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Preface

Considering the existence of uncertain factors in electric energy systems, such as
load variation, power market price, and power generation of renewable energy
sources, the results provided by the conventional deterministic optimal planning
and operation of electric energy systems are not confirmed to be optimal framework
for future power system conditions. Accordingly, studying uncertainties associated
with parameters of electric energy systems is of importance for obtaining more
effective and promising solutions of planning and operation of electric energy
systems. In traditional approaches, probabilistic methods, interval-based analysis,
and hybrid probabilistic and possibilistic methods are implemented for handling
uncertainties associated with power system parameters. Recently, robust optimiza-
tion (RO) and information gap decision theory (IGDT) methods are introduced as
effective tools for the solution of power system problems. The RO and IGDT
methods lead to more effective solutions and are promising for the robust planning
and operation of electric energy systems. Such methods are capable to obtain optimal
performance of the electrical energy systems in the worst-case condition. This book
aims to study robust planning and operation of electric energy systems by employing
RO and IGDT methods.

The Robust Optimal Planning and Operation of Electrical Energy Systems
encourages scientific research on all topics pertaining to operation and planning of
electric energy systems in the presence of uncertainties attaining a robust level using
RO method and IGDT. This book presents the latest research being conducted on
differing topics and recent developments and contribution of RO and IGDT methods
to the robust optimal planning and operation of the power systems. The topics
covered in this book are presented in the following:

• Information gap decision theory.
• Robust optimization method.
• Robust operation of multi-energy systems.
• Risk-constrained scheduling of solar ice harvesting system.
• Robust unit commitment.
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• Robust scheduling of smart homes.
• Robust scheduling of electrical distribution networks.
• Robust microgrid and network expansion planning.
• Robust control of distributed energy storage systems.

The book contents are classified into two main parts, where the IGDT and RO
method are discussed in the first and second parts, respectively. The aim of the
first part is concentrating on definition and application of IGDT method in
optimal operation and planning of electrical energy systems, which are summarized
as follows:

A review on the application of IGDT in electrical energy systems is provided in
Chap. 1, where modeling of uncertain parameter using IGDT is accomplished using
a mathematical framework. The principles, fundamentals, applications, and advan-
tages of the IGDT are discussed in Chap. 2. The main aim of Chap. 3 is to study the
optimal operation of hub energy systems with the consideration of net price uncer-
tainty using IGDT. Chapter 4 presents an IGDT-based framework for robust sched-
uling of an ice storage system, where the uncertain nature of building cooling load is
studied. IGDT is implemented on a multi-period unit commitment problem in
Chap. 5 aiming to maximize total profit obtained from selling electricity to con-
sumers, where the uncertainty of electricity prices is modeled for assessing how
market operator can make a risk averse decision at low market prices. Chapter 6
studies energy management of a renewable energy-based smart home, which con-
tains a photovoltaic system for supplying a ratio of electrical demand of the
considered home. In this chapter, the robust self-scheduling of a photovoltaic system
panel installed in the smart home is formulated, and the best suited set point of all
suppliers is obtained, where IGDT is applied for handling the uncertain power
generation of the photovoltaic system. The main purpose of Chap. 7 is investigating
the unit commitment problem in the presence of renewable energy sources and
energy storage systems and modeling the uncertainties arising in this regard.
Accordingly, the application of RO method, IGDT, and Taguchi’s orthogonal arrays
technique as well as their advantages and drawbacks for modeling the renewable
energy sources and energy storage systems are studied. Chapter 8 introduces an
IGDT-based robust security constrained unit commitment modeling of coordinated
electricity and natural gas networks for managing uncertainty of wind power pro-
duction. A comprehensive transmission system of natural gas, which delivers natural
gas fuel to natural gas-fired plants, is considered in this chapter.

The second part aimed to study the application of RO method in investigating
optimal robust operation and planning of the electrical energy systems as follows:

Chapter 9 studies a short-term electrical distribution network planning scheme,
where a deterministic MILP model is transformed into a two-stage robust optimiza-
tion model, and this complex trilevel optimization problem is handled using the
column and constraint generation method. Chapter 10 presents a stochastic-robust
optimization for robust microgrid expansion planning considering intermittent
power generations and responsive loads. In this chapter, the presence of active
microgrid in the electricity market is studied considering the IPGs/RLs and
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contingencies uncertainties. The main purpose of Chap. 11 is studying the robust
transmission network expansion planning considering the uncertainties associated
with loads and wind power generation. Chapter 12 introduces a hybrid robust-
stochastic method for coordinated optimal scheduling of natural gas and electricity
cogeneration networks considering market price uncertainties. An optimal multi-
agent-based distributed control model is proposed in Chap. 13, where the effects of
uncertainties in power distribution system are investigated in terms of power and
energy sharing. An optimal robust scheme for optimal day-ahead scheduling of
distribution systems is proposed in Chap. 14 for minimizing the operation cost of
the system considering load-responsive and renewable energy sources. The authors
study uncertainty-based operation of multicarrier energy systems in Chap. 15 using a
robust optimization method for dealing with severe uncertainty of upstream network
price. Chapter 16 discusses the impact of power market uncertainty in optimal
scheduling of the active distribution networks using RO method.

Tabriz, Iran Behnam Mohammadi-ivatloo
Morteza Nazari-Heris
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Chapter 1
Introduction to Information Gap Decision
Theory Method

Farkhondeh Jabari, Behnam Mohammadi-ivatloo, Hadi Ghaebi,
and Mohammad-Bagher Bannae-Sharifian

1.1 Motivation

Nowadays, population growth and huge electricity consumption by residential,
industrial, commercial, and agriculture sectors lead to more fossil fuel needed to
drive thermal power plants and use of renewable energy resources such as solar,
wind, geothermal, tidal and ocean waves, hydro, biomass, and biogas [1]. Moreover,
gas, water, and power systems are interdependent [2] because natural gas is
employed for heating applications such as boiling during power generation cycles,
seawater desalting and fresh water production processes, and gas distribution net-
works. Similarly, pure water is used for cooling, heating, and powering. Meanwhile,
uncertainties of renewables and variable nature of cool, heat, power, water, and gas
demands may cause these systems to face energy crises and environmental issues,
especially in water-stressed tropical regions [3]. Information gap decision theory
(IGDT) has recently been discussed by scholars for robust design, operation, and
scheduling of water-gas-electricity hybrid grids aiming to model uncertain
parameters, evaluate their performance, maximize profit or minimize cost, and
make risk-aversion and risk-seeker decisions under uncertain operating conditions.
Application of IGDT in poly-generation systems can be classified into two general
categories as follows:

• Robust systematic analysis by modeling uncertainties of renewables, loads, and
energy tariffs

• Risk analysis of joint energy and reserve markets
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1.1.1 Application of IGDT for Modeling Uncertainties
of Renewables, Demands, and Energy Tariffs
in Systematic Analysis

Rabiee et al. [4] used IGDT for long-term planning of wind products to model its
variations. A loading margin index is also defined to improve the static voltage
stability of the interconnected power system under uncertain wind generations.
In [5], IGDT is implemented on a smart home to model electricity price fluctua-
tions aiming to minimize daily operation cost of the building. In this study, smart
home consists of fuel cell, backup, and auxiliary boilers for heat and power
generation, battery pack for energy storage, and electrical appliances. Nojavan
et al. [6] scheduled a solar photovoltaic-fuel cell-battery-local grid connected
system for supplying both electrical and heat demands. They considered load
uncertainty on building energy management strategy. A robust security-
constrained unit commitment problem is solved by Nikoobakht and Aghaei [7]
to model the wind generation uncertainty. Up and down ramp rates of thermal
power plants, DRPs, energy storage units, and transmission lines switching are
used for load-generation balancing in wind products shortage condition. In [8],
pool market prices and electricity demand of distribution system buses have been
considered as uncertain parameters using IGDT to enable system operator for
making risk-aversion and risk-taker decisions in load flow problem. Ahmadigorji
et al. [9] developed a multilayer robust distribution network planning approach via
IGDT by considering loads, hourly prices, investment, and operation costs as
uncertain variables. Amjady et al. [10] applied IGDT on multiyear transmission
expansion planning problem. Impact of variations of loads and investment cost in
transmission expansion process is evaluated by IGDT. In [11], optimal power flow
problem is solved in huge power systems incorporating wind power uncertainties
and considering some operational criteria such as HVDC voltage source converter,
lines communication link, and feasible generation region of doubly fed induction
generators. In [12], deviations of loads and power generation of distributed units in
restoration of distribution grids after occurring a widespread disturbance are
modeled by IGDT. In [13, 14], a short-term self-scheduling problem is solved for
maximization of GenCo’s daily profit under market price fluctuations. In [15], output
power of wind farms and outages of transmission lines are modeled using IGDT as
uncertain variables in design of wide-area power system stabilizers and robust
control of inter-area oscillations. In [16], optimum size and installation time of
distributed generation units in a microgrid are determined based on IGDT. Two
types of uncertain parameters have been considered by authors: (a) random vari-
ables such as power generation of renewable energy resources and consumption of
electrical loads, which are included by bilinear Benders decomposition technique-
based chance constraints, and (b) nonrandom long-term growth of demand which
is modeled by IGDT. In [17], optimal power flow problem is solved taking into
account the steady-state voltage stability criterion and the wind power uncertainty
for the worst-case analysis of the interconnected electricity grids. In this approach,

2 F. Jabari et al.



maximum budget of uncertainty with minimum distance to voltage collapse
point is found. In [18], it is proved that IGDT is a cost-effective scheme for
managing the active distribution grids and providing the sufficient spinning
reserves for upstream transmission system via modeling the variations of the
renewable energy sources. Table 1.1 summarizes the taxonomy of its applications
in different study fields.

1.1.2 Risk-Aversion and Risk-Seeker Decisions in Energy
and Reserve Markets Using IGDT

In [29], the impact of electricity market price uncertainty in large consumers’ energy
procurement process is investigated. Various sources of energy suppliers such as
battery, wind, photovoltaic, and local power system have been considered. More-
over, economic benefit of real-time demand response programs (DRPs) is proved
using two case studies: (a) with IGDT and without DRPs and (b) with IGDT and
DRPs. It should be mentioned that US Department of Energy (DOE) defines DRPs
as effective and practical solutions to change the energy usage pattern of the
residential, commercial, and industrial consumers considering the variations of
electricity tariffs and incentive payments [30]. In [31], joint energy and reserve
market is cleared by solving a robust unit commitment problem using IGDT. In this
research, IGDT is applied on flexible loads to model their uncertain responses in
offering consumption reduction capacities against hourly prices for participation in

Table 1.1 Application of IGDT in poly-generation systems

References
Uncertain
variables Study fields

[19] Electricity
prices

Robust management of thermal and electrical demands in smart
homes equipped with smart appliances, water storage tank,
boilers, batteries, and fuel cells

[20] Solar and
energy tariffs

Optimal co-scheduling of heat and power in smart apartment
buildings

[21] Price and wind Self-scheduling of wind generators

[22] Wind Unit commitment

[23] Hear demand Short-term scheduling of solar-driven industrial continuous heat
treatment furnace

[24] Pool price Optimal mid-term selling/purchasing pricing strategy for elec-
tricity retailers

[25] Electrical
demand

Optimization of photovoltaic cells-battery-fuel cells hybrid
multi-generation system

[26] Chemical
pollutants

Ecological risk management of chemical substances

[27] Pool price Optimal co-dispatching of combined heat and power units

[28] Price Day-ahead scheduling of aggregators of electric vehicles

1 Introduction to Information Gap Decision Theory Method 3



reserve markets. In [32], hourly offering and bidding strategies of retailers is
optimized, and real-time, fixed, and time-of-use market prices are determined by
IGDT’s robustness and opportunistic modes. In addition, a scenario-based sto-
chastic methodology is proposed for modeling uncertainties associated with loads,
ambient temperature, solar irradiance, and wind speed. An IGDT hybrid modified
particle swarm optimization (MPSO) is employed in [33] to consider the uncertain
prices, while price-taker producers participate in day-ahead market. In [34, 35],
IGDT considers the price fluctuations in pool market for investigation of robust-
ness and opportunistic aspects of energy procuring for large-scale consumers.
In this analysis, distributed generation units, electricity purchasing from pool
market, and bilateral contracts have been considered for supplying large
customers. Nojavan et al. [36] solved this problem by considering DRPs.
A weighted average squared error index-based variance-covariance matrix is also
introduced by them [37, 38] to model the price uncertainty in solving the same
problem. Alipour et al. [39] proposed an IGDT-based bidding framework for
industrial applications with coproduction of heat and power, boilers, and power-
only plants to participate in day-ahead electricity market. Kazemi et al. [40, 41]
used IGDT for modeling day-ahead market price uncertainty and achieving opti-
mum bidding curve of electric utilities with and without implementation of DRPs.
Shafiee et al. [42] constructed a bidding-offering risk-constrained strategy for
merchant compressed air energy storages and modeled unfavorable variations of
day-ahead market prices using IGDT. Authors of [43] implemented IGDT on fuel,
CO2, and electricity trading problem and modeled the price uncertainty for robust
scheduling of fossil fuel-driven thermal power plants.

Other sections of this chapter are structured as follows: In Sect. 1.2, a mathemat-
ical formulation is presented for uncertainty modeling by IGDT. Section 1.3 sug-
gests some research fields as future trends and concludes chapter.

1.2 Mathematical Modeling of Uncertain Parameter
Using IGDT

As mentioned in the previous subsection, information gap decision theory is a risk-
assessed decision-making process, which makes some cost-effective and robust
decisions against uncertain parameter using two robustness and opportunistic
modes. The uncertain parameter of the optimization process can be adverse and
causes the higher costs or lower profits or favorable with lower costs and higher
profits. In other words, it addresses the robustness and the opportunity viewpoints of
the optimization problem considering the variable nature of the uncertain parameter
using the following requirements: objective function, performance investigation, and
uncertainty analysis.

4 F. Jabari et al.



1.2.1 Objective Function

It is assumed that λt is an uncertain parameter for a minimization or maximization
problem at operating time interval t. We consider that α refers to uncertainty variable
and changes between 0 and 1 for decision variables xi,t. Objective function, F(xi,t, λt),
which indicates total cost (or expected profit) in a T-hour study horizon, should be
minimized (or maximized). It evaluates all responses to choices of the decision-
maker, xi,t, and variable parameter, λt.

1.2.2 Implementation Requirement

In this subsection, expectations of system operator from objective function are stated
in terms of total cost or profit and assessed by robustness and opportunity modes as
Eqs. (1.1) and (1.2), respectively. According to relation (1.1), optimization problem
is solved in robustness mode with maximum value of uncertainty variable, α, in a
way that total cost cannot exceed from target cost or total profit cannot be lower than
critical profit, Fk. Therefore, uncertainty variable, α, should be maximized as
Eq. (1.3), in which Fk refers to a predefined target cost (or minimum expected profit)
in robustness mode. By considering bα xi, t;Fkð Þ, system operator makes a robust
decision with less sensitivity to variations of uncertain parameter, λt, so that total
cost is smaller than predefined target cost Fk or expected profit is more than critical
profit Fk.

α¼Max
α

α:Maximum cost which is lower than the given target cost

or Minimumprofit which is higher than the given critical profit

( )
� Robustnessf g

ð1:1Þ

β¼Min
β

β :Minimum cost which is lower than the given target cost

or Maximumprofit which is higher than the given target profit

( )
� Opportunityf g

ð1:2Þ

bα xi, t;Fkð Þ ¼ Max
α

α : Max
xi, j

F xi, j; λt
� � � Fk Costminimization

α : Min
xi, j

F xi, j; λt
� � � Fk Profit maximization

8><
>:

9>=
>; ð1:3Þ

A risk-taker decision-maker desires higher profit via implementation of opportu-
nity function. As formulated in Eq. (1.4), variable β refers to minimum level of α
aiming to pay lower cost and obtain higher profit as a result of decision variables, xi,t.
Note that Fw represents maximum cost or minimum profit in opportunity mode that
is defined by decision-maker to pay less and obtain more profit under favorable
deviations of uncertain parameter, λt, and is generally smaller than Fk.

1 Introduction to Information Gap Decision Theory Method 5



bβ xi, t;Fwð Þ ¼ Min
α

α : Min
xi, t

F xi, t; λtð Þ � Fw Costminimization

α : Max
xi, t

F xi, t; λtð Þ � Fw Profit maximization

8><
>:

9>=
>; ð1:4Þ

1.2.3 Uncertainty Formulation

For robust and opportunistic optimization processes, actual value of uncertain
parameter can be calculated from information gap models as Eqs. (1.5a), (1.5b),
(1.5c), (1.5d), and (1.5e) [44]:

• Energy-bound model: In this method, the uncertain parameter, λt, deviates from
the forecasted or nominal value, ~λ t, within some nested intervals with nesting
parameter, α, as shown in Eq. (1.5a).

U
�
α;eλt� ¼ λt :

Z1
0

�
λt � ~λ t

�2
dt � α2

8<
:

9=
;; α � 0, 8t ð1:5aÞ

• Envelope-bound method: In the envelope-bound information gap model, a
known function ψ t is used to determine the envelope shape of the uncertain
parameter in a way that the distance of the actual value from the forecasted or
nominal one is smaller than or equal to αψ t, as stated in Eq. (1.5b).

U
�
α;~λt

� ¼ λt : λt � ~λ t

�� �� � αψ t

� �
; α � 0, 8t ð1:5bÞ

• Fractional error approach: According to relation (1.5c), this model represents that
the fractional deviation of the uncertain variable from the forecasted value is
smaller than the scaler parameter α.

U
�
α;~λt

� ¼ λt :
λt � ~λ t

~λ t

����
���� � α

� �
; α � 0, 8t ð1:5cÞ

• Combined info-gap models: Integrating two energy-bound and envelope-bound
models, the actual value of uncertain variable can be estimated as relation (1.5d).

U
�
α;eλt� ¼ λt : λt � ~λ t

�� �� � αψ t and
Z1
0

�
λt � ~λ t

�2
dt � α2

8<
:

9=
;; α � 0,8t ð1:5dÞ

6 F. Jabari et al.



• Non-convex information gap method: As inequality constraint (1.5e), if uncertain
variable λt belongs to interval [0, π], d2λt/dt

2 will change between �ω2 and 0.
Else if λt 2 [�π, 0], we have �ω2 � d2λt/dt

2 � 0.

U
�
α;~λt

�¼ λt : λt �~λt
�� ��� αψ λt;

d2λt
dt2

	 

;
d2λt
dt2

¼�ω2 sinλt

� �
; α� 0,8t ð1:5eÞ

1.2.4 Implementing Risk-Aversion and Robust Decision-
Making Strategy

The robustness variable, bα xi, t;Fkð Þ, operates as a risk-aversion tool and indicates the
greatest amount of the uncertainty variable, α, while the maximum cost (or minimum
profit) is lower (or higher) than the target value, Fk. Hence, a high value of bα xi, t;Fkð Þ
corresponds to the higher cost (or lower profit), Fk, indicating that this decision is
robust. Hence, it is expected that bα xi, t;Fkð Þ increases with the increase of Fk in cost
minimization problem and decreases with the increase of Fk for maximization of
expected profit. The uncertain parameter can be stated as Eq. (1.6). Positive sign is
used if increasing rate of λt causes an increase in cost objective function. If decreas-
ing rate of λt leads to a decrease in profit objective function, negative sign will be
considered. According to Eq. (1.7), objectives are maximization of α for a minimum
expected profit or a given maximum cost, Fk.

λt ¼ ~λ t � α~λ t, 8t ¼ 1, 2, . . . ,T ð1:6Þ

bα�~xi, t;Fk

� ¼ Max
α

α : Max
~xi, t

cost � Fk or Min
~xi, t

profit � Fk

� �
ð1:7Þ

1.2.5 Implementing Risk-Seeker and Opportunistic Design
Making Strategy

The opportunity function, bβ xi, t;Fwð Þ, assesses the feasibility of the low cost or high
profit. Therefore, a small value of bβ xi, t;Fwð Þ is desired. According to Eq. (1.8), the
opportunity variable is the least amount of α for minimization of total cost as low as
Fw or maximization of expected profit as high as target profit, Fw. Therefore, it is
expected that bβ xi, t;Fwð Þ increases with reduction of Fw for cost minimization
approach and increases with increase of Fw for profit maximization problem as
Eqs. (1.8), (1.9), and (1.10). If decreasing rate of λt causes a decrease in cost
objective function, negative sign will be considered in optimization problem. Else
if increasing rate of λt leads to an increase in profit objective function, positive sign
will be used.

1 Introduction to Information Gap Decision Theory Method 7



bβ xi, t;Fwð Þ ¼ Min
xi, t

bα xi, t;Fwð Þ ð1:8Þ

λt ¼ ~λ t � α~λ t, 8t ¼ 1, 2, . . . ,T ð1:9Þ

bβ�~xi, t;Fw

� ¼ Min
α

α : Min
~xi, t

cost � Fw or Max
~xi, t

profit � Fw

� �
ð1:10Þ

1.3 Conclusion and Future Trend

In this chapter, information gap decision theory was introduced as a risk-assessment
tool in power system studies. Firstly, advantages of IGDT technique in comparison
with other uncertainty modeling approaches such as robust optimization, probabi-
listic methods, etc. were discussed. Then, uncertainty analysis using IGDT in power
system and energy market researches was classified into two general categories
consisting of “Application of IGDT for modelling uncertainties of renewables,
demands and energy tariffs in systematic analysis” and “Risk-averse and risk-seeker
decisions in energy and reserve markets using IGDT.” Authors of this chapter are
working on risk-constrained design and scheduling of a novel combined cooling and
power generation system using IGDT. Uncertainty of ambient air temperature on
power generation (supply side) and cooling load (demand side) of a benchmark
industrial prosumer will be investigated. In other words, impacts of uncertainty of a
variable parameter such as ambient air temperature on both generation and con-
sumption sides will be analyzed for making robust and risk-seeker decisions and
determining optimum operating point of power generation cycle and air conditioning
unit. Moreover, implementation of IGDT hybrid robust optimization methods is
suggested for modeling uncertainties.
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Chapter 2
Information-Gap Decision Theory:
Principles and Fundamentals

Navid Rezaei, Abdollah Ahmadi, Ali Esmaeel Nezhad,
and Amirhossein Khazali

2.1 Introduction

Optimization problems have been defined and applied to various fields of science
and technology. For simplicity, many of the variables and parameters that are
involved in these problems are assumed to be deterministic variables with no
variation in real time. Nevertheless, in reality, many of these parameters indicate
stochastic behaviors or are totally ambiguous to the decision-maker. Therefore,
making decisions in uncertain spaces is a usual matter. Nonetheless, the question
is how the best decision can be made in this space to be resilient against deviations of
uncertain variables from their forecasted amount. Information-gap decision theory
answers this matter and also specifies how much uncertain variables can deviate
while the performance of the system stays acceptable [1–3].

Dealing with these parameters such as deterministic variables and making deci-
sions based on these erroneous presumptions can lead to undesirable results and
impose excessive costs on the system. Therefore, implementing different approaches
and methods which are capable of handling the uncertain space of the problems is
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inevitable. During the last decade, different frameworks have been represented to
incorporate uncertain characteristics in optimization problems such as probabilistic
and stochastic programming, fuzzy optimization, interval optimization, and robust
optimization. Each of these approaches has their advantages and drawbacks and is
suitable for different types of optimization problems. Probabilistic and stochastic
approaches are highly dependent on historical data of uncertain variables and the
related probabilistic density function. Hence, in the case that these data are inaccu-
rate or unavailable, the decisions made cannot be trusted. Furthermore, for the
stochastic programming approach, while few scenarios cannot cover the whole
uncertain space, increasing the number of scenarios increases the computational
burden of the problem. The fuzzy optimization problem suffers from the similar
problem and has to solve the optimization problem for different α-cuts. Interval and
robust optimization both require uncertainty sets to be known in addition to this
matter that robust optimization is a bi-level optimization problem which is usually
difficult to solve [4]. Figure 2.1 shows how each approach deals with uncertainties.
For the stochastic programming approach, the uncertain space is summarized as a
number of scenarios. Fuzzy decision-making uses membership functions to handle
the uncertainties of the system. Robust and interval optimization assume a certain
space in which the uncertainties can vary and tackle the optimization problem
according to this space. For the IGDT approach, an uncertain space is considered
which is not determined and changes according to the characteristics of the optimi-
zation problem.

Despite all of these flaws, the information-gap decision theory (IGDT) does not
require the exact interval of uncertainty sets. Indeed, according to the uncertainty
budget, a decision is adopted to make the objective function robust against variations
of uncertain variables. Figure 2.2 depicts the concept of IGDT compared with other
optimization frameworks from the view of required data. As illustrated in this figure,
according to the amount that the objective function can deviate (from the objective
function which is acquired in the base case with deterministic variables), a specific
portion of the uncertainty space can be handled [4].

Robustness and opportuneness are two main strategies for IGDT approach. These
two conflicting concepts stem from uncertainties of different variables. While the
robustness function estimates the resiliency to failure, opportuneness seeks the
chance of a windfall. These immunity functions (robustness and opportuneness)
are the main principals of IGDT [1]. These functions help the decision-maker to
cope with various trade-offs and make a cost between the costs and reliability issues
of the problem.

As explained, IGDT is a decision-making tool for uncertain circumstances. This
method can be summarized in three main stages [1]:

1. Modeling the uncertain parameters
In this section stochastic variables in which their deviation from forecasted

amounts is salient have to be identified. As mentioned, no historical data or
probabilistic density function is required for this approach.

2. Defining the desired strategy (robustness or opportuneness)
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This strategy specifies as to what extent the uncertain variables and inputs can
change while assuring the minimum income for the decision-maker (robustness
strategy) or how should uncertain variables change to achieve a minimum
windfall. Figure 2.3 shows a simple concept of robustness and opportuneness.

3. Analyzing to what extent uncertain parameters can deviate from their forecasted
amounts according to the determined objective function

In this stage, the final decision is made, according to the minimum income,
how much robustness is required, or on the other hand which option gathers the
desired windfall according to variations of uncertain variables. Indeed, IGDT
calculates the uncertainty horizon α around a forecasted amount u for a minimum

α

Stochastic programming

Fuzzy decision making

Robust and interval optimization

Information gap decision Theory

1

Fig. 2.1 Comparison
between data required for
different approaches
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income (robustness) or the desired windfall. Figure 2.3 indicates a simple concept
for robustness and opportuneness. In Fig. 2.3a the decision-maker is pessimistic
and decreases the minimum profit (proportional to a coefficient such as σ) with
the aim of handling a larger portion of the uncertain space. Nevertheless, in
Fig. 2.3b the decision-maker is optimistic about the uncertainties of the system,
and the more the uncertain variables deviate from the forecasted amount (in an
advantageous way), the more profit is gained.

Despite probabilistic approaches which assign probabilities to each outcome, no
probability is assumed in the IGDT approach, and only deviations from the fore-
casted amounts are considered. Furthermore, despite the min–max approach, it does
not only consider the worst situation of the problem space.

After obtaining the robustness or opportuneness function, the decision-maker has
to select the final amount. Although these functions are numerical, there is no
numerical approach or a certain algorithm to choose the final decision based on
the value of these functions. Hence, the decision-maker has to make a connection
between these numerical amounts and the qualitative characteristics of the problem.
It is definite that larger amounts of the robustness function α are more desired. The
questions are how much should this function increase and what are the consequences
of this increment? Despite the immunity function, determining how much is a
solution desired can be interpreted as a qualitative judgment based on experience
and knowledge of the problem [1]. Even using a probability P based on probabilistic
theory decision needs a qualitative criterion. Larger amounts of P and α are desired,
yet this cannot be used to select the final solution. The simplest way of making the
final decision is considering previous experience with the system. Another approach
is converting the immunity function α to a dimensionless parameter using a normal-
izing approach discussed in [1].

The other important issue about the immunity functions is the behavior of
robustness and opportuneness functions against each other for different problems.
For some problems, the decision-maker can concentrate merely on obtaining a
minimum profit with a robust strategy. Still, the decision-maker can lose many
opportunities in this way. Thus a question which arises is whether both of these
functions can be improved simultaneously (the functions are sympathetic) or one of
these functions has to be enhanced in the cost of exacerbating the other function
(functions are antagonistic) [1].

2.1.1 Applications

IGDT has a vast application in different scopes of science, especially engineering.
Many kinds of literature have been conducted on implementing IGDT to economics
[5–7], project management [8–10], statistics, and biology [11].

Power system operation and planning optimization problems are usually accom-
panied with multiple uncertainties. With the increasing penetration of renewables
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during the last decade in power systems, the uncertainty has become even severe.
Therefore, one of the main fields that IGDT has been applied successfully is power
system optimization problems including renewable sources. Generation and
transmission expansion planning are usually high-dimension optimization problems
with an enormous number of variables and constraints. In many of these problems
utilizing other stochastic-probabilistic optimization, approaches can be extremely
difficult or even impossible. Nevertheless, IGDT has appropriate compatibility with
this type of optimization problems [12, 13]. Also, IGDT is used for planning lower
voltage levels such as distribution expansion planning and planning distributed
generations in microgrids. In the majority of these applications initially, the objective
function is calculated for the base case according to forecasted parameters. After
obtaining the objective function for the base case, a budget (proportional to the base
case objective function) is dedicated, and by solving the optimization problem, it is
calculated to what extent the immunity functions can be maximized. Bidding
strategy for generation companies in power markets is the other application of
IGDT for power system optimization problems [14, 15]. IGDT can be used whether
to make a robust strategy to guarantee the minimum amount of profit or in an
opportuneness framework to obtain the windfall caused by uncertain variables. In
addition to generation companies, IGDT can also be a beneficial approach for
independent system operators (ISO). IGDT has been used for unit commitment in
the presence of high wind penetration [4]. Optimal power flow and security pro-
gramming with high renewable generations can also be handled by information-gap
decision theory [16, 17]. Designing power system stabilizers with the aim of
damping local and inter-area oscillations is the other application of IGDT in power
system optimization.

Structural engineering is another knowledge which uses the advantages of IGDT.
Vibration amplitudes, natural frequencies, and loads such as earthquakes and wind.
IGDT is utilized to improve structural immunity against variations of these uncertain
parameters. Restricted information about the duration and expenditures can be a
critical issue in the field of project management. However, IGDT can be used to
adopt a robust approach for managing the finance of different projects.

2.1.2 Summary

Making decisions by solving optimization problems is a common practice.
However, in reality, most of the optimization problems suffer from the lack of
data or uncertainty of parameters. Therefore, it is inevitable to implement an
approach which can deal with these deficiencies. The approach has to represent
decisions which remain satisfying for different variations of uncertain variables in
real time [4].

Information-gap decision theory is a decision-making approach to these situa-
tions. The method is capable of applying two different strategies. In the robustness
strategy, the approach assures a minimum amount of profit for a certain amount of
change in the uncertain parameters. On the other hand, in the opportuneness strategy,
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the decision-maker intends to make benefits by the variations of uncertain
variables [1].

The IGDT does not require historical data or probabilistic density functions and is
compatible with the deficiency of exact data which makes it applicable to many
optimizations and decision-making problems in reality. Indeed, despite other
approaches such as stochastic or probabilistic programming which are extremely
dependent on probability density functions, this approach can be implemented
without knowledge of the stochastic behavior of uncertain parameters [4].

The results obtained by IGDT help the decision-maker to choose the final solution
according to the dedicated uncertainty budget or the benefit that is predicted to gain.
Hence, the IGDT does not provide a unique solution, but a group of solutions which
the decision-maker can select according to the adopted strategies. Each solution has
to satisfy all of the constraints while minimizing the required objective function.
Therefore, the results are trustable and can be utilized to make the final decisions.

2.2 Challenges of IGDT

After introducing the principles and applications of information-gap decision theory,
the advantages and flaws of this approach are discussed in this section. Also, a brief
description is done about the future developments of this approach.

2.2.1 Pros of IGDT

As noticed in the previous sections, the main advantage of IGDT is that it can be
implemented for optimization and decision-making problems which endure from the
lack of historical data or carry imprecise data. Approaches such as stochastic pro-
gramming and probabilistic approaches rely on historical data and probability density
function. Any inaccuracy in these data can lead to undesired or even lethal results.
Approximating probability density functions based on historical data is another
challenging issue for these methods [1–4]. Any error in estimating the accurate
probability density function with the proper parameters can result in disastrous results.
Interval and robust optimization have the same problem. In these approaches at least,
the interval of variations has to be determined to be used in these approaches. Despite
these drawbacks that these approaches struggle with, IGDT is independent of histor-
ical data or probability density functions and can be applied with the least data about
the variations of uncertain parameters [4].

Computational burden is another aspect that these approaches can be compared.
For stochastic programming, while decreasing the numbers of scenarios can alleviate
the decision, increasing the number of scenarios can extremely increase computation
burden or even make the problem infeasible. Fuzzy optimization also tolerates the
same problemwhere it has to be solved for different cuts. Nonetheless, IGDT is solved
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in a deterministic framework for different budgets which reduces computational times.
Furthermore, if the decision-maker is familiar with the intrinsic of the problem and the
interval the budget varies, the execution time can even be shortened [2–4].

Giving the option to decision-makers on how to deal with their problems can be
mentioned as another advantage of this approach. Decision-makers can opt whether
to implement a conservative strategy (robustness) to assure the least profit or a
strategy with more risk (opportuneness) to gain a windfall. Other decision-making
approaches do not give the freedom to the decision-maker to choose the desired
strategy such as IGDT.

2.2.2 Cons of IGDT

In the previous section, some advantageous aspects of IGDT were mentioned.
However, in special situations, these benefits can become a serious drawback to
this approach.

IGDT is a non-probabilistic approach. Thus, the assumptions which are made are
fewer than other approaches which result in the ignorance of events with low
probabilities. However, in reality, these events may occur and be outside the
model. Stochastic and probabilistic approaches consider these situations according
to their probability and cost they make. Also, if the nature of the problem is not
known, selecting robustness strategy can establish the cause of losing other benefits
and vice versa (adopting an opportuneness strategy can lead to failure).

The other con of this approach is related to the immunity functions. The amount
of these functions cannot be interpreted simply. For example, when the robustness
function equals to 0.5, merely this amount cannot give any sense and help the
decision-making process. So, the decision-maker has to rely on other tools such as
experience and sensitivity analysis [18].

Another concerning issue can be related to the uncertainty space of the problem.
If this space becomes much larger than the approximated horizon of uncertainty,
there can be upper or lower spikes in the outcomes, and the results can saliently
differ from the estimated values [18].

A major criticism of IGDT is that since this approach works based on a point
estimate, it is not appropriate for severe uncertainties. It is believed that for severe
uncertainties, the approach does not have to be initiated from an estimated point, and
instead, a universe of possibilities has to be considered [18].

2.2.3 Future Development

Decision-making under the deficiency of data or severe uncertainty has always been
a challenging task to tackle by scientists. Although different approaches have been
proposed to handle the uncertain space or lack of data, none of these frameworks
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have been completely satisfying. Each of these frameworks has their pros and cons.
Thus, using a combination of IGDT with these methods can be a perspective that has
not been studied and implemented. Studying the severity of uncertainty that IGDT
can handle can be another scope in which further development is required.

2.3 Statistics Related to Documents

This part presents the statistics related to documents in the field of IGDT. Terms such
as “information gap decision theory” or “information-gap decision theory” or “info-
gap decision theory” have been searched. The Scopus database has been used. It is
worth mentioning that the results are reported by April 2018. This search resulted in
187 documents, and the VOSviewer software has been used to analyze these
documents.

Figure 2.4 shows the number of published documents by year; it is clear that this
field is a relatively new research filed, and the number of published documents was
highest in 2016. Overall, the number of documents is increasing over the period.

Figure 2.5 shows the number of documents by source; IEEE Transactions on
Power Systems and International Journal of Electrical Power and Energy Systems
published nine documents in the field.

Figure 2.6 shows the number of published documents by authors; Y. Ben-Haim
and K. Zare have published 25 and 16 documents related to IGDT, respectively.

Figure 2.7 shows collaboration between authors based on years. Y. Ben-Haim
shown with blue color was the top researcher in this field in 2009, and A. Ahmadi
shown with yellow color is one of the top researchers in 2018.

Fig. 2.4 Documents by year
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Figure 2.8 shows the numbers of documents by type; 121 and 47 documents have
been published as article and conference paper, respectively.

Figure 2.9 shows the number of documents by subject area; 116 and 73 docu-
ments were published in the engineering and energy fields, respectively.

Figure 2.10 illustrates the popular keywords based on years; the yellow color
shows popular keywords in 2016. It is evident that information-gap decision theory,
risk management, scheduling, self-scheduling, and electricity market are some
popular keywords in 2016.

Table 2.1 shows the top ten popular keywords in the field; decision theory and
information gap with 116 and 70 times of occurrence, respectively, are the top two
popular keywords in the field.

Fig. 2.5 Documents by source
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Table 2.2 presents the top ten published documents in the field based on the
number of citations. The book published by Y. Ben-Haim published in 2006
received the highest number of citations. Besides, Table 2.3 represents a taxonomy
of the recent papers published in power systems.

Fig. 2.7 Collaboration between authors

Fig. 2.8 Documents by type
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Fig. 2.9 Documents by subject area

Fig. 2.10 The popular keywords
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Table 2.1 The most popular keywords

Number Keywords Occurrences

1 Decision theory 116

2 Information gap 70

3 Uncertainty analysis 66

4 Decision-making 60

5 Uncertainty 38

6 Information-gap decision theory 35

7 Optimization 35

8 Costs 34

9 Commerce 32

10 Information-gap decision theory (IGDT) 27

Table 2.2 The top ten documents with highest citations in the field

References Authors Source Citation Year

[1] Y. Ben-Haim Academic Press 176 2006

[19] Moilanen et al. Restoration Ecology 118 2009

[20] Soroudi and T. Amraee Renewable and Sustainable
Energy Reviews

115 2013

[21] Mohammadi-Ivatloo et al. IEEE Transactions on Power
Systems

70 2013

[22] Moilanen and B. A. Wintle Biological Conservation 70 2006

[23] Soroudi and M. Ehsan IEEE Transactions on Smart Grid 63 2013

[24] Moilanen et al. Ecological Modelling 62 2006

[25] E. Nicholson and H. P.
Possingham

Ecological Applications 53 2007

[26] Moilanen et al. Conservation Biology 52 2006

[27] E. McDonald-Madden et al. Journal of Applied Ecology 51 2008

Table 2.3 The IGDT application to modern power systems

References Subject Uncertain parameter Year

[28] Reserve market clearing Demand response 2018

[29] Bidding strategy of microgrids Load and price 2018

[30–32] Smart building scheduling Price 2018

[33] Security-constrained unit commitment Load 2018

[34] Optimal scheduling of industrial furnaces Heating demand 2018

[35] Bidding and offering strategy of a retailer Price 2017

[36, 37] Scheduling of a hybrid energy system Load 2017

[38] Power system expansion planning Demand and price 2017

[39] Bidding strategy for generation companies Price 2017

[40] Bidding strategy for industrial consumers Price 2017

[41] Hydrothermal scheduling Load 2016

[42] Electricity procurement strategy of large consumer Price 2016
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2.4 Information-Gap Decision Theory Modeling

Generally, the info gap presents a critical presentation of the uncertainty happening
in most real cases. In such real cases, the firm and optimal solution would be
obtained provided that the data are available, while, indeed, a small part of the
data is in access. If one wants to cast light on this problem, it can be stated that in
most cases the gap between what is known and what is unknown is quite remarkable
in different practical applications. Thus, it is needed to characterize this gap to make
a robust and logical decision. Each IGDT-based problem includes three main parts as
a system model, uncertainty modeling, as well as the performance requirements as
follows.

2.4.1 System Model

The system model can be represented by H(k, γ) which includes the input–output
structure of the studied system. It is noted that k is the set of decision variables and γ
is the uncertain parameter. H(k, γ) can be alternatively described as the benefit that
the decision-maker would gain for the selected values of k taking into account γ. It is
worth noting that γ can be any uncertain parameter, such as the pool price, load
demand, intermittent renewable energy power output, etc.

2.4.2 Uncertainty Modeling

In this respect, there are several models thus far presented for the IGDT technique.
An uncertainty model based on the information-gap theory would be a cluster of
nested sets which in most cases is unbounded. The information regarding the
uncertain parameter would specify the form of the sets within an information-gap
model. Usually, the architecture of the model of the information-gap theory is
selected in order to represent the smallest or the most rigorous family of sets that
their members are consistent with the previous information. However, in some cases,
the innovative thinking may be necessary to represent the information-gap model
with the capability of previous information capture. This would be partially linguis-
tic with no unguaranteed presumptions.

Different information-gap models are as follows [1]:

• Energy-bound model
• Envelope-bound models
• Minkowski-norm models
• Slope-bound models
• Fourier-bound models
• Hybrid information-gap models: information gaps in probability functions
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• Combined information-gap models
• Non-convex information-gap model: pendulum-like systems
• Non-convex information-gap model: linear system with uncertain coefficients
• Discrete information-gap models

In this regard, the two frequently used models in power systems are the energy-
bound and the envelope-bound models.

2.4.2.1 Energy-Bound Model

Transient events are the most challenging ones to interpret compared to other
dynamic events. Generally, the information of these phenomena is sparse, inaccu-
rate, and not sufficient. It should be noted that an occurrence is not a mere individual
number. On the contrary, it is a function of time or space or even both of them. In
some cases, the structure of such a function would be a vector instead of a single-
dimension scalar. In this regard, energy-bound uncertainty models appear in various
conditions in which the energy is not exactly defined using a polynomial function of
quadratic types, such as the energy per unit time related to an electric current that is
quadratic in the current.

For a given function of scalar one, c(t), fluctuating with an obscure behavior
around the nominal function, ~c tð Þ, the energy-bound model can be defined as
follows:

C
�
α; ~c

� ¼ c tð Þ :
Z1
0

c tð Þ � ~c tð Þ½ �d tð Þ � α2

8<
:

9=
;, α � 0 ð2:1Þ

This function is a category of nested uncertain function sets in which α shows the
uncertain parameter indicating the degree of nesting, such that α < α

0
would infer

C
�
α; ~c

� � C
�
α0; ~c

�
. As c(t) ˫ ~c tð Þ is a transient fluctuation supposed to be

disappeared however asymptotically since the integral represented in (2.1) is
constrained by the square of the uncertainty horizon which is finite. In this respect,
the uncertainty of c(t) is stated in a dual-level form where C

�
α; ~c

�
determines the

deviation of c(t) from ~c tð Þ, which is not known. It is worth noting that α is unknown
indicating the uncertainty horizon that is not known.

Besides, for vector-valued function, the energy-bound models would be
represented as follows:

C
�
α; ~c

� ¼ c tð Þ :
Z1
0

c tð Þ � ~c tð Þ½ �TB c tð Þ � ~c tð Þ½ �d tð Þ � α2

8<
:

9=
;, α � 0 ð2:2Þ

where B shows a real symmetric matrix which is known and positive definite
[1]. The models represented in (2.1) and (2.2) are so-called cumulative energy-
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bound models which are recognizable from the “instantaneous energy-bound
model.” The instantaneous energy-bound model is defined as a set of functions,
while the energy is limited at each instant as below:

C
�
α; ~c

� ¼ c tð Þ : c tð Þ � ~c tð Þ½ �TB c tð Þ � ~c tð Þ½ � � α2
� �

, α � 0 ð2:3Þ

where it should be noted that c(t) and ~c tð Þ are not necessarily the function of the
variable t which is independent while they can be constant vectors. As intensively
investigated in Refs. [1, 43], Eq. (2.3) can be rewritten as follows as the ellipsoid-
bound info-gap model for vectors.

C
�
α; ~c

� ¼ c :
�
c� ~c

�T
B
�
c� ~c

� � α2
n o

, α � 0 ð2:4Þ

The two models represented above as instantaneous and cumulative energy-
bound models can be easily discriminated by taking into consideration that the
instantaneous energy-bound model includes functions that their magnitude is
unbounded. The cumulative energy-bund model includes unrelentingly fluctuant
functions.

2.4.2.2 Envelope-Bound Model

The envelope-bound model has been widely used in power system problems [44–
46]. Accordingly, here the envelope-bound model is presented. Using this model, the
variations of the uncertainty are restricted to an adjustable envelope. Hence, the
expression for the scalar functions can be stated as below:

C
�
α; ~c

� ¼ c tð Þ : c tð Þ � ~c tð Þj j � αφ tð Þf g, α � 0 ð2:5Þ

where the unknown function which specifies the envelope shape and the uncertainty
parameter which specifies the size are denoted by φ(t) and α, respectively. Besides,
C
�
α; ~c

�
shows the set of functions c(t) such that their value does not deviate from

the nominal function ~c tð Þ by more than αφ(t). It is noteworthy that φ(t) indicates the
envelope function using the historical data. For example, if φ(t) is selected 1, the
deviation of the uncertainty would be limited to specific regions of t-values; other-
wise φ(t) ¼ 0 outside. The envelope function φ(t) is utilized to show the relative
degrees of the deviation in other realizations. It should be noted that the highest
degree of deviation would be desired to vary proportionally to the nominal function;
thus φ tð Þ / ~c tð Þ. Accordingly, the information-gap model represented in (2.5) turns
into the set of functions c(t) that their fractional variation around the nominal
function ~c tð Þ would not be greater than α. This issue can be mathematically
represented as follows:
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C
�
α; ~c

� ¼ c tð Þ : c tð Þ � ~c tð Þ
~c tð Þ

����
���� � α

	 

, α � 0 ð2:6Þ

where the presented envelope is possibly constant everywhere for other situations,
which means that the function mentioned above would be decreased to Eq. (2.7)
used for the energy-bound model as well. In the case of Z-vectors, the envelope
function can be presented by limiting each member of the vector as follows:

C
�
α; ~c

� ¼ cz tð Þ : cz tð Þ � ~cz tð Þj j � αφz tð Þ; z ¼ 1; 2; . . . ; Z
� �

, α � 0 ð2:7Þ

It is worth mentioning that the envelope-bound information-gap models can be
used for both constants c and functions c(t). In the previous case, the expanding
interval–uncertainty models were derived. Equation (2.5) would turn into the set
of c-values in the expanding interval

�
~c � α ~c þ α

�
, in which the size of the

interval �α is uncertain. Regarding the vector case, Eq. (2.4), by using the men-
tioned intervals for every member of the vector c, a set of expanding boxes with the
dimension Z will be generated. It should be noted that the scalar envelope-bound
models are capable of being extended for the vector function using a different
method. In this respect, Eq. (2.5) is rewritten as follows:

G ¼ c tð Þ : � φ tð Þ � c tð Þ � φ tð Þf g ð2:8Þ

where the set of functions in a fixed envelop�φ(t) which has been centered at zero is
denoted by G. Therefore, assuming the set G and the real number α, the elements of
G and α can be multiplied to derive the set αG as:

αG ¼ c tð Þ : �αφ tð Þ � c tð Þ � αφ tð Þf g ð2:9Þ

where αG is zero-centered and shows the expanding envelope of the functions
constrained by �αφ(t). Similarly, by summing up ~c tð Þ and each element of the
αG, the set αGþ ~c tð Þ can be derived for any set αG and the function ~c tð Þ.
Accordingly, Eq. (2.9) can be rewritten as below representing expanding envelope
of functions which are shifted:

αGþ ~c tð Þ ¼ c tð Þ : ~c tð Þ � αφ tð Þ � c tð Þ � ~c tð Þ þ αφ tð Þf g ð2:10Þ

Therefore, Eq. (2.5) would be rewritten as follows:

C
�
α; ~c

� ¼ c tð Þ : c tð Þ2αGþ ~c tð Þf g, α � 0 ð2:11Þ

It is worth noting that here the set G has two fundamental characteristics:

• G includes the zero function, i.e., 0 2 G.
• G is also included in its expansions so that 0 < α < α

0 2 G states αG � α
0
G.
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Equation (2.11) would be a general envelope-bound information-gap model for
any set G of functions with respect to the abovementioned characteristics of the set
G. This is a shifted expanding envelope of functions in which the set G specifies the
shape. The properties of Eq. (2.11) which make it different relate to the fact that there
is no necessity for the convexity of sets C

�
α; ~c

�
.

It is noted that the energy-bound and the envelope-bound techniques are highly
correlated which can be even more extended using the Minkowski-norm models.
The slope-bound models are used to take into account the rate of variations as the
envelope-bound, energy-bound, and Minkowski-norm models have not considered
the rate of variations. For instance, the envelope-bound model is possible to be used
for the slope instead of the magnitude of the function to limit the rate of variations. In
some cases, the knowledge about the partial spectral information to model the
uncertain parameter is limited. In such cases, the Fourier-bound models can be
used. The combined information-gap models are the combination of several models
discussed above, for example, the combination of the energy-bound and the
envelope-bound models. The non-convex information-gap models can be used
both for the pendulum-like systems and linear systems with uncertain coefficients.
Most of the dynamic systems existing in real life particularly in the natural, physical,
and social fields besides the engineering problems would be characterized by a set of
linear differential equations associated with constant coefficients. In such cases, the
non-convex info gap for linear systems with uncertain coefficients can be utilized. It
is noteworthy that for those parameters with a discrete variation of the uncertainty
horizon, discrete info gap must be utilized. Ordinal preferences related to some
alternatives can be determined using positive integers, while the low integer shows
the desirability of the related alternative. In this respect, although the preferences can
be uncertain, there is a discrete uncertainty, i.e., errors in the integer units.

2.4.3 Performance Requirements

In the presence of severe uncertainty, the IGDT technique would aid the decision-
maker to adjust the values of the decision variables in a way that the minimum
requirements of the system would be obtained and the related risk would be
prevented [47]. There are two functions defined to this end, as the robustness
function and the opportunity function.

2.4.3.1 Robustness Function

Profit Maximization

Assuming Hc is the lowest desired value of reward of the decision-making problem,
the robustness function of the information-gap model can be interpreted as the
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highest level of α in a way that Hc is obtained. Accordingly, this robustness function
can be mathematically represented as follows:

eα k;Hcð Þ ¼max
α

α : minimum requirement Hc is always achievedf g
¼max

α
α : min H k; γð Þ � Hcf g, γ2C

�
α; ~c

� ð2:12Þ

The robustness function in (2.12) implies the highest deviation from the nominal
value such that the minimum performance is higher than a given value, Hc. The
robustness function indeed models the risk-aversion behavior of the decision-maker
when confronting the uncertainty. This function would be applicable when the
decision-maker seeks to maximize the profit considering the highest level of the
uncertainty. It should be noted that the decision made would be robust, risk-averse,
and not affected by the uncertainty when the value of eα k;Hcð Þ is large. Otherwise,
the decision would be crisp.

Cost Minimization

In case the system model (cost) is set to be minimized by the decision-maker, the
robustness function can be rewritten as follows:

eα k;Hcð Þ ¼max
α

α : minimum requirement Hc is always achievedf g
¼max

α
α : min H k; γð Þ � Hcf g, γ2C

�
α; ~c

� ð2:13Þ

2.4.3.2 Opportunity Function

Profit Maximization

On the other hand, the opportunity function denoted by eβ k;Hwð Þ is utilized to
evaluate the chance of gaining the higher value of the objective function, e.g., profit
which may be gained due to the variations of the uncertain parameter. This function
can be stated as below [47]:

eβ k;Hwð Þ ¼min
α

α : target performance Hw may be metf g
¼min

α
α : max H k; γð Þ � Hcf g, γ2C

�
α; ~c

� ð2:14Þ

where the deviation of the uncertain parameter from the predicted value by eβ may
result in the targeted objective function value, e.g., profit. In other words, the
opportunity function can be defined as the lowest value of α at which the decision
made would endure and still get a high performance shown by Hw.
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Cost Minimization

However, in the case of cost minimization, the opportunity function would be set as
follows:

eβ k;Hwð Þ ¼min
α

α : target performance Hw may be metf g
¼min

α
α : max H k; γð Þ � Hcf g γ2C

�
α; ~c

� ð2:15Þ

2.5 Conclusion

The uncertain parameters can be characterized by two general methods as the
occurrence frequency of events by the probabilistic methods when the exact data
are not available or as the subjective degrees of belief of the observer. However, the
fuzzy logic theory has been widely used to characterize different kinds of uncer-
tainties. This has been done by defining the fuzzy membership functions. In this
respect, the commonly used probability models and fuzzy logic describe various
points of view of incomplete or disjointed data, while any of them has been proposed
for a different utilization with different performances. It should be noted that
considering all the various features of the models, they are used to present the
same concept using the mathematical functions which are normalized. In this
respect, these functions can be either the probability distribution functions or the
membership functions. The vague issue arisen here is how to provide the decision-
maker with the required input data such as the probability distribution functions of
the uncertain parameters. This would be of high significance in the realistic situa-
tions where the data of the input data may not be available or in case of the system
vulnerability to underlying variations even when the data are available. Under such
conditions, the historical data would be no longer useful. Hence, an efficient tool
must be available to deal with the uncertainty as the decision-maker would face data
which are much more fragmental. In this respect, the information-gap decision
theory (IGDT) technique would be an effective and efficient uncertainty character-
izing tool. This chapter highlighted applications, pros, and cons of IGDT.
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Chapter 3
Optimization Framework Based
on Information Gap Decision Theory
for Optimal Operation of Multi-energy
Systems

Majid Majidi, Sayyad Nojavan, and Kazem Zare

Nomenclature
Indices

t Time periods index

Parameters

ηT
ee

Transformer electrical efficiency

ηCHP
ge

Gas to power efficiency of CHP system

ηCON
ee

Converter efficiency

η e
ch Charging efficiency of battery storage system (BSS)

η e
dis Discharging efficiency of BSS

ηh
ch

Charging efficiency of thermal storage system (TSS)

ηh
dis

Discharging efficiency of TSS

α e
min Minimum capacity modeling coefficient of BSS

α e
max Maximum capacity modeling coefficient of BSS

α e
loss Loss of power coefficient in BSS

αh
min

Minimum capacity modeling coefficient of TSS

αh
max

Maximum capacity modeling coefficient of TSS

αh
loss

Loss of power coefficient in TSS

ANET Coefficient for modeling upper network availability

ACHP Coefficient for modeling CHP system availability

AWIND Coefficient for modeling wind turbine availability
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Cst,e
c Rated stored energy level in BSS

Cst,h
c

Rated stored heat level in TSS

Cr Maximum operation cost of hub system in robustness function

Co Maximum operation cost of hub system in opportunity function

gnet
min Minimum rated capacity of gas network

gnet
max Maximum rated capacity of gas network

gl
t

Residential gas demand

pe
min Minimum rated capacity of electrical demand

pe
max Maximum rated capacity of electrical demand

pT
c

Rated limitation of transformer

pCHP
c

Rated limitation of CHP system

pB
c

Rated limitation of boiler

pr Rated power of wind turbine

pel
t

Base electrical load

ph
t

Heating demand

wal
t

Water demand in residential section

wamin Minimum rated capacity of water network

wamax Maximum rated capacity of water network

wci,wco,wr Wind turbine cut-in, cut-out, and rated speeds

w(t) Wind speed

x,y,z Coefficients of power generation by wind turbineeλ e
t

Forecasted price of imported power from upper network

λwi Operation cost of wind turbine

λg Price of gas provided by gas network

λwa Price of gas provided by gas network

λ es Operation cost of BSS

λhs Operation cost of TSS

Variables

Cost Total operation cost of hub energy system

Cst,e
t Available stored energy level in BSS

Cst,h
t

Available stored heat level in TSS

gCHP
t

Gas consumption of CHP system

gB
t

Gas consumption of boiler

gnet
t Total provided gas through gas network

Ich,et
Binary variable; 1 if BSS is charging; otherwise 0

Idis, et
Binary variable; 1 if BSS is discharging; otherwise 0

Ich,ht
Binary variable; 1 if TSS is charging; otherwise 0

Idis,ht
Binary variable; 1 if TSS is discharging; otherwise 0

pe
t Provided electric power by upstream network

pch,et
Charging power of BSS

pdis,et
Discharging power of BSS

pch,ht
Charging power of TSS

(continued)
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pdis,ht
Discharging power of TSS

ploss,et
Loss of electric power in BSS

ploss,ht
Loss of heat in TSS

pwi
t

Power generated by wind turbine

wanet
t Procured water from water network

λ et Actual price of imported power from upper network

Functionsbα Crð Þ Robustness function of IGDTbβ Coð Þ Opportunity function of IGDT

3.1 Introduction

Hub energy systems are composed of different generation units to supply several
energy demands. Combined heat and power (CHP) systems utilized in such systems
are effective in increasing the efficiency of supplying heat and power load demands
as much as 90% and reducing the pollutants gas emissions around 13–18% [1–3].
Stable operation of power systems including hub energy systems depends on various
factors. One of the important factors that can make optimal operation of energy
systems risky is uncertainty. Uncertainty of different fluctuating parameters like load
[4, 5], market price [6–8], and other parameters can disturb predetermined schedul-
ing and planning of hub energy systems. Uncertainty modeling of hub energy
systems containing CHP system [9, 10], boiler [11–13], storage systems [14–17],
and renewable generation units [18, 19] can be done to ensure a reliable power to
energy demands.

3.1.1 Literature Review

Some research papers have studied multi-carrier energy systems in which brief
summaries are reviewed in the following: Microgrid has been molded using hub
energy concept in [20] in which optimal structures for storage system and converters
are obtained. Optimal risk-based performance of hub energy system under uncer-
tainty of market price, electrical load, and wind power has been evaluated using
stochastic programming in [21]. Using Monte Carlo simulation in [22], scenario-
based optimal performance of hub energy system in the presence of demand
response has been studied. Also, stochastic programming has been employed in
[23] to model uncertainty-based optimal performance of hub energy system in the
presence of demand response and thermal energy market. An optimization frame-
work based on robust optimization approach has been presented for hub energy
system in [24]. To reduce fossil fuel consumption, renewable energy resources have
been integrated using hub energy concept in [25]. Also, energy hub concept has been
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used in [26] for optimum scheduling of microgrid in which operation cost of
microgrid is minimized. Energy hub concept has been used to integrate energy
resources at neighborhood stage in [27]. Several energy hub systems have been
optimized and coordinated using multi-agent control approach in [28]. Various
concepts of demand responses have been presented for smart hub energy systems
in [29–32].

Optimal uncertainty-based operation of hub energy system has been scheduled
using stochastic programming in [33] in which uncertainties of wind generation and
pool price have been taken into account. Conditional value at risk measure is
employed in [34, 35] to assess risk-based optimal operation of energy system
under uncertainties. Optimal scheduling of a CHP-based microgrid has been studied
considering the uncertainties of power market price and load demand using
scenario-based modeling method in [36]. A novel model based on self-adaptive
learning with time varying acceleration coefficient-gravitational search algorithm
(TVAC-GSA) has been developed for economic dispatch problem of hub energy
system in [37]. Using a new dispatch model based on fuzzy control and finite-state
machines in [38], optimal scheduling of hub energy system has been investigated.
Hub energy concept has been used to integrate fuel cell into a CHP system to gain
economic benefits in [39]. Multi-carrier energy systems have been completely
discussed and reviewed in [40]. Employing various optimization techniques and
formulations, operation of hub energy system subject to operational limitations has
been discussed in [41]. In order to assess uncertainty-based optimal performance of
electrical-heat microgrid energy system in a deregulated market, probabilistic-based
optimization framework has been presented in [42, 43] under demand-side
programs [44].

Multi-objective optimization model has been presented for optimal eco-emission
operation of hub energy system in [45, 46]. Optimal performance of smart hub
energy system under demand response programs has been investigated in [47]. A
multi-objective framework has been presented for optimal design, sizing, and
operation of hub energy system in [48]. With the aim of maximizing profit, an
optimization model has been developed for optimal performance of hub energy
system in [49]. Optimum performance and operation of hub energy system under
dynamic and real-time pricings has been studied in [50]. Adequacy of hub energy
system has been studied in [51] in which dependencies of energy carriers at both
demand and generation sides have been taken into account. Optimal economic
performance of hub energy system has been studied in the presence of renewable
energy sources and demand response in [52]. Furthermore, optimum performance of
hub energy system has been studied with considering vehicle to grid technology in
[53]. Optimal operation of hub energy system has been studied from reliability
viewpoints in [54, 55]. The CHP economic dispatch problem has been studied
using several mathematical methods and heuristic approaches such as genetic
algorithm [56] and whale optimization algorithm [57]. A business model has been
presented for hub energy system in the presence of renewable energy resources
in [58].
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In [59], a residential energy hub model has been presented for smart home in
which plug-in hybrid electric vehicle as well as cogeneration units and combined heat
and power system have been employed. A hierarchical energy management system
including supervisory, optimizing, and execution control layers has been presented
for optimal operation of hub energy system in [60]. Using a goal attainment-based
technique, optimum energy flow problem of hub energy networks has been studied in
the presence of several interconnected hub energy systems in [61]. Influence of
optimizing heating network on the performance of hub energy system has been
studied using teaching-learning-based optimization algorithm in [62]. Finally,
using TVAC-GSA, optimum power flow of multi-carrier energy system has been
studied within single and multi-objective optimization problems in [63].

3.1.2 Contributions and Novelties

In this chapter, optimal performance of hub energy system under severe uncertainty
of upper network has been studied using information gap decision theory. The
discussed uncertainty modeling methods do not provide any operating strategy for
different possible conditions of uncertainty. The main feature of IGDT compared
with other uncertainty modeling techniques is that it is composed of two immunity
functions that model the whole aspects of uncertainty including the positive and
negative ones. Robustness and opportunity functions of IGDT have been used to
model and determine appropriate operating strategies of hub energy system. So, the
contributions and novelties of proposed paper can be expressed in below:

• Economic performance of hub system is assessed under severe uncertainty of
upstream network price.

• Uncertainty modeling of upstream network price is done by information gap
decision theory (IGDT).

• Robust performance of hub system against uncertainty is assessed using robust-
ness function of IGDT.

• Optimistic performance of hub system against uncertainty is assessed using
opportunity function of IGDT.

3.1.3 Structure of Chapter

The rest of the proposed chapter is listed as follows: Information gap decision theory
is briefly described in Sect. 3.2. Optimum performance of hub energy system under
severe uncertainty of upstream network price is mathematically presented in
Sect. 3.3. Simulations are done in Sect. 3.4 and the results are presented in the
same section. Finally, this paper is concluded in Sect. 3.5.
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3.2 Information Gap Decision Theory (IGDT)

IGDT is one of the powerful methods used for uncertainty modeling. This technique
benefits from two immunity functions called robustness and opportunity functions.
These functions determine appropriate operational strategies for stable operation of
power system. In comparison with other uncertainty modeling techniques, this
method doesn’t need much more data for uncertainty modeling; therefore it doesn’t
make the problem much more sophisticated. Also, IGDT determines operating
strategy for the operating systems under the desired taken policies against uncer-
tainty. Generally, IGDT is composed of three sections which are expressed in below.

3.2.1 System Model

System model shows the input/output structure of studied system. This model can be
expressed as function like C(q, ρ)in which q is decision variable and ρ is uncertain
parameter.

3.2.2 Operation Requirements

Depending on the objectives of scheduling and planning, there are various expecta-
tions from each power system. These expectations are called operation requirements
which are expressed based on robustness and opportunity functions:

bα ¼ max
α

α : maximum total cost which is is not higher than a specified costf g
ð3:1Þbβ ¼ min

β
β : minimum total cost which is less than a specified costf g ð3:2Þ

Equation (3.1) expresses robustness function of IGDT. Robustness degree of
system against possible increase of uncertain parameter is determined by this
function. In fact, this function determines risk-averse strategies to be employed by
operator of system for stable operation of system under higher levels of uncertainty.
This function is mathematically expressed in (3.3) as follows [64, 65]:

bα Crð Þ ¼ max
α

α : max C q; ρð Þð Þ � Crf g ð3:3Þ

According to Eq. (3.3), bα Crð Þ expresses robustness level of system against
increase of uncertain parameter. Since higher robustness levels are desired, higher
values of bα Crð Þ are suitable.
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On the other hand, reduction of uncertain parameter may provide some benefits
for system which can be modeled using opportunity function (3.2). This function is
mathematically expressed in (3.4) as follows [64, 65]:

bβ Coð Þ ¼ min
β

α : min C q; ρð Þð Þ � Cof g ð3:4Þ

This function models the possible benefits and profits than can be achieved as a
result of decisions. It should be noted that Crand Co are the maximum operation cost
of system in robustness and opportunity function, respectively. It is obvious that Cr

is greater than Co.

3.2.3 Uncertainty Modeling

Information gap decision theory includes various uncertainty models. One of the
most frequent types of these models is envelope-bound model which is expressed
through Eq. (3.5) [4].

U
�
α; ~u
� ¼ u tð Þ : u tð Þ � ~u tð Þ

φ tð Þ
���� ���� � α

� �
, α � 0 ð3:5Þ

3.3 Problem Formulation

In this section, optimal performance problem of hub energy system under severe
uncertainty of upper network is mathematically modeled.

3.3.1 Electrical Limitations

The power imported from upstream network plus the generation of wind turbine and
CHP system as well as discharge power of BSS should be equal to electrical energy
demand to satisfy electrical load balance limitation (3.6).

Pe, l
t ¼

ANET � ηT
ee � pe

t þ ACHP � ηCHP
ge � gCHP

t

þAWIND � ηCON
ee � pwi

t þ pdis,et � pch,et

 !
ð3:6Þ

The power provided by upstream network should satisfy both network and
transformer limitations which are expressed through Eqs. (3.7) and (3.8).
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pe
min � pe

t � pe
max ð3:7Þ

ηT
ee � pe

t � pT
c ð3:8Þ

Electric power generation of wind turbine is expressed in Eq. (3.9). According to
this equation, the generation of wind turbine is proportional with the hourly wind
speed. According to each wind speed at each time, generation of wind turbine will be
various within 0 and the rated power.

pwi
t ¼

0 w < wci

pr z� y:w tð Þ þ x:w2 tð Þð Þ wci � w < wr

pr wr � w < wco

0 w � wco

8>>>>><>>>>>:
ð3:9Þ

Produced electric power by CHP system is limited by Eq. (3.10).

ηCHP
ge � gCHP

t � pCHP
c ð3:10Þ

Equations (3.11, 3.12, 3.13, 3.14, 3.15, and 3.16) are used to model BSS.

Cst,e
t ¼ Cst,e

t�1 þ pch,et � η e
ch � pdis,et =η e

dis � ploss,et ð3:11Þ
α e
min � Cst,e

c � Cst,e
t � α e

max � Cst,e
c ð3:12Þ

ploss,et ¼ α e
loss � Cst,e

t ð3:13Þ
α e
min � Cst,e

c � Ich,et

η e
ch

� pch,et � α e
max � Cst,e

c � Ich,et

η e
ch

ð3:14Þ

α e
min � Cst,e

c � Idis,et � η e
dis � pdis,et � α e

max � Cst,e
c � Idis,et � η e

dis ð3:15Þ
Ich,et þ Idis,et � 1 ð3:16Þ

Equation (3.11) states available stored energy of BSS which is limited in
Eq. (3.12). Some percentage of stored energy in BSS is wasted as power loss
which is expressed in Eq. (3.13). Equations (3.14) and (3.15) limit the charging
and discharging power of BSS. Finally, Eq. (3.16) is used to avoid BSS from
simultaneously being charged or discharged.

3.3.2 Thermal Limitations

Heat generation of CHP system and boiler as well as released heat from TSS should
be equal to heating demand (3.17).
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Pl,h
t ¼ ACHP � ηCHP

gh � gCHP
t þ ηB

gh � gB
t þ pdis,ht � pch,ht

� �
ð3:17Þ

Equations (3.18, 3.19, 3.20, 3.21, 3.22, and 3.23) are employed to model TSS.

Cst,h
t ¼ Cst,h

t�1 þ pch,ht � η h
ch � pdis,ht =ηh

dis � ploss,ht ð3:18Þ
αh
min � Cst,h

c � Cst,h
t � αh

max � Cst,h
c ð3:19Þ

ploss,ht ¼ αh
loss � Cst,h

t ð3:20Þ
αh
min � Cst,h

c � Ich,ht

ηh
ch

� pch,ht � αh
max � Cst,h

c � Ich,ht

ηh
ch

ð3:21Þ

αh
min � Cst,h

c � Idis,ht � ηh
dis � pdis,ht � αh

max � Cst,h
c � Idis,ht � ηh

dis ð3:22Þ
Ich,ht þ Idis,ht � 1 ð3:23Þ

Produced extra heat by CHP system and boiler is stored in TSS which is
expressed by Eq. (3.18) and restricted by Eq. (3.19). Some percentage of stored
heat in TSS is lost which is expressed by Eq. (3.20). Equations (3.21) and (3.22) are
used for charging and discharging limitation of TSS, respectively. Finally, binary
variables used in Eq. (3.23) are employed to limit charge and discharge of TSS at the
same time.

Heat generation of boiler is restricted by Eq. (3.24) which is expressed as follows:

ηB
gh � gB

t � pB
c ð3:24Þ

3.3.3 Limitations of gas and water networks

Total provided gas by gas network is expressed and limited by Eqs. (3.25) and
(3.26), respectively.

Gl
t ¼ gnet

t � gB
t � gCHP

t ð3:25Þ
gnet
min � gnet

t � gnet
max ð3:26Þ

Water demand is satisfied through the provided water by water network which is
expressed and restricted through Eqs. (3.27) and (3.28), respectively.

Wal
t ¼ wanet

t ð3:27Þ
wamin � wanet

t � wamax ð3:28Þ
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3.3.4 Objective Function Without Uncertainty

In this chapter, optimal performance of hub energy system is set to be the objective
function in which total operation cost of hub energy system is minimized (3.29).

MinCost ¼
XH
t

λ et � pe
t þ λwi � pwi

t þ λ es � pch,et þ pdis,et

� �
þλ et � pch,et � pdis,et

� �þ λg � gB
t þ λg � gCHP

t

þλhs � pch,ht þ pdis,ht

� �þ λwa � wat

0BB@
1CCA ð3:29Þ

As expressed in the objective function, total operation cost of hub energy system
is composed of costs of imported electric power, gas and water from electricity, and
gas and water networks as well as operation costs of CHP system, boiler, TSS, and
BSS plus the cost/revenue of exchanged power.

3.3.5 IGDT-Based Optimal Performance of Hub Energy

In this section, risk-based optimal performance of hub energy system under uncer-
tainty of upstream network price is modeled using IGDT.

3.3.5.1 Uncertainty Model

Using envelope-bound model, uncertainty of upstream network is modeled which is
expressed in Eq. (3.30).

U
�
α;~λ e

t

� ¼ λ et :
λ et � ~λ e

t

λ et

���� ���� � α

� �
, α � 0 ð3:30Þ

3.3.5.2 Robustness Function

Robustness function of IGDT for optimal performance of hub energy system under
uncertainty of upstream network price is expressed as follows:

bα Crð Þ ¼ max α : max
λ e
t2U
�
α;~λ e

t

� Cost � Cr

0@ 1A ¼ 1þ ωð ÞCb

8<:
9=; ð3:31Þ

According to Eq. (3.31), maximum degree of robustness should be obtained,
while total operation cost of hub energy system is less than a predefined cost, Cr.
Minimum operation cost of hub energy system expected to have is Cb. Also, ω is the
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cost variation factor to model the increased cost of hub energy system. Therefore, by
taking a risk-averse strategy, the objective function will be maximization of α, while
the required operation is satisfied:

bα Crð Þ ¼ maxα ð3:32Þ

subject to:

max
XH
t

1þ αð Þbλ e
t � pe

t þ λwi � pwi
t þ λ es � pch,et þ pdis,et

� �
þλ et � pch,et � pdis,et

� �þ λg � gB
t þ λg � gCHP

t

þλhs � pch,ht þ pdis,ht

� �þ λwa � wat

0BBB@
1CCCA

8>>><>>>:
9>>>=>>>; � Cr

ð3:33Þ
Eqs: 3:6ð Þ � 3:28ð Þ ð3:34Þ

As expressed above, maximum degree of robustness against increase of upstream
network price is obtained, while total operation cost of hub energy system is less
than a predefined cost.

3.3.5.3 Opportunity Function

Opportunity function of IGDT for risk-taker operation of hub energy system can be
modeled using Eq. (3.35).

According to Eq. (3.35), minimum value of α should be obtained, while total
operation cost of hub energy system is less than a predefined cost, Co. Maximum
operation cost of hub energy system expected to have is Cb. This means that less
operation costs are possible to be obtained for hub energy system which is beneficial
for hub system. Also, κ is the cost variation factor to model the decreased cost of hub
energy system. Therefore, by taking risk-taking strategy, the objective function will
be minimization of α, while the required operation is satisfied:

bβ Coð Þ ¼ min α : min
λ e
t2U
�
α;~λ e

t

� Cost � Co

0@ 1A ¼ 1� κð ÞCb

8<:
9=; ð3:35Þ

As expressed above, maximum possible benefits can be obtained for hub energy
system, while operational requirements are satisfied.

bβ Coð Þ ¼ minα ð3:36Þ

subject to:
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min
XH
t

1� βð Þbλ e
t � pe

t þ λwi � pwi
t þ λ es � pch,et þ pdis,et

� �
þλ et � pch,et � pdis,et

� �þ λg � gB
t þ λg � gCHP

t

þλhs � pch,ht þ pdis,ht

� �þ λwa � wat

0BBB@
1CCCA

8>>><>>>:
9>>>=>>>; � Co

ð3:37Þ
Eqs: 3:6ð Þ � 3:28ð Þ ð3:38Þ

3.4 Simulation and Results

In this section, uncertainty-based optimal operation of hub energy system is ana-
lyzed using information gap decision theory. Studied sample hub energy system is
captured in Fig. 3.1.

3.4.1 Input Data

Simulations of uncertainty-based optimal performance problem of hub energy
system using IGDT are based on the info and data given in the following. Electricity,
gas, heating, and water demands to be supplied through hub energy system are
depicted in Fig. 3.2. Hourly wind speed used by wind turbine for electric power
generation is illustrated in Fig. 3.3.

Fig. 3.1 Sample multi-
carrier energy system
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Prices of imported gas and water from gas and water networks as well as
operation costs of wind turbine, BSS, and TSS are presented in Table 3.1. Also,
price of provided power by upstream network is illustrated in Fig. 3.4.

Technical parameters of local distribution generation units in hub system are
presented in Table 3.2.

Technical data of electricity, gas, and water networks are presented in Table 3.3.
Finally, technical data of BSS and TSS are presented in Table 3.4.
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3.4.2 Results

In this section, by taking various types of strategies obtained through IGDT,
operation of hub energy system is evaluated. It should be noted that uncertainty-
based optimal operation of hub energy system is simulated under CPLEX of GAMS
software [66].

Table 3.1 Prices and
operation costs [22]

Parameter Value Unit

λg 6 Cent/kWh

λwa 4 Cent/kWh

λwi 0 Cent/kWh

λ es 2 Cent/kWh

λhs 2 Cent/kWh

10

Electricity price

8
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le

ct
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4
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Fig. 3.4 Upstream network price

Table 3.2 Date of
distribution generation
units [22]

Wind turbine CHP and boiler

# Unit Value # Unit Value

AWIND
– 0.96 ACHP

– 0.96

x, y, z – 0.07, 0.01, 0.03 ηCHP
ge

% 40

wci m/s 4 ηCHP
gh

% 35

wco m/s 22 pCHP
c

kW 800

pr kW 400 ηB
gh

% 85

pB
c

kW 800
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3.4.2.1 Result of Robustness Function

Robustness of hub energy system against possible increase of price of upstream
network is obtained through solving robustness function of IGDT in Eqs. (3.32,
3.33, and 3.34). Robustness of hub energy system versus total operation cost of hub
energy system is illustrated in Fig. 3.5.

As shown in this figure, total operation cost of hub energy system has been
increased 2.8%, while hub energy system has been robust to 24.6% possible increase
of price of upstream network power. In other words, operator of hub energy system
has decided to spend 2.8% more money to be resistant against maximum possible
increase of upstream network price which is 24.6%.

3.4.2.2 Result of Opportunity Function

By taking risk-taking strategy, hub energy system seeks to gain economic profit due
to possible reduction of upstream network price. Therefore, by solving Eqs. (3.36,
3.37, and 3.38), opportunity function of IGDT is obtained for hub energy system
which is illustrated in Fig. 3.6.

According to this figure, due to reduction of upstream network price up to 10.9%,
total operation cost of multi-carrier energy system is reduced 2.80%. In fact, the
maximum possible benefits that could be gained by the operator of hub system are
determined through this function.

Table 3.3 Date of electricity,
gas, and water networks [22]

Upstream network Gas and water network

# Unit Value # Unit Value

ANET
– 0.99 gnet

max kW 1800

pe
max kW 1000 gnet

min kW 0

pe
min kW 0 wamax kW 1000

pT
c

kW 800 wamin kW 0

Table 3.4 Technical data of
BSS and TSS [22]

Electrical storage Thermal storage

# Unit Value # Unit Value

α e
min – 0.05 αh

min
– 0.05

α e
max – 0.9 αh

max
– 0.9

α e
loss – 0.2 αh

loss
– 0.2

η e
ch % 90 ηh

ch
% 90

η e
dis % 90 ηh

dis
% 90

Cst,e
c kW 300 Cst,h

c
kW 200
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Fig. 3.5 Robustness function

Fig. 3.6 Opportunity function
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3.4.2.3 Uncertainty-Based Operation of Various Sections
in the Hub System

Imported power from upstream network is illustrated in risk-averse, risk-neutral, and
risk-taker strategies in Fig. 3.7.

According to this Fig. 3.7, since price of purchased power from upstream network
has been increased, by taking risk-averse strategy, less power has been bought from
upstream network. On the other hand, due to lower values of upstream network
price, more power has been bought from upstream network through taking risk-
seeking strategy.

Since operation of different sections in hub energy system is dependent on the
performance of other sections, therefore different sections can be influenced by
uncertainty of upstream network price. Hub energy system needs to import gas for
operation of some units like CHP system and boiler. Total purchased gas from gas
network in risk-averse, risk-neutral, and risk-taker strategies is shown in Fig. 3.8.

As shown in Fig. 3.8, since less electric power is imported from upstream
network through taking risk-averse strategy, hub system has focused more on the
CHP system for electrical power generation, and then total purchased gas from
network in this strategy has been increased. Also, since upstream network prices
are lower in risk-taking strategies, most of the electrical demand is supplied through
the purchased power from this network which means that share of CHP system in
supplying electrical demand in risk-taking strategy has been reduced which conse-
quently has led to less gas procurement in this strategy. In fact, the flexibility of hub

Fig. 3.7 Imported power from upstream network
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systems has allowed the operator to configure the energy conversions in a way that
the maximum suitable condition is reached. Gas consumption and electrical gener-
ation of CHP system is captured in Figs. 3.9 and 3.10.

It should be noted that since heat generation of CHP system is proportional with
the gas consumption and electrical generation of this system, total generated heat by
this system has been increased in risk-averse strategy. It fact, CHP system has used
its heat generation capacity to supply heating demand which means that the share of
boiler in supplying heating demand has been reduced which has led to less gas
consumption of this unit. Generated heat by CHP system and boiler and gas
consumption of boiler are illustrated in Figs. 3.11, 3.12, and 3.13, respectively.

3.5 Conclusions

Uncertainty of different parameters can result in positive and negative consequences
in the planning and scheduling of power systems making the uncertainty modeling
an essential issue. In this chapter, an uncertainty-based optimization model has been
developed based on IGDT to assess risk-involved operation of hub energy system
under uncertainty of upstream network price. Upstream network price showing
fluctuating performance may increase or decrease from its nominal value leading
to different operational conditions. In order to determine the policies and strategies to
be taken against uncertainty, immunity functions of IGDT, namely, robustness and

Fig. 3.8 Imported gas from gas network
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Fig. 3.9 Gas consumption of CHP system

Fig. 3.10 Electric power generation of CHP system
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Fig. 3.11 Heat generation of CHP system

Fig. 3.12 Heat generation of boiler
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opportunity functions, are employed. Using the robustness function, maximum
robustness degree of hub energy system against possible increase of upstream
network price is obtained which is 24.6%. In simple words, hub energy system
will proceed to experience optimal safe operation up to 24.6% more upstream
network price. On the other hand, results of opportunity function revealed that by
taking risk-taking strategies, hub energy system can gain 2.8% economic benefit
through possible reduction of upstream network price up to 10.90%. So, different
aspects of uncertainty can be taken into account through taking appropriate strategies
provided by robustness and opportunity functions of IGDT.

It is noteworthy that optimal scheduling of hub energy system subject to uncer-
tainties considering different types of demand response programs for both electrical
and thermal sections as well as natural gas modeling can be considered to be studied
in the future works.
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Chapter 4
Risk-Constrained Scheduling of a Solar Ice
Harvesting System Using Information Gap
Decision Theory

Farkhondeh Jabari, Behnam Mohammadi-ivatloo, Hadi Ghaebi,
and Mohammad-Bagher Bannae-Sharifian

Nomenclature
Variables

E _x e Exergy transferred from warm inside air to R134a

E _x D,evap Exergy destructed during evaporation process

E _x c Exergy transferred from R134a to ambient air

E _x D,cond Exergy destructed during condensation process

E _x D,cycle Exergy destructed during ice-forming cycle

E _x in�air Exergy level of inside air

E _x out�aircond Exergy value of supplied air

E _x out�airevap Exergy level of cooled air

_m i Mass flow rate of R134a at state i

Pcomp Power consumption of compressor

Pgrid Electricity provided by local power network

Pin � fan Power consumption of evaporator fan

Pout � fan Power consumption of condenser fan
_Q cond Condenser output heat

_Q evap Inlet heat to evaporator

Tout�aircond Temperature of supplied airbα Robust factorbβ Opportunity factor

U Fractional error of info-gap model
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Parameters

λt Energy price at hour t

Tout�airevap Temperature of cooled air

Tamb Ambient temperature

TC Condensation temperature

Te Evaporation temperature

Tin � air Temperature of inside air

_m in�air Mass flow rate of evaporator fan

_m out�air Mass flow rate of condenser fan

Ca Specific heat capacity of air

E _x amb Exergy level of ambient air (i.e., equal to zero)

hi Enthalpy value of R134a at state i

Fw Target cost of opportunity mode

Fk Critical cost of robust mode

4.1 Introduction

In severe hot summer days, air conditioning systems consume a huge amount of
electricity for space cooling, especially in afternoon hours. Therefore, annual
on-peak electrical demand usually occurs in the hottest day of the year and may
not only lead to load-generation imbalance, widespread outages, and catastrophic
blackouts but also increases total fossil fuel consumption in thermal power plants
and pollutant emissions of greenhouse gases. Therefore, use of renewable energy
resources-based ice-cold thermal energy storages in building space cooling is a cost-
effective strategy with zero CO2 footprints [1].

Recently, studies on renewable energy resources-based cooling systems have
attracted more attention. In [2], a solar-assisted absorption refrigeration system
integrated with a liquid desiccant dehumidification cycle is proposed for cogenera-
tion of cool and desalinated water. Energetic and economic studies demonstrated
that it is suitable for application in tropical regions faced with potable water shortage
because energy saving ratio and exergy efficiency are more than 25.64% and 2.97%
in comparison with conventional cooling and water generation systems. Authors of
[3] introduced a CO2-driven compression-adsorption hybrid cycle for co-production
of cool and desalinated water. It is proved that overall coefficient of performance
is improved more than 60% by producing 12.7 m3/day freshwater and recovering
waste heat from CO2 to drive cycle. Reference [4] combined a solar-driven gas
turbine cycle with organic Rankine cycle (ORC) for electricity generation (up to
255 kW), desalination (1.5 m3/day potable water), and air conditioning (with 8.8 kW
cooling capacity) applications. Authors of [5] designed a solar-natural gas-driven
cooling system and evaluated its performance from energy, exergy, and
environmental viewpoints under variable solar radiations. A solar air conditioning
system consisting of photovoltaic collectors and single-effect absorption chillers
is investigated to satisfy 100 kW cooling capacity with 450 m2 solar panels. Thermo-
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economic analysis of a solar vapor compression refrigeration cycle is presented
in [6]. Moreover, a pumped hydro storage is employed for saving energy by
pumping water from lower reservoir to upper one in low-price time intervals and
extracting it to generate power at high-tariff periods. In [7], a solar-geothermal air
conditioning unit is developed for heating, cooling, and supplying daily electricity
demand of a benchmark office building located in a tropical area. In this study, solar
energy is used for water heating, and geothermal heat is employed in radiant cooling
systems. Use of solar and geothermal heat reservoirs causes 44.4% annual electricity
saving. In [8], a seasonal ice making system integrated with a chilled water storage is
employed for storing cool as ice crystals and releases it by ice melting in summer
season. In [9], short-term coordination of electric drive vehicles-ice storage-solar
photovoltaic (PV) panels is optimized for supplying cooling demand of some
commercial buildings in a distribution feeder. Optimization of ice making and
melting decisions, load control, participation of plug-in electric vehicles in transpor-
tation, and energy procurement strategies lead to 13.4% peak load reduction and
11.6% feeder loss reduction. Authors of [10] combined ice and chilled water storage
units for sizing of refrigeration capacity aiming to minimize daily operation cost.
Steady-state payback period analysis is carried out to prove its economic benefit in
comparison with single water-cooled chilling plant. Carbonel et al. [11]
experimented an underground ice storage cavern on a pilot case with 75 m3 chilling
capacity by using heat pumps and flat-plate heat exchangers. Firstly, water is
preheated by solar collectors, then enters a heat exchanger and extracts its freezing
latent heat to another working fluid, changes into ice, and is stored in underground
cavern. Then, heat pump-based refrigeration cycle is employed for building space
cooling by absorbing heat from inside hot air and transferring it to ambient. In [12], a
residential scale ice-cold thermal energy storage system is designed based on
polyethylene water reservoir in a way that water-glycol mixture enters a mechanical
refrigeration cycle and is frozen at off-peak hours (charging or ice making mode). In
peak cooling demand periods, water-glycol mixture absorbs heat from inside air and
exchanges it with ice packs (discharging or ice melting mode). In [13], a mixed-
integer linear programming problem is solved for optimal participation of ice
storage, thermal energy storage, and electric and absorption chillers in cooling,
heating, and powering a residential tower located in Shanghai. Minimization of
natural gas and electricity costs and capital investment cost of prime mover is
considered as the main objective. Reference [14] proved that a biomass gasifier-
solid oxide fuel cell-double effect absorption chiller hybrid industrial cooling and
power system yields 49% improvement in exergy efficiency and 64% emission
reduction. Jabari et al. [15] designed an air to air heat pump (AAHP)-based energy
hub for cooling and power of large residential buildings located at Southern Iran.
Daily charge and discharge patterns of an advanced adiabatic compressed air energy
storage are optimally scheduled [16] in order to reduce total energy procured by local
power network. Moreover, real-time demand-side management strategy with capa-
bility of shifting a percent of peak cooling load to low-price periods and battery
energy storage for charging electricity in low-tariff hours and discharging it at peak
time intervals are implemented on AAHP-based cooling and power system [17]. In
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[18], artificial neural networks are used to learn and predict indoor temperature based
on roof cooling techniques under various outside temperatures, relative humidity,
solar intensity, and wind speed. Authors of [19] implemented artificial neural
networks, adaptive neuro-fuzzy inference system (ANFIS), and fuzzy inference
system (FIS) on indirect evaporative cooling system to minimize its electricity
usage under variable ambient air temperature. Authors of [20] integrated an ejector
refrigeration process with Kalina cycle to produce power and cooling capacity from
low-temperature geothermal heat reservoirs. A feed fluid heater is installed for
higher electricity generation using turbine exhaust flue gases. It is found that lower
values of feed fluid heater and turbine inlet pressures and higher temperature of
geothermal heat source result in more electricity production. Additionally, more
refrigeration capacity is achieved if evaporation temperature and turbine inlet pres-
sure increase and feed fluid heater pressure decreases.

As mentioned, there are some interesting works on design and performance
investigation of renewable energy resources-based air conditioners. But, uncertainty
of cooling demand is not considered in design and analysis of these systems. This
chapter aims to study robust and opportunistic strategies for risk-assessed optimal
operation of air source heat pump (ASHP)-based ice-cold thermal energy storage
(ICTES) system using information gap decision theory (IGDT). In IGDT approach
with robust and opportunistic operating modes, uncertainty of building cooling
demand is modeled for making both risk-averse and risk-seeker decisions in
energy procurement of ICTES. Two specific contributions of this chapter are stated
as follows:

• Thermodynamic analysis of ASHP-based ice-cold thermal energy storage is
comprehensively presented.

• Optimal scheduling of ICTES is conducted using IGDT to evaluate impact of
cooling load uncertainty on energy cost minimization approach. IGDT method is
employed for studying the uncertainty of the cooling demand and enables the
building owner to make a risk-averse or risk-seeker decision under uncertain
operating condition.

Other sections of this chapter are presented as follows: A thermodynamic analysis
of ICTES is presented in Sect. 4.2. Afterward, numerical results are discussed in
Sect. 4.3. Conclusion appears in Sect. 4.4.

4.2 Proposed Methodology

4.2.1 Ice Storage System

In this chapter, an air to air heat pump is employed for making ice during hot hours
of summer days. As shown in Fig. 4.1, this refrigeration cycle consists of three
control volumes I, II, and III. In control volume I, a heat transfer fluid such as R134a
enters evaporator, absorbs heat from air entering it, and turns into a saturated vapor at
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temperature, T1. Electrical power consumed by inside evaporator fan, which depends
on temperature difference between inlet warm and outlet cooled air and heat level of
inside warm air, can be calculated from Eq. (4.1).

Pin�fan ¼ Ca _m in�air Tout�airevap � Tin�air

� �þ _Q evap ð4:1Þ

where

Ca: Specific heat capacity of air at constant pressure
_m in�air: Mass flow rate of evaporator fan
Tout�airevap : Temperature of cooled air
_Q evap: Heat flow from inside air to R134a, which is calculated from Eq. (4.2).

_Q evap ¼ _m4 h1 � h4ð Þ ð4:2Þ

Fig. 4.1 A typical ASHP-based ice harvesting system
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in which hi and _m i refer to enthalpy and mass flow rate of R134a at state i,
respectively. The exergy destructed during the evaporation process, _Ex D,evap, and
the exergy conducted from warm air to R134a, _Ex e, can be given by balance
Eqs. (4.3, 4.4, 4.5, and 4.6).

_S gen,evap ¼ Ca _m in�air ln
Tout�airevap

Tin�air

� �
þ

_Q evap

Te
ð4:3Þ

Pin�fan þ _Ex e � _Ex D,evap ¼ _Ex out�airevap � _Ex in�air ð4:4Þ

_Ex e ¼ _Q evap
T0 � Te

Te

� �
ð4:5Þ

_Ex D,evap ¼ _S gen,evapT0 ð4:6Þ

where

_S gen,evap: Entropy produced during the evaporation process
Te and T0: Evaporation temperature and reference temperature, respectively
_Ex in�air and _Ex out�airevap : Exergy levels of input warm and output cooled air,
respectively

Assuming air as an ideal gas, Eqs. (4.7) and (4.8) are used to obtain _Ex out�airevap

and _Ex in�air, respectively.

_Ex out�airevap ¼ Ca _m in�air Tout�airevap � T0
� �� T0 ln

Tout�airevap

T0

� �� �
ð4:7Þ

_Ex in�air ¼ Ca _m in�air Tin�air � T0ð Þ � T0 ln
Tin�air

T0

� �� �
ð4:8Þ

In control volume II, a heat flow is exchanged between superheated vapor with
temperature of T2 and ambient air with temperature of Tamb. As formulated by
Eqs. (4.9, 4.10, 4.11, 4.12, 4.13, and 4.14), outputs of this stage are a saturated
liquid with temperature of T3 and heated ambient air at temperature Tout�aircond .

_Q cond ¼ _m 2 h2 � h3ð Þ ð4:9Þ

_S gen,cond ¼ Ca _m out�air ln
Tout�aircond

Tamb

� �
�

_Q cond

TC
ð4:10Þ

Pout�fan þ _Ex c � _Ex D,cond ¼ _Ex out�aircond � _Ex amb ¼ 0ð Þ ð4:11Þ

_Ex c ¼ _Q cond
TC � T0

TC

� �
ð4:12Þ

_Ex D,cond ¼ _S gen,condT0 ð4:13Þ
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_Ex out�aircond ¼ Ca _m out�air Tout�aircond � T0ð Þ � T0 ln
Tout�aircond

T0

� �� �
ð4:14Þ

Since

_m out�air: Mass flow rate of condenser fan
Tout�aircond : Temperature of supplied air
TC: Condensation temperature
_Ex D,cond: Exergy destructed during condensation process
_Ex c: Exergy transferred from R134a to ambient air
_Ex out�aircond : Exergy level of supplied air

In control volume III, the saturated vapor with temperature of T1 is pressurized
by compressor and turns into the superheated vapor with high temperature of T2.
Then, it enters the condenser coil to exchange heat with ambient air, turns into the
saturated liquid at temperature T3, and heats air to temperature of Tout�aircond . After
passing an expansion valve, its pressure and temperature drop. Three control
volumes I, II, and III are then repeated again. Hourly value of electricity consump-
tion of compressor, Pcomp, is computed from entropy, energy, and exergy balance
relations (4.15, 4.16, and 4.17).

_S gen,cycle ¼
_Q cond

T3
�

_Q evap

T1
ð4:15Þ

Pcomp ¼ _Ex c þ _Ex e þ _Ex D,cycle ð4:16Þ
_Ex D,cycle ¼ _S gen,cycleT0 ð4:17Þ

while

_S gen,cycle and _Ex D,cycle: Entropy produced and exergy destructed in ASHP’s cooling
cycle, respectively

In this research, total energy procurement cost for summer ice harvesting
application should be minimized as Eqs. (4.18) and (4.19):

Pt
grid ¼ Pt

comp þ Pt
in�fan þ Pt

out�fan ð4:18Þ

Objective ¼ Min
X24
t¼1

λt � Pt
grid ð4:19Þ
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4.2.2 Information Gap Decision Theory

As mentioned in Chap. 1, IGDT technique can be used for risk-averse and risk-
seeker decision-making processes under uncertain operating conditions. It is a risk-
assessed decision-making process, which makes some cost-effective and robust
decisions against uncertain parameter using two robustness and opportunistic
modes. The uncertain parameter of the optimization process can be adverse and
causes the higher costs or lower profits or favorable with lower costs and higher
profits. In this chapter, it addresses the robustness and opportunistic viewpoints of
the optimization problem considering the variable nature of the cooling demand
using the following requirements: objective function, performance investigation, and
uncertainty analysis.

4.2.2.1 Objective Function

It is assumed that _Q t
evap is an uncertain parameter for cost minimization stated by

Eq. (4.19). We consider that α refers to uncertainty variable and changes between
0 and 1 for decision variables Pt

in�fan,P
t
out�fan,P

t
comp,P

t
grid . Objective function,

F
�
Pt
grid;

_Q t
evap

�
, which indicates total electricity cost in a 24-h study horizon, should

be minimized. It evaluates all responses to choices of decision-maker,
Pt
in�fan,P

t
out�fan,P

t
comp,P

t
grid , and variable parameter, _Q t

evap.

4.2.2.2 Implementation Requirement

In this subsection, expectations of system operator from objective function are stated
in terms of total cost and assessed by robustness and opportunity modes as
Eqs. (4.20) and (4.21), respectively. According to relation (4.20), optimization
problem is solved in robustness mode with maximum value of uncertainty variable,
α, in a way that total cost cannot exceed from target cost, Fk. Therefore, uncertainty
variable, α, should be maximized as Eq. (4.22), in which Fk refers to a predefined

target cost in robustness mode. By considering bα Pt
grid;Fk

� 	
, system operator makes

a robust decision with less sensitivity to variations of uncertain parameter, _Q t
evap, so

that total cost is smaller than predefined target cost Fk.

α ¼ Max α so that max cost is smaller than given target cost ð4:20Þ
β ¼ Min β so that min cost is smaller than given target cost ð4:21Þ

bα Pt
grid;Fk

� 	
¼ Max α Max F

�
Pt
grid;

_Q t
evap

� � Fk

n o
ð4:22Þ
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A risk-taker decision-maker desires lower cost via implementation of opportunity
function. As formulated in Eq. (4.23), variable β refers to minimum level of α aiming
to pay lower cost as a result of decision variables, Pt

in�fan,P
t
out�fan,P

t
comp,P

t
grid. Note

that Fw represents maximum cost in opportunity mode that is defined by decision-
maker to pay less under favorable deviations of uncertain parameter, _Q t

evap, and is
generally smaller than Fw.

bβ Pt
grid;Fw

� 	
¼ Min α Min F

�
Pt
grid;

_Q t
evap

� � Fw

n o
ð4:23Þ

4.2.2.3 Uncertainty Formulation

For robust and opportunistic optimization processes, actual value of uncertain
parameter can be calculated from fractional error information gap model as

Eq. (4.24), where _Q t
evap and ~_Q t

evap refer to forecasted and actual cooling load,
respectively.

U
�
α; ~_Q t

evap

� ¼ _Q t
evap � ~_Q t

evap

~_Q t
evap � α

8<
:

9=
;; α � 0, 8t ð4:24Þ

4.2.2.4 Implementing Risk-Aversion and Robust Decision-Making
Strategy

The robustness variable, bα Pt
grid;Fk

� 	
, operates as a risk-aversion tool and indicates

the greatest amount of the uncertainty variable, α, while the maximum cost is lower

than the target value, Fk. Hence, a high value of bα Pt
grid;Fk

� 	
corresponds to the

higher cost, Fk, which indicates that this decision is robust. Hence, it is expected thatbα Pt
grid;Fk

� 	
increases with the increase of Fk in cost minimization problem. The

uncertain parameter can be stated as Eq. (4.25). Positive sign is used because the
increasing rate of _Q t

evap causes the increase in cost objective function. According to
Eq. (4.26), objective is maximization of α for a given maximum cost, Fk.

_Q t
evap ¼ ~_Q t

evap 1þ αð Þ; 8t ¼ 1, 2, . . . ,T ð4:25Þ

bα Pt
in�fan;P

t
out�fan;P

t
comp;P

t
grid;Fk

� 	
¼Max α Max F

�
Pt
grid;

_Q t
evap

�� Fk

n o
ð4:26Þ
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4.2.2.5 Implementing Risk-Seeker and Opportunistic Design-Making
Strategy

The opportunity function, bβ Pt
grid;Fw

� 	
, assesses the feasibility of the low costs.

Therefore, a small value of bβ Pt
grid;Fw

� 	
is desired. According to Eq. (4.27), the

opportunity variable is the least amount of α for minimization of total cost as low as

Fw. Therefore, it is expected thatbβ Pt
grid;Fw

� 	
increases with reduction of Fw for cost

minimization approach as Eqs. (4.27, 4.28, and 4.29). The decreasing rate of _Q t
evap

causes a decrease in cost objective function. Hence, the negative sign is considered
in Eq. (4.28).

bβ Pt
grid;Fw

� 	
¼ Min bα Pt

grid;Fw

� 	
ð4:27Þ

_Q t
evap ¼ ~_Q t

evap 1� αð Þ; 8t ¼ 1, 2, . . . ,T ð4:28Þ
bβ Pt

in�fan;P
t
out�fan;P

t
comp;P

t
grid;Fw

� 	
¼Min α Min F

�
Pt
grid;

_Q t
evap

�� Fw

n o
ð4:29Þ

4.3 Simulation Result and Discussions

In this study, a benchmark residential building which comprises of 10 floors and
20 flats [21] in a tropical region such as Ahwaz, Iran, with extremely hot summer
days and ambient temperature range of 26

�
C < Tamb < 43

�
C is studied. Moreover,

generalized algebraic mathematical modeling system (GAMS) [22] is used to solve
the optimization problem (4.1–4.29). To reveal the applicability of the IGDT-based
ice harvesting strategy in making the risk-aversion and risk-taker decisions, two
cases are studied as follows:

Case 1: Ice making system without IGDT
Case 2: Ice making cycle with risk-averse and risk-seeker decisions using IGDT

4.3.1 Ice Making System Without IGDT

Hourly changes of indoor and outside air temperatures, building cooling demand,
and electricity tariffs [21] are considered as shown in Figs. 4.2, 4.3, and 4.4,
respectively. Other technical characteristics of ice storage system [23] are given in
Table 4.1. In addition, air mass flow rate and its specific heat capacity are considered
0.01 [kg/s] and 1.15 [kJ/kgK], respectively. Daily electricity cost of ICTES equals to
16.8 $. Hourly electricity requirement of compressor, fans, and ICTES for making
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ice is shown in Fig. 4.5. As obvious from Figs. 4.3 and 4.5, ICTES consumes more
electricity when building cooling demand increases and vice versa. In other words,
with increasing rate of building space-cooling load, R134a absorbs more heating flux
from indoor air and delivers it to ambient resulting in larger power consumption of
ASHP. Mass flow rate of working fluid through evaporator, compressor, condenser,
and expansion valve has been shown in Fig. 4.6. According to this figure, when the
building cooling load, _Q evap, increases, the quantity of the mass flow rate of
refrigerant, _m 4, will increase, as expected from Eq. (4.2). Increasing rate of building
cooling load, _Q evap, causes an increase in electrical power consumption of inside fan,
as stated in Eq. (4.1) and shown in Figs. 4.3 and 4.5. Moreover, with increment of
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cooling demand, temperature of Tout�aircond will be increased because of higher
heating flow from inside air to R134a and then from superheated vapor to ambient
air. Therefore, _Ex out�aircond will increase due to increasing value of heated ambient air
temperature. This leads the electrical power requirement of condenser fan, Pout � fan,
to increase, as expected from Eqs. (4.9, 4.10, 4.11, 4.12, 4.13, and 4.14). As
formulated in Eqs. (4.5) and (4.12), _Ex e and _Ex c will increase after rising of cooling
demand, _Q evap, and transferred heat from superheated vapor to ambient air, _Q cond,
respectively. Hence, entropy produced, _S gen,cycle, and exergy destructed, _Ex D,cycle, in
ASHP’s cooling cycle will increase based on Eqs. (4.15) and (4.17), respectively.
With respect to mentioned analyses, electricity consumption of compressor, Pcomp,
will increase with increasing of _Ex e, _Ex c, and _Ex D,cycle, as indicated in Eq. (4.16).

4.3.2 Ice Making Cycle with Risk-Averse and Risk-Seeker
Decisions Using IGDT

In this section, IGDT strategy is implemented on short-term scheduling of ice-cold
thermal energy storage in order to model variations of building cooling demand in
summer season. As mentioned, its robustness mode will be beneficial for a harmful
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Table 4.1 Technical characteristics of ice making system

Points Temperature (
�
C) Enthalpy (kJ/kg) Pressure (kPa)

1 10 256.2 414.9

2 115 311.9 3818.1

3 98 216.2 3818.1

4 10 216.2 414.9
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Table 4.2 Robustness
function for different daily
electricity costs

k bα Pt
grid;Fk

� 	
Fk($)

1 0 16.9

2 0.09 18.5

3 0.319 22.6

4 0.565 27
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face of uncertainty or risk-aversion decision-making process, which addresses the
highest level of the cooling load uncertainty in a way that total energy cost will be

smaller than target cost, Fk. Variations of robustness function, bα Pt
grid;Fk

� 	
, in terms

of various daily electricity cost, Fk, is shown in Table 4.2. As expected, it is obvious

that the robustness factor, bα Pt
grid;Fk

� 	
, increases as the target cost, Fk, increases.

Therefore, if the building owner makes a risk-averse decision or desires the higher
robustness against the cooling load uncertainty, more energy cost should be paid and
vice versa; as he desires less robust cost, its decision will be less robust against the
uncertainty of the cooling demand. Simulation results related to IGDT’s opportunity
mode are cost-effective in day-ahead scheduling of ice-cold thermal energy storage
when the building owner desires to make a risk-seeker decision, which addresses the
lower cooling demand values and lower electricity purchasing costs. Table 4.3

indicates the opportunity function, bβ Pt
grid;Fw

� 	
, versus the target electricity pur-

chasing cost, Fw. As expected, it is obvious that the opportunity factor,bβ Pt
grid;Fw

� 	
,

increases as the target cost, Fw, increases while decreasing the energy production
cost. Therefore, if the building owner makes a risk-seeker decision or desires the
higher opportunity against the cooling load uncertainty, less energy cost should be

Table 4.3 Opportunity
function for various daily
energy costs

w
bβ Pt

grid ;Fw

� 	
Fw($)

1 0 16.9

2 0.357 10.5

3 0.464 8.6

4 0.610 6
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Fig. 4.7 Optimum schedules of ICTES for hours 4 and 11
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paid and vice versa. Hourly ice-making schedules of ICTES for two operating time
intervals t¼ 4 and t¼ 11 are illustrated in Fig. 4.7. The horizontal axis of this figure
shows the energy purchasing cost of the proposed ice harvesting system, while the
vertical one represents the value of the uncertain cooling load. The left side of each
curve, which is shown with dashed line, indicates that if the building owner reduces
its cooling load, the value of the electricity consumptions of compressor, inside
and outside fans will be reduced causing a decrease in the energy procurement cost.
The right side of this figure shows that if the cooling demand of the building
increases, three components of ICTES including compressor, evaporator, and
condenser fans will consume more electricity to satisfy this increased demand, and
hourly energy cost of ice storage unit will then increase. In other words, Fig. 4.7
presents both robustness (risk aversion) and opportunistic (risk taker) aspects of ice
making strategy.

Optimization problem is solved under GAMS software on a Lenovo with 4 GB
RAM and 2.10 GHz CPU. Simulation runtime in two case studies with and without
application of IGDT method in ice harvesting strategy is reported in Table 4.4.
Calculation times proved that IGDT-based risk assessment ice-cold thermal energy
storage methodology is a computationally friendly approach in finding its optimal
operating points under different climatic condition and variable cooling demand.

4.4 Concluding Remarks

In this chapter, an air source heat pump-based ice-cold thermal energy storage was
proposed and mathematically modeled for application in large-scale residential
buildings located at Southern Iran. In the ice making cycle, the heating flow was
absorbed by a working refrigerant such as R134a in the evaporation process and
chilled the indoor air to temperature of �8 centigrade. The cooled air, which was
extracted from the evaporator heat exchanger, was employed for converting water
into ice. Meanwhile, the saturated vapor changed into the superheated vapor by
compressor. Afterward, the superheated vapor exchanged heat with the ambient air
and became the saturated liquid. After passing the saturated liquid through the
expansion stage, the primary liquid refrigerant will be produced for repeating
cycle. To show the robustness and applicability of the proposed system, a severe
hot summer day was considered and a benchmark residential tower with 10 floors
and 20 flats was used for simulations. A wide range of ambient and inside air

Table 4.4 Calculation times with and without implementation of IGDT

Case study Time (seconds)

Without IGDT �1

Robustness mode of IGDT approach with 4 iterations 1.734

Opportunistic aspect of IGDT with 4 iterations 1.651
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temperature from 22
�
C to 40

�
C were supposed for the worst-case analysis. It is

obvious that when building cooling requirement increases, mass flow rate of refrig-
erant, compressor power, and electrical power consumptions of fans will increase
and vice versa. Moreover, information gap decision theory was used to model the
uncertainties associated with the building cooling demand. As discussed, IGDT
approach enables the building owner to make the risk-averse and risk-seeker deci-
sions for overestimated and underestimated cooling demand, respectively.
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Chapter 5
Robust Unit Commitment Using
Information Gap Decision Theory

Farkhondeh Jabari, Sayyad Nojavan, Behnam Mohammadi-ivatloo,
Hadi Ghaebi, and Mohammad-Bagher Bannae-Sharifian

Nomenclature
Sets

t Operating time interval

i Thermal generation unit

k Regions in linearized fuel cost model

Variables

λt Electricity selling price

Pi,t Output power of thermal unit i at time t

FCi,t Fuel cost of thermal unit i at time t

STCi,t Start-up cost of thermal unit i at time t

SDCi,t Shutdown cost of thermal unit i at time t

ui,t Binary variable that shows on-off status of unit i at time t

Pmax
i , Pmin

i
Maximum and minimum outputs of unit i

Pi, t , �Pi, t Minimum and maximum time-dependent operating limits of unit i

UTi Minimum uptime of thermal unit i

DTi Minimum downtime of unit i

yi,t, zi,t Start-up and shutdown statuses of thermal unit i at time t

ai,bi,ci Fuel cost coefficients of thermal unit i

C k
i, ini

Initial power output of unit i in region k
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Ck
i, fin

Final power output of unit i in region k

ΔPk
i

Generation interval of unit i in linearized region k

n Number of linearized regions

s ki Slope of cost-generation curve for unit i in region k

SUi, SDi Limits of start-up and shutdown ramp rates for unit ibα Robust factorbβ Opportunity factor

U Fractional error of information gap model

Fw Target profit of opportunity mode

Fk Critical profit of robust mode

5.1 Introduction

In recent years, uncertainty of electricity demand and variable nature of renewable
energy resources influence on stability and reliability of large-scale power systems.
Moreover, air-conditioning systems consume more electricity in different residen-
tial, commercial, industrial, and administrative sectors. Hence, on-peak electricity
load occurs in summer season and leads to uncertainties of energy market prices and
may change optimal generation schedules of thermal power plants. Therefore,
modeling of energy price uncertainty is important in economic dispatching of
thermal units [1].

Recently, some scholars have focused on robust scheduling of thermal generation
units. A robust security-constrained unit commitment (UC) problem is solved in [2]
to evaluate impacts of wind production uncertainty in economic operation of con-
ventional generation units. Up and down ramp rates of thermal power plants,
demand response programs, energy storage units, and transmission lines switching
are used for load-generation balancing in wind product shortage condition. In [3], a
robust UC problem is modeled for minimization of generalized social cost in high
forecast error of electrical demand and various probability distribution functions. In
this study, output power of renewable energy resource-based power plants could also
be considered as uncertain parameter in a way that two-stage robust UC problem
should be solved using Benders’ decomposition method. Three-sigma method-based
stochastic UC problem is proposed in [4] to model uncertain wind products in
congested transmission grids. Not-supplied electrical load of each bus and transmis-
sion line active and reactive power flows are correlated as random variables. In 3σ
stochastic UC problem, some scenarios are selected within predefined circular
confidence regions to guarantee a certain value of transmission line security against
wind shortage. In [5], day-ahead scheduling of hydro-generation units located in a
river valley is carried out. Each hydropower plant composes several turbines, and its
generation efficiency nonlinearly changes with water flow [6]. In this research, half-
hourly generation schedules of hydroturbines are optimally determined under uncer-
tainties of electrical demand. In [7], a bi-level UC problem consisting of inner
bilinear program and outer mixed-integer problem is presented for wind availability
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analysis. In [8], optimization of hydroelectric-solar photovoltaic hybrid UC problem
is developed based on cuckoo search algorithm aiming to minimize value of
not-supplied demand, which resulted from insufficient solar radiations and power
at cloudy sky and night. In [9], joint energy and reserve market is cleared by solving
a robust unit commitment problem using information gap decision theory (IGDT). In
this research, IGDT is applied on flexible loads to model their uncertain responses
in offering consumption reduction capacities against hourly prices for participation
in reserve markets. Soroudi et al. [10] implemented IGDT on wind-thermal UC
problem in two case studies without and with application of demand-side manage-
ment strategies. Authors of [11] considered dynamic line rating index in stochastic
UC problem to reduce transmission overloading probability. In [12], economic and
environmental benefits of demand response programs and pumped hydro-storage
units, which are optimally scheduled for balancing wind power uncertainties, are
proved in probabilistic UC problem. Variations of output power of renewable energy
resources in economic and environmental dispatch of thermal unit plug-in electric
vehicles, demand response programs, and compressed air energy storages are ana-
lyzed in [13]. Lexicographic optimization method is integrated with augmented-
weighted ε-constraint algorithm to find Pareto frontiers. Availability of natural gas as
uncertain parameter is considered in [14] for optimization of security-constrained
UC problem using fuzzy logic. Genetic algorithm is also used for load-flow analysis
in natural gas transmission system. Quantum-inspired binary gravitational search
algorithm is used in [15] for probabilistic dispatch of wind-thermal units considering
a chance-constrained programming model and budget of wind production uncer-
tainty. Authors of [16] use conditional value-at-risk (CVaR) tool to model fluctua-
tions of wind and solar generations in stochastic UC problem without and with
application of demand response and energy storage. In [17], Benders’ decomposition
technique-based UC problem is solved to maximize social welfare under worst-case
wind power scenario and demand-side management strategy. In robust model, a
linearized price elastic load curve is used for modeling all possible responses of
consumers to price elasticity. Nwulu and Xia [18] integrated a game theory-based
demand response programming strategy with dynamic economic environmental
dispatch problem to obtain optimal hourly incentives for participants in load curtail-
ment programs. In [19], day-ahead stochastic self-scheduling of hydrothermal units
is implemented to maximize daily profit in a joint energy and reserve market using a
mixed-integer linear programming model. Roulette wheel mechanism combined
with lattice Monte Carlo simulation is applied on energy and spinning reserve prices
and forced outage rate of thermal units over a 24-h time horizon. A two-stage robust
hydrothermal scheduling problem based on Benders’ decomposition technique and a
vector autoregressive procedure is solved by Dashti et al. [20] to consider fluctua-
tions of water flow in electricity generation and market-clearing processes.

As reviewed, different methods have been proposed by researchers to model
uncertainties associated with demand, renewables, and energy market price. But,
IGDT has not been applied on electricity market price to model its fluctuations in UC
problem. Therefore, this chapter solves a price-based UC problem without and with
application of IGDT to prove its robustness and opportunistic capabilities in profit
maximization.
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Other sections of this chapter are structured as follows: In Sect. 5.2, a mathemat-
ical formulation is presented for IGDT-based UC problem. Illustrative example and
discussions are presented in Sect. 5.3. Sect. 5.4 concludes this chapter.

5.2 Proposed Methodology

In this research, UC problem is solved to maximize daily profit of generation
companies considering different technical constraints of thermal units such as
ramp-up and ramp-down rates, minimum up- and downtimes, generation limits,
and fuel cost. Moreover, hourly generation schedules of thermal power plants are
optimized under uncertain electricity market prices. In addition, IGDT technique is
used for finding robust and opportunistic generation schedules in a way that daily
profit in case of “with application of IGDT” is higher than that of “without imple-
mentation of IGDT approach.” In Sect. 5.2.1, profit-based UC problem is formu-
lated. Then, IGDT models underestimated and overestimated market rates in Sect.
5.2.2 for making risk-averse and risk-seeker decisions via robust and opportunistic
modes, respectively.

5.2.1 Unit Commitment Problem

In UC problem, total profit obtained from selling electricity is selected as objective
function. According to Eq. (5.1), daily profit is defined as total revenue achieved
from exchanging energy with customers minus total fuel cost of thermal power
plants. Fuel cost calculations are presented in Eqs. (5.2), (5.3), (5.4), (5.5), (5.6),
(5.7), (5.8), (5.9), and (5.10). Minimum and maximum power generation capacities
are stated in inequality constraint (5.11). As obvious from Eqs. (5.12) and (5.13), for
shutting down of unit i at hour t + 1, �Pi, t � SDizi, tþ1. Since Pi,t � 1¼ 0, so Pi,t � SDi.
If unit i is on at time t-1 (ui,t � 1 ¼ 1) and is going to be on at time t + 1, Pi,t cannot be
increased more than RUi. In other words, �Pi, t � Pi, t�1 þ RUiui, t�1. If unit i is off at
time t-1 (ui,t � 1¼ 0) and is turned on at time t (yi,t¼ 1), Pi,t cannot be more than SUi,
and we have �Pi, t � SUiyi, t. As stated by Eqs. (5.14) and (5.15), if unit i is on at time t,
its output power will be more thanPmin

i ui, t. If it is on at hours t-1 and t, output power
of thermal unit i will be more than Pi,t � 1 � RDiui,t. If thermal power plant i is on at
hour t-1 and off at time t, its output at time t-1 will be less than SDizi,t. As stated by
Eqs. (5.16) and (5.17), shutdown and start-up statuses of thermal power plant i at
period t are described by binary variables yi,t and zi,t, respectively. Minimum uptime
(UTi) of thermal power plant i can be calculated from relations (5.18), (5.19), (5.20),
and (5.21). Similarly, minimum downtime (DTi) of unit i is formulated by
Eqs. (5.22), (5.23), (5.24), and (5.25). In this study, start-up (STCi,t) and shutdown
(SDCi,t) costs are considered to be equal to sti � yi,t and sdi � zi,t, respectively.
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Profit ¼ Revenue-Cost

¼ Max
Pk
i, t, ui, t

yi, t, zi, t

X
i, t

λtPi, t|ffl{zffl}
Revenue

� FCi, t þ STCi, t þ SDCi, tð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Cost

0B@
1CA ð5:1Þ

Subjecting to:

0 � Pk
i, t � ΔPk

i ui, t, 8k ¼ 1 : n ð5:2Þ

ΔPk
i ¼ Pmax

i � Pmin
i

n
ð5:3Þ

Pk
i, ini ¼ k � 1ð ÞΔPk

i þ Pmin
i ð5:4Þ

Pk
i, fin ¼ ΔPk

i þ Pk
i, ini ð5:5Þ

Pi, t ¼ Pmin
i ui, t þ

X
k

Pk
i, t ð5:6Þ

Ck
i, ini ¼ ai P

k
i, ini

� �2 þ biP
k
i, ini þ ci ð5:7Þ

Ck
i, fin ¼ ai Pk

i, fin

� �2
þ biP

k
i, fin þ ci ð5:8Þ

ski ¼ Ck
i, fin � Ck

i, ini

ΔPk
i

ð5:9Þ

FCi, t ¼ ai P
min
i

� �2 þ biP
min
i þ ciui, t þ

X
k

s ki P
k
i, t ð5:10Þ

Pi, t � Pi, t � �Pi, t ð5:11Þ
�Pi, t � Pmax

i ui, t � zi, tþ1½ � þ SDizi, tþ1 ð5:12Þ
�Pi, t � Pi, t�1 þ RUiui, t�1 þ SUiyi, t ð5:13Þ

Pi, t � Pmin
i ui, t ð5:14Þ

Pi, t � Pi, t�1 � RDiui, t � SDizi, t ð5:15Þ
yi, t � zi, t ¼ ui, t � ui, t�1 ð5:16Þ

yi, t þ zi, t � 1 ð5:17Þ
Xζi
t¼1

1� ui, t ¼ 0 ð5:18Þ
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XkþUTi�1

t¼k

ui, t � UTiyi,k 8k ¼ ζi þ 1, . . . ,T � UTi þ 1 ð5:19Þ

XT
t¼k

ui, t � yi, t � 0 8k ¼ T � UTi þ 2, . . . ,T ð5:20Þ

ζi ¼ min T ; UTi � U0
i

� �
ui, t¼0

� � ð5:21Þ
Xξi
t¼1

ui, t ¼ 0 ð5:22Þ

XkþDTi�1

t¼k

1� ui, t � DTizi,k 8k ¼ ξi þ 1, . . . ,T � DTi þ 1 ð5:23Þ

XT
t¼k

1� ui, t � zi, t � 0 8k ¼ T � DTi þ 2, . . . ,T ð5:24Þ

ξi ¼ min T; DTi � S0i
� �

1� ui, t¼0½ �� � ð5:25Þ

5.2.2 Information Gap Decision Theory

As mentioned in the previous subsection, information gap decision theory is a risk-
assessed decision-making process, which makes some cost-effective and robust
decisions against uncertain parameter using two robustness and opportunistic
modes. The uncertain parameter of the optimization process can be adverse and
causes the higher costs or lower profits or favorable with lower costs and higher
profits. In other words, it addresses the robustness and the opportunistic viewpoints
of the optimization problem considering the variable nature of the uncertain param-
eter using the following requirements: objective function, performance investiga-
tion, and uncertainty analysis [21].

5.2.2.1 Objective Function

It is assumed that λt is an uncertain parameter for profit maximization in UC
problem at operating time interval t. We consider that α refers to uncertainty
variable and changes between 0 and 1 for decision variables Pi,t,ui,t. Objective
function, F(Pi,t, ui,t, λt), which indicates total profit in a T-hour study horizon, should
be maximized. It evaluates all responses to choices of decision-maker, Pi,t,ui,t, and
variable parameter, λt.
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5.2.2.2 Implementation Requirement

In this subsection, expectations of system operator from objective function are
stated in terms of total profit and assessed by robustness and opportunity modes as
Eqs. (5.26) and (5.27), respectively. According to relation (5.26), optimization
problem is solved in robustness mode with maximum value of uncertainty variable,
α, in a way that total profit cannot be lower than critical profit, Fk. Therefore,
uncertainty variable, α, should be maximized as Eq. (5.28), in which Fk refers to
minimum expected profit in robustness mode. By considering bα Pi, t; ui, t;Fkð Þ,
system operator makes a robust decision with less sensitivity to variations of
uncertain parameter, λt, so that expected profit is more than critical profit Fk.

α¼Max
α

Minimum profit is higher than given critical profitf g Robustnessf g ð5:26Þ

β¼Min
β

Maximum profit is higher than given target profitf g Opportunityf g ð5:27Þ

bα Pi, t; ui, t;Fkð Þ ¼ max
α

α : max
Pi, t, ui, t

F Pi, t; ui, t; λtð Þ � Fk

	 

ð5:28Þ

A risk-taker decision-maker desires higher profit via implementation of
opportunity function. As formulated in Eq. (5.29), variable β refers to minimum
level of α aiming to pay lower cost and obtain higher profit as a result of decision
variables, Pi,t,ui,t. Note that Fw represents minimum profit in opportunity mode that
is defined by decision-maker to pay less and obtain more profit under favorable
deviations of uncertain parameter, λt, and is generally smaller than Fk.

bβ Pi, t; ui, t;Fwð Þ ¼ min
α

α : min
Pi, t, ui, t

F Pi, t; ui, t; λtð Þ � Fw

	 

ð5:29Þ

5.2.2.3 Uncertainty Formulation

For robust and opportunistic optimization processes, actual value of uncertain
parameter can be calculated from fractional error information gap models as
Eq. (5.30) [22]:

U
�
α;~λt

� ¼ λt :
λt � ~λ teλt
���� ���� � α

	 

; α � 0, 8t ð5:30Þ
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5.2.2.4 Implementing Risk-Aversion and Robust Decision-Making
Strategy

In robustness mode, bα Pi, t; ui, t;Fkð Þ operates as a risk-aversion tool and indicates a
great amount of uncertainty variable, α, while minimum value of profit is higher than
target value, Fk. Hence, a high value of bα Pi, t; ui, t;Fkð Þ corresponds to lower profit,
Fk, indicating that this decision is robust. Hence, it is expected that bα Pi, t; ui, t;Fkð Þ
decreases with increase of Fk for maximization of expected profit. Therefore,
uncertain parameter can be stated as Eq. (5.31). Negative sign is considered because
decreasing rate of λt leads to a decrease in profit objective function. According to
Eq. (5.32), objectives are maximization of α for a minimum expected profit, Fk.

λt ¼ ~λ t � α~λ t, 8t ¼ 1, 2, . . . ,T ð5:31Þ

bα�~Pi,t;Fk

�¼Max
α

α :
XT
t¼1

~λ t 1�αð Þ~Pi,t�FCi,t�STCi,t�SDCi,t
� ��Fk

( )
ð5:32Þ

5.2.2.5 Implementing Risk-Seeker and Opportunistic Design-Making
Strategy

In opportunity mode, a small value of bβ Pi, t; ui, t;Fwð Þ is desired. According to
Eq. (5.33), opportunity variable is minimum amount of α for maximization of
expected profit as high as target profit, Fw. Therefore, it is expected thatbβ Pi, t; ui, t;Fwð Þ increases with increase of Fw for profit maximization problem as
Eqs. (5.34) and (5.35). Increasing rate of λt leads to an increase in profit objective
function. Hence, positive sign is used in Eq. (5.34).

bβ Pi, t; ui, t;Fwð Þ ¼ Min
Pi, t, ui, t

bα Pi, t; ui, t;Fwð Þ ð5:33Þ

λt ¼ eλt þ αeλt,8t ¼ 1, 2, . . . ,T ð5:34Þ

bβ�~Pi,t;Fw

�¼Min
α

α :
XT
t¼1

~λ t 1þαð Þ~Pi,t�FCi,t�STCi,t�SDCi,t
� ��Fw

( )
ð5:35Þ

5.3 Case Study and Discussions

In this section, a benchmark power system with ten thermal power plants [23] is
studied in two cases, “Case 1: Price based UC problem without application of IGDT
method” and “Case 2: Price based UC problem with implementation of IGDT
strategy.” All technical specifications of generation units are reported in Table 5.1.
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Moreover, hourly electricity market prices over an 8-h study horizon are shown in
Table 5.2. Firstly, robustness mode of IGDT is applied on price-based UC problem
as formulated in Eqs. (5.1–5.25), (5.31), and (5.32). Maximum values of robustness
factor versus different critical profits are shown in Fig. 5.1. As obvious from this
figure, bα�~Pi, t;Fk

�
decreases with increasing of critical profit, Fk. In robust approach,

some target profits are considered to find maximum amounts of robustness factor α
so that total profit for 8-h operating period is larger than given critical profit, Fk, as
expected from Eq. (5.32). In other words, when hourly energy prices decrease with
rate of 1 � α, total profit cannot be smaller than a given target value, and it will be
guaranteed against underestimated electricity rates, ~λ t 1� αð Þ. In addition, IGDT’s
capability in maximization of profit with underestimated energy prices is revealed
by using optimal values of robustness factor α and calculating total profit
after solving UC problem with forecasted energy prices, ~λ t. In other words, UC
problem is optimized with forecasted values of electricity prices,~λ t. Then,~λ t 1� αð Þ
8t ¼ 1, 2, . . . , T is considered as energy prices and used for calculating profit based
on generation schedules, Pi,t, which are obtained from UC problem before imple-
mentation of IGDT. Table 5.3 summarizes total profit obtained from solving UC
problem with and without application of robust IGDT for various underestimated

Table 5.2 Hourly energy
market prices [23]

t Price ($/MWh) t Price ($/MWh)

1 26.04 5 32.79

2 26.71 6 36.46

3 30.37 7 25.12

4 34.21 8 24.46
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Fig. 5.1 Variations of robustness factor, bα�~Pi, t;Fk

�
, versus critical profit, Fk
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hourly energy prices. As shown in Fig. 5.2, IGDT-based UC problem, which is
shown in blue, has higher profit than that of UC without IGDT strategy, especially
when energy prices reduce significantly. This means that optimization process with
application of IGDT will be robust for underestimated electricity prices.

Similarly, opportunistic strategy is implemented on price-based UC problem as
formulated in Eqs. (5.1–5.25), (5.34), and (5.35). Minimum values of opportunity
factor versus different target profits are depicted in Fig. 5.3. As obvious from this
figure, bβ�~Pi, t;Fw

�
increases with increasing critical profit, Fw. In opportunity mode,

some target profits are considered to find minimum amounts of opportunity factor β
so that total profit for 8-h operating period is larger than given target profit, Fw, as
expected from Eq. (5.35). In other words, when hourly energy prices increase with

Table 5.3 Profit objective
function in two cases without
and with implementation of
robust IGDT

Robustness
factor, α

Critical profit, Fk,
with application of
IGDT

Expected profit without
implementation of
IGDT

0 147,540 147,540

0.053 126,540 126,399

0.071 119,540 119,220

0.089 112,540 112,040

0.107 105,540 104,860

0.126 98,540 97,282

0.145 91,540 89,703

0.164 84,540 82,125

0.183 77,540 74,546

x 105
1.5

1.4

1.3

with IGDT
without IGDT

1.2

1.1

P
ro

fit
 (

$)

1

0.9

0.8

0.7
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Fig. 5.2 Comparison between two cases “without IGDT” and “with IGDT” from viewpoint of
profit for different robustness factor, bα�~Pi, t;Fk

�
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rate of 1+α, total profit cannot be smaller than a given target value, and it will be
maximized for overestimated electricity rates, ~λ t 1þ αð Þ, as high as possible. In
addition, IGDT’s capability in maximization of profit with overestimated energy
prices is revealed by using optimal values of opportunity factor β and calculating
total profit after solving UC problem with forecasted energy prices, ~λ t. In other
words, UC problem is optimized with forecasted values of electricity prices, ~λ t.
Then, ~λ t 1þ αð Þ8t ¼ 1, 2, . . . ,T is considered as energy prices and used for
calculating profit based on generation schedules, Pi,t, which are obtained from UC
problem before implementation of IGDT. Table 5.4 summarizes total profit obtained
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ct
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0.08

0.06

0.04

0.02

0
1.4 1.5 1.6 1.7 1.8

Target profit, Fw ($)
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Fig. 5.3 Variations of opportunity factor, bβ�~Pi, t;Fw

�
, versus target profit, Fw

Table 5.4 Profit objective function in two cases without and with implementation of opportunistic
IGDT strategy

Opportunity factor,bβ�~Pi, t;Fw

� Target profit, Fw, with
application of IGDT

Expected profit without
implementation of IGDT

0 147,540 147,540

0.017 154,540 154,320

0.035 161,540 161,500

0.052 168,540 168,281

0.069 175,540 175,062

0.087 182,540 182,241

0.104 189,540 189,022

0.121 196,540 195,803

0.138 203,540 202,584

0.155 210,540 209,364

0.172 217,540 216,145
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from solving UC problem with and without application of opportunistic IGDT
strategy in various overestimated hourly energy prices. As shown in Fig. 5.4,
IGDT-based UC problem, which is shown in blue, has higher profit than that of
UC problem without IGDT strategy, especially when energy prices increase signif-
icantly. This means that optimization process with application of IGDT is a cost-
effective opportunistic strategy for overestimated electricity prices.

5.4 Conclusion and Future Trend

In this chapter, information gap decision theory was implemented on profit maxi-
mized unit commitment problem to model uncertain behavior of electricity market
prices. Two cases were studied without and with implementation of IGDT. Robust-
ness and opportunity modes of IGDT modeled underestimated and overestimated
electricity rates, respectively. It is found that robust UC problem finds good operat-
ing points for thermal generation units in a way that total profit will not only be larger
than a predefined critical profit but also is more than profit of UC problem, which is
solved with same market prices and without application of IGDT strategy. More-
over, opportunity strategy enables market operator to make risk-seeker decisions and
maximizes profit for overestimated electricity rates so that it will not only be more
than a target profit but also is larger than profit of UC problem, which is solved with
same prices and without implementation of IGDT. As a future trend, game theory-
integrated IGDT method will be applied on UC problem without and with applica-
tion of demand response programs to model uncertainties associated with renewable
energy resources such as solar and wind farms, market prices, and demands.
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Chapter 6
Optimal Robust Scheduling of Renewable
Energy-Based Smart Homes Using
Information-Gap Decision Theory (IGDT)

Morteza Nazari-Heris, Parinaz Aliasghari, Behnam Mohammadi-ivatloo,
and Mehdi Abapour

6.1 Introduction

The development of smart grids in electricity networks is introduced as a novel
idea for managing load demand to overcome demand increment and full load
conditions, which is defined as demand side management (DSM) technology.
Home energy management system (HEMS) has been presented as an inseparable
part of the smart grid for application of DSM technology [1, 2]. HEMS can be
introduced as one of significant techniques enabling consumers to adjust their
electrical energy consumption. In fact, it is not expected from consumers to
schedule their demand optimally because they are not neither an economist nor a
power network operator. Accordingly, HEMS plays an important role in managing
load demand of consumers from on-peak hours to off-peak hours. As a result, such
technology is effective in decreasing the electricity bills of the home consumers by
obtaining optimal scheduling of home appliances [3].

Recently, optimal energy management of smart homes has been studied in
different frameworks, and it has absorbed remarkable attention. Optimal schedul-
ing of apartment smart building in the presence of controllable loads considering
DC buildings has been investigated in [4]. The authors have proposed an optimi-
zation model for a building in [5] to minimize the cost of natural gas and electricity
consumed during a determined scheduling time interval meeting operational and
electrical constraint of the building. In [6], an expert energy management system
(EEMS) has been introduced for providing optimal schedule of a microgrid, where
the wind power production has been estimated using artificial neural network
(ANN) method. A load management system is presented in [7] for handling
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multi-objective scheduling of the system to attain minimum operation cost and
emission of pollutant gases, which has been studied considering the system with
and without renewable sources. The authors have applied a predictive controller
for buildings in [8] considering hierarchical building control method. Risk-
constrained scheduling of apartment smart building in the presence of market
price uncertainty has been studied in [9]. Robust scheduling of apartment smart
building based on the information-gap decision theory (IGDT) has been provided
in [10]. In this study, the uncertainty of electricity price has been modeled by
utilizing IGDT method. In [11], the scheduling of home appliances has been
studied using agent-based approaches, which has limitations of appliance coordi-
nation. Point estimate method (PEM) has been implemented in [12] for dealing
with the uncertainties associated with wind power output and PV system, which is
optimized using particle swarm optimization (PSO) method. Risk-based schedul-
ing of apartment smart building using information-gap decision theory considering
solar thermal storage system has been presented in [13].

The uncertainties associated with electrical energy systems parameters are
handled using different methods including IGDT method [14], probabilistic methods
[15], possibilistic procedure [16], and robust optimization method [17, 18]. IGDT
method has been vastly implemented in research works to study the uncertainties of
energy systems parameters. Such uncertainty handling technique takes the advan-
tage of employment in extreme uncertain conditions. On the other hand, this method
has a high level of complexity. Uncertainty-based optimum performance of hybrid
energy system has been studied in the presence of load uncertainty through IGDT
approach with and without demand response services in [19, 20]. In addition, IGDT
has been successfully employed to study the transmission expansion planning
problem [21], operation of distribution networks [22], and planning of wind
producer [23].

This chapter aims to study optimal robust scheduling of renewable energy-based
smart homes considering uncertainty associated with PV system power output.
Accordingly, IGDT method is implemented to handle the uncertain PV power
output. The studied smart home contains PV system and energy storage system
(EES) technology to cover the availability limitation of PV during the scheduling
time horizon. Since, the application of PEV has significantly been increased in
response to the concern of air pollution, the studied smart home is equipped with
PEV. Moreover, the controllable appliances of the studied smart home include
washing machine, water heater, fridge, and PEV. The proposed model has been
tested, and the simulation results are reported and analyzed to evaluate the perfor-
mance of the model, which verifies the practicality of the model.

This chapter is organized as follows: Sect. 6.2 proposes the problem formulation.
The introduced robust scheduling scheme of smart home and the studied case are
provided in Sect. 6.3. Section 6.4 provides the simulation results, and the conclusion
is presented in Sect. 6.5.
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6.2 Problem Formulation

The studied smart home includes smart plugs and local controller for monitoring
and controlling the energy consumption of electrical appliances. The main objective
is minimizing the bill through daily time scheduling, which includes purchased
power from the grid while satisfying the household load and PEV mobility require-
ments. The objective function is obtaining the minimum electricity bill of the
consumer-satisfying household load and PEV mobility constraints, which can be
stated as follows:

Cost ¼
XT
t¼1

λt:PD tð Þ
t2 1 . . . T½ �, ν2 1 . . .V½ �,8n2a,8p2a, 8h2a

ð6:1Þ

where the electrical energy exchanged between the home and power market is
defined by PD(t). The indexes n, p, h, and ν are used to define non-shiftable,
power-shiftable, and time-shiftable home appliance as well as the number of
PEVs, respectively. The power-shiftable ones permit both time and power optimi-
zation parameters. Moreover, the time-shiftable ones decrease the general potential
for optimizing consumption of electrical energy as they have fixed power usage
scheme, so only the initial start time is an optimization parameter. Equation (6.2)
defines the formulation of non-shiftable appliances and fixed hourly power con-
sumption in working time interval. In addition, the consumption of power-shiftable
appliances p with standby power αp,t and maximum power βp,t in a possibly
preferred working period are stated in (6.4) [24].

xn, t ¼ δn ð6:2Þ
αp, t � xp, t � βp, t ð6:3Þ
X
p2a

xp, t ¼ lp ð6:4Þ

The power consumption rh ¼ [rh,1, rh,2, . . ., rh,24]
T and operation of a time-

shiftable appliance can be shifted during the scheduling time interval. It should be
noted that the total power consumption with and without considering DSM is the
same. Accordingly, the scheduling solution xh,t should be equal to that of the cyclic
shifts of the pattern rh,t. Equation (6.5) defines all possible states of shiftable patterns.
A controlling binary integer variable sh ¼ [sh,1, sh,2, . . ., sh,24]

T is used for time-
shiftable appliance h, which is used in optimization process of the home appliances,
as stated in (6.6). Total power demand of non-shiftable, power-shiftable, and time-
shiftable appliances are calculated in (6.7). The power balance of the smart home
including power transfer between home and the main grid, PV power, charge/
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discharge power of the EES unit, and the power exchanged between the PEV and
home are stated in (6.8). The DSM constraints of the smart home are as follows [24]:

Rh ¼
rh, 1 rh, 24 . . . rh, 3 rh, 2
rh, 1 rh, 1 rh, 4 rh, 3
⋮ ⋱ ⋮
rh, 1 rh, 2 rh, 2 rh, 1

2
664

3
775 ð6:5Þ

xh ¼ Rh:sh &1T :sh ¼ 1 ð6:6Þ
Dt ¼

X
n2a

xn, t þ
X
p2a

xp, t þ
X
h2a

xh, t ð6:7Þ

Pbuy, t þ PPV , t þ Pdech
EV , t þ Pdech

ESS, t ¼ Dt þ Pch
EV , t þ Pch

ESS, t ð6:8Þ

where the power charge and discharge of the EES unit are defined by Pch
ESS, t and

Pdech
ESS, t, respectively. The respective indicators for the charge and discharge of the

PEV are Pch
EV , t and P

dech
EV , t. The power purchased from the grid and the load demand at

time t are defined by Pbuy,t and Dt, respectively. The equality and inequality
constraints of the EES units are provided in the following. Equation (6.9) defines
the energy balance of the EES unit. The energy storage in the EES unit should be
limited to its lower and upper bounds as stated in (6.10). The limitation of charge/
discharge rate in each time interval of the scheduling time horizon are provided in
(6.11) and (6.12), respectively. Finally, the EES unit should be operated in one of the
charge, discharge, and ideal modes, which is considered in (6.13) [25].

Et,b ¼ Et�1,b þ ηchP
ch
t,b �

1
ηdech

Pdech
t,b , b2EV ,ESS ð6:9Þ

Emin,b � Et,b � Emax,b ð6:10Þ
Pch
min,b:α

ch
t,b � Pch

t,b � Pch
max,b:α

ch
t,b ð6:11Þ

Pdech
min,b:β

s,dech
t,b � Pdech

t,b � Pdech
max,b:β

s,dech
t,b ð6:12Þ

α ch
t,b þ βdecht,b ¼ 1 ð6:13Þ

The EES unit is scheduled in a way that it can only be operated in charge,
discharge, or idle mode. Accordingly, binary variables α ch

t,b and βdecht,b are used to
model such constraint. The operation of EES units in charge/discharge model is
modeled as α ch

t,b ¼ 1/βdecht,b ¼ 1. The energy stored in the EES unit is defined by Et,b.
The charge and discharge efficiencies are defined by ηch and ηdech, respectively. The
minimum and maximum power charge of the EES unit are indicated by Pch

min,b and
Pch
max,b. Moreover, the respective indicators for the minimum and maximum power

discharged at the EES unit arePdech
min,b andP

dech
max,b. The minimum and maximum energy

storage of the EES unit are Emin,b and Emax,b.
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6.3 Solution Method

The solution method for the investigation of IGDT-based home energy management
is proposed in this section. The robust self-scheduling of PV panel installed in the
smart home can be formulated using (6.14), (6.15), (6.16), and (6.17) [26].

α ¼ maxα
α,Pbuy,Psale

ð6:14Þ

Cost � Costc ¼ 1� σð ÞCost0 ð6:15Þ

Cost ¼ max
PPV , t,Pdech

EV , t,P
dech
ESS, t

Psale, t,Pch
EV , t,P

ch
ESS, t

XT
t¼1

λt:PD tð Þ

8>>>><
>>>>:

9>>>>=
>>>>;

ð6:16Þ

1� αð Þ:P̂PV � PPV , t � 1þ αð Þ:P̂PV 8t ð6:17Þ

In the above equations, the robustness function is formulated as a bi-level
problem. In the upper level, the greater level of uncertainty, which guarantees the
cost, is lower than the critical cost, Costc. Critical cost Costc is the factor of the risk-
natural cost, Cost0, defined by σ. The defined parameter σ is utilized to change the
level of risk aversion. The forecasted PV power production and the robustness
region are shown in Fig. 6.1.

As Cost should be the highest cost, it is calculated by decreasing PV power
generation. Thus, for a given uncertainty horizon, the maximum cost occurs at the
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Fig. 6.1 Forecasted PV power generation and the robustness region
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minimum PV generation as shown in (6.18), and the bi-level IGDT problem breaks
to single-level problem [26].

PPV , t ¼ 1� αð Þ:P̂PV ð6:18Þ

6.4 Simulation Results

The rendered IGDT programming model is implemented to deal with optimal
scheduling problem for solving the optimal scheduling problem of HEMS. Three
case studies have been designed in this part. In the first case study, the role of HEMS
and IGDT programing is not taken into account. In the second case, HEMS is
employed during the scheduling horizon as regarding the consumer amenities. In
third case, IGDT programming for both robust and opportunity functions is solved.
As mentioned, home appliances can be located in three different categories based on
their power consumption expect PEVs. Table 6.1 reported the name and consump-
tion power of each appliance, which is considered in this paper. In addition, the
estimated day-ahead electricity price is illustrated in Fig. 6.2.

6.4.1 Case Study 1

In this case, HEMS is not taken into account in the scheduling process. The energy
consumption pattern is organized based on consumer’s daily program and without

Table 6.1 Appliances and power consumption patterns

Type of appliance Operating time Hourly consumption (kWh)

Non-shiftable

Fridge with freezer 24 0.12

Oven 1 0.348

Stove 2 0.8

TV 4 0.031

Entertainment system 2 0.088

Lighting 7 0.2

PV system 24 0.03

Other devices 24 0.5

Time-shiftable

Clothes washer and dryer 2 1

Dishwasher 2 0.62

Power-shiftable

Laptop Daily requirement 2 0–0.075 (0.15)

Water boiler Daily requirement 24 0–1.5 (3 kW)
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considering the signals of electricity price. It is worthy to mention that electricity
prices are adjusted based on the time of use program (TOU) in this chapter. The
ranges of electricity price are arranged with respect to total consumption pattern
prices including low-load, mid-load, and peak-load prices. The home owner could
provide his demand from the PV and the grid. However, the owner cannot sell the
surplus-generated power by PV system to the grid in this case.

The capacity of the PEV’s battery is set to 30 kWh and the initial value of SOC is
20%. The amount of charging rate is equal to 3 kW per hour, and PEV’s battery is
charged as soon as it arrives at home according to the illustrated driving pattern of
PEV in Fig. 6.3 [23]. According to Fig. 6.3, in this case, the role of the PEV’s battery
as an energy storage is ignored. The demand profile of appliances without consid-
ering their types and charging demand of PEV’s battery are depicted in Fig. 6.4. The
amount of generation and curtailment power of PV system with the maximum
capability 2 kW as well as purchased power from the grid are illustrated in Fig. 6.5.

According to Fig. 6.4, the power consumption between 18 and 24 has high level.
As result, the bought power from the grid has a significant value concurrently with
high electricity prices. During the hours 6–18, the PV system can produce power
because of the solar irradiation. As shown in Fig. 6.5, the PV system can provide the
whole of the demand during hours 7–16. As portrayed in Fig. 6.5, PV system could
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Fig. 6.3 Driving pattern of PEV during a day

6 Optimal Robust Scheduling of Renewable Energy-Based Smart Homes Using. . . 101



not produce power with its maximum capacity because of the balance between
supply and demand. Moreover, in this case the owner could not store or sell the
surplus power to the grid. So, part of the generation power by PV system must be
curtailed. The amount of cost is equal to $2.310.

6.4.2 Case Study 2

The storage technology is implemented in this case by utilizing PEV’s battery.
PEV’s battery is used as energy storage system during the parked period at home.
As explained in Sect. 6.2, the appliances can be divided into three groups: time
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Fig. 6.4 Hourly consumption power of shiftable appliances, non-shiftable appliances, and PEV
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shiftable, power shiftable, and non-shiftable. However, the customer’s comfort and
retractions of the amount of transition power are considered. The aim is to reduce the
total cost by shifting power of power-shiftable appliances and delay usage of time-
shiftable appliances including dish washer and clothes washer to the low price
periods. Figure 6.6 shows the optimal scheduling of the hourly demand. The
discharged power of the PEV’s battery, the generation power of PV system, the
amount of sold and purchased powers are portrayed in Fig. 6.7. The amount of total
cost is equal to $0.18.

Comparison of Figs. 6.6 and 6.4 specifies that in Case 2 a part of consuming
power is transferred to low price intervals, for example, the PEV’s battery is charged
at hours 18, 19, and 20, due to discharging at hours 21, 22, and 23. Since PEV’s
battery is discharged at high electricity prices, the total cost will be decreased.
Moreover, its charge process is transferred to the low price intervals. The usage
time of clothes washer is transferred from hours 18 and 19 to 6 and 7. The operated
time of dishwasher is changed from hours 18 and 19 to 6 and 7.

6.4.3 Case Study 3

The deterministic scheduling of smart home demand side management is solved in
Cases 1 and 2 in different conditions based on the forecasted generation power of PV
systems. The expected daily cost of smart home is equal to $0.18 by considering
HDSM (Case 2). The value of the robustness function related to the minimum cost of
smart home scheduling would be equal to zero.

The robust scheduling is a useful strategy for risk-averse decisionmakers.
Figure 6.8 portrayed the optimal value of robustness function versus critical cost.
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As it was expected, the more resistant the program is, the more costs will be
increased. Hence, if the smart home owner wants to make a risk-averse decision,
more cost should be guaranteed and contrariwise; as the smart home owner
wants more guaranteed cost, the decision will be more robust. Table 6.2 presents
optimal robustness function value for different cost deviation factor and the related
critical cost.
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6.5 Conclusions

In this paper, a robust strategy based on information-gap decision theory (IGDT) is
proposed for scheduling of smart home. The IGDT method is implemented to find an
interval for the PV’s outputs power to study the robustness function. By the
suggested model, the smart home owner can track risk-averse strategy to deal with
the uncertainty of PV system. As rendered in the paper, the proposed method is able
to program the household electricity demand integrating HDSM regarding three
different categories of devices and utilizing the PEV’s battery as an ESS. The owner
could provide the household demand from the output power of PV system, the
discharging power of PEV’s battery, and the grid. The IGDT method is implemented
to find an interval for the output power of PV to study the robustness function. Three
cases have been designed to verify the usefulness of the proposed method. Two first
cases have been investigated to show the impacts of the consumption pattern and
how it is possible to modify it. Case 2 leads to design zero-energy house. In last case,
the IGDT method has been used to mode the uncertainty of the generation power
of PV. As it was expected, the cost has increased when the robust scheduling has
been applied.
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Chapter 7
Robust Unit Commitment Applying
Information Gap Decision Theory
and Taguchi Orthogonal Array Technique

Hamid Reza Nikzad, Hamdi Abdi, and Shahriar Abbasi

7.1 Introduction

Generally, unit commitment problem (UCP) deals with determining operation
schedule of generating units at every hour interval considering load changes and
some operational and environmental constraints; in UC problem, binary decision
variables determining the state of units (on/off) are produced in each hour consid-
ering demanded load and other important requirements, such as spinning reserve
requirements [1]. The UCP is a large-scale non-convex complex problem, which
should be solved in a reasonably small time.

A lot of research works are presented in this area, mainly focusing on fuel cost
minimization. Also, other features such as calculation time, profit, security, and
emission are analyzed [2]. Various classifications in this era have been presented and
demonstrated. They are mainly focusing on uncertain versus deterministic,
deregulated power systems versus regulated ones, multi-objective versus single
objective, heuristic versus mathematical, and so on.

Deterministic UCP (DUCP) approaches are mainly focusing on the cost and
executing time minimization and can be categorized as exhaustive enumeration
(EE), priority list (PL), dynamic programming (DP), Lagrangian relaxation (LR),
mixed integer linear programming (MILP), and decomposition approaches [1, 3].
These methods suffer from the inability to solve the large-scale problems. To
overcome this challenge, meta-heuristic approaches are proposed. Genetic algorithm
(GA), particle swarm optimization (PSO), simulated annealing (SA), and evolution-
ary programming (EP) are some examples in this regard, which have more chance to
find the global optimum point, but they are usually time-consuming.
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Along with increasing penetration of renewable energy sources (RESs) in the
power systems, some benefits were provided. Among them, reducing amount of
pollution, improving voltage profile, reducing amount of power losses and thus
system cost, increasing electric power quality, and improving reliability of the
system can be remarked as the most important features in this context [4]. Also,
new challenges appeared in the power systems, which basically arise from uncertain
behavior of these resource types. Furthermore, deregulation in power systems has
resulted in some uncertain factors. The main sources of uncertainties in UCP are
uncertainty on inflows for the hydro reservoirs, uncertainty on customer load,
uncertainty on renewable generation, uncertainty on unit availability, and uncer-
tainty on energy prices [3]. Solving the UCP in considering this uncertain behavior
lead to uncertain UCP (UUCP). To calculate UUCP, new approaches are needed; the
most proposed approaches are stochastic optimization (SO) (or scenario tree), robust
optimization (RO), and chance-constrained optimization (CCO) [3].

One of the most common and basic techniques in SO is scenario representation
(SR) of uncertainty. The SR is established on generating a large number of scenarios
where each scenario represents a possible realization of the underlying uncertain
factors [5]. This kind of simulation method is an approximation of the true distribu-
tion of the uncertainties. Depending on the number of stages in the problem, the
structure of scenarios can be a number of parallel scenarios in a two-stage SO
problem or a scenario tree in a multistage SO problem [5]. References [6–8] are
some certified and updated examples in SUCP field in which the problem is
addressed by applying topology control through transmission switching as a
recourse action in the day-ahead operation of power systems with large-scale
renewable generation resources, two- stage formulation based on partitioning the
sample space of the uncertain factors by clustering the scenarios that approximate
their probability distributions, and considering the energy storage, respectively.
A stochastic real-time unit commitment dealing with the stochastic and intermittent
nature of non-dispatchable renewable resources including ideal and generic energy
storage devices is proposed in [9]. The impacts of integrating non-deterministic
flexible ramp reserves in a multistage multi-resolution day-ahead robust unit
commitment to cope with variability of renewable energy sources are analyzed in
[10]. A data-driven unit commitment model with multi-objectives under wind power
and load uncertainties has been presented by authors in [11]. Reference [12]
addressed a new method based on information gap decision theory to evaluate a
profitable operation strategy for combined heat and power units in a liberalized
electricity market.

In RUCP, as it was remarked in [5], the model tries “to incorporate uncertainty
without the information of underlying probability distributions, and instead with
only the range of the uncertainty”. Also, RUCP minimizes the worst-case cost
regarding all possible outcomes of the uncertain parameters. This type of models
produces very conservative solutions, but computationally it can avoid incorporating
a large number of scenarios. References [13, 14] deal with the RCUP in the presence
of wind power and pumped storage hydro and wind power and demand response
uncertainties, respectively.
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Guarantying that the demand constraints will never be violated in UCP is very
difficult. A solution is to provide answer which are “reasonably feasible” under all
except the most unlikely scenarios [3]. This is therefore the main idea for applying
the CCUCP, where the desired safety level can be specified under the form of a
probability.

The reminder of this chapter is arranged as follow: mathematical formulation of
UCP is presented in Sect. 7.2. In Sect. 7.3 the optimization method is introduced.
Robust UC using IGDT and TOAT are respectively explained in Sects. 7.4 and 7.5.
Examples of these methods and obtained simulation results are presented in Sect.
7.6. The concluded remarks are in Sect. 7.7.

7.2 Mathematical Formulation of UCP

7.2.1 Base Formulation of UCP

Basic model of UCP consists of solving this problem without RESs and ESSs.
Minimization of total operation cost (TOC) of number of generation unit which
commonly supply power demand of a network in 24-h is the target of solving of
UCP. The objective function of UCP is as follows:

min TOC ¼
XT
t¼1

XN
n¼1

ut
n:F

t
n p t

n

� �þ ut
n:s

t
n

� � ð7:1Þ

Fuel cost of n‐th unit at t‐th hour with p(MW) output power, F t
n p t

n

� �
, has been

estimated by Quadratic Eq. (7.2) [15].

F t
n p t

n

� � ¼ an: p
t
n

� �2 þ bn p t
n

� �þ cn ð7:2Þ

On–off states of the n ‐ th unit at t ‐ th hour are determined by the binary variable
ut
n which has been described in (7.3):

ut
n ¼

1 unit is on
0 unit is off

�
ð7:3Þ

In (7.1), s tn is the startup cost for n ‐ th generation unit that has been turned on at
beginning of t ‐ th hour. s tn depends on hours that unit is off. Finally startup cost has
been calculated in (7.4) [16]:

s tn ¼
HSCn if Toff ,n � Tcc

CSCn if Toff ,n � Tcc

�
ð7:4Þ
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Generally, startup cost and shutdown cost are constant and are predefined for each
generation unit. Generally, the shutdown costs are assumed to be equal to zero for
the sake of simplicity [17].

Decision variables in the basic form of UCP are arrays of matrix with dimension
T � N in which each array shows generated power by a unit during an hour (7.5).

P ¼

p11 . . . p1n . . . p1N
⋮ ⋱ ⋮ ⋱ ⋮
pt
1 . . . pt

n . . . pt
N

⋮ ⋱ ⋮ ⋱ ⋮
pT
1 . . . pT

n . . . pT
N

2
66664

3
77775 ð7:5Þ

7.2.2 Formulation of UCP in Presence of RESs and ESSs

Owing to increasing of application of RESs and ESSs in the power systems, the
formulation of UCP have had changed. If the investment costs of RESs and ESSs are
considered zero, the following model is presented for UCP in presence of costs
of RESs and ESSs. Presented model in (7.6) is consisted of cost functions of RESs
and ESSs.

min TOC ¼
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� F presð Þ

ð7:6Þ

In (7.6), generation cost for RESs is considered as (7.7). Also, a cost function as
(7.8) is added for each ESS. Input of these functions is sum of the stored power from
the network and injected power to the network. Last cost function (7.9) is for the
value of reminded energy ( prsp) in ESSs at the end of study period.

F t
w ¼ aw: p

t
w

� �2 þ bw: p
t
w

� �þ cw ð7:7Þ

F t
es ¼ aes: pt

g,es þ pt
s,es

� �2
þ bes: pt

g,es þ pt
s,es

� �
þ ces ð7:8Þ

Frsp ¼ arsp: prsp
� �2 þ brsp: prsp

� �þ crsp ð7:9Þ

Approximately, startup costs of ESSs and RESs are equal to zero. As showed in
(7.10), after adding ESSs to the system, the decision variable matrix changes to
(T � (N + 2Ns)); there are two decision variables for each ESS at each hour. One
variable for the storage power and another for the injection power.
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P ¼

p11 . . . p1n . . . p1Nþ2Ns

⋮ ⋱ ⋮ ⋱ ⋮
pt
1 . . . pt

n . . . pt
Nþ2Ns

⋮ ⋱ ⋮ ⋱ ⋮
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2
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3
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7.2.3 Constraints of UCP

In the UCP, optimal TOC must satisfy operational conditions of generation units and
conditions of system [18]. These conditions are some or all of the following
conditions [18–21].

7.2.3.1 Limitations of Generation Unit

Active power output of each generation unit is within the minimum and maximum
limits of that unit (7.11) [18, 22, 23].

pn,min � pt
n � pn,max ð7:11Þ

7.2.3.2 Power Balance

The most significant constraint of UCP is balance between generated power and
demanded power [18, 22]. This constraint has been presented in (7.12).

XN
n¼1

pt
n:u

t
n þ

XW
w¼1

pt
w þ

XNs

es¼1

pt
g,es ¼ dt þ

XNs

es¼1

pt
s,es ð7:12Þ

7.2.3.3 Minimum Uptime

When operator turns on a unit to be online, this unit cannot be turned off for
number of hours which is called minimum uptime (MUT) [22, 23]. This constraint
is as (7.13):

Tn,on � MUTn ð7:13Þ
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7.2.3.4 Minimum Downtime

When an operator turns off a unit, for mechanical limitation, it cannot be turned on
again for number of hours, i.e.:

Tn,off � MDTn ð7:14Þ

7.2.3.5 Ramp Rate Up/Down

Output power of a generation unit cannot increase or decrease as step function.
Variations of output power of generation unit are limited by ramp up/down rate [18–
20, 22]. These constraints are formulated:

pt
n � pt�1

n � RUn if generation increases ð7:15Þ
pt�1
n � pt

n � RDn if generation decreases ð7:16Þ

This should be noted that, ramp rates are not considered for RESs and ESSs.

7.2.3.6 Spinning Reserve

Spinning reserve is a percentage of power demand to satisfy demand when it
changed suddenly. The related constraint is as follow:

XN
n

u t
npn,max � dt þ SR 1 � t � T ð7:17Þ

7.3 Optimization Method (Genetic Algorithm)

So far, different methods are presented to solve UCP. Presented methods can be
classified as two classic and modern types [24]. Enumeration method, priority list,
dynamic programing, Lagrangian relaxation algorithm, etc. are from classical
methods. Modern methods are the new algorithms that consist of neural networks,
meta-heuristic algorithm (GA, PSO, etc.), etc.

Considering uncertainties of power demand, output power of RESs, etc., different
methods such as Monte Carlo and stochastic programing are presented. Among these
methods, RO and IGDT are more popular for their ability in solving optimization
problems in uncertain environments. These methods do not need probability distri-
bution functions (pdf) of the stochastic variables. These methods are suitable when
exact data about the uncertain parameters is not available [25]. The robust UC using
these methods are explained in the following sections.
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7.3.1 Genetic Algorithm

In this work, the GA is used to solve the UCP. So, here a summarized description
regarding this algorithm is presented. GA operates based on combination of large
number of solutions to achieve the best feasible ones. In each iteration, the objective
function is evaluated for each probable optimal solution. Then the new solution will
be resulted using the solutions of previous iteration. This process will continue until
the stop criteria are achieved. These criteria can be selected as the number of
iterations, running time of calculation, or a predefined accuracy of objective cost
function [26]. Figure 7.1 shows the general flowchart of GA.

7.4 Robust UC Using IGDT

IGDT is a modern modeling method to solve optimization problems considering
uncertainty. Here, IGDT is used for solving UCP. To solve optimization problems
with IGDT, there are risk seeker and risk averse models. In UCP, the risk averse
model is more suitable. Envelop-bound is one of the most appropriate methods that
is commonly used in optimization problems of power system. In the continuum a
brief explanation of risk averse method has been presented. Regarding UCP frame-
work the implication of risk averse method is in this way: first, UCP has been solved

Start End

Initialization Population

Calculation of TOC

Choosing parents

Crossover and mutation Replace new population

Stop condition is happen

Yes

No

Fig. 7.1 General flowchart of GA
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by the use of deterministic value of power demand and output power of RESs. With
consideration of the legal bound for TOC by the operator, maximum legal variation
for demand and output power is obtained.

f ¼ min TOC p; γð Þð Þ ð7:18Þ
Subject to : constraints 7:11ð Þ � 7:17ð Þ ð7:19Þ

γ2Ω ð7:20Þ
Ω ¼ pw; df g ð7:21Þ

In the above equations, γ is the uncertain parameter. The Ω describes the set of
uncertain parameters. In Eq. (7.13), p is the set of decision variables of UCP which
consist of output power of the generation units, stored power, and injected power by
ESSs. The objective function in (7.18) which has been showed by TOC( p, γ) is
generally dependent on both decision variable and uncertainty parameters. Mathe-
matical description of Ω has been brought in (7.22).

Ω ¼ Ω
�
γ; α
� ¼ γ :

γ � γ

γ

����
���� � α

� 	
ð7:22Þ

In (7.22), γ is scheduled value of uncertainty parameter. The α is the maximum
possible diversion of uncertainty parameter from its scheduled value. Equations
(7.18, 7.19, 7.20, and 7.21) have showed the formulation of UCP which consists
of uncertainty. As it was mentioned in this method, first of all the problem is
considered without the uncertainty and with scheduled values. The state which is
presented in (7.23) is called base state.

TOCb ¼ min TOC
�
p; γ
�� � ð7:23Þ

Subject to : constraints 7:11ð Þ � 7:17ð Þ ð7:24Þ

Risk averse strategy has been used in this problem then the target is to find
maximum of α subject to that the value of TOC doesn’t exceed the legal bound
which is determined by the operator. Equations 7.25, 7.26, 7.27, 7.28, 7.29, and
7.30) explain this method [27].

Rc ¼ maxα ð7:25Þ
Subject to : constraints 7:11ð Þ � 7:17ð Þ ð7:26Þ

TOC p; γð Þ � Δc ð7:27Þ
Δc ¼ TOCb

�
p; γ
�
∗ 1þ βð Þ ð7:28Þ

γ � γ

γ

����
���� � α ð7:29Þ

0 � β � 1 ð7:30Þ
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Δc is critical value of objective function that is often determined by the operator.
According to Eq. (7.28), this value is determined as a function of the objective
function. Rc is the radius of uncertainty that is a positive parameter. Generally, in risk
averse method of IGDT, the final solution of problem is α which depends on Δc. In
other words, the operator will make sure that for changes of uncertain parameter in
the obtained uncertain bound, the TOC will not exceed from the predetermined
bound which is specified by the operator.

7.5 Robust UC Using TOAT

The RO is based on the determination of variations bound for uncertain parameters
subjected to TOC not exceeding legal bound determined by the operator. In fact, RO
presents the worst state of the optimal response, wherein variation of uncertain
variables does not exceed their legal bound. Uncertainties are controlled by a
predetermined parameter which is called uncertainty budget that shows the bound-
aries of TOC. Different techniques have been presented for RO method. The TOAT
method is used here. In this method, different levels are considered for each of
the uncertainty variables. Regarding these levels, different states or experiments of
the problem are considered. In general, for problems which have m parameters with
uncertainty and n levels for each parameter, there are nm different arranges of
uncertain parameters. Each arrangement is an experiment problem. Solving problem
for all experiments, especially in large scale, is costly and time-consuming.
Dr. Taguchi presented a table as orthogonal arrays which provides problem-solving
with the minimum needed experiments for finding the optimal response of
the problem. The smallest presented orthogonal array is L42

3, which provides the
operation of four experiments with three uncertain parameters in which each of the
parameters has two levels. This orthogonal array has been showed at Table 7.1 [28].

The features of orthogonal arrays are the following: (1) The number of parameters
which has the same level in each column of the chart is equal. (2) The number of
levels of one type is two.

Dr. Taguchi has presented different orthogonal arrays for different parameters
and levels. Orthogonal arrays that exist for all two-level parameters are L42

3, L82
7,

L122
11, L162

15, and L322
31. For instance, if there are 25 uncertain parameters in a

problem, L322
31 should be chosen and 6-left columns are ignored. To solve UCP,

regarding the number of uncertain parameters and considered levels, orthogonal

Table 7.1 Orthogonal array
L42

3 [28]
Experiments

Level of each factors

Factor A Factor B Factor C

1 1 1 1

2 1 2 2

3 2 1 2

4 2 2 1
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arrays are determined for each parameter, and finally UCP formulation in the
Taguchi framework is this way [28].

f ¼ min TOC p;ωð Þð Þ ð7:31Þ
Subject to : constraints 6� 11ð Þ � 6� 17ð Þ ð7:32Þ

ω2Ω ð7:33Þ

In (7.31), ω is the uncertain parameter. The model of the problem in (7.31) and
the target is to find the best arrangement for decision variables that is robust in the
confrontation with the variation of uncertain parameters in the considered levels. In
fact, optimal arrangement of decision variables of UCP is presented by knowing the
levels of variations. Then, the objective function is as follows:

TOC0 ¼
XEX
ex

�XT
t¼1

� XN
n¼1

ut
n:F

t
n p t

n

� �þ ut
n:s

t
n

� � !
þ . . .

XW
w¼1

F t
w p t

w

� � !
þ

XNs

es¼1

F t
es p t

g, se þ pt
s,es

� � #
� F presð Þ


ð7:34Þ

f 0 ¼ min TOC0�pω�� � ð7:35Þ
Subject to : constraints 7:11ð Þ � 7:17ð Þ ð7:36Þ

ω2 ωmin;ωmaxf g ð7:37Þ

In (7.37),ωmin andωmax, respectively, declare the minimum and maximum levels
of uncertain parameters. Orthogonal arrays are defined as:

Level of factor ¼ 1 ωmin

2 ωmax

�
ð7:38Þ

Finally, the output of UCP by RO is the optimal arrangement which is robust in
uncertain conditions.

7.6 Examples

In this part, the presented methods for UCP are simulated on a 10-unit standard
system of IEEE. At the beginning, using GA and PL, TOCb without the regarding of
the absolution of the problem has been solved. Then, the two methods IGDT and RO
have been implicated on system. This case study consists of 10 thermal units. The
relevant minimum and maximum output power of each unit, cost coefficients, and
the other data are presented in Table 7.2. Also, the daily demanded load is specified
as it is indicated in Table 7.3.
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Table 7.4 shows the wind turbines data which are used in this case. These data are
consisting of the minimum and maximum output power for each turbine, cost
coefficients, and other required data in the case.

7.6.1 UCP in the Base Form

At first, the UCP without the consideration of the uncertainty of problem parameters
is solved. The method used in this chapter is a combination of GA and PL. The GA is
a meta-heuristic algorithm that produces the stochastic responses and improves them
to reach the optimal solution of the optimization problem. Some of the problem
constraints have been satisfied for infeasible solutions using penalty factor strategy.
By the use of PL, the generation of stochastic population has been done until all
solutions satisfy constraints (7.12, 7.13, and 7.14) and constraint (7.17). Parameters

Table 7.2 The case study data [29]

Unit pmax pmin MDT MUT c b a HSC CSC Tcc Is

Unit1 455 150 8 8 1000 16.19 0.00048 4500 9000 5 8

Unit2 455 150 8 8 970 17.26 0.00031 5000 10,000 5 8

Unit3 130 20 5 5 680 16.5 0.00211 560 1120 4 �5

Unit4 130 20 5 5 700 16.6 0.002 550 1100 4 �5

Unit5 162 25 6 6 450 19.7 0.00398 900 1800 4 �6

Unit6 80 20 3 3 370 22.26 0.00712 170 340 2 �3

Unit7 85 25 3 3 480 27.74 0.0079 260 520 2 �3

Unit8 55 10 1 1 660 25.92 0.00413 30 60 0 �1

Unit9 55 10 1 1 665 27.27 0.00222 30 60 0 �1

Unit10 55 10 1 1 670 27.97 0.00173 30 60 0 �1

Table 7.3 Hourly demanded
power applied to problem
(MW)

t dt t dt t dt t dt
1 700 7 1150 13 1400 19 1200

2 750 8 1200 14 1300 20 1400

3 850 9 1300 15 1200 21 1300

4 950 10 1400 16 1050 22 1100

5 1000 11 1450 17 1000 23 900

6 1100 12 1500 18 1100 24 800

Table 7.4 The wind turbines
data

w pw
max pw

min MUT MDT a b c

w1 105 5 1 1 100 6.591 0.0032

w2 105 5 1 1 200 8.131 0.00483

w3 30 5 1 1 181 6.299 0.00168

w4 240 5 1 1 100 6.591 0.0032
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of GA and output power of RESs are listed in the appendices. Table 7.5 shows the
results of UCP in the base form. For IGDT method wind turbines 1–3 and for RO
method wind turbine number 4 are added to the system.

7.6.2 UCP Solving by IGDT

In this example, the UCP is solved by the IGDT method. The obtained results for
different variation bounds in TOCb are presented in Tables 7.6 and 7.7. Note that
using the risk averse method, uncertainties that have negative effect on TOC are
examined. These uncertainties are increasing demand and reduction of power output
of wind turbines. As the base case, the value of TOCb obtained by GA is as shown in
Table 7.5. Now, the variable α is added as a new decision variable. In the next step,
coefficients (1 � α) and (1 + α) are determined, respectively, for two uncertain
parameters, output of wind turbines and demand of system. So, a new constraint as
(7.39) will be added to UCP.

TOC � TOCb � 1þ βð Þ∗TOCb ð7:39Þ

β is the coefficient which determines the maximum legal variation of TOC from
TOCb, and β is recognized by operator. (1 � α) is multiplied in TOC to find the
maximum bound of the variation of uncertain variables by GA. The results of UCP
have been regarded for two uncertain parameters in return of the different values of β
which are presented at Tables 7.6 and 7.7.

Table 7.5 Results of the case
study system

Systems TOCb($)

10 units IGDT 540,567

Table 7.6 Results of IGDT
considering the wind
uncertainty

Systems β

β ¼ 0.01 β ¼ 0.03 β ¼ 0.5

10 Units α 0.24 0.42 0.54

TOC 541,072 554,786 556,360

Table 7.7 Results of IGDT
considering the demanded
power uncertainty

System β

β ¼ 0.03 β ¼ 0.05 β ¼ 0.07

10 Units α 0.974 0.973 0.971

TOC 550,323 561,649 559,770
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The results that are presented at Table 7.6 show that with increase in β, the
variation bound of the output power of the wind turbines increases. Regarding
the low cost of the generation of the electricity power by the use of wind turbines,
the result was not far from expectation. Because TOC is a great number and the
capacity of RESs is low in this system, small variation in the amount of β leads to
large variation in the legal variation bound of RESs.

The obtained results at Table 7.7 show the greater sensitiveness of TOC related to
variation of power demand and related to the output power of wind turbines. In other
words, the smallest variations in the power demand leads to high costs. For more
clarity, β is considered greater than the previous state. The arrangement of the
scheduled power of the decision variables of UCP is presented only for one of the
cases in Tables 7.8 and 7.9.

Table 7.8 Optimal output power of generation units

Hour

Units

1 2 3 4 5 6 7 8 9 10

1 448.2 159.5 0 0 0 0 0 0 0 0

2 451.8 249.4 0 0 0 0 0 0 0 0

3 451.1 315.7 0 0 0 0 0 0 0 0

4 454.2 447.2 0 0 0 0 0 0 0 0

5 454.5 439 61 0 0 0 0 0 0 0

6 451.2 454.9 101.3 0 0 0 35.3 0 0 0

7 447.4 434.7 97.2 107.2 0 0 26.1 0 0 0

8 452.7 419.8 105.7 96.1 30.2 0 29 0 0 0

9 454 444 116.3 122.7 114.9 0 35.9 0 0 0

10 454 453.2 80.6 117.2 152.7 0 31.7 0 0 0

11 455 442.3 129.6 116.1 134.7 0 42.2 33.9 0 0

12 447.2 444.3 121 120.7 153.7 64 56.7 14.9 0 0

13 454.2 451.2 106.5 111.7 108.1 28.7 29.6 15.8 0 0

14 454.5 418.5 86.9 112.8 108.7 21.8 0 11.7 0 0

15 450.7 432.7 95.5 121.1 0 0 0 0 0 0

16 453.5 403.8 64 56.4 0 0 0 0 0 0

17 453.5 431.4 45.3 0 0 0 0 0 0 0

18 454.8 454 123 0 0 0 0 0 0 0

19 454.9 440.1 127.6 0 0 62 0 32.1 0 0

20 455 453.5 121.2 0 0 75.6 81.6 30.1 27.1 44.8

21 454.8 454.5 116.5 0 0 54.9 58 31.2 0 19

22 449 432.2 64.8 0 31.54 21.3 25.9 10.9 0 0

23 449.9 267.3 77.9 0 33.2 0 0 11.5 0 0

24 449.3 220.3 0 0 26.8 0 0 0 0 0

TOC($) 562,330

7 Robust Unit Commitment Applying Information Gap Decision Theory and. . . 121



7.6.3 UCP Solving by RO (TOAT)

In the example, the UCP is solved by TOAT as a valid RO method. Here, the
uncertain variable is the output power of wind turbine. The output power of wind
turbine is chosen between two levels. The number of the variables is 24 that is the
output power of wind turbine during 24 h. According to the number of uncertain
variables, orthogonal arrays L322

31 of Table 7.10 are considered.
Levels 1 and 2 are described at (7.40).ω is the deterministic output power of wind

turbine. The optimal TOC which is robust in the confrontation with worst uncertain
conditions of UCP satisfies all constraints are as Tables 7.11 and 7.12.

Level of factor
1 0:6∗ω
2 min

�
1:2ω; pw

max

��
ð7:40Þ

pw
max is maximum power of wind turbine.

Table 7.9 Optimal storage
power and injection power
of ESSs

Hour ps,1 ps,2 ps,3 pg,1 pg,2 pg,3
1 11.1 6.3 0 0 0 0

2 9.5 12.3 0.2 0.9 3.8 0

3 6 11.7 3.3 3.1 3.8 0

4 4.3 7.5 11.2 1.1 8.4 0

5 19.3 2 2.9 6.6 2.7 0

6 8.3 9 0.6 5.4 9.2 0

7 24.3 24.6 5 9.2 5 0

8 3.8 6.4 1.1 12 2.6 0

9 6.3 43.8 0.5 14.9 2.5 0

10 5.1 0.4 0.7 12.8 16.5 0.5

11 2.3 0.7 1.1 7.4 15 4.2

12 1.4 12.4 3.3 11.7 7.4 3.1

13 3.7 7.5 0.7 10.2 12 2.4

14 8.6 2.7 1.1 5 6.9 1.3

15 16.5 2.6 2.9 4.9 7.3 1.2

16 20.7 6 2.9 13.1 5.6 1.7

17 8.8 4.9 0.5 10 0.2 3.1

18 0.7 7.4 0.4 7.7 15.1 2.9

19 16.4 0.4 0.5 10.3 15.8 5.7

20 0.6 0.3 0.3 8.4 4.1 1.5

21 0.6 1.5 2.4 2 4.6 3.3

22 2.1 0.8 0.2 13.7 4.9 1.7

23 5.5 10.3 0.9 4.2 6.4 2

24 1.3 0.6 0.5 11.1 21.7 8.9

prsp(MW) 5.2
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According to results of Tables 7.11 and 7.12, all constraints are satisfied. The
combination of units shown in the two above tables is robust against variations of
wind turbine output and presents the optimal combination. In Table 7.13, TOC of all
scenarios is presented.

7.7 Conclusions

In this chapter, UCP was solved by IGDT and RO. The aim of this chapter was
considering UCP in the presence of uncertainties. For this purpose TOAT and IGDT
are used in order to search the optimal solution of this problem in the presence of
different uncertainties. When the historical data of demanded load are needed, the
TOAT and IGDT methods are the most suitable methods for UCP because these
methods do not need the past data of system. Obtained results by both methods were

Table 7.11 Optimal output power of generation units

Hour

Units

1 2 3 4 5 6 7 8 9 10

1 416 150.3 0 0 0 0 0 0 0 0

2 453 188 0 0 0 0 0 0 0 0

3 454.9 276.8 0 0 0 0 0 0 0 0

4 454.2 407.7 0 0 0 0 0 0 0 0

5 454.7 387.8 55.6 0 0 0 0 0 0 0

6 454.6 413.9 103.6 0 0 0 26.1 0 0 0

7 453.4 389.6 61.4 88.3 0 0 25.3 0 0 0

8 454 423.5 61.7 112.3 0 0 25.2 0 0 0

9 455 454.5 124.3 126.2 0 39.5 25.7 0 0 0

10 451.2 454.7 97.2 122.4 60.9 23 27.4 0 0 0

11 454.8 453.9 96.7 122.9 120 20.6 25.3 0 0 0

12 454.8 453.8 122.9 123.4 136.3 23.1 25.7 0 0 0

13 454.9 453.4 75 119.7 128.1 22.4 0 0 0 0

14 454.8 438.9 81.5 117.4 26.9 20.83 0 0 0 0

15 453.9 345.1 125.8 0 52.5 0 0 0 0 0

16 454.7 315.5 112 0 27.5 0 0 0 0 0

17 454.6 356 62.8 0 0 0 0 0 0 0

18 454.7 446.8 108.4 0 0 0 0 0 0 0

19 454.7 453.3 124.1 0 0 23.75 0 0 0 0

20 453.5 444.8 109.7 127.1 0 31 0 0 0 0

21 453.6 437.7 76.2 39.3 0 21.3 0 0 0 0

22 453.3 312.6 106.1 108.3 0 20.1 0 0 0 0

23 454.6 245.8 62.1 39.3 0 0 0 0 0 0

24 454.7 151.3 0 42.4 0 0 0 0 0 0

TOC
0
($) 16,322,491.3
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Table 7.12 Optimal storage
power and injection power
of ESSs

Hour ps,es pg,es
1 69.3 0

2 33 19.5

3 27 7.8

4 27.3 0.3

5 27.4 17.2

6 13.7 3.4

7 14.2 3.2

8 6.1 12.5

9 17.6 8.5

10 5.3 7.4

11 4.2 23

12 0.4 26.4

13 17 12.4

14 1.7 5.2

15 1.2 23

16 24.5 13.8

17 16.2 11.7

18 18.2 13.8

19 6.3 22.8

20 1.3 53.3

21 17.7 43.4

22 0.4 12.6

23 26 5.1

24 0.1 32.2

prsp(MW) 0.8

Table 7.13 Calculated TOC
($) for all scenarios

Scenario TOC Scenario TOC

1 504,330 17 506,040

2 513,340 18 513,960

3 513,090 19 513,780

4 506,740 20 506,340

5 506,000 21 506,620

6 514,030 22 514,160

7 514,260 23 513,820

8 506,930 24 506,000

9 506,690 25 506,390

10 513,380 26 513,770

11 515,060 27 513,940

12 506,390 28 505,960

13 506,380 29 506,050

14 514,540 30 513,570

15 514,130 31 513,850

16 506,930 32 506,010
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presented. The results show that when IGDT is used, the planner will be sure to
obtain the solutions which will not be affected by the variation of output power of
wind turbines. Also by using TOAT, we can find the best TOC for variation bound of
uncertainty parameter which are determined by the operator. Generally RO methods
change the SUCP to DUCP, and this subject can significantly reduce the running
time compared to the stochastic methods. Finally, the results confirm the capability
of the suggested methods in solving the robust unit commitment in an uncertain
environment.

Appendices

Table 7.14 Abbreviations and symbols

TOC Total operation cost Tcc Cold startup time

t Time period scheduling index Toff,n Total downtime

T Time horizon of study Ton,n Total uptime

N Number of generation units pt
s,es Storage power of n-th ESS at t-th hour

n Generation unit index Ns Number of ESSs

Fn Cost function of generation unit n pn,min Minimum output power of n-th gener-
ation unit

pt
n Output power of generation unit n at

hour t
pn,max Maximum output power of n-th gener-

ation unit

ut
n On/off status of generating unit n in

hour t
dt Power demand of t-th hour

s tn Startup cost of n-th unit at t-th hour MUTn Minimum uptime

an,bn,
cn

Cost function coefficient of n-th unit MDTn Minimum downtime

HSC Hot startup cost RUn Ramp up rate of n-th generation unit

CSC Cold startup cost RDn Ramp down rate of n-th generation unit

w Wind turbine index SR Spinning reserve

W Number of wind turbine prsp Reminded stored power

Fw Cost function of wind turbine w Fes Cost function of energy storage system

pt
w Output power of wind turbine w and

hour h
pt
g,es Injection power of n-th ESS at t-th hour

es Energy storage system index
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Chapter 8
IGDT-Based Robust Operation
of Integrated Electricity and Natural Gas
Networks for Managing the Variability
of Wind Power

Mohammad Amin Mirzaei, Ahmad Sadeghi-Yazdankhah,
Morteza Nazari-Heris, and Behnam Mohammadi-ivatloo

Nomenclatures
Index:

t Time period index

i Thermal plants index

l Natural gas loads index

r Wind power plant index

sp Natural gas suppliers index

pl Pipelines index

m,n Nodes index in natural gas network

b,b
0

Buses index

j Loads index

L Transmission lines index

Constants:

NT Total time period

NGL Total natural gas loads

NU Total thermal plants

NGS Total natural gas suppliers

NR Total wind farms

NB Number of buses

GU Set of natural gas-fired units
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αi,βi,γi Fuel function coefficient of gas-fired units

Pi
max,Pi

min Min/max capacity of thermal plant i

RUi,RDi Ramp up/down limitation of thermal plant i

T On
i ,T Off

i
Minimum up/down time of plant i

XL Reactance of line L

PFmax
L Capacity of line LdPr, t

Forecasted wind power production at time t

Pr, t Wind power production at time t

Dj,t Expected hourly load

Cpl Constant of pipeline pl

πmax
m , πmin

m
Maximum/minimum pressure

Umax
sp ,Umin

sp
Maximum/minimum natural gas injection

Lmax
l ,Lmin

l
Maximum/minimum natural gas load

Variables:

FC
i

Operation cost of thermal plant i

SUi,SDi Start-up/shutdown cost of thermal plant i

Fgas unit
i, t

Fuel function of gas-fired plant i at time t

Pi,t Production power of plant i

Ii,t Binary on/off condition indicator of plant i

X on
i, t�1,X

off
i, t�1

On/off time of plant i

πm,t Pressure of natural gas in node m at time t

Usp,t Gas delivery of supplier at time t

Fpl,t Natural gas flow of pipeline pl at time t

Ll,t Natural gas load at time t

Pr,t Dispatched wind power

PFL,t Line flow at line L

δb,t Voltage angle of network buses

8.1 Introduction

Utilization of renewable sources especially wind energy because of environmental
concerns is attracting more attention. To respond the uncertainties of wind power
production, flexibility of power system operation should be increased. Several
efficient approaches have been performed to enable the power system to increase
its flexibility in operation. Operation improvement by applying algorithms and
modern models to solve unit commitment and economic dispatch problems and
improved wind power prediction [1, 2], utilizing flexible sources such as demand
response (DR) [3], energy storage system (ESS) [4], and the use of power plants with
fast starting capability such as gas turbine-based power plants [5], are some of these
approaches.
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Modern gas-fired power plants have start-up times of less than an hour and ramp
rates more than 50 MW/min., while nuclear and coal-fueled plants have start-up
times of 4–8 hours and ramp rates of megawatt per minute [6, 7]. Also, from
environmental viewpoint, gas-fueled plants produce 50–60% less Co2 [8]. Natural
gas consumption for electricity generation in the USA has been increased from 34%
in 2011 to 39% in 2012, while natural gas-fueled power plants have produced 40%
of the total power capacity in 2012 [9]. According to Annual Outlook document
2014, estimated 16% of total electricity production in the USA at 2040 would be
based on natural gas [8].

Independent system operator (ISO) performs security-constrained unit commit-
ment (SCUC) in electricity markets to minimize system operation cost considering
security constraints. Severe dependency of electric network to natural gas puts
forward new issues to the ISOs. Pressure reduction at gas network nodes could
cause some reduction in power generation decreasing system reliability and
increasing operating cost. From the other point of view, natural gas delivery to
residential and commercial loads has high priority with respect to gas-fueled plants.
Therefore, increasing natural gas consumption by residential and commercial loads
especially in winters reduces power generation by gas-fueled plants and increases
electricity price.

In recent years, considerable research has been focused on coordinated operation
of electricity and natural gas networks [10]. For example, in [11, 12],
interdependency of natural gas network and power system security in solving
SCUC problem has been studied, while system uncertainties are not considered.
SCUC problem for coordinated electricity and natural gas infrastructures has been
solved in [13], considering network load and line outage uncertainties. In [14], the
authors have studied the effect of hourly price-based DR on the reduction of
interdependency of natural gas network and power system, and operation cost
using stochastic day-ahead scheduling of the coordinated system. In this research,
uncertainties of load prediction and transmission line outage are included. In [15],
coordination of interdependent electricity and natural gas networks for firming the
variability of wind energy has been studied by solving stochastic day-ahead sched-
uling. In [16], a two-stage robust constrained operation of integrated electricity
natural gas system is proposed considering possible N-k contingencies and distrib-
uted natural gas storage. A problem of robust coordination of interdependent
electricity and natural gas systems in day-ahead scheduling has been investigated
in [17] with combination of wind energy and power to gas technology.

The economical analysis of electrical energy systems is influenced by considering
uncertainties of the system parameters. Operation of electrical energy systems is
studied by approximating input data using different uncertainty handling methods.
The most well-known methods implemented to study uncertain parameters include
information-gap decision theory (IGDT) [18], robust optimization method [19, 20],
interval-based analysis [21], two-point estimate method [22], and scenario-based
modeling method [23]. The IGDT is a non-probabilistic interval optimization-based
concept. Unlike Monte Carlo and scenario-based scheduling, the IGDT does not
need the probabilistic distribution function of the uncertainty of wind power
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production and is useful in robust decisions against severe uncertainties. The
proposed method maximizes the bound of wind power generation uncertainty
when setting decision variables so that the objective function lies inside the pre-
scribed boundary. In power systems, IGDT is usually applied to bidding strategy of
generation units, unit commitment, and DR scheduling [24]. In [25], IGDT is applied
for self-scheduling of GenCos with the objective of maximizing the profit under
electricity price uncertainty. Self-scheduling of a wind produce based on IGDT is
performed in [26]. Optimal robust UC of CHP units in electricity markets is solved
utilizing IGDT in [27]. In [28], the authors have solved IGDT-based robust security-
constrained unit commitment using coordinated wind energy and flexible DR
sources and ESS. In [29], SCUC is studied in the presence of lithium-ion battery
storage units using IGDT considering load uncertainty.

Having understood all the above studies, the main features of the proposed model
in this chapter are as follows:

• Considering natural gas network constraints and its impact on the participation of
gas-fired units in energy market and their daily operation cost

• Using IGDT with no requirement of knowing the probabilistic distribution
function (PDF) and membership of sets to model wind power uncertainty in
SCUC problem of coordinated electricity and natural gas networks

The rest of the chapter is organized as follows: Sect. 8.2 presents the mathemat-
ical formulation of SCUC problem for coordinated electricity and gas networks.
Section 8.3 describes IGDT technique and uncertainty modeling based on IGDT.
Section 8.4 reports the obtained simulation results and discussions. Finally, Sect. 8.5
concludes the chapter.

8.2 Problem Formulation

The objective of the proposed SCUC for coordinated electricity and natural gas
networks is determining the day-ahead hourly scheduling of gas-fueled power plants
and network load to minimize operation cost of integrated wind power system. The
objective function is provided in (8.1) determining total operation cost.

OF ¼ min
XNT
t¼1

XNU
i¼1

FC
i Pi, tð Þ þ SUi, t þ SDi, t

� � ð8:1Þ

The problem constraints consist of the thermal units, power system, natural gas
network, and interconnection of these two system constraints, which are discussed in
the following.
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8.2.1 Thermal Units and Power System Constraints

Generated power by each plant is limited to its maximum and minimum values as
shown in (8.2). The ramp rates of units are dictated by (8.3) and (8.4). Minimum
on/off time constraints for units are given in (8.5) and (8.6). Equation (8.7) repre-
sents power balance on each bus. Finally, transmitted power through the line and line
capacity constraints are defined as (8.8) and (8.9), respectively.

Pmin
i Ii, t � Pi, t � Pmax

i Ii, t ð8:2Þ
Pi, t � Pi, t�1 � RUi ð8:3Þ
Pi, t�1 � Pi, t � RDi ð8:4Þ

X on
i, t�1 � T on

i

� �
Ii, t�1 � Ii, tð Þ � 0 ð8:5Þ

X off
i, t�1 � T off

i

� �
Ii, t � Ii, t�1ð Þ � 0 ð8:6Þ

XNUb

i¼1

Pi, t þ
XNRb

r¼1

Pr, t þ
XNJb
j¼1

Dj, t ¼
XNLb
l¼1

PFL, t ð8:7Þ

PFL, t ¼
δb, t � δb0, t
� �

XL
ð8:8Þ

�PFmax
L � PFL, t � PFmax

L ð8:9Þ

8.2.2 Natural Gas System Constraints

Gas transmission network transmits the natural gas from providers to natural gas
consumers. Natural gas flow through the pipeline is defined as a second-order
function of gas pressure at first and last end of the pipe given by (8.10) and (8.11).
The value of constant pipeline factor Cm,n depends on temperature, length, diameter,
friction, and gas composition. Natural gas pressure at each node is limited to its
maximum and minimum value as given in (8.12). Natural gas producers such as gas
wells and/or gas storage units at the corresponding nodes have maximum and
minimum values as shown in (8.13). Limit of natural gas load and natural gas
balance at each node is given in (8.14) and (8.15), respectively.

Fpl, t ¼ sgn πm, t; πn, tð Þ Cm,n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2m, t � π2n, t
�� ��q

ð8:10Þ

sgn πm, t; πn, tð Þ ¼ 1 πm, t � πn, t
�1 πm, t � πn, t

�
ð8:11Þ
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πmin
m � πm, t � πmax

m ð8:12Þ
Umin

sp � Usp, t � Umax
sp ð8:13Þ

Lmin
l � Ll, t � Lmax

l ð8:14Þ
XNGSm
sp¼1

Usp, t �
XNGLm
l¼1

Ll, t ¼
XNPLm
pl¼1

Fpl, t ð8:15Þ

8.2.3 Electricity and Natural Gas Networks Coupling
Constraints

Gas-fired plants are the largest industrial users of natural gas, whose production
capacity is dependent on natural gas transmission services. The value of natural gas
consumed by the gas-fired units to generate electric power is reported in (8.16).
Gas-fired units account as the main consumers of natural gas connected to natural
gas network as (8.17). The daily consumption of natural gas by these units should
not exceed the limit (8.18).

Fgas unit
i, t ¼ αi þ βiPi, t þ γiP

2
i, t ð8:16Þ

Ll, t ¼ Fgas unit
i, t i2GU ð8:17Þ

XNT
t¼1

Fgas unit
i, t � FUmax

i i2GU ð8:18Þ

8.3 IGDT-Based Uncertainty Modeling

In this chapter, wind power uncertainty is described using IGDT technique. The
proposed method does not need unnecessary information such as the probabilistic
distribution function of stochastic variables and fuzzy logic membership. Unlike
other stochastic programming techniques which are based on scenario making, the
results enhanced by IGDT technique are very precise and valuable. The following
section describes the IGDT optimization technique.

f ¼ min
X

f X;Ψð Þð Þ ð8:19Þ

Hi X;Ψð Þ � 0 8i2Ωineq ð8:20Þ
Gi X;Ψð Þ ¼ 0 8j2Ωeq ð8:21Þ

Ψ2U ð8:22Þ
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where uncertain parameter Ψ is denoted as input and U describes the set of
uncertainties in the behavior of uncertain input parameter. The objective function
f (X,Ψ) depends on decision variable X and uncertain input parameter Ψ. Mathe-
matical description of the set of uncertainties is formulated as:

U ¼ U
�
Ψ; α

� ¼ Ψ :
Ψ� Ψ
Ψ

���� ���� � α

� 	
ð8:23Þ

whereΨ is the predicted value of Ψ. Also, α is defined as the maximum deviation
of uncertain parameter from the predicted amount, which is denoted as unspecified
radius of uncertainty for decision-making. Any strategy considering Eqs. 8.19, 8.20,
8.21, and 8.22 and assuming zero deviation is called base case (BC) and defined as:

f b ¼ min
X

f
�
X;Ψ

�� � ð8:24Þ

Hi

�
X;Ψ

� � 0 8i2Ωineq ð8:25Þ
Gi

�
X;Ψ

� ¼ 0 8j2Ωeq ð8:26Þ

Implementing the BC optimization strategy results some value for objective
function which could not be reliable results, because practically α could be a
different value than zero. Therefore, to respond to uncertain parameter by
decision-maker, a risk-averse strategy should be performed. The following mathe-
matical model describes the risk-averse strategy.

ℜC ¼ max
X

α ð8:27Þ

Hi X;Ψð Þ � 0 8i2Ωineq ð8:28Þ
Gi X;Ψð Þ ¼ 0 8j2Ωeq ð8:29Þ

f X;Ψð Þ � ΔC ð8:30Þ
ΔC ¼ 1þ βCð Þf b X;Ψð Þ ð8:31Þ

Ψ� Ψ
Ψ

���� ���� � α ð8:32Þ

0 � βC � 1 ð8:33Þ

where the critical value of objective function (ΔC) which is system operation cost is
determined by decision-maker as (8.30). ℜC is the uncertainty radius of Ψ. βC is
defined as the degree of robustness of operation cost increase with respect to base
value and determined by decision-maker. As a result, IGDT-based robust SCUC for
coordinated electricity and gas networks is represented as:
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OFb ¼ min
XNT
t¼1

XNU
i¼1

FC
i Pi, tð Þ þ SUi, t þ SDi, t

� �( )
Pr, t¼P^

r, t
s:t: 2� 18

ð8:34Þ

where OFb is objective function for deterministic case. In addition to (8.34), the
following constraints should also be considered.

ℜC ¼ max
X

α

s:t: 2� 18
ð8:35Þ

OF � 1þ βcð ÞOFb ð8:36Þ

Pr, t ¼ Pr, t
^

1� αð Þ ð8:37Þ

8.4 Case Study

In this chapter, a six-bus power system with a six-node gas network is used for
testing the introduced model which is shown in Fig. 8.1. The proposed mixed-integer
nonlinear programming (MINLP) model is applied in generalized algebraic model-
ing systems (GAMS) software and is solved employing DICOPT solver. The
modified six-bus system consists of three gas-fired thermal units, seven transmission
lines, and three loads that the specifications of units, transmission lines, and hourly
load distribution are summarized in [11]. In addition, a wind power plant with
maximum capacity of 20 MW is placed in bus 5. The unit start-up and shutdown
costs are considered ignorable in this study [12]. The six-node system of natural gas
includes five pipelines, two natural gas providers, and five natural gas. Natural gas
loads include three natural gas-fired units and two residential gas loads. The spec-
ifications related to the six-node system of natural gas are provided in [12].

To have the simulation results, the following cases are considered:

Case 1: SCUC without considering natural gas network constraints
Case 2: SCUC with considering natural gas network constraints
Case 3: IGDT-SCUC with considering natural gas network constraints

Case 1 The natural gas system constraints are ignored in this case. The hourly
commitment scheduling of units is shown in Fig. 8.2. The low-cost plant G1 is
committed in the whole scheduling time interval. The expensive plant G2 is com-
mitted between hours 13 and 19. In addition, unit G3 is committed between 11 and
22. Daily operation cost is equal to $73,821.11 in this case.

Case 2 The natural gas network constraints are considered in this case. The
scheduling of hourly commitment of plants is demonstrated in Fig. 8.3. Limitation
of natural gas transmission has reduced hourly generation dispatch of unit G1 which
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has resulted in an increase in the hourly commitment of units G2 and G3, so that the
total dispatched power by units G2 and G3 has increased from 313.46 MWh in case
1 to 551.33 MWh in this case. The daily operation cost in this case is $78,368.35,
which has a dramatic increment in comparison with case 1.

Case 3 The wind power forecast uncertainty is considered in this case. We change
βc from 0 to 0.05 to investigate the impact of the critical operation cost (OFc) on the
hourly production of plants and the wind power robustness. OFb is considered to be
$78,368.35 (case 2). As shown in Fig. 8.4, by increasing βc which has resulted in
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an increase in critical operation cost, the value of α has increased. The robustness
parameter also increases by increasing βc showing a higher range of wind
power forecast errors could be tolerated. As more explanation, for βc ¼ 0.02,
OF ¼ (1+0.02) � 78,368.35 ¼ $79,935.71 is guaranteed if none of the hourly
wind power forecast errors are more than α¼0.28 or 28%. In addition, Fig. 8.5 shows
the hourly generation dispatch of units G1 and G3 for two different values of α. As
can be seen, by increasing the maximum radius of wind power uncertainty, hourly
generation dispatch of units G1 and G3 has been increased which has resulted in an
increase in the daily operation cost.

8.5 Conclusions

This chapter solved a problem of robust security-constrained unit commitment for
coordinated electricity and natural gas networks with integration of wind power
plant. The authors also modeled natural gas delivery to gas-fired units. Considering
natural gas network model resulted in some increases in hourly participation of
expensive units and also in daily operation cost. IGDT was implemented to charac-
terize the wind power uncertainty faced by independent system operator (ISO).
The introduced scheme enables ISO to adjust conservatism of the scheduling
approach by changing the amount of the operation cost deviation factor. In fact,
the proposed IGDT-based robust formulation determines a maximum critical
operation cost if the hourly wind power fall within a robustness region.
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Chapter 9
Robust Short-Term Electrical Distribution
Network Planning Considering
Simultaneous Allocation of Renewable
Energy Sources and Energy Storage
Systems

Ozy D. Melgar-Dominguez, Mahdi Pourakbari-Kasmaei,
and José Roberto Sanches Mantovani

Nomenclature
For quick reference, the main symbols are described in this nomenclature. Other
symbols are described as needed in the main body.

A. Sets

ΩCB Set of capacities of capacitors banks

CT Set of types of conductors

L Set of network circuits

N Set of network nodes

T Set of time resolution

Y Set of planning horizon (year)
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B. Parameters

DoD Depth of discharging of the ESS unit
�Eess Maximum energy capacity defined by the ESS reservoir

f̂ D
t

Mean value for the network demand consumption at time interval t

f̂ G
pv

t
Mean value for the renewable output power at time interval t

�Ia Maximum current flow limit for the conductor type a

lmn Length of the circuit mn
�Mpv Maximum number of PV modules to be allocated

PD
m, t,y Active power demand at node m, time interval t, and year y

�Ppv Maximum power capacity defined by each PV module
�Pess Allowed power rating by the ESS converting unit

QD
m, t,y Reactive power demand at node m, time interval t, and year y

Qspc
b Predefined reactive power of the CB to be allocated of capacity b

R% Regulation range % of the VR to be allocated

Ra Resistance of the conductor type a

fV ,V Upper and lower limits of the voltage magnitude

Xa Reactance of the conductor type a

Za Impedance of the conductor type a

ΦS,ΦS Upper and lower limits of the substation power factor

φpv Predefined power factor for the PV-based DG source

ζcb
fx=sw

b
Allocation cost of the CB fixed/switchable type of capacity b

ζ cr
_a ,a Cost to replace the initial conductor _a by the new type a

ζG
t,y Cost of the energy supplied by the substation at time interval t and year y

ζo&mess

y
Operating and maintenance costs of allocated of ESS at year y

ζo&mpv

y
Operating and maintenance costs of allocated PV-based DG sources at year y

ζpv Investment cost of PV-based DG sources

ζpc
ess Investment cost of power converter unit of the ESS

ζrc
ess Investment cost of energy reservoir capacity of the ESS

ζvr Investment cost of VR allocation

C. Variables

�Ccb
m

Integer variable that defines the capacity of the installed CB at node m

Ccb
m, t,y

Integer variable that defines the number of modules in operation of the installed CB at
node m, time t, and year y

E ess
m, t,y Stored energy of the installed ESS at node m, time t, and year y

~E ess
m

Energy storage capacity of the installed ESS at node m

f Dt Electricity demand factor at time interval t

f G
pv

t,y
Renewable generation power factor at time interval t and year y

Imn,a,t,y Variable that defines the square of current flow at circuit mn, cable a, time t, and year y

(continued)
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Mpv
m Integer variable that defines the number of installed PV modules at node m

Pmn,a,t,y Active power flow at circuit mn, cable a, time interval t, and year y

Pessc
m, t,y

Charging active power of the installed ESS at node m, time interval t, and year y

Pessd
m, t,y

Discharging active power of the installed ESS at node m, time interval t, and year y

~P ess
m

Power capacity of the installed ESS in node m

Ppv
m, t,y Available output power of the installed PV-based DG source at node m, time interval t,

and year y

PS
t,y Active power supplied by the substation at time interval t and year y

Qmn,a,t,y Reactive power flow at circuit mn, cable a, time interval t, and year y

Qcb
m, t,y

Reactive power supplied by the installed CB at node m, time interval t, and year y

Qpv
m, t,y Reactive power generated by the PV-based DG source at node m, time interval t, and

year y

QS
t,y Reactive power supplied by the substation at time interval t and year y

Um,t,y Variable that defines the square of the voltage magnitude at node m, time interval t, and
year y

U
_

m, t,y
Auxiliary variable to control the square of voltage magnitude by the installed VR at
node m, time interval t, and year y

xcrmn,a Binary that defines the new conductor type a at circuit mn

xessm Binary variable that defines the allocation of ESS at node m

x fx=swm,b
Binary variable that defines the type of CB (fixed or switchable) to be installed at node
m of capacity b

xvrm Binary variable that defines the VR allocation at node m

9.1 Introduction

Increasing the integration of renewable-based sources and the necessity of higher
efficiency of the electrical distribution network (EDN) are the challenges that the
distribution companies (DISCOs) are facing with and oblige them to improve the
energy quality and obtain an efficient and low-carbon emission EDN. In technical
terms, DISCOs should investigate strategies to satisfy several objectives simulta-
neously and ensure proper performance of the network and thus guarantee the
supplied energy to end consumers. Consequently, the DISCO to fulfill the require-
ments and preferences of the consumers may use classical strategies such as short-
term planning actions.

The short-term planning of EDN proposes investment alternatives for short
horizon of 1 up to 5 years to effectively manage the voltage magnitude, network
power factor, and active and reactive power flow and to reduce the energy losses
of the network. To address these issues, some actions such as sizing and placement
of capacitor banks (CBs), allocating of voltage regulators (VR), replacing of
conductors at overloaded circuits, reconfiguration and load transfer among the
feeders, and tap-changing of distribution transformers are usually applied in a
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short-term plan [1–4]. On the other hand, finding a high-quality solution is another
issue to be addressed. In this regard, several approaches have been proposed to solve
this planning problem. These approaches can be classified by (1) the utilized solution
method, (2) the objective to be optimized, and (3) the planning actions to be
considered, among others [5].

In recent years, by considering the emergence of the renewable energy-based
sources, the performance of the EDN has been altered mainly due to the prominent
level of uncertainties associated with the intermittent operation of renewable energy-
based technologies. To address this issue, sophisticated optimization techniques
have been proposed to properly handle the uncertainty-based models in multiple
instances. Due to the significant importance of determining an appropriate EDN
expansion plan, several planning actions considering renewable energy-based
sources integration have been explored [6]. To this end, the authors in [7] presented
an integrated planning framework considering renewable-based dispatchable dis-
tributed generation (DG) units and reactive power support devices. To solve this
problem, a hybrid approach taking the advantages of genetic algorithm (GA) and
Tabu search method was used. To allocate renewable-based DG sources considering
CBs, a non-dominated sorting GA was proposed in [8] while handling two criterion
functions. In [9], a stochastic approach was proposed to maximize the hosting
capacity of the renewable-based DG sources, without requiring a network upgrade.
In this approach, the energy losses and load consumption were minimized consid-
ering the efficient energy usage. The authors in [10] proposed a two-stage stochastic
mixed-integer conic programming approach to address the shortcoming of
non-convex EDN planning models while taking into account renewable energy
sources. Besides the conic model, a hybrid approach was also used in pre-solving
stage to facilitate finding a feasible solution. However, the robust programming
approach is an effective way to address the uncertainties and has been studied and
applied in different fields. The electric power system, due to the huge amount of
uncertainty, has dedicated plenty of attention to this paradigm [11]. A featured
application was presented in [12] where a two-stage robust programming model
was used for optimal placement of renewable energy-based DG sources in
microgrids. In this approach, several cases were analyzed to show its applicability
as a suitable planning tool. In [13], a transmission expansion planning problem was
developed to address the uncertainty related to the demand growth and the avail-
ability of generation via a two-stage robust programming model. A strategic tool for
energy storage placement in transmission network considering renewable energy-
based sources was presented in [14]. In this proposal, the uncertainty was modeled
via a discrete set, and by using two-stage robust programming, a hierarchical
planning scheme was formulated. In [15], a two-stage robust optimization was
developed to handle the electric distribution system planning scheme against natural
disasters in which the most reliable plan under the worst-case scenario was deter-
mined. A trilevel multi-year convex planning model that identifies the timing
of feeder’s reinforcements and location and capacity of dispatchable/renewable
wind-based DG sources was developed in [16]. To solve such complex model, a
decomposition algorithm using primal and dual cutting planes was developed.
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Therefore, to improve the convergence of the decomposition algorithm, the power
flow equations were convexified to obtain a tractable trilevel model. Analogously, a
two-stage robust programming model to solve the short-term planning problem
considering renewable energy-based DG units was presented in [17]. In this pro-
posal, an integrated planning scheme with multiple alternatives to improve the
performance of an EDN was presented to duly address the uncertainties in demand
and renewable energy production.

On the other hand, there is a mismatch of the time between renewable power
generation and power demand. Thus, to address this mismatch, energy storage
systems (ESSs) have been considered as a viable solution. These systems allow
the storage of excess energy in periods with low demand to be utilized during the
peak periods and, consequently, provide higher flexibility for the network. Addi-
tionally, such technology enables significant advantages such as frequency regula-
tion, voltage control, and energy management, among others. Therefore, considering
the advantages of this technology, the ESS planning problem has received compel-
ling importance in the last decade, for which several approaches have been proposed
[18]. In [19], an approach for sizing and placement of ESS problem in distribution
systems was presented. The aim of this approach was reducing the voltage fluctu-
ations as a result of high photovoltaic technology (PV) penetration, while a GA was
used to solve the bi-level optimization model. A mixed-integer linear programming
(MILP) model to represent the problem of siting and sizing of CBs, PV-based DG
sources, and ESSs in EDN was developed in [20]. This approach was based on a
deterministic environment where uncertainties relating to demand and renewable
output power were considered via external indexes. A multi-objective optimization
model was proposed in [21] aiming at optimal sizing and allocation of ESS taking
into account minimizing the energy losses and total cost associated with the instal-
lation of renewable-based DG sources and ESS, simultaneously.

In this chapter, a reinforcement plan for electrical distribution network consider-
ing classical alternatives such as VR and CB allocation, conductor replacement, as
well as sizing and placement of PV-based DG sources and ESSs is presented. These
alternatives are duly represented in the optimization model where the cost of
supplied energy and the total investment cost are minimized. Inherently, this opti-
mization problem is represented by a non-convex mixed-integer nonlinear program-
ming (MINLP) model. Although an efficient MINLP model via a resourceful recast
method results in finding a proper solution, the globality of the optimal solution
cannot be guaranteed [22]. Therefore, to handle such complex model and to guar-
antee the optimal global solution, linearization techniques are applied to obtain an
approximated convex (MILP) model. To study the uncertainties related to the
demand and solar irradiation of PV systems, the deterministic MILP formulation is
transformed into a two-stage robust optimization model, and the problem becomes a
trilevel framework. This trilevel optimization model is a tough problem which
cannot be handled directly by using classical optimization techniques or commercial
solvers. Consequently, the C&CG decomposition algorithm is applied in a hierar-
chical environment. To validate and analyze the effectiveness and potential of the
proposed approach, a distribution network of 42-node is considered in detail.
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Therefore, the significant contributions of this chapter can be summarized as
follows:

• Proposing a suitable robust programming model for addressing the uncertainties
related to the demand and renewable generation in the EDN planning problem.
This approach ensures the fulfillment of technical and operational requirements
against the worst realization within an uncertainty interval.

• Considering classical planning actions simultaneously with sizing and placement
of PV-based DG sources and ESSs in the proposed robust decision-making tool to
solve the short-term EDN planning problem. This provides a set of investment
alternatives to ensure the quality and reliability of the energy provided for the end
users.

• Applying an integrated hierarchical framework based on MILP models for short-
term EDN planning problem that effectively guarantees the optimal global
solution using available solvers.

9.2 Problem Formulation

Traditionally, planning actions such as allocating the CB and VR and replacing the
conductors are performed to minimize technical energy losses and to enhance the
voltage profile of the EDN. In this section, the short-term planning actions are
considered with sizing and placement of ESS and renewable energy-based sources,
specifically PV-based sources, simultaneously. Evidently, this problem is formu-
lated as a non-convex MINLP model. To handle the non-convexity and nonlinearity,
appropriate linearization techniques are used to obtain a mixed-integer linear pro-
gramming (MILP) model in a deterministic environment. Due to the uncertainties of
weather conditions and electricity demand, the solution obtained using this deter-
ministic MILP model may not be accurate or practical if the forecasts are not precise.
Hence, the uncertainties related to the renewable energy generation and demand are
considered via a two-stage robust programming model.

9.2.1 EDN Steady-State Operation Constraints

The evaluation of the steady-state operating condition of an EDN is determined by
using a power flow tool. This power flow provides a set of specific information of the
EDN’s state such as voltage magnitudes, active and reactive power flows, power
losses, current flows in the branches, and phase angle for each node. Mathematically,
this condition is represented by a set of nonlinear equations. To obtain its solution,
iterative methods have been developed in the literature [23, 24]. This formulation
can be used as a set of constraints in order to formulate a conventional optimization
problem. Therefore, unlike these iterative methods, the steady-state operation point
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of an EDN can be determined using classical optimization techniques. In this regard,
a well-known approach to model the steady-state operation condition of an EDN is
presented in this subsection. The following definitions should be declared before
presenting the formulation:

(a) The EDN is represented by a monophasic equivalent system.
(b) The EDN operates with a radial topology.
(c) The EDN loads are represented by constant active and reactive power.

To formulate the power flow of an EDN, the voltage drop at the circuit mn is
considered as the difference between the voltages at nodes m and n. This difference
is related to the product of the current flow and the impedance of the circuit.
Therefore, this expression is represented by (9.1):

V
!
m � V

!
n ¼ I

!
mn Rmn þ jXmnð Þ ð9:1Þ

where mn 2 L and L represents the set of circuits in the system and Rmn and Xmn

represent the resistance and reactance at circuit mn, respectively. The current flow

I
!
mn can be calculated using (9.2), which involves the active and reactive power flow

Pmn and Qmn, respectively:

I
!

mn ¼ Pmn þ jQmn

V
!
n

 !∗

ð9:2Þ

By substituting (9.2) in (9.1), the expression (9.3) is obtained:

�
V
!
m � V

!
n

�
V
!

∗
n ¼ Pmn � Qmnð Þ Rmn þ jXmnð Þ ð9:3Þ

Considering thatV
!¼ V∠θwhere V represents the voltage magnitude and θ stands

for the phase angle, (9.3) can be written as (9.4):

VmVn cos θmn þ jsenθmnð Þ � V2
n ¼ Pmn � jQmnð Þ Rmn þ jXmnð Þ ð9:4Þ

Hence, by matching real and complex parts at both sides of (9.4), considering the
square of the resulted expressions and using algebraic operations, (9.5) is obtained. It
is worth noting that, in this formulation, the angle difference is not considered, and
for this reason, this expression is defined by voltage magnitudes, current flow
magnitudes, and active and reactive power flows:

V2
n � 2 RmnPmn þ XmnQmnð Þ � Z2

mnI
2
mn � V2

m ¼ 0 ð9:5Þ

In order to calculate the current flow magnitude (I ) at circuit mn, Equation (9.6) is
used:
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V2
nI

2
mn ¼ P2

mn þ Q2
mn ð9:6Þ

Moreover, to conclude the steady-state operating representation, the balance of
power flow at node m is represented by (9.7) and (9.8):

X
nm2L

Pnm �
X
mn2L

Pmn þ RmnI
2
mn

� �þ PS ¼ PD
m ð9:7Þ

X
nm2L

Qnm �
X
mn2L

Qmn þ XmnI
2
mn

� �þ QS ¼ QD
m ð9:8Þ

where PS and QS are the supplied active and reactive power by the substation andPD
m

and QD
m are the active and reactive power demands at node m, respectively.

9.2.2 EDN Operational Constraints

To supply a high-quality service, operational limits in an EDN such as voltage
magnitude, current flow magnitude, and substation power factor must be fulfilled.
These constraints are shown in (9.9, 9.10, and 9.11), respectively:

V � Vm � V ; 8m2N ð9:9Þ
0 � Imn � �Imn; 8mn2L ð9:10Þ

�PS tan cos �1ΦS
� � � QS � PS tan

�
cos �1ΦS

� ð9:11Þ

where in (9.9), V and V stand for the lower and upper bounds of the voltage
magnitude; the current magnitude of circuit mn is bounded by the maximum current
�Imn in (9.10); and in (9.11), the reactive power, supplied by the substation, is limited
by the considering predefined lower and upper power factor bounds ΦS and ΦS,
respectively.

9.2.3 Planning Action Constraints

Investment alternatives such as VR allocation, replacement of overloaded circuits’
conductor, and sizing and placement of CBs, PV-based DG sources, and ESSs are
considered in an EDN to maximize its efficiency via a short-term plan. The planning
horizon is represented by the set Y where this set contains all planning years y to be
analyzed. In order to obtain an appropriate plan, a year y is represented by a time
resolution T, which is divided into time intervals t that contain the information
related to the demand, renewable energy output, and energy cost.
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9.2.3.1 Capacitor Banks, Voltage Regulators, and Conductor
Replacement

In technical terms, the CBs are classified as fixed and switchable devices. The fixed
CBs provide reactive support, while the switchable brings greater flexibility to the
system to avoid overvoltage in low-demand periods and undervoltage in peak-
demand periods. Considering both CB types, the set ΩCB contains characteristics
such as the type of CB, capacity, and total investment cost associated with the type
and capacity. The mathematical model of CB operation and allocation is described in
(9.12, 9.13, 9.14, 9.15, 9.16, 9.17, and 9.18):

Qcb
m, t,y ¼ Ccb

m, t,yQ
spc
b ; 8m2N, t2T , y2Y ð9:12Þ

0 � �Ccb
m �

X
b2ΩCB

bx fx
m,b þ

X
b2ΩCB

bxswm,b; 8m2N ð9:13Þ

�Ccb
m � Ccb

m, t,y þ
X

b2ΩCB

bxswm,b; 8m2N, t2T , y2Y ð9:14Þ

0 � Ccb
m, t,y � �Ccb

m ; 8m2N, t2T , y2Y ð9:15ÞX
b2ΩCB

x fx
m,b þ

X
b2ΩCB

x swm,b � 1; 8m2N ð9:16Þ
X

b2ΩCB

x fx
m,b � 1;

X
b2ΩCB

x swm,b � 1; 8m2N ð9:17Þ

x fx
m,b, x

sw
m,b2 0; 1f g; 8m2N ð9:18Þ

The reactive power injection Qcb
m, t,y for each installed CB in node m at time t of

year y is defined by (9.12). This reactive power injection depends on the modules in
operation, Ccb, and the specified reactive powerQspc

b of the capacitor b. The capacity
and capacitor type, fixed or switchable, to be allocated is determined by the products
b � x fx and b � xsw in (9.13). To choose the best type of CB to be installed, constraints
(9.14) and (9.15) are considered; CB is fixed if Ccb ¼ �Ccb and is switchable if
Ccb < �Ccb. On the other hand, (9.16) is used to guarantee that only one type of CB
can be installed at node m, while the capacity of the selected type of CB, fixed or
switchable, is defined by (9.17). Finally, (9.18) represents that the decision variables
should be binaries.

To allocate VR in an EDN, this device must operate in an appropriate regulation
range to improve the voltage magnitude drop. Commercially, different regulation
ranges can be found, and it is defined by �R%; this regulation range adds more
flexibility to adjust the voltage magnitude. The mathematical model of operation and
allocation of VRs is represented as follows:

Vm ¼ 1þ R%
tapn
Tap

� �
Vn ð9:19Þ
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�xvrn Tap � tapn � xvrn Tap ð9:20Þ
xvrn 2 0; 1f g; 8n2N ð9:21Þ

The controlled voltage magnitude at node n is represented by (9.19). The con-
straint (9.20) stands for the lower and upper bounds of the tap position, which should
be an integer variable tap. The binary nature of the variable xvrn is defined by (9.21);
this variable defines the location of the VR.

To obtain an economically optimal operation of EDN, the technical and financial
characteristics of conductor types are prominent issues to be defined. This informa-
tion is used for replacement of conductors of overloaded circuits. The optimal
conductor replacement is done by choosing a type that its thermal capacity can
endure peak loads considering the economic aspects. From this perspective, the set
CT is developed, so that the conductor types, thermal capacity, and replacement cost
are characterized. From the mathematical standpoint, this decision process is defined
by the binary variable xcrmn. This variable defines that for circuit mn, the initial
conductor _a will be replaced by the new conductor type a and a replacement cost
is associated.

9.2.3.2 PV-Based Sources and Energy Storage Systems

In this formulation, the PV is served for the renewable energy-based system. The
PV-based DG source model, which is dependent on the cell temperature, transforms
solar irradiance into the electricity. To site and size these sources in an EDN, the
integer variable Mpv

m is used where m defines the location, and the value of �Mpv

defines the installed capacity. The mathematical model for sizing and placement of
PV-based DG sources is represented as follows:

Ppv
m, t,y ¼ Mpv

m
�Ppvf G

pv

t,y ; 8m2N, t2T , y2Y ð9:22Þ

Qpv
m, t,y

��� ��� � Ppv
m, t,y tan cos �1φpv

� �
; 8m2N, t2T , y2Y ð9:23Þ

0 � Mpv
m � �Mpv; 8m2N ð9:24Þ

The available PV output power that depends on the PV output power factor

f G
pv

t,y

� �
, the modules to be installed, and its maximum power capacity

�
�Ppv
�

is

represented in (9.22). To adjust reactive power injection, the injected active power
and the predefined power factor (φpv) of PV-based DG sources are taken into
account via (9.23). The size of each PV-based DG source is determined by (9.24)
where the number of candidate modules to be installed is limited by �Mpv.

On the other hand, ESSs are categorized by the technology type, storage duration,
and cost, among others. However, most of these characteristics can be defined in
generic form for all types of ESSs. Generally, the operation of an ESS is modeled by
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the power conversion module and the storage unit. In this work, these properties are
considered in the mathematical model to optimally site and size these devices in an
EDN. The mathematical model of operation and installation of an ESS is represented
by (9.25, 9.26, 9.27, 9.28, 9.29, 9.30, and 9.31):

Eess
m, t,y ¼ ηtPessc

m, t,y �
1
η
tPessd

m, t,y þ Eess
m, t�1,y � ρEess

m, t�1,y; 8m2N, t2T , y2Y ð9:25Þ

~E ess
m DoD � Eess

m, t,y � ~E ess
m ; 8m2N, t2T , y2Y ð9:26Þ

0 � Pessd
m, t,y � ~P ess

m ; 8m2N, t2T , y2Y ð9:27Þ
0 � Pessc

m, t,y � ~P ess
m ; 8m2N, t2T , y2Y ð9:28Þ

0 � ~P ess
m � �Pessxessm ; 8m2N ð9:29Þ

�Eessxessm � ~E ess
m � �Eessxessm ; 8m2N ð9:30Þ

xessm 2 0; 1f g; 8m2N ð9:31Þ

The stored energy of installed ESS at node m, time t, and year y is represented by
(9.25). As can be seen from the right-hand side of (9.25), this stored energy depends
on the charging and discharging energy (first and second terms, respectively), the
previous state charge (third term), and also the self-discharge (fourth term). Initially,
t ¼ 1, the state of charge is the minimum available stored energy, considering the
depth of discharging (DoD). On the other hand, (9.26) defines the capacity of the
ESS reservoir. The real power rating of the installed ESS is bounded by (9.27) and
(9.28). It is worth mentioning that to site and size an ESS at node m, the maximum
storage capacity (~E ess

m ) and the allowed power rating (~P ess
m ) are defined by (9.29) and

(9.30). Therefore, the DISCO defines the maximum energy storage capacity and the
allowed power rating, �Pess and �Eess, respectively. The selected capacity depends on
the EDN requirements and economic aspects. Finally, (9.31) guarantees the binary
nature of the decision variable to site and size an ESS in the EDN.

9.2.4 Deterministic Optimization Model

This subsection presents the formulation of the proposed framework to obtain the
most economical short-term plan of an EDN. In order to obtain a proper formulation,
it is considered that the planning scheme is based on a central context, where all the
alternatives are owned and operated by the DISCO. This planning model minimizes
(1) energy cost supplied by the substation and (2) investment cost corresponding to
the planning alternatives. Simultaneously, this model determines the (a) nominal
capacity, location, and type of CBs to be installed; (b) optimal place of VRs
controlling the voltage magnitude drop; (c) replacement of overloaded circuits’
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conductor; (d) capacity, location, and number of PV-based DG sources to be
installed; and (e) location, nominal capacity of the reservoir, nominal power rating,
and number of ESSs to be installed.

The mathematical model to represent this planning problem is inherently a
non-convex MINLP model. In order to remedy this issue, proper linearization
methods are applied to obtain an approximated MILP model. Initially, steady-state
operating constraints contain quadratic variables (V2

m, I
2
mn ); however, for the sake

of simplicity, these quadratic variables are replaced by new variables as follows: V2
m

¼ Um and I2mn ¼ Imn. In such a way in (9.6), the left-hand side term represents the
product of new variables, UI, and on the right-hand side are the summation of
quadratic variables (P2

mn þ Q2
mn ). In this regard, the right term of (9.6) is approxi-

mated using piecewise linearization, while in the left term, an estimated voltage
magnitude can be used (V∗

n ¼ V nom
n ), as can be seen in (9.37, 9.38, 9.39, 9.40, 9.41,

9.42, 9.43, 9.44, and 9.45). On the other hand, the expression (9.19) needs to be
modified to consider the new variable representing the square of the voltage mag-
nitude (U ). In this regard, the left- and right-hand terms are squared, and using
algebraic methods, the product of the square of the integer variable tap and U is
obtained. Therefore, due to the complexity of this expression, an approximated
model to represent the VR operation is utilized, (9.49) and (9.50). In this formula-
tion, the tap steps are considered with continuous steps, for which the voltage
magnitude at node n can vary within %R.

The approximated MILP model is presented in (9.32–9.51). The objective func-
tion is presented in (9.32) and minimizes the (a) cost of the supplied energy by the
substation (first term), where ζG

t,y stands for the cost, ΔPS
t,y stands for the energy

supplied, andΔ is the weight to convert a year to the predefined time intervals (8760/
T ); (b) investment cost which corresponds with the fixed and switchable CBs
(second and third terms); (c) conductor replacement cost (fourth term);
(d) investment cost which corresponds with the VR allocation (fifth term);
(e) investment cost regarding the sizing and placement of PV-based DG sources
and its corresponding operations and maintenance costs (sixth and seventh terms);
and (f) investment cost of energy reservoir and power converter unit (eighth and
ninth terms), where the ninth term includes the operating and maintenance costs:

min
X
t2T

X
y2Y

ζG
t,yΔP

S
t,y þ

X
b2ΩCB

X
m2N

ζcb
fx

b x fx
m,b þ

X
b2ΩCB

X
m2N

ζcb
sw

b x swm,b

þ
X
a2CT

X
l2L

ζ cr
_a ,almnx

cr
mn,a þ

X
n2N

ζvrxvrn þ
X
m2N

ζpvM pv
m

þ
X
m2N

X
y2Y

ζo&mpv

y M pv
m þ

X
m2N

ζrc
ess ~E ess

m þ
X
m2N

ζpc
ess þ

X
y2Y

ζo&mess

y

 !
~P ess
m

ð9:32Þ

subject to (9.12, 9.13, 9.14, 9.15, 9.16, 9.17, 9.18, 9.22, 9.23, 9.24, 9.25, 9.26,
9.27, 9.28, 9.29, 9.30, and 9.31):
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X
mn2L

X
a2CT

Pmn,a, t,y �
X
nm2L

X
a2CT

Pnm,a, t,y þ RaInm,a, t,y
� �

þ PS
t,y þ Ppv

m, t,y þ Pessd
m, t,y � Pessc

m, t,y ¼ PD
m, t,y

ð9:33Þ

X
mn2L

X
a2CT

Qmn,a, t,y �
X
nm2L

X
a2CT

Qnm,a, t,y þ XaInm,a, t,y
� �

þ QS
t,y þ Qpv

m, t,y þ Qcb
m, t,y ¼ QD

m, t,y

ð9:34Þ

Um, t,y �U
_

n, t,y ¼ 2
X
a2CT

RaPmn,a, t,y þ XaQmn,a, t,y
� �� Zalmnð Þ2Imn,a, t,y
h i

ð9:35Þ

�
X
t2T

PS
t,y tan cos �1ΦS

y

� �
�
X
t2T

QS
t,y �

X
t2T

PS
t,y tan

�
cos �1ΦS

y

� ð9:36Þ

V∗
n, t,y

� �2
Imn,a, t,y ¼

X
r2κ

mp
mn,a, rΔ

P
mn,a, t,y, r þ

X
r2κ

mq
mn,a, rΔ

Q
mn,a, t,y, r ð9:37Þ

Pmn,a, t,y ¼ Pþ
mn,a, t,y � P�

mn,a, t,y ð9:38Þ
Qmn,a, t,y ¼ Qþ

mn,a, t,y � Q�
mn,a, t,y ð9:39Þ

Pþ
mn,a, t,y þ P�

mn,a, t,y ¼
X
r2κ

ΔP
mn,a, t,y, r ð9:40Þ

Qþ
mn,a, t,y þ Q�

mn,a, t,y ¼
X
r2κ

ΔQ
mn,a, t,y, r ð9:41Þ

0 � ΔP
mn,a, t,y, r � ΔS

mn ð9:42Þ
0 � ΔQ

mn,a, t,y, r � ΔS
mn ð9:43Þ

mp=q
mn,a, r ¼ 2r � 1ð ÞΔS

mn ð9:44Þ

ΔS
mn ¼

Vnom�I

κ
ð9:45Þ

V2 � Um, t,y � V 2 ð9:46Þ
0 � Imn,a, t,y � xcrmn,a�I

2
a ð9:47ÞX

a2CT

xcrmn,a ¼ 1 ð9:48Þ

1� R%ð Þ2U_n, t,y � Un, t,y � 1þ R%ð Þ2U_n, t,y ð9:49Þ

��V 2 � V2
�
xvrn � Un, t,y � U

_

n, t,y �
�
V 2 � V2

�
xvrn ð9:50Þ

xsw, x fx, xcr, xvr, xess2 0; 1f g ð9:51Þ

where the following sets are considered for the model m,n 2 N, mn 2 L, r 2 κ,
a 2 CT, t 2 T, and y 2 Y.
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In this model, (9.33) and (9.34) represent the active and reactive power balance,
respectively. In these equations, the integration of PV-based DG sources, ESSs, and
CBs is duly represented. The voltage magnitude drop is represented by (9.35); this
expression is the reformulation of (9.5) where the voltage drop is defined by the
selected conductor a at circuit mn. To control the annual substation power factor, the
expression (9.36) is considered. Equations (9.37, 9.38, 9.39, 9.40, 9.41, 9.42, 9.43,
9.44, and 9.45) represent the linear transformation of (9.6). In (9.37), the left-hand
side terms stand for the approximations of the square values of P and Q using the
variables ΔP and ΔQ, respectively, presented in (9.38, 9.39, 9.40, and 9.41). These
variables represent blocks that denote the lengths of the discretized segments over
the time. Partitions over the closed interval

	
0;Vnom�I



are generated through these

blocks where the summation of the discretized segments r should be equal to the sum
of two nonnegative auxiliary variables presented in the left-hand side of (9.40) and
(9.41). These blocks are limited by (9.42) and (9.43) where to satisfy the optimality
conditions, each block should be filled sequentially in ascending order until it
reaches the final point in the last segment, which is guaranteed by considering PS

in the objective function (9.32). Therefore, (9.6) can be approximated by linear
expressions [25]. Finally, the parameter mp/q stands for the slope of the segment r in
the linearization procedure, and it is defined by (9.44), where the maximum number
of segments is determined by (9.45). To define the voltage magnitude and current
limit expressions, (9.46) and (9.47) are considered, respectively. It is worth noting
that, in (9.47), the binary variable xcr was added to define the conductor type to be
placed at circuit mn, considering the current capacity of this conductor where only
one type can be selected (9.48). The mathematical model to allocate the VRs is
represented by the linear expressions (9.49) and (9.50). In these constraints, it is
assumed that the square of the voltage magnitude can vary due to (1 � R%)2; for the
sake of simplicity, the tap position is considered as a continuous variable.

9.2.5 Robust Programming Approach

The deterministic model presented in the Sect. 9.2.4 requires accurate data related to
output power operation of PV-based DG sources and electricity demand of an EDN.
However, the error is an inseparable part of predictions, and then, a nonviable
solution can be obtained from the deterministic model. Therefore, to consider the
prediction errors, the deterministic model is transformed into a robust optimization
model. The robust optimization determines an optimal immune solution under all the
possible uncertainty realizations in a predetermined uncertainty interval [26]. There-
fore, probability distribution functions are not required to represent uncertainty
parameters. However, the solution obtained from this optimization method tends
to be conservative where to guarantee the robustness of the solution, the objective
function could be impaired. In this regard, a two-stage robust programming was

158 O. D. Melgar-Dominguez et al.



presented as an approach to address this issue in a proper way. This formulation
consists in two hierarchical decision stages. The first stage determines the decisions
to be applied to obtain a partial solution without the uncertainty realization, while the
decision in the second stage is adjusted according to the first-stage information and
the uncertainty realization [27].

9.2.5.1 Uncertainty Interval

To formulate the two-stage robust optimization short-term planning model, the
uncertainty interval should be defined properly. Before introducing the uncertainty
interval, the mathematical formulation of active and reactive demands

PD
m, t,y;Q

D
m, t,y

� �
is represented by f Dt P

D
m,y; f

D
t Q

D
m,y

� �
to clarify its uncertainty

representation. The uncertainty interval aims at capturing the prediction errors in

demand factors f Dt
� �

and the renewable power output factors f G
pv

t,y

� �
. In this regard,

upper and lower limits of this interval are estimated using a certain confidence
interval. To build this uncertainty interval using the historical and statistical data,

it is considered that there exist k values for the demand factor f D
1ð Þ

t ; f D
2ð Þ

t ; . . . ; f D
kð Þ

t

� �
and k values for the renewable power output factor f G

pv 1ð Þ
t ; f G

pv 2ð Þ
t ; . . . ; f G

pv kð Þ
t

� �
in the

time interval t. Using these values, mean values
�
f̂ D
t ; f̂

Gpv

t

�
are obtained for both

uncertainty factors. In this work, for practical purposes, the uncertainty interval is
built through a confidence interval of 95% where the normal probability distribution
is used for the approximation. Therefore, the uncertainty interval for demand and
renewable power output factors is defined by (9.52) and (9.53), respectively:

f̂ D
t � Zα=2

σffiffiffi
k

p � f Dt � f̂ D
t þ Zα=2

σffiffiffi
k

p ð9:52Þ

f̂ G
pv

t � Zα=2
σffiffiffi
k

p � f G
pv

t � f̂ G
pv

t þ Zα=2
σffiffiffi
k

p ð9:53Þ

These intervals are defined by the mean values plus and minus to the product of

the critical value Zα/2 and the standard error σ ffiffi
k

p= , where σ and k are set to 0.3 and
30, respectively. On the other hand, to control the conservatism level of the solution
determined by the robust optimization model, expressions (9.54) and (9.55) are used.
The parameters

�
Γpv;Γpv

�
and

�
ΓD;ΓD

�
can adjust this uncertainty budget to manage

the dimension that the worst case can take [26]:

Γpv �
P
t2T

f G
pv

tP
t2T

f̂ G
pv

t

� Γpv ð9:54Þ
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ΓD �
P
t2T

f DtP
t2T

f̂ D
t

� ΓD ð9:55Þ

The uncertainty interval, described in (9.52) and (9.53), defines the variability
range of demand and output power factors, respectively. The uncertainty budget,
presented in (9.54) and (9.55), defines the relationship between output power and
demand factor concerning their mean values. It is worth noting that, when these
parameters

�
Γ;Γ

�
tend to 1, the output power and demand factor tend to their mean

values. In other case, when Γ < 1 and Γ > 1 implies that any value can be assumed
by the output power and demand factor between the uncertainty interval.

9.2.5.2 Two-Stage Robust Optimization Model

The robust framework tends to be a reactionary approach to deal with uncertain data.
To remedy this issue properly, a two-stage robust programming model was
presented in [27]. This model is transformed into a three-level structure where the
first level determines a partial solution (min-problem) via the decision variable
before the uncertainty realization. Nonetheless, the middle level (max-problem)
determines the uncertainty realization, while the lower level (min-problem) is the
reaction of the system due to the first- and middle-level decision. The robust
counterpart for the deterministic formulation presented in Sect. 9.2.4 is presented
as follows:

min
x,Mpv, ~Pess, ~Eess

X
b2ΩCB

X
m2N

ζcb
fx

b x fx
m,bþ

X
b2ΩCB

X
m2N

ζcb
sw

b x swm,b

þ
X
a2CT

X
l2L

ζ cr
_a ,almnx

cr
mn,aþ

X
n2N

ζvrx vrn þ
X
m2N

ζpvM pv
m

þ
X
m2N

X
y2Y

ζo&mpv

y M pv
m þ

X
m2N

ζrc
ess ~E ess

m þ
X
m2N

ζpc
ess þ

X
y2Y

ζo&mess

y

 !
~P ess
m

þ max
f D, f Gpv

min
I,P,PS,Q,QS,U

X
t2T

X
y2Y

ζG
t,yΔP

S
t,y

( )
ð9:56Þ

subject to (9.12, 9.13, 9.14, 9.15, 9.16, 9.17, and 9.18), (9.22, 9.23, 9.24, 9.25, 9.26,
9.27, 9.28, 9.29, 9.30, and 9.31), and (9.33–9.55).

This optimization problem describes a decision-making process where a
hierarchical structure is defined via the three-level model. In this problem, the first
level determines planning actions such as the (a) sizing and placement of switchable
and/or fixed CBs, (b) allocation of VRs for controlling the voltage drop,
(c) replacement of the overloaded circuits’ conductor, and (d) sizing and
placement of PV-based DG sources and ESSs. The second level determines the
uncertainty realization by considering the worst scenario within a predefined
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interval. Finally, the third level corresponds to the reaction of the planning
decision (first level) and uncertainty realization (second level).

9.3 Solution Scheme Method

Due to the trilevel structure, the proposed short-term EDN planning problem con-
sidering the sizing and placement of PV-based DG sources and ESSs is a complex
problem to be solved directly using commercial solvers. To address such difficulties,
decomposition algorithms can be used. In this work, to remedy this issue, an efficient
decomposition algorithm, column-and-constraint generation (C&CG), is used
[28]. This algorithm, for an uncertainty realization, dynamically generates con-
straints with recourse variables in the primal space. The C&CG by creating primal
cuts, which are usually more powerful than Benders decomposition algorithms,
requires fewer iterations to converge [28]. Consequently, in this chapter, the
C&CG decomposition algorithm is applied to solve such complicated short-term
planning problem.

9.3.1 Hierarchical Structure to Two-Stage Robust
Programming Problem

In order to apply the C&CG algorithm, the two-stage robust formulation presented in
the subsection 9.2.5 is recast into a hierarchical environment of a master problem
(MP) and subproblem (SP). To demonstrate the application of the C&CG algorithm,
the short-term planning problem is represented in generic form by (9.57, 9.58, 9.59,
and 9.60). In this generic form, the first level is represented by (9.57) and (9.58),
where (9.58) represents the investment limits and their decision variables by x in the
set X. On the other hand, (9.59) stands for the middle level where the uncertainty
variables are denoted by f in the set F. Finally, the variables of the lower level (9.60)
are represented by z in the set Ω(x∗, f∗). This set contains the equality and inequality
constraints [Ω( f∗, x∗) ¼ {G(x∗, f∗, z) ¼ b1;H(x

∗, f∗, z) � b2}] and ensures the
feasibility of the decision variables z. It is worth noting that this set is parametrized
by the solution obtained from the first and middle levels, x∗ ¼ x and f∗ ¼ f,
respectively:

min
x2X

cT1 xþ ψ ð9:57Þ

subject to:
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cT1 x � Π ð9:58Þ

ψ ¼ max
f 2F

δ

� 
ð9:59Þ

δ ¼ min
z2Ω f∗;x∗ð Þ

cT2 z

� 
ð9:60Þ

By using this generic form, the robust short-term planning problem is represented
in an MP and SP environment. In this regard, the MP is formulated via Eqs. (9.61,
9.62, 9.63, 9.64, and 9.65). The MP is a relaxation of the original two-stage robust
optimization problem, where its solution determines the lower bound (LB) of the
problem. In the MP, the dimensionality of the solution space increases by introduc-
ing a set of variables (z) in each iteration due to the realization o in the set O, and
iteratively this process provides tighter relaxations and stronger LBs [28]. The
solution of the MP defines the appropriate planning actions x, which is fixed in the
SP as x∗, while the SP defines the worst uncertainty realization f, and this informa-
tion is used in the MP as f ∗. Besides the planning action decisions, the MP defines
the optimal operation of CBs as well as of ESSs:

min
x2X

cT1 xþ η ð9:61Þ

subject to:

cT1 x � Π ð9:62Þ
η � cT2 zo; 8o2O ð9:63Þ

G x; f∗o ; zo
� � ¼ b1; 8o2O ð9:64Þ

H x; f∗o ; zo
� � � b2; 8o2O ð9:65Þ

On the other hand, the SP associated with this hierarchical structure is defined by
(9.66, 9.67, 9.68, and 9.69), and its solution defines the upper bound (UB) of the
problem. This SP represents a bi-level optimization problem, which cannot be solved
directly using classical optimization techniques or commercial solvers:

max
f 2F

δ ð9:66Þ

subject to:

δ ¼ min
z2Ω f ;xð Þ

cT2 z

� 
ð9:67Þ

G x∗; f ; zð Þ ¼ b1 ð9:68Þ
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H x∗; f ; zð Þ � b2 ð9:69Þ

In order to remedy this issue, by taking into account the KKT optimality
conditions, this bi-level problem is recast to a counterpart single-level MILP
model with corresponding constraints (9.71, 9.72, 9.73, 9.74, and 9.75). In this
regard, the KKT conditions are necessary and sufficient for optimality since the
lower problem (9.67, 9.68, and 9.69) is linear and thus convex [29]:

max
f , z

cT2 z ð9:70Þ

subject to:

G x∗; f ; zð Þ ¼ b1 ð9:71Þ
f 2	f ; �f 
;F�f ; f̂ � � Γ ð9:72Þ

∂
∂z

cT2 zþ λH x∗; f ; zð Þ þ γG x∗; f ; zð Þ� � ¼ 0 ð9:73Þ

0 � b2 � H x∗; f ; zð Þ � 1� uð Þ �M ð9:74Þ
0 � λ � u �M ð9:75Þ

From this SP problem, λ and γ stand for the dual variables corresponding to the
inequality and equality set of constraints, respectively. The uncertainty interval and
budget of the variables f are represented by (9.72). Expression (9.73) defines the
differentiating of the Lagrangian of the lower-level problem. Moreover, (9.74) and
(9.75) present the linearized expressions which correspond to (9.76), using binary
variables u and the big-M method:

H x∗; f ; zð Þ � b2 � 0
λ b2 � H x∗; f ; zð Þð Þ ¼ 0
λ � 0

ð9:76Þ

It is worth mentioning that, for this equivalent single MILP model, the linear
expressions (9.37, 9.38, 9.39, 9.40, 9.41, 9.42, 9.43, 9.44, and 9.45) are not an
appropriate representation of (9.6) since the performance of this linearization method
is guaranteed when it is minimized in the objective function [25]. Therefore, to
guarantee the optimal global solution in the SP, this piecewise approximation
requires being represented by an MILP model. In other words, binary variables are
necessary to guarantee that each block is filled sequentially in ascending order
considering the number of segments r [30]. Considering a MILP model to represent
this piecewise approximation, the KKT conditions cannot be applied to obtain an
equivalent single optimization problem. To remedy this complexity, it is proposed
to replace (9.37, 9.38, 9.39, 9.40, 9.41, 9.42, 9.43, 9.44, and 9.45) in the lower level
by (9.77):
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Imn,a, t,y V∗
n, t,y

� �2
¼ P∗

mn, t,y

� �2
þ 2P∗

mn, t,y Pmn,a, t,y � P∗
mn, t,y

� ��

þ Q∗
mn, t,y

� �2
þ 2Q∗

mn, t,y Qmn,a, t,y � Q∗
mn, t,y

� �� ð9:77Þ

This expression represents a linearization around an estimated operating point
(V∗,P∗,Q∗) to approximate the square of the current flow magnitude. The estimated
operating point can be obtained from conventional power flow or via another
optimization process. This point is estimated using the solution obtained from the
MP. This information is used to approximate the square of the current flow magni-
tude and to find the solution of the SP.

9.3.2 The Column-and-Constraint Generation Algorithm

In order to solve the two-stage robust optimization problem represented in an MP
and SP environment, the comprehensive procedure of applying the C&CG algo-
rithm, which is based on [28], is summarized as follows:

A. Initial step: (A.1) Set the initial value of the lower and upper bounds as LB¼ �1
and UB ¼ 1, respectively; (A.2) define the tolerance tol and the set O 2 ∅;
(A.3) define i as the iteration counter of the algorithm, and initialize this set to

1, and define O [ i; (A.4) for each o 2 O, define the initial value of f ið Þ 2	f ; �f 

and f ið Þ ¼ f oð Þ∗ .

B. MP step: In this step, solve MP ið Þ f oð Þ∗
� �

, and then update the lower by the

obtained solution (x,η), LB ¼ η, and submit x ¼ x∗ to the subproblem.
C. SP step: For this step, solve the SP(i)(x∗), denote the solution z and f, and update

the LB ¼ min UB; cT2 z
� �

.

D. Last step: If gap ¼ UB�LBð Þ
LB

∗
100

� �
� tol, then terminate the process; otherwise

update i ¼ i+1,O [ i and f (i) ¼ f (i�1), and go to the MP step.

To solve this optimization problem, in the initial step, the MP considers (9.63,
9.64, and 9.65) where the values of uncertain data within the interval are used as
initial data of the C&CG algorithm, and for the following iterations, the results of the
SP is used. This technique, by initiating from a feasible point, helps in reducing the
number of iterations in the C&CG.

9.4 Case Studies and Numerical Results

The two-stage robust formulation presented in this chapter is tested on an adapted
42-node real distribution network [31]. This section provides case studies applied to
this network under different conditions.
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9.4.1 Case Studies and Assumptions

In order to provide a proper analysis of the proposed planning framework, informa-
tion related to technical and financial terms, assumptions, and cases under different
conditions are presented in this subsection. A 42-node distribution system is used for
numerical analysis, as illustrated in Fig. 9.1. This distribution system contains
1 substation, 41 load nodes, and 41 circuits with different conductor types. The
conventional active and reactive demands are 1873 MW and 3.898 MVAr, respec-
tively. The voltage magnitude can vary between 0.95 p.u. and 05 p.u., while the
nominal medium voltage level is 13.8 kV [31]. The lower and upper limits of the
annual power are 0.95 and 1.00, respectively, where the delivered active power will
mainly define the reactive power supply by the substation. The VRs with a regula-
tion range of 10% and investment cost of $16.5 k are assumed. Switchable and fixed
CBs are considered with different capacities and installation cost in Table 9.1. In this
study, four different conductor types are considered to replace the conductors of the
system, the technical and financial characteristic of conductor types are presented in
Table 9.2, and this data information related with the classical short-term planning
actions was based on [2].

In this planning problem, PV-based DG sources are considered. The maximum
output of each PV module is 40 kW with a power factor of 0.99. The maximum
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Table 9.1 Technical and
economic information of CBs

CB installation cost

Qspc (kVAr) Fixed ($) Switchable ($)

300 4950.00 7450.00

600 5150.00 7650.00

900 6550.00 9550.00

1200 7500.00 10,150.00

1500 8075.00 10,950.00
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number of PV modules that can be installed at node m is set to 10 with an investment
cost of $30 k for each module; the operation and maintenance cost of each module is
$150; this cost increases annually by 5% [20]. Technical information of the ESS are
as follows: the maximum power rating is 300 kW; minimum/maximum energy
reservoir capacities are 1300 kWh and 4500 kWh, respectively; charging and
discharging efficiency is 90% with DoD of 0.3; and for the sake of simplicity, the
self-discharging in the ESS is disregarded. The capital costs of energy and power are
$90 per kWh and $300 per kW [32], respectively, while the operation and mainte-
nance costs are $50 per kW that increases annually by 5%.

In this analysis, a planning horizon of 3 years is considered with an annual
demand growth rate of 10%, while the energy cost increases in 2%. Each year is
divided into 24 time intervals; each time interval is represented by 1 h, thus Δ¼ 365.
In summary, as can be seen in Fig. 9.2, each time interval involves expected energy
cost, demand consumption factor, and PV output power factor. Accordingly, the
uncertainty intervals for PV output power factor and electricity demand factor are
built using the procedure explained in subsection 9.2.5. To adjust the conservatism
level, parametersΓandΓare set to 0.90 and 1.05, respectively. It is worth mentioning
that these parameters can be defined considering the decision-maker’s criterion.
Finally, the optimality gap of the C&CG algorithm is set to 0.5%.

To validate the proposed planning model, three different cases are studied.
However, before starting the planning process, a conventional power flow is used

Table 9.2 Data and replacement cost of conductor types

Data of conductors Conductor (a)–ζ cr
_a ,a (103 $/km)

Type ( _a ) R + jX (Ω/km) �I AA2 AA3 AA4

AA1 0.762 + j0.708 300 14.00 22.00 29.00

AA2 0.599 + j0.661 350 – 17.50 25.00

AA3 0.369 + j0.415 450 – – 20.50

AA4 0.321 + j0.355 600 – – –
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Fig. 9.2 Expected profile of demand consumption factor (a), energy cost (b), and PV output power
factor (c)
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to perform a pre-analysis to learn the initial condition of the 42-node distribution
network in the first year. For this analysis, the uncertainty in demand is disregarded,
and the mean values are considered. Under the initial conditions, the distribution
network reveals several violations in aspects such as substation power factor, with a
power factor of 0.9448, and voltage magnitude limits, as can be seen in Fig. 9.3.
Under this infeasible operation, the cost of the supplied energy by the substation was
$4,401.68 k.

To improve the performance of this network, several planning alternatives are
considered. The following cases represent these alternatives:

Case I: Considering the classical short-term planning actions such as conductor
replacement and CB and VR allocation

Case II: Considering VR and CB allocation and siting and sizing of PV-based DG
sources

Case III: Considering siting and sizing of CBs, PV-based DG sources, and ESSs

9.4.2 Numerical Results and Analysis

This subsection presents numerical results obtained by the proposed robust planning
model. The proposed model is developed in the mathematical language AMPL, and
to obtain the solution of the problem, commercial solver CPLEX is used.

9.4.2.1 Case I: Classical Short-Term Planning Alternatives

This case aims to evaluate the proposed EDN planning framework considering
uncertainty in electricity demand using classical investment alternatives such as
allocation of the CBs and VRs and replacement of the conductors. The obtained
solution for this case shows a total investment cost of $57.25 k that is summarized as
follows: (a) allocation of a switchable CB with $10.95 k investment cost; (b) alloca-
tion of a VR with $16.50 k total investment cost; and (c) conductor replacement of
3 circuits with $29.80 k total cost.

This planning scheme demonstrates that using classical planning alternatives, the
operation of an initially violated 42-node distribution network can be improved. For
comparative purposes, the same conditions of this case were considered in a
deterministic environment where the mean value of electricity demand considering
24 time intervals was used. Under this condition, the objective function was
$14,866.04 k, which shows about 7.67% lower outcome than the robust solution
(considering investment cost and LB value in Table 9.3). Comparing the cost of the
supplied energy of the substation obtained by the robust and deterministic model in
Table 9.3 shows that the robust solution was 7.77% greater than the deterministic
solution. This higher cost of the supplied energy by the substation using the robust
framework is a result of considering the uncertainty realization.
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9.4.2.2 Case II: VR and CB Allocation and Siting and Sizing of PV-
Based DG Sources and ESSs

In this case, allocation of devices to control the voltage magnitude and reactive
power flow is considered with siting and sizing of PV-based DG sources and ESSs.
The solution obtained from this analysis has a total cost of $476.46 k. The planning
actions are summarized as follows: (a) allocation of two fixed CBs with total
investment cost of $16.85 k; (b) allocation of two VRs with a total cost of
$33.00 k; and (c) installation of 14 PV modules in the network, where these PV
modules have been distributed in two PV-based DG sources. This planning action
has a total cost (including maintenance and operation cost) of $426.61 k.

This solution shows that by considering CB and VR allocation and siting and
sizing of PV-based DG sources, the performance of an initially violated 42-node
distribution network can be improved in technical, operational, and economic
aspects. Comparing the cost of the supplied energy in cases I and II (see
Table 9.3), this value is 92% smaller; this benefit was obtained via allocation of
PV-based DG sources. Similar to case I, the same conditions of this case were
considered via a deterministic approach. The deterministic objective function was
$14,959.40 k, which is 7.80% lower than the robust solution. The robust solution
determines a higher cost of the energy supplied by the substation, compared with the
deterministic solution (see Table 9.3), to attend the uncertainty realization.

9.4.2.3 Case III: Considering Siting and Sizing of CBs, PV-Based DG
Sources, and ESSs

In this case, ESS allocation is considered with reactive support devices and renew-
able energy-based sources. The solution of this case shows a short-term plan with
total investment cost of $1876.54 k, which corresponds to planning actions such as
(a) allocation of two fixed CBs with investment cost of $13.225 k and switchable
CBs with investment cost of $10.95 k; (b) installing 37 PV modules distributed in
5 PV sources with total investment cost of $1127.46 k including maintenance and
operation cost; and (c) siting three ESSs dimensioned in the 42-node distribution
network with an energy reservoir cost of $364.50 k, where the investment cost of the

Table 9.3 Optimal UB and LB values, gaps, and deterministic value of the cost of energy supplied

Case Iteration UB (103$) LB (103$) Gap (%) Deterministic (103$)

I 1 15,956.70 14,804.85 7.78 14,799.18

2 15,956.70 15,949.50 0.04

II 1 15,844.74 14,639.01 8.24 14,636.70

2 15,663.78 15,649.17 0.09

III 1 15,266.94 13,817.40 10.49 13,820.43

2 15,258.51 15,183.57 0.49
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power unit conversion was $360.40 k (containing the maintenance and
operation cost).

The planning scheme, presented in this case, represents the greater investment
cost comparing with the cases I and II. However, considering these alternatives, the
energy cost was 5.04% and 3.07% lower than the cases I and II, respectively. On the
other hand, a deterministic solution was obtained under the same conditions as case
III. Similar in previous cases, the deterministic objective function for this with total
cost $15,607.96 k represents 9.30% lower value than the robust solution.

In summary, the proposed EDN planning model delivers appropriate solutions for
cases I–III under different circumstances within few iterations. The maximum gap
for the solutions was less than 0.49%. Some useful information such as UB and LB
values and the gap in each case and iteration are presented in Table 9.3. Additionally,
this table contains deterministic values of energy cost by the substation. In this
regard, both values obtained from the robust and deterministic approaches can be
compared. It can be observed that the deterministic solutions propose investment
plans with lower costs than the robust formulation, however under risky conditions.

To satisfy the technical and operational conditions of the 42-node distribution
network, which was initially violated, a set of planning actions has been identified in
each case. These sets are summarized by the information presented in Fig. 9.3 and
Table 9.4. Figure 9.3 illustrates the planning actions for each case, where the location
of switchable and/or fixed CBs and VRs and conductor replacement of overloaded
circuits, PV-based DG sources, and ESSs are duly identified. On the other hand,
Table 9.4 presents the detail information related to each case. This table contains the
location of VRs controlling the voltage magnitude at node m, the conductor type to
be replaced by the new one, the location and type and capacity of CBs, the location
and capacity of PV-based DG sources, and location and energy and power capacity
of ESSs.

Table 9.4 Information related to the proposed planning alternatives for each case

Case

Planning alternatives

VR
(#m)

CB type #m:
(capacity
kVAr)

Conductor replacement

PV sources #m:
(capacity KW)

ESSs #m: (energy
capacity kWh;
power capacity
kW)

Circuit #m-#n:
(type)

New
type

I 05 Switchable:
42: (1500)

01–04: (AA1)
01–05: (AA1)
04–26: (AA1)

AA4
AA2
AA3

– –

II 06, 07 Fixed:
24: (600)
25: (900)
33: (300)

– 25: (200)
42: (500)

–

III – Fixed:
33: (600)
42: (1500)
Switchable:
39: (1500)

– 2: (250)
25: (300)
33: (300)
39: (500)
42: (500)

02: (1350; 288)
39: (1350; 300)
42: (1350; 290)
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9.4.2.4 Robust Solution Validation

The proposed approach guarantees feasible solutions against the worst realization
within the uncertainty interval. Accordingly, the solutions obtained by the two-stage
robust programming model for each case are validated by using random annual
profiles in electricity demand and PV-based output power. In this regard, the
obtained solution of each case is fixed, and by using a conventional optimal power
flow (OPF) tool, the operating conditions for the 42-node distribution network,
under these random profiles, are determined. This OPF tool reveals the feasibility
of the results for each case. In the following, the validation of the robust model for
different cases is considered in detail using Figs. 9.4 and 9.5. Figure 9.4 presents the
comparisons of the minimum voltage profiles of before planning (red profile) and for
the validation of each case. Figure 9.5 presents the active power profile for each case
in the last planning year of the 42-node distribution network containing the power
injected by the substation and PV-based DG sources and the active power injected
and demanded by the ESSs. The positive values in this figure stand for the active
power injected into the EDN, while the negative values show the active power
demanded by ESSs.

For the first case, the conventional OPF tool determines that the costs of supplied
energy by the substation for each year are $4749.88 k, $5345.14 k, and $6016.88 k
corresponding with the power factors 0.967, 0.966, and 0.969, respectively. Com-
paring these results with the initial condition of the network before planning, it can
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be concluded that via this set of planning actions, the technical aspects such as
voltage magnitude (see Fig. 9.4) and power factor were improved to attend the
quality requirements. This case presents an economic investment plan in which
classical planning actions such as CB and VR allocation and conductor replacement
of overloaded circuits improve the technical and operational conditions.

For the second case, the costs of the energy supplied by the substation for each
year are $4618.17 k, $5211.87 k, and $5882.97 k, respectively. Comparing this
result with the first case reveals a reduction in the energy costs by about 2.85%,
2.56%, and 2.28% for each year. This benefit has been obtained by considering the
allocation of PV-based DG sources. It is worth mentioning that the proposed set of
planning actions found in this case approved an appropriate short-term plan where
the technical and operational aspects are fulfilled considering a random profile in
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demand and renewable output power. This fact can be observed in aspects such as
annual power factors of 0.990, 0.988, and 0.985 and voltage magnitude profile as
shown in Fig. 9.4, which presents the fulfillment of the voltage profile of the EDN in
the last year (considered as the peak load year).

The yearly planning outcome for case III shows a cost of the supplied energy by
the substation of $4413.37 k, $5003.04 k, and $5670.10 k, respectively, while the
power factors in each planning year are 0.998, 0.998, and 0.990, respectively.
Comparing these costs with the costs of the first case reveals that reductions of
7.62%, 6.84%, and 6.12% have been obtained for each year of the planning horizon,
while, compared to case II, the reductions are 4.64%, 4.17%, and 3.75%, respec-
tively. It is worth mentioning that these cost reductions were obtained due to
PV-based DG sources and ESS allocation. As can be seen in Fig. 9.5, this technology
presents a good flexibility for storing electrical energy at intervals with low cost and
then providing it at peak time intervals.

Therefore, the results of the conventional OPF tool considering the outcomes of
the robust model prove the feasibility of solutions. From Fig. 9.4, it can be observed
that the initial condition of the 42-node distribution network presents technical
violations. Therefore, to remedy this initially violated condition, the proposed
two-stage robust planning framework found several appropriate short-term plans.
Results of validation of the first case show that the voltage magnitude limits (black
profile) for the last year of the planning horizon were satisfied. In the same way, the
validation of cases II and III shows compliance with this limit for the last year (blue
and green profile, respectively). Moreover, as can be seen in Fig. 9.5c, the proposed
approach determines an optimal schedule for the operation of PV-based DG sources
and ESSs, mainly to reduce the energy costs provided by the substation.

In this subsection, the planning actions obtained by the proposed approach have
been validated for all the case studies. In the first case, via classical short-term
planning actions, the technical operation was improved, while two other cases by
taking advantage of renewable-based DG sources and ESSs have maximized the
efficiency of the initially violated 42-node distribution network. This validation
demonstrates the effectiveness of a useful decision-making process tool where the
planner can define the most suitable short-term plan to satisfy financial, technical,
quality, and operational conditions to an EDN.

9.5 Conclusions

A robust strategic framework for the short-term electrical distribution network
planning was presented in this chapter. The proposed approach defines reinforce-
ment plans such as voltage regulator allocation, replacement of overloaded circuits’
conductor, sizing and placement of capacitor banks, renewable-based distributed
generation sources, and energy storage systems. To consider uncertainties in
demand and renewable-based generation, a two-stage robust programming model
was developed, which represents a hierarchical decision-making process where the
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master problem defines the investment decisions and the subproblem determines
the operating reaction of the network. Consequently, this robust programming
formulation guarantees the fulfillment of the technical and operational requirements
against the worst realization of uncertainties within a specified confidence interval.

The effectiveness and robustness of the proposed planning framework were
revealed by illustrative examples. Three different cases were analyzed with several
planning alternatives, for which, the robust model determined appropriate planning
actions to enhance the efficiency of an initially violated EDN and to fulfill the
technical issues and standards. Although the obtained solution for these cases via a
deterministic approach provides the most economical option for the substation
supplied energy, under uncertainty conditions, this deterministic approach could
present technically and operationally infeasible conditions. In contrast, the robust
programming approach presents larger total costs, which is dealt with the demand
and renewable generation uncertainties.

Therefore, the proposed model, which is a two-stage robust programming
approach, is an efficient tool to solve the complex short-term EDN planning prob-
lem. This strategy can be useful for the EDN planner as a suitable alternative in the
decision-making process to choose the most appropriate short-term plan to attend the
EDN necessities and to manage the risk levels associated with the uncertainty. For
practical and exploratory purposes, an adapted medium scale 42-node distribution
network was analyzed in this chapter. In the presented analysis, different planning
actions were found as a result of the proposed approach. To validate these robust
solutions, a random profile in demand and renewable output power was considered,
for which, feasible solutions for each short-term investment plan were determined.

The prospects of further research works can be considering the uncertainty in the
energy price that is subject to variability in the real electricity market, adopting
different planning strategies to enrich the applicability of the proposed decision-
making tool in addressing the existing concerns related to low-emission power
systems, and consequently, demonstrating the applicability of the resulted model
in a very large-scale system.
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Chapter 10
Optimal Robust Microgrid Expansion
Planning Considering Intermittent Power
Generation and Contingency Uncertainties

Mehrdad Setayesh Nazar and Alireza Heidari

Nomenclature
ΛDG DG allocation alternatives costs

ΛRL RL alternatives costs

ΛESS ESS allocation alternatives costs

ΛIPG IPG alternatives costs

ΛTrans New substation transformer costs

ΛFeed New feeder costs

Energy _ Purchased Energy purchased from upward utility

Energy _ Sold Energy sold to upward utility

ENSC Energy not supplied costs

TR Number of transformer allocation alternatives

DGC Number of DG allocation alternatives

FR Number of feeder allocation alternatives

IPGC Number of IPG allocation alternatives

RLC Number of RL contribution scenarios

ESSC Number of ESS allocation alternatives

NY Number of planning years

NP Number of periods

NDASC Number of DA market scenarios

NRTSC Number of RT market scenarios

NH Number of DA market hours
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NRT Number of RT market settlement steps

φTrans Decision variable for new transformer installation

φFeed Decision variable for feeder installation

φRL Decision variable for RL contribution

φIPG Decision variable for IPG installation

φDG Decision variable for DG installation

λ Probability of scenario

βDA Energy price of DA market

EDA Energy purchased from upward network in DA market

γRT Marginal cost of DG

PGRT Power generated by DG in RT market

ξRT Marginal cost of RL

PRLRT Power consumption reduced by RL in RT market

ςRT Cost of ESS contribution in RT market

PBATRT Power delivered by ESS in RT market

σRT Energy price of RT market

ERT Energy purchased from upward network in RT market

σRT Expected value of RT market price

Ξ Dual variable of inner-step optimization

Ψ Robustness level parameter

10.1 Introduction

A microgrid can be introduced as a system, which includes distributed generations
(DGs), electrical storage systems (ESSs), and RLs, in a way that it has at least one
controllable energy source. The microgrid operator (MGO) can utilize its microgrid
separately or connected to the main upward network [1]. From the point of view of
the distribution system operator (DSO), an active microgrid can be considered as a
controllable element that is connected to its network [2]. The MGO should perform
the optimal planning and scheduling of microgrid by considering the uncertainties of
IPGs and RLs [3, 4]. Figure 10.1 depicts the microgrid configuration that consists of
IPGs, RLs, and ESSs [4].

The RMEP problem consists of optimizing of the decision variables of system
device installation based on reliability criteria and RL and IPG power generation
scenarios.

Over the recent years, different aspects of optimal planning and scheduling of the
microgrid problem have been studied.

Reference [5] presents an algorithm for planning and design of IPGs for
microgrids, and the performance of the system is evaluated using optimization
analyses. Reference [6] introduces a bi-level planning algorithm that the upper-
level problem minimizes planning and operational cost and the lower-level problem
optimizes reliable power supply. These references do not consider uncertainties of
contingencies.
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Reference [7] presents an optimal microgrid scheduling method in connection to
the main grid modes. The uncertainty of IPGs with demand response is investigated
in five scenarios for DG sources; however, the AC load flow constraints are not
considered. The optimal microgrid scheduling is performed using the robust sched-
uling method. Reference [8] presents a stochastic bidding strategy for the participa-
tion of microgrid in the day-ahead (DA) market of energy and spinning reserve
services by taking into account the uncertainty of IPGs and electrical load demand.
In Ref. [9], optimal power scheduling of microgrid for DA is investigated. In Ref.
[10], a balance between the profit maximization of a microgrid in the power market
and the operation cost minimization of a microgrid is reviewed. Refs. [8–10] do not
consider microgrid configuration and its topological limitations. In Ref. [11], an
optimal bidding in the DA market model is presented for a virtual power plant that
includes a set of microgrids. The microgrids include IPGs, ESSs, and DGs. The
bidding model is formulated as a two-stage stochastic mixed-integer nonlinear
programming, which maximizes the profit of the virtual power plant by trading the
electricity in the DA and real-time (RT) markets. The uncertain data are modelled by

Fig. 10.1 Schematic diagram of an electric distribution microgrid
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scenarios, but the risk of the microgrid expected profit is not considered. In Ref. [12],
a stochastic linear programming model is presented with the DA and RT market
price scenario and load forecast error. In Ref. [13], the optimal islanded microgrid
scheduling with robust optimization is studied, while the AC power flow constraints
are not considered. In Ref. [14], a method for optimal bidding of a microgrid, which
purchases electricity in the wholesale market, is introduced by using the genetic
algorithm (GA). In Ref. [15], a robust multi-objective optimization for microgrid
operation is investigated in the presence of intermittent sources. The multiple
objective functions are optimized by using the Pareto front concept, but the
microgrid AC power flow constraints are not modelled. These references do not
consider uncertainties of contingencies.

In Ref. [16], a stochastic algorithm is presented for expansion planning of
microgrid considering IPG uncertainties. The proposed algorithm maximizes profit
and reliability, while it minimizes investment and operation costs.

In Ref. [17], a two-level stochastic planning algorithm is introduced. The algo-
rithm determines the optimal location and size of devices, and it considers DGs and
ESSs. These references do not consider uncertainties of contingencies.

This book chapter is about the RMEP algorithm that considers the DG/RL
contribution uncertainty and contingency scenarios.

10.2 Problem Modelling and Formulation

The RMEP criteria can be summarized as:

1. Minimizing the microgrid investment and operation costs consisting of energy
purchased from the upward network

2. Maximizing the microgrid reliability
3. Maximizing the expected profit of MGO in the DA/RT markets

The second planning criteria are maximized through minimization of interruption
cost by the MGO [18, 19]. The MGO should optimize its expected profit in the
DA/RT markets based on the fact that the purchasing price of power for compen-
sating the generation deficit in the RT market is usually more than the DA market.
The MGO should maximize its expected profit in the DA market and reduce the
electricity trading in the RT market as much as possible. In addition, the RT market
price is assumed to depend on unpredictable market conditions, which makes it
extremely difficult to investigate the problem by considering the stochastic param-
eters. Therefore, in this book chapter, the uncertainty of the DG outputs and the DA
market price is modelled with the scenario, and the robust optimization covers the
uncertainty of RT price for the worst-case planning scenarios.

An IPG can be classified as dispatchable and non-dispatchable distributed gen-
eration (DG). The MGO can utilize dispatchable IPGs/RLs to optimize its benefits
and mitigate the impacts of contingencies. Figure 10.2 shows the MGO interactions
with upward network and its IPGs/RLs, ESSs, and nonresponsive loads.
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The RMEP problem is subject to the two sources of uncertainty: IPG/RL power
generation scenarios and system contingencies. Thus, the uncertainty can be
modelled as a scenario-driven model. Hence, the MGOmust make optimal decisions
throughout planning horizon with incomplete information, and it must determine the
optimal values of problem decision variables that consist of the location, the
capacity, and the time of installation of system devices. The RMEP takes into
account the optimal coordination of control variables such as DGs, ESSs,
dispatchable IPGs, and RLs.

Based on the described planning criteria, the RMEP decision variables can be
summarized as:

1. Location, capacity, and type of energy resources
2. The volume of energy purchased from the upward network

The system costs and benefits can be categorized as:

Fig. 10.2 The schematic diagram of MGO interactions
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1. Investment costs of resources
2. Operation costs of system resources
3. Energy purchased costs
4. The expected profit of energy sold to upward network in the DA/RT markets

The reliability of the system can be considered as objective functions and
constraints. The energy not supplied cost (ENSC) can be considered as an objective
function in RMEP [18].

10.2.1 First-Level Problem Formulation

The MGO determines the number of upward network electricity price and its
system’s contingencies, and it estimates the IPG/RL power generation scenarios
for each contingency.

The stochastic single-order independent failures are considered as contingencies
in this book chapter. The reliability data which is used in the book chapter can be
categorized as:

• Single independent device failure in scenarios, in which their failure rates are
extracted from the database

• The line to ground faults for cables

For each contingency and IPG and RL power generation scenario, the problem
optimizes cost allocation. The objective function of the first-level problem is as
follows:

Min C1 ¼
XNY
i¼1

XNP
j¼1

X
k2FR

ΛFeed ijk
∗φFeed ijk þ

X
k2TR

ΛTrans ijk
∗φTrans ijk

"

þ
X

k2DGC

ΛDG ijk
∗φDG ijk þ

X
k2 IPGC

ΛIPG ijk
∗φIPG ijk

þ
X

k2RLC

ΛRL ijk
∗φRL ijk þ

X
k2ESSC

ΛESS ijk
∗φESS ijk

þEnergy Purchasedij � Energy Soldij þ
XContingency

k¼1

ENSCijk

#
ð10:1Þ

The objective function is decomposed into the following groups: (1) microgrid
feeder, transformers, DGs, IPGs, RLs, and ESSs operation and investment costs;
(2) the costs of purchased energy from the upward network; (3) the benefits of
energy sold to the upward network; and (4) ENSCs.

The constraints of first-level optimization can be summarized as device loading
and DC load flow constraints.

The worst-case planning scenarios are determined by the calculation of first-
level optimization objective function components. The first-level objective

182 M. S. Nazar and A. Heidari



functions that their ENSCs are more than a predefined threshold will be considered
as the worst-case planning scenarios.

The second-level problem deals with optimal MGO estimated profits in DA and
RT markets for the worst-case planning scenarios.

10.2.2 Second-Level Problem Formulation

The active MGO should implement the stochastic optimization process in order to
maximize his/her expected profit and minimize his/her operation costs. The MGO
determines the optimal schedule of ESSs, DGs, RLs, and the energy transacted in the
DA market for the worst-case planning scenarios. The DA and RT market prices and
output of IPGs are modelled by scenarios.

This level of optimization problem can be modelled as a three-step stochastic
problem for the worst-case planning scenarios. In the first step, the MGO provides
its bidding curve scenarios, before the DA and RT market prices, and the output of
IPGs becomes known. In the second step, it is assumed that the DA market is
settled and the DA market price is determined. In this step, the MGO schedules the
dispatchable IPGs, DGs, and RLs as well as ESSs to ensure the realization of each
scenario. This step occurs before the RT market settlement. In the third step, the
RT market price is realized, and the unbalanced power is supplied through the RT
market [20].

The objective function minimizes the difference between the costs and expected
profits. The formulation of the objective function is as follows:

Min
XNDASC
l¼1

λl
XNH
m¼1

βDA
lm ∗EDA

lm þ
XNRTSC
m¼1

λm
XNRT
n¼1

γ RTlmn∗PGRT
lmn

� � 

�
XNRTSC
m¼1

λm
XNRT
n¼1

ξRTlmn∗PRLRT
lmn

� �þ XNRTSC
m¼1

λm
XNRT
n¼1

ςRTlmn∗PBAT RT
lmn

� �

þ
XNRTSC
m¼1

λm
XNRT
n¼1

σ RT
lmn∗ERT

lmn

� �!
ð10:2Þ

The components of Eq. 10.1 are the purchasing electricity in the DA market (first
sentence), the DG costs (second sentence), the profit from the presence of RLs (third
sentence), the ESS cost (fourth sentence), and the purchasing electricity cost in the
RT market (fifth sentence).

The objective function is restricted to the following constraints: the maximum
and minimum power generations of microgrid energy resources, ramp-up and ramp
down, minimum uptime and downtime, AC power flow, state of charge, and upper
and lower limits of ESSs.
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10.3 Solution Algorithm

The described RMEP problem has a large state space that involves thousands of
variables in the expansion planning horizon. The uncertainties of the problem highly
increase the state space of the RMEP problem. Further, the subproblems are
nonlinear and non-convex.

For the first-level optimization problem, the particle swarm optimization (PSO)
algorithm is used. Figure 10.3 depicts the flowchart of the optimization algorithm.
At first, the upper-level problem is optimized for estimated scenarios by the PSO.
Then, the second-level problem is solved by hybrid stochastic-robust optimization
procedure to minimize the total cost of microgrid while limiting the unbalanced
power in the RT market and considering the uncertainty in RT market price for the
worst-case planning scenarios. The introduced hybrid decomposed model is pref-
erable to pure stochastic optimization for two reasons: First, it gives the MGO an
opportunity to decide at different risk levels according to their system resources.
Second, due to the instability of the RT market price, the profitability and com-
petitiveness of a microgrid may reduce greatly by relying on the RT market price.
Through the robust control parameter Ψ, the extent of uncertainty in RT market
prices can be controlled, and the level of risk associated with the bidding is
determined.

The first stage considers the uncertainty of day-ahead market price. The
uncertainty of IPGs is introduced in the second stage. The variables in this stage
include the unit status and output of dispatchable units, RLs, and scheduling of
ESSs. The third stage ensures the result is robust to uncertain real-time price
for each scenario.

Thus, the formulation of the objective function can be rewritten as follows [21]:

Min
XNDASC
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lm þ
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The MATLAB software is used to generate random numbers, and LHS method is
used for scenario generation. Then, by connecting the MATLAB to GAMS, the
generated scenarios are inserted into GAMS, and scenario reduction is implemented
by a forward method in the GAMS/SCENRED library. Next, for each of the
scenarios, the introduced decomposition method is applied. The scenario generation
and reduction procedure are shown in Fig. 10.4.
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Problem

Penalty Function
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Fig. 10.3 The flowchart of the two-level optimization introduced algorithm
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10.4 Numerical Results

The introduced model is implemented on the 9-bus and 33-bus test systems. The
wind turbine and solar panel data are available at [22]. Figures 10.5 and 10.6 depict
the 9-bus and 33-bus microgrids, respectively. The 9-bus and 33-bus test system data
are presented at [23–25] and [26], respectively.

10.4.1 The Nine-Bus Test System

Figures 10.7 and 10.8 depict the base load and upward network electricity price of
the nine-bus microgrid, respectively.

Table 10.1 shows the DG installation alternatives technical characteristics and
fixed and variable costs in monetary units (MUs).

The feeders’ conductor data and ESSs data are presented in Tables 10.2 and 10.3,
respectively. Table 10.4 presents the optimization input data for the nine-bus test
system.

The optimal system topologies of the nine-bus test system for different years of
expansion planning horizon are depicted in Fig. 10.9.

Table 10.5 depicts the optimal aggregated investment and operational costs of the
nine-bus test system.

Table 10.6 presents the optimal operational costs of the nine-bus test system for
different planning years.

Long-term solar irradiation, wind speed and upward network electricity
price forecasting 

Short-term solar 
irradiation forecasting 

Short-term solar irradiation, wind speed and upward network electricity price scenarios

Solar irradiation scenario
generation 

Solar irradiation scenario
reduction 

Short-term wind speed
scenario generation 

Short-term wind speed
scenario reduction

Short-term wind speed
forecasting 

First level optimization
procedure

Second level optimization
procedure

Short-term upward
network electricity price

forecasting 

Short-term upward
network electricity price

scenario generation 

Short-term upward
network electricity price

scenario reduction

Fig. 10.4 The scenario generation and reduction procedure
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Fig. 10.6 The 33-bus microgrid

Fig. 10.7 The base electric load of the nine-bus test system

Fig. 10.5 The nine-bus microgrid
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Table 10.1 The DG installation alternatives technical characteristics and fixed and variable costs

DG
type

Maximum
output power
Pmax(kW)

Installation
fixed cost
(MUs)

Installation
variable cost
(MUs/kVA)

Operation
fixed cost
(MUs/kW)

Operation
variable cost
(MUs/kWh)

1 330 63,283.5 350 0.2588 1.0853

2 540 111,510 450 0.2692 1.3011

3 844 166,584.5 550 0.2373 1.0569

Table 10.2 Feeder’s conductor data

Type Resistance (Ω/km) Reactance (Ω/km) Capacity (MVA) Cost (MMUs/km)

1 0.1738 0.2819 12 0.1

2 0.0695 0.2349 18 0.15

Table 10.3 ESS data

Type Capacity (kW) Rated output (kW) Efficiency (%)

1 500 200 0.75

Table 10.4 The optimization input data for the nine-bus test system

Parameter Value

Planning horizon year 5

Discount rate (%) 12.5

Load power factor 0.85

Load growth rate of (%) 3

Number of solar irradiation scenarios 4500

Number of wind turbine power generation scenarios 5000

Number of upward market price scenarios 500

Number of solar irradiation reduced scenarios 40

Number of wind turbine power generation reduced scenarios 45

Number of upward market price reduced scenarios 5

Fig. 10.8 The base electricity price of upward network of the nine-bus test system
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(a)

(b)

(c)

Fig. 10.9 (a) The optimal system topology of the nine-bus test system for the first year of
expansion planning horizon, (b) the optimal system topology of the nine-bus test system for the
third year of expansion planning horizon, (c) the optimal system topology of the nine-bus test
system for the fifth year of expansion planning horizon
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The bidding curves of the nine-bus system in the DA market for selected hours of
the worst-case planning scenarios are shown in Fig. 10.10. The purchase bidding
quantity decreases as the market price increases for all hours. The microgrid increases
the output power of dispatchable units and discharges power from the ESSs, while
during low price hours, the microgrid reduces its output and charges the ESSs.

Table 10.5 The optimal aggregated investment and operational costs of the nine-bus test system

Costs (MMUs)

Feeder installation costs 4.1514 Transformer and feeder operation
costs

4.215

Transformer and ESS installation
costs

9.2102 DG installation and operation costs 26.8213

ENSCs 0.39265 Energy loss costs 0.7214

Table 10.6 The optimal operational costs of the nine-bus test system for different planning years

Costs

Year

1 2 3 4 5

DG operation costs (MMUs) 2.760744 2.917854 3.026737 3.250342 3.369455

Energy loss costs (MMUs) 0.149915 0.154201 0.142806 0.133136 0.141342

Energy purchased from upward
network costs (MMUs)

0.2125 0.2118 0.1842 0.1522 0.1421

Transformer operation costs
(MMUs)

0.648962 0.790089 0.829612 0.969424 0.976913

RL costs (MMUs) 0.8213 0.8254 0.8421 0.8697 0.8924
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Fig. 10.10 The nine-bus MGO price-power bidding curves in the DA market
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Figure 10.11 displays the voltage of the nine-bus test system for one of the worst-
case planning scenarios and different conditions of DG/RL contribution.

10.4.2 The 33-Bus Test System

Figures 10.12 and 10.13 depict the base load and upward network electricity price of
the 33-bus microgrid, respectively.

The optimal system topologies of the 33-bus test system for the first, third, and
fifth years of expansion planning horizon are depicted in Fig. 10.14a, b, and c,
respectively.

Fig. 10.11 The voltage of the nine-bus test system for one of the worst-case planning scenarios and
different conditions of DG/RL contribution
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Fig. 10.12 The base electric load of the 33-bus test system
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Table 10.7 depicts the optimal aggregated investment and operational costs of the
33-bus test system.

Table 10.8 presents the optimal operational costs of the 33-bus test system for
different planning years.

The bidding curves of the 33-bus system in the DA market for selected hours of
the worst-case planning scenarios are shown in Fig. 10.15. The purchase bidding
quantity decreases as the market price increases for all hours. This process continues
to the point where the purchase bid is offered by the microgrid to the market.
Figure 10.16 displays the voltage of the 33-bus test system for one of the worst-
case planning scenarios and different conditions of DG/RL contribution.

The robust optimization limits the unbalanced power of the RT market. The
expected microgrid operation cost for different values of Ψ for the 9-bus and the
33-bus systems is shown in Figs. 10.17 and 10.18, respectively.

As illustrated in Figs. 10.17 and 10.18, while Ψ increases, the expectation
increases, indicating the trade-off between risk and benefit.

The value of stochastic solution (VSS) index shows the economic advantage of
using the stochastic scheduling into the deterministic scheduling under uncertainty.
To calculate this index, the optimal solutions of deterministic and stochastic opti-
mizations are obtained, and the difference between these two solutions is the VSS
index. The obtained results forΨ¼ 0 andΨ¼ 24 modes are presented in Tables 10.9
and 10.10 for the 9-bus and the 33-bus test systems, respectively. The computation
time for the 9-bus and the 33-bus test systems is 629 and 1564 s, respectively. The
simulation was carried out on a PC (Intel Core 2, 2.93 GHz, 4 GB RAM). With
considering the randomness of the day-ahead market price, as well as the wind and
solar powers, the operation cost is improved in the stochastic optimization compared
to the deterministic case. The VSS index is calculated for the two cases of deter-
ministic generation power of IPGs and deterministic market price for the worst-case
planning scenarios.

According to the results, an accurate problem-solving structure is introduced that
is appropriate for optimal microgrid planning and scheduling for the worst-case
planning scenarios.

Fig. 10.13 The base electricity price of upward network of the 33-bus test system
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Fig. 10.14 (a) The optimal system topology of the 33-bus test system for the 1st year of expansion
planning horizon, (b) the optimal system topology of the 33-bus test system for the 3rd year of
expansion planning horizon, (c) the optimal system topology of the 33-bus test system for the 5th
year of expansion planning horizon
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Table 10.7 The optimal aggregated investment and operational costs of the 33-bus test system

Costs (MMUs)

Feeder installation costs 17.2891 Transformer and feeder operation
costs

19.6214

Transformer and ESS installation
costs

38.7412 DG installation and operation costs 82.1451

ENSCs 2.3518 Energy loss costs 2.1162

Table 10.8 The optimal operational costs of the 33-bus test system for different planning years

Costs

Year

1 2 3 4 5

DG operation costs (MMUs) 11.2784 11.00639 11.45726 11.85176 12.63635

Energy loss costs (MMUs) 0.342408 0.419038 0.446115 0.461738 0.446901

Energy purchased from
upward network costs
(MMUs)

0.280421 0.5621 0.6814 0.7321 0.7692

Transformer operation costs
(MMUs)

2.384952 2.658685 3.112461 2.762407 2.606095

RL costs (MMUs) 4.2681 4.6214 4.6325 4.8971 5.0125
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Fig. 10.15 The 33-bus MGO price-power bidding curves in the DA market
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Fig. 10.16 The voltage of the 33-bus test system for one of the worst-case planning scenarios and
different conditions of DG/RL contribution
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Fig. 10.17 The expected microgrid operation cost for different values of Ψ for the nine-bus system
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Fig. 10.18 The expected microgrid operation cost for different values of Ψ for the 33-bus system
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10.5 Conclusions

A microgrid expansion planning procedure was reviewed in the present chapter.
The introduced method used a model to investigate the IPG/RL impacts on RMEP.
The RMEP formulation found the optimum usage of IPG/RL power generation
scenarios, and it considered the impact of robust optimization on the RMEP.

Table 10.9 VSS index for the nine-bus system

Ψ ¼ 0

Stochastic
solution
(MUs)

Expected cost using deterministic IPG
power generation solution (MUs)

VSS using deterministic IPG power
generation solution (MUs)

2984.2 2984.7 0.5 (0.016574%)

Stochastic
solution
(MUs)

Expected cost using deterministic upward
network electricity price solution (MUs)

VSS using deterministic upward
network electricity price solution
(MUs)

2984.2 2993.1 8.9 (0.2982%)

Ψ ¼ 24

Stochastic
solution
(MUs)

Expected cost using deterministic IPG
power generation solution (MUs)

VSS using deterministic IPG power
generation solution (MUs)

2998.7 3005.3 6.6 (0.22%)

Stochastic
solution
(MUs)

Expected cost using deterministic upward
network electricity price solution (MUs)

VSS using deterministic upward
network electricity price solution
(MUs)

2998.7 3008.1 9.4 (0.3134%)

Table 10.10 VSS index for the 33-bus system

Ψ ¼ 0

Stochastic
solution
(MUs)

Expected cost using deterministic IPG
power generation solution (MUs)

VSS using deterministic IPG power
generation solution (MUs)

9258.6 9271.2 12.6 (0.1360%)

Stochastic
solution
(MUs)

Expected cost using deterministic upward
network electricity price solution (MUs)

VSS using deterministic upward
network electricity price solution
(MUs)

9258.6 9272.3 13.7 (0.1479%)

Ψ ¼ 24

Stochastic
solution
(MUs)

Expected cost using deterministic IPG
power generation solution (MUs)

VSS using deterministic IPG power
generation solution (MUs)

9347.2 9352.1 4.9 (0.05242%)

Stochastic
solution
(MUs)

Expected cost using deterministic upward
network electricity price solution (MUs)

VSS using deterministic upward
network electricity price solution
(MUs)

9347.2 9361.8 14.6 (0.15619%)
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This algorithm decomposed the RMEP problem into two-level subproblems. The
model of RMEP was a MINLP problem, and the PSO algorithm was used. The
bidding strategy in the DA market is introduced based on hybrid stochastic-robust
optimization for the worst-case planning scenarios and considering the AC model
and the configuration of the microgrid.

The proposed hybrid model is preferable to pure stochastic optimization for two
reasons: First, it gives the MGO an opportunity to decide at different risk levels
according to his/her system configuration. Second, due to the instability of the real-
time market price, the profitability and competitiveness of a microgrid may reduce
greatly by relying on the real-time market price for the worst-case planning scenario.

The algorithm was assessed for the 9-bus and the 33-bus test systems with quite
acceptable results.
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Chapter 11
Robust Transmission Network Expansion
Planning (IGDT, TOAT, Scenario
Technique Criteria)

Shahriar Abbasi and Hamdi Abdi

Nomenclature
B Set of load buses

Bij Susceptance of a single line in corridor (i,j)

cij Cost of an added line to corridor (i,j) ($)

f Vector of power flows in corridors (MW)

fb Basic value of objective function

fij Power flow in corridor (i,j) (MW)
�f ij Power flow limit of a single line in corridor (i,j) (MW)

nij Number of added lines to corridor (i,j)

�nij Maximum number of lines that can be added to corridor (i,j)

n0ij Number of existing lines in corridor (i,j)

pf Penalty factor for load and wind power generation curtailment ($/MW)

Pd Vector of loads (MW)

Pg Vector of generated powers (MW)

Pg/�Pg Vector of lower/upper generation limits (MW)

Pw Vector of wind power generations (MW)

r Vector of curtailed loads (MW)

ri Curtailed load at bus i (MW)

S Node-branch incidence matrix

v Wind speed (m/sec)

vci Cut-in speed of wind turbine (m/sec)

vco Cutout speed of wind turbine (m/sec)

vr Rated speed of wind turbine (m/sec)

w Vector of curtailed wind power generations (MW)

(continued)

S. Abbasi · H. Abdi (*)
Electrical Engineering Department, Faculty of Engineering, Razi University, Kermanshah, Iran
e-mail: hamdiabdi@razi.ac.ir

© Springer Nature Switzerland AG 2019
B. Mohammadi-ivatloo, M. Nazari-Heris (eds.), Robust Optimal Planning
and Operation of Electrical Energy Systems,
https://doi.org/10.1007/978-3-030-04296-7_11

199

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04296-7_11&domain=pdf
mailto:hamdiabdi@razi.ac.ir


wi Curtailed wind power generation at bus i (MW)

X Set of decision variables

α Scale parameter

β Shape parameter

Γ Uncertainty set

γ Set of input uncertain variables

γ Predicted (expected) value of uncertain variable γ

ζ Radius of uncertainty

ζ̂ Maximum radius of uncertainty

θi/θj Voltage angle at bus i/j

ΛC Critical value of objective function

ςC Degree of acceptable tolerance on increasing fb
Ψ Set of wind farms

Ψeq Set of equality and inequality constraints

Ψineq Set of inequality constraints

Ω Set of available corridors

11.1 Introduction

The aim of transmission network expansion planning (TNEP) is providing enough
capacity to transfer power from generation section to load centers in a reliable and
economically efficient manner. Generally, the TNEP is a mixed integer optimization
problem with the aim of identifying where, when, and what type of new transmission
lines should be installed in the transmission network.

However, the power system uncertainties can affect the expansion plan of a
transmission network. Therefore, these uncertainties should be considered in
TNEP calculations. In the previous works, different uncertainty modeling methods
are presented to investigate the impact of power system uncertainties on TNEP.
In Ref. [1], the point estimation method (PEM) is used to study the impact of
conventional generation replacement with wind power generation on TNEP. In
Ref. [2], TNEP with correlation among load uncertainties is considered; to model
load correlation, the unscented transformation (UC) is used. References [3–5]
implemented numerical methods to consider uncertain behavior of power system
uncertainties (load, wind power generation, etc.) in TNEP. In Refs. [6, 7], the effect
of large-scale distant wind farms on TNEP applying the two-point estimation
method (2-PEM) is studied.

In general, different uncertainties must be addressed in TNEP. The TNEP calcu-
lation must be so that the obtained expansion plan withstands effects of these
uncertainties. Among these uncertainties, the uncertainties of demanded load and
wind power generation are more discussed in the literature. This is mainly because
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the demanded load is significantly uncertain and the aim of each power system is
supplying loads in a reliable manner [2]. Also, in most power systems, the renewable
generations, especially wind power generation, have notable share in total generation
capacity. But the renewable generations are changeable and uncontrollable in nature.
The generated power by a wind farm depends on wind speed at its location that
changes intermittently [1]. For these reasons, in this chapter work, these two major
sources of uncertainty are addressed in TNEP calculation.

In this chapter, the robust TNEP (RTNEP) in the presence of uncertainties of
loads and wind power generation is studied. A transmission network is robust
against a set of uncertainties if withstand their variations and transfer power from
generation section to load centers in a reliable manner. The robust methods of
(a) information-gap decision theory (IGDT), (b) Taguchi’s orthogonal array testing
(TOAT), and (c) scenario technique criteria (min-max regret criterion) are proposed
and simulated here. Applying each of these methods, the robust expansion plan for
the transmission network of the considered case study is calculated on the modified
6-bus Garver test system [8]. The obtained results verify the capability of the
mentioned methods in RTNEP. These methods can easily be implemented on any
large- and real-scale power system. Also, different uncertainty types can be inserted
in these methods.

The rest of this chapter is organized as follows: In Sect. 11.2, the optimization
problem of conventional deterministic TNEP is formulated, wherein the persuaded
objective function is minimizing sum of investment cost and costs of load and
wind power generation curtailment. In Sect. 11.3, the modeling of uncertainties of
load and wind power generation is presented. The robust methods of IGDT, TOAT,
and min-max regret criterion are, respectively, explained and simulated in Sects.
11.4, 11.5, and 11.6. Finally, the concluding remarks from this chapter are drawn in
Sect. 11.7.

11.2 Conventional Deterministic TNEP

In a power system represented by the DC power flow model, the conventional
deterministic TNEP is a mixed integer nonlinear optimization problem as follows
[4, 9, 10]:

f ¼ minimize
nij, ri,wi

X
i; jð Þ2Ω

cijnij þ p f

X
i2B

ri þ p f

X
i2Ψ

wi

8<
:

9=
; ð11:1Þ

subject to
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ST f þ Pg þ Pw � wð Þ ¼ Pd � rð Þ ð11:2Þ

f ij � Bij n0ij þ nij
� �

θi � θ j

� � ¼ 0 ð11:3Þ

f ij
�� �� � n0ij þ nij

� �
�f ij ð11:4Þ

Pg � Pg � �Pg ð11:5Þ
0 � r � Pd ð11:6Þ
0 � w � Pw ð11:7Þ

0 � nij � �nij, 8 i; jð Þ2Ω ð11:8Þ

The objective of formulation (11.1) is minimizing investment cost (total cost of
new transmission lines) and costs of load and wind power generation curtailments.
The decision variables are nij, ri, and wi. After minimizing (11.1), the transmission
network must satisfy all constraints (11.2)–(11.8). Equality constraint (11.2) is the
nodal active power balances. Equality constraint (11.3) is the equation of lines power
flow. Inequality constraints (11.4) and (11.5) are physical limits which confine lines
power flow and generators output, respectively. Operational limits of loss of load
and wind power generation curtailment are, respectively, as inequality constraints
(11.6) and (11.7). Inequality constraint (11.8) limits maximum number of new lines
added to corridors.

11.3 Load and Wind Power Generation Uncertainties

In power systems, future loads are not certain; loads change stochastically around
their expected values. Therefore one of the main uncertainty sources in power
systems is related to the demanded loads. Probabilistic distribution functions
(pdfs) are appropriate tools for modeling stochastic variations of power systems
loads. Usually, the normal pdf is used in literatures for modeling the load uncertainty
[11–13]. For the uncertain variable x, with mean (expected) value μ and standard
deviation σ, the normal pdf is as follows:

f xð Þ ¼ 1

σ
ffiffiffiffiffiffi
2π

p e
� x�μð Þ2

2σ2 ð11:9Þ

where parameters μ and σ of loads are calculated using the historical data of loads
[11–13]. For a typical uncertain variable with the mean value of 100 and standard
deviation of 10, the normal pdf is as follows (Fig. 11.1):

Another considered uncertainty is wind power generation. Generated power by a
wind power unit depends on wind speed at generator location. On the one hand,
wind speed is not fixed, and on the other hand, in most today’s power systems, wind
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power generation has a notable share in total generation capacity. So, wind power
generation is a major source of uncertainty in these power systems and should be
modeled appropriately.

Commonly, the Weibull pdf is used for modeling the stochastic variations of
wind speed [1, 4, 6]. For uncertain variable x, this pdf is formulated as follows:

f xð Þ ¼ β

αβ
xβ�1e�

x
αð Þβ ð11:10Þ

where α and β are the scale and shape parameters.
For a typical uncertain variable with the scale parameter equals to 2 and shape

parameter equals to 10, the Weibull pdf is as follows (Fig. 11.2):
The scale and shape parameters of Weibull pdf are calculated using the historical

data of the wind speed at wind generator location, using Justus formulas as follows:
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β ¼ σ2

μ

� 	�1:086

ð11:11Þ

α ¼ μ� β2:6674

0:184þ 0:816β2:73855
ð11:12Þ

The generated power by a wind power generator (Pw) is nonlinearly related to the
wind speed at the wind turbine location. This relation is as follows:

Pw ¼
0 0 � v � vci
Pr v� vcið Þ= vr � vcið Þ vci � v � vr
Pr vr � v � vco
0 vco � v

8>><
>>: ð11:13Þ

where Pr is the rated power of generator in MW and v is the wind speed in m/sec. vci,
vco, and vr are, respectively, the cut-in speed, cutout speed, and rated speed of wind
turbine [4].

Above pdfs of uncertain input variables are needed in probabilistic solution
methods. In robust optimization, these pdfs are not needed; in fact, robust strategies
are appropriate when historical data of input variables are limited or unavailable.

11.4 RTNEP Applying Information-Gap Decision Theory
(IGDT)

In IGDT uncertainty modeling methods, the pdfs of uncertainties are not needed. In
these methods, for a predetermined range of objective function of optimization
problem, the problem will be solved to find a definite uncertainty budget (UB) of
input uncertain variables. IGDT is useful when uncertainties are severe and the
relevant historical data are not accessible [14].

Here, a risk-averse IGDT-based strategy is implemented to solve RTNEP prob-
lem with load and wind power generation uncertainties. The TNEP formulation
(11.1)–(11.8) can be written as the following compact form:

minimize
X

f X; γð Þ ð11:14Þ

subject to

Hi X; γð Þ ¼ 0, i2Ψeq ð11:15Þ
Gj X; γð Þ � 0, j2Ψineq ð11:16Þ

γ2Γ ð11:17Þ
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where f is the objective function (1) that its value depends to the set of decision
variables X and the set of input uncertain variables γ; X includes nij, ri, and wi; and γ
consists of Pd and Pw. Γ is the uncertainty set describing behavior of uncertain input
variables. Hi and Gj are ith equality and jth inequality constraints, respectively, and
Ψeq and Ψineq are the sets of equality and inequality constraints. The set Γ can be
written as follows:

8γ2Γ
�
γ; ζ

� ¼ γ :
γ � γ

γ

����
���� � ζ


 �
ð11:18Þ

where γ is the predicted (expected) value of variable γ. ζ is the maximum variation of
γ from its expected value called “radius of uncertainty.” This radius is uncertain, and
finding its value is the aim of IGDT.

Initially, the TNEP optimization problem (11.1)–(11.8) will be solved supposing
all uncertain input variables at their predicted values, as follows:

minimize
X

f b ¼ f
�
X; γ

� ð11:19Þ

subject to

Hi
�
X; γ

� � 0, i2Ψeq ð11:20Þ
Gj

�
X; γ

� ¼ 0, j2Ψineq ð11:21Þ

Above formulation is the conventional deterministic TNEP, known as the “base
case.” The value of function f for this case is called the basic value of objective
function ( fb).

The aim of IGDT is making fb robust against variations of uncertain input vari-
ables. Mathematically speaking, the decision variables X must be optimally selected
so that the objective function f remain immune against the deviations of uncertain
input variables γ from their expected values γ. This conservative IGDT-based
strategy is called “risk-averse strategy,” wherein the maximum radius of uncertainty
(ζ̂) will be found by solving the following optimization problem:

maximize
X, ζ

ζ̂ ð11:22Þ

subject to

Hi X; γð Þ � 0, i2Ψeq ð11:23Þ
Gj X; γð Þ ¼ 0, j2Ψineq ð11:24Þ

ζ̂ ¼ maximumζ ζ
f X; γð Þ � ΛC

ΛC ¼ f b X; γð Þ � 1þ ςCð Þ, γ2Γ

8<
:

9=
; ð11:25Þ

11 Robust Transmission Network Expansion Planning (IGDT, TOAT, Scenario. . . 205



ΛC is the critical (maximum allowed) value of objective function to immunize it;
this objective function should not surpass the critical value. This value can be
determined based on planner’s knowledge and requirements of power system
decision-maker. Usually, it is determined per the basic value fb. Here, the positive
parameter ςC determined by decision-maker is used to define ΛC. ςC is the degree of
acceptable tolerance on increasing fb owing to the possible variations of
uncertainties.

The proposed structure in (11.22)–(11.25) is a bi-level optimization problem. In
the lower level (11.25), the maximum radius of uncertainty (ζ̂ ) for a given value
of decision variables (X) is determined. Then, ζ̂ is passed to the upper level
(11.22)–(11.24). In this level, the decision-maker sets the decision variables X to
increase ζ̂ . But the objective function f should not increase more than its critical
value (ΛC) [14–17].

For RTNEP optimization problem described in (11.1)–(11.8), the above risk-
averse IGDT-based strategy is mentioned as follows:

f b ¼ minimize
nij, ri,wi

X
i; jð Þ2Ω

cijnij þ p f

X
i2B

ri þ p f

X
i2Ψ

wi

8<
:

9=
; ð11:26Þ

subject to

ST f þ Pg þ Pw � wð Þ ¼ Pd � rð Þ ð11:27Þ

f ij � Bij n0ij þ nij
� �

θi � θ j

� � ¼ 0 ð11:28Þ

f ij
�� �� � n0ij þ nij

� �
�f ij ð11:29Þ

Pg � Pg � �Pg ð11:30Þ
0 � r � Pd ð11:31Þ
0 � w � Pw ð11:32Þ

0 � nij � �nij, 8 i; jð Þ2Ω ð11:33Þ

The basic value fb is the sum of investment cost and costs of load and wind power
generation curtailments for the base case, wherein loads (Pd) and wind power
generations (Pw) are fixed at their predicted values with no prediction error.

In the next step, loads and wind power generations take their actual values. In this
step, the bi-level optimization problem should be solved to maximize radius of
uncertainty (ζ), as follows:

maximize
nij, ri,wi, ζ

ζ ð11:34Þ

subject to
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ST f þ Pg þ Pav
w � w

� � ¼ Pav
d � r

� � ð11:35Þ

f ij � Bij n0ij þ nij
� �

θi � θ j

� � ¼ 0 ð11:36Þ

f ij
�� �� � n0ij þ nij

� �
�f ij ð11:37Þ

Pg � Pg � �Pg ð11:38Þ
0 � r � Pav

d ð11:39Þ
0 � w � Pav

w ð11:40Þ
0 � nij � �nij, 8 i; jð Þ2Ω ð11:41Þ

X
i; jð Þ2Ω

cijnij þ p f

X
i2B

ri þ p f

X
i2Ψ

wi

8<
:

9=
; � f b � 1þ ςCð Þ ð11:42Þ

Pav
d ¼ Pd � 1þ ζð Þ ð11:43Þ

Pav
w ¼ Pw � 1þ ζð Þ ð11:44Þ

where nij, ri, wi, and ζ are decision variables. In above optimization problem, three
more constraints (11.42)–(11.44) are added. Inequality constraint (11.42) keeps the
objective function below the predetermined critical value. Equality constraints
(11.43) and (11.44) are required to address the actual values of loads (Pav

d ) and
wind power generations (Pav

w ) in the problem. In the risk-averse strategy, the actual
values of loads and wind power generations are more than their predicted values.
Because there is positive correlation between the TNEP objective function and these
parameters, in other words, the objective function increases (decreases) as loads and
wind power generations increase (decrease). In this strategy, the objective function
remains immune against the maximum radius of uncertainty ζ̂ of the loads and wind
power generation uncertainties.

The above IGDT-TNEP model is tested on the modified Garver 6-bus test system
[8]. The single-line diagram of the system is shown in Fig. 11.3. It includes three
generation buses and eight transmission lines. Load and generation relevant data is
presented in Table 11.1. The number of existing transmission lines is 8 (Table 11.2),
and there are 15 corridors to install new transmission lines (Table 11.3). The
maximum capacity of each corridor is limited to three lines. Initial load and
generation (without wind capacity of bus 2) capacity of system are assumed to be
760 MW and 1110 MW, respectively. The aim of TNEP is expanding transmission
network for the next 5 years with incremental rate 10% for both load and generation
capacity. As shown in Fig. 11.3, wind power generation is injected to bus 2. The
capacity of this generation type is 100 MW. The penalty factor pf for load and wind
power generation curtailment is assumed to be 5270 $/MW.

There are six uncertain input variables, five loads, and a single wind power
generation unit. For the base case, loads are fixed at their predicted (mean) values,
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and wind power generation at bus 2 is supposed to be equal to 50% of its rated
capacity. Based on the abovementioned uncertain input variables, the TNEP prob-
lem is solved, and the value of base objective function is 139 M$; the optimal
expansion plans for the base case are 2–6, 2 � (3–5), and 2 � (4–6). The problem is
solved in MATLAB platform using CPLEX solver.

Assuming the degree of acceptable tolerance on increasing the value of base
objective function (ςC) is equal to 30%, the optimization problem (11.34)–(11.44) is
calculated. Considering this value of ςC, the optimal expansion plans are 1–5,
2 � (2–6), 2 � (3–5), and 2 � (4–6), with required investment cost equals to
180 M$. The maximum radius of uncertainties (ζ̂ ) that objective function remains
immune against it will be equal to 7%.

15

3

2

46

G

W

G

G W: Wind power generation

Fig. 11.3 Single-line
diagram of modified Garver
6-bus test system

Table 11.1 Load and
generation data for modified
Garver 6-bus test system

Bus No. 1 2 3 4 5 6

Load (MW) 80 240 40 160 240 0

Generation (MW) 150 100 360 0 0 600

Table 11.2 Data of existing
transmission lines for
modified Garver 6-bus test
system

From bus To bus Reactance (p.u.) Capacity (MW)

1 2 0.4 100

1 4 0.6 80

1 5 0.2 100

2 3 0.2 100

2 4 0.4 100

2 6 0.3 100

3 5 0.2 100

4 6 0.3 100
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11.5 RTNEP with Taguchi’s Orthogonal Array Testing
(TOAT)

Taguchi’s orthogonal array testing (TOAT) method was presented in [18] to find
robust solutions for manufacturing problems. The method provides much smaller
testing scenarios of uncertain input variables and needs less computational burden
than Monte Carlo simulation (MCS). In TOAT method, appropriate scenarios of
uncertain input variables are provided to cover all possible scenarios. To explain this
method, assume a system Y, which can be represented by a function y ¼ Y(x1, . . .,
xF), where x1, . . ., xF are F uncertain input variables. If each of these variables had
B levels in its variation range, the number of full possible combination of system
states will be BF. Thereupon, testing all these states needs large computational
burden, especially when F is large. TOAT reduces the number of testing states and
computational burden by selecting the optimal number of testing scenarios. In
TOAT, the scenarios are generated according to orthogonal arrays (OAs). An OA
for F variables with B levels for each one is shown by LH(B

F). H is the number of
combinations of variable levels. LH(B

F) is shown as a matrix with H rows and
F columns, and values of matrix elements are indicated using variable levels. For
instance, an OA L4(2

3) is as follows:

L4 23
� � ¼

1 1 1
1 2 2
2 1 2
2 2 1

2
664

3
775

Table 11.3 Data of candidate transmission lines for modified Garver 6-bus test system

From bus To bus Reactance (p.u.) Capacity (MW) Capital cost (M$)

1 2 0.4 2 � 100 40

1 3 0.38 3 � 100 38

1 4 0.6 2 � 80 60

1 5 0.2 2 � 100 20

1 6 0.68 3 � 70 68

2 3 0.2 2 � 100 20

2 4 0.4 2 � 100 40

2 5 0.31 3 � 100 31

2 6 0.3 2 � 100 30

3 4 0.59 3 � 100 59

3 5 0.2 2 � 100 20

3 6 0.48 3 � 100 48

4 5 0.63 3 � 75 63

4 6 0.3 2 � 100 30

5 6 0.61 3 � 78 61
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where there are three variables with two levels for each of them and four scenarios
in L4(2

3). Let us assume, “1” and “2” denote low and high levels of variables,
respectively. The scenarios obtained by L4(2

3) are represented in Table 11.4.
So, H is so smaller than BF. In the considered system with three uncertain

variables and each shown by two levels, the number of full scenarios is equal to
23. As shown, using L4(2

3), just four scenarios are tested. Therefore, the number of
testing scenarios is reduced notably.

Features of an OA are as follows:

(a) Each level of an uncertain variable occurs H/B times in each column.
(b) In each two columns, the numbers of occurrences of two variable levels are the

same. For instance, in any two columns of L4(2
3), “11”, “12”, “21”, and “22”

occur one time.
(c) The scenarios obtained by OA are uniformly distributed over the space of all

possible scenarios. This feature is illustrated in Fig. 11.4 for the combinations of
L4(2

3).

(d) If each two columns of an OA are exchanged or some columns are ignored, the
new array still satisfies the abovementioned features.

OAs can be determined by various ways. A simple way to determine an OA is to
select a suitable OA from OA libraries [19].

Table 11.4 Four testing scenarios obtained by OA L4(2
3)

No. of testing scenarios

Variable levels

Variable 1 Variable 1 Variable 1

Scenario 1 1 1 1

Scenario 2 1 2 2

Scenario 3 2 1 2

Scenario 4 2 2 1

(2,1,2)

(2,2,1)

(1,1,1)

(1,2,2)

Tested combination of variable levels
Variable 1

Variable 2

Variable 3Fig. 11.4 Orthogonal array
L4(2

3)
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Maybe, for a given system, there is no OA in the OA libraries whose number of
column is equal to the number of system uncertain variables. In such a case, an OA
whose number of columns is a few more than the number of system uncertain
variables must be selected. So, based on the feature (d), the redundant column can
be ignored.

Suppose, in the TNEP problem, loads and wind power generations are uncertain
input variables. Orthogonal arrays of these uncertain variables should be defined.
Assuming a load with the normal distribution, μ � σ and μ + σ are chosen as
representatives of load values, where μ and σ are, respectively, expected and
standard deviations. The output of a wind power generator changes between zero
and its rated capacity. These limit values are chosen as representatives to define the
uncertain wind power generation. Therefore, here the OAs with two levels are used
in robust TNEP. The operating testing scenarios for TNEP are defined as follows:

(a) Counting the number of uncertain loads nd and the number of uncertain wind
power generations nw.

(b) Defining an OA LH(B
F) for above uncertain variables, wherein F � nd + nw.

Suppose, “1” and “2” in an OA column are, respectively, low and high repre-
sentative values of variables (or vice versa); here, each uncertain variable has
two levels low and high.

(c) If the number of columns in OA is more than the number of uncertain variables,
ignore redundant columns, and suppose the first nd + nw column of LH(B

F) are
variables of load and wind power generation. Then, select H rows of LH(B

F) as
operating scenarios.

The selected scenarios are implemented in TNEP optimization problem. The
TNEP formulation with TOAT with these scenarios is as follows:

f ¼ minimize
nij, ri,h,wi,h

X
i; jð Þ2Ω

cijnij þ p f

X
h

X
i2B

ri,h þ p f

X
h

X
i2Ψ

wi,h

8<
:

9=
; ð11:45Þ

subject to

ST f h þ Pg,h þ Pw,h � whð Þ ¼ Pd,h � rhð Þ ð11:46Þ

f ij,h � Bij n0ij þ nij
� �

θi,h � θ j,h
� � ¼ 0 ð11:47Þ

f ij,h
�� �� � n0ij þ nij

� �
�f ij ð11:48Þ

Pg � Pg,h � �Pg ð11:49Þ
0 � rh � Pd ð11:50Þ
0 � wh � Pw ð11:51Þ

0 � nij � �nij, 8 i; jð Þ2Ω ð11:52Þ
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All above variables have been previously introduced in Sect. 11.2. Here, the
subscript h denotes the serial number of implemented scenario and h ¼ 1,2,3,. . .,H.
The objective of formulation (11.45) is to minimize the sum of investment cost and
costs of load and wind power generation curtailments for H implemented testing
scenarios.

The generated scenarios by TOAT do not cover all possible scenarios regarding
the uncertain input variables. Thereupon, this is needed to check the robustness of
the obtained solution for TNEP from the above formulation. To this end, K scenarios
are generated by MCS using the pdfs of the uncertain variables, where K is much
more than H. Supposing k is the serial number of scenario and k ¼ 1,2,3,. . .,K, the
testing formula is as follows:

minimize
ri,k,wi,k

X
i2B

ri,k þ
X
i2Ψ

wi,k

( )
ð11:53Þ

subject to

ST f k þ Pg,k þ Pw,k � wkð Þ ¼ Pd,k � rkð Þ ð11:54Þ

f ij,k � Bij n0ij þ nij
� �

θi,k � θ j,k
� � ¼ 0 ð11:55Þ

f ij,k
�� �� � n0ij þ nij

� �
�f ij ð11:56Þ

Pg � Pg,k � �Pg ð11:57Þ
0 � rk � Pd ð11:58Þ
0 � wk � Pw ð11:59Þ

When objective function (11.53) is zero, the calculated planning scheme satisfies
testing scenario k. The robustness degree of the planning scheme in percent is
calculated as follows:

β ¼ K1

K
� 100% ð11:60Þ

where K1 is the number testing scenarios whose objective function (11.53)
becomes zero.

The above TOAT-based TNEP is implemented on the modified Garver 6-bus test
system. As mentioned in Sect. 11.4, the number of uncertain input variables is
supposed to be six (five loads and one wind power generation). Assuming a load
has normal distribution, μ � σ and μ+σ are selected as low and high levels of load.
Standard deviation (σ) of each uncertain load is supposed to be 10% of its expected
value (μ). Let us assume that the expected value of wind power generation at bus 2 is
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50% of its rated capacity. The expected values of loads at buses 1–5 are, respec-
tively, 80, 240, 40, 160, and 240 MW, and the rated capacity of wind power
generation at bus 2 is 100 MW. So, an orthogonal array with six uncertain
two-level variables is needed. From the OA libraries [19], the OA L8(2

7) is proper
for this set of uncertainties. This OA is as follows:

L8 27
� � ¼

1
1
1
1
2
2
2
2

1
1
2
2
1
1
2
2

1
1
2
2
2
2
1
1

1
2
1
2
1
2
1
2

1
2
1
2
2
1
2
1

1
2
2
1
1
2
2
1

1
2
2
1
2
1
1
2

2
66666666664

3
77777777775

However, the number of column in this OA is more than the number of uncertain
variables that is six. So, the first six columns of this OA are selected, and the final
redundant column is ignored. Assuming “1” and “2,” respectively, indicate low and
high levels of uncertainties, the testing scenarios obtained by L8(2

7) for modified
Garver 6-bus test system are shown in Table 11.5. Note that the low and high values
of loads in this table are calculated based on load values at the end of time horizon,
i.e., in the 5th year, with the annual incremental rate of 10%.

With the above chosen scenarios, the TOAT-based TNEP problem (11.45)–
(11.52) is solved, and the obtained solution is 2 � (1–5), 2–3, 2 � (2–6),
2 � (3–5), and 2 � (4–6), with the required investment cost 220 M$. The problem
is solved in MATLAB platform using CPLEX solver.

Now, the robustness of above planning scheme should be checked. To do this,
these new transmission lines are added to the system, and the optimization problem
(11.53)–(11.59) is solved for 1000 scenarios generated by MCS. In 944 scenarios,
the objective function (11.53) becomes zero. Therefore, the robustness degree of the
obtained planning scheme is 94.4%.

Table 11.5 Eight testing scenarios obtained by OA L8(2
7) for modified Garver 6-bus test system

No. of testing scenarios

Variable levels

Pd1 Pd2 Pd3 Pd4 Pd5 Pw2 Ignored column

1 187 560 93 374 560 0 1

2 187 560 93 456 684 161 2

3 187 684 114 374 560 161 2

4 187 684 114 456 684 0 1

5 229 560 114 374 684 0 2

6 229 560 114 456 560 161 1

7 229 684 93 374 684 161 1

8 229 684 93 456 560 0 2
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11.6 RTNEP Using Scenario Technique Criteria (Min-Max
Regret Criterion)

This robust optimization method is a risk analysis technique that is proposed in [20]
for robust unit commitment problem. The method aims to minimize the maximum
regret of planning schemes (TNEP solutions) under all possible scenarios [21];
regret of scheme X in scenario s is the difference among cost of scheme X in scenario
s and cost of optimum scheme �X in scenario s, i.e.:

regret X; sð Þ ¼ f X; sð Þ � f
�
�X; s

� ð11:61Þ

where regret(X, s) is the regret of scheme X in scenario s. f(X, s) and f
�
�X; s

�
are the

costs (objective function values) of scheme X and optimal scheme �X in scenario s,
respectively. The optimal scheme �X can be calculated by solving the TNEP
optimization problem only applying the scenario s.

In this method, the scheme which minimizes the maximum regret over all
scenarios is chosen as the final optimal plan, i.e., [21, 22]:

minimize
X

maximum
s

regret X; sð Þð Þ ð11:62Þ

To explain the min-max regret criterion, a simple example is presented. Let us
assume, a planning problem is optimized for three scenarios. The optimal scheme of
each scenario is bolded in Table 11.6. Table 11.7 shows the regrets of expansion
schemes in different scenarios. Also, the maximum regret of each scheme is deter-
mined in this table. Scheme 2 with the minimum-maximum regret is selected as the
final optimal scheme.

The mathematical formulation of min-max regret criterion for TNEP optimization
problem is explained below.

Initially for each single scenario s, the optimal cost f
�
�X; s

�
should be calculated

as:

Table 11.7 Regrets of expansion schemes in different scenarios

Schemes Scenario A Scenario B Scenario C Maximum regret

Scheme 1 0 12 24 24

Scheme 2 20 14 4 20
Scheme 3 28 0 0 28

Table 11.6 Optimal scheme
of each scenario

Schemes Scenario A Scenario B Scenario C

Scheme 1 150 166 194

Scheme 2 170 168 174

Scheme 3 178 154 170
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f
�
�X; s

� ¼ minimize
nij, ri, s,wi, s

X
i; jð Þ2Ω

cijnij þ p f

X
i2B

ri, s þ p f

X
i2Ψ

wi, s

8<
:

9=
; ð11:63Þ

subject to

ST f s þ Pg, s þ Pw, s � wsð Þ ¼ Pd, s � rsð Þ ð11:64Þ

f ij, s � Bij n0ij þ nij
� �

θi, s � θ j, s
� � ¼ 0 ð11:65Þ

f ij, s
�� �� � n0ij þ nij

� �
�f ij ð11:66Þ

Pg � Pg, s � �Pg ð11:67Þ
0 � rs � Pd ð11:68Þ
0 � ws � Pw ð11:69Þ

0 � nij � �nij, 8 i; jð Þ2Ω ð11:70Þ

So, a bi-level optimization problem should be calculated to obtain final optimal
scheme to minimize the maximum regret, as follows:

(Master problem)

minimize
X

maximum
s

f X; sð Þ � f
�
�X; s

�� � ð11:71Þ

where in each scenario, the cost f(X, s) is calculated as:
(Slave problem)

f X; sð Þ¼ minimize
ri, s,wi, s

X
i; jð Þ2Ω

cijnij þ p f

X
i2B

ri, s þ p f

X
i2Ψ

wi, s

8<
:

9=
; ð11:72Þ

subject to

ST f s þ Pg, s þ Pw, s � wsð Þ ¼ Pd, s � rsð Þ ð11:73Þ

f ij, s � Bij n0ij þ nij
� �

θi, s � θ j, s
� � ¼ 0 ð11:74Þ

f ij, s
�� �� � n0ij þ nij

� �
�f ij ð11:75Þ

Pg � Pg, s � �Pg ð11:76Þ
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0 � rs � Pd ð11:77Þ
0 � ws � Pw ð11:78Þ

The set of scenarios are generated from uncertain input variables, i.e., loads and
wind power generations. These scenarios can be defined by different methods such
as Taguchi orthogonal arrays method.

This scenario-based RTNEP is performed on the modified Garver 6-bus test
system. The scenarios determined by Taguchi method (Table 11.5) are used as the
set of possible scenarios. In each scenario, the optimal scheme is found using
CPLEX solver. Values of objective function (11.63) for the optimal schemes are
presented in Table 11.8. Regrets of these schemes in other scenarios are as
Table 11.9. The final column of this table indicates the maximum regret of each
scheme in the set of scenarios. Therefore, scheme 4 (or 5) with the minimum-
maximum regret equals to 122 is the final optimal scheme. This expansion scheme
needs 220 M$ to install new lines 2 � (1–5), 2–3, 2 � (2–6), 2 � (3–5), and
2 � (4–6).

Table 11.8 Optimal scheme of each scenario, in modified Garver 6-bus test system

Schemes Scen.a1 Scen.2 Scen.3 Scen.4 Scen.5 Scen.6 Scen.7 Scen.8

Sch.b1 110 437 110 1157 619 197 477 820

Sch.2 161 145 140 826 469 180 382 661

Sch.3 197 491 98 1183 646 203 530 943

Sch.4 220 220 220 220 220 220 220 220

Sch.5 220 220 220 220 220 220 220 220

Sch.6 585 412 464 1345 983 166 862 1099

Sch.7 181 181 181 431 335 181 190 181

Sch.8 160 292 160 412 329 177 292 160
aScenario
bScheme

Table 11.9 Regrets of expansion schemes in different scenarios, in modified Garver 6-bus test
system

Schemes Scen.1 Scen.2 Scen.3 Scen.4 Scen.5 Scen.6 Scen.7 Scen.8 MRa

Sch.1 0 292 12 937 399 31 287 660 937

Sch.2 51 0 42 606 249 14 192 501 606

Sch.3 87 346 0 963 426 37 340 783 963

Sch.4 110 75 122 0 0 54 30 60 122
Sch.5 110 75 122 0 0 54 30 60 122
Sch.6 475 267 366 1125 763 0 672 939 1125

Sch.7 71 36 83 211 115 15 0 21 211

Sch.8 50 147 62 192 109 11 102 0 192
aMaximum regret
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11.7 Conclusions

The robust TNEP considering uncertainties of load and wind power generation was
considered in this chapter. The three common robust methods, IGDT, TOAT, and
min-max regret criterion, were explained, and their mathematical formulations for
TNEP problem were presented. The methods were successfully implemented on the
modified Garver 6-bus test system. Demanded loads and output of wind power
generator were supposed in an uncertain manner to provide an uncertain power
system in the test system. The obtained simulation results verify the capability of the
mentioned methods in planning a robust transmission network. A risk-averse IGDT-
based strategy to solve the robust TNEP problem was implemented. By doing so, the
problem objective function (capital cost) remained immune against deviations of
uncertain input variables of loads and wind power generation. In the modified
Garver 6-bus test system, the maximum radius of uncertainties that objective
function remained immune against it was equal to 7%. Wherein, the degree of
acceptable tolerance on increasing the value of base objective function was 30%.
Also, the TOAT was implemented on the considered system to solve RTNEP. An
OA with six columns for six uncertain input variables (five load and one wind power
generation) was selected. The robustness degree of the obtained planning scheme by
this method was 94.4%. Also, for the case study system, the RTNEP was solved
based on the min-max regret criterion. Eight scenarios of demanded loads and wind
power generation were considered in this method. An expansion plan with 122 M$
regret was selected as optimal plan. The needed capital cost for this plan was 220 M
$. In each of the abovementioned methods, an acceptable solution for RTNEP with
uncertainties of load and wind power generation was calculated. These methods can
easily be implemented on any larger- and real-scale power system to expand its
transmission network in a robust manner. Also, other uncertainties can be considered
in these methods.
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Chapter 12
A Robust-Stochastic Approach for Energy
Transaction in Energy Hub Under
Uncertainty

Khezr Sanjani, Neda Vahabzad, Morteza Nazari-Heris,
and Behnam Mohammadi-ivatloo

Nomenclature
Ps,g,t Generation power during time interval t

RUg Ramp-up rates of thermal unit g

RDg Ramp-down rates of thermal unit g

fs,m,n,t A gas flow from n to m

Sgs,n,t Gas supply at node n

Sgmin
n

Minimum of gas supply at node n

Sgmax
n Maximum of gas supply at node n

Sdn Gas load of node n

Cm,n Constant of pipe

Prs,n,t Pressure of gas node n

Prmax
n Maximum pressure gas at node n

Prmin
n

Minimum pressure gas at node n

ag First coefficient for the power sector

Ps,ij,t Electrical power transmitted from bus i to j

OF Objective function

EC Electrical system cost

GC Natural gas system cost

δs,i,t Voltage angle of bus i

V CO
u

Cutout speed of the uth wind turbine

load(t) Load after implementation of DRPs

load0(t) Initial load at time period t

DR(t) Percentage of load participation in DRPs

ldr(t) Shifted load using DRPs at time t

DRmax Maximum percentage of load in DRPs
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V w
u, t The uth wind turbine speed at time t

V CI
u

Cut-in speed of the uth wind turbine

V R
u

Rated wind speed of the uth wind turbine

Pw
u, t Power generated by the uth wind turbine

Pmax
u Rated power of the uth wind turbine

πs Probability assigned to each scenario

Pbuy Purchase power from market

λs,i,t Robust market price

12.1 Introduction

The use of distribution energy networks and the concept of energy hub have been
presented in the last decade to inquire optimal scheduling of new incorporated
multi-carrier energy systems [1, 2]. Operational flexibility of energy services
increases by these hybrid inputs and outputs of energy carriers. In addition, it
gives the operator an alternative in providing the energy demands at different time
intervals [3, 4].

12.1.1 Co-generation

A novel linear model formulation of integrated power and gas systems is presented
in [5] in order to minimize total operation cost of the short-term scheduling while
considering the natural gas grid dynamics. A dynamic optimal energy flow in
coordinated natural gas and electricity systems is formulated as a single-stage linear
optimization model in [6] taking into account an incorporated natural gas and
electricity transmission systems with DC power flow constraints. A new multi-
objective methodology is introduced in [7] in order to coordinate the natural gas
and electricity networks. The presented goal is to minimize operation cost and
maximize the safety margins of the natural gas and electricity networks. A risk-
averse stochastic optimal energy management of energy hub algorithm is proposed
in [8]. Several energy producers are considered in [9] who trade their resources
systematically in the integrated natural gas and electricity markets. The traditional
producers give a price offer and quantity of products to the energy market, where
they are willing to maximize their own profit.

Addressing how synergistic operation of electricity and natural gas networks can
be gained is proposed in [10] by a distributed path utilizing alternating direction
method of multipliers. A reliability-based optimal planning model is proposed in
[11] for coordination of multiple energy hubs. A least-cost selection of grid compo-
nents (i.e., transmission lines and natural gas pipelines) for interconnecting multi-
carrier energy systems, which can assure the stated probabilistic reliability criteria,
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is considered in planning stage of the problem. An examination of the effect of
curtailments by altering natural gas pressure in order to measure how ramp rates of
gas-fired plants change is presented in [12].

12.1.2 Uncertain Models

Due to the significant uncertainty impact of energy demand and market price in
power systems, such parameters have important contribution in increasing volume
of computation in scenario-based stochastic programming approach. Accordingly,
the stochastic and robust optimization methods have been studied as the subject of
recent works, which can handle the forecast errors of uncertainties related to
energy systems scheduling. Dolatabadi et al. presented a solution model in [13],
where the global optimal solution is found and also level of calculations is
lightened. So, a hybrid stochastic/IGDT optimization method is considered for
the optimal scheduling of wind integrated energy hub, where wind turbine uncer-
tainty is considered including energy prices and energy demands. The uncertainties
related to wind power generation and SEH electricity and thermal demand in the
operation issues are formulated in [14] in various scenarios. Moreover, scenario
reduction method is utilized to decline the calculation role of the scenario-based
operation issue.

A new stochastic planning formulation for multi-carrier energy systems is studied
considering the uncertainty of wind turbine, amount of demand, and visibility of
components in [15]. In this reference, scenario-based model is engaged to handle
these uncertainties perfectly, in order to gain an extensive multi-carrier energy
planning formulation. The planning stage of new gas-fired units and power-to-gas
(P2G) facilities and modifying wind power resource cost to decline wind spillage are
investigated under uncertainties. Furthermore, incorporation of both N � 1 and
probabilistic reliability criteria are considered in the co-optimization framework,
so that low-probability/high-impact events are adequately addressed while overall
reliability is also ensured [16]. A robust co-optimization operation formulation is
proposed in [17], in order to analyze the coordinated optimal operation of multi-
carrier energy systems. The aim of introduced model is to minimize total costs of the
multi-carrier energy system, by applying power system key uncertainties and natural
gas system dynamics.

A robust optimization model is proposed in [18] to specify how uncertainties
associated with wind speed forecasts modify the economic and secure operation of a
multi-energy system. The studied system in this reference is constructed of natural
gas, coal, and electricity infrastructures interconnected in some common nodes.
Addressing the percent of the demand that can be supplied by various types of
carriers is proposed in [19], where its effects on multi-energy system modeling and
the utilization of this type of demand within DR programs are discussed. A control
approach using robust optimization (RO) technique is proposed in [20], where the
input of multi-carrier energy system, their distribution among converters, and their
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storage are determined in order to satisfy the energy hub output time-varying
requests while minimizing the energy expenses. Risk-averse energy hub manage-
ment by applying plug-in electric vehicles utilizing information gap decision theory
is analyzed in [21]. The thermal demand response program (TDRP) besides the
electrical demand response program (EDRP) was investigated in [22].

An identification method and protection path of sensitive components of com-
bined gas and electric infrastructures from malicious attacks, deployment of valid
corrective actions to guarantee a resilient operation, while considering the
interdependency of gas pipeline network and power transmission network [23]. A
consideration of detailed demand response program in the stochastic scheduling
model as cost-effective function for optimizing the day-ahead scheduling of coupled
electricity and natural gas transmission networks (referred to as EGT ran) is
presented in [24]. An optimal probabilistic scheduling model of energy hubs exploi-
tation is presented in [25]. A determination of energy carriers to be purchased as
input and converted or stored in energy hub schedule in order to minimize the total
hub’s cost by proper meeting of energy demands.

12.1.3 Market

Economically, electricity is a commodity capable of bilateral bidding transactions.
Electricity market systematically enables purchasing power through bids to buy;
sales, through offers to sell and hourly transactions. Systematically, bids and offers
use equality of supply and demand principles to set the value price. The real-time
operation issue of multi-carriers is modeled in a dynamic pricing market in [26]. The
multi-carriers interaction is formulated as an accurate potential of game to optimize
each energy hub’s payment to the electricity and gas utilities, as well as the users’
satisfaction for energy commitment [26]. The uncertainty of energy market prices,
auxiliary service market prices, wind power, and photovoltaic power are taken into
account to propose a day-ahead scheduling strategy for the integrated community
energy system in a joint energy and auxiliary service markets [27]. In this chapter, a
definition of hybrid robust-stochastic approach is presented, in which this method-
ology focuses on optimal scheduling of natural gas and electricity co-generation. An
evaluation of market bidding price contingencies by RO is presented. Both electrical
and natural gas demand uncertainties were considered in stochastic programming
term. Also, a time-amount DR program is applied on coordinated grids in order to
reduce total fuel cost by shifting a part of electrical loads from on-peak or high-price
periods to off-peak or low-price hours.

The reminder of the paper is organized as follows: Sect. 12.2 presented the
model of problem formulation, which consists of stochastic and robust program-
ming for uncertainty model of demands and prices. The case study and numerical
results are considered in Sect. 12.3. Finally, Sect. 12.4 described the conclusion of
the paper.
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12.2 Problem Formulation

Nowadays, hybrid co-generation systems are interesting topics all around the world,
where the system operators try to make the systems more reliable and cost-effective.
Hence, this work proposes a hybrid robust-stochastic optimization approach which
focuses on coordinated hybrid co-generation of natural gas and electricity. The
proposed model aims to minimize the total operation costs of the hybrid system
simultaneously, where robust optimization method handles market price uncer-
tainties, and both electrical and natural gas demand uncertainties are considered in
stochastic programming part. On the other hand, a real-time demand response to
shift load demands from high-price periods to low-price periods is considered [28].

12.2.1 Hybrid Robust-Stochastic Model

This work proposes a novel hybrid robust-stochastic optimization approach which
revolves around demand uncertainty in both electrical and natural gas networks and
power market price.

12.2.1.1 Stochastic Optimization

The stochastic programming is a suitable approach to opt intentions under probabi-
listic and uncertain conditions. In this study, the stochastic optimization is applied to
specify the optimal production of generators in each scenario. Stochastic uncer-
tainties are considered in both load demand of electricity and natural gas networks.

As the nature of uncertainty in electrical and natural load demands, the values of
demands are considered to be uncertain. The uncertain parameter is obtained using
probability distribution function (PDF). In Fig. 12.1, the forecast error distribution
curves are divided into five intervals with the width of one standard deviation [29, 30].

A part of uncertain load demands of electricity network at time interval 10 (t10)
are described in Table 12.1. It should be noted that whole demands at uncertain
program are vast, and the authors just bring a part of them to show the adoption in
demands by applying the stochastic programming. Demand response with maximum
value of 15% is considered for the forecasted demands (DRmax ¼ 0.15).

12.2.1.2 Robust Optimization

Robust optimization is one of the high-performance optimization fields which
handles the optimization issues with uncertain parameters and gives an apparent
robustness versus uncertainty that can be represented as deterministic mutability in
the amount of the parameters of the problem itself and/or its solution.
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In the proposed method, upstream grid has been considered as a power source
which is only able to gain power from electricity market. There is a limitation in the
amount of purchase power; it means the system cannot buy the whole of demand
from market, which is presented in (12.3) and (12.4) in the following.

12.2.2 Objective Function

The objective of the proposed hybrid model is to minimize the total operation cost of
natural gas and electricity co-generation, simultaneously as provided in (12.1). In
this cost-effective optimization method, uncertainties in demand and price are
considered as well as uncertainty of power market price. The proposed objective
function consists of two parts, which is written as follows:

minOF ¼ EC þ GC ð12:1Þ

EC¼
X5
s¼1

X
i, t

πs ag Ps,g,t
� �2þVOLL�LSs,i,tþVWC�PWC

s,i,t

n o
þ
X24
t¼2

ξtþΓβ ð12:2Þ

– 2 



–  +  + 2

S1=– 2.5

S2=– 1.5 S4=+ 1.5

S5=+ 2.5S3 =

Fig. 12.1 Probability distribution function

Table 12.1 Part of demands
in five scenarios

Demand S1 S2 S3 S4 S5

D5 0.9153 0.7744 0.8128 0.8425 0.8767

D13 2.7952 2.8914 3.0337 3.1767 3.2722

D18 3.1153 4.1730 3.8121 3.9920 4.1118
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GC ¼
X5
s¼1

X
i, t

πs � cn � Sgs,n, t
� � ð12:3Þ

The worst-case electricity price is proposed by robust optimization for power
market price and various electric/gas demand scenarios handled by stochastic
programming. The electricity cost terms are the generation cost of units (i.e., thermal
units, common units, and wind turbines), the cost of the purchasing electricity
from power market, unsupplied demand penalty cost, and value of wind
curtailment penalty factor (12.2). The natural gas cost term is the amount of supply
gas cost (12.3).

12.2.3 The Natural Gas Network Constraints

The technical characteristic of natural gas network is provided in [31]. Natural gas
network constraints of the proposed model are described as follows: Also, Eq. (12.4)
is for the natural gas network equality constraint. Equations (12.5) and (12.6) are the
active and passive arcs. Finally, the last two Eqs. (12.7) and (12.8) are employed for
gas flow and pressure limitations.

X
m

f s,m,n, t ¼
X
m

f s,m,n, t þ Sgs,n, t � ξg, tSdn � Sen, t ð12:4Þ

f s,m,n, t ¼ Cm,n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pr2s,m, t � Pr2s,n, t

q
passive arc ð12:5Þ

f s,m,n, t � Cm,n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pr2s,m, t � Pr2s,n, t

q
active arc ð12:6Þ

Sgmin
n � Sgs,n, t � Sgmax

n ð12:7Þ
Prmin

n � Prs,n, t � Prmax
n ð12:8Þ

12.2.4 Electricity Network Constraints

In the main equality constraint, the sum of generated power from thermal power
generators and wind turbines and the sum of bidding from power market and load
shedding subtracted to demand after applying demand response program should be
equal to transmitted power from node i to node j (12.9) and (12.10). Ramp-up and
ramp-down of generators have a limitation provided in (12.11) and (12.12). The
amount of power transmitted between two nodes is described in (12.13). Also, the
amount of load shedding has a maximum curtailed (12.14). Moreover, maximum
value of power purchased from market is unfolded in (12.15), and finally the robust
optimization constraint is demonstrated in (12.19).
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X
g2Ω i

G

Ps,g, t þ LSs, i, t þ Pw
s, i, t � Ls, i, t þ Pbuyi, t

� � ¼
X
g2Ω i

G

Ps, ij, t : λi, t ð12:9Þ

Ps, ij, t ¼ θs, i, t � θs, j, t
Xij

ð12:10Þ

Ps,g, t � Ps,g, t�1 � RUg ð12:11Þ
Ps,g, t�1 � Ps,g, t � RDg ð12:12Þ
�Pmax

g � Pij, t � Pmax
g ð12:13Þ

0 � LSi, t � Li, t ð12:14Þ
0 � Pbuyi, t � Pbuymax

i, t ð12:15Þ
ξi, t þ βi � Γ � λRi, tPbuyi, t ð12:16Þ

12.2.5 Wind Power Generation

The amount of power generated by wind unit generally has a nonlinear relationship
with the wind speed value and the other turbine factors. In the proposed method, a
simplified linear formula is considered in which the amount of power generated from
wind turbine is related to variation of wind speed value (12.17), which can be
described as follows:

PW
s, i, t ¼

0 V W
u, t > V CO

u ,V W
u, t < V CI

u

Pmax
u � V W

u, t � V CI
u

V R
u � V CI

u

 !
V CI
u < V W

u, t < V R
u

Pmax
u V R

u < V W
u, t < V CO

u

8>>><
>>>:

9>>>=
>>>;

ð12:17Þ

12.2.6 Real-Time Demand Response

By implementing DR program, electricity consumers adopt changeable part of their
loads from high-price time intervals to inexpensive periods in order to reduce total
fuel cost and their own revenues. At first, (12.18) shows the load after applying
demand response program which is constructed from two parts, one is the normal
load and the other is the demand response term. Moreover, (12.19) is demand
response term which consists of two parts including the demand response
percent which is crossed to the normal demand and adds to the normal demand to
construct the final demand after applying demand response. Equation (12.20) means
that in each demand response program, the sum of the demand response terms
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should be equal to zero. Finally, the curtailment for percent of demand response is
shown in (12.21).

load tð Þ ¼ load0 tð Þ þ ldr tð Þ ð12:18Þ
ldr tð Þ ¼ DR tð Þ:load0 tð Þ ð12:19Þ

X24
t¼1

ldr tð Þ ¼ 0 ð12:20Þ

DR tð Þ � DRmax ð12:21Þ

12.3 Case Study and Simulation Results

12.3.1 Case Study

At this part, the proposed method in this chapter is applied on IEEE-RES 24-bus
combined with 20 nodes and 24 pipeline natural gas network, to define the effec-
tiveness of the proposed method. The study considered the value of lost load
(VOLL) and value of lost wind (VOLW) to be 180 $/MW h and 1000 $/MW h,
respectively [32]. The maximum purchase power is considered to be 5 p.u
(Pbuy ¼ 5).

The effect of hybrid robust-stochastic optimization on natural gas and electricity
integration in the presence of DRPs is unfolded by solving a nonlinear programming
problem using general algebraic modeling system (GAMS) optimization
software [33].

12.3.2 Numerical Results

In this case, the results of co-generation scheduling problem are compared to show
the differences between the cases of studies.

It should be remarked that there are several worst-case realizations of the price
sequence for the same optimal consumption schedule. Figure 12.2 only shows the
worst price with robust budget is equal to 7.5 in comparison with the upper bound
and lower bound of the nominal price with a considered deviation equal to 15% [34].

Figure 12.3 shows electrical demand in two visions including nominal demand
and demand after applying DR programs.

A comparison between the hourly schedules of generated power in three types of
robust budget (i.e., RB ¼ 7.5, 15, and 22.5) for generator 7 is unfolded in Fig. 12.4.
As it is clear from Fig. 12.4, the amount of generated power from generators
increases close to maximum value by increasing the amount of robust budget. The
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generated power of the generator in robust budgets 7.5, 15, and 22.5 is illustrated in
this figure.

As in the base of the RO programming, the grid trend for power absorption in the
market became lower by increasing price value to worst case. Figure 12.5 shows a
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Fig. 12.4 Hourly generation schedule of generator 4 in scenario 4

2 4 6 8 10 12 14 16 18 20 22 24

Time (hours)

2.5

3

3.5

4

4.5

5

P
ur

ch
as

e 
po

w
er

 (
p.

u.
)

budget=7.5

stochastic
budget=22.5

Fig. 12.5 Purchase power comparison RO-level ¼ 1/stochastic

12 A Robust-Stochastic Approach for Energy Transaction in Energy Hub. . . 229



part of purchase power from grid in three case studies, stochastic, RO-level ¼ 7.5,
and RO-level ¼ 22.5 which proves that by increasing the robust budget, the grid
trend for purchase power became lower.

Table 12.2 allows a comparison between the three case studies, a stochastic one
and hybrid stochastic-RO with two kinds of robust level (7.5, 15, and 22.5).

12.4 Conclusion

An illustration of a hybrid robust-stochastic approach is the main objective of the
presented work, which focused on coordinated optimal scheduling of natural gas and
electricity co-generation. In this case, the authors utilized RO for considering power
market price uncertainty. In addition, both electrical and natural gas demand uncer-
tainties were considered in stochastic programming term. On the other hand, a real-
time demand response (DR) was also considered in order to make load profile
so smoother. In addition, the presented method is applied on a case study; IEEE
RTS 24-bus combined with natural gas network was the test system. The results
show that considering hybrid robust-stochastic model has more economic efficiency
and benefits of gas-electric coordinated schedule. The obtained results show that
the operation cost of the studied system increases by increasing the robust level of
the system.
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Chapter 13
Robust Optimal Multi-agent-Based
Distributed Control Scheme for Distributed
Energy Storage System

Desh Deepak Sharma and Jeremy Lin

13.1 Introduction

Worldwide, there is a rapid growth of renewable power generations, especially
wind and solar PV, which have made inroads into the existing electricity grids.
According to the International Energy Agency Photovoltaic Power Systems
Programme (IEA-PVPS), this growth rate in installed capacity is ranging from
35% to 85% in Organisation for Economic Co-operation and Development
(OECD) countries. The IEA-PVPS has shown that 40 GW of solar capacity has
already been installed around the world. The energy from installed solar PV would
increase to 600 GW in 2035 due to decrease in expenses and government aids. In
2035, the expected solar capacity would reach 113 GW in China, 85 GW in India,
and 54 GW in Japan [1].

Furthermore, IEA-PVPS has analyzed that hybrid PV system configuration such
as PV and BESS are economical and clean [2]. The hybrid PV system is basically a
microgrid in which DC link can be shared between PV system and BESS [3]. During
recent years, installed price of solar PV system has decreased due to decrement in the
hardware cost. Expected financial returns and concerns about operations and main-
tenance are the major other determining factors in the adoption of solar PV system
[4]. The storage systems paired with solar plants can overcome the risks, faced by the
solar power producer, due to uncertain production of solar plant [5]. The variability
and uncertainty feature in solar PV power and wind power generation must be
analyzed in order to develop a mechanism for evaluating both the economic and
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reliability impacts of solar PV and wind power variability and uncertainty at multiple
scales [6].

Possibilities of uncertainty in forecasting may be due to different factors. In
various literatures, different models are developed for forecasting, but these methods
are based on a number of assumptions of the future. Forecasting may not be accurate
due to collection of bad input data found from either measurement or estimation. It is
impossible to perfectly develop the relationships among all possible factors and
output of a system. Reliability and security will be the new challenges in the
development of a smart grid with the penetration of more and more renewable
sources which are uncertain in nature in terms of power generation. In the presence
of uncertainties, the grid can be made more secure and reliable by deploying energy
storage devices as new technology in the system. With both grid-connected and
islanded operations, intelligent energy management schemes are developed while
deciding the capacity and charging rate of storage devices, residential load varia-
tions, and distribution network electricity price [7, 8].

A solar photovoltaic (PV) unit consists of a number of solar cells. In solar power
generation of each cell, modeling has been done for two parts such as the solar
irradiation function and the power generation function in which solar irradiation is
linked to the power output of the solar PV generator. In different literatures, it is
found that, generally, the beta PDF is being used in the modeling of the random
behavior of the solar irradiation for each day. The parameters beta PDF can be
inferred from the estimates of mean and variance values of historical irradiance
data [9–11]. Based on the model of irradiation distribution, the output of a solar
generator is decided by the function of power generation [12]. Similarly, in wind
turbine generation modeling, two parts are considered as wind speed modeling and
the turbine generation function. For modeling of wind speed randomness, the
Weibull distribution is generally used. Forecast values and associated uncertainties
of wind power are important to the utilities. These information help in optimal
scheduling of energy storage and distributed generations [13]. At substations, load
patterns are uncertain as compared to that at large system. Several qualitative and
quantitative variables influence the electrical load demand. Some of these variables
are random in nature, and, hence, the load demand is uncertain. The shape of curve
representing the typical load pattern can be expressed in a group of deterministic
variables which show the qualitative characteristic of the load pattern. Some
groups of load patterns may be based on weekdays, weekends, or holidays. Others
may consider the seasons such as autumn, winter, spring, and summer [14, 15]. A
new empirical method is developed to model the prediction uncertainty of the solar
irradiance forecast on numerical weather prediction. The predicted and measured
solar irradiances are transformed into Gaussian random variables with past
observed data, and a multivariate normal joint distribution model is estimated
using this data [16]. A periodic optimization method is developed that determines
an optimum periodic solution for any load profile over a 24-h period. The cyclic
solution for the battery state of charge is represented by Fourier coefficients. The
optimization process is embedded in a receding horizon battery control system [17].

In smart grid infrastructure, the distributed multi-step optimal scheduling is
introduced for energy storage devices and distributed generation. This algorithm is
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based on the local communications with neighbors [18]. In order to reduce gener-
ation cost, in microgrid, the distributed optimal strategy is proposed for the resource
management [19]. The computationally tractable distributed optimal control
strategy, which includes AC optimal power flow, for batteries is proposed in a
microgrid [20]. Multi-agent-based optimal distributed charging rate scheme is pro-
posed for numerous plug-in electric vehicle (PEV). In this scheme, an agent for a
PEV decides optimal charging rate based on remaining charging time and state of
charge along with other battery parameters [21]. In smart grid, an adjustment cost is
considered for dynamic adjustment of distributed generations and loads. In distrib-
uted control algorithm, this cost is minimized to achieve generation-demand balance
[22]. A multi-agent-based dynamic optimal power flow is suggested for microgrid
with energy storage devices and distributed generations [23].

13.2 Multi-agent System

A multi-agent system is a group of interacting agents that acts in a concurrent way
existing in the distributed environment. They have cooperation as well as competi-
tion among themselves, and they are conjunct in some common infrastructure. In
MAS local goals of individual agents are more important to be accomplished as
compared to the overall system goal [24–28].

13.2.1 MAS for Power System: An Overview

The penetration of various distributed generations into the electric network and
liberalization of electricity markets with new business models pose the new chal-
lenges to the power industries such as enhancement of complexity in distribution
network, problems in power system management, disturbance of power system
protection, and frequency stability [26, 29]. Present power system equipped with
old legacy SCADA system does not suffice to cater aforementioned challenges in
highly decentralized system [26, 30]. Market-based MAS is proposed in [31] for
reconfiguration of radial shipboard power system, developed with Java Agent
Development Framework (JADE) which conforms to FIPA standards for intelligent
agents. MASCEM, a multi-agent simulator system, is a framework which deals with
new rules, new behavior, and also new actors involved in various electricity markets
within liberalized and competitive environment [32]. ABMS, agent-based modeling
and simulation system, based on traditional game theory, is able to perceive and
analyze the complexities of power market (e.g., repeated auctions, fluctuating supply
and demand, non-storability of electricity, etc.) and interactions among all entities
involved [33]. In multi-agent approach to power system, each bus agent (BAG),
which possesses local information, tends to restore load after fault occurrence,
directly connected to its associated bus interacting with other numerous BAGs,
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and a single facilitator agent (FAG) acts as a manager for the negotiation
process [34].

Multi-agent system is developed for monitoring of transformer condition [35]
and industrial gas turbine start-up sequence [36]. An agent-based automation system
is developed for substation, while the information is gathered by control/monitoring
agents over Ethernet network [37]. A multi-agent system is also capable in efficient
operation of microgrids with minimum operation cost [24, 38]. PEDA (Protection
Engineering Diagnostic Agents), a multi-agent system, which complies FIPA
standards, integrates legacy intelligent systems SCADA and digital fault recorder
data and can interpret intelligently and manage data online [30, 39]. As virtual
power plant (VPP) is scattered in a decentralized system, multi-agent system facil-
itates virtual power point to take decisions at local level so that the main goal is
achieved [24, 25].

13.2.2 Preliminaries

Let V ¼ {1,. . .,n} be a set of nodes and E � V � V be a set of edges of a weighted
digraph (or directed graph) G ¼ {V,E,A}. A ¼ [aij] be the adjacency matrix with
non-negative adjacency elements aij and aii ¼ 0 for i ¼ 1, 2, . . ., n. The edij is the
directed edge, from node i to node j, of digraph G. The adjacency elements of an
edge edji are positive, i.e., aij > 0 if and only if edji 2 E. A digraph is undirected if
aij ¼ aji for 8i,j 2 {1,2,. . .,n}.

A group of agents represents the nodes in a digraph G and unidirectional
information exchange links among agents correspond to edges of the graph. An
interaction topology among the battery agents shows the communication pattern at
some particular time and is designed by using the digraph G. In adjacency matrix A,
an element aij is greater than zero, if and only if node i gets information from node j.
A directed tree is defined as a directed graph in which every node except the root has
exactly one parent. A directed (rooted) spanning tree of the digraph G is a subgraph
such that this subgraph is a directed tree and consists of all the nodes of G. A
spanning tree of G consists of n nodes and n � 1 edges and a path exists from root
node to every other node. Thus, root node can send information to every other node.

The n� n Laplacian matrix Ln¼ (lij), associated with the adjacency matrix A of a
digraph G, is defined as given below:

lij ¼ �aij, i 6¼ j and lii ¼
Xn

j¼1, j 6¼i
aij

According to the definition of Ln, it is ensured that in any row,
Xn

j¼1
lij ¼ 0, and

it is the asymmetric matrix of a digraph. There is an aim to control all the nodes such
that information state of all agents of a group converges to one single state [40–42].

In the uncertain power distribution system, the objectives are to develop a robust
optimal distributed control protocol such that the battery agents of respective BESSs
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should communicate to achieve the consensus for abovementioned goals during
charging and discharging cycles and, furthermore, find global stability in the overall
dynamic system. The control objective is to cater the imbalance in active power
and uncertainty in the power distribution system with different BESSs and trans-
forms this imbalance into the design of distributed control scheme. Two leader-
follower pinning control schemes are designed for distributed control of the BESS to
achieve their fair participations. These battery agents decide and control the power
exchange to and from the respective BESSs. These agents exist at the BESS
installation. These agents can receive information from the virtual leader to be
pinned and to start distributed consensus control while communicating with neigh-
boring battery agents, locally.

13.3 Robust Optimal Control

Briefly, the basics of robust optimal control are given as follows. Let the linear
uncertain system be

x k þ 1ð Þ ¼ Ax kð Þ þ Bu kð Þ þ Ew kð Þ ð13:1Þ

where x(k) 2 Rn and u(k) 2 Rm are the state and input vectors, respectively. The sets
X andU are polytopes, and w(k) is the additive uncertainty present in the system. The
Eq. (13.1) may be subject to constraints

x kð Þ2X, u kð Þ2U ð13:2Þ

Now define the cost function for the given uncertainty w 2 W and the u(k) 2 U.

Jw kð Þ ¼ q x kð Þ; u kð Þð Þ ð13:3Þ
q x kð Þ; u kð Þð Þ ¼ xTQxþ uTRu ð13:4Þ

The cost Jw(k) is evaluated for the given uncertainty w(k) and input u(k) and with
Eq. (13.1).

In case the probability density function is considered for the uncertainty w(k) then

Probability w kð Þ2W½ � ¼ 1 ¼
Z
w2W

f wð Þdw ð13:5Þ

The expected value of a function g(w) of the uncertainty is defined as

Ew g wð Þ½ � ¼
Z
w2W

g wð Þf wð Þdw ð13:6Þ
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The expected cost with admissible uncertainty is given as

Jw ¼ Ew xTQxþ uTRu
� � ð13:7Þ

where
x k þ 1ð Þ ¼ Ax kð Þ þ Bu kð Þ þ Ew kð Þ
x kð Þ2X, u kð Þ2U

�
ð13:8Þ

Now, the worst-case cost is defined as given below:

Jw ¼ maxw xTQxþ uTRu
� � ð13:9Þ

where
x k þ 1ð Þ ¼ Ax kð Þ þ Bu kð Þ þ Ew kð Þ
x kð Þ2X, u kð Þ2U

�
ð13:10Þ

In all cases, the robust optimal control is given below while minimizing the cost
function:

J∗w ¼ minuJw ð13:11Þ

where
x k þ 1ð Þ ¼ Ax kð Þ þ Bu kð Þ þ Ew kð Þ
x kð Þ2X, u kð Þ2U

�
ð13:12Þ

13.4 BES System Modeling

The different scattered battery energy storage (BES) systems are considered to be
connected to an AC system using bidirectional AC/DC converters. In this power
distribution system, the BES systems are assumed to achieve reliable operation, in
real time, at the distribution substation [15]. As the demand changes, the BES
systems come into action. During off-peak hours, these systems can be charged,
and in peak hours, these can be discharged. Therefore, the BES system can operate
as a load during charging and as generator during discharging. Controlling and
managing scattered BES systems with different ratings is a challenging task. The
charging and discharging of a BES unit can be expressed as follows:

Ees k þ 1ð Þ ¼ Ees kð Þ � Pes kð Þ
ηd

Δt, for Pes > 0 ð13:13Þ

Ees k þ 1ð Þ ¼ Ees kð Þ � ηcPes kð ÞΔt, for Pes < 0 ð13:14Þ

where Ees is the stored energy in BES system, Pes is the power to be exchanged by
BES system during charging and discharging, Δt is the time duration of k. ηd, and ηc
are the discharging and charging efficiencies of BES system, respectively. The upper
and lower limits of stored energy are as given below:
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Emin
es < Ees kð Þ < Emax

es ð13:15Þ

where Emax
es and Emin

es are, respectively, the maximum and minimum bounds of the
energy in the BES system.

The Eqs. (13.13) and (13.14) for BES system are modified as below:

Ees k þ 1ð Þ
Emm

¼ Ees kð Þ
Emm

� Pes kð Þ
Emm � ηd

Δt, for Pes > 0 ð13:16Þ

Ees k þ 1ð Þ
Emm

¼ Ees kð Þ
Emm

� ηc
Pes kð Þ
Emm

Δt, for Pes < 0 ð13:17Þ

where Emm ¼ Emax
es � Emin

es .
The power balance equation in an AC system at a time instant k

Pgrid kð Þ þ Pren kð Þ þ Pes kð Þ ¼ Pdem kð Þ ð13:18Þ

where Pgrid is grid supply, Pren is the renewable power generation, Pes is power
exchange by BES unit, and Pdem is the electrical demand.

The power balance equation incorporating uncertainties present in renewable
power generation and electrical demand while dropping k for simplicity.

Pgrid þ Pren þ ΔPrenð Þ þ Pes þ ΔPesð Þ ¼ Pdem þ ΔPdemð Þ ð13:19Þ

whereΔPren andΔPdem represent uncertain parts of renewable power generation and
electrical demand, respectively. TheΔPes is the power exchange by BES unit to cater
the uncertainties in an AC power distribution system.

On considering uncertainties in the system, the Eqs. (13.13) and (13.14) are
modified as given below:

Ees k þ 1ð Þ þ ΔEes k þ 1ð Þ
Emm

¼ Ees kð Þ þ ΔEes kð Þ
Emm

�Pes kð Þ þ ΔPes kð Þ
Emm � ηd

Δt, for Pes > 0
ð13:20Þ

Ees k þ 1ð Þ þ ΔEes k þ 1ð Þ
Emm

¼ Ees kð Þ þ ΔEes kð Þ
Emm

�ηc
Pes kð Þ þ ΔPes kð Þ

Emm
Δt, for Pes < 0

ð13:21Þ

where ΔEes represents the uncertain part of Ees .
For expected uncertainty, the (13.20) and (13.21) are modified as

13 Robust Optimal Multi-agent-Based Distributed Control Scheme for. . . 239



Ees k þ 1ð Þ þ EΔEes k þ 1ð Þ
Emm

¼ Ees kð Þ þ EΔEes kð Þ
Emm

�Pes kð Þ þ EΔPes kð Þ
Emm � ηd

Δt, for Pes > 0
ð13:22aÞ

Ees k þ 1ð Þ þ EΔEes k þ 1ð Þ
Emm

¼ Ees kð Þ þ EΔEes kð Þ
Emm

�ηc
Pes kð Þ þ EΔPes kð Þ

Emm
Δt, for Pes < 0

ð13:23aÞ

For worst-case uncertainty, the (13.20) and (13.21) are modified as

Ees k þ 1ð Þ þ max
ΔEes kþ1ð Þ

f ΔEes k þ 1ð Þð Þ
Emm

¼
Ees kð Þ þ max

ΔEes kð Þ
f ΔEes kð Þð Þ

Emm

�
Pes kð Þ þ max

ΔPes kð Þ
f ΔPes kð Þð Þ

Emm � ηd
Δt, for Pes > 0

ð13:22bÞ

Ees k þ 1ð Þ þ max
ΔEes kþ1ð Þ

f ΔEes k þ 1ð Þð Þ
Emm

¼
Ees kð Þ þ max

ΔEes kð Þ
f ΔEes kð Þð Þ

Emm

�ηc

Pes kð Þ þ max
ΔPes kð Þ

f ΔPes kð Þð Þ
Emm

Δt, for Pes < 0

ð13:23bÞ

On consideration of many BES systems, the aforementioned equations are
generalized and used for ith BES system. Hence, the simplified model of ith BES
system is

xi k þ 1ð Þ ¼ Ax, i xi kð Þ þ Bx, iui where xi ¼ Ei,es=Ei,mm,
ui ¼ Pi,es,Ax, i ¼ 1,Bx, i ¼ Δt= Ei,mm � ηi,d

� �
for Pi,es > 0,

Bx, i ¼ ηi,c � Δt
� �

=Ei,mm for Pi,es < 0
ð13:24Þ

The model pertaining to uncertainty

yi k þ 1ð Þ ¼ Ay, iyi kð Þ þ By, iviwhere yi ¼ ΔEi,es=Ei,mm,
vi ¼ ΔPi,es,Ay, i ¼ 1,By, i ¼ Δt= Ei,mm � ηi,d

� �
for Pi,es > 0,By, i ¼ ηi,c � Δt

� �
=Ei,mmfor Pi,es < 0

ð13:25Þ

The abovementioned Eqs. (13.24) and (13.25) form the basis for development of
the multi-agent system.
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13.5 Agent-Based Robust Optimal Control Scheme

The multi-agent-based system deals with two control schemes which are optimal and
incorporate uncertainties. Two leader-follower control schemes are given below.

xi k þ 1ð Þ ¼ Ax, i xi kð Þ þ Bx, iui kð Þ ð13:26Þ

And

yi k þ 1ð Þ ¼ Ay, iyi kð Þ þ By, ivi kð Þ ð13:27Þ

i ¼ 1,. . .,n where n is number of agents. The x0,y0 are the variables associated with
leader agents. The abovementioned leader-follower schemes get consensus on
following conditions:

xi ! x0 and yi ! y0 ð13:28Þ

The linear consensus protocols are defined as given below:

ui kð Þ ¼
Xn

j¼1, j 6¼i

aij x j kð Þ � xi kð Þ� �� bi xi kð Þ � x0½ � ð13:29Þ

And

vi kð Þ ¼
Xn

j¼1, j 6¼i

wij y j kð Þ � yi kð Þ� �� di yi kð Þ � y0½ � ð13:30Þ

The optimal control problem for the system (13.26)

min
U kð Þ

Jx U kð Þ;X 0ð Þð Þ
subject to 13:26ð Þ and 13:28ð Þ

ð13:31Þ

where

Jx U kð Þ;X 0ð Þð Þ ¼
X1
k¼0

Xn
i¼1

qx, i xi � x0ð Þ2 þ rx, iu
2 ð13:32Þ

Similarly, the robust optimal control problem for the system (13.26) with
expected cost function
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min
V kð Þ

EJy V kð Þ; Y 0ð Þð Þ
subject to 13:27ð Þ and 13:28ð Þ

ð13:33Þ

where

EΔE kð ÞJy V kð Þ; Y 0ð Þð Þ ¼
X1
k¼0

Xn
i¼1

qy, i yi � Ey0ð Þ2 þ ry, iv
2 ð13:34Þ

where qx > 0, qy > 0, rx > 0, ry > 0 and Ey0 is the expected value of y0.
Similarly, the robust optimal control problem for the system (13.26) with worst-

case cost function

min
V kð Þ

Jy V kð Þ; Y 0ð Þð Þ where
subject to 13:27ð Þ and 13:28ð Þ

ð13:35Þ

where

Jy V kð Þ; Y 0ð Þð Þ ¼ maxΔE kð Þ
X1
k¼0

Xn
i¼1

qy, i yi � wy0ð Þ2 þ ry, iv
2 ð13:36Þ

where qx > 0, qy > 0, rx > 0, ry > 0, and wy0 is the worst-case value of y0.

Theorem For the joint optimal control problem, the optimal topology is star
topology in which the follower i is only connected to the leader with the control

gains dx, i ¼ Bx,0
2

qi
ri

� �
and dy, i ¼ By,0

2
qi
ri

� �
with the following assumptions:

Assumption 1:
Bx,1 ¼ Bx,2 ¼ . . . ¼ Bx,n ¼ Bx,0 and By,1 ¼ By,2 ¼ . . . ¼ By,n ¼ By,0

Assumption 2:

Let Bx, 0 ¼ 2ffiffi
3

p
ffiffiffi
ri
qi

q
and By, 0 ¼ 2ffiffi

3
p

ffiffiffi
ri
qi

q
The proof of this theorem is given in appendix.

13.5.1 Generation of x0 and y0

The x0 is the desired value for all xi and this value is provided to all agents from the
leader agent. The leader agent knows the expected and worst case that may be
associated with yi, i ¼ 1,. . .,n, and y0 is set to this expected and worst case. In
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consensus-based robust optimal control scheme, all yi track to this Ey0 and wy0,
which are set to expected or worst-case value, respectively, as given below.

For expected value,

Ey0 ¼ f e ΔEð Þ ð13:37Þ

where fe is the probability density function (pdf). Let, for any pdf,

Ey0 ¼ f e ΔEð Þ ¼ GEgE � pE ð13:38Þ

where GE and gE are two different values which satisfy (13.37), and pE is fixed
constant value.

In worst case

wy0 ¼ maxΔEyi, 8i2 1; . . . ; n½ � ð13:39Þ

Let, on maximizing the worst case

wy0 ¼ maxΔEyi ¼ Gwgw � pw, 8i2 1; . . . ; n½ � ð13:40Þ

Similar to (13.37), Gw and gw are two different values which satisfy (13.39), and
pw is fixed constant value. The (pE,GE, gE) and (pw,Gw, gw) are identified and set to
the values based on past data.

With the allowed uncertainty in the system, the Eq. (13.34) is rewritten as

EΔE kð ÞJy V kð Þ; Y 0ð Þð Þ ¼
X1
k¼0

Xn
i¼1

qy, i yi � pEð Þ2 þ ry, iv
2 ð13:41Þ

EΔE kð ÞJy V kð Þ; Y 0ð Þð Þ ¼
X1
k¼0

Xn
i¼1

qy, i eEð Þ2 þ ry, iv
2 ð13:42Þ

where eE ¼ (yi � pE).
Similarly, on maximizing the worst case in the uncertainty, the equation is

modified as

Jy V kð Þ;Y 0ð Þð Þ ¼
X1
k¼0

Xn
i¼1

qy, i yi � pwð Þ2 þ ry, iv
2 ð13:43Þ

Jy V kð Þ; Y 0ð Þð Þ ¼
X1
k¼0

Xn
i¼1

qy, i ewð Þ2 þ ry, iv
2 ð13:44Þ

where ew ¼ (yi � pw).
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13.6 Results and Discussions

The test microgrid is shown in the Fig. 13.1. The sizes of the battery energy storage
devices are 0.2 MW/0.8MWh, 0.15 MW/0.75MWh, 0.1 MW/0.4MWh, 0.15 MW/
0.45MWh, and 0.4 MW/1.6MWh with charging and discharging efficiencies
ηc ¼ ηd ¼ 80%, and the size of solar PV system is 1MWp. The maximum and
minimum allowed energy on energy storage devices are Emax1 ¼ 0.8MWh and
Emin1¼ 0.35MWh, Emax2¼ 0.75MWh and Emin2¼ 0.40MWh, Emax3¼ 0.4MWh
and Emin3 ¼ 0.1MWh, Emax4 ¼ 0.45MWh and Emin4 ¼ 0.1MWh, and
Emax5 ¼ 1.6MWh and Emin5 ¼ 1.25MWh, respectively. In order to satisfy
assumptions 1 and 2, the discharging efficiencies of these energy storage devices
are assumed as 0.70, 0.85, 0.95, 0.82, and 0.85, and charging efficiencies are
assumed as 0.86, 0.89, 0.91, 0.89, and 0.89, respectively.

The considered load profile of electrical demand and solar PV generation profile
with added uncertainty are shown in Figs. 13.2 and 13.3, respectively. The included
uncertainty remains within the permissible range as per Eqs. (13.38) and (13.40).
The optimal energy and power are shared based on given power generation and
electrical demand as shown in Figs. 13.4, 13.5, and shared optimal uncertain energy
and power are shown in 13.6, and 13.7, respectively. Assume qi¼ ri¼ 1 for
i¼ 1,...,5 then dx,i¼ dy,i¼ 1.73.

Ba ery

PV arrays Power lines

Electrical Load
BESSBESS

Fig. 13.1 Test microgrid
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Fig. 13.2 Forecasted PV generation (blue) and PV generation with uncertainty (red)
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13.7 Conclusions

This chapter has discussed agent-based distributed robust optimal control scheme.
This scheme considers two objective functions out of which second objective
function pertains to the uncertainties which are present in the power distribution
system integrated with renewable power generation along with energy storage
devices. Distributed multi-agent system works for deciding the charging and
discharging of the batteries in the presence of uncertainties. In two expected and
worst cases, all the agents get consensus and be driven to the values decided by the
leader agent. In this distributed robust optimal control scheme, the optimal topology
for communication is the star topology as proved in the theorem.
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Fig. 13.5 Power exchange shared by different BESSs
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Appendix

Proof of theorem

Let the error system for (13.26) be

e k þ 1ð Þ ¼ Axe kð Þ þ BxU kð Þ,
U kð Þ ¼ �Lxe kð Þ ð13:45Þ

where Ax ¼ diag (Ax,1,Ax,2, . . .,Ax,n) and Bx ¼ diag (Bx,1,Bx,2, . . .,Bx,n) and

e kð Þ ¼ X kð Þ � 1n � U kð Þ ð13:46Þ

The modified LQR-based optimal control problem is

min
U kð Þ

X1
k¼0

e kð ÞTQe kð Þ þ U kð ÞTRU kð Þ ð13:47Þ

For the system X(k+1) ¼ AX(k)+BU(k), the discrete time ARE is

ATPA� Pþ Q� ATPB Rþ BTPB
� ��1

BTPA ¼ 0 ð13:48Þ
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Fig. 13.7 Uncertain power exchange shared by different BESSs
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For the system (13.45), the ARE is

Q ¼ PBx Rþ B2
xP

� ��1
BxP ð13:49Þ

where A ¼ Ax ¼ 1 and B ¼ Bx.
Let Bx,1 ¼ Bx,2 ¼ . . . ¼ Bx,n ¼ Bx,0

Then matrix Bx ¼ Bx,0In
The optimal feedback gain matrix is

Lx ¼ Rþ B2
x, 0InP

� ��1
Bx, 0InP ð13:50Þ

Multiply R�1 both sides of (13.49) then

R�1Q ¼ R�1PBx, 0In Rþ B2
x, 0InP

� ��1
Bx, 0InP ð13:51Þ

R�1Q ¼ R�1PBx, 0 In þ B2
x, 0R

�1P
� ��1

Bx, 0R
�1P ð13:52Þ

Since it is known that

In þ B2
x, 0R

�1P
� ��1 ¼ In � B2

x, 0R
�1P In þ B2

x, 0R
�1P

� ��1 ð13:53Þ

We now get

R�1PBx, 0 In þ B2
x, 0R

�1P
� �

Bx, 0R�1P ¼ Bx, 0R�1P
� �2 � B2

x, 0R
�1P

� R�1PBx, 0 In þ B2
x, 0R

�1P
� ��1

Bx, 0R�1P
h i ð13:54Þ

R�1Q ¼ B2
x, 0 R�1P
� �2 � B2

x, 0R
�1PR�1Q ð13:55Þ

On simplification it is obtained that

R�1P ¼ 1
2

R�1Qþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R�1Q
� �2 þ 4R�1Q

B2
x

s" #
ð13:56Þ

Hence, the optimal feedback gain matrix is

L∗x ¼ Bx, 0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R�1Q
� �2 þ 4R�1Q

B2
x, 0

s
� R�1Q

" #
ð13:57Þ
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Let

L∗x ¼ diag dx, 1; dx, 2 . . . ; dx,nð Þ ð13:58Þ

Then, for ith agent the feedback gain is

dx, i ¼ Bx, 0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qi
ri


 �2

þ 4qi
B2
x, 0ri

s
� qi

ri

" #
ð13:59Þ

Similarly, it can be proved that

dy, i ¼ By, 0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qi
ri


 �2

þ 4qi
B2
y, 0ri

s
� qi

ri

" #
ð13:60Þ

Let

B2
x, 0 ¼

4
3
ri
qi

ð13:61Þ

Then from (13.59)

dx, i ¼ Bx, 0

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qi
ri


 �2

þ 3
qi
ri


 �2
s

� qi
ri

2
4

3
5 ð13:62Þ

dx, i ¼ Bx, 0

2
qi
ri

ð13:63Þ

Similarly, we can obtain

dy, i ¼ By, 0

2
qi
ri

ð13:64Þ

While

B2
y, 0 ¼

4
3
ri
qi

ð13:65Þ

13 Robust Optimal Multi-agent-Based Distributed Control Scheme for. . . 249



References

1. Sumathi, S., Kumar, L. A., & Surekha, P. (2015). Solar PV and wind energy conversion systems
an introduction to theory, modeling with MATLAB/SIMULINK, and the role of soft computing
techniques. Cham: Springer.

2. Song, S., Ko, B., Suh, J., Han, C., & Jang, G. (2017). Operation algorithm of PV/BESS
application considering demand response uncertainty in an independent microgrid system.
Journal of International Council on Electrical Engineering, 7(1), 242–248.

3. Prusty, B., Ali, S., & Sahoo, D. (2012). Modeling and control of grid connected hybrid photo
voltaic/battery distributed generation system. International Journal of Engineering Research
and Technology, 24(1), 125–132.

4. Rai, V., Reeves, C., & Margolis, R. (2016). Overcoming barriers and uncertainties in the
adoption of residential solar PV. Renewable Energy, 89, 498–505.

5. Attarha, A., Amjady, N., & Dehghan, S. (2018). Affinely adjustable robust bidding strategy for
a solar plant paired with a battery storage. IEEE Transactions on Smart Grid, PP(99), 1. https://
doi.org/10.1109/TSG.2018.2806403.

6. Ela, E., Diakov, V., Ibanez, E., & Heaney, M. (2013). Impacts of variability and uncertainty
in solar photovoltaic generation at multiple timescales. National Renewable Energy Labora-
tory, 1, 41.

7. de la Fuente, D. V., Rodriguez, C. L. T., Garcera, G., Figueres, E., & Gonzalez, R. O. (2013).
Photovoltaic power system with battery backup with grid-connection and islanded operation
capabilities. IEEE Transactions on Industrial Electronics, 60(4), 1571–1581.

8. Kim, S.-T., Bae, S., Kang, Y. C., & Park, J.-W. (2015). Energy management based on the
photovoltaic hpcs with an energy storage device. IEEE Transactions on Industrial Electronics,
62(7), 4608–4617.

9. Atwa, Y. M., El-Saadany, E. F., Salama, M. M. A., & Seethapathy, R. (2010). Optimal
renewable resources mix for distribution system energy loss minimization. IEEE Transactions
on Power Systems, 25(1), 360–370.

10. Zeng, J., Liu, J. F., Wu, J., & Ngan, H. W. (2011). A multi-agent solution to energy manage-
ment in hybrid renewable energy generation system. Renewable Energy, 36(5), 1352–1363.

11. Conti, S., & Raiti, S. (2007). Probabilistic load flow using Monte Carlo techniques for
distribution networks with photovoltaic generators. Solar Energy, 81, 1473–1481.

12. Paparoditis, E., & Sapatinas, T. (2013). Short-term load forecasting: the similar shape functional
time-series predictor. IEEE Transactions on Power Systems, 28(4), 3818–3825.

13. Xydas, E., Qadrdan, M., Marmaras, C., Cipcigan, L., Jenkins, N., & Ameli, H. (2017).
Probabilistic wind power forecasting and its application in the scheduling of gas-fired genera-
tors. Applied Energy, 192, 382–394.

14. Sun, X., Luh, P. B., Michel, L. D., Corbo, S., Cheung, K. W., Guan, W., & Chung, K. (2013).
An efficient approach for short-term substation load forecasting. IEEE Power & Energy Society
General Meeting. https://doi.org/10.1109/PESMG.2013.6673009.

15. Hung, D. Q., Mithulananthan, N., & Bansal, R. C. (2014). Integration of PV and BES units in
commercial distribution systems considering energy loss and voltage stability. Applied Energy,
113, 1162–1170.

16. Murata, A., Ohtake, H., & Oozeki, T. (2018). Modeling of uncertainty of solar irradiance
forecasts on numerical weather predictions with the estimation of multiple confidence intervals.
Renewable Energy, 117, 193–201.

17. Wolfs, P., Emami, K., Lin, Y., & Palmer, E. (2018). Load forecasting for diurnal management
of community battery systems. Journal of Modern Power System and Clean Energy, 6(2),
215–222.

18. Rahbari-Asr, N., Zhang, Y., & Mo-Yuen, C. (2015). Consensus-based distributed scheduling
for cooperative operation of distributed energy resources and storage devices in smart grids.
IET Generation, Transmission and Distribution, 10(5), 1268–1277.

250 D. D. Sharma and J. Lin

https://doi.org/10.1109/TSG.2018.2806403
https://doi.org/10.1109/TSG.2018.2806403
https://doi.org/10.1109/PESMG.2013.6673009


19. Zhao, T., & Ding, Z. (2018). Distributed agent consensus-based optimal resource management
for microgrids. IEEE Transactions on Sustainable Energy, 9(1), 443–452.

20. Fortenbacher, P., Mathieu, J. L., & Andersson, G. (2017). Modeling and optimal operation of
distributed battery storage in low voltage grids. IEEE Transactions on Power Systems, 32(6),
4340–4350.

21. Xu, Y. (2015). Optimal distributed charging rate control of plug-in electric vehicles for demand
management. IEEE Transactions on Power Systems, 30(3), 1536–1545.

22. Xu, Y., Yang, Z., Gu, W., Li, M., & Deng, Z. (2017). Robust real-time distributed optimal
control based energy management in a smart grid. IEEE Transactions on Smart Grid, 8(4),
1568–1579.

23. Morstyn, T., Hredzak, B., & Agelidis, V. G. (2018). Network topology independent multi-agent
dynamic optimal power flow for microgrids with distributed energy storage systems. IEEE
Transactions on Smart Grid, 9(4), 3419–3429.

24. Dimeas, A. L., & Hatziargyrious, N. D. (2005). Operation of multi agent system for micro grid
control. IEEE Transaction Power System, 20(3), 1447–1445.

25. Dimeas, A. L., & Hatziargyriou, N. D. (2007, November). Agent based control of virtual power
plants. Interference conference on intelligent systems applications to power systems. ISAP
2007, Toki Messe, Niigata.

26. McArthur, S. D. J., Davidson, E. M., Catterson, M. V., Dimeas, A. L., Ponci, F., Hatziargyriou,
N. D., & Funabashi, T. (2007). Multi agent systems for power engineering applications –part I:
Concepts, approaches and technical challenges. IEEE Transaction on Power Systems, 22(4),
1743–1752.

27. McArthur, S. D. J., Davidson, E. M., Catterson, V. M., Dimeas, A. L., Ponci, F., Hatziargyriou,
N. D., & Funabashi, T. (2007). Multi agent systems for power engineering applications –part II:
Technologies, standards and tools for building multi agent systems. IEEE Transaction on
Power Systems, 22(4), 1753–1759.

28. Colson, C. M., Nehrir, M. H., & Gunderson, R. W. (2011, August–September). Multi agent
microgrid power management. 18th IFAC World Congress, Milano.

29. Fakham, H., Doniec, A., Colas, F., & Guillaud, X. (2010). A multi-agent system for a
distributed power management of micro turbine generators connected to grid. IFAC Pro-
ceedings. 43(1), 175–180.

30. Davidson, E. M., McArthur, S. D. J., McDonald, J. R., Cumming, T., & Watt, I. (2006).
Applying multi-agent system technology in practice: Automated management and analysis of
SCADA and digital fault recorder data. IEEE Transaction on Power Systems, 21(2), 559–566.

31. Huang, K., Srivastava, S. K., Cartes, D. A., & Sun, L. (2009). Market based multi-agent system
for reconfiguration of shipboard power systems. Electric Power Systems, 79, 550–556.

32. Praca, I., Ramos, C., Vale, Z., & Corderio, M. (2003). MASCEM: A multi agent system that
simulates competitive electricity markets. IEEE Intelligent System, 18(6), 54–60.

33. Karitov, V. S. (2004). Real-world market representation with agents. IEEE Power Energy
Magazine, 2(4), 39–46.

34. Nagata, T., & Sasaki, H. (2002). A multi-agent approach to power system restoration. IEEE
Transaction Power System, 17(2), 457–462.

35. McArthur, S. D. J., Strachan, S. M., & Jahn, G. (2004). The design of a multi-agent transformer
condition monitoring system. IEEE Transaction Power System, 19(4), 1845–1852.

36. Mangina, E. E., McArthur, S. D. J., McDonald, J. R., &Moyes, A. (2001). A multi agent system
for monitoring industrial gas turbine start-up sequences. IEEE Transaction Power System, 16
(3), 396–401.

37. Buse, D. P., Sun, P., Wu, Q. H., & Fitch, J. (2003, March–April). Agent – Based substation
automation. IEEE Power Energy Magazine, 1(2), 50–55.

38. Logenthiran, T., Srinivasan, D., & Khambadkone, A. M. (2011). Multi-agent system for energy
resource scheduling of integrated microgrids in a distributed system. Electrical Power System
Research, 81, 138–148.

13 Robust Optimal Multi-agent-Based Distributed Control Scheme for. . . 251



39. Hossack, J., Menal, A. J., McArthur, S. D. J., & McDonald, J. R. (2003). A multi-agent
architecture for protection engineering diagnostic assistance. IEEE Transaction on Power
System, 18(2), 639–647.

40. Fax, J. A., & Murray, R. M. (2004). Information flow and cooperative control of vehicle
formations. IEEE Transactions Automatic Control, 49, 1464–1476.

41. Reza, O.-S., Fax, J. A., & Murray, R. M. (2007). Consensus and cooperation in networked
multi-agent systems. Proceedings of the IEEE, 95(1), 215–233.

42. Ren, W., & Beard, R. W. (2008). Distributed consensus in multi-vehicle cooperative control:
Theory and applications. London: Springer.

252 D. D. Sharma and J. Lin



Chapter 14
Robust Short-Term Scheduling of Smart
Distribution Systems Considering
Renewable Sources and Demand Response
Programs

Mehrdad Ghahramani, Morteza Nazari-Heris, Kazem Zare,
and Behnam Mohammadi-ivatloo

14.1 Introduction

The increasing growth in global energy consumption and environmental problems
due to increased fossil fuel consumption has led to more interest in clean sources of
energy [1]. On the other hand, the advancement of technology and reduction in the
cost of carbon-free resources have accelerated the move toward usage of these
technologies [2]. Among RESs, WT and solar energy have attracted more attention
than other types of energy due to the uncertain nature and uncontrollability [3–5]. In
addition, the potential and participation of consumers in DR programs are more
advanced due to the movement of power networks to smart grids especially at the
distribution level [6].

14.1.1 Problem Definition

The uncertain and uncontrollable nature of power system parameters increases the
complexity and challenges of operation of SDSs and DSO such as loss of power
balance, loss of reliability, and increase in operational costs. ODAS of SDSs is
normally studied in short-term scheduling category. In this scheduling, 24-h prior to
the implementation of the program, the production levels of different units, including
WTs, DGs, and BESSs, and purchasing power from the upstream network should be
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determined. Correct and continuous operation of these networks considering RESs
requires optimal scheduling. This scheduling scheme should reduce operating costs
and handles the uncertainty of input parameters such as the power price of upstream
grid simultaneously.

14.1.2 Literature Review

Recently, remarkable efforts have been made in the area of proposing new and
realistic models for optimal scheduling of distribution networks. In [7], a two-level
optimization framework for SDS scheduling has been proposed that firstly focuses
on purchasing power from market, while unit commitment of DGs and interactions
with the real-time market are taken in the second phase of the proposed framework.
The authors in [8] used an optimal power flow algorithm to minimize the overall
cost of a SDS’s performance. A fuzzy-based method is proposed to plan a SDS in
[9], which aims to minimize operation costs on the one hand and minimize
environmental pollution on the other. Although these studies help decision-makers
to gain a general view of optimization issues, they cannot show the uncertainty in
real-world strategic decisions. Also, considering the absence of precise forecasting
methods, a deterministic optimization method is not appropriate for the ODAS of
the SDSs. Time-of-use DRPs have been investigated in optimal bidding strategy of
electrical energy retailers in [10]. The authors in this study have studied the impact
of system flexibility in improving the generation dispatch and reducing electricity
bills for the supply and demand sections, respectively. Various modeling
approaches with different strategies for fixed and flexible loads in obtaining
optimal dispatch of power networks have been compared in [11]. In addition, the
utilization of energy storage units and their advantages in ancillary services have
been discussed in the area of improving system reliability indexes and modifying
the load profile [12].

Studies in ODAS of SDSs are mainly divided into two categories including
deterministic studies and stochastic studies. In the field of deterministic studies, all
the inputs of the problem are entered as known values, and the outputs are deter-
mined for a given time period. For example, in the deterministic scheduling of the
SDS, regardless of the probabilistic nature of the predicted variables, the reservation
required by the SDS is determined prior to the planning of energy. On the other hand,
in stochastic studies, non-deterministic parameters can be estimated by specific
probabilistic distribution functions (PDFs), and their general purpose is to optimize
the expected value of an objective function. In [13], uncertain variables related to
SDS operation are modeled by PDF, and the operation is accomplished based on
probabilistic scenarios. In [14], the model presented in [7] has been developed so that
the expected cost of network performance is minimized and the risk associated
with the uncertainties in the problem is considered in this study. However, the
stochastic model presented in this reference investigates energy planning without
paying attention on RESs and the risk associated with their uncertainties.
The authors in [15] presented a two-level stochastic optimization model for energy
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and reserve planning of SDSs with the goal of minimizing the expected operating
cost of the network. In [16], a two-level risk-based optimization model for SDS
planning has been proposed that aims to minimize cost. The authors in [17] utilized a
stochastic method for multi-objective ODAS, which aims to minimize the cost of
performance and environmental pollution. In this study, consumer responsiveness is
also considered as one of the sources of energy supply. The accuracy and optimality
of randommethods depend on the accuracy of the PDF of uncertain variables and the
number of utilized scenarios in the optimization problem. The absence of proper
historical data will result in an uncertain PDF of random variables and false results.
In addition, with increasing in number of scenarios, the computational complexity of
the optimization problem will greatly increase.

14.1.3 Novelties and Contributions

This chapter presents an optimization framework based on the concepts of robust
optimization that can address the problems of both deterministic and stochastic
methods. This method models random variables with uncertain PDFs and frees up
the constraints. The solutions obtained from this method are safe against the worst
conditions of uncertainty associated with power market price. Compared with
stochastic optimization, the proposed method has several advantages. First, this
method only requires the predicted values of the upper limit and the lower limit of
random variables that are easier to obtain from historical data. Second, unlike
stochastic methods that use probabilistic guarantees to satisfy constraints, the pro-
posed method is followed by optimal solutions that are safe against all changes in
random variables [18]. In this chapter, the SDS scheduling considering RESs is
based on a mixed integer optimization. The proposed model defines the short-term
operation of the network, including the amount of exchange with the upstream
network and the generation of distributed resources including WTs, BESSs, and
DGs. In addition through this chapter, the participation of responsive loads in
network operation and their effects in minimizing the cost of network operation
are studied. In addition, in order to provide a model for SDSs, the presence of DGs
and RESs including WTs and BESSs, as well as DR programs, are provided in the
33-bus network. The purpose of the proposed method is to minimize the operational
cost of the SDS with respect to the predicted values of upstream grid power cost. The
energy and reserve scheduling of the next day should remain reliable through
changing the uncertain variables of the network.

14.1.4 Chapter Organization

In Sect. 14.2, mathematical modeling including objective function and problem
constraints is presented. In addition, RO method for modeling uncertainty is presented
in this section. Information about the sample network is provided in Sect. 14.3.
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The statistical results and charts related to the achievements of the problem are
presented in Sect. 14.4. A summary of the work is presented in Sect. 14.5.

14.2 Mathematical Modeling

In this section, a complete mathematical formulation for ODAS of the smart SDS,
including objective function and problem constraints, is presented. Also, modeling
for RESs including WTs, DR programs, and BESSs is presented in this section.

14.2.1 The Objective Function

Energy and reserve scheduling for SDSs takes place by DSO, with the goal of
minimizing the network operating costs over a 24-h period:

Min :
X24
t¼1

Pgrid tð Þ � λEg tð Þ
n o

þ
XNDG

j¼1

CEDG j; tð Þ þ CSDG j; tð Þ þ CRDG j; tð Þf g

þ
XNDRP

d¼1

CEDRP d; tð Þ þ CRDRP

�
d; t

�� �

þ
XNIL

i¼1

CELL i; tð Þ þ CRLL

�
i; t

�� �

ð14:1Þ

The proposed objective function consists of four terms. The first term is the cost
of supplying power and exchange with the upstream network, which is modeled as a
multiplication of the hourly power purchased from the upstream network (Pgrid) at
the hourly power of the upstream network (λEg ). The second term refers to the costs of
the DG units, including the cost of operation (CEDG), the start-up cost (CSDG), and
the cost of the reservation provided by these units (CRDG), which are subsequently
introduced by Eqs. (14.6), (14.7), and (14.8), respectively. The third term relates to
the cost of the DR providers, including energy costs (CEDRP) and the cost of
reservation (CRDRP), which are introduced by Eqs. (14.24) and (14.26), respectively.
The fourth term is the cost of the participation of industrial loads in DR programs
including the cost of energy provision (CELL) and the cost of providing the reserva-
tion (CRLL) by these units, which are modeled using Eqs. (14.28) and (14.29),
respectively. The index t ¼ 1, . . .,NT denotes the time, the index j ¼ 1, . . ., NDG

represents the DG units, the index d¼ 1, . . .,NDRP for the DRPs, and the index i¼ 1,
. . ., NIL for the large industrial loads.
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14.2.2 Constraints

The constraints associated with the ODAS of SDS including equal and unequal
constraints are represented in this section.

14.2.2.1 Distribution Network Constraints

In order to ensure the safe and proper operation of the distribution network,
constraints (14.2) and (14.3) are provided [19]. Equation (14.2) ensures that the
voltage remains acceptable. The current range is also considered by (14.3):

Vmin nð Þ � v n; tð Þ � Vmax nð Þ 8n, t ð14:2Þ
I m; n; tð Þ � Imax m; nð Þ 8m, n, t ð14:3Þ

where Vmin, Vmax, and v are the minimum, maximum, and hourly values of the bus
voltages. Also, Imax and I are the maximum tolerable current and the hourly current
of the feeder between the m and n buses, respectively.

14.2.2.2 Active and Reactive Power Balance Constraints

Reliable operation of distribution networks can be obtained by continues balance of
generated power and power load demand of the network [20]. Accordingly, the
following constraints should be considered for load balance at bus n at time t:

Pug tð Þ þ
X
j2n

PDG j; tð Þ þ
X
w2n

PWind w; tð Þ � Pch tð Þ þ Pdis tð Þ þ
X
i2n

PLL i; tð Þ

þ
X
d2n

PDRA d; tð Þ � Pload n; tð Þ ¼ Vn

X
n

Vn, t Gnm cos δn, t þ Bnm sin δm, tð Þ ð14:4Þ

Qug tð Þ þ
X
j2n

QDG j; tð Þ þ
X
w2n

QWind w; tð Þ þ
X
d2n

QDRA d; tð Þ þ
X
i2n

QLL i; tð Þ

� Qload n; tð Þ ¼ Vn, t

X
n

Vn, t Gnm cos δn, t � Bnm sin δm, tð Þ ð14:5Þ

where PLoad and QLoad are the respective indicators for active and reactive power.
The active and reactive power generation of each DG unit are defined by PDG and
QDG, respectively. PWind and QWind are the respective active and reactive power
generation of WTs. The active power charge/discharge of the storage unit is Pug and
Pdis. The reactive power charge/discharge of the storage unit is Qug and Qdis. The
active/reactive power reduced by large industrial load is PLL and QLL. The active/
reactive power reduced by DR aggregator is PDRA and QDRA.
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14.2.2.3 DG Units Constraints

The constraints of DG units are presented through (14.6, 14.7, 14.8, 14.9, 14.10,
14.11, 14.12, 14.13, and 14.14) [21]. The operation cost of the DG units is consid-
ered as a quadratic function of the power generated by such units, which can be
stated as follows:

CEDG j; tð Þ ¼ a j þ b j � PDG j; tð Þ þ c j � PDG
2 j; tð Þ 8j, t ð14:6Þ

where the cost coefficients of the DG unit are indicated by aj, bj, and cj. The start-
up cost of DG units is taken into account in this study, which can be formulated as:

CSDG j; tð Þ ¼ SUC jð Þ � u j; tð Þ � u j; t � 1ð Þð Þ; CSDG j; tð Þ � 0; 8j, t ð14:7Þ

where u is a binary variable used to define the operation of DG units. The cost of
providing required reserve of the network by DG units is considered as 20% of
marginal price of DG units:

CRDG j; tð Þ ¼ 0:2� b j þ 2� c j � PDG
max j; tð Þ� � 8j, t ð14:8Þ

The power generation limits of the DG units should be considered in the sched-
uling of such units. Such constraint should be studied for both power and reserve
scheduling of DG units, which can be stated as follows:

PDG
min jð Þ � u j; tð Þ � PDG j; tð Þ � PDG

max jð Þ � u j; tð Þ 8j, t ð14:9Þ
PDG j; tð Þ þ RDG j; tð Þ � PDG

max jð Þ � u j; tð Þ 8j, t ð14:10Þ

Equation (14.11) defines that the sum of power and reserve generated by DG units
should be limited to maximum generation of such units. The ramp-up/ramp-down
limits of the DG units can be studied using the following equations:

PDG j; tð Þ � PDG j; t � 1ð Þ �
UR jð Þ � 1� y j; tð Þð Þ þ PDG

min jð Þ � y j; tð Þ 8j, t ð14:11Þ

PDG j; t � 1ð Þ � PDG j; tð Þ �
DR jð Þ � 1� z j; tð Þð Þ þ PDG

min jð Þ � z j; tð Þ 8j, t ð14:12Þ

where the ramp-up/ramp-down limits of the DG units are defined by UR( j) and
DR( j). The minimum up/down time of DG units should be considered in the
scheduling of units, which can be formulated as follows:

XtþUT jð Þ�1

h¼t

u j; hð Þ � UT jð Þ � y j; tð Þ 8j, t ð14:13Þ
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XtþDT jð Þ�1

h¼t

�
1� u j; hð Þ � DT jð Þ � z j; tð Þ 8j, t ð14:14Þ

where the respective indicators of minimum up/down time of DG units are UT( j)
and DT( j).

14.2.2.4 Wind Turbine Modeling

The power output of WTs is considered as a function of wind speed, which is
formulated as (14.15) [22]:

Pwind tð Þ ¼
Pr � v tð Þ � vcið Þ

vr � vcið Þ vci � v tð Þ � vr

Pr vr � v tð Þ � vco
0 otherwise

8>><
>>:

ð14:15Þ

where V(t) is wind speed, Vci is cut-in speed, Vco is cut-out speed, and Vr is the rated
speed of WT.

14.2.2.5 Modeling Battery Energy Storage System

Energy storage technology is studied in the proposed model for charging power at
off-peak hours and recharging it at on-peak hours [23]. The energy balance of the
storage unit is as follows:

SOC b; tð Þ ¼ SOC b; t � 1ð Þ þ ηch � Pch b; tð Þ � ηdis � Pdis b; tð Þ ð14:16Þ

where SOC is the energy storage at the storage unit. The charge/discharge efficien-
cies of the storage units are defined by ηch/ηdis. The energy charged in the storage
unit should be limited to its minimum and maximum values as follows:

SOC bð Þ � SOC b; tð Þ � SOC bð Þ ð14:17Þ

where the minimum and maximum energy stored in the storage unit is defined by
SOC/SOC. The power charge/discharge of the storage units should be limited to its
lower and upper limitations as Eqs. (14.18) and (14.19):

0 � Pch b; tð Þ � Pch � bsc b; tð Þ ð14:18Þ

14 Robust Short-Term Scheduling of Smart Distribution Systems. . . 259



0 � Pdis b; tð Þ � Pdis � bsd b; tð Þ ð14:19Þ
bsc b; tð Þ þ bsd b; tð Þ � 1; bsc, bsd2 0; 1f g,8t ð14:20Þ

Equation (14.20) is used to limit the operation of storage unit in one of the charge/
discharge/idle modes.

14.2.2.6 Modeling Demand Response Programs

In this chapter, consumers have been involved in DR programs in two ways. In the
first way, in order to create a position for the participation of home-grown consumers
or small-scale commercial and industrial consumers, two DR aggregators have been
utilized. Aggregated entities examine the possibility of customer participation in DR
programs, and after aggregating and integrating the responses of consumers, it is
possible to connect these with the wholesale market [24]. The cost of this DR
program is modeled by (14.21, 14.22, 14.23, and 14.24):

Od
min � od

1 � Od
1 ð14:21Þ

0 � od
k � od

kþ1 � od
k

� �8k ¼ 2, 3, . . . , k ð14:22Þ
PDRA d; tð Þ ¼

X
k

od
k ð14:23Þ

CEDRA d; tð Þ ¼
X
k

π d
k � od

k ð14:24Þ

Equation (14.21) limits the acceptance value of the load reduction by the
aggregator d (od

1 ) between the minimum of decreasing value (Od
min) and the proposed

load reduction by aggregator (Od
1 ) in step 1. According to (14.22), in the other steps,

the proposed acceptance of the aggregator can be between zero and proposed load
reduction in the related steps. According to (14.23), the sum of the power reduced by
the aggregator d at hour t (PDRA) is equal to the sum of all accepted reductions in that
hour. Also, the cost of reducing the load through the aggregator is calculated by
(14.24), which is equal to the product of the energy reduction cost (π d

k ) in the
accepted demand reduction of consumer d.

Load reduction which is not accepted by the aggregators can be utilized in reserve
scheduling. In accordance with (14.25), the total amount of energy (PDRA) and
scheduled reserve (RDRA) by decreasing the load should be limited to the maximum
proposition of aggregators (Pmax

DRA). In addition, the cost of providing reserve by
aggregator entities is calculated by (14.26). (KRDRA) is the cost of each reservation
unit provided by the aggregators:

PDRA d; tð Þ þ RDRA d; tð Þ � Pmax
DRA d; tð Þ ð14:25Þ
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CRDRA d; tð Þ ¼ RDRA d; tð Þ � KRDRA d; tð Þ ð14:26Þ

The second type of DR programs which are used in this chapter is related to load
reduction by large individual consumers. The power and reserve scheduling through
large consumers is restricted by (14.27), and the energy and reserve costs are divided
from (14.28) and (14.29):

PLL i; tð Þ þ RLL i; tð Þ � Pmax
LL i; tð Þ ð14:27Þ

CELL i; tð Þ ¼ PLL i; tð Þ � KELL i; tð Þ ð14:28Þ
CRLL i; tð Þ ¼ RLL i; tð Þ � KRLL i; tð Þ ð14:29Þ

In accordance with (14.27), the sum of the energy (PLL) and the reserve (RLL) of
large industrial loads should be lower than the maximum amount of energy that can
be reduced (Pmax

LL). Equation (14.28) states that the cost of reducing the energy
by large consumers (CELL) is equal to the product of reduced energy (PLL) at the
cost of each unit of power reduction (KELL). Equation (14.29) states that the cost
of providing required reserve by large consumers (CRIL) is equal to the cost of
the intended reservation (RLL) at the intended cost for each unit of reserve
scheduling (KRLL).

14.2.3 The Proposed Robust Method

The robust optimization (RO) was firstly proposed by Soyster in 1973 to deal with
uncertainties associated with power system parameters [25]. The RO is effective in
solving the problems with a series of uncertain parameters specially when there is
incomplete information on the uncertain parameters [26]. In this study, the price of
power purchased from the upstream grid is considered uncertainty, which is handled
using RO method. The objective function of the studied problem in (14.1), which is
deterministic, can be updated as follows considering the uncertainty of price of
power purchased from the upstream grid [27]:

Min :
XNDG

j¼1

CEDG j; tð Þ þ CSDG j; tð Þ þ CRDG j; tð Þf g

þ
XNDRP

d¼1

CEDRP d; tð Þ þ CRDRP

�
d; t

�� �þ
XNIL

i¼1

CEIL i; tð Þ þ CRIL

�
i; t

�� �

þmin max
X24
t¼1

Pgrid tð Þ � λRO,Eg tð Þ
n o

ð14:30Þ

where λRO,Eg tð Þ is the uncertain price of upstream grid. The second term of objective
function should be considered in solving the problem using the dual process.

14 Robust Short-Term Scheduling of Smart Distribution Systems. . . 261



The power price is the sum of the forecasted price and deviation of price with respect
to the forecasted value:

max
X24
t¼1

Pgrid tð Þ � 1þ ztð Þλforecasted,Eg tð Þ
n o

subject to
zt � 1 : ζt

X24
t¼1

zt � Γ : β

zt � 0

ð14:31Þ

where β and ζt are dual variables of the problem. Γ is the robust level. The Karush
Kuhn Tucker (KKT) condition can be utilized to providing the robust formulation.
Accordingly, the objective function of the problem can be updated as follows:

Min : Γβ þ
X24
t¼1

ζt þ
X24
t¼1

Pgrid tð Þ � λforecasted,Eg tð Þ
n o

þ
XNDG

j¼1

CEDG j; tð Þ þ CSDG j; tð Þ þ CRDG j; tð Þf g

þ
XNDRP

d¼1

CEDRP d; tð Þ þ CRDRP

�
d; t

�� �þ
XNIL

i¼1

CEIL i; tð Þ þ CRIL

�
i; t

�� �

Constraints 14:2ð Þ � 14:29ð Þ
ζt þ β � dev� λforecasted,Eg tð Þ � Pgrid tð Þ
ζt � 0
β � 0

ð14:32Þ

14.3 Case Study

In this chapter, the IEEE 33-bus standard network has been used to examine the
effectiveness of the proposed method. Based on the results of [28], DG units are
connected to the appropriate buses. Three WTs are used in this network, connected
to the buses 13, 15, and 30. The rated power of WTs is 3 MW, and the cut-in, cut-out,
and rated speed of these turbines are 3, 25, and 13 m/s, respectively. The prediction
of wind speed over the next 24 h is shown in Fig. 14.1 [29].

Also, in the distribution network, there are four diesel generators that are
connected to the buses 8, 13, 16, and 25. The coefficients for the cost of these
generators and the information of the maximum and minimum power, the rate of
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power increase and power decrease, and the minimum up time and minimum down
time are given in Tables 14.1 and 14.2 [30]. Also, the prediction of the hourly load
during the day-ahead is shown in Fig. 14.2 [31]. Also, the 33-bus network is shown
in Fig. 14.3 [32].

Also, the hourly forecast for the wholesale electricity price is assumed for
day-ahead as shown in Fig. 14.4.

The battery power system with a capacity of 0.5 MW is connected to the bus 21.
The minimum and maximum capacity of the energy storage system is 20% and 80%
of its nominal capacity. The maximum charge and discharge rates for each hour are
equal to 0.1 MW.

14.4 Results

The proposed model provides an optimal energy and reserve scheduling for distrib-
uted resources and DR programs in the studied network. Also, in order to demon-
strate the effect of DR programs on the economic performance of the network, a
robust ODAS has been carried out in two modes of presence and absence of DR
programs, and the results have been compared.
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Fig. 14.1 Wind speed predicted for the next 24 h

Table 14.1 Information of
DG’s cost coefficients

Cost coefficients

Units ai ($) bi ($/MWh) ci ($/MWh2)

DG1 33 87 0.0025

DG2 25 87 0.0025

DG3 28 92 0.0035

DG4 26 81 0.184
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Fig. 14.2 Estimated hourly load for next 24 h

Table 14.2 Information of the DG’s technical data

Technical data

Units SUT ($) MUT/MDT (h) RU/ RD (MW/h) Pmax (MW) Pmin (MW)

DG1 15 2 1.8 3.5 1

DG2 25 1 1.5 3 0.75

DG3 28 1 1.5 3 0.75

DG4 26 2 1.8 4.1 1
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Demand
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Demand response provider 2

Fig. 14.3 IEEE 33-bus distribution network

264 M. Ghahramani et al.



14.4.1 First Mode (Absence of Demand Response Programs)

As seen in Fig. 14.5, during the hours when the energy price of the upstream grid is
low, especially at t ¼ 24 h and during the hours from 1 to 9, the required energy is
purchased from the upstream grid. Also, at hours when the energy prices of DG units
are lower than the wholesale market, especially during the hours from 10 to 24, the
energy purchased from the upstream network is reduced. The scheduling done in this
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Fig. 14.4 The wholesale market price forecast for the next 24 h

Fig. 14.5 Power scheduled to purchase from the upstream network in the next 24 h
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chapter tends to reduce the functional costs of the distribution network, and the
results are more economical. As shown in Figs. 14.6 and 14.7, in the absence of DR
programs, all reservations required for the distribution network are provided by DG
units. It is also evident that one or more of DG units should be in standby mode at
peak hours, especially times 14–21 in order to provide the required reserve capacity.
Also, during the hours from 10 to 23, where the price of the wholesale market is
high, it is the best time to sell the energy of the DG units, but the need to provide the
required reserve would force the distribution network operator to buy energy from
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Fig. 14.6 Reservation scheduled to provide by DGs and DR programs in the next 24 h
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Fig. 14.7 The power scheduled to generate by DG units in the next 24 h
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the upstream network at a higher price in the absence of DR programs. Also, at
t ¼ 1–9 and t ¼ 24 h, when the energy price of the wholesale market is low,
providing the required reserve, forces a number of DG units to remain at standby
at a higher cost. As can be seen, the cost of providing reserve is increased and the
operational costs of the distributed network increase.

14.4.2 Second Mode (Presence of Demand Response
Programs)

In the second case, in order to demonstrate the effectiveness of DR programs, the
ODAS of the SDS is taken place considering DR programs. As shown in Fig. 14.5,
during the hours from t ¼ 10 to t ¼ 23 h, when the network upstream price is high,
the reduction in consumption is taken place using DR programs by the distribution
network operator. Also, the results of network reserve scheduling that is provided by
DG units, DR providers, and large-scale consumer are presented in Fig. 14.6. It is
also shown in Fig. 14.6 that the network DR programs meet the required reserve, and
therefore as can be seen in Fig. 14.7 in case 2, DG capacity is freed up and can be
fully utilized to supply the network’s energy. Thus, considering load response
programs, as can be seen in Figs. 14.7 and 14.8, DGs does not occupy the capacity
of the DG units and can fully participate in providing the required demand of
network at a lower cost.

The operation of WTs has no cost, and therefore the WTs are working in their
maximum capacity of power production in both cases as can be seen in Fig. 14.9.
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Fig. 14.8 Energy scheduled to provide by all instruments in the next 24 h
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14.5 Conclusions

The optimal scheduling of distribution networks considering renewable resources
and DR programs has attracted much attention in recent years. In this chapter, the
effect of the application of DR programs along with the presence of nonrenewable
and distributed sources on optimal operation of distribution networks has been
investigated. Also, a robust optimization method is used in this chapter for consid-
ering price uncertainties. This method ensures that the results will remain optimal for
the worst uncertainty conditions. An IEEE 33-bus distribution network has been
used to evaluate the performance of the proposed method. It also can be seen from
the results that in high-priced hours, purchases from the wholesale market are
reduced, and the BESS, distributed generation sources, and DR programs provide
the required energy of distribution network. It can also be seen that the proposed
model has the ability of ODAS of SDS. In addition, it can be seen that application of
DR programs reduces the cost of network operation.
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Chapter 15
Risk-Based Performance of Multi-carrier
Energy Systems: Robust Optimization
Framework

Majid Majidi, Sayyad Nojavan, and Kazem Zare

Nomenclature
Indices

t Index of time horizon

Variables

Cost Total operation cost of multi-carrier energy system

Cst,e
t Available stored energy level of electrical storage

Cst,h
t

Available stored energy level of thermal storage

gCHP
t

Consumed gas by CHP unit

gB
t

Consumed gas by boiler

gnet
t Total injected gas to hub energy system

Ich,et ,Idis,et
Charging/discharging condition binary variables of electrical storage

Ich,ht ,Idis,ht
Charging/discharging condition binary variables of thermal storage

pe
t Total power procurement of hub energy system

pch,et ,pdis,et
Charging/discharging power of electrical storage

pch,ht ,pdis,ht
Charging/discharging heat of thermal storage

ploss,et
Loss of power in electrical storage

ploss,ht
Loss of heat in thermal storage

pwi
t

Produced power by wind unit

wanet
t Total water procurement of hub energy system

xt Decision variable in the standard MIP problem

z0,qot Dual variables of standard MIP problem
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Parameters

ηT
ee

Efficiency of net transformer

ηCHP
ge

Gas to electric efficiency of CHP unit

ηCON
ee

Efficiency of wind turbine converter

η e
ch,η

e
dis Charge and discharge efficiency of electrical storage

ηh
ch,η

h
dis

Charge and discharge efficiency of thermal storage

α e
min,α

e
max Minimum/maximum charging/discharging coefficients of electrical storage

αh
min,α

h
max

Minimum/maximum charging/discharging coefficients of thermal storage

α e
loss Coefficient modeling loss of power in electrical storage

αh
loss

Coefficient modeling loss of power in thermal storage

amt,bm Constraints coefficients in the standard MIP problem

ANET Upstream network availability value

ACHP CHP unit availability value

AWIND Wind turbine availability value

Cst,e
c Nominal predefined capacity of stored energy in electrical storage

Cst,h
c

Nominal predefined capacity of stored heat in thermal storage

dt Deviance from nominal coefficient, en
et Objective function coefficients in the standard MIP problem

gnet
min,g

net
max Minimum/maximum nominal capacity of gas network

Gl
t

Hourly gas demand

J0 Cost deviation of objective function calculated by J0 ¼ {t | dt > 0}

pe
min,p

e
max Minimum/maximum nominal capacity of upstream network

pT
c

Rated capacity of net transformer

pCHP
c

CHP unit rated capacity

pB
c

Boiler rated capacity

pr Nominal electric power of wind turbine

Pe, l
t

Electrical demand

Pl,h
t

Heating demand

Wal
t

Water demand

wamin,wamax Minimum/maximum nominal capacity of water network

wci,wco,wr Cut-in, cutout, and rated wind speeds of wind turbine

wt Actual wind speed

x,y,z Coefficients used for modeling generation of wind turbine

λ et Upstream network price

λwi Generation cost of wind turbine

λg Price of gas network

λwa Price of water network

λ es Operation cost of electrical storage

λhs Operation cost of thermal storage

Γ0 Integer value used for robustness level controlling in the objective function

Abbreviations

CHP Combined heat and power

GAMS General algebraic modeling system
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15.1 Introduction

Efficiency of energy systems especially power systems has been always a critical
issue. Recently, in order to attain energy systems with higher efficiencies, multi-
carrier energy systems have been propounded to be used instead of traditional power
systems. Multi-carrier energy systems or so-called hub energy systems usually
benefit from renewable/nonrenewable local generation units like CHP system [1–
4], boiler [5, 6] and wind turbine [7–9], and storage systems [10–12] to supply
several types of energy demands [13–15]. In addition to efficiency, uncertainty-
based operation of power systems is another important factor that needs to be
investigated. There are many parameters in power systems like market price which
uncertainty modeling should be taken into account to avoid further disorders in the
operation of such systems.

15.1.1 Literature Review

In this section, researches published in the field of hub energy systems are briefly
summarized from various viewpoints in below:

Different types of pricing models are available in energy market environment.
Operation of hub energy system has been analyzed in the presence of time-of-use
and dynamic pricings in [16]. Optimal performance of multi-carrier energy system
has been investigated in the presence of intelligent agents in [17]. Optimal dispatch
problem of multi-carrier energy system has been analyzed using a new developed
model called self-adoptive learning with time varying acceleration coefficient-
gravitational search algorithm (SAL-TVAC-GSA) in [18]. Renewable-based energy
sources like wind and solar systems have been integrated into a combined cycle
power plant using energy hub concept in [19]. New formulations with high accura-
cies have been developed for optimal operation of multi-carrier energy system in
[20]. In order to provide economic benefits for costumers and electricity and gas
utilities, demand response program has been developed for electrical and gas
networks in a smart multi-carrier energy system in [21]. A new extensive model
based on mixed integer nonlinear programming has been developed for optimal
operation of multi-carrier energy system in [22]. In order to investigate adequacy of
hub energy system, a new framework considering capacity outage probability tables
of various energy infrastructure components and resources limitation has been
presented in [23]. Optimal operation of residential multi-carrier energy system has
been studied in the presence of electric vehicles and renewable distributed energy
resources in [24]. Similar problem has been studied under electric vehicle and
demand response program in [25]. Business concepts have been presented for
multi-carrier energy system in [26]. Optimal operation of a hub energy microgrid
has been investigated through a hierarchical energy management system in [27].
District heating network impact has been studied on the optimal performance of hub
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energy system in [28]. Concept of hub energy systems has been used to develop an
integrated energy system at neighborhood level in [29]. Optimal operation and
power flow problem of hub energy microgrid has been studied in [30]. Optimal
thermal and electrical operation of hub energy system has been evaluated under
energy storage system and demand response program in [31]. Optimal performance
of hub energy system has been investigated using SAL-TVAC-GSA in [32]. In order
to represent microgrid in steady-state analysis, hub energy system has been molded
using a new developed approach in [33]. Hub energy concept has been utilized to
integrate renewable-based resources to handle energy consumption as well as
generated emission in [34].

Performance of multi-carrier energy system has been analyzed in the presence of
price and wind uncertainty using stochastic programming in [35]. Multi-carrier
energy system has been planned and scheduled under uncertainties of price, demand,
and wind using stochastic programming in [36, 37]. Also, stochastic programming
has been employed to model uncertainties of wind, price, and load in the presence of
demand response and thermal energy market in [38]. Using hyper-spherical search
algorithm, uncertainty-based economic dispatch problem of residential multi-carrier
energy system has been investigated in [39].

Well-known reliability evaluation approach called Markov chain technique has
been used in [40, 41] to study optimal operation of multi-carrier energy system from
reliability viewpoint.

In [42], a multi-objective optimization model has been developed for multi-
carrier energy system in which grid integration level and levelized energy cost
have been set to be objective functions. Modified teaching-learning-based algorithm
has been used to solve the proposed multi-objective problem for economic-emission
problem of hub energy system in [43]. Weighted sum approach has been employed
to solve cost-emission problem of multi-carrier energy system networks in [44].
Similar cost-environmental problem of hub energy system has been studied in the
presence of demand response program in [7]. Proposed multi-objective model for
active electrical losses, energy costs, and natural gas losses has been solved using
goal programming technique in [45].

Finally, multi-carrier energy systems have been investigated from viewpoints of
recently used models and concepts in [46].

15.1.2 Novelty and Contributions

In this chapter, robust performance of hub energy system is studied under uncer-
tainty of upstream network price using robust optimization approach. Employing
robust optimization technique, appropriate operational strategies are obtained for
robust performance of hub energy system against uncertain behavior of upstream
network price. In comparison with other uncertainty modeling techniques like
stochastic programming, robust optimization approach determines operational strat-
egies to assess uncertainty-based operation of power system. Therefore, novelty and
contributions of proposed chapter can be summarized as follows:
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• Economic performance of multi-carrier energy system
• Optimal configuration of heat and electricity hub energy system
• Robust operation of multi-carrier energy system under uncertainty of upstream

network price through robust optimization approach

15.1.3 Structure of Chapter

The remainder of proposed chapter is structured as follows: Base formulation of
optimal operation problem of hub energy system is presented in Sect. 15.2. Robust
optimization approach is briefly explained and then applied to the base problem in
Sect. 15.3. Case studies as well as simulation results are presented in Sect. 15.4.
Finally, the proposed chapter is concluded in Sect. 15.5.

15.2 Formulation

Optimal performance of hub energy system has been formulated without considering
upstream network uncertainty in this section.

15.2.1 Objective Function

Total cost of multi-carrier energy system is due to be minimized as the objective
function of proposed chapter (15.1). Mentioned objective function consists of costs
of imported electric power, water, and gas from electricity, water, and gas networks
as well as operation costs of boiler, CHP system, and electrical and thermal storage
systems plus the cost/revenue of exchanged power.

MinCost ¼
XH
t

λ et � pe
t þ λwi � pwi

t þ λ es � pch,et þ pdis,et

� �
þλ et � pch,et � pdis,et

� �þ λg � gB
t þ λg � gCHP

t

þλhs � pch,ht þ pdis,ht

� �þ λwa � wat

0
BB@

1
CCA ð15:1Þ

15.2.2 Constraints

Electrical and thermal energy balance limitations are provided in Eqs. (15.2) and
(15.3), respectively.
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Pe, l
t ¼ ANET � ηT

ee � pe
t þ ACHP � ηCHP

ge � gCHP
t

þAWIND � ηCON
ee � pwi

t þ pdis,et � pch,et

� �
ð15:2Þ

Pl,h
t ¼ ACHP � ηCHP

gh � gCHP
t þ ηB

gh � gB
t þ pdis,ht � pch,ht

� �
ð15:3Þ

Electrical storage system is designed based on Eqs. (15.4, 15.5, 15.6, 15.7, 15.8,
and 15.9). As expressed in Eq. (15.4), available energy of electrical storage system is
equal to the energy in former hour plus the charging power minus power losses and
discharging power of the storage system. Stored energy in electrical storage is
limited through Eq. (15.5). Charging/discharging power of electrical storage is
limited through Eqs. (15.6) and (15.7), respectively. Finally, in order to prevent
storage system from simultaneous charge and discharge processes, Eq. (15.8) is
employed.

Cst,e
t ¼ Cst,e

t�1 þ pch,et � η e
ch � pdis,et =η e

dis � α e
loss � Cst,e

t ð15:4Þ
α e
min � Cst,e

c � Cst,e
t � α e

max � Cst,e
c ð15:5Þ

α e
min � Cst,e

c � Ich,et

η e
ch

� pch,et � α e
max � Cst,e

c � Ich,et

η e
ch

ð15:6Þ

α e
min � Cst,e

c � Idis,et � η e
dis � pdis,et � α e

max � Cst,e
c � Idis,et � η e

dis ð15:7Þ
Ich,et þ Idis,et � 1 ð15:8Þ

Thermal storage system is also designed based on Eqs. (15.9, 15.10, 15.11, 15.12,
and 15.13).

Cst,h
t ¼ Cst,h

t�1 þ pch,ht � ηh
ch � pdis,ht =ηh

dis � αh
loss � Cst,h

t ð15:9Þ
αh
min � Cst,h

c � Cst,h
t � αh

max � Cst,h
c ð15:10Þ

αh
min � Cst,h

c � Ich,ht

ηh
ch

� pch,ht � αh
max � Cst,h

c � Ich,ht

ηh
ch

ð15:11Þ

αh
min � Cst,h

c � Idis,ht � ηh
dis � pdis,ht � αh

max � Cst,h
c � Idis,ht � ηh

dis ð15:12Þ
Ich,ht þ Idis,ht � 1 ð15:13Þ

Available heat in the thermal storage is equal to the stored heat at previous hour
plus the charging heat minus heat losses and discharging heat (15.9). Stored heat is
constrained through Eq. (15.10). Charging/discharging heat of thermal storage
system is constrained through Eqs. (15.11) and (15.12), respectively. Finally, in
order to prevent thermal storage from simultaneous charging and discharging,
Eq. (15.13) is used.
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Power generated by wind turbine is based on the pattern presented in Eq. (15.14).

pwi
t ¼

0 w < wci

pr z� y:w tð Þ þ x:w2 tð Þð Þ wci � w < wr

pr wr � w < wco

0 w � wco

8>>>>><
>>>>>:

ð15:14Þ

Imported power from upstream network cannot exceed the nominal power
(15.15). Also, transformer limitation should be taken into account (15.16).

pe
min � pe

t � pe
max ð15:15Þ

ηT
ee � pe

t � pT
c ð15:16Þ

Operational limitations of boiler and CHP unit are presented in Eqs. (15.17) and
(15.18), respectively.

ηB
gh � gB

t � pB
c ð15:17Þ

ηCHP
ge � gCHP

t � pCHP
c ð15:18Þ

Gas demand balance limitation is presented in (15.19) in which gas demand is
satisfied through the imported gas from gas network deducing the gas used for
operation of boiler and CHP system.

Gl
t ¼ gnet

t � gB
t � gCHP

t ð15:19Þ

It should be noted that purchased gas is not allowed to exceed rated capacity of
gas network.

gnet
min � gnet

t � gnet
max ð15:20Þ

According to the water demand balance equations expressed in (15.21), imported
water from water network should satisfy water demand. It should be noted that
imported water from water network is restricted through (15.22).

Wal
t ¼ wanet

t ð15:21Þ
wamin � wanet

t � wamax ð15:22Þ
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15.3 Robust Operation of Hub Energy System

Robust performance of multi-carrier energy system under uncertainty of upstream
network price is studied through robust optimization technique in this section.
Robust optimization approach is briefly explained first, and then it is applied to the
base problem [47–49].

15.3.1 Robust Optimization Technique

Robust optimization approach determines appropriate operational strategies to be
used by the operators to guarantee stable performance of operating system under
various conditions of uncertainty. Standard form of a simple optimization problem
can be modeled using Eqs. (15.23, 15.24, 15.25, and 15.26).

Minimize
Xt, 8t

XH
t¼1

etxt ð15:23Þ

S.t

XH
t¼1

amtxt � bm, m ¼ 1, . . . ,M ð15:24Þ

xt � 0, t ¼ 1, . . . ,H ð15:25Þ
xt2 0; 1f g for some t ¼ 1, . . . ,H ð15:26Þ

For modeling robust optimization problem, the whole coefficients are set to be
between et and et+dt, where dt is the deviance from nominal coefficient, et. Then,
an integer parameter (Γ0) considering values between 0 and |J0| is defined. It should
be noted thatJ0 ¼ {t| dt > 0}. The effect of cost deviations in the objective function
of problem is ignored if the defined integer parameter is zero. In simple words if
Γ0 ¼ |J0|, the whole cost deviations of objective function are considered.

Therefore, robust optimization problem can be expressed as follows:

Minimize
xt, 8t

XH
t¼1

etxt þ Maximize
S0l S0�J0; S0j j¼Γ0f g

X
t2S0

dt xtj j
( )

ð15:27Þ

S.t

Eqs: 15:24ð Þ � 15:26ð Þ ð15:28Þ
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It should be noted that mentioned robust optimization problem above can be
reformulated in a new form as follows [50]:

Minimize
xt, qot, yt, 8t;z0

XH
t¼1

etxt þ z0Γ0 þ
XH
t¼1

qot ð15:29Þ

S.t

Eqs: 15:24ð Þ � 15:26ð Þ ð15:30Þ
z0 þ qot � dtyt, t ¼ 1, . . . ,H ð15:31Þ

qot � 0, t ¼ 1, . . . ,H ð15:32Þ
yt � 0, t ¼ 1, . . . ,H ð15:33Þ

z0 � 0 ð15:34Þ
xt � yt, t ¼ 1, . . . ,H ð15:35Þ

It should be noted that z0 and qot are dual variables of optimization problem
(15.23, 15.24, 15.25, and 15.26).

15.3.2 Robust Performance of Hub Energy System Under
Uncertainty of Upstream Network Price

According to the explanation of robust optimization approach, robust performance
of multi-carrier energy system using robust optimization technique can be modeled
as follows:

Min
XH
t¼1

λ̂ e
t �pe

t þ λwi�pwi
t þ λ es � pch,et þpdis,et

� �
þλ et � pch,et �pdis,et

� �þ λg�gB
t þ λg�gCHP

t

þλhs � pch,ht þpdis,ht

� �þ λwa�wat

0
BB@

1
CCAþ z0Γ0þ

XH
t¼1

qot

0
BB@

1
CCA ð15:36Þ

S.t

Eqs: 15:2ð Þ � 15:22ð Þ ð15:37Þ
z0 þ qot � dtyt, t ¼ 1, . . . ,H ð15:38Þ

qot � 0, t ¼ 1, . . . ,H ð15:39Þ
yt � 0, t ¼ 1, . . . ,H ð15:40Þ
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z0 � 0 ð15:41Þ
pe
t þ pch,et � pdis,et � yt, t ¼ 1, . . . , 24 ð15:42Þ

15.4 Case Study

In this section, a sample multi-carrier energy system containing renewables and
nonrenewable generation units, CHP, and boiler as well as electrical and thermal
storage systems (ESS and TES) is studied. Studied system is shown in Fig. 15.1.

Fig. 15.1 Sample multi-carrier energy system
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15.4.1 Data

Simulations are done according to the data given in the following: Electrical,
thermal, gas, and water demands of multi-carrier energy system are illustrated in
Fig. 15.2 [7, 37]. Also, hourly wind speed according to which wind power is
generated is illustrated in Fig. 15.3 [7, 37]. Finally, Fig. 15.4 illustrates the upper,
expected, and lower limits of upstream network price [7, 37].

Technical limitations and data of upstream network as well as gas and water
networks are presented in Table 15.1. As mentioned before, upstream network is one
of the resources providing power for supplying electrical demand. Technical
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constraints of electrical and thermal storage systems are presented in Table 15.2.
Operational limitations of local distribution generation systems are presented
through Table 15.3. Finally, operation costs of wind turbine, electrical and thermal
storages, as well as prices of procured gas and water are presented in Table 15.4.

Setting the time step to be 1 hour, robust performance problem of multi-carrier
energy system under uncertainty of price of upstream network is simulated using
GAMS optimization package under CPLEX 11.0 [51].

15.4.2 Results

Solving the objective function (15.36) subject to constraints (15.37, 15.38, 15.39,
15.40, 15.41, and 15.42), robust costs of multi-carrier energy system are obtained.
Figure 15.5 shows robust cost in various iterations including minimum, expected,

Fig. 15.4 Upstream network price [7, 37]

Table 15.1 Technical limitations related to upstream, gas, and water networks [3, 26]

Upstream network parameter Gas and water network parameters

# Unit Value # Unit Value

ANET
– 0.99 gnet

max kW 1800

pe
max kW 1000 gnet

min kW 0

pe
min kW 0 wamax kW 1000

pT
c

kW 800 wamin kW 0
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and maximum robust levels. Iteration 6 represents deterministic case excluding
uncertainty in which total operation cost of hub energy system is equal to 2677.41
$. As shown in Fig. 15.5, iteration 1 is related to the case in which the ideal outcome
is obtained for the hub energy system due to the lower prices of upstream network. It
can be seen that total operation cost of hub energy system in this level is 2417.97 $
which is reduced by 9.69% in comparison with deterministic condition. Also, due to
the higher prices of upstream network, the worst case for the hub energy system is
obtained in iteration 11 according to which hub energy system experienced total cost
of 2771.77 $ which is 3.52% more in comparison with deterministic case. In other
words, in order to guarantee stable operation of hub energy system against increase
of upstream network up to 30%, the operation cost of hub energy system is increased
by 3.52%.

Table 15.3 Technical constraints of distribution generation units [3, 26]

Wind turbine parameter CHP and boiler parameters

# Unit Value # Unit Value

AWIND
– 0.96 ACHP

– 0.96

x, y,z – 0.07, 0.01, 0.03 ηCHP
ge

% 40

wci m/s 4 ηCHP
gh

% 35

wco m/s 22 pCHP
c

kW 800

pr kW 400 ηB
gh

% 85

pB
c

kW 800

Table 15.4 Data of
generation units [3, 26]

Parameter Value Unit

λg 6 Cent/kWh

λwa 4 Cent/kWh

λwi 0 Cent/kWh

λ es 2 Cent/kWh

λhs 2 Cent/kWh

Table 15.2 Technical
limitation of electrical
and thermal storage
systems [3, 26]

Electrical storage parameter Thermal storage parameter

# Unit Value # Unit Value

α e
min – 0.05 αh

min
– 0.05

α e
max – 0.9 αh

max
– 0.9

α e
loss – 0.2 αh

loss
– 0.2

η e
ch % 90 ηh

ch
% 90

η e
dis % 90 ηh

dis
% 90

Cst,e
c kW 300 Cst,h

c
kW 200
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Imported power from upstream network is declared in Fig. 15.6. As shown in this
figure, multi-carrier energy system has purchased less power from upstream network
in the worst case containing the highest upstream network prices, and on the other
hand, because of lower prices, multi-carrier energy system has attempted to buy
more power from upstream network in minimum robust condition.

CHP unit has been mostly used for electric power generation due to the lack of
electric power for supplying electrical load in maximum robust condition, and this
has led to more gas consumption of this unit in the mentioned condition. Moreover,
since heat generation of CHP system is proportional with its electrical generation,
generated heat by this unit is increased in the maximum robust condition. Reverse
explanation is also true for minimum robust condition. Total consumed gas, electri-
cal generation, and generated heat by CHP unit are shown in Figs. 15.7, 15.8, and
15.9, respectively.

Since generated heat by CHP system in the minimum robust condition is insuf-
ficient to meet heating demand, lack of heat in this condition has been made up by
heat generation of boiler which has led to the increase of gas consumption of this unit
in the mentioned condition. Finally, total consumed gas and generated heat by boiler
are illustrated through Figs. 15.10 and 15.11, respectively.

Fig. 15.5 Robust cost of multi-carrier energy system
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Fig. 15.7 Gas consumption of CHP unit

Fig. 15.6 Imported power from upstream network
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Fig. 15.8 Electric power generation of CHP unit

Fig. 15.9 Heat generation of CHP unit
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Fig. 15.10 Gas consumption of boiler

Fig. 15.11 Heat generation of boiler
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15.5 Conclusions

In this chapter, risk-based performance of multi-carrier energy system has been
studied using robust optimization approach under uncertainty of upstream network
price. Upstream network price can either increase or decrease in different uncertainty
conditions which can challenge stable operation of operating system. So, robust
optimization technique is applied to determine the appropriate operating strategies.
The possible outcomes that can be caused by uncertainty are investigated, and the
results are presented for comparison. According to the obtained results from simu-
lations, robust operation of hub energy system can be guaranteed against 30%
increase of upstream network price through experiencing 3.52% more operation
cost in comparison with the normal operating condition. This increase is mainly due
to the taken risk-averse strategy by the operator of operating system. On the other
hand, the operator can take risk-seeking strategy to benefit from the possible
reduction of price. According to the results, the operator can gain 9.69% economic
benefit through reduction of price up to 30%. So, it can be concluded that by using
the provided operating strategies through robust optimization method, the whole
possible consequences of uncertainties can be taken into account.
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Chapter 16
Robust Optimization Method for Obtaining
Optimal Scheduling of Active Distribution
Systems Considering Uncertain Power
Market Price

Morteza Nazari-Heris, Saeed Abapour, and Behnam Mohammadi-ivatloo

16.1 Introduction

The optimal scheduling of electricity distribution networks is accomplished by
network operators to provide the optimal set points of the network components
and improving the utilization of alternative energy technologies. Active network
management (ANM) is introduced as an effective approach for coordinating the
interconnection and operation of distributed generators (DGS) and electricity distri-
bution networks [1]. The application of ANM in distribution networks takes advan-
tages of decreasing power loss of the network, modifying the load profile of the
network, controlling the voltage profile, and reducing the curtailment of DGs in the
network. Both DG owner (DGO) and distribution company (DisCo) are responsible
in providing reliable electrical energy and improving the efficiency of the power
network [2, 3].

It is important to be mentioned that the application of ANM is not fully enough
according to load demand increment and conditions with full load. The requirement
of electricity networks to renewable energy sources and energy storage systems has
been more sensible by the issues appeared as limitation of oil and gas sources and
emission of pollutant gases. Different energy storage technologies have been intro-
duced including fuel cell [4], battery technologies for electrical energy storage units
[5], pumped storage units [6], ice storage [7], and compressed air energy storage
[8]. Moreover, development of smart grids in distribution networks and improve-
ments of the energy technologies have clarified the role of demand response pro-
grams (DRPs). DRPs are introduced as demand side management approach for
changing the customer loads from peak hours to off-peak hours and receiving
incentives for participating in DRPs. The application of DRPs in distribution
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networks is impactful in improving the stability of power systems [9]. The employ-
ment of time-of-use DRPs on bidding strategy of electrical energy retailers has been
studied in [10]. The proposed model in this reference has investigated the effect of
system flexibility in improvement of generation dispatch and reduction of electricity
bills for the supply and demand sections, respectively. Various modeling approaches
with different strategies for fixed and flexible loads in obtaining optimal dispatch of
power networks have been compared in [11]. In addition, the utilization of energy
storage units and their advantages in ancillary services have been discussed in the
area of improving system reliability indexes and modifying the load profile [12]. The
application of energy storage technologies has been studied in the system planning
[13], energy markets [14], joint energy and reserve markets [15], and operation of
micro-grids [16].

The smart distribution network can be attained by adjustment of transformer tap
changer and reactive power compensators hourly. Such adjustment will be effective
in decreasing voltage deviation and operational cost of the network. The ANM of
distribution networks can be accomplished by controlling and managing by using a
control center placed in the primary substation of the network. State estimation
process is proceeded in the distribution network by receiving the load data by local
and remote measurements. Three ANM strategies implemented in the distribution
networks can be defined as [17]:

(a) Active power regulation of DG
(b) Active management of on-load-tap changer (OLTC)
(c) Using reactive power compensators (RPCs)

This chapter aims to study robust optimal scheduling of active distribution
networks considering the uncertainty associated with power market price. The robust
optimization (RO) method has been implemented to deal with uncertain price
maximizing benefit of distribution company (DisCo) and maximizing benefit of
distributed generation owner (DGO). Accordingly, ε-constraint is applied to handle
multi-objective profit maximization of DisCo and DGO, and a fuzzy satisfying
method is used to define the best compromise solution. The application of time-of-
use DRP and energy storage units has been investigated in the proposed robust
model. The proposed model is tested on 33-bus radial distribution network to
evaluate and conform the performance of the model.

The organization of this chapter is as follows: The problem formulation of the
proposed robust scheduling of distribution networks is prepared in Sect. 16.2. The
case study and solution method have been provided in Sect. 16.3. Section 16.4
discusses and investigated the simulation results. Finally, the summary of this
chapter is provided in Sect. 16.5.
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16.2 Problem Formulation

16.2.1 Objective Functions of DisCo and DGO

The objective function of DisCo is obtaining maximum benefit by obtaining optimal
short-term scheduling of the network, which can be calculated as follows:

OF1 ¼ max
XNh

h¼1

XN load

i¼1

ρP
sell � PD

i,h þ
XN load

i¼1

ρQ
sell � QD

i,h �
XNSS

ss¼1

λh � Pss
h �

XNSS

ss¼1

λQfix � Qss
h

�λh � P tot
loss �

XNDG

n¼1

ρPDGOsell � PDG
n,h �

XNDG

n¼1

ρQDGOsell � QDG
n,h

8>>>><
>>>>:

9>>>>=
>>>>;

ð16:1Þ

where ρP
sell and ρQ

sell are the price of selling active and reactive power of DisCo to
consumers, respectively. The indicators of active and reactive power sold to the
consumers are PD

i,h and Q
D
i,h. The power market price and power exchanged between

the network and power market are defined by λh and Pss
h , respectively. The fixed

reactive power price and its corresponding reactive power are defined by λQfix and
Qss

h , respectively. Total active power loss is defined by P
tot
loss. The active and reactive

power injected by a diesel generator are defined by PDG
n,h and QDG

n,h , respectively. In
addition, the price of active and reactive power of the generators are indicated by
ρPDGOsell and ρQDGOsell , respectively. The revenue of selling power to the consumers is the
first and second terms of (16.1). The cost of purchased power from the power market
is the third term of this equation. The cost of purchasing reactive power from the
external network is the fourth term of (16.1). Benefits or costs related to variation of
network power losses are defined as fifth term of the equation. The respective terms
for purchasing active and reactive energy from DGO by DisCo are provided as sixth
and seventh terms of (16.1). Considering the uncertain power market price,
Eq. (16.1) can be reformulated as a max-min-max robust optimization problem as
follows [18]:

OF1 ¼ max
XNh

h¼1

XN load

i¼1

ρP
sell � PD

i,h þ
XN load

i¼1

ρQ
sell � QD

i,h �
XNSS

ss¼1

λh � Pss
h �

XNSS

ss¼1

λQfix � Qss
h

�λ� P tot
loss �

XNDG

n¼1

ρPDGOsell � PDG
n,h �

XNDG

n¼1

ρQDGOsell � QDG
n,h

8>>>><
>>>>:

9>>>>=
>>>>;

þmin max
XNh

h¼1

λh � Pss
h

ð16:2Þ
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where the price of power market is assumed to be uncertain. The objective of the
proposed RO model is to obtain the optimal solution in robust condition, where the
operation cost of the network will be preserved considering probable deviation of
power market price from the forecasted values [19]. The inner problem equivalently
can be reformulated as the following:

max
�
λh þ zh, λ̂h

�� Pss
h

s:t: zh � 1 : ξh, 8h,XNh

h¼1

zhð Þ � Γ : β,

zh � 0

ð16:3Þ

where Γ is the robust budget of the proposed RO model. Deviation of the power
market price from the forecasted value for each time interval is defined by zhλ̂h. The
dual variables for the inner problem of Eq. (16.1) are defined by ξh and β. Accord-
ingly, the objective function of robust optimal scheduling of distribution network for
maximizing profit of DisCO can be reformulated as:

OF1 ¼max
XNh

h¼1

XN load

i¼1

ρP
sell�PD

i,hþ
XN load

i¼1

ρQ
sell�QD

i,h�
XNSS

ss¼1

λh�Pss
h �

XNSS

ss¼1

λQfix�Qss
h

�λh�P tot
loss�

XNDG

n¼1

ρPDGOsell �PDG
n,h �

XNDG

n¼1

ρQDGOsell �QDG
n,h

8>>>><
>>>>:

9>>>>=
>>>>;

�Γβ�
XNh

h¼1

ξh

s:t: ξhþβ� λ̂hPss
h

ξh � 0
β� 0

ð16:4Þ

The objective function of DGO is maximizing its own profit by selling electricity
to DisCo. In addition, DGO is the owner of energy storage units. The DGO sells
power to the network at power market price. The following formulation can be
written for calculating the DGO profit:

OF2 ¼ max

XNh

h¼1

XNDG

n¼1

ρPDGOsell � PDG
n,h þ

XNDG

j¼1

ρQDGOsell � QDG
n,h þ

XNk

k¼1

ρPDGOsell � Pdisc
k,h �

XNk

k¼1

λh � Pc
k,h

�
XNDG

n¼1

AnP
2
DG
n,h þ BnP

DG
n,h þ Cn

� �
�
XNDG

n¼1

QDG
n,h � CT Q

n � C deg
k

XNk

k¼1

Pdisc
k,h

ηdisck

þ ηC
k � Pc

k,h

 !
8>>>><
>>>>:

9>>>>=
>>>>;

ð16:5Þ

where the cost coefficients of diesel generators are defined by An, Bn, and Cn. The
power charge and discharge of the EES unit are indicated by Pc

k,h and Pdisc
k,h ,

respectively. The respective indicators of charge and discharge efficiencies are
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indicated by ηC
k and ηdisck . Degradation cost of the EES unit is defined by C deg

k .
Reactive power of the diesel generator and the corresponding cost are defined by
QDG

n,h andCT
Q
n . The revenues of selling power to DisCo are the first and second terms

of (16.2). The revenues of discharged energy and cost of charged energy of batteries
are the third and fourth terms of (16.2). The operation cost of DG units is the fifth
term of (16.2). Degradation cost of energy storage units is defined as the sixth term of
this equation. Considering the uncertain power market price, Eq. (16.5) can be
reformulated as a max-min-max robust optimization problem as follows:

OF2 ¼ max

XNh

h¼1

XNDG

n¼1

ρPDGOsell � PDG
n,h þ

XNDG

j¼1

ρQDGOsell � QDG
n,h þ

XNk

k¼1

ρPDGOsell � Pdisc
k,h �

XNk

k¼1

λh � Pc
k,h

�
XNDG

n¼1

AnP
2
DG
n,h þ BnP

DG
n,h þ Cn

� �
�
XNDG

n¼1

QDG
n,h � CT Q

n � C deg
k

XNk

k¼1

Pdisc
k,h

ηdisck

þ ηC
k � Pc

k,h

 !
8>>>><
>>>>:

9>>>>=
>>>>;

þmin max
XNh

h¼1

XNk

k¼1

λh � Pc
k,h

ð16:6Þ

Similar to the operation of DisCo, the RO model of the DGO can be solved. The
inner problem equivalently can be reformulated as the following:

max
XNh

h¼1

XNk

k¼1

�
λh þ zhλ̂ h

�� Pc
k,h

s:t: zh � 1 : ξh,8h,XNh

h¼1

zhð Þ � Γ : β,

zh � 0

ð16:7Þ

Accordingly, the objective function of robust optimal scheduling of distribution
network for maximizing profit of DisCO can be reformulated as:

OF2 ¼ max

XNh

h¼1

XNDG

n¼1

ρPDGOsell � PDG
n,h þ

XNDG

j¼1

ρQDGOsell � QDG
n,h þ

XNk

k¼1

ρPDGOsell � Pdisc
k,h �

XNk

k¼1

λh � Pc
k,h

�
XNDG

n¼1

AnP
2
DG
n,h þ BnP

DG
n,h þ Cn

� �
�
XNDG

n¼1

QDG
n,h � CT Q

n � C deg
k

XNk

k¼1

Pdisc
k,h

ηdisck

þ ηC
k � Pc

k,h

 !
8>>>><
>>>>:

9>>>>=
>>>>;

� Γβ �
XNh

h¼1

ξh

s:t: ξh þ β � λ̂hPss
h

ξh � 0
β � 0

ð16:8Þ
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16.2.2 Constraints and Optimal Power Flow Equations

The active and reactive power flow of the distribution network should be considered
as:

Pss
h þ PDG

i,h � 1� DRhð Þ � PD
i,h þ ldrh

� �þXNk

k¼1

Pdisc
k,h � Pc

k,h

� �
¼ Vi,h

X
j

V j,h Gij cos δi,h þ Bij sin δ j,h
� � ð16:9Þ

Qss
h þ QDG

i,h � QD
i,h ¼ Vi,h

X
j

V j,h Gij cos δi,h � Bij sin δ j,h
� � ð16:10Þ

where the voltage value and voltage angle for each node of the network are defined
by Vi,h and δi,h, respectively. Conductance and substance of the network lines are
indicated by Gij and Bij, respectively. The active and reactive load demand of the
network in each node are defined by PD

i,h and QD
i,h, respectively.

The limitations of each node voltage and active and reactive power transmission
can be stated as follows:

V min
i � Vi,h � V max

i ð16:11Þ
Pmin
ss � Pss

h � Pmax
ss ð16:12Þ

Qmin
ss � Qss

h � Qmax
ss ð16:13Þ

Sij,h � Smax
ij ð16:14Þ

The minimum and maximum values of node voltages are defined by V min
i and

V max
i , respectively. In addition, the respective indicators for lower and upper bounds

of the active power exchange between the network and power market are Pmin
ss and

Pmax
ss . The minimum and maximum reactive power exchange between the network

and power market are indicated by Qmin
ss and Qmax

ss , respectively. Maximum thermal
limit of each line of the network is defined by a, and power flow in network branches
is defined by Sij,h. The generation of active and reactive power of each generation
units should be limited to its minimum and maximum values as follows:

Pmin
DG � PDG

i,h � Pmax
DG ð16:15Þ

Qmin
DG � QDG

i,h � Qmax
DG ð16:16Þ

The minimum and maximum generations of each generator are defined by Pmin
DG

and Pmax
DG , respectively. In addition, the respective indicators of minimum and
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maximum amounts of reactive power generation of such units are Qmin
DG and Qmax

DG . It
is assumed that the power factor for each generation unit is constant:

cosϕ ¼ PDG
i,hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PDG
i,h

� �2 þ QDG
i,h

� �q ¼ const: ð16:17Þ

The tap setting of tap changer is stated as:

T min
l � Tl,h � T max

l ð16:18Þ

where tap setting of tap changer is defined by Tl,h and its corresponding minimum
and maximum values are indicated by T min

l and T max
l .

The application of DRPs has been studied in this paper to shift load demands of
the consumers from on-peak hours to off-peak hours. Time-of-use program is
selected as DRP in this chapter, which is shown in Fig. 16.1.

The load demand of the network is classified to two parts, where the dashed
section does not participate in the program and the other can shift load from on-peak
hours to off-peak hours, which can be formulated as follows:

PD
i,h ¼ 1� DRhð Þ � PD

i,h þ ldrh ð16:19Þ
PD
i,h � PDR

i,h ¼ ldrh ¼ DRh � PD
i,h ð16:20Þ

where the costumers’ participation in DRP is defined by DRh and the load value
shifted by DRP is indicated by ldrh. It should be considered that total demand during
the scheduling time interval before application of DRP should be equal to the sum of
demand by employing DRP, which can be stated as:

hldr

,(1 ) D
h i hDR P

Fig. 16.1 DRP load
modeling
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XNh

h¼1

ldrh ¼
XNh

h¼1

DRh � PD
i,h ð16:21Þ

DRh � DRmax ð16:22Þ

where the maximum rate for costumers’ participation in DRP is defined by DRmax.
Demand increment by employing DRP should be limited as follows:

PD incð Þ
i,h � inch � PD

i,h ð16:23Þ
inch � incmax ð16:24Þ

As mentioned before, it is assumed that the DGO owns energy storage unit. The
constraints of the storage units have been provided in the following. The limitations
of charge/discharge of the storage units are as (16.19). The energy stored in the
energy storage units is limited to its minimum and maximum limits as (16.20). The
storage can be operated only in one of the states of charge, discharge, or ideal, which
is stated as (16.21). The energy balance of the energy storage unit is provided in
(16.22):

0 � Pc
k,h � bc

k,hP
c,max
k,h , 0 � Pdisc

k,h � bdisck,h P
disc,max
k,h ð16:25Þ

Emin
k � Ek,h � Emax

k ð16:26Þ
bc
k,h þ bdisck,h � 1; bc

k,h, b
disc
k,h 2 1; 0f g ð16:27Þ

Ek,hþ1 ¼ Ek,h þ ηC
k � Pc

k,h �
Pdisc
k,h

ηdisck

 !
ð16:28Þ

where the maximum charge and discharge power rates of the EES unit at each time
interval are defined by Pc,max

k,h and Pdisc,max
k,h , respectively. The energy charged at the

EES unit is indicated by Ek,h, and its corresponding minimum and maximum values
are indicated by Emin

k and Emax
k , respectively. The binary variables bc

k,h and bdisck,h are
used to define the operation of EES unit in charge, discharge, or ideal modes.

16.3 Solution Method and Case Study

16.3.1 ε-Constraint Method

The multi-objective problems have been handled using different methods in recent
publications. In this chapter, ε-constraint method is used to solve the proposed robust
optimal scheduling of distribution networks. Such method considers one of the
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multi-objectives as main objective and the other objectives as the constraints of main
objective, which can be stated as [4]:

OF ¼ max of1ð Þ
s:t:
of2 � ε
Eqs: 16:9ð Þ � 16:27ð Þ

� ð16:29Þ

Fuzzy satisfying approach is selected as the solution method to select the best
compromise solution among the provided Pareto optimal solutions. Considering a
problem with N objectives, linear membership function for the sth solution of the
wth function can be stated as [20]:

μ s
w ¼

1 of sw � f min
w

OFmax
w � of sw

OFmax
w � OFmin

w

OFmin
w � of sw � OFmax

w

0 of sw � OFmax
w

8>><
>>: ð16:30Þ

where the maximum and minimum values of the objective function w are indicated
by OFmax

k and OFmin
k are in solutions of Pareto optimal set. μ s

w defines the optimality
degree of the sth solution of wth objective function. The membership function of sth
solution can be obtained as:

μs ¼min μ s
1; . . . ; μ

s
N

� �
s ¼ 1, . . . , NP

ð16:31Þ

The best compromise solution will be selected as the solution with maximum
weakest membership function. The corresponding membership function of this
solution (μmax) can be obtained as:

μmax ¼ max μ1; . . . ; μNp
� � ð16:32Þ

16.3.2 Case Study and Problem Assumptions

The proposed model has been applied on 33-bus distribution network, which is
demonstrated in Fig. 16.2. The hypothetical voltage level of the substation and the
hypothetical capacity of the feeders are 12.66 kV and 8 MVA, respectively. In
addition, the peak load is 4460 kW and 2760 kVar.

As mentioned before, the DGO is the owner of distributed generators, which are
DG1 and DG2 with a capacity of 1.5 MW installed at the nodes 11 and 33 in the
studied test system, respectively. In addition, reactive power compensations RPC1
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and RPC2 are located in buses 17 and 33 with capacities of 0.8 MVar and 1.7 MVar,
respectively. Two storage units are located in parallel with DG plants with capacity
of 0.5 MW and charge/discharge rate of 200 kW. The lower and upper bounds of
energy storage of the battery are 100 kWh and 500 kWh, respectively.

The characteristics of DG units are provided in Table 16.1. Table 16.2 prepared
the economic and technical data of the studied network. The characteristics of the
energy storage units are provided in Table 16.3.

12 .66 kV
8 MVA

l18

l19 l20 l21

l1

l3

l2

l4

l6

l5

l7 l9l8 l10 l11

l17 l16 l14l15

l13

l12

l26

l27 l28 l29 l30 l31 l32

l25

l22

l23 l24

su
bs

ta
tio

n

l33

DG1

DG2

ESS2

ESS1

Fig. 16.2 The studied test system

Table 16.1 Characteristics of DG units

Bus with DG A ($/MW2) B ($/MW) C ($) CT Q
j ($/MVar)

11 0.0075 36 28.5 4.28

33 0.0075 40 22 8.5

Table 16.2 Economic and
technical data

Parameters Values Parameters Values

V max
i (p.u.) 1.05 ρP

sell ($/MWh) 85

V min
i (p.u.) 0.95 ρQ

sell ($/Mvarh) 52

PFDG 0.95 ρsellPDGO ($/MWh) 67

ρbase 72 λQfix ($/Mvarh) 42

Table 16.3 Characteristics of
the energy storage units

E cap
k (MWh) 0.5 Pc,max

k,h (MW) 0.2

Emin
k (MWh) 0.1 Pdisc,max

k,h (MW) 0.2

Emax
k (MWh) 0.45 ηC

k
0.95

C deg
k ($/MWh) 2.7 ηdisck

0.85
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16.4 Assumptions and Simulation Results

In this section, the simulation results of the proposed robust model for optimal
scheduling of distribution networks have been reported and analyzed. The robust
short-term scheduling is accomplished for a daily 24-h time interval considering
demand response programs. The robust budget is considered to be 10, and 20%
deviation is considered for the forecasted values of the power market price for 24 h.
The forecasted, minimum and maximum power market prices are provided in
Table 16.4. The Pareto solutions provided for the multi-objective problem are
reported in Table 16.5. The ε-constraint method has solved the problem for 20 iter-
ations, which is obvious from this table. By using the fuzzy satisfying method, the
best compromise solution is related to Solution#12, where the benefit of DisCO and
DGO are $6035.132 and $1575.873, respectively. It should be mentioned that the
optimal benefit of the DisCO and DGO for the studied network without
implementing RO method is as $6176.782 and $1687.76, which are reduced by
the proposed model due to considering the worst case of the uncertain price.

The obtained optimal scheduling of the distribution network for the best com-
promise solution is investigated. Figure 16.3 shows the electrical energy purchased
from the upstream grid during the 24-h scheduling time horizon.

The optimal generation scheduling of DG1 and DG2 during the 24-h scheduling
time interval is demonstrated in Fig. 16.4, which shows that DG1 has participated in
power demand supply more than DG2.

The optimal charge/discharge power of the batteries 1 and 2 is depicted in
Fig. 16.5. The analysis shows that energy storage units have charged power during
on-peak hours and have discharged the power in off-peak hours to supply the load
demand when required.

Load demand of the studied distribution network with and without consideration
of demand response program has been demonstrated in Fig. 16.6, which shows the
effectiveness of the demand response program on modifying the load demand profile
of the network.

Table 16.4 Forecasted, minimum and maximum power market price

h Forecasted Minimum Maximum h Forecasted Minimum Maximum

1 53.96 43.17 64.76 13 52.97 42.38 63.56

2 41.9 33.52 50.28 14 53.32 42.66 63.99

3 36.38 29.11 43.66 15 57.53 46.03 69.04

4 34.27 27.42 41.13 16 56.63 45.30 67.95

5 34.62 27.7 41.54 17 55.29 44.23 66.35

6 34.01 27.21 40.82 18 56.42 45.14 67.71

7 37.03 29.62 44.44 19 57.38 45.90 68.85

8 37.146 29.72 44.58 20 59.64 47.71 71.57

9 40.75 32.6 48.9 21 67.19 53.76 80.63

10 46.90 37.53 56.29 22 72 57.6 86.4

11 49.99 39.99 59.99 23 68.49 54.79 82.19

12 50.09 40.08 60.11 24 63.88 51.10 76.65
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Table 16.5 Pareto optimal solutions for optimal robust scheduling of active distribution network

# DisCo profit ($/day) DGO profit ($/day) μ1(p. u.) μ2(p. u.) min(μ1, μ2)

1 6333.116 399.184 0.759 0.035 0.035

2 6332.883 434.1791 0.758 0.05 0.05

3 6325.504 548.3485 0.753 0.1 0.1

4 6317.749 662.5178 0.747 0.15 0.15

5 6299.751 776.6872 0.733 0.2 0.2

6 6275.487 890.8566 0.714 0.25 0.25

7 6251.245 1005.026 0.695 0.3 0.3

8 6218.831 1119.195 0.667 0.35 0.35

9 6178.841 1233.365 0.639 0.4 0.4

10 6134.358 1347.534 0.604 0.45 0.45

11 6086.15 1461.703 0.567 0.5 0.5

12 6035.132 1575.873 0.527 0.55 0.527
13 5980.843 1690.042 0.485 0.6 0.485

14 5923.55 1804.211 0.440 0.65 0.440

15 5863.299 1918.381 0.393 0.7 0.393

16 5799.832 2032.55 0.344 0.75 0.344

17 5732.331 2146.72 0.291 0.8 0.291

18 5655.338 2260.889 0.232 0.85 0.232

19 5584.698 2375.058 0.177 0.9 0.177

20 5477.487 2489.228 0.093 0.95 0.093
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Fig. 16.3 Purchased electrical energy from the upstream grid
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The optimal set points of OLTC and RPCs for the studied test system of active
distribution network are reported in Table 16.6. The application of DRP has been
considered in the obtained solution for this case study.

16.5 Conclusions

This chapter aimed to study the robust scheduling of active distribution network
considering maximization of benefit of distribution company and benefit of distrib-
uted generation owner. The uncertainty associated with forecasted power market
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Fig. 16.4 Optimal economic dispatch of distribution generators
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Fig. 16.5 Optimal charge/discharge power of the energy storage units
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price has been investigated. Robust optimization method has been implemented as
an effective method to deal with such uncertainty. The provided optimal scheduling
of the network using robust optimization method prevents the distribution company
and distributed generation owner from being exposed to low benefit considering
undesired deviation of market power prices from the forecasted values. A robust
budget of 10 and 20% deviation of power market price from the forecasted values is
taken into account. By using the proposed model, the benefit of distribution com-
pany and distributed generation owner is obtained as $6035.132 and $1575.873,
respectively.
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Fig. 16.6 Load demand of the studied network with and without consideration of DRP

Table 16.6 Optimal set points of OLTC and RPCs of active distribution network

h
RPC1
(MVar)

RPC2
(MVar)

OLTC (p.
u) h

RPC1
(MVar)

RPC2
(MVar)

OLTC (p.
u)

1 0.559 1.220 1.024 13 0.548 1.2 1.007

2 0.421 0.945 1.05 14 0.551 1.208 1.006

3 0.359 0.840 1.05 15 0.596 1.300 1.004

4 0.343 0.803 1.05 16 0.581 1.279 1.008

5 0.338 0.791 1.05 17 0.563 1.248 1.013

6 0.340 0.797 1.05 18 0.578 1.274 1.009

7 0.363 0.850 1.05 19 0.593 1.296 1.004

8 0.364 0.852 1.030 20 0.622 1.355 0.995

9 0.407 0.918 1.017 21 0.7 1.547 0.98

10 0.478 1.059 1.012 22 0.761 1.658 0.974

11 0.513 1.131 1.012 23 0.717 1.568 0.983

12 0.515 1.132 1.024 24 0.667 1.466 0.983
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