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14.1 Introduction

The increasing growth in global energy consumption and environmental problems
due to increased fossil fuel consumption has led to more interest in clean sources of
energy [1]. On the other hand, the advancement of technology and reduction in the
cost of carbon-free resources have accelerated the move toward usage of these
technologies [2]. Among RESs, WT and solar energy have attracted more attention
than other types of energy due to the uncertain nature and uncontrollability [3–5]. In
addition, the potential and participation of consumers in DR programs are more
advanced due to the movement of power networks to smart grids especially at the
distribution level [6].

14.1.1 Problem Definition

The uncertain and uncontrollable nature of power system parameters increases the
complexity and challenges of operation of SDSs and DSO such as loss of power
balance, loss of reliability, and increase in operational costs. ODAS of SDSs is
normally studied in short-term scheduling category. In this scheduling, 24-h prior to
the implementation of the program, the production levels of different units, including
WTs, DGs, and BESSs, and purchasing power from the upstream network should be
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determined. Correct and continuous operation of these networks considering RESs
requires optimal scheduling. This scheduling scheme should reduce operating costs
and handles the uncertainty of input parameters such as the power price of upstream
grid simultaneously.

14.1.2 Literature Review

Recently, remarkable efforts have been made in the area of proposing new and
realistic models for optimal scheduling of distribution networks. In [7], a two-level
optimization framework for SDS scheduling has been proposed that firstly focuses
on purchasing power from market, while unit commitment of DGs and interactions
with the real-time market are taken in the second phase of the proposed framework.
The authors in [8] used an optimal power flow algorithm to minimize the overall
cost of a SDS’s performance. A fuzzy-based method is proposed to plan a SDS in
[9], which aims to minimize operation costs on the one hand and minimize
environmental pollution on the other. Although these studies help decision-makers
to gain a general view of optimization issues, they cannot show the uncertainty in
real-world strategic decisions. Also, considering the absence of precise forecasting
methods, a deterministic optimization method is not appropriate for the ODAS of
the SDSs. Time-of-use DRPs have been investigated in optimal bidding strategy of
electrical energy retailers in [10]. The authors in this study have studied the impact
of system flexibility in improving the generation dispatch and reducing electricity
bills for the supply and demand sections, respectively. Various modeling
approaches with different strategies for fixed and flexible loads in obtaining
optimal dispatch of power networks have been compared in [11]. In addition, the
utilization of energy storage units and their advantages in ancillary services have
been discussed in the area of improving system reliability indexes and modifying
the load profile [12].

Studies in ODAS of SDSs are mainly divided into two categories including
deterministic studies and stochastic studies. In the field of deterministic studies, all
the inputs of the problem are entered as known values, and the outputs are deter-
mined for a given time period. For example, in the deterministic scheduling of the
SDS, regardless of the probabilistic nature of the predicted variables, the reservation
required by the SDS is determined prior to the planning of energy. On the other hand,
in stochastic studies, non-deterministic parameters can be estimated by specific
probabilistic distribution functions (PDFs), and their general purpose is to optimize
the expected value of an objective function. In [13], uncertain variables related to
SDS operation are modeled by PDF, and the operation is accomplished based on
probabilistic scenarios. In [14], the model presented in [7] has been developed so that
the expected cost of network performance is minimized and the risk associated
with the uncertainties in the problem is considered in this study. However, the
stochastic model presented in this reference investigates energy planning without
paying attention on RESs and the risk associated with their uncertainties.
The authors in [15] presented a two-level stochastic optimization model for energy
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and reserve planning of SDSs with the goal of minimizing the expected operating
cost of the network. In [16], a two-level risk-based optimization model for SDS
planning has been proposed that aims to minimize cost. The authors in [17] utilized a
stochastic method for multi-objective ODAS, which aims to minimize the cost of
performance and environmental pollution. In this study, consumer responsiveness is
also considered as one of the sources of energy supply. The accuracy and optimality
of randommethods depend on the accuracy of the PDF of uncertain variables and the
number of utilized scenarios in the optimization problem. The absence of proper
historical data will result in an uncertain PDF of random variables and false results.
In addition, with increasing in number of scenarios, the computational complexity of
the optimization problem will greatly increase.

14.1.3 Novelties and Contributions

This chapter presents an optimization framework based on the concepts of robust
optimization that can address the problems of both deterministic and stochastic
methods. This method models random variables with uncertain PDFs and frees up
the constraints. The solutions obtained from this method are safe against the worst
conditions of uncertainty associated with power market price. Compared with
stochastic optimization, the proposed method has several advantages. First, this
method only requires the predicted values of the upper limit and the lower limit of
random variables that are easier to obtain from historical data. Second, unlike
stochastic methods that use probabilistic guarantees to satisfy constraints, the pro-
posed method is followed by optimal solutions that are safe against all changes in
random variables [18]. In this chapter, the SDS scheduling considering RESs is
based on a mixed integer optimization. The proposed model defines the short-term
operation of the network, including the amount of exchange with the upstream
network and the generation of distributed resources including WTs, BESSs, and
DGs. In addition through this chapter, the participation of responsive loads in
network operation and their effects in minimizing the cost of network operation
are studied. In addition, in order to provide a model for SDSs, the presence of DGs
and RESs including WTs and BESSs, as well as DR programs, are provided in the
33-bus network. The purpose of the proposed method is to minimize the operational
cost of the SDS with respect to the predicted values of upstream grid power cost. The
energy and reserve scheduling of the next day should remain reliable through
changing the uncertain variables of the network.

14.1.4 Chapter Organization

In Sect. 14.2, mathematical modeling including objective function and problem
constraints is presented. In addition, RO method for modeling uncertainty is presented
in this section. Information about the sample network is provided in Sect. 14.3.
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The statistical results and charts related to the achievements of the problem are
presented in Sect. 14.4. A summary of the work is presented in Sect. 14.5.

14.2 Mathematical Modeling

In this section, a complete mathematical formulation for ODAS of the smart SDS,
including objective function and problem constraints, is presented. Also, modeling
for RESs including WTs, DR programs, and BESSs is presented in this section.

14.2.1 The Objective Function

Energy and reserve scheduling for SDSs takes place by DSO, with the goal of
minimizing the network operating costs over a 24-h period:

Min :
X24
t¼1

Pgrid tð Þ � λEg tð Þ
n o

þ
XNDG

j¼1

CEDG j; tð Þ þ CSDG j; tð Þ þ CRDG j; tð Þf g

þ
XNDRP

d¼1

CEDRP d; tð Þ þ CRDRP

�
d; t

�� �

þ
XNIL

i¼1

CELL i; tð Þ þ CRLL

�
i; t

�� �

ð14:1Þ

The proposed objective function consists of four terms. The first term is the cost
of supplying power and exchange with the upstream network, which is modeled as a
multiplication of the hourly power purchased from the upstream network (Pgrid) at
the hourly power of the upstream network (λEg ). The second term refers to the costs of
the DG units, including the cost of operation (CEDG), the start-up cost (CSDG), and
the cost of the reservation provided by these units (CRDG), which are subsequently
introduced by Eqs. (14.6), (14.7), and (14.8), respectively. The third term relates to
the cost of the DR providers, including energy costs (CEDRP) and the cost of
reservation (CRDRP), which are introduced by Eqs. (14.24) and (14.26), respectively.
The fourth term is the cost of the participation of industrial loads in DR programs
including the cost of energy provision (CELL) and the cost of providing the reserva-
tion (CRLL) by these units, which are modeled using Eqs. (14.28) and (14.29),
respectively. The index t ¼ 1, . . .,NT denotes the time, the index j ¼ 1, . . ., NDG

represents the DG units, the index d¼ 1, . . .,NDRP for the DRPs, and the index i¼ 1,
. . ., NIL for the large industrial loads.
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14.2.2 Constraints

The constraints associated with the ODAS of SDS including equal and unequal
constraints are represented in this section.

14.2.2.1 Distribution Network Constraints

In order to ensure the safe and proper operation of the distribution network,
constraints (14.2) and (14.3) are provided [19]. Equation (14.2) ensures that the
voltage remains acceptable. The current range is also considered by (14.3):

Vmin nð Þ � v n; tð Þ � Vmax nð Þ 8n, t ð14:2Þ
I m; n; tð Þ � Imax m; nð Þ 8m, n, t ð14:3Þ

where Vmin, Vmax, and v are the minimum, maximum, and hourly values of the bus
voltages. Also, Imax and I are the maximum tolerable current and the hourly current
of the feeder between the m and n buses, respectively.

14.2.2.2 Active and Reactive Power Balance Constraints

Reliable operation of distribution networks can be obtained by continues balance of
generated power and power load demand of the network [20]. Accordingly, the
following constraints should be considered for load balance at bus n at time t:

Pug tð Þ þ
X
j2n

PDG j; tð Þ þ
X
w2n

PWind w; tð Þ � Pch tð Þ þ Pdis tð Þ þ
X
i2n

PLL i; tð Þ

þ
X
d2n

PDRA d; tð Þ � Pload n; tð Þ ¼ Vn

X
n

Vn, t Gnm cos δn, t þ Bnm sin δm, tð Þ ð14:4Þ

Qug tð Þ þ
X
j2n

QDG j; tð Þ þ
X
w2n

QWind w; tð Þ þ
X
d2n

QDRA d; tð Þ þ
X
i2n

QLL i; tð Þ

� Qload n; tð Þ ¼ Vn, t

X
n

Vn, t Gnm cos δn, t � Bnm sin δm, tð Þ ð14:5Þ

where PLoad and QLoad are the respective indicators for active and reactive power.
The active and reactive power generation of each DG unit are defined by PDG and
QDG, respectively. PWind and QWind are the respective active and reactive power
generation of WTs. The active power charge/discharge of the storage unit is Pug and
Pdis. The reactive power charge/discharge of the storage unit is Qug and Qdis. The
active/reactive power reduced by large industrial load is PLL and QLL. The active/
reactive power reduced by DR aggregator is PDRA and QDRA.
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14.2.2.3 DG Units Constraints

The constraints of DG units are presented through (14.6, 14.7, 14.8, 14.9, 14.10,
14.11, 14.12, 14.13, and 14.14) [21]. The operation cost of the DG units is consid-
ered as a quadratic function of the power generated by such units, which can be
stated as follows:

CEDG j; tð Þ ¼ a j þ b j � PDG j; tð Þ þ c j � PDG
2 j; tð Þ 8j, t ð14:6Þ

where the cost coefficients of the DG unit are indicated by aj, bj, and cj. The start-
up cost of DG units is taken into account in this study, which can be formulated as:

CSDG j; tð Þ ¼ SUC jð Þ � u j; tð Þ � u j; t � 1ð Þð Þ; CSDG j; tð Þ � 0; 8j, t ð14:7Þ

where u is a binary variable used to define the operation of DG units. The cost of
providing required reserve of the network by DG units is considered as 20% of
marginal price of DG units:

CRDG j; tð Þ ¼ 0:2� b j þ 2� c j � PDG
max j; tð Þ� � 8j, t ð14:8Þ

The power generation limits of the DG units should be considered in the sched-
uling of such units. Such constraint should be studied for both power and reserve
scheduling of DG units, which can be stated as follows:

PDG
min jð Þ � u j; tð Þ � PDG j; tð Þ � PDG

max jð Þ � u j; tð Þ 8j, t ð14:9Þ
PDG j; tð Þ þ RDG j; tð Þ � PDG

max jð Þ � u j; tð Þ 8j, t ð14:10Þ

Equation (14.11) defines that the sum of power and reserve generated by DG units
should be limited to maximum generation of such units. The ramp-up/ramp-down
limits of the DG units can be studied using the following equations:

PDG j; tð Þ � PDG j; t � 1ð Þ �
UR jð Þ � 1� y j; tð Þð Þ þ PDG

min jð Þ � y j; tð Þ 8j, t ð14:11Þ

PDG j; t � 1ð Þ � PDG j; tð Þ �
DR jð Þ � 1� z j; tð Þð Þ þ PDG

min jð Þ � z j; tð Þ 8j, t ð14:12Þ

where the ramp-up/ramp-down limits of the DG units are defined by UR( j) and
DR( j). The minimum up/down time of DG units should be considered in the
scheduling of units, which can be formulated as follows:

XtþUT jð Þ�1

h¼t

u j; hð Þ � UT jð Þ � y j; tð Þ 8j, t ð14:13Þ
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XtþDT jð Þ�1

h¼t

�
1� u j; hð Þ � DT jð Þ � z j; tð Þ 8j, t ð14:14Þ

where the respective indicators of minimum up/down time of DG units are UT( j)
and DT( j).

14.2.2.4 Wind Turbine Modeling

The power output of WTs is considered as a function of wind speed, which is
formulated as (14.15) [22]:

Pwind tð Þ ¼
Pr � v tð Þ � vcið Þ

vr � vcið Þ vci � v tð Þ � vr

Pr vr � v tð Þ � vco
0 otherwise

8>><
>>:

ð14:15Þ

where V(t) is wind speed, Vci is cut-in speed, Vco is cut-out speed, and Vr is the rated
speed of WT.

14.2.2.5 Modeling Battery Energy Storage System

Energy storage technology is studied in the proposed model for charging power at
off-peak hours and recharging it at on-peak hours [23]. The energy balance of the
storage unit is as follows:

SOC b; tð Þ ¼ SOC b; t � 1ð Þ þ ηch � Pch b; tð Þ � ηdis � Pdis b; tð Þ ð14:16Þ

where SOC is the energy storage at the storage unit. The charge/discharge efficien-
cies of the storage units are defined by ηch/ηdis. The energy charged in the storage
unit should be limited to its minimum and maximum values as follows:

SOC bð Þ � SOC b; tð Þ � SOC bð Þ ð14:17Þ

where the minimum and maximum energy stored in the storage unit is defined by
SOC/SOC. The power charge/discharge of the storage units should be limited to its
lower and upper limitations as Eqs. (14.18) and (14.19):

0 � Pch b; tð Þ � Pch � bsc b; tð Þ ð14:18Þ
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0 � Pdis b; tð Þ � Pdis � bsd b; tð Þ ð14:19Þ
bsc b; tð Þ þ bsd b; tð Þ � 1; bsc, bsd2 0; 1f g,8t ð14:20Þ

Equation (14.20) is used to limit the operation of storage unit in one of the charge/
discharge/idle modes.

14.2.2.6 Modeling Demand Response Programs

In this chapter, consumers have been involved in DR programs in two ways. In the
first way, in order to create a position for the participation of home-grown consumers
or small-scale commercial and industrial consumers, two DR aggregators have been
utilized. Aggregated entities examine the possibility of customer participation in DR
programs, and after aggregating and integrating the responses of consumers, it is
possible to connect these with the wholesale market [24]. The cost of this DR
program is modeled by (14.21, 14.22, 14.23, and 14.24):

Od
min � od

1 � Od
1 ð14:21Þ

0 � od
k � od

kþ1 � od
k

� �8k ¼ 2, 3, . . . , k ð14:22Þ
PDRA d; tð Þ ¼

X
k

od
k ð14:23Þ

CEDRA d; tð Þ ¼
X
k

π d
k � od

k ð14:24Þ

Equation (14.21) limits the acceptance value of the load reduction by the
aggregator d (od

1 ) between the minimum of decreasing value (Od
min) and the proposed

load reduction by aggregator (Od
1 ) in step 1. According to (14.22), in the other steps,

the proposed acceptance of the aggregator can be between zero and proposed load
reduction in the related steps. According to (14.23), the sum of the power reduced by
the aggregator d at hour t (PDRA) is equal to the sum of all accepted reductions in that
hour. Also, the cost of reducing the load through the aggregator is calculated by
(14.24), which is equal to the product of the energy reduction cost (π d

k ) in the
accepted demand reduction of consumer d.

Load reduction which is not accepted by the aggregators can be utilized in reserve
scheduling. In accordance with (14.25), the total amount of energy (PDRA) and
scheduled reserve (RDRA) by decreasing the load should be limited to the maximum
proposition of aggregators (Pmax

DRA). In addition, the cost of providing reserve by
aggregator entities is calculated by (14.26). (KRDRA) is the cost of each reservation
unit provided by the aggregators:

PDRA d; tð Þ þ RDRA d; tð Þ � Pmax
DRA d; tð Þ ð14:25Þ
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CRDRA d; tð Þ ¼ RDRA d; tð Þ � KRDRA d; tð Þ ð14:26Þ

The second type of DR programs which are used in this chapter is related to load
reduction by large individual consumers. The power and reserve scheduling through
large consumers is restricted by (14.27), and the energy and reserve costs are divided
from (14.28) and (14.29):

PLL i; tð Þ þ RLL i; tð Þ � Pmax
LL i; tð Þ ð14:27Þ

CELL i; tð Þ ¼ PLL i; tð Þ � KELL i; tð Þ ð14:28Þ
CRLL i; tð Þ ¼ RLL i; tð Þ � KRLL i; tð Þ ð14:29Þ

In accordance with (14.27), the sum of the energy (PLL) and the reserve (RLL) of
large industrial loads should be lower than the maximum amount of energy that can
be reduced (Pmax

LL). Equation (14.28) states that the cost of reducing the energy
by large consumers (CELL) is equal to the product of reduced energy (PLL) at the
cost of each unit of power reduction (KELL). Equation (14.29) states that the cost
of providing required reserve by large consumers (CRIL) is equal to the cost of
the intended reservation (RLL) at the intended cost for each unit of reserve
scheduling (KRLL).

14.2.3 The Proposed Robust Method

The robust optimization (RO) was firstly proposed by Soyster in 1973 to deal with
uncertainties associated with power system parameters [25]. The RO is effective in
solving the problems with a series of uncertain parameters specially when there is
incomplete information on the uncertain parameters [26]. In this study, the price of
power purchased from the upstream grid is considered uncertainty, which is handled
using RO method. The objective function of the studied problem in (14.1), which is
deterministic, can be updated as follows considering the uncertainty of price of
power purchased from the upstream grid [27]:

Min :
XNDG

j¼1

CEDG j; tð Þ þ CSDG j; tð Þ þ CRDG j; tð Þf g

þ
XNDRP

d¼1

CEDRP d; tð Þ þ CRDRP

�
d; t

�� �þ
XNIL

i¼1

CEIL i; tð Þ þ CRIL

�
i; t

�� �

þmin max
X24
t¼1

Pgrid tð Þ � λRO,Eg tð Þ
n o

ð14:30Þ

where λRO,Eg tð Þ is the uncertain price of upstream grid. The second term of objective
function should be considered in solving the problem using the dual process.
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The power price is the sum of the forecasted price and deviation of price with respect
to the forecasted value:

max
X24
t¼1

Pgrid tð Þ � 1þ ztð Þλforecasted,Eg tð Þ
n o

subject to
zt � 1 : ζt

X24
t¼1

zt � Γ : β

zt � 0

ð14:31Þ

where β and ζt are dual variables of the problem. Γ is the robust level. The Karush
Kuhn Tucker (KKT) condition can be utilized to providing the robust formulation.
Accordingly, the objective function of the problem can be updated as follows:

Min : Γβ þ
X24
t¼1

ζt þ
X24
t¼1

Pgrid tð Þ � λforecasted,Eg tð Þ
n o

þ
XNDG

j¼1

CEDG j; tð Þ þ CSDG j; tð Þ þ CRDG j; tð Þf g

þ
XNDRP

d¼1

CEDRP d; tð Þ þ CRDRP

�
d; t

�� �þ
XNIL

i¼1

CEIL i; tð Þ þ CRIL

�
i; t

�� �

Constraints 14:2ð Þ � 14:29ð Þ
ζt þ β � dev� λforecasted,Eg tð Þ � Pgrid tð Þ
ζt � 0
β � 0

ð14:32Þ

14.3 Case Study

In this chapter, the IEEE 33-bus standard network has been used to examine the
effectiveness of the proposed method. Based on the results of [28], DG units are
connected to the appropriate buses. Three WTs are used in this network, connected
to the buses 13, 15, and 30. The rated power of WTs is 3 MW, and the cut-in, cut-out,
and rated speed of these turbines are 3, 25, and 13 m/s, respectively. The prediction
of wind speed over the next 24 h is shown in Fig. 14.1 [29].

Also, in the distribution network, there are four diesel generators that are
connected to the buses 8, 13, 16, and 25. The coefficients for the cost of these
generators and the information of the maximum and minimum power, the rate of
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power increase and power decrease, and the minimum up time and minimum down
time are given in Tables 14.1 and 14.2 [30]. Also, the prediction of the hourly load
during the day-ahead is shown in Fig. 14.2 [31]. Also, the 33-bus network is shown
in Fig. 14.3 [32].

Also, the hourly forecast for the wholesale electricity price is assumed for
day-ahead as shown in Fig. 14.4.

The battery power system with a capacity of 0.5 MW is connected to the bus 21.
The minimum and maximum capacity of the energy storage system is 20% and 80%
of its nominal capacity. The maximum charge and discharge rates for each hour are
equal to 0.1 MW.

14.4 Results

The proposed model provides an optimal energy and reserve scheduling for distrib-
uted resources and DR programs in the studied network. Also, in order to demon-
strate the effect of DR programs on the economic performance of the network, a
robust ODAS has been carried out in two modes of presence and absence of DR
programs, and the results have been compared.

23
21
19
17
15

T
im

e 
(h

o
u

r)

13
11
9
7
5
3
1

0 5 10

Wind Speed (m/s)

15 20 25

Fig. 14.1 Wind speed predicted for the next 24 h

Table 14.1 Information of
DG’s cost coefficients

Cost coefficients

Units ai ($) bi ($/MWh) ci ($/MWh2)

DG1 33 87 0.0025

DG2 25 87 0.0025

DG3 28 92 0.0035

DG4 26 81 0.184
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Fig. 14.2 Estimated hourly load for next 24 h

Table 14.2 Information of the DG’s technical data

Technical data

Units SUT ($) MUT/MDT (h) RU/ RD (MW/h) Pmax (MW) Pmin (MW)

DG1 15 2 1.8 3.5 1

DG2 25 1 1.5 3 0.75

DG3 28 1 1.5 3 0.75

DG4 26 2 1.8 4.1 1

23 24 25

26

Substation

1
2 3 4 5 6 7 8 9 10

DG 1

Battery

19 20 21 22

DG 2 DG 3

11 12 13 14 15 16 17 18

Large
Consumer1

Large
Consumer

2
Up stream

Grid

27 28 29 30 31 32 33

DG 4

Demand
reponse
provider 1

Demand response provider 2

Fig. 14.3 IEEE 33-bus distribution network
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14.4.1 First Mode (Absence of Demand Response Programs)

As seen in Fig. 14.5, during the hours when the energy price of the upstream grid is
low, especially at t ¼ 24 h and during the hours from 1 to 9, the required energy is
purchased from the upstream grid. Also, at hours when the energy prices of DG units
are lower than the wholesale market, especially during the hours from 10 to 24, the
energy purchased from the upstream network is reduced. The scheduling done in this

24
23
22
21
20
19

T
im

e 
(h

o
u

r)

18
17
16
15
14
13
12
11
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9
8
7
6
5
4
3
2
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0 50 100 150 200 250

Price of whole sale market ($/MW)

Fig. 14.4 The wholesale market price forecast for the next 24 h

Fig. 14.5 Power scheduled to purchase from the upstream network in the next 24 h
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chapter tends to reduce the functional costs of the distribution network, and the
results are more economical. As shown in Figs. 14.6 and 14.7, in the absence of DR
programs, all reservations required for the distribution network are provided by DG
units. It is also evident that one or more of DG units should be in standby mode at
peak hours, especially times 14–21 in order to provide the required reserve capacity.
Also, during the hours from 10 to 23, where the price of the wholesale market is
high, it is the best time to sell the energy of the DG units, but the need to provide the
required reserve would force the distribution network operator to buy energy from
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Fig. 14.6 Reservation scheduled to provide by DGs and DR programs in the next 24 h
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the upstream network at a higher price in the absence of DR programs. Also, at
t ¼ 1–9 and t ¼ 24 h, when the energy price of the wholesale market is low,
providing the required reserve, forces a number of DG units to remain at standby
at a higher cost. As can be seen, the cost of providing reserve is increased and the
operational costs of the distributed network increase.

14.4.2 Second Mode (Presence of Demand Response
Programs)

In the second case, in order to demonstrate the effectiveness of DR programs, the
ODAS of the SDS is taken place considering DR programs. As shown in Fig. 14.5,
during the hours from t ¼ 10 to t ¼ 23 h, when the network upstream price is high,
the reduction in consumption is taken place using DR programs by the distribution
network operator. Also, the results of network reserve scheduling that is provided by
DG units, DR providers, and large-scale consumer are presented in Fig. 14.6. It is
also shown in Fig. 14.6 that the network DR programs meet the required reserve, and
therefore as can be seen in Fig. 14.7 in case 2, DG capacity is freed up and can be
fully utilized to supply the network’s energy. Thus, considering load response
programs, as can be seen in Figs. 14.7 and 14.8, DGs does not occupy the capacity
of the DG units and can fully participate in providing the required demand of
network at a lower cost.

The operation of WTs has no cost, and therefore the WTs are working in their
maximum capacity of power production in both cases as can be seen in Fig. 14.9.
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14.5 Conclusions

The optimal scheduling of distribution networks considering renewable resources
and DR programs has attracted much attention in recent years. In this chapter, the
effect of the application of DR programs along with the presence of nonrenewable
and distributed sources on optimal operation of distribution networks has been
investigated. Also, a robust optimization method is used in this chapter for consid-
ering price uncertainties. This method ensures that the results will remain optimal for
the worst uncertainty conditions. An IEEE 33-bus distribution network has been
used to evaluate the performance of the proposed method. It also can be seen from
the results that in high-priced hours, purchases from the wholesale market are
reduced, and the BESS, distributed generation sources, and DR programs provide
the required energy of distribution network. It can also be seen that the proposed
model has the ability of ODAS of SDS. In addition, it can be seen that application of
DR programs reduces the cost of network operation.
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