needed). Also, a
SOLR request handler is provided so that search engineers can switch to a parse
thicket – based multi-sentence search to quickly verify if relevance is improved
(package opennlp.tools.solr).

7.7 Related Work

Whereas discourse trees are a static representation of discourse, Discourse Repre-
sentation Theory (Kamp 1981) treats interpretation of NL dynamically. An NL
discourse as a sequence of utterances is viewed from the standpoint of representation
structure, such as a parse thicket in this study. A portion of discourse is processed in
the context of representation structure (in our case, parse thicket) PT results in a new
representation structure, PT’. This new structure PT’ is considered as an updated
version of PT. Discourse Representation Theory interprets indefinite noun phrases
via an introduction of discourse referents for the entities which are the focus of a
given EDU. From the standpoint of logic, these discourse referents are free variables;
hence indefinite noun phrases are represented without a use of existential quantifiers,
whereas the quantification is formed by a larger context. This larger context will then
determine if an indefinite noun phrase gets an existential interpretation or not (van
Eijck and Kamp 1997).

208 7 Learning Discourse-Level Structures for Question Answering

https://issues.apache.org/jira/browse/OPENNLP/component/12316412
http://jgrapht.org/
http://code.google.com/p/relevance-based-on-parse-trees
http://svn.apache.org/repos/asf/opennlp/sandbox/opennlp-similarity/
http://svn.apache.org/repos/asf/opennlp/sandbox/opennlp-similarity/

An alternative approach to learning discourse structure is to recover long-range
dependencies important to address such text features as coordination and extraction
is based on Combinatory Categorial Grammar (Steedman 2000). A parser for this
grammar has been developed (Curran et al. 2007) with the goal of parsing question
for question answering. This parser assigns categories to WSJ corpus with the
accuracy of 84% at a speed of 50/s (Clark and Curran 2004). The parser takes
POS tagged sentence with a set of lexical categories assigned to each word.
A comparison of a Combinatory Categorial Grammar parser results with those
produced by a combination of a dependency parser and a discourse parser is an
area of research still under exploration.

Similarity search is a very active area of research in content-based image retrieval,
time series, spatial databases, data mining and multimedia databases. A usual way to
do a similarity search is to map the objects to feature vectors and to model the search

Text generalizer
Matcher.java

Paragraph generalizer
Matcher.java

Mentions & same entity
generalizer

Communicative actions
generalizer

Pairs of
communicative
actions generalizer

Mentions & same entity
generalizer

Rhetorical structure generalizer

Sentence generalizer
ParseTreeMatcher.java

Phrase generalizer
PhraseGeneralizer.java

Word generalizer
PartseTreeNodeGeneralizer.java

Noun phrase generalizer

Verb generalizer

Part-of-speech generalizer
PartOfSpeechGeneralizer.java

Verb phrase generalizer

Phrase group generalizer
PhraseGroupGeneralizer.java

NER generalizer

Lemma generalizer
LemmaGeneralizer.java

Fig. 7.9 The structure of generalizers in parse thicket project. All data types are subject to
generalization, from words to paragraphs

7.7 Related Work 209

as a nearest neighbor query in a multi-dimensional space. The bottleneck in this
process is that the distance function used to measure the proximity between vectors
and the index method to make the search faster (Sidorov et al. 2013). Barrena et al.
(2010) propose a formal framework to perform similarity search that provides a user
with high flexibility in a choice of a distance and index structure of the feature space.
Unlike the structured method proposed in the current study, the authors introduced a
function to approximate eventually any distance function that can be used in
conjunction with index structures that divide the feature space in multidimensional
rectangular regions.

Similarity assessment is essential for a broad range of search applications,
including clustering search results. Aronovich and Spiegler (2007) introduced a
general searching approach for unstructured data types, such as free text, images,
audio and video, where the search is for similar objects and similarity is modeled by
a metric distance function. A method named CM-tree (Clustered Metric tree) to
access dynamic paged is proposed for similarity search in metric data sets. Distinc-
tive from other methods, it is aimed at tight and low overlapping clusters via its
primary construction algorithms. Mecca et al. (2007) develops a new algorithm for
clustering search results. Differently from many other systems including the current
work, to perform a post-processing step for web search engines, the system is not
based on phrase analysis inside snippets, but instead uses latent semantic indexing
on the whole document content. The authors apply the dynamic SVD clustering to
obtain the optimal number of singular values employed by clustering purposes.

Structure-based approaches to improve web searches are popular as well.
Düsterhöft and Thalheim (2004) developed a simple and powerful approach to
search based on a generalization of the theory of word fields to concept fields
(Lehrer 1974) and also based on providing the optimal meta-structuring within
database schemata that supports search in a more effective way. Hong et al. (2010)
proposed a web page structure tree matching algorithm using frequency measures to
increase the speed of data extraction. da Costa Carvalho et al. (2007) used website
structure and the content of their pages to identify possible duplicate content; we
believe the parse thicket matching approach being proposed is suitable for this
purpose as well.

Varlamis and Stamou (2009) proposed a snippet selection technique, which
identifies within the contents of the query-relevant pages those text fragments that
are both highly relevant to the query intention and expressive of the entire contents
of these pages. The authors show how to analyze search results in order to extract the
query intention, and then process the content of the query matching pages in order to
identify text fragments that are highly correlated to how the query was formed. The
query-related text fragments are evaluated in terms of coherence and expressiveness.
The system picks from every retrieved page the text nugget that highly correlates to
the query intention and is also very representative of the page’s content.
Semantically driven snippet selection can be used to augment traditional snippet
extraction approaches that are mainly dependent upon the statistical properties of
words within a text.

210 7 Learning Discourse-Level Structures for Question Answering

Harabagiu et al. (2006) introduced a new paradigm for processing complex
questions that relies on a combination of question decompositions (based on a
Markov chain), factoid QA techniques, and multi-document summarization. The
Markov chain is implemented by following a random walk with a mixture model on
a bipartite graph of relations established between concepts related to the topic of a
complex question and sub-questions derived from topic-relevant passages that
manifest these relations. Decomposed questions are then submitted to a state-of-
the-art Q/A system in order to retrieve a set of passages that can later be merged into
a comprehensive answer. The authors show that question decompositions using this
method can significantly enhance the relevance and comprehensiveness of
summary-length answers to complex questions. This approach does not rely on the
association between concepts available for decomposed (simpler) questions from the
commercial search engines. In the current study we achieve relevance based on
better match of questions to answers, obtained by search engines which have learned
the best matches for decomposed questions relying on user selections. Hence in our
evaluation settings we skip decomposition and do not do summarization, achieving
higher relevance by finding relevant documents among the candidate set which has
been formed by search engine APIs.

The evaluations in (Harabagiu et al. 2006) have shown that the question decom-
positions lead to more relevant and complete answers. Moreover, the coverage of
auto generated question decompositions, when compared with the questions gener-
ated from the answer summary, are better indicators of answer quality than the
relevance score to the complex question. The question coverage for automatic
methods is 85% of the coverage of questions produced by humans. Within the
framework of the current study, question decomposition occurs via matching with
various parse trees in the answers. If the baseline answers are re-ranked by humans,
the coverage (recall) is about 18% higher than the automated system in the lower
section of Table 7.5 (where 3-sentence questions are matched with 3-sentence
answers, recall values are not shown in the table).

There is a number of recent studies employing RST features for passage
re-ranking under question answering. In the former study, the feature space of
subtrees of parse trees includes the RST relations to improve question answer
accuracy. In the latter project, RST features contributed to the totality of features
learned to re-rank the answers. In Galitsky (2017b) the rhetorical structure, in
particular, was used to broaden the set of parse trees to enrich the feature space by
taking into account the overall discourse structure of candidate answers. Statistical
learning in these studies demonstrated that rhetorical relation can be leveraged for
better search relevance. In the current study, we formulate the explicit rules for how a
question can be mapped into the answer DT and its relevance can be verified.
Whereas discourse features have been used to improve Q/A via learning, to the
best of our knowledge, no approach to answering complex questions, other than this
chapter, is relying on linguistic discourse theories explicitly.

We conclude this section by the survey of work in the area of answering complex
questions, the main goal for parse thickets. Bertossi and Chomicki (2004) address

7.7 Related Work 211

the problem of computing consistent query answers: query transformation, logic
programming, inference in annotated logics, and specialized algorithms and charac-
terize the computational complexity of this problem. Bouquet et al. (2004) proposed
a design and implementation of query languages for information retrieval from a
distributed collection of semantically heterogeneous resources, linked to each other
through a collection of semantic mappings. The authors define a semantic query as
the one which enables users to tune a collection of semantic parameters to formulate
the intended request.

Our view of a semantic expression as a generalization (a special case of query
rewriting) of a pair of syntactic trees falls under this definition. Bouquet et al. (2004)
restate the query rewriting problem as the one using semantic information (i.e., the
available mappings) to reformulate ‘syntactic queries’. These are the queries that
drill into the information associated to a particular data schema leveraging its
structural properties. The authors argue that a query is a semantic query only when
its parameters are intrinsically semantic, meant to refine the expression of a user
intended meaning, which is a generalization in the framework of our chapter. The
authors select (1) the type of relation; (2) the ontological distance; and (3) the lexical
distance as the relevant semantic parameters. Natsev and Milind (2005) unified two
supposedly distinct tasks in multimedia retrieval, answering queries with a few
examples and learning models for semantic concepts when only a few examples
are available. This is close to the setting of generalization from examples, where
there is insufficient data for statistical learning. The authors propose a combination
hypothesis of two complementary classes of techniques, a nearest neighbor model
using only positive examples, similar to our settings, and a discriminative support,
combining the ranked lists generated by evaluating the test database to create a final
ranked list of retrieved multimedia items. The authors found that applying the
combination hypothesis across both modeling techniques and a variety of features
results in enhanced performance over any of the baseline methods, an improvement
of 6% for rare concept detection and 17% for the search task.

Syntactic generalization approach assisted with deterministic learning can be
considered complementary to probabilistic methods in question answering such as
(Boulos et al. 2005). Also, parse thickets are oriented for domains where high
relevance attempts to compensate low quality of textual data, lack of structure,
sparseness and inconsistencies. Boulos et al. (2005) described MystiQ, a system
that uses probabilistic query semantics to find answers in large numbers of data
sources of rather inferior quality. MystiQ relies on probabilistic query semantics and
ranks the answers by probability. Firstly, MystiQ assigns probabilities to all data
items in all sources it queries; these probabilities can either be static or dynamic.
Static probabilities are query-independent and are pre-computed by the system and
stored in the relational database; they are yielded by constraint violations and fuzzy
matches. Dynamic probabilities are query-dependent, and are computed based on
how well tuples in the data match the approximate predicates in the query. The
authors confirm a broad range of reasons why the data originating from distinct
sources may be of poor quality, and therefore drop relevance: the same data item
may have different representation in different sources; the schema alignments

212 7 Learning Discourse-Level Structures for Question Answering

needed by a query system are imperfect and noisy; different sources may contain
contradictory information, and, in particular, their combined data may violate some
global integrity constraints; fuzzy matches between objects from different sources
may return false positives or negatives. Even in such environment, users want to ask
complex, structurally rich queries, using query constructs typically found in SQL
queries: joins, sub-queries, existential/universal quantifiers, aggregate and group-by
queries (Chap. 4).

Semantic search promises to produce precise answers to user queries by taking
advantage of the availability of explicit semantics of information in the context of the
semantic web. Existing tools have been primarily designed to enhance the perfor-
mance of traditional search technologies but with little support for naive users, i.e.,
ordinary end users who are not necessarily familiar with domain specific semantic
data, ontologies, or SQL-like query languages.

Lei et al. (2006) presented SemSearch, a search engine, which pays special
attention to the support of ordinary end users who are not necessarily familiar with
domain specific semantic data, ontologies, or SQL-like query languages, by hiding
the complexity of semantic search from end users and making it easy to use and
effective. In contrast with existing semantic-based keyword search engines which
typically compromise their capability of handling complex user queries in order to
overcome the problem of knowledge overhead, SemSearch supports complex
queries and provides comprehensive means to produce precise answers which are
self-explanatory.

Usually, complex queries refer to Description Logics (DL) based family of
approaches. The syntactic generalization-based technology can be considered com-
plementary to a thesaurus-based; both approaches support passage re-ranking based
on totally different sources. Current information retrieval (IR) approaches do not
formally capture the explicit meaning of a keyword query but provide a comfortable
way for the user to specify information needs on the basis of keywords. Thesaurus-
based approaches allow for sophisticated semantic search but impose more sophis-
ticated query syntax. Tran et al. (2007) presents an approach for translating keyword
queries to DL conjunctive queries using background knowledge available in the-
sauri. The authors present an implementation demonstrating that the proposed
interpretation of keywords can be used for both exploration of asserted knowledge
and for a semantics-based declarative query answering process.

Vo and Popescu (2016) proposed a four-layer system that considers word align-
ment and sentence structure in addition to string and semantic word similarities.
Following the transfer learning paradigm, the multi-layer architecture helps to deal
with heterogeneous corpora which may not have been generated by the
same distribution nor same domain (Vo and Popescu 2019). The authors look into
inter-connection between the semantic relatedness and textual entailment, building a
learning model leveraging their multi-layer architecture.

Calvanese et al. (2007) proposed a new family of DL-oriented basic ontology
languages, while limiting the complexity of computing subsumption between

7.7 Related Work 213

concepts, checking satisfiability of the knowledge bases, and answering complex
queries. The authors estimated the polynomial-time data complexity for query
answering. Horrocks and Tessaris (2002) showed that DL systems can be enriched
by a conjunctive query language, providing a solution to one of the weakness of
traditional DL systems. These results can be transferred to the Semantic Web
community, where there is a need for expressive query languages.

Parse thickets can potentially serve as an adequate tool for textual entailment
(Bar-Hail et al. 2007) to improve the recall of question answering. For question ‘who
acquired mysql company’ the following is an acceptable answer ‘. . .mysql company
acquisition by Oracle. . .’ that needs an entailment X’s acquisition by Y) Y buy X.
(Harabagiu et al. 2006) suggested to re-rank candidate answers using textual entail-
ment component according to the following model: “a rephrased question is Hypoth-
esis, each candidate answer is a Text. Then for each Text: If Text |¼ Hypothesis,
the answer should be pushed to the top”. It improved system accuracy from 30.6%
to 42.7%.

We believe parse thickets are an adequate representation means to express rather
complex entailment and automatically learn them from text, leveraging discourse
relations like Elaboration. Current methods involve lexical overlap (unigram,
n-grams), lexical substitution (WordNet or mutual information), and lexical-
syntactic variations. Under textual entailment, combination of world knowledge
and a given text can be expressed as finding a maximum consistent set (maximum
common sub-graph) of a thesaurus as a tree and parse thicket representation of text.
This is an area of our future research.

7.8 Conclusions

Whereas machine learning of syntactic parse trees for individual sentences is an
established area of research (Haussler 1999; Collins and Duffy 2002; Severyn and
Moschitti 2012), the contribution of this chapter is a structural, inductive,
explanation-based learning-type approach to representation and matching of syntac-
tic and discourse level information at the level of paragraphs. This approach is
leveraged in answering complex questions, where simple frequency-based models
do not work well.

In our earlier studies (Galitsky et al. 2011, 2003, 2012), we observed that if one
enriches the scope of linguistic information, such as syntactic relations between
words encoded via constituency parse trees, the relevance of NLP tasks improves.
We demonstrated that by proceeding from the bag-of-words approach to the parse-
tree based approach, texts that include the same or similar keywords occurring in
distinct phrases can be determined to be very distant (Galitsky 2017a). In this study
we took one step further and demonstrated that, by relying on semantic discourse,
one can determine that a pair of texts with a limited similarity in keywords can be
very similar, having matching discourse structure. Conversely, we showed that a pair
of texts with almost identical keywords can have rather different meanings. We also

214 7 Learning Discourse-Level Structures for Question Answering

demonstrated that explicit rules applied to discourse trees can help with filtering out
irrelevant answers.

To systematically include discourse information in relevance assessment tasks,
we proposed the graph representation of parse thickets. This representation allows
merging syntactic information with discourse information into the unified frame-
work, so that the matching of parse thicket delivers exhaustive information on the
similarity between two texts, such as a question and an answer. Parse thickets are
designed so that exhaustive information of the hybrid nature, syntactic and dis-
course, is combined in a form ready for matching to be applied in search
applications (Ilvovsky 2014).

The operation of generalization to learn from parse trees for a pair of sentences
turned out to be essential for search re-ranking. Once we extended it to matching
parse thickets for two paragraphs, we observed that the relevance is further increased
compared to the baseline (Bing search engine API), which relies on keyword
statistics in the case of multi-sentence queries. We considered the following sources
of relations between words in sentences: co-references, taxonomic relations such as
sub-entity, partial case, predicate for subject, rhetorical structure relation and speech
acts/communicative actions. We demonstrated that search relevance can be
improved if search results are subject to confirmation by parse thicket generalization,
where answers occur in multiple sentences. We showed that each source contributes
on its own to improved relevance and, altogether, that inter-sentence links are fairly
important for finding relevant complex answers to complex questions.

Notice that the quality of the Bing search that we used as a baseline search is
significantly higher than that of custom search engines used in the majority of TREC
competitions; therefore, it is harder to improve relevance in the evaluation setting of
the current study compared with TREC settings.

In this work, we also focused on a special case of matching parse thickets of
questions and answers, a Rhetorical Map of an answer. Although other studies
(Jansen et al. 2014) showed that discourse information is beneficial for search via
learning, we believe this is the first study demonstrating how the answer map affects
search directly. To be a valid answer for a question, its keywords need to occur in
adjacent EDU chains of this answer, so that these EDUs are fully ordered and
connected by nucleus – satellite relations. An answer is expected to be invalid if
the questions’ keywords occur in the answer’s satellite EDUs and not in their
nucleus EDUs. The purpose of the rhetorical map of an answer is to prevent it
from being fired by questions whose keywords occur in non-adjacent areas of
this map.

Although there has been a substantial advancement in document-level RST
parsing, including the rich linguistic features-based approach and powerful parsing
models (Joty et al. 2013), document level discourse analysis has not found a broad
range of applications, such as search. The most valuable information from DT
includes the global discourse features and long-range structural dependencies
between DT constituents. Existing DT parsing systems do not encode long-range
dependencies between DT constituents; however, our approach is robust with

7.8 Conclusions 215

respect to the hierarchy structure of EDUs because of the nature of direct common
ancestor rules.

Paragraph – level similarity assessment is an essential component of a chatbot. To
the best of our knowledge, this is the first work on matching a semantic discourse of
paragraph-size questions and answers to solve a search relevance problem. Instead of
relying on syntactic information for individual sentences, we can now compute text
similarity at the level of paragraphs, combining syntactic and discourse information.
We have demonstrated that this provides superior performance compared with the
bag-of-words approach, the keywords statistics approach and sentence-level tree
kernel learning.

References

Aronovich L, Spiegler I (2007) CM-tree: a dynamic clustered index for similarity search in metric
databases. Data Knowl Eng 63(3):919–946

Bar-Haim R, Dagan I, Greental I, Shnarch E (2007) Semantic inference at the lexical-syntactic
level. In: AAAI’07 Proceedings of the 22nd national conference on artificial intelligence,
Vancouver, BC, Canada, pp 871–876

Barrena M, Jurado E, Márquez-Neila P, Pachón C (2010) A flexible framework to ease nearest
neighbor search in multidimensional data spaces. Data Knowl Eng 69(1):116–136

Bertossi L, Chomicki J (2004) Query answering in inconsistent databases. In: Logics for emerging
applications of databases. Springer, Berlin/Heidelberg, pp 43–83

Boulos J, Dalvi N, Mandhani B, Mathur S, Re C, Suciu D (2005) MYSTIQ: a system for finding
more answers by using probabilities. SIGMOD, June 14–16, 2005, Baltimore, MD, USA

Bouquet P, Kuper G, Scoz M, Zanobini S (2004) Asking and answering semantic queries. Meaning
Coordination and Negotiation (MCN-04) at ISWC-2004, Hiroshima, Japan

Bron C, Kerbosch J (1973) Algorithm 457: finding all cliques of an undirected graph. Commun
ACM (ACM) 16(9):575–577

Calvanese D, De Giacomo G, Lembo D, Lenzerini M, Rosati R (2007) Tractable reasoning and
efficient query answering in description logics: the DL-lite family. J Autom Reason 39:385–429

Chali Y, Joty SR, Hasan SA (2009) Complex question answering: unsupervised learning
approaches and experiments. J Artif Intell Res 35:1–47

Clark S, Curran JR (2004) Parsing the WSJ using CCG and log-linear models. In: 42nd ACL,
Barcelona, Spain

Collins M, Duffy N (2002) Convolution kernels for natural language. In: Proceedings of NIPS, pp
625–632

Costa d, André L, Carvalho ES d M, da Silva AS, Berlt K, Bezerra A (2007) A cost-effective
method for detecting web site replicas on search engine databases. Data Knowl Eng 62
(3):421–437. https://doi.org/10.1016/j.datak.2006.08.010

Curran JR, Clark S, Bos J (2007) Linguistically motivated large-scale NLP with C&C and boxer. In:
Proceedings of the ACL 2007 demonstrations session (ACL-07 demo), pp 33–36

Düsterhöft A, Thalheim B (2004) Linguistic based search facilities in snowflake-like database
schemes. Data Knowl Eng 48(2):177–198

Galitsky B (2003) Natural language question answering system: technique of semantic headers.
Advanced Knowledge International, Magill

Galitsky B (2012) Machine learning of syntactic parse trees for search and classification of text. Eng
Appl AI 26(3):1072–1091

216 7 Learning Discourse-Level Structures for Question Answering

https://doi.org/10.1016/j.datak.2006.08.010

Galitsky B (2017a) Improving relevance in a content pipeline via syntactic generalization. Eng Appl
Artif Intell 58:1–26

Galitsky B (2017b) Matching parse thickets for open domain question answering. Data Knowl Eng
107:24–50

Galitsky B, Kuznetsov S (2008) Learning communicative actions of conflicting human agents. J
Exp Theor Artif Intell 20(4):277–317

Galitsky B, Lebedeva N (2015) Recognizing documents versus meta-documents by tree kernel
learning. In: FLAIRS conference, pp 540–545

Galitsky B, González MP, Chesñevar CI (2009) A novel approach for classifying customer
complaints through graphs similarities in argumentative dialogue. Decis Support Syst 46
(3):717–729

Galitsky B, Dobrocsi G, de la Rosa JL, Kuznetsov SO (2010) From generalization of syntactic parse
trees to conceptual graphs. In: Croitoru M, Ferré S, Lukose D (eds) Conceptual structures: from
information to intelligence, 18th international conference on conceptual structures, ICCS 2010.
Lecture notes in artificial intelligence, vol 6208, pp 185–190

Galitsky B, Dobrocsi G, de la Rosa JL, Sergei O (2011) Kuznetsov: using generalization of
syntactic parse trees for taxonomy capture on the web. 19th international conference on
conceptual structures, ICCS 2011, pp 104–117

Galitsky B, de la Rosa JL, Dobrocsi G (2012) Inferring the semantic properties of sentences by
mining syntactic parse trees. Data Knowl Eng 81–82:21–45

Galitsky B, Usikov D, Sergei O (2013) Kuznetsov: parse thicket representations for answering
multi-sentence questions. In: 20th international conference on conceptual structures, ICCS
2013, Hissar, Bulgaria, pp 285–293

Galitsky B, Ilvovsky D, Kuznetsov S (2015) Rhetoric map of an answer to compound queries.
ACL, Beijing, China, vol 2, pp 681–686

Google Code (2015) Product queries set. https://code.google.com/p/relevance-based-on-parse-
trees/downloads/detail?name¼Queries900set.xls

Harabagiu S, Lacatusu F, Hickl A (2006) Answering complex questions with random walk models.
In: Proceedings of the 29th annual international ACM SIGIR conference on Research and
development in information retrieval (SIGIR ’06). ACM, New York, NY, USA, pp 220–227

Haussler D (1999) Convolution kernels on discrete structures. Technical report ucs-crl-99-10,
University of California Santa Cruz

Hong JL, Siew E-G, Egerton S (2010) Information extraction for search engines using fast heuristic
techniques. Data Knowl Eng 69(2):169–196

Horrocks I, Tessaris S (2002) Querying the semantic web: a formal approach. The semantic web—
ISWC 2002. Springer, Berlin/Heidelberg, pp 177–191

Ilvovsky D (2014) Going beyond sentences when applying tree kernels. ACL student workshop, pp
56–63

Jansen P, Surdeanu M, Clark P (2014) Discourse complements lexical semantics for non-factoid
answer reranking. In: Proceedings of the 52nd annual meeting of the Association for Compu-
tational Linguistics (ACL), 2014, Baltimore, MD, USA

Joty SR, Carenini G, Ng RT, Mehdad Y (2013) Combining intra-and multi- sentential rhetorical
parsing for document-level discourse analysis. In: ACL, vol 1, pp 486–496

Joty S, Moschitti A (2014) Discriminative reranking of discourse parses using tree kernels. In:
Proceedings of the conference on empirical methods in natural language processing (EMNLP
2014), Doha, Qatar

Kamp HA (1981) Theory of truth and semantic representation. In: Groenendijk JAG, Janssen TMV,
Stokhof MBJ (eds) Formal methods in the study of language. Mathematisch Centrum,
Amsterdam

Kim J-J, Pezik P, Rebholz-Schuhmann D (2008) MedEvi: retrieving textual evidence of relations
between biomedical concepts from Medline. Bioinformatics 24(11):1410–1412

References 217

https://code.google.com/p/relevance-based-on-parse-trees/downloads/detail?name=Queries900set.xls
https://code.google.com/p/relevance-based-on-parse-trees/downloads/detail?name=Queries900set.xls
https://code.google.com/p/relevance-based-on-parse-trees/downloads/detail?name=Queries900set.xls

Kohavi R (1995) A study of cross-validation and bootstrap for accuracy estimation and model
selection. In: International joint conference on artificial intelligence IJCAI 1995, Morgan
Kaufmann Publishers Inc., San Francisco

Lehrer A (1974) Semantic fields and lexical structure. Benjamins, Amsterdam
Lei Y, Uren V, Motta E (2006) Semsearch: a search engine for the semantic web. In: Managing

knowledge in a world of networks. Lecture notes in computer science, vol 4248, pp 238–245
Li X, Roth D (2002) Learning question classifiers. In: Proceedings of the 19th international

conference on computational linguistics - volume 1 (COLING '02), vol 1. Association for
Computational Linguistics, Stroudsburg, pp 1–7

Mann WC, Taboada M (2015.) http://www.sfu.ca/rst/01intro/definitions.html. Last downloaded
13 June 2015

Mann WC, Thompson SA (1988) Rhetoric al structure theory: toward a functional theory of text
organization. Text 8(3):243–281

MannWC, Matthiessen CMIM, Thompson SA (1992) Rhetorical structure theory and text analysis.
In: Mann WC, Thompson SA (eds) Discourse description: diverse linguistic analyses of a fund-
raising text. John Benjamins, Amsterdam, pp 39–78

Mecca G, Raunich S, Pappalardo A (2007) A new algorithm for clustering search results. Data
Knowl Eng 62(3):504–522

Moschitti A (2006) Efficient convolution kernels for dependency and constituent syntactic trees. In:
Proceedings of the 17th European conference on machine learning, Berlin, Germany

Moschitti A, Quarteroni S (2011) Linguistic kernels for answer re-ranking in question answering
systems. Inf Process Manag 47(6):825–842

Natsev A, Milind R (2005) Naphade Jelena Tesic. Learning the semantics of multimedia queries
and concepts from a small number of examples. MM’05, November 6–11, 2005, Singapore

Palmer M (2009) Semlink: linking PropBank, VerbNet and FrameNet. In: Proceedings of the
generative lexicon conference. September 2009, Pisa, Italy, GenLex-09

Punyakanok V, Roth D, Yih W (2005) The necessity of syntactic parsing for semantic role labeling.
IJCAI-05, Edinburgh, Scotland, UK, pp 1117–1123

Searle J (1969) Speech acts: an essay in the philosophy of language. Cambridge University,
Cambridge

Seo J, Simmons RF (1989) Syntactic graphs: a representation for the union of all ambiguous parse
trees. Comput Linguist 15:15

Severyn A, Moschitti A (2012) Fast support vector machines for convolution tree kernels. Data Min
Knowl Disc 25:325–357

Sidorov G, Velasquez F, Stamatatos E, Gelbukh A, Chanona-Hernández L (2012) Syntactic
dependency-based N-grams as classification features. LNAI 7630, pp 1–11

Sidorov G, Velasquez F, Stamatatos E, Gelbukh A, Chanona-Hernández L (2013) Syntactic
N-grams as machine learning features for natural language processing. Expert Syst Appl 41
(3):853–860

Steedman M (2000) The syntactic process. The MIT Press, Cambridge, MA
Sun J, Zhang M, Tan C (2011) Tree sequence kernel for natural language. AAAI-25
Tran T, Cimiano P, Rudolph S, Studer R (2007) Ontology-based interpretation of keywords for

semantic search in “The semantic web”. Lecture notes in computer science, vol 4825, pp
523–536

van Eijck J, Kamp H (1997) Representing discourse in context. Handbook of logic and language.
Elsevier, Amsterdam, pp 179–237

Varlamis I, Stamou S (2009) Semantically driven snippet selection for supporting focused web
searches. Data Knowl Eng 68(2):261–277. https://doi.org/10.1016/j.datak.2008.10.002

Vo NPA, Popescu O (2016) A multi-layer system for semantic textual similarity. In: 8th interna-
tional conference on knowledge discovery and information retrieval, vol 1, pp 56–67

Vo NPA, Popescu O (2019) Multi-layer and co-learning systems for semantic textual similarity,
semantic relatedness and recognizing textual entailment. In: 8th international joint conference,
IC3K 2016, Porto, Portugal, November 9–11, 2016, Revised selected papers, pp 54–77

218 7 Learning Discourse-Level Structures for Question Answering

http://www.sfu.ca/rst/01intro/definitions.html
https://doi.org/10.1016/j.datak.2008.10.002

Wu J, Xuan Z, Pan D (2011) Enhancing text representation for classification tasks with semantic
graph structures. Int J Innov Comput Inf Control (ICIC) 7(5(B)):2689–2698

Zhang M, Che W, Zhou G, Aw A, Tan C, Liu T, Li S (2008) Semantic role labeling using a
grammar-driven convolution tree kernel. IEEE Trans Audio Speech Lang Process 16
(7):1315–1329

References 219

Chapter 8
Building Chatbot Thesaurus

Abstract We implement a scalable mechanism to build a thesaurus of entities
which is intended to improve the relevance of a chatbot. The thesaurus construction
process starts from the seed entities and mines available source domains for new
entities associated with these seed entities. New entities are formed by applying the
machine learning of syntactic parse trees (their generalizations) to the search results
for existing entities to form commonalities between them. These commonality
expressions then form parameters of existing entities, and are turned into new
entities at the next learning iteration. To match natural language expressions between
source and target domains, we use syntactic generalization, an operation that finds a
set of maximal common sub-trees of the parse trees of these expressions.

Thesaurus and syntactic generalization are applied to relevance improvement in
search and text similarity assessment. We conduct an evaluation of the search
relevance improvement in vertical and horizontal domains and observe significant
contribution of the learned thesaurus in the former, and a noticeable contribution of a
hybrid system in the latter domain. We also perform industrial evaluation of thesau-
rus and syntactic generalization-based text relevance assessment and conclude that a
proposed algorithm for automated thesaurus learning is suitable for integration into
chatbots. The proposed algorithm is implemented as a component of Apache
OpenNLP project.

8.1 Introduction

In designing contemporary search engines and text relevance systems, it is hard to
overestimate the role of thesauri for improving precision, especially in vertical
domains. Thesauri, thesauri and concept hierarchies are crucial components for
many applications of Information Retrieval (IR), Natural Language Processing
(NLP) and Knowledge Management (Cimiano et al. 2004; Justo et al. 2018).
However, building, tuning and managing thesauri and ontologies is rather costly
since a lot of manual operations are required. A number of studies proposed the
automated building of thesauri based on linguistic resources and/or statistical

© Springer Nature Switzerland AG 2019
B. Galitsky, Developing Enterprise Chatbots,
https://doi.org/10.1007/978-3-030-04299-8_8

221

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04299-8_8&domain=pdf

machine learning, including multiagent settings (Kerschberg et al. 2003; Roth 2006;
Kozareva et al. 2009; Sánchez and Moreno 2008; Sánchez 2010).

The majority of current approaches to automated thesaurus mining have not
found industrial applications in chatbots and search engines due to the insufficient
accuracy of resultant search, limited expressiveness of representations of queries of
real users, or high cost associated with the manual construction or editing of
linguistic resources, and their limited adjustability (Galitsky 2016). In this work
we will take advantage of full-scale syntactic parsing, machine learning of its results,
and web mining based on search engines, to build and evaluate industrial-quality
thesauri. The proposed thesaurus learning algorithm aims to improve vertical search
relevance and will be evaluated in a number of search-related tasks. The main
challenge in building a thesaurus tree is to make it as deep as possible to incorporate
longer chains of relationships, so more specific and more complicated questions can
be answered.

The contribution of this chapter is two-fold:

1. Propose and implement a mechanism for using thesaurus trees for the determin-
istic classification of answers as relevant and irrelevant.

2. Implement an algorithm to automate the building of such a thesaurus for a vertical
domain, given a seed of key entities.

By implementing 1–3, the thesaurus becomes plausible in industrial settings.
In our work (Galitsky et al. 2012), we introduced the operation of syntactic

generalization for a pair of sentences to measure their similarity, and we described
the applications of this operation in search. In Galitsky et al. (2013), we presented
applications in information retrieval and text classification, and in Galitsky (2013),
we introduced the generalization operation for a pair of paragraphs. Generalization
in its logical form, anti-unification, has found a number of NLP applications
(Amiridze and Kutsia 2018). In this study, we rely on syntactic generalization to
build thesauri and to apply them at the time of the search.

This chapter is organized around these two items, followed by the evaluation of a
number of search and classification problems that rely on the built thesaurus.

Our thesaurus-building algorithm is focused on search relevance improvement,
unlike the majority of ontology mining methods, which optimize the precision and
recall of the extracted relations (Sano et al. 2018). Therefore, the evaluation in this
chapter will assess the algorithm’s performance in terms of the search accuracy
improvement and not the quality of the built thesauri. Hence, we expect the search
performance-driven thesaurus learning algorithm to outperform the algorithms that
are focused on most of the relations or the most exact relations. Our evaluation will
be conducted in vertical and horizontal searches as well as in an industrial environ-
ment (Galitsky 2017) with text similarity assessment.

In this chapter, we approach thesaurus building from the standpoint of transfer
learning paradigms (Raina et al. 2007; Pan and Yang 2010). Although we build our
thesaurus to function in a vertical domain, a horizontal domain for web mining is
required to build it. In the building of thesauri for chatbots, transfer learning can
extract knowledge for a wide spectrum of web domains (auxiliary) and enhance

222 8 Building Chatbot Thesaurus

thesaurus-based search in a target domain. For transfer learning to be successful, it is
critical to compute the similarity between phrases in auxiliary and target domains,
even when the mappings between phrases are not obvious. For that purpose, we use
syntactic generalization as an extension of the bag-of-words approach (Sidorov
2013). Here, we introduce a novel method for finding the structural similarity
between sentences, to enable transfer learning at a structured knowledge level. In
particular, we address the problem of how to learn a non-trivial structural (semantic)
similarity mapping between phrases in two different domains when their vocabular-
ies are completely different.

When building thesauri for vertical domains, it is usually not sufficient to mine
web documents in this vertical domain only. Moreover, when a target domain
includes social network data or micro-text, it is usually difficult to find enough of
such data to build thesauri within the domain (Galitsky and Kovalerchuk 2006); as a
result, transfer learning methodology is required, which mines a wider set of
domains with similar vocabulary. The transfer learning then must be supported by
matching syntactic expressions from distinct domains. In this study, we perform
transfer learning on the level of constituency parse trees (Fig. 8.1).

A number of currently available general-purpose resources, such as DBPEdia,
Freebase, and Yago, assist entity-related searches but are insufficient to filter out
irrelevant answers that concern a certain activity with an entity and its multiple
parameters. A set of vertical ontologies, such as last.fm for artists, are also helpful for
entity-based searches in vertical domains; however, their thesaurus trees are rather
shallow, and their usability for recognizing irrelevant answers is limited.

In this chapter, we propose an automated thesaurus-building mechanism that is
based on an initial set of main entities (a seed) for a given vertical knowledge
domain. This seed is then automatically extended by the mining of web documents,
which include a meaning for a current thesaurus node. This node is further extended

Blogs, forums, chats,
opinion

Blogs, forums, chats,
opinionBlogs, forums, chats,
opinions, web documents,
articles

Source domains

Product descriptions

Target domain

thesaurus
-

g n
id

li
ub

se
hc

ra
e s

Built thesaurus

su
ru

as
eh

T
-hc

r a
es

d e
ts

is
sa

Fig. 8.1 Thesaurus-assisted search viewed from the standpoint of transfer learning

8.1 Introduction 223

by entities that are the result of inductive learning of commonalities between these
documents. These commonalities are extracted using an operation of syntactic
generalization, which finds the common parts of syntactic parse trees of a set of
documents that were obtained for the current thesaurus node (Chap. 5). Syntactic
generalization has been extensively evaluated commercially to improve text rele-
vance (Galitsky et al. 2010, 2011a, b), and in this chapter, we also apply it in the
transfer learning setting for the automated building of thesauri.

Proceeding from parsing to semantic level is an important task towards natural
language understanding, and has immediate applications in tasks such as information
extraction and question answering (Allen 1987; Ravichandran and Hovy 2002;
Dzikovska et al. 2005; Wang et al. 2009). In the last 10 years, there has been a
dramatic shift in computational linguistics from manually constructing grammars
and knowledge bases to partially or totally automating this process using statistical
learning methods trained on large annotated or non-annotated natural language
corpora. However, instead of using such corpora, we use web search results for
common queries, because their accuracy is higher and they are more up-to-date than
academic linguistic resources in terms of specific domain knowledge, such as tax.

The value of semantically-enabling search engines for improving search rele-
vance has been well understood by the commercial search engine community
(Heddon 2008). Once an ‘ideal’ thesaurus is available, that properly covers all of
the important entities in a vertical domain, it can be directly applied to filtering out
irrelevant answers. The state-of-the-art in this area is how to apply a real-world
thesaurus to search relevance improvement, where this thesaurus is automatically
compiled from the web and therefore is far from being ideal. It has become obvious
that lightweight keyword-based approaches cannot adequately tackle this problem.
In this chapter, we address this issue by combining web mining as a source of
training sets, and syntactic generalization as a learning tool.

8.2 Improving Chatbot Relevance by Thesauri

8.2.1 Defining the is_about Relation for a Query

To answer a question that is natural language or keyword-based, it is beneficial to
‘understand’ what this question is about. In the sense of this chapter, this ‘under-
standing’ is a preferential treatment of keywords. We use the following definition of
a relationship between a set of keywords and its element is-about (set-of-keywords,
keyword).

For a query with keywords {a b c}, we understand that the query is about b if the
queries {a b}, and {b c} are relevant or marginally relevant, and {a c} is irrelevant.
Our definition of query understanding, which is rather narrow, is the ability to say
which keywords in the query are essential (such as b in the above example), in such a
way that without them the other query terms become meaningless; an answer that
does not contain b is irrelevant to a query that includes b .

224 8 Building Chatbot Thesaurus

For example, in the set of keywords {computer, vision, technology}, {computer,
vision}, {vision, technology} are relevant, and {computer, technology} are not; as a
result the query is about {vision}. Note, if a set of keywords form a noun phrase or a
verb phrase, it does not necessarily mean that the head or the verb is a keyword that
this ordered set is about. In addition note that we can group words into phrases when
they form an entity:

is-about({vision, bill, gates}, Ø); whereas
is-about({vision, bill-gates, in- computing}, {bill-gates}).

We refer to a set of keywords as essential (Galitsky and Kovalerchuk 2014) if it
occurs on the right side of is-about.

To properly formalize the latter observation, we generalize is-about relations to
the relation between a set of keywords and its subset. For query {a b c d}, if b is
essential (is-about({a b c d}, {b}), c can also be essential when b is in the query such
that {a b c}, {b c d}, {b c} are relevant, and even {a b}, {b d} are (marginally)
relevant. However, {a d} is not (is-about({a b c d}, {b,c}).

Thesauri are required to support query understanding. Thesauri facilitate the
assessments of whether a specific match between a query and an answer is relevant
or not, based on the above notion of query understanding via the is-about relation.
Hence for a query q¼ {a b c d} and two answers (snippets) {b c d ... e f g} and {a c d
. . . e f g}, the former is relevant and the latter is not. Thesauri in the sense of this
chapter can be viewed as tree coding of a set of inter-connected is-about relations.

Logical properties of sets of keywords and logical forms that express meanings of
queries are explored in Galitsky (2003). There is a systematic way to treat the relative
importance of keywords via default reasoning (Galitsky 2005); multiple meanings of
keyword combinations are represented via operational semantics of default logic.

Achieving relevancy using a thesaurus is based on a totally different mechanism
compared with a conventional TF*IDF based search. In the latter, the importance of
the terms is based on the frequency of occurrence. For an NL query (not a Boolean
query), any term can be omitted in the search result if the remaining terms give an
acceptable relevancy score. In the case of a Boolean query, this statement is true for
each of its conjunctive members. In a thesaurus-based search, we know which terms
should occur in the answer and which terms must occur there; otherwise, the search
result becomes irrelevant.

8.2.2 Thesaurus-Based Answer Selection

To use a thesaurus to filter out irrelevant answers, we search for a thesaurus path
(down to a leaf node, if possible) that is the closest to the given question in terms of
the number of entities from this question. Then, this path and leaf node most
accurately specifies the meaning of the question, and constrains which entities
must occur and which should occur in the answer, to be considered relevant. If the

8.2 Improving Chatbot Relevance by Thesauri 225

n-th node entity from the question occurs in the answer, then all k < n entities should
occur in it as well.

For a thesaurus-supported search, we use two conditions:

• Acceptability condition. It verifies that all of the essential words from the query
that exist in a thesaurus path are also in the answer.

• Maximum relevance condition. It finds words from the query that exist in a
thesaurus path and are in the answer. It then computes the score based on the
number of found essential and other keywords.

For the majority of search applications, the acceptability condition is easier to
apply than the Maximum relevance condition: An answer ai 2 A is acceptable if it
includes all of the essential (according to is_about) keywords from question Q, as
found in the thesaurus path Tp 2T. For any thesaurus path Tp that covers the question
q (the intersections of their keywords is not empty), these intersection keywords
must be in the acceptable answer ai.

8 Tp 2T: Tp \ q 6¼∅) ai � Tp \ q

For the best answer (most accurate) we write

abest : ∃ Tp max(cardinality (ai \(Tp \ q))

A thesaurus-based relevance score can be defined as the value of the cardinality
(ai\(Tp \ q), which is computed for all Tp that cover q. Then, the best answer score
(abest) ¼ max {ai}Tp (cardinality (ai \(Tp \ q))) is found among the scores for all of
the answers A. The thesaurus-based score can be combined with the other scores
such as the TF*IDF, popularity, the temporal/decay parameter, location distance,
pricing, linguistic similarity, and other scores for the resultant ranking, depending on
the search engine architecture. In our evaluation, we will be combining this score
with the linguistic similarity score.

For a sentence (a set of keywords) s and a thesaurus path Tp, s \ Tp is the
operation of finding a set of keywords that are the labels of a path Tp in thesaurus T.
In general, there are thesaurus paths that cover a given question q, and each result of
s \ Tp must be intersected with a question. Having multiple paths that cover a given
query q means that this query has multiple meanings in this domain; for each such
meaning a separate set of acceptable answers is expected.

Hence, the reader can see that the thesauri are designed to support computing the
is_about relation. Given a query q and a thesaurus T, we find the path Tp in such a
way that is_about(q, Tp \ q).

Let us consider the thesaurus example in Fig. 8.2 for the query ‘How can tax
deduction be decreased by ignoring office expenses’, q ¼ {how, can, tax, deduct
(ion), decreas(ed)-by, ignor(ing), office, expense} and A ¼ {

a1 ¼ {deduct, tax, business, expense, while, decreas(ing), holiday, travel, away,
from, office},

a2 ¼ {pay, decreas(ed), sales-tax, return, trip, from, office, to, holiday, no, deduct
(ion)},

226 8 Building Chatbot Thesaurus

a3 ¼ {when, file, tax, return, deduct, decrease-by, not, calculate, office, expense,
and, employee, expense}}.

We will not consider tokenization and word form normalization issues in our
examples, and we will show endings in brackets for convenience. Note that, in
terms of keyword overlap, a1, a2 and a3 all look like good answers.

For q, we have this query covered by Tp ¼ {<tax> – <deduct> – < decrease-
by>-<office-expense>}. Let us calculate the thesaurus score for each answer:

score(a1) ¼cardinality(a1 \(Tp \ q)) ¼ cardinality({tax, deduct}) ¼ 2;
score(a2) ¼ cardinality({tax, deduct, sales_tax}) ¼ 3;
socre(a3) ¼ cardinality({tax, deduct, decrease-by, office-expense}) ¼ 3; Note that

this answer is the only answer that passes the acceptability criterion.

Our next example concerns the disambiguation problem. For a question

q¼ “When can I file an extension for the time for my tax return?”

let us imagine two answers:

a1 ¼ “You must file form 1234 to request a 4 month extension of time to file your tax
return”

a2¼ “You must download a file with the extension ‘pdf’, complete it, and print it to
do your taxes”.

We expect the closest thesaurus path to be:

Tp ¼ {<tax> -< file>-<return> -< extension-of-time>}

Here, tax is a main entity, file and return we expect to be in the seed, and extension-
of-timewould be the learned entity; as a result, a1will match with thesaurus and is an
acceptable answer, and a2 is not.

Another way to represent thesaurus is not to enforce it to be a tree (least general)
but to allow only single node for each label instead (Fig. 8.3).

tax

return

extension-of-time

deduct
decrease-by

on-income

on-property

business

medical-expense

sales-tax

401-k

office-expense

travel

medical-expense

file

Fig. 8.2 An example of a fragment of a thesaurus

8.2 Improving Chatbot Relevance by Thesauri 227

F
ig
.8

.3
A
th
es
au
ri
vi
su
al
iz
at
io
n
to
ol

228 8 Building Chatbot Thesaurus

8.2.3 Thesaurus-Based Relevance Verification Algorithm

We now outline the algorithm, which takes a query q, runs a search (outside of this
algorithm), obtains a set of candidate answers a and finds the best acceptable answer
according to the definitions that we introduced in the previous section.

The input: query q
The output: the best answer abest

1. For a query q, obtain a set of candidate answers A by the available means (using
keywords, using an internal index, or using an external index of search engine
APIs);

2. Find a path in thesaurus Tp that covers maximal terms in q, along with other paths
that cover q, to form a set P ¼ {Tp}.
Unless an acceptable answer is found:

3. Compute the set Tp \ q.
For each answer ai 2 A

4. compute ai \(Tp \ q)) and apply an acceptability criterion.
5. compute the score for each ai.
6. compute the best answer abest and the set of acceptable answers Aa.

If no acceptable answer is found, then return to 2 for the next path from P.

7. Return abest and the set of acceptable answers Aa if available.

8.3 Building Thesauri

8.3.1 Thesaurus Construction as a Process of Learning
and Web Mining

Our main hypotheses for automated learning thesauri on the web is that common
expressions between search results for a given set of entities give us parameters of
these entities. Formation of the thesaurus follows an unsupervised learning style,
once the set of seed thesaurus entities is given. This approach can be viewed as a
human development process, where a baby explores a new environment and forms
new rules. The initial set of rules is set genetically, and the learning process adjusts
these rules to a specific habituation environment to make the rules more sensitive
(and therefore allows more beneficial decision making). As new rules are being
accepted or rejected during their application process, exposure to new environments

8.3 Building Thesauri 229

facilitates formation of new specific rules. After the new, more complex rules are
evaluated and some portion of these newly formed rules is accepted, the complexity
of the rules grows further, to adapt to additional peculiarities of the environment.

We learn new entities to extend our thesaurus in a similar learning setting. The
thesaurus learning process is iterative: at each new learning step, we add new edges
to the nodes that are currently terminal. We start with the seed thesaurus, which
enumerates a few of the main entities of a given domain and the relations of these
entities with a few domain-determining entities. For example, the seed for the tax
domain will include the relationships.

tax – deduct tax-on-income tax-on-property,

where tax is a domain-determining entity and {deduct, income, property} are the
main entities in this domain. The objective of thesaurus learning is to acquire further
parameters of existing entities such as tax – deduct. In the next iteration of learning,
these parameters will be turned into entities, to enable a new set of parameters to be
learned, such as sales-tax, 401k (Fig. 8.2).

Each learning iteration is based on web mining. To find parameters for a given set
of tree leaves (current entities), we go to the web and try to obtain common
expressions between the search results (snippets) for the query formed for the current
tree paths (Fig. 8.3). For the example above, we search for tax-deduct, tax-on-
income, and tax-on-property and extract words and expressions that are common
among the search results. Common words are single verbs, nouns, adjectives and
even adverbs, prepositional phrases or multi-words in addition to prepositional, noun
and verb phrases, which occur in multiple search results. Section 8.3 explains how
to extract common expressions between search results and form a new set of current
entities (thesaurus leaves).

After such common words and multi-words are identified, they are added as new
entities to the list of existing entities. For example, for the path tax – deduct newly
learned entities can be.

tax – deduct ! decrease-by tax – deduct ! of-income
tax – deduct ! property-of tax – deduct ! business
tax – deduct ! medical-expense.

The format here is existing_entity ! its parameter (to become a new_entity);

where ‘!’ here is an unlabeled edge of the thesaurus extension at the current
learning step.

Next, from the path in the thesaurus tree tax – deduct, we obtain five new paths.
The next step is to collect the parameters for each path in the new set of leaves for the
thesaurus tree. In our example, we run five queries and extract parameters for each of
them. The results will resemble the following:

230 8 Building Chatbot Thesaurus

tax-deduct-decrease-by ! sales
tax-deduct-decrease-by !401-K
tax-deduct-decrease-by ! medical

tax-deduct – of-income ! rental
tax-deduct – of-income ! itemized
tax-deduct – of-income ! mutual-funds

For example, searching the web for tax-deduct-decrease allows the discovery of an
entity sales-tax, which is associated with a decrease in a tax deduction, usually with
the meaning ‘sales tax’ (underlined in Fig. 8.4). The commonality between snippets
shows that the sales tax should be accounted for while calculating tax deduction; and
not doing something that would decrease it.

Hence, the thesaurus is built via inductive learning from web search results in an
iterative mode. We start with the thesaurus seed nodes, and then we find web search
results for all of the currently available graph paths. Next for each commonality
found in these search results, we augment each of the thesaurus paths by adding
respective leaf nodes. In other words, for each iteration, we discover the list of
parameters for each set of currently available entities, and then, we turn these
parameters into entities for the next iteration.

The thesaurus seed is formed manually or can be compiled from available
domain-specific resources. Seed thesaurus should contain at least 2–3 nodes, to

How to Decrease Your Federal Income Tax | eHow.com
the Amount of Federal Taxes Being Withheld; How to Calculate a Mortgage Rate After
Income Taxes; How to Deduct Sales Tax From the Federal Income Tax

Itemizers Can Deduct Certain Taxes
... may be able to deduct certain taxes on your federal income tax return? You can take
these deductions if you file Form 1040 and itemize deductions on Schedule
A. Deductions decrease ...

Self Employment Irs Income Tax Rate Information & Help 2008, 2009 ...
You can now deduct up to 50% of what has been paid in self employment tax. · You are able
to decrease your self employment income by 7.65% before figuring your tax rate.

How to Claim Sales Tax | eHow.com
This amount, along with your other itemized deductions, will decrease your taxable ... How
to Deduct Sales Tax From Federal Taxes; How to Write Off Sales Tax; Filling Taxes with ...

Prepaid expenses and Taxes
How would prepaid expenses be accounted for in determining taxes and accounting for ... as
the cash effect is not yet determined in the net income, and we should deduct a decrease,
and ...

How to Deduct Sales Tax for New Car Purchases: Buy a New Car in ...
How to Deduct Sales Tax for New Car Purchases Buy a New Car in 2009? Eligibility
Requirements ... time homebuyer credit and home improvement credits) that are available
to decrease the ...

Fig. 8.4 Search results on Bing.com for the current thesaurus tree path tax-deduct-decrease

8.3 Building Thesauri 231

http://bing.com

enable the thesaurus growth process to have a meaningful start. A thesaurus seed can
include, for example, a glossary of specific knowledge domain, readily available for
a given vertical domain, such as http://www.investopedia.com/categories/taxes.asp
for tax entities.

8.3.2 Thesaurus-Building Algorithm

We outline the iterative algorithm, which takes a thesaurus with its terminal nodes
and attempts to extend the terminal nodes via web mining to acquire a new set of
terminal nodes. At the iteration k, we acquire a set of nodes by extending the current
terminal node ti with tik1, tik2 This algorithm is based on the operation of
generalization, which takes two texts as sequences <lemma(word), part-of-
speech > and gives the least general set of texts in this form (Chap. 5). We outline
the iterative step:

Input: Thesaurus Tk with terminal nodes {t1,t2 . . . tn}
A threshold for the number of occurrences to provide sufficient evidence for

inclusion into Tk: th(k, T).
Output: extended thesaurus Tk + 1 with terminal nodes {t1k1, t1k2, . . ., t2k1, t2k2, . . .

tnk1, tnk2}

For each terminal node ti

1. Form a search query as a path from the root to ti, q ¼ {troot, . . ., ti};
2. Run a web search for q and obtain a set of answers (snippets) Aq.

3. Compute a pair-wise generalization (Sect. 8.4) for the answers Aq:
Λ (Aq) ¼ a1 ^a2, a1 ^a3, . . ., a1 ^am, . . ., . . ., am-1 ^am,

4. Sort all of the elements (words, phrases) of Λ (Aq) in descending order of the
number of occurrences in Λ (Aq). Retain only the elements of Λ (Aq) with the
number of occurrences above a threshold th(k, T). We call this set Λhigh (Aq).

5. Subtract the labels from all of the existing thesaurus nodes from Λhigh (Aq):
Λnew (Aq) ¼ Λhigh (Aq)/Tk.

6. For each element of Λhigh (Aq), create a thesaurus node tihk, where h2 Λhigh (Aq),
and k is the current iteration number, and add the thesaurus edge

(ti,, tihk,) to Tk.

The default value of th(k, T) is 2. However, there is an empirical limit on how
many nodes are added to a given terminal node at each iteration. This limit is 5 nodes
per iteration; as a result, we take the five highest numbers of occurrences of a term in
distinct search results. This constraint helps maintain the tree topology for the
thesaurus that is being learned.

232 8 Building Chatbot Thesaurus

http://www.investopedia.com/categories/taxes.asp

Given the algorithm for the iteration step, we apply it to the set of main entities in
the first step, to build the whole thesaurus:

Input: Thesaurus To with nodes {t1,t2 . . . tn} which are the main entities
Output: Resultant thesaurus T with terminal nodes

Iterate through k:

Apply iterative step to k
If Tk + 1 has an empty set of nodes to add, then stop

8.3.3 An Example of Thesaurus Learning Session

We will now illustrate the algorithm introduced above. Let us imagine that we have a
seed expression tax-deduct. We will perform the following four steps:

1. Obtain search results for the currently available expressions.
2. Select attributes based on their linguistic occurrence (highlighted in Fig. 8.5). The

number of occurrences should be above a specific threshold (and above 2).
3. Find common attributes (commonalities between the search results, highlighted

in dark-grey, such as ‘overlook’).
4. Extend the thesaurus path by adding the newly acquired attribute

Tax-deduct-overlook

Next, we proceed with our example and extend the thesaurus tree path tax-deduct-
overlook (Fig. 8.6).

The learning steps now are as follows:

1. Obtain search results for “tax deduct overlook”;
2. Select attributes (modifiers of entities from the current thesaurus path)
3. Find common expressions, such as ‘PRP-mortgage’ in our case
4. Extend the thesaurus path by adding newly acquired attributes

Tax-deduct-overlook – mortgage,
Tax-deduct- overlook – no_itemize.

Having built the full thesaurus, we can now apply it to filter out search results that
do not cover the thesaurus paths properly. For a query ‘can I deduct tax on mortgage
escrow account’ we obtain the following hits (Fig. 8.7), two of which are irrelevant
(shown in an oval frame), because they do not include the thesaurus nodes {deduct,

8.3 Building Thesauri 233

tax, mortgage, escrow_account}. Note the closest thesaurus path to the query is tax –
deduct – overlook-mortgage- escrow_account.

8.3.4 Thesaurus Snapshot

Figure 8.8 shows a snapshot of the thesaurus tree for three entities. For each entity,
given the sequence of keywords, the reader can reconstruct the meaning in the
context of the tax domain. This snapshot illustrates the idea of thesaurus-based
search relevance improvement: once the specific meaning (content, thesaurus path
in our model) is established, we can find relevant answers. The head of the expres-
sion occurs in every path that it yields (for example {sell_hobby – deductions –

collection}, {sell_hobby – making – collection}).

Fig. 8.5 The first step of thesaurus learning, given the seed tax-deduct. We highlight the terms that
occur in more than one answer and consider them to be parameters

234 8 Building Chatbot Thesaurus

8.4 Evaluation of Chatbot Relevance Boost

Performing an evaluation of constructed thesaurus is frequently conducted manually
by experts or researches themselves, or via comparison with existing ontologies like
WordNet; also, some evaluation metrics have been defined for triplets produced by
unsupervised web miner (Reinberger and Spyns 2005). In this chapter we perform
evaluation of the resultant chatbot, leveraging the techniques introduced above
instead of assessing the quality of acquired thesaurus directly. We start with an
example how syntactic generalization and thesauri can improve search relevance in a
chatbot, and proceed to the search vertical and horizontal domains.

8.4.1 Evaluation of Search Relevance Improvement

We conducted evaluation of relevance of thesaurus and syntactic generalization –

enabled search engine, based on Yahoo and Bing search engine APIs. For an
individual chatbot query, the relevance was estimated as a percentage of correct
hits among the first ten, using the values: {correct, marginally correct, incorrect}
(this is along the lines of one of the measures in Resnik and Lin (2010)). Accuracy of
a single – utterance chatbot search session is calculated as the percentage of correct
search results plus half of the percentage of marginally correct search results.
Accuracy of a particular search setting (query type and search engine type) is

Fig. 8.6 Next thesaurus learning step

8.4 Evaluation of Chatbot Relevance Boost 235

Fig. 8.7 Filtering out irrelevant Google answers using the built thesaurus

Fig. 8.8 Three sets of paths for the tax entities sell hobby, benefit, hardship

236 8 Building Chatbot Thesaurus

calculated, averaging through 20 search sessions. For our evaluation, we use the
vertical domain of tax, investment, retirement domains, evaluated in Galitsky
(2003). We also use customers’ queries to eBay entertainment and product-related
domains, from simple questions referring to a particular product, a particular user
need, as well as a multi-sentence forum-style request to share a recommendation. In
our evaluation we split the totality of queries into noun-phrase class, verb-phrase
class, how-to class, and also independently split in accordance to query length (from
3 keywords to multiple sentences). The evaluation was conducted by the authors.

To compare the relevance values between search settings, we used first 100 search
results obtained for a query by Yahoo and Bing APIs, and then re-sorted them
according to the score of the given search setting (syntactic generalization score and
thesaurus-based score). To evaluate the performance of a hybrid system, we used the
weighted sum of these two scores (the weights were optimized in an earlier search
sessions). For thesaurus-based approach, we followed the algorithm outlined in Sect.
8.2, and for syntactic generalization one – Chap. 5.

8.4.1.1 Thesaurus-Supported Vertical Search

We first evaluate the search relevance in the same domain thesaurus learning was
conducted (Table 8.1). One can see that thesaurus contributes significantly in
relevance improvement, compared to domain-independent syntactic generalization.

Notice that in a vertical domain where the thesaurus coverage is good (most
questions are mapped well into thesaurus), syntactic generalization usually improves
the relevance on its own, and as a part of hybrid system; however, there are cases
with no improvement. Thesaurus-based method is always helpful in a vertical
domain, especially for a short queries (where most keywords are represented in the
thesaurus) and multi-sentence queries (where the thesaurus helps to find the impor-
tant keywords for matching with a question).

We can conclude for a vertical domain that a thesaurus should be definitely
applied, and the syntactic generalization possibly applied, for improvement of
relevance for all kinds of questions.

8.4.1.2 Thesaurus-Supported Web Search

In a horizontal domain (searching for broad topics (Vorontsov and Potapenko 2015)
in finance-related and product-related domains of eBay) contribution of thesaurus is
comparable to syntactic generalization (Table 8.2). Search relevance is improved by
a few percents by a hybrid system, and is determined by a type of phrase and a query
length. The highest relevance improvement is for longer queries and for multi-
sentence queries. Noun phrases perform better at the baseline and also in a hybrid
system, than verb phrases and how-to phrases. Also note that generalization can
decrease relevance when applied for short queries, where linguistic information is
not as important as frequency analysis.

8.4 Evaluation of Chatbot Relevance Boost 237

T
ab

le
8.
1

Im
pr
ov

em
en
t
of

ac
cu
ra
cy

in
a
ve
rt
ic
al
do

m
ai
n

Q
ue
ry

P
hr
as
e

su
b-
ty
pe

R
el
ev
an
cy

of
ba
se
lin

e
Y
ah
oo

se
ar
ch
,%

,
av
er
ag
in
g
ov

er
20

se
ar
ch
es

R
el
ev
an
cy

of
ba
se
lin

e
B
in
g

se
ar
ch
,%

,
av
er
ag
in
g
ov

er
20

se
ar
ch
es

R
el
ev
an
cy

of
re
-s
or
tin

g
by

ge
ne
ra
liz
at
io
n,

%
,

av
er
ag
in
g
ov

er
20

se
ar
ch
es

R
el
ev
an
cy

of
re
-s
or
tin

g
by

us
in
g

th
es
au
ru
s,
%
,

av
er
ag
in
g
ov

er
20

se
ar
ch
es

R
el
ev
an
cy

of
re
-s
or
tin

g
by

us
in
g
th
es
au
ru
s
an
d

ge
ne
ra
liz
at
io
n,

%
,

av
er
ag
in
g
ov

er
20

se
ar
ch
es

R
el
ev
an
cy

im
pr
ov

em
en
t
fo
r

hy
br
id

ap
pr
oa
ch
,

co
m
p.

to
ba
se
lin

e
(a
ve
ra
ge
d
fo
r
B
in
g
&

Y
ah
oo

)

3–
4
w
or
d

ph
ra
se
s

N
ou

n
ph

ra
se

86
.7

85
.4

87
.1

93
.5

93
.6

1.
08

8

V
er
b

ph
ra
se

83
.4

82
.9

79
.9

92
.1

92
.8

1.
11

6

H
ow

-t
o

ex
pr
es
si
on

76
.7

78
.2

79
.5

93
.4

93
.3

1.
20

5

A
ve
ra
ge

82
.3

82
.2

82
.2

93
.0

93
.2

1.
13

4

5–
10

w
or
d

ph
ra
se
s

N
ou

n
ph

ra
se

84
.1

84
.9

87
.3

91
.7

92
.1

1.
09

0

V
er
b

ph
ra
se

83
.5

82
.7

86
.1

92
.4

93
.4

1.
12

4

H
ow

-t
o

ex
pr
es
si
on

82
.0

82
.9

82
.1

88
.9

91
.6

1.
11

1

A
ve
ra
ge

83
.2

83
.5

85
.2

91
.0

92
.4

1.
10

8

2–
3

se
nt
en
ce
s

O
ne

ve
rb

on
e
no

un
ph

ra
se
s

68
.8

67
.6

69
.1

81
.2

83
.1

1.
21

8

B
ot
h
ve
rb

ph
ra
se
s

66
.3

67
.1

71
.2

77
.4

78
.3

1.
17

4

O
ne

se
nt

of
ho

w
-t
o

ty
pe

66
.1

68
.3

73
.2

79
.2

80
.9

1.
20

4

A
ve
ra
ge

67
.1

67
.7

71
.2

79
.3

80
.8

1.
19

9

238 8 Building Chatbot Thesaurus

T
ab

le
8.
2

E
va
lu
at
io
n
of

se
ar
ch

re
le
va
nc
e
im

pr
ov

em
en
t
in

a
ho

ri
zo
nt
al
do

m
ai
n

Q
ue
ry

P
hr
as
e

su
b-
ty
pe

R
el
ev
an
cy

of
ba
se
lin

e
Y
ah
oo

se
ar
ch
,%

,
av
er
ag
in
g
ov

er
20

se
ar
ch
es

R
el
ev
an
cy

of
ba
se
lin

e
B
in
g

se
ar
ch
,%

,
av
er
ag
in
g
ov

er
20

se
ar
ch
es

R
el
ev
an
cy

of
re
-s
or
tin

g
by

ge
ne
ra
liz
at
io
n,

%
,

av
er
ag
in
g
ov

er
20

se
ar
ch
es

R
el
ev
an
cy

of
re
-s
or
tin

g
by

us
in
g
th
es
au
ru
s,

%
,a
ve
ra
gi
ng

ov
er

20
se
ar
ch
es

R
el
ev
an
cy

of
re
-s
or
tin

g
by

us
in
g
th
es
au
ru
s
an
d

ge
ne
ra
liz
at
io
n,

%
,

av
er
ag
in
g
ov

er
20

se
ar
ch
es

R
el
ev
an
cy

im
pr
ov

em
en
t
fo
r

hy
br
id

ap
pr
oa
ch
,

co
m
p.

to
ba
se
lin

e
(a
ve
ra
ge
d
fo
r
B
in
g
&

Y
ah
oo

)

3–
4
w
or
d

ph
ra
se
s

N
ou

n
ph

ra
se

88
.1

88
.0

87
.5

89
.2

89
.4

1.
01

5

V
er
b

ph
ra
se

83
.4

82
.9

79
.9

80
.5

84
.2

1.
01

3

H
ow

-t
o

ex
pr
es
si
on

76
.7

81
.2

79
.5

77
.0

80
.4

1.
01

8

A
ve
ra
ge

82
.7

84
.0

82
.3

82
.2

84
.7

1.
01

5

5–
6
w
or
d

ph
ra
se
s

N
ou

n
ph

ra
se

86
.3

85
.4

87
.3

85
.8

88
.4

1.
03

0

V
er
b

ph
ra
se

84
.4

85
.2

86
.1

88
.3

88
.7

1.
04

6

H
ow

-t
o

ex
pr
es
si
on

83
.0

82
.9

82
.1

84
.2

85
.6

1.
03

2

A
ve
ra
ge

84
.6

84
.5

85
.2

86
.1

87
.6

1.
03

6

7–
8
w
or
d

ph
ra
se
s

N
ou

n
ph

ra
se

78
.4

79
.3

81
.1

82
.8

83
.0

1.
05

3

V
er
b

ph
ra
se

75
.2

73
.8

74
.3

78
.3

79
.2

1.
06

3

H
ow

-t
o

ex
pr
es
si
on

73
.2

73
.9

74
.5

77
.8

76
.3

1.
03

7

A
ve
ra
ge

75
.6

75
.7

76
.6

79
.6

79
.5

1.
05

1

N
ou

n
ph

ra
se

68
.8

67
.9

71
.2

69
.7

72
.4

1.
05

9

(c
on

tin
ue
d)

8.4 Evaluation of Chatbot Relevance Boost 239

T
ab

le
8.
2

(c
on

tin
ue
d)

Q
ue
ry

P
hr
as
e

su
b-
ty
pe

R
el
ev
an
cy

of
ba
se
lin

e
Y
ah
oo

se
ar
ch
,%

,
av
er
ag
in
g
ov

er
20

se
ar
ch
es

R
el
ev
an
cy

of
ba
se
lin

e
B
in
g

se
ar
ch
,%

,
av
er
ag
in
g
ov

er
20

se
ar
ch
es

R
el
ev
an
cy

of
re
-s
or
tin

g
by

ge
ne
ra
liz
at
io
n,

%
,

av
er
ag
in
g
ov

er
20

se
ar
ch
es

R
el
ev
an
cy

of
re
-s
or
tin

g
by

us
in
g
th
es
au
ru
s,

%
,a
ve
ra
gi
ng

ov
er

20
se
ar
ch
es

R
el
ev
an
cy

of
re
-s
or
tin

g
by

us
in
g
th
es
au
ru
s
an
d

ge
ne
ra
liz
at
io
n,

%
,

av
er
ag
in
g
ov

er
20

se
ar
ch
es

R
el
ev
an
cy

im
pr
ov

em
en
t
fo
r

hy
br
id

ap
pr
oa
ch
,

co
m
p.

to
ba
se
lin

e
(a
ve
ra
ge
d
fo
r
B
in
g
&

Y
ah
oo

)

8–
10

w
or
d

si
ng

le
se
nt
en
ce
s

V
er
b

ph
ra
se

65
.8

67
.2

73
.6

70
.2

73
.1

1.
09

9

H
ow

-t
o

ex
pr
es
si
on

64
.3

63
.9

65
.7

67
.5

68
.1

1.
06

2

A
ve
ra
ge

66
.3

66
.3

70
.2

69
.1

71
.2

1.
07

4

2 se
nt
en
ce
s,

>
8
w
or
ds

to
ta
l

O
ne

ve
rb

on
e
no

un
ph

ra
se
s

66
.5

67
.2

66
.9

69
.2

70
.2

1.
05

0

B
ot
h
ve
rb

ph
ra
se
s

65
.4

63
.9

65
.0

67
.3

69
.4

1.
07

3

O
ne

se
nt

of
ho

w
-t
o

ty
pe

65
.9

66
.7

66
.3

65
.2

67
.9

1.
02

4

A
ve
ra
ge

65
.9

65
.9

66
.1

67
.2

69
.2

1.
04

9

3 se
nt
en
ce
s,

>
12

w
or
ds

to
ta
l

O
ne

ve
rb

on
e
no

un
ph

ra
se
s

63
.6

62
.9

64
.5

65
.2

68
.1

1.
07

7

B
ot
h
ve
rb

ph
ra
se
s

63
.1

64
.7

63
.4

62
.5

67
.2

1.
05

2

O
ne

se
nt

of
ho

w
-t
o

ty
pe

64
.2

65
.3

65
.7

64
.7

66
.8

1.
03

2

A
ve
ra
ge

63
.6

64
.3

64
.5

64
.1

67
.4

1.
05

3

240 8 Building Chatbot Thesaurus

Hybrid system almost always outperforms the individual components, so for a
horizontal domain, syntactic generalization is a must and thesaurus is helpful for
some questions which happen to be covered, and is useless for the majority of
questions.

8.4.1.3 Multi-lingual Thesaurus Use

Syntactic generalization was deployed and evaluated in the framework of a Unique
European Citizens’ attention service (iSAC6+) project, an EU initiative to build a
recommendation search engine in a vertical domain. As a part of this initiative, a
thesaurus was built to improve the search relevance (de la Rosa et al. 2010; Trias
et al. 2010). Thesaurus learning of the tax domain was conducted in English and then
translated in Spanish, French, German and Italian. It was evaluated by project
partners using the tool in Figs. 8.9 and 8.10, where to improve search precision a
project partner in a particular location modifies the automatically learned thesaurus

Fig. 8.9 A tool for manual adjustment of thesaurus for providing citizens recommendation services

Fig. 8.10 Sorting search results by syntactic generalization (this table) and thesaurus-based scores
for a given query “Can Form 1040 EZ be used to claim the earned income credit?”

8.4 Evaluation of Chatbot Relevance Boost 241

to fix a particular case, upload the thesaurus version adjusted for a particular location
(Fig. 8.9) and verify the improvement of relevance. An evaluator can sort by the
original Yahoo score, the syntactic generalization score, and the thesaurus score to
get a sense of how each of these scores work and how they correlate with the best
order of answers for the best relevance (Fig. 8.10).

8.4.2 Industrial Evaluation of Thesaurus-Based Text
Similarity

We subject the proposed technique of thesaurus-based and syntactic generalization-
based techniques to commercial mainstream news analysis at AllVoices.com
(Fig. 8.11). The task is to cluster relevant news items together by means of text
relevance analysis. By definition, multiple news articles belong to the same cluster if
there is a substantial overlap between the involved entities, such as geographical
locations, the names of individuals, organizations and other agents, and the relation-
ships between them. Some of these can be extracted using entity taggers and/or
thesauri built offline, and some are handled in real time using syntactic generaliza-
tion (Fig. 8.13). The latter is applicable if there is a lack of prior entity information.

In addition to forming a cluster of relevant documents, syntactic generalization
and thesaurus match was used to aggregate relevant images and videos from
different sources, such as Google Image, YouTube and Flickr. It was implemented
by assessing their relevance given their textual descriptions and tags.

The precision of the text analysis is achieved by the site’s usability (click rate):
more than nine million unique visitors per month. Recall is accessed manually;

Fig. 8.11 News articles and aggregated images found on the web and determined to be relevant to
this article

242 8 Building Chatbot Thesaurus

http://allvoices.com

however, the system needs to find at least a few articles, images and videos for each
incoming article. Recall is generally not an issue for web mining and web document
analysis (it is assumed that there is a sufficiently high number of articles, images and
videos on the web for mining, Saxena et al. 2014).

Relevance is ensured by two steps. First, we form a query to the image/video/blog
search engine API, given an event title and first paragraph and extracting and
filtering noun phrases by certain significance criteria. Second, we apply a similarity
assessment to the texts returned from images/videos/blogs and ensure that substan-
tial common noun, verb or prepositional sub-phrases can be identified between the
seed events and these media (Figs. 8.12 and 8.13).

Fig. 8.12 Explanation for relevance decision (Galitsky et al. 2011a) while forming a cluster of
news articles

Gay Pulitzer Prize-Winning Reporter Jose Antonio Vargas Comes Out as ...
Towleroad | about 10 hours ago
Gay Pulitzer Prize-Winning Reporter Jose Antonio Vargas Comes Out as Undocumented

Immigrant Jose Antonio Vargas, a gay journalist who won a Pulitzer Prize for his coverage of
the Virginia Tech shootings in the Washington Post

np [[NNP-pulitzer JJ-prize-winning NN-reporter], [JJ-* NN-
immigrant]]

Fig. 8.13 Syntactic generalization result for the seed articles and the other article mined for on
the web

8.4 Evaluation of Chatbot Relevance Boost 243

The objective of syntactic generalization is to filter out false-positive relevance
decisions made by a statistical relevance engine. This statistical engine has been
designed following (Liu and Birnbaum 2007, 2008). The percentage of false-
positive news stories was reduced from 29% to 17% (approximately 30,000
stories/month, viewed by nine million unique users), and the percentage of false
positive image attachment was reduced from 24% to 20% (approximately 3000
images and 500 videos attached to stories monthly, Fig. 8.14). The percentages

Fig. 8.14 Explanation for relevance decision while forming a cluster of news articles for the one on
Fig. 8.11. The circled area shows the syntactic generalization result for the seed articles and the
given one

244 8 Building Chatbot Thesaurus

shown are errors in the precision (100% – precision values); recall values are not as
important for web mining, assuming there is an unlimited number of resources on the
web and that we must identify the relevant ones.

The precision data for the relevance relationships between an article and other
articles, blog postings, images and videos are presented in Table 8.3. Note that by
itself, the thesaurus-based method has a very low precision and does not outperform
the baseline of the statistical assessment. However, there is a noticeable improve-
ment in the precision of the hybrid system, where the major contribution of syntactic
generalization is improved by a few percentage points by the thesaurus-based
method (Galitsky et al. 2011b). We can conclude that syntactic generalization and
the thesaurus-based methods (which also rely on syntactic generalization) use
different sources of relevance information. Therefore, they are complementary to
each other.

The accuracy of our structural machine learning approach is worth comparing
with the other parse tree learning approach based on the statistical learning of SVM.
Moschitti (2006) compares the performances of the bag-of-words kernel, syntactic
parse trees and predicate argument structures kernel, and the semantic role kernel,
confirming that the accuracy improves in this order and reaches an F-measure of
68% on the TREC dataset. Achieving comparable accuracies, the kernel-based
approach requires manual adjustment; however, it does not provide similarity data
in the explicit form of common sub-phrases (Galitsky 2013). Structural machine
learning methods are better suited for performance-critical production environments
serving hundreds millions of users because they better fit modern software quality
assurance methodologies. Logs of the discovered commonality expressions are
maintained and tracked, which ensures the required performance as the system
evolves over time and the text classification domains change.

Unlike the current approach, which takes only syntactic level as a source, tree
kernel–based methods also combine syntactic and semantic information to extract
semantic relations between named entities. With a parse tree and an entity pair, a rich
semantic relation tree structure is constructed to integrate both syntactic and seman-
tic information. Then it is subject to a context-sensitive convolution tree kernel,

Table 8.3 Improving the error rate in the precision of text similarity

Media/method of text
similarity assessment

Full size
news
articles
(%)

Abstracts
of articles
(%)

Blog
posting
(%)

Comments
(%)

Images
(%)

Videos
(%)

Frequencies of terms in
documents (baseline)

29.3 26.1 31.4 32.0 24.1 25.2

Syntactic
generalization

19.7 18.4 20.8 27.1 20.1 19.0

Thesaurus-based 45.0 41.7 44.9 52.3 44.8 43.1

Hybrid syntactic gen-
eralization and thesau-
rus-based

17.2 16.6 17.5 24.1 20.2 18.0

8.4 Evaluation of Chatbot Relevance Boost 245

which enumerates both context-free and context-sensitive sub-trees by considering
the paths of their ancestor nodes as their contexts to capture structural information in
the tree structure.

8.5 Thesaurus Builder as a Part of OpenNLP

Thesaurus learner has been implemented as a part of OpenNLP similarity component
for easy integration with search engines written in Java, especially Lucene/SOLR
based. Besides thesaurus learning, similarity component performs text relevance
assessment, accepting two portions of texts (phrases, sentences, paragraphs) and
returns a similarity score. Similarity component can be used on top of search to
improve relevance, computing similarity score between a question and all search
results, computing thesaurus match and syntactic generalization.

The Apache OpenNLP library is a machine learning based toolkit for the
processing of natural language text. It supports the most common NLP tasks, such
as tokenization, sentence segmentation, part-of-speech tagging, named entity extrac-
tion, chunking, parsing, and coreference resolution.

To start with this component, please refer to
SearchResultsProcessorTest.java in package opennlp.tools.
similarity.apps

public void testSearchOrder() runs web search using Bing API
and improves search relevance.

Look at the code of
public List<HitBase> runSearch(String query)

and then at
private BingResponse

calculateMatchScoreResortHits(BingResponse resp, String
searchQuery)

which gets search results from Bing and re-ranks them based on computed
similarity score.

The main entry to Similarity component is
SentencePairMatchResult matchRes ¼ sm.

assessRelevance(snapshot, searchQuery);
where we pass the search query and the snapshot and obtain the similarity

assessment structure which includes the similarity score.

8.5.1 Running Thesaurus Learner

To build thesaurus files, one can start with a glossary of terms, manually compiled
list, or any form of available ontology/thesaurus which can formed a seed for

246 8 Building Chatbot Thesaurus

unsupervised learning. Thesaurus learner can be used in any language OpenNLP has
a model for. In particular, we tested it for search in German, Italian and French.

There are four Java classes for building and running thesaurus:
ThesaurusExtenderSearchResultFromYahoo.java performs web

mining, by taking current thesaurus path, submitting formed keywords to Yahoo
API web search, obtaining snippets and possibly fragments of webpages, and
extracting commonalities between them to add the next node to thesaurus. Various
machine learning components for forming commonalities will be integrated in future
versions, maintaining hypotheses in various ways.

TaxoQuerySnapshotMatcher.java is used in real time to obtain a
thesaurus-based relevance score between a question and an answer.

ThesaurusSerializer.java is used to write thesaurus in specified for-
mat: binary, text or XML.

AriAdapter.java is used to import seed thesaurus data from a PROLOG
domain ontology; in future versions of thesaurus builder more seed formats and
options will be supported.

8.6 Related Work

Because text documents are available on the web as well as there being access to
them via web search engine APIs, most researchers have attempted to learn thesauri
on the basis of textual input. Several researchers explored taxonomic relations that
were explicitly expressed in text by pattern matching (Hearst 1992; Poesio et al.
2002). One drawback of pattern matching is that it involves a predefined choice of
the semantic relations to be extracted. In this chapter, to improve the flexibility of
pattern matching, we use transfer learning based on parse patterns, which is a higher
level of abstraction than sequences of words. We extend the notion of syntactic
contexts from partial cases such as noun + modifier and dependency triples (Lin
1998) toward finding a parse sub-tree in a parse tree. Our approach also extends the
handling of the internal structure of noun phrases that are used to find taxonomic
relations (Buitelaar et al. 2003). Many researchers follow Harris’ distributional
hypothesis of correlation between semantic similarity of words or terms and the
extent to which they share similar syntactic contexts (Harris 1968). Clustering
requires only a minimal amount of manual semantic annotation by a knowledge
engineer (Makhalova et al. 2015); as a result clustering is frequently combined with
pattern matching to be applied to syntactic contexts to also extract previously
unexpected relations. We improved learning thesaurus on the web by combining
supervised learning of the seed with unsupervised learning of the consecutive sets of
relationships, also addressing such requirements of a thesaurus-building process as
evolvability and adaptability to new query domains of search engine users.

There are a number of applications of formal concepts in building natural
language thesauri. A formal framework that is based on formal concept lattices
that categorize epistemic communities automatically and hierarchically, rebuilding a

8.6 Related Work 247

relevant thesaurus in the form of a hypergraph of epistemic sub-communities, has
been proposed in Roth (2006). The study of concepts can advance further by
clarifying the meanings of basic terms such as “prototype” and by constructing a
large-scale primary thesaurus of concept types (Howard 1992). Based on concept
structures, two secondary concept thesauri and one thesaurus of conceptual struc-
tures have been built, where the primary thesaurus organizes a large amount of data
and several previous thesauri into a single framework. This arrangement suggests
that many concept types exist and that the type determines how a concept is learned
and used and how it develops.

Alani and Brewster (2005) provide a tool to facilitate the re-use of existing
knowledge structures such as thesauri, based on the ranking of ontologies. This tool
uses the search terms provided by a knowledge engineer as input, and the output of an
ontology text corpora is tokenized and syntactically analyzed before attribute extrac-
tion based on syntactic structures (Grefenstette 1994; Reinberger and Spyns 2005).
Vicient et al. (2012) presents a domain-independent, automatic and unsupervised
method to detect relevant features from heterogeneous textual resources, associating
them with concepts that are modeled in background ontology. This method has been
applied to raw text and semi-structured resources. Thesaurus-based search is also
important in social search applications (Trias and de la Rosa 2013).

Product searches systems for online shopping such as the one used by eBay.com
automatically select the most appropriate items for each user, adjusting the selection
as users’ specific preferences evolve over time. This adaptation process typically
considers that a user’s interest in a given type of product always decreases with time
from the moment of the last purchase. However, the necessity of a product for a user
depends on both the nature of the owned item and the personal preferences of the
user, and it is even possible that his/her interest increases over time. The current
approach focuses on the first factor, whereas a number of studies including Blanco-
Fernández et al. (2011) suggest that the influence of time can be very different for
different users. The authors present a filtering strategy that exploits the semantics
formalized in thesaurus to link product features to time functions. The issue of
thesaurus reusability and evolution over time is addressed in Morbach et al.
(2007). The system OntoCAPE illustrates how thesauri are evolving from their
skeletal, informal specification to a complete, formal specification and the organi-
zation to follow a modular, layered structure.

To exploit textual data at a conceptual level, a majority of systems rely on
pre-annotated input, in which text has been mapped to its formal semantics
according to one or several knowledge structures (e.g. thesauri). Hence, this
approach is limited due to the manual semantic mapping process. To tackle this
problem, Vicient et al. (2013) present a domain-independent, automatic and
unsupervised thesaurus-building method that detects relevant features from hetero-
geneous textual resources, associating them with concepts modeled in a background
ontology. The current study is similarly focused on a domain-independent, auto-
matic and unsupervised method to build thesauri for search and is evaluated with
respect to the search relevance.

248 8 Building Chatbot Thesaurus

http://ebay.com

8.7 Conclusions

Although thesaurus-assisted search cannot be represented as a machine learning
task, we have learned important lessons from our industrial evaluation of the
learning transfer framework. Building thesauri via web mining and applying them
in a specific vertical domain can be viewed as inductive transfer/multi-task learning
with feature representation and a relational-knowledge transfer approach. We eval-
uated that the thesauri, which are built from a wide variety of sources, including
blogs, forums, chats, opinion data (Galitsky and McKenna 2017), and customer
support data that are adequate to handle user queries in searching for products and
recommendations in vertical domains such as shopping and entertainment at eBay.
com as well as in finance.

Thesaurus learning in this work is performed in a vertical domain, where the
ambiguity of the terms is limited, and therefore, fully automated settings produce
adequate resultant search accuracy. Hence, our approach is to find a number of
commercial applications, including as a relevancy engine at the citizens’ journalism
portal AllVoices.com and as a search and recommendation engine for Zvents.com
and eBay.com. Using thesauri is a necessary means of overall search relevance
improvement; other means include user intention recognition, learning from previ-
ous search sessions, and personalization (Moreno et al. 2012; Chu et al. 2008). Also,
automated thesauri learning is a necessary step for content and/or narrative genera-
tion (Nissan 2014).

We proposed a thesaurus-building mechanism for a vertical domain, extending an
approach in which thesaurus is formed based on specific semantic rules, specific
semantic templates or a limited corpus of texts. By relying on a web search engine
API for thesaurus construction, we are leveraging not only the whole web universe
of text but also the meanings that are formed by search engines as a result of learning
from user search sessions.

The use of syntactic generalization in this work is two-fold. First, it is used
off-line to form the node of the thesaurus tree and to find commonalities between
the search results for a given thesaurus node. Second, syntactic generalization is used
online for measuring the similarity of either two portions of text or a question and
answer and to measure the relevance between them. We demonstrated that merging
thesaurus-based methods and syntactic generalization methods improves the rele-
vance of text understanding in general, and these methods are complementary to
each other because the former uses pure meaning-based information and the latter
uses linguistic information about the involved entities.

Today, most of the thesauri that are available, including open source thesauri, are
manually constructed, and it is very difficult to adjust from one domain to another.
We look forward to applying this technology in such a way that a required thesaurus
can be automatically constructed from the latest data available on the web and to
avoid needing to reuse it.

We conclude that a full-scale syntactic processing-based approach to thesaurus
learning that relies on iterative thesaurus extension is a viable way to build thesauri

8.7 Conclusions 249

http://ebay.com
http://ebay.com
http://allvoices.com
http://zvents.com
http://ebay.com

for commercial implementations of search systems. The Java-based OpenNLP
component serves as a good illustration of the proposed algorithm, and it is ready
to be integrated with existing search engines.

References

Alani H, Brewster C (2005) Ontology ranking based on the analysis of concept structures.
K-CAP’05 Proceedings of the 3rd international conference on knowledge capture, pp 51–58

Allen JF (1987) Natural language understanding. Benjamin Cummings, Menlo Park
Amiridze N, Kutsia T (2018) Anti-unification and natural language processing fifth workshop on

natural language and computer science, NLCS’18, EasyChair Preprint no. 203
Blanco-Fernández Y, López-Nores M, Pazos-Arias JJ, García-Duque J (2011) An improvement for

semantics-based recommender systems grounded on attaching temporal information to ontol-
ogies and user profiles. Eng Appl Artif Intell 24(8):1385–1397

Buitelaar P, Olejnik D, Sintek M (2003) A proteg’e´ plug-in for ontology extraction from text based
on linguistic analysis. In: Proceedings of the international semantic web conference (ISWC)

Chu B-H, Lee C-E, Ho C-S (2008) An ontology-supported database refurbishing technique and its
application in mining actionable troubleshooting rules from real-life databases. Eng Appl Artif
Intell 21(8):1430–1442

Cimiano P, Pivk A, Schmidt-Thieme L, Staab S (2004) Learning taxonomic relations from
heterogeneous sources of evidence. In: Buitelaar P, Cimiano P, Magnini B (eds) Ontology
learning from text: methods, evaluation and applications. IOS Press, Amsterdam/Berlin

De la Rosa JL, Rovira M, Beer M, Montaner M, Gibovic D (2010) Reducing administrative burden
by online information and referral services. In: Reddick Austin CG (ed) Citizens and
E-government: evaluating policy and management. IGI Global, Hershey, pp 131–157

Dzikovska M, Swift M, Allen J, de Beaumont W (2005) Generic parsing for multi-domain semantic
interpretation. International workshop on parsing technologies (Iwpt05), Vancouver BC

Galitsky B (2003) Natural language question answering system: technique of semantic headers.
Advanced Knowledge International, Magill

Galitsky B (2005) Disambiguation via default rules under answering complex questions. Int J AI
Tools 14(1–2):157–175. World Scientific

Galitsky B (2013) Machine learning of syntactic parse trees for search and classification of text. Eng
Appl AI 26(3):1072–1091

Galitsky B (2016) Generalization of parse trees for iterative taxonomy learning. Inf Sci
329:125–143

Galitsky B (2017) Improving relevance in a content pipeline via syntactic generalization. Eng Appl
Artif Intell 58:1–26

Galitsky B, Kovalerchuk B (2006) Mining the blogosphere for contributors’ sentiments. AAAI
Spring symposium: computational approaches to analyzing weblogs, pp 37–39

Galitsky B, Kovalerchuk B (2014) Improving web search relevance with learning structure of
domain concepts. Clust Order Trees Methods Appl 92:341–376

Galitsky B, Lebedeva N (2015) Recognizing documents versus meta-documents by tree kernel
learning. FLAIRS conference, pp 540–545

Galitsky B, McKenna EW (2017) Sentiment extraction from consumer reviews for providing
product recommendations. US Patent App. 15/489,059

Galitsky B, Dobrocsi G, de la Rosa JL, Kuznetsov SO (2010) From generalization of syntactic parse
trees to conceptual graphs. ICCS 2010:185–190

Galitsky B, Kovalerchuk B, de la Rosa JL (2011a) Assessing plausibility of explanation and meta-
explanation in inter-human conflicts. A special issue on semantic-based information and
engineering systems. Eng Appl Artif Intell 24(8):1472–1486

250 8 Building Chatbot Thesaurus

Galitsky B, Dobrocsi G, de la Rosa JL, Kuznetsov SO (2011b) Using generalization of syntactic
parse trees for taxonomy capture on the web. ICCS 2011:104–117

Galitsky B, Dobrocsi G, de la Rosa JL (2012) Inferring semantic properties of sentences mining
syntactic parse trees. Data Knowl Eng 81:21–45

Grefenstette G (1994) Explorations in automatic thesaurus discovery. Kluwer Academic,
Boston/London/Dordrecht

Harris Z (1968) Mathematical structures of language. Wiley, New York
Hearst MA (1992) Automatic acquisition of hyponyms from large text corpora. In: Proceedings of

the 14th international conference on computational linguistics, pp 539–545
Heddon H (2008) Better living through thesauri. Digital Web Magazine. www.digital-web.com/

articles/better_living_through_thesauri/
Howard RW (1992) Classifying types of concept and conceptual structure: some thesauri. J Cogn

Psychol 4(2):81–111
Justo AV, dos Reis JC, Calado I, Rodrigues Jensen F (2018) Exploring ontologies to improve the

empathy of interactive BotsE. IEEE 27th international conference on enabling technologies:
infrastructure for collaborative enterprises (WETICE)

Kerschberg L,Kim W, Scime A (2003) A semantic thesaurus-based personalizable meta-search
agent. In: Truszkowski W (ed) Innovative concepts for agent-based aystems, vol. LNAI 2564,
Lecture notes in artificial intelligence. Springer, Heidelberg, pp 3–31

Kozareva Z, Hovy E, Riloff E (2009) Learning and evaluating the content and structure of a term
thesaurus. Learning by reading and learning to read AAAI Spring symposium 2009. Stanford,
CA

Lin D (1998) Automatic retrieval and clustering of similar words. In: Proceedings of COLING-
ACL98, vol 2, pp 768–773

Liu J, Birnbaum L (2007) Measuring semantic similarity between named entities by searching the
web directory. Web Intell 2007:461–465

Liu J, Birnbaum L (2008) What do they think?: aggregating local views about news events and
topics. WWW 2008:1021–1022

Makhalova T, Dmitry A, Ilvovsky, Galitsky B (2015) News clustering approach based on discourse
text structure. In: Proceedings of the first workshop on computing news storylines @ACL

Morbach J, Yang A, Marquardt W (2007) OntoCAPE – a large-scale ontology for chemical process
engineering. Eng Appl Artif Intell 20(2):147–161. https://doi.org/10.1016/j.engappai.2006.06.
010

Moreno A, Valls A, Isern D, Marin L, Borràs J (2012) SigTur/E-destination: ontology-based
personalized recommendation of tourism and leisure activities. Eng Appl Artif Intell. Available
online 17 Mar 2012

Moschitti A (2006) Efficient convolution kernels for dependency and constituent syntactic trees. In:
Proceedings of the 17th European conference on machine learning, Berlin, Germany

Nissan E (2014) Narratives, formalism, computational tools, and nonlinearity. In: Dershowitz N,
Nissan E (eds) Language, culture, computation. Computing of the humanities, law, and narra-
tives. Lecture notes in computer science, vol 8002. Springer, Berlin/Heidelberg

OpenNLP (2012) opennlp.apache.org
Pan SJ, Qiang Yang A (2010) Survey on transfer learning. IEEE Trans Knowl Data Eng 22

(10):1345–1359
Poesio M, Ishikawa T, Schulte im Walde S, Viera R (2002) Acquiring lexical knowledge for

anaphora resolution. In: Proceedings of the 3rd conference on language resources and evaluation
(LREC)

Raina R, Battle A, Lee H, Packer B, Ng AY (2007) Self-taught learning: transfer learning from
unlabeled data. In: Proceedings of 24th international conference on machine learning, pp
759–766

Ravichandran D, Hovy E (2002) Learning surface text patterns for a question answering system. In:
Proceedings of the 40th annual meeting of the Association for Computational Linguistics (ACL
2002), Philadelphia, PA

References 251

http://www.digital-web.com/articles/better_living_through_thesauri/
http://www.digital-web.com/articles/better_living_through_thesauri/
https://doi.org/10.1016/j.engappai.2006.06.010
https://doi.org/10.1016/j.engappai.2006.06.010
http://opennlp.apache.org

Reinberger ML, Spyns P (2005) Generating and evaluating triples for modelling a virtual environ-
ment. OTM workshops, pp 1205–1214

Resnik P, Lin J (2010) Evaluation of NLP systems. In: Clark A, Fox C, Lappin S (eds) The
handbook of computational linguistics and natural language processing. Wiley-Blackwell,
Oxford

Roth C (2006) Compact, evolving community thesauri using concept lattices ICCS 14 – July 17–21,
2006, Aalborg, DK

Sánchez D (2010) A methodology to learn ontological attributes from the web. Data Knowl Eng 69
(6):573–597

Sánchez D, Moreno A (2008) Pattern-based automatic thesaurus learning from the web. AI
Commun 21(1):27–48

Sano AVD, Imanuel TD, Calista MI, Nindito H, Condrobimo AR (2018) The application of
AGNES algorithm to optimize knowledge base for tourism chatbot. International conference
on information management and technology (ICIMTech)

Saxena N, Tiwari NK, Husain M (2014) A web search survey: a study for fusion of different sources
to determine relevance. 2014 international conference on computing for sustainable global
development (INDIACom)

Sidorov G (2013) Syntactic dependency based N-grams in rule based automatic English as second
language grammar correction. Int J Comput Linguist Appl 4(2):169–188

Trias A, de la Rosa JL (2013) Survey of social search from the perspective of the village paradigm
and online social networks. J Inf Sci 39(5):688–707

Trias A, de la Rosa JL, Galitsky B, Drobocsi G (2010) Automation of social networks with QA
agents (extended abstract). In: van der Hoek, Kaminka L, Luck, Sen (eds) Proceedings of 9th
international conference on autonomous agents and multi-agent systems, AAMAS ‘10, Toronto,
pp 1437–1438

Vicient C, Sánchez D, Moreno A (2012) An automatic approach for ontology-based feature
extraction from heterogeneous textual resources. Eng Appl Artif Intell. Available online
12 Sept 2012

Vicient C, Sánchez D, Moreno A (2013) An automatic approach for ontology-based feature
extraction from heterogeneous textual resources. Eng Appl Artif Intell 26(3):1092–1106

Vorontsov K, Potapenko A (2015) Additive regularization of topic models. Mach Learn 101
(1–3):303–323

Wang K, Ming Z, Chua TS (2009) A syntactic tree matching approach to finding similar questions
in community-based QA services. In: Proceedings of the 32nd international ACM SIGIR
conference on Research and development in information retrieval (SIGIR ’09). ACM,
New York, NY, USA, pp 187–194

252 8 Building Chatbot Thesaurus

Chapter 9
A Content Management System
for Chatbots

Abstract In this chapter we describe the industrial applications of our linguistic-
based relevance technology for processing, classification and delivery of a stream of
texts as data sources for chatbots. We present the content pipeline for eBay enter-
tainment domain that employs this technology, and show that text processing
relevance is the main bottleneck for its performance. A number of components of
the chatbot content pipeline such as content mining, thesaurus formation, aggrega-
tion from multiple sources, validation, de-duplication, opinion mining and integrity
enforcement need to rely on domain-independent efficient text classification, entity
extraction and relevance assessment operations.

Text relevance assessment is based on the operation of syntactic generalization
(SG, Chap. 5) which finds a maximum common sub-tree for a pair of parse trees for
sentences. Relevance of two portions of texts is then defined as a cardinality of this
sub-tree. SG is intended to substitute keyword-based analysis for more accurate
assessment of relevance that takes phrase-level and sentence-level information into
account. In the partial case of SG, where short expression are commonly used terms
such as Facebook likes, SG ascends to the level of categories and a reasoning
technique is required to map these categories in the course of relevance assessment.

A number of content pipeline components employ web mining which needs SG
to compare web search results. We describe how SG works in a number of compo-
nents in the content pipeline including personalization and recommendation, and
provide the evaluation results for eBay deployment. Content pipeline support is
implemented as an open source contribution OpenNLP.Similarity.

9.1 Introduction

Building a relevant and efficient content management system (CMS) is a key to
successful consumer application such as chatbot. In recent years, a number of
scalable, adjustable, and intelligent platforms have been built for content processing,
providing an effective information access for users. These platforms are capable of
collecting relevant information, filtering out low quality unreliable pieces of content,
de-duplication, aggregating it from multiple sources, achieving integrity between

© Springer Nature Switzerland AG 2019
B. Galitsky, Developing Enterprise Chatbots,
https://doi.org/10.1007/978-3-030-04299-8_9

253

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04299-8_9&domain=pdf

various data components, and generating search, recommendation and personaliza-
tion results. Moreover, these platforms support search engine optimization, mobile
application, share content with partner network, and other functionality. In this
chapter that is written as a report from the field, we share the experience building
a CMS for eBay.com entertainment, with the focus on text relevance. This CMS has
also been providing entertainment content for indexing by Bing.com.

The main limitation of currently available CMSs such as WordPress, Atlassian,
Kentico, Drupal, Hubspot and others is a quality, authenticity and integrity of
content obtained from various sources including the web, text relevance analysis,
relevance assessment to potential user intent and other sematic features. The other
shortcoming is that these CMS are not well suited to handle conversational data for
chatbots.

Content is a key to a chatbot acceptance by a user audience. Content quality is
essential at many levels—ranging from FAQ pages to hard-coded chatbot dialogues
to an extended, comprehensive content delivered to a user. Also, there is a unique set
of restrictions and user needs associated with chatbot content. Nowadays, developers
are using legacy tools and repurposing or retrofitting legacy content into chatbots, so
in a lot of cases users are unimpressed. The challenge here is that in many cases the
authors of chatbot content rely on yesterday’s tools for building content for the
modern, state-of-the-art interfaces. Properly designed chatbot content is not a plain
structure but instead a well designed conversations (Tneogi 2018). Content that is
designed for bots must have short and precise pieces of text that are quick to
consume, emojis for meaningful, visual attention, and a high ratio of images and
gifs in chatbot utterances.

For manual content creation for chatbots, one would need a wsyiwig editor. It is a
system in which content, text and graphics, can be edited in a form closely resem-
bling its appearance when printed or displayed as a finished product, such as a
printed document, web page, or slide presentation. Such editor is designed for
writing short pieces of content, internal emoji and image content-driven suggestions.
The editor would need to be enabled with visualizing the content as it is created in
various bot platform interfaces and a smart way to adapt it to different needs. Also,
this CMS would need a speech-to-text engine built for the ability to support voice
bot. Finally, such CMS would need a text analysis and relevance tool at runtime that
helps authors ensure their content style is conversational. This is the focus of this
chapter. Figure 9.1 shows a front end of a simple chatbot CMS that manages intent-
response pairs of dialogflow.com. For a robust chatbot, a much more complex form
of association between requests and responses is needed, combining search engi-
neering (Chaps. 5, 6, 7, and 8) and dialogue management (Chaps. 10 and 11).

In a domains such as entertainment or finance, a significant portion of content
cannot be structured or formalized, so needs to be handled as text. If the relevance
recall is low, users’ access to products and services is limited; they do not get search,
recommendation and personalization results they are expecting. If, on the contrary,
precision is low, users get lower quality results than potentially available. Also, the
users would lose trust in a web portal such as eBay.com (Galitsky et al. 2011). In this
chapter we demonstrate how a use of linguistic technology such as machine learning

254 9 A Content Management System for Chatbots

http://ebay.com
http://bing.com
http://dialogflow.com
http://ebay.com

syntactic parse trees for relevance assessment can benefit a CMS. To systematically
learn linguistic structures, we rely the syntactic generalization (SG, Chap. 5) oper-
ation which finds a common maximum sub-trees for parse trees of sentences. For
paragraphs of text, we extend this operation to such structures as parse thicket,
expressing information on how sentences are connected in a paragraph, in addition
to parse trees of this paragraph (Galitsky 2014).

The input of the content pipeline presented here is a stream of international
entertainment events, ranging from concerts to shows, from sports to industry
meet-ups, which are coming at a speed of up to 6000 per day. An event data,
obtained from various sources, frequently inconsistent, need to come through the
content pipeline as fast as possible. It should appear in the index for search and
recommendation to become available to users. Ticket availability stream at the scale
of eBay is massive data as well, but will not be considered in this chapter. Event data
from different sources varies a lot in structure and the kind of information available,
and mostly occur in the form of unstructured text. Opinion data on events, per-
formers and venues are even more diverse in terms of structure and linguistic
phrasing. Also, data distribution between the sources, and data nature varies with
seasons, travels of performers and unexpected circumstances such as political
situations in various countries. The content pipeline should be able to adapt to abrupt
variations in volume and linguistic properties of incoming content stream (Galitsky
2003). Solving classification problems is an important task of the content pipeline,
and these problems need to be solved in the dynamically changing environments
(Brzezinski and Stefanowski 2011; Kuncheva 2004), especially adapting to partic-
ular user interests. Required text mining technology needs to be expressive, sensitive
and domain-independent at the same time (Sidorov 2014). Using keyword-level
classifiers for our domain would lead to a huge classification dimension and possibly

Fig. 9.1 A trivial CMS for
a chatbot. Associations
between intents and
responses are maintained

9.1 Introduction 255

over-fitting, so we need a more accurate representation of linguistic data such as
parse trees and machine learning means for them (Galitsky et al. 2012).

Typically, relevance in content pipelines is achieved via statistics of keywords.
As fast and efficient processing becomes more available in industry, parsing and
learning of its results becomes plausible. Platforms like Hadoop and their
implementations such as Cascading (2013) and Mahout (2013) are capable of
parsing and learning a large amount of textual data, but the relevance and semantic
features are left behind. We will evaluate how an implementation of machine
learning of parse trees can improve a number of automated CMS tasks. Also, an
open source implementation for relevance has been built, so it can be integrated and
tested in other arbitrary content pipelines.

In contrast to content pipelines performing in restricted domains such as customer
relationship management (Galitsky and de la Rosa 2011) or a vertical product
domain, relevance cannot be based on domain knowledge in such a broad domain
as eBay entertainment. It is not plausible to build thesaurus for all kinds of enter-
tainments, maintain and update it to achieve relevance (Galitsky 2013). Instead, we
mostly rely on domain-independent linguistic information. We show that once
domain-independent efficient text matching component is developed, taking advan-
tage of the rich linguistic information available for learning of parse tree, the same
component is used to solve a spectrum of relevance-related problems. Although a
number of distributed systems including the open-source ones have been built to
address the scalability problem, the relevance for content processing and delivery is
still a major bottleneck for effective content-based systems.

9.1.1 From Search to Personalized Recommendations
to Chatbots

One of the purposes of the content pipeline is to provide user recommendations. In
this section we introduce a social profile-based personalized recommendation task. It
relies on a special case of SG where instead of syntactic information we use the
thesaurus of categories. However, we use the terms SG for all text relevance tasks in
the content pipeline.

In the eBay entertainment domain, recommendations include performances and
performers, movies and shows, as well as other things to do. Personalized recom-
mendations are becoming more and more popular to enable people to efficiently get
products and services. Internet entrepreneurs have started to believe that personal-
ization is one of the next big steps towards the semantic web. Everything users “like”
on sites like Facebook gives others information about the things users are interested
in. If one gets enough of that kind of data, as well as similar data from the people he
is connected to, he can effectively judge a person’s tastes and interests.

Social data-based personalization is an important feature of context-aware sys-
tems which can both sense and react, based on their environments. Although a high

256 9 A Content Management System for Chatbots

number of successful user interfaces employ user behavior, inter-personal trust and
attempt to recognize user intentions (Varshavsky et al. 2010), a context-aware
methodology of adjustment to prior knowledge about users is still to be developed.

While users are in the process of starting to appreciate the value of personalization
and learn to adjust their profiles for efficient online personalization, the relevance
and timeliness of personalization is still quite low nowadays. In this chapter we
address the root problem of personalization quality, propose a solution which
worked for Zvents.com of eBay, and evaluate it for a vertical recommendation
domain.

9.2 Relevance-Related Problems in a Content-Management
System

The content pipeline to be introduced was designed and implemented in eBay
Entertainment and ticket sales domain. The relevance technology that supports this
pipeline has been first deployed and evaluated at AllVoices.com. Then
SG-supported relevance was used at a things-to-do recommendation portal Zvents.
com, acquired by StubHub, the ticket sales site of eBay to serve as an entertainment
content provider. Although we evaluated relevance processing in the entertainment
domain only, the expectations are that relevance can be supported in any chatbot
domain by similar means.

The content pipeline includes data mining of web and social networks, content
aggregation, reasoning, information extraction, question answering and advertising.
The accuracy of search and recommendation is primarily determined by the quality
of content, which in turn depends on the accuracy of operations with content by each
pipeline component. The latter is essentially a relevance-based operation, therefore,
as its accuracy goes up, the performance of the overall content portal improves.

Our presentation is focused on the support of content pipeline units by the SG and
other engines: web mining, classification and rules. We enumerate the components
of content pipeline, and its units with the focus on those where relevance assessment
between various portions of texts is required. In Evaluation section we will do three
kinds of assessments for the contribution of SG:

1. How stand-alone performance of content units is affected by SG;
2. How the performance of the overall search and recommendation system is

affected by SG;
3. How search relevance itself is supported by SG.

In the production environment, SG component includes an implementation of
linguistic syntactic generalization algorithm only. In our evaluation settings, we
perform the comparison of SG versus tree kernel (TK) and also against the baseline
algorithms generally accepted in industry, such as Lucene TF*IDF and WEKA.

9.2 Relevance-Related Problems in a Content-Management System 257

http://zvents.com
http://allvoices.com
http://zvents.com
http://zvents.com

9.2.1 Content Pipeline Architecture

The input for the content pipeline includes various sources of information that are
intended to be provided for users. The output is the search and recommendation
index which stores the refined information ready to be gives as a search or recom-
mendation result. Also, the content pipeline provides the feed for other search
engines that include the structured results in entertainment domain, such as Bing.
com (Fig. 9.2).

We first enumerate the four components in the content pipeline, then their units,
followed by enumerating problems being solved by an SG or other engines within
each unit.

The chatbot content pipeline includes the four following component (Fig. 9.2):

1. Content collection from multiple sources (automated finding content on the web
relevant to given topic, feed processing;

2. Content aggregation, cleaning, enrichment (deduplication, cleaning, entity
extraction, forming links between different pieces of content with the same entity,
auto-generation or discovering of missing pieces of content, compare with
(Mavridis and Symeonidis 2014));

3. Content transformation to a form for search and recommendation (coordinating
factual and opinionated content, building index for search and recommendation;

4. Content delivery (search and recommendation for web and mobile, personaliza-
tion, search engine marketing, sharing with partners).

The first component, Content Collection, uses various sources to collect pieces of
content to assure as broad and deep coverage of a domain as possible. It combines
feed from content partners, usually well structured, with content found on the web,
usually unstructured but timely and opinionated, frequently of higher interest to
users. Such content is collected from various sources on the web, from blogs and
forums to public chats and social network sources. Thesaurus of entities is built here
to support search (Chap. 8 and Galitsky and Kovalerchuk 2014).

Feeds, data
from the web,
user submitted
data

Content Pipeline

Collection Transfor-
mation

Aggregation

SG

Index for search
and
recommendation

Feed for partners
(Bing.com,
regional online
magazines)

Delivery

Fig. 9.2 Input, output and the components of content pipeline and its relevance support by SG

258 9 A Content Management System for Chatbots

http://bing.com
http://bing.com

The second component, Content Aggregation makes sure the pieces of content
are transformed into a cohesive form, without redundancies and duplications. Irrel-
evant, ambiguous portions of content need to be filtered, as well as the content
coming from the authors with low reputations and from the sources which are not
reputable. The opinionated content should be separated from the factual. Also,
pieces of content about entities should be coordinated, for example a description
of a concert, description of its performer, and a magazine article about this
performer.

The third component, Content Transformation concerns building the index for
search and recommendation. To do that, we need to take into account the strength of
association of the information with the entities, the factual vs the opinionated content
for an entity such as a performer (event data vs user feedback), entities position it
time and their geo-location (where and when a concert is happening). Content
inversion groups the portions of text by entertainment entities, better suitable for
recommendations. This step performs ranking of pieces of content with respect to
entities and their attributes (such as a performer and her music genre).

The fourth component, Content Delivery performs content distribution to users
and content partners. Users consume content in the active form (searching), passive
form (recommendation), individually adjusted form (personalization), based on
knowledge about this user, obtained, in particular, from social network sources.
Partners consume the content for further aggregation. Content delivery occurs on the
web and via mobile, and for the latter a web mining support for speech recognition is
required, to filter out meaningless speech recognition results.

This chatbot CMS can be viewed as the one converting arbitrary unstructured
content on the web to a well-structured, tagged, rated content (Galitsky and Levene
2007) with properly inter-connected pieces (referential integrity), ready to be con-
sumed by users and content partners. For example, Bing consumes pipeline content
as a set of structured text fields, tagged with types of user interest, with ratings in
such dimensions as kids vs adult, professional vs amateur. However, at the same
time, Bing is the source of this content: it is mined from the web using Bing search
engine API. For Bing, the content pipeline converts arbitrary pieces of text distrib-
uted in the web (and indexed by Bing) into a structured, organized form.

Each of the above components contains a number of processing units, and some
of them need to rely on SG and other engines. We view the content pipeline from the
standpoint of how relevance assessments are supported by SG engine (Fig. 9.3).
When we have to establish a relation between two portions of texts, varying from a
phrase to a paragraph, we use the SG component. For the de-duplication component,
we need a very close distance between texts to confirm respective items as being
identical. Conversely, for an article-item match component, which finds an internal
item (such as an event) in an arbitrary article on the web, the distance between texts
for content relatedness can be rather high. On the other hand, harvesting, automated
finding content on the web, domain thesaurus, inversion of content, building search
index and other components are supported by other engines.

9.2 Relevance-Related Problems in a Content-Management System 259

9.2.2 The Engines Assuring CMS Relevance

We enumerate content processing engines, each of which supports a number of units
in the content pipeline:

1. Syntactic Generalization (SG) engine which computes similarity between por-
tions of text.

2. Rule Engine (RE) which deals with rule systems for information extraction,
sentiment analysis, and personalization units when the rules are inconsistent
and the results of rule application depend on the order the rules are applied.

Fig. 2: The detailed content pipeline architecture

Content transformation to a form for search &
recommendation

Aggregation & cleaning

Content delivery

CollectionHarvesting
blogs, forums,
images, videos,
related articles

Building ads
from webpages

Making search
more relevant

Conducting web
mining to
confirm/reject
duplicate candidates

Opinion mining:
filtering out irrelevant /
meaningless sentences,
sentiment analysis

Mobile

Syntactic
Generaliza
tion engine
SG

Web
mining
engine
(WM)

Inversion of
opinionated content

Providing personalized
recommendations: matching
user tags with product tags

Collecting user content

Content tagging and
classification for particular
audience. User knowledge
state analysis

Building index for
search

Automated finding content
on the web for an entity,
location, time

Building domain thesaurus

Classifi
cation
engine
(CE)

De-duplication

Finding references
between pieces of content

Providing
feed to
partners

Improving
speech
recognition

Rule
Engine
(RE)

Fig. 9.3 Detailed architecture of the content pipeline. The content processing components are on
left and the engines are on the right

260 9 A Content Management System for Chatbots

3. Web Mining (WM) engine which uses search engine API to look for information
on a particular topic, extracts information from the web on a given entity, and also
compares webpages related to entities on the web to establish a correlation
between them.

4. Text classification engine (CE), which takes a text and classifies it, given a set of
texts for positive and negative training sets. In the opinion mining unit, it is
necessary to relate a sentence into two classes, e.g. informative vs uninformative
opinion. In ad generation unit, the classes of suitable vs. unsuitable are a basis for
ad generation. In the Knowledge state of a user assessment unit, the classes are
highly knowledgeable or unknowledgeable users. Other classification tasks
include relevant/irrelevant answer, and plausible/implausible speech recognition
result. In these tasks, decision about belonging to a class cannot be made given
occurrence of the specific keywords or their frequency patters; instead, peculiar
and implicit linguistic information needs to be taken into account. It is rather hard
to formulate and even to imagine keyword-based classification rules for these
problems, hence SG is used; however finding plentiful examples for respective
classes is quite easy.

9.2.3 Content Processing Units

9.2.3.1 Harvesting Unit

Providing detailed information on local events which are less popular on a global
scale but fairly important to locals, is a key competitive advantage of the personal-
ization technology being described. The system runs a web search for event theme
keywords and location-based keywords (WM support), and then finds web search
results which looks like events, according to certain rules (RE support). These rules
include time and date constraints, price information, and some linguistic patterns
specific to event descriptions (CE support). We have formed the training dataset, and
machine learning helps to filter out search results (and web domains) which are not
events. Using this technology, we can add local events not available via feeds or the
event fetching procedure, where we extract events from the page with known format.
This component is capable of harvesting tail events since we do not need to know
specific web domains or web page formats.

Since the events are obtained by the content acquisition system from multiple
sources, they are frequently presented to users apart from their context. When content
comes from feed or manually entered, frequently background knowledge on events,
venues and performers is missing or limited. It is sometimes hard for a user to judge
how interesting and appealing a given event is, first just by looking at title, short
description, and a single image of a performer (if available). To enhance the user
experience, we harvest additional visual and opinion data to provide more information
about similar events, performers and locations.We mine for images and videos relying
on major search engines and apply additional relevance verification, making sure
entities from image captions are the same as performers, locations and other entities of

9.2 Relevance-Related Problems in a Content-Management System 261

events. Five-ten thumbnail images assist as well in the go vs. no-go decision of a user.
Verification of entities, obtained via WM, is based on SG engine. What people write
about their experience with similar events in past, how they like the performance is an
important data which supports personalized recommendations. We use major blog
search engines and also verify relevance of posting to the event by SG.

9.2.3.2 Content Mining Unit

Content mining units rely on Web Mining engine which takes an entity and searches
for its instances on the web, for given location and time. For example, entity¼ ‘fairs
& festivals’ and location ¼ ‘Boston’. Web mining component runs search engine
API, such as Bing, Yahoo, Google or Yandex to obtain search results for (fair OR
festival) AND Boston. Then web mining unit needs to classify search result into
events vs not events, and for events verify that they are indeed fairs or festivals, and
that they indeed occur in Boston.

It is of utmost importance that the content includes the latest and most accurate
information on performers and venues. For the latter, we use web mining and search
result filtering to confirm that currently stored information for a venue is correct. We
filter out search engine-optimized results trying to find an original source of venue
data, avoiding aggregator sites. A number of machine-learned rules are in action to
verify venue address from the most authentic source found.

For performers, we verify how then are represented in a number of entertainment-
related websites, assess the consistency of information among them and compute the
estimate of popularity.

9.2.3.3 Thesaurus Unit

Thesauri are used to filter out irrelevant search results by verifying that important
keywords from a query are also in a search result (Chap. 8). The thesaurus construction
process starts from the seed entities and mines available source domains for new
entities associated with these seed entities. New entities are formed by applying the
machine learning of syntactic parse trees (their generalizations) to the search results for
existing entities to form commonalities between them. These commonality expres-
sions then form parameters of existing entities, and are turned into new entities at the
next learning iteration. SG is used to form these commonality expressions.

To use the thesaurus to filter out irrelevant answers, we search for a thesaurus path
(down to a leaf node, if possible) that is closest to the given question in terms of the
number of entities from this question. Then, this path and leaf node most accurately
specifies the meaning of the question, and constrains which entities must occur and
which should occur in the answer, to be considered relevant. If the n-th node entity
from the question occurs in the answer, then all k < n entities should occur in it as
well. Example thesaurus related to CMS entities is shown in Fig. 9.4. More details
are available in Chap. 8.

262 9 A Content Management System for Chatbots

9.2.3.4 Opinion Mining Unit

One of the purpose of opinion mining is to support product recommendation. When
a user searches for a product, we provide the information about this product in the
form of opinions from other users. If a user is unsure which product to choose, we
provide recommendation based on experience of other users, similar to the given
user (if such user data is available). Hence we need to extract sentences containing
opinions about products, which can form an appropriate recommendation basis.
There are the following steps in forming the review quotes for recommendation:

1. For a given sentence, confirm that it contains an opinion about a product, and
therefore is appropriate for recommendation. Sentences which contain sentiments
about entities other than product usability should be filtered out.

2. For a given opinionated sentence, determine the knowledge state of a user to be
provided with recommendation. If the user is very knowledgeable about a
product, this sentence needs to be more specific. If the user is a beginner, this
sentence should be of rather general nature. Hence each recommendation sen-
tence needs to be classified into a class with respect to a user knowledge state.

3. Sentiment analysis, where polarity and topicality needs to be determined. Using
topicality (a product name, its feature or a category of features) is required to
assign a given sentence to a product being recommended. A polarity is important
to back up recommendation: a given product is recommended because associated
sentiment is positive and other products, whose sentiments are negative, is not
being recommended.

Fig. 9.4 CMS thesaurus

9.2 Relevance-Related Problems in a Content-Management System 263

Traditionally, the opinion mining problem is formulated as finding and grouping a
set of sentences expressing sentiments about given features of products, extracted
from customer reviews of products. A number of comparison shopping sites are
showing such features and the ‘strength’ of opinions about them as a number of
occurrences of such features. However, to increase user confidence and trust in
extracted opinion date, it is advisable to link aggregated sentiments for a feature to
original quotes from customer reviews; this significantly backs up review-based
recommendations by a shopping portal.

Among all sentences mentioning the feature of interest, some of them happen to
be irrelevant to this feature, does not really express customer opinion about this
particular features (and not about something else). For example, ‘I don’t like touch
pads’ in reviews on Dell Latitude notebooks does not mean that this touchpad of
these notebook series is not good. Instead, we have a general customer opinion on a
feature which is not expected to be interesting to another user. One can see that this
problem for an opinion sentence has to be resolved for building highly trusted
opinion mining applications.

We believe this classification problem, identifying irrelevant opinions, is rather
hard one and requires a sensitive treatment of sentence structure, because a differ-
ence between a meaningful and a meaningless sentence with respect to expressed
opinion is frequently subtle. A short sentence can be meaningless, its extension
become meaningful, but its further extension can become meaningless again.

The problem of classification of knowledge states of a user who is a recipient of
recommendation is a more conventional classification problem, where we determine
what kind of response a user is expecting:

• A general recommendation;
• An advice on a series of products, a brand, or a particular product;
• A response and feedback on information shared, and others.

For each knowledge state (such as a new user, a user seeking recommendations,
an expert user sharing recommendations, a novice user sharing recommendation)
we have a training set of sentences, each of which is assigned to this state by a human
expert. For example (knowledge states are in square brackets):

‘I keep in mind no brand in particular but I have read that Canon makes good
cameras’ [user with one brand in mind], ‘I have read a lot of reviews but still have
some questions on what camera is right for me’ [experienced buyer]. We expect the
proper knowledge state to be determined by syntactically closest representative
sentence.

Transitioning from keywords match to SG is expected to significantly improve
the accuracy of knowledge state classification, since these states can be inferred from
the syntactic structure of sentences, rather than explicitly mentioned most of times.
Hence the results of SGs of the sentences form the training set for each knowledge
state will serve as classification templates rather than common keywords among
these sentences.

264 9 A Content Management System for Chatbots

9.2.3.5 De-duplication Unit

De-duplication is an essential component of any content pipeline. All entities like
performers, events and venues are subject to de-duplication. We use a rather
sophisticated rule system with multiple layers of exceptions, implemented via
nonmonotonic reasoning–based architecture of RE, machine learning and web
mining. WM takes advantage of the experience web search engines have accumu-
lated on how people search refer to performers, events and venues in various ways,
based on which search results they actually used.

When we have a pair of similar titles for a data item such as an event, a performer,
a venue, we want to determine if they are the same entities or different. We search
them on the web using search engine API and compare how similar search results
are. This transition from the level of short titles, where it is hard to determine the
identity, to the web search results, where we can compare one set of these against the
other, is a key to high recall de-duplication. If search results do not overlap much, it
means that items are not duplicates, and if they do, the items are duplicates. SG can
be applied to the titles and descriptions of the candidate duplicate items, but the
results are much more accurate if SG is applied to the sets of search result snippets.

We also look up the entities being de-duped at various entertainment domain-
specific sites and social network sites to make sure most possible phrasings to
express each entity is covered. We compute what we call “similarity in web search
space” among the search results for a pair of entities to reject/confirm that they are
identical.

For venues, the system extracts the relationship of being a sub-venue (like a room
in a building) or a sibling between venues, which is important to provide a precise
location for events and clarify how multiple events occurring in a given location are
related to each other. A number of rules which are based on thesaurus of terms in
venue titles, as well as address normalization rules, are applied, and being constantly
machine learned to improve the accuracy and integrity of content (Galitsky et al.
2011).

The value of this unit is high because besides providing index for Zvents.com and
eBay.com entertainment search, it also provides the stream of events for Bing.com
entertainment search.

9.2.3.6 Chatbot Search Engine Marketing unit

We build 3-line advertisements (ads) in a specific format to mimic ads for search
engine paid advertisement. The ad is automatically built from an arbitrary product
page, published with the content mined by the above units. Features of products or
services as described on the landing page are extracted along with ‘advertising’
language such as positive sentiment and calls to action. The formulation of ad relies
on appropriate product/service descriptions from the landing page (Fig. 9.5).

9.2 Relevance-Related Problems in a Content-Management System 265

http://zvents.com
http://ebay.com
http://bing.com

Its practical value is to assist search engine marketing (SEM) personnel in writing
ads. Given the content of a website and its selected landing page, the system needs to
select sentences which are most suitable to form an ad (Fig. 9.5). The regular search
results are on the top, and auto generated ads from these pages are on the bottom.

This is a semantic information extraction problem where rules need to be formed
automatically. To form criteria for an expression to be a candidate for an advert line,
we apply SG to the sentences of the collected training sets, and then form templates
from the generalization results, which are expected to be much more accurate and
less sensitive to a broad range of possible phrasings than just sets of keywords under
traditional keyword-based IE approach. Also, using a database of existing adverts on
Google, the system is capable of finding the closest ad and adjusting it to the given
web page.

We combine two following techniques implemented as parallel sub-units:

1. Syntactic information extraction problem is formulated as extracting and modi-
fying a triple of expressions from a web pages such that these expressions:

• serve as a page abstract, express its main topic, are as close as possible to the
content of the page. Every line of an ad contains one of the important messages

the cheapest waterproof digital camera with plastic case

Fig. 9.5 SEM unit for automated generation of ads from a webpage

266 9 A Content Management System for Chatbots

from the webpage, and may include the name of brands, companies and
products from this page;

• obey the conventional ad style: certain meaning is shared between them, one
of these expression should be imperative, all of them should be positive and
mention important well understood product parameters.

2. Template-based approach; it finds a series of existing ad mined on the web, which
are semantically close to the given webpage, and modifies them to form original
ad with the lines matching the content of this webpage. This component assures
that resultant advert is a typical ad in terms of phrasing.

For example, for a fragment of a webpage like

At Smartbankwe believe in great loan deals, that’s why we offer 5.9%APR
typical on our loans of $27,500 to $35,000.. It’s also why we pledge to pay
the difference if you’re offered a better deal elsewhere.
What you get with a personal loan from Smartbank:

* An instant decision if you’re an Online Banking customer and get your
money in 3 hours, if accepted{

* Our price guarantee: if you’re offered a better deal elsewhere we’ll pledge to
pay you the difference between loan repayments***

* Apply to borrow up to $35,000
* No fees for arrangement or set up
* Fixed monthly payments, so you know where you are
* Optional tailored Payment Protection Insurance.

We generate two ads:

Great Loan Deals
5.9% APR typical on loans of
$27,500 to $35,000. Apply now!
Apply for a Smartbank loan
We offer 5.9% APR typical
Get your money in 3 h

9.2.3.7 Speech Recognition Semantics Unit

This unit assures we have reliable speech recognition, for example when searching
for events via a mobile app. A typical speech recognition SDK such as the one from
Google gives a number of candidates for a given utterance, so that some of them are
meaningful phrases and some of them are not.

9.2 Relevance-Related Problems in a Content-Management System 267

remember to buy milk tomorrow from trader joes,
remember to buy milk tomorrow from 3 to jones

One can see that the former is meaningful, and the latter is meaningless (although
similar in terms of how it is pronounced). A mistake caused by trying to interpret a
meaningless request by a query understanding system such as Siri for iPhone can be
costly. For event search by voice, this component significantly improved the accu-
racy (not evaluated in this chapter).

WM engine supported by SG comes into play: if for a given phrase its web search
results are similar to this phrase (someone has said something similar somewhere),
we can assume the phrase is meaningful. If we cannot find anything on the web
expressed in a similar way, then we can assume that this expression is meaningless.
For the more accurate analysis, this algorithm is applied to sub-phrases as well. The
key here is to assess the similarity between the recognized candidate phrase and the
web search results, which is performed by SG.

9.2.3.8 Search Unit

SG engine improves search relevance by measuring similarity between query and
sentences in search results (or their snapshots) by computing SG. Such syntactic
similarity is important when a search query contains keywords which form a phrase,
domain-specific expression, or an idiom, such as “shot to shot time”, “high number
of shots in a short amount of time”. Usually, a search engine is unable to store all of
these expressions in its phrase thesaurus because they are not necessarily sufficiently
frequent. SG is essential when these phrases are interpretable only when they occur
within a certain natural language expression. Further details are provided in Chap. 5
and Galitsky 2012.

9.2.3.9 Personalization Unit

Personalization of search results to take into account user interest and user profile is
becoming a must feature in todays content delivery systems. In particular, a number
of recommendation systems use social profile to tailor search results to the needs of a
given user. Nowadays, when integration and access control with social sites like
Facebook has been mostly solved, the main reason for low relevance is the existence
of inconsistent mappings between the categories of interests as specified in social
sites like Facebook and LinkedIn, and the internal categories of content providers
such as eBay product categories. In fact, there is strong disagreement between how
the set of user interests are stored in social sites and how such interests are associated
with categories of product in a vertical domain of a recommendation system. In
particular, Facebook stores user interests at individual level (user likes) and at the
category level (categories of user likes) for the wide range of interests. Since our

268 9 A Content Management System for Chatbots

recommendation engine is focused on the ‘things to do’, most of the existing
Facebook categories are irrelevant, but those which are relevant are too coarse and
provide limited and uneven coverage of our domain of events. Hence we need a
systematic way to map horizontal domain categories and individual “likes” into the
product attributes and categories in a vertical domain. In this section, we use
Defeasible Logic Programming (García and Simari 2004), an argumentative frame-
work based on logic programming to define such mapping where categories
expressed in the same worlds frequently have different meanings and are therefore
inconsistent.

The main purpose of personalized recommendation delivery in dynamic domain
as attending events includes:

– A user specifies her interests only once (in her Facebook profile) but thoroughly
so that personalized recommendation can be produced in a wide variety of
domains, from things to do to consumer products.

– Selecting an event for a given date, a user does not have to manually run queries
for all kinds of events she is interested in; instead, she logs in with her personal
profile and sees what is happening according to her interests.

– Personalization is expected to impress customers with unique treatment of inter-
ests of themselves and their friends supporting such social features as trust.

In terms of search implementation, this can be done in two steps:

1. Keywords are formed from query in a conventional manner, and search hits are
obtained by TF*IDF also taking into account popularity of hits, page rank and
others.

2. The above hits are filtered with respect to syntactic similarity of the snapshots of
search hits with search query. Parse tree generalization comes into play here

Hence we obtain the results of the conventional search and calculate the score of
the generalization results for the query and each sentence and each search hit
snapshot. Search results are then re-sorted and only the ones syntactically close to
search query are assumes to be relevant and returned to a user.

9.3 Generalization of Expressions of Interest

In SG algorithm, default operation is a matching of parse trees for two texts. The
only exception is when one of these texts is a canonic social profile expression, such
as Facebook likes, and another is a regular text to be matched with, such as a
candidate event name. Once we have a canonic social profile expression, we don’t
need to act on the syntactic level since we know what kind of entity it is. Instead, we
need to do a category mapping between Facebook likes and names of entities, such
as event names.

9.3 Generalization of Expressions of Interest 269

9.3.1 Personalization Algorithm as Intersection of Likes

We can define vertical personalization as finding a set of recommendations which
are the overlap of two sets:

• InterestSet: all possible subjects of user interests (all events) we believe a user
would be interested in according to what she specified;

• LocationDateSet: all events available at a specified location at a specific time.

In this setting, we can define a new set Recommendation ¼ InterestSet \
LocationDateSet. Since InterestSet is specified as two sets of <Likes, Categories>,
as long as LocationDateSet can be tagged with the same tags and categories, the
problem is solved. If overlap of likes is too small (unimportant), events with
categories of likes will be formed as the desired intersection. Note that <Likes,
Categories > is frequently redundant: Likes derive Categories unambiguously but
not the other way around.

Without personalization, using a conventional search engine, a user would have
to explicitly search for each of her <Likes, Categories>, or form a respective OR
query, to find this intersection. This is happening today when a user is searching the
web for ‘things to do’ this weekend. However, not all Facebook likes are equally
meaningful. Some of the likes were specified because the user is confident in her
interests, whereas another set of likes is encouraged by various Facebook apps and
therefore not as indicative of real user interest, and might be too unimportant. We use
the following mechanism to differentiate between these two classes of likes (impor-
tant/unimportant):

1. Using friends: all likes shared by friends;
2. Using dynamics of how likes appeared: initial set of likes are assumed to be

important, clusters of likes encouraged by various Facebook apps are
unimportant, likes of weakly represented categories are unimportant as well,
whereas well-represented categories of likes are important.

Once we have <Likes, Categories > of InterestSet, we first try to find important
likes, then unimportant likes, and finally different likes but from Categories in
LocationDateSet.

The remaining problem is to map two set of categories for Likes, CategoriesSrc
for source and CategoriesDest for destination. For this problem we will apply
argumentation techniques for dealing with potentially inconsistent and contradictory
information.

9.3.2 Mapping Categories of Interest/Thesauri

Facebook likes for the domain of entertaining events are as follows:

270 9 A Content Management System for Chatbots

CategorySrc ¼ {Retail, Consumer_products, Sports_athletics, Sports_teams, Ath-
lete, Television, Comedian, Clubs, Food_beverage, Musicians, Health_beauty,
Actor, Writer, Restaurants, Fashion, Comedian, Musician/band, Games, Musi-
cians, Movie, Tv show, Television, Album, Actor/director, Film, Bars, Education,
Nonprofit, Song}.

As the reader can see, these categories are overlapping, and belong to various
level of generalization and granularity. These categories have to be mapped into
types of events, venues such as restaurants and theaters, and particular music genres:

CategoryDest ¼ {Arts & Crafts, Community, Business & Tech, Dance, Fairs &
Festivals, Food & Dining, Music, Performing Arts, Sports & Outdoors, Visual
Arts} (higher-level categories) [

{Fairs & Festivals/{sport festivals} excluding other kinds of festivals} [{sub-
categories including Jazz, R&B and Soul, Rock, Techno & Dance, Country,
Classical, Folk & Traditional}

Mapping between categories can be described as

Sports_athletics ! Sports & Outdoors/{soccer, hiking . . .}
excluding {camping, bird-watching} [Dance/{gymnastics} excluding other kinds

of dance [
Fairs & Festivals/ {sport festivals} excluding other kinds of festivals}

As an essentially deterministic categorization, we would avoid applying statisti-
cal and fuzzy mapping here; instead, we prefer a systematic way to handle incon-
sistencies between source and target categorizations. Deterministic mapping better
fits current software development methodology, making this mapping fully control-
lable and therefore well-suited for commercial environments (compare with
approaches to reasoning related to argumentation in (Bordini and Braubach 2006;
Rahwan and Amgoud 2006).

The rules (clauses) for the target category above would look like:
sports_outdoors: – sports_athletics OR (outdoors, ┐camping, ┐bird-watching)
OR (dance, gymnastics) OR (fairs_festivals & sport_festival). We now proceed to
the systematic treatment of inconsistencies among such rules using Defeasible Logic
Programming, an argumentative framework based on logic programming (García
and Simari 2004).

9.3.3 Defeasible Logic Programming-Based Rule Engine

To deal with inconsistent rules, the rule engine need to implement a mechanism of
rule justification, rejecting certain rules in the situation when other rules have fired.
We select Defeasible Logic Programming (DeLP, García and Simari 2004) approach
and present an overview of the main concepts associated with it. One of the key
applications of the rule engine is category mapping, and we will show an example of

9.3 Generalization of Expressions of Interest 271

how categories can be mapped in order to determine recommendation categories
given social profile categories.

A Defeasible logic program is a set of facts, strict rules Π of the form (A:-B), and
a set of defeasible rules Δ of the form A- < B, whose intended meaning is “if B is the
case, then usually A is also the case”. A Category mapping DeLP program includes
facts which are formed from likes, and strict and defeasible clauses where the heads
and bodies corresponds to the sets Category1 and Category2. A given DeLP includes
a part from a social profile that contains facts (likes), and a fixed set of mapping rules
which include positive and negative occurrences of categories.

Let P¼ (Π,Δ) be a DeLP program and L a ground literal. A defeasible derivation
of L from P consists of a finite sequence L1, L2, . . ., Ln ¼ L of ground literals, such
that each literal Li is in the sequence because:

(a) Li is a fact in Π, or
(b) there exists a rule Ri in P (strict or defeasible) with head Li and body B1,B2, . . .,

Bk and every literal of the body is an element Lj of the sequence appearing before
Lj (j < i).

Let h be a literal, and P ¼ (Π, Δ) a delp program. We say that <A, h > is an
argument for h, if A is a set of defeasible rules of Δ, such that:

1. there exists a defeasible derivation for h from ¼ (Π [A)
2. the set (Π [A) is non-contradictory, and
3. A is minimal: there is no proper subset A0 of A such that A0 satisfies conditions

(1) and (2).

Hence an argument <A, h > is a minimal non-contradictory set of defeasible rules,
obtained from a defeasible derivation for a given literal h associated with a
program P.

We say that <A1, h1 > attacks < A2, h2 > iff there exists a sub-argument <A, h > of
<A2, h2 > (A � A1) such that h and h1 are inconsistent (i.e. Π [{h, h1} derives
complementary literals). Our analysis will be focused on those attacks corresponding
to defeaters. When comparing attacking arguments, we will assume a partial
preference ordering on arguments (given e.g. by specificity as in (García and Simari
2004).

Specificity, for example, is a syntactic criterion preferring those arguments that
are more direct (ie. requiring less inference steps) or more informed (those based on
more premises are preferred over those based on less information). This preference
criterion is modular in DeLP, and in fact other criteria are possible, where numerical
values are propagated via modus ponens and used for comparing arguments).

We will say that <A1, h1> defeats <A2, h2> if <A1, h1> attacks <A2, h2> at a
sub-argument <A, h> and <A1, h1> is strictly preferred (or not comparable to) <A,
h>. In the first case we will refer to <A1, h1> as a proper defeater, whereas in the
second case it will be a blocking defeater. Defeaters are arguments which can be in
their turn attacked by other arguments, as is the case in a human dialogue. An
argumentation line is a sequence of arguments where each element in a sequence
defeats its predecessor. In the case of DeLP, there are a number of acceptability

272 9 A Content Management System for Chatbots

requirements for argumentation lines in order to avoid fallacies (such as circular
reasoning by repeating the same argument twice).

Based on the previous notions, DeLP queries are solved in terms of a dialectical
tree, which subsumes all possible argumentation lines for a given query. The
definition of dialectical tree provides us with an algorithmic view for discovering
implicit self-attack relations in users’ claims. Let <A0, h0> be an argument from a
program P. A dialectical tree for <A0, h0> is defined as follows:

1. The root of the tree is labeled with <A0, h0>
2. Let N be a non-root vertex of the tree labeled <An, hn> and

Λ ¼ [<A0, h0>, <A1, h1>, . . ., <An, hn>] the sequence of labels of the path from
the root to N. Let [<B0, q0>, <B1, q1>, . . ., <Bk, qk>] all attack <An, hn>. For each
attacker <Bi, qi > with acceptable argumentation line [Λ, <Bi, qi>], we have an arc
between N and its child Ni.

A marking on the dialectical tree can be then performed as follows:

1. All leaves are to be marked as U-nodes (undefeated nodes).
2. Any inner node is to be marked as U-node whenever all its associated children

nodes are marked as D-nodes.
3. Any inner node is to be marked as D-node whenever at least one of its associated

children nodes is marked as U-node.

After performing this marking, if the root node of the tree is marked as a U-node,
the original argument at issue (and its conclusion) can be deemed as justified or
warranted.

Let us now build an example of a dialectical tree of category mapping. Imagine
we have a following set of mapping clauses and available categories obtained from
likes (Table 9.1).

In this category mapping to DeLP, the literal sports_outdoors is supported by <A,
sports_outdoors>¼

<{(sports_outdoors – <sports_athletics), (sports_athletics – <exercise_facility)},
sports_outdoors> and there exist three defeaters for it with three respective argu-
mentation lines: <B1, ┐sports_athletics> ¼ < {(┐sports_athletics –

<exercise_facility, yoga)}, sports_athletics>.
<B2,┐sports_athletics> ¼ <{(┐ sports_athletics – <exercise_facility, commu-

nity), (community – <food_dining)}, sports_athletics>.
<B3, ┐sports_athletics > ¼ < {(┐sports_athletics – < chess)}, sports_athletics>.

The first two are proper defeaters and the last one is a blocking defeater. Observe that
the first argument structure has the counter-argument, <{sports_athletics – <
exercise_facility}, sports_athletics), but it is not a defeater because the former is
more specific.

Thus, no defeaters exist and the argumentation line ends there.
B3 above has a blocking defeater <{(sports_athletics – < exercise_facility)},

sports_athletics > which is a disagreement sub-argument of <A, sports_outdoors >
and it cannot be introduced since it gives rise to an unacceptable argumentation line.
B2 has two defeaters which can be introduced: <C1, ┐community >, where C1 ¼

9.3 Generalization of Expressions of Interest 273

{(┐community – < food_dining, music),(music – < rock)}, a proper defeater, and <
C2, ┐community >, where C2 ¼ {(┐community – < business_tech)} is a blocking
defeater. Hence one of these lines is further split into two; C1 has a blocking defeater
that can be introduced in the line <D1, ┐music >, where D1 ¼ <{(┐music – <
visual_arts)}. D1 and C2 have a blocking defeater, but they cannot be introduced,
because they make the argumentation line not acceptable. Hence the target category
sports_outdoor cannot be accepted for the given user, as the argument supporting the
literal sports_outdoor is not warranted. The dialectical tree for A is shown in Fig. 9.6.

Having shown how to build dialectic tree, we are now ready to outline the
algorithm for category mapping:

1. Get the list of likes from the social profile, and their list of categories
CategoriesSrc;

2. Filter out unimportant categories and likes following criteria outlined above;
3. Add resultant set of facts to the fixed set of defeasible rules for category

mappings;
4. Build a dialectic tree for each expected target category and accept/reject it based

of defeasibility criterion;
5. Form the list of resultant target categories CategoriesDest.

We manually constructed 34 classical rules and 55 defeasible rules to cover the
mapping of entertainment categories. A test-driven development methodology was
used: first the test cases for rule mapping were constructed, followed by implemen-
tation of mapping rules which were immediately tested against these test cases.

Table 9.1 An example of a Defeasible Logic Program for modeling category mapping

Defeasible Rules

sports_outdoors – < sports_athletics

sports_athletics – < exercise_facility.

┐ sports_athletics – < exercise_facility, yoga.

┐ sports_athletics – < chess.

┐community – < food_dining, music. (commercial, not a community event)

music – < rock..

┐ sports_athletics – < exercise_facility, community (where people do stuff different from sport)

community – < food_dining.

┐community – < business_tech.

┐music – < visual_arts.

Facts (facts are obtain from explicit likes)

exercise_facility.

yoga.

chess.

rock.

business_tech.

food_dining.

visual_arts.

274 9 A Content Management System for Chatbots

9.4 The Algorithms for High-Relevance CMS

In this section we provide the algorithm details in a more formal way. Thesaurus
building, de-duplication, sentiment analysis, SEM information extraction and SG
engine are the components where the algorithm implementation details are fairly
important.

9.4.1 De-duplication Algorithms

We now describe the algorithms of de-duplication based on web mining. The idea is
to assess a similarity of web search results for two entities, to decide whether they are
the same entities. Since the search engines have accumulated experience on what
people search for and which search results people click on, we leverage it to verify
for two entities, if their corresponding search results are rather similar, then these
entities are the same.

Matching Algorithm 1 finding common expression and confirming that it consti-
tutes an entity

Input: A pair of strings
Output: decision on whether this pair is the same entity ¼ > merge them, or

different entities

1. Get a set of candidate pairs;
2. Compare entity names: select overlap keywords;

(a) See if common keywords are common words, or entity-specific words;
(b) Retain overlap words which are entity specific, subtract stop words for given

duplicate-item type ({event, venue, performer});

Fig. 9.6 Dialectical tree for category sports_outdoor using the DeLP Category Mapping
(Table 9.1)

9.4 The Algorithms for High-Relevance CMS 275

(c) Normalize remaining words;

3. Filter out cases of too short list of overlap words, or those including all common
English words;

4. Verify that 2c) is an entity by searching for it in web space;

(a) Collect all title of search results and observe how the candidate searched
entity occur in title;

(b) Filter out search results so that the candidate searched entity occurs in them in
a ‘distorted’ way: there is no alignment between searched entity and obtained
title;

(c) Filter out cases where words other than {nouns, adjectives and gerunds}
occur in the sub-title which corresponds to searched entity;

5. Count the number of all accepted search results titles for a formed entity and
compare with threshold for the minimum number of such titles. If it is above the
threshold, confirm that the overlap words constitute an entity;

6. If overlap words constitute an entity confirm duplication, otherwise confirm that
candidate pair are different entities.

Matching Algorithm 2 comparing possibly identical entities in web search space

1. Get a set of candidate pairs.
2. Form search expressions for the pair of entities to verify if they are identical in

search space.

(a) For events, just take their names;
(b) For venues, add address and city;
(c) For performers, possibly add tags and/or genres if available.

3. Filter our common words from both entity names which do not bring additional
constraint, such as “Monday poetry night at Blue Lagoon” “poetry night at Blue
Lagoon”

4. Apply additional set of normalization rules for both entities in the current pair
5. Run search for each entity in the pair and compare search results.
6. For venues, the comparison score includes the similarity in URL, address

and city.
7. For a set of search results for first entity, find the closest search result for the

second entity, and verify if results is identical:

(a) By syntactic match
(b) By string edit distance
(c) Do it for title and also snippet
(d) If similarity is above the threshold, accept a unit of similarity in search space

8. Sum up the total number of units of similarity in search space and compare with
threshold. If above the threshold, confirm the similarity between two entities,
otherwise reject.

276 9 A Content Management System for Chatbots

9.4.2 Analyzing Sentiments by Parse Tree Navigation

One of the most important and most difficult tasks in marketing is to estimate how
consumers view various products. A simple example illustrates the problem to be
solved. Let us consider an example of a supplier of LCD screens for personal digital
assistants (PDAs), and we need to figure out what positive and negative impressions
the public holds about your product. The available dataset includes 300,000 cus-
tomer support reviews about an entire product line. The objective is to determine
what aspects of this product line are viewed favorably or unfavorably, without trying
to manually read all these reviews to understand the public sentiment.

When purchasing online, consumers are interested in researching the product or
service they are looking to purchase. Currently, this means reading through reviews
written on websites of different vendors that happen to offer the product or service.
For example, if the consumer is interested in purchasing a digital camera, several
on-line vendors allow consumers to post reviews of cameras on the website.
Gathering information from such reviews is still a very time-consuming process as
there is little way to sort the reviews for the features that are of interest to any one
potential buyer so the potential buyer must read through them manually. Sometimes
reviewers rate a product with a given number of stars in addition to making
comments. An average high or low number of stars is not necessarily very informa-
tive to a potential buyer, especially if she is concerned about certain features on the
camera. For example, a potential buyer may want a camera from which the photo-
graphs come out with very true colors as opposed to oversaturated colors. Other
features, such as the weight of the camera or the complexity of the controls are of
lesser concern to this potential buyer.

To provide a product recommendation, we extract expressions of user needs
about products and services. User needs are extensions of what is referred to as
topicality in sentiment analysis and are extracted as attachments to a sentiment
expressions. To extract them, we need to use syntactic tree, where both vertices
(lemmas) and edges (syntactic links) are labeled. In a sentence, we first identify
sentiment as a node (single word like ‘good’), or subtree (‘did not work for me’) and
then proceed to the sub-tree which is dependent (linked to) the main node in
sentiment sub-tree. Over the years, we accumulated our own domain-independent
vocabulary of English sentiments, coded as parsing sub-trees to be identified at
parsing trees.

Let us consider the domain of digital cameras, and focus on a particular class of
usability needs associated with taking pictures at night. We use a pair of tags: night
þ specific night-related need sub-category:

night – picture (general, overall – taking pictures at night)
night > cloud (how to film clouds at night),
night > cold (how to film at night in cold conditions

(continued)

9.4 The Algorithms for High-Relevance CMS 277

night > recommend (which measures are recommended at night, general
issues)
night > dark (filming in dark conditions)
night > set (what and how needs to be set)
night > inconsistent (for some cameras, setting seemed inconsistent to some
users)
night > shot (peculiarities about night shot)
night > tripod (use of tripod at night)
night > mode(switch to specific filming modes for night shots)

As one can see, the meanings for needs of filming at night vary in generality and
semantic roles, and phrasings include nouns, adjectives and verbs. So the criteria of
being a user need indeed have to be formulated in terms of a sub-tree, satisfying
certain syntactic (tree) conditions (see (Galitsky et al. 2012) for more details). For a
horizontal (unlimited) domain (like electronics, which is rather wide), all terms from
need expressions cannot be defined via a thesaurus. Therefore, semantics of a need
expression has to be inferred from the syntactic one.

Our assumption is that if there is at least one author who attaches sentiment to an
expression (which we know now as an expression for need), then other people might
have the same need, so it is worth storing and analyzing. In terms of syntactic tree, if
a lemma for sentiment is dependent of a term T and does not have its own dependent
vertices, the need expression is a sub-tree dependent on T.

The examples of extraction of two need expressions are shown at Fig. 9.7. For the
sentiment ‘great’, we have a sub-tree ‘in-daylight-bright’ which is a need expression
(use of digital cameras can be ‘great’, or ‘not so good’ in ‘bright daylight’. For the
sentiment ‘not. . . good’, we have a need ‘indoor-in-setting-dim’. In the latter case
sentiment is expressed by ‘don’t expect it to get good’, where the main node is ‘be’,
and the need expression is branching from the vertex ‘get’.

Once the need expressions are extracted, they need to be normalized and grouped.
Normalization transforms need expressions into sequences of words in the normal
form, without prepositions and articles. After that, the need expressions are grouped
by the main noun of expression (the closest noun to the trunk of the need expression
as a sub-tree).

Let us consider an example of a group with noun viewfinder (Fig. 9.8), with the
second word in grouped expression, all keywords in need expression, and original
sentence. We have four need sub-categories {bright, electronic, large, lcd} for the
need category viewfinder. These subcategories categorize viewfinder from very
different aspects. Notice that both syntactic relations between viewfinder and second
word vary, as well as semantic relations; however, we ignore that for the sake of
forming categories and sub-categories.

Four sentences above come from different sources, the common thing between
them is the product and a category of user needs about viewfinder in connection to
this product.

278 9 A Content Management System for Chatbots

Whereas category noun is identified by a rule, a sub-category word is obtained
by clustering category into clusters (Makhalova et al. 2015); sub-category word
should not be a category word and should occur in more than one need expres-
sions within a category. For more accurate identification of sub-category word

Fig. 9.7 Syntactic parse tree for sentences about digital camera with two pairs of sentiment-need
expressions (circumscribed)

Fig. 9.8 Drilling in associated category of needs

9.4 The Algorithms for High-Relevance CMS 279

more advanced methods could be used, combining machine learning and statisti-
cal analysis; it could produce higher percentage of word pairs where the meaning
can be obtained just from this pair.

Inversion of content is a transformation of corpus of text to a set of interactive
textual components where each component includes all content about given need for
a given product. These components are hyperlinked to drill in and out of need
categories associated with each other.

9.4.3 Agglomerative Clustering of Search Results

Search queries that express broad user intent frequently return fairly large result sets
so that a user needs to navigate them. The idea of clustering search results into
semantically similar groups in real time and presenting descriptive summaries of
these groups to the user is almost three decades old. The clustering allows search
user to identify useful subset of the results, when can in turn be clustered to identify
narrower subsets (Tunkelang 2018). Clustering helps the user to quickly navigate to
the relevant subset of the search results; this subset can in turn be clustered to
navigate to even narrower subsets.

Clustering search results need to meet the following criteria to be usable. Firstly,
each cluster should be associated with a meaning communicated with the user
(by labels, snippets or individual search results indicative of this cluster). Secondly,
search results of the same cluster should have a similarity with each other. Each
cluster needs to be a coherent subset of possible search intents. Thirdly, search
results assigned to different clusters should be substantially different from one
another. Each cluster needs to contain a distinct subset of search intents.

The main difficulties in clustering search results are defining the similarity
function, adjusting the clustering algorithm, and producing informative snippets
for the obtained clusters. It is straight-forward to determine whether two search
results are near-duplicates. However, determining that two results are semantically
similar is a much harder problem, dependent on an appropriate similarity threshold
that consistently derives systematic, distinct clusters.

A search result clustering algorithm needs to address the following issues
(Leouski and Croft 1996):

1. Implement clustering as a classification of a document into a cluster. Documents
can be treated as vectors of weight-term pairs. The system designer needs to
decide on which terms to chose and whether to use the whole document or only a
part of it as the source of terms;

2. Select the classification algorithm. The existing clustering techniques vary in
accuracy, robustness, speed and storage requirements;

3. Engineer the output of the classifier, or cluster representations. The classification
process results in a set of clusters, where every cluster contains documents about a

280 9 A Content Management System for Chatbots

unique topic. Clusters can be represented using a selected document or term list,
and more creativity with cluster representation is needed;

4. Determine the evaluation settings. After the classification tool is created, the
results need to be analyzed and performance evaluated its from the effectiveness
and efficiency viewpoint. The evaluation of how the effective are clustering
results in comparison with the flat list is fairly difficult.

Typical clustering approaches involve embedding documents into a vectors and
then computing a geometric function on them, such as cosine, to measuring their
similarity. While such approaches have a solid theoretical foundation, the results are
frequently random and illogical, highly subject to the peculiarities of the documents
being clustered.

Hierarchical clustering algorithms are either top-down or bottom-up (Manning
et al. 2008). The former class of algorithms tackles each document as a singleton
cluster at the outset and then successively merge (or agglomerate) pairs of clusters
until all clusters have been merged into a single cluster that contains all documents.
Bottom-up hierarchical clustering is therefore called hierarchical agglomerative
clustering. Top-down clustering requires a method for splitting a cluster, doing it
recursively until individual documents are reached.

9.4.3.1 Description of GreedySearch Algorithm

The input of the algorithm is a user query q in NL and a subset of snippets A*
last

ranked by their relevance for the last successful refined query, each snippet a 2 A*
last

has a particular real-valued weight w 2 R. These weights are assigned to snippets by
a search engine and reflect not only relevance to the query, but also might take into
account the user’s profile, item popularity, geo-location, his search history, etc. The
input at the initial call is a user query q and the empty set of snippets A*

last. We first
present the search function GreedySearch followed by the clustering algorithm
AgglomerativeClustering towards the end of this subsection.

At the first step (line 1) the request is sent to a search engine. Then, a function δ is
applied to the set of returned snippets A and the request q in order to obtain their
unique formal representations δ(q) and Aδ ¼ {δ(a) | a 2 A}, respectively. This
representation makes texts comparable to each other.

GreedySearch algorithm, a strategy for specification of queries looks as follows:

Input: query q in NL, snippet set for the last relevant refinement A*
last

Output: ordered set of answers A* in natural language A* ¼ GreedySearch(q,
A*

last)

9.4 The Algorithms for High-Relevance CMS 281

To compute clusters (line 4) of similar snippets we use two matrices: the matrix of
syntactic similarity S and search relevance similarity matrix W with the entries

sij ¼ sim(δ(ai),δ(aj)), i,j ¼ 1,. . .,|A| and
wij ¼ rel_sim(wi,wj), i,j ¼ 1,. . .,|A|, respectively.

We assume that the values of both similarity matrices are scaled to [0,1].
Centroids of the computed clusters C are the candidates for a new refined request.
Specific information about the clusters is being presented to the user until a cluster
with relevant specification is found (lines 7–22). The interaction with the user is
carried out in 4 steps:

1. The biggest clusters C is chosen, i.e., C ¼ argmaxC2C|{δ(a) | δ(a) 2 C} (line 8);
2. The added information in C w.r.t. q is computed. In can be done formally by

computing the difference between a centroid of cluster C and δ(q) (see
ComputeDifference function, line 9);

282 9 A Content Management System for Chatbots

3. The computed difference is translated into a set of phrases T ;
4. T is shown to the user and feedback r 2 {ShowDetails, Relevant, Irrelevant} is

received. The feedback defines the further strategy of the chatbot.

ShowDetails means that the user has found the information she searched for and
all the snippets/documents corresponding to the cluster will be returned to the user
ranked by their relevance weights (line 25) assigned by the search engine. Relevant
answer is the case where the user has found a proposed query specification quite
useful, but not enough (i.e., the further query specification is required), in this case a
new augmented query qaug is sent to the search engine (line 27) via the recursive call
ofGreedySearch(qaug, A

*), Irrelevant answer describes the case where specifications
do not contain relevant information. When all proposed specifications in C are
irrelevant, the algorithm returns a subset of snippets from a cluster with the last
relevant specification (line 31).

9.4.3.2 Agglomerative Clustering Algorithm

Agglomerative clustering is applied to the snippets to get short specifications of a
request. The termination criteria ensures that each centroid of clusters (i.e., the
shared information of snippets in a cluster) will be the shortest specification of the
request. We denote a cluster by capital letter C and the corresponding centroid by
lower case letter c. For the sake of convenience we define some functions that will be
used in listing of the AgglomerativeClustering algorithm.

As mentioned above, requests and snippets are given in NL. We define a mapping
δ: L! V that maps a text in natural language to a unique formal representation, L is a
space of all possible texts in natural language, V is a space of their formal represen-
tations. Further we consider the examples of spaces V and discuss how the functions
defined in this section can be rewritten for the considered spaces.

sim: V � V ! [0,1] � R is a function that evaluates similarity between two
objects, the similarity between an object and its copy is equal to 1.

merge: V � V ! V is a function that returns a shared description of its two
arguments, the shared description is in the same space as the merged arguments.
is_included: V � V! {True, False} is a function that returns True if the description
of the first argument is included in the description of the second one, False
otherwise.

rel_sim: R � R ! [0,1] � R is a function that evaluates relevance similarity
between two objects by their relevance weights, the similarity between an object and
its copy is equal to 1.

Input: query δ(q), snippet set Aδ

Output: set of subsets of snippets {A*|A*� A}¼ AgglomerativeClustering(δ(q), Aδ)

9.4 The Algorithms for High-Relevance CMS 283

Agglomerative clustering receives a query δ(q) and a snippet set Aδ as input,
represented in the space where sim, merge and is_included functions are defined.
Initially, each snippet a 2 Aδ is an individual cluster centroid in C. Pairwise syntactic
similarity between cluster centroids is stored in a matrix S of the size | C | � | C |, the
relevance similarity is stored in matrix W of the same size | C | � | C |. On each
iteration, the most similar cluster centroids are chosen (line 11) to compute a new
centroid c, which is their shared description (line 12). The weight of a new cluster
C is the maximal relevance weight of its members, i.e., wC ¼ max{wa | δ(a) 2 C}.
Here we use capital letters for clusters and lowercase letters for their centroids,
i.e. C � Aδ for a cluster and c for its centroid.

To compute similarity between centroids, both syntactic and relevant similarities
are taken into account. We use a weighted average of the similarities, i.e., similarity
between centroids ci and cj is defined as k1sij + k2wij, where k1,k2 2 R are coefficients
of importance of syntactic and relevance similarities, respectively. If a newly created
centroid contains the description of the original query (i.e., it retains complete
information about the query) the two merged centroids are replaced by their shared
description, the weight of the cluster is the maximal weight of the members of the
merged clusters, i.e., wC ¼ max{wa | δ(a) 2 Ci [Cj}. When all the centroids that do
not lose the information from the original query are computed (the centroids that
includes as much snippets as possible and retain information from the query), the
subsets of snippets corresponding to the computed centroids are returned.

9.4.3.3 Similarity Used by Clustering

Vector Space Model Let us consider the simplest model of text representation. Once
the snippets are received, a new set of terms from A [{q} is computed. The N found
terms correspond to the vector entries. Each text is represented by a vector of sizeN and
filled with 0 s and 1 s. The “1” at i means that the ith term is contained in the text.

284 9 A Content Management System for Chatbots

1. merge(d1,d2) ¼ d1 � d2
2. sim(d1,d2):

(a) sim(d1,d2) ¼ JaccardSimilarity(d1,d2)
(b) sim(d1,d2) ¼ CosineSimilarity(d1,d2)
(c) sim(d1,d2) ¼ SimpleMatchingCoefficent(d1,d2)

3. is_included(d1,d2) ¼ d1 � d2 � merge(d1,d2) ¼ d1

The following similarity measure is based on Parse Thickets (Chap. 7)

1. merge(d1,d2) ¼ d1 u d2
2. sim(d1,d2):

(a) simmax d1; d2ð Þ≔maxchunk2 d1ud2ð ÞScore chunkð Þ
(b) simavg d1; d2ð Þ≔ 1

d1ud2ð Þj j
P

chunk2 d1ud2ð ÞScore chunkð Þ

3. is_included(d1,d2) ¼ d1 v d2

(a) Relevance Similarity

rel sim wi;wj

� �
¼ 1� wi�w jj j

maxi,j21, ..., Aj jwij

We have observed that search results clustering is a well-established approach for
presenting and organizing search result sets, and the search engineering community
have continued to work on improving it. Clustering sounds great in theory but in
practice turns out to be not always effective, logical and crisp. Overall, clustering is a
valuable tool to respond to the queries with broad intent scope.

9.5 Building Conclusive Answers

9.5.1 Concluding a Question Answering Session

In this section we focus on the issue of how to conclude a chatbot session in a
comprehensive manner, to satisfy a user with detailed extended answer. For a
question-answering session, the goal is to enable a user with thorough knowledge
related to her initial question, from a simple fact to a comprehensive explanation.
Sometimes, a short and concise answer such as account balance or person name
suffices. However, frequently, a longer answer including multimedia content com-
piled from multiple sources is most appropriate. This answer is expected to be a
comprehensive source of information on a topic, including definitions, recipes and
explanations. In this section we focus on the algorithm of forming such answers.

After an initial question of a user, a number of clarification steps usually follow.
Then, once the chatbot collected all necessary information, it can decide on what
kind of answer is most suitable for a given session. For a factoid question, a brief
specification of the value of the parameters or attributes in question is delivered.

9.5 Building Conclusive Answers 285

Otherwise, a final answer about an entity mentioned in question, such as introduction
of a bank account or a rule for how to close it, is issued.

Traditional chatbots do not possess this feature. Deterministic chatbots instead
provide short replies by texts indexed in a typical search index. Statistical learning
and especially deep learning – based chatbots attempt to use learning to tailor its
answers to user session, but only brief texts can be obtained as a result. Even if they
are meaningful, texts obtained as a result of such learning are short and not
comprehensive. In a machine learning environment, typically each reply is obtained
as a result of learning, and no special attention is given to a concluding answer.

These are the requirements for the complete, comprehensive answer that gives a
user a chance to get a deep understanding of an entity/topic and a good way to
conclude a dialogue:

1. An answer has to be compiled from multiple sources to assure an unbiased,
objective description. If it is opinionated, multiple opinions from a broad spec-
trum of perspectives must be compiled in a coherent manner. This dialogue
conclusive answer has to be comprehensive to provide sufficient information
for a user to be satisfied with a chatbot session. If the further questions based on
this answer arise, the user can start a new chatbot session keeping in mind a
specific focus;

2. An answer should be as easy to perceive and as intuitive as possible. Therefore
combination of images, videos and audio files is beneficial. The answer compi-
lation method should be domain – independent and adhere to certain presentation
standards;

3. An answer should have a table of content and references, if it spans over multiple
pages.

An example of a conclusive answer for a brief dialogue is shown in Fig. 9.9. The
user requested a recommendation about investment, received it and expressed her
doubts. The chatbot provides the comprehensive conclusive answer entitled ‘Why a
61% revenue growth is not enough for Alibaba’ with detailed information on
competitiveness including the charts. In this section we explore technologies for
automated building of such answers.

One of the essential problem to be solved building a conclusive answer is to form
its logical structure from the logic of a dialogue (Galitsky and Ilvovsky 2017) and
user interests, intentions and possible misunderstanding expressed in it.

9.5.2 Building a Structure of Conclusive Answer

An answer flow should reflect the structure of preceding dialogue, if it is available
and non-trivial. Also, if some controversial intermediate questions and/or answers
lead to it, they should be reflected in the structure of this conclusive answer. This
answer should constitute a document with section structure reflecting either the
generally accepted sequence of topics for this type of entity (such as a biography
for a person or account usage rules) or the logical flow of a dialogue occurred so far

286 9 A Content Management System for Chatbots

(such as why first attribute, the value of the second attribute, and why the value is
such and such for the third attribute). An example for the latter case would be a
certain credit card, its overdraft fee amounts, reasons the card can be cancelled and
possibilities for interest rate increases.

For most basic questions like product features such documents are available and
do not need to be constructed. However, for a broad number of topics and issues,
when a user interest is beyond the definition and rules, selecting an existing
pre-written document is insufficient and a specific one tailored to demands of a
given user needs to be constructed.

Hence there are two kinds of sources/options for building a document structure,
or its table of content (TOC):

1. If a user does not indicate in a dialogue a preference for a specific issues
associated with entity, a default structure is provided. It can be mined from the

Fig. 9.9 A conclusive answer to a client having a doubt concerning investment recommendation
by a chatbot

9.5 Building Conclusive Answers 287

general web sources such as Wikipedia and domain-specific sources such as
Investopedia.com. For example, the TOC for the topic Adjusted Gross Margin
would use the section structure from the respective Investopedia page https://
www.investopedia.com/terms/a/adjusted-gross-margin.asp such as the main def-
initions, treatment in depth, associated topics and others. In this case it is possible
to build TOC in a hierarchical manner.

2. If a user has a specific concern about an entity, such as ‘Why banks can increase
APR without advance notice’, then the TOC is built from multiple documents’
section titles. These documents are identified on the web or intranet to be relevant
not just to the main entity but also to the Why part. A document can start with a
section on APR but then proceed to various cases on how banks increased the
APRs and associated issues.

We use a high-level discourse structure of human-authored text to automatically
build a domain-dependent template for given topic, such as event description,
biography, political news, chat and blog. In case of a dialogue or a text containing
some kind of argumentative structure, this template is based on a sequence of
communicative actions. In a general case we follow a certain epistemic structure
extracted from multiple texts in a particular domain (for example, for a music event
we present a performer biography, previous concerts, previous partnerships, and
future plans).

Let us consider the following dialogue and its conclusive answer (Table 9.2).
The reader can see that this dialogue leads to Option 2 rather than to Option

1, since the user is frustrated about the NSF and is trying to understand why it
happened and how to avoid it. A generic answer about an entity would probably
upset this chatbot user further since he believes he knows general stuff about NSF.
Therefore the conclusive answer should focus on a specific user issue/misunder-
standing exposed in the previous utterances of a dialogue.

Table 9.2 Two options for dialogue flow

C(customer): Why was I charged a Non-sufficient fund fee (NSF)?

Bank: Paying out of your account, you made your balance negative at some point

C: But I first made a deposit and then made a payment for a lower amount

Bank: Your deposit might not has been processed by the time you made your payment

C: How can I stay positive on my account balance?

Bank (with conclusive answer):

Option 1: Generic Answer about an entity Option 2: Answer specifically addressing cus-
tomer concern

Non-sufficient Fund Fee (NSF) Non-sufficient Fund Fee (NSF): making sure
your balance is positive

Definition: Non-sufficient Fund Fee is a fee
charged by the bank. . .

Check deposits. . .

Amount. . . Processing time. . .

Ways to avoid. . . Inter-bank transactions. . .

Why banks charge NSF. . . Link accounts. . .

288 9 A Content Management System for Chatbots

http://investopedia.com
https://www.investopedia.com/terms/a/adjusted-gross-margin.asp
https://www.investopedia.com/terms/a/adjusted-gross-margin.asp

To form a TOC from the above dialogue, the following phrases from user
utterances need to be used as queries to establish the section structure of the
conclusive answer:

1. Non-sufficient fund fee (NSF)
2. Why was I charged
3. Make a deposit
4. Make a payment for a lower amount

These phrases (extended with synonyms) should match some section structures of
certain documents about NSF and banking customer support logs: they will form a
skeleton of the resultant answer.

A good way to discover attributes for entities to form a structure of a document is
an auto-complete feature for web search. If an entity in the preceding dialogue is
‘Edison invented’ then the final concluding document can have the following TOC
(Fig. 9.10). These auto-complete results (Google 2018) are the queries to the
document index on the one hand and the section titles on the other hand.

To build a hierarchical TOC, we form search queries as entity (document title)
plus the discovered section title: {‘Edison invented the light bulb’, ‘Edison invented
the phonograph’, . . .}.

For the first query, we visualize the types of light bulbs (following Google search)
which can form subsections of the section ‘Light bulbs’ (Fig. 9.11 on the top). For
the second query, we obtain the search results and attempt to extract noun phrases
sound as section titles (on the bottom). Such noun phrases should include two-three
modifiers (three-four words total) and do not include very specific infrequent words,
non-English words and non-alphanumeric tokens.

The infrastructure for preparing content for building answers is shown in
Fig. 9.12. Various available sources are used, including the written documents and
web pages explaining entities, their attributes and specifying business rules. Case-
based information can be available in the form of customer support logs, various
forms of corresponding with customers or internal issue logs. All these sources with
diverse structures need to be converted into a unified form which adheres to the
following:

• A chunk of text needs to contain a paragraph-size text: two to six sentences,
60–150 words;

• This chunk of text should be self-contained; it should neither start with a reference
to a previous paragraph nor end with a reference to a following one.

Fig. 9.10 Auto-complete
feature to discover the
attributes of entities to build
section structure

9.5 Building Conclusive Answers 289

This assessment can be made by means of discourse-level analysis (Chaps. 7 and
11) or in a simpler, string – based manner. Chunk-of-text extractor performs the task
according to the above requirements. Once chunks of text are extracted from various
sources, they are put into the index so they can be combined in a chatbot answer
document.

Fig. 9.11 A visualization of attributes for an entity (on the top). Extracting phrases for topics from
search results (on the web, intranet or an arbitrary document index, on the bottom)

290 9 A Content Management System for Chatbots

Chunks of text to be inserted into an answer document need to be extracted from a
proper area at a webpage or a proper section of a document, and cleaned. We follow
(Baroni et al. 2008, Cai et al. 2003 and Pasternack and Roth 2009) for the algorithm
of text extraction from a webpage. Given a page, we need to decide if the page
contains an article with desired content, and if it does, find a contiguous block of
HTML in the webpage starting with the first word in the article and ending with the
last. Finally, we need to remove everything other than the article text (and its
included markup tags) itself, such as ads, from the extracted block and output the
result. When the first word or last word is nested within one or more pairs of tags, the
relevant opening and ending tags are appended to the beginning and ending of the
extracted block, respectively. Otherwise, when this nesting is not as above, this one
or more pairs of tags can be left open, disrupting the article text’s formatting, so we
ignore this case.

A chart for the algorithm for building the structure of a conclusive answer is
shown in Fig. 9.13. Firstly, a right step in the dialogue to conclude it needs to be
determined (a component on the top). Also, a conclusive comprehensive answer is
not always a good end for a dialogue. If a dialogue leads to a transaction or a user
seems to be knowledgeable enough then no comprehensive answer would be
required: the dialogue will be concluded with a transaction confirmation and user
knowledge confirmation respectively.

Depending on dialogue type, we build the structure of a conclusive answer
(Option 1 and Option 2 from Table 9.2). On the left, we build sections of conclusive

Index including
all sources in
unified form:

paragraph-size
chunks with

possibly titles,
hyperlinks,

associated images
and videos

Documents

Web pages

Customer support
conversation logs

Internal issue
resolution logs

Paragraph-
sized text

title

Correspondence
with customers

Video

Chunk of
text extractor

- Identify style
for each
document
section.

- Remove
document
portions
unsuitable for
text chunks

- Split plain
text areas into
paragraphs

Fig. 9.12 Preparing available content for building answers as documents

9.5 Building Conclusive Answers 291

answer from the structure of how entity and its attributes are introduced. On the right,
we follow the questions, disagreements and misunderstanding of user utterances
about an entity.

9.5.3 Content Compilation Algorithm

The chart for text fragment mining algorithm is shown in Fig. 9.14. We start with the
seed, one or multiple sentences each of which will form one or more paragraphs about
the respective topics of the TOC. These seed sentences can be viewed as either headers
or informational centroids of content to be compiled. We now iterate through each
original sentence, build block of content for each and then merge all blocks, preceded
by their seed sentences together, similar to (Sauper and Barzilay 2000).

 Determine that it is
a good time for
concluding answer

 Determine that a document is a
suitable form for a concluding
answer about entity E

 Document type?: default about an entity vs
special issues addressed in dialogue need to
be included

Current dialogue

Section 1: What is E

Section 2: E and its attribute A

Section 3: E and its attribute A1
and how it is related to A

Section 4: E and how it is
related to another entity E1

Section 1: What is E: the topic of
the initial query

Section 2: Why E has its attribute
A: the first user clarification request

Section 3: E and its attribute A1
and is it similar to A: the second user
clarification request

Section 4: E and how it is similar to
another entity E1: the user expressed
her concern about E2

 Resultant document as a
conclusive comprehensive
answer

Fig. 9.13 An algorithm for relying on the current dialogue to form a conclusive answer

292 9 A Content Management System for Chatbots

Input is a seed text:
a short phrase, a

sentence or a paragraph

Extract
main entity or

entities

Identify a page
on the web to
borrow TOC

Build TOC for
the main entity
from the seed

For each
seed

sentence

Extract noun phrase from each sentence
Noun phrase obeys a number of criteria:

number of words (3), POS, named entities (2-4
tokens)

Form a query from
extracted phrase and

run it via Search
Engine API

Split search result snippets into sentences and insert
markers for incomplete ones to be substituted
by text from original web pages or documents

For each
search result

For each candidate
sentence of search

result

Extend the snippet sentence from the
downloaded text. Possibly include preceding and

consecutive sentence to form a candidate text
fragment

Download
a doc or

webpage

Perform relevance verification:
• Access similarity between the candidate fragment and seed sentence
• If similarity is low then compute similarity for preceding or

consecutive sentence

Perform the measurement of how ‘opinionated’ this fragment is:
• In what degree the candidate fragment express opinion or argument

of fact, based on mental states and/or communicative actions

Perform appropriateness verification:
• How it is different from an ad or sales pitch
• It should contain verbs but not in imperative form

Reformat and re-style accepted text fragments

Accepted or rejected?

Obtain a list of text fragment for given seed to prepare to
combining them in a sequence and forming paragraphs

For each
search result

For given fragment, identify an optimal fragment to follow by
classifying pairs as cohesive vs incoherent. Build a sequence of text

fragment for a paragraph and section of a document

Combine sections in the document, including mined images. Add
reference section for each accepted fragment

Output is a documents
with TOC, Section structure
and images with captions

Fig. 9.14 A chart of the content compilation algorithm

9.5 Building Conclusive Answers 293

To find relevant sentences on the web for a seed sentence, we form query as
extracted significant noun phrases from this seed sentence: either longer one (three or
more keywords, which means two or more modifiers for a noun, or an entity, such as a
proper noun). If such queries do not deliver significant number of relevant sentences
formed from search results, we use the whole sentence as a search engine query,
filtering our content that is a duplicate to the seed (Galitsky and Kuznetsov 2013).

The formed queries are run via search engine API or scraped, using Bing; search
results are collected. We then loop through the parts of the snippets to see which
sentences are relevant to the seed one and which are not. For all sentences obtained
from snippets, we verify appropriateness to form content on one hand, and relevance
to the seed sentence on the other hand. Appropriateness is determined based on
grammar rules: to enter a paragraph cohesively, a sentence needs to include a verb
phrase and be opinionated (Galitsky et al. 2009). We filter out sentences that look
like one or another form of advertisement, a call to buy a product, or encourages
other user activity by means of an imperative verb.

Relevance is determined based on the operation of syntactic generalization
(Galitsky et al. 2012), where the bag-of-words approach is extended towards
extracting commonalities between the syntactic parse trees of seed sentence and
the text mined on the web. Syntactic generalization score is computed as a cardinal-
ity of maximal common sub-graph between the parse trees of the seed and candidate
sentences or text fragments. Syntactic generalization allows a domain-independent
semantic measure of topical similarity, delivering stronger relevance than the search
engine itself or the keyword statistics.

In addition to syntactic generalization, the tool verifies the common entities
between seed and mined sentence, and applies general appropriateness metric. The
overall score includes syntactic generalization score (the cardinality of maximal set
of common syntactic sub-trees, Chap. 5) and appropriateness score to filter out less
suitable sentences. Finally, mined sentences are re-styled and re-formatted to better
fit together. The following section explains how paragraphs are formed from text
fragments.

To find relevant sentences on the web for a seed sentence, we form a query as
extracted significant noun phrases from this seed sentence: either longer one (three or
more keywords, which means two or more modifiers for a noun, or an entity, such as
a proper noun). If such queries do not deliver significant number of relevant
sentences formed from the search results, we use the whole sentence as a search
engine query, filtering our the content that is duplicate to the seed.

The formed queries are run via search engine API or scraped, using Bing, Yahoo
API or Google, as well as their ‘/news’ or ‘/blogs’ subdomains depending on the
topic of generated content; the search results are collected. We then loop through the
parts of the snippets to see which sentences are relevant to the seed one and which
are not. If only a fragment of sentence occurs in the snippet, we need to go to the
original page, download it, find this sentence and extract it.

For all sentences obtained from snippets, we verify appropriateness to form a
conclusive answer text on one hand, and relevance to the seed sentence on the other

294 9 A Content Management System for Chatbots

hand. Appropriateness is determined based on grammar rules: to enter a paragraph
cohesively, a sentence needs to include a verb phrase and/or be opinionated; mental
space of cohesive information flow has been explored, for example, in (Galitsky
et al. 2008). Relevance is determined based on the operation of syntactic generali-
zation (Galitsky et al. 2010), where the bag-of-words approach is extended towards
extracting commonalities between the syntactic parse trees of a seed sentence and the
one mined on the web. Syntactic generalization allows a domain-independent
semantic measure of topical similarity between a pair of sentences. Without syntactic
generalization, a combination of sentences mined on the web would not necessarily
form a meaningful text.

In addition to syntactic generalization, the tool verifies common entities between
the seed and the mined sentence, and applies a general appropriateness metric. The
overall score includes the syntactic generalization score (the cardinality of the
maximal common system of the syntactic sub-trees) and the appropriateness score
to filter out less suitable sentences. Finally, the mined sentences are modified and
re-formatted to better fit together, and are joined to form paragraphs.

9.5.4 A Brief Example of the Content Generation Flow

Imagine we have a user utterance (seed):
(S) ‘Give me a break, there is no reason why you can’t retire in ten years if you

had been a rational investor and not a crazy trader’.
We start with building TOC for the main entity here, rational investor. The other

candidates for the main entity are rejected since they are too broad (such as retire, a
single-word concept), or occur with a negation not a crazy trader.

Searching Wikipedia, we find a page for rational investor with redirect to Homo
economicus https://en.wikipedia.org/wiki/Homo_economicus, where the following
TOC is scraped:

1. History of the term
2. Model
3. Criticisms
4. Responses
5. Perspectives
6. Homo sociologicus

. . .

The items which can appear on the bottom such as References are common for all
entities.

9.5 Building Conclusive Answers 295

https://en.wikipedia.org/wiki/Homo_economicus

For each TOC item, we add a section title keyword to the seed expression. For the
default section (here, Model), we just use the seed. We need to form queries which
contain the main entities from the utterance, retain the meaning but are not too
restrictive at the same time.

The main entity here is retirement in the form of the verb retire and it needs to be
constrained by the noun phrase that follows rational investor. To form the second
query, we combine rational investor and the next noun phrase, not a crazy trader.
Notice that just a single noun phrase with two words is not restrictive enough, and a
part of sentence, such as elementary discourse unit, like there is no reason why you
can’t retire in ten years would be too restrictive. Four-five keywords in a query are
optimal. Hence two following queries are formed for search engine API:

(Q1) þ retire þ rational þ investor
(Q2) þ rational þ investor not þ crazy þ trader

This is not a frequent user query, so web search results need to be further
processed: https://www.google.com/search?q¼%2Bretireþ%2Brationalþ%
2Binvestor.

The following snippet is selected as a candidate to be included in a conclusive
answer, since it contains all keywords from Q1.

How to Make Rational Investing Decisions | Sound Mind Investing
https://soundmindinvesting.com/articles/.../how-to-make-rational-investing-
decisions
Nov 1, 2014 – How to Make Rational Investing Decisions . . . pleasant and
you’ll probably have more money to spend in retirement and leave to your
heirs.

We download this webpage, extract text from it and find a paragraph that
corresponds to the above snippet. We do that for all search results which contains
all keywords from the query.

We consider two text fragments from the search results:
(A1a) If you take the time to understand the psychology of rational investing,

you’ll make your life more pleasant and you’ll probably have more money to spend
in retirement and leave to your heirs.

(A1b) One needs many years of relevant data before deciding if a fund manager
is truly skilled in rational investing or just lucky. Hence, by the time you have
enough statistically relevant data to rely on, the manager is likely nearing
retirement.

We now show the sentence similarity assessment via generalization operator
(Chap. 5):

A ^ A1a ¼ RST-Condition (VP (. . ., NP rational investing), *- retire)
A ^ A1b ¼ NP rational investing), *- retire.

296 9 A Content Management System for Chatbots

https://www.google.com/search?q=%2Bretire+%2Brational+%2Binvestor
https://www.google.com/search?q=%2Bretire+%2Brational+%2Binvestor
https://www.google.com/search?q=%2Bretire+%2Brational+%2Binvestor
https://www.google.com/search?q=%2Bretire+%2Brational+%2Binvestor
https://www.google.com/search?q=%2Bretire+%2Brational+%2Binvestor
https://soundmindinvesting.com/articles/how-to-make-rational-investing-decisions
https://soundmindinvesting.com/articles/how-to-make-rational-investing-decisions

One can see that in the first search result A1a retire and rational investing are
connected in the similar way to the seed S: relational investing is connected by the
rhetorical relation Condition to the phrase including retire. In A1b the syntactic
matching part is the same but these phrases occur in two different sentences and are
related in a much more complex indirect way than in the seed. Hence A1a is a good
fragment to include in the conclusive answer and A1b is not so good.

Once we obtain an unordered list of text fragments for a section, we need to find
an optimal order to form the section text. For example, if both above text fragments
are accepted (not just the first one), the second should follow the first since it
contains the conclusion . . .Hence. . . . And both these fragments are related to the
same main entity. Still, the resultant text would not read well since there is a strong
deviation of topics towards finding an account manager, which is not the main topic
of this section. Given an unordered set of text fragments or paragraphs, we cannot
assure cohesiveness of the resultant text but instead at least find an optimal order for
these fragments, to minimize a disturbance of content flow and a coherence of the
resultant text.

To solve the problem of an optimal sequence, we rely on discourse analysis. It
turns out that certain features of logical organization of text encoded via discourse
trees are much more stronger criteria of text cohesiveness in comparison with
maintaining a topic, as most content generation algorithms do. We devote
Chaps. 7, 10 and 11 to this topic, being the focus of this book.

9.5.5 Modeling the Content Structure of Texts

In this section, we consider the problem of modeling the content structure of texts
within a specific domain, in terms of the attributes of an entity this texts expresses
and the order in which these topics appear. Some research intended to characterize
texts in terms of domain-independent rhetorical elements, such as schema items
(McKeown 1985) or rhetorical relations (Mann and Thompson 1988; Marcu 1997).
Conversely, (Barzilay and Lee 2004) focus on content, domain-dependent dimen-
sion of the structure of text. They present an effective knowledge-lean method for
learning content models from un-annotated documents, utilizing a novel adaptation
of algorithms for Hidden Markov Models. The authors apply their approach to two
complementary tasks: information ordering and extractive summarization. The
experiments showed that incorporating content models in these applications gives
a substantial improvement.

In general, the flow of text is determined by the topic change: how attributes of an
entity evolve. (Barzilay and Lee 2004) designed a model that can specify, for
example, that articles about mountains typically contain information about height,
climate, assents, and climbers. Instead of manually determining the evolution of
attributes (the topics for a given domain), a distributional view can be taken. It is

9.5 Building Conclusive Answers 297

possible to machine learn these patterns of attribute evolution directly from
un-annotated texts via analysis of word distribution patterns. (Harris 1982) wrote
that a number of word recurrence patterns are correlated with various types of
discourse structure type.

Advantages of a distributional perspective include both drastic reduction in
human effort and recognition of “topics” that might not occur to a human expert
and yet, when explicitly modeled, aid in applications. A success of the distributional
approach depends on the existence of recurrent patterns. In arbitrary document
collections, such recurrent patterns might be too variable to be easily detected by
statistical means. However, research has shown that texts from the same domain tend
to exhibit high similarity (Wray 2002). At the same time, from the cognitive science
perspective, this similarity is not random and is instead systematic, since text
structure facilitates a text comprehension by readers and their capability of recall
(Bartlett 1932).

We assume that text chunks convey information about a single attribute of an
entity (a single topic). Specifying the length of text chunks can defines the granu-
larity of the induced attribute/topic: we select the average paragraph length. We
build a content model as a Hidden-Markov Model in which each state s corresponds
to a distinct topic and generates sentences relevant to that topic according to a state-
specific language model ps. Note that standard n-gram language models can there-
fore be considered to be degenerate (single-state) content models. State transition
probabilities give the probability of changing from a given topic to another, thereby
capturing constraints attribute evolution (topic shift).

We rely on the bigram language models, so that the probability of an n-word
sentence x ¼ w1 w2 . . .wn being generated by a state s

ps xð Þ ¼
Yn

i¼1
ps wijwi�1ð Þ

We will now describe state bigram probabilities ps (wi | wi-1)
To initialize a set of attributes by partitioning all of the paragraphs (or text

chunks) from the documents in a given domain-specific collection into clusters,
we do the following. First, we create clusters via complete-link clustering, measuring
sentence similarity by the cosine metric using word bigrams as features. Then, given
our knowledge that documents may sometimes discuss new and/or irrelevant content
as well, we create an AUX cluster by merging together all clusters containing #
paragraphs < t (selected threshold). We rely on the assumption that such clusters
consist of “outlier” sentences.

Given a set ¼ c1, c2,. . ., cm of m clusters, where cm is the AUX cluster, we
construct a content model with corresponding states s1, s2,. . ., sm. we refer to sm as
the insertion state.

For each state si i < m bigram probabilities (which induce the state’s sentence-
emission probabilities) are estimated using smoothed counts from the corresponding
cluster

298 9 A Content Management System for Chatbots

psi w
0 jw

� �
¼def

f ci ww
0� �
þ δ1

f ci wð Þ þ δ1 Vj j ,

where f c1 (y) is the frequency with which word sequence y occurs within the
sentences in cluster ci, and V is the vocabulary.

We want the insertion state sm to simulate digressions or unseen attributes. We
ignore the content of AUX cluster and force the language model to be complemen-
tary to those of the other states by setting

psm w
0 jw

� �
¼def

1�maxi:i<mpsi w
0 jw

� �
P

u2V 1�maxi:i<mpsi ujwð Þ
� � :

Our state-transition probability estimates arise from considering how the para-
graphs from the same document are distributed across the clusters. For two clusters
c and c’ we define D(c, c’) as the number of documents in which a paragraph from
c immediately precedes one from c’. D(c) is the number of documents containing
paragraphs from c. For any two states si and sj, i,j < m, we rely on the following
smooth estimate of the probability of transitioning from si to sj:

p s jjsi
� �

¼
D ci; c j

� �
þ δ2

D cið Þ þ δ2m
:

Programming in NL is another area where the content structure of text is essential
(Galitsky and Usikov 2008).

Building Answer Document Based on Similarity and Compositional Semantics
The vector representations of the desired document can be obtained using a para-
graph vector model (Le and Mikolov 2014) that computes continuous distributed
vector representations of varying-length texts. The source documents’ section that
are semantically close (or similar) to the desired document is identified in this vector
space using cosine similarity. The structure of similar articles can then be emulated,
the important sections identified and assign relevant web-content or intranet content
assigned to the sections.

We utilize the entire Wikipedia to obtain a D-dimensional representations of
words/entities as well as documents using the paragraph vector distributed memory
model (Le and Mikolov 2014). Similar articles are identified using cosine similarity
between the vector representations of the missing entity and representations of the
existing entities (entities that have corresponding articles). Content from the similar
articles are used to train multi-class classifiers that can assign web-retrieved content
on the red-linked entity to relevant sections of the article. The architecture of such
system is shown in Fig. 9.15. The paragraph vector distributed memory model is
used to identify similar documents to rely upon on one hand and also to make an
inference of vector representations of new paragraphs retrieved from the web on the
other hand.

9.5 Building Conclusive Answers 299

We take a sequence of words from a similar document and approach the last word
that can be reused. Then we attempt to predict the next word using PV-DM. The
PV-DM model is based on the principle that several contexts sampled from the
paragraph can be used to predict the next word. Given a sequence of Twords (w1, w2,
. . . ., wT), the task is to maximize the average log probability. In the top equation, c is
the size of the context (number of words before and after the current word to be used
for training). The conditional probability of wt þ j given wt can be obtained by the
softmax function (Bridle 1990) in the equation below, where vwt þ j and vw refers to
the output and the input vector representations of the word w, respectively. W refers
to the total number of words in the vocabulary

F ¼ 1
T

Xt¼T

t¼1

X
�c�j�c,j6¼0

logp wtþjjwt

� �

p wtþjjwt

� �
¼

exp v
0
wtþj

Tvwt

� �

XW
w¼1

exp v
0

wTvwt

� �

9.5.6 Related Work on Conclusive Answers

Whereas chatbot algorithms in general belong to such computer science discipline as
search engineering and general-purpose NLP, automated building of conclusive

Fig. 9.15 Document generation approach based on similar document and wikipedia content

300 9 A Content Management System for Chatbots

answers fall under the content generation area of AI. Automating answer creation, it
is hard to compete with how human domains experts would do it; however, chatbots
are expected to be capable of building tens of thousands of conclusive answer per
vertical domain on the fly.

In the modern society, writing and creating content is one of the most frequent
human activities. An army of content creators, from students to professional writers,
produce various kinds of documents for various audiences. Not all of these docu-
ments are expected to be innovative, break-through or extremely important. The
target of the tool being proposed is assistance with routine document creation
process where most information is available on the web and needs to be collected,
integrated and properly referenced (Galitsky and Kuznetsov 2013).

A number of content generation software systems are available in specific
business domains (Johnson 2016). Most of content generation software are
template-based which limits their efficiency and volume of produced content
(Hendrikx et al. 2013). An interesting class of content generation system is based
on verbalizing some numerical data. Also, content generation for computer game
support turned out to be fruitful (Liapis et al. 2013). Deep-learning – based gener-
ation of a sequence of words has a limited applicability for large-scale content
production industrial systems. In (Galitsky 2016) we built a content compilation
assistance system that was suitable for producing a report that can be subject to and
manual editing by students, researchers in various fields in science, engineering,
business and law.

Previous work on content generation in general and specifically related to web
content relied heavily on manually annotated information of Wikipedia categories
(Sauper and Barzilay 2009; Banerjee and Mitra 2016). Articles in Wikipedia consist
of sections. (Sauper and Barzilay 2009) retrieved content from the web on articles
belonging to a certain category of diseases by using the most frequent section titles
as keywords to retrieve relevant web search snippets, utilizing web mining, similar to
what we do for chatbot answers. The most informative excerpts were selected using
a perceptron-based framework and populated into the built web article. In a recent
work, (Banerjee and Mitra 2016) proposed WikiKreator where contents in the
Wikipedia sections were represented by topic-distribution features using Latent
Dirichlet Allocation (LDA, Blei et al. 2003).

To build a document from multiple sources, sentences selected and paraphrased
from multiple documents must be ordered such that the resulting article is coherent.
Existing summarization systems did not tackle coherence, so discourse level con-
sideration proposed in Chap. 10 needs to be utilized.

The discourse tree representation used in our content compilation system is a
reduction of what is called parse thicket (Chap. 7), a combination of parse trees for
sentences with discourse-level relationships between words and parts of the sentence
in one graph. The straight edges of this graph are syntactic relations, and curvy arcs –
discourse relations, such as anaphora, same entity, sub-entity, rhetoric relation and
communicative actions. This graph includes much richer information than just a
combination of parse trees for individual sentences would.

9.5 Building Conclusive Answers 301

Galitsky (2016) introduced the tool has been advertised using Google AdWords
and used by thousand of users searching for “free essay writing” to compile content
for a variety of domains, including natural sciences and humanities. In this section
the proposed and evaluated technique found a new application area in building
answers for chatbots.

9.6 Evaluation

In this section we will present the evaluation results for the units of the content
pipeline which are supported by SG and other engines. Some of the units we
described in Sect. 9.2 perform regular processing and do not require a special
technology; these were tested as regular software units. We evaluate separately the
content preparation units, and user experience-related units, proceeding from
de-duplication to sentiment analysis and SEM, and then to personalization recom-
mendation and search.

To run the SG and TK code we used for evaluation, the reader would need to
build an open source project which the part of OpenNLP Similarity component
available at https://github.com/bgalitsky/relevance-based-on-parse-trees.

To perform SG based on Stanford NLP parsing and tagging results, one need to
load /src/main/java/opennlp/tools/parse_thicket/matching/Matcher.java, and to
apply it to OpenNLP results, src/main/java/opennlp/tools/textsimilarity/
chunker2matcher/ParserChunker2MatcherProcessor.java.

To run the TK, the reader needs https://github.com/bgalitsky/relevance-based-on-
parse-trees/blob/master/src/main/java/opennlp/tools/parse_thicket/kernel_interface/
MultiSentenceKernelBasedSearchResultsProcessor.java.

9.6.1 Performance Analysis of the Content Pipeline
Components

We selected to evaluate the de-duplication unit because its performance is a bottle-
neck for high quality content, and the opinion mining unit due to its importance for
convincing a potential user to attend an event. We form a few datasets for each unit
being evaluated, conduct independent evaluation for this dataset and then average
the resultant (F-measure). Training and evaluation dataset of texts, as well as class
assignments, was done by the quality assurance personnel.

One way to measure inter-annotator agreement between the quality assurance
personnel is by using α measure of (Krippendorff 2004), which treats the annotators
as interchangeable and measures the difference between disagreement expected by
chance vs observed disagreement:

302 9 A Content Management System for Chatbots

https://github.com/bgalitsky/relevance-based-on-parse-trees
https://github.com/bgalitsky/relevance-based-on-parse-trees/blob/master/src/main/java/opennlp/tools/parse_thicket/kernel_interface/MultiSentenceKernelBasedSearchResultsProcessor.java
https://github.com/bgalitsky/relevance-based-on-parse-trees/blob/master/src/main/java/opennlp/tools/parse_thicket/kernel_interface/MultiSentenceKernelBasedSearchResultsProcessor.java
https://github.com/bgalitsky/relevance-based-on-parse-trees/blob/master/src/main/java/opennlp/tools/parse_thicket/kernel_interface/MultiSentenceKernelBasedSearchResultsProcessor.java

α ¼ 1� Dobserved

Dchance
¼ 1� σ2within

σ2total

where σwithin is standard deviation of the differences within the annotations for the
same text, σtotal is standard deviation of the overall difference between all annota-
tions. The threshold of α 	 0.80 indicates reliable judgments, while α 	 0.67 is
recommended as a limit to support conclusions about reliability of annotation,
because the value of α below this limit makes conclusions drawn from such data
not significant from the statistical viewpoint. In this section we present the evalua-
tion settings where α exceeds 0.70.

Half of each set was used for training, and the other half for evaluation; the split
was random but no cross-validation was conducted. Due to the nature of the problem
positive sets are larger than negative sets for sensible/meaningless & ad line prob-
lems. We use WEKA C4.5 algorithm as a baseline approach, performing keyword-
based classification.

9.6.1.1 De-duplication: From String Distance to SG-Supported Web
Mining

We compared the baseline approach of string distance with that of TK-supported and
SG-supported web mining. We used the set of 1000 pairs of string for entities
(performers and performances). We observed the improvement in de-duplication
F-measure (is it the same entity or different entity?) proceeding from string-based
algorithms to web mining with keyword match and then web mining with SG match
(Chap. 5). Analysis is performed varying the number of keywords from 1 to
5 (Table 9.3).

The baseline computation relied on (Levenshtein 1966) and (Jaccard 1912) string
distance computations.

The de-duplication quality is computed as F-measure given the precision and
recall. For the quality of content, false positives (entities are determined to be the
same, but they are not) in de-duplications damage the content in a higher degree,

Table 9.3 Evaluation results for de-duplication unit

of
keywords
in entity

Baseline
(F-measure,
%)

Searching for
entities in web
space and
computing
common keyword
(F-measure, %)

Searching for entities
in web space and
computing TK
between search
results (F-measure,
%)

Searching for entities
in web space and
computing SG
between search
results (F-measure,
%)

1 84.3 83.2 84.1 83.5

2 81.1 82.7 86.2 84.2

3 79.7 82.1 84.5 84.7

4 74.6 80.5 84.1 82.1

5 75.9 79.2 84.4 82.3

9.6 Evaluation 303

since non-existent merged entities appear. False negatives (should be merged, but
have not been merged) are not as bad but annoying to the users.

One can observe that the using web mining improves the F-measure of
de-duplication by 4.5% on average for all entities, and SG gives further 2% when
analyzing similarity of entities via web search results. Improvement of
de-duplication by web mining is not helpful for single-keyword entities, but
becomes noticeable for longer entity names. Contribution of web mining on its
own is significantly stronger than that of SG for similarity assessment of search
results of phrases. However, since we use SG to support other units anyway, we
leverage it to gain extra 2% in F-measure. The SG-based web mining can be
improved by 1.5% by the TK-based web mining.

9.6.1.2 Sentiment Analysis for Product Recommendation

Sentiment analysis problem is traditionally formulated as finding a polarity of
opinion for a text or short sentence like tweet. For the purpose of recommendation
we focus on evaluation of the other accompanying problems: recognizing meaning-
ful sentences to show to a user, and to recognize user knowledge state to provide a
proper level of details.

For reviews, we classify each sentence with respect to sensible/meaningless
classes by two approaches:

• A baseline WEKA C4.5, as a popular text classification approach
• SG – based approach.

We demonstrate that a traditional text classification approach poorly handles such
a complex classification task, in particular due to slight differences between phras-
ings for these classes, and the property of non-monotonicity. Using SG instead of
WEKA C4.5 brought us 16.1% increase in F-measure for the set of digital camera
reviews (Table 9.4).

One can see that SG improves the classification F-measure by 8.2%. Notice that
recognizing meaningless sentences and recognizing knowledge state of a user is
different problem to a sentence-level sentiment polarity analysis, fairly popular
problem nowadays, especially applied to twitter data (Go et al. 2009; Pak and
Paroubek 2010).

To recognize a knowledge state of a user to make recommendation more appro-
priate, we classified the texts users post as a question or as a sharing message in
social network site such as Facebook. We manually did the assignment of user
knowledge states, and use quality assurance personnel to evaluate the classification
results. The same training dataset was used by Weka C4.5 as a baseline and by SG to
assess a potential improvement.

The Rows of Table 9.5 contain classification data for the reviews on different
products, and variability in accuracies can be explained by various levels of
diversity in phrasings. For example, the ways people express their feelings about
cars is much more diverse than that about kitchen appliances. Therefore,

304 9 A Content Management System for Chatbots

F-measure of the former task is lower than that of the latter. One can see that it is
hard to form verbalized rules for the classes, and hypotheses are mostly domain-
dependent; therefore, substantial coverage of varieties of phrasing is required.

Overall recognition F-measure of knowledge state classification is higher than for
the other two domains because manually built templates for particular states cover a
significant portion of cases. At the same time, recognition F-measure for a particular
knowledge states significantly varies from state to state and was mostly determined
by how well various phrasings are covered in the training dataset. We used the same

Table 9.5 Evaluation of sentiment analysis: recognizing a knowledge state of a user

Knowledge
state

Data set size (#
positive /
#negative
examples)

Baseline
F-measure,
obtained by
WEKA C4.5

SG
precision
relating to a
class, %

SG Recall
relating to a
class, %

SG
F-measure,
%

Beginner 30/200 72.3% 77.8% 83.5% 80.6%

User with
average
experience

44/200 73.2% 76.2% 81.1% 78.6%

Pro or semi-
pro user

25/200 70.0% 78.7% 84.9% 81.7%

Potential
buyer

60/200 71.6% 73.8% 83.1% 78.2%

Open-
minded
buyer

55/200 69.4% 71.8% 79.6% 75.5%

Table 9.4 Evaluation of sentiment analysis: meaningful vs meaningless sentences

Domain

Data set size (#
positive /
#negative
examples)

Baseline
F-measure,
obtained by
WEKA C4.5

SG Precision
relating to a
class, %

SG Recall
relating to a
class, %

SG
F-measure

Digital
camera
reviews

220/60 51.4% 58.8% 54.4% 56.5%

Wireless
services
reviews

120/80 62.7% 58.8% 74.4% 65.6%

Laptop
reviews

300/100 65.0% 62.4% 78.4% 69.5%

Auto
reviews

250/100 69.2% 74.2% 80.4% 77.2%

Kitchen
appliances
reviews

200/100 72.3% 73.2% 84.2% 78.3%

9.6 Evaluation 305

set of reviews as we did for evaluation of meaningless sentences classification and
manually selected sentences where the knowledge state was explicitly mentioned or
can be unambiguously inferred. For evaluation dataset, we recognized which knowl-
edge state exists in each of 200 sentences. Frequently, there are two or more of such
states (without contradictions) per sentence: note that knowledge states overlap. Low
classification F-measure occurs when classes are defined approximately and the
boundary between them are fuzzy and beyond expressions in natural language.
Therefore we observe that SG gives us some semantic cues that would be hard to
obtain at the level of keywords or superficial parsing.

On average, there is a 10.7% improvement of classification F-measure by SG. It
can be interpreted as one extra correct (adjusted to user knowledge state) recom-
mendation per 10 users.

For the sentiment polarity assessment, we used the sentiment detector (Socher
et al. 2013) as a baseline. It was improved by enforcing the sentiment polarity
templates for special cases of negations and combinations of negations. SG was
used in a nearest neighbor setting (Jindal and Taneja 2017) to overwrite the decision
of (Socher et al. 2013) when a given sentence gives a substantial overlap with one of
the templates via SG (Table 9.6).

SG-based templates improves the sentiment recognition F-measure by 8.0%. The
baseline approach handled negative cases better than the positive ones, and the SG

Table 9.6 Evaluation of sentiment analysis: polarity assessment

Domain

Data set
size (#
positive /
#negative
examples)

Baseline
F-measure,
obtained by
Stanford
NLP
Sentiment
analyzer,
positive

Baseline
F-measure,
obtained by
Stanford
NLP
Sentiment
analyzer,
negative

Stanford NLP
Sentiment þ SG-
based rules,
F-measure,
positive

Stanford NLP
Sentiment þ SG-
based rules,
F-measure,
negative

Digital
camera
reviews

220/60 56.4% 51.8% 61.3% 53.9%

Wireless
services
reviews

120/80 61.5% 59.8% 66.4% 62.7%

Laptop
reviews

300/100 63.8% 65.2% 71.2% 70.8%

Auto
reviews

250/100 59.6% 68.1% 67.6% 68.3%

Kitchen
appliances
reviews

200/100 60.9% 64.8% 68.4% 70.3%

306 9 A Content Management System for Chatbots

template – enabled approach experienced more difficulties with negative sentiments
than with positive.

9.6.1.3 Evaluation of Search Engine Marketing Unit

We selected the evaluation dataset of 1000 webpages related to the same products we
used for the above evaluations. We then applied the information extraction algorithm
Sect. 9.5.5 to form candidate sentences for inclusion in an ad line. The training
dataset of 10,000 sentences was formed from Google sponsored links scraped from
search results for product-related searches. Each candidate sentence is classified as
appropriate or inappropriate to form an ad line. WEKA C4.5 is used for the baseline,
and nearest neighbor-based SG is used to estimate an improvement of classification
into these two classes (Table 9.7).

For the SG-supported classification, there is a modest 2.4% improvement is
classification, once candidate expression is extracted. It turns out that a bag-of-
words approach has a satisfactory performance, measuring the similarity of candi-
date sentences with the elements of the training set. We believe that a better
extraction technique might have a higher impact on the overall quality of built ad
lines, extracted from webpages.

Precision for extraction of ad lines for the same five categories of products is
higher than the one for the above tasks of sensible/meaningless classes. A the same
time recall of the former is lower than that of the latter, and resultant F-measure is
slightly higher for ad lines information extraction, although the complexity of

Table 9.7 Evaluation of SEM tool: candidate expression classification F-measure to form an
ad line

Domains

Classification data set
size (# positive /
#negative examples)

Baseline
F-measure,
obtained by
WEKA C4.5

SG
precision
relating to a
class, %

SG recall
relating to
a class, %

SG
F-measure

Digital
camera
webpages

200/800 77.1% 88.4% 65.6% 75.3%

Wireless
services
webpages

200/800 70.7% 82.6% 63.1% 71.6%

Laptop
webpages

200/800 63.0% 69.2% 64.7% 66.9%

Auto sales
webpages

200/800 67.5% 78.5% 63.3% 70.1%

Kitchen
appliances
webpages

200/800 70.2% 78.0% 68.7% 73.1%

9.6 Evaluation 307

problem is significantly lower. In can be explained by a rather high variability of
acceptable ad lines (‘sales pitches’) which have not been captured by the
training set.

9.6.2 Performance Analysis of Personalized
Recommendations

In this section we perform evaluation of personalized recommendations. Since this
component is the consumer of the content pipeline, this evaluation can be viewed as
the one for the overall system. User interface of apps.facebook.com/discover_zvents
is shown in Fig. 9.16.

For evaluation of personalization we split the set of personalization users into the
following five groups with respect to how complete their Facebook profile, how
many likes they have and how representative they are of user interests:

1. Novice or inactive user.
2. Intermediate user with some relevant categories (music, outdoor).
3. Intermediate users with a number of categories and likes.
4. Advanced user accumulating many likes and systematically managing them.
5. Advanced user accumulating many likes and not managing them.

For each above group, we conduct evaluation of the portion of relevant events
suggested by the recommendation system. We use two recommendation scenarios:

1. A user does not specify any query and all available events are personalized.
Rather larger set of events is subject to reduction (Table 9.8).

Fig. 9.16 User interface of personalization system. It gets user geo-location from her IP and its
preferences from her Facebook profile. List of recommended events for a given user changes as the
location changes

308 9 A Content Management System for Chatbots

http://apps.facebook.com/discover_zvents

2. A user specifies search query for a certain type of Events (Table 9.9). Then we
personalize events which satisfy the user condition; a rather small set of events is
subject to reduction for personalization.

In our evaluation, each user produced a set of twenty requests and received ten
events on average for each recommendation. The left columns of Tables 9.8 and 9.9
indicate the percentages of events found satisfactory when most popular (for every-
one) events were recommended, and the right two columns for personalization
results show the satisfaction percentages for the events personalized for a given
user. The first personalization column shows a naïve personalization which does not
use generalization and relies solely on matching likes as keywords. This is our
personalization baseline. The second, rightmost column shows the satisfaction
percentage for the personalization algorithm presented in the previous section.

What we can see in general is that the more detailed Facebook profile is, the
higher the improvement in the percentage of relevant events. This is true for both
sessions with search and without search. However, when there is a high number of
likes in diverse categories which are not managed, it is hard to assess the validity of
each likes and one can observe a decrease of relevance improvement by means of
personalization (last rows of both columns).

Overall, one can conclude that personalization delivers recommendations for
products which would not be discovered by users otherwise: they would have to
manually run multiple searches per each of their current likes/interests to discover if
a relevant event is happening at their location.

Table 9.8 Evaluation of increase of the % of relevant recommendation without initial search query

Satisfaction
Satisfaction without
personalization,%

Satisfaction with personalization,%

Without generalization
of likes

With generalization
of likes

Group 1 67 61 58

Group 2 64 69 76

Group 3 63 76 82

Group 4 71 86 89

Group 5 69 68 73

Table 9.9 Evaluation of increase of the % of relevant recommendation with a search query for
specific kind of events

Satisfaction
Satisfaction without
personalization,%

Satisfaction with personalization,%

Without generalization
of likes

With generalization
of likes

Group 1 64 56 59

Group 2 68 68 74

Group 3 66 73 81

Group 4 69 79 87

Group 5 68 72 80

9.6 Evaluation 309

One of the advantages of social network-based personalization is that a user
becomes aware of much more events she would discover otherwise. We evaluate the
proportion of events which would be exposed to a user, and call it event accessibility
measure:

1. Using email notification (passive approach, users get email notifications with
events they would potentially attend);

2. Using search (active approach, users try to find events they might want to attend);
3. Using personalization (passive, but expected to be a high-relevance approach);

For each user we build a total set T of events we believe are of interest to a person,
using means other than personalization-related. We selected a ticket purchase data
and user click data as most relevant and averaged through users with similar interest
to derive T for the total set of potentially interesting events for a given class of users.
Then we evaluate the size of E1, E2 and E1 as subsets of T according to our definition
above.

We selected 15 major metropolitan areas and 5 averaged users with their favorite
categories of events. For each of these users, we calculated E1 value based on search
result by location and then filtering out events with foreign categories for a given
user. E2 is calculated assuming average category-based search session of 5 queries,
and E3 is obtained as a result of personalization to the selected averaged customer
profiles.

One can see that personalization gives increase of 37% over the set of events that
is being sent to an average user by email. A search session gives less than a quarter of
events of potential interest offered by personalization (Table 9.10).

9.6.3 Performance Analysis of SG-Supported Search
Relevance

We conducted evaluation of relevance of SG – enabled search engine, based on
Yahoo and Bing search engine APIs, used as a baseline. We base our evaluation on
external APIs to avoid dependence on previous components of the content pipeline
and focus on how SG and thesaurus improve search without taking into account
content quality.

For our evaluation, we use customers’ queries to eBay entertainment and product-
related domains. We started from simple questions referring to a particular product, a
particular user sentiment/need. We then proceeded to multi-sentence forum-style
request to share a recommendation. To perform a comparison of SG-based search
with the baseline, we used web search engines instead of eBay’s on search, but ran
the product-oriented queries. In our evaluation we split the totality of queries into
noun-phrase class, verb-phrase class, how-to class, and also independently split in
accordance to query length (from 3 keywords to multiple sentences). The evaluation
was conducted by the quality assurance personnel.

310 9 A Content Management System for Chatbots

To compare the relevance values between search settings, we used first 100 search
results obtained for a query by Yahoo and Bing APIs, and then re-sorted them
according to the score of the given search setting (syntactic generalization score and
thesaurus-based score). To evaluate the performance of a hybrid system, we used the
weighted sum of these two scores (the weights were optimized in an earlier search
sessions). Accuracy of a particular search setting (query type and search engine type)
is calculated, averaging through 20 search sessions. This measure is more suitable
for product-related searches delivering multiple products, than Mean Reciprocal
Rank (MRR), calculated as 1/n Σi ¼ 1. . .n 1/rki where n is the number of questions,
and rki is the rank of the first correct answer to question i.MRR is used for evaluation
of a search for information, which can be contained in a single (best) answer,
whereas a product search might include multiple valid answers.

For each type of phrase for queries, we formed a positive set of 2000 correct
answers and 10,000 incorrect answers (snippets) for training; evaluation is based on
20 searches. These answers were formed from the quality assurance dataset used to
improve existing production search engine before the current project started. To
compare the relevance values between search settings, we used first 100 search
results obtained for a query by Yahoo and Bing APIs, and then re-sorted them
according to the score of the given search setting (SG score). The results are shown
in Table 9.11.

Table 9.10 Categories of most popular events in cities with the highest numbers of events

Location T E1 E2 E3

New York 13,092 120.50 41.80 245.00

San Francisco 5522 57.53 18.77 105.95

Las Vegas 4282 47.99 15.02 40.58

Los Angeles 4102 43.15 14.02 51.12

Boston 3798 41.85 12.52 59.66

Chicago 3515 41.03 11.61 40.70

Houston 3075 38.42 10.85 32.03

Atlanta 2757 27.68 9.05 36.88

Nashville 2693 27.96 9.37 30.10

Austin 2574 24.22 9.14 66.30

Denver 2518 26.31 8.02 32.03

Lexington 2140 23.17 6.88 18.04

Charleston 2131 23.33 7.24 18.01

Philadelphia 2062 18.00 6.71 27.12

San Diego 1930 23.17 6.06 21.07

St Louis 1910 17.58 6.35 17.23

Washington 1875 17.30 6.53 9.10

Fresno 1867 20.01 6.53 14.70

Seattle 1861 15.65 5.52 30.42

Average 3352.8 34.40 11.10 47.10

Percentage personalization improves the number of dis-
covered events

137% 423% 100%

9.6 Evaluation 311

T
ab

le
9.
11

E
va
lu
at
io
n
of

ch
at
bo

t
se
ar
ch

re
le
va
nc
e

Q
ue
ry

P
hr
as
e

su
b-
ty
pe

R
el
ev
an
cy

of
ba
se
lin

e
Y
ah
oo

se
ar
ch
,%

,
av
er
ag
in
g
ov

er
20

se
ar
ch
es

R
el
ev
an
cy

of
ba
se
lin

e
B
in
g

se
ar
ch
,%

,
av
er
ag
in
g
ov

er
20

se
ar
ch
es

R
el
ev
an
cy

of
re
-s
or
tin

g
by

S
G
,%

,
av
er
ag
in
g
ov

er
20

se
ar
ch
es

R
el
ev
an
cy

of
re
-s
or
tin

g
by

us
in
g
th
es
au
ru
s,

%
,a
ve
ra
gi
ng

ov
er

20
se
ar
ch
es

R
el
ev
an
cy

of
re
-s
or
tin

g
by

T
K
,%

,
av
er
ag
in
g
ov

er
20

se
ar
ch
es

R
el
ev
an
cy

of
re
-s
or
tin

g
by

us
in
g

th
es
au
ru
s
an
d
S
G
,

%
,a
ve
ra
gi
ng

ov
er

20
se
ar
ch
es

R
el
ev
an
cy

im
pr
ov

em
en
t

fo
r
hy

br
id

ap
pr
oa
ch
,

co
m
p.

to
ba
se
lin

e,
%

3–
4
w
or
d

ph
ra
se
s

N
ou

n
ph

ra
se

86
.7

85
.4

87
.1

93
.5

88
.0

93
.6

8.
8

V
er
b

ph
ra
se

83
.4

82
.9

79
.9

92
.1

79
.3

92
.8

11
.6

H
ow

-t
o

ex
pr
es
si
on

76
.7

78
.2

79
.5

93
.4

78
.8

93
.3

12
.0

A
ve
ra
ge

82
.3

82
.2

82
.2

93
.0

82
.0

93
.2

11
.3

5–
10

w
or
d

ph
ra
se
s

N
ou

n
ph

ra
se

84
.1

84
.9

87
.3

91
.7

88
.3

92
.1

9.
0

V
er
b

ph
ra
se

83
.5

82
.7

86
.1

92
.4

86
.9

93
.4

11
.2

H
ow

-t
o

ex
pr
es
si
on

82
.0

82
.9

82
.1

88
.9

81
.6

91
.6

11
.1

A
ve
ra
ge

83
.2

83
.5

85
.2

91
.0

85
.6

92
.4

10
.8

2–
3

se
nt
en
ce
s

O
ne

ve
rb

on
e
no

un
ph

ra
se
s

68
.8

67
.6

69
.1

81
.2

80
.8

83
.1

12
.2

B
ot
h
ve
rb

ph
ra
se
s

66
.3

67
.1

71
.2

77
.4

78
.4

78
.3

11
.7

O
ne

se
nt

of
ho

w
-t
o

ty
pe

66
.1

68
.3

73
.2

79
.2

79
.9

80
.9

12
.0

A
ve
ra
ge

67
.1

67
.7

71
.2

79
.3

79
.7

80
.8

11
.9

312 9 A Content Management System for Chatbots

To further improve the product search relevance in eBay setting, we added
manually formed templates that are formed to enforce proper matching with popular
questions which are relatively complex, such as

see-VB *-JJ -*{movie-NN [picture-NN [film-NN} of-PRP best-JJ {director-NN
[producer-NN [artist-NN [academy-NN} award-NN [for-PRP], to match ques-
tions with phrases

Recommend me a movie which got academy award for best director
Cannes Film Festival Best director award movie
Give me a movie with National Film Award for Best Producer
Academy award for best picture
Movies of greatest film directors of all time

Totally 235 templates were added, 10–20 per each entertainment category or
genre.

We observe that using SG only improves the relevance of search in cases where
query is relatively complex. For shorter sentences there is just a slight improvement
in accuracy, for medium-length queries of 5–10 keywords we get <2% improve-
ment, and < 5% improvement for multi-sentence query. As the absolute perfor-
mance of search naturally drops when queries become more complex, relative
contribution of syntactic generalization increases. TK outperformed the stand-
alone SG by 4% but is well below the hybrid SG þ thesaurus search accuracy.

Notice that in a vertical domain of eBay entertainment where the thesaurus
coverage is good (most questions are mapped well into thesaurus), SG usually
improves the relevance on its own, and as a part of hybrid system. However there
are cases with no improvement. The thesaurus-based method is always helpful in a
vertical domain, especially for short queries (where most keywords are represented
in the thesaurus) and multi-sentence queries (where the thesaurus helps to find the
important keywords for matching with a question). We can conclude for a vertical
domain that a thesaurus should be definitely applied, and SG possibly applied, for
improvement of relevance for all kinds of questions. Relevance of the hybrid system
is improved by about 15%.

9.7 Related Work and Discussions

From the semantic standpoint, SG can be viewed as semantic inference for classi-
fication. Most work in automated semantic inference from syntax deals with much
lower semantic level then semantic classes we manage in this work. (de Salvo Braz
et al. 2005) presents a principled, integrated approach to semantic entailment. The
authors developed an expressive knowledge representation that provides a hierar-
chical encoding of structural, relational and semantic properties of the text and

9.7 Related Work and Discussions 313

populated it using a variety of machine learning based tools. An inferential mech-
anism over a knowledge representation that supports both abstractions and several
levels of representations allowed them to begin to address important issues in
abstracting over the variability in natural language. Certain reasoning patterns
from this work are implicitly implemented by parsing tree matching approach
proposed in Chap. 5.

The special issue of Information Sciences Journal on Intelligent knowledge-based
models and methodologies for complex information systems (Cuzzocrea 2012)
provides a good comparison framework for this chapter. Generalized association
rule extraction is a powerful tool to discover a high level view of the interesting
patterns hidden in the analyzed data (Baralis et al. 2012). However, since the patterns
are extracted at any level of abstraction, the mined rule set may be too large to be
effectively exploited in the decision making process. Thus, to discover valuable and
interesting knowledge a post-processing step such as additional generalization
control of rules is usually required (Galitsky 2015). In case of the associated rules
for text in the form of trees with nodes for words and/or POS, SG is capable of
maintaining the proper generality of the extracted association rules, and can be
viewed as an alternative approach.

SemEval Conference is an adequate forum to compare text similarity approaches.
(Gomez et al. 2015) describes the approach for the Community Question Answering
Task, which was presented at the SemEval 2015. The transforms the answers of the
training set into a graph based representation for each answer class, which contains
lexical, morphological, and syntactic features. The answers in the test set are also
transformed into the graph based representation individually. After this, different
paths are traversed in the training and test sets in order to find relevant features of the
graphs. As a result of this procedure, the system constructs several vectors of
features: one for each traversed graph. (Zarrella et al. 2015) explored mixtures of
string matching metrics for similarity measures, alignments using tweet-specific
distributed word representations, recurrent neural networks for modeling similarity
with those alignments, and distance measurements on pooled latent semantic fea-
tures. Logistic regression was applied to integrate these component into the hybrid
architecture. For Twitter data, which is much noisier and has higher variability than
the text for the pipeline in this chapter, the authors achieved F-measure of 71.6. It is
significantly lower of F-measure of above 90% achieved in the current study for
search. (Vo et al. 2015) submitted three runs for SemEval 2015, Task #2 “Semantic
Textual Similarity”, English subtask, combining typical features (lexical similarity,
string similarity, word n-grams, etc.) with syntactic structure features, outperforming
the best system of the 2014 dataset.

Table 9.12 helps to compare our results of the subtasks of the sentiment analysis
tasks with those of SemEval. Whereas sentiments are extracted from all texts
(including tweets) in the major evaluation tasks, for the industrial applications it is
essential to only showmeaningful sentences for the purpose of recommendation, and
tailor them to the knowledge state of a user receiving recommendation.

Until recently, most approaches to semantics involve one or another form of
mapping into first order logic forms without using acquired rich knowledge sources.

314 9 A Content Management System for Chatbots

A concise Frege-type graph language programmed as a tool for logic programming
is presented in (Redey 1993), implementing the principle that the logical structure of
NL statements can be constructed in a language equivalent of the first-order logic
established solely via the basic natural grammatical relations. (Nagarajan and
Chandrasekar 2014) proposed a new sentiment analysis algorithm that achieves
high accuracy results by taking into account the expectations of the customers
along with the inclusion of neutral words for analysis.

A number of methods measure text similarity numerically, similarly to SG score.
(Wenyin et al. 2010) proposed a method to collect short text snippets to measure the
similarity between pairs of snippets. The method takes account of both the semantic
and statistical information within the short text snippets, and consists of three steps.
Given a set of raw short text snippets, it first establishes the initial similarity between
words by using a lexical database. The method then iteratively calculates both word
similarity and short text similarity. Finally, a proximity matrix is constructed based
on word similarity and used to convert the raw text snippets into vectors. Word
similarity and text clustering experiments show that the proposed short text model-
ing method improves the performance of IR systems.

Proposed approach is tolerant to errors in parsing. For more complex sentences
where parsing errors are likely, using OpenNLP, we select multiple versions of
parsings and their estimated confidence levels (probabilities). Then we cross-match
these versions and if parsings with lower confidence levels provide a higher match
score, we select them.

It must be remarked that integrating argumentation and recommender systems is a
recent research topic. DeLP has proven to be an efficient tool for achieving this
integration, as exemplified in (Chesñevar et al. 2009). Sagui et al. (2009)
implemented intelligent processing of web-based forms and intelligent robotic
soccer (Ferretti et al. 2007), among many other applications.

DeLP has also been used for modeling thesaurus reasoning. Standard approaches
to reasoning with description logics ontologies require them to be consistent.
However, as ontologies are complex entities and sometimes built upon other
imported ontologies, inconsistencies can arise. Gomez et al. (2010) presents
δ-ontologies, a framework for reasoning with inconsistent ontologies, expressing
them as defeasible logic programs. Given a query posed w.r.t. an inconsistent
thesaurus, a dialectical analysis is performed on a DeLP program obtained from
such thesaurus, where all arguments in favor and against the final answer of the

Table 9.12 A comparison between the different systems using the Twitter training corpus pro-
vided by the SemEval Sentiment Analysis task (Rosenthal et al. 2014)

Experiment

Twitter

SMS LiveJournalDev Test Sarcasm

Majority 29.19 34.64 27.73 19.03 27.21

Purchase-based system 62.09 64.74 40.75 56.86 62.22

Tweet-level system 62.4 63.73 42.41 69.54 69.44

Combined system 64.6 65.42 40.02 59.84 68.79

9.7 Related Work and Discussions 315

query will be taken into account. The current chapter presents an industrial system
for handling a special case of thesaurus inconsistencies by using a different mech-
anism of mapping, but similar underlying logic of argumentation.

Defeasible reasoning is a rule-based approach for efficient reasoning with incom-
plete and inconsistent information. Such reasoning is, among others, useful for
thesaurus integration, where conflicting information arises naturally; and for the
modeling of business rules and policies, where rules with exceptions are often used.
Category mapping is an (example of such domain, where we need to systematically
treat exceptions. (Antoniou et al. 2001) describes these scenarios with rules with
exceptions in more detail, and reports on the implementation of a system for
defeasible reasoning on the Web. The system is:

• syntactically compatible with RuleML;
• based on strict and defeasible rules and priorities;
• based on a translation to logic programming with declarative semantics;
• flexible and adaptable to different intuitions within defeasible reasoning.

Tree Kernel methods (TK) for text learning are becoming popular. This data
includes keywords as well as their syntactic parameters. A kernel function can be
thought of as a text similarity measure: given a set of labeled instances, kernel
methods determine the label of an unassigned instance by comparing it to the labeled
training instances using this kernel function. Compared to kernel methods, syntactic
generalization (SG) can be considered as structure-based and deterministic; linguis-
tic features retain their structure and are not represented as values. We will be
forming a set of maximal common sub-trees for a pair of parse tree for two sentences
as a measure of similarity between them. It will be done using representation of
constituency parse trees via chunking; each type of phrases (NP, VP PRP etc.) will
be aligned and subject to generalization.

A number of authors including (Cumby and Roth 2003; Moschitti 2008; Kong
and Zhou 2011) proposed several kernel functions to model parse tree properties in
kernel-based machines such as perceptrons or support vector machines. In this
chapter, instead of tackling a high dimensional space of features formed from
syntactic parse trees, we apply a more structural machine learning approach to
learn syntactic parse trees themselves, measuring similarities via sub-parse trees
and not distances in this space. The authors define different kinds of tree kernels as
general approaches to feature engineering for semantic role labeling, and experi-
ments with such kernels to investigate their contribution to individual stages of an
SRL architecture both in isolation and in combination with other traditional manu-
ally coded features. The results for boundary recognition, classification, and
re-ranking stages provide systematic evidence about the significant impact of tree
kernels on the overall accuracy.

In our studies (Galitsky et al. 2012: Galitsky 2017) we approached the text
learning problem as parse tree learning one based on syntactic generalization. The
motivation was to explore how a richer set of linguistic features such as constituency
parse trees can provide richer semantic information and therefore provide more
accurate and efficient solution for text classification. We also applied graph learning

316 9 A Content Management System for Chatbots

to other domains (Galitsky et al. 2005, 2009) such as understanding complex
dialogues with conflicts. We performed the comparative analysis for the accuracies
of SG versus tree kernel (TK) methods in a number of applied NLP tasks (Galitsky
et al. 2015) including search, text classification and information retrieval and
evaluation benchmark tasks including discourse analysis. In most cases the accuracy
of SG and TK are similar, since the overall accuracy is determined by the richness of
the feature space rather than the learning framework. In this study we implement
both SG and TK and perform the joint evaluation of these techniques in industrial
settings with the baseline approaches.

In (Galitsky et al. 2013) and Chap. 7 we built a paragraph-level structure which is
a sum of parse trees of sentences and called it parse thicket. In this chapter we rely on
the operation of generalization on the pair of parse trees (syntactic generalization,
SG) for two sentences and demonstrate its role in sentence classification and other
text similarity assessment tasks. Operation of generalization is defined starting from
the level of lemmas to chunks/phrases and all the way to paragraphs/texts.

The issue of fake content has been rising dramatically in recent years. Motivated
by a number of reasons, content aggregator distorts the content and make
unsubstantiated claims with attribution for their advantage. In Fig. 9.17 we see an
original Garner post mentioning 25% by 2020 (on the top), and the medium.com
representation of Gartner claim boosted to 85%.

Fig. 9.17 Original source of information and its misrepresentation by a content aggregator

9.7 Related Work and Discussions 317

http://medium.com

9.8 Conclusions

9.8.1 From Search Engines to Chatbots

The fields of relevance support for CMS have become critical to a modern work-
place. Finding, documenting, and knowing things in an environment where data is
dispersed, employees are always on the fly, and career paths change fast must be
intuitive, simple, and seamless (Wade 2018). Finding content in a site structure
requires a mental roadmap of where things live. Search may provide good results,
but not direct answers; the answer is usually in the file it returns, meaning more time
digesting to understand. Chatbots give users a chance to jump straight to the answer
while pointing the to the source for reference, saving everyone time and bridging
what is becoming a major gap in CMS (Fig. 9.18).

In a default site and library hierarchy, the files can be well organized using a
strong folder or metadata structure. The effectiveness of the file hierarchy depends
on the strategy used for initially organizing the content and how well the owner of
the hierarchy has maintained the structure and the content over time. With search, the
content is not organized before it gets to an inverse index. A search engine will
provide multiple results in an organic fashion based on keyword matches, any
metadata refiners, and, past popularity of the search results and other considerations.
This can provide an efficient access when the users have no idea where to find the
information of interest or intend to save time.

With a chatbot, the CMS manager is expected to predict what users want to see
and provide direct responses and direct answers. From the users standpoint, the
information is not organized either (even though on the back end it is) nor does it

Fig. 9.18 From sites and libraries to search and to chatbots

318 9 A Content Management System for Chatbots

provide organic options like search. Instead, the chatbot gives the best answer it has
and also does it in a conversational way. This direct method of providing information
means the user does less work for the same information gain and can perform the
task over and over as necessary.

With search, the users are given the results that just recently combined everything
that they have access to. Even a user who knows searching best practices on top of a
system with a smart search setup including promoted ones and customer refined
personalized ones, the user still has to deal with extraneous results that just are not
always relevant. From keywords that overlap (e.g., “extension” for files info or
telephone numbers) to outdated information, one must sift through plenty of hits in
search due to the nature of its organic results. It can lead to an overall negative
impact on the overall search experience.

With chatbots, the information available is fully specified by the developers who
tune the information in the bot CMS. Chatbot developers direct users to the source
information they seek. A good chatbot with relevant CMS has answers to most
common questions for each group or department in an organization, actually answers
the question being asked (rather than solely providing a source for the answer), and
links back to the source as a reference for further information.

9.8.2 Relevance in a CMS

In this chapter, reporting from industry, we addressed an issue of relevance in a
content pipeline for a chatbot. Although a limitation of keyword-based approach for
content collection, cleaning, aggregation and indexing is well understood (Sidorov
2013), there is no plausible alternative with proved performance is currently avail-
able. A full-scale linguistic processing (which is thought to be non-scalable for
search and recommendation on an industrial scale) turned out to be essential to
provide relevance in a domain-independent manner. We demonstrated that a wide
range of content pipeline components can rely on matching of syntactic parse trees
for sentences (Chap. 5), phrases and paragraphs (Chap. 7) to maintain relevance. We
conducted a comparative analysis of syntactic generalization, tree kernel and statis-
tical approaches and selected the former as superior for industrial applications, based
on our evaluation of their performances.

The explosion of chatbot applications and machine learning provides a new
approach to real-time, personalized customer experiences. In comparison with
search engines, chatbots are the ultimate culmination of the universal content
management and personalization efforts. Organizations which do not acknowledge
the transformative value of chatbots are expected to experience difficulties in
reaching and retaining customers.

Vo and Popescu (2016) proposed a four-layer system that leverages word align-
ment, sentence structure and semantic word similarities for relevance assessment.
Recently, Adidas’ chatbot achieved a retention rate of 60%, far better than their app
(Simplea 2018); Just Eat’s chatbot saw a conversion rate of 266% higher than their

9.8 Conclusions 319

average social ad; and CONVRG’s chatbot received a response rate 3 times that of
their email survey.

According to new research from Juniper, banking, healthcare, social, eCommerce
and retail organizations saved $20 million this year, with a savings of $8 billion per
year expected by 2022. Making content accessible and versatile is now more
important than ever for content producers. According to (Gartner 2018), chatbots
will power 25% of all customer service interactions by the year 2020.

Unlike TK, the structural approach of SG shows all intermediate generalization
results, which allows tracking of how class separation rules are built at each level
(pair-wise generalization, generalization ^ sentence, generalization ^ generalization,
(generalization ^ generalization) ^ generalization, etc.) Although SVM can handle a
high number of features including noisy ones, it can hardly outperform the situations
where selected features are meaningful. Among other disadvantages of SVM
(Suykens et al. 2003) are a lack of transparence of results: it is hard to represent
the similarity as a simple parametric function, since the dimension of feature space is
rather high. Also, SVM is subject to over-fitting when a number of training examples
is low compared to the number of features; results are very sensitive to a choice of
kernel. It is hard to adapt SVM to multi-class classification settings. Overall, a tree
kernel approach can be thought as statistical AI, and proposed approach follows
along the line of logical AI traditionally applied in linguistics two-three decades ago.
The current study suggests that the latter one is more suitable for traditional software
development methodology for industrial applications.

Parsing and chunking (conducted by OpenNLP) followed by SG are significantly
slower than other operations in a content management system and comparable with
operations like duplicate search. Verifying relevance, application of SG should be
preceded by statistical keyword-based methods. In real time application compo-
nents, such as search, we use conventional TF*IDF based approach (such as SOLR/
Lucene, see also (Erenel and Altınçay 2012)) to find a set of candidate answers of up
to 100 from millions of documents and then apply SG for each candidate. For
off-line components, we use parallelized map/reduce jobs (Hadoop) to apply parsing
and SG to large volumes of data. This approach allowed a successful combination of
efficiency and relevance for serving more than 10 million unique site users monthly
at datran.com/allvoices.com, zvents.com and eBay.com.

Our solution of the meaningful vs meaningless opinionated sentence problem
demonstrates how a very weak semantic signal concealed in a syntactic structure of
sentence can be leveraged. Obviously, using keyword-based rules for this problem
does not look promising.

We observed that contribution of SG to classification tasks varies with the
problem formulation, classification settings and domain. Whereas SM tool shows
an insignificant contribution of SG, other classification tasks leverages SG notice-
ably due to the importance of weaker syntactic signals.

Proposed approach is tolerant to errors in parsing. For more complex sentences
where parsing errors are likely, using OpenNLP (2018), we select multiple versions
of parsings and their estimated confidence levels (probabilities). Then we cross-

320 9 A Content Management System for Chatbots

http://datran.com/allvoices.com
http://zvents.com
http://ebay.com

match these versions and if parsings with lower confidence levels provide a higher
match score, we select them.

Presented content pipeline can be applied to other languages besides English as
long as search engine APIs and linguistic models are available for them. Web portals
like http://www.become.com, http://www.become.co.jp/ used similar content pipe-
line to the one presented in this chapter and supported German, French, Italian and
other languages. Also, besides entertainment, similar content pipeline has been
applied to a broad range of products and services at these web portals.

Using semantic information for query ranking has been proposed in (Aleman-Meza
et al. 2003; Ding et al. 2004). However, we believe the current study is a pioneering
one in deriving semantic information required for ranking from syntactic parse tree
directly. In our further studies we plan to proceed from syntactic parse trees to higher
semantic level and to explore other applications that would benefit from it.

The rough set theory can be used to measure similarity between texts as well.
(Janusz et al. 2012) present a research on the construction of a new unsupervised
model for learning a semantic similarity measure from text corpora. Two main
components of the model are a semantic interpreter of texts and a similarity function
whose properties are derived from data. The first one associates particular documents
with concepts defined in a knowledge base corresponding to the topics covered by
the corpus. It shifts the representation of a meaning of the texts from words that can
be ambiguous to concepts with predefined semantics. With this new representation,
the similarity function is derived from data using a modification of the dynamic rule-
based similarity model, which is adjusted to the unsupervised case.

In evaluation of this study we demonstrated how Facebook users of various level
of activity and sophistication benefits from personalization in a variety of degrees.
Users with limited number of Facebook categories, or a high number of adjusted set
of Facebook likes, leverages personalization the most.

In this chapter we argue that the hardest personalization component is to map
Facebook categories into ones of the system providing recommendation, given its
content and set of products/services. We tackled this problem by introducing
defeasibility relation between category mapping rules, which allowed for inconsis-
tent rules to be defeated and retain only rules which deliver more relevant
recommendations.

There are statistical approaches to category mapping for search such as (Rubiolo
et al. 2012) who presented an ANN-based thesaurus matching model for knowledge
source discovery on the Semantic Web. With the emergence of the Semantic Web a
high number of domain ontologies were developed, which varied not only in their
structure. However a lack of an integrated view of all web nodes and the existence of
heterogeneous domain ontologies drive new challenges in the discovery of knowl-
edge resources which are relevant to a user’s request. New approaches have recently
appeared for developing web intelligence and helping users avoid irrelevant results
on the web. In this study we used deterministic approach to category mapping which
can be viewed in a broader framework of thesaurus mapping.

Aggregating likes from friends is another important area supporting personaliza-
tion, where adequate treatment of product categories is the key. The value of enables

9.8 Conclusions 321

http://www.become.com
http://www.become.co.jp/

retailers/service providers and buyers/users alike to utilize the influence of trusted
friends and family within the shopping experience has been demonstrated. Similar to
the presented system, retailers and manufacturers using (iGoDigital 2013) product
recommendation platform, can leverage a consumers’ social network to provide an
added layer of personalization and relevancy within their shopping experience.
Consumers benefit from immediate access to product recommendations and opin-
ions from their social network as they research, browse, and complete purchases,
adding relevance and authenticity.

Our evaluation demonstrates that using personalized instead of traditional rec-
ommendations, we significantly increase:

• Overall user satisfaction with recommendation system, because users have to deal
much less with irrelevant recommendations

• The number of attended events, including ones requiring ticket purchase.

Hence personalized recommendation dramatically improves efficiency and effec-
tiveness of the user decision process on which events to attend. The recommendation
component presented in this chapter is oriented to work with Facebook; however,
other social network profiles can be handled in a similar manner, including interna-
tional social profiles in various languages.

There are an open source SG and TK component available at https://github.com/
bgalitsky/relevance-based-on-parse-trees as a part of (OpenNLP 2018), a machine
learning system for natural language processing. It can support content pipelines,
providing such functionality as SG-supported web mining and speech recognition,
assistance with creative writing, thesaurus building and search. It includes a request
handler for SOLR which makes it linguistically enabled, so that a search engineer
can apply it to her domain and easily observe if relevance is improved or not. The
project has a detailed documentation including (Galitsky 2012) and an extensive set
of tests to quickly grasp its functionality and application areas.

In this study we described the content pipeline with a high rate and amount of
incoming data on events, which cannot be handled by a conventional keyword-based
computer system. To be able to combine efficient storage, processing and analysis
requirement with desired relevance, a more efficient text processing technique is
required, based on richer linguistic information. Furthermore, the data on events
come in a wide spectrum of forms, including social networks and opinions, so that
the text processing operation also needs to support not only linguistic generalization
but also perform at the level of categories of entities.

We also demonstrated that once domain-independent efficient SG component is
developed to tackle textual date, leveraging rich linguistic information available for
learning of parse tree, the same component has been used for a wide number of
distinct problems.

The evaluation version of both SG and TK are available at https://github.com/
bgalitsky/relevance-based-on-parse-trees/tree/master/src/main/java/opennlp/tools/
parse_thicket/kernel_interface and https://github.com/bgalitsky/relevance-based-on-
parse-trees/tree/master/src/main/java/opennlp/tools/textsimilarity.

322 9 A Content Management System for Chatbots

https://github.com/bgalitsky/relevance-based-on-parse-trees
https://github.com/bgalitsky/relevance-based-on-parse-trees
https://github.com/bgalitsky/relevance-based-on-parse-trees/tree/master/src/main/java/opennlp/tools/parse_thicket/kernel_interface
https://github.com/bgalitsky/relevance-based-on-parse-trees/tree/master/src/main/java/opennlp/tools/parse_thicket/kernel_interface
https://github.com/bgalitsky/relevance-based-on-parse-trees/tree/master/src/main/java/opennlp/tools/parse_thicket/kernel_interface
https://github.com/bgalitsky/relevance-based-on-parse-trees/tree/master/src/main/java/opennlp/tools/textsimilarity
https://github.com/bgalitsky/relevance-based-on-parse-trees/tree/master/src/main/java/opennlp/tools/textsimilarity

References

Aleman-Meza B, Halaschek C, Arpinar I, Sheth A (2003) A context-aware semantic association
ranking. In: Proceedings of the first inernational workshop semantic web and databases
(SWDB’03), pp 33–50

Antoniou G, Billington D, Governatori G, Maher M (2001) Representation results for defeasible
logic. ACM Trans Comput Log 2(2):255–287

Banerjee S, Mitra P (2016) WikiWrite: generating wikipedia articles automatically. IJCAI,
New York

Baralis E, Cagliero L, Cerquitelli T, Garza P (2012) Generalized association rule mining with
constraints. Inf Sci 194:68–84

Baroni M, Chantree F, Kilgarriff A, Sharoff S (2008) Cleaneval: a competition for cleaning web
pages. In: Calzolari N, Choukri K, Maegaard B, Mariani J, Odjik J, Piperidis S, Tapias D (eds)
Proceedings of the sixth international language resources and evaluation (LREC’08)

Bartlett FC (1932) Remembering: a study in experimental and social psychology. Cambridge
University Press

Barzilay R, Lee L (2004) Catching the drift: probabilistic content models, with applications to
generation and summarization. HLT-NAACL

Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3:993–1022
Bordini RH, Braubach L (2006) A survey of programming languages and platforms for multi-agent

systems. Informatica 30:33–44
Bridle JS (1990) Probabilistic interpretation of feedforward classification network outputs, with

relationships to statistical pattern recognition. In: Neurocomputing. Springer, pp 227–236
Brzezinski D, Stefanowski J (2011) Accuracy updated ensemble for data streams with concept drift.

In: Proceedings of HAIS 2011, Springer Verlag lecture notes in artificial intelligence 6679, pp
155–163

Cai D, Yu S, Wen J-R, Ma W-Y (2003) Extracting content structure for web pages based on visual
representation. In: Zhou X, Zhang Y, Orlowska ME (eds) APWeb, volume 2642 of LNCS,
Springer, pp 406–417

Cascading (2013) Welcome to the Cascading ecosystem. www.cascading.org
Chesñevar C, Maguitman A, González MP (2009. Empowering recommendation technologies

through argumentation. In: Rahwan I, Simari G (eds) Argumentation in artificial intelligence,
Springer Verlag, (505 p, in press). ISBN 978-0-387-98196-3

Cumby C, Roth D (2003) On kernel methods for relational learning. In: ICML, pp 107–14
Cuzzocrea A (Editorial) (2012) Intelligent knowledge-based models and methodologies for com-

plex information systems. Inf Sci 194:1–282
de Salvo Braz R, Girju R, Punyakanok V, Roth D, Sammons M (2005) An inference model for

semantic entailment in natural language. In: Proceedings of AAAI-05
Ding L, Finin T, Joshi A, Pan R, Cost RS, Peng Y, Reddivari P, Doshi V, Sachs J (2004) Swoogle: a

search and metadata engine for the semantic web. In: Proceedings of 13th ACM international
conference on information and knowledge management (CIKM’04), pp 652–659

Erenel Z, Altınçay H (2012) Nonlinear transformation of term frequencies for term weighting in text
categorization. Eng Appl Artifi Intell 25(7):1505–1514

Ferretti E, Errecalde M, García AJ, Simari GR (2007) An application of defeasible logic program-
ming to decision making in a robotic environment. In: LPNMR, pp 297–302

Galitsky B (2003) Natural language question answering system: technique of semantic headers.
Advanced Knowledge International, Adelaide

Galitsky B (2012) Machine learning of syntactic parse trees for search and classification of text. Eng
Appl AI 26(3):1072–1091

Galitsky B (2013) Transfer learning of syntactic structures for building taxonomies for search
engines. Eng Appl Artif Intell 26(10):2504–2515

Galitsky B (2014) Learning parse structure of paragraphs and its applications in search. Eng Appl of
AI 32:160–184

References 323

http://www.cascading.org

Galitsky B (2015). Finding a lattice of needles in a haystack: forming a query from a set of items of
interest. In: FCA4AI@IJCAI

Galitsky B (2016) A tool for efficient content compilation. In: COLING Demo C16-2042 Osaka,
Japan

Galitsky B (2017) Matching parse thickets for open domain question answering. Data Knowl Eng
107:24–50

Galitsky B, de la Rosa JL (2011) Concept-based learning of human behavior for customer
relationship management. Spec Issue Inf Eng Appl Based on Lattices. Inf Sci 181
(10):2016–2035

Galitsky B, Ilvovsky D (2017) Chatbot with a discourse structure-driven dialogue management. In:
EACL Demo E17-3022, Valencia, Spain

Galitsky B, Kovalerchuk B (2014) Improving web search relevance with learning structure of
domain concepts. In: Clusters, orders, and trees: methods and applications, pp 341–376

Galitsky B, Kuznetsov SO (2013) A web mining tool for assistance with creative writing. In: ECIR
2013: advances in information retrieval, pp 828–831

Galitsky B, Levene M (2007) Providing rating services and subscriptions with web portal infra-
structures. In: Encyclopedia of portal technologies and applications, pp 855–862

Galitsky B, Usikov D (2008) Programming spatial algorithms in natural language. In: AAAI
workshop technical report WS-08-11, Palo Alto, pp 16–24

Galitsky B, Kuznetsov SO, Samokhin MV (2005) Analyzing conflicts with concept-based learning.
In: International conference on conceptual structures, pp 307–322

Galitsky B, Kuznetsov SO, Kovalerchuk B (2008) Argumentation vs meta-argumentation for the
assessment of multi-agent conflict. Proc. of the AAAI Workshop on Metareasoning

Galitsky B, Chen H, Du S (2009) Inversion of Forum Content Based on Authors’ Sentiments on
Product Usability. AAAI Spring Symposium: Social Semantic Web: Where Web 2.0 Meets
Web 3.0, pp 33–38

Galitsky B, Dobrocsi G, de la Rosa JL (2010) Inverting semantic structure under open domain
opinion mining twenty-third international FLAIRS conference

Galitsky B Dobrocsi G, de la Rosa JL, Kuznetsov SO (2011) Using generalization of syntactic parse
trees for taxonomy capture on the web. In: ICCS, pp 104–117

Galitsky B, Dobrocsi G, de la Rosa JL (2012) Inferring the semantic properties of sentences by
mining syntactic parse trees. Data Knowl Eng 81:21–45

Galitsky B, Usikov D, Kuznetsov SO (2013) Parse thicket representations for answering multi-
sentence questions. In: 20th international conference on conceptual structures, ICCS

Galitsky B, Ilvovsky D, Kuznetsov SO (2015) Text classification into abstract classes based on
discourse structure. In: Proceedings of recent advances in natural language processing, Hissar,
Bulgaria, Sep 7–9 2015, pp 200–207

Garcia A, Simari G (2004) Defeasible logic programming: an argumentative approach. Theory
Pract Logic Program 4:95–138

Gartner (2018) Gartner says 25 percent of customer service operations will use virtual customer
assistants by 2020. https://www.gartner.com/newsroom/id/3858564

Go A, Bhayani R, Huang L (2009) Twitter sentiment classification using distant supervision.
Technical Report. Stanford University

Gomez SA, Chesñevar CI, Simari GR (2010) Reasoning with inconsistent ontologies through
argumentation. Appl Artif Intell 24(1 & 2):102–148

Gomez H, Vilariño D, Pinto D, Sidorov G (2015) CICBUAPnlp: graph-based approach for answer
selection in community question answering task. In: Sem Eavl-2015, pp 18–22

Google (2018) Search using autocomplete. https://support.google.com/websearch/answer/106230
Harris Z (1982) Discourse and sublanguage. In: Kittredge R, Lehrberger J (eds) Sublanguage:

studies of language in restricted semantic domains. Walter de Gruyter, Berlin, New York, pp
231–236

Hendrikx M, Meijer S, Van Der Velden J, Iosup A (2013) Procedural content generation for games:
a survey. ACM Trans Multimed Comput Commun Appl 9(1), Article 1, 22 pages

324 9 A Content Management System for Chatbots

https://www.gartner.com/newsroom/id/3858564
https://support.google.com/websearch/answer/106230

iGoDigital (2013) https://www.crunchbase.com/organization/igodigital
Jaccard P (1912) The distribution of the flora in the alpine zone. New Phytol 11:37–50
Janusz A, Ślęzak D, Nguyen HS (2012) Unsupervised similarity learning from textual data. Fundam

Inform 119(3):319–336
Jindal R, Taneja S (2017) A novel weighted classification approach using linguistic text mining. Int

J Comput Appl 180(2):9–15
Johnson MR (2016) Procedural generation of linguistics, dialects, naming conventions and spoken

sentences. In: Proceedings of 1st international joint conference of DiGRA and FDG
Kong F, Zhou G (2011) Improving tree kernel-based event pronoun resolution with competitive

information. In: Proceedings of the twenty-second international joint conference on artificial
intelligence, vol 3, pp 1814–1819

Krippendorff K (2004) Reliability in content analysis: some common misconceptions and recom-
mendations. Hum Commun Res 30(3):411–433

Kuncheva LI (2004) Classier ensembles for changing environments. In: Roli F, Kittler J, Windeatt
T (eds) Multiple classifier systems, LNCS, vol 3077. Springer, Heidelberg, p 1

Le Q, Mikolov T (2014) Distributed representations of sentences and documents. In Proceedings of
the 31st International Conference on International Conference on Machine Learning – Volume
32 (ICML’14), Eric P. Xing and Tony Jebara (Eds.), Vol 32

Leouski AV, Croft WB (1996) An evaluation of techniques for clustering search results. UMass
Tech Report #76. http://ciir.cs.umass.edu/pubfiles/ir-76.pdf

Levenshtein VI (1966) Binary codes capable of correcting deletions, insertions, and reversals. Sov
Phys Dokl 10(8):707–710

Liapis A, Yannakakis GN, Togelius J (2013) Sentient sketchbook: computer-aided game level
authoring. In: InFDG, pp 213–220

Mahout (2013) https://mahout.apache.org
Makhalova T, Ilvovsky DA, Galitsky B (2015) News clustering approach based on discourse text

structure. In: Proceedings of the First Workshop on Computing News Storylines @ACL
Mann WC, Thompson SA (1988) Rhetoric al structure theory: toward a functional theory of text

organization. Text 8(3):243–281
Manning CD, Raghavan P, Schütze H (2008) Introduction to Information Retrieval. Cambridge

University Press, Cambridge UK
Marcu D (1997) The rhetorical parsing, summarization, and generation of natural language texts.

Unpublished Ph.D. dissertation, University of Toronto, Toronto, Canada
Mavridis T, Symeonidis AL (2014) Semantic analysis of web documents for the generation of

optimal content. Eng Appl Artif Intell 35:114–130
Moschitti A (2008) Kernel methods, syntax and semantics for relational text categorization. In:

Proceeding of ACM 17th conference on information and knowledge management (CIKM).
Napa Valley, California

McKeown KR (1985) Text generation: using discourse strategies and focus constraints to generate
natural language text. Cambridge University Press, Cambridge, UK

Nagarajan V, Chandrasekar P (2014) Pivotal sentiment tree classifier. Int J Sci Technol Res 3
(11):190

OpenNLP (2018.) https://opennlp.apache.org/
Pak A, Paroubek P (2010) Twitter as a corpus for sentiment analysis and opinion mining. In:

Nicoletta Calzolari N (ed) LREC’
Pasternack J, Roth D (2009) Extracting article text from the web with maximum subsequence

segmentation. In: WWW ‘09: proceedings of the 18th international conference on world wide
web, ACM, New York, pp 971–980

Rahwan I, Amgoud L (2006) An argumentation based approach for practical reasoning. In:
International joint conference on autonomous agents and multi agent systems, pp 347–354

Rédey G (1993) Conformal text representation. Eng Appl Artif Intell 6(1):65–71
Rosenthal S, Ritter A, Nakov P, Stoyanov V (2014) SemEval-2014 task 9: sentiment analysis in

Twitter. In: SemEval-2014

References 325

https://www.crunchbase.com/organization/igodigital
http://ciir.cs.umass.edu/pubfiles/ir-76.pdf
https://mahout.apache.org
https://opennlp.apache.org/

Rubiolo M, Caliusco ML, Stegmayer G, Coronel M, Gareli Fabrizi M (2012) Knowledge discovery
through ontology matching: an approach based on an artificial neural network model. Inf Sci
194:107–119

Sagui F, Maguitman A, Chesñevar C, Simari G (2009) Modeling news trust: a defeasible logic
programming approach. Iberoam J Artif Intell 12(40):63–72. Edited by AEPIA (Spanish
Association of Artificial Intelligence), Madrid, Spain, ISSN 1137-3601

Sauper C, Barzilay R (2000) Automatically generating wikipedia articles: a structure-aware
approach, Proceedings of ACL

Sauper C, Barzilay R (2009) Automatically generating wikipedia articles: a structure-aware
approach. In: Proceedings of ACL. Suntec, Singapore, pp 2008–2016

Sidorov G (2013) Syntactic dependency based N-grams in rule based automatic English as second
language grammar correction. Int J Comput Linguist Appl 4(2):169–188

Sidorov G (2014) Should syntactic N-grams contain names of syntactic relations? Int J Comput
Linguist Appl 5(1):139–158

Simplea (2018) AI Marketing, Chatbots, and Your CMS. https://simplea.com/Articles/AI-Market
ing-Chatbots-and-Your-CMS

Socher R, Perelygin A, Wu J, Chuang J, Manning C, Ng A, Potts C (2013) Recursive deep models
for semantic compositionality over a sentiment treebank. In: Conference on empirical methods
in natural language processing (EMNLP 2013)

Suykens JAK, Horvath G, Basu S, Micchelli C, Vandewalle J (eds) (2003) Advances in learning
theory: methods, models and applications, NATO-ASI series III: computer and systems sci-
ences, vol 190. IOS Press, Amsterdam

Tneogi (2018) Conversational interfaces need a different content management system. Chatbot
Magazine. https://chatbotsmagazine.com/conversational-interfaces-need-a-different-content-
management-system-b105bb6f716

Tunkelang D (2018) Search results clustering. https://queryunderstanding.com/search-results-clus
tering-b2fa64c6c809

Varshavsky R, Moshe T, Yuval P, Wilson DB (2010) Group recommendations in social networks.
US Patent App 20110270774, Microsoft

Vo NPA, Popescu O (2016) A multi-layer system for semantic textual similarity. In: 8th interna-
tional conference on knowledge discovery and information Retrieval

Vo NPA, Magnolini S, Popescu O (2015) FBK-HLT: a new framework for semantic textual
similarity. In: Proceedings of the 9th international workshop on semantic evaluation
(SemEval-2015), NAACL-HLT 2015, At Denver, USA

Wade M (2018) 5 ways chatbots are revolutionizing knowledge management. AtBot. https://blog.
getbizzy.io/5-ways-chatbots-are-revolutionizing-knowledge-management-bdf925db66e9

Wenyin L, Quan X, Feng M, Qiu B (2010) A short text modeling method combining semantic and
statistical information. Inf Sci 180(20):4031–4041

Wray A (2002) Formulaic language and the lexicon. Cambridge University Press, Cambridge
Zarrella G, Henderson J, Merkhofer EM, Strickhart L. (2015) MITRE: seven systems for semantic

similarity in tweets. Proceedings of the 9th International Workshop on Semantic Evaluation
(SemEval 2015)

326 9 A Content Management System for Chatbots

https://simplea.com/Articles/AI-Marketing-Chatbots-and-Your-CMS
https://simplea.com/Articles/AI-Marketing-Chatbots-and-Your-CMS
https://chatbotsmagazine.com/conversational-interfaces-need-a-different-content-management-system-b105bb6f716
https://chatbotsmagazine.com/conversational-interfaces-need-a-different-content-management-system-b105bb6f716
https://queryunderstanding.com/search-results-clustering-b2fa64c6c809
https://queryunderstanding.com/search-results-clustering-b2fa64c6c809
https://blog.getbizzy.io/5-ways-chatbots-are-revolutionizing-knowledge-management-bdf925db66e9
https://blog.getbizzy.io/5-ways-chatbots-are-revolutionizing-knowledge-management-bdf925db66e9

Chapter 10
Rhetorical Agreement: Maintaining
Cohesive Conversations

Abstract To support a natural flow of a conversation in a chatbot, rhetorical structures
of each message has to be analyzed. We classify a pair of paragraphs of text as
appropriate for one to follow another, or inappropriate, based on communicative
discourse considerations. To represent a multi-sentence message with respect to how
it should follow a previous message in a conversation or dialogue, we build an
extension of a discourse tree for it. Extended discourse tree is based on a discourse
tree for RST relations with labels for communicative actions, and also additional arcs
for anaphora and ontology-based relations for entities. We refer to such trees as
Communicative Discourse Trees (CDTs). We explore syntactic and discourse features
that are indicative of correct vs incorrect request-response or question-answer pairs.
Two learning frameworks are used to recognize such correct pairs: deterministic,
nearest-neighbor learning of CDTs as graphs, and a tree kernel learning of CDTs,
where a feature space of all CDT sub-trees is subject to SVM learning. We form the
positive training set from the correct pairs obtained from Yahoo Answers, social
network, corporate conversations including Enron emails, customer complaints and
interviews by journalists. The corresponding negative training set is artificially created
by attaching responses for different, inappropriate requests that include relevant key-
words. The evaluation showed that it is possible to recognize valid pairs in 70% of cases
in the domains of weak request-response agreement and 80% of cases in the domains of
strong agreement, which is essential to support automated conversations. These accu-
racies are comparable with the benchmark task of classification of discourse trees
themselves as valid or invalid, and also with classification of multi-sentence answers
in factoid question-answering systems. The applicability of proposed machinery to the
problem of chatbots, social chats and programming via NL is demonstrated. We
conclude that learning rhetorical structures in the form of CDTs is the key source of
data to support answering complex questions, chatbots and dialogue management.

10.1 Introduction

In recent years, development of chatbots answering questions, facilitation discus-
sion, managing dialogues and providing social promotion is becoming very popular.
A broad range of relevance technologies including compositional semantics have

© Springer Nature Switzerland AG 2019
B. Galitsky, Developing Enterprise Chatbots,
https://doi.org/10.1007/978-3-030-04299-8_10

327

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04299-8_10&domain=pdf

been developed to support these systems in case of simple, short queries and replies.
On the other hand, the accuracy of results of discourse (rhetoric) parsers, which are
capable of building the discourse structure of longer queries, requests and answers,
dramatically increases. At the same time, the issue of how a question answering,
dialog management, recommendation or chatbot system can leverage rich discourse-
related information in a structural form (Galitsky and Ilvovsky 2017) has not yet
been extensively addressed.

During the last two decade, research in the field of dialogue systems has experi-
enced increasing growth (Wilks 1999). A number of formal systems representing
various aspects of dialogues have been proposed (Traum and Hinkelman 1992;
Blaylock et al. 2003; Popescu-Belis 2005; Popescu et al. 2007). However, the design
and optimization of these systems is not only about combining language processing
systems such as parsers, part-of-speech taggers, intention models, rhetorical com-
ponents and natural language generation systems. It also requires the development of
dialogue strategies taking into account the nature of the tasks such as form filling,
tutoring, robot control, information and advice request, social promotion or database
search/browsing and the user behavior. Due to the great variability of these factors,
deployment of manual, handcrafted designs is very difficult. For these reasons,
statistical and deep machine learning methods supporting dialogues have been
leading research areas for the last few years.

A request can have an arbitrary rhetorical structure as long as the subject of this
request or a question is clear to its recipient. A response on its own can have an
arbitrary rhetorical structure. However, these structures should be correlated when
the response is appropriate to the request. In this chapter we focus on computational
measure for how logical, rhetorical structure of a request or question is in agreement
with that of a response, or an answer. We will form a number of representations for a
request-response (RR) pair, learn them and solve a RR classification problem of
relating them into a class of valid (correct answer or response) or invalid pairs.

Most computational models of communicative discourse are based on an analysis
of the intentions of the speakers (Allen and Perrault 1980; Grosz and Sidner 1986). A
requester has certain goals, and communication results from a planning process to
achieve these goals. The requester will form intentions based on these goals and then
act on these intentions, producing utterances. The responder will then reconstruct a
model of the requester’s intentions upon hearing the utterance. This family of
approaches is limited in providing an adequate account of the adherence to discourse
conventions in dialogue.

When answering a question formulated as a phrase or a sentence, the answer must
address the topic of this question. When a question is formulated implicitly, via a
seed text of a message, its answer is expected not only maintain a topic, but also
match the epistemic state of this seed. For example, when a person is looking to sell
an item with features, the search result should not only contain these features but also
indicate intent to buy. When a person is looking to share knowledge about an item,
the search result should contain intent to receive a recommendation. When a person
is asking for an opinion about a subject, the response should be sharing opinion
about this subject, not another request for opinion. Modern dialogue management

328 10 Rhetorical Agreement: Maintaining Cohesive Conversations

systems and automated email answering have achieved good accuracy maintaining
the topic, but maintaining a communication discourse is a much more difficult
problem. This measure of rhetorical agreement needs to be learned from data since
it is hard to come up with explicit rules for respective rhetorical structures. We will
form a number of representations for an RR pair, learn them and solve a RR pair
classification problem of relating them into a class of valid or invalid pairs.

The syntactic structure of simple question is correlated with that of an answer.
This structure helps a lot for finding the best answer in the passage re-ranking
problem. It has been shown that using syntactic information for improving search
relevance helps on top of keywords frequency (TF*IDF) analysis and other keyword
statistics methods such as LDA. Selecting a most suitable answer by not just a
meaning of keywords but also by judging on how syntactic structure of a question,
including a focus of a Wh-word, is reflected in an answer, has been proposed
(Moschitti et al. 2007; Galitsky 2013). We follow along the lines of these studies
and take this consideration from phrase and sentence levels to the level of a
paragraph discourse. To represent the linguistic features of text, we use two follow-
ing sources:

1. Rhetorical relations between the parts of the sentences, obtained as a discourse
tree;

2. Speech acts, communicative actions, obtained as verbs from the VerbNet
resource (the verb signatures with instantiated semantic roles). These are attached
to rhetorical relations as labels for arcs of CDTs.

It turns out that only (1) or only (2) is insufficient for recognizing correct RR pairs,
but the combination of these sources is.

The goal of this research is to extend the notion of question/answer relevance to
rhetorical relevance of a general request/response pair for a broader dialogue
support.

10.1.1 Request and Response Utterances

We introduce a first example of a request and it response and show that their
rhetorical trees have to be coordinated. If the request has a certain rhetorical
structure, the respect has to follow in some way. What we will see is that there is
no simple rule, simple machinery to link a DT of this request with that of its response
(Fig. 10.1). We will frame the texts for requests and responses from now on.

Request: “My husbands’ grandmother gave him his grandfathers truck. She
signed the title over but due to my husband having unpaid fines on his
license, he was not able to get the truck put in his name. I wanted to put in

(continued)

10.1 Introduction 329

my name and paid the property tax and got insurance for the truck. By the
time it came to sending off the title and getting the tag, I didn’t have the
money to do so. Now, due to circumstances, I am not going to be able to
afford the truck. I went to the insurance place and was refused a refund. I
am just wondering that since I am not going to have a tag on this truck, is it
possible to get the property tax refunded?”

Response: “The property tax is assessed on property that you own. Just
because you chose to not register it does not mean that you don’t own it,
so the tax is not refundable. Even if you have not titled the vehicle yet, you
still own it within the boundaries of the tax district, so the tax is payable.
Note that all states give you a limited amount of time to transfer title and
pay the use tax. If you apply late, there will be penalties on top of the
normal taxes and fees. You don’t need to register it at the same time, but
you absolutely need to title it within the period of time stipulated in state
law.”

The main subject of the topic is “Property tax on a car”. The question includes
the contradiction: on one hand, all properties are taxable, and on the other hand, the
ownership is somewhat incomplete. A good response has to address both topic of the

Fig. 10.1 Discourse trees for a question and an answer have to be coordinated

330 10 Rhetorical Agreement: Maintaining Cohesive Conversations

question and clarify the inconsistency. To do that, the responder is making even
stronger claim concerning the necessity to pay tax on whatever is owned
irrespectively of the registration status. This example is a member of the positive
training set from our Yahoo! Answers evaluation domain.

The reader can observe that since the question includes rhetorical relation of Con-
trast, the answer has to match it with a similar relation to be convincing. Otherwise, this
answer would look incomplete even to those who are not domain experts.

We now proceed to another example for an agreement between a question and
answer. For the question

“What does The Investigative Committee of the Russian Federation do” there
are two answers:

Mission statement. “The Investigative Committee of the Russian Federation is
the main federal investigating authority which operates as Russia’s Anti-
corruption agency and has statutory responsibility for inspecting the police
forces, combating police corruption and police misconduct, is responsible
for conducting investigations into local authorities and federal governmen-
tal bodies.”

An answer from the web. “Investigative Committee of the Russian Federation
is supposed to fight corruption. However, top-rank officers of the Investi-
gative Committee of the Russian Federation are charged with creation of a
criminal community. Not only that, but their involvement in large bribes,
money laundering, obstruction of justice, abuse of power, extortion, and
racketeering has been reported. Due to the activities of these officers,
dozens of high-profile cases including the ones against criminal lords had
been ultimately ruined” (CrimeRussia 2016).

The choice of answers depends on context. A rhetorical structure allows differenti-
ating between “official”, “politically correct”, template-based answers and “actual”,
“raw”, “reports from the field”, “controversial” ones (Figs. 10.2 and 10.3). Some-
times, the question itself can give a hint about which category of answers is
expected. If a question is formulated as a factoid or definitional one, without a
second meaning, then the first category of answers is suitable. Otherwise, if a
question has the meaning “tell me what it really is”, or this question has a sarcastic
flavor, then the second category is appropriate. In general, if we can extract a
rhetorical structure from a question, it is easier to select a suitable answer that
would have a similar, matching, or complementary rhetorical structure.

If we look at the discourse trees of an official answer, the official one is based on
Elaboration and Joints, which are neutral in terms of controversy a text might
contain (Fig. 10.2). At the same time, the row answer includes the Contrast relation.
This relation is extracted between the phrase for what an agent is expected to do and
what this agent was discovered to have done.

10.1 Introduction 331

In the future discourse parsers should be capable of differentiating between “what
does this entity” do and “what does this entity really do” by identifying a contrast
relation between ‘do’ and ‘really do’. Once such the relation is established it would be
easier to make a decision for whether an answer with or without contrast is suitable.

Fig. 10.2 DT for the official answer

Fig. 10.3 DT for the raw answer (from the web)

332 10 Rhetorical Agreement: Maintaining Cohesive Conversations

10.1.2 Correct and Incorrect Response-Request Pairs

We formulate the main problem of this chapter: how to classify a pair of texts for
request and response as correct and incorrect. This problem can be formulated with
or without taking into account relevance, which we indent to treat orthogonally to
how rhetorical structure of a request agrees with the rhetorical structure of a
response. A rhetorical agreement may be present or absent in an RR pair, and the
same applies to the relevance agreement. Some methods of measuring rhetorical
agreement will include the relevance one and some will not.

To assess whether a response utterance logically follows a request utterance, we
measure a similarity between the question-answer pairs for question answering
instead of the question-answer similarity. The classifier for correct vs incorrect
answers processes two pairs at a time, <q1,a1> and <q2,a2>, and compares q1 with
q2 and a1 with a2, producing a combined similarity score. Such a comparison
allows it to determine whether an unknown question/answer pair contains a correct
answer or not by assessing its distance from another question/answer pair with a
known label. In particular, an unlabeled pair <q2,a2> will be processed so that
rather than “guessing” correctness based on words or structures shared by q2 and
a2, both q2 and a2 will be compared with their corresponding components q1 and a1
of the labeled pair <q2, a2> on the grounds of such words or structures. Because this
approach targets a domain-independent classification of an answer, only the
structural cohesiveness between a question and answer can be leveraged, not
‘meanings’ of answers.

To form a training set for this classification problem, we include actual RR pairs
in the positive dataset and arbitrary or lower relevance and appropriateness RR pairs
– in the negative dataset. For the positive dataset, we select various domains with
distinct acceptance criteria for where an answer or response is suitable for the
question. Such acceptance criteria are low for community question answering,
automated question answering, automated and manual customer support systems,
social network communications and writing by individuals such as consumers about
their experience with products, such as reviews and complaints. RR acceptance
criteria are high in scientific texts, professional journalism, health and legal docu-
ments in the form of FAQ and professional social networks such as stackoverflow.
com.

10.2 Communicative Discourse Trees

Communicative discourse trees are designed to combine rhetorical information with
speech act structures to CDTs are DTs with arcs labeled with expressions for
communicative actions. These expressions are logic predicates expressing the agents
involved in the respective speech acts and their subjects. The arguments of logical
predicates are formed in accordance to respective semantic roles, as proposed by a

10.2 Communicative Discourse Trees 333

framework such as VerbNet (Kipper et al. 2008). The purpose of adding these labels
is to incorporate the speech act – specific information into DTs so that their learning
occurs over a richer features set than just rhetorical relations and syntax of elemen-
tary discourse units (EDUs). We intend to cover by these features all information
about how author thoughts are organized and communicated irrespectively of the
subjects of these thoughts.

Our third example is a multi-party dialogue. It is a dispute between three parties
concerning the causes of downing Malaysia Airlines Flight 17 (Wikipedia 2016).
We build an RST representation of the items being communicated and observe if a
discourse tree is capable of indicating whether a paragraph communicates both a
claim and an argumentation that backs it up. We will then explore what needs to be
added to the DT representation so that it is possible to judge if a given fragment of
communication is cohesive or not. Surdeanu et al. (2015) computation and visual-
ization system for DT was used.

Three conflicting agents, Dutch investigators, The Investigative Committee of the
Russian Federation, and the self-proclaimed Donetsk People’s Republic exchange
their opinions on the matter. It is a controversial conflict where each party does all it
can to blame its opponent. To sound more convincing, each party does not just
produce its claim but formulates it in a way to rebuff the claims of its opponent. To
achieve this goal, each party attempts to match the style and discourse of the
opponents’ claims.

“Dutch accident investigators say that evidence points to pro-Russian rebels
as being responsible for shooting down plane. The report indicates where the
missile was fired from and identifies who was in control of the territory and
pins the downing of MH17 on the pro-Russian rebels.” (Fig. 10.4)

Regular nodes of CDTs are rhetorical relations, and terminal nodes are elemen-
tary discourse units (phrases, sentence fragments) which are the subjects of these
relations. Certain arcs of CDTs are labeled with the expressions for communicative
actions, including the actor agent and the subject of these actions (what is being
communicated). For example, the nucleus node for elaboration relation (on the left)
are labeled with say(Dutch, evidence), and the satellite – with responsible(rebels,
shooting_down). These labels are not intended to express that the subjects of EDUs
are evidence and shooting_down but instead for matching this CDT with others for
the purpose of finding similarity between them. In this case just linking these
communicative actions by a rhetorical relation and not providing information of
communicative discourse would be a too limited way to represent a structure of what
and how is being communicated. A requirement for an RR pair to have the same or
coordinated rhetorical relation is too weak, so an agreement of CDT labels for arcs
on top of matching DT nodes is required.

334 10 Rhetorical Agreement: Maintaining Cohesive Conversations

“The Investigative Committee of the Russian Federation believes that the
plane was hit by a missile, which was not produced in Russia. The committee
cites an investigation that established the type of the missile.” (Fig. 10.5)
“Rebels, the self-proclaimed Donetsk People’s Republic, deny that they con-
trolled the territory from which the missile was allegedly fired. It became
possible only after three months after the tragedy to say if rebels controlled
one or another town.” (Fig. 10.6)

A response cannot be arbitrary. It has to talk about the same entities as the original
text. It has to back up its disagreement with its estimates and sentiments about these
entities, and about actions of these entities (Galitsky et al. 2015a). We attempt to

Fig. 10.4 The claim of the first agent, Dutch accident investigators

Fig. 10.5 The claim of the second agent, the Committee

10.2 Communicative Discourse Trees 335

encode the structure of agreement between RR pairs via CDT in a domain-
independent manner, only in the space of communication and its style, and the
logical flow of a conversation irrespectively of the nature of these entities.

What we see from this example is that replies of involved agent need to reflect the
communicative discourse of the first, seed message. As a simple observation, since
the first agent uses Attribution to communicate his claims, the other agents have to
follow the suite and either provide their own attributions or attack the validity of
attribution of the proponent, or both. To capture a broad variety of features for how
communicative structure of the seed message needs to be retained in consecutive
messages, we will learn the pairs of respective CDTs.

To verify the RR agreement, discourse relations are necessary but insufficient,
and speech acts (communicative actions) are necessary but insufficient as well. For
the paragraph from the previous example, we need to know the discourse structure of
interactions between agents, and what kind of interactions they are. We do not need
to know domain of interaction (here, military conflicts), the subjects of these
interaction, what are the entities, but we need to take into account mental, domain-
independent relations between them.

Towards the end of this section we give a formal definition of CDT. CDT is a DT
with labels for arcs which are the VerbNet expressions for verbs which are commu-
nicative actions. The arguments of verbs are substituted from text according to
VerbNet frames. For the details on DTs we refer the reader to (Joty et al. 2016), and
for VerbNet Frames – to the section on communicative actions below and then to
(Kipper et al. 2008).

We conclude this section with a note that a CDT required to learn RR agreement
is an extension of a traditional discourse tree. It allows us to make RST relations
labeled with communicative actions. CDT is a reduction of what is called parse
thicket (Galitsky 2017, Chap. 7), a combination of parse trees for sentences with
discourse-level relationships between words and parts of the sentence in one graph.
The straight edges of this graph are syntactic relations, and curvy arcs – discourse
relations, such as anaphora, same entity, sub-entity, rhetorical relation and

Fig. 10.6 The claim of the third agent, the rebels

336 10 Rhetorical Agreement: Maintaining Cohesive Conversations

communicative actions. This graph includes much richer information than just a
combination of parse trees for individual sentences would. As well as CDTs, parse
thickets can be generalized at the level of words, relations, phrases and sentences
(Galitsky et al. 2013).

10.2.1 Relying on VerbNet to Represent Communicative
Actions

To compute similarity between abstract structures, two approaches are frequently
used:

1. represent these structures in a numerical space, and express similarity as a
number. This is a statistical learning approach

2. use a structural representation, without numerical space, such as trees and graphs,
and express similarity as a maximal common sub-structure. We refer to such
operation as generalization. This is an inductive learning approach.

To conduct feature engineering, we will compare both these approaches in the
domain of this chapter. The representation machinery and learning settings are
different, but the classification accuracies can be compared.

Computational verb lexicons are key to supporting acquisition of entities for
actions, and a rule-based form to express their meanings. Verbs express the seman-
tics of an event being described as well as the relational information among
participants in that event, and project the syntactic structures that encode that
information. Verbs, and in particular the ones for communicative actions, are also
highly variable, displaying a rich range of semantic behaviors. Verb classification
helps a learning system to deal with this complexity by organizing verbs into groups
that share core semantic properties.

VerbNet (Kipper et al. 2008) is one such lexicon, which identifies semantic roles
and syntactic patterns characteristic of the verbs in each class and makes explicit the
connections between the syntactic patterns and the underlying semantic relations that
can be inferred for all members of the class. Each syntactic frame in a class has a
corresponding semantic representation that details the semantic relations between
event participants across the course of the event. VerbNet is a good source of
information on verbs in general and communicative actions in particular.

Let us consider the verb amuse. There is a cluster of similar verbs that have a
similar structure of arguments (semantic roles) such as amaze, anger, arouse,
disturb, irritate, and other. The roles of the arguments of these communicative
actions are as follows:

• Experiencer (usually, an animate entity)
• Stimulus
• Result

10.2 Communicative Discourse Trees 337

The frames (the classes of meanings differentiated by syntactic features for how this
verb occurs in a sentence) are as follows (NP – noun phrase, N – noun, V –

communicative action, VP – verb phrase, ADV – adjective):

NP V NP
Example: “The teacher amused the children.”
Syntax: Stimulus V Experiencer
Clause:

amuse(Stimulus, E, Emotion, Experiencer):-
cause(Stimulus, E),
emotional_state(result(E), Emotion, Experiencer).

NP V ADV-Middle
Example: “Small children amuse quickly.”
Syntax: Experiencer V ADV
Clause:

amuse(Experiencer, Prop):
property(Experiencer, Prop), adv(Prop).

NP V NP-PRO-ARB.
Example: “The teacher amused.”
Syntax: Stimulus V

amuse(Stimulus, E, Emotion, Experiencer):-
cause(Stimulus, E),
emotional_state(result(E), Emotion, Experiencer).

NP.cause V NP
Example: “The teacher’s dolls amused the children.”
Syntax: Stimulus <+genitive> (’s) V Experiencer

amuse(Stimulus, E, Emotion, Experiencer):-
cause(Stimulus, E),

emotional_state(during(E), Emotion, Experiencer).

NP V NP ADJ
Example: “This performance bored me totally.”
Syntax: Stimulus V Experiencer Result

amuse(Stimulus, E, Emotion, Experiencer):-
cause(Stimulus, E),
emotional_state(result(E), Emotion, Experiencer),
Pred(result(E), Experiencer).

For this example, the information for the class of verbs amuse is at http://verbs.
colorado.edu/verb-index/vn/amuse-31.1.php#amuse-31.1

We now show how communicative actions are split into clusters:

338 10 Rhetorical Agreement: Maintaining Cohesive Conversations

http://verbs.colorado.edu/verb-index/vn/amuse-31.1.php#amuse-31.1
http://verbs.colorado.edu/verb-index/vn/amuse-31.1.php#amuse-31.1

Verbs with Predicative Complements
Appoint, characterize, dub, declare, conjecture, masquerade, orphan, cap-

tain, consider, classify.
Verbs of Perception
See, sight, peer.
Psych-Verbs (Verbs of Psychological State)
Amuse, admire, marvel, appeal.
Verbs of Desire.
Want, long.
Judgment Verbs
Judgment.
Verbs of Assessment
Assess, estimate.
Verbs of Searching
Hunt, search, stalk, investigate, rummage, ferret.
Verbs of Social Interaction
Correspond, marry, meet, battle.
Verbs of Communication
Transfer(message), inquire, interrogate, tell, manner(speaking), talk, chat,

say, complain, advise, confess, lecture, overstate, promise.
Avoid Verbs
Avoid.
Measure Verbs
Register, cost, fit, price, bill.
Aspectual Verbs
Begin, complete, continue, stop, establish, sustain.

A similarity between two communicative actions A1 and A2 is defined as a an
abstract verb which possesses the features which are common between A1 and A2.

10.3 Classification Settings for Request-Response Pairs

In conventional search approach, as a baseline, RR match is measured in terms of
keyword statistics such as TF*IDF. To improve search relevance, this score is
augmented by item popularity, item location or taxonomy-based score (Galitsky
et al. 2011). Also, search can be formulated as passage re-ranking problem in
machine learning framework. The feature space includes RR pairs as elements,
and a separation hyper-plane splits this feature space into correct and incorrect
pairs. Hence search problem can be formulated in a local way, as similarity between
Req and Resp, and in a global, learning way, via classification of RR pairs.

10.3 Classification Settings for Request-Response Pairs 339

We take these groups of methods further towards the discourse level analysis. To
measure the RR match there are following classes of methods:

1. Extract features for Req and Resp and compare them as a feature count. Introduce
a scoring function such that a score would indicates a class (low score for
incorrect pairs, high score for correct ones);

2. Compare representations for Req and Resp against each other, and assign a score
for the comparison result. Analogously, the score will indicate a class;

3. Build a representation for a pair Req and Resp, <Req, Resp> as elements of
training set. Then perform learning in the feature space of all such elements <Req,
Resp>.

To form <Req, Resp> object we combine DT(Req) with DT(Resp) into a single tree
with the root RR (Fig. 10.7). We then classify such objects into correct (with high
agreement) and incorrect (with low agreement).

10.3.1 Nearest Neighbor Graph-Based Classification

To identify an argument in text, once the CDT is built, one needs to compute its
similarity with CDTs for the positive class and verify that it is lower to the set of
CDTs for its negative class.

Similarity between CDT is defined by means of maximal common sub-CDTs.
Since we describe CDTs by means of labeled graphs, first we consider formal
definitions of labeled graphs and domination relation on them (see, e.g., Ganter
and Kuznetsov 2003).

Let we have an ordered set G of CDTs(V,E)with vertex- and edge-labels from the
sets (Λς, ⪯) and (ΛΕ, ⪯). A labeled CDT Γ from G is a pair of pairs of the form ((V,l),
(E,b)), where V is a set of vertices, E is a set of edges, l: V ! Λς is a function
assigning labels to vertices, and b: E ! ΛΕ is a function assigning labels to edges.
We do not distinguish isomorphic trees with identical labeling.

Fig. 10.7 Forming the Request-Response pair as an element of a training set

340 10 Rhetorical Agreement: Maintaining Cohesive Conversations

The order is defined as follows: For two CDTs Γ1:¼ ((V1,l1),(E1,b1)) and Γ2:¼
((V2,l2),(E2,b2)) from G we say that Γ1 dominates Γ2 or Γ2 � Γ1 (or Γ2 is a sub-
CDT of Γ1) if there exists a one-to-one mapping φ: V2 ! V1 such that it

• respects edges: (v,w) 2 E2) (φ(v), φ(w)) 2 E1,
• fits under labels: l2(v)

⪯ l1(φ(v)), (v,w) 2 E2) b2(v,w)
⪯ b1(φ(v), φ(w)).

This definition takes into account the calculation of similarity (“weakening”)
of labels of matched vertices when passing from the “larger” CDT G1 to “smaller”
CDT G2.

Now, similarity CDT Z of a pair of CDTs X and Y, denoted by X ^ Y¼ Z, is the set
of all inclusion-maximal common sub-CDTs of X and Y, each of them satisfying the
following additional conditions:

• To be matched, two vertices from CDTs X and Y must denote the same RST
relation;

• Each common sub-CDT from Z contains at least one communicative action with
the same VerbNet signature as in X and Y.

This definition is easily extended to finding generalizations of several graphs (see
Ganter and Kuznetsov 2003; Kuznetsov 1999; Galitsky et al. 2005). The subsump-
tion order μ on pairs of graph sets X and Y is naturally defined as X μ Y: ¼ X *
Y ¼ X.

An example of maximal common sub-CDT for CDTs Fig. 10.4 and 10.5 is shown
in Fig. 10.8. Notice that the tree is inverted and the labels of arcs are generalized:
Communicative action site() is generalized with communicative action say().

The first (agent) argument of the former CA committee is generalized with the
first argument of the latter CA Dutch. The same operation is applied to the second
arguments for this pair of CAs: investigator ^ evidence.

We define that CDT U belongs to a positive class:

1. U is similar to (has a nonempty common sub-CDT) with a positive example R+.
2. For any negative example R�, ifU is similar to R� (i.e.,U * R� 6¼∅) then U * R�

μ U * R+. This condition introduces the measure of similarity and says that to be
assigned to a class, the similarity between the unknown CDT U and the closest

Fig. 10.8 Maximal common sub-CDT for two CDTS Figs. 10.4 and 10.5

10.3 Classification Settings for Request-Response Pairs 341

CDT from the positive class should be higher than the similarity between U and
each negative example.

Condition 2 implies that there is a positive example R+ such that for no R� one has
U * R+ μ R�, i.e., there is no counterexample to this generalization of positive
examples.

10.3.2 Tree Kernel Learning for CDT

Tree Kernel learning for strings, parse trees and parse thickets is a well-established
research area these days (Galitsky and Lebedeva 2015). The parse tree kernel counts
the number of common sub-trees as the discourse similarity measure between two
instances. Wang et al. (2010) used the special form of tree kernels for discourse
relation recognition. In this chapter we define the tree kernel for CDT, augmenting
DT kernel by the information on communicative actions. Here we will extend our
expression for the tree kernel from Chap. 7.

A CDT can be represented by a vector V of integer counts of each subtree type
(without taking into account its ancestors):

V(T)¼ (# of subtrees of type 1, . . ., # of subtrees of type n). This results in a very
high dimensionality since the number of different sub-trees is exponential in its size.
Thus, it is computational infeasible to directly use the feature vector V(T). To solve
the computational issue, a tree kernel function is introduced to calculate the dot
product between the above high dimensional vectors efficiently. Given two tree
segments CDT1 and CDT2, the tree kernel function is defined:

K CDT1;CDT2ð Þ ¼< V CDT1ð Þ,V CDT2ð Þ >¼
X

i
V CDT1ð Þ i½ �,V CDT2ð Þ i½ �

¼
X

n1

X
n2

X
i
Ii n1ð Þ � Ii n2ð Þ

where
n1 2 N1, n2 2 N2, where N1 and N2 are sets of all nodes in CDT1 and CDT2,
respectively;

Ii(n) is the indicator function.
Ii(n) ¼ {1 iff a subtree of type i occurs with root at node; 0 otherwise}. K(CDT1,

CDT2) is an instance of convolution kernels over tree structures (Collins and Duffy
2002) and can be computed by recursive definitions:

(1) Δ (n1, n2) ¼ ΣI Ii(n1)* Ii(n2)
(2) Δ (n1, n2) ¼ 0 if n1 and n2 are assigned the same POS tag or their children are

different subtrees.
(3) Otherwise, if both n1 and n2 are POS tags (are pre-terminal nodes) then Δ (n1,

n2) ¼ 1*λ;

(4) Otherwise, Δ (n1, n2) ¼ λ
Ync n1ð Þ

j¼1

�
1þ Δ ch n1; jð Þ; ch n2; jð Þ�� �

342 10 Rhetorical Agreement: Maintaining Cohesive Conversations

where ch(n,j) is the jth child of node n, nc(n1) is the number of the children of n1,
and λ (0 < λ < 1) is the decay factor in order to make the kernel value less variable
with respect to the sub-tree sizes. In addition, the recursive rule (3) holds because
given two nodes with the same children, one can construct common sub-trees using
these children and common sub-trees of further offsprings. The parse tree kernel
counts the number of common sub-trees as the syntactic similarity measure between
two instances.

A CDT representation for kernel learning is shown in Fig. 10.9. The terms for
Communicative Actions as labels are converted into trees which are added to
respective nodes for RST relations. For texts for EDUs as labels for terminal
nodes only the phrase structure is retained: we label the terminal nodes with the
sequence of phrase types instead of parse tree fragments.

If there is a rhetorical relation arc from a node X to a terminal EDU node Y with

label A(B, C(D)), then we append the subtree
A� B

\
C� D

to X.

10.3.3 Additional Rules for RR Agreement and RR
Irrationality

The following are the examples of structural rules which introduce constraint to
enforce RR agreement:

1. Both Req and Resp have the same sentiment polarity (If a request is positive the
response should be positive as well, and the other way around, Galitsky and
McKenna 2017).

Fig. 10.9 A tree in the kernel learning format for CDT Fig. 10.8

10.3 Classification Settings for Request-Response Pairs 343

2. Both Req and Resp have a logical argument.

Under rational reasoning, Request and Response will fully agree: a rational agent
will provide an answer that will be both relevant and match the question rhetoric.
However, in the real world not all responses are fully rational. The body of research
on Cognitive biases explores human tendencies to think in certain ways that can lead
to systematic deviations from a standard of rationality or good judgment.

The correspondence bias (Baumeister and Bushman 2010) is the tendency for
people to over-emphasize personality-based explanations for behaviors observed in
others, responding to questions. At the same time, those responding queries under-
emphasize the role and power of situational influences on the same behavior.

Confirmation bias is an inclination to search for or interpret information in a way
that confirms the preconceptions of those answering questions. They may discredit
information that does not support their views. The confirmation bias is related to the
concept of cognitive dissonance. Whereby, individuals may reduce inconsistency by
searching for information which re-confirms their views.

Anchoring leads to relying too heavily, or “anchor”, on one trait or piece of
information when making decisions (usually the first piece of information that we
acquire on that subject.

Availability heuristic makes us overestimate the likelihood of events with greater
“availability” in memory, which can be influenced by how recent the memories are
or how unusual or emotionally charged they may be.

According to Bandwagon effect, people answer questions believing in things
because many other people do (or believe) the same.

Belief bias is an effect where someone’s evaluation of the logical strength of an
argument is biased by the believability of the conclusion.

Bias blind spot is the tendency to see oneself as less biased than other people, or
to be able to identify more cognitive biases in others than in oneself.

10.4 Evaluation

10.4.1 Evaluation Domains

Our first domain is Yahoo! Answer set of question-answer pairs with broad topics.
Out of the set of 4.4 million user questions we selected 20,000 those, which included
more than two sentences. Answers for most questions are fairly detailed so no
filtering was applied to answers. There are multiple answers per questions and the
best one is marked. We consider the pair Question-Best Answer as an element of the
positive training set and Question-Other-Answer as the one of the negative training
set. To derive the negative dataset, we either randomly select an answer to a different
but somewhat related question, or formed a query from the question and obtained an
answer from web search results.

344 10 Rhetorical Agreement: Maintaining Cohesive Conversations

https://en.wikipedia.org/wiki/Rationality

Our second dataset includes the social media. We extracted Request-Response
pairs mainly from postings on Facebook. We also used a smaller portion of
LinkedIn.com and vk.com conversations related to employment. In the social
domains the standards of writing are fairly low. The cohesiveness of text is very
limited and the logical structure and relevance frequently absent. The authors formed
the training sets from their own accounts and also public Facebook accounts
available via API over a number of years (at the time of writing Facebook API for
getting messages is unavailable). In addition, we used 860 email threads from Enron
dataset (Cohen 2016). Also, we collected the data of manual responses to postings of
an agent which automatically generates posts on behalf of human users-hosts
(Galitsky et al. 2014, Chap 12). We formed 4000 pairs from the various social
network sources.

The third domain is customer complaints. In a typical complaint a dissatisfied
customer describes his problems with products and service as well as the process for
how he attempted to communicate these problems with the company and how they
responded. Complaints are frequently written in a biased way, exaggerating product
faults and presenting the actions of opponents as unfair and inappropriate. At the
same time, the complainants try to write complaints in a convincing, coherent and
logically consistent way (Galitsky et al. 2014); therefore, complaints serve as a
domain with high agreement between requests and response. For the purpose of
assessing agreement between user complaint and company response (according to
how this user describes it) we collected 670 complaints from planetfeedback.com
over 10 years.

The fourth domain is interview by journalist. Usually, the way interviews are
written by professional journalists is such that the match between questions and
answers is very high. We collected 1200 contributions of professional and citizen
journalists from such sources as datran.com, allvoices.com, huffingtonpost.com and
others.

To facilitate data collection, we designed a crawler which searched a specific set
of sites, downloaded web pages, extracted candidate text and verified the it adhered
to a question-or-request vs response format. Then the respective pair of text is
formed. The search is implemented via Bing Azure Search Engine API in the Web
and News domains.

10.4.2 Recognizing Valid and Invalid Answers

Answer classification accuracies are shown in Table 10.1. Each row represents a
particular method; each class of methods in shown in grayed areas.

One can see that the highest accuracy is achieved in journalism and community
answers domain and the lowest – in customer complains and social networks. We
can conclude that the higher is the achieved accuracy having the method fixed, the
higher is the level of agreement between Req and Resp and correspondingly the
higher the responder’s competence.

10.4 Evaluation 345

T
ab

le
10

.1
E
va
lu
at
io
n
re
su
lts

S
ou

rc
e/
ev
al
ua
tio

n
se
tti
ng

Y
ah
oo

!
A
ns
w
er
s

C
on

ve
rs
at
io
n
on

so
ci
al

ne
tw
or
ks

C
us
to
m
er

co
m
pl
ai
nt
s

In
te
rv
ie
w
s
by

jo
ur
na
lis
ts

P
R

F
1

P
R

F
1

P
R

F
1

P
R

F
1

T
yp

es
an
d
co
un

ts
fo
r
rh
et
or
ic
al
re
la
tio

ns
of

R
eq

an
d
R
es
p

55
.2

52
.9

54
.0
3

51
.5

52
.4

51
.9
5

54
.2

53
.9

54
.0
5

53
.0

55
.5

54
.2
3

E
nt
ity

-b
as
ed

al
ig
nm

en
t
of

D
T
of

R
eq
-R
es
p

63
.1

57
.8

60
.3
3

51
.6

58
.3

54
.7
0

48
.6

57
.0

52
.4
5

49
.2

57
.9

53
.2
1

M
ax
im

al
co
m
m
on

su
b-
D
T
fo
r
R
eq

an
d
R
es
p

67
.3

64
.1

65
.6
6

70
.2

61
.2

65
.4
0

54
.6

60
.0

57
.1
6

80
.2

69
.8

74
.6
1

M
ax
im

al
co
m
m
on

su
b-
C
D
T
fo
r
R
eq

an
d
R
es
p

68
.1

67
.2

67
.6
5

68
.0

63
.8

65
.8
3

58
.4

62
.8

60
.4
8

77
.6

67
.6

72
.2
6

S
V
M

T
K

fo
r
pa
rs
e
tr
ee
s
of

in
di
vi
du

al
se
nt
en
ce
s

66
.1

63
.8

64
.9
3

69
.3

64
.4

66
.8
0

46
.7

61
.9

53
.2
7

78
.7

66
.8

72
.2
4

S
V
M

T
K

fo
r
R
S
T
an
d
C
A

(f
ul
l
pa
rs
e
tr
ee
s)

75
.8

74
.2

74
.9
9

72
.7

77
.7

75
.1
1

63
.5

74
.9

68
.7
4

75
.7

84
.5

79
.8
3

S
V
M

T
K

fo
r
R
R
-D

T
76

.5
77

76
.7
5

74
.4

71
.8

73
.0
7

64
.2

69
.4

66
.6
9

82
.5

69
.4

75
.4
0

SV
M

T
K

fo
r
R
R
-C

D
T

80
.3

78
.3

79
.2
9

78
.6

82
.1

80
.3
4

59
.5

79
.9

68
.2
2

82
.7

80
.9

81
.7
8

S
V
M

T
K

fo
r
R
R
-C
D
T
+
se
nt
im

en
t
+
ar
gu

m
en
ta
tio

n
fe
at
ur
es

78
.3

76
.9

77
.5
9

67
.5

69
.3

68
.3
8

55
.8

65
.9

60
.4
4

76
.5

74
.0

75
.2
1

346 10 Rhetorical Agreement: Maintaining Cohesive Conversations

Deterministic family of approaches (middle two rows, local RR similarity-based
classification) performs about 9% below SVM TK which indicates that similarity
between Req and Resp is substantially less important than certain structures of RR
pairs indicative of an RR agreement. It means that an agreement between Req and
Resp cannot be assessed on the individual basis: if we demand DT -Req be very
similar to DT -Resp we will get a decent precision but extremely low recall.
Proceeding from DT to CDT helps by 1–2% only, since communicative actions
play a major role in neither composing a request nor forming a response.

For the statistical family of approaches (bottom 5 rows, tree kernels), the richest
source of discourse data (SVM TK for RR-DT) gives the highest classification
accuracy, almost the same as the RR similarity-based classification. Although
SVM TK for RST and CA (full parse trees) included more linguistic data, some
part of it (most likely, syntactic) is redundant and gives lower results for the limited
training set. Using additional features under TK such as sentiment and argumenta-
tion does not help either: most likely, these features are derived from RR-CDT and
do not contribute to classification accuracy on their own.

Employing TK family of approaches based on CDT gives us the accuracy
comparable to the one achieved in classifying DT as correct and incorrect, the
rhetorical parsing tasks where the state-of-the-art systems meet a strong competition
over last few years and derived over 80% accuracy.

Direct analysis approaches in the deterministic family perform rather weakly,
which means that a higher number and a more complicated structure of features is
required: just counting and taking into account types of rhetorical relations is
insufficient to judge on how RR agree with each other. If two RR pairs have the
same types and counts of rhetorical relations and even communicative actions they
can still belong to opposite RR agreement classes in the majority of cases.

Nearest-pair neighbor learning for CDT achieves lower accuracy than SVM TK
for CDT, but the former gives interesting examples of sub-trees which are typical for
different cases of agreement, and the ones which are shared among the factoid data.
The number of the former groups of CDT sub-trees is naturally significantly higher.
Unfortunately SVM TK approach does not help to explain how exactly the RR
agreement problem is solved: it only gives final scoring and class labels. It is possible
but infrequent to express a logical agreement in a response without communicative
actions (this observation is also backed up by our data).

10.4.3 Measuring RR Agreement in Our Evaluation Domains

From the standpoint of evaluation of recognition accuracy, we obtained the best
method in the previous subsection. Now, having this method fixed, we will measure
RR agreements in our evaluation domains. We will also show how the general, total
agreement delivered by the best method is correlated with individual agreement
criteria such as sentiment, logical argumentation, topics and keyword relevance.
Once we use out best approach (SVM TK for RR-CDT) for labeling training set, the

10.4 Evaluation 347

size of it can grow dramatically and we can explore interesting properties of RR
agreement in various domains. We will discover the contribution of a number of
intuitive features of RR agreement on a larger dataset than the previous evaluation.

In this Subsection we intend to demonstrate that the RR pair validity recognition
framework can serve as a measure of agreement between an arbitrary request and
response. Also, this recognition framework can assess how strongly various features
are correlated with RR pair validity.

From the evaluation of recognition accuracy, we obtained the best method to
recognize of the RR pair is valid or not. Now, having this recognition method fixed,
we will measure RR agreements in our evaluation domains, and will also estimate
how a general, total agreement delivered by the best method is correlated with
individual agreement criteria such as sentiment, logical argumentation, topics and
keyword relevance. Once we use out best approach (SVM TK for RR-CDT) for
labeling training set, the size of it can grow dramatically and we can explore
interesting properties of RR agreement in various domains. We will discover (on a
larger dataset than the previous evaluation) the contribution of a number of intuitive
features of RR agreement. We will measure this agreement on a feature-by-feature
basis, on a positive training dataset of above evaluation only, as a recognition
precision (%, Table 10.2). Notice that recall and the negative dataset is not necessary
for the assessment of agreement.

For example, we estimate as 64.3% the precision of the observation that the RR
pairs determined by Agreement by topic as computed by bag-of-words approach are
valid RR ones in the domain of Customer Complaints, according to SVM TK for
RR-CDT classification.

Agreement by sentiment shows the contribution of proper sentiment match in RR
pair. The sentiment rule includes, in particular, that if the polarity of RR is the same,
response should confirm what request is saying. Conversely, if polarity is opposite,
response should attack what request is claiming. Agreement by logical argumenta-
tion requires proper communication discourse where a response disagrees with the
claim in request.

Table 10.2 Measure of agreement between reqiest and response in four domains, %

Yahoo!
Answers

Conversation
on social
networks

Customer
complaints

Interviews
by
journalists

Overall level of agreement between
requests and response, as determined by
SVM TK for RR-CDT

87.2 73.4 67.4 100

Agreement by sentiment 61.2 57.3 60.7 70.1

Agreement by logical argumentation 62.5 60.8 58.4 66.0

Agreement by topic as computed by
bag-of-words

67.4 67.9 64.3 82.1

Agreement by topic as computed by
generalization of parse trees

80.2 69.4 66.2 87.3

Agreement by TK similarity 79.4 70.3 64.7 91.6

348 10 Rhetorical Agreement: Maintaining Cohesive Conversations

This data shed a light on the nature of linguistic agreement between what a
proponent is saying and how an opponent is responding. For a valid dialogue
discourse, not all agreement features need to be present. However, if most of these
features disagree, a given answer should be considered invalid, inappropriate and
another answer should be selected. Table 10.2 tells us which features should be used
in what degree in dialogue support in various domains. The proposed technique can
therefore serve as an automated means of writing quality and customer support
quality assessment. We will proceed in this direction further in Chap. 13.

10.5 Handling Natural Language Descriptions
of Algorithms

In this section we will provide an example of how a NL description of an algorithm
can be translated into a code with the support of discourse analysis. This is another
example for how one can build a cohesive formal representation of text
leveraging DTs.

The ability to map natural language to a formal query or command language is
critical to developing more user-friendly interfaces to many computing systems such
as databases. However, relatively little research has addressed the problem of
learning such semantic parsers from corpora of sentences paired with their formal-
language equivalents (Kate et al. 2005). Furthermore, to the best of our knowledge
no such research was conducted at discourse level. By learning to transform NL into
a complete formal language, NL interfaces to complex computing and AI systems
can be more easily developed.

More than 50 years ago (Dijkstra 1965), a Dutch computer scientist who invented
the concept of structured programming, wrote: “I suspect that machines to be
programmed in our native tongues – be it Dutch, English, American, French,
German, or Swahili – are as damned difficult to make as they would be to use”.
The visionary was definitely right – the specialization and the high accuracy of
programming languages are what made possible the tremendous progress in the
computing and computers as well. Dijkstra compares the invention of programming
languages with invention of mathematical symbolism. In his words “Instead of
regarding the obligation to use formal symbols as a burden, we should regard the
convenience of using them as a privilege: thanks to them, school children can learn
to do what in earlier days only genius could achieve”. But five decades years later we
keep hitting a wall with the amount of code sitting in a typical industry applications –
tens and hundred of millions lines of code – a nightmare to support and develop. The
idiom “The code itself is the best description” became kind of a bad joke.

Natural language descriptions of programs is an area where text rhetorical is
peculiar and agreement between statements is essential (Galitsky and Usikov 2008).
We will look at the common rhetorical representation and also domain-specific
representation which maps algorithm description into software code.

10.5 Handling Natural Language Descriptions of Algorithms 349

We have the following text and its DT (Fig. 10.10):

1. Find a random pixel p1.
2. Find a convex area a_off this pixel p1 belongs so that all pixels are less than 128.
3. Verify that the border of the selected area has all pixels above 128.
4. If the above verification succeeds, stop with positive result. Otherwise, add all

pixels which are below 128 to the a_off.
5. Check that the size of a_off is below the threshold. Then go to 2. Otherwise, stop

with negative result.

DT in Fig. 10.10 is a source of information on how to organize program
statements obtained from NL phrases into a program code. Default, elaboration
relation just indicate the order of program statements. Other than default order is
explicitly indicated by rhetorical relation Temporal. Contrast and Condition indicate
that IF operator is in use. Attribution (‘Check that . . ., Verify that . . .) also determines
a structure of IF clauses. We refer to these imperative verb phrases as
epistemic_action.

We now show how to convert a particular sentence into logic form and then to
software code representation. Certain rhetorical relations help to combine statements
obtained as a result of translation of individual sentences.

Verify that the border of the selected area has all pixels above 128.

1-1) We express in predicate with arguments as sequence of NL expressions
Verify:Verb + border –of- area + border –have- pixel + pixel above 128

1-2) And now code it as predicates
epistemic_action(verify) & border(area) & border(pixel)& above(pixel, 128)

1-3) Convert constants into variables with proper generality control
epistemic_action(verify) & border(Area) & border(Pixel) & above(Pixel, 128)

Converting all constants into variables, we attempt to minimize the number of
free variables, and not over-constrain the expression at the same time. Coupled
(linked by the edge) arrows show that the same constant values (pixel) are mapped

Fig. 10.10 DT for the algorithm text

350 10 Rhetorical Agreement: Maintaining Cohesive Conversations

into equal variables (Pixel), following the conventions of logic programming. To
achieve this, we add (unary) predicates which need to constrain free variables.

1-4) Adding predicates which constrain free variables
epistemic_action(verify) & border(Area) & border(Pixel) & above(Pixel, 128) &
area(Area)

Now we need to build an explicit expression for quantification all. In this
particular case it will not be in use, since we use a loop structure anyway

1-5) Quantification
epistemic_action(verify) & border(Area) & not (border(Pixel) & not above(Pixel,
128)) & area(Area)

2-1) Next step is to map predicates and their arguments into the objects, their methods and arguments:
Loop => Pixel.next() border.belong(Pixel) && Pixel.above(128)){

Finally, the expression can be transformed into a loop, since epistemic_action is ‘verify’. We have the following template
for it.
2-2) Finding code template for specified epistemic action
Bool bOn=true;
while (!(ObjectToTest.next()==null)) {
if !(Conditions){

bOn=false;
break;}

} Return bOn;

Finally, we have
2-3) Resultant code fragment
while (!(Pixel.next()==null)) {
if !(border.belong(Pixel) && Pixel.above(128)){

bOn=false;
break;
}

}
Return bOn;

We demonstrated that if linguistic phrases can be translated into logical clauses
reasonably well, discourse analysis helps to build the whole program from the
individual clauses.

10.6 Related Work

Although discourse analysis has a limited number of applications in question
answering and summarization and generation of text, we have not found applications
of automatically constructed discourse trees. We enumerate research related to
applications of discourse analysis to two areas: dialogue management and dialogue
games. These areas have potential of being applied to the same problems the current
proposal is intended for. Both of these proposals have a series of logic-based
approaches as well as analytical and machine learning based ones.

10.6 Related Work 351

10.6.1 Managing Dialogues and Question Answering

If a question and answer are logically connected, their rhetorical structure agreement
becomes less important.

De Boni (2007) proposed a method of determining the appropriateness of an
answer to a question through a proof of logical relevance rather than a logical proof
of truth. We define logical relevance as the idea that answers should not be
considered as absolutely true or false in relation to a question, but should be
considered true more flexibly in a sliding scale of aptness. Then it becomes possible
to reason rigorously about the appropriateness of an answer even in cases where the
sources of answers are incomplete or inconsistent or contain errors. The authors
show how logical relevance can be implemented through the use of measured
simplification, a form of constraint relaxation, in order to seek a logical proof than
an answer is in fact an answer to a particular question.

Our model of CDT attempts to combine general rhetorical and speech act
information in a single structure. While speech acts provide a useful characterization
of one kind of pragmatic force, more recent work, especially in building dialogue
systems, has significantly expanded this core notion, modeling more kinds of
conversational functions that an utterance can play. The resulting enriched acts are
called dialogue acts (Jurafsky and Martin 2000). In their multi-level approach to
conversation acts (Traum and Hinkelman 1992) distinguish four levels of dialogue
acts necessary to assure both coherence and content of conversation. The four levels
of conversation acts are: turn-taking acts, grounding acts, core speech acts, and
argumentation acts.

Research on the logical and philosophical foundations of Q/A has been conducted
over a few decades, having focused on limited domains and systems of rather small
size and been found to be of limited use in industrial environments. The ideas of
logical proof of “being an answer to” developed in linguistics and mathematical
logic have been shown to have a limited applicability in actual systems. Most current
applied research, which aims to produce working general-purpose (“open-domain”)
systems, is based on a relatively simple architecture, combining Information Extrac-
tion and Retrieval, as was demonstrated by the systems presented at the standard
evaluation framework given by the Text Retrieval Conference (TREC) Q/A track.

Sperber and Wilson (1986) judged answer relevance depending on the amount of
effort needed to “prove” that a particular answer is relevant to a question. This rule
can be formulated via rhetorical terms as Relevance Measure: the less hypothetical
rhetorical relations are required to prove an answer matches the question, the more
relevant that answer is. The effort required could be measured in terms of amount of
prior knowledge needed, inferences from the text or assumptions. In order to provide
a more manageable measure we propose to simplify the problem by focusing on
ways in which constraints, or rhetorical relations, may be removed from how the
question is formulated. In other words, we measure how the question may be
simplified in order to prove an answer. Resultant rule is formulated as follows:
The relevance of an answer is determined by how many rhetorical constraints must

352 10 Rhetorical Agreement: Maintaining Cohesive Conversations

be removed from the question for the answer to be proven; the less rhetorical
constraints must be removed, the more relevant the answer is.

There is a very limited corpus of research on how discovering rhetorical relations
might help in Q/A. Santhosh and Jahfar (2012) discuss the role of discourse structure
in dealing with ‘why’ questions, that helps in identifying the relationship between
sentences or paragraphs from a given text or document. Kontos et al. (2016)
introduced the system which allowed an exploitation of rhetorical relations between
a “basic” text that proposes a model of a biomedical system and parts of the abstracts
of papers that present experimental findings supporting this model.

Adjacency pairs is a popular term for what we call RR-pair in this chapter.
Adjacency pairs are defined as pairs of utterances that are adjacent, produced by
different speakers, ordered as first part and second part, and typed—a particular type
of first part requires a particular type of second part. Some of these constraints
could be dropped to cover more cases of dependencies between utterances (Popescu-
Belis 2005).

Adjacency pairs are relational by nature, but they could be reduced to labels (‘first
part’, ‘second part’, ‘none’), possibly augmented with a pointer towards the other
member of the pair. Frequently encountered observed kinds of adjacency pairs
include the following ones: request/offer/invite ! accept/refuse; assess ! agree/
disagree; blame ! denial/admission; question ! answer; apology ! downplay;
thank ! welcome; greeting ! greeting (Levinson 2000).

Rhetorical relations, similarly to adjacency pairs, are a relational concept,
concerning relations between utterances, not utterances in isolation. It is however
possible, given that an utterance is a satellite with respect to a nucleus in only one
relation, to assign to the utterance the label of the relation. This poses strong demand
for a deep analysis of dialogue structure. The number of rhetorical relations in RST
ranges from the ‘dominates’ and ‘satisfaction-precedes’ classes used by (Grosz and
Sidner 1986) to more than a hundred types. Coherence relations are an alternative
way to express rhetorical structure in text (Scholman et al. 2016).

Mitocariu et al. (2016) consider cases when two different tree structures of the
same text can express the same discourse interpretation, or something very similar.
The authors apply both RST and Veins Theory (Cristea et al. 1998), which use
binary trees augmented with nuclearity notation. In the current paper we attempt to
cover these cases by learning, expecting different DTs for the same text to be
covered by an extended training set.

There are many classes of NLP applications that are expected to leverage
informational structure of text. DT can be very useful is text summarization.
Knowledge of salience of text segments, based on nucleus-satellite relations pro-
posed by (Sparck-Jones 1995) and the structure of relation between segments should
be taken into account to form exact and coherent summaries. One can generate the
most informative summary by combining the most important segments of elabora-
tion relations starting at the root node. DTs have been used for multi-document
summaries (Radev et al. 2000).

In the natural language generation problem, whose main difficulty is coherence,
informational structure of text can be relied upon to organize the extracted fragments

10.6 Related Work 353

of text in a coherent way. A way to measure text coherence can be used in automated
evaluation of essays. Since a DT can capture text coherence, then yielding discourse
structures of essays can be used to assess the writing style and quality of essays.
Burstein et al. (2002) described a semi-automatic way for essay assessment that
evaluated text coherence.

The neural network language model proposed in (Bengio et al. 2003) uses the
concatenation of several preceding word vectors to form the input of a neural
network, and tries to predict the next word. The outcome is that after the model is
trained, the word vectors are mapped into a vector space such that Distributed
Representations of Sentences and Documents semantically similar words have
similar vector representations. This kind of model can potentially operate on dis-
course relations, but it is hard to supply as rich linguistic information as we do for
tree kernel learning. There is a corpus of research that extends word2vec models to
go beyond word level to achieve phrase-level or sentence-level representations
(Mitchell and Lapata 2010; Zanzotto et al. 2010; Yessenalina and Cardie 2011;
Grefenstette et al. 2013; Mikolov et al. 2015). For instance, a simple approach is
using a weighted average of all the words in the document, (weighted averaging of
word vectors), losing the word order similar to how bag-of-words approaches do. A
more sophisticated approach is combining the word vectors in an order given by a
parse tree of a sentence, using matrix-vector operations (Socher et al. 2010). Using a
parse tree to combine word vectors, has been shown to work for only sentences
because it relies on parsing.

Many early approaches to policy learning for dialogue systems used small state
spaces and action sets, and concentrated on only limited policy learning experiments
(for example, type of confirmation, or type of initiative). The Communicator dataset
(Walker et al. 2001) is the largest available corpus of human-machine dialogues, and
has been further annotated with dialogue contexts. This corpus has been extensively
used for training and testing dialogue managers, however it is restricted to informa-
tion requesting dialogues in the air travel domain for a limited number of attributes
such as destination city. At the same time, in the current work we relied on the
extensive corpus of request-response pairs of various natures.

Reichman (1985) gives a formal description and an ATN (Augmented Transition
Network) model of conversational moves, with reference to conventional methods
for recognizing the speech act of an utterance. The author uses the analysis of
linguistic markers similar to what is now used for rhetorical parsing such as
pre-verbal ‘please’, modal auxiliaries, prosody, reference, clue phrases (such as
‘Yes, but. . .’ (sub-argument concession and counter argument), ‘Yes, and. . .’ (argu-
ment agreement and further support), ‘No’ and ‘Yes’ (disagreement/agreement),
‘Because. . .’ (support), etc.) and other illocutionary indicators.

Given a DT for a text as a candidate answer to a compound query, (Galitsky et al.
2015b) proposed a rule system for valid and invalid occurrence of the query
keywords in this DT. To be a valid answer to a query, its keywords need to occur
in a chain of elementary discourse units of this answer so that these units are fully
ordered and connected by nucleus – satellite relations. An answer might be invalid if
the queries’ keywords occur in the answer’s satellite discourse units only.

354 10 Rhetorical Agreement: Maintaining Cohesive Conversations

10.6.2 Dialog Games

In an arbitrary conversation, a question is typically followed by an answer, or some
explicit statement of an inability or refusal to answer. There is the following model
of the intentional space of a conversation. From the yielding of a question by Agent
B, Agent A recognizes Agent B’s goal to find out the answer, and it adopts a goal to
tell B the answer in order to be co-operative. A then plans to achieve the goal,
thereby generating the answer. This provides an elegant account in the simple case,
but requires a strong assumption of cooperativeness. Agent A must adopt agent B’s
goals as her own. As a result, it does not explain why A says anything when she does
not know the answer or when she is not ready to accept B’s goals.

Litman and Allen (1987) introduced an intentional analysis at the discourse level
in addition to the domain level, and assumed a set of conventional multi-agent
actions at the discourse level. Others have tried to account for this kind of behavior
using social intentional constructs such as Joint intentions (Cohen and Levesque
1990) or Shared Plans (Grosz and Sidner 1986). While these accounts do help
explain some discourse phenomena more satisfactorily, they still require a strong
degree of cooperativity to account for dialogue coherence, and do not provide easy
explanations of why an agent might act in cases that do not support high-level
mutual goals.

Let us imagine a stranger approaching a person and asking “Do you have spare
coins?” It is unlikely that there is a joint intention or shared plan, as they have never
met before. From a purely strategic point of view, the agent may have no interest in
whether the stranger’s goals are met. Yet, typically agents will still respond in such
situations. Hence an account of Q/A must go beyond recognition of speaker inten-
tions. Questions do more than just provide evidence of a speaker’s goals, and
something more than adoption of the goals of an interlocutor is involved in formu-
lating a response to a question.

Mann and Thompson (1988) proposed a library of discourse level actions,
sometimes called dialogue games, which encode common communicative interac-
tions. To be co-operative, an agent must always be participating in one of these
games. So if a question is asked, only a fixed number of activities, namely those
introduced by a question, are co-operative responses (Galitsky and Shpitsberg 2016).
Games provide a better explanation of coherence, but still require the agents to
recognize each other’s intentions to perform the dialogue game. As a result, this
work can be viewed as a special case of the intentional view. An interesting model is
described by (Airenti et al. 1993), which separates out the conversational games
from the task-related games in a way similar way to (Litman and Allen 1987).
Because of this separation, they do not have to assume co-operation on the tasks each
agent is performing, but still require recognition of intention and co-operation at the
conversational level. It is left unexplained what goals motivate conversational
co-operation.

Coulthard and Brazil (1979) suggested that responses can play a dual role of both
response and new initiation: Initiation ^ (Re-Initiation) ^ Response ^(Follow-up).

10.6 Related Work 355

Exchanges can consist of two to four utterances. Also, follow-up itself could be
followed up. Opening moves indicate the start of the exchange sometimes, which do
not restrict the type of the next move. Finally, closing moves sometimes occur which
are not necessarily a follow-up. When these observations are added to their formula
one ends up with:

(Open) ^ Initiation ^ (Re-Initiation) ^ Response ^ (Feedback) ^(Follow-up) ^
(Close)

This now can deal with anything from two to seven move exchanges.

Tsui (1994) characterizes the discourse acts according to a three-part transaction.
Her systems of choice for Initiating, Responding and Follow-up are shown in
Fig. 10.11 on the top, middle and bottom correspondingly.

The classification problem of valid vs invalid RR pairs is also applicable to the
task of complete dialogue generation beyond question answering and automated
dialogue support. Popescu et al. (2007) presented a logic-based rhetorical structuring
component of a natural language generator for human-computer dialogue. The
pragmatic and contextual aspects are taken into account communicating with a
task controller providing domain and application- dependent information, structured
in fully formalized task ontology. In order to achieve the goal of computational
feasibility and generality, discourse ontology has been built and a number of axioms
introducing constraints for rhetorical relations have been proposed.

For example, the axiom specifying the semantics of topic(α) is given below:

topic(α)::¼ ExhaustiveDecomposition(i, j; vi, ωj) & memberOf(vi, K (α)) &
memberOf(ωj,Ω)(∃k: equals(vk,ωj) & memberOf(vk,K(α))).

where K(α) the clause logically expressing the semantics of the utterance α.

The notion of topic of an utterance is defined here in terms of sets of objects in the
domain ontology, referred to in a determined manner in the utterance. Hence, the
topic relations between utterances are computed using the task/domain ontology,
handled by the task controller.

As an instance of such rule one can consider

topic(β)::¼ ExhaustiveDecomposition(book, read, good time(‘14 h’), good time
(‘monday’), t+);

–good time(θ)::¼ ∃γ,π: ØDisjoint(topic(γ), topic(π)) &smaller(tα,tπ) &
((SubclassOf(θ, Δtα) _ equals(θ,Δtα)) & π: equals(Δtπ,θ);

where t + is “future and ‘new’”.

10.6.3 Rhetorical Relations and Argumentation

Frequently, the main means of linking questions and answers is logical argumenta-
tion. There is an obvious connection between RST and argumentation relations

356 10 Rhetorical Agreement: Maintaining Cohesive Conversations

Fig. 10.11 Discourse acts of a dialogue. (From Schiffrin 2005)

10.6 Related Work 357

which tried to learn in this chapter. There are four types of relations: the directed
relations support, attack, detail, and the undirected sequence relation. The support
and attack relations are argumentative relations, which are known from related work
(Peldszus and Stede 2013), whereas the latter two correspond to discourse relations
used in RST. The argumentation sequence relation corresponds to Sequence in RST,
the argumentation detail relation roughly corresponds to Background and
Elaboration.

Argumentation detail relation is important because many cases in scientific
publications, where some background information (for example the definition of a
term) is important for understanding the overall argumentation. A support relation
between an argument component Resp and another argument component Req
indicates that Resp supports (reasons, proves) Req. Similarly, an attack relation
between Resp and Req is annotated if Resp attacks (restricts, contradicts) Req. The
detail relation is used, if Resp is a detail of Req and gives more information or defines
something stated in Req without argumentative reasoning. Finally, we link two
argument components (within Req or Resp) with the sequence relation, if they
belong together and only make sense in combination, i.e., they form a multi-sentence
argument component.

In Chap. 13 we will observe that using SVM TK one can differentiate between a
broad range of text styles (Galitsky et al. 2015c), including ones without argumen-
tation and ones with various forms of argumentation. Each text style and genre has
its inherent rhetorical structure which is leveraged and automatically learned. Since
the correlation between text style and text vocabulary is rather low, traditional
classification approaches which only take into account keyword statistics informa-
tion could lack the accuracy in the complex cases. We also performed text classifi-
cation into rather abstract classes such as the belonging to language-object and
metalanguage in literature domain and style-based document classification into
proprietary design documents (Galitsky 2016). Evaluation of text integrity in the
domain of valid vs invalid customer complains (those with argumentation flow,
non-cohesive, indicating a bad mood of a complainant) shows the stronger contri-
bution of rhetorical structure information in comparison with the sentiment profile
information. Discourse structures obtained by RST parser are sufficient to conduct
the text integrity assessment, whereas sentiment profile-based approach shows much
weaker results and also does not complement strongly the rhetorical structure ones.

We will treat a discourse analysis of argumentation in depth in Chap. 13.

10.7 Conclusion

An extensive corpus of studies has been devoted to RST parsers, but the research on
how to leverage RST parsing results for practical NLP problems is limited to content
generation, summarization and search (Jansen et al. 2014). DTs obtained by these
parsers cannot be used directly in a rule-based manner to filter or construct texts.
Therefore, learning is required to leverage implicit properties of DTs. This chapter is

358 10 Rhetorical Agreement: Maintaining Cohesive Conversations

a pioneering one, to the best of our knowledge, that employs discourse trees and their
extensions for general and open-domain question answering, chatbots and dialogue
management.

Dialogue chatbot systems need to be capable of understanding and matching user
communicative intentions, reason with these intentions, build their own respective
communication intentions and populate these intentions with actual language to be
communicated to the user. Discourse trees on their own do not provide representa-
tion for these communicative intents. In this chapter we introduced the communi-
cative discourse trees, built upon the traditional discourse trees, which can be
massively produced nowadays on one hand and constitute a descriptive utterance-
level model of a dialogue on the other hand. Handling dialogues via machine
learning of communicative discourse trees allowed us to model a wide array of
dialogue types of collaboration modes (Blaylock et al. 2003) and interaction types
(planning, execution, and interleaved planning and execution). We will proceed with
building dialogue structures based on discourse trees in Chap. 11.

Statistical computational learning approaches offer several key potential advan-
tages over the manual rule-based hand-coding approach to dialogue systems
development:

• data-driven development cycle;
• provably optimal action policies;
• a more accurate model for the selection of responses;
• possibilities for generalization to unseen states;
• reduced development and deployment costs for industry.

Comparing inductive learning results with the kernel-based statistical learning,
relying on the same information allowed us to perform more concise feature
engineering than the latter approach would do.

An extensive corpus of literature on RST parsers does not address the issue of how
the resultant DTs will be employed in practical NLP systems. RST parsers are mostly
evaluated with respect to a correspondence with the test set annotated by humans
rather than its expressiveness of the features of interest. In this work we focus on
interpretation of DTs and explored the ways to represent them in a form indicative of
an agreement or disagreement rather than a neutral enumeration of facts.

To provide a measure of agreement for how a given message in a dialogue is
followed by a next message, we used CDTs, which now include labels for commu-
nicative actions in the form of substituted VerbNet frames. We investigated the
discourse features that are indicative of correct vs incorrect request-response and
question-answer pairs. We used two learning frameworks to recognize correct pairs:
deterministic, nearest-neighbor learning of CDTs as graphs, and a tree kernel
learning of CDTs, where a feature space of all CDT sub-trees is subject to SVM
learning.

The positive training set was constructed from the correct pairs obtained from
Yahoo Answers, social network, corporate conversations including Enron emails,
customer complaints and interviews by journalists. The corresponding negative
training set was created by attaching responses for different, random requests and

10.7 Conclusion 359

questions that included relevant keywords so that relevance similarity between
requests and responses are high. The evaluation showed that it is possible to
recognize valid pairs in 68–79% of cases in the domains of weak request-response
agreement and 80–82% of cases in the domains of strong agreement. These accura-
cies are essential to support automated conversations. These accuracies are compa-
rable with the benchmark task of classification of discourse trees themselves as valid
or invalid, and also with factoid question-answering systems.

We believe this chapter is the first one that leverages automatically built DTs for
question answering support. Previous studies used specific, customer discourse
models and features which are hard to systematically collect, learn with
explainability, reverse engineer and compare with each other. We conclude that
learning rhetorical structures in the form of CDTs is the key source of data to support
answering complex questions, chatbots and dialogue management.

The code used in this chapter is open source and available at: https://github.com/
bgalitsky/relevance-based-on-parse-trees/tree/master/src/main/java/opennlp/tools/
parse_thicket.

References

Airenti G, Bara BG, Colombetti M (1993) Conversation and behavior games in the pragmatics of
dialogue. Cogn Sci 17:197–256

Allen J, Perrault C (1980) Analyzing intention in utterances. Artif Intell 15(3):143–178
Baumeister RF, Bushman BJ (2010) Social psychology and human nature: international edition.

Wadsworth, Belmont
Bengio Y, Ducharme R, Vincent P, Janvin C (2003) A neural probabilistic language model. J Mach

Learn Res 3(March 2003):1137–1155
Blaylock N, Allen J, Ferguson G (2003) Managing communicative intentions with collaborative

problem solving. In: Current and new directions in discourse and dialogue. Springer Nether-
lands, Dordrecht, pp 63–84

Burstein JC, Braden-Harder L, Chodorow MS, Kaplan BA, Kukich K, Lu C, Rock DA, Wolff S
(2002) System and method for computer-based automatic essay scoring. United States Patent
6,366,759: Educational Testing Service

Cohen W (2016) Enron email dataset. https://www.cs.cmu.edu/~/enron/. Last downloaded 10 July
2016

Cohen PR, Levesque HJ (1990) Intention is choice with commitment. Artif Intell 42:213–261
Collins M, Duffy N (2002) Convolution kernels for natural language. In: Proceedings of NIPS, pp

625–632
Coulthard RM, Brazil D (1979) Exchange structure: discourse analysis monographs no. 5. The

University of Birmingham, English Language Research, Birmingham
CrimeRussia (2016) http://en.crimerussia.ru/corruption/shadow-chairman-of-the-investigative-

committee
Cristea D, Ide N, Romary L (1998) Veins theory: a model of global discourse cohesion and

coherence. In: Boitet C, Whitelock P (eds) 17th international conference on computational
linguistics, vol 1. Association for Computational Linguistics, Montreal, pp 281–285

De Boni M (2007) Using logical relevance for question answering. J Appl Log 5(1):92–103
Dijkstra EW (1965) Programming considered as a human activity. In: Proceedings of the IFIP

Congress, pp 213–217

360 10 Rhetorical Agreement: Maintaining Cohesive Conversations

https://github.com/bgalitsky/relevance-based-on-parse-trees/tree/master/src/main/java/opennlp/tools/parse_thicket
https://github.com/bgalitsky/relevance-based-on-parse-trees/tree/master/src/main/java/opennlp/tools/parse_thicket
https://github.com/bgalitsky/relevance-based-on-parse-trees/tree/master/src/main/java/opennlp/tools/parse_thicket
https://www.cs.cmu.edu/~/enron/
http://en.crimerussia.ru/corruption/shadow-chairman-of-the-investigative-committee
http://en.crimerussia.ru/corruption/shadow-chairman-of-the-investigative-committee

Galitsky B (2013) Machine learning of syntactic parse trees for search and classification of text. Eng
Appl Artif Intell 26(3):1072–1091

Galitsky B (2016) Using extended tree kernels to recognize metalanguage in text. In: Kreinovich V
(ed) Uncertainty modeling. Springer, Cham

Galitsky B (2017) Matching parse thickets for open domain question answering. Data Knowl Eng
107:24–50

Galitsky B, Ilvovsky D (2017) On a chatbot finding answers with optimal rhetoric representation.
In: Proceedings of recent advances in natural language processing, pp 253–259

Galitsky B, Lebedeva N (2015) Recognizing documents versus meta-documents by tree kernel
learning. In: FLAIRS conference, pp 540–545

Galitsky B, McKenna EW (2017) Sentiment extraction from consumer reviews for providing
product recommendations. US Patent 9,646,078

Galitsky B, Shpitsberg I (2016) Autistic learning and cognition. In: Computational autism.
Springer, Cham, pp 245–293

Galitsky B, Usikov D (2008) Programming spatial algorithms in natural language. AAAI workshop
technical report WS-08-11, Palo Alto, pp 16–24

Galitsky B, Kuznetsov SO, Samokhin MV (2005) Analyzing conflicts with concept-based learning.
In: International conference on conceptual structures, pp 307–322

Galitsky B, Dobrocsi G, de la Rosa JL, Kuznetsov SO (2011) Using generalization of syntactic
parse trees for taxonomy capture on the web. In: International conference on conceptual
structures, pp 104–117

Galitsky B, Usikov D, Kuznetsov SO (2013) Parse thicket representations for answering multi-
sentence questions. In: 20th international conference on conceptual structures. ICCS, p 95

Galitsky B, Ilvovsky D, Lebedeva N, Usikov D (2014) Improving trust in automation of social
promotion. In: AAAI Spring symposium on the intersection of robust intelligence and trust in
autonomous systems, Stanford CA

Galitsky B, Ilvovsky D, Kuznetsov SO (2015a) Text integrity assessment: sentiment profile vs
rhetoric structure. CICLing-2015, Cairo

Galitsky B, Ilvovsky D, Kuznetsov SO (2015b) Rhetoric map of an answer to compound queries.
Knowledge Trail Inc. ACL 2015, Beijing, pp 681–686

Galitsky B, Ilvovsky D, Kuznetsov SO (2015c) Text classification into abstract classes based on
discourse structure. In: Proceedings of recent advances in natural language processing, Hissar,
Bulgaria, 7–9 September 2015, pp 200–207

Ganter B, Kuznetsov SO (2003) Hypotheses and Version Spaces, Proc. 10th Int. Conf. on
Conceptual Structures, ICCS’03, Lecture Notes in Artificial Intelligence, vol 2746, pp 83–95

Grefenstette E, Dinu G, Zhang Y, Sadrzadeh M and Baroni M (2013) Multi-step regression learning
for compositional distributional semantics. In Proceedings of the Tenth International Confer-
ence on Computational Semantics. Association for Computational Linguistics

Grosz B, Sidner C (1986) Attention, intention, and the structure of discourse. Comput Linguist 12
(3):175–204

Jansen P, Surdeanu M, Clark P (2014) Discourse complements lexical semantics for nonfactoid
answer reranking. In: Proceedings of the 52nd ACL

Joty SR, Carenini G, Ng RT (2016) CODRA: a novel discriminative framework for rhetorical
analysis. Comput Linguist 41(3):385–435

Jurafsky D, Martin JH (2000) Speech and language processing: an introduction to natural language
processing, computational linguistics, and speech recognition. Prentice Hall, Upper Saddle
River

Kate R, Wong YW, Mooney R (2005) Learning to transform natural to formal languages. Proc Natl
Conf Artif Intell 20:1062–1068

Kipper K, Korhonen A, Ryant N, Palmer M (2008) A large-scale classification of English verbs.
Language Resources and Evaluation Journal 42:21–40

References 361

Kontos J, Malagardi I, Peros J (2016) Question answering and rhetoric analysis of biomedical texts
in the AROMA system. Unpublished manuscript. http://citeseerx.ist.psu.edu/viewdoc/sum
mary?doi¼10.1.1.379.5382. Last downloaded 12 September 2016

Kuznetsov SO (1999) Learning of simple conceptual graphs from positive and negative examples.
In: European conference on principles of data mining and knowledge discovery. Springer,
Berlin/Heidelberg, pp 384–391

Levinson SC (2000) Presumptive meanings: the theory of generalized conversational implicature.
The MIT Press, Cambridge, MA

Litman DL, Allen JF (1987) A plan recognition model for subdialogues in conversation. Cogn Sci
11:163–200

Mann W, Thompson S (1988) Rhetorical structure theory: towards a functional theory of text
organization. Text-Interdiscipl J Stud Discourse 8(3):243–281

Mikolov T, Chen K, Corrado GS, Jeffrey D (2015) Computing numeric representations of words in
a high-dimensional space. US Patent 9,037,464, Google, Inc.

Mitchell J, Lapata M (2010) Composition in distributional models of semantics. Cogn Sci 34
(8):1388–1429

Mitocariu E, Anechitei DA, Cristea D (2016) Comparing discourse tree structures. Available from:
https://www.researchgate.net/publication/262331642_Comparing_Discourse_Tree_Structures.
Accessed 15 May 2016

Moschitti A, Quarteroni S, Basili R, and Manandhar S (2007) Exploiting syntactic and shallow
semantic kernels for question/answer classification. In ACL’07, Prague, Czech Republic

Peldszus A, Stede M (2013) From argument diagrams to argumentation mining in texts: a survey.
Int J Cognit Informat Nat Intell 7(1):1–31

Popescu V, Caelen J, Burileanu C (2007) Logic-based rhetorical structuring for natural language
generation in human-computer dialogue. Lect Notes Comput Sci 4629:309–317

Popescu-Belis A (2005) Dialogue acts: one or more dimensions? Tech report ISSCO working paper
n. 62

Radev DR, Jing H, Budzikowska M (2000) Centroid-based summarization of multiple documents:
sentence extraction, utility-based evaluation, and user studies. In: Proceedings of the 2000
NAACL-ANLP workshop on automatic summarization, vol 4

Reichman R (1985) Getting computers to talk like you and me: discourse context, focus and
semantics (an ATN model). MIT Press, Cambridge, MA/London

Santhosh S, Ali J (2012) Discourse based advancement on question answering system. J Soft
Comput 1(2):1–12

Schiffrin D (2005) Discourse. In: Dittmar N, Trudgill P (eds) Handbook of sociolinguistics.
Mouton, de Gruyter

Scholman M, Evers-Vermeul J, Sanders T (2016) Categories of coherence relations in discourse
annotation. Dialogue Discourse 7(2):1–28

Socher RC, Manning D, Ng AY (2010) Learning continuous phrase representations and syntactic
parsing with recursive neural networks. In: Proceedings of the NIPS-2010 deep learning and
unsupervised feature learning workshop

Sparck Jones K (1995) Summarising: analytic framework, key component, experimental method.
In: Endres-Niggemeyer B, Hobbs J, Sparck Jones K (eds) Summarising text for intelligent
communication, Dagstuhl seminar report 79, 13.12–17.12.93 (9350). Dagstuhl, Wadern

Sperber D, Wilson D (1986) Relevance: communication and cognition. Blackwell/Oxford/Harvard
University Press, Cambridge

Surdeanu M, Hicks T, Valenzuela-Escarcega MA (2015) Two practical rhetorical structure theory
parsers. In: Proceedings of the conference of the North American chapter of the association for
computational linguistics – human language technologies: software demonstrations (NAACL
HLT)

Traum DR, Hinkelman EA (1992) Conversation acts in task-oriented spoken dialogue. Comput
Intell 8(3):575–599

362 10 Rhetorical Agreement: Maintaining Cohesive Conversations

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.379.5382
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.379.5382
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.379.5382
https://www.researchgate.net/publication/262331642_Comparing_Discourse_Tree_Structures

Tsui AMB (1994) English conversation. Describing english language series. Oxford University
Press, London

Yessenalina A, Cardie C (2011) Compositional matrix-space models for sentiment analysis. In:
EMNLP’11. Association for Computational Linguistics, Stroudsburg, pp 172–182

Walker MA, Passonneau RJ, Boland JE (2001) Quantitative and qualitative evaluation of DARPA
communicator spoken dialogue systems. In: Proceedings of the ACL, pp 515–522

Wang W, Su J, Tan CL (2010) Kernel based discourse relation recognition with temporal ordering
information. ACL

Wilks YA (ed) (1999) Machine conversations. Kluwer, New York
Zanzotto FM, Korkontzelos I, Fallucchi F, Manandhar S (2010) Estimating linear models for 2112

compositional distributional semantics. In Proceedings of the 23rd International Conference
2113 on Computational Linguistics (COLING)

References 363

Chapter 11
Discourse-Level Dialogue Management

Abstract In this Chapter we learn how to manage a dialogue relying on discourse of
its utterances. We first explain how to build an invariant discourse tree for a corpus of
texts to arrange a chatbot-facilitated navigation through this corpus. We define
extended discourse trees, introduce means to manipulate with them, and outline
scenarios of multi-document navigation. We then show how a dialogue structure can
be built from an initial utterance. After that, we introduce imaginary discourse tree to
address a problem of involving background knowledge on demand, answering ques-
tions. Finally, an approach to dialogue management based on lattice walk is described.

11.1 Introduciton

In this Chapter, we explore how a chatbot dialog can be managed relying on logic of
conversation, employing the discourse analysis. In the previous chapters including
Chap. 2 we have explored some simpler possibilities for how to take a user through
dialogue steps, and comprehended their limitations. Why is pragmatic/discourse
analysis thought to be the most promising way to control dialogues compared with
syntactic, semantic analyses or just learning from dialogue examples?

• Firstly, discourse analysis is the most formalized level of text analysis so that the
logical representation along with the availability of tagged corpus allows for a
most systematic treatment of dialogue structure, combining reasoning and
learning.

• Secondly, discourse analysis (as well as syntactic one) is domain-independent,
and once discourse machinery of dialogues is built it can be applied to any
knowledge domain.

• Thirdly, discourse analysis is supposed to be language independent. Although
discourse parsers of languages other than English are limited, the discourse
structure itself is designed in a language-independent manner and is supposed
to support dialogues in any language.

If a dialogue is not constructed by pragmatic means, it can either be hard-coded or
random. Hard-coded dialogue scenarios can take a user through a sequence of

© Springer Nature Switzerland AG 2019
B. Galitsky, Developing Enterprise Chatbots,
https://doi.org/10.1007/978-3-030-04299-8_11

365

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04299-8_11&domain=pdf

interactions such as a financial operation or an order of a service, but it is hard to
demonstrate an advantage over a traditional interface such as web form. Hard-coded
dialogue management neither impresses a user with a human-like understanding nor
tailors a dialogue to specific user needs.

On the other hand, attempts to imitate human-like dialogue without full under-
standing of communicative discourse, learning from a high volume of dialogue
scripts lead to a random sequence of utterances. Trying to simulate human-like
conversation, these kinds of chatbots can possibly keep user attention but would
hardly perform a useful task. With random, irresponsible dialogue management it is
hard to accomplish a user task, provide a recommendation to a user or enable her
with some knowledge.

Another option is that a poorly designed search engine is advertised as a chatbot
or a virtual assistant but does not really have a dialogue management (Fig. 11.1)

The most useful applications of chatbots such as digital personas are currently
goal-oriented and transactional: the system needs to understand a user request and
complete a related task with a clear goal within a limited number of dialog turns. The
workhorse of traditional dialog systems is slot-filling (Wang and Lemon 2013)
which predefines the structure of a dialog state as a set of slots to be filled during
the dialog. For a home service reservation system such as carpenter or plumber, such
slots can be the location, price range or type of project. Slot filling is a reliable way of
dialogue management but it is hard to scale it to new domains. It sounds implausible
to manually encode all features and slots that users might refer to in a conversation,
ordering certain type of service.

11.2 Introduction: Maintaining Cohesive Session Flow

Nowadays, chatbots are becoming future directions of a unified interface for the
whole web and entering people minds as the main communication media of the
future. Over last two decades, conversational agents captured imaginations and were
fascinating to play with (Wilks 1999), but their application areas were unclear. The

Fig. 11.1 An unsuccessful attempt at building a virtual assistant (as of March 2018) due, in
particular, to a lack of dialogue management and also a lack of ontology support for the entities
involved

366 11 Discourse-Level Dialogue Management

modern users of text-based AI would want to avoid typing keywords into a major
search engine, browsing through lists of search result snippets, and feeling their
dependence on search engine optimization and marketing to deliver the best content.
Demand for a high quality content with efficient access is expected to be satisfied by
chatbots that possess data from adequate sources, can navigate it efficiently and
personalize to the needs of a user (such as domain expertise, an intent to acquire
knowledge or to request a transaction).

These users are now starting to rely on Amazon’s Alexa, Apple’s Siri, Google
Now and Api.ai, Microsoft’s QnA Maker. Modern chatbots are embedded within
common platforms like Slack, Skype, and Facebook Messenger. For this family of
bots, the content is manually curated and is of a high quality, but with a limited
coverage. On the other hand, deep learning – based chatbots learn from conversa-
tional logs and therefore can answer a broad spectrum of questions, but approxi-
mately and non-systematically. This family of bots is designed to imitate human
intellectual activity maintaining a dialogue; they try to build a plausible sequence of
words to serve as an automated response to user query, and most plausible sequences
of words do not necessarily mean the best answers or clarification requests.

Over last decade, Siri for iPhone and Cortana for Windows Phone have been
designed to serve as digital assistants. Excluding voice recognition, they analyze
input question sentences and return suitable answers for users’ queries (Kerly et al.
2007). However, they assume patterned word sequences as input commands. This
requires users’ memory of the commands, and therefore is not necessarily a user
friendly user interface. Moreover, there are previous studies that combine natural
language processing techniques with ontology technology to realize computer sys-
tem for intellectual conversation. For example, Agostaro et al. (2005) proposed the
method based on the idea of Latent Semantic Analysis that utilized cosine similarity
of morpheme appearance in user queries and in knowledge base sentences. Augello
et al. (2017) proposed the tree structure that includes sentence structures in expected
queries. There are chatbot systems like ALICE3 (2018), which utilizes an ontology
like Cyc. Most of these methods expected the correct formulation of a question,
certain domain knowledge and a rigid grammatical structure in user query sentences,
and assumed patterns of query sentences to find answers. However, less rigidly-
structured sentences can appear in a users utterance in a chatbot, which is in the style
of spoken language.

11.2.1 Limitations of Keyword Learning-Based Approaches

Over last two decades, search engines have become very good at understanding
typical, most popular user intents, recognizing topic of a question and providing
relevant links. However, these search engines are not necessarily capable of giving
an answer that would match a style, personal circumstances, knowledge state, an
attitude of a user who formulated a query. This is particularly true for long, complex
queries, and for a dialogue-based type of interactions. In a chatbot, a flow such as
query – clarification request – clarification response – candidate answer should be
cohesive; it should not just maintain a topic of a conversation.

11.2 Introduction: Maintaining Cohesive Session Flow 367

Moreover, modern search engines and modern chatbots are unable to leverage an
immediate, explicit user feedback on what is most interesting and relevant to this
user. For a given query, a search engine learns what are most popular search results,
selected by a broad audience, and associate them with this query for future searches.
It can only be done by major search engines with high search volume and only for
popular queries. Answering tail questions still needs to be done via keyword
relevance and linguistic means.

Developing a robust chatbot traditionally requires a substantial amount of hand
crafted rules combined with various statistical components. However, selecting
answers and replies based on user choice for previous search sessions sounds like
a promising approach for many chatbot designers. Recently, a nontrivial dialogue
management problem for task-oriented chatbots has been formulated as a reinforce-
ment learning that can be automatically optimized through human interaction
(Young et al. 2013). In this approach, the system learns by a trial and error process
driven by a potentially delayed learning objective, a reward function that determines
dialogue success. However, it is hard to define this reward function to cover a broad
variety of conversational modes required in a real-life dialogue.

Supervised learning has also been used in a dialogue research where a dialogue
management policy is trained to produce an example response, when a certain
dialogue state is given. One family of supervised learning approaches relies on
collecting domain-specific training corpora (Kelley 1984). Over last few years, an
extensive body of research has attempted to train a neural network-based dialogue
model (Bordes and Weston 2016). The dialogue management systems were directly
trained on past dialogues without detailed specification of the internal dialogue state.

There are three issues in relying on learning from previous dialogues:

1. The effects of selecting an action on the future course of the dialogue are not
considered;

2. There may be a very large number of dialogue states for which an appropriate
response must be generated. Therefore in most cases a training set may lack
sufficient coverage.

3. There is no reason to suppose a human wizard is acting optimally, especially at
high noise levels;

These issues become more visible in larger domains where multi-step planning is
needed. Thus, learning to mimic a human wizard does not necessary lead to optimal
behavior.

11.2.2 Datasets for Evaluation

We experimented with the TREC datasets of the Web 2009 and Web 2010 tracks,
that contain collectively 100 queries and their relevance assessments on the
Clueweb09 category B dataset2 (50+ m web pages in English crawled between
January and February 2009). We choose these datasets because they are used widely
in the community, allowing comparisons with the state-of-the-art. We consider a

368 11 Discourse-Level Dialogue Management

subset of this collection, consisting of the top 1000 documents that have been
retrieved in response to each query by the baseline retrieval model on tuned settings
(described in Sect. 4.1.2) using the (Indri IR 2018) system.

We also formed a dataset of Q/A pairs related to car repair recommendations. These
pairs were extracted from dialogues as first and second utterance, so that the question
is 7–15 keywords and answer is three to six sentences. This resource was obtained to
train a dialog support system but it also proved to be useful to evaluate search. This
dataset is scraped from CarPros (2017) and is available at Car Repair Dataset (2017).

Our other source is Yahoo! Answers (Webscope 2017), a set of question-answer
pairs with broad topics. Out of the set of 140 k user questions we selected 3300 of
those, which included three to five sentences. The answers for most questions are
fairly detailed so no filtering by sentence length was applied.

Our social media dataset includes the Request-Response pairs mainly from post-
ings on Facebook. We also used a smaller portion of LinkedIn.com and vk.com
conversations related to employment. The authors formed the training sets from their
own accounts and also public Facebook accounts available via API over a number of
years (at the time of writing Facebook API for getting messages is unavailable). In
addition, we used 860 email threads from Enron dataset (Cohen 2018). Also, we
collected the data of manual responses to postings of an agent that automatically
generates posts on behalf of human users-hosts (Galitsky et al. 2014). We formed
4000 pairs from the various social network sources. We compiled a dataset of
financial questions scraped from Fidelity (2018) as well.

11.3 Dialogue Management via Extended Discourse Trees

The chatbot we introduce in this section is inspired by an idea of a guided search.
One source of it is Pinterest’s search methodology designed to show a user an array
of different visual possibilities where a searching user may proceed. This is done
instead of just navigating to an end point or a terminal answer. This search feature is
not looking at images but rather the way those images have been described by users.
As particular descriptors show up with sufficient frequency, the system turns them
into the categories and sub-categories that accompany search results. This approach
is also referred to as faceted search allowing users to narrow down search results by
applying multiple filters (Galitsky et al. 2009a; Galitsky and McKenna 2017).

To provide a systematic navigation means to take a user through content explo-
ration, we intend to build upon discourse trees (DTs) for texts and extend the
discourse analysis to the level of a corpus of documents. We believe that knowledge
exploration should be driven by navigating a discourse tree built for the whole
corpus of relevant content. We refer to such a tree as extended discourse tree
(EDT). It is a combination of discourse trees of individual paragraphs first across
paragraphs in a document and then across documents.

A search engine does not provide a means to navigate through content: it is
retained for a search user. Instead, search engine builds an inverse index so that for
each query keywords it stores information which paragraph of which document

11.3 Dialogue Management via Extended Discourse Trees 369

http://linkedin.com
http://vk.com

these keywords occur in. Therefore once a query including multiple documents is
submitted, the search engine knows which paragraphs in which documents it should
take a search user to.

In addition to narrowing down, zooming into a certain piece of content as search
engines do, a chatbot is expected to provide navigational means for content explo-
ration. Therefore we extend the notion of search inverse index to the one not only
allowing to zoom in based on keywords but also on drilling in/ drilling out/drilling
back in, based on how documents are interconnected.

Our chatbot is designed to assure a user arrives at a desired piece of information as
fast as possible. To do that, we dynamically organize chunks of text from various
webpages and documents into a tree form so that depending on user’s choice the
system navigates to the intended terminal leave of a tree directly. The simplest way to
navigate through content is via a request to this user to make a choice, select an option.

11.3.1 Clarification-Based Domain Exploration Scenarios

Let us start with an example of a clarification scenario (Fig. 11.2). A user formulates
her query ‘Can I pay with one credit card for another’, and the system attempts to
recognize the user intent and to identify a background knowledge about this user to
establish a proper context. An individual would usually want to pay with one credit
card for another to avoid late payment fee when cash is unavailable. Instead of giving
an answers in the form of snippets with links to relevant web pages to this question
like major search engines do, we provide the topics of answers for a user to chose
from. These topics give this user a chance to assess how his request was understood
on one hand and what are the knowledge domains associated with her question, on
the other hand. In our examples, topics include ‘balance transfer’, ‘using funds on a
checking account’, or ‘canceling your credit card’.

Fig. 11.2 Sample dialogue. User questions and responses are aligned on the left and system
responses – on the right

370 11 Discourse-Level Dialogue Management

A user is prompted to select a clarification option, drill into either of these options,
or decline all options and request a new set of topics that the chatbot can identify
(Fig. 11.3, Galitsky and Ilvovsky 2017b).

To select a suitable answer from a search engine, a user first reads snippets one-
by-one and then proceeds to document to consult in detail. Reading answer #n does
not usually help to decide which next answer should be consulted, so a user proceeds
is to answer #n + 1. Since answers are sorted by popularity, for a given user there is
no better way than just proceed from top to bottom on the search results page.
Instead, the chatbot allows a convergence on this answer navigation session since
answer #n + 1 is suggested based on additional clarification submitted after answer
#n is consulted.

Get search results for
input query and identify
common topics in them

Produce a clarification
request for the user,
enumerating the identified
possible topics of interest

User selects
clarification option
or reformulates the

query

Given a topic selected by the user, form a
list of candidate answers

Build a DT for the question
Obtain the best DT for an answer
Select the best answer and provide it to

the user

User: -Accepts the current answer
-Asks for another answer for a given

topic
-Requests to change topic
-Requests to drill into the selected

topic

-Get ready to
accept new query

-Select another
answer

-Modify constraints
and run new search

Continue interactive content
exploration till user finds an answer

or gives up

Fig. 11.3 A dialogue management model with the focus on clarification procedure

11.3 Dialogue Management via Extended Discourse Trees 371

Comparing user interaction with a search engine and a chatbot, we focus on a
second example, concerned with being broke and out of money (Fig. 11.4). An
individual learns that he has his identity stolen. At the same time he has ran out of
money and is feeling broke. He needs to figure out what to do and he tries Google
with query ‘someone stole my identity’. Google’s default response concerns credit
report agencies, which is not relevant to the user case.

So he switches to the chatbot with the query expressing his state, ‘broke and ran
out of money’. The chatbot gives a list of topics, where the user first selects ‘cut bills’
and then ‘struggling’. Reading the recommended webpage, the user gets an idea for
getting his money back and asks the bot about ‘getting to a bank account of someone
who stole my identity’. This idea is further developed into a possibility to grab a tax
return of the individual who stole his identity. This search and exploration scenario
can be followed in Galitsky and Jones (2017).

Hence the chatbot provides topics of answers for a user to choose from, such as
‘cut bills’. These topics give the user a chance to assess how her request was
understood on one hand and what is the knowledge area associated with her question
on the other hand. In our examples, further topics may include ‘bad decisions’,
‘breakups’, or ‘out of financial reach’. A user is prompted to select a clarification

Fig. 11.4 More explicit clarification scenario. A dialogue is initiated by the topic I am broke and
out of money

372 11 Discourse-Level Dialogue Management

option, drill into this or another option, or decline all options and request a new set of
topics that the chatbot can extract.

An information flow chart for the clarification dialogues is shown in Fig. 11.4.
Once the initial query is given, the chatbot obtains the search results from the
available sources and attempts to aggregate them. It combines clustering, entity
extraction and topic detection to identify the most relevant topics. Once these topics
and entities are obtained, the chatbot gives these topics to the user to choose from
instead of providing details (giving text snippets for each), and issues a clarification
request.

Once the user selects a topic (and an entity), the chatbot needs to find a concise,
comprehensive answer for this topic. To do that, topical relevance (Vorontsov and
Potapenko 2015) must be combined with rhetorical agreement to the question and
possibly to the previous user utterances (Chap. 10). The algorithm is based on
building DTs for each candidate answer and matching it with that of the question.

There are multiple available options to proceed with our clarification scenario.
The user can accept the current answer, pick another clarification topic, request to
change a topic or attempt to drill into a particular topic with more constraints, or give
up on the current exploration session and formulate a new query.

Clarification scenario can be reflected by a default DT with multiple leaves for
clarification options connected with the root by Elaboration. If we hypothetically
combine this clarification DT with the ones for each candidate answer, the resultant
clarification extended DT will form a basis for the chatbot navigating clarification
scenarios. To build such EDT, we need to substitute each terminal node of this
default clarification DT with actual DT for each candidate answer. Once such EDT is
built, it can be navigated to support the clarification-based content exploration
scenarios.

11.3.2 Navigating the Extended Discourse Tree

To control the chatbot navigation in a general case, beyond clarification scenarios,
we introduce the notion of extended discourse tree. A conventional discourse tree
expresses the author flow of thoughts at the level of paragraph or multiple para-
graphs. Conventional discourse tree becomes fairly inaccurate when applied to
larger text fragments, or documents. Hence we extend the notion of a linguistic
discourse tree towards an extended discourse tree, a representation for the set of
inter-connected documents covering a topic. For a given paragraph, a DT is built by
a discourse parsers. We then combine DTs for the paragraphs of documents to the
EDT, which is a basis of an interactive content exploration facilitated by the chatbot.
We apply structured learning of extended DTs to differentiate between good,
cognitively plausible scenarios and counter-intuitive, non-cohesive ones. To provide
cohesive answers, we use a measure of rhetorical agreement between a question and
an answer by tree kernel learning of their discourse trees (Chap. 10).

11.3 Dialogue Management via Extended Discourse Trees 373

On the web, an information is usually represented in web pages and documents,
with certain section structure. Answering questions, forming topics of candidate
answers and attempting to provide an answer based on user selected topic are the
operations which can be represented with the help of a structure that includes the
DTs of texts involved. When a certain portion of text is suggested to a user as an
answer, this user might want to drill in something more specific, ascend to a more
general level of knowledge or make a side move to a topic at the same level. These
users’ intents of navigating from one portion of text to another can be represented as
coordinate or subordinate discourse relations between these portions.

We merge the links between logical parts of paragraphs and the links between
documents (Fig. 11.5). If at the current step the user is interested in drilling in, we
navigate her through an Elaboration relation from nucleus to satellite within a
paragraph or Elaboration hyperlink to a more specific document. Conversely, if a
user decides that the suggested topic is not exactly what he is looking for and wants
to return a higher-level view, the system navigates Elaboration relation in the
inverse order from satellite to nucleus at either paragraph or intra-document level.
The other navigation option is relying on Contrast or Condition relations exploring
controversial topics (these rhetorical relations need to be recognized for inter-
document case).

Fig. 11.5 Illustration for the idea of extended DT: intra-paragraph rhetorical relations are com-
bined with inter-document links also labeled as rhetorical relations

374 11 Discourse-Level Dialogue Management

A navigation starts with the root node of a section that matches the user query
most closely. Then the chatbot attempts to build a set of possible topics, possible
understanding of user intent. To do that, it extracts phrases from elementary dis-
course units that are satellites of the roote node of the DT. If the user accepts a given
topic, the navigation continues along the chosen edge; otherwise, when no topic
covers the user interest, the chatbot backtracks the discourse tree and proceeds to the
other section (possibly of another documents) which matched the original user query
as second best. Inter-document and inter-section edges for relations such as Elabo-
ration play similar role in knowledge exploration navigation to the internal edges of
a conventional DT.

11.3.3 Example of Navigating an Extended Discourse Tree
for Three Documents

We now present an example of a content exploration scenario based on an extended
DT covering three documents (Fig. 11.6):

Faceted Search
Facets correspond to properties of the information elements. They are often
derived by analysis of the text of an item using entity extraction techniques or
from pre-existing fields in a database such as author, descriptor, language, and
format. Thus, existing web-pages, product descriptions or online collections of
articles can be augmented with navigational facets.
Within the academic community, faceted search has attracted interest primar-
ily among library and information science researchers, but there is a limited
interest of computer science researchers specializing in information retrieval.
Entity Extraction
Entity extraction, also known as entity name extraction or named entity
recognition, is an information retrieval technique that refers to the process of
identifying and classifying key elements from text into pre-defined categories.
Information Retrieval
. . .

Exploration scenario is as follows (Fig. 11.6). Let us imagine that a user is asking
a question ‘What is faceted search?’. To understand how it works, this user needs to
become fluent with other associated concepts. The chatbot provides further content
exploration or search options based on satellite EDUs in the DT of the document
‘Faceted search’ (on the top-left). It built multiple DTs (one for each paragraph, two
are shown) and formed the following items for content exploration:

11.3 Dialogue Management via Extended Discourse Trees 375

– ‘entity extraction’;
– information retrieval;
– pre-existing fields in a database;
– augmented with navigational facets.

The user can either follow the link to land on a single piece of information or run a
new search to get to multiple search results to chose from. If a user choses ‘entity
extraction’, it is led to the respective document (on the top-right of Fig. 11.6). The
chatbot proceeds to the next iteration, discovering the phrases from satellites of the
DT node corresponding to ‘entity extraction’:

– ‘entity recognition’;
– ‘information retrieval’.

Fig. 11.6 Extended discourse tree for a set of documents used to navigate to a satisfactory answer

376 11 Discourse-Level Dialogue Management

If a user now selects the second option he would navigate to the ‘information
retrieval’ document.

Whereas a discourse tree of a sentence, paragraph or a document is a well-
explored area, algorthms for building a discourse–level representation of a collection
of documents in various formats and styles from different sources has not been
explored. Irrespectively of the document granularity level, the same relationships
such as Elaboration, Contrast and Attributionmay hold between the certain portions
of text across documents.

11.3.4 Constructing EDT

To construct EDT, the focus is building rhetorical links between text fragments in
different paragraphs or documents. The main difficulty here is to identify a relation-
ship between mentions similar to how it is done in coreference analysis. The other
difficulty is to label an inter-document rhetorical relation. To address it, we form a
fictitious text fragment from the respective text fragments of the original paragraph
and perform coreference analysis and discourse parsing.

The input of the EDT algorithm is a set of documents, and an output is an EDT
that is encoded as a regular DT with the labels of document identification for
each node.

The processing flow is as follows:

1. Building a set of all DTs for each paragraph in each document DTA;
2. Iterate through all pairs of DTi and DTj 2 DTA;
3. Identify noun phrases and named entities in DTi and DTj;
4. Compute overlap and identify common entities Eij between DTi and DTj;
5. Establish relationships between occurrences of entities in Eij such as equals,

sub-entity, part-of;
6. Confirm these relationships by forming text fragment merging EDU(Ei)

and EDU(Ej) and applying coreference resolution;
7. Form an inter-paragraph rhetorical links R(Eij) for each entity pair occur-

rence in Eij;
8. Classify rhetorical relation for each rhetorical link by forming a text

fragment merging EDU(Ei) and EDU(Ej), building its DT and using rec-
ognized relation label for this rhetorical link.

To construct conventional DTs, we used one of the existing discourse parsers
(Joty et al. 2013; Surdeanu et al. 2015; Feng and Hirst 2014).

11.3 Dialogue Management via Extended Discourse Trees 377

11.3.5 Manipulating with Discourse Trees

The idea of staging document-level discourse parsing on top of sentence-level
discourse parsing has been developed over last two decades (Marcu 2000; LeThanh
et al. 2004). These approaches mainly rely on discourse markers, and use hand-
coded rules to build DTs for sentences first, then for paragraphs, and so
on. However, frequently rhetorical relations are not explicitly indicated by discourse
markers (Marcu and Echihabi 2002), and a mapping between discourse structures
and paragraph structures is not always a one-to-one (Sporleder and Lascarides
2004). Therefore, discourse analysis algorithms proceeded from hand-coded rules
based on discourse markers to supervised machine learning techniques with a large
set of informative features. In this section, we make one more generalization step and
ascend discourse trees to the level above documents. This is plausible as long as we
have means to link these documents via hyperlinks or references, or attempt to
classify a given rhetorical relation between two occurrences of the same entity in
distinct documents.

EDT is an application area of manipulation with DTs and combining them. We
follow (Grasso 1999) and provide a number of formal definitions for how these
manipulations can be conducted in terms of syntax of DTs. The purpose of this
formalism is to modify DTs without altering the logic of discourse. One option of
DT modification is an exchange of text fragments between trees.

Definition 1 A DT is a tree with nodes <Identifier, Type, TextFragment>;
Type ¼ {root, nucleus, satellite},
Identifier is either a rhetorical relation holding among the node’s children (if the

node is intermediate), or the informative unit (IU) associated with the node (if it is
a leaf).

The leaves of a DT correspond to contiguous EDUs. Adjacent EDUs are
connected by rhetorical relations (e.g., Elaboration, Contrast), forming larger dis-
course units (represented by internal nodes), which in turn are also subject to this
relation linking. Discourse units linked by a rhetorical relation are further distin-
guished based on their relative importance in the text: nucleus being the central part,
whereas satellite being the peripheral one. No constraints are introduced on a number
of nucleus and satellite children of a DT node. Each node has at least two children,
with at least one nucleus.

Definition 2 Given two sets of nodes N ¼ {n1,. . .,nj} and M ¼ {m1,. . .,mk} of T,
then N precedes M in DT (N < DT M) if each node in N is considered before every
node in M when exploring T in a depth-first, left to right navigation mode.

Definition 3 Given a DT, L¼ {l1,. . .,ln} a set of (not necessarily adjacent) leaves of
DT, and n a node (not leaf) of DT, then:

• n generates L if L is contained in the set of leaves that n spans.
• The lowest generator of L (γL) is the unique node of DT such that:

378 11 Discourse-Level Dialogue Management

(i) γL generates L
(ii) for all ni, nodes of DT generating L, γL is a descendant of ni.

• The context of L (γL) is the set of all leaves generated by γL.
• L is a span if γL ¼ L.

Definition 4 Two set of leaves L1 and L2 of a RS-tree are independent if their
contexts do not overlap (χ L1 \ χ L2 ¼ ∅).

Definition 5 Given a DT, themost nuclear part of T (NucL) is the set of DT’s leaves
recursively defined as:

(i) if DT consists of a single node, then NucL is DT itself;
(ii) otherwise, if RT is the root of DT, NucL is the union of the most nuclear parts of

all RT’s children having a Nucleus role.

We define the most nuclear part of a node n as NucTn, where Tn is the sub-tree
whose root is n, and the most nuclear part of a span S as NucγS.

Definition 6 Given a DT, its nuclear structure of NT is the set of the most nuclear
part of all nodes (NT ¼ {N|N ¼ Nucn, n 2 DT}).

Assumption 1 A rhetorical relation (RR) holding between two spans S1 and S1 also
holds between NucS1 and NucS2. It is referred to as RR projects a deep-RR between
the two most nuclear parts.

Assumption 2 Two DTs having the same set of leaves, the same nuclear structure,
and the same set of deep-RRs occurring begtween the elements of their nuclear
structures, are equivalent.

Definition 7 FT manipulation operation is meaning preserving if the resulting DT is
equivalent to the original one.

Task 1. Given a DT, and two independent sets L1 ¼ {lj, . . ., ln} and L2 ¼ {lk, . . ., lm}
of DT leaves such that

L1 < DT L2, generate DT1 equivalent to DT, such that L2 < DT1 L1.

We present two basic operations on the DT and then the main algorithm:

Operation 1: Inversion of siblings: Let n be a node of DT, and Ni¼ {ni1, . . ., nik} and
Nj ¼ {nj1, . . ., njh}, two non overlapping subsets of n’s children such that Ni < T

Nj. Then Inv(n,Ni,Nj) re-orders n’s children in a way so that Nj < T Ni.
Operation 2: Exchange of satellite children: Let < n1,Role1,RR1 > and < n2;Role2;

RR2 > be two nodes of a DT. Let Sa1 and S a2 be the respective sets of the
sub-trees yielded by the children of n1 and n2 having a satellite role.

An exchange of satellites between n1 and n2, ExchSat(n1, n2), consists of:

1. replacing < n1,Role1,RR1 > with < n1,Role1,RR2 >
2. replacing < n2,Role2,RR2 > with < n2,Role2,RR1 >

11.3 Dialogue Management via Extended Discourse Trees 379

3. substituting the set Sa1 with the set Sa2 in n1;
4. substituting the set Sa1 with the set Sa2 in n2.

Notice that Inv(n, Ni, Nj) is always meaning preserving and ExchSat(n1, n2) is
meaning preserving only if Nucn1 ¼ Nucn2.

Algorithm of exchanging two text fragments:
Let χ1 and χ2 be the contexts of L1 and L2 respectively, L12¼ χ 1 U χ 2 and γL12 be

the lowest generator of L12. Two cases may occur:

1. γL12 has at least one satellite child: let γNuc12 be the lowest generator of NucγL12,
the most nuclear part of γL12, and LNuc12 the set of leaves generated by the nucleus
children of γNuc12. Two cases may occur:

(a) LNuc12 has an empty intersection with L12. Let γ1 be the lowest generator of χ1
[LNuc12 and γ2 be the lowest generator of χ2 [LNuc12. Naturally, Nuc
γ1¼ Nuc γ2¼ Nuc γ12. Apply ExchSat(γ1, γ2). Shown on the left of Fig. 11.7;

(b) LNuc12 has a non-empty intersection with L12. Because of the definition of
context and the hypothesis of independence, it will have a non empty
intersection with either χ1 or χ2 but not both. Then, if N1 and N2 are the
sets of children of γL12 generating χ1 and χ2 respectively, apply Inv(L12, N1,
N2).

2. γL12 has no satellite children: treat as the above case 1(b).

Note that the algorithm can be applied only to two independent sets of leaves. If the
independence hypothesis is relaxed, a purely syntactic exchange cannot be
performed, and semantics has to be taken into account.

An example of the exchanging sub-trees in discourse trees are shown in Fig. 11.7.
An original DT is shown on the top. {C} and {E} are exchanged on the bottom- left
and {C} and {D} on the bottom-right.

As we establish equivalence between various DT forms, we also show a diversity
in DT visualization. A DT with a detailed annotation and an expanded set of labels
for rhetorical relation is shown in Fig. 11.8. A browser-based interface for
document-level RST annotations is shown in Fig. 11.9. Expanding on previous
tools for RST, the system allows annotators to work online using only a browser,
handling multiple annotations of the same documents.

Fig. 11.7 A example of the exchanging sub-trees in discourse trees

380 11 Discourse-Level Dialogue Management

11.3.6 Multi-document Navigation Without Discourse Trees

Radev (2000) introduced a cross-document structure theory (CST), a paradigm for
multi-document analysis. CST takes into account the rhetorical structure of clusters
of related textual documents. He specified a taxonomy of relations between docu-
ments, cross-document links. CST is intended as a foundation to summarize a
collection of documents initiated by a user as well as to navigate it by an abstract
information-access machine.

To proceed from RST to CST, one cannot employ the deliberateness of writing
style, rely on discourse markers within individual documents. However, it is possible

Fig. 11.8 An alternative way to visualize a DT (Koiti 2010)

Fig. 11.9 Interactive annotation environment for manual building DTs (Zeldes 2016)

11.3 Dialogue Management via Extended Discourse Trees 381

to leverage a logical structure across documents which are systematic, predictable
and useful. CST attempts to attach a certain reasoning flow to an imaginary “col-
lective” author of a set of documents.

One of the first studies of rhetorical relations between documents is presented in
Trigg and Weiser (1987) for scientific papers, such as citation, refutation, revision,
equivalence, and comparison. These rhetorical relations are grouped into Normal
(inter-document relations) and Commentary (deliberate cross-document relations).
However, it is hard to see this model’s applicability beyond the scientific domain.

One way to represent the multi-document navigation structure is a multi-
document cube (Fig. 11.10, on the top). It is a three dimensional structure that
represents related documents with dimensions of time (ordered), source (unordered)
and position within the document (ordered).

Fig. 11.10 Multi-document cube (on the top) and navigational graph (on the bottom)

382 11 Discourse-Level Dialogue Management

We now proceed from the multi-document cubes towards a way to represent text
simultaneously at different levels of granularity (words, phrases, sentences, para-
graphs and documents) via the multi-document graph. Each graph consists of
smaller subgraphs for each individual document which in turn consists from dis-
course trees. Two types of links are employed. The first type represents inheritance
relationships among elements within a single document. These links are drawn using
thicker lines. The second type represents semantic relationships among textual units.
The example illustrates sample links among documents, phrases, sentences, and
phrases.

We now outline the multistep CST – based algorithm for building Navigation
Graph (Fig. 11.11), given a corpus of documents.

The first step is clustering that can be done based on document similarity (Allan
et al. 1996, Chap. 5). Another option is to have clusters as the sets of documents
returned by a search engine: the results will depend on a user query. The second step,
document analysis, includes the generation of document trees representing the
sentential and phrasal structure of the document. The third step is an automated
building and categorizing of links between textual spans across documents. Here the
following family of approaches can be used: lexical distance, lexical chains, infor-
mation extraction, and linguistic template matching. Lexical distance can use a
cosine similarity across pairs of sentences, and lexical chains (Barzilay and Elhadad
1997) can be more robust leveraging synonymy and hypernymy.

Fig. 11.11 Steps of building navigation graph

11.3 Dialogue Management via Extended Discourse Trees 383

A graph-based operator defines a transformation on a multi-document navigation
graph (MDNG) G that preserves some of its properties while reducing the number of
nodes. An example of such an operator is the link-preserving graph cover operator
(Fig. 11.12). Its effect is to preserve only these nodes from the source MDG that are
associated with the preferred cross-document links. In this example, the central
circled area represents the summary subgraph G1 of G that contains all five cross-
document links and only these nodes and edges of Gwhich are necessary to preserve
the textual structure of G1.

11.3.7 Extended Discourse Tree for FAQ Pages

A special case of rhetorical linking of texts is a rhetorical agreement between a
question and an answer (Chap. 10). If a corpus of documents consists from FAQs,
then its navigation can be yielded by a DT-Qs, DT-As as well as links between the
same and correlated entities across questions and answers. We now give one more
example of rhetorical agreement between a complex question and an answer
(Galitsky 2017, Fig. 11.13).

Q: One of the most awkward things I have ever had to do was to ask a relative for
money. I was about to graduate college, broke but debt free, and I desperately
needed a car. So I asked a relative to give me a loan. Yes, it was awkward, and to my
surprise, she refused. While I know it was awkward for her too, she refused the loan
in a way that made me feel like it was nothing personal. How to refuse a loan request
from friends or family?

A: You should not feel pressured. Many people agree to these types of loan
requests because they do not feel that they can say no. You may feel like you’ve been
backed into a corner with no way out, if your friend or relative is pushing you to
make a quick decision. You do not have to say yes, so do not let the pressure get to
you. Making the decision to refuse to lend money to friends or family before this
becomes an issue will help alleviate the pressure.

Fig. 11.12 A multi-
document navigation graph
– an early alternative
to CDT

384 11 Discourse-Level Dialogue Management

11.3.8 Evaluation: Information Access Efficiency in Chatbots
Versus Search Engines

We compared the efficiency of information access using the proposed chatbot in
comparison with a major web search engines such as Google, for the queries where
both systems have relevant answers. For a search engines, misses are search results
preceding the one relevant for a given user. For a chatbot, misses are answers which
causes a user to chose other options suggested by the chatbot, or request other topics.

The topics of questions included personal finance. Twelve users (author’s col-
leagues) asked the chatbot 15–20 questions reflecting their financial situations, and
stopped when they were either satisfied with an answer or dissatisfied and gave
up. The same questions were sent to Google, and evaluators had to click on each
search results snippet to get the document or a webpage and decide on whether they
can be satisfied with it.

The structure of comparison of search efficiency for the chat bot vs the search
engine is shown in Fig. 11.14. The left side of arrows shows that all search results
(on the left) are used to form a list of topics for clarification. The arrow on the bottom
shows that the bottom answer ended up being selected by the chatbot based on two
rounds of user feedback and clarifications.

Fig. 11.13 A mapping between the DT-Q and candidate DT-Ai. This mapping may occurs via
inter-document links, forming an EDT for FAQ pages

11.3 Dialogue Management via Extended Discourse Trees 385

One can observe (Table 11.1) that the chatbot’s time of knowledge exploration
session is longer than search engines’. Although it might seem to be less beneficial
for users, businesses prefer users to stay longer on their websites, since the chance of
user acquisition grows. Spending 7% more time on reading chatbot answers is
expected to allow a user to better familiarize himself with a domain, especially
when these answers follow the selections of this user. The number of steps of an
exploration session for chatbot is a quarter of what is required by a search engine.
Traditional ways to measure search engine performance such as MAP and NDCG
are also applicable for a comparison between conventional search engines and
chatbots with respect to efficiency of information access (Sakai 2007). We conclude
that using a chatbot with extended discourse tree-driven navigation is an efficient
and fruitful way of information access, in comparison with conventional search
engines and chatbots focused on imitation of a human intellectual activity.

Fig. 11.14 Comparing navigation in a search engine and the chatbot. Instead of looking into all
search results to find the relevant one (using a search engine, on the left), a user answers a
clarification request composed by the chatbot and drills into his topic of interest (on the right).
The arrows show how multiple search results on distinct topics are converged into a single
clarification request enumerating automatically extracted topics. A selected topic would then
navigate a user to a new document or a new section of the same document

Table 11.1 Comparison of the time spent and a number of iterations for the chatbot of this demo
proposal and Google search in the domain of personal finance

Parameter/search engine
Conventional
web search Chatbot

Average time to satisfactory search result, sec 45.3 58.1

Average time of unsatisfactory search session (ended in giving up
and starting a new search,) sec

65.2 60.5

Average number of iterations to satisfactory search result 5.2 4.4

Average number of iterations to unsatisfactory search result 7.2 5.6

386 11 Discourse-Level Dialogue Management

11.3.9 Related Work on Discourse Disentanglement

Discourse disentanglement (such as classification of links between portions of texts
or documents) and dialogue/speech/communicative act tagging have been exten-
sively studied (Wang et al. 2011). Discourse disentanglement is the task of splitting a
conversation (Elsner and Charniak 2008) or documents (Wolf and Gibson 2005) into
a sequence of distinct portions of text (sub-discourses). The disentangled discourse
is modeled via a tree structure (Grosz and Sidner 1986; Seo et al. 2009), an acyclic
graph structure (Rose et al. 1995; Elsner and Charniak 2008), or a cyclic chain graph
structure (Wolf and Gibson 2005). Speech acts are used to describe the function or
role of an utterance in a discourse, similarly to our CDT representation, and have
been employed for the analysis of communication means including conversational
speech instant messaging, security analysis of documents (Galitsky and Makowski
2017), online forums (Kim et al. 2010; Galitsky et al. 2017) and chats (Galitsky and
Ilvovsky 2017a). Automated answer scoring benefits from semantic and discourse
analyses as well (Wanas et al. 2008). For a more complete review of models for
discourse disentanglement and speech act tagging, we refer the reader to Kim
et al. (2010).

Wang et al. (2011) presented the task of parsing user forum threads to determine
the labeled dependencies between posts. Three methods, including a dependency
parsing approach, are proposed to jointly classify the links (relationships) between
posts and the dialogue act (type) of each link. The authors predicted not only the
links between posts, but also showed the type of each link, in the form of the
discourse structure of the thread. A richer visualization of thread structure
(e.g. highlighting the key posts which appear to have led to a successful resolution
to a problem), and more sensitive weighting of posts in threads can be beneficial for
indexing for search.

An example thread, made up of 5 posts from 4 distinct participants, from the
CNET forum dataset of Kim et al. (2010), is shown in Fig. 11.15. The discourse
structure of the thread is represented as a rooted directed acyclic graph with speech
act labels associated with each edge of the graph. In this example, user A initiates the
thread with a question (speech act ¼ Question-Question) in the first post, by asking
how to create an interactive input box on a webpage. In response, users B and C give
independent answers (speech act ¼ Answer-Answer). After that, A responds to C to
confirm the parameters of the solution (speech act ¼ Answer-Confirmation), and at
the same time, adds extra information to her original question (speech act ¼ Ques-
tion-Add); i.e., this one post has two distinct dependency links associated with
it. Finally, D gives a different solution again to the original question.

The dialog – oriented speech act includes five categories: Question, Answer,
Resolution (confirmation of the question being resolved), Reproduction (external
confirmation of a proposed solution working) andOther. Question category contains
four sub-categories: Question, Add, Confirmation and Correction. Also, Answer
category contains five sub- categories: Answer, Add, Confirmation, Correction and

11.3 Dialogue Management via Extended Discourse Trees 387

Objection. For example, the label Question-Add belongs to the Question category
and Add sub-category, meaning ‘addition of extra information to a question’.

11.4 Building Dialogue Structure from a Discourse Tree
of an Initial Question

In this section we propose a DT reasoning-based approach to a dialogue manage-
ment for a customer support chatbot. To build a dialogue scenario, we analyze the
discourse tree (DT) of an initial query of a customer support dialogue that is
frequently complex and multi-sentence. We then enforce rhetorical agreement
between DT of the initial query and that of the answers, requests and responses.
The chatbot finds answers, which are not only relevant by topic but are also suitable
for a given step of a conversation and match the question by style, argumentation
patterns (Chap. 13), communication means, experience level and other domain-
independent attributes. We evaluate a performance of proposed algorithm in car

Fig. 11.15 An annotated forum thread with labeled rhetorical relation between postings

388 11 Discourse-Level Dialogue Management

repair domain and observe a 5–10% improvement for single and three-step dialogues
respectively, in comparison with baseline keyword approaches to dialogue
management.

Answering questions, a chatbot needs to reason to properly select answers from
candidates. In industrial applications of search, reasoning is often substituted by
learning from conversational logs or user choices. It helps to make search more
relevant as long as a similar question has been asked many times. If there is no data
on previous similar question, which is frequently the case, a chatbot needs to apply
some form of reasoning to select from candidate answers (Wilks 1999; Galitsky et al.
2013).

Most frequent type of reasoning is associated with topical relevance, it requires a
thesaurus and is domain-specific. Difficulties in building domain thesauri are well
known, and in this chapter we are take a different reasoning-based approach. Once a
set of candidate answers or replies are available, how to select most suitable ones?
The suitability criteria are two-dimensional: (1) topical relevance; and (2) an appro-
priateness not associated with topic but instead connected with communicative
discourse. Whereas topical relevance has been thoroughly investigated, chatbot’s
capability to maintain the cohesive flow, style and merits of conversation is an
underexplored area.

When a question is detailed and includes multiple sentences, there are certain
expectations concerning the style of an answer. Although an issue of a topical
agreement between questions and answers has been extensively addressed, a corre-
spondence in style and suitability for the given step of a dialogue between questions
and answers has not been thoroughly explored. In this study we focus on assessment
of the cohesiveness of the Q/A flow, which is important for a chatbots supporting
longer conversation. When an answer is in a style disagreement with a question, a
user can find this answer inappropriate even when a topical relevance is high.
Matching rhetorical structures of questions and answers is a systematic way to
implement high-level reasoning for dialogue management, to be explored in
this work.

A problem in communicative discourse occurs mostly for complex questions
(Chali et al. 2009; Galitsky 2017), arising in miscommunication, a lack of under-
standing, and requiring clarification, argumentation and other means to bring the
answer’s author point across. Rhetorical disagreement is associated with a broken
dialogue and is usually evident via the means an answer is communicated, explained
or backed up.

11.4.1 Setting a Dialogue Style and Structure by a Query

Once we have a detailed initial question, we frequently can determine which
direction we can take a given dialogue. If an answer is formulated in a straight-
forward way, then a definitional or factual answer is to follow. Otherwise, if a
question includes a doubt, a request to dig deeper into a topic, or to address a

11.4 Building Dialogue Structure from a Discourse Tree of an Initial Question 389

controversy, the dialogue should be handled with replies including attribution,
communicating a contrast, explicit handling of what was expected and what actually
happened. Hence from rhetorical relations (RRs) in initial query the chatbot can
select one set of answers over the other not only to cover the main topic, but to also
address associated issues raised by the user. It can be done event if the initial query is
short and its DT is trivial. This section generalizes our considerations in Chap. 10 for
the case of multiple answers.

A good example of how it is possible to form a dialogue structure from initial
utterance comes from the medical field. Doctors only spend 11 s on average listening
to patients before interrupting them, according to a new study (Singh Ospina et al.
2018). In primary care visits, 49% of patients were able to explain their agenda,
while in specialty visits, only 20% of patients were allowed to explain their reason
for visiting. For specialty care visits, eight out of 10 patients were interrupted even if
they were allowed to share their agenda. Since medical doctors are capable of
building a conversation in the domain with such high responsibility as medical,
chatbots are expected to be able to manage dialogue from the first utterance in less
critical domains as well.

In the following example we consider two options for Q:

1. Define an entity;
2. Define an entity and explain what it is if there is an inconsistency between the

naming of this entity and its actual role.
This can be expressed, for example, by two respective templates

1. Does E do certain things? (a null DT)
2. E is supposed to do certain things, but does it really do it? (DT with a single

rhetorical relation Contrast between E – supposed to do and E really does.

Notice that Q1 and Q2 is about the same entity so a traditional search engineering
technique is supposed to deliver the same answer for Q1 and Q2, which is a
significant flaw. Instead, discourse analysis is expected to help us to determine
whether we want A1 with a default DT (one without Contrast relation) or A2 with
a DT with Contrast.

Q1: Does law enforcement fight corruption in Russia?
Q2: Does law enforcement really fight corruption in Russia?
A1: The Russian government is sending out two very different messages in its
declared war on corruption. On the one hand it is trying to curtail the efforts
of civil society organizations as they go about their business, including
Transparency International Russia, with a series of inspections that are
hampering their operations. But at the same time, the government is taking
measures to stop officials from hiding illicit wealth as part of its program to
curb corruption.

(continued)

390 11 Discourse-Level Dialogue Management

A2: Corruption significantly impedes businesses operating or planning to
invest in Russia. High-level and petty corruption are common, especially in
the judicial system and public procurement. The Russian Federal Anti-
Corruption Law requires companies to actively implement anti-corruption
compliance programs. However, compliance with these provisions in practice
is lagging behind. Russian law criminalizes active and passive bribery, facil-
itation payments, gifts and other benefits. However, effective enforcement of
anti-corruption legislation is hindered by a politicized and corrupt judicial
system.

To differentiate between a default and controversial answer, one needs to look at
the relation of Contrast which is expected for a Q with an indication that an A
addressing this controversy is expected (Fig. 11.16). Such RRs as Background and
Enablement can occur in both DTs and do not determine how controversial the
answer is.

Now imagine for each of answers we obtain multiple candidates, with distinct
entities. How would the chatbot knows which entity in an answer would be of a
higher interest to a user? The chatbot need to include a clarification procedure,
asking, for example: Are you interested in (1) private, individual corruption (2) cor-
porate corruption.

For a single Q/A pair, we refer to their coordination as rhetorical agreement
(Chap. 9). For the dialogue management problem, where a sequence of answers Ai

need to be in agreement with an initial question Q, we refer the proposed solution as
maintaining communicative discourse in a dialogue. It includes three components:

1. Finding a sequence of answers Ai to be in agreement with an initial question Q
2. Maintaining clarification procedure where for each i we have multiple candidate

answers and need to rely on a user to select which one to deliver.
3. We also allow the chatbot user to specify additional constraints, formulate more

specific questions as answers Ai are being delivered.

11.4.2 Building Dialogue Structure in Customer Support
Dialogues

Let us start with an example of a customer support dialogue, where a customer
support agent tries to figure out a root cause of a problem (Fig. 11.17). Customer
support scenarios form a special class of dialogues where customers attempt to
resolve certain problems, get their questions answered and get to their desired
outcomes unreachable using default business procedures. Customer support dia-
logues frequently start with initial question, a multi-sentence statement of problems
Q, from which experienced customer support personal frequently plan a resolution
strategy.

11.4 Building Dialogue Structure from a Discourse Tree of an Initial Question 391

Fig. 11.16 DTs for a default (on the top) and a controversial (on the bottom) answer, given
respective Qs

392 11 Discourse-Level Dialogue Management

The personnel comes up with a sequence of recommendations and explanations
for them addressing customer concerns expressed in Q. Also, the personnel comes
up with some questions to the customer to adjust their recommendations to the needs
expressed by the customer in Q. Frequently, due to diverse nature of most busi-
nesses, it is hard to find a dialogue in a customer support problem which addresses
this exact problem (Galitsky et al. 2009b). Therefore, individual answers and
recommendations from the previous customer support sessions are used, not the
whole such sessions, in the majority of cases. Hence the customer support dialogue
management cannot be reduced to the problem of finding sufficiently similar dia-
logue and just following it: instead, actual construction of a dialogue to address Q is
required most of times.

The system finds candidate answers with the keywords and phrases from the
initial query, such as Google Earth, cannot see, attention and others. Which candi-
date answers would be the best to match the communicative discourse of the query?

A customer support dialogue can be represented as a sequence

Q, A1, C1, A2, C2, . . .,

where Q is an initial query describing a problem, A1 is an initial recommendation
and also a clarification request, C1 is a response to this request, A2 is a consecutive
recommendation and clarification request, C2 is a response to A2 and possibly a
further question, and so forth. Figure 11.18 shows our model structure for certain
kinds of customer support dialogues. Our goal is to simulate a broad spectrum of
dialogue structures via correspondence of discourse trees of utterances. This way
once Q is given, the chatbot can maintain the sequence of answers Ai for Q.

Fig. 11.17 An example of a customer support dialogue

11.4 Building Dialogue Structure from a Discourse Tree of an Initial Question 393

11.4.3 Finding a Sequence of Answers to Be in Agreement
with a Question

DT for the Q, and DT for the sequence of two answers A1 and A2 are shown in
Fig. 11.19. We now demonstrate that a chain of nodes in DT-Q is determining a
corresponding chain of nodes in DT-A. This chain is defined as a path in a DT. The
chain of rhetorical relations with entities are Elaboration [see myself Google Earth]-
Contrast [walk laptop house]-Temporal [waiving] on the top of DT-Q is addressed
by the chain Elaboration [online]-Same_Unit [walking]-Contract [Otherwise, not
able connect] in the first answer A1. We use the label

RR [abbreviated phrase]

for each node of a chain in DT. Notice that not only RRs are supposed to be
coordinated but the entities in phrases as well.

The second answer A2 attempts to addresses in a complete way the issues raised in
the second part of Q. The first mapping is between the chain RR Elaboration [catch
my attention] -Contrast [not working] in Q and the chain Elaboration [catch my
attention] – Contrast [anonymized]. The second mapping is between the chain
Same-unit [confident] – Attribution [looking at my house] and the chain Elaboration
[privacy]-Elaboration [confirm identity] – Enablement [type address]. Hence we
built a mapping Q ! {A1, A2}.

A1: Propose a first
option for a solution and
address certain
associated issues from
Q.

-Request some
clarification

C1: Confirm that solution from A1

has been tried
- Share results
- Present more associated issues
- Provide clarification

A2: Propose a second
solution option based on
clarification C1

- Request more
clarification

C2: Confirm that solution from A2

has been tried
- Share results
- Provide clarification

Conclude the session
- Summarize

outcome

Q: Formulate the problem and
associated issues:
• Present how it happened
• Explain why it happened
• What had been tried
• Believe why unsuccessful

Fig. 11.18 A high-level view of a some types of customer support dialogue

394 11 Discourse-Level Dialogue Management

The main observation here is that the question itself gives us a hint on a possible
sequence of answers, or on the order the issues in the question are raised. One can look
at the DT�Q and form a dialogue scenario (first do this, obtain confirmation, then do
that . . .). Since a dialogue is built from available answer fragments (e.g. from conver-
sational logs), we take candidate answers, form candidate DTs from them and see if
they match DT�Q. Hence a single nontrivial DT�Q determines both DT�A1 and
DT�A2. We refer to this capability as determining the structure of a dialogue (the
structure of a sequence of answers) by the initial Q. We intentionally selected this
anecdotal, meaningless example of a customer support dialogue to demonstrate that a
full “understanding” of a query is not required; instead, the logical structure of inter-
relations between the entities in this query is essential to find a sequence of answers.

Is it possible to come up with a rule for DT�Ai given DT�Q, to formalize the
notion of “addressing” an issue in Q by an A? A simple rule would be for a chain of
RST relations for an A to be a sub-chain of that of a Q, also maintaining respective
entities. But this rule turns out to be too restrictive and even invalid in some cases. Our
observation is that DT–A does not have to copy DT�Q or its parts, but instead have
some complementarity features. There are two types of considerations for DT�Ai:

1. Each nontrivial RR in Q needs to be addressed by a RR in DT�Ai.
2. There should be a rhetorical agreement between Q and Ai (Chap. 10), defined for

a search engine. Whereas rhetorical agreement introduces a pair-wise constraint
that can be learned from examples of good and bad Q/A pairs, in this section we
extend it to one-to-many relation between a single Q and a sequence of Ai.

Fig. 11.19 Discourse tree of a question Q (on the left) and a sequence (pair) of combined discourse
trees (on the right) for answers Ai. Arrows show which chains of DT�Q determine which chains of
DT�Ai

11.4 Building Dialogue Structure from a Discourse Tree of an Initial Question 395

For an RR in DT-Ai to address an RR in Q, it does not necessarily need to be the
same RR but it should not be a default RR such as Elaboration or Joint. Attribution
and Enablement, for example, can address Contrast. Also, for a RR(EDUq1, EDUq2)
inQ to be covered by RR(EDUai1, EDUai2) in Ai, entities E should be shared between
EDUq1 and EDUai1: EDUq1 \ EDUai1 ¼ E: E 6¼ ∅.

11.4.4 Searching for Answers with Specified RR for Dialogue
Construction

Once we established the rules for addressing RRs inQ, we can implement a search for a
series of answers Ai given Q. Assuming we have a corpus of dialogues with utterances
tagged as A or Q, it should be indexed offline in at lest two following fields:

1. keywords of A;
2. RRs with their EDUs

Then once we receive Q, build DT�Q, and split DT�Q into subtrees each of
which contains at least single non-default RR. The for each subtree-DT�Q we form
a query against these fields:

1. keywords from the EDU-subtree-DT�Q;
2. non-default RR from subtree-DT�Q.

For each candidate answer satisfying the query we still have to verify
rhetorical_agreement(subtree-DT�Q, Ai).

Once the answer Ai is selected and given to the user, user responds with Ci that in
a general case contains some clarification expressed in Ai and also an additional
question part Qi. The latter would then require an additional answer that should be
added to Ai if it has been already computed.

The high-level view of the search algorithm that supports the dialogue is as follows:

1. Build DT�Q;
2. Split DT�Q into parts Q1, Q2,. . . to correspond to A1, A2,. . .;
3. Form search query for A1 from Q1 in the form RST-relation [phrase];
4. Run the search against the set of dialogue utterances and obtain the list of

candidate answers for the first step A1candidate;
5. Build DT�A1candidate for each candidate and approve/reject each based on

rhetorical_agreement(DT–Q, DT�A1candidate). Select the best candidate A1;
6. Respond to the user with the selected A1 and receive C1;
7. Form search query for A2 from Q1&C1;
8. Repeat steps (4) and (5) for A2, respond to the user with the selected A2 and

receive C2;
9. Conclude the session or switch to a human agent

396 11 Discourse-Level Dialogue Management

Hence the dialogue management problem can be formulated as a search with
constraints on DTs and can be implemented via traditional search engineering means
plus discourse parsing, when an adequate set of chat logs is available. Discourse-tree
based dialogue management does not cover all possibilities of assuring smooth
dialogue flows but provides a plausible mechanism to select suitable utterances
from the available set. It allows avoiding solving NL generation problem for
dialogues that is a source of a substantial distortion of conversation flow and a
noise in meaning of utterances.

In this subsection we suggested a mechanism to build a dialogue structure where
the first utterance formulated a detailed question requiring some knowledge and
explanation. If this Q is detailed enough the chatbot can attempt to find a sequence of
answers to address all issues raised in Q, and anticipate consequent user questions
as well.

Some goals related to dialogue management do not need to be achieved via DTs.
For example, an implementation of clarification feature can be hard-coded and does
not require specific RRs. When a user asks a broad question, the chatbot forms topics
for this user to choose from. Once such a topic is selected, the full answer is provided
(Fig. 11.18).

We have built an algorithm for mapping Q ! Ai. When multiple valid candidate
answers for each i obtained, a clarification procedure is needed to have the user
selected Aij from the set Ai of answers or recommendations valid from both relevance
and rhetorical agreement perspectives. We now update step (6) of the search
algorithm which requests clarification when multiple suitable answers are available

5. . . .
6. Respond to the user with the list of choices selected {A1s | s¼0..n} and

receive clarification result with possibly additional constraint request C1

(which includes the choice A1j);
7. . . .

Further improvement of this algorithm can be based on differentiation between
answers sharing knowledge and the ones providing recommendation on how to fix a
problem.

11.4.5 Evaluation of the Dialogue Construction from
the First Query

As we proceed to the evaluation, we share an example of a dialogue from the
evaluation domain of recommendations on car repair. Important characteristics of
this domain are an importance of accurate recommendation, adequate dialogue
structure, lesser bios than in other domains such as political, and an availability of

11.4 Building Dialogue Structure from a Discourse Tree of an Initial Question 397

a complete and accurate coverage of a broad spectrum of car problems. We provide
an example of a sample dialogue:

Q1: I have checked the spark plugs, replaced the battery, also replaced
ignition coils and the solenoid, but I still could not start my car.
A1: Is the engine getting spark and fuel? Will it start for a couple seconds using
starting fluid?
Q2: It did at first but not anymore. What should I do?
A2: Check fuel pressure. But if no pressure, check the fuel pump for possible
fault. If you have fuel pressure, then using a noid light make sure you have
injector pulse. The light should blink when cranking.
If light is not blinking does the check engine light come on with key on and
engine off? If no light then look for a bad main relay or no power to the engine
control module.

In this example, since Q1 includes rhetorical relation of Contrast (something is
done correctly but still not working), detailed answer should include Contrast,
Condition, or other RR that would address Contrast in Q. A certain recommended
action is performed either correctly or incorrectly, and both these cases need to be
addressed (Fig. 11.20). Correlation between DT�Q1 and DT�A2 would be trivial if
Q1 does not include a contradiction but instead just formulates a question of the form
‘X is not working – how to fix it?’

To automate the relevance assessment, we considered the dialogue built correctly
if an actual dialogue from the dataset is formed, given the first Q as a seed.
Otherwise, if the sequence of utterances does not occur in the dataset, we consider
it to be incorrect. There are some deficiencies of this approach since some actual
dialogs are illogical and some synthetic dialogues built from distinct ones can be
plausible, but it allows avoiding a manual tagging and construction of dialogues. The
number of formed answers is limit to three: once initial Q is given, the system forms
A1, a set of A2i and A3j. A1 is followed by the actual C1 from the dialogue Q, so the
proper A2 needs to be selected. Analogously, once actual C2 (if applicable) is
provided, proper A3 needs to be selected.

As a first baseline approach (Baseline 1, the second row in Table 11.2), we select
dialogue construction based on keyword similarity only, without taking into account
a dialogue flow by considering a DT-Q. As a second baseline approach (Baseline
2, the third row in Table 11.2), we augment keyword similarity with linguistic
relevance by computing maximal common sub- parse trees between the Q and Ai.

For the selected dataset, baseline approach is capable of building the correct
scenarios in the cases where similar keywords or similar linguistic phrases deliver
the only dialogue scenario that is correct. On the contrary, DT�Q dialogue forma-
tion does not always succeed because some scenarios deviate from actual ones in the
training set, although these scenarios are still plausible. Hence we see 10% and 5%
improvement over the first and second baselines respectively for a basic, single-step
scenario (Table 11.2).

398 11 Discourse-Level Dialogue Management

Fig. 11.20 On the top: DT for question Q1 in Car Repair domain. On the bottom: DT for the
detailed answer A2 for Q1

11.4 Building Dialogue Structure from a Discourse Tree of an Initial Question 399

As scenarios become more complex, the chance that the proper scenario is
selected by topic relevance decreases. At the same time, overall scenario formation
complexity increases, and therefore an error rate for DT�Q approach increases as
well. For the most complex, 3-step dialogue scenarios, DT�Q approach exceeds the
baselines by 13 and 10% respectively.

In this section we discovered that a dialogue structure could be built from the
discourse tree of an initial question. This structure is built on top of the default
conversational structure implementing such features as clarification, personalization
or recommendation. If clarification scenario type is chosen, topics are automatically
formed by the chatbot and are presented for a user to choose. For personalization, for
a user query, the customer support chatbot system reduces the list of resolution
scenarios based on what information is available for the given user. Chatbot recom-
mendation scenario proposes a solution to a problem by finding the one accepted by
users similar to the current one (Galitsky 2016). Whereas clarification, personaliza-
tion and recommendation scenario covers only a small portion of plausible customer
support scenarios, discourse analysis of dialogues supports dialogue management in
a universal way, for a broad range of available text fragments and previously
accumulated responses.

11.5 Constructing Imaginary Discourse Trees for Dialogue
Management

In spite of the great success of search technologies, the problem of involving
background knowledge is still on the agenda of search engineering, for both con-
ventional and learning-based systems. Background knowledge thesauri are difficult
and expensive to build, and knowledge graphs – based approaches usually have a
limited expressiveness and coverage. In this study we explore how a discourse
analysis (which is domain-independent) can substitute certain features of
ontology-based search.

Ontologies are in great demand for answering complex, multi-sentence questions
in such domain as finance, legal, engineering and health. In educational domain this
type of questions is referred to as convergent: answers are usually within a very finite
range of acceptable accuracy. These may be at several different levels of cognition
including comprehension, application, analysis, or ones where the answerer makes
inferences or conjectures based on material read, presented or known. Answering
convergent questions is an underexplored Q/A domain that can leverage discourse
analysis (Kuyten et al. 2015).

Table 11.2 Correctness of dialogue formation

Dialogue type Q-A Q-A1-C Q-A1-C-A2 Q-A1-C1-A2-C2-A3

Baseline 1 62.3 � 4.5 60.2 � 5.6 58.2 � 5.0 52.5 � 5.7

Baseline 2 67.0 � 4.8 63.8 � 4.8 57.3 � 5.3 55.6 � 5.9

DT-Q dialogue formation 72.3 � 5.6 70.3 � 4.9 65.1 � 5.5 65.9 � 5.7

400 11 Discourse-Level Dialogue Management

Discourse trees (DT) became a standard for representing how thoughts are
organized in text, in particular in a paragraph of text, such as an answer.
Discourse-level analysis has been shown to assist in a number of NLP tasks where
learning linguistic structures is essential (Louis et al. 2010; Lioma et al. 2012). DTs
outline the relationship between entities being introduced by an author. Obviously,
there are multiple ways the same entities and their attributes are introduced, and not
all rhetorical relations that hold between these entities occur in a DT for a given
paragraph.

In this section we introduce a concept of an imaginary discourse tree to improve
question-answering recall for complex, multi-sentence, convergent questions.
Augmenting a discourse tree of an answer with tree fragments obtained from
thesauri, we obtain a canonical discourse representation of this answer that is
independent of a thought structure of an author of a given answer. This mechanism
is critical for finding answers which are not only relevant in terms of questions
entities but are also suitable in terms of inter-relations between these entities in these
answers, and their style. We evaluate the Q/A system enabled with imaginary
discourse trees and observe a substantial increase of accuracy answering complex
questions such as Yahoo! Answers and www.2carpros.com.

When DTs are used to coordinate questions and answers, we would want to
obtain an “ideal” DT for an answer, where all rhetorical relations between involved
entities occur (Galitsky 2014). To do that, we need to augment an actual (available)
DT of answer instance with a certain rhetorical relations which are missing in the
given answer instance but can be mined from text corpora or from the web. Hence to
verify that an answer A is good for a given question Q, we first verify that their DTs
(DT�A and DT�Q) agree and after that we usually need to augment the DT�A with
fragments of other DTs to make sure all entities in Q are communicated (addressed)
in augmented DT�A.

Hence instead of relying on an ontology, which would have definitions of entities
missing in a candidate answer, we mine for rhetorical relations between these entities
online. This procedure allows us to avoid an offline building of bulky and costly
thesauri (Chap. 8). At the same time, the proposed approach can be implemented on
top of a conventional search engine.

11.5.1 Answering Questions via Entities and Discourse Trees

The baseline requirement for an A to be relevant to Q is that entities (En) of A cover
the entities of Q: E�Q� E�A. Naturally, some E�A are not explicitly mentioned in
Q but are needed to provide a recipe-type A.

The next step is to follow the logical flow of Q by A. Since it is hard to establish
relations between En, being domain dependent, we try to approximate them by
logical flow of Q and A, expressible in domain-independent terms

11.5 Constructing Imaginary Discourse Trees for Dialogue Management 401

http://www.2carpros.com

EnDT � Q � EnDT � A:

However, a common case is that some entities E are not explicitly mentioned in
Q but instead are assumed. Moreover, some entities in A used to answer Q do not
occur in A but instead more specific or general entities do. How would we know that
these more specific entities are indeed addressing issues from Q? We need some
external, additional source that we call imaginary EnDT�A to establish these
relationships. This source contains the information on inter-relationships between
En which is omitted in Q and/or A but is assumed to be known by the peer. For an
automated Q/A system, we want to obtain this knowledge at the discourse level:

EnDT � Q � EnDT � Aþ imaginary EnDT � A:

We start with a simple Example 1:

Q: What is an advantage of electric car?
A: No need to for gas.

How can search engine figure out that A is a good one for Q? We have an abstract
general-sense entity advantage and a regular noun entity car. We need to link
explicit entities in A {need, gas}. Fragments of a possible imaginary EnDT�A are
shown: [. . . No need. . . – Elaborate – Advantage] . . . [gas – Enablement –

engine]. . .[engine – Enablement – car]. We do not need to know the details how
this Enablement occurs; we just need an evidence that these rhetorical links exist.
We could have used semantic linked between entities but for that we would need a
domain-specific ontology.

We now present Example 2 to demonstrate how Imaginary DT component would
improve a web search (Fig. 11.21). Currently, search engines show certain keywords
they do not identify in a given search result. However, it is possible to indicate how
these keywords are relevant to this search result by finding documents where these
unidentified keywords are rhetorically connected with the ones occurring in the
query. This feature would naturally improve the answer relevance on one hand
and provide explainability for the user on how her keywords are addressed in the
answer.

Now we proceed to another example (3). Let us explain how a match between a
Q and an A is facilitated by DTs (Fig. 11.22).

Q: [When driving the cruise control][the engine will turn off][when I want to
accelerate,][although the check engine light was off.] [I have turned on the ignition]
[and listen for the engine pump running][to see][if it is building up vacuum.] [Could
there be a problem with the brake sensor under the dash?] [Looks like there could be
a little play in the plug.]

A: [A faulty brake switch can effect the cruise control.] [If it is,][there should be a
code][stored in the engine control module.] [Since it is not an emissions fault,][the
check engine light will not illuminate.] [First of all, watch the tachometer][to see]
[if engine speed increases 200 rpm][when this happens.] [If it does,][the torque
converter is unlocking transmission.]

402 11 Discourse-Level Dialogue Management

A explains a situation and also offer some interpretation, as well as recommends a
certain course of action. A introduces extra entities which are not in Q, and needs to
involve background knowledge to communicate how they are related to E�Q. We
do it by setting a correspondence between E�Q and E�A, shown by the horizontal
curly (red) arcs.

Notice that some entities E0 in Q are unaddressed: they are not mentioned in
A. E0�Q includes {Engine pump, Brake sensor and Vacuum}. It means that either
A is not fully relevant to Q omitting some of its entities E0 or it uses some other
entities instead. Are E0�Q ignored in A? To verify the latter possibility, we need to
apply some form of background knowledge finding entities Eimg which are linked to
both E0�Q and E�A.

It is unclear how En�A ¼ Torque Convertor is connected to Q. To verify this
connection, we obtain a fragment of text from Wikipedia (or another source) about
Torque Convertor, build DT�Aimg1 (shown on the left-bottom of Fig. 11.22) and
observe that it is connected with Engine via rhetorical relation of Elaboration. Hence
we confirm that En�A ¼ Torque Convertor is indeed relevant for Q (a vertical blue
arc). We obtained this confirmation without building an offline thesaurus linking
entities and learning relations between then: instead, we rely on discourse – level
context to confirm that A includes relevant entities.

It is also unclear how En�Q pump is addressed in Q. We find a document on the
web about Engine Pump and Vacuum and attempt to connect them to En�A. It turns
out that DT�Aimg2 connects Vacuum and Engine via Elaboration.

Fig. 11.21 How Imaginary DTs would enable Google search to explain missing keywords in the
search results. In the default search, munro is missing. However, by trying to rhetorically connect
munro with the entities in the question, the Imaginary DT system finds out that Munro is a person
who is an inventor of automatic transmission. DT fragment is shown with rhetorical relation
Attribution, as well as the Wikipedia source for Imaginary DT

11.5 Constructing Imaginary Discourse Trees for Dialogue Management 403

Hence the combined DT�A includes real DT�A plus DT�Aimg1 and DT�Aimg2.
Both real and imaginary DTs are necessary to demonstrate that an answer is relevant
by employing background knowledge in a domain independent manner: no offline
ontology construction is required. Documents found on the web which are the basis
of imaginary DTs can also be used to support an answer in a chatbot setting.

Search relevance is then measured as the inverse number of unaddressed En0�Q
once DT�A is augmented with imaginary DT�Aimg. This discourse-based relevance
is then added to a default one.

11.5.2 Question Answer Filtering Algorithm

Given a Q, we outline an algorithm that finds the most relevant A such that it has as
much of En-Q addressed by En-A, having a source for imaginary DTs (background
knowledge) B.

1. Build EnDT�Q
2. Obtain En�Q and form a query for En�A
3. Obtain a set of candidate As

Fig. 11.22 DTs of Q, A and imaginary DT�Aimg1 and DT�A img2

404 11 Discourse-Level Dialogue Management

4. For each candidate Ac2 As:

(a) Build DT�Ac
(b) Establish mapping En�Q ! E-Ac
(c) Identify En0�Q
(d) Form queries from En0�Q and En0�Ac (entities which are not in En0�Q)
(e) Obtain search results from B for queries d) and build imaginary DTs�Ac
(f) Calculate the score |En0| remaining

5. Select A with the best score.

Besides this algorithm, we outline a machine learning approach to classifying
<EnDT�Q, EnDT�A > pair as correct or incorrect. The training set should include
good Q/A pairs and bad Q/A pairs. Therefore a DT-kernel learning approach (SVM
TK, Joty and Moschitti 2014; Galitsky 2017) is selected which applies SVM
learning to a set of all sub-DTs of the DT for Q/A pair. Tree kernel family of
approaches is not very sensitive to errors in parsing (syntactic and rhetoric) because
erroneous sub-trees are mostly random and will unlikely be common among differ-
ent elements of a training set.

An EnDT can be represented by a vector V of integer counts of each sub-tree type
(without taking into account its ancestors): V (T) ¼ (#of subtrees of type 1, . . .).
Given two tree segments EnDT1 and EnDT2, the tree kernel function K (EnDT1,
EnDT2) ¼ <V (EnDT1), V (EnDT2) > ¼ Σn1Σn2 Σi Ii(n1)* Ii(n2), where n12N1,
n22N2 where N1 and N2 are the sets of all nodes in EnDT1 and EnDT2, respectively;
Ii (n) is the indicator function: Ii (n) ¼ {1 iff a subtree of type i occurs with root at
node; 0 otherwise}.

11.5.3 Experiments with Answering Convergent Questions

Traditional Q/A datasets for factoid and non-factoid questions, as well as SemEval
and neural Q/A evaluations are not suitable since the questions are shorter and not as
complicated to observe a potential contribution of discourse-level analysis. For
evaluation, we formed two convergent Q/A sets (Sect. 11.1.2):

1. Yahoo! Answer (Webscope 2017) set of question-answer pairs with broad topics;
2. Car repair conversations including 9300 Q/A pairs of car problem descriptions vs

recommendation on how to rectify them.

For each of these sets, we form the positive one from actual Q/A pairs and the
negative one from Q/Asimilar-entities: En�Asimilar-entities has a strong overlap with
E�A, although Asimilar-entities is not really correct, comprehensive and exact answer.
Hence Q/A is reduced to a classification task measured via precision and recall of
relating a Q/A pair into a class of correct pairs.

Top two rows in Table 11.3 show the baseline performance of Q/A and demon-
strate that in a complicated domain transition from keyword to matched entities

11.5 Constructing Imaginary Discourse Trees for Dialogue Management 405

delivers more than 13% performance boost. The bottom three rows show the Q/A
accuracy when discourse analysis is applied. Assuring a rule-based correspondence
between DT�A and DT�Q gives 13% increase over the base line, and using
imaginary DT – further 10%. Finally, proceeding from rule-based to machine
learned Q/A correspondence (SVM TK) gives the performance gain of about 7%.
The difference between the best performing SVM TK for < EnDT�Q \
EnDT�A + EnDT�Aimgi > row and the above row is only the machine learning
algorithm: representation is the same.

The bottom row shows the human evaluation of Q/A on a reduced dataset of
200 questions for each domain. We used human evaluation to make sure the way we
form the training dataset reflects the Q/A relevance as perceived by humans.

11.6 Dialogue Management Based on Lattice Walking

In this section we focus on chatbot dialogues related to product recommendation.
These are totally different chatbot interaction scenarios to the previous sections: they
do not take into account mental states of the user but instead navigate through the
information states of product features. Hence the underlying algorithm is tailored to
represent objects (items, products) and their features. It is fairly important to
visualize those so that the user is aware of where he is driven to by the system and
what are his current options.

The screen-shot of the interactive recommendation platform for advanced users is
shown at the top of Fig. 11.23. The purpose of this view is to create visual impression
for the user of which features are advantageous or disadvantageous for a series of
products of the same category. The data feed for this view is the results of extracting
information from customer reviews. The initial lattice is drawn automatically, and
the user may re-locate nodes of interest or add/remove labels when interests and
focuses change. For every product and its disadvantageous features, the lattice
allows the identification of products where these features are better. The use can
continue exploration of these recommended products and attempt to further express
his needs to the system.

Table 11.3 Evaluation of Q/A accuracy

Source Yahoo! answers Car repair

Search method P R F1 P R F1

Baseline TF*IDF 41.8 42.9 42.3 42.5 37.4 39.8

|En�Q \ En�A| 53.0 57.8 55.3 54.6 49.3 51.8

|EnDT�Q \ EnDT�A| 66.3 64.1 65.1 66.8 60.3 63.4

|EnDT�Q \ EnDT�A + EnDT�Aimgi| 76.3 78.1 77.2 � 3.4 72.1 72.0 72.0 � 3.6

SVM TK for
<EnDT�Q \
EnDT�A + EnDT�Aimgi>

83.5 82.1 82.8 � 3.1 80.8 78.5 79.6 � 4.1

Human assessment of SVM TK for <
EnDT�Q \ EnDT�A + EnDT�Aimgi>

81.9 79.7 80.8 � 7.1 80.3 81.0 80.7 � 6.8

406 11 Discourse-Level Dialogue Management

On the right, users choose their current products of interest. At any time, they can
add new products by selecting check boxes for available products in order to obtain
more comparative information. Similarly, users can remove products from the
current view for a more comprehensive visualization of remaining products. The
lattice will be updated accordingly. When a given product is selected, one can see all
nodes (highlighted) of the lattice that contains features of this product, and,

Fig. 11.23 Browsing of features for a series of comparable products (on the top). Visualization of a
recommendation platform via the concept lattice of features of digital cameras

11.6 Dialogue Management Based on Lattice Walking 407

conversely, for every positive or negative feature, one can see all products having
these features. The concept lattice is shown on the bottom of Fig. 11.23 in a higher
resolution. It visualizes the generalization of products’ features: the user can move
upwards for a higher-level view of product features, considering a larger number of
products. Conversely, moving down, the scope of products is reduced and the user
can drill into for more specific product analysis. Navigating all the way down, the
user arrives at individual products. Chatbot implementation does not necessarily
need this visualization: the user is offered options to navigate the concept lattice up
or down and the chatbot enumerates the corresponding sets of products and features.

Concept lattices have been supporting a wide variety of information retrieval
techniques and systems (Kaytoue et al. 2015), represents concisely the document
and the query space which can be used as an index for automatic retrieval. In the last
years, the Boolean information retrieval model has been considered as too limited for
modern information retrieval requirements for search engines, chatbots, large
datasets and complex document representations. Pattern structures have shown a
great potential to reuse the body of work of the formal concept analysis-based
information retrieval techniques by providing support to complex document repre-
sentations, such as numerical and heterogeneous indexes (Codocedo and Napoli
2014).

11.6.1 Formal Concept Analysis

A formal context is a triple (G,M,I), where G andM are sets, called the set of objects
and attributes, respectively. Let I be a relation I � G � M between objects and
attributes, i.e. (g,m) 2 I if the object g has the attribute m. The derivation operator (.)
are defined for A � G and B � M as follows:

A0 ¼ m 2 Mj8g 2 A : gImf g
B0 ¼ g 2 Gj8m 2 B : gImf g

A0 is the set of attributes common to all objects of A and B0 is the set of objects
sharing all attributes of B. The double application of (�) is a closure operator i.e. (.)00 is
extensive, idempotent and monotone. Sets (A)00 and (B)00 are referred to as closed. A
formal concept is a pair (A,B), where A � G, B �M and A’¼ B, B0 ¼ A. A and B are
called the formal extent and the formal intent, respectively.

11.6.2 Pattern Structure and Projections

Pattern Structures are generalization of formal contexts, where objects are described
by more complex structures, rather than a binary data. A pattern structure (Ganter
and Kuznetsov 2001) is defined as a triple (G,(D,u),δ), where G is a set of objects,

408 11 Discourse-Level Dialogue Management

(D,u) is a complete meet-semilattice of descriptions and δ:G!D is a mapping of an
object into a description. The Galois connections between set of objects and their
descriptions are defined as follows:

A0≔Πg2Aδ gð Þ forA � G

d0≔ g 2 Gjd v δ gð Þf g ford 2 D

A pair (A, d) for which A0 ¼ d and d0 ¼ A and is called a pattern concept.
A projection ψ is a kernel operator, i.e. it is monotone (x v y) ψ (x) v ψ (y)),

contractive (ψ (x) v x), and idempotent (ψ (ψ (x)) ¼ ψ (x)). The mapping ψ : D! D
is used to replace (G,(D,u),δ) by (G,(Dψ,uψ),ψ ∘ δ), where Dψ ¼ {d 2 D|∃d0 2 D: ψ
(d0) ¼ d}.

In our case, < an original paragraph of text and parse thickets constructed from
this paragraph > correspond to < an object and its description as a pattern
concepts > respectively. To improve efficiency and decrease time complexity, we
use a projection instead of a parse thicket itself. Projection on a parse thicket is
defined as a set of its maximal sub-trees and the intersection operator takes the form
of the pairwise intersection of elements within noun and verb phrase groups.

11.6.3 Measures for Pattern Concepts

There are several measures to estimates interestingness of concepts (Kuznetsov and
Makhalova 2018). In this study we select the one that allows estimating the inde-
pendence of a concept intent with respect to (w.r.t.) randomness in data. For a
concept (A,B) the stability is defined as follows:

The concepts with the high values of stability are more stable w.r.t. random
removal of the objects, i.e., they have more solid description w.r.t. random changes
in data.

Since the problem of computing stability is P#, δ-measure as its estimate has been
proposed. The δ-measure is the minimal difference in supports between concept (A,
B) and its nearest sub-concepts, i.e.,

Δ A;Bð Þð Þ ¼ min
A�;B�ð Þ	 A;Bð Þ

Aj j � A�j j:

11.6 Dialogue Management Based on Lattice Walking 409

11.6.4 Lattice Walker Example

In this section we simulate interaction of a task-oriented chatbot for knowledge
access for a user in the case where a query does not allow a search engine to identify
a “small enough” set of responses. In other words, we propose an approach where a
specified lattice-based description of the user query is computed in an interactive
manner in order to provide a minimal set of responses with maximal variability of
parameters that matter less to the user.

This chatbot might be used in e-commerce, for real-estate agency services or any
other field where users face a big amount of objects that form an ontology and is
described by well-defined (structured) parameters/characteristics.

Here we present a model of the interactive search where the chatbot clarifies user
needs in the course of navigation. During the interaction the chatbot is sending the
refined queries to a search engine. The received snippets, i.e., short descriptions of
the found items, are grouped in clusters of similar snippets (Sect. 9.4.3 in Chap. 9)
wherein the shared description of a cluster (its centroid) represents a specified query.
Under specified query we mean a description of this query with the information for
drilling in. Among computed specified queries, the user chooses a relevant one,
according to his current interest, that is used as a new refined query. The specifica-
tion (updating the set of constraints) for the queries continues till the user does not
find any more an appropriate specification or a snippet that corresponds exactly to
the information she searched for is found. The similarity of snippets is defined not
only by its syntactic similarity, but also by the relevance weights that are received
from the web search engine.

Let us imagine we have a number of digital cameras (objects) {Nikon, Kodak,
Sony, Canon, Vivitar, KINGEAR, Olympus, The Imaging World, Yasolote, Vmotal,
Polaroid, HeroFiber} (Fig. 11.4). Their features and their values (objects’ features)
are as follows: {Avg. Customer Review: 5, 4, 3, 2, 1, Viewscreen Display Size: Under
2 Inches, 2 to 2.9 Inches, 3 to 3.9 Inches, 4 to 4.9 Inches, 5 to 6.9 Inches, Over
7 Inches, Price: Under 25,25 to 50,50 to 100,100 to 200,200 and Above, Camera
Viewfinder Type: LCD, Optical, Both,, Video Capture Resolution: 4 K UHD
(2160p), FHD (1080p), HD (720p), SD (480p)}

Now a user starts with a query ‘Camera like Vivitar with 7 inch display’. We now
look for all cameras with features like Vivitar but having 7 inch display instead of 6
inch. We find Yasolote camera with 7 inch, or Sony camera but with the same star
number and Viewfinder ¼ optical. We then issue a clarification request to the user:

1. Yasolote camera with 7 inch? OR
2. Sony with the same number of reviews and Viewfinder ¼ optical OR
3. Codak or Polaroid having FHD resolution.

Therefore, each option has certain combination of objects and properties induced
by original object and a desired feature. Initial query instead can mention a single
object or a list features.

410 11 Discourse-Level Dialogue Management

T
ab

le
11

.4
D
ig
ita
l
ca
m
er
as

(o
bj
ec
ts
)
an
d
th
ei
r
gr
ou

pe
d
fe
at
ur
es

A
vg

.c
us
to
m
er

re
vi
ew

V
ie
w
sc
re
en

di
sp
la
y
si
ze

P
ri
ce

C
am

er
a
vi
ew

fi
nd

er
ty
pe

V
id
eo

ca
pt
ur
e
re
st

5
4

3
2

2–
3

3–
4

4–
5

5–
6

6–
7

7–
8

25
50

10
0

20
0

L
C
D

O
pt
ic
al

U
H
D

F
H
D

H
D

S
D

N
ik
on

1
1

1
1

1

K
od

ak
1

1
1

1
1

S
on

y
1

1
1

1

C
an
on

1
1

1
1

V
iv
ita
r

1
1

1
1

1

K
in
ge
ar

1
1

1
1

1

O
ly
m
pu

s
1

1
1

1
1

Im
ag
in
e
w
or
ld

1
1

1
1

1

Y
as
ol
ot
e

1
1

1
1

1

V
m
ot
al

1
1

1
1

1

P
ol
ar
oi
d

1
1

1
1

1

H
er
oF

ib
er

1
1

1
1

1

11.6 Dialogue Management Based on Lattice Walking 411

Now imagine the user selects option 2. We now focus on Sony and cameras most
similar to Sony with star number 2 and Viewfinder ¼ optical.

1. Sony
2. Nicon
3. Imaging World

The user than either selects a particular item (object) or gives up on the current
search session and starts over.

11.6.5 The Structure of the Datasets

Let us consider the structure of a dataset that is used by the chatbot. We denote by
G the whole set of items such as digital cameras the user is searching for. These items
are grouped into categories and make a hierarchy.

Formally, we have a thesaurus O ¼ {G* | G* 2 P(G)}, where P(G) is a power-set
of G. The groups might include other groups, be intersecting, disjoint, etc. For each
group G* 2 O a set of keywords K(G*) is defined. This set consists of short
descriptions of items. It should be noted that each group G* has a unique collection
of keywords, i.e., for G*

i/ ¼ G*
j and corresponding keyword sets K(G*

i) and K(G*
j)

inequality K(G*
i)\ K(G*

j) ¼ ∅ always holds. The uniqueness of keywords (or key
phrases) ensures that for any keyword (key phrase) there exists only one category of
items in the thesaurus O.

As a simple example of a relation in our thesaurus, we use LCD camera with
4 stars reviews with 4 inch viewfinder
 LCD camera with 4 stars reviews
 LCD
camera.

The items have attributes. We suppose that the set of all attributes ǔ9C; is divided
into categories Ai, i.e., all attributes are grouped into categories (that is the case for
most of datasets behind the web services) and an attribute a 2 Ai is a particular value
of the property/characteristic Ai.

Let us consider digital cameras and their two characteristics “Video Capture
Resolution” and “Viewscreen Display Size”, we denote them by A1 and A2, respec-
tively. For these categories one can define particular values, e.g.,

A1 ¼ {“4K UHD (2160p)”, “FHD (1080p)”, “HD (720p)”, “SD (480p)”} and
A2 ¼ {“Under 2 Inches”, “2 to 2.9 Inches”, “3 to 3.9 Inches”, “4 to 4.9 Inches”,

“5 to 6.9 Inches”, “Over 7 Inches”}. . . .
For each category G* we build a concept lattice LG

� where each concept is a
subset of similar items from G* that share the same attributes. It should be noted that
to build a lattice we use an extended space of attributes. For ordinal variables we add
interval-scaled attributes. It provides more flexible and powerful searching tools. For
example, if for the set of attributes “Viewscreen Display Size” with values {“Under
2 Inches”, “2 to 2.9 Inches”, “3 to 3.9 Inches”, “4 to 4.9 Inches”, “5 to 6.9 Inches”,
“Over 7 Inches”} a user picked “2 to 2.9 Inches”, “3 to 3.9 Inches” then the

412 11 Discourse-Level Dialogue Management

attributes will be translated into one “2 to 3.9 Inches” and all the cameras having the
display of the size between 2 and 3.9 inches be chosen.

Thus, our approach to interactive query refinement uses a defined thesaurus
(Chap. 8), where each node has an associated keyword description and a concept
lattice.

11.6.6 Principles of Query Refinement

A user sends a query q in NL. From the user request a subject, i.e., the name k of the
category of items, i.e., k 2 K(G*), and its properties Pq
 A are extracted.

Once a particular categoryG* 2 O in the thesaurus is found, the dialogue manager
assesses the latticeLG

� where the most general concept having the Pq (or its extended
version Pq

scaled) is chosen. Now navigation through the lattice is started. The choice of
nodes in the lattice is driven by the user responses.

Once a particular class of items has been identified (such as G* 2 O), the
corresponding lattice LG

� is chosen to support further query refinement.
The idea of the approach is sequential questioning of the user, where a new user

response is used to jump to the most relevant node in a lattice (i.e., a subgroup of
items) and propose the best refinement for the chosen node.

At the beginning, the keyword k for the searched item and its properties Pq are
extracted from the query q (line 1) and the nodeG* is chosen in the ontologyOby the
keyword k. The corresponding lattice LG

� is taken for query refinement (line 2) and
the biggest group of objects having all properties Pq is taken (line 3). For the
beginning, it is the single candidate in GSranked.

Further, in an interactive manner, the better concept w.r.t. Δ-measure is taken
from GSranked (line 7). The corresponding set of objects Ar are taken as the relevant
one. The lower neighbors ofLN (Ar,Br), i.e., the specified groups of objects, contain
new categories of attributes M� that can be relevant for user. The categories of
attributes are extracted form LN (Ar,Br) (line 9) and suggested to user. If the user
chooses particular categories he wants to specify, i.e.,M�

spec= ¼ 0 then the concrete
values of these categories are suggested to the user. Once the values for the selected
categories have been chosen (line 15), the largest groups of objects GC containing
the specified attributes are selected (line 18). They are ranked by Δ-measure, the
top-one is chosen and a new query refinement is launched.

There are two cases where the user might fail to find a possible specification. If
the user considers all the suggested categories of refinement irrelevant (line 11), then
the objects Ar from the current concepts are returned to the user. If the user has
chosen categories but found all the suggested properties irrelevant, the refinement is
re-launched with the next concept in GSranked.

As mentioned above, once the specified information of the user’s request is
received a new refined query is formulated using the node in the lattice with the
maximal δ-measure. Put it differently, the node (A,B), with the maximal δ-measure is

11.6 Dialogue Management Based on Lattice Walking 413

supposed to be the best. The concepts with high δ-measures are considered as the
most stable, i.e., the removal of several objects from A does not cause the changing
of their description. Thus, ranking of concepts based on δ-measure gives preferences
to more “stable” specification of the query.

An algorithm for lattice walk is as follows:
Input: query δ(q) in natural language
Output: set of subsets of snippets {A�|A� � A}

11.7 Related Work

Typically, every part in most coherent text has some plausible reason for its
presence, some function that it performs to the overall semantics of the text.
Rhetorical relations such as Contrast, Cause, Explanation describe how the parts
of a text are linked to each other. Rhetorical relations indicate the different ways in
which the parts of a text are linked to each other to form a coherent whole.

Marir and Haouam (2004) introduced a thematic relationship between parts of
text using RST based on cue phrases to determine the set of rhetorical relations. Once
these structures are determined, they are put in an index, which can then be searched
not only by keywords, as traditional information retrieval systems do, but also by
rhetorical relations.

414 11 Discourse-Level Dialogue Management

Lioma et al. (2012) studied if there is a correlation between certain rhetorical
relations and retrieval performance. The authors also addressed a question on
whether knowledge about a document’s rhetorical relations be useful to search
re-ranking, and presented a retrieval model that conditions the probability of rele-
vance between a query and a document on the rhetorical relations occurring in that
document.

The authors observed that different rhetorical relations perform differently across
evaluation measures and query sets. The four rhetorical relations that improve
performance over the baseline consistently for all evaluation measures and query
sets are: Background, Cause-Result, Condition and Topic-comment. Topic-comment
is one of the overall best-performing rhetorical relation that means that boosting the
weight of the topical part of a document improves its estimation of relevance. These
relations are not very frequent (Teufel and Moens 2002, Fig. 11.24).

Discourse analysis and rhetorical structures have been studied in the context of
several automatic text processing applications. This has been partly enabled by the
availability of discourse parsers. (Sun and Chai 2007) investigated the role of
discourse processing and its implication on query expansion for a sequence of
questions in scenario-based context Q/A. They considered a sequence of questions
as a mini discourse. An empirical examination of three discourse theoretic models
indicates that their discourse-based approach can significantly improve Q/A perfor-
mance over a baseline of plain reference resolution. In a different task, Wang et al.
(2010) parsed Web user forum threads to determine the discourse dependencies
between posts in order to improve information access over Web forum archives.

Heerschop et al. (2011) performed document sentiment analysis based on a
document’s discourse structure. The authors assessed the hypothesis that by splitting

Fig. 11.24 Percentages of all RR as extracted by SPADE. (Soricut and Marcu 2003)

11.7 Related Work 415

a text into important and less important text spans, and by subsequently making use
of this information by weighting the sentiment conveyed by distinct text spans in
accordance with their importance, they can improve the performance of a sentiment
classifier. A document’s discourse structure is obtained by applying rhetorical
structure theory on a sentence level. They report a 4.5% improvement in sentiment
classification accuracy when considering discourse, in comparison to a
non-discourse based baseline. Similarly to this study, Somasundaran et al. (2009)
report improvements to opinion polarity classification when using discourse, and
Morato et al. (2003) report a positive dependence between classification perfor-
mance and certain discourse variables. Nagarajan and Chandrasekar (2014) address
the expectation-related sentiment polarity.

In the area of text compression, Louis et al. (2010) studied the usefulness of
rhetorical relations between sentences for summarization. They find that most of the
significant rhetorical relations are associated to non-discriminative sentences,
i.e. sentences that are not important for summarization. The authors observe that
RRs that may be intuitively perceived as highly salient do not provide strong
indicators of being informative; instead, the usefulness of RRs is in providing
constraints for navigating through the text’s structure. These findings are compatible
with the study of Clarke and Lapata (2010) into constraining text compression on the
basis of rhetorical relations. For a more in-depth look into the impact of individual
rhetorical relations to summarization the reader is recommended to consult (Teufel
and Moens 2002).

Wang et al. (2006) extend an IR ranking model by adding a re-ranking strategy
based on document discourse. Specifically, their re-ranking formula consists of the
default retrieval status value, which is then multiplied by a function that linearly
combines inverse document frequency and term distance for each query term within
a discourse unit. They focus on one discourse type only (advantage-disadvantage)
which they identify manually in queries, and show that their approach improves
retrieval performance for these queries. Also, Suwandaratna and Perera (2010)
present a re-ranking approach for Web search that uses discourse structure. They
report a heuristic algorithm for refining search results based on their rhetorical
relations. Their implementation and evaluation is partly based on a series of
ad-hoc choices, making it hard to compare with other approaches. They report a
positive user-based evaluation of their system for ten test cases.

From the logical formalization of search standpoint, anti-unification appears to be
useful for various tasks in natural language processing. Semantic classification of
sentences based on their syntactic parse trees (Sidorov et al. 2012), grounded
language learning, semantic text similarity, insight grammar learning, metaphor
modeling. The major anti-unification technique in these applications is the original
method for first-order terms over fixed-arity alphabets, introduced by Plotkin (1970).
Amiridze and Kutsia (2018) provide an overview about existing linguistic applica-
tions of anti-unification, propose two flexible generalization computation algo-
rithms, and discuss their potential use in NLP tasks.

Recently, rhetorical parsing became more reliable and efficient (Joty et al. 2013;
Feng and Hirst 2014); however, the number of applications for resultant discourse

416 11 Discourse-Level Dialogue Management

trees (DTs) is mostly limited to content generation and summarization. Discourse
features are valuable for passage re-ranking (Jansen et al. 2014). DTs have been
found to assist in answer indexing to make search more relevant: query keywords
should occur in nucleus rather than a satellite of a rhetorical relation (Galitsky et al.
2015).

The most popular approach in the last few years is to learn topical relevance and
dialogue management together, using deep learning (Burtsev et al. 2018). This
family of approaches also fall answer category of data-driven (Serban et al. 2017);
they require huge dialogue datasets. Vorontsov and Potapenko (2015) combine
probabilistic assumptions with linguistic and problem-specific requirements in a
single multi-objective topic model.

The problem of reducing the space of possible utterances under dialogue con-
struction has been addressed in the extensive body of research. This reduction is
based on syntactic and possibly semantic features, but not discourse ones. A
dialogue management system can narrow the number of plausible answer utterances
to a small list, and an ML model would select the most appropriate responses from
this list (Lowe et al. 2016). This next utterance classification task is derived from the
IR-based metrics for information-retrieval-based approaches, which is easy to inter-
pret, and tune the complexity by changing the number of false responses.

Modern search engines and chatbots, from vertical to horizontal, do not imple-
ment reasoning via discourse – level analysis, to the best of our knowledge. This is
due to its computational load and hard compatibility with big data technologies.
Most search engineers consider discourse analysis too abstract and too distant from
applications.

Since rhetorical parsers for English has become more available and accurate, their
application in search engine indexing is becoming more feasible. As precision and
recall of search systems ignoring discourse level information deteriorates, users do
not find products, services and information they need, leveraging of linguistic
technologies including discourse become realistic for industrial systems.

Most chatbot vendors these days such as botframework.com and dialogflow.com
provide an NLP platform so that the content providers feed them with Q/A pairs and
expect satisfactory performance. It is hard to formally evaluate these systems, but
anecdotal evidence is that their performance is rather limited. Another family of
chatbots is focused on simulation of intelligent activity of humans instead of
providing an efficient content to information. This family is also frequently based
on deep learning of a huge set of conversations. Being capable of supporting a
conversation on an arbitrary topic, building plausible phrases, these systems are
nevertheless hardly applicable for industrial applications such as customer support.

At any point in the discourse, some entities are considered more salient than
others (occurring in nucleus parts of DTs), and consequently are expected to exhibit
different properties. In Centering Theory (Grosz et al. 1995; Poesio et al. 2004),
entity importance determines how they are realized in an utterance, including
pronominalized relation between them. In other discourse theories, entity importance
can be defined via topicality and cognitive accessibility (Gundel et al. 1993).

11.7 Related Work 417

http://botframework.com
http://dialogflow.com

Barzilay and Lapata (2008) automatically abstracts a text into a set of entity
transition sequences and records distributional, syntactic, and referential information
about discourse entities. The authors formulated the coherence assessment as a
learning task and show that their entity-based representation is well-suited for
ranking-based generation and text classification tasks.

Nguyen and Joty (2017) presented a local coherence model based on a
convolutional neural network that operates over the distributed representation of
entity transitions in the grid representation of a text. Their architecture can model
sufficiently long entity transitions, and can incorporate entity-specific features with-
out loosing generalization power. Kuyten et al. (2015) developed a search engine
that leverages the discourse structure in documents to overcome the limitations
associated with the bag-of-words document representations in information retrieval.
This system does not address the problem of rhetorical coordination between Q and
A, but given a Q, this search engine can retrieve both relevant A and individual
statements from A that describe some rhetorical relations to the query.

11.7.1 Visualization of Discourse Trees and Discourse
Features

Visualization is an important tool beyond linguistic data for assisting with big data
exploration in general, dealing with a high number of heterogeneous and
multidimensional datasets. As a result a huge number of ML tasks to be tackled
dramatically exceeds the number of data scientists who can solve these tasks. Many
ML tasks require critical input from subject matter experts, end users and decision
makers who are not ML experts. Kovalerchuk and Kovalerchuk (2017) provide a set
of tools called a ‘virtual data scientist’ to assist human experts and end users to
construct ML models for their tasks to address this big data challenge with a minimal
contribution from data scientists.

A sentence representation combining syntactic and discourse information is proposed
as a syntactic-discourse Treebank (Zhao and Huang 2017, Fig. 11.25). A combined
representation of constituency and discourse trees is developed to facilitate parsing at
both levels without explicit conversion mechanism from a parse tree into a DT.

Ji and Eisenstein (2014) presented a representation learning approach to discourse
parsing. The core idea of their approach is to learn a transformation from a bag-of-
words surface representation into a latent space in which discourse relations are
easily identifiable. The latent representation for each discourse unit can be viewed as
a discriminatively trained vector-space representation of its meaning. Alternatively,
our approach can be seen as a nonlinear learning algorithm for incremental structure
prediction, which overcomes feature sparsity through effective parameter tying.

Discourse parser based on joint learning to project to a low-dimensional repre-
sentation of the discourse units achieved higher results than competitive approaches.
Using the vector-space representation of EDUs (Fig. 11.26) shift-reduce parsing
system substantially outperforms existing systems on nuclearity detection and dis-
course relation identification. The low dimensional representation also captures
basic intuitions about discourse connectives and verbs.

418 11 Discourse-Level Dialogue Management

DTs are one of the key data structures enabling applications such as text summa-
rization, question answering and dialogue generation. Zhao et al. (2012) present
DAViewer, an interactive visualization system for assisting computational linguis-
tics researchers to explore, compare, evaluate and annotate the results of discourse
parsers. Relying on this system, a discourse linguistics scientist can move beyond a
manual exploration and comparisons of discourse structures to get intuitions for
improving and deploying rhetorical parsing algorithms.

The DAViewer interface (Fig. 11.27) includes a detail panel that shows the
discourse tree structures of the focused algorithms and documents as node-link or
dendrograms, as well as a status panel which provides the basic properties of the
currently selected items together with a legend for filtering operations. An annotation

Fig. 11.25 On the top: a traditional DT with three UDUs (•: nucleas; �: satellite). On the bottom:
combined syntactic-discourse tree

Fig. 11.26 Visualization of
words used to determine the
rhetorical relations

11.7 Related Work 419

panel that allows users to edit annotations is shown in the top-right. A text panel
showing the content of the current document is shown on the bottom-right.

It turns out that discourse structure annotations can function as a supervision
signal to discriminatively learn a transformation from lexical features to a latent
space that is well suited for discourse parsing. Unlike much of the prior work on
representation learning, the authors induce a simple linear transformation.

11.8 Open Source Implementation

Although there is an abundance of chatbot development platforms, not too many
open source chatbot systems are available. To mention one, Augello et al. (2017)
analyze open source technologies, focusing on their potential to implement a social
chatbot.

In our open source implemented version, application of parse thicket generaliza-
tion for search occurs according to the following scenarios. For the question and
candidate answer, we build a pair of parse thickets. Then we perform generalization
of parse thickets, either without loss of information, finding a maximum common

Fig. 11.27 DAViewer, an interactive visualization system for exploration, comparison, evaluation
and annotation of the results of discourse parsers. (Zhao et al. 2012)

420 11 Discourse-Level Dialogue Management

parse thicket subgraph, or with the loss of information, approximating the paths of
resultant subgraph by generalizing thicket phrases. Search relevance score is com-
puted accordingly as a total number of vertexes in a common maximum subgraph in
the first case, and calculating the number of words in maximal common sub-phrases,
taking into account weight for parts of speech (Galitsky et al. 2012), in the second
case. Alternatively, tree kernel technology applied to parse thicket classifies an
answer into the class of valid or invalid.

The textual input is subject to a conventional text processing flow such as
sentence splitting, tokenizing, stemming, part-of-speech assignment, building of
parse trees and coreferences assignment for each sentence. This flow is implemented
by either OpenNLP or Stanford NLP, and the parse thicket is built based on the
algorithm presented in this chapter. The coreferences and RST component strongly
relies on Stanford NLP’s rule-based approach to finding correlated mentions, based
on the multi-pass sieves.

The code for the dialogue management is available at
https://github.com/bgalitsky/relevance-based-on-parse-trees/tree/master/src/

main/java/opennlp/tools/chatbot

11.9 Conclusions

We built a dialogue management system for a chatbot with iterative content explo-
ration that leads a user through a personalized knowledge acquisition session. The
chatbot is designed as an automated customer support or product recommendation
agent that assists a user in learning product features, product usability, suitability,
troubleshooting and other related tasks.

Answering questions in the domain of this study is a significantly more complex
task than factoid Q/A such as Stanford Q/A database (Rajpurkar et al. 2016), where it
is just necessary to involve one or two entities and their parameters. To answer a
“how to solve a problem” question, one needs to maintain the logical flow
connecting the entities in the questions. Since some entities from Q are inevitably
omitted, these would need to be restored from some background knowledge text
about these omitted entities and the ones presented in Q. Moreover, a logical flow
needs to complement that of the Q.

Domain-specific thesauri such as the ones related to mechanical problems with
cars are very hard and costly to build. In this chapter we proposed a substitute via
domain-independent discourse level analysis where we attempt to cover unaddressed
parts of DT-A on the fly, finding text fragments in a background knowledge corpus
such as Wikipedia. Hence we can do without an ontology that would have to
maintain relations between involved entities.

The proposed imaginary DT feature of a Q/A system delivers a substantial
increase of accuracy answering complex convergent questions. Whereas using
DTs for answer style matching improves Q/A accuracy by more than 10%,

11.9 Conclusions 421

https://github.com/bgalitsky/relevance-based-on-parse-trees/tree/master/src/main/java/opennlp/tools/chatbot
https://github.com/bgalitsky/relevance-based-on-parse-trees/tree/master/src/main/java/opennlp/tools/chatbot

compared to the relevance-focused baseline, relying on imaginary DTs gives further
10% improvement.

Since we explored the complementarity relation between DT-A and DT-Q and
proposed a way to identify imaginary DT-A on demand, the learning feature space is
substantially reduced and learning from an available dataset of a limited size
becomes plausible.

Although there has been a substantial advancement in document-level RST
parsing, including the rich linguistic features-based of parsing models (Joty et al.
2013), document level discourse analysis has not found a broad range of applications
such as search. The most valuable information from DT includes global discourse
features and long range structural dependencies between DT constituents.

A number of studies including Surdeanu et al. (2015) showed that discourse
information is beneficial for search. We believe this chapter is a first study explicitly
showing how discourse trees help to navigate search. To be a valid answer for a
question, its keywords need to occur in adjacent EDU chain of this answer so that
these EDUs are fully ordered and connected by nucleus – satellite relations. Note the
difference between the proximity in text as a sequence of words and proximity in
DT. An answer is expected to be invalid if the questions’ keywords occur in the
answer’s satellite EDUs and not in their nucleus EDUs. The purpose of the rhetorical
map of an answer is to prevent it from being fired by questions whose keywords
occur in non-adjacent areas of this map (Chap. 14).

Discourse trees and their extensions is a very promising subject of study for
logical AI. Logical AI studies subjects such as logic forms and logic programs which
are very limited in quantity in the real world. But logical AI tries to make sense of
them: discourse trees are fairly interpretable structures. Statistical/deep machine
learning has big text data available at its disposal but does not really make sense
of it from the perspective of Logical AI. Communicative discourse trees can be
obtained in a large quantity on one hand and they are adequate Logical AI subjects
on the other hand. That is why discourse trees and their extension are such an
important subject of study for search engineering and chatbots.

References

Agostaro F, Augello A, Pilato G, Vassallo G, Gaglio S (2005) A conversational agent based on a
conceptual interpretation of a data driven semantic space, proceedings of AI*IA. LNAI
3673:381–392

Alice 3 (2018) Last downloaded July 21, 2018 https://www.oracle.com/webfolder/technetwork/
tutorials/OracleAcademy/Alice3SelfStudyV2/index.html#section1s3

Allan J (1996) Automatic hypertext link typing. In: Hypertext’96, The seventh ACM conference on
Hypertext, pp 42–52

Amiridze N, Kutsia T (2018) Anti-unification and natural language processing. In: Fifth workshop
on natural language and computer science, NLCS’18, EasyChair Preprint no. 203

Augello A, Gentile M, Dignum F (2017) An overview of open-source chatbots social skills. In:
Diplaris S, Satsiou A, Følstad A, Vafopoulos M, Vilarinho T (eds) Internet science, Lecture
notes in computer science, vol 10750, pp 236–248

422 11 Discourse-Level Dialogue Management

https://www.oracle.com/webfolder/technetwork/tutorials/OracleAcademy/Alice3SelfStudyV2/index.html#section1s3
https://www.oracle.com/webfolder/technetwork/tutorials/OracleAcademy/Alice3SelfStudyV2/index.html#section1s3

Barzilay R, Elhadad M (1997) Using lexical chains for text summarization. In: Proceedings of the
ACL/EACL’97 workshop on intelligent scalable text summarization. Madrid, Spain, July 1997,
pp 10–17.

Barzilay R, Lapata M (2008) Modeling local coherence: An entity-based approach. Comput
Linguist 34(1):1–34

Bordes A, Weston, J (2016) Learning end-to-end goal-oriented dialog. ICRL 2017
Burtsev M, Seliverstov A, Airapetyan R, Arkhipov M, Baymurzina D, Bushkov N, Gureenkova O,

Khakhulin T, Kuratov Y, Kuznetsov D, Litinsky A, Logacheva V, Lymar A, Malykh V, Petrov
M, Polulyakh V, Pugachev L, Sorokin A, Vikhreva M, Zaynutdinov M (2018) DeepPavlov:
open-source library for dialogue systems. In: ACL-system demonstrations, pp 122–127

CarPros (2017) http://www.2carpros.com
CarPros Car Repair Dataset (2017) https://github.com/bgalitsky/relevance-based-on-parse-trees/

blob/master/examples/CarRepairData_AnswerAnatomyDataset2.csv.zip
Chali Y, Joty SR, Hasan SA (2009) Complex question answering: unsupervised learning

approaches and experiments. J Artif Int Res 35(1):1–47
Clarke J, Lapata M (2010) Discourse constraints for document compression. Comput Linguist 36

(3):411–441
Codocedo V, Napoli A (2014) A proposition for combining pattern structures and relational concept

analysis. In: Glodeanu CV, Kaytoue M, Sacarea C (eds) ICFCA 2014. LNCS (LNAI), vol 8478.
Springer, Heidelberg, pp 96–111

Cohen W (2018) Enron email dataset. https://www.cs.cmu.edu/~./enron/. Last downloaded 10 July
2018

Elsner M, Charniak E (2008) You talking to me? a corpus and algorithm for conversation
disentanglement. In: Proceedings of the 46th annual Meeting of the ACL: HLT (ACL 2008),
Columbus, USA, pp 834–842

Feng WV, Hirst G (2014) A linear-time bottom-up discourse parser with constraints and post-
editing. In: Proceedings of the 52nd annual meeting of the Association for Computational
Lin-guistics (ACL 2014), Baltimore, USA, June.

Fidelity (2018) https://github.com/bgalitsky/relevance-based-on-parse-trees/blob/master/examples/
Fidelity_FAQs_AnswerAnatomyDataset1.csv.zip

Galitsky B (2014) Learning parse structure of paragraphs and its applications in search. Eng Appl
Artif Intell 32:160–184

Galitsky B (2016) Providing personalized recommendation for attending events based on individual
interest profiles. AI Research 5(1), Sciedu Press

Galitsky B (2017) Discovering rhetorical agreement between a request and response. Dialogue
Discourse 8(2):167–205

Galitsky B, Ilvovsky D (2017a) Chatbot with a discourse structure-driven dialogue management,
EACL demo program

Galitsky B, Ilvovsky D (2017b) On a chat bot finding answers with optimal rhetoric representation.
In: Proceedings of recent advances in natural language processing, Varna, Bulgaria, 4–-
6 September, pp 253–259

Galitsky B, Jones R (2017) A chatbot demo about a student being broke. Video link https://drive.
google.com/open?id=0B-TymkYCBPsfV3JQSGU3TE9mRVk

Galitsky B, Makowski G (2017) Document classifier for a data loss prevention system based on
learning rhetoric relations. CICLing 2017, Budapest, Hungary, 17–23 April.

Galitsky B, McKenna EW (2017) Sentiment extraction from consumer reviews for providing
product recommendations. US Patent 9646078B2

Galitsky B, Chen H, Du S (2009a) Inverting semantic structure of customer opinions expressed in
forums and blogs. In: 17th international conference on conceptual structures, Suppl. Proc.

Galitsky B, González MP, Chesñevar CI (2009b) A novel approach for classifying customer
complaints through graphs similarities in argumentative dialogue. Decis Support Syst 46
(3):717–729

References 423

http://www.2carpros.com
https://github.com/bgalitsky/relevance-based-on-parse-trees/blob/master/examples/CarRepairData_AnswerAnatomyDataset2.csv.zip
https://github.com/bgalitsky/relevance-based-on-parse-trees/blob/master/examples/CarRepairData_AnswerAnatomyDataset2.csv.zip
https://www.cs.cmu.edu/~/enron/
https://github.com/bgalitsky/relevance-based-on-parse-trees/blob/master/examples/Fidelity_FAQs_AnswerAnatomyDataset1.csv.zip
https://github.com/bgalitsky/relevance-based-on-parse-trees/blob/master/examples/Fidelity_FAQs_AnswerAnatomyDataset1.csv.zip
https://drive.google.com/open?id=0B-TymkYCBPsfV3JQSGU3TE9mRVk
https://drive.google.com/open?id=0B-TymkYCBPsfV3JQSGU3TE9mRVk

Galitsky B, Dobrocsi G, de la Rosa JL (2012) Inferring the semantic properties of sentences by
mining syntactic parse trees. Data Knowl Eng v81:21–45

Galitsky B, Kuznetsov SO, Usikov D (2013) Parse thicket representation for multi-sentence search.
In: International conference on conceptual structures, pp 153–172

Galitsky B, Ilvovsky D, Kuznetsov SO, Strok F (2014) Finding maximal common sub-parse
thickets for multi-sentence search. In: Graph structures for knowledge representation and
reasoning, pp 39–57

Galitsky B, Ilvovsky D, Kuznetsov SO (2015) Text classification into abstract classes based on
discourse structure. In: Proceedings of recent advances in natural language processing, Hissar,
Bulgaria, 7–9 September 2015, pp 200–207.

Galitsky B, Parnis A, Usikov D (2017) Exploring discourse structure of user-generated content.
CICLing 2017, Budapest, Hungary, 17–23 April.

Ganter B, Kuznetsov SO (2001) Pattern structures and their projections. In: International conference
on conceptual structures, pp 129–142

Grasso F (1999) Playing with RST: two algorithms for the automated manipulation of discourse
trees. In: Matousek V, Mautner P, Ocelíková J, Sojka P (eds) Text, speech and dialogue. TSD
1999. Lecture notes in computer science, vol 1692. Springer, Berlin/Heidelberg

Grosz BJ, Sidner CL (1986) Attention, intention and the structure of discourse. Comput Linguist 12
(3):175–204

Grosz B, Joshi AK, Weinstein S (1995) Centering: a framework for modeling the local coherence of
discourse. Comput Linguist 21(2):203–225

Gundel JK, Hedberg N, Zacharski R (1993) Cognitive status and the form of referring expressions
in discourse. Language 69(2):274–307

Heerschop B, Goossen F, Hogenboom A, Frasincar F, Kaymak U, de Jong F (2011) Polarity
analysis of texts using discourse structure. In: Proceedings of the 20th ACM international
conference on information and knowledge management, CIKM ‘11, pp 1061–1070,
New York, USA, ACM

Indri IR (2018) Last downloaded Sept 11, 2018 https://www.lemurproject.org/indri/
Jansen P, Surdeanu M, Clark P (2014) Discourse comple-ments lexical semantics for nonfactoid

answer reranking. ACL
Ji Y, Eisenstein J (2014) Representation learning for text-level discourse parsing. ACL 2014
Joty SR, Moschitti A (2014) Discriminative reranking of discourse parses using tree kernels. In:

Proceedings of the 2014 conference on Empirical Methods in Natural Language Processing
(EMNLP).?

Joty SR, Carenini G, Ng RT, Mehdad Y (2013) Combining intra-and multi- sentential rhetorical
parsing for document-level discourse analysis. In: ACL, vol. 1, pp 486–496

Kaytoue M, Codocedo V, Buzmakov A, Baixeries J, Kuznetsov SO, Napoli A (2015) Pattern
structures and concept lattices for data mining and knowledge processing. Joint european
conference on machine learning and knowledge discovery in databases. Springer, Cham, pp
227–231

Kelley JF (1984) An iterative design methodology for user-friendly natural language office infor-
mation applications. ACM Trans Inf Syst 2(1):26–41

Kerly A, Hall P, Bull S (2007) Bringing chatbots into education: towards natural language
negotiation of open learner models. Knowl-Based Syst 20(2):177–185

Kim SN, Wang LI, Baldwin T (2010) Tagging and linking web forum posts. In: Proceedings of the
14th conference on Computational Natural Language Learning (CoNLL-2010), Uppsala, Swe-
den, pp 192–202

Koiti H (2010) SemAF: discourse structures. http://slideplayer.com/slide/6408486/. Last
downloaded 28 February 2018

Kovalerchuk B, Kovalerchuk M (2017) Toward virtual data scientist with visual means. In: IJCNN.
Kuyten P, Bollegala D, Hollerit B, Prendinger H, Aizawa K (2015) A discourse search engine based

on rhetorical structure theory. In: Hanbury A, Kazai G, Rauber A, Fuhr N (eds) Advances in
information retrieval. ECIR 2015, Lecture notes in computer science, vol 9022. Springer, Cham

424 11 Discourse-Level Dialogue Management

https://www.lemurproject.org/indri/
http://slideplayer.com/slide/6408486/

Kuznetsov SO, Makhalova T (2018) On interestingness measures of formal concepts. Inf Sci
442:202–219

LeThanh H, Abeysinghe G, Huyck C (2004) Generating discourse structures for written texts. In:
Proceedings of the 20th international conference on computational linguistics, COLING ‘04,
Geneva, Switzerland. Association for Computational Linguistics

Lioma C, Larsen B, Lu W (2012). Rhetorical relations for information retrieval. SIGIR. Portland,
Oregon, USA, 12–16 August 2012

Louis A, Joshi AK, Nenkova A (2010) Discourse indicators for content selection in summarization.
In Fernandez R, Katagiri Y, Komatani K, Lemon O, Nakano M (eds) SIGDIAL conference, The
Association for Computer Linguistics, pp 147–156

Lowe RIV, Noseworthy M, Charlin L, Pineau J (2016) On the evaluation of dialogue systems with
next utterance classification. In: Special interest group on discourse and dialogue

Marcu D (2000) The rhetorical parsing of unrestricted texts: a surface-based approach. Comput
Linguist 26:395–448

Marcu D, Echihabi A (2002) An unsupervised approach to recognizing discourse relations. In:
Proceedings of the 40th annual meeting on Association for Computational Linguistics, ACL’02,
pp 368–375

Marir F, Haouam K (2004) Rhetorical structure theory for content-based indexing and retrieval of
Web documents, ITRE 2004. In: 2nd international conference information technology: research
and education, pp 160–164

Morato J, Llorens J, Genova G, Moreiro JA (2003) Experiments in discourse analysis impact on
information classification and retrieval algorithms. Info Process Manag 39:825–851

Nagarajan V, Chandrasekar P (2014) Pivotal sentiment tree classifier. IJSTR V.3, I, 11 November.
Nguyen DT, Joty S (2017) A neural local coherence model. ACL 1:1320–1330
Plotkin GD (1970) A note on inductive generalization. Mach Intell 5(1):153–163
Poesio M, Stevenson R, Di Eugenio B, Hitzeman J (2004) Centering: A parametric theory and its

instantiations. Comput Linguist 30(3):309–363
Radev DR (2000) A common theory of information fusion from multiple text sources step one:

cross-document structure. In: Proceedings of the 1st SIGDIAL workshop on discourse and
dialogue (SIGDIAL) ‘00, pp 74–83

Rajpurkar P, Zhang J, Lopyrev K, Liang P (2016) Squad: 100,000+ questions for machine
comprehension of text. https://arxiv.org/abs/1606.05250

Rose CP, Di Eugenio B, Levin LS, Van Ess-Dykema C (1995) Discourse processing of dialogues
with multiple threads. In: Proceedings of the 33rd annual meeting of the association for
computational linguistics, Cambridge, USA, pp 31–38

Sakai T (2007) Alternatives to Bpref. In: Proceedings of the 30th annual international ACM SIGIR
conference on research and development in information retrieval. Amsterdam, The Netherlands,
ACM, pp 71–78

Seo JW, Croft B, Smith DA (2009) Online community search using thread structure. In: Pro-
ceedings of the 18th ACM Conference on Information and Knowledge Management (CIKM
2009), Hong Kong, China, pp 1907–1910.

Serban IV, Lowe R., Henderson P, Charlin L, Pineau J (2017) A survey of available corpora for
building data-driven dialogue systems. https://arxiv.org/abs/1512.05742

Sidorov G, Velasquez F, Stamatatos E, Gelbukh A, Chanona-Hernández L (2012) Syntactic
Dependency-based N-grams as Classification Features. LNAI 7630:1–11

Singh Ospina N, Phillips KA, Rodriguez-Gutierrez R, Castaneda-Guarderas A, Gionfriddo MR,
Branda ME, Montori VM (2019) Eliciting the patient’s agenda- secondary analysis of recorded
clinical encounters. J Gen Intern Med 34(1):36–40

Somasundaran S, Namata G, Wiebe J, Getoor L (2009) Supervised and unsupervised methods in
employing discourse relations for improving opinion polarity classification. In: EMNLP, ACL,
pp 170–179.

Soricut R, Marcu D (2003) Sentence level discourse parsing using syntactic and lexical information.
In: HLT-NAACL.

References 425

https://arxiv.org/abs/1606.05250
https://arxiv.org/abs/1512.05742

Sporleder C, Lascarides A (2004) Combining hierarchical clustering and machine learning to
predict high-level discourse structure. In: Proceedings of the 20th international conference on
Computational Linguistics, COLING’04, Geneva, Switzerland

Sun M, Chai JY (2007) Discourse processing for context question answering based on linguistic
knowledge. Know Based Syst 20:511–526

Surdeanu M, Hicks T, Valenzuela-Escarcega MA (2015) Two practical rhetorical structure theory
parsers. In: Proceedings of the conference of the North American Chapter of the Association for
Computational Linguistics – Human Language Technologies: Software Demonstrations
(NAACL HLT).

Suwandaratna N, Perera U (2010). Discourse marker based topic identification and search results
refining. In: Information and automation for sustainability (ICIAFs), 2010 5th International
conference on, pp 119–125

Teufel S, Moens M (2002) Summarizing scientific articles: experiments with relevance and
rhetorical status. Comput Linguist 28(4):409–445, 2002

Trigg R, Weiser M (1987) TEXTNET: A network-based approach to text handling. ACM Trans Off
Inf Sys 4(1):1–23

Vorontsov K, Potapenko A (2015) Additive regularization of topic models. Mach Learn 101
(1–3):303–323

Wanas N, El-Saban M, Ashour H, Ammar W (2008) Automatic scoring of online discussion posts.
In: Proceeding of the 2nd ACM workshop on Information credibility on the web (WICOW’08),
Napa Valley, USA, pp 19–26.

Wang Z, Lemon O (2013) A simple and generic belief tracking mechanism for the dialog state
tracking challenge: on the believability of observed information. In: Proceedings of the
SIGDIAL

Wang DY, Luk RWP, Wong KF, Kwok KL. (2006) An information retrieval approach based on
discourse type. In: Kop C, Fliedl G, Mayr HC, M’etais E (eds), NLDB, volume 3999 of Lecture
notes in computer science, Springer, pp 197–202.

Wang W, Su J, Tan CL (2010) Kernel based discourse relation recognition with temporal ordering
information. ACL

Wang L, Lui M, Kim SN, Nivre J, Baldwin T (2011) Predicting thread discourse structure over
technical web forums. In: Proceedings of the 2011 conference on empirical methods in natural
language processing, Edinburgh, UK, pp 13–25

Webscope (2017) Yahoo! answers dataset. https://webscope.sandbox.yahoo.com/catalog.php?
datatype¼l

Wilks YA (ed) (1999) Machine conversations. Kluwer, Boston
Wolf F, Gibson E (2005) Representing discourse coherence: A corpus-based study. Comput

Linguist 31(2):249–287
Young S, Gasic M, Thomson B, Williams J (2013) POMDP-based statistical spoken dialogue

systems: a review. In: Proceedings of IEEE, vol 99, pp 1–20
Zeldes A (2016) rstWeb – a browser-based annotation Interface for rhetorical structure theory and

discourse relations. In: Proceedings of NAACL-HLT 2016 (demonstrations). San Diego,
California, June 12–17, 2016, pp 1–5

Zhao K, Huang L (2017) Joint syntacto-discourse parsing and the syntacto-discourse treebank.
https://arxiv.org/pdf/1708.08484.pdf

Zhao J, Chevalier F, Collins C, Balakrishnan R (2012) Facilitating discourse analysis with
interactive visualization. IEEE Trans Vis Comput Graph 18(12):2639–2648

426 11 Discourse-Level Dialogue Management

https://webscope.sandbox.yahoo.com/catalog.php?datatype=l
https://webscope.sandbox.yahoo.com/catalog.php?datatype=l
https://webscope.sandbox.yahoo.com/catalog.php?datatype=l
https://arxiv.org/pdf/1708.08484.pdf

Chapter 12
A Social Promotion Chatbot

Abstract We describe a chatbot performing advertising and social promotion
(CASP) to assist in automation of managing friends and other social network
contacts. This agent employs a domain-independent natural language relevance
technique that filters web mining results to support a conversation with friends and
other network members. This technique relies on learning parse trees and parse
thickets (sets of parse trees) of paragraphs of text such as Facebook postings. To
yield a web mining query from a sequence of previous postings by human agents
discussing a topic, we develop a Lattice Querying algorithm which automatically
adjusts the optimal level of query generality. We also propose an algorithm for
CASP to make a translation into multiple languages plausible as well as a method to
merge web mined textual chunks. We evaluate the relevance features, overall
robustness and trust of CASP in a number of domains, acting on behalf of the author
of this Chapter in his Facebook account in 2014–2016. Although some Facebook
friends did not like CASP postings and even unfriended the host, overall social
promotion results are positive as long as relevance, style and rhetorical appropriate-
ness is properly maintained.

12.1 Introduction

A conventional chatbot is designed as a communication means between a customer
and a company. In this section we propose a totally different area of a chatbot
activity: social promotion. We design a chatbot that communicates with peers on
behalf of its human host. Instead of answering questions about products and services,
or fulfilling requests from the users, this social chatbot is representing its human host
in maintaining relationships with her friends and colleagues. The goal of this chatbot
is to relieve its human host from routine activity of casual conversation with peers.
Also, as an additional feature, this chatbot can implicitly advertise products and
services, mentioning them in a conversation with human peers as long as it fits the
context of such conversation (Galitsky 1998).

Simulated human characters are increasingly common components of user inter-
faces of applications such as interactive tutoring environments, eldercare systems,

© Springer Nature Switzerland AG 2019
B. Galitsky, Developing Enterprise Chatbots,
https://doi.org/10.1007/978-3-030-04299-8_12

427

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04299-8_12&domain=pdf

virtual reality-based systems, intelligent assistant systems, physician-patient com-
munication training, and entertainment applications including (Cassell et al. 2000;
De Rosis et al. 2003; Dias and Paiva 2005; Lisetti 2008; Galitsky and Parnis 2017;
Trias et al. 2010) among others. While these systems have improved in their
intelligent features, expressiveness, understanding human language, dialog abilities
and other aspects, their social realism is still far behind. It has been shown (Reeves
and Nass 1996) that users consistently respond to computers as if they were social
actors; however, most systems do not behave as competent social actors, leading to
user loose of trust and alienation.

Most users used to distrust conversational agent who has shown poor understand-
ing of their needs in the areas such as shopping, finance, travel, navigation, customer
support and conflict resolution (Galitsky et al. 2005). To restore trust in chatbots,
they have to demonstrate robust intelligence features on one hand and operate in a
domain where users are more tolerant to agent’s misunderstanding of what chatbots
say or recommend (Galitsky and McKenna 2017).

In this section we build a chatbot in the form of simulated human character that
acts on behalf of its human host to relieve her from the routine, less important
activities on social networks such as sharing news, and commenting on postings of
others. Unlike the majority of application domains for simulated human characters,
its social partners do not necessarily know that they deal with an automated agent.
We refer to this character as a chatbot that assists its human host [possibly, with
advertising] and social promotion (CASP). Over the years, we experimented with
CASP in a number of Facebook accounts (Galitsky et al. 2014) and evaluated its
performance and trust by human users communicating with it.

To be trusted, a chatbot operating in a natural language must produce relevant
content in an appropriate situation and suitable target person. To do that, it needs to
implement the following intelligence features (Lawless et al. 2013):

1. Flexibility in respect to various forms of human behavior, information sharing
and request by humans;

2. Resourcefulness, being capable of finding relevant content in an emergent and
uncertain situation;

3. Creativity in finding content and adjusting existing content to the needs of human
user;

4. Real-time responsiveness and long-term reflection on how its postings being
perceived;

5. Use of a variety of reasoning approaches, in particular based on simulation of
human mental states;

6. Ability to learn and adapt performance at a level of intelligence seen in humans
and animals;

7. Awareness of and competence in larger natural, built, and social contexts.

For a chatbot, users need to feel that it properly reacts to their actions, and that
what it replied makes sense. To achieve this in a limited, vertical domain, most
effective approaches rely on domain-specific ontologies. In a horizontal domain, one
needs to leverage linguistic information to a full degree (Sidorov et al. 2012;

428 12 A Social Promotion Chatbot

Galitsky et al. 2012) to be able to exchange messages in a meaningful manner. Once
we do not limit the domain a chatbot is performing in, the only available information
is language syntax and discourse (Strok et al. 2014), which should be taken into
account by means of a full scale linguistic relevance filter.

Social promotion (Fig. 12.1) is based on

1. involvement (living the social web, understanding it, going beyond creation of
Googleþ account);

2. creating (making relevant content for communities of interest);
3. discussing (each piece of content must be accompanied by a discussion. If an

agent creates the content the market needs and have given it away freely, then you
will also want to be available to facilitate the ensuing discussions);

4. promoting (the agent needs to actively, respectfully, promote the content into the
networks).

CASP acts in the environments subject to constant changes. As news come, political
events happen, new technologies are developed and new discoveries are made,
CASP needs to be able to find relevant information using new terms or new
meanings of familiar terms and entities (Makhalova et al. 2015). Hence it needs to
automatically acquire knowledge from the web, expanding its taxonomy of entities
and building links between them (Chap. 8, Galitsky 2013). These taxonomies are
essential when CASP needs tomatch a portion of text found on the web (as a candidate
message) against a message posted by a human user. By growing these taxonomies,
CASP learns from the web, adapts its messages to how the available information on the

Fig. 12.1 Dimensions of social promotion

12.1 Introduction 429

web is evolving (Galitsky and Ilvovsky 2016). Also, CASP applies accumulated the
experience from user responses to its previously posted messages to new posting.

Paragraphs of text as queries appear in the search-based recommendation
domains (Montaner et al. 2003; Bhasker and Srikumar 2010; Galitsky 2017) and
social search (Trias and de la Rosa 2011). Recommendation agents track user chats,
user postings on blogs and forums, user comments on shopping sites, and suggest
web documents and their snippets, relevant to a purchase decisions (Galitsky and
Kovalerchuk 2006). To do that, these recommendation agents need to take portions
of text, produce a search engine query, run it against a search engine API such as
Bing or Yahoo, and filter out the search results which are determined to be irrelevant
to a purchase decision. The last step is critical for a sensible functionality of a
recommendation agent, and a poor relevance would lead to a problem with retaining
users.

12.2 The Domain of Social Promotion

On average, people have 500–800 friends or contacts on social network systems
such Facebook and LinkedIn. To maintain active relationships with this high number
of friends, a few hours per week is required to read what they post and comment on
it. In reality, people only maintain relationship with 10–20 most close friends, family
and colleagues, and the rest of friends are being communicated with very rarely.
These not so close friends feel that the social network relationship has been
abandoned.

However, maintaining active relationships with all members of social network is
beneficial for many aspects of life, from work-related to personal. Users of social
network are expected to show to their friends that they are interested in them, care
about them, and therefore react to events in their lives, responding to messages
posted by them. Hence users of social network need to devote a significant amount of
time to maintain relationships on social networks, but frequently do not have time to
do it. For close friends and family, users would still socialize manually. For the rest
of the network, they would use the automated agent for social promotion being
proposed.

The difficulty in solving this problem lies mainly in the area of relevance.
Messages of the automated agent must be relevant to what human agents are saying.
These messages are not always expected to be impressive, witty, or written in style,
but at least they should show social engagement. CASP should show that its host
cares about the friends being communicated with.

The opportunity to automate social promotion leverages the fact that overall
coherence and exactness of social communication is rather low. Readers would
tolerate worse than ideal style, discourse and quality of content being communicated,
as long as overall the communication is positive and makes sense. Currently
available commercial chat bots employed by customer support portals, or packaged

430 12 A Social Promotion Chatbot

as mobile apps, possess too limited NLP and text understanding capabilities to
support conversations for social profiling.

In Fig. 12.4 we show CASP posting a message about his “experience” at lake
Tahoe, having his host’s friend newly posted image caption as a seed.

12.3 CASP Architecture

CASP is packaged as a chatbot: it inputs a seed (single or multiple postings) written
by human peers of the host and outputs a message it forms from a content mined on
the web or in another source, selected and/or adjusted to be relevant to this input
posting. This relevance is based on the appropriateness in terms of content topic and
also on the appropriateness in terms of mental/epistemic state: for example, it
responds by an answer to a question, by a recommendation to a user host post asking
for recommendations and by a question to a post mentioning that an individual
would be happy to answer a question of her peer.

CASP includes the following components:

• Web mining component, which forms the web search queries from the seed and
obtains search results using APIs such as Bing, Yahoo! or Yandex;

• Content relevance component, which filters out irrelevant portions of candidate
content found on the web, based on syntactic generalization operator (Galitsky
et al. 2011). It functions matching the parse thicket for a seed with the parse
thicket for a content found on the web;

• Mental state relevance component, which extracts mental states from the seed
message and from the web content and applies reasoning to verify that the former
can be logically followed by the latter.

In Fig. 12.2 we show a high-level view of CASP architecture, outlining most critical
components of web search for candidate postings and relevance verification.

Content relevance component is described in details in Galitsky et al. (2013) and
Chap. 9. It is based on text similarity function which relies on generalization
operation of syntactic, semantic and discourse-level representation of text.

In Galitsky (2013) we developed a generic software component for computing
consecutive plausible mental states of human agents that is employed by CASP. The
simulation approach to reasoning about mental world is based on exhaustive search
through the space of available behaviors. This approach to reasoning is implemented
as a logic program in a natural language multiagent mental simulator NL_MAMS,
which yields the totality of possible mental states few steps in advance, given an
arbitrary initial mental state of participating agents. Due to an extensive vocabulary
of formally represented mental attitudes, communicative actions and accumulated
library of behaviors, NL_MAMS is capable of yielding much richer set of sequences
of mental state than a conventional system of reasoning about beliefs, desires and
intentions would deliver (Galitsky 2016). Also, NL_MAMS functions in domain-
independent manner, outperforming machine learning-based systems for accessing

12.3 CASP Architecture 431

plausibility of a sequence of mental states and behaviors of human agents in broad
domains where training sets are limited (Galitsky and Shpitsberg 2016).

Detailed CASP architecture that includes all components is shown in Fig. 12.3.
The leftmost column includes the posting preparation components, the column in the
middle – web mining (Buzmakov 2015) and forming the list of candidate posting,
and the column on the right – relevance filtering components. The bottom row of the
chart includes merging textual chunks and a final delivery of the formed posting. In
each row, the processing by components occurs from top to bottom.

Once CASP obtains a current state of a conversational thread, it needs to decide if
/ when is a good time to post. To form a query, the conversational thread should
settle in terms of topic. Also, rate of postings should drop to make sure CASP does
not break the thread (so that the next thread participant would need to adjust his
posting).

To form a query from a single (initial, seed posting) or the whole conversational
thread, CASP needs to obtain a topic, or main entity (named entity) of this single or
multiple texts respectively. To do that, CASP extracts noun phrases and scores them
with respect to estimated importance. For the case of multiple texts, lattice querying
mechanism (Sect. 12.8) is employed to get the level of optimal generality: if it is too
low, then the web mining would find too few of too specific search results which
might be inappropriate. If this generality of web mining query is too high, then the
resultant posting might be irrelevant, too broad, so would be hard for peers to see
how CASP maintains the relevance of the conversation.

The chatbot forms multiple web mining queries since it is unclear which one
would give the content from the web that would pass the relevance filtering. For each
query, we form a set of search results and form a single list of candidate postings.
Relevance filtering either selects the best posting or a few best ones whose selected
text chunks will be combined.

Web mining for the content relevant to the seed:
1) Forming a set of web search queries
2) Running web search and storing candidate portions of text

Content relevance verification:
Filtering out candidate postings with low parse thicket generalization
scores

Rhetoric agreement, Epistemic and Mental states relevance verification:
Filtering out candidate postings which don’t form a plausible sequence of
mental states with the seed

Fig. 12.2 A higher-level view of CASP components and relevance pipeline

432 12 A Social Promotion Chatbot

12.4 Use Cases of CASP

We start with the use case of expressing an interest to a friend sharing his travel
experience, posting a photo. CASP is looking for a content related to a place (Lake
Tahoe) and an event (sunset). In this first use case, CASP finds and forms a piece of
content and its human host posts it on Facebook after a couple of friends have
commented. It is not disclosed that a text is formed by CASP but some irrelevant
details (such as mentioning a random person) may cause suspicion (Fig. 12.4).

In the second use case, CASP greets a friend on his arrival back from her trip
(Fig. 12.5). In this case CASP is explicit on representing his host so a stronger
deviation of message appropriateness can be handled. CASP waits as conversation
passes through a couple of cycles and then yields a message with a link covering the
entire conversation, not just the first, seed posting. CASP found a relevant posting by
another Facebook user (not a random web page) with an image.

The third use case (Fig. 12.6) shows how CASP can take into account mental
states and sentiments of previous comments (Galitsky and McKenna 2017). Posting
is somewhat relevant: it does not talk about a child unhappy with a parent singing but

Deliver CASP posting

Receive the latest
message from a peer

Run web search and
collect results with links
and sources

Form a boundary of the
current conversational
thread

Select postings to form a
web search query from

Decide if it is a good
time to post

Decide on sources of
search (web, blog, news,
image, video, products,
services)

Form a set of candidate
postings and apply
filtering to each

Collect suitable queries

Compute parse thicket for seed postings
and for current search result

Compute relevance score for a given
candidate via similarity of parse thickets

Compute plausible set of mental /
epistemic states given the current thread
using NL_MAMS

Determine if the current candidate is
compatible with the set of mental states

Relevance verification

Select text chunks from
the ones passed
relevance verification

Correct texts in transition
from chunk to chunk

Form a (lattice) query
from selected postings

Fig. 12.3 Detailed architecture of CASP

12.4 Use Cases of CASP 433

instead suggests what to sing. However, this far-reaching correlation with the seed is
suitable for casual friendly conversations.

Finally, we share a case study where a posting by CASP initiated a discussion on
ethics of automated postings (Fig. 12.7). Two friends posted a photo of them dancing
tango. CASP commented on the posting, finding information about “tango at a
wedding” (on the bottom). The friends got upset and communicated that the posting
of CASP citing the wedding was irrelevant and they did not like it (on the right). The
author of this book then intervened and shared his ideas on usability of CASP in
response. The conversation led to the state when the parties agreed to disagree.
Nevertheless, the couple married 5 months later.

Fig. 12.4 CASP is posting a message for Lake Tahoe sunset

434 12 A Social Promotion Chatbot

12.5 Evaluation of Relevance

In this Section we evaluate the relevance of a CASP posting assessed by selected
judges, irrespectively of how it was perceived by peers in the real-world settings
(Table 12.1).We conducted evaluation of relevance of syntactic generalization–enabled
search engine (Galitsky et al. 2012), based on Yahoo and Bing search engine APIs.

Fig. 12.5 CASP is posting a message welcoming his friend back home, having recognized the
mental state of the participants of the chat

12.5 Evaluation of Relevance 435

The value of relevance for a posting is Boolean: acceptable or not. Individual
postings are assessed so no complications arise due to measuring multiple search
results. We vary the complexity of seed posting and provide the percentages of
relevant results found on the web and subject to relevance filtering by linguistic
means. We show these percentages as the complexity of such filtering increases.
Accuracy of a particular search setting (query type and search engine type) is
calculated, averaging through 40 search sessions. For our evaluation, we use user
postings available at author’ Facebook accounts. The evaluation was done by the
author. We refer the reader to (Chaps. 5 and 7) for the further details on evaluation
settings for search relevance evaluation.

To compare the relevance values between search settings, we used first 30 search
results and re-ranked them according to the score of the given search setting. We use
three approaches to verify relevance between the seed text and candidate posting:

Fig. 12.6 CASP commenting on the posting of a friend

436 12 A Social Promotion Chatbot

(a) Pair-wise parse tree matching, where the tree for each sentence from seed is
matched with the tree for each sentence in the candidate posting mined on the
web;

(b) The whole graph (parse thicket) for the former is matched against a parse thicket
for the latter using phrase-based approach. In this case parse thickets are
represented by all their paths (thicket phrases, Chap. 7);

(c) The match is the same as (2) but instead of phrases we find a maximal common
subgraph (Chap. 5).

Fig. 12.7 A case study with Facebook friends. On the top: an original photo with the caption which
was a CASP seed. On the bottom: Text and Image found by CASP. On the right: discussions
between CASP’s host and his friends on appropriateness of CASP posting

12.5 Evaluation of Relevance 437

T
ab

le
12

.1
E
va
lu
at
io
n
re
su
lts

fo
r
va
ri
ou

s
se
ar
ch

do
m
ai
ns

an
d
fo
r
va
ri
ou

s
im

pl
em

en
ta
tio

ns
of

P
T
ge
ne
ra
liz
at
io
n

Q
ue
ry

co
m
pl
ex
ity

R
el
ev
an
ce

of
ba
se
lin

e
B
in
g

se
ar
ch
,%

,
av
er
ag
in
g
ov

er
40

se
ar
ch
es

R
el
ev
an
ce

of
P
T
/p
hr
as
e

ge
ne
ra
liz
at
io
n
se
ar
ch
,

%
,a
ve
ra
gi
ng

ov
er

40
se
ar
ch
es
,u

si
ng

or
ig
in
al
te
xt
,w

ith
ou

t
S
pA

tc
T

R
el
ev
an
ce

of
P
T
/p
hr
as
e

ge
ne
ra
liz
at
io
n
se
ar
ch
,

%
,a
ve
ra
gi
ng

ov
er

40
se
ar
ch
es
,u

si
ng

sn
ip
pe
ts

R
el
ev
an
ce

of
P
T
/p
hr
as
e

ge
ne
ra
liz
at
io
n
se
ar
ch
,

%
,a
ve
ra
gi
ng

ov
er

40
se
ar
ch
es
,u

si
ng

or
ig
in
al
te
xt

R
el
ev
an
ce

of
P
T
/

gr
ap
h
ge
ne
ra
liz
at
io
n

se
ar
ch
,%

,a
ve
ra
gi
ng

ov
er

40
se
ar
ch
es
,

us
in
g
sn
ip
pe
ts

R
el
ev
an
ce

of
P
T
/

gr
ap
h
ge
ne
ra
liz
at
io
n

se
ar
ch
,%

,a
ve
ra
gi
ng

ov
er

40
se
ar
ch
es
,

us
in
g
or
ig
in
al
te
xt

1
co
m
-

po
un

d
se
nt

54
.5

61
.3

63
.3

65
.3

66
.2

67
.2

2
se
nt

52
.3

60
.9

60
.7

62
.1

63
.4

63
.9

3
se
nt

49
.7

55
.4

61
.7

61
.9

60
.8

61
.9

4
se
nt

50
.9

55
.5

60
.5

61
.1

61
.5

62
.7

A
ve
ra
ge

51
.8
5

58
.2
8

61
.5
5

62
.6

62
.9
8

63
.9
3

438 12 A Social Promotion Chatbot

The value of parse thicket based generalization (Chap. 7) varies from domain to
domain significantly, mostly depending on the writing style and use of terminology
by the authors presenting their opinions on the products. When things in a domain
are named uniquely, and the typical writing style is plain enumeration of product
features, contribution of parse thickets is the least (shopping product domains). On
the contrary, where writing styles vary a lot and different people name the same
things differently, in such horizontal domain as Facebook, the baseline relevance is
low, the resultant relevance is lower (63%) than in the other domains (73–75%) but
matching of parse thickets helps in a higher degree.

Proceeding from snippets to original paragraph(s) in a webpage gives further
0.8% increase for both thicket phrase-based and graph-based computation of PT.

One can observe that unfiltered precision is 52%, whereas improvement by pair-wise
sentence generalization is 11%, thicket phrases – additional 6%, and graphs – additional
0.5%. Hence the higher the complexity of sentence, the higher is the contribution of
generalization technology, from sentence level to thicket phrases to graphs.

12.6 Evaluation of Extraction of Communicative Action

To learn similar sequences of communicative actions from text, we need to be
capable of extracting them. We conduct the evaluation for the complex information
extraction task such as identifying communicative actions and detecting emotional
states (Galitsky and Tumarkina 2004). Also, we perform evaluation for the rhetoric
relation domain: this task is necessary to build a set of parse trees for a paragraph,
linking its parse trees into PT. This approach is pre- communicative discourse trees
(CDT) that was introduced in Chap. 10. We rely on the following information
extraction techniques:

• Keyword- and regular expression – based string match;
• Keyword- and regular expression – based Boolean Lucene queries;
• Lucene Span queries where the distance between keywords in text is constrained;
• Lattice query-based information extraction, where the template is automatically

generalized from multiple parse trees for occurrences of a given communicative
action.

The corpus is based on the set of customer complains (Chap. 13), where both
communicative actions and emotions are frequent and essential for complaint anal-
ysis tasks. Evaluation was conducted by quality assurance personnel. The first two
information extraction settings are baseline, the third can be considered as an
industry standard, and the last one is designed to be a state-of-the-art for extracting
communicative actions in their explicit form such as communicating verbs as well as
various implicit forms.

We observe in Table 12.2 that the information extraction F-measure for Keywords
and Regular expressions is both 64% for querying indexed data and string search,
averaging through our extraction domains. Relying on span and ‘like’ queries gives

12.6 Evaluation of Extraction of Communicative Action 439

just 2% increase in F-measure, whereas using frame queries delivers further 10%
improvement. Communicative actions give just 2–3% better performance than mental
states, and rhetoric structures improve the accuracy by further 3–5%.

12.7 Evaluation of Trust

Primarily, the host human agent should trust the social promotion agent CASP that
the results of its activity would indeed improve the host’s position in social space,
not decrease it. Relying on an incompetent, silly CASP may lead to unwanted
consequences such as a drop in the reputation of the CASP host (Galitsky and
Levene 2007). The promotion agent targets least important friends and members
of the network, however if a significant portion of them lose trust in the host agent,
the overall impact of the social promotion campaign would become negative. If a
human host loses the trust in her auto promotional agent, she would stop using it.

Secondarily, the friends and members of social network may lose trust in the host
agent irrespectively of how the communication has been facilitated, and may
unfriend the host agent or block his messages. This might happen because of a
loss of relevance, loss of rhetorical appropriateness of messages and also because
they can be offended by the content being communicated. From the standpoint of
CASP it is most likely a problem of relevance, however the perception of irrelevant
messages can be ambiguous. Friends can think of such message as a bad joke, a hint
for something they would not want to share, and even as an insult.

There are two following cases the friends and members of the social network of a
host loose trust in the host agent himself when he is using CASP:

• If they do not know that an agent acts on his behalf, they may get upset by
irrelevance and inappropriateness of communication without making the reason
for it clear. They would consider it insulting to use such communication means as
CASP instead of direct human-human communication;

• If they know that they receive message from an automated agent, but the results
are less relevant and less appropriate than what they expected. We have encoun-
tered this case in Fig. 12.7.

We now share our data on how some peers have been loosing trust in as much
degree as stopping using CASP at all and even unfriending its human host. We do

Table 12.2 Evaluation of communicative action extraction task

Method task

Keywords and
Regexps via
string match

Keywords and
Regexp
queries

Span and
‘like’
queries

PT-based
extraction
rules

P/R P/R P/R P/R

Communicative actions 64 71 63 72 68 70 82 75

Mental and emotional states 62 70 59 70 64 68 80 74

440 12 A Social Promotion Chatbot

not see a reason of stopping using CASP other than loosing trust and starting
perceiving the CASP-facilitated conversation as unfaithful, loosing an intimacy of
friendship, abusing privacy and so forth. To track how the peer users loose trust as
they encounter more CASP activity, we firstly report the number of such encounters
associated with negative user experience till the user reaches the respective level of
mistrust (Table 12.3). After that, we measure the level of relevance that leads to this
level of mistrust. Whereas the first dataset does not measure irrelevance and instead
reports the number of irrelevant scenarios, the second dataset does the other way
around and provides an explicit relevance data.

After a certain number of CASP failures to provide relevant postings, friends
loose trust and complain, unfriend, shares negative information about the lost of
trust with others and even encourage other friends to unfriend a friend who is
enabled with CASP (Table 12.3). The values in the cells indicate the average number
of postings with failed relevance when the respective event of disengagement from
CASP occurred. These posting of failed relevance were tracked within 1 months of

Table 12.3 The data on the number of irrelevant postings till an occurrence of certain dissatisfac-
tion event

Topic of the
seed

Complexity
of the seed
and posted
message

A friend
complains
to the
CASP’s
host

A friend
unfriends
the CASP
host

A friend shares with
other friends that the
trust in CASP is lost
in one way or
another

A friend
encourages
other friends to
unfriend a
friend with
CASP

Travel &
outdoor

1 sent 6.3 8.5 9.4 12.8

2 sent 6.0 8.9 9.9 11.4

3 sent 5.9 7.4 10.0 10.8

4 sent 5.2 6.8 9.4 10.8

Shopping 1 sent 7.2 8.4 9.9 13.1

2 sent 6.8 8.7 9.4 12.4

3 sent 6.0 8.4 10.2 11.6

4 sent 5.5 7.8 9.1 11.9

Events &
entertainment

1 sent 7.3 9.5 10.3 13.8

2 sent 8.1 10.2 10.0 13.9

3 sent 8.4 9.8 10.8 13.7

4 sent 8.7 10.0 11.0 13.8

Job-related 1sent 3.6 4.2 6.1 6.0

2 sent 3.5 3.9 5.8 6.2

3 sent 3.7 4.0 6.0 6.4

4 sent 3.2 3.9 5.8 6.2

Personal life 1 sent 7.1 7.9 8.4 9.0

2 sent 6.9 7.4 9.0 9.5

3 sent 5.3 7.6 9.4 9.3

4 sent 5.9 6.7 7.5 8.9

Average 6.03 7.50 8.87 10.58

12.7 Evaluation of Trust 441

the experiment run, and we do not access the values for the relative frequency of
occurrences of these postings. On average, 100 postings were done for each user
(1–4 CASP postings per a seed posting).

One can see that in various domains the scenarios of users’ tolerance to irrele-
vance varies. For less information-critical domains like travel and shopping, this
tolerance to failed relevance is relatively low. Conversely, in the domains taken more
seriously by peers, like job related, and the domains with personal flavor and
increased privacy, like personal life, users are more sensitive to CASP failures and
the lost of trust in its various forms occur faster. For all domains, tolerance slowly
decreases when the complexity of posting increases. Users’ perception is worse for
longer texts, irrelevant in terms of content or their expectations, than for shorter,
single sentence or phrase postings by CASP.

We now drill into the types of relevance errors which lead to deterioration of trust
by peer users of CASP. We outline the following cases where a CASP posting is
rejected by recipients:

(a) The content CASP is posted is topically irrelevant to the content of original post
by a human friend;

(b) CASP content is topically relevant to the content, but irrelevant in terms of style,
user knowledge (epistemic states), user beliefs (in such domain as politics). This
form of relevance is referred to as rhetorical agreement and explored in Chap. 10.

In Table 12.4 we focus on the user tolerance vs irrelevance data in the same format as
above (Table 12.3) but measuring relevance values, for both (a) and (b). We use a
Boolean value for relevance: either relevant or totally irrelevant posting. For each
level of dissatisfaction, from complaint to encouraging others, we measure the value
of relevance where at least 20% of the peers reach this level, given the domain and
complexity and/or size of CASP posting. For example, in travel domain, for
1 sentence posting, more than 20% of the peers start to complain to the CASP host
when relevance goes as lows as 83% (17 percent of postings are irrelevant).

One can see from Table 12.4 that the users can tolerate stronger problems with
rhetorical agreement and epistemic states than with content relevance. As the
complexity and /or length of posting grows, users can tolerate lower relevance.
There is a few percent (3–10) drop of either content relevance or communicative
actions plausibility where a user dissatisfaction becomes more severe; it depends on
the problem domain. For job-related communications, user sensitivity to problems
with both kinds of relevance is higher than for travel, entertainment and personal life
domains (Fig. 12.8).

Now we compare indirect relevance assessment in Table 12.1 and failed rele-
vance assessment in this section (Table 12.4). Out of hundred CASP posting per user
who made between 2 and 3 manual postings, failures occurred in less then 10% of
CASP postings. Therefore most peer users do not end up refusing CASP posting,
having their trust of it lost. The friends who were lost due to the abuse of their
tolerance to meaningless postings by CASP would become inactive CASP users in
most cases anyway (because of a lack of attention and interest to the CASP host).

442 12 A Social Promotion Chatbot

Table 12.4 The data on the percentage of irrelevant postings till an occurrence of certain
dissatisfaction event

Topic of the
seed and
posting /
degrees of user
tolerance

Complexity
of the seed
and posted
message

A friend
complaints
to the
CASP’s
host

A friend
unfriends
the CASP
host

A friend shares
with other
friends that the
trust in CASP is
lost

A friend
encourages other
friends to
unfriend a friend
with CASP

Travel &
outdoor

1 sent 83/67 76/63 68/60 61/53

2 sent 81/68 74/62 75/59 59/54

3 sent 78/66 74/64 64/58 57/50

4 sent 75/63 70/62 60/59 55/50

Events &
entertainment

1 sent 86/70 79/67 74/65 71/60

2 sent 82/70 78/66 72/61 69/58

3 sent 79/69 76/67 74/64 67/59

4 sent 78/68 76/66 73/63 65/60

Job-related 1sent 80/67 77/63 66/55 59/51

2 sent 77/65 73/61 70/54 56/51

3 sent 75/63 71/65 63/56 55/48

4 sent 74/60 68/63 61/57 56/51

Personal life 1 sent 82/66 75/64 66/62 57/50

2 sent 80/66 73/65 70/57 60/52

3 sent 78/62 75/62 66/56 58/48

4 sent 77/60 75/58 68/55 59/52

Fig. 12.8 A front-end for the ‘on-demand’ reply generation; Facebook prompt is on the left. The
form to specify the format, size and language of the desired content is on the right

12.7 Evaluation of Trust 443

However, luckily, a majority of social network friends will be retained and stay in an
active mode, keeping receiving CASP postings.

12.8 Replying to Multiple Posts

When a single seed text is used to generate a query, we just identify its noun phrases
and named entities and form a web mining query from them. When CASP chatbot
relies on multiple texts from a conversational thread, we need to selects phrases and
entities that represent the topic of the whole conversation, not just the topic of an
initial posting. To obtain an expression for this topic, we need to control the level of
generality, attempting to generalize these multiple texts, and a new technique
referred to Lattice Querying is coming into play.

12.8.1 Introducing Lattice Querying

Today, it is hard to overestimate the popularity of information access via search
engines. Also, a vast number of distributed computing frameworks have been
proposed for big data. They provide scalable storage and efficient retrieval, capable
of collecting data from various sources, fast moving and fairly diverse. Modern open
source big data search and exploration systems like SOLR and ElasticSearch are
broadly used for access and analysis of big data. However, intelligence features such
as search relevance and adequate analysis, retrieval and exploration of large quan-
tities of natural language texts are still lacking. Therefore for a social promotion
chatbot it is still hard to rely on available search engines to yield a high volume of
meaningful posts. Modern search engines and libraries still treat a query as a bag of
words with their statistics. In spite of the extensive capabilities of natural language
parsing, they are still not leveraged by most search engines.

Also, frequently novice users of search engines experience difficulties formulat-
ing their queries, especially when these queries are long. It is often hard for user who
is new to a domain to pick proper keywords. Even for advanced users exploring data
via querying, including web queries, it is usually hard to estimate proper generality /
specificity of a query being formulated. Lattice querying makes it easier for a broad
range of user and data exploration tasks to formulate the query: given a few
examples, it formulates the query automatically.

In this Section we introduce a proactive querying mode, when a chatbot finds
information for its human host automatically. We intend to leverage the efficiency of
distributed computing framework with the intelligence features of data exploration
provided by NLP technologies. We introduce the technique of lattice querying which
automatically forms the query from the set of text samples provided by a user by
generalizing them from the respective parse trees. Also, the system produces search
results by matching parse trees of this query with that of candidate answers. Lattice

444 12 A Social Promotion Chatbot

queries allow increase in big data exploration efficiency since they form multiple
hypotheses concerning user intent and explore data from multiple angles
(generalizations).

Exploring data, mostly keyword query and phrase query are popular, as well as
natural language-like ones. Users of search engines also appreciate ‘fuzzy match’
queries, which help to explore new areas where the knowledge of exact keywords is
lacking. Using synonyms, taxonomies, ontologies and query expansions helps to
substitute user keywords with the domain-specific ones to find what the system
believes users are looking for Ourioupina and Galitsky (2001) and Galitsky (2003).
Lattice queries increase usability of search, proceeding from expressions in user
terms towards queries against available data sources.

The idea of lattice query is illustrated in Fig. 12.9. Instead of a user formulating a
query exploring a dataset, he provides a few samples (expressions of interest) so that
the system formulates a query as an overlap (generalization) of these samples,
applied in the form of a lattice (shown in bold on the bottom).

Proceeding from a keyword query to regular expressions or fuzzy one allows
making search more general, flexible, assists in exploration of a new domain, as set
of document with unknown vocabulary. What can be a further step in this direction?
We introduce lattice queries, based on natural language expressions that are gener-
alized (Chap. 5) into an actual query.

Nowadays, search engines ranging from open source to enterprise offer a broad
range of queries with string character-based similarity. They include Boolean
queries, span queries which restrict the distances between keywords in a document,
regular expressions queries which allow a range of characters at certain positions,
fuzzy match queries and more-like-this which allow substitution of certain characters
based on string distances. Other kinds of queries allow expressing constraints in a
particular dimension, such as geo-shape query. Proceeding from a keyword query to
regular expression or fuzzy one allows making search more general, flexible, assists
in exploration of a new domain, such as a set of document with unknown

Fig. 12.9 A lattice query in
comparison with a regular
query

12.8 Replying to Multiple Posts 445

vocabulary. What can be a further step in this direction? We introduce lattice queries,
based on natural language expressions that are generalized into an actual query.
Instead of getting search results similar to a given expression (done by ‘more like
this’ query), we first build the commonality expression between all or subsets of the
given sample expressions, and then use it as a query. A lattice query includes words
as well as attributes such as entity types and verb attributes.

Forming lattice queries is based on Generalization operation introduced in
Chap. 5.

12.8.2 Sentence-Based Lattice Queries

Let us start with an employee search example; imagine a company looking for the
following individuals:

• A junior sale engineer expert travels to customers on site;
• A junior design expert goes to customer companies;
• A junior software engineer rushes to customer sites.

Given the above set of samples, we need to form a job-search query that would give
us candidates somewhat similar to what we are looking for. A trivial approach would
be to just turn each sample into a query and attempt to find an exact match. However
most of times it would not work, so such queries need to release some constraints.
How to determine which constraints need to be dropped and which keywords are
most important?

To do that, we apply generalization to the set of these samples. For the entities and
attributes, we form the least general generalization. The seniority of the job (adjec-
tive) ‘junior’ will stay. The job activity (noun phrase) varies, so we generalize them
into <job-activity>. The higher-level reference to the job is ‘expert’ and is common
for all three cases, so it stays. The verbs for job responsibility vary, so we use
<action> that can be further specified as

<moving_action>, using verb-focused ontologies like VerbNet. To generalize the
last noun phrase, we obtain the generalization <customer, NP>:

junior <any job activity> expert <action> customer-NP.

This is a lattice query, which is expected to be run against job descriptions index and
find the cases which are supposed to be most desired, according to the set of samples.

In terms of parse trees of the potential sentences to be matched with the lattice
query, we rewrite it as

JJ-junior NP-* NN-expert VP-* NN-customer NP-*

The lattice query read as find me a junior something expert doing-something-with
customer of-something.

446 12 A Social Promotion Chatbot

Now we show how this template can be applied to accept/reject a candidate
answer Cisco junior sale representative expert flew to customers data centers.

We represent the lattice query as a conjunction of noun phrases (NP) and verb
phrases (VP) set:

[[NP [DT-a JJ-junior NN-* NN-*], NP [NN*-customers]], [VP [VB-* TO-to NN*-
customers]]]

The first NP covers the beginning of the lattice query above, and the second NP
covers the end. VP covers the second half of the lattice query starting from doing-
something...

The generalization between the lattice query and a candidate answer is

[[NP [JJ-junior NN-* NN-*], NP [NN*-customers]], [VP [VB-* TO-to NN*-
customers]]]

One can see that the NP part is partially satisfied (the article a does not occur in the
candidate answer) and VP part is fully satisfied.

Here are the parse trees for three samples (Fig. 12.10):
Generalizing these three expressions, we obtain the lattice query to run against a

dataset:

[[NP [DT-a JJ-junior NN-* NN-*], NP [NN*-customers]], [VP [VB-* TO-to NN*-
customers]]]

One can see that using lattice queries, one can be very sensitive in selecting search
results. Searching for a token followed by a word with certain POS instead of just a
single token gives a control over false-positive rate. Automated derivation of such

[[<1>NP'A':DT, <2>NP'junior':JJ, <3>NP'sale':NN, <4>NP'engineer':NN,
<5>NP'expert':NN], [<6>VP'travels':VBZ, <7>VP'to':TO, <8>VP'customers':NNS,
<9>VP'on':IN, <10>VP'site':NN], [<7>PP'to':TO, <8>PP'customers':NNS, <9>PP'on':IN,
<10>PP'site':NN], [<8>NP'customers':NNS, <9>NP'on':IN, <10>NP'site':NN],
[<8>NP'customers':NNS], [<9>PP'on':IN, <10>PP'site':NN], [<10>NP'site':NN]]

[[<1>NP'A':DT, <2>NP'junior':JJ, <3>NP'design':NN, <4>NP'expert':NN],
[<5>VP'goes':VBZ, <6>VP'to':TO, <7>VP'customer':NN, <8>VP'companies':NNS],
[<6>PP'to':TO, <7>PP'customer':NN, <8>PP'companies':NNS], [<7>NP'customer':NN,
<8>NP'companies':NNS]]

[[<1>NP'A':DT, <2>NP'junior':JJ, <3>NP'software':NN, <4>NP'engineer':NN],
[<5>VP'rushes':VBZ, <6>VP'to':TO, <7>VP'customer':NN, <8>VP'sites':NNS],
[<6>PP'to':TO, <7>PP'customer':NN, <8>PP'sites':NNS], [<7>NP'customer':NN,
<8>NP'sites':NNS]]

Fig. 12.10 Parse trees and phrase representation for three samples to form a lattice query

12.8 Replying to Multiple Posts 447

constraint allows a user to focus on specific cases instead of making efforts to
generate a query which would keep the expected search results in and unwanted out.
Definition: a lattice query Q is satisfied by a sentence S, if Q^S ¼ S.
In practice a weak satisfaction is acceptable, where

Q^S 2 S, but there are constraints on the parts of the lattice query:

• A number of parts in Q^S should be the same as in Q;
• All words (not POS-* placeholders) from Q should also be in Q^S.

12.8.3 Paragraph-Level Lattice Queries

Text samples to form a lattice query can be typed, but also can be taken from an
existing text. To expand the dimensionality of content exploration, samples can be
paragraph-size texts (Galitsky 2014).

Let us consider an example of a safety-related exploration task, where a
researcher attempts to find a potential reason for an accident. Let us have the
following texts as incidents descriptions. These descriptions should be generalized
into a lattice query to be run against a corpus of texts for the purpose of finding a root
cause of a situation being described.

Crossing the snow slope was dangerous. They informed in the blog that an ice
axe should be used. However, I am reporting that crossing the snow field in
the late afternoon I had to use crampons.

I could not cross the snow creek since it was dangerous. This was because the
previous hiker reported that ice axe should be used in late afternoon. To
inform the fellow hikers, I had to use crampons going across the show field
in the late afternoon.

As a result of generalization from two above cases, we will obtain a set of expres-
sions for various ways of formulating commonalities between these cases. We will
use the following snapshot of a corpus of text to illustrate how a lattice query is
matched with a paragraph:

I had to use crampons to cross snow slopes without an ice axe in late
afternoon this spring. However in summer I do not feel it was dangerous
crossing the snow.

We link two phrases in different sentences since they are connected by a rhetoric
relation based on However . . .

448 12 A Social Promotion Chatbot

rel: <sent=1-word=1..inform> ===> <sent=2-word=4..report>
From [<1>NP'They':PRP]
TO [<4>NP'am':VBP, NP'reporting':VBG, <8>NP'the':DT,
<9>NP'snow':NN, <10>NP'field':NN, <11>NP'in':IN, <12>NP'the':DT,
<13>NP'late':JJ, <14>NP'afternoon':NN, <15>NP'I':PRP,
<16>NP'had':VBD, <17>NP'to':TO, <18>NP'use':VB,
<19>NP'crampons':NNS]

We are also linking phrases of different sentences based on communicative actions:

rel: <sent=1-word=6..report> ===> <sent=2-word=1..inform>
From [<4>NP'the':DT, <5>NP'previous':JJ, <6>NP'hiker':NN]
TO [<1>NP'To':TO, <2>NP'inform':VB, <3>NP'the':DT,
<4>NP'fellow':JJ, <5>NP'hikers':NNS]

As a result of generalizing two paragraphs, we obtain the lattice query:

[[NP [NN-ice NN-axe], NP [DT-the NN-snow NN-*], NP [PRP-i], NP
[NNS-crampons], NP [DT-the TO-to VB-*], NP [VB-* DT-the NN-*
NN-field IN-in DT-the JJ-late NN-afternoon (TIME)]], [VP [VB-was
JJ-dangerous], VP [VB-* IN-* DT-the NN-* VB-*], VP [VB-* IN-*
DT-the IN-that NN-ice NN-axe MD-should VB-be VB-used], VP [VB-*
NN-* VB-use], VP [DT-the IN-in], VP [VB-reporting IN-in JJ-late
NN-afternoon (TIME)], VP [VB-* NN*-* NN-* NN*-*], VP [VB-crossing
DT-the NN-snow NN-* IN-*], VP [DT-the NN-* NN-field IN-in DT-the
JJ-late NN-afternoon (TIME)], VP [VB-had TO-to VB-use
NNS-crampons]]]

Notice that potential safety-related ‘issues’ are ice-axe, snow, crampons, being at a
. . . field during later afternoon, being dangerous, necessity to use ice-axe, crossing
the snow, and others. These issues occur in both samples, so they are of a potential
interest. Now we can run the formed lattice query against the corpus and observe
which issues extracted above are confirmed. A simple way to look at it is as a
Boolean OR query: find me the conditions from the list which are satisfied by the
corpus. The generalization for the lattice query and the paragraph above turns out to
be satisfactory:

[[NP [NN-ice NN-axe], NP [NN-snow NN*-*], NP [DT-the NN-snow], NP
[PRP-i], NP [NNS-crampons], NP [NN-* NN-* IN-in JJ-late
NN-afternoon (TIME)]], [VP [VB-was JJ-dangerous], VP [VB-* VB-use
], VP [VB-* NN*-* IN-*], VP [VB-crossing NN-snow NN*-* IN-*], VP
[VB-crossing DT-the NN-snow], VP [VB-had TO-to VB-use
NNS-crampons], VP [TO-to VB-* NN*-*]]] => matched

12.8 Replying to Multiple Posts 449

Hence we got the confirmation from the corpus that the above hypotheses,
encoded into this lattice query, are true. Notice that forming a data exploration
queries from the original paragraphs would contain too many keywords and would
produce too much marginally relevant results.

12.8.4 Evaluation of Web Mining via Lattice Queries

We evaluate the data exploration scenarios using search engine APIs. Instead of
formulating a single complex question and submit it for search, a user is required to
describe her situation in steps, so that the system would assist with formulating
hypotheses on what is important and what is not. The system automatically derives
generalizations and builds the respective set of lattice queries. Then the search
engine API is used to search the web with lattice queries and automatically filter
out results which are not covered by the lattice query. To do the latter, the system
generalizes each candidate search results with each lattice query element and rejects
the ones not covered, similar to the information extraction scenario.

This year I purchased my Anthem Blue Cross insurance through my employer. What
is the maximum out-of-pocket expense for a family of two in case of emergency?

Last year I acquired my individual Kaiser health insurance for emergency cases
only. How much would be my out of pocket expense within a year for emergency
services for my wife and kids?

The system finds a commonality between these paragraphs and forms a lattice query,
so that the search results are as close to this query as possible. An alternative
approach is to derive a set of lattice queries, varying generalization results, and
delivering those search results which are covered the best with one of the lattice
query from this set (not evaluated here). A Bing search results for the query ‘out-of-
pocket expense health insurance emergency’ is shown in Fig. 12.11 (API delivers
the same results).

We show the percentage of relevant search results, depending on how queries are
formed, in Table 12.5. We ran 20 queries for each evaluation setting and considered
first 20 results for each. Each search results is considered as either relevant or not,
and we do not differentiate between top search results and 15th–20th ones. We use
Bing search engine API for these experiments. Evaluation of lattice querying on the
web was conducted by the author.

One can see that for the sentence-level analysis, there is 14% improvement
proceeding from keyword overlap to parse structures delivering phrases for web
search, and further 8% improvement leveraging lattice queries derived from a pair of
sentences. For the paragraphs, there are respective 21% and 22% improvement,
since web search engines do not do well with paragraph-sized queries. If the number
of keywords in a query is high, it is hard for a search engine to select which
keywords are important, and term frequency becomes the major ranking factor.
Also, for such queries, a search engine cannot rely on learned user selections from
previous querying, hence the quality of search results are so low.

450 12 A Social Promotion Chatbot

The proposed technique seems to be an adequate solution for cross-sentence
alignment (Chambers et al. 2007; MacCartney et al. 2008). One application of this
problem is automated solving of numerical equations formulated as algebra word
problems (Kushman et al. 2014). To form a representation for an elementary algebra
problem text, we would use a training set of pairs textT – equationT and produce an
alignment of text and textT by means of generalization text ^ text (Chap. 5) that is an
expression to be converted into a numerical expression. The capability to “solve” an
algebraic problem is based on the completeness of a training set: for each type of

Fig. 12.11 Once a lattice query is formed from samples, we obtain search results from the web
using search API

Table 12.5 Evaluation of web mining

Method task

Forming
lattice query
as keyword
overlap for
two
sentences

Forming
lattice
query as
parse
structure of
a sentence

Lattice
queries
for two
sentences

Forming
lattice query
as keyword
overlap for
paragraphs

Forming
lattice
query as
parse
structure

Lattice
queries for
two
paragraphs

Legal
research

59 62 70 43 51 62

Marketing
research

55 68 69 46 53 64

Health
research

52 65 71 42 55 67

Technology
research

57 63 68 45 53 64

History
research

60 65 72 42 52 65

12.8 Replying to Multiple Posts 451

equation, there should be a textual algebraic problem for it. Also, the problem of
phrase alignment for such areas as machine translation has been explored in Jiang
and Conrath (1997).

Let us consider an algebra problem

An amusement park sells adult tickets for $3 and kids tickets for $2, and got the
revenue $500 yesterday.

We attempt to find a problem from our training set, such as:

A certified trainer conducts training for adult customers for $30 per hour and kid
customer for $20 per hour, and got the revenue $1000 today.

Generalization looks like the following, including the placeholders for the values

[[NP [JJ-adult NNS-* IN-for $-$ CD-3 CC-and NN*-kids NN*-*], NP
[IN-* NN*-*], NP [DT-the NN-revenue $-$ CD-*]],
[VP [NN*-* IN-for $-$ CD-3 ,-, CC-and VB-got DT-the NN-revenue $-
$ CD-* NN-* (DATE)], VP [CC-and NN*-kids NN*-* IN-for $-$ CD-2 CC-
and VB-got DT-the NN-revenue $-$ CD-* NN-* (DATE)], VP [NN*-* IN-
for $-$ CD-3 CC-and NN*-kids NN*-* IN-for $-$ CD-2]]].

The space of possible equations can be defined by a set of equation templates,
induced from training examples. Each equation template has a set of placeholders,
CD-placeholders are matched with numbers from the text, and unknown place-
holders are matched with nouns. Kushman et al. (2014) define a joint log-linear
distribution over the system of equations with certain completeness properties. The
authors learned from varied supervision, including question answers and equation
systems, obtained from annotators. Features used are unigrams and bigrams, ques-
tion object/sentence, word lemma nearby constant, what dependency path contains
(word or another dependency path), and others, as well as equation features.

On the contrary, we rely on linguistic discourse (parse trees and their connecting
arcs) to find the matching element in the training set. It is expected to shed the light
on the linguistic properties of how a sentence can be converted into a part of an
algebra equation.

Borgida and McGuinness (1996) proposed a declarative approach that extends
standard interface functionality by supporting selective viewing of components of
complex objects. Instead of just returning sets of individual objects, the queries
match concepts and altered fragments of descriptions. The query language is an
extended form of the language used to describe the knowledge base contents, thus
facilitating user training. The term ‘Frame Querying’ has been used in knowledge
representation framework: frame-based knowledge representation and reasoning
systems typically provide procedural interfaces for asking about properties of indi-
vidual objects and concepts.

452 12 A Social Promotion Chatbot

12.9 Correction of Obtained Post Candidate

We will start our consideration for how to use the wisdom of the web to correct
CASP postings with the inappropriate phrasings that are odd or hard to interpret. We
focus on the case of machine translation that frequently gives noisy, meaningless
results that cannot be posted as they are. Let us look at an example of a translation
from English to Russian http://translate.google.com/#en/ru/I%20liked%20swim
ming%20with%20you%20a%20lot

‘I liked swimming with you a lot’ ! ‘Мне понравилось плавать с вас много’
[meaning: I liked to do a high quantity of swimming with you].

This translation is not good; it demonstrates a word!word approach, employed
by machine translation, that ignores the context of ‘a lot’ such as ‘swim’. This
translation example works poorly with any verb, not just ‘swim’. Moreover, one
can see from this example that the machine translator does not attempt to find similar
Russian phrases to make sure translation results are plausible. This example is very
simple, which means there should be someone on the web somewhere who said
something similar. Since a machine translation itself does not usually attempt to
improve the quality by verifying a translation result via web mining, we will enable
CASP with this feature.

We extract phrases from “Мне понравилось плавать с вас много” and observe
which phrases are found (and therefore can be confirmed) and which phrases are not
found or rarely found (which means they are suspicious and perhaps need to be
substituted by the ones from the web). Here is the example of web mining for
phrases: https://www.google.ru/search?q¼"плавать+с+вас+много". All results
have плавать in one sentence, and сþвас in another sentence, which means that
this phrase is implausible. Now compare with https://www.google.ru/search?
q¼"плаватьþсþвами" that confirms the plausible phrase. So in the case above at
least we correct the translation result into Мне понравилось плавать с вами.

Why do we need parse thickets for text correction via web mining? Once we have
more complex web mining cases, where for a few sentences we search for longer,
multi-phrase search results, we need to match multiple sentences, not just phrases.
For that we need some rules for how phrases can be distributed through multiple
sentences. Since certain phrases can migrate from one sentence to another, we need
discourse, parse thicket - level considerations to assess which modifications of
sentences are plausible and which are implausible, for the purpose of match.

We designed parse thickets so that we can treat paragraph of text formally for a
broad range of applications, from search to content generation. When we match two
sentences, we need the rules of phrases transformation into a similar form: it is well
explored and used area. When we match two paragraph of text, we need sentence
parts transformation rules, which are based on RST, Speech Acts and other discourse
theories we can potentially use in the future.

In machine translation, a parse thicket matching via web mining would help to
assess how coherent the translation results are, based on our hypothesis that “every-
thing on Earth has already been said”. We match the translation results paragraph

12.9 Correction of Obtained Post Candidate 453

http://translate.google.com/#en/ru/I%20liked%20swimming%20with%20you%20a%20lot
http://translate.google.com/#en/ru/I%20liked%20swimming%20with%20you%20a%20lot
https://www.google.ru/search?q=%22%D0%BF%D0%BB%D0%B0%D0%B2%D0%B0%D1%82%D1%8C+%D1%81+%D0%B2%D0%B0%D1%81+%D0%BC%D0%BD%D0%BE%D0%B3%D0%BE%22
https://www.google.ru/search?q=%22%D0%BF%D0%BB%D0%B0%D0%B2%D0%B0%D1%82%D1%8C+%D1%81+%D0%B2%D0%B0%D1%81+%D0%BC%D0%BD%D0%BE%D0%B3%D0%BE%22
https://www.google.ru/search?q=%22%D0%BF%D0%BB%D0%B0%D0%B2%D0%B0%D1%82%D1%8C+%D1%81+%D0%B2%D0%B0%D1%81+%D0%BC%D0%BD%D0%BE%D0%B3%D0%BE%22
https://www.google.ru/search?q=%22%D0%BF%D0%BB%D0%B0%D0%B2%D0%B0%D1%82%D1%8C+%D1%81+%D0%B2%D0%B0%D0%BC%D0%B8%22
https://www.google.ru/search?q=%22%D0%BF%D0%BB%D0%B0%D0%B2%D0%B0%D1%82%D1%8C+%D1%81+%D0%B2%D0%B0%D0%BC%D0%B8%22
https://www.google.ru/search?q=%22%D0%BF%D0%BB%D0%B0%D0%B2%D0%B0%D1%82%D1%8C+%D1%81+%D0%B2%D0%B0%D0%BC%D0%B8%22
https://www.google.ru/search?q=%22%D0%BF%D0%BB%D0%B0%D0%B2%D0%B0%D1%82%D1%8C+%D1%81+%D0%B2%D0%B0%D0%BC%D0%B8%22
https://www.google.ru/search?q=%22%D0%BF%D0%BB%D0%B0%D0%B2%D0%B0%D1%82%D1%8C+%D1%81+%D0%B2%D0%B0%D0%BC%D0%B8%22

with the one found as a search result. Translation system frequently obtains mean-
ingless output for a reasonable input. We attempt to repair such translation by trying
to verify meaningfulness of each phrase in translation results. Once a meaningless
phrase is detected, we form a query from its most informative keywords (Chap. 14)
and search the web for most similar phrases. We assume that a majority of highly
ranked texts in the web search engine results is meaningful. Once we obtain web
search results for a meaningless phrase, we attempt to substitute entities’ attributes
(such as ‘liked a lot’) or even entities themselves with the ones from the meaningless
phrases to be replaced. Parse Thickets are fairly helpful in this operation, supporting
the insertion of mined phrases (assumed to be meaningful) into the translation
results. Finally, we expect to obtain overall more meaningful translation of a
CASP posting, but potentially with a higher deviation from the original.

12.9.1 Meaningless Phrases Substitution Algorithm

We outline the CASP posting correction algorithm in the chart Fig. 12.12. For each
component we provide a background and motivations for our choice of steps.

We start with forming phrases to be verified. The list of phrases that contain at
least two sub-phrases is formed (simpler phrases are too trivial to verify for mean-
ingfulness). If a phrase is too short, it will almost always be found on the web. If a
phrase is too long, then even for a meaningful expression it would be hard to find
similar expressions on the web, in most cases. As a result of this step, we form a list
of overlapping phrases Lop some of which will need to be replaced. We iterate
through the members of Lop. For a pair of consecutive overlapping phrases in Lop, if
the first one is found to be meaningless and is replaced, the second one will not be
attempted with respect to replacement.

If two consecutive phrases are still too short (< 5 words each) we merge them and
insert into Lop. From now on we call the elements of Lop expressions since they are
not necessarily noun, verb or other kind of phrases.

Once the expressions are formed, we search for each expression on the web
(using, for example, Bing search engine API). We first do an exact search, wrapping
the expressions in double quotes. If there are no search results, we search the
expression as a default (OR) query and collect the search results.

To determine if there is a similar phrase on the web or not, we assess the similarity
between the expression from Lop and its search results. To do that, we perform
generalization between the expression and each of its search result, and obtain its
score (Chap. 5). For each search result, we use the highest generalization score for:

• Document title;
• Document snippet;
• Document sentence.

454 12 A Social Promotion Chatbot

If the highest score is still below the threshold, we conclude that there is no
document on the web with an expression similar to the one under consideration,
and it is therefore meaningless. Otherwise, if a document with an expression similar
to the one under consideration is found, we conclude that it is meaningful and
proceed to the next expression from Lop. Our assumption here is that it is almost
impossible to “invent” a new expression that does not exist on the web. Therefore the
CASP posting correction system tries to find an existing ‘analogue’ from a trusted
source for an “invented” expression in the translation result, believed to be mean-
ingless, according to our model.

For the list of meaningful search results for a meaningless expression, we try to
find which search result is the most appropriate. To do that, we generalize each

Iterate through each phrase in a
translation result

Merge pairs of consecutive
phrases. Consider overlaps.

Search phrases for exact match on
the web

If no search results,
search as an OR query

Verify that obtained search results
are similar to the input query
(phrase)

 If no similarity is
detected, we conclude
that the current phrase is
meaningless

Form the set of candidate phrases
to be inserted into translation,
from the set of search results

Build a Parse Thicket for a current
translated paragraph

Compute the similarity between
Parse Thicket and each insertion
candidate

Find the best insertion candidate
(which has the highest similarity)

Compute the difference between
the insertion phrase and
meaningless phrase

For each word from the set of
different words, attempt to
substitute it in insertion phrase
from meaningful phrase.

Confirm the substituted insertion
phrase by web mining

Perform insertion

Perform insertion for all meaningless phrases

Fig. 12.12 Algorithm for posting correction via web mining

12.9 Correction of Obtained Post Candidate 455

search result with the whole translation test (Chap. 5). For that we build a parse
thicket for the latter, and generalize it with parse tree of the former. Given a
generalization score, we form the best insertion candidate from parts of the best
search results (title, snippet, sentence).

Then we align the expression from Lop to be substituted and the best insertion
candidate. For the former and for the latter, we form a set of pairs of words, which are
different (does not occur in generalization of the expression from Lop to be
substituted and the best insertion candidate). As a result of this step, we form a list
of pairs of words, so that the word from the meaningful expression will be substitute
by the word from the meaningless one. The more such substitution we perform, the
closer the result will be to the original translation, but potentially more meaningless.
Hence we want to verify that as a result, substituting words in meaningful expres-
sion, this expression remains meaningful.

Hence each substitution results need to be verified in the same way each expres-
sion from Lop is verified. Once all word substitutions are verified, the resultant
expression can be substituted instead of the original member of Lop. Once this is
done for each expression in Lop, the algorithm concludes.

12.10 More Examples of Conversations

In our first example, we have a housewife conversation about finding a costume for
performance:

M: Uh, Helen, we don’t need to go to a thrift store to make you look like a punk
rocker for your next theater performance (Fame Jr.!). We have a variety of
options right at home (although we could use suspenders and doc martens
size 7 to pull off the red plaid skirt). The pink hair dye and we’re good.

E: Ysa has skull and crossbones suspenders that Maddy can borrow. Sadly, all
my Docs are too big for her. (but Ysa’s been BEGGING for “combat
boots”-is it the age?? I was NOT that cool at 10...or ever!)

M: Oh, yes to the suspenders! (My docs are too big too, and a bit dusty, but
maybe WE can share.

L: I have some red creepers in size 5 (men’s), if that’s of interest.
CASP: I like punk rock. But I’m not a punk rocker. Growing up being a guitar

player and being into music, there were really only two types of people you
could hang out with: heavy metal dudes and punk rockers. They were the
only two ... Our teacher, Linda Harlan, gave us an “A” not because it was
good, but because we had been so ballsy in taking over the entire school to
make our silly movie. It occurred to me, how am I gonna drive home, I
don’t have my glasses!

456 12 A Social Promotion Chatbot

This conversation is yielded by a posting photos included an album with a certain
name:

G: added 7 new photos to the album Prague.
S: Shame about the weather.
R: I dont see any caving pics in here Gilly.
G: Guess I’m just sick of caves.. just kidding! I’m en route to caving.
CASP: Considering also, I had never been to Prague before (unless you count

that one time I passed it by on the way to Hungary), I couldn’t wait to count
down the days till leaving for a short road trip. ... Afterwards we casually
walked down tiny, narrow alleyways, checked out Náměstí Republiky,
Wenceslas Square, stopped at Sephora’s (tiniest Sephora I’ve ever been
to and aside from NARS they didn’t sell anything one wouldn’t get in
Germany anyway)

Although the host has never been to Prague (which is true) the rest of information
has nothing to do with the host travel experience but nevertheless feels authentic.
Now a Facebook usermakes a postwith a reference to an article in economics, soCASP
needs to generalize from both texts to form a lattice query. The discussion is started to
heating up with the participants asking and answering individually, as CASP joins. . .

E: I think we’re moving to an era where companies and countries have to
decide who they trust more: the United States (and US domiciled compa-
nies) or China (and Chinese companies like Huawei). I’m not saying it’s an
obvious choice either...but we may be seeing the beginning of the the
Balkanization of not just the internet, but enterprise IT as well. [Huawei
has spied for Chinese government, ex-CIA boss says www.guardian.co.uk.
Michael Hayden, also former head of NSA, says he is aware of hard
evidence of spying activity by world’s No 2 telecoms firm . . .]

A: it’s always a nice surprise to see you drop by MVODC. BTW, how do you
know David Kim? He’s the leader of my small group. Re: enterprise IT. I
see what you mean now. I interpreted “enterprise” at the company level,
but you were referring to “enterprise IT” in the whole, by country. Sure, I
can see Balkanization, and trade treaties, and so on.

S: I suspect my new Samsung ‘fridge is spying on me for the Korean govern-
ment. It’s just sitting there in the corner, like, “who, me? A spy? Are you
kidding?”

K: It would be an obvious choice for me. El, you need to get back to the U.S.
E: @K yeah...I trust Google more than most other companies in the US or

China...but other companies like MSFT YHOO etc probably would just
give it all up to USG without much of a fight.

(continued)

12.10 More Examples of Conversations 457

http://www.guardian.co.uk

CASP: The textile industry is very concerned that the TPP will specifically
allow a backdoor for Vietnam (a TPP member country) to buy Chinese
textiles and sell or integrate them as their own under the TPP. ...I totally
understand that this will cost more, but I would rather trust the quality of
American-made goods (Our QA-QC is worlds apart from Continental
Asian companies... especially China) over those made in China.

Our next example is CASP acting in advertising mode (Fig. 12.13). For a posting
‘I want to go to Lady Gaga ‘Born This Way’, and who wants her gigs stopped?’
CASP chatbot provides a web page with an option to purchase a tickets and also
provides a text related to who wants her gigs stopped. Relevant images are provided
as well. Since the seed posting is controversial, the chatbot tries to find a content
from the both sides, Lady Gaga fans and religious groups worrying about how Lady
Gaga affects the youth.

12.11 Discussion and Conclusions

We proposed a chatbot domain of social promotion and built a conversational agent
CASP to act in this domain (Fig. 12.8). CASP maintains friendship and professional
relationship by automatically posting messages on behalf of its human host, to
impress the peers that the human host thinks and cares about them. Also, commu-
nicating issues raised by peers, CASP can be set to mention various products and
services, providing implicit advertisement. We observed that a substantial intelli-
gence in information retrieval, reasoning, and natural language-based relevance
assessment is required so that members of the social network retain interest in
communication with CASP. Otherwise, the result of social promotion would be
negative and the host would loose friends instead of retaining them. We demon-
strated that a properly designed social promotion chatbot could indeed relieve its
human host from the efforts on casual chatting with her least important friends and
professional contacts.

According to Buchegger and Datta (2009), online social networks are inherently
peer-to-peer (P2P). Building them as P2P networks leverages a scalable architecture
that can improve privacy and avoid the “big brother” effect of service providers.
Moreover, Web search engines have problems providing good Web coverage, given
the Web’s size and high rates of change and growth. It can result in information
overload (Wu et al. 2008; Galitsky et al. 2010). Furthermore, the most valuable
information is not always available, as in the case of the deep Web. The deep Web is
WWW content that is not accessible through search engines; its volume was
estimated to be thousand times higher than the visible Web. Moreover, centralized
horizontal search engines aim to satisfy the needs of any user type and they are

458 12 A Social Promotion Chatbot

progressively personalized and context aware; although they generally provide good
results, they are less effective when dealing with atypical searches.

For the purpose of promoting social activity and enhance communications
with the friends other than most close ones, the chatbot is authorized to comment
on postings, images, videos, and other media. Given one or more sentence of

Fig. 12.13 CASP comments on a controversial topic related to a artist and also offers a web form to
buy a ticket

12.11 Discussion and Conclusions 459

user posting or image caption, CASP issues a web search request to Bing or an
internal company resource and filters the search results for topical relevance,
rhetoric appropriateness and style. Experiments with Facebook account were
conducted using Facebook OpenGraph involving a number of personal
accounts.

To extract a topic and form a query from a conversational thread, we introduced a
new type of query for search engine framework, the lattice query, which is intended
to facilitate the process of an abstract data exploration. Instead of having a user
formulate a query, one or more instances are automatically formed from sample
expressions. To derive a lattice query, as well as measure relevance of a question to
an answer, an operation of syntactic generalization (Chap. 6, Galitsky 2014) is used.
It finds a maximal common sub-trees between the parse trees for the sample text
fragments, and also it finds the maximum common sub-trees between the parse trees
for the lattice query and that of the candidate answers. In the latter case, the size of
the common sub-trees is a measure of relevance for a given candidate search result.

In our evaluation we compared the conventional information extraction approach
where extraction rules are expressed using keywords and regular expressions, with
the one where rules are lattice queries. We observed that lattice queries improve both
precision and recall of information extraction by producing more sensitive rules,
compared to sample expressions which would serve as extraction rules otherwise.
For the web search, if one wants to find information relevant to a few portions of text,
such as blog postings, Facebook reply or couple of articles of interest, lattice queries
are a handy tool. It forms a web search (lattice) query to find relevant results on the
web and access their similarity. An importance of the lattice queries in data explo-
ration is that only the most important keywords are submitted for web search, and
neither single document nor keyword overlap deliver such the set of keywords.

We performed the evaluation of relevance assessment of the CASP web mining
results and observed that using generalization of parse thickets for the seed and
candidate message is adequate for posting messages on behalf of human users.
Chatbot intelligence is achieved in CASP by integrating linguistic relevance
based on parse thickets (PT, Chap. 7) and mental states relevance based on
simulation of human attitudes (Galitsky 2016). As a result, CASP messages are
trusted by human users in most cases, allowing CASPs to successfully conduct
social promotion.

We experimentally observed the correlation between the intelligence components
of CASP and peers’ willingness to use it: once these components start to malfunc-
tion, the human users begin to complain and even intend to disconnect from CASP.
In the human-human network, events when people unfriend their peers occur in case
of a problem in their relationship, strong deviations in their beliefs and political
opinions, but not when humans post least meaningful and least appropriate mes-
sages. Humans are ready to tolerate a lack of intelligence in what other humans write,
in most of the cases. On the contrary, when chatbot utterances are irrelevant or
inappropriate, the tolerance is not that high.

460 12 A Social Promotion Chatbot

We tracked the usability scenarios of CASP when users ended up unfriending it
and even encouraging others to do that, measuring topical and rhetoric relevance
values, as well as the number of repetitions of problematic postings. We observed
that CASP substantially outperforms the boundary area where a significant number
of peers would avoid using it. It is confirmed that the events of unfriending happen
rarely enough for CASP agent to improve the social visibility and maintain more
friends for a human host than being without CASP. Hence although some friends
lost trust in CASP, the friendship with most friends was retained by CASP; therefore,
its overall impact on social activity is positive.

CASP was featured on BBC Inside Science (2014). “Keeping up with your online
social network of ‘friends’ on Facebook can sometimes be time consuming and
arduous. Now CASP is designed to do the bulk of his social interactions online. But
how realistic is it? And does it fool his cyber pals?” – these were the questions of the
reporter.

According to New Scientist (2014) article “Facebook for lazybones”, if one wants
to stay in touch with friends on Facebook but cannot be bothered to do it himself, he
should rely on CASP which monitors the social media feed and responds as if it is
the host person. CASP makes relevant comments on photos posted by Facebook
friends by analyzing the text of status updates and then searches the web for
responses.

The content generation part of CASP was available at www.writel.co in
2014–2016. Given a topic, it first mined the web to auto build thesaurus of entities
(Galitsky and Kuznetsov 2013, Chap. 8) which will be used in the future comment or
essay. Then the system searches the web for these entities to create respective chapters
for these entities. The resultant document is delivered as DOCX email attachment.

In the interactive mode, CASP can automatically compile texts from hundreds of
sources to write an essay on the topic. If a user wants to share a comprehensive
review, opinion on something, provide a thorough background, then this interactive
mode should be used. As a result an essay is automatically written on the topic
specified by a user, and published. The content generation part of CASP is available
at www.facebook.com/RoughDraftEssay.

References

BBC Inside Science (2014) Automatic Facebook. http://www.bbc.co.uk/programmes/b040lnlf
Bhasker B, Srikumar K (2010) Recommender systems in e-commerce. CUP. ISBN 978-0-07-

068067-8
Borgida ER, McGuinness DL (1996) Asking queries about frames. In: Proceedings of the 5th

international conference on the principles of knowledge representation and reasoning, pp
340–349

Buchegger S, Datta A (2009) A case for P2P infrastructure for social networks – opportunities &
challenges. In: Proceedings of 6th international conference on wireless on-demand network
systems and services, Utah, pp 161–168

References 461

http://www.writel.co
http://www.facebook.com/RoughDraftEssay
http://www.bbc.co.uk/programmes/b040lnlf

Buzmakov A (2015) Formal concept analysis and pattern structures for mining structured data. Inria
Publication. https://hal.inria.fr/tel-01229062/

Cassell J, Bickmore T, Campbell L, Vilhjálmsson H, Yan H (2000) Human conversation as a
system framework: designing embodied conversational agents. In: Cassell J et al (eds) Embod-
ied conversational agents. MIT Press, Cambridge, MA, pp 29–63

Chambers N, Cer D, Grenager T, Hall D, Kiddon C, MacCartney M, de Marneffe C, Ramage D,
Yeh E, Manning CD (2007) Learning alignments and leveraging natural logic. In: Proceedings
of the ACL-07 workshop on textual entailment and paraphrasing

De Rosis F, Pelachaud C, Poggi I, Carofiglio V, de Carolis B (2003) From Greta’s mind to her face:
modeling the dynamics of affective states in a conversational embodied agent. Int J Hum
Comput Stud 59:81–118

Dias J, Paiva A (2005) Feeling and reasoning: a computational model for emotional characters. In:
EPIA affective computing workshop, Springer

Galitsky B (1998) Scenario synthesizer for the internet advertisement. Proc J Conf Infol Sci Duke
Univ 3:197–200

Galitsky B (2003) Natural language question answering system: technique of semantic headers.
Advanced Knowledge International, Adelaide

Galitsky B (2013) Transfer learning of syntactic structures for building taxonomies for search
engines. Eng Appl Artif Intell 26(10):2504–2515

Galitsky B (2014) Learning parse structure of paragraphs and its applications in search. Eng Appl
Artif Intell 32:160–184

Galitsky B (2016) Theory of mind engine. In: Computational autism. Springer, Cham
Galitsky B (2017) Content inversion for user searches and product recommendation systems and

methods. US Patent 15150292
Galitsky B, Ilvovsky D (2016) Discovering disinformation: discourse-level approach. Fifteenth

Russian national AI conference, Smolenks, Russia, pp 23–33
Galitsky B, Kovalerchuk B (2006) Mining the blogosphere for contributor’s sentiments. AAAI

Spring symposium on analyzing weblogs. Stanford, CA
Galitsky B, Kuznetsov SO (2008) Learning communicative actions of conflicting human agents. J

Exp Theor Artif Intell 20(4):277–317
Galitsky B, Kuznetsov SO (2013) A web mining tool for assistance with creative writing. ECIR,

European conference on information retrieval, pp 828–831
Galitsky B, Levene M (2007) Providing rating services and subscriptions with web portal infra-

structures. Encyclopedia of portal technologies and applications, pp 855–862
Galitsky B, McKenna EW (2017) Sentiment extraction from consumer reviews for providing

product recommendations. US Patent 9,646,078
Galitsky B, Parnis A (2017) How children with autism and machines learn to interact. In: Autonomy

and artificial intelligence: a threat or savior? Springer, Cham, pp 195–226
Galitsky B, Shpitsberg I (2016) Autistic learning and cognition. In: Computational autism.

Springer, Cham, pp 245–293
Galitsky B, Tumarkina I (2004) Justification of customer complaints using emotional states and

mental actions. FLAIRS conference, Miami, Florida
Galitsky B, Usikov D (2008) Programming spatial algorithms in natural language. AAAI workshop

technical report WS-08-11, Palo Alto, pp 16–24
Galitsky B, Kuznetsov SO, Samokhin MV (2005) Analyzing conflicts with concept-based learning.

Int Conf Concept Struct 3596:307–322
Galitsky B, Dobrocsi G, de la Rosa JL, Kuznetsov SO (2010) From generalization of syntactic parse

trees to conceptual graphs. In: Croitoru M, Ferré S, Lukose D (eds) Conceptual structures: from
information to intelligence, 18th international conference on conceptual structures, ICCS 2010,
Lecture notes in artificial intelligence, vol 6208, pp 185–190

Galitsky B, Dobrocsi G, de la Rosa JL, Kuznetsov SO (2011) Using generalization of syntactic
parse trees for taxonomy capture on the web. 19th international conference on conceptual
structures, pp 104–117

462 12 A Social Promotion Chatbot

https://hal.inria.fr/tel-01229062/

Galitsky B, de la Rosa JL, Dobrocsi G (2012) Inferring the semantic properties of sentences by
mining syntactic parse trees. Data Knowl Eng 81–82(Nov):21–45

Galitsky B, Ilvovsky D, Kuznetsov SO, Strok F (2013) Finding maximal common sub-parse
thickets for multi-sentence search. IJCAI workshop on graphs and knowledge representation,
IJCAI 2013

Galitsky B, Ilvovsky D, Lebedeva N, Usikov D (2014) Improving trust in automation of social
promotion . AAAI Spring symposium on the intersection of robust intelligence and trust in
autonomous systems, Stanford, CA, 2014

Jiang JJ, Conrath DW (1997) Semantic similarity based on corpus statistics and lexical taxonomy.
In: Proceedings of the international conference on research in computational linguistics, Taiwan

Kushman N, Artzi Y, Zettlemoyer L, Barzilay R (2014) Learning to automatically solve algebra
word problems. ACL 2014

Lawless WF, Llinas J, Mittu R, Sofge DA, Sibley C, Coyne J, Russell S (2013) Robust intelligence
(RI) under uncertainty: mathematical and conceptual foundations of autonomous hybrid
(human-machine-robot) teams, organizations and systems. Struct Dyn 6(2):1–35

Lisetti CL (2008). Embodied conversational agents for psychotherapy. CHI 2008 workshop on
technology in mental health, New York

MacCartney B, Galley M, Manning CD (2008) A phrase-based alignment model for natural
language inference. The conference on empirical methods in natural language processing
(EMNLP-08), Honolulu, HI, October 2008

Makhalova T, Ilvovsky DI, Galitsky B (2015) Pattern structures for news clustering. FCA4AI@
IJCAI, pp 35–42

Montaner M, Lopez B, de la Rosa JL (2003) A taxonomy of recommender agents on the internet.
Artif Intell Rev 19(4):285–330

New Scientist (2014) http://www.newscientist.com/article/mg22229634.400-one-per-cent.html
Ourioupina O, Galitsky B (2001) Application of default reasoning to semantic processing under

question-answering. DIMACS Tech Report 16
Reeves B, Nass C (1996) The media equation: how people treat computers, television, and new

media like real people and places. Cambridge University Press, UK
Sidorov G, Velasquez F, Stamatatos E, Gelbukh A, Chanona-Hernández L (2012) Syntactic

N-grams as machine learning features for natural language processing. Expert Syst Appl 41
(3):853C860

Strok F, Galitsky B, Ilvovsky D, Kuznetsov SO (2014) Pattern structure projections for learning
discourse structures. AIMSA 2014: artificial intelligence: methodology, systems, and applica-
tions, pp 254–260

Trias i Mansilla A, de la Rosa i Esteva JL (2011) Asknext: an agent protocol for social search. Inf
Sci 2011:186–197

Trias AJL, de la Rosa B, Galitsky G (2010) Drobocsi, automation of social networks with QA
agents (extended abstract). In: van der Hoek W, Kaminka GA, Lespérance Y, Luck M, Sen S
(eds) Proceedings of 9th international conference on autonomous agents and multi-agent
systems, AAMAS ‘10, Toronto, pp 1437–1438

Wu LS, Akavipat R, Maguitman A, Menczer F (2008) Adaptive peer to peer social networks for
distributed content based web search. In: Social information retrieval systems: emergent tech-
nologies and applications for searching the web effectively. IGI Global, Hershey, pp 155–178

References 463

http://www.newscientist.com/article/mg22229634.400-one-per-cent.html

Chapter 13
Enabling a Bot with Understanding
Argumentation and Providing Arguments

Abstract We make our chatbot capable of exchanging arguments with users. The
chatbot needs to tackle various argumentation patterns provided by a user as well as
provide adequate argumentation patterns in response. To do that, the system needs to
detect certain types of arguments in user utterances to “understand” her and detect
arguments in textual content to reply back accordingly. Various patterns of logical
and affective argumentation are detected by analyzing the discourse and communi-
cative structure of user utterances and content to be delivered to the user. Unlike
most argument-mining systems, the chatbot not only detects arguments but performs
reasoning on them for the purpose of validation the claims. We explore how the
chatbot can leverage discourse-level features to assess the quality and validity of
arguments as well as overall text truthfulness, integrity, cohesiveness and how
emotions and sentiments are communicated. Communicative discourse trees and
their extensions for sentiments and noisy user generated content are employed in
these tasks.

We conduct evaluation of argument detection on a variety of datasets with distinct
argumentation patterns, from news articles to reviews and customer complaints, to
observe how discourse analysis can support a chatbot operating in these domains.
Our conclusion is that domain-independent discourse-level features are a critical
source of information to enable the chatbot to reproduce such complex form of
human activity as providing and analyzing arguments.

13.1 Introduction

The art of argumentation has been explored for more than twenty-four centuries
since the early work of Aristotle. Communicative, formal logical, informal logical,
cognitive, philosophical and psychological issues have been studied. In the context
of multiagent system, argumentation can be viewed as a verbal activity that targets a
realization of a goal (Micheli 2008). Therefore, enabling chatbots with understand-
ing and “producing” argumentation patterns is of utmost importance. When a
chatbot is addressed with a statement backed up with an argumentation pattern, it
should either agree (confirm) if it is unable to defeat it, or try to attack it when a

© Springer Nature Switzerland AG 2019
B. Galitsky, Developing Enterprise Chatbots,
https://doi.org/10.1007/978-3-030-04299-8_13

465

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04299-8_13&domain=pdf

defeater is available. In the latter case, selecting an answer, the chatbot first obtains
the relevant ones in terms of entity, then checks that it contains argumentation
patterns matching this entity and finally and verifies if the answer can actually defeat
the user’s claim (Fig. 13.1).

The purpose of argumentation analysis for chatbots is twofold. Firstly, it is a
chatbot participation in an argumentation – driven dialogue. Secondly, it is an
assessment of the content quality: if the argumentation patterns are faulty, the
content might be of a lower quality and even fake. This assessment varies for
professional writing and for user-generated content: each of the domain has their
own unacceptable argumentation patterns and writing style. In this chapter we
address both of these domains of argumentation analysis relying on learning textual
discourse: similar discourse techniques will be applied.

When an author attempts to provide an argument for something, a number of
argumentation patterns can be employed, including emotional, even heated, or pure
logical. An argument is the key point of any persuasive essay or speech; it is the part
where the actual persuasion gets done (Bedi and Vashisth 2015). The basic points of
argumentation are reflected in rhetoric structure of text where an argument is
presented. A text without argument would have different rhetoric structures
(Moens et al. 2007).

Whereas sentiment analysis is necessary for a broad range of industrial applica-
tions, its accuracy remains fairly low. Recognition of a presence of an argument, if
done reliably, can potentially substitute some opinion mining tasks when one intends
to differentiate a strong opinionated content from the neutral one. Argument recog-
nition result can then serve as a feature of sentiment analysis classifier, differentiat-
ing cases with high sentiment polarity from the neutral ones, ones with low polarity.

To enable a chatbot with tackling argumentation, we focus on logical argumen-
tation rather than on a multidisciplinary notion on how conclusions can be reached
through reasoning; how claims can be inferenced from premises (Galitsky et al.
2018). Multidisciplinary argumentation includes the arts and sciences of civil debate,
dialogue, conversation, and persuasion, as well as emotional argumentation. In this

User provides an
utterance making a
claim and backing it
up

No: Respond with
acknowledgementCan the chatbot

defeat this claim?

Yes: 1) Find a candidate answer with relevant entity
2) Identify an argumentation patterns
3) Analyze if the user’s claim can be defeated by
this answer
4) Provide an answer attacking user’s claim

Fig. 13.1 A Chatbot handling argumentation

466 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

chapter we attempt to detect explicit argumentation, a presence of specific logical
patterns in a user utterance showing her attempt to back up a claim or request a bot to
do it.

We assume that logical argumentation would be correlated with RST stronger
than other forms of argumentation. We also believe that argumentation patterns are a
special case of rhetoric patterns (relations): not all rhetoric relations are used to
express an argument, but all means to express it should be covered by an adequate
discourse theory. So as long as a chatbot is capable of extracting rhetoric relations
from a conversation as well as a candidate answer, it is well prepared to deal with
argumentation.

There is an obvious link between Rhetoric Structure Theory (Mann et al. 1992)
and argumentation relations which we leverage in this chapter. There are four types
of argumentation relations: the directed relations support, attack, detail, and the
undirected sequence relation.

Argumentation detail relation is important because of many cases in scientific
publications, where some background information (for example the definition of a
term) is important for understanding the overall argumentation. The detail relation is
used, if A is a detail of B and gives more information or defines something stated in
B without argumentative reasoning.

A support relation between an argument component A and another argument
component B indicates that A supports (reasons, proves) B. An attack relation
between A and B is annotated if A attacks (restricts, contradicts) B. We link two
argument components with the sequence relation, if two (or more) argument com-
ponents belong together and only make sense in combination, i.e., they form a multi-
sentence argument component (Peldszus and Stede 2013). These argumentation
relations correspond to discourse relations: sequence -> Sequence in RST, the
argumentation detail relation roughly corresponds to Background and Elaboration.
Other RST relations are connected with argumentation implicitly, which we will
explore via learning. It turns out that most RST relations are helpful for establishing
a presence of arguments. Elaboration.

To represent the linguistic features of text for the purpose of argumentation
detection, we follow along the lines of our CDT representation for rhetorical
agreement and dialogue management (Chaps. 10 and 11). We rely on the following
sources.

1. Rhetoric relations between the parts of the sentences, obtained as a discourse tree
(DT).

2. Speech acts, communicative actions (CA), obtained as verbs from the VerbNet
resource (the verb signatures with instantiated semantic roles, Kipper et al. 2008).

Hence we extend rhetoric structure theory (RST) with Speech Act Theory (Searle
1969) to provide a more accurate discourse representation of text in attempt to
correlate it with the target feature, argumentation.

13.1 Introduction 467

We apply similar classes of machine learning techniques we have applied for
question answer relevance and rhetorical agreement in the previous chapters:

1. Nearest Neighbor (kNN) learning with explicit engineering of graph descriptions.
We measure similarity as an overlap between the graph of a given text and that of
a given element of training set.

2. Statistical learning of structures with implicit feature engineering. We apply
kernel learning to discourse trees to reduce the amount of parse trees for a
paragraph.

To support answering controversial questions, chats in a domain such as politics,
where it is important to select an answer tailored to a user political views, the chatbot
needs to detect a presence of argumentation in a broad sense, associated with
arbitrary discourse structure. We are also interested in finding specific argumentation
patterns, even those which are hard to define explicitly via rules. These patterns can
only be circumscribed by means of examples.

As by-products of our exploration of discourse correlates of arguments we
address the following questions:

1. Is there and what kind of correlation between the argumentation text structure and
discourse markers, discourse features are based on particular types of rhetoric
relations? Are full discourse trees good objects to explore this kind of correlation?

2. Could different type of discourse and semantic relations work together in argu-
mentation detection task? What is the additional value of communicative markers
(Galitsky and Kuznetsov 2008)?

3. Could we consider learning based on a complete discourse structure as a universal
approach for argumentation detection and related tasks? How effective is this
approach in comparison with domain-specific approaches based on semi-
automatic feature extraction?

It is extremely important to organize one’s thoughts properly to back up a claim,
to provide more convincing argumentation. Discourse trees are a means to system-
atically represent and learn the way thoughts are organized. At the same time,
providing an argument, it is also important to show how the associated facts and
opinions were communicated between agents involved. Hence the Speech Act
theory is expected to be complementary to RST in the context of the argument
detection problem. We will evaluate this hypothesis computationally, tracking the
argument detection accuracy.

We apply our framework of learning CDTs in the argumentation detection task
and demonstrate that the CDT-based approach and the one based on the full discourse
structure outperform the baselines with a lack or reduced discourse-level information.
Wewill also define affective argumentation as the one associated with emotion and/or
sentiment. It is a strong, possibly logical argument provided in an emotionally
charged, heated discussion when an author expresses his explicit negative sentiment.
We solve this partial case of the sentiment analysis problem in this chapter.

468 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

13.2 Finding Valid Argumentation Patterns and Identifying
Fake Content

Starting from the autumn of 2015, we became interested in the controversy about
Theranos, the healthcare company that hoped to make a revolution in blood tests.
Some sources including the Wall Street Journal started claiming that the company’s
conduct was fraudulent. The claims were made based on the whistleblowing of
employees who left Theranos. At some point FDA got involved, and as the case
develops, we were improving our argumentation mining and reasoning techniques
(Galitsky 2018, Galitsky et al. 2018) while keeping an eye on Theranos’ story. As we
scraped discussions about Theranos back in 2016 from the website, the audience
believed that the case was initiated by Theranos competitors who felt jealous about
the proposed efficiency of the blood test technique promised by Theranos. However,
our argumentation analysis technique showed that Theranos argumentation patterns
were faulty and our findings supported the criminal case against Theranos, which led
to the massive fraud verdict. (SEC 2018) says that Theranos CEO Elizabeth Holmes
raised more than $700 million from investors “through an elaborate, years-long
fraud” in which she exaggerated or made false statements about the company’s
technology and finances.

Let us imagine that we need to index the content about Theranos for answering
questions about it. If a user leans towards Theranos and not its opponents, then we
want to provide answers favoring Theranos position. Good arguments of its pro-
ponents, or bad arguments of its opponents would also be appropriate. Table 13.1
shows the flags for various combinations of agency, sentiments and argumentation
configurations for tailoring search results for a given user with certain preferences of
entity A versus entity B. The far right grayed side of the column in the table has
opposite flags for the second and third row. For the fourth row, only the cases with
generally accepted opinion sharing merits are flagged for showing.

In a product recommendation domain, texts with positive sentiments are used to
encourage a potential buyer to make a purchase. In such domain as politics, the
logical structure of sentiment vs argument vs agency is much more complex.

The purpose of these considerations is to make a chatbot capable of personalizing
and tailoring search results, including opinionated data, to user expectations. It can
be applicable to user political opinion, when a chatbot delivers a news article. It is
also applicable to product recommendation setting when a chatbot learns that a given
user prefers skies over snowboard so he shares stories of people who do not like
snowboarders and who like those who do not like snowboarders. This feature
enables a bot to behave like a companion, show empathy, make sure the user does
not feel irritated by a lack of common ground with this bot.

We build an RST representation of the arguments and observe if a discourse tree
is capable of indicating whether a paragraph communicates both a claim and an
argumentation that backs it up. We will then explore what needs to be added to a
discourse tree (DT) so that it is possible to judge if it expresses an argumentation
pattern or not.

13.2 Finding Valid Argumentation Patterns and Identifying Fake Content 469

T
ab

le
13

.1
H
ow

to
ta
ilo

r
se
ar
ch

re
su
lts

su
pp

or
tin

g
an

en
tit
y

A
ns
w
er

ty
pe

R
eq
ue
st
fr
om

us
er

P
os
iti
ve

se
nt
im

en
t

fo
r
A

N
eg
at
iv
e

se
nt
im

en
t
fo
r

B

P
ro
pe
r

ar
gu

m
en
ta
tio

n
th
at

A
is
ri
gh

t

Im
pr
op

er
ar
gu

m
en
ta
tio

n
th
at
A

is
w
ro
ng

P
ro
pe
r
ar
gu

m
en
ta
tio

n
by

a
pr
op

on
en
t
of

A

Im
pr
op

er
ar
gu

m
en
ta
tio

n
by

a
op

po
ne
nt

of
A

F
av
or
in
g
A

ra
th
er

th
an

B
+

+
+

+
+

+
�

..
.

F
av
or
in
g
B

ra
th
er

th
an

A
�

�
�

�
�

�
+

..
.

E
qu

al
tr
ea
t-

m
en
t
of

A
an
d

B

+
+

+

470 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

This is what happened according to (Carreyrou 2016):
Since October [2015], the Wall Street Journal has published a series of anony-

mously sourced accusations that inaccurately portray Theranos. Now, in its latest
story (“U.S. Probes Theranos Complaints,” Dec. 20), the Journal once again is
relying on anonymous sources, this time reporting two undisclosed and unconfirmed
complaints that allegedly were filed with the Centers for Medicare and Medicaid
Services (CMS) and U.S. Food and Drug Administration (FDA).

Figure 13.2 shows the communicative discourse tree (CDT) for the following
paragraph:

But Theranos has struggled behind the scenes to turn the excitement over its
technology into reality. At the end of 2014, the lab instrument developed as the
linchpin of its strategy handled just a small fraction of the tests then sold to
consumers, according to four former employees.

Please notice the labels for communicative actions are attached to the edges of
discourse trees (on the left and in the middle-bottom).

In the following paragraph Theranos attempts to rebuke the claim of WSJ, but
without communicative actions it is unclear from the DT (see Fig. 13.3).

Theranos remains actively engaged with its regulators, including CMS and the
FDA, and no one, including the Wall Street Journal, has provided Theranos a copy
of the alleged complaints to those agencies. Because Theranos has not seen these
alleged complaints, it has no basis on which to evaluate the purported complaints.
We proceed to a CDT for an attempt by Theranos to get itself off the hook (Fig. 13.4)

It is not unusual for disgruntled and terminated employees in the heavily regu-
lated health care industry to file complaints in an effort to retaliate against
employers for termination of employment. Regulatory agencies have a process for
evaluating complaints, many of which are not substantiated. Theranos trusts its
regulators to properly investigate any complaints.

Fig. 13.2 When arbitrary communicative actions are attached to DT as labels of its terminal arcs, it
becomes clear that the author is trying to bring her point across and not merely sharing a fact

13.2 Finding Valid Argumentation Patterns and Identifying Fake Content 471

To show the structure of arguments, discourse relations are necessary but insuf-
ficient, and speech acts are necessary but insufficient as well.

For the paragraph above, we need to know the discourse structure of interactions
between agents, and what kinds of interactions they are. We need to differentiate
between a neutral default relation of Elaboration (which does not include a CA) and
elaboration relation which includes a CA with a sentiment such as not provide(. . .)
which is correlated with an argument.

We don’t need to know domain of interaction (here, health), the subjects of these
interaction (the company, the journal, the agencies), what are the entities, but we
need to take into account mental, domain-independent relations between them.

Fig. 13.3 Just from a DT and multiple rhetoric relations of elaboration and a single instance of
background, it is unclear whether an author argues with his opponents or enumerates some
observations. Relying on communicative actions such as ‘engage’ or ‘not see’, the CDT can
express the fact that the author is actually arguing with his opponents. This is a CDT for an attempt
to make even stronger rebuff

Fig. 13.4 CAs as labels for rhetoric relations helps to identify a text apart from a heated discussion

472 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

Theranos uses CAs to show that its opponent’s argumentation is faulty. Now we
use the labels for communicative actions to show which one are attached to which
rhetoric relations. (Fig. 13.5):

By continually relying on mostly anonymous sources, while dismissing concrete
facts, documents, and expert scientists and engineers in the field provided by
Theranos, the Journal denies its readers the ability to scrutinize and weigh the
sources’ identities, motives, and the veracity of their statements.

From the commonsense reasoning standpoint, Theranos, the company, has two
choices to confirm the argument that his tests are valid:

1. Conduct independent investigation, comparing their results with the peers, open-
ing the data to the public, confirming that their analysis results are correct.

2. Defeat the argument by its opponent that their testing results are invalid, and
providing support for the claim that their opponent is wrong.

Obviously, the former argument is much stronger, and we know, that usually the
latter argument is chosen when the agent believes that the former argument is too
hard to implement. On one hand, the reader might agree with Theranos that WSJ
should have provided more evidence for its accusations against the company. On the
other hand, the reader perhaps disliked the fact that Theranos selects the latter
argument type (2) above, and therefore the company position is fairly weak.

The authors also believe that Theranos’ argument is weak because the company
tries to refute the opponent’s allegation concerning the complaints about Theranos’s
services from clients. We believe that Theranos’ demand for evidence by inviting
WSJ to disclose the sources and the nature of the complaints is not strong. A claim is
that a third-party (independent investigative agent) would be more reasonable and
conclusive. However, some readers might believe that the company’s argument
(burden of proof evasion) is logical and valid.

Fig. 13.5 Theranos is arguing that the opponent’s arguments are faulty

13.2 Finding Valid Argumentation Patterns and Identifying Fake Content 473

It is hard to verify the validity of argumentation relying on CDT only (Galitsky
and Parnis 2018). Argumentation analysis should account not only for the informa-
tion conveyed by the clausal components of the DT (that is, RST’s subject matter),
but also for what is inferred, namely, the WSJ writer’s intention to motivate’ the
reader to cast doubt at the opponent’s accusation of Theranos by inviting him to
scrutinize the provided “proofs”. An argumentation assessor cannot identify the
rhetorical relations in a text by relying on text only; she must essentially rely on
context of situation in order to grasp the arguer’s intention.

In another example, the objective of the author is to attack a claim that the Syrian
government used chemical weapon in the spring of 2018 (Fig. 13.6). An acceptable
proof would be to share a certain observation, associated from the standpoint of
peers, with the absence of a chemical attack. For example, if it is possible to
demonstrate that the time of the alleged chemical attack coincided with the time of
a very strong rain, that would be a convincing way to attack this claim. However,
since no such observation was identified, the source, Russia Today, resorted to
plotting a complex mental states expressing how the claim was communicated,
which agents reacted which way in this communication. It is rather hard to verify
most statements about the mental states of involved parties. We show the text split
into EDUs as done by (Joty et al. 2013) discourse parser:

[Whatever the Douma residents,] [who had first-hand experience of the
shooting of the water] [dousing after chemical attack video,] [have to say,]
[their words simply do not fit into the narrative] [allowed in the West,]
[analysts told RT.] [Footage of screaming bewildered civilians and children]
[being doused with water,] [presumably to decontaminate them,] [was a key
part in convincing Western audiences] [that a chemical attack happened in
Douma.] [Russia brought the people] [seen in the video] [to Brussels,] [where
they told anyone] [interested in listening] [that the scene was staged.] [Their
testimonies, however, were swiftly branded as bizarre and underwhelming
and even an obscene masquerade] [staged by Russians.] [They refuse to see
this as evidence,] [obviously pending] [what the OPCW team is going to come
up with in Douma], [Middle East expert Ammar Waqqaf said in an interview
with RT.] [The alleged chemical incident,] [without any investigation, has
already become a solid fact in the West,] [which the US, Britain and France
based their retaliatory strike on.]

This article (RussiaToday 2018) does not really find counter-evidence for the
claim of the chemical attack it attempts to defeat. Instead, the text says that the
opponents are not interested in observing this counter-evidence. The main statement
of this article is that a certain agent “disallows” a particular kind of evidence
attacking the main claim, rather than providing and backing up this evidence. Instead
of defeating a chemical attack claim, the article builds a complex mental states
conflict between the residents, Russian agents taking them to Brussels, the West and
a Middle East expert.

474 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

Fig. 13.6 CDT for the chemical attack claim. An author attempts to substitute a desired valid
argumentation chain by a fairly sophisticated mental states expressed by CA

13.2 Finding Valid Argumentation Patterns and Identifying Fake Content 475

Our other example of controversial news is a Trump-Russia link acquisition
(BBC 2018, Fig. 13.7). For a long time it was unable to confirm the claim, so the
story is repeated over and over again to maintain a reader expectation that it would be
instantiated 1 day. There is neither confirmation nor rejection that the dossier exists,

Fig. 13.7 A CDT for an attempt to prove something where an evidence is absent so the facts are
“wrapped” into complex mental states as expressed by CAs

476 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

and the goal of the author is to make the audience believe that such dossier does exist
neither providing evidence nor misrepresenting events. To achieve this goal, the
author can attach a number of hypothetical statements about the existing dossier to a
variety of mental states to impress the reader in the authenticity and validity of the
topic.

In January 2017, a secret dossier was leaked to the press. It had been
compiled by a former British intelligence official and Russia expert, Chris-
topher Steele, who had been paid to investigate Mr Trump’s ties to Russia.

The dossier alleged Moscow had compromising material on Mr Trump,
including claims he was once recorded with prostitutes at a Moscow
hotel during a 2013 trip for one of his Miss Universe pageants. Mr
Trump emphatically denies this.

The file purported to show financial and personal links between Mr Trump, his
advisers and Moscow. It also suggested the Kremlin had cultivated Mr
Trump for years before he ran for president.

Mr Trump dismissed the dossier, arguing its contents were based largely on
unnamed sources. It was later reported that Mr Steele’s report was funded
as opposition research by the Clinton campaign and Democratic National
Committee.

Fusion GPS, the Washington-based firm that was hired to commission the
dossier, had previously been paid via a conservative website to dig up dirt
on Mr Trump.

13.2.1 Handling Heated Arguments

In this subsection we focus on emotionally loaded, heated arguments where the
author attempt to attach emotional states to strengthen his argumentation. We show
an example of a CDT for a series of arguments by a customer treated badly by a
credit card company American Express (amex) in 2007 (Fig. 13.8). Text split into
logical chunks is as follows:

[I’m another one of the many][that has been carelessly mistreated by American
Express .] [I have had my card since 2004 and never late.] [In 2008][they
reduced my credit limit from $16,600 to $6,000][citing several false excuses .]
[Only one of their excuses was true - other credit card balances.] [They also
increased my interest rate by 3 %][at the same time .] [I have never been so
insulted by a credit card company.] [I used to have a credit score of 830 , not
anymore , thanks to their unfair credit practices .] [They screwed my credit

(continued)

13.2 Finding Valid Argumentation Patterns and Identifying Fake Content 477

Fig. 13.8 A CDT for heated argumentation. we show a sentiment profile: sentiment value attached
with an indication of a proponent (me) and opponent (amex). The observation that proponent is
almost always positive and the opponent is negative confirms the argumentation flow of this
complaint. If sentiment values oscillate that would be a signal that there is an issue with how an
author provides argumentation

478 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

score.] [In these bad economic times you’d think][they would appreciate
consistent paying customers like us][but I guess][they are just so full of
themselves .] [I just read today][that their CEO stated][that they will be hurt
less than their competitors][because 80 percent of their revenues][are gener-
ated from fees. That][explains their callous , arrogant , unacceptable credit
practices .] [It seems][they have to screw every cardholder][they can before the
new law becomes effective.] [Well America, let’s learn from our appalling
experience][and stop using our American Express credit card][so we can pay it
off !].

Finally, we proceed to a recommendation on how to handle a heated argument
(Fig. 13.9). This text expresses a meta-argumentation in a sense that it explains in the
metalanguage how to conduct argumentation in certain circumstances. It is hard to
differentiate between metalanguage and language-object just looking at CDTs
(Galitsky 2018) but the reader might discover some kind of correlations between
meta-reasoning and respective CDT features.

When you are in the middle of an argument, it can be easy to get caught up in
the heat of the moment and say something that makes the situation even worse.
Nothing can make someone more frenzied and hysterical than telling them to
calm down. It causes the other person to feel as if you are putting the blame for
the elevation of the situation on them. Rather than actually helping them calm
down, it comes off as patronizing and will most likely make them even angrier.

13.3 Evaluation of Logical Argument Detection

13.3.1 Dataset for General Argumentation

We formed the positive dataset from the few sources to make it non-uniform and
pick together different styles, genres and argumentation types. First we used a
portion of data where argumentation is frequent, e.g. opinionated data from news-
papers such as The New York Times (1400 articles), The Boston Globe (1150
articles), Los Angeles Times (2140) and others (1200). We also used textual
customer complaints dataset from our previous evaluations. Besides, we use the
text style & genre recognition dataset (Lee 2001) which has a specific dimension
associated with argumentation (the section [ted] “Emotional speech on a political
topic with an attempt to sound convincing”). And we finally add some texts from
standard argument mining datasets where presence of arguments is established by
annotators: “Fact and Feeling” dataset (Oraby et al. 2015), 680 articles and dataset
“Argument annotated essays v.2” (Stab and Gurevych 2016), 430 articles.

13.3 Evaluation of Logical Argument Detection 479

For the negative dataset, we use Wikipedia (3500 articles), factual news sources
(Reuters feed with 3400 articles), and also (Lee 2001) dataset including such
sections of the corpus as [tells] (450 articles), “Instructions for how to use software”
(320 articles); [tele], “Instructions for how to use hardware”(175 articles); [news],
“A presentation of a news article in an objective, independent manner”(220 articles),
and other mixed datasets without argumentation (735 articles).

Fig. 13.9 The DT for a text advising on how to behave communicating an argument. This is an
example of meta-argumentation: an argumentation on how to conduct heated argumentation, which
can be expressed by the same rhetorical relations

480 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

Both positive and negative datasets include 8800 texts. An average text size is
400 words (always above 200 and below 1000 words).

We used Amazon Mechanical Turk to confirm that the positive dataset includes
argumentation in a commonsense view, according to the employed workers. Twelve
workers who had the previous acceptance score of above 85% were assigned the task
to label. For manual confirmation of the presence and absence of arguments, we
randomly selected representative from each set (about 10%) and made sure they
properly belong to a class with above 95% confidence. We avoided sources where
such confidence was below 95%. For the first portion of texts which were subject to
manual labeling, we conducted an assessment of an inter-annotator agreement and
observed that it exceeded 90%. Therefore, for the rest of annotations we relied on a
single worker per text.

For the evaluation we split out dataset into the training and test part in proportion
of 4:1.

13.3.2 Specific Argumentation Patterns Dataset

The purpose of this argumentation dataset is to collect textual complaints where the
authors use a variety of argumentation means to prove that they are victims of
businesses. Customer complaints are emotionally charged texts which include
descriptions of problems they experienced with certain businesses. Raw complaints
are collected from PlanetFeedback.com for a number of banks submitted in
2006–2010. Four hundred complaints are manually tagged with respect to the
following parameters related to argumentation:

• perceived complaint validity,
• argumentation validity
• presence of specific argumentation patter
• and detectable misrepresentation.

Judging by complaints, most complainants are in genuine distress due to a strong
deviation between what they expected from a service, what they received and how it
was communicated (Galitsky et al. 2011). Most complaint authors report incompe-
tence, flawed policies, ignorance, indifference to customer needs and misrepresen-
tation from the customer service personnel. The authors are frequently exhausted
communicative means available to them, confused, seeking recommendation from
other users and advise others on avoiding particular financial service. The focus of a
complaint is a proof that the proponent is right and her opponent is wrong, resolution
proposal and a desired outcome.

Multiple argumentation patterns are used in complaints:

• The most frequent is a deviation from what has happened from what was
expected, according to common sense. This pattern covers both valid and invalid
argumentation (a valid pattern).

13.3 Evaluation of Logical Argument Detection 481

http://planetfeedback.com

• The second in popularity argumentation patterns cites the difference between
what has been promised (advertised, communicated) and what has been received
or actually occurred. This pattern also mentions that the opponent does not play
by the rules (valid).

• A high number of complaints are explicitly saying that bank representatives are
lying. Lying includes inconsistencies between the information provided by dif-
ferent bank agents, factual misrepresentation and careless promises (valid).

• Another reason complaints arise is due to rudeness of bank agents and customer
service personnel. Customers cite rudeness in both cases, when the opponent
point is valid or not (and complaint and argumentation validity is tagged accord-
ingly). Even if there is neither financial loss nor inconvenience, the complainants
disagree with everything a given bank does, if they have been served rudely
(invalid pattern).

• Complainants cite their needs as reasons bank should behave in certain ways. A
popular argument is that since the government via taxpayers bailed out the banks,
they should now favor the customers (invalid).

This dataset includes more emotionally-heated complaints in comparison with
other argument mining datasets. For a given topic such as insufficient funds fee, this
dataset provides many distinct ways of argumentation that this fee is unfair. There-
fore, our dataset allows for systematic exploration of the topic-independent clusters
of argumentation patterns and observe a link between argumentation type and
overall complaint validity. Other argumentation datasets including legal arguments,
student essays (Stab and Gurevych 2017), internet argument corpus (Abbott et al.
2016), fact-feeling dataset (Oraby et al. 2015) and political debates have a strong
variation of topics so that it is harder to track a spectrum of possible argumentation
patterns per topic. Unlike professional writing in legal and political domains,
authentic writing of complaining users have a simple motivational structure, a
transparency of their purpose and occurs in a fixed domain and context. In the
dataset used in this study, the arguments play a critical rule for the well-being of the
authors, subject to an unfair charge of a large amount of money or eviction from
home. Therefore, the authors attempt to provide as strong argumentation as possible
to back up their claims and strengthen their case.

If a complaint is not truthful it is usually invalid: either a customer complains out
of a bad mood or she wants to get a compensation. However, if the complaint is
truthful it can easily be invalid, especially when arguments are flawed. When an
untruthful complaint has valid argumentation patterns, it is hard for an annotator to
properly assign it as valid or invalid. Three annotators worked with this dataset, and
inter-annotator agreement exceeds 80%. The set of tagged customer complaints
about financial services is available at https://github.com/bgalitsky/relevance-
based-on-parse-trees/blob/master/examples/opinionsFinanceTags.xls.

482 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

https://github.com/bgalitsky/relevance-based-on-parse-trees/blob/master/examples/opinionsFinanceTags.xls
https://github.com/bgalitsky/relevance-based-on-parse-trees/blob/master/examples/opinionsFinanceTags.xls

13.3.3 Evaluation Setup and Results

For the Nearest Neighbor classification, we used Maximal common sub-graph for
DT approach as well as Maximal common sub-graph for CA approach based on
scenario graphs built on CAs extracted from text (Table 13.2). For SVM TK
classification, we employed the tree kernel (Severyn and Moschitti 2012) learning
of parse thickets approach, where each paragraph is represented by a parse thicket
that includes exhaustive syntactic and discourse information. We also used SVM TK
for DT, where CA information is not taken into account.

Our family of pre-baseline approaches are based on keywords and keywords
statistics. For Naïve Bayes approach, we relied on WEKA framework (Hall et al.
2009). Since mostly lexical and length-based features are responsible for finding
poorly-supported arguments (Stab and Gurevych 2017), we used non-NERs as
features together with the number of tokens in the phrase which potentially expresses
argumentation. Also, NER counts was used as it is assumed to be correlated with the
strength of an argument. Even if these features are strongly correlated with argu-
ments, they do not help to understand the nature of how argumentation is structured
and communicated in language, as expressed by CDTs.

A naïve approach is just relying on keywords to figure out a presence of
argumentation. Usually, a couple of communicative actions so that at least one has
a negative sentiment polarity (related to an opponent) are sufficient to deduce that
logical argumentation is present. This naïve approach is outperformed by the top
performing CDT approach by 29%. A Naïve Bayes classifier delivers just 2%
improvement.

One can observe that for the nearest neighbor learning DT and CA indeed
complement each other, delivering accuracy of the CDT 26% above the former
and 30% above the latter. Just CA delivered worse results than the standalone DT
(Table 13.3).

SVM TK of CDT outperforms SVM TK for RSTþ CA and full syntactic features
(the SVM TK baseline) by 5%. This is due to feature engineering and relying on less
data but more relevant one that the baseline.

Table 13.2 Evaluation results. Nearest Neighbor – based detection

Method & Source Precision Recall F1 Improvement over the baseline

Keywords 57.2 53.1 55.07 0.87

Naïve Bayes 59.4 55.0 57.12 0.91

DT 65.6 60.4 62.89 1.00

CA 62.3 59.5 60.87 0.97

CDT (DT + CA) 83.1 75.8 79.28 1.26

13.3 Evaluation of Logical Argument Detection 483

Nearest neighbor learning for CDT achieves slightly lower accuracy than SVM
TK for CDT, but the former gives interesting examples of sub-trees which are typical
for argumentation, and the ones which are shared among the factual data. The
number of the former groups of CDT sub-trees is naturally significantly higher.
Unfortunately SVM TK approach does not help to explain how exactly the argument
identification problem is solved. It only gives final scoring and class labels. It is
possible, but infrequent to express a logical argument without CAs. This observation
is backed up by our data.

It is worth mentioning that our evaluation settings are close to SVM-based
ranking of RST parses. This problem is formulated as classification of DTs into
the set of correct trees, close to manually annotated trees, and incorrect ones. Our
settings are a bit different because they are better adjusted to smaller datasets. Notice
that argument detection improvement proceeding from DT to CDT demonstrates the
adequateness of our extension of RST by speech act – related information.

Table 13.4 shows the SVM TK argument detection results per source. As a
positive set, we now take individual source only. The negative set is formed from
the same sources but reduced in size to match the size of a smaller positive set. The
cross-validation settings are analogous to our assessment of the whole positive set.

We did not find correlation between the peculiarities of a particular domain and
contribution of discourse-level information to argument detection accuracy. At the
same time, all these four domains show monotonic improvement when we proceed
from Keywords and Naïve Bayes to SVM TK. Since all four sources demonstrate the
improvement of argument detection rate due to CDT, we conclude that the same is
likely for other source of argumentation-related information.

Pattern – specific argumentation detection results are shown in Table 13.5. We
compute the accuracy of classification as a specific pattern vs other patterns and a
lack of argumentation. The first and second type of argument is harder to recognize

Table 13.4 Evaluation results for each positive dataset versus combined negative dataset (SVM
TK)

Method &
Source

Newspaper
opinionated data, F1

Textual
complaints, F1

Text style & genre
recognition dataset, F1

Fact and
feeling

Keywords 52.3 55.2 53.7 54.8

Naïve
Bayes

57.1 58.3 57.2 59.4

DT 66.0 63.6 67.9 66.3

CA 64.5 60.3 62.5 60.9

CDT
(DT + CA)

77.1 78.8 80.3 79.2

Table 13.3 Evaluation results. SVM TK – based detection

Method & Source Precision Recall F1 Improvement over the baseline

RST and CA (full parse trees) 77.2 74.4 75.77 1.00

DT 63.6 62.8 63.20 0.83

CDT 82.4 77.0 79.61 1.05

484 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

(by 7 � 10% below the general argument) and the third and fourth type is easier to
detect (exceeds the general argument accuracy by 3%).

These argument recognition accuracies are comparable with the state-of-the-art of
argumentation mining techniques. (Lawrence and Reed 2017) conduct an analysis of
texts containing 128 premise conclusion pairs and obtained 63–67% F-measure,
determining the directionality of inferential connections in argumentation.
(Bar-Haim et al. 2017) show that both accuracy and coverage of argument stance
recognition (what is supporting and what is defeating a claim) can be significantly
improved to 69% F-measure through automatic expansion of the initial lexicon.
(Aker et al. 2017) offer a comparative analysis of the performance of different
supervised machine learning methods and feature sets on argument mining tasks,
achieving 81% F-measure for detecting argumentative sentences and 59% for
argument structure prediction task. As to the argumentation segmentation of an
argument text into argument units and their non-argumentative counterparts, (Ajjour
et al. 2017) achieves 88% using Bi-LSTM for essays and 84% for editorials. Taking
into account complexities of argument mining tasks, these classification accuracies
are comparable with the current study but lack an exploration of causation of
argumentation via discourse-level analysis. Hence this study proposes much more
straight-forward feature engineering of general argumentation and its specific
patterns.

13.3.4 CDT Construction Task

In this Section we evaluated how well CDTs were constructed irrespectively of how
they were used and learned. The rhetoric parser is the least reliable component of the
argumentation detector. Although splitting into EDUs works reasonably well,
assignment of RST relation is noisy and in some domain its accuracy can be as
low as 50%. However, when the RST relation label is random, it does not

Table 13.5 Evaluation results for each positive dataset versus combined negative dataset (SVM
TK)

Method &
Source

Deviation from
what has
happened from
what was
expected

The difference between
what has been promised
(advertised,
communicated) and what
has been received or
actually occurred

Saying that
bank
representatives
are lying

Rudeness of
bank agents
and customer
service
personnel

Keywords 51.7 53.7 58.5 59.0

Naïve
Bayes

53.4 55.9 61.3 65.8

DT 61.9 58.5 68.5 68.6

CA 58.8 59.4 63.4 61.6

CDT
(DT + CA)

70.3 68.4 84.7 83.0

13.3 Evaluation of Logical Argument Detection 485

significantly drop the performance of our argumentation detection system since a
random discourse tree will be less similar to elements of positive or negative training
set, and most likely will not participate in positive or negative decision. To overcome
the noisy input problem, more extensive training datasets are required so that the
number of reliable, plausible discourse tree is high enough to cover cases to be
classified. As long as this number is high enough, a contribution of noisy, improperly
built discourse trees is low.

There is a certain systematic deviation from correct, intuitive discourse trees
obtained by discourse parsers. In this section we are going to evaluate if there is a
correlation between the deviation in CDTs and our training sets. We allow for a
possibility that CDTs deviation for texts with argumentation is stronger than the one
for the texts without argumentation.

For each source, we calculated the number of significantly deviated CDTs. For
the purpose of this assessment we considered a CDT to be deviated if more than 20%
of rhetoric relations is determined improperly. We do not differentiate between the
specific RST relations associated with argumentation such as attribution and con-
trast. The distortion evaluation dataset is significantly smaller than the detection
dataset since substantial manual efforts is required and the task cannot be submitted
to Amazon Mechanical Turk workers.

One can observe that there is no obvious correlation between the recognition
classes and the rate of CDT distortion (Table 13.6). Hence we conclude that the
training set of noisy CDTs can be adequately evaluated with respect to argumenta-
tion detection.

In this study we do not investigate any reader-oriented perceptions of arguments
in text. It is difficult to simulate the reader’s attitude or perceptions of text from CDT
information only. The CDT we build is just one possibility of a plausible RST
structure, and other DT representations are possible. Since building DTs is a very
complex task requiring annotators to make a range of difficult decisions (segmenta-
tion, nuclearity assignment, relation choice) forming training and evaluation sets, it
is hard to obtain a singe DT optimal for argument identification. Nevertheless, there
is a strong correlation between these noisy CDTs and a presence of a logical
argument.

Table 13.6 Investigation if deviation in CDT construction is dependent on the class being
separated

Source

Positive
training
set size

Negative
training
set size

Significantly deviating
DTs for Positive
training set, %

Significantly deviating
DTs for Negative
training set, %

Newspapers 30 30 15.4 � 4.60 21.3 � 3.85

Text style &
genre recogni-
tion dataset

40 40 18.2 � 5.21 20.7 � 4.84

Fact and feeling 25 25 22.3 � 4.92 16.9 � 5.40

Argument anno-
tated essays

30 30 19.6 � 3.43 17.5 � 4.27

486 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

13.4 Evaluation of Affective Argument Detection

13.4.1 Detecting Sentiments at the Discourse Level

Since reliable sentiment detection in an arbitrary domain is extremely hard, we focus
on a particular sentiment-related feature such as logical argumentation with a certain
polarity. We will observe how detection of the latter can help improve the perfor-
mance for detection of the former. We formulate sentiment detection problem at the
level of paragraphs. We only detect sentiment polarity.

It is well known that classifying sentiment on the basis of individual words can be
misleading because atomic sentiment carriers can be modified (weakened, strength-
ened, or reversed) based on lexical, discourse, or contextual factors. Words interact
with each other to yield an expression-level polarity. For example, the meaning of a
compound expression is a function of the meaning of its parts and of the syntactic
rules by which they are combined. Hence, taking account of more linguistic structure
than required by RST is what motivates our combination of these insights from
various discourse analysis models. Our hypothesis is that it is possible to calculate
the polarity values of larger syntactic elements of a text in a very accurate way as a
function of the polarities of their sub-constituents, in a way similar to the ‘principle
of compositionality’ in formal semantics. In other words, if the meaning of a
sentence is a function of the meanings of its parts then the global polarity of a
sentence is a function of the polarities of its parts. For example, we can attribute a
negative trait to the verb “reduce”, but a positive polarity in “reduce the risk” even
though “risk” is negative in itself (cf. the negative polarity in “reduce productivity”).
This polarity reversal is only captured once we extend the analysis beyond the
sentence level to calculate the global polarity of text as a whole. Hence any polarity
conflict is resolved as a function of the global meaning of text, based on textual and
contextual factors. The polarity weights are not properties of individual elements of
text, but the function of properties operating at the level of cohesion and coherence
relations latent in the syntactic, discourse and pragmatic levels of discourse analysis.

A number of studies has showed that discourse-related information can success-
fully improve the performance of sentiment analysis, For instance, one can reweigh
the importance of EDUs based on their relation type or depth (Hogenboom et al.
2015a) in the DT. Some methods prune the discourse trees at certain thresholds to
yield a tree of fixed depth between two and four levels. Other approaches train
machine learning classifiers based on the relation types as input features
(Hogenboom et al. 2015b). Most research in RDST for sentiments try to map the
DT structure onto mathematically simpler representations, since it is virtually
impossible to encode unstructured data of arbitrary complexity in a fixed-length
vector (Markle-Huß et al. 2017).

We use the following two sentences to show that the nucleus – satellite relation
does matter to determine a sentiment for an entity (Fig. 13.10).

13.4 Evaluation of Affective Argument Detection 487

[Although the camera worked well,][I could not use it because of the view-
finder] ¼> Negative sentiment about the camera

[The camera worked well], [although the viewfinder was inconvenient] ¼>
Positive sentiment about the camera

13.4.2 Dataset and Evaluation Setup

For evaluation of sentiment detection, we used a dataset of positive and negative,
genuine and fake travelers’ review of Chicago area hotels (Ott et al. 2013). The
authors compile the dataset for the purpose of differentiating between genuine and
fake reviews. It turns out that fakeness of a review is not strongly correlated with a
presence of a logical argument. Fake reviews, created by Mechanical Turn workers,
back up opinions of the authors in the same way real travelers do. The test corpus
contains four groups 400 reviews of 1–3 paragraphs each. 1) 400 truthful positive
reviews from TripAdvisor; 2) 400 deceptive positive reviews fromMechanical Turk;
3) 400 truthful negative reviews from Expedia, Hotels.com, Orbitz, Priceline,
TripAdvisor and 4) 400 deceptive negative reviews from Mechanical Turk.

As a baseline approach we use Stanford NLP Sentiment. We obtain the sentence-
level polarity and aggregate it to the paragraphs level. Usually if an opinion is
positive, the author just enumerates what she likes. However, if an opinion is
negative, in many cases the author would try to back it up, perform a comparison,
explanation, arguments for why he is right and his assessment is adequate.

Hence the rule for integration of a default and argumentation-based sentiment
detectors is as follows (Table 13.7). This rule is oriented towards the consumer
review data and would need modifications to better treat other text genres.

The case below is a borderline positive review, and it can easily be flipped to
become negative:

Fig. 13.10 Attempting to
find correlation between
nucleus-satellite occurrence
and sentiment polarity

488 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

http://hotels.com

Like all hotels in Chicago, this hotel caters to wealthy and/or business clients
with very high parking price. However, if you are aware of that prior to arrival, it’s
not a big deal. It makes sense to find a different place to park the car and bring your
own snacks for the room. It would be nice though if hotels such as the Swissotel had
a fridge in the room for guest use. Staff was very helpful. Overall, if I can get a good
rate again, I'll stay at the Swissotel the next time I am in Chicago.

This text looks overall like a negative review from the DT standpoint (Fig. 13.11).
Most reviews with similar DTs are negative.

Fig. 13.11 A DT for a borderline review: negative from the discourse point of view and neutral
from the reader’s standpoint

Table 13.7 Integration rule

Decision of a default sentiment
detector

Decision of a logical argument detector

0 (no argument)
1 (possibly some
argument)

2 (strong
argument)

�1 0 �1 �1

0 0 0 �1

+1 +1 +1 –1

13.4 Evaluation of Affective Argument Detection 489

13.4.3 Extending Compositionality Semantics Towards
Discourse

Let us look how the sentiment in first sentence is assessed by Semantic
Compositionality model (Socher et al. 2013, Fig. 13.12). Judging by individual
words and their composition, it is hard to understand that ‘high price’ have a
negative sentiment value here. In the movie database for training, ‘high’ is assigned
the positive sentiment, and most likely ‘high price’ is not tagged as negative. Even if
‘high price’ is recognized as negative, it would be hard to determine how the rest of
the tree would affect it, such as the phrase ‘wealthy and/or business clients’. Notice
that in the movie domain the words of this phrase are not assigned adequate
sentiments either.

It is rather hard to determine the sentiment polarity of this sentence alone, given
its words and phrasing. Instead, taking into account the discourse of the consecutive
sentences, the overall paragraph sentiment and the one of the given sentence can be
determined with a higher accuracy.

We state that sentiment analysis benefiting from the ‘compositional semantics’
insights would accurately assign polarity sentiment in the example above if the
analysis captures not only word ‘high’ (assigned negative sentiment polarity), phrase
‘high price’ (with negative sentiment polarity) or sentence level structure ‘Like all
. . . .price’ (where sentiment polarity is difficult to determine because we need to read
the whole text for a global sentiment polarity attribution). Sentiment analysis is
calculated based on global polarity, not dependent on individual elements of the
sentence, but more interestingly, on the discourse level structure (macro-structure).
For example, “high reliability” is neutral in “I want a car with high reliability”
because though it is a positive property, it does not refer to any specific car.

Fig. 13.12 A tree for a sentence showing compositional semantic approach to sentiment analysis

490 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

13.4.4 Evaluation Results

The baseline system (Socher et al. 2013) is trained on a different domain than the test
domain since our evaluation of sentiment detection is domain-independent.

The results of sentiment analysis achieved by the hybrid compositional semantics
and discourse analysis are shown in Table 13.8. In the first row we show the
accuracy of the baseline system on our data. In the second grayed row we show
the improvement by means of the hybrid system. This improvement is achieved by
discovering overall negative sentiment at the paragraph level in case of a recognized
presence of argumentation. In some of these cases the negative sentiment is implicit
and can only be detected indirectly from the discourse structure, where individual
words do not indicate negative sentiments.

We investigate a stand-alone SVM TK sentiment recognition system with various
representations (rows three to five). CDT representation outperforms parse thickets
and DT ones. With simpler representation which does not take into account
discourse-level information at all, sentiment recognition accuracy is fairly low (not
shown).

We also explored whether fake opinionated text have a different rhetoric structure
to a genuine one. (Jindal and Liu 2008) addressed the problem of detection of
disruptive opinion spam: obvious instances that are easily identified by a human
reader, e.g., advertisements, questions, and other irrelevant or non-opinion texts. (Ott
et al. 2011) investigated a potentially more insidious type of opinion spam such as
deceptive opinion spam, reviews that have been deliberately written to sound
authentic, in order to deceive the reader. Fake reviews were written by Amazon
Mechanical Turk workers. The instructions asked the workers to assume that they
are employed by a hotel’s marketing department, and to pretend that they are asked
to write a fake review (as if they were a customer) to be posted on a travel review
website; additionally, the review needs to sound realistic and portray the hotel in a
positive light. A request for negative reviews is done analogously.

Although our SVM TK system did not achieve (Ott et al. 2011, 2013) perfor-
mance of 90%, the task of detection of fake review texts was performed (at 76–77%
accuracy, two bottom greyed rows) by the universal text classification system, the
same which extracts arguments and assesses sentiments polarity.

Table 13.8 Evaluation of sentiment analysis

Data source and method Precision Recall F

Baseline (Stanford NLP) 62.7 68.3 65.38

Hybrid sentiment detector (Stanford NLP + SVM TK for CDT) 79.3 81.0 80.14

Sentiment detector via SVM TK for DT 67.5 69.4 68.44

Sentiment detector via SVM TK for CDT 69.8 68.3 69.04

Untruthful opinion data detector, positive reviews (SVM TK for
parse thicket)

81.2 74.9 77.92

Untruthful opinion data detector, negative reviews (for parse
thicket)

78.3 74.7 76.46

13.4 Evaluation of Affective Argument Detection 491

13.5 Assessing Validity of the Extracted Argument Patterns
via Dialectical Analysis

When a domain knowledge is available and formalized, the truthfulness of a claim
can be validated directly. However, in most environment it is unavailable and other
implicit means need to come into play, such as a writing style and a writing logic
which are domain independent. Hence we attempt to employ the discourse analysis
and explore which features of text validation can be leveraged.

In this section we focus on Customer Relationship Management (CRM) as an
important domain of chatbots. One of the trickiest areas of CRM, involving a
number of conflicting agents, is handling customer complaints (Galitsky and de la
Rosa 2011). In customer complaints, authors are upset with products or services they
received, as well as how it was communicated by customer support. Complainants
frequently write complaints in a very strong, emotional language, which may distort
the logic of argumentation and therefore make a judgment on complaint validity
difficult. Both affective and logical argumentation is heavily used.

We will build and evaluate the combined argument validity assessment system
that includes both the discourse structure extraction and reasoning about it with the
purpose of validation of the claim expressed in a chatbot utterance. In this section we
intend to build the whole argumentation pipeline, augmenting argument extraction
from text with its logical analysis. This pipeline is necessary to deploy an argumen-
tation analysis in a practical decision support system (Fig. 13.13):

Building this pipeline, we leverage two research areas: argument-mining, which
is a linguistic-based, and logical validation of an argument, which is logic based. To
the best of our knowledge, nowadays the former research area supports extracting
various kinds of arguments from text on a scale, and the latter research area focuses
on logical argumentation analysis of limited manually constructed argumentation
structures. The contribution of this section, the pipeline which implements the

Extract linguistic features

Build
discourse
tree

Text message

Form logical representation for clauses
extracted from discourse tree and
identify the main claim

Given the logical representation, confirm or reject the main
claim

Produce a decision on whether argumentation is acceptable
or not

Fig. 13.13 Claim validity
assessment pipeline

492 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

algorithms discovered in both of these research areas, allows to perform a logical
analysis of a high quantity of heated arguments extracted from text. Therefore,
industrial applications of mining and reasoning about arguments become possible.
Since this chapter combines linguistic and logical analyses, knowledge of both these
domains is required from the reader to follow the whole pipeline of understanding
arguments.

The concept of automatically identifying argumentation schemes was first
discussed in (Walton et al. 2008). In (Ghosh et al. 2014) authors investigate
argumentation discourse structure of a specific type of communication – online
interaction threads. Identifying argumentation in text is connected to the problem
of identifying truth, misinformation and disinformation on the web (Pendyala and
Figueira 2015, Galitsky 2015, Pisarevskaya et al. 2017). In (Lawrence and Reed
2015) three types of argument structure identification are combined: linguistic
features, topic changes and machine learning.

13.5.1 Building a Defeasible Logic Program

To convince an addressee, a message needs to include an argument and its structure
needs to be valid. Once an argumentation structure extracted from text is represented
via CDT, we need to verify that the main point (target claim) communicated by the
author is not logically attacked by her other claims. To assess the validity of the
argumentation, a Defeasible Logic Programming (DeLP) approach is selected, an
argumentative framework based on logic programming (García and Simari 2004;
Alsinet et al. 2008), and present an overview of the main concepts associated with it.

A DeLP is a set of facts, strict rules Π of the form (A:-B), and a set of defeasible
rules Δ of the form A-<B, whose intended meaning is “if B is the case, then usually
A is also the case”. Let P ¼ (Π, Δ) be a DeLP program and L a ground literal.

Let us now build an example of a DeLP for legal reasoning about facts extracted
from text (Fig. 13.14). A judge hears an eviction case and wants to make a judgment
on whether rent was provably paid (deposited) or not (denoted as rent_receipt). An
input is a text where a defendant is expressing his point. Underlined words form the
clause in DeLP, and the other expressions form the facts.

The landlord contacted me, the tenant, and the rent was requested. However, I
refused the rent since I demanded repair to be done. I reminded the landlord
about necessary repairs, but the landlord issued the three-day notice confirming
that the rent was overdue. Regretfully, the property still stayed unrepaired.

CDT for this text is shown in Fig. 13.15. The structure of CDT is necessary to detect
if a claim is being made in this text, and how facts are inter-connected. Subjects of
communicative actions yield Facts from text section of the DeLP.

13.5 Assessing Validity of the Extracted Argument Patterns via Dialectical Analysis 493

Defeasible Rules Prepared in Advance

rent_receipt -< rent_deposit_transaction.
rent_deposit_transaction -< contact_tenant.
┐rent_deposit_transaction -< contact_tenant,

three_days_notice_is_issued.
┐rent_deposit_transaction -< rent_is_overdue.
┐repair_is_done -< rent_refused, repair_is_done.
repair_is_done -< rent_is_requested.
┐rent_deposit_transaction -<

tenant_short_on_money, repair_is_done.
┐repair_is_done -< repair_is_requested.
┐repair_is_done -< rent_is_requested.
┐repair_is_requested -< stay_unrepaired. ┐repair_is_done -

< stay_unrepaired.
Target Claim to be Assessed
? – rent_receipt
Clauses Extracted from text
repair_is_done -< rent_refused.
Facts from text
contact_tenant. rent_is_requested. rent_refused. remind_about_repair.

three_days_notice_is_issued.
rent_ is_overdue. stay_unrepaired.

A defeasible derivation of L from P consists of a finite sequence L1, L2, . . .,
Ln ¼ L of ground literals, such that each literal Li is in the sequence because:

(a) Li is a fact in Π, or

Defeasible Rules Prepared In Advance
rent_receipt -< rent_deposit_transaction.
rent_deposit_transaction -< contact_tenant.
┐rent_deposit_transaction -<contact_tenant,

three_days_notice_is_issued.
┐rent_deposit_transaction -< rent_is_overdue.
┐repair_is_done -< rent_refused, repair_is_done.
repair_is_done -< rent_is_requested.
┐rent_deposit_transaction -<

tenant_short_on_money, repair_is_done.
┐repair_is_done -< repair_is_requested.
┐repair_is_done -<rent_is_requested.
┐repair_is_requested -< stay_unrepaired. ┐repair_is_done -< stay_unrepaired.
Target Claim to be Assessed
? - rent_receipt
Clauses Extracted from text
repair_is_done -< rent_refused.
Facts from text
contact_tenant. rent_is_requested. rent_refused. remind_about_repair. three_days_notice_is_issued.
rent_ is_overdue. stay_unrepaired.

Fig. 13.14 An example of a Defeasible Logic Program for validating a claim

494 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

(b) there exists a rule Ri in P (strict or defeasible) with head Li and body B1, B2, . . .,
Bk and every literal of the body is an element Lj of the sequence appearing before
Lj (j < i).

Let h be a literal, and P ¼ (Π, Δ) a DeLP program. We say that <A, h> is an
argument for h, if A is a set of defeasible rules of Δ, such that:

1. there exists a defeasible derivation for h from (Π [A);
2. the set (Π [A) is non-contradictory; and

Fig. 13.15 Text of a complaint and its CDT which yields DeLP

13.5 Assessing Validity of the Extracted Argument Patterns via Dialectical Analysis 495

3. A is minimal: there is no proper subset A0 of A such that A0 satisfies conditions
(1) and (2).

Hence an argument <A, h> is a minimal non-contradictory set of defeasible rules,
obtained from a defeasible derivation for a given literal h associated with a
program P.

We say that <A1, h1> attacks <A2, h2> iff there exists a sub-argument <A, h> of
<A2, h2> (A � A1) such that h and h1 are inconsistent (i.e. Π [{h, h1} derives
complementary literals). We will say that <A1, h1> defeats<A2, h2> if <A1, h1>
attacks <A2, h2> at a sub-argument <A, h> and <A1, h1> is strictly preferred (or not
comparable to) <A, h>. In the first case we will refer to <A1, h1> as a proper
defeater, whereas in the second case it will be a blocking defeater. Defeaters are
arguments which can be in their turn attacked by other arguments, as is the case in a
human dialogue. An argumentation line is a sequence of arguments where each
element in a sequence defeats its predecessor. In the case of DeLP, there are a
number of acceptability requirements for argumentation lines in order to avoid
fallacies (such as circular reasoning by repeating the same argument twice).

Target claims can be considered DeLP queries which are solved in terms of
dialectical trees, which subsumes all possible argumentation lines for a given query.
The definition of dialectical tree provides us with an algorithmic view for discover-
ing implicit self-attack relations in users’ claims. Let <A0, h0> be an argument (target
claim) from a program P. A dialectical tree for <A0, h0> is defined as follows:

1. The root of the tree is labeled with <A0, h0>
2. Let N be a non-root vertex of the tree labeled <An, hn> and Λ ¼ [<A0, h0>, <A1,

h1>, . . ., <An, hn>] (the sequence of labels of the path from the root to N). Let
[<B0, q0>, <B1, q1>, . . ., <Bk, qk>] all attack <An, hn>.

For each attacker <Bi, qi> with acceptable argumentation line [Λ,<Bi, qi>], we
have an arc between N and its child Ni.

A labeling on the dialectical tree can be then performed as follows:

1. All leaves are to be labeled as U-nodes (undefeated nodes).
2. Any inner node is to be labeled as a U-node whenever all of its associated children

nodes are labeled as D-nodes.
3. Any inner node is to be labeled as a D-node whenever at least one of its associated

children nodes is labeled as U-node.

After performing this labeling, if the root node of the tree is labeled as a U-node, the
original argument at issue (and its conclusion) can be assumed as justified or
warranted.

In our DeLP example, the literal rent_receipt is supported by <A, rent_receipt>¼
<{ (rent_receipt -< rent_deposit_transaction), (rent_deposit_transaction -<
tenant_short_on_money)}, rent_receipt> and there exist three defeaters for it with
three respective argumentation lines: <B1, ┐rent_deposit_transaction> ¼ <
{(┐rent_deposit_transaction -<

496 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

tenant_short_on_money, three_days_notice_is_issued)},
rent_deposit_transaction>.

<B2,┐rent_deposit_transaction> ¼
<{(┐ rent_deposit_transaction -<
tenant_short_on_money, repair_is_done), (repair_is_done -< rent_refused)},

rent_deposit_transaction>.
<B3, ┐rent_deposit_transaction> ¼ <{(┐rent_deposit_transaction -

< rent_is_overdue)}, rent_deposit_transaction>. The first two are proper
defeaters and the last one is a blocking defeater. Observe that the first argument
structure has the counter-argument, <{rent_deposit_transaction -<

tenant_short_on_money},
rent_deposit_transaction), but it is not a defeater because the former is more

specific. Thus, no defeaters exist and the argumentation line ends there.
B3 above has a blocking defeater <{(rent_deposit_transaction -<
tenant_short_on_money)},
rent_deposit_transaction> which is a disagreement sub-argument of <A,

rent_receipt > and it cannot be introduced since it gives rise to an unacceptable
argumentation line. B2 has two defeaters which can be introduced: <C1,
┐repair_is_done >, where C1 ¼ {(┐repair_is_done - < rent_refused,

repair_is_done),
(repair_is_done -< rent_is_requsted)}, a proper defeater, and <C2, ┐repair_is_done

>, where C2 ¼ {(┐repair_is_done -< repair_is_requested)} is a blocking
defeater. Hence one of these lines is further split into two; C1 has a blocking
defeater that can be introduced in the line

<D1, ┐repair_is_done >, where D1 ¼ <{(┐repair_is_done -< stay_unrepaired)}.
D1 and C2 have a blocking defeater, but they cannot be introduced because they
make the argumentation line inacceptable. Hence the state rent_receipt cannot be
reached, as the argument supporting the literal rent_receipt, is not warranted. The
dialectical tree for A is shown in Fig. 13.16.

Fig. 13.16 Dialectical tree for target claim rent_receipt

13.5 Assessing Validity of the Extracted Argument Patterns via Dialectical Analysis 497

Having shown how to build a dialectic tree, we are now ready to outline the
algorithm for validation of the domain-specific claims for arguments extracted from
a chat utterance:

1. Build a DT from input text;
2. Attach communicative actions to its edges to form CDT;
3. Extract subjects of communicative actions attached to CDT and add to ‘Facts’

section;
4. Extract the arguments for rhetorical relation Contrast and communicative actions

of the class disagree and add to ‘Clauses Extracted FromText’ section;
5. Add a domain-specific section to DeLP;
6. Having the DeLP formed, build a dialectical tree and assess the claim.

We used (Tweety 2016) system for DeLP implementation.

13.5.2 Evaluation of Validation of Arguments

In this section we evaluate the argument validation task as a result of the whole
argument validation pipeline: first arguments are detected by linguistic means, then
subject to logical representation and claim validation by logical means.

We form the dataset of 623 legal cases scraped from Landlord vs Tenant (2018).
www.landlordvtenant.com. Each year this website provides more than 700 summa-
ries of recent landlord-tenant court cases and agency decisions. Landlord v. Tenant
covers more than a dozen courts and agencies, including the NYC Civil Court, NYS
Division of Housing and Community Renewal (DHCR), NYC Environmental
Control Board, and many more. The website allows users to get access to their
dynamic database of cases that go back to 1993 and the New York Landlord
v. Tenant newsletter archives, as well as to run searches for designated case
summaries. Full-text case decisions and opinion letters are also available from this
source.

A typical case abstract is like the following:

https://www.landlordvtenant.com/article/tenants-complaint-regarding-janito
rial-services-was-too-vague

Tenants complained of a reduction in building-wide services. They said that
the building super didn’t make needed repairs as requested and that
landlord had refused to perform repairs in their apartment. They also
complained about building accessibility issues. Among other things, the
building side door walkway was reconstructed and made narrower. This
made it hard to navigate a wheelchair through that doorway. The DRA
ruled against tenants, who appealed and lost.

498 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

http://www.landlordvtenant.com
https://www.landlordvtenant.com/article/tenants-complaint-regarding-janitorial-services-was-too-vague
https://www.landlordvtenant.com/article/tenants-complaint-regarding-janitorial-services-was-too-vague

Firstly, we extract sentences containing argumentation and then attempt to find a
claim being communicated, from out DeLP ontology. The claim to be validated in
the above example is repair_is_done. We then subject this claim to validation. We
obtain the claim validity value from the tags on the web page assigned by the judge
who heard the case, such as rent_reduction_denied.

For the argument detection task, we use this landlord vs tenant as a positive
training set. As a negative dataset, we use various text sources which should contain
neither argumentation nor opinionated data. We used Wikipedia, factual news
sources, and also the component of (Lee 2001) dataset. Further details on the
negative, argumentation-free data sets are available in Galitsky et al. (2018) and
Chap. 10.

A baseline argument detection approach relies on keywords and syntactic features
to detect argumentation (Table 13.9). Frequently, a coordinated pair of communica-
tive actions (so that at least one has a negative sentiment polarity related to an
opponent) is a hint that logical argumentation is present. This naïve approach is
outperformed by the top performing TK learning CDT approach by 29%. SVM TK
of CDT outperforms SVM TK for RST þ CA and RST þ full parse trees (Galitsky
2017) by about 5% due to noisy syntactic data which is frequently redundant for
argumentation detection.

SVM TK approach provides acceptable F-measure but does not help to explain
how exactly the affective argument identification problem is solved, providing only
final scoring and class labels. Nearest neighbor maximal common sub-graph algo-
rithm is much more fruitful in this respect (Galitsky et al. 2015). Comparing the
bottom two rows, we observe that it is possible, but infrequent to express an affective
argument without CAs.

Assessing logical arguments extracted from text, we were interested in the cases
where an author provides invalid, inconsistent, self-contradicting claims. That is
important for chatbot as a front end of a CRM systems focused on customer retention
and facilitating communication with a customer (Galitsky et al. 2009). The domain
of residential real estate complaints was selected and a DeLP thesaurus was built for
this domain. Automated complaint processing system can be essential, for example,
for property management companies in their decision support procedures
(Constantinos et al. 2003).

Table 13.9 Evaluation results for detection of a claim being communicated with argumentation in
Landlord vs Tenant case texts

Method/sources P R F1

Bag-of-words 53.1 56.8 54.89

WEKA-Naïve Bayes 60.1 58.8 59.44

SVM TK for RST and CA (full parse trees) 75.7 75.5 75.60

SVM TK for DT 61.2 63.8 62.47

SVM TK for CDT 81.9 77.5 79.64

13.5 Assessing Validity of the Extracted Argument Patterns via Dialectical Analysis 499

In our validity assessment we focus on target features related to how a given
complaint needs to be handled, such as compensation_required,
proceed_with_eviction, rent_receipt and others.

Validity assessment results are shown in Table 13.10. In the first and second
rows, we show the results of the simplest complaint with a single rhetorical relation
such as Contrast and a single CA indicating an extracted argumentation attack
relation respectively. In the third and fourth rows we show the validation results
for legal cases with two non-default rhetorical relations and two CAs of the dis-
agreement type, correspondingly. In the fifth row we assess complaints of average
complexity, and in the bottom row, the most complex, longer complaints in terms of
their CDTs. The third column shows detection accuracy for invalid argumentation in
complaints in a stand-alone argument validation system. Finally, the fourth column
shows the accuracy of the integrated argumentation extraction and validation
system.

In our validity assessment, we focus on target features (claims) related to what
kind of verdict needs to be issued, such as compensation_required,
proceed_with_eviction, rent_receipt and others. System decision is determined by
whether the identified claim is validated or not: if it is validated, then the verdict is in
favor of this claim, and if not validated, the system decides against this claim.

In these results recall is low because in the majority of cases the invalidity of
claims is due to factors other than being self-defeated. Precision is relatively high
since if a logical flaw in an argument is established, most likely the whole claim is
invalid because other factors besides argumentation (such as false facts) contribute
as well. As complexity of a complaint and its discourse tree grows, F1 first improves
since more logical terms are available and then goes back down as there is a higher
chance of a reasoning error due to a noisier input.

For decision support systems, it is important to maintain a low false positive rate.
It is acceptable to miss invalid complaints, but for a detected invalid complaint,
confidence should be rather high. If a human agent is recommended to look at a
given complaint as invalid, her expectations should be met most of the time.
Although F1-measure of the overall argument detection and validation system is
low in comparison with modern recognition systems, it is still believed to be usable
as a component of a CRM decision-support system.

Table 13.10 Evaluation results for the whole argument validation pipeline

Types of complaints P R
F1 of
validation

F1 of
integrated

Single rhetoric relation of type Contrast 87.3 15.6 26.5 18.7

Single communicative action of type disagree 85.2 18.4 30.3 24.8

Couple of rhetorical relation including Contrast, Cause,
Temporal, Attribution

86.2 22.4 35.6 23.9

Couple of rhetorical relation above plus couple of com-
munication actions disagree, deny responsibility, argue

82.4 20.7 33.1 25.1

Two or three specific relations or communicative actions 80.2 20.6 32.8 25.4

Four and above specific relations or communicative actions 86.3 16.5 27.7 21.7

500 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

13.6 Assessment of Text Integrity

When text is selected to be indexed for a QnA bot, there are certain text quality
requirements. Integrity is one such requirement, an important property of text in
terms of style, communication quality, trust and overall reader impression. Besides
chatbot, text integrity assessment is an important NLP task for customer relationship
management, automated email answering, text quality analysis, spam detection,
disinformation and low quality content, as well as other domains. Text integrity
assessments helps in recognizing a mood of an author, the implicit intent of his
message, trustworthiness of the subject being communicated, and can assist in a
decision on how to react to this message.

Text integrity is high when the author provides an acceptable argumentation for
his statements; sufficient details are shared to substitute the claims. The text looks
truthful and cohesive: entities are first defined when introduced, and then related to
each other. Text is authoritative: it sounds valid and can be trusted even by a reader
unfamiliar with given knowledge domain.

Text integrity is low when flaws in argumentation and communication can be
detected. A reader can identify missing pieces of information, and claims are not
substituted. If there are problems in text cohesiveness, it is hard to believe in what is
being communicated. There is a noticeable inconsistency in writer’s logic and also in
writer’s discourse representing a complaint scenario.

In this section we focus on such area of text integrity assessment as validity of a
customer complaint. Complaint processing is a field of customer relationship man-
agement where an automated system needs to “comprehend” a textual complaint and
to make a decision on how to react to it. Complaints fall into two classes:

• Complaints with proper text integrity. These complaints need to be trusted, and
the customer needs to be compensated in one or another way. We refer to this
class as valid complaints.

• Complaints with issues in text integrity. These complaints cannot be trusted, they
do not read as genuine description of how a complainant was communicating his
case with his opponents.

For the domain of customer complaints, these are the text features we want the
validity assessment to be independent of: quality of writing, language grammar,
professionalism using language, writing creativity, educational background, famil-
iarity with topic, emotional state. The task is to identify the cases of “artificial”
complaints with plausible facts but faulty discourse (invalid class), and also the cases
of genuine dissatisfaction with a product written poorly in grammar and style (valid
class).

In Galitsky et al. (2009) we represented complaints as graphs and learned these
graphs to classify complaints into the classes of valid and invalid. Complainants
were inputting complaints via a form with the focus on the structure of communi-
cative actions-based dialogue, to avoid NLP analysis. Since then, performance of
sentiment analysis and rhetorical parsers has dramatically increased, and a discourse
structure of text to be learned can be formed from text automatically. Taking into

13.6 Assessment of Text Integrity 501

account the discourse structure of conflicting dialogs, one can judge on the validity
of these dialogs. In this work we will evaluate the combined system, discourse
structure extraction and its learning.

Text integrity is tightly connected with how the author estimates attitudes and
actions of himself and his opponents (what we call a sentiment profile) on one hand,
and how proper the author composes discourse structure, on the other hand. In the
hostile/contradictory/controversial environments, it is hard for an author to objec-
tively reflect the state of affairs, adequately describe opinions of his opponents. In
this case, a consistent presentation of sentiments associated with proponents and
opponents is an important component of text integrity.

It is also hard to make an assessment for a given text in a stand-alone mode, and
we built a training set of complaints manually tagged as valid or invalid.

As most of the studies of text coherence indicate, the determining features are
those of discourse. Intuitively, text integrity is high if sentiments are neutral,
consistently positive or consistently negative. Communicative actions need to
form a plausible sequence (Galitsky et al. 2013). Argumentative patterns, which
are reflected via rhetorical structure of text, need to be acceptable as well.

This is our first example of a complaint which is very emotional. However it is
hard to see integrity flaws here.

Valid complaint:

I placed an order on your system. I used a $50 gift card. My total was $50 card
and a promo code for 1 cent shipping bringing my total to 5.67.

I later checked my bank account and noticed a charge for 25.99. I called your
customer service department and got the most unusual explanation. I was
told that they had to charge me for the cost of the basket that was covered
by the gift card. They kept saying it was pre authorized. I only authorized
5.67 to be charged from my card. Your explanation makes no sense. You
have committed bank fraud! I will tell everyone I know not to order from
you. You people are thieves! I don’t even know where to start. How do you
make it up to someone when you steal from them?

In our second example, the complaint author has an issue with defeating his own
claims.

Invalid complaint:

I explained that I made a deposit, and then wrote a check, which bounced due
to a bank error. A customer service representative confirmed that it usually
takes a day to process the deposit. I reminded that I was unfairly charged
an overdraft fee a month ago in a similar situation.

(continued)

502 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

They explained that the overdraft fee was due to insufficient funds as disclosed
in my account information. I disagreed with their fee because I made a
deposit well in advance and wanted this fee back. They denied responsi-
bility saying that nothing can be done at this point. They also confirmed
that I needed to look into the account rules closer.

Most complaints are very emotional. By the way people express their anger and
dissatisfaction we can judge whether a given complaint follows the common sense
and valid arguments, or is driven just by emotions. A complaint is invalid if:

• all actions associated with an opponent have negative polarity;
• all actions of both opponent and proponent have negative polarity;
• a positive (from the complainant’s standpoint) action of an opponent is followed

by a negative action of the proponent: They thoroughly explained, but I would not
follow the explanation because I knew.

13.6.1 Discourse Structure and Text Integrity

For the invalid complaint above, we compare three representations:

1. Argument profile. We identify portions of text which may defeat what was
previously stated (by either proponent or opponent). Valid arguments are direct
indicators of high text integrity.

2. Dialogue structure. We identify who (proponent or opponent) stated what via
which communicative actions (informing, explaining, agreeing, disagreeing,
etc.). Valid communication style is an adequate indicator of text integrity,
however not as strong as argumentation patterns.

3. Rhetorical structure. We analyze a tree of rhetorical relations between portions of
text, the DT. This is the only structural representation which can be automatically
extracted from an arbitrary text, although with limited reliability.

Attack relations in the invalid complaint are shown in arrows on the top of
Fig. 13.17, and a graph representation of a conflict scenario – on the bottom.
Nodes are labels with CAs and edges denote a temporal sequence as well as a
connection between CAs. Bolded edges indicate that the subject of CA is retained,
and regular edges – that the next CA (new request or response) changed the subject.
Curly arcs show attack relation (Sect. 13.5).

Figure 13.18 contains the CDT representation of the same text. Notice that not all
features encoded in Fig. 13.17 are visible in CDT representation, nevertheless, the
latter is significantly richer in representing the logic of dialogue as expressed in text.

Note the correspondence between the first part of the complaint dialogue and the
graph: the same thing that was confirmed had been previously explained (thick

13.6 Assessment of Text Integrity 503

edge), and another (different) thing was later on reminded (thin edge). Note that first
two sentences (and the respective subgraph comprising two vertices) are about the
current transaction (deposit), three sentences after (and the respective subgraph
comprising three vertices) the customer addresses the unfair charge, and the cus-
tomer’s last statement is probably related to both issues above. Hence the vertices of
two respective subgraphs are linked with thick arcs: explain-confirm and remind-
explain-disagree. The underlined expressions help to identify where conflicts in the
dialogue arise. Thus, the company’s claim as disclosed in my account information
attacks the customer’s assertion due to a bank error. Similarly, the expression “I
made a deposit well in advance” attacks the statement “it usually takes a day to
process the deposit” (makes it non-applicable). The former attack has the intuitive
meaning “existence of a rule or criterion of procedure attacks an associated claim of
an error”, whereas the latter would have the meaning “the rule of procedure is not
applicable to this particular case”.

13.6.2 Sentiment Profile of a Dialogue

We will learn a sentiment profile as a set of parse trees with some nodes having
additional labels for sentiment polarity. If a sentiment profile is similar to the one of

Fig. 13.17 The structure of communicative actions and arguments for invalid complaint above

504 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

positive dataset of valid complaints and dissimilar to all of the elements of the dataset
of invalid complaints, we classify the respective complaint as valid (and the text as
having high integrity).

Fig. 13.18 CDT for invalid complaint above

13.6 Assessment of Text Integrity 505

Figure 13.19 depicts the sentiment profile for sentences 6..14 of the above text of
a valid complaint. For the sentences 1..5 the polarity is zero. We can see that each
sentence has a negative sentiment attached to both the proponent’s own mental
attitudes, and also proponent actions. This looks like a genuine monotonic negative
profile which is a result of dissatisfaction with the service.

For the invalid complaint we have the negative sentiment associated with the
action of an opponent, and a neutral sentiment associated with the action of the
proponent. On its own, the sentiment profile does not indicate a problem in text
integrity here: one needs to look further into the argument structure of how the
proponent argues that he is right and his opponent is wrong. Overall, it is acceptable
to have sentiment going up or down in the course of a dialogue. However, if ups and
downs are intermittent and the sentiment profile is oscillating, then the dialogue is
odd, possibly implausible, and should be avoided as a source of information, or a
dialogue to learn responses from.

A chatbot can analyze sentiment profile while preparing / selecting a content for
indexing to provide answers, and also to assess its own conversation. A chatbot can

Fig. 13.19 Sentiment profile of a valid complaint

506 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

set a goal to improve user mood, to solve her problem, and therefore measure the
sentiment of user utterances. On the other hand, if both chatbots’ responses and user
ones are associated with both positive and negative sentiment, the sentiment profile
of the whole conversation becomes nontrivial. A sentiment profile with high oscil-
lation would indicate that the chatbot selects answers with inappropriate sentiments,
and its answer selected algorithm should be updated.

Intensity of linguistic expressions for emotions has been the subject of extensive
psychological studies (Kent and Nicholls 1977; Rouhana and Bar-Tal 1998); we
base our categorization of emotions and qualitative expression for emotion intensity
in these studies. We apply computational treatment to our observations in the
domain of customer complaints (Galitsky et al. 2009) that emotions are amplified
by communicative actions. For example, the expression ‘I was upset because of him’
is considered to express a weaker intensity of emotion than the expression ‘He
ignored my request and I got upset’ with communicative actions request-upset. In
our formal representation of the latter case the communicative action ignore is
substituted into the emotion upset as the second parameter:

upset(i, ignore(he, request(i,_))). Emotional profile of a textual scenario includes
one or more expressions in predicates for emotions, communicative actions and
mental states for each sentence from this scenario mentioning emotional state.
Moreover, we compute the intensity of emotion for each such sentence.

Intensity of an emotion (or sentiment) for a sentence depends on the following
factors:

1. The category of emotion (e.g. satisfaction (value ¼ 0), warning, distress, threat
(value ¼ 1)), formed following the relevant psychological studies (Oatley and
Jenkins 1996);

2. Attachment of communicative action which amplifies the intensity of emotion by
providing explicit explanation of its cause;

3. Occurrence of multiple emotions per sentence.

We have derived a numerical expression to calculate an emotional intensity for
each sentence taking into account the above factors (we will discuss it informally in
this chapter). Hence building an emotional profile as expression in predicates leads
to a quantitative expression for how the total intensity of emotions evolves through
the scenario. We call this numerical sequence an intensity profile.

To access the emotion level of the whole scenario, we track the evolution of the
intensity of emotions. If it goes up and then goes down, one may conclude that a
conflict occurred, and then has been resolved. A monotonous increase of emotion
intensity would happen in case of an unresolved conflict (dispute). Conversely, a
decrease in intensity means that involved parties are coming to an agreement. An
oscillating intensity profile indicates more complex pattern of activity, and in most
cases, it reveals a strong emotional distress.

Example of an email message where a detection of emotional distress could
prevent a would-be terrorist attack is shown in Fig. 13.20. On the left: selected
fragments where emotions are shown in bold and expressions which amplify them –

in italic bold. On the right: sentiment profile, negative to positive from left to right.

13.6 Assessment of Text Integrity 507

This email is a fragment of correspondence between a would-be British suicide
bomber (BBC 2005) and his relatives, who have been charged in connection to
failing to notify authorities of a potential terrorist attack. We believe if a system, like
described in the current paper, were available and could have been applied to the
email below, an emotional distress would be detected and a terrorist attack attempt
could have been prevented.

We show expressions for emotions in bold and associated expressions for com-
municative actions or mental states in bold italic. As the reader observes, the
sentiment profile in this email is very peculiar. Primarily, there are very strong
oscillations of the emotional intensity. The value of the sentiment profile is neutral
in the beginning of message, stays negative in the middle portion of it and starts
oscillating, becomes very volatile towards the end of the message.

There are multiple forms of expressions whose meanings can be classified as
communicative actions or mental states; this example is a good illustration for how
expressions indicating emotions are amplified. Also, one can see that a composi-
tional occurrence of emotions amplifies their individual sentiment intensity (some-
one is happy that you are happy).

A parse tree for the second sentence in Fig. 13.20 is shown in Fig. 13.21. ETAP-3
visualization is used (Boguslavsky et al. 2004). Indications of emotion-based senti-
ments are shown in small ovals, we extract the words with explicit meanings for
emotion (firm, weak, emotional) and the one that has a meaning of emotion because
of the particular way it occurs in the sentence (focus in a passive voice). Sentiment
indicators via emotions weak, emotional are amplified by the expression no time to

Fig. 13.20 Example of an email message where a detection of emotional distress could prevent a
would-be terrorist attack

508 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

be (shown by a larger oval) with the meaning I encourage you to be, which is an
imperative communication state.

13.6.3 Evaluation of Text Integrity Assessment

We used our intense argumentation dataset of 400 complaints to discover features
determining text integrity. The baseline for our evaluation is a set of pure syntactic
features (a set of parse trees for the text).

We conclude that the most important source of data for text integrity assessment
is the set of Presentational relations, which include Antithesis, Background, Con-
cession, Enablement, Evidence, Justification, Motivation, Preparation, and Restate-
ment. Proper order of these relations is a determining feature for text integrity. This
source works when anaphora information is available (without it a sentiment or a
communicative actions is not properly attached to a proponent/opponent).

The other sources are enumerated in the order of importance (taking into account
both learning approaches):

• RST-Subject Matter (such as Circumstance, Condition, Elaboration, Evaluation,
Interpretation, Means, Non-volitional Cause, Non-volitional Result, Otherwise,
Purpose, Solutionhood, Unconditional, Unless, Volitional Cause/Result.)

• Sentiment profile
• Multinuclear RST (such as Conjunction, Contrast, Disjunction, Joint, List,

Multinuclear Restatement, Sequence

Fig. 13.21 A Parse Tree for a sentence in a text with oscillating sentiment profile. A sentiment
expressed by an emotion is amplified by a negation over quantification expression no time to be

13.6 Assessment of Text Integrity 509

We observe that SVM TK insignificantly outperforms PT kNN for most sources
(Table 13.11). In this section we do not evaluate a manual improvement to PT kNN
by focusing on selecting particular subgraphs critical for relating a text to a class.
These subgraphs are formed as a result of a manual analysis of the most frequent
maximal common class-determining subgraphs. After manual feature engineering,
we expect PT kNN to outperform SVM TK at least in specific domains.

Sentiment profiles determine the text validity in a significantly lesser degree than
presentational RST relation, at least in the domain of customer complaints. In spite
of the fact that both rhetorical relations and sentence-level sentiments have low
accuracy of detection (below 50%), the former turned out to be significantly stronger
correlated with text integrity compared to the latter.

13.7 Tackling Noisy Discourse Trees

Application of traditional NLP techniques to user-generated data gives lower accu-
racy. User-generated content is a noisy one, and for processing noisy data certain
degree of abstraction and ascent to a higher-level of analysis seems to be beneficial.
In this section we explore how high-level discourse analysis of user generated
content (UGC) can be leveraged by a number of applications where traditional
NLP techniques have a limited value.

Although discourse parsers rely on syntactic information, we expect them to
perform reasonably well even when this information such as POS tags and syntactic
trees are incomplete and noisy (van der Wees et al. 2015). To further overcome this

Table 13.11 Evaluation of text integrity assessment in two learning settings, and relying on
various discourse features

Method/sources Precision Recall
F-
measure

Improvement
over baseline

SVM TK parse trees 59.2 63.8 61.4 1.00

SVM TK extended parse trees with anaphora
only

64.5 65.7 65.1 1.06

SVM TK extended parse trees with anaphora
and sentiment profiles

68.2 64.9 66.5 1.08

SVM TK extended parse trees with anaphora
and RST presentational

73.4 67.3 70.2 1.14

SVM TK extended parse trees with anaphora
and RST presentational+ subject matter

78.1 73.4 75.7 1.23

SVM TK extended parse trees with anaphora,
RST (full) and sentiment profile

83.6 75.1 79.1 1.29

Unconnected parse trees 58.7 67.1 62.6 1.00

PT with anaphora only 63.4 66.2 64.8 1.03

PT with anaphora and sentiment profiles 76.3 70.3 73.2 1.17

PT with anaphora and RST 82.3 75.8 78.9 1.26

510 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

noisiness problem, we augment discourse trees with speech acts extracted from text
to better represent the structure of what UGC authors communicate and in
which way.

Slightly different texts might produce rather different DTs, and conversely, totally
unrelated texts can produce the same DT even if the flow of rhetorical relations is not
fully identical. DT parsers produce differences, which are not necessarily anchored
in true discourse facts. To overcome this problem, we rely on CDTs, which in
addition to relation between fragments of texts connected with rhetorical relations
(Mann et al. 1992), have special labels related to speech acts used by participants of a
scenario to present a given rhetorical relation to the reader of the text.

Texts used in most experiments on discourse parsers are either written by
professional writers or produced by students learning English. Discourse transitions
in these texts are expected to be more frequently associated with explicit discourse
markers, because the authors are trained to write in this way so that their writing can
be understood more easily (Feng and Hirst 2012). Customer reviews are frequently
either too positive or too negative, and rhetorical relations such as Contrast and
Comparison which would indicate text truthfulness, validity, authenticity are very
rare. Discourse connectives are rarely adopted in the UGC writing.

The following is a UGC example in the medical domain:

She is believed to be very friendly with her patient‘s visit schedule when I
needed to come on short notice.

Dr. Jones and her assistants are all very welcoming and have a good
knowledge with tons of experience and always give me proper medical
recommendations.

Her office is very inviting unlike some other doctor clinics and this to puts me
at ease once I am in.

Most of the reviews are formed by the description of several facts presented in a
sequence of sentences, whose internal discourse relations seem to be relatively loose.
The major bottleneck for the currently available discourse parsers is identification of
rhetorical relations without explicit discourse cues. Considering the UGC above, no
interesting relation, other than multiple Elaboration relations, can be found. There-
fore, noisy texts such as customer reviews are a difficult type of text for discourse
parsers, and its unreliable performance has a negative influence on NLP results.
Specific means of building CDTs for UGC are required.

We have explored the contribution of discourse analysis of UGC in the problems
of Content validity (authenticity, soundness, proper communication) in Sect. 13.5. It
is rather hard to assess the style features of a grammatically incorrect text based on its
syntactic features. The degree of grammar deviation from normal is not a good
indicator of content validity. It is also hard to form explicit rules for how text style
corresponds to its validity, therefore a training set-based approach seems to be more
plausible. An interesting and systematic example here are customer complaints,
where the task of a customer support agent is to differentiate between valid, sound

13.7 Tackling Noisy Discourse Trees 511

complaints requiring attention from invalid, fake ones where a user is in a bad mood
or just intends to receive a compensation.

If a text is shorter than a paragraph, such as Twitter, discourse-level analysis is
believed to be inappropriate. Blogs, emails, chats and tweets possess features of
spoken language, such as interjections, ellipses, and phonological variation
(Jørgensen et al. 2015), therefore it is worth to include speech-act related information
into a formal representation of a paragraph.

If a syntactic parser experiences a difficulty parsing a given sentence, it seems
wise to remove this whole sentence when applying discourse parser, or at least
remove phrases suspected to be grammatically incorrect and be the cause of parsing
errors. If for example a syntactic parser encounters a problem with named entities,
they can be safely omitted from the resultant rhetorical parse. For a phrase entity e1 is
such but entity e2 is something else one can safely determine EDUs and rhetorical
relation of Contrast even if e1 and e1 are misspelled, have wrong cases, abbreviated
in a wrong way or belong to a language other than English.

To overcome a lack of proper parsing of certain sentences in a paragraph, we
build what we call noisy-text robust communicative discourse tree NCDT by
removing problematic sentence or phrase from a paragraph one-by-one and deriving
CDT for each reduced version of a paragraph. We then combine the obtained series
of CDTs to derive a most plausible one according to the following algorithm:

1. Syntactically parse each sentence in a paragraph;
2. Obtain confidence score for each best parse and second best parse. Apply the

threshold rule to identify sentences where the confidence of the second best parse
is close to the confidence of best parse.

3. Form a set of sentences where syntactic parse failed S�;
4. Obtain a set of discourse tree derived from omitted sentences CDTs�;
5. Perform alignment of the set CDTs� and obtain maximum alignment

result NCDT.

We now focus on step 4.

13.7.1 Discourse Trees Alignment

The alignment algorithm proposed by (Scheffler and Stede 2016) compares the
spans of the relation argument annotations, and distinguishes different segmentation
constellations. They observe that the majority (84%) of instances in their corpus
consists of cases that are easy to map, including exact match of discourse relational
arguments (41%) and “boundary match” (39%), where a relation is annotated
between two adjacent text spans, and the boundary between the two arguments is
identical. They however also report difficult cases of non-local relations where the
segment boundaries differ (13%).

The alignment algorithm of (Scholman and Demberg 2017) advances the one
proposed in (Scheffler and Stede 2016), in order to better address the cases for which

512 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

there are stronger differences between the sub-DTs being aligned. The core idea of
how valid alignments can be identified even in the face of mismatches between
relational arguments builds on the Strong Nuclearity hypothesis (Marcu 2000),
which was used for RST-DT annotation. The claim of Strong Nuclearity states
that when a relation is postulated to hold between two spans of text, it should also
hold between the nuclei of these two spans. Note that the notion of “nuclearity” has
had several slightly different interpretations throughout the conception and further
development of RST.

We now outline the general alignment algorithm that can be applied to other DT
management problems beyond building NCDTs. The alignment procedure is aimed
at determining the optimal mapping of two DTs relation. The optimization criterion
is the number of valid correspondences between annotations, having a minimum
number of inadequate mappings between sub-EDUs which have a totally different
meaning.

There are three steps in the alignment algorithm. The top two steps deal with the
similar parts of DTs being aligned, and the last step is focused on combining
sub-DTs which cannot be aligned:

1. Identifying for every rhetorical relation (RR1i) node of DT1 those DT2 segments
(EDUs or sub-trees containing more than one EDU EDUorST2j) of DT2 which
best corresponds to the RR1i’ s EDU1in (nucleus) and EDU1is (satellite)
separately.

2. Identifying the RR2j (relation label) that describes the relation between the
EDU1in – equivalent spans and EDU1is -equivalent spans.

3. Identify distinct subtrees of DT1 and DT2, where there is no overlap in respective
EDUs. Insert a new rhetorical relation which will combine them. The default
relation here is Joint.

In the step (1), for each EDU1in and EDU1is we iterate over all EDUorST2j and select
the one with maximum overlap (common words) and minimum margin (extra
words). After that we verify whether EDU1in and EDU1is should be aligned with
more than a single EDUorST2j by iterating over all sub-trees spanning over several
EDUs using the same criteria.

Having identified the closest matching annotated text spans EDUorST2jn and
EDUorST2js for both EDU1in and EDU1is spans, we move to step (2) to find the
lowest relation RR2j within the discourse tree DT2 that contains EDUorST2jn and
EDUorST2js obtained in the previous step.

Notice that the alignment operation is different from finding a maximal common
subgraph (Chap. 5) operation. The alignment operation is greedy: it tries to merge
sub-trees from sources retaining as many nodes and edges as possible. At the same
time, in the alignment operation we assure that there are no duplicate subtrees. The
algorithm for building NCDT does not fully exploit the alignment algorithm since
some parts of DTs being aligned is identical and other parts are distinctive.

To determine that a sentence is noisy and/or has a poor grammar, we rely on the
confidence score of a parser such as Stanford NLP. If the ration between the
confidence level for the best parse and that of the second best parse is relatively

13.7 Tackling Noisy Discourse Trees 513

low (below a threshold of say 0.7), we conclude that the parser is experiencing
difficulties and therefore the sentence is a candidate for exclusion. For example, if
the best parse confidence is 0.8 and next best confidence is 0.3 then the sentence is
most likely grammatically correct and we can expect it will occur properly in the
discourse tree. However, if the second best confidence is approaching the 0.7 (such
as 0.6) we assume that two different parsing results are both plausible and therefore
each is not very reliable, hence the sentence is determined to have a poor grammar.

13.7.2 Example of Building NCDT

We take the following text and build NCDT for it:

(1)[My dryer got delivered this morning . . .][oops][it did nt come with the
necessary hookups][parts due to Amazo mis take.] (2) [How ever I said]
[I thought][it did,][but technician said][Amazon doesn’ t explain that too
well by using words][I aint not want to hear.](3) [The technician made me
pay $25][so he could go to hardware store][and buy the necessary parts.]
(4) [Not only that but I even gave him a $20 tip for his troubles.] (5)[Damn
it – I lost money][and Amazon should explain clearly][cos you need to
order hookup junk][when ordering this dryer.]

We identify the first and second sentences as noisy and form S� ¼ {{2,3,4,5},
{1,3,4,5}} (numbers here denote sentences above). The bottom part of the resultant
DT (S�1) and DT (S�2) (the lower subtree for the satellite part of RR Topic-
Comment) are the same so the alignment mapping is obvious for this part. The
subtrees above stepping through two RR Elaborations are the same as well. EDUs of
these parts are the same so mapping is straightforward. The top parts (shown on the
top of Fig. 13.22) are different, being obtained from (S�1) and DT (S�2), so need to
be combined (Fig. 13.23). We follow the step (3) of the alignment algorithm,
inserting RR Joint.

Certain RRs are obtained more accurately by NCDT algorithm in comparison
with the default, straight-forward algorithm where the markers of rhetorical relation
are obscured by poor grammar and spelling (Fig. 13.24).

13.7.3 Evaluation of Learning Discourse Trees for Noisy Text

Given a problem domain such as complaint validity assessment, we form two
datasets with the same performance in this domain, so that one dataset include
grammatically correct texts and the other – noisy text with issues in grammar. We
build these two sets from customer complaints, selecting well-written ones for the

514 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

first set and poorly written in terms of grammar – for the second set. We adjust the
selection to make sure that the performance of each dataset is almost equal.

One can see that both datasets have comparable performance, upgrading the
recognition approach from learning parse tree to learning CDTs with sentiment
profile (Table 13.12). However, once noisy-data specific NCDT construction is
applied, the performance of the noisy dataset (on the right) is boosted by up to 2%

Fig. 13.23 Merging distinct parts of two discourse trees as the step (3) of the alignment algorithm

Fig. 13.22 Aligned pair of DTs (CA labels are not shown)

13.7 Tackling Noisy Discourse Trees 515

occurs (we show the confidence interval since the improvement is fairly modest). It
means that the noisy dataset is actually simpler than the control one, but this
simplicity in terms of complaint validity recognition is obscured by the limitation
in linguistic processing due to its poor grammar.

Fig. 13.24 Default discourse tree obtained for noisy text directly, without using NCDT algorithm:
certain relations such as Contrast and Attribution are lost (compared to NCDT above)

516 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

These results show that once we extend the algorithm of CDT building for noisy
texts, there is a modest improvement of performance. However if a discourse level
analysis is not applied at all, the recognition accuracy is quite low even if parsing
succeeds. Discourse-level analysis is beneficial in both of following cases:

• Syntactic level analysis is successful but syntactic features are insufficient to
solve a problem;

• Syntactic level analysis is unsuccessful due to text noise.

13.8 Related Work

In this section we will review the state-of-the-art of argument detection, consider
how logical argumentation is correlated with RST structure, and relate our work with
the discourse parsers. We will also explore the discourse features associated with
argumentation and observe how sentiments are used to express argumentation. We
start with the definition of the key concepts.

Rhetorical Structure Theory simulates text organization by means of relations that
hold between parts of text. This theory explains coherence of text by forming a
hierarchical, connected structure of texts, called discourse trees. Rhetorical relations
are coordinate and subordinate ones that hold across two or more text spans and
therefore implement coherence. These text spans are called elementary discourse
units. Coherent argumentation is assumed to also follow rhetorical relations.

Clauses in a sentence and sentences in a text are logically connected by the
author. The meaning of a given sentence is related to that of the previous and the
following sentences. This logical relation between clauses is called the coherence
structure of the text. RST is one of the most popular theories of discourse, being
based on a tree-like discourse structure. The leaves of a DT correspond to EDUs, the
contiguous atomic text spans. Adjacent EDUs are connected by coherence relations

Table 13.12 Evaluation of validity assessment for noisy text

Control dataset:
grammatically well
written texts

Noisy (grammatically
poorly written) texts

Method/sources P R F1 P R F1

SVM TK parse trees 58.3 62.8 60.47 57.9 61.9 59.83

SVM TK over CDT 67.7 63.7 65.64 65.9 65.8 65.85

SVM TK over parse thickets (includ-
ing CDT)

75 69.7 72.25 74.8 69 71.78

SVM TK over parse thickets (includ-
ing CDT) and sentiment profile

78.6 74.4 76.44 � 1.7 78.1 75.4 76.73 � 2.1

SVM TK above over NCDT 78.2 74 76.04 � 1.8 80.2 76 78.04 � 1.8

SVM TK above over NCDT and sen-
timent profile

78.1 75.2 76.62 � 1.6 80.3 76.2 78.20 � 1.9

13.8 Related Work 517

https://en.wikipedia.org/wiki/Coherence_(linguistics)

(e.g., Attribution, Sequence), forming higher-level discourse units. These units are
then also subject to this relation linking. EDUs linked by a relation are then
differentiated based on their relative importance: nuclei are the core parts of the
relation while satellites are peripheral ones.

We expect similar discourse trees to express similar discourse structures. If we
have a labeled discourse tree (such as the one representing argument structure) and
another one unlabeled but similar to the labeled one, we can conclude that it is likely
expressing an argumentation structure as well. This follows along the lines of the
nearest neighbor (kNN) approach. kNN predictions are based on the intuitive
assumption that objects close in distance are potentially similar, it makes good
sense to discriminate between the K nearest neighbors when making predictions,
i.e., let the closest points among the K nearest neighbors have more say in affecting
the outcome of the query point. This can be achieved by introducing a set of weights,
one for each nearest neighbor, defined by the relative closeness of each neighbor
with respect to the unknown element. In this study the feature space will include
trees, and the distance between trees is measured via the cardinality of maximal
common sub-trees.

An extensive corpus of studies has been devoted to Rhetorical Structure Theory
(RST) parsers, but the research on how to leverage RST parsing results for practical
NLP problems is rather limited. Not many applications rely on DTs, obtained by one
or another discourse parser, to solve a document classification or analysis problems,
although DTs provide rather rich high-level information about a document structure.
This study is a pioneering one, to the best of our knowledge, which formulated and
assessed the plausibility of argument recognition problem in text based on detailed
learning of textual discourse.

13.8.1 Argument Mining

Linguistic side of identifying argumentation in text has been referred to as argu-
mentation mining.

Argumentation is the deductive process of proving or disproving a proposition
(MacEwan 1898). The goal of this process is to induce a new belief, to establish
truth or repair an error in the belief of another person. Over the course of the last
century, the definition preferred by the argumentation community become
narrow and is a “reason giving in communicative situations by people whose
purpose is the justification of acts, beliefs, attitudes, and values” (Freeley and
Steinberg 2008). The purpose of argumentation is a means by an proponent to
persuade an opponent rather than just providing a reason irrespectively of whether
it is convincing or not (Mercier and Sperber 2011). The purpose of a user sharing an
argumentation with a bot is not really to convince it but to receive a reply consistent
to user’s beliefs and opinions.

For chatbots, argumentation occurs on the macro-level models (also called
dialogical argumentation models) and rhetorical models which simulate the process

518 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

of argumentation in a dialogue (Bentahar et al. 2010). In other words, we examine
the structure of a single argument produced by a single author in term of its
components, not the relations that can exist among arguments and their authors
in time.

13.8.2 Logical Argument and Discourse Linguistics

Recent algorithms of logical argumentation treat it as discourse structures and focus
on the identification of specific discourse features expected to be correlated with
argumentation. The methods of (Moens et al. 2007) classify text with respect to
presence or absence of logical arguments. A number of approaches recognizes
argument components such as claims or premises at the sentence-level (Kwon
et al. 2007; Eckle-Kohler et al. 2015) or clause-level (Sardianos et al. 2015). (Stab
and Gurevych 2014) detect logical argumentation by classifying pairs of argument
components. (Rooney et al. 2012) and (Feng and Hirst 2011) addressed the problem
of classification of argument components or argumentation schemes. Although the
correlation between rhetorical features and argumentation patterns has been
established, it is still unclear how structural discourse features such as trees deter-
mine structural argumentation features.

Annotation schemes and approaches for identifying arguments in different
domains have been developed, including (Mochales-Palau and Moens 2011) for
legal documents, (Walton 1996) for newspapers and court cases, (Florou et al. 2013)
for policy modeling, and (Stab and Gurevych 2014) for persuasive essays. Compu-
tational structure of argumentation is needed to recommend a writer on how to better
arrange argument components and improve a usage of discourse markers. (Britt and
Larson 2003) describes how to improve argument comprehension and recall and
therefore achieve an increase the argumentation quality. Currently, there are only a
couple of methods for detection of argumentative discourse structures proposed by
(Mochales-Palau and Moens 2011; Stab and Gurevych 2014). However, these
approaches rely on unstructured, vectorized discourse features and a manually
created context-free grammar. These approaches rely on such domains as legal and
student essays, which follow a certain argumentation style and can be generalized in
a limited way.

Annotation of discourse structure which aims at identifying discourse relations
that are hold between adjacent text units, e.g. sentences, clauses or nominalizations
(Webber et al. 2012) is a field that is closely related to the annotation of argumen-
tation structures (Kirschner et al. 2015). Naturally, there is a correspondence
between discourse units and argument components, and discourse relations are
closely related to argumentative relations. Most previous work in automated dis-
course analysis is based on corpora annotated with discourse relations, notably the
Penn Discourse Treebank (PDTB) (Prasad et al. 2008) and the Rhetorical Structure
Theory Discourse Treebank (Carlson et al. 2001). However, the data consists of
newspaper articles which do not necessarily involve heavy argumentation, and only

13.8 Related Work 519

relations between adjacent text units are identified. It is still an open question how
the proposed discourse relations relate to argumentative relations (Biran and
Rambow 2011).

The concept of automatically identifying argumentation schemes was first
discussed in (Walton et al. 2008) and (Feng and Hirst 2011). Most of the approaches
focus on the identification and classification of argument components. In
(Ghosh et al. 2014) authors investigate argumentation discourse structure of the
specific type of communication – online interaction threads. Lawrence and Reed
(2015) combines three types of argument structure identification: linguistic features,
topic changes and machine learning. Identifying argumentation in text is connected
to the problem of identifying truth, misinformation and disinformation on the web
(Pendyala and Figueira 2015, Galitsky 2015). Symbolic approaches to argumenta-
tion have found a number of applications including decision-making (Ferretti et al.
2014).

Most of the modern techniques treat computational argumentation as specific
discourse structures and perform detection of arguments of various sorts in text, such
as classifying text paragraph as argumentative or non-argumentative (Moens et al.
2007). A number of systems recognize components and structure of logical argu-
ments (Sardianos et al. 2015, Stab and Gurevych 2014). However, these systems do
not rely on discourse trees (DTs); they only extract arguments and do not apply
logical means to evaluate it. A broad corpus of research deals with logical arguments
irrespectively of how they may occur in natural language (Bondarenko et al. 1997,
Amgoud et al. 2015). A number of studies addressed argument quality in logic and
argumentation theory (van Eemeren et al. 1996; Damer 2009), however the amount
of research that assesses the validity of arguments in text is very limited (Cabrio and
Villata 2012). In this chapter we combined the best of both worlds and built the
whole argumentation pipeline including argument mining from text with its logical
claim analysis.

The rhetorical classification of sentences in scientific texts is an important task in
the recognition of the components of a logical argument in natural sciences. Gener-
ating supervised machine learned models to do this recognition requires corpora
annotated for the high-level rhetorical categories of Introduction, Background,
Method, Result, Discussion and Conclusion. (Houngbo and Mercer 2014) used a
straightforward feature of co-referring text using the word “this” to build a self-
annotating corpus extracted from a large biomedical research paper dataset. The
problem of argumentation scheme recognition in the Araucaria corpus is considered
in (Feng and Hirst 2011). Assuming that the conclusion and premises of an argument
have been identified already, classification techniques achieved high accuracy for
two argumentation schemes described in (Walton et al. 2008), argument from
example and practical reasoning. However, the current study is thought to be the
first one targeting arbitrary argument recognition in a domain-independent manner.

Stab and Gurevych (2014) experimented with argument structures, transitional
phrases (Persing and Ng 2015), semantic roles (Das et al. 2014) and discourse
relations (Lin et al. 2014). However, the authors observed that mostly lexical and
length-based features are reliable for finding poorly supported arguments. For lexical
properties, the authors used four thousand most frequent words as binary SVM

520 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

features. Also, it turned out that the number of tokens and the number of sentences is
strongly correlated with the quality of argumentation. The features of parse trees and
counting of named entities is helpful as well. These features form the baseline of our
argument extraction evaluation in Sect. 13.3.

Frequently people say of a politician’s speech, Oh, that’s just rhetoric, assuming
that the words of politicians are empty verbiage or hot air. Frequently politicians do
their most to sound impressive but indeed are saying nothing with real meaning.
Sometimes politicians are making promises his listeners believe he has no intention
of keeping. The use of rhetorical in an intuitive sense in speeches: both bad,
dishonest and good ones is only the most visible use of rhetoric. In (Galitsky and
Taylor 2018) we attempted to treat the intuitive notion of rhetorical computationally
with a special focus on heated rhetoric. The strongest, heated arguments were
expected to have a more prominent underlying rhetorical structure.

Taking into account the discourse structure of conflicting dialogs, one can judge
on the authenticity and validity of these dialogs. In this chapter we evaluated the
combined argument validity assessment system that included both the discourse
structure extraction and reasoning about it with the purpose of the validation of a
claim by a complainant.

13.8.3 Discourse Structures and Sentiment Analysis

A key research problem in sentiment analysis is extracting fine-grained opinions
about different aspects of a product. Discourse structures play important roles in
sentiment analysis. Several recent papers (Somasundaran and Wiebe 2009;
Lazaridou et al. 2013) exploited the rhetorical structure for this task. Another
challenging problem is assessing the overall opinion expressed in a review because
not all sentences in a review contribute equally to the overall sentiment. For
example, some sentences express biased opinion, and others are objective (Pang
and Lee 2004); some express the main claims, whereas others back or defeat them
(Baroni and Giacomin 2002), some express opinions about the main entity, whereas
others are about the peripherals.

Naïve sentiment prediction systems consider words in isolation, giving positive
score for positive words and negative score for negative words and then summing up
these points. That way, the order of words is ignored and important information is
lost. The deep learning model of (Socher et al. 2013) builds a representation of whole
sentences based on the sentence structure. It computes the sentiment based on how
words compose the meaning of longer phrases. However, in most applications just
taking individual sentences into account do not give accurate results and rhetorical
information needs to be taken into account to determine the overall sentiment of a
paragraph and then back to the individual sentence level. Discourse structure could
be useful to capture the relative weights of the discourse units towards the resultant
sentiment. For example, the nucleus and satellite distinction along with the rhetorical
relations could be useful to infer the relative weights of the connecting discourse
units.

13.8 Related Work 521

A set of news on a topic can be clustered taking into account polar opinions.
(Makhalova et al. 2015) proposed a news clustering method that uses pattern
structure constructed on augmented syntactic parse trees. Usually web search results
are represented as long list of document snippets and it is difficult for users to
navigate through this collection of text. Clustering helps to group news according to
a class of opinions.

13.8.4 Discourse Parses and Ranking of Results

In (Joty and Moschitti 2014) authors define a set of discourse tree kernels (DiscTK)
based on the functional composition of standard TKs with the structures representing
the properties of DTs. Their definition of the tree kernel for DT takes into account a
similar structure to the one described in (Galitsky 2012; Ilvovsky 2014). Their
evaluation setting is applicable to an arbitrary DT classification tasks. Kernel-based
approaches to finding the best DTs are not exclusive: recent work has shown inspiring
results using Conditional Random Fields for discourse parsing (Feng and Hirst 2014;
Joty et al. 2013). For evaluation of discourse parsers, RST-DT corpus is used (Carlson
et al. 2001) which contains about 400 texts with about 8000 sentences.

New scores for comparing discourse trees were proposed in (Mitocariu et al.
2013). As basic elements of building the discourse structure, these authors rely on
RST and Veins Theory (Cristea 1998) to build binary trees augmented with
nuclearity notation. The first score takes into account the coverage of inner nodes.
The second score complements the first score with the nuclearity of the relation. The
third score computes F-measures on the vein expressions of the EDUs. The author
demonstrates that these measures reveal comparable scores where the differences in
structure are not doubled by differences in interpretation.

Iruskieta et al. (2014) proposed a method to describe the main linguistic differ-
ences among the rhetorical structures of the three languages in the two annotation
stages (segmentation and rhetorical analysis). A new type of comparison is shown
that has important advantages with regard to the quantitative method usually
employed: it provides an accurate measurement of inter-annotator agreement, and
it pinpoints sources of disagreement among annotators. The authors use this new
method, and show how translation strategies affect discourse structure.

Combination of DTs and parse trees turned out to be necessary for classifying
rhetorical relations (Wang et al. 2010). Once an optimal DT is found, additional
information on communicative discourse is much more important that syntactic
parse tree data for argument identification, as we will show in this study.

We used (Surdeanu et al. 2015 and also Joty et al. 2015) visualization software to
show discourse trees and their extensions. Given these visualizations, human experts
can identify improper division into EDUs and also irrelevant labels for RST rela-
tions. In Sect. 13.6.3 we conduct evaluation for the CDT construction task.

522 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

13.8.5 Text Readability

Text readability is a characteristic fairly close to text integrity as we formulate it. As
syntactic and lexico-semantic features are broadly used in literature, the authors
focus on discourse-level analysis as cohesion and coherence. Coherence and cohe-
sion are two important properties of texts. Text coherence is considered as a
“semantic property of discourses, based on the interpretation of each individual
sentence relative to the interpretation of other sentences” (Van Dijk 1977).

Successful writing is expected to follow three main rules:

1. a writer has a clear communicative intent and goals
2. writer should properly select descriptive words and phrases
3. thoughts need to be organized in a logical, readable way.

A skilled writer needs to address text coherence, sentence-level cohesion and word-
level cohesion. Text integrity, the characteristic we focus on in this work, is
associated with the last rule.

Cohesion refers to the presence or absence of explicit cues in the text that allow
the reader to make connections between the ideas in the text. For example,
overlapping words and concepts between sentences indicate that the same ideas
are being referred to across sentences. Likewise, connectives such as because,
therefore, and consequently, inform the reader that there are relationships between
ideas and the nature of those relationships. Whereas cohesion refers to the explicit
cues in the text, coherence refers to the understanding that the reader derives from
the text, which may be more or less coherent depending on a number of factors, such
as prior knowledge and reading skill (McNamara et al. 1996; O’Reilly and McNa-
mara 2007).

A text is represented as a sequence of related utterances. Some theories describe
coherence relations by the existence of explicit linguistic markers reinforcing cohe-
sion (Charolles 1995; Hobbs, 1979). However, cohesive markers are not mandatory
elements to obtain coherent texts, although they contribute to the overall text
interpretation (Charolles 1995). Halliday and Hasan (1976) identified several cohe-
sive devices helpful for the semantic interpretation of the whole text: coreference
relations (various expressions referring to the same entity), discourse connectives,
lexical relations such as synonymy, hypernymy, hyponymy, meronymy, and the-
matic progressions. Among these cohesive devices, coreference relations are
expressed via anaphoric chains (Kleiber 1994) or reference chains
(Schnedecker 2005).

Another approach of coherence in readability is based on the latent semantic
analysis (LSA) developed by Foltz et al. (1998). This method projects sentences in a
semantic space in which each dimension roughly corresponds to a semantic field.
Therefore, it better allows assessing the semantic similarity between sentences, since
it can capture lexical repetitions, even though synonyms or hyponyms. However,
this method is not sensitive to cohesive clues such as ellipsis, pronominal anaphora,
substitution, causal conjunction, etc. An alternative approach to LSA was suggested

13.8 Related Work 523

by Barzilay and Lapata (2008), who view a text as a matrix of the discourse entities
present in each sentence. The cohesive level of a text is then computed based on the
transitions between those entities.

Essay quality is usually related to its cohesion and coherence of the essay. This is
reflected in the literature about writing (DeVillez 2003), as well as textbooks that
teach students how to write (Golightly and Sanders 2000).

The interplay of coherence and cohesion is an intensely studied, but still not fully
understood issue in discourse organization. Both are known to vary with genre (see,
e.g., Taboada 2004). In expository prose, for instance, the coherence structure is
strongly determined by content-oriented relations, while instructive, argumentative,
or persuasive texts are structured according to the writer’s discursive strategy,
involving relations between speech acts and thus what Grosz and Sidner’s (1986)
call the intentional structure of the discourse. This difference corresponds to the
distinction between semantic and pragmatic coherence relations (Redeker 2000).
Similarly, expository texts have shorter cohesive chains than for instance narratives
(Goutsos 1997) and generally can be expected to have more lexical cohesive
(thematic) links than other text types.

In (Berzlánovich et al. 2008) authors investigate the hypothesis that lexical
cohesion is closely aligned with coherence structure in thematically organized
(expository) texts, but less so in texts with a predominantly intentional structure
(e.g., persuasive texts). The validity of this hunch has been confirmed w.r.t. local
relations in a small pilot study comparing texts from the Wall Street Journal (WSJ)
corpus (Carlson et al. 2001) to a sample of fundraising letters (Egg and Redeker
2008). The number of cohesive links between elementary (clause-level) discourse
units was greater for units that were directly connected in the discourse structure than
for units that had no direct coherence link, and this difference was much larger for
the expository (WSJ) texts than for the fundraising letters.

Some studies use RST to examine texts in more detail. For instance, Virtanen
(1995) analyzed a complaint letter to find the comprehensive locus of effect. His
analysis was supported by human readers, who found the same part of the text to be
the most important. Many studies use RST to analyze second language writing, and
determine the coherence of the text, as a measure of the proficiency of the learner
(Kong 1998; Pelsmaekers et al. 1998). (Torrance and Bouayad-Agha 2001) use it to
investigate the process of text creation by naive writers, from planning phase to final
product.

Unlike the above studies, we attempt to evolve text quality assessment towards
trustworthiness and make it less dependent on author’s writing skills. The domain of
customer complaints demonstrates that less skillful writers can be more honest
describing their experience with a company. On the contrary, skillful writers can
be at advantage describing something that has never happened to take advantage of
what they think of customer support policies.

524 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

13.9 Conclusions

In this study we defined CDT and proposed two learning frameworks for it,
inductive learning, allowing explicit feature engineering, statistical SVM TK
based. Performances of these learning framework showed that the bottleneck of
text classification based on textual discourse information is in the representation
means, not in the learning framework itself. CDT allows combining the structure of
rhetorical relation with the structure of communication, which complements each
other. CDT allows overcoming the limitation of regular DT where the same rhetor-
ical relations cover physical world and mental world, which have totally different
structure of discourse describing these worlds.

The central claim of RST is that the structure of every coherent discourse can be
described by a single discourse tree, whose top schema application creates a span
encompassing the whole discourse. We extend it by the observation that this span
can represent a rhetorical relation such as Elaboration or a communicative action
expressing a request to elaborate or a response to this request. Rhetorical relation
can be implicitly indicated via discourse markers, or explicitly communicated via
speech acts.

Another characteristic of traditional DTs within RST is that it deals with the
coherence relations directly, instead of corresponding linguistic expressions (as we
do with CDT extension). Thus, RST traverses the lexico-semantic level of linguistic
analysis towards pragmatics of language use. RST relations do in fact make some
reference to the propositional content of spans, as well as to the intentions of the
writer in putting them forward.

A third important feature of both RST and Speech Act Theory is its concept of
nuclearity. For RST, rhetorical relations between text spans convey information
about which span is more central to the writer’s purposes. The nucleus is the more
central span, and the satellite is the less central one. In Speech Act theory, there is an
agent who possesses information and is information giver, as well as an agent who is
information receiver. Rhetorical relations and relations for communicative actions
are nearly all asymmetric. For example, if A is serving as evidence for B, B is not at
the same place serving as evidence for A.

Comparing inductive learning results with the kernel-based statistical learning
(delivering higher accuracy), relying on the same information allowed us to perform
more concise feature engineering than either approach would do.

In our previous papers we observed that using SVM TK, one can differentiate
between a broad range of text styles, genres and abstract types. These classes of texts
are important for a broad spectrum of applications of recommendation and security
systems, from finance to data loss prevention domains. Each text style and genre has
its inherent rhetorical structure which is leveraged and automatically learned. Since
the correlation between text style and text vocabulary is rather low, traditional
classification approaches which only take into account keyword statistics informa-
tion could lack the accuracy in the complex cases.

13.9 Conclusions 525

Detecting argumentation in text is an important task on its own. However, its
contribution to paragraph-level sentiment assessment is even more valuable and
complements more local approach to sentiment analysis including ones based on
compositional semantics. We demonstrated that a hybrid sentiment detection system
outperforms the baseline one since identified argumentation helps to detect negative
sentiment at the level of paragraph.

An extensive corpus of literature on RST parsers does not address the issue of
how the resultant DT will be employed in practical NLP systems. RST parsers are
mostly evaluated with respect to agreement with the test set annotated by humans
rather than its expressiveness of the features of interest. In this work we focused on
interpretation of DT and explored ways to represent them in a form indicative of a
conflict rather than neutral enumeration of facts.

We compare discourse level – focused argument mining with the state-of-the-art
in using empirical methods for various argumentation related tasks, from finding
causal relation to segmentation and to overall detection (Lawrence and Reed 2017;
Bar-Haim et al. 2017; Aker et al. 2017; Ajjour et al. 2017). Although in some cases
the author obtain higher argument detection accuracies, due to the lack of adequate
feature engineering empirical techniques have a lower chance of successful indus-
trial applications. Conversely, focusing on argumentation patterns associated with
discourse, we make argumentation mining much more interpretable for designers of
industrial argumentation processing systems.

It turned out that a higher-level view of text assessing how heated is the discus-
sion is a stronger signal correlated with text sentiment compared to what can be
extracted at the phrase-level analysis. Classification of CDTs gives a higher accuracy
than a conventional sentiment analysis.

In this chapter we explored a possibility to validate messages in various applica-
tion frameworks. We observed that by relying on discourse tree data, one can
reliably detect patterns of logical and affective argumentation. Communicative
discourse trees become a source of information to form a defeasible logic program
to validate an argumentation structure. Although the performance of the former
being about 80% is significantly above that of the latter (29%), the overall pipeline
can be useful for detecting cases of invalid affective argumentation, which are
important in the decision support for CRM.

To the best of our knowledge, this is the first study building the whole argument
validity pipeline, from text to a validated claim in it, which is a basis of a decision
support. Hence although the overall argument validation accuracy is fairly low, there
is no existing system to compare this performance against.

References

Abbott R, Ecker B, Anand P, Walker MA (2016) Internet Argument Corp s 2.0: An SQL schema for
Dialogic Social Media and the Corpora to go with it. In Language Resources and Evaluation
Conference, Portorož, Slovenia

526 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

Ajjour Y, Chen WF, Kiesel J, Wachsmuth H, Stein B (2017) Unit segmentation of argumentative
texts. In: Proceedings of the 4th workshop on argument mining. University of Duisburg-Essen,
Copenhagen, pp 118–128

Aker A, Sliwa A, Ma Y, Liu R, Borad N, Ziyaei SF, Ghbadi M (2017) What works and what does
not: classifier and feature analysis for argument mining. In: Proceedings of the 4th workshop on
argument mining. University of Duisburg-Essen, Copenhagen, pp 91–96

Alsinet T, Chesñevar CI, Godo L, Simari GR (2008) A logic programming framework for
possibilistic argumentation: formalization and logical properties. Fuzzy Sets Syst 159
(10):1208–1228

Amgoud L, Besnard P, Hunter A (2015) Representing and reasoning about arguments mined from
texts and dialogues. In: ECSQARU, pp 60–71

Bar-Haim R, Edelstein L, Jochim C, Slonim N (2017) Improving claim stance classification with
lexical knowledge expansion and context utilization. In: Proceedings of the 4th workshop on
argument mining. University of Duisburg-Essen, Copenhagen, pp 32–38

Baroni P, Giacomin M (2002) Argumentation through a distributed self-stabilizing approach. J Exp
Theor Artif Intell 14(4):273–301

Barzilay R, Lapata M (2008) Modeling local coherence: an entity-based approach. Comput Linguist
34:1, 1–1,34

BBC (2005) Suicide bomber trial: emails in full. Assessed 11–28-05 at news.bbc.co.uk/1/hi/uk/
3825765.stm

BBC (2018) Trump Russia affair: key questions answered. http://www.bbc.com/news/world-us-
canada-42493918, Last downloaded May 1, 2018

Bedi P, Vashisth P (2015) Argumentation-enabled interest-based personalised recommender sys-
tem. J Exp Theor Artif Intell 27(2):199–226

Bentahar J, Moulin B, Bélanger M (2010) A taxonomy of argumentation models used for knowl-
edge representation. Artif Intell Rev 33:211–259

Berzlánovich I, Egg M, Redeker G (2008) Coherence structure and lexical cohesion in expository
and persuasive texts. In: Benz A, Kühnlein P, Stede M (eds) Proceedings of the workshop on
constraints in discourse III. University of Potsdam, Potsdam

Biran O, Rambow O (2011) Identifying justifications in written dialogs by classifying text as
argumentative. Int J Semant Computing 05(04):363–381

Boguslavsky I, Iomdin L, Sizov V (2004) Multilinguality in ETAP-3: reuse of lexical resources. In:
Sérasset G, Armstrong S, Boitet C, Popescu-Belis A, Tufis D (eds) Proceedings of the workshop
on multilingual linguistic Ressources (MLR ‘04). Association for Computational Linguistics,
Stroudsburg, pp 7–14

Bondarenko A, Dung P, Kowalski R, Toni F (1997) An abstract, argumentation-theoretic approach
to default reasoning. Artif Intell 93:63–101

Britt MA, Larson AA (2003) Constructing representations of arguments. J Mem Lang 48
(4):794–810

Cabrio E, Villata S (2012) Combining textual entailment and argumentation theory for supporting
online debates interactions. ACL 2:208–212

Carlson L, Marcu D, Okurowski ME (2001) Building a discourse-tagged corpus in the framework
of rhetorical structure theory. In: Proceedings of the second SIGdial workshop on discourse and
dialogue, pp 1–10

Carreyrou J (2016) Hot startup theranos has struggled with its blood-test technology. http://www.
wsj.com/articles/theranos-has-struggled-with-blood-tests-1444881901#livefyre-comment

Charolles M (1995) Cohesion, coherence et pertinence de discours. Travaux de Linguistique
29:125–151

Constantinos JS, Sarmaniotis C, Stafyla A (2003) CRM and customer-centric knowledge manage-
ment: an empirical research. Bus Process Manag J 9(5):617–634

Cristea D (1998) Formal proofs in Incremental Discourse Processing and Veins Theory, Research
Report TR98 – Dept. of Computer Science. University “A.I.Cuza”, Iaşi

References 527

http://bbc.co.uk
http://www.bbc.com/news/world-us-canada-42493918
http://www.bbc.com/news/world-us-canada-42493918
http://www.wsj.com/articles/theranos-has-struggled-with-blood-tests-1444881901#livefyre-comment
http://www.wsj.com/articles/theranos-has-struggled-with-blood-tests-1444881901#livefyre-comment

Damer TE (2009) Attacking faulty reas ning: a practical guide to fallacy-free reasoning. Wadsworth
Cengage Learning

Das D, Chen D, Martins AFT, Schneider N, Smith NA (2014) Frame-semantic parsing. Comput
Linguist 40(1):9–56

DeVillez R (2003) Writing: step by step. Kendall Hunt, Dubuque
Eckle-Kohler, J Kluge R, Gurevych I (2015) On the role of discourse markers for discriminating

claims and premises in argumentative discourse. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing

Egg M, Redeker G (2008) Underspecified discourse representation. In: Benz A, Kühnlein P (eds)
Constraints in discourse. Benjamins, Amsterdam, pp 117–138

Feng, V.W. and Hirst, G. (2011) Classifying arguments by scheme. In Proceedings of the 49th
annual meeting of the Association for Computational Linguistics, Portland, OR, pp 987–996

Feng, V.W. and Graeme Hirst (2012) Text-level discourse parsing with rich linguistic features. In
Proceedings of the 50th annual meeting of the association for computational linguistics: human
language technologies (ACL 2012), pp 60–68, Jeju, Korea

Feng VW, Hirst G (2014) A linear-time bottom-up discourse parser with constraints and post-
editing. In: Proceedings of the 52nd annual meeting of the Association for Computational
Linguistics. ACL, Baltimore

Ferretti E, Errecalde ML, García AJ, Simari GR (2014) A possibilistic defeasible logic program-
ming approach to argumentation-based decision-making. J Exp Theor Artif Intell 26
(4):519–550

Florou E, Konstantopoulos S, Koukourikos A, Karampiperis P (2013) Argument extraction for
supporting public policy formulation. In Proceedings of the 7th Workshop on Language
Technology for Cultural Heritage, Social Sciences, and Humanities. ACL, pp 49–54

Foltz PW, Kintsch W, Landauer TK (1998) The measurement of textual coherence with latent
semantic analysis. Discour Process 25:285–307

Freeley AJ, Steinberg DL (2008) Argumentation and debate. Cengage, Wadsworth
Galitsky B (2012) Machine learning of syntactic parse trees for search and classification of text. Eng

Appl AI 26(3):1072–1091
Galitsky B (2015) Detecting rumor and disinformation by web mining, AAAI spring symposium

series, pp 16–23
Galitsky B (2017) Improving relevance in a content pipeline via syntactic generalization. Eng Appl

Artif Intell 58:1–26
Galitsky B (2018) Enabling chatbots by detecting and supporting argumentation. US Patent App.

16/010,091
Galitsky B, de la Rosa JL (2011) Concept-based learning of human behavior for customer

relationship management. Inf Sci 181(10):2016–2035
Galitsky B, Kuznetsov SO (2008) Learning communicative actions of conflicting human agents. J

Exp Theor Artif Intell 20(4):277–317
Galitsky B, Parnis A (2018) Accessing validity of argumentation of agents of the internet of

everything. In: Lawless WF, Mittu R, Sofge D, Russell S (ed) Artificial Intelligence for the
Internet of Everything (to appear)

Galitsky B and Taylor J (2018) Discovering and assessing heated arguments at the discourse level.
Computational linguistics and intellectual technologies: proceedings of the international con-
ference “Dialogue 2018”. Moscow, May 30–June 2

Galitsky B, González MP, Chesñevar CI (2009) A novel approach for classifying customer
complaints through graphs similarities in argumentative dialogues. Decis Support Syst 46
(3):717–729

Galitsky B, de la Rosa J-L, Kovalerchuk B (2011) Discovering common outcomes of agents’
communicative actions in various domains. Knowl -Based Syst 24(2):210–229

Galitsky B, Ilvovsky D, Kuznetsov SO, Strok F (2013) Matching sets of parse trees for answering
multi-sentence questions // Proceedings of the Recent Advances in Natural Language
Processing, RANLP 2013. – INCOMA Ltd., Shoumen, Bulgaria, pp 285–294

528 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

Galitsky B, Ilvovsky D, Kuznetsov SO (2015) Text Classification into Abstract Classes Based on
Discourse Structure, in: Proceedings of the Recent Advances in Natural Language Processing,
RANLP 2015. pp 201–207

Galitsky B, Ilvovsky D, Kuznetsov SO (2018) Detecting logical argumentation in text via commu-
nicative discourse tree. J Exp Theor Artif Intell 30(5):1–27

Garcia A, Simari GR (2004) Defeasible logic programming: an argumentative approach. Theory
and Practice of Logic Programming 4(1–2):95–138

Ghosh D, Muresan S, Wacholder N, Aakhus M, Mitsui M (2014) Analyzing argumentative
discourse units in online interactions. In: Proceedings of the first workshop on argumentation
mining. ACL, Baltimore, pp 39–48

Golightly KB, Sanders G (2000) Writing and reading in the disciplines. Pearson Custom Publish-
ing, Upper Saddle River

Goutsos D (1997) Modeling discourse topic: sequential relations and strategies in expository text.
Ablex, Norwood

Grosz BJ, Sidner CL (1986) Attention, intentions, and the structure of discourse. Comput Linguist
12(3):175–204

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining
software: an update. SIGKDD Explor Newsl 11(1):10–18

Halliday MAK, Hasan R (1976) Cohesion in English. Longman, London
Hobbs J (1979) Coherence and Coreference. Cogn Sci 3(1):67–90
Hogenboom A, Frasincar F, de Jong F, Kaymak U (2015a) Using rhetorical structure in sentiment

analysis. Commun ACM 58:69–77
Hogenboom A, Frasincar F, de Jong F, Kaymak U (2015b) Polarity classification using structure-

based vector representations of text. Decis Support Syst 74:46–56
Houngbo H, Mercer R (2014) An automated method to build a corpus of rhetorically-classified

sentences in biomedical texts. Proceedings of the First Workshop on Argumentation Mining.
Baltimore, Maryland USA, June 26, 2014 Association for Computational Linguistics, pp 19–23

Ilvovsky, D. 2014. Going beyond sentences when applying tree kernels. Proceedings of the student
research workshop. ACL pp 56–63

Iruskieta M, da Cunha I, Taboada M (2014) A qualitative comparison method for rhetorical
structures: identifying different discourse structures in multilingual corpora. Lang Resour
Eval 49(2):263–309

Jørgensen AK, Hovy D, Søgaard A (2015) Proceedings of the ACL 2015Workshop on Noisy User-
generated Text, pp 9–18

Joty S, Moschitti A (2014) Discriminative reranking of discourse parses using tree kernels. Pro-
ceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP)

Jindal N, Liu B (2008) Opinion spam and analysis. Proceedings of International Conference on
Web Search and Data Mining WSDM-2008

Joty S, Carenini G, Ng RT, Mehdad Y (2013) Combining intra-and multi- sentential rhetorical
parsing for document-level dis- course analysis. ACL 1:486–496

Joty S, Carenini G, Ng RT (2015) CODRA: a novel discriminative framework for rhetorical
analysis. Comput Linguist 41(3):385–435

Kent I, Nicholls W (1977) The psychodynamics of terrorism. Mental Health & Society 4
(1-sup-2):1–8

Kipper K, Korhonen A, Ryant N, Palmer M (2008) A large-scale classification of English verbs.
Lang Resour Eval J 42:21–40

Kirschner, C., Eckle-Kohler J, Gurevych I (2015) Linking the thoughts: analysis of argumentation
structures in Scientific Publications NAACL HLT 2015 2nd Workshop on Argumentation
Mining

Kleiber G (1994) Anaphores et pronoms. Louvain-la-Neuve, Duculot
Kong KCC (1998) Are simple business request letters really simple? A comparison of Chinese and

English business request letters. Text 18(1):103–141

References 529

Kwon N, Liang Z, Hovy E, Shulman SW (2007) Identifying and classifying subjective claims. In
Proceedings of the 8th Annual International Conference on Digital Government Research:
Bridging Disciplines & Domains. Philadelphia, PA, USA, pp 76–81

Landlord vs Tenant (2018.) www.landlordvtenant.com. Last downloaded August 20, 2018
Lawrence J, Reed C (2015) Combining argument mining techniques, NAACL HLT 2015 2nd

Workshop on Argumentation Mining
Lawrence J, Reed C (2017) Mining argumentative structure from natural language text using

automatically generated premise-conclusion topic models. Proceedings of the 4th Workshop
on Argument Mining, pp 39–48

Lazaridou A, Titov I, Sporleder C (2013) A Bayesian model for joint unsupervised induction of
sentiment, aspect and discourse representations. Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics, pp 1630–1639, Sofia, Bulgaria, August 4–9

Lee D (2001) Genres, registers, text types, domains and styles: clarifying the concepts and
navigating a path through the BNC jungle. Lang Learn Technol 5(3):37–72

Lin Z, Ng HT, Kan M-Y (2014) A PDTB-styled end-to-end discourse parser. Nat Lang Eng 20
(2):151–184

MacEwan EJ (1898) The essentials of argumentation. D. C. Heath, Boston
Makhalova T, Ilvovsky D, Galitsky B (2015) Pattern structures for news clustering. In Proceedings

of the 4th International Conference on What can FCA do for Artificial Intelligence? –. CEUR-
WS.org, Aachen, Germany, Germany, pp 35–42

Mann W, Matthiessen C, Thompson S (1992) Rhetorical structure theory and text analysis. In:
Mann WC, Thompson SA (eds) Discourse description: diverse linguistic analyses of a fund-
raising text. Amsterdam, pp 39–78

Marcu D (2000) The theory and practice of discourse parsing and summarization. MIT press,
Cambridge MA

Markle-Huß J, Feuerriegel S, Prendinger H (2017) Improving sentiment analysis with document-
level semantic relationships from rhetoric discourse structures, 50th Hawaii International
Conference on System Sciences

McNamara DS, Kintsch E, Songer NB, Kintsch W (1996) Are good texts always better? Interac-
tions of text coherence, background knowledge, and levels of understanding in learning from
text. Cogn Instr 14(1):1–43

Mercier H, Sperber D (2011) Why do humans reason. Arguments for an argumentative theory.
Behav Brain Sci 34(2):57–111

Micheli R (2008, October) Emotions as objects of argumentative constructions. Argumentation 24
(1):1–17

Mitocariu E, Alexandru D, Cristea D (2013) Comparing discourse tree structures. Computational
linguistics and intelligent text processing: 14th International Conference, CICLing 2013,
Samos, Greece, March 24–30, 2013, Proceedings, Part I

Mochales R, Moens M-F (2011, April) Argumentation mining. Artificial Intelligence and Law 19
(1):1–22

Moens MF, Boiy E, Palau RM, Reed C (2007) Automatic detection of arguments in legal texts. In
Proceedings of the 11th International Conference on Artificial Intelligence and Law, ICAIL ‘07,
Stanford, CA, USA, pp 225–230

O’reilly T, McNamara DS (2007) Reversing the reverse cohesion effect: good texts can be better for
strategic, high-knowledge readers. Discourse Process 43(2):121–152

Oatley K, Jenkins JM (1996) Understanding emotions. Wiley, Hoboken
Oraby S, Reed L, Compton R, Riloff E, Walker M, Whittaker S (2015) And that’s a fact:

distinguishing factual and emotional argumentation in online dialogue. In: The 2nd Workshop
on Argumentation Mining, at The North American Chapter of the Association for Computa-
tional Linguistics (NAACL), Denver, Colorado

Ott M, Choi Y, Cardie C, Hancock JT (2011) Finding deceptive opinion spam by any stretch of the
imagination. In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies

530 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

http://www.landlordvtenant.com
http://ceur-ws.org
http://ceur-ws.org

Ott M, Cardie C, Hancock JT (2013) Negative deceptive opinion spam. In Proceedings of the 2013
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies

Pang B, Lee L (2004) A sentimental education: sentiment analysis using subjectivity summarization
based on minimum cuts. Proceedings of the 42nd Annual Meeting on Association for Compu-
tational Linguistics. Barcelona, Spain — July 21–26

Peldszus A, Stede M (2013) From argument diagrams to argumentation mining in texts: a survey.
Int J Cognit Inf Nat Intell 7(1):1–31

Pelsmaekers K, Braecke C, Geluykens R (1998) Rhetorical relations and subordination in L2
writing. In: Sánchez-Macarro A, Carter R (eds) Linguistic choice across genres: variation in
spoken and written English. John Benjamins, Amsterdam/Philadelphia, pp 191–213

Pendyala VS, Figueira S (2015) Towards a truthful world wide web from a humanitarian perspec-
tive. Global Humanitarian Technology Conference (GHTC), 2015 IEEE, Issue Date: 8–11 Oct.
2015

Persing I, Ng V (2015) Modeling argument strength in student essays. In Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), ACL ‘15, Beijing,
China, pp 543–552

Pisarevskaya D, Litvinova T, Litvinova O (2017) Deception detection for the Russian language:
lexical and syntactic parameters. Proceedings of the 1st Workshop on Natural Language
Processing and Information Retrieval / RANLP

Prasad R, Dinesh N, Lee A, Miltsakaki E, Robaldo L, Joshi A, Webber B (2008) The Penn
discourse TreeBank 2.0. In Proceedings of the Sixth International Conference on Language
Resources and Evaluation (LREC’08), pp 28–30

Redeker G (2000) Coherence and structure in text and discourse. In: Black W, Bunt H (eds)
Abduction, belief and context in dialogue. Studies in computational pragmatics. Benjamins,
Amsterdam, pp 233–263

Rooney N, Wang H and Browne F (2012) Applying kernel methods to argumentation mining. In
Proceedings of the Twenty-Fifth International Florida Artificial Intelligence Research Society
Conference Applying, pp 272–275

Rouhana N, Bar-Tal D (1998) Psychological dynamics of intractable ethnonational conflicts: the
Israeli-Palestinian case. Am Psychol 53:761–770

RussiaToday (2018.) https://www.rt.com/news/425438-douma-witnesses-gas-attack-syria/
Sardianos C, Katakis IM, Petasis G, Karkaletsis V (2015) Argument extraction from news. In

Proceedings of the 2nd Workshop on Argumentation Mining, Denver, CO, USA, pp 56–66
Scheffler T, Stede M (2016) Mapping PDTB-style connective annotation to RST-style discourse

annotation. In Proceedings of the 13th Conference on Natural Language Processing
(KONVENS 2016)

Schnedecker C (2005) Les chaînes de reference dans les portraits journalistiques: éléments de
description. Travaux de Linguistique 2:85–133

Scholman MCJ, Demberg V (2017) Examples and specifications that prove a point: identifying
elaborative and argumentative discourse relations. Dialogue Discourse 8(2):56–83

Searle J (1969) Speech acts: an essay in the philosophy of language. Cambridge University Press/
Series ACM, Cambridge/New York, pp 19–33

Severyn A, Moschitti A (2012) Fast support vector machines for convolution tree kernels. Data
Mining Knowledge Discovery 25.– 2012, pp 325–357

Socher R, Perelygin A, Wu J, Chuang J, Manning C, Ng A, Potts C (2013) Recursive deep models
for semantic compositionality over a sentiment treebank. Conference on Empirical Methods in
Natural Language Processing (EMNLP 2013)

Somasundaran S, Wiebe J (2009) Recognizing stances in online debates. In: Proceedings of the
joint conference of the 47th annual meeting of the ACL and the 4th international joint
conference on natural language processing of the AFNLP. Suntec, Singapore, pp 226–234

References 531

https://www.rt.com/news/425438-douma-witnesses-gas-attack-syria/

Stab C, Gurevych I (2014) Identifying argumentative discourse structures in persuasive essays. In:
Proceedings of the 2014 conference on empirical methods in natural language processing,
EMNLP ‘14. Doha, Qatar, pp 46–56

Stab C, Gurevych I (2016) Recognizing the absence of opposing arguments in persuasive essays.
ACL 2016

Stab C, Gurevych I (2017) Recognizing insufficiently supported arguments in argumentative essays
Surdeanu M, Hicks T, Valenzuela-Escarcega MA (2015) Two practical rhetorical structure theory

parsers. Proceedings of the Conference of the North American Chapter of the Association for
Computational Linguistics – Human Language Technologies: Software Demonstrations
(NAACL HLT)

Taboada M (2004) The genre structure of bulletin board messages. Text Technol 13(2):55–82
Torrance M, Bouayad-Agha N (2001) Rhetorical structure analysis as a method for understanding

writing processes. In: Degand L, Bestgen Y, Spooren W, van Waes L (eds) Multidisciplinary
approaches to discourse. Nodus, Amsterdam

Tweety (2016) https://javalibs.com/artifact/net.sf.tweety.arg/delp. Last downloaded Dec 12, 2018
van der Wees M, Bisazza A, Monz C (2015) Five shades of noise: analyzing machine translation

errors in user- generated text. Proceedings of the ACL 2015Workshop on Noisy User-generated
Text

Van Dijk T (1977) Text and context. Explorations in the semantics and pragmatics of discourse.
Longman, London

Van Eemeren FH, Grootendorst R, Henkemans FS (1996) Fundamentals of argumentation theory: a
handbook of historical backgrounds and contemporary developments. Routledge, Taylor &
Francis Group, London

Virtanen T (1995) Analysing argumentative strategies: a reply to a complaint. Angl Turkuensia
14:539–547

Walton D (1996) Argumentation schemes for presumptive reasoning. Routledge, New York
Walton D, Reed C, Macagno F (2008) Argumentation Schemes. Cambridge University Press,

Cambridge
Wang W, Su J, Tan CL (2010) Kernel based discourse relation recognition with temporal ordering

information. In Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics, pp 710–719

Webber B, Egg M, Kordoni V (2012) Discourse structure and language technology. Nat Lang Eng
18:437–490

532 13 Enabling a Bot with Understanding Argumentation and Providing Arguments

https://javalibs.com/artifact/net.sf.tweety.arg/delp

Chapter 14
Rhetorical Map of an Answer

Abstract In this Chapter we explore an anatomy of an arbitrary text with respect to
how it can answer questions. One more opportunity for discourse analysis to assist
with topical relevance of an answer is identified. We discover that a discourse tree of
an answer sheds a light on how an answer is constructed, and how to treat keyword
occurrence. There is a simple observation employed by search engines: keywords
from a query need to occur in a single answer sentence, for this answer to be relevant.
Relying on answer anatomy, we substantially extend the notion of how query
keywords should occur in answer areas such as its elementary discourse units. We
explore how to identify informative and uninformative parts of answers in terms of
matching with questions. It turns out that discourse trees contribute a lot in building
answer maps which are fairly important for determining whether this answer is good
or not for a given question.

14.1 A Rhetorical Map of an Answer: Which DT-Answer
Nodes Should Match the Question and Which
Should Not

In this section we focus on a correspondence between keywords in a question
(Q) and an occurrence of these keywords in an answer (A). It turns out, this
correspondence is important for topical relevance of Q and A, where these keywords
reside in the DT of A. Following Chap. 7 and (Galitsky 2014), we consider a partial
case of matching parse thickets for questions and answers. If a Q is represented as a
sequence of keywords, and the parse thicket (Galitsky et al. 2013) for an A relies on
rhetorical relations only, then it is possible to formulate a simple rule-based system
to filter out topically irrelevant answers based on how query keywords are distrib-
uted through the DT of these As. These rules can be considered as constraints for the
mapping between the nodes of DT:

DT-Q ! DT-A,

where

© Springer Nature Switzerland AG 2019
B. Galitsky, Developing Enterprise Chatbots,
https://doi.org/10.1007/978-3-030-04299-8_14

533

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04299-8_14&domain=pdf

DT-Q is a trivial tree, a single node for a chain of words;
and DT-A is a DT for a paragraph-sized answer.

Once an answer text is split into elementary discourse units (EDUs), and rhetor-
ical relations are established between them, we come up with a rule system for
whether the question keywords occurring in A-text are connected by rhetorical
relations (and therefore this A is likely relevant) or not connected (and this A is
most likely irrelevant). Hence we use a discourse tree as a base for a Rhetorical Map
of an answer (Galitsky et al. 2015b): certain sets of nodes in the DT correspond to
questions so that this text is a valid answer, and certain sets of DT nodes correspond
to an invalid answer. Our definition of the Rhetorical Map follows the methodology
of an inverse index for search: instead of taking a Q and considering all valid As for
it from a set of texts, we take a text (answer) and consider the totality of potentially
valid and invalid Qs formed from a set of selected keywords from this text.

Usually, the main clause of a compound question includes the main entity and
some of its constraints, and the supplementary clause includes the other constraints.
In the most straight-forward way, the main clause of a question is mapped into a
nucleus, and the supplementary clause is mapped into a satellite of the RST relation,
such as Elaboration. Linkage by other rhetorical relations, where a satellite intro-
duces additional constraints for a nucleus, has the same meaning for answer validity.
This validity still holds where two EDUs are connected with a symmetric relation,
such as Joint. However, when the images of the main and supplementary clause of
the Q are satellites of different nuclei, it most likely means that they express
constraints for different entities and therefore constitute an irrelevant A for this Q.

Hence the rules for the occurrence of Q-keywords in DT-A are as follows: they
should not occur in distinct satellite nodes of this DT-A.

14.1.1 From Discourse Tree to a Rhetorical Map of an
Answer

We will present a number of examples of rhetorical maps of answers (As). We take a
text, build a DT for it, form a rhetorical answer map on this tree and come up with
two sets of examples of questions (Qs). For the first set of Qs, this A would serve as a
relevant answer, and for the second set, this A would serve as an invalid answer.

Our first example is text split into EDUs:

[what’s more,]e1 [he believes]e2 [seasonal swings in the auto industry this year
aren’t occurring at the same time in the past,]e3 [because of production and
pricing differences]e4 [that are curbing the accuracy of seasonal adjustments]
e5] [built into the employment data.]e6.

A DT including 6 nodes {e1...e6} is shown in Fig. 14.1 (Joty and Moschitti
2014). Horizontal lines indicate text segments; satellites are connected to their nuclei
by curved arrows.

534 14 Rhetorical Map of an Answer

One can see that this text is a relevant answer for the question.

Are seasonal swings in the auto industry due to pricing differences?

because the respective areas e3 and e4 in the rhetorical map of this answer are
connected

DT({seasonal, swings, auto, industry, due, pricing, differences}) ! DT({. . . e3, e4,
. . .}),.

{seasonal, swings} ! e3, {pricing, differences} ! e4.

However, this answer is irrelevant for the question.

Are pricing differences built into employment data?

because the areas e4 and e6 in the rhetorical map of the answer are not connected.
EDU e6 is an elaboration of e5, and e5 is, in turn, an elaboration of e4; however, e4
and e6 are not logically connected and cannot be mapped into by a set of question
keywords.

A valid set of nodes of an Answer Map is the one closed under common ancestor
relations in a DT. For example, the i-nodes on the bottom-left of DT in Fig. 14.2
constitute the invalid set, and the v-nodes on the right of DT constitute the valid set.

We proceed to another example where it is necessary to involve a rhetorical map
to distinguish between valid and invalid Qs having an A fixed:

‘I went to watch a movie because I had nothing else to do. I enjoyed the movie
which was about animals finding food in a desert. To feed in a desert environment,
zebras run hundreds of miles in search of sources of water.’

This answer is valid for the following queries (phrases) since their keywords form
a v-set:

– enjoy movie watched when nothing else to do
– I went to watch a movie about feeding in desert environment
– I went to watch a movie about zebras run hundreds of miles.
– I went to watch a movie about searching sources of water

Fig. 14.1 A nontrivial
discourse tree for a complex
sentence

14.1 A Rhetorical Map of an Answer: Which DT-Answer Nodes Should Match the. . . 535

And this text is not a correct answer for the following queries (phrases), since
their keywords form i-sets:

– animals find food in desert when have nothing else to do (In Figs. 14.3 and 14.4
we show corresponding nodes of the DT: they belong to different branches and
forms is not closed under ‘common sibling’ relation.)

– I had nothing else except finding food in a desert
– I had nothing else to do but run hundreds of miles in search of water
– finding food in a desert – a good thing to do.

In our next example, we draw a DT for the argumentative dialogue between two
agents (Pro and Con) who are in a conflict. We also show the argumentation defeat
relation between the EDUs, such as the following:

“I made a deposit well in advance” defeats “takes a day to process the deposit”.

We expect the logical flow of this dialogue to be reflected in the DT (Fig. 14.5).
The bolded text boxes for the nodes on the left show the nodes closed under the

common ancestor relation, and the dotted text boxes on the right show the nodes not
closed under this relation.

Fig. 14.2 An Answer Map and its areas for valid and invalid answers

536 14 Rhetorical Map of an Answer

This scenario can serve as an answer to “When can a written check be bounced
after making a deposit” (connected area on the left) but not to “I made the deposit
but they denied responsibility.”

From our observations, we can attempt to formulate a rule for the rhetorical map
of an answer. A valid set of nodes of an answer map is defined as the node closed
under common ancestor relations in a DT. For example, the highlighted nodes on the
bottom-left of DT in Fig. 14.5 constitute the invalid set, and the dotted nodes on the
right of DT constitute the valid set.

We proceed to more examples of DT with further details on the type of RST arcs
between the nodes. Below is the text and the results of discourse parser of (Joty et al.
2013, Fig. 14.6):

Fig. 14.3 DT – A and an example of nodes which would match with a Q for which this A is
incorrect

14.1 A Rhetorical Map of an Answer: Which DT-Answer Nodes Should Match the. . . 537

The Affordable Care Act contains comprehensive health insurance reforms.
This law includes tax provisions that affect individuals and families, as well as
businesses, insurers, tax-exempt organizations, and government entities. For
individuals, the law requires you and everyone on your return to report health
care coverage or claim an exemption or make a payment with your return. It
also establishes a Health Insurance Marketplace where individuals can pur-
chase health insurance coverage. For those who purchased coverage through
the Marketplace, you may be eligible for the premium tax credit. These pro-
visions of the health care law will result in important changes, including how
individuals and families file their taxes. The law also contains benefits and
responsibilities for other organizations, including employers.

(Root (span 1 8)
(Nucleus (span 1 3) (rel2par span)
(Nucleus (leaf 1) (rel2par span) (text _!I went to watch a movie_!))
(Satellite (span 2 3) (rel2par Explanation)
(Nucleus (leaf 2) (rel2par span) (text _!because I had nothing else_!))
(Satellite (leaf 3) (rel2par Elaboration) (text _!to do ._!))))

(Satellite (span 4 8) (rel2par Elaboration)
(Nucleus (span 4 6) (rel2par span)
(Nucleus (leaf 4) (rel2par span) (text _!I enjoyed the movie_!))
(Satellite (span 5 6) (rel2par Elaboration)

(Nucleus (leaf 5) (rel2par span) (text _!which was about animals_!))
(Satellite (leaf 6) (rel2par Elaboration) (text _!finding food in a desert ._!)

)))
(Satellite (span 7 8) (rel2par Elaboration)
(Satellite (leaf 7) (rel2par Enablement) (text _!To feed in a desert

environment ,_!))
(Nucleus (leaf 8) (rel2par span) (text _!zebras run hundreds of miles in

search of sources of water ._!)))))

Fig. 14.4 A fragment of textual representation of DT-A in Fig. 14.3

Fig. 14.5 A discourse tree, an answer map on it, and its areas to be mapped into for valid and
invalid sets of nodes for potential query keywords

538 14 Rhetorical Map of an Answer

This text is not an answer for the following questions whose keyword form
invalid sets of nodes in DT:

‘How can individuals purchase health insurance to be eligible for premium tax
credits?’

‘Who can be eligible for the premium tax credit for a family filing its taxes?’
‘What are benefits for other organizations purchased coverage through the

Marketplace?’

Fig. 14.6 A DT with cusrcumsribed invalid keyword occurance areas

14.1 A Rhetorical Map of an Answer: Which DT-Answer Nodes Should Match the. . . 539

At the same time, this test is a good answer to the question ‘The law requires us to
report health care coverage’.

We conclude this section with the observation that the examples confirm our rules
for connectivity in a DT as necessary conditions for Q-keywords to be irrelevant to
an answer (Galitsky et al. 2015b).

14.1.2 Definition and Construction Algorithm

To make the rule more accurate, we need to take into account the directions of the
arcs in the DT. The EDU tree includes directed arcs for anti-symmetric rhetorical
relation and undirected arcs for symmetric rhetorical relations such as Joint, Time
sequence, and others. The Q/A validity constraint needs to be applied for anti-
symmetric RST relations only: query terms can occur in symmetric EDU nodes in
an arbitrary way.

For two nodes of the EDU tree, we define its directed common ancestor (DCA) as
a common ancestor node that is connected with these nodes via directed arcs. The
valid set of EDUs that is a result of the mapping of a question is closed under the
common directed ancestor relation: it should contain the set of all directed common
ancestor for all EDUs.

A Rhetorical map of an Answer A, RM(A) is a set of subsets PT(A), RM(A)� 2PT
(A)

RM(A): 8a18a2 if (a1 2 RM(A) & a2 2 RM(A)), then DCA(a1, a2) 2 RM(A).

To construct an answer map from the DT, first we need to map keywords and
phrases of a query qi into EDUs of an answer qi, qi ! aj. For each noun phrase for a
query, we find one or more EDUs that include noun phrases with the same head
noun. Not every keyword has to be mapped, but there should be not more than a
single EDU to which each keyword is mapped under a given mapping:

q1 ! a1 2 RM(A)) ┐∃ a2 (q1 ! a2, a2 2 RM(A)).

For example, the noun phrase from the query family doing its taxes is mapped into
the EDU

[including how individuals and families file their taxes.]

because they have the same head noun tax.
If multiple mapping exists for a question, we need to find at least one valid

occurrence to conclude that this question is a valid one for the given map.
If a keyword qi in Q is mapped into a keyword aj in A, then aj should be in RM(A)

and A is valid for Q:

8qi ∃aj (qi ! aj, aj 2 RM(A)).

Notice that qi ! aj can be a same-word mapping, results of stemming, ontology-
based classes of equivalence such as synonyms, and others. The “A is valid for Q”

540 14 Rhetorical Map of an Answer

condition is necessary but not sufficient. Multiple acceptable A for Q can be ordered
according to some rank as long as the above condition holds.

For a real-word search system, the enforcement of RST rules occurs at indexing
time, since RST parsing is rather slow. Hence for answer text A, we produce a
sequence of texts

Aedu 2 {A directed_common_ancestor I}

for all pairs of EDU nodes connected with their parents by directed arcs. Then the
match of the set of keyword occurs with the extended index in the regular manner:
there is no element Ae for invalid mapping Q to Qedu.

In terms of search engineering, enforcing of the condition of the rhetorical map of
an answer requires a separate part of the index besides the inverse one. Building this
additional index requires enumeration of all maximal sequences of keywords from
RM(A) for every document (potential answer A). Once A is determined to be fired by
Q using the regular search index, there should be an entry in RM(A) that is fired by a
query formed as a conjunction of terms in Q.

Because application of RM rules occurs via an inverse index, the search time is
constant with respect to the size of the overall RM index and the size of a given
document. The indexing time is significantly higher because of rhetorical parsing,
and the size of the index is increased approximately by the number of average
maximal paths in a DT graph, which is 3–5. Hence, although the performance of a
search will not significantly change, the amount of infrastructure efforts associated
with RM technology is substantial.

14.1.3 How Rhetorical Maps Improve Search Precision

We used the TREC evaluation dataset as a list of topics http://trec.nist.gov/data/qa/.
Given a short factoid question for entity, person, organization, event, etc. such as.

#EVENT Pakistan earthquakes of October 2005.
we ran a web search and extracted compound sentences from search expressions,

such as
‘A massive earthquake struck Pakistan and parts of India and Afghanistan on

Saturday morning October 8, 2005. This was the strongest earthquake in the area
during the last hundred years.’

Ten to twenty such compound questions were derived for a topic (those portions
of text were selected with obvious rhetorical relation between the clauses). We then
fed Bing Search Engine API such compound questions and built the answer map for
each candidate answer. This was followed by running the RM-based filter. Finally,
we manually verified that these filtered answers are relevant to the questions (Strok
et al. 2014, Galitsky and Kovalerchuk 2014).

We evaluated improvement of search relevance for compound queries by apply-
ing the DT rules. These rules provide Boolean decisions for candidate answers, but
we compare them with score-based answer re-ranking based on machine learning

14.1 A Rhetorical Map of an Answer: Which DT-Answer Nodes Should Match the. . . 541

http://trec.nist.gov/data/qa

approaches of baseline SVM tree kernel (Moschitti 2006), discourse-based SVM
(Galitsky 2014, Ilvovsky 2014) and the parse thicket matching approach of this
study (Chap. 7).

SVM tree kernel approach takes question-answer pairs (also from TREC evalu-
ation dataset) and forms the positive set from the correct pairs and the negative set
from the incorrect pairs. The tree kernel learning is applied to the feature space of all
sub-trees of the respective parse tree pairs. SVM tree kernel learning for the pairs for
extended parse trees produces multiple parse trees for each sentence, linking them by
discourse relations of anaphora, communicative actions, same entity and rhetorical
relation (Galitsky and Lebedeva 2015). The Rhetorical Map approach takes the same
data of parse trees connected by discourse relations and instead of applying SVM
learning to pairs, compares these data for question and answer directly, finding the
highest similarity.

To compare score-based answer re-ranking approaches with rule-based answer
filtering one, we took first 20 Bing answers and classified them as valid (top 10) and
invalid (bottom 10) under the former set of approaches and selected up to 10 accept-
able (using the original ranking) under the latter approach. Hence the order of these
selected set of ten answers is irrelevant for our evaluation and we measured the
percentage of valid answers among them (the focus of evaluation is search precision,
not recall). Answer validity was accessed by team members other than authors.
Table 14.1 shows the evaluation results. Top two rows show the answer filtering
methods and sources of discourse information. Bottom rows show evaluation results
for queries with various rhetorical relations between clauses.

One can observe just a 1.5% improvement by using SVM tree kernel without
discourse, further 3.5% improvement by using discourse-enabled SVM tree kernel,
and further improvement of 2.8% by using nearest neighbor learning. The latter is
still 4% lower than the answer map approach, which is the focus of this study. We
observe that the baseline search improvement, SVM tree kernel approach has a
limited capability of filtering out irrelevant search results in our evaluation settings.
Also, the role of discourse information in improving search results for queries with
symmetric rhetorical relations between clauses is lower than that of the anti-
symmetric relations.

Overall, our evaluation settings in this section are focused on compound queries
where most answers correctly belong to the topic of interest in question; there is
usually sufficient number of keywords to assure this. However, in the selected search
domain irrelevant answers are those based on foreign entities or mismatched attri-
butes of these entities. Hence augmenting keyword statistics with the structured
information of parse trees is not critical to search accuracy improvement. At the
same time, discourse information for candidate answers is essential to properly form
and interpret the constraints expressed in questions.

542 14 Rhetorical Map of an Answer

14.2 A Rhetorical Map of an Answer: What to Index
and What Not to Index

Typically, all text in answers is indexed so that “we do not miss anything” in
answering possible questions. In this Section we will identify a deficiency in this
popular belief and find out that not all text in answers should be searchable (and
therefore be indexed). A logical organization of an answer, expressed via its
discourse tree, tells us which parts of an answer should be matched with a question
this answer is good for. It also tells us which parts of an answer should not be
indexed in order to avoid misfiring (Galitsky 2017b).

Once we know the important parts of an answer, we can automatically formulate a
set of questions this answer is supposed to answer well. Forming a set of such
questions would substantially improve the recall of searching sets of Q/A pairs, a
popular domain in modern chatbot development. The tools available today to make
Q/A pairs searchable, such as QnA Maker by Microsoft, produce systems with very
low recall because there should be a many-to-one mapping between questions and an
answer, not a one-to-one.

Table 14.1 Evaluation of rhetorical map of an answer contribution

Filtering
method

Baseline
Bing
search

SVM tree kernel
learning of
question-answer
pairs (baseline
improvement)

SVM tree kernel
learning for the
pairs for
extended parse
trees

Nearest
Neighbor for
question –

answer
Rhetorical
map

Sources

Query
types

Source of
discourse
information – –

Anaphora, same
entity, selected
discourse
relations

Anaphora,
same entity,
selected
discourse
relations DT

Clauses
connected
with
elaboration

68.3 69.4 73.9 74.6 79.2

Clauses
connected
with
attribution

67.5 70.1 72.7 75.1 78.8

Clauses
connected
with
summary

64.9 66.3 70.2 74.0 78.0

Clauses in
joint/
sequence
relation

64.1 65.2 68.1 72.3 76.3

Average 66.2 67.8 71.2 74.0 78.0

14.2 A Rhetorical Map of an Answer: What to Index and What Not to Index 543

14.2.1 Informative and Uninformative Parts of an Answer

A lot of content nowadays is available in the form of Q/A pairs. Starting from
frequently asked questions (FAQs) on company portals to customer support logs,
Q/A pairs are found to be an efficient way to familiarize users with content by means
of browsing. Also, chatbots are now readily available to imports the Q/A pairs and
provide relevant information on via querying. However, the recall of these chatbots
is fairly low since only the questions matching the Q part of the pairs can provide
relevant answers. If a user question does not match any Q parts of a pair, and is
searched against an index of answers, precision of the chatbot answers become very
low. Although standard relevance techniques such as ontology, keyword frequency
models and discourse features (Chali et al. 2009; Jansen et al. 2014) can be applied,
rather modest relevance boost can be achieved.

In a traditional search engine approach, all text in answers is indexed. However,
not all parts of an answer are equally important. There are some portions of answers
(text fragments) that are good to be matched with potential questions, some are
neutral and some can be rather misleading (would lead for this answer to answer a
question it should not). In our considerations, we select an answer and analyze which
questions it is good for answering, instead of focusing on a question and ranking its
candidate answer. Our considerations are applied to an indexing procedure: we do
not really know which questions will be given, but once we have an answer, we
index it in a way to answer suitable questions and to avoid answering foreign
question by this answer.

Let us consider an answer and a set of questions it is good at answering.

A: This camera takes good pictures in low light, according to my neighbor who works as an
event photographer and did a good portfolio for my sister.

As a review, this text is suitable to provide answers on opinions related to a given
digital camera, with the focus on its feature low light. For example, this text can
naturally answer.

Q: Which digital camera takes good shots in low light?

This text is not suitable to answer other questions that would include phrases and
keywords outside of the topic of digital camera and low light. In the context of this
Q/A domain, it does not really matter whom this opinion is attributed to (my
neighbor). And even if this sort of attribution is important, the exact mention of
digital camera and low light is required in the question for this answer to be relevant.
Hence only the underscored part of this answer is informative and should be put into
an index and matched with a question.

The questions like

• how to make good portfolios
• good thing for my sister
• how to work as event photographer

would need to be assigned to different answers. Hence we observe that the key
assumption of search engineering that one can match the keywords in query with the

544 14 Rhetorical Map of an Answer

keywords in a search result as long as they are properly weighted is far from being
true!

How to differentiate between an informative part of an answer, which should be
matcher with a question, and an uninformative part, which should not? Do we need
domain knowledge to determine the informative and uninformative parts of an
answer to match with potential questions? Domain knowledge can help but it turns
out there is a domain-independent universal mechanism to label informative parts of
answers based on discourse features instead of answer topics and domain knowl-
edge. The way an author logically organizes her thoughts in text give us a hint what
is informative and what is not when this text is serving as an answer.

Rhetorical structure theory (RST, Mann and Thompson 1988) sheds a light on
how to distinguish between informative parts of an answer from uninformative or
less important ones. In particular, elaboration relation of RST links more important
text fragment or EDU (nucleus) with less important, auxiliary information (satellite).
Whereas more important text is strongly correlated with a potential question, less
important one provides details that are less likely to be queried directly. If this less
important text is indexed, it might trigger this answer as a response to a question on
something totally different. Hence informative part is usually corresponds to a
nucleus, and uninformative – to satellite.

For example, consider a text of a review for a digital camera: ‘This camera shoots
well in low light, so I made a few good shots on a boat at night.’ The first part of this
compound question is a nucleus EDU connected by rhetorical relation of Explana-
tion with the satellite EDU, the second part (Fig. 14.7).

This is a good answer for:

• Which camera shoots well in low light
• How to shoot in low light
• Low light camera
• Low light conditions

Fig. 14.7 A simple DT for
informative EDU on the top
and uninformative on the
bottom

14.2 A Rhetorical Map of an Answer: What to Index and What Not to Index 545

But not for

• Good shorts at a boat
• Night boat
• Boat at night
• Good shots
• Good boat
• Good night

We also consider nucleuses in answers as alternative questions. They are intended
to complement the main Q in the Q/A pair to cover a broader range of user questions.
This is expected to improve the overall Q/A recall, having the search precision intact.
In terms of search engineering, instead of indexing the whole answer for search, we
index only the main FAQ question and also the alternative questions obtained from
the parts of answers we determined to be informative, and put this data in index
IndexNucleus. At search time, we run a query against this index first. Alternative
question technology complements such Q/A tools as Microsoft QnA Maker
(Qnamaker 2018) that takes a single question per answer but should instead take
multiple alternative questions to assure a reasonable recall.

Only when no search results are obtained searching IndexNucleusA, we retreat to
the conventional, baseline search index IndexA, which provides a default function-
ality in search applications.

RST models the logical organization of text, a structure employed by a writer,
relying on relations between parts of text. This theory simulates text coherence
(of answers, in particular) by forming a hierarchical, connected structure of texts
via DTs. Rhetorical relations are split into the classes of coordinate and subordinate;
these relations hold across two or more text spans called elementary discourse units
(EDUs). Adjacent EDUs are connected by coherence relations (e.g., Attribution,
Sequence), and form higher-level discourse units. EDUs linked by a relation are then
differentiated based on their relative importance: nuclei are the core parts of the
relation while satellites are peripheral ones.

Each text can be viewed from the viewpoint of answering certain questions by
means of this text. Answers are written in a form so that questions are reformulated
and repeated in them in multiple ways, and our objective is to extract them.
According to (Mann and Thompson 1988), for every part of a coherent text such
as an answer, there is some plausible reason for its presence, evident to readers.
Rhetorical relations play a role of forcing constraints on one answer element to fit
another (Hobbs 1985).

14.2.2 How a Discourse Tree Indicates What to Index
and What Not to Index

We illustrate our analysis with a Q/A pair and a discourse tree for answer.

546 14 Rhetorical Map of an Answer

Q:How should I plan to pay for taxes resulting from converting to a Roth IRA?
A: To help maximize your retirement savings, it’s generally a good idea to

consider not using the proceeds from the conversion to pay the resulting tax
costs. Instead, you should con-sider using cash or other savings held in
nonretirement ac-counts. Using retirement account funds to pay the taxes
will reduce the amount you would have available to potentially grow
tax-free in your new Roth IRA. Additionally, if you are under 59½, using
funds from your retirement account could result in an additional 10% tax
penalty, which may significantly reduce the potential benefit of conversion.

Being a Q/A pair, the answer is provided for a single question. The main issue of
this section is as follows: what are other questions this answer is good for? As can be
seen from this answer, some of its clauses are more relevant to answering the
question than others. For example, the phrase ‘it is generally a good idea’ adds little
to the answer, whereas ‘consider not using the proceeds from the conversion’
informs the user who posed the original question. Hence if someone asks ‘What is
generally a good idea’, this particular answer is not good for this fairly general
question. Conversely, the question ‘should I consider not using the proceeds from
the conversion’ can be answered well by this answer.

The DT for the question is shown in Fig. 14.8 and elementary discourse units are
circled. We start with the simple hypothesis that only EDUs that are nucleus of
rhetorical relations should be indexed as they are directly related to the topic of the
answer. All satellites EDUs should not be selected for indexing. This is obvious for
the Elaboration relation, whose nucleus expresses more important bit of information
than satellite. We hypothesize that a satellite may express a detail of information
being communicated that is unlikely to be explicitly queried by a user query
(Galitsky 2017b; Jasinskaja and Karagjosova 2017).

This is the list of phrases from the nucleus EDU:

• help maximize your retirement savings;
• proceeds from the conversion;
• cash or other savings held in nonretirement accounts;
• retirement account funds;
• using funds from your retirement account;
• result in an additional 10% tax penalty.

Notice the list of satellite EDU expressions:

• it’s generally a good idea (not related to finance);
• pay the resulting tax costs (detached from the context);
• held in nonretirement accounts (detached from the context);
• to pay the taxes will reduce the amount . . .(detached from the context);
• you would have available to potentially . . . (counterfactual expressions, unlikely

to occur in a user question);

14.2 A Rhetorical Map of an Answer: What to Index and What Not to Index 547

• if you are under 59½ . . . (condition, not necessarily potentially directly queried).

For each of these cases, we indicate the reason we believe this fragment of text
should not be matched with a potential question to deliver this particular answer.

Fig. 14.8 Discourse tree for an answer with the EDUs selected for indexing

548 14 Rhetorical Map of an Answer

14.2.3 How Rhetorical Relations Determine Indexing Rules

Let us now look closer at how each type of rhetorical relation. For Elaboration, we
index the nucleus part and assume that satellite parts is too specific to be mentioned
in a question and instead is only expected in an answer. For Enablement, we have the
following template:

To achieve some state [nucleus] | do this and that [satellite]. A query may be of the form
“how to achieve some state?” but less likely be of the form “what can I achieve doing this
and that?”. Therefore we select the nucleus of Enablement relation for indexing.

Rhetorical relation of Condition tells us that IF part (the satellite) should not be
indexed when the nucleus is indexed and answers the question of the type “when/
where/under what condition . . .”.We expect other relations such as Contrast, to act
similarly to Condition: the EDU which expresses facts that actually hold (and not the
satellite part facts which are unusual, unexpected, unanticipated). Attribution acts in
a similar way: the nucleus fact is important and may occur in a factoid question, and
the satellite part on whom this is attributed to is usually a detail. The exception here
is a query by an author, but for such queries texts need to be transformed into a
structured way and covered by a different kind of search technology.

The Same-Unit and Joint relations are symmetric and should not affect our
selection of text portions for indexing.

We now take a different approach for expressing rhetorical structure and observe
how it is correlated to forming questions to address a text (Fig. 14.9).

a. . . . [L]ike South Africa,
b. the United States had to overcome centuries of racial subjugation.
c. As was true here,
d. it took sacrifice – the sacrifice of countless people, known and unknown, to

see the dawn of a new day. e. Michelle and I are beneficiaries of that
struggle.

f. (Applause.)
g. But in America, and in South Africa, and in countries all around the globe, we

cannot allow our progress to cloud the fact that our work is not yet done.

For Contrast, satellite is good because it is an expression with elevated impor-
tance. For Evidence, just nucleus is good because the statement is important but its
back up in unlikely to be queried.

If Elaboration holding between two discourse units is defined as the second unit
describing the same state of affairs as the first one (in different words), or, at a certain
level of abstraction, says the same thing (e.g. Hobbs 1979), then both nucleus and
satellite would form meaningful answers. In original formulation of RST, usually, an
additional requirement for Elaboration is imposed that the satellite is more
detailed and longer. The broadest definition Elaboration also includes as special
cases such RR as Reformulation or Restatement, Summary, Specification and
Generalization.

14.2 A Rhetorical Map of an Answer: What to Index and What Not to Index 549

Explanation gives the cause or reason why the state of affairs presented in the
context sentence takes place, or why the speaker believes the content of that sentence
holds, or why the speaker chose to share information with us; these cases correspond
to the three types of causal relations identified (Sweetser 1990). For the cases of
content level causality, epistemic causality and speech act causality satellite should
not form a question.

Rhetorical relations Evidence, Justify, Motivation, Enablement, Evaluation,
Background all overlap in their function with Explanation, but vary in goals and
means of giving reasons. For example, Evidence is given in order to increase the
hearer’s belief in a claim.

Sequence relation connects descriptions of events that (are to) take place one after
the other, the order of events matching the textual order of utterances. This is typical
for narrative texts and successive instructions, e.g. cooking recipes. For two EDUs
e1 and e2, an additional requirement is imposed that the described events be temporally
and spatially contiguous. Where things are at the end of e1 is where things are at the
start of e2, there is no break in between (Hobbs 1985; Asher and Lascarides 2003).

14.2.4 Forming Alternative Questions

The developed methodology of the DT-based analysis of answers is going to be
applied in the following way, given an index of Q/A pairs:

Fig. 14.9 Alternative visualization of a DT focus on rhetorical relation Parallel

550 14 Rhetorical Map of an Answer

(1). Search a user query against an index of available Qs (IndexQ);
(2). If no or too few results, search against the index of generated queries

(IndexNucleusA);
(3). If there are still no or too few results, search against original answers (IndexA).

We now focus on (2) and outline the algorithm of building IndexNucleusA. We
start with the traditional linguistic analysis pipeline (units on the top), and build the
discourse tree (units in the middle). Then we navigate the discourse tree and apply
relation-dependent rules to extract nucleuses and form a set of alternative questions
for indexing.

To form a question from a nucleus EDU to obtain a set of questions for a given
text, the following steps are applied (Fig. 14.10):

(1). Build a parse tree
(2). Select parse tree nodes for nouns, verbs and adjectives. Also add nodes

linked by coreferences such as pronouns. More complex node selection
rules can be applied (Finn 1975).

(3). For every selected node, form a reduction of a parse tree by removing
this node.

(4). Build a question for this reduction by substitution aWh word for this node
(5). Select a proper Wh word following the rules: noun ->Who or What, verb -

>‘what . . . do’, adjective ‘Which way’, ‘How is’.

14.2.5 Classifying EDUs as Informative or Not

Having outlined the rules for finding the nucleus EDUs, we now explore a possibility
to learn them automatically. The problem is formulated as classifying EDUs into two
classes:

(1). Good for indexing and forming alternative questions for an answer;
(2). Not suitable for indexing.

Node deleted
Tools and materials (NNS) What did Joe pack neatly
Joe (NNP) , his (PRP$) Who packed tools and materials neatly?

Whose tools and materials were packed
neatly

Neatly (RB)

Fig. 14.10 Transforming a statement into a question

14.2 A Rhetorical Map of an Answer: What to Index and What Not to Index 551

To form a training set, one needs to employ a search engine which has a different
criteria on which parts of an answer are good for matching and which parts are not
good. For example, it can be answer popularity, or search rank (Galitsky et al. 2012),
which is learned by a search engine on the basis of a high number of searches for the
same query and user selection.

To accumulate the Q/A pairs with marked As, we run a manifold of queries
against short texts and identify which portions of these texts are used for matching.
Since we need longer queries to assure the match is nontrivial, we take a (Yahoo!
Answers 2018) dataset and run the questions formed from the first sentence. We rely
on Microsoft Cognitive Services (Bing Search engine API) to run these queries.
Then we select those search results which are short texts (4–6 sentences) suitable for
parsing and discourse analysis. We then take matched fragments of these texts as
elements of the training set. This evaluation technique has been used for evaluation
of various search engineering tricks (Galitsky 2017a).

Such fragments from the top 10þ pages of search result forms our positive
dataset. It includes the fragments of texts considered by the search engine to be of
high relevance. For the negative dataset, we take the fragments with matched
keywords from the set of lower ranked (100–1000þ) search results page.

We use three datasets to evaluate the contribution of our methodology to search
quality:

(1). We take a subset of (Yahoo! Answers 2018) dataset where the main question is
a single sentence (possibly, compound) with ten-fifteen keywords. We also
selected answers that include a single paragraph of three to six sentences (so that
their DTs are not trivial). Moreover, we excluded the Q/A pairs where rhetorical
parser (Surdeanu et al. 2015, Joty et al. 2013) either experienced difficulties in
parsing or produced trivial DTs mostly including elaboration relations. The
dataset includes various domains, and domain knowledge coverage is very low.

(2). We form the dataset of financial questions scraped from Fidelity.com (Fidelity
2018). This dataset demonstrates how search relevance improvement may occur
in a vertical domain with a reasonable coverage.

(3). We form a dataset of Q/A pairs related to car repair recommendations (CarPros
2018). These pairs were extracted from dialogues as first and second utterances,
so that a question includes one to three sentences and answer is three to six
sentences in length. This resource is built to train a dialog support system but it
also proved to be useful to evaluate answering complex, multi-sentence ques-
tions. The domain knowledge coverage of this dataset is very thorough.

For each search session, we only consider the first results and reject the others.
We are not concerned with an absolute value for relevance for these queries; instead,
we track if recall increases and precision stays the same or deviates insignificantly
after our IndexNucleusA is applied. For all these datasets we assume that there is only
one correct answer (from the Q/A pair) and the rest of answers are incorrect. Hence
the evaluation framework for the algorithm contribution is straightforward: each
query either succeeds or fails.

552 14 Rhetorical Map of an Answer

http://fidelity.com

Evaluation results for the proposed methodology are presented in Table 14.2. We
show changes in recall and precision for two settings, rule-based (middle column)
and automated classification–based (right column). Relevance of a baseline system
(left column) is determined by many factors and is therefore not very insightful, so
we focus at the change in recall (Δ), from the baseline search system to the one
extended by the proposed approach.

As to the baseline system, its F-measure is on average 78% including the
improvement by 8% by using syntactic generalization on top of Lucene search
(not shown).

One can see that proposed method delivers about 13% improvements in recall
having the precision almost unaffected, for the Nucleus/Satellite rule case. There is a
further 3% improvement by using the automated classifier of EDUs. Since deploy-
ment of such classifier in the domain-dependent manner is associated with substan-
tial efforts (Galitsky et al. 2015a), it is not necessarily recommended when this 3%
improvement in search accuracy is not critical.

14.3 Conclusions

Our evaluation settings are focused on compound queries where most answers
correctly belong to the topic of interest in a query and there is usually a sufficient
number of keywords to assure this. However, in the selected search domain,
irrelevant answers are those based on foreign entities or mismatched attributes of
these entities. Hence augmenting keyword statistics with the structured information
of parse trees is not always critical to search accuracy improvement for compound
queries. At the same time, a discourse information for candidate answers is essential to
properly form and interpret the constraints expressed in compound queries (Galitsky
and Ilvovsky 2017b). Hence comparing discourse trees of questions and answers helps
with both topical (this Chap. 5) and rhetorical (Chap. 10, Galitsky 2017a) relevance.

Despite other studies such as (Jansen et al. 2014) showed that discourse infor-
mation is beneficial for search via learning, this chapter seems to be one of the first
studies demonstrating how Rhetorical Map affects search directly. To be a valid
answer for a question, its keywords need to occur in adjacent EDU chain of this
answer so that these EDUs are fully ordered and connected by nucleus – satellite

Table 14.2 Evaluation results for indexing informative parts of text

Dataset/Method

Baseline
Nucleus/Satellite rule,
improvement

Classification-based,
improvement

P R ΔR, % ΔP, % ΔR, % ΔP, %
Yahoo! Answers 74.3 79.2 +12.5 +0.07 +14.2 �0.04

Fidelity 80.2 77.0 +10.3 - 0.06 +15.8 +0.08

Car repair 81.4 78.7 +16.2 +0.02 +18.3 +0.03

14.3 Conclusions 553

relations. Note the difference between the proximity in text as a sequence of words
and proximity in DT (Croft et al. 2009). An answer is expected to be invalid if the
questions’ keywords occur in the answer’s satellite EDUs and not in their nucleus
EDUs. The purpose of the rhetorical map of an answer is to prevent it from being
fired by questions whose keywords occur in non-adjacent areas of this map.

In the search engine and chatbot industry, whole texts are usually indexed for
search. Because of that, frequently irrelevant answers are delivered because their
insignificant keywords (the ones providing auxiliary information and not central for
the document) were matched. To overcome this well-known problem, only questions
from Q/A pairs are indexed, which dramatically decreases the search recall. To
address this limitation of indexing, we proposed and evaluated our approach of
indexing only those EDUs of text which are determined to be important (and
therefore form alternative questions). This substantially improves the recall in
applications such as FAQ chatbots (Galitsky and Ilvovsky 2017a) where only Qs
of Q/A pairs are indexed.

References

Asher N, Lascarides A (2003) Logics of conversation. Cambridge University Press, Cambridge
CarPros (2018) https://github.com/bgalitsky/relevance-based-on-parse-trees/blob/master/examples/

CarRepairData_AnswerAnatomyDataset2.csv.zip
Chali Y, Joty SR, Hasan SA (2009) Complex question answering: unsupervised learning

approaches and experiments. J Artif Intell Res 35(1):1–47
Croft B, Metzler D, Strohman T (2009) Search engines – information retrieval in practice. Pearson

Education. North America
Fidelity (2018) https://github.com/bgalitsky/relevance-based-on-parse-trees/blob/master/examples/

Fidelity_FAQs_AnswerAnatomyDataset1.csv.zip
Finn PJ (1975) A question writing algorithm. J Read Behav 7(4):341–367
Galitsky B (2014) Learning parse structure of paragraphs and its applications in search. Eng Appl

Artif Intell 32:160–184
Galitsky B (2017a) Discovering rhetorical agreement between a request and response. Dialogue

Discourse 8(2):167–205
Galitsky B (2017b) Matching parse thickets for open domain question answering. Data Knowl Eng

107:24–50
Galitsky B, Ilvovsky D (2017a) Chatbot with a discourse structure-driven dialogue management,

EACL demo program
Galitsky B, Ilvovsky D (2017b) On a chat bot finding answers with optimal rhetoric representation.

Proceedings of recent advances in natural language processing, pages 253–259, Varna,
Bulgaria, Sept 4–6

Galitsky B, Kovalerchuk B (2014) Improving web search relevance with learning structure of
domain concepts. In: Clusters, orders, and trees: methods and applications. Springer, New York,
pp 341–376

Galitsky B, Lebedeva N (2015) Recognizing documents versus meta-documents by tree Kernel
learning. FLAIRS conference, pp 540–545

Galitsky B, Gabor Dobrocsi J, Lluis de la R (2012) Inferring the semantic properties of sentences by
mining syntactic parse trees. Data Knowl Eng 81:21–45

Galitsky B, Kuznetsov SO, Usikov D (2013) Parse thicket representation for multi-sentence search.
International conference on conceptual structures, pp 153–172

554 14 Rhetorical Map of an Answer

https://github.com/bgalitsky/relevance-based-on-parse-trees/blob/master/examples/CarRepairData_AnswerAnatomyDataset2.csv.zip
https://github.com/bgalitsky/relevance-based-on-parse-trees/blob/master/examples/CarRepairData_AnswerAnatomyDataset2.csv.zip
https://github.com/bgalitsky/relevance-based-on-parse-trees/blob/master/examples/Fidelity_FAQs_AnswerAnatomyDataset1.csv.zip
https://github.com/bgalitsky/relevance-based-on-parse-trees/blob/master/examples/Fidelity_FAQs_AnswerAnatomyDataset1.csv.zip

Galitsky B, Ilvovsky D, Kuznetsov SO (2015a) Text classification into abstract classes based on
discourse structure. Proceedings of recent advances in natural language processing, pages
200–207, Hissar, Bulgaria, Sep 7–9 2015

Galitsky B, Ilvovsky D, Kuznetsov SO (2015b) Rhetoric map of an answer to compound queries.
Proceedings of the 53rd annual meeting of the association for computational linguistics and the
7th international joint conference on natural language processing. Volume 2, pp 681–686

Hobbs JR (1979) Coherence and coreference. Cogn Sci 3(1):67–90
Hobbs JR (1985) On the coherence and structure of discourse. Report no. CSLI-85-37, center for

the study of language and information, October
Ilvovsky D (2014) Going beyond sentences when applying tree kernels. Proceedings of the ACL

2014 student research workshop, pp 56–63
Jansen P, Surdeanu M, Clark P (2014) Discourse complements lexical semantics for nonfactoid

answer reranking. ACL
Jasinskaja K, Karagjosova E (2017) Rhetorical relations. In: Matthewson L, Meier C, Rullmann H,

Zimmermann TE (eds) The companion to semantics. Wiley, Oxford
Joty SR, Moschitti A (2014) Discriminative reranking of discourse parses using tree Kernels.

Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP)

Joty SR, Carenini G, Ng RT, Mehdad Y (2013) Combining intra-and multi- sentential rhetorical
parsing for document-level discourse analysis. In: ACL (1), pages 486–496

Mann W, Thompson S (1988) Rhetorical structure theory: towards a functional theory of text
organization. Text-Interdiscip J Study of Discourse 8(3):243–281

Moschitti A (2006) Efficient convolution Kernels for dependency and constituent syntactic trees.
In: Proceedings of the 17th european conference on machine learning, Berlin, Germany

QnAmaker (2018) Microsoft QnA Maker. https://www.qnamaker.ai/
Strok F, Galitsky B, Dmitry Ilvovsky, Kuznetsov SO (2014) Pattern structure projections for

learning discourse structures. International conference on artificial intelligence: methodology,
systems, and applications, pp 254–260

Surdeanu M, Hicks T, Valenzuela-Escarcega MA (2015) Two practical rhetorical structure theory
parsers. Proceedings of the conference of the North American chapter of the association for
computational linguistics – human language technologies: software demonstrations (NAACL
HLT)

Sweetser E (1990) From etymology to pragmatics: metaphorical and cultural aspects of semantic
structure (Cambridge studies in linguistics). Cambridge University Press, Cambridge

Yahoo! Answers (2018) https://answers.yahoo.com/

References 555

https://www.qnamaker.ai/
https://answers.yahoo.com/

Chapter 15
Conclusions

Abstract We conclude the book with the analysis of why it is so hard to build an
industrial-strength chatbot and what the main problems are which need to be solved.
We summarize the techniques employed in this book, mention deployment at Oracle
and a university course on chatbots.

In this book we outlined the main problems on the way to build solid industrial
chatbots. We analyzed the reasons it is so hard to find a chatbot demo today for a
nontrivial task or to observe an intelligent behavior of a chatbot. At the time of
writing of this book, it is easy to see how a success in AI can boost the chatbot
development on one hand, but it is hard to detect intelligence in those chatbots that
are available to the public, on the other hand. As the chatbot design bottlenecks
became transparent, we came up with the plan to tackle the identified problems one-
by-one and drew the system architecture to solve these problems.

We proposed a pathway to build a chatbot that can be demoed to impress an
audience with its intelligence. We made a claim that an industrial chatbot needs to
integrate a number of specific components instead of just following a certain popular
paradigm such as data-driven, intent recognition frames or a specific set of rules.

We backed up this claim by describing a number of chatbot components with
specific function, starting from an advanced search engine with the focus on
linguistic features (Chap. 5), encoding semantics via a logic program (Chap. 6)
and longer complex queries (Chap. 7). We then proceeded to discourse-level anal-
ysis and applied it do cohesiveness (Chap. 10), dialogue management (Chap. 11),
argumentation (Chap. 13) and chatbot answer anatomy (Chap. 14). Having
presented a high-level view of chatbot components and architectures in Chap. 2,
we also covered explainable AI for chatbots in Chap. 3, such topics as NL access to a
database (Chap. 4.), chatbot thesaurus in Chap. 8 and content management in
Chap. 9. In each Chapter we provided a stand-alone evaluation of the particular
component to prove that it is meaningful to integrate it into the end-to-end chatbot,
whose overall performance is hard to formally verify.

Conversational platforms will drive the next big paradigm shift in how humans
interact with machines. The burden of translating intent shifts from a user to a
computer. The platform takes a question or command from the user and then

© Springer Nature Switzerland AG 2019
B. Galitsky, Developing Enterprise Chatbots,
https://doi.org/10.1007/978-3-030-04299-8_15

557

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04299-8_15&domain=pdf

responds by executing some function, presenting some content or asking for an
additional input. Over the next few years, conversational interfaces will become a
primary design goal for user interaction and will be delivered in dedicated hardware,
core OS features, platforms and applications.

According to Gartner.com, conversational platforms have reached a tipping point
in terms of understanding language and basic user intent, but they still fall short. The
challenge that chatbots face is that users must communicate in a very structured way,
and this is often a frustrating experience. A primary differentiator among conversa-
tional platforms will be the robustness of their conversational models and event
models used to access, invoke and orchestrate third-party services to deliver complex
outcomes. Creating systems that learn, adapt and attempt to perform autonomously
will be a major area of competition between the technology builders over next few
years. The ability to use AI to enhance decision-making, reinvent business models
and ecosystems, and remake the customer experience will drive the payoff for digital
initiatives through 2025.

AI techniques are evolving rapidly and the industry would need to fund skills,
processes and tools to successfully exploit these techniques and build AI-enhanced
systems. Investment areas can include data preparation, integration, algorithm and
training methodology selection, as well as model creation. Multiple constituencies
including data scientists, developers and business process owners will need to work
together.

There is a well-known formula for developing an intelligent
Chatbot ¼ SearchEngine + Dialogue Manager. Although the first component is
so well tuned nowadays that it is really hard to suggest a further improvement, the
Dialogue Manager component is still in its infancy. In the research community, a
deep learning approach to dialogue management attempts to simulate human intel-
lectual activity, learns from available dialogues which are not always meaningful and
produce something that even children with special needs try to avoid. On the other
hand, major vendors of chatbot development platform offer tools for hard-coded
dialogue management that require a lot of manual work and produce very brittle
chatbots, which can hardly deviate from a set of hard-coded dialogue scenarios.

Discourse linguistics is here to take dialogue management to a totally new level. It
studies how humans organize their thoughts in text. For example, an author intro-
duces an entity E1 in the first sentence, then introduces its two attributes in the
second sentence, outlines a relationship between these attributes in the third sen-
tence, and claims the difference with another entity E2 in the fourth sentence. In this
book, we oriented Discourse Analysis towards representing logic and communica-
tion flow which can be machine learned from text and embedded into the Dialogue
Manager.

We discovered that if a chatbot user expresses her problem in a few sentences in
the initial utterance, the chatbot can automatically build the dialogue flow from the
Communicative Discourse Tree (Chap. 10) of this utterance, and no manual dialogue
construction is required. By automated Dialogue Management, the chatbot relieves
developers from routine work of designing of dialogue flow on one hand and makes
chatbot response more adaptive, so that it does not get stuck when encounters a
scenario which has not been coded by a chatbot developer.

558 15 Conclusions

http://gartner.com

A dozen of patents based on the material of this book have been filed by Oracle in
the area of how Discourse Linguistics helps chatbot become more helpful and
intelligent. The company hopes these inventions will become popular among the
community of chatbot developers. It is expected to accelerate chatbot development
and deployment process, as well as improves the user experience running into
unusual cases. Relying on discourse analysis, the logic of conversation can be
automatically learned and help the chatbot to select the next utterance.With discourse
analysis, specifying explicit rules of the dialogue state machine becomes unnecessary
in most cases for task-oriented dialogues. A number of inventions described in
this book such as question vs transactional request recognition have been deployed
into the Oracle Digital Assistant in 2018 (https://cloud.oracle.com/digital-assistant);
other inventions still remain as research prototypes.

A preliminary version of this book served as a primary material for the Master’s
course on Intelligent Systems in National Research University Higher School of
Economics, Department of AI and Data Science, Moscow, Russia. The students used
this book in their hands-on projects on developing chatbot in such domains as
entertainment, culinary, finance, transportation and others.

15 Conclusions 559

https://cloud.oracle.com/digital-assistant

	Foreword
	Contents
	Chapter 1: Introduction
	1.1 Introduction
	1.2 Current Chatbot Trends
	1.3 Current Status of Bot Development
	1.4 How to Read This Book and Build a Chatbot That Can Be Demoed
	References

	Chapter 2: Chatbot Components and Architectures
	2.1 Introduction to Chatbots Architecture
	2.1.1 Definitions
	2.1.2 Dialogue Manager
	2.1.3 Multimodal Interaction
	2.1.4 Context Tracking
	2.1.5 Topic Detection
	2.1.6 Named Entities and Their Templates
	2.1.7 Information Retrieval
	2.1.8 Personalization
	2.1.9 Architecture of a Task-Oriented Chatbot

	2.2 History of Chatbots
	2.3 Deterministic Dialogue Management
	2.3.1 Handling Context
	2.3.2 Turn-Taking
	2.3.3 Action Selection
	2.3.4 Dialogue Management with Manually Coded RULES
	2.3.5 Finite-State Machines
	2.3.6 Rule-Based Dialogue Management
	2.3.7 Frame and Template-Based Dialogue Management

	2.4 Dialogue Management Based on Statistical Learning
	2.4.1 Bayesian Networks
	2.4.2 Neural Networks
	2.4.3 Markov Models

	2.5 Dialogue Management Based on Example-Based, Active and Transfer Learning
	2.6 Conclusions
	References

	Chapter 3: Explainable Machine Learning for Chatbots
	3.1 What Kind of Machine Learning a Chatbot Needs
	3.1.1 Accuracy vs Explainability
	3.1.2 Explainable vs Unexplainable Learning
	3.1.3 Use Cases for the ML System Lacking Explainability
	3.1.4 Automated Detection of a Request to Explain

	3.2 Discriminating Between a User Question and User Request
	3.2.1 Examples of Questions and Transactional Requests
	3.2.2 Nearest Neighbor-Based Learning for Questions vs Transactional Requests Recognition

	3.3 A Decision Support Chatbot
	3.3.1 Example of a Decision Support Session
	3.3.2 Computing Decisions with Explanations

	3.4 Explanation-Based Learning System Jasmine
	3.4.1 A Reasoning Schema
	3.4.2 Computing Similarity Between Objects

	3.5 Conclusions
	References

	Chapter 4: Developing Conversational Natural Language Interface to a Database
	4.1 Introduction
	4.1.1 History

	4.2 Statistical and Deep Learning in NL2SQL Systems
	4.2.1 NL2SQL as Sequence Encoder
	4.2.1.1 Sequence-to-Sequence Model
	4.2.1.2 Sequence-to-Tree Model
	4.2.1.3 Attention Mechanism and Model Training

	4.2.2 Limitations of Neural Network Based Approaches

	4.3 Advancing the State-of-the-Art of NL2SQL
	4.3.1 Building NL2SQL via Multiword Mapping
	4.3.2 Sketch-Based Approach
	4.3.3 Extended Relational Algebra to Handle Aggregation and Nested Query
	4.3.4 Interpreting NL Query via Parse Tree Transformation
	4.3.4.1 Intermediate Representation Language
	4.3.4.2 Mapping the Nodes of Query Parse Tree

	4.4 Designing NL2SQL Based on Recursive Clause Building, Employing Thesauri and Implementing Via Chatbot
	4.4.1 Selecting Deterministic Chatbot-Based Approach
	4.4.2 Interpreting Table.Field Clause
	4.4.3 Collecting Information on a Database and Thesaurus for NL2SQL
	4.4.4 Iterative Clause Formation
	4.4.5 Clause Building by Matching the Phrase with Indexed Row
	4.4.6 Extracting Focus Clause

	4.5 Resolving Ambiguities in Query Interpretation via Chatbot
	4.6 A Sample Database Enabled with NL2SQL
	4.7 Conclusions
	References

	Chapter 5: Assuring Chatbot Relevance at Syntactic Level
	5.1 Introduction
	5.2 Syntactic Generalization in Search and Relevance Assessment
	5.3 Generalizing Portions of Text
	5.3.1 Generalizing at Various Levels: From Words to Paragraphs
	5.3.2 Equivalence Transformation on Phrases
	5.3.3 Simplified Example of Generalization of Sentences
	5.3.4 From Syntax to Inductive Semantics
	5.3.5 Nearest Neighbor Learning of Generalizations

	5.4 Evaluation of a Generalization-Based Search Engine
	5.4.1 User Interface of Search Engine
	5.4.2 Qualitative Evaluation of Search
	5.4.3 Evaluation of Web Search Relevance Improvement
	5.4.4 Evaluation of Product Search

	5.5 Evaluation of Text Classification Problems
	5.5.1 Comparative Performance Analysis in Text Classification Domains
	5.5.2 Example of Recognizing Meaningless Sentences

	5.6 Implementation of OpenNLP.Similarity Component
	5.6.1 First Use Case of Similarity Component: Search
	5.6.2 Solving a Content Generation Problem
	5.6.3 Filtering Out Meaningless Speech Recognition Results
	5.6.4 Comparison with Bag-of-Words Approach

	5.7 Related Work
	5.8 Conclusions
	References

	Chapter 6: Semantic Skeleton Thesauri for Question Answering Bots
	6.1 Introduction
	6.2 Defining Semantic Headers of Answers
	6.3 Defining Semantic Skeletons for Common Sense
	6.4 SSK Handling of Complex Questions
	6.5 Evaluation of Relevance Improvement Due to SSK
	6.6 Discussion and Conclusions
	References

	Chapter 7: Learning Discourse-Level Structures for Question Answering
	7.1 Introduction
	7.2 Parse Thickets and Their Graph Representation
	7.2.1 Extending Phrases to Span Across Sentences
	7.2.2 Computing Structural Distance Between a Question and an Answer

	7.3 Dimensions of Sentence-Level Generalization
	7.4 Generalization of Parse Thickets
	7.4.1 A High-Level View
	7.4.2 Generalization for RST Arcs
	7.4.3 Generalization for Communicative Action Arcs
	7.4.4 Kernel Learning for Parse Thickets
	7.4.5 From Matching to Learning Parse Thickets

	7.5 Evaluation of Search Relevance Improvement
	7.5.1 Evaluation Settings
	7.5.2 Query Is a Sentence and Answer Is a Sentence
	7.5.3 Query Is a Paragraph and Answer Is a Paragraph
	7.5.4 Extended Tree Kernel Learning for Individual Search Sessions
	7.5.5 Comparison of Search Performance with Other Studies

	7.6 Implementation of Generalization at Many Levels
	7.7 Related Work
	7.8 Conclusions
	References

	Chapter 8: Building Chatbot Thesaurus
	8.1 Introduction
	8.2 Improving Chatbot Relevance by Thesauri
	8.2.1 Defining the is_about Relation for a Query
	8.2.2 Thesaurus-Based Answer Selection
	8.2.3 Thesaurus-Based Relevance Verification Algorithm

	8.3 Building Thesauri
	8.3.1 Thesaurus Construction as a Process of Learning and Web Mining
	8.3.2 Thesaurus-Building Algorithm
	8.3.3 An Example of Thesaurus Learning Session
	8.3.4 Thesaurus Snapshot

	8.4 Evaluation of Chatbot Relevance Boost
	8.4.1 Evaluation of Search Relevance Improvement
	8.4.1.1 Thesaurus-Supported Vertical Search
	8.4.1.2 Thesaurus-Supported Web Search
	8.4.1.3 Multi-lingual Thesaurus Use

	8.4.2 Industrial Evaluation of Thesaurus-Based Text Similarity

	8.5 Thesaurus Builder as a Part of OpenNLP
	8.5.1 Running Thesaurus Learner

	8.6 Related Work
	8.7 Conclusions
	References

	Chapter 9: A Content Management System for Chatbots
	9.1 Introduction
	9.1.1 From Search to Personalized Recommendations to Chatbots

	9.2 Relevance-Related Problems in a Content-Management System
	9.2.1 Content Pipeline Architecture
	9.2.2 The Engines Assuring CMS Relevance
	9.2.3 Content Processing Units
	9.2.3.1 Harvesting Unit
	9.2.3.2 Content Mining Unit
	9.2.3.3 Thesaurus Unit
	9.2.3.4 Opinion Mining Unit
	9.2.3.5 De-duplication Unit
	9.2.3.6 Chatbot Search Engine Marketing unit
	9.2.3.7 Speech Recognition Semantics Unit
	9.2.3.8 Search Unit
	9.2.3.9 Personalization Unit

	9.3 Generalization of Expressions of Interest
	9.3.1 Personalization Algorithm as Intersection of Likes
	9.3.2 Mapping Categories of Interest/Thesauri
	9.3.3 Defeasible Logic Programming-Based Rule Engine

	9.4 The Algorithms for High-Relevance CMS
	9.4.1 De-duplication Algorithms
	9.4.2 Analyzing Sentiments by Parse Tree Navigation
	9.4.3 Agglomerative Clustering of Search Results
	9.4.3.1 Description of GreedySearch Algorithm
	9.4.3.2 Agglomerative Clustering Algorithm
	9.4.3.3 Similarity Used by Clustering

	9.5 Building Conclusive Answers
	9.5.1 Concluding a Question Answering Session
	9.5.2 Building a Structure of Conclusive Answer
	9.5.3 Content Compilation Algorithm
	9.5.4 A Brief Example of the Content Generation Flow
	9.5.5 Modeling the Content Structure of Texts
	9.5.6 Related Work on Conclusive Answers

	9.6 Evaluation
	9.6.1 Performance Analysis of the Content Pipeline Components
	9.6.1.1 De-duplication: From String Distance to SG-Supported Web Mining
	9.6.1.2 Sentiment Analysis for Product Recommendation
	9.6.1.3 Evaluation of Search Engine Marketing Unit

	9.6.2 Performance Analysis of Personalized Recommendations
	9.6.3 Performance Analysis of SG-Supported Search Relevance

	9.7 Related Work and Discussions
	9.8 Conclusions
	9.8.1 From Search Engines to Chatbots
	9.8.2 Relevance in a CMS

	References

	Chapter 10: Rhetorical Agreement: Maintaining Cohesive Conversations
	10.1 Introduction
	10.1.1 Request and Response Utterances
	10.1.2 Correct and Incorrect Response-Request Pairs

	10.2 Communicative Discourse Trees
	10.2.1 Relying on VerbNet to Represent Communicative Actions

	10.3 Classification Settings for Request-Response Pairs
	10.3.1 Nearest Neighbor Graph-Based Classification
	10.3.2 Tree Kernel Learning for CDT
	10.3.3 Additional Rules for RR Agreement and RR Irrationality

	10.4 Evaluation
	10.4.1 Evaluation Domains
	10.4.2 Recognizing Valid and Invalid Answers
	10.4.3 Measuring RR Agreement in Our Evaluation Domains

	10.5 Handling Natural Language Descriptions of Algorithms
	10.6 Related Work
	10.6.1 Managing Dialogues and Question Answering
	10.6.2 Dialog Games
	10.6.3 Rhetorical Relations and Argumentation

	10.7 Conclusion
	References

	Chapter 11: Discourse-Level Dialogue Management
	11.1 Introduciton
	11.2 Introduction: Maintaining Cohesive Session Flow
	11.2.1 Limitations of Keyword Learning-Based Approaches
	11.2.2 Datasets for Evaluation

	11.3 Dialogue Management via Extended Discourse Trees
	11.3.1 Clarification-Based Domain Exploration Scenarios
	11.3.2 Navigating the Extended Discourse Tree
	11.3.3 Example of Navigating an Extended Discourse Tree for Three Documents
	11.3.4 Constructing EDT
	11.3.5 Manipulating with Discourse Trees
	11.3.6 Multi-document Navigation Without Discourse Trees
	11.3.7 Extended Discourse Tree for FAQ Pages
	11.3.8 Evaluation: Information Access Efficiency in Chatbots Versus Search Engines
	11.3.9 Related Work on Discourse Disentanglement

	11.4 Building Dialogue Structure from a Discourse Tree of an Initial Question
	11.4.1 Setting a Dialogue Style and Structure by a Query
	11.4.2 Building Dialogue Structure in Customer Support Dialogues
	11.4.3 Finding a Sequence of Answers to Be in Agreement with a Question
	11.4.4 Searching for Answers with Specified RR for Dialogue Construction
	11.4.5 Evaluation of the Dialogue Construction from the First Query

	11.5 Constructing Imaginary Discourse Trees for Dialogue Management
	11.5.1 Answering Questions via Entities and Discourse Trees
	11.5.2 Question Answer Filtering Algorithm
	11.5.3 Experiments with Answering Convergent Questions

	11.6 Dialogue Management Based on Lattice Walking
	11.6.1 Formal Concept Analysis
	11.6.2 Pattern Structure and Projections
	11.6.3 Measures for Pattern Concepts
	11.6.4 Lattice Walker Example
	11.6.5 The Structure of the Datasets
	11.6.6 Principles of Query Refinement

	11.7 Related Work
	11.7.1 Visualization of Discourse Trees and Discourse Features

	11.8 Open Source Implementation
	11.9 Conclusions
	References

	Chapter 12: A Social Promotion Chatbot
	12.1 Introduction
	12.2 The Domain of Social Promotion
	12.3 CASP Architecture
	12.4 Use Cases of CASP
	12.5 Evaluation of Relevance
	12.6 Evaluation of Extraction of Communicative Action
	12.7 Evaluation of Trust
	12.8 Replying to Multiple Posts
	12.8.1 Introducing Lattice Querying
	12.8.2 Sentence-Based Lattice Queries
	12.8.3 Paragraph-Level Lattice Queries
	12.8.4 Evaluation of Web Mining via Lattice Queries

	12.9 Correction of Obtained Post Candidate
	12.9.1 Meaningless Phrases Substitution Algorithm

	12.10 More Examples of Conversations
	12.11 Discussion and Conclusions
	References

	Chapter 13: Enabling a Bot with Understanding Argumentation and Providing Arguments
	13.1 Introduction
	13.2 Finding Valid Argumentation Patterns and Identifying Fake Content
	13.2.1 Handling Heated Arguments

	13.3 Evaluation of Logical Argument Detection
	13.3.1 Dataset for General Argumentation
	13.3.2 Specific Argumentation Patterns Dataset
	13.3.3 Evaluation Setup and Results
	13.3.4 CDT Construction Task

	13.4 Evaluation of Affective Argument Detection
	13.4.1 Detecting Sentiments at the Discourse Level
	13.4.2 Dataset and Evaluation Setup
	13.4.3 Extending Compositionality Semantics Towards Discourse
	13.4.4 Evaluation Results

	13.5 Assessing Validity of the Extracted Argument Patterns via Dialectical Analysis
	13.5.1 Building a Defeasible Logic Program
	13.5.2 Evaluation of Validation of Arguments

	13.6 Assessment of Text Integrity
	13.6.1 Discourse Structure and Text Integrity
	13.6.2 Sentiment Profile of a Dialogue
	13.6.3 Evaluation of Text Integrity Assessment

	13.7 Tackling Noisy Discourse Trees
	13.7.1 Discourse Trees Alignment
	13.7.2 Example of Building NCDT
	13.7.3 Evaluation of Learning Discourse Trees for Noisy Text

	13.8 Related Work
	13.8.1 Argument Mining
	13.8.2 Logical Argument and Discourse Linguistics
	13.8.3 Discourse Structures and Sentiment Analysis
	13.8.4 Discourse Parses and Ranking of Results
	13.8.5 Text Readability

	13.9 Conclusions
	References

	Chapter 14: Rhetorical Map of an Answer
	14.1 A Rhetorical Map of an Answer: Which DT-Answer Nodes Should Match the Question and Which Should Not
	14.1.1 From Discourse Tree to a Rhetorical Map of an Answer
	14.1.2 Definition and Construction Algorithm
	14.1.3 How Rhetorical Maps Improve Search Precision

	14.2 A Rhetorical Map of an Answer: What to Index and What Not to Index
	14.2.1 Informative and Uninformative Parts of an Answer
	14.2.2 How a Discourse Tree Indicates What to Index and What Not to Index
	14.2.3 How Rhetorical Relations Determine Indexing Rules
	14.2.4 Forming Alternative Questions
	14.2.5 Classifying EDUs as Informative or Not

	14.3 Conclusions
	References

	Chapter 15: Conclusions

