
Chapter 13
Robust Optimal Multi-agent-Based
Distributed Control Scheme for Distributed
Energy Storage System

Desh Deepak Sharma and Jeremy Lin

13.1 Introduction

Worldwide, there is a rapid growth of renewable power generations, especially
wind and solar PV, which have made inroads into the existing electricity grids.
According to the International Energy Agency Photovoltaic Power Systems
Programme (IEA-PVPS), this growth rate in installed capacity is ranging from
35% to 85% in Organisation for Economic Co-operation and Development
(OECD) countries. The IEA-PVPS has shown that 40 GW of solar capacity has
already been installed around the world. The energy from installed solar PV would
increase to 600 GW in 2035 due to decrease in expenses and government aids. In
2035, the expected solar capacity would reach 113 GW in China, 85 GW in India,
and 54 GW in Japan [1].

Furthermore, IEA-PVPS has analyzed that hybrid PV system configuration such
as PV and BESS are economical and clean [2]. The hybrid PV system is basically a
microgrid in which DC link can be shared between PV system and BESS [3]. During
recent years, installed price of solar PV system has decreased due to decrement in the
hardware cost. Expected financial returns and concerns about operations and main-
tenance are the major other determining factors in the adoption of solar PV system
[4]. The storage systems paired with solar plants can overcome the risks, faced by the
solar power producer, due to uncertain production of solar plant [5]. The variability
and uncertainty feature in solar PV power and wind power generation must be
analyzed in order to develop a mechanism for evaluating both the economic and

D. D. Sharma (*)
Electrical Engineering Department, M.J.P. Rohilkhand University, Bareilly, India
e-mail: ddsharma@mjpru.ac.in

J. Lin
Transmission Analytics, Austin, TX, USA
e-mail: Jeremylin@transmissionanalytics.net

© Springer Nature Switzerland AG 2019
B. Mohammadi-ivatloo, M. Nazari-Heris (eds.), Robust Optimal Planning
and Operation of Electrical Energy Systems,
https://doi.org/10.1007/978-3-030-04296-7_13

233

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04296-7_13&domain=pdf
mailto:ddsharma@mjpru.ac.in
mailto:Jeremylin@transmissionanalytics.net
https://doi.org/10.1007/978-3-030-04296-7_13


reliability impacts of solar PV and wind power variability and uncertainty at multiple
scales [6].

Possibilities of uncertainty in forecasting may be due to different factors. In
various literatures, different models are developed for forecasting, but these methods
are based on a number of assumptions of the future. Forecasting may not be accurate
due to collection of bad input data found from either measurement or estimation. It is
impossible to perfectly develop the relationships among all possible factors and
output of a system. Reliability and security will be the new challenges in the
development of a smart grid with the penetration of more and more renewable
sources which are uncertain in nature in terms of power generation. In the presence
of uncertainties, the grid can be made more secure and reliable by deploying energy
storage devices as new technology in the system. With both grid-connected and
islanded operations, intelligent energy management schemes are developed while
deciding the capacity and charging rate of storage devices, residential load varia-
tions, and distribution network electricity price [7, 8].

A solar photovoltaic (PV) unit consists of a number of solar cells. In solar power
generation of each cell, modeling has been done for two parts such as the solar
irradiation function and the power generation function in which solar irradiation is
linked to the power output of the solar PV generator. In different literatures, it is
found that, generally, the beta PDF is being used in the modeling of the random
behavior of the solar irradiation for each day. The parameters beta PDF can be
inferred from the estimates of mean and variance values of historical irradiance
data [9–11]. Based on the model of irradiation distribution, the output of a solar
generator is decided by the function of power generation [12]. Similarly, in wind
turbine generation modeling, two parts are considered as wind speed modeling and
the turbine generation function. For modeling of wind speed randomness, the
Weibull distribution is generally used. Forecast values and associated uncertainties
of wind power are important to the utilities. These information help in optimal
scheduling of energy storage and distributed generations [13]. At substations, load
patterns are uncertain as compared to that at large system. Several qualitative and
quantitative variables influence the electrical load demand. Some of these variables
are random in nature, and, hence, the load demand is uncertain. The shape of curve
representing the typical load pattern can be expressed in a group of deterministic
variables which show the qualitative characteristic of the load pattern. Some
groups of load patterns may be based on weekdays, weekends, or holidays. Others
may consider the seasons such as autumn, winter, spring, and summer [14, 15]. A
new empirical method is developed to model the prediction uncertainty of the solar
irradiance forecast on numerical weather prediction. The predicted and measured
solar irradiances are transformed into Gaussian random variables with past
observed data, and a multivariate normal joint distribution model is estimated
using this data [16]. A periodic optimization method is developed that determines
an optimum periodic solution for any load profile over a 24-h period. The cyclic
solution for the battery state of charge is represented by Fourier coefficients. The
optimization process is embedded in a receding horizon battery control system [17].

In smart grid infrastructure, the distributed multi-step optimal scheduling is
introduced for energy storage devices and distributed generation. This algorithm is
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based on the local communications with neighbors [18]. In order to reduce gener-
ation cost, in microgrid, the distributed optimal strategy is proposed for the resource
management [19]. The computationally tractable distributed optimal control
strategy, which includes AC optimal power flow, for batteries is proposed in a
microgrid [20]. Multi-agent-based optimal distributed charging rate scheme is pro-
posed for numerous plug-in electric vehicle (PEV). In this scheme, an agent for a
PEV decides optimal charging rate based on remaining charging time and state of
charge along with other battery parameters [21]. In smart grid, an adjustment cost is
considered for dynamic adjustment of distributed generations and loads. In distrib-
uted control algorithm, this cost is minimized to achieve generation-demand balance
[22]. A multi-agent-based dynamic optimal power flow is suggested for microgrid
with energy storage devices and distributed generations [23].

13.2 Multi-agent System

A multi-agent system is a group of interacting agents that acts in a concurrent way
existing in the distributed environment. They have cooperation as well as competi-
tion among themselves, and they are conjunct in some common infrastructure. In
MAS local goals of individual agents are more important to be accomplished as
compared to the overall system goal [24–28].

13.2.1 MAS for Power System: An Overview

The penetration of various distributed generations into the electric network and
liberalization of electricity markets with new business models pose the new chal-
lenges to the power industries such as enhancement of complexity in distribution
network, problems in power system management, disturbance of power system
protection, and frequency stability [26, 29]. Present power system equipped with
old legacy SCADA system does not suffice to cater aforementioned challenges in
highly decentralized system [26, 30]. Market-based MAS is proposed in [31] for
reconfiguration of radial shipboard power system, developed with Java Agent
Development Framework (JADE) which conforms to FIPA standards for intelligent
agents. MASCEM, a multi-agent simulator system, is a framework which deals with
new rules, new behavior, and also new actors involved in various electricity markets
within liberalized and competitive environment [32]. ABMS, agent-based modeling
and simulation system, based on traditional game theory, is able to perceive and
analyze the complexities of power market (e.g., repeated auctions, fluctuating supply
and demand, non-storability of electricity, etc.) and interactions among all entities
involved [33]. In multi-agent approach to power system, each bus agent (BAG),
which possesses local information, tends to restore load after fault occurrence,
directly connected to its associated bus interacting with other numerous BAGs,
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and a single facilitator agent (FAG) acts as a manager for the negotiation
process [34].

Multi-agent system is developed for monitoring of transformer condition [35]
and industrial gas turbine start-up sequence [36]. An agent-based automation system
is developed for substation, while the information is gathered by control/monitoring
agents over Ethernet network [37]. A multi-agent system is also capable in efficient
operation of microgrids with minimum operation cost [24, 38]. PEDA (Protection
Engineering Diagnostic Agents), a multi-agent system, which complies FIPA
standards, integrates legacy intelligent systems SCADA and digital fault recorder
data and can interpret intelligently and manage data online [30, 39]. As virtual
power plant (VPP) is scattered in a decentralized system, multi-agent system facil-
itates virtual power point to take decisions at local level so that the main goal is
achieved [24, 25].

13.2.2 Preliminaries

Let V ¼ {1,. . .,n} be a set of nodes and E � V � V be a set of edges of a weighted
digraph (or directed graph) G ¼ {V,E,A}. A ¼ [aij] be the adjacency matrix with
non-negative adjacency elements aij and aii ¼ 0 for i ¼ 1, 2, . . ., n. The edij is the
directed edge, from node i to node j, of digraph G. The adjacency elements of an
edge edji are positive, i.e., aij > 0 if and only if edji 2 E. A digraph is undirected if
aij ¼ aji for 8i,j 2 {1,2,. . .,n}.

A group of agents represents the nodes in a digraph G and unidirectional
information exchange links among agents correspond to edges of the graph. An
interaction topology among the battery agents shows the communication pattern at
some particular time and is designed by using the digraph G. In adjacency matrix A,
an element aij is greater than zero, if and only if node i gets information from node j.
A directed tree is defined as a directed graph in which every node except the root has
exactly one parent. A directed (rooted) spanning tree of the digraph G is a subgraph
such that this subgraph is a directed tree and consists of all the nodes of G. A
spanning tree of G consists of n nodes and n � 1 edges and a path exists from root
node to every other node. Thus, root node can send information to every other node.

The n� n Laplacian matrix Ln¼ (lij), associated with the adjacency matrix A of a
digraph G, is defined as given below:

lij ¼ �aij, i 6¼ j and lii ¼
Xn

j¼1, j 6¼i
aij

According to the definition of Ln, it is ensured that in any row,
Xn

j¼1
lij ¼ 0, and

it is the asymmetric matrix of a digraph. There is an aim to control all the nodes such
that information state of all agents of a group converges to one single state [40–42].

In the uncertain power distribution system, the objectives are to develop a robust
optimal distributed control protocol such that the battery agents of respective BESSs

236 D. D. Sharma and J. Lin



should communicate to achieve the consensus for abovementioned goals during
charging and discharging cycles and, furthermore, find global stability in the overall
dynamic system. The control objective is to cater the imbalance in active power
and uncertainty in the power distribution system with different BESSs and trans-
forms this imbalance into the design of distributed control scheme. Two leader-
follower pinning control schemes are designed for distributed control of the BESS to
achieve their fair participations. These battery agents decide and control the power
exchange to and from the respective BESSs. These agents exist at the BESS
installation. These agents can receive information from the virtual leader to be
pinned and to start distributed consensus control while communicating with neigh-
boring battery agents, locally.

13.3 Robust Optimal Control

Briefly, the basics of robust optimal control are given as follows. Let the linear
uncertain system be

x k þ 1ð Þ ¼ Ax kð Þ þ Bu kð Þ þ Ew kð Þ ð13:1Þ

where x(k) 2 Rn and u(k) 2 Rm are the state and input vectors, respectively. The sets
X andU are polytopes, and w(k) is the additive uncertainty present in the system. The
Eq. (13.1) may be subject to constraints

x kð Þ2X, u kð Þ2U ð13:2Þ

Now define the cost function for the given uncertainty w 2 W and the u(k) 2 U.

Jw kð Þ ¼ q x kð Þ; u kð Þð Þ ð13:3Þ
q x kð Þ; u kð Þð Þ ¼ xTQxþ uTRu ð13:4Þ

The cost Jw(k) is evaluated for the given uncertainty w(k) and input u(k) and with
Eq. (13.1).

In case the probability density function is considered for the uncertainty w(k) then

Probability w kð Þ2W½ � ¼ 1 ¼
Z
w2W

f wð Þdw ð13:5Þ

The expected value of a function g(w) of the uncertainty is defined as

Ew g wð Þ½ � ¼
Z
w2W

g wð Þf wð Þdw ð13:6Þ
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The expected cost with admissible uncertainty is given as

Jw ¼ Ew xTQxþ uTRu
� � ð13:7Þ

where
x k þ 1ð Þ ¼ Ax kð Þ þ Bu kð Þ þ Ew kð Þ
x kð Þ2X, u kð Þ2U

�
ð13:8Þ

Now, the worst-case cost is defined as given below:

Jw ¼ maxw xTQxþ uTRu
� � ð13:9Þ

where
x k þ 1ð Þ ¼ Ax kð Þ þ Bu kð Þ þ Ew kð Þ
x kð Þ2X, u kð Þ2U

�
ð13:10Þ

In all cases, the robust optimal control is given below while minimizing the cost
function:

J∗w ¼ minuJw ð13:11Þ

where
x k þ 1ð Þ ¼ Ax kð Þ þ Bu kð Þ þ Ew kð Þ
x kð Þ2X, u kð Þ2U

�
ð13:12Þ

13.4 BES System Modeling

The different scattered battery energy storage (BES) systems are considered to be
connected to an AC system using bidirectional AC/DC converters. In this power
distribution system, the BES systems are assumed to achieve reliable operation, in
real time, at the distribution substation [15]. As the demand changes, the BES
systems come into action. During off-peak hours, these systems can be charged,
and in peak hours, these can be discharged. Therefore, the BES system can operate
as a load during charging and as generator during discharging. Controlling and
managing scattered BES systems with different ratings is a challenging task. The
charging and discharging of a BES unit can be expressed as follows:

Ees k þ 1ð Þ ¼ Ees kð Þ � Pes kð Þ
ηd

Δt, for Pes > 0 ð13:13Þ

Ees k þ 1ð Þ ¼ Ees kð Þ � ηcPes kð ÞΔt, for Pes < 0 ð13:14Þ

where Ees is the stored energy in BES system, Pes is the power to be exchanged by
BES system during charging and discharging, Δt is the time duration of k. ηd, and ηc
are the discharging and charging efficiencies of BES system, respectively. The upper
and lower limits of stored energy are as given below:
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Emin
es < Ees kð Þ < Emax

es ð13:15Þ

where Emax
es and Emin

es are, respectively, the maximum and minimum bounds of the
energy in the BES system.

The Eqs. (13.13) and (13.14) for BES system are modified as below:

Ees k þ 1ð Þ
Emm

¼ Ees kð Þ
Emm

� Pes kð Þ
Emm � ηd

Δt, for Pes > 0 ð13:16Þ

Ees k þ 1ð Þ
Emm

¼ Ees kð Þ
Emm

� ηc
Pes kð Þ
Emm

Δt, for Pes < 0 ð13:17Þ

where Emm ¼ Emax
es � Emin

es .
The power balance equation in an AC system at a time instant k

Pgrid kð Þ þ Pren kð Þ þ Pes kð Þ ¼ Pdem kð Þ ð13:18Þ

where Pgrid is grid supply, Pren is the renewable power generation, Pes is power
exchange by BES unit, and Pdem is the electrical demand.

The power balance equation incorporating uncertainties present in renewable
power generation and electrical demand while dropping k for simplicity.

Pgrid þ Pren þ ΔPrenð Þ þ Pes þ ΔPesð Þ ¼ Pdem þ ΔPdemð Þ ð13:19Þ

whereΔPren andΔPdem represent uncertain parts of renewable power generation and
electrical demand, respectively. TheΔPes is the power exchange by BES unit to cater
the uncertainties in an AC power distribution system.

On considering uncertainties in the system, the Eqs. (13.13) and (13.14) are
modified as given below:

Ees k þ 1ð Þ þ ΔEes k þ 1ð Þ
Emm

¼ Ees kð Þ þ ΔEes kð Þ
Emm

�Pes kð Þ þ ΔPes kð Þ
Emm � ηd

Δt, for Pes > 0
ð13:20Þ

Ees k þ 1ð Þ þ ΔEes k þ 1ð Þ
Emm

¼ Ees kð Þ þ ΔEes kð Þ
Emm

�ηc
Pes kð Þ þ ΔPes kð Þ

Emm
Δt, for Pes < 0

ð13:21Þ

where ΔEes represents the uncertain part of Ees .
For expected uncertainty, the (13.20) and (13.21) are modified as
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Ees k þ 1ð Þ þ EΔEes k þ 1ð Þ
Emm

¼ Ees kð Þ þ EΔEes kð Þ
Emm

�Pes kð Þ þ EΔPes kð Þ
Emm � ηd

Δt, for Pes > 0
ð13:22aÞ

Ees k þ 1ð Þ þ EΔEes k þ 1ð Þ
Emm

¼ Ees kð Þ þ EΔEes kð Þ
Emm

�ηc
Pes kð Þ þ EΔPes kð Þ

Emm
Δt, for Pes < 0

ð13:23aÞ

For worst-case uncertainty, the (13.20) and (13.21) are modified as

Ees k þ 1ð Þ þ max
ΔEes kþ1ð Þ

f ΔEes k þ 1ð Þð Þ
Emm

¼
Ees kð Þ þ max

ΔEes kð Þ
f ΔEes kð Þð Þ

Emm

�
Pes kð Þ þ max

ΔPes kð Þ
f ΔPes kð Þð Þ

Emm � ηd
Δt, for Pes > 0

ð13:22bÞ

Ees k þ 1ð Þ þ max
ΔEes kþ1ð Þ

f ΔEes k þ 1ð Þð Þ
Emm

¼
Ees kð Þ þ max

ΔEes kð Þ
f ΔEes kð Þð Þ

Emm

�ηc

Pes kð Þ þ max
ΔPes kð Þ

f ΔPes kð Þð Þ
Emm

Δt, for Pes < 0

ð13:23bÞ

On consideration of many BES systems, the aforementioned equations are
generalized and used for ith BES system. Hence, the simplified model of ith BES
system is

xi k þ 1ð Þ ¼ Ax, i xi kð Þ þ Bx, iui where xi ¼ Ei,es=Ei,mm,
ui ¼ Pi,es,Ax, i ¼ 1,Bx, i ¼ Δt= Ei,mm � ηi,d

� �
for Pi,es > 0,

Bx, i ¼ ηi,c � Δt
� �

=Ei,mm for Pi,es < 0
ð13:24Þ

The model pertaining to uncertainty

yi k þ 1ð Þ ¼ Ay, iyi kð Þ þ By, iviwhere yi ¼ ΔEi,es=Ei,mm,
vi ¼ ΔPi,es,Ay, i ¼ 1,By, i ¼ Δt= Ei,mm � ηi,d

� �
for Pi,es > 0,By, i ¼ ηi,c � Δt

� �
=Ei,mmfor Pi,es < 0

ð13:25Þ

The abovementioned Eqs. (13.24) and (13.25) form the basis for development of
the multi-agent system.
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13.5 Agent-Based Robust Optimal Control Scheme

The multi-agent-based system deals with two control schemes which are optimal and
incorporate uncertainties. Two leader-follower control schemes are given below.

xi k þ 1ð Þ ¼ Ax, i xi kð Þ þ Bx, iui kð Þ ð13:26Þ

And

yi k þ 1ð Þ ¼ Ay, iyi kð Þ þ By, ivi kð Þ ð13:27Þ

i ¼ 1,. . .,n where n is number of agents. The x0,y0 are the variables associated with
leader agents. The abovementioned leader-follower schemes get consensus on
following conditions:

xi ! x0 and yi ! y0 ð13:28Þ

The linear consensus protocols are defined as given below:

ui kð Þ ¼
Xn

j¼1, j 6¼i

aij x j kð Þ � xi kð Þ� �� bi xi kð Þ � x0½ � ð13:29Þ

And

vi kð Þ ¼
Xn

j¼1, j 6¼i

wij y j kð Þ � yi kð Þ� �� di yi kð Þ � y0½ � ð13:30Þ

The optimal control problem for the system (13.26)

min
U kð Þ

Jx U kð Þ;X 0ð Þð Þ
subject to 13:26ð Þ and 13:28ð Þ

ð13:31Þ

where

Jx U kð Þ;X 0ð Þð Þ ¼
X1
k¼0

Xn
i¼1

qx, i xi � x0ð Þ2 þ rx, iu
2 ð13:32Þ

Similarly, the robust optimal control problem for the system (13.26) with
expected cost function

13 Robust Optimal Multi-agent-Based Distributed Control Scheme for. . . 241



min
V kð Þ

EJy V kð Þ; Y 0ð Þð Þ
subject to 13:27ð Þ and 13:28ð Þ

ð13:33Þ

where

EΔE kð ÞJy V kð Þ; Y 0ð Þð Þ ¼
X1
k¼0

Xn
i¼1

qy, i yi � Ey0ð Þ2 þ ry, iv
2 ð13:34Þ

where qx > 0, qy > 0, rx > 0, ry > 0 and Ey0 is the expected value of y0.
Similarly, the robust optimal control problem for the system (13.26) with worst-

case cost function

min
V kð Þ

Jy V kð Þ; Y 0ð Þð Þ where
subject to 13:27ð Þ and 13:28ð Þ

ð13:35Þ

where

Jy V kð Þ; Y 0ð Þð Þ ¼ maxΔE kð Þ
X1
k¼0

Xn
i¼1

qy, i yi � wy0ð Þ2 þ ry, iv
2 ð13:36Þ

where qx > 0, qy > 0, rx > 0, ry > 0, and wy0 is the worst-case value of y0.

Theorem For the joint optimal control problem, the optimal topology is star
topology in which the follower i is only connected to the leader with the control

gains dx, i ¼ Bx,0
2

qi
ri

� �
and dy, i ¼ By,0

2
qi
ri

� �
with the following assumptions:

Assumption 1:
Bx,1 ¼ Bx,2 ¼ . . . ¼ Bx,n ¼ Bx,0 and By,1 ¼ By,2 ¼ . . . ¼ By,n ¼ By,0

Assumption 2:

Let Bx, 0 ¼ 2ffiffi
3

p
ffiffiffi
ri
qi

q
and By, 0 ¼ 2ffiffi

3
p

ffiffiffi
ri
qi

q
The proof of this theorem is given in appendix.

13.5.1 Generation of x0 and y0

The x0 is the desired value for all xi and this value is provided to all agents from the
leader agent. The leader agent knows the expected and worst case that may be
associated with yi, i ¼ 1,. . .,n, and y0 is set to this expected and worst case. In
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consensus-based robust optimal control scheme, all yi track to this Ey0 and wy0,
which are set to expected or worst-case value, respectively, as given below.

For expected value,

Ey0 ¼ f e ΔEð Þ ð13:37Þ

where fe is the probability density function (pdf). Let, for any pdf,

Ey0 ¼ f e ΔEð Þ ¼ GEgE � pE ð13:38Þ

where GE and gE are two different values which satisfy (13.37), and pE is fixed
constant value.

In worst case

wy0 ¼ maxΔEyi, 8i2 1; . . . ; n½ � ð13:39Þ

Let, on maximizing the worst case

wy0 ¼ maxΔEyi ¼ Gwgw � pw, 8i2 1; . . . ; n½ � ð13:40Þ

Similar to (13.37), Gw and gw are two different values which satisfy (13.39), and
pw is fixed constant value. The (pE,GE, gE) and (pw,Gw, gw) are identified and set to
the values based on past data.

With the allowed uncertainty in the system, the Eq. (13.34) is rewritten as

EΔE kð ÞJy V kð Þ; Y 0ð Þð Þ ¼
X1
k¼0

Xn
i¼1

qy, i yi � pEð Þ2 þ ry, iv
2 ð13:41Þ

EΔE kð ÞJy V kð Þ; Y 0ð Þð Þ ¼
X1
k¼0

Xn
i¼1

qy, i eEð Þ2 þ ry, iv
2 ð13:42Þ

where eE ¼ (yi � pE).
Similarly, on maximizing the worst case in the uncertainty, the equation is

modified as

Jy V kð Þ;Y 0ð Þð Þ ¼
X1
k¼0

Xn
i¼1

qy, i yi � pwð Þ2 þ ry, iv
2 ð13:43Þ

Jy V kð Þ; Y 0ð Þð Þ ¼
X1
k¼0

Xn
i¼1

qy, i ewð Þ2 þ ry, iv
2 ð13:44Þ

where ew ¼ (yi � pw).
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13.6 Results and Discussions

The test microgrid is shown in the Fig. 13.1. The sizes of the battery energy storage
devices are 0.2 MW/0.8MWh, 0.15 MW/0.75MWh, 0.1 MW/0.4MWh, 0.15 MW/
0.45MWh, and 0.4 MW/1.6MWh with charging and discharging efficiencies
ηc ¼ ηd ¼ 80%, and the size of solar PV system is 1MWp. The maximum and
minimum allowed energy on energy storage devices are Emax1 ¼ 0.8MWh and
Emin1¼ 0.35MWh, Emax2¼ 0.75MWh and Emin2¼ 0.40MWh, Emax3¼ 0.4MWh
and Emin3 ¼ 0.1MWh, Emax4 ¼ 0.45MWh and Emin4 ¼ 0.1MWh, and
Emax5 ¼ 1.6MWh and Emin5 ¼ 1.25MWh, respectively. In order to satisfy
assumptions 1 and 2, the discharging efficiencies of these energy storage devices
are assumed as 0.70, 0.85, 0.95, 0.82, and 0.85, and charging efficiencies are
assumed as 0.86, 0.89, 0.91, 0.89, and 0.89, respectively.

The considered load profile of electrical demand and solar PV generation profile
with added uncertainty are shown in Figs. 13.2 and 13.3, respectively. The included
uncertainty remains within the permissible range as per Eqs. (13.38) and (13.40).
The optimal energy and power are shared based on given power generation and
electrical demand as shown in Figs. 13.4, 13.5, and shared optimal uncertain energy
and power are shown in 13.6, and 13.7, respectively. Assume qi¼ ri¼ 1 for
i¼ 1,...,5 then dx,i¼ dy,i¼ 1.73.

Ba ery

PV arrays Power lines

Electrical Load
BESSBESS

Fig. 13.1 Test microgrid
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Fig. 13.2 Forecasted PV generation (blue) and PV generation with uncertainty (red)
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13.7 Conclusions

This chapter has discussed agent-based distributed robust optimal control scheme.
This scheme considers two objective functions out of which second objective
function pertains to the uncertainties which are present in the power distribution
system integrated with renewable power generation along with energy storage
devices. Distributed multi-agent system works for deciding the charging and
discharging of the batteries in the presence of uncertainties. In two expected and
worst cases, all the agents get consensus and be driven to the values decided by the
leader agent. In this distributed robust optimal control scheme, the optimal topology
for communication is the star topology as proved in the theorem.
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Appendix

Proof of theorem

Let the error system for (13.26) be

e k þ 1ð Þ ¼ Axe kð Þ þ BxU kð Þ,
U kð Þ ¼ �Lxe kð Þ ð13:45Þ

where Ax ¼ diag (Ax,1,Ax,2, . . .,Ax,n) and Bx ¼ diag (Bx,1,Bx,2, . . .,Bx,n) and

e kð Þ ¼ X kð Þ � 1n � U kð Þ ð13:46Þ

The modified LQR-based optimal control problem is

min
U kð Þ

X1
k¼0

e kð ÞTQe kð Þ þ U kð ÞTRU kð Þ ð13:47Þ

For the system X(k+1) ¼ AX(k)+BU(k), the discrete time ARE is

ATPA� Pþ Q� ATPB Rþ BTPB
� ��1

BTPA ¼ 0 ð13:48Þ

01:00 06:00 11:00 16:00 21:00 24:00
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

Time(hours)

po
w

er
 e

xc
ha

ng
e(

M
W

)
uncertain power sharing

BESS1
BESS2
BESS3
BESS4
BESS5

Fig. 13.7 Uncertain power exchange shared by different BESSs

13 Robust Optimal Multi-agent-Based Distributed Control Scheme for. . . 247



For the system (13.45), the ARE is

Q ¼ PBx Rþ B2
xP

� ��1
BxP ð13:49Þ

where A ¼ Ax ¼ 1 and B ¼ Bx.
Let Bx,1 ¼ Bx,2 ¼ . . . ¼ Bx,n ¼ Bx,0

Then matrix Bx ¼ Bx,0In
The optimal feedback gain matrix is

Lx ¼ Rþ B2
x, 0InP

� ��1
Bx, 0InP ð13:50Þ

Multiply R�1 both sides of (13.49) then

R�1Q ¼ R�1PBx, 0In Rþ B2
x, 0InP

� ��1
Bx, 0InP ð13:51Þ

R�1Q ¼ R�1PBx, 0 In þ B2
x, 0R

�1P
� ��1

Bx, 0R
�1P ð13:52Þ

Since it is known that

In þ B2
x, 0R

�1P
� ��1 ¼ In � B2

x, 0R
�1P In þ B2

x, 0R
�1P

� ��1 ð13:53Þ

We now get

R�1PBx, 0 In þ B2
x, 0R

�1P
� �

Bx, 0R�1P ¼ Bx, 0R�1P
� �2 � B2

x, 0R
�1P

� R�1PBx, 0 In þ B2
x, 0R

�1P
� ��1

Bx, 0R�1P
h i ð13:54Þ

R�1Q ¼ B2
x, 0 R�1P
� �2 � B2

x, 0R
�1PR�1Q ð13:55Þ

On simplification it is obtained that

R�1P ¼ 1
2

R�1Qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R�1Q
� �2 þ 4R�1Q

B2
x

s" #
ð13:56Þ

Hence, the optimal feedback gain matrix is

L∗x ¼ Bx, 0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R�1Q
� �2 þ 4R�1Q

B2
x, 0

s
� R�1Q

" #
ð13:57Þ
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Let

L∗x ¼ diag dx, 1; dx, 2 . . . ; dx,nð Þ ð13:58Þ

Then, for ith agent the feedback gain is

dx, i ¼ Bx, 0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qi
ri


 �2

þ 4qi
B2
x, 0ri

s
� qi

ri

" #
ð13:59Þ

Similarly, it can be proved that

dy, i ¼ By, 0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qi
ri


 �2

þ 4qi
B2
y, 0ri

s
� qi

ri

" #
ð13:60Þ

Let

B2
x, 0 ¼

4
3
ri
qi

ð13:61Þ

Then from (13.59)

dx, i ¼ Bx, 0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qi
ri


 �2

þ 3
qi
ri


 �2
s

� qi
ri

2
4

3
5 ð13:62Þ

dx, i ¼ Bx, 0

2
qi
ri

ð13:63Þ

Similarly, we can obtain

dy, i ¼ By, 0

2
qi
ri

ð13:64Þ

While

B2
y, 0 ¼

4
3
ri
qi

ð13:65Þ
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