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Abstract. In order to take into account evading mechanism and make more
realistic simulation results, we propose a data-driven and collision-free hybrid
crowd simulation model in this paper. The first part of the model is a data-driven
process in which we introduce an algorithm called MS-ISODATA (Main
Streams Iterative Self-organizing Data Analysis) to learn motion patterns from
real scenarios. The second part introduces an agent-based collision-free mech-
anism in which a steering approach is improved and this part uses the output
from the first part to guide its agents. The hybrid simulation model we propose
can reproduce simulated crowds with motion features of real scenarios, and it
also enables agents in simulation evade from mutual collisions. The simulation
results show that the hybrid crowd simulation model mimics the desired crowd
dynamics well. According to a collectiveness measurement, the simulation
results and real scenarios are very close. Meanwhile, it reduces the number of
virtual crowd collisions and makes the movement of the crowd more effective.

Keywords: Crowd simulation + Data-driven - Main streams - MS-ISODATA
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1 Introduction

Crowd related research has been a significant theme for a long time in the realm of
intelligent optimization, computer vision, robotics and computer graphics. People
usually come across many circumstance with huge amount of people or other living
creatures. It is meaningful to analyze the pattern of crowd motion. Consequently, we
can extract a lot of useful information on crowd motion and put it into use. Related
work usually involves counting [1], classification [2], tracking [3], abnormality
detection [4] and understanding [5]. Pedestrian’s movement are affected continuously
by other pedestrian and their surrounding environment, so they should change their
walking direction and speed frequently. Meanwhile, the state of emergency is different
from the normal status. The multi-agent reinforcement learning model of pedestrian
emergent behaviors are presented in [6]. Many crowd analysis methods related to
crowd motion pattern and crowd simulation using computer vision techniques can be
found in a survey [7].

Crowd simulation is an active research field that has drawn strong interest of
researchers in industry, academia and government. Reynolds proposed the BOID

© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11307, pp. 62-73, 2018.
https://doi.org/10.1007/978-3-030-04239-4_6


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04239-4_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04239-4_6&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04239-4_6&amp;domain=pdf
https://doi.org/10.1007/978-3-030-04239-4_6

Data-Driven and Collision-Free Hybrid Crowd Simulation Model 63

model [8] in 1987. He defined three behaviors, i.e. cohesion, alignment and separation
for each agent in the group and the virtual group can mimic behaviors of bird group
well. Helbing et al. constructed social force model [9] in 1995 and the model is
especially helpful in simulating evacuation in public area [10]. In the past decades,
many agents based or force based models were put forward and we saw crowd sim-
ulation flourished consequently such as [11, 12]. However, although the agent or force
based model works well in small group of simulation, it has some drawbacks such as
quantities of parameters tuning and complex rules defining, which makes it extremely
difficult to fulfil simulation with large numbers of agents.

It is natural to think that we can directly learning some motion patterns from real
crowds and simulating virtual crowds directly with these patterns, which is not only
free the model from complex parameters and rules, but also enable the simulation
results resemble to the real crowds. Accordingly, some approaches based on data-
driven method emerged. Lerner presented an example-based crowd simulation tech-
nique [13] and examples were created from tracked video segments of real pedestrian
crowds. Lee also presented a data-driven method [12] of simulating a crowd of virtual
humans that exhibit behaviors imitating real human crowds.

Inspired by these works, we propose a data-driven and agent-based hybrid model
for crowd simulation in this paper. The model mainly consists of two parts. The first
part is a data-driven process in which motion patterns of specific scenarios are learned
from videos of real crowds. The second part is an agent-based collision-free procedure,
which is proposed by improving a velocity-based steering approach [14]. In the first
part, global features we call Main Streams (MS) of crowds are extracted. While in the
second part, the collision-free mechanism which guarantees the microscopic details are
physically realistic by avoiding mutual collisions. With both macroscopic and micro-
scopic characteristic we obtain, we can reproduce realistic simulating crowds just as
real scenarios.

2 The Hybrid Model

2.1 Overview

The overall framework of the hybrid model is illustrated in Fig. 1.
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Fig. 1. The overall framework of our hybrid simulation model
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2.2  The Data-Driven Process

Extract Trajectory Features. In our model, we would extract these common
movement dynamics from observed video sequences and use them as global features of
simulation. We know there exist some multi-target tracking algorithms and some of
them work well, such as [15, 16]. Most of these algorithms are complex and high
computational. In our model, we would extract point moving features from video
sequences based on a method [17]. However, these trajectories are often highly frag-
mented and quite a lot of trajectories are missing because the tracker cannot keep track
of all the moving points all the time. So the trajectories cannot be used directly and
some pre-processing works are necessary.

Pre-process Extracted Information. The main purpose of the pre-processing pro-
cedure is to exclude outlets which result from tracking failures. So we would delete
trajectories which are too short and wrongly recorded. As track captured might often
shrink, the raw trajectories we get are usually slightly zigzag. So smoothing in a certain
extent is also required. In our model, an arithmetic average filtering method is adopted,
which is simple but effective.

Learn Global Motion Patterns. In a specific scenario, crowd behaviours actually
share some common patterns based on adjacency of departure or destination positions,
amplitude of velocities, similarity in motion paths or magnitude of collectiveness [18].
The paths of diverse pedestrians must be different from each other even under the
circumstance of sharing the same departure and destination position. However, paths
people chose should show some statistic features, which reflect the common preference
of crowd flow. For example, in EWAP dataset [19] (Fig. 2), some statistic character-
istics can be observed in the video, as is shown in Fig. 2 right. It implies that pedes-
trians tend to pass through the gallery in the middle.

Position passing the center of the scene

Fig. 2. Left, the background of EWAP Scenario. Middle, trajectories extracted from the video.
Right, the histogram demonstrating the statistical feature of agents’ position in the middle of its
trajectory. (The pedestrian in the Scene of EWAP is low density. The width is about four meters
and the length is about eight meters.)

In our work, we learn motion patterns called Main Streams (MS) based on adja-
cency and similarity of paths and use it as a global attribute for crowd simulation. Main
Streams reflect the preference of crowds when they choose their paths. A trajectory of
an agent is defined as the realistic path in the crowd. That is
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= (“‘ﬁ’%’n.xfw)’ (1)

where y” here denotes the /-th path and 7 denotes the i-th position recorded of the path.
A and x,, here denote the departure and destination position of the path.

If there are k categories of patterns among y, we define the set of paths sharing the
same pattern as y; where i = 1,2, .- k. Then our next concern is to extract each y;
from the overall set y. Within y;, each path ! should be similar with each other. So if
we regard a path 7 as a sample in sample space y;, the distance between samples
within sample space should be shorter than distance between samples outside the space.
That means if there exists a centre C; in space y;, the distance between any sample of
the space and C; should be the shortest one compared to other centres, which can be
abstracted as the following equations. For all the centres defined in y,

C:{C15C27"'7Ck}7 (2>
if the distance between a path y” and a centre C; satisfies
D; = min{||y’ — Ci||,i=1,2,---k}, (3)

then we define ¥’ € y;. As a matter of fact, it is actually a process of clustering.

For a specific scene from real world, it is difficult to judge how many categories
trajectories should be clustered. So some popular clustering method such as K-means
and N-cut are not ideal choices. It is essential that the model is capable of automatically
judging how many categories the set should be clustered. ISODATA [20] is an iterative
self-organization data analysis or unsupervised clustering algorithm without any prior
knowledge. We introduce ISODATA in clustering trajectories’ set and extracting
patterns Main Streams (MS-ISODATA). It is explained as follows.

Step 1, sample trajectories. Before clustering, we must acquire samples of the same
length. Since the length of trajectories in the set y is varied from each other, sampling
trajectories to form sequences of the same length is necessary. Firstly, find out the
shortest trajectory and denote its length as Ns. Secondly, linearly divide each path ”
into Ns parts. It equals to constructing an arithmetic progression of Ns elements from 1
to np.

np 2np (Ns — 1)np
=11 R S ) 4
. { o 2w S, )

Thirdly, take one element from each parts of yP and form a sample of y”. It equals
to form an index

index' = floor(¢”), ®)
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by taking the nearest round number of each element of ¢” in minus direction and extract
point from y” according to this index. Then a sample of )” is acquired by

P = yP(index’). (6)

Step 2, reshape each sample into one-dimension Eigenvector of the trajectory it
represents.

Step 3, clustering. We apply ISODATA to cluster the trajectories set y into
categories.

Step 4, extract centre C; of each clustered trajectories y;. These centres are the bases
of our global motion patterns MS. They are reshaped into two-dimension position
coordinate series.

c=(c!,c?,---,Cc™). (7)

Step 5, obtain patterns of MS. The above centers cannot be used as MS directly or
reflect complete global features, because that trajectories recorded might be highly
fragmented. These ISODATA clustered centers are modified and the modified results
are denoted as Main Streams of crowds. The modified process takes both trends of
these original centers and positions of real departure or destination into account. At
Cf.vs, we denote direction vector to destination position as Vg, and we compute

Ns+1 __ 1 = 1 Ns Ns—1
G = Ve + 7 (G =G (8)
iteratively until the modified center trajectory getting the edge of the scene. o € (0, 1)
here and we use 0.5 in experiments following. For the departure direction the same
process is repeated. If we denote this growing process as function f(-) then we get
In Fig. 3, key processes of extracting Main Streams from crowd scenario, EWAP
dataset are demonstrated.

MS; = f(C;). )

Fig. 3. Left, trajectories extracted from EWAP. Middle, clustering centers of paths. Right, MS
extracted from EWAP.
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2.3 Agent-Based Collision-Free Model

Paths Preference. In our hybrid model, Main Streams extracted from the real world
are used as strong constraints for simulating agents when they choose appropriate
paths. As illustrated in Fig. 2, agents prefer to pass through the scene in the middle and
observation supports that agents’ distribution among space is nearly a Gaussian dis-
tribution. Then we construct the model by defining the spatial distribution probability
density function of agents as the following equation,

1 (x — MS;)*
ilX, MSi, o) = — . 10

#i ) 5V2n ( 20° (10
Where 9 is determined by the standard deviation in clustering. If no collision risks are
detected around, agents would like to choose their paths according to Main Streams.

Collision-Free Steering Mechanism. Humans control their speed and direction based
on their vision to avoid static and moving obstacles. Data-driven approaches cannot
guarantee that agents are free of collision. It is necessary to add collision-free steering
mechanism in crowd simulation. Collision avoidance research has drawn much
attention in agent-based crowd simulation. Several approaches have been proposed to
tackle the interaction and collision between agents. Helbing et al. [9] proposed the
social forces model to avoid collision by repulse each other. However, Ondfej’s vision-
based approach (VISION) [21] performs more exactly and efficiently than RVO model
and Helbing’s model. Therefore, we introduce a collision-free mechanism by
improving the VISION approach in our model. In this approach, velocities and
directions of simulating agents can be controlled according to a threshold function

o1 (11i) = {‘El(tti) =a—b-ti°, ifa<0, } (1)

7 (i) = a+ b - tti™€, otherwise.

where 7 is the threshold value controlling the angle magnitude of agents when making
turns, ##i is the time to interaction between two different agents, a, b and ¢ are constant
parameters, and o is the relative angular acceleration between two different agents. In the
original VISION, the constant parameter a = 0, b = 0.6 and ¢ = 1.5. However, the
author of VISION didn’t mention the physical meanings of parameter @, b and c. We find
that the better performance can be got during changing the value of a, b or c. In our
model, we propose two different improvements with respect to the threshold function, as
shown in Fig. 4.

Firstly, we reinforce the steering habit of agent by setting a suitable none-zero offset
to parameter a. In experiments, we find that setting parameter a to O is not effective
enough to fulfill completely collision free mechanism as the steering habit is not strong
enough. By giving a suitable offset to a, the agent makes turns with larger magnitude.

Secondly, we restrict the range of reaction by adding cut-off effect to the threshold
function. In the original approach of VISION, agents may behave unnecessary steering
behaviors. Even agents without mutual collision risk would evade from each other
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Fig. 4. Left, Reinforce the steering habit by adding an offset to the threshold function. Right,
Bring cut-off effect into threshold function with cut-off threshold.

when they get closer if the reaction range is not restricted. The cut-off effect is brought
in by refining (11) as follows:

7 (tti) =a — b - tti” ¢, ifa <0, i 1ti <
) , if tti < 19,
T (1) = 7, (tt) =a+b - t1i°, otherwise. | "~ 0 (12)
0, otherwise.

In (12), a threshold value of #i is brought in, which is denoted as 7. If the time of
interaction ##i between two agents is larger than the cut-off threshold 7, the steering
behavior will not be activated. With the cut-off effect, unnecessary evading behaviors
are avoided.

2.4 Centralized Post-process

Velocity Optimization. According to mechanism in 2.2 and 2.3, we can make sure
that simulating agents move in the right ways and get rid of mutual collision. However,
we still cannot guarantee simulation results to resemble the real scenario as we just
define the global motion features according to real crowd for the simulation but the
local velocity definition is still missing. It is necessary to optimize velocity choices of
simulating agents after global paths and collision avoidance meet the requirements.

Let’s assume that in example crowd video of the real scenario there are n agents and

their velocities are denoted as V., = (v, va, -+, v,). Their velocity are transformed to
angle coordinate system respectively as v; = |v;|0;. Then we get a vector of
®, = (61,0,,--,6,). Accordingly, the vector of agents’ direction in simulation can be

computed as well, which is denoted as @;. We compute the cross-correlation of agents’
directions in each frame as

n

cov(Oe, 0;) = Y (Oe(i) — E(®)) - (©4(i) — E(,))/n. (13)

i=1

For each simulation epoch or frame, we make velocities magnitude of agents
invariable in the basis of 2.2 and 2.3, and change directions of simulating agents within
the range of 6; = 7 /4 in the direction of gradient descent, using (13) as cost function.
With this method of optimization, the distribution of simulating agents’ velocities
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approximates the distribution of agents in real scenario, which makes simulation
resemble real crowd locally in feature of motion.

3 Experimental Results

3.1 Hybrid Simulation Model Results

In the simulation, agents we reproduced succeed in passing through the scenario with
the same motion pattern learned from real crowds in dataset Grand Central Hall
(Grandhall) [22], in which 45,976 frames and 3,712 recorded agents are extracted.
Using our model, we can automatically understand motion features of crowds in a
specific real scenario and these features are successively used in crowd simulation. In
the experimental results, we can see that our model successfully simulates a crowd of
agents moving with global features like the real scenario, as demonstrated in Fig. 5.
The simulation experiment comparison of three different approaches is demonstrated in
Table 1. Approaches without collision-free mechanism, with VISION and with
mechanism we propose are compared.

Fig. 5. Left, trajectories extracted from Grandhall. Right, one simulating frame of MS-based
model.

Table 1. Comparison of experimental results based on different collision-free mechanism

Scenario Evasion Frames Number of Times of Agents
mechanism simulating agents collision reach goals

Grandhall |- 300 157 7,126 157

Grandhall | MS-VISION 300 157 0 59

Grandhall | MS-Improved 300 157 0 121
VISION

The simulation results of the hybrid model can effectively mimic the behavior of
the crowds on the global level, and the behavior of the simulating crowds is very
similar to the real crowds’ behavior. If the collision-free mechanism is not adopted, the
simulation results based on the MS simulation method are developed smoothly along



70 Q. Cheng et al.

the MS direction. In the simulation, however, the spatial position is sometimes over-
lapped by different agents. The simulation results are not real enough in details, as
shown in Fig. 6B.

Fig. 6. A, MS extracted from grandhall dataset. B, simulation trajectories with MS. C,
simulation trajectories with MS compounding VISION. D, simulation trajectories with hybrid
model we proposed.

With the VISION collision-free mechanism, some agents are trapped in local
oscillation due to the interference of neighboring agents. These individuals continue to
make circles in some local areas and repeat searching for ideal paths. They failed to
complete the simulation and reach their destinations, as shown in Fig. 6C. With our
improved collision free mechanism, we can eliminate most local oscillation caused by
mutual interference between individuals, so that individuals can finally reach their
destinations while avoiding mutual collisions, as shown in Fig. 6D.

In this simulation experiment, we simulated 300 frames and the simulation contains
157 agents. We record times of collision occurred in the three approaches and agents
finally reaching their goals within 300 simulation epochs. Fig. 6 and Table 1 show that
the proposed hybrid simulation model can mimic the motion trajectories feature of real
scenario and guide the agents reach their goals without collisions. In further experi-
ments, we introduce collectiveness to measure the similarity between the simulation
crowd and the real data in details.

3.2 Collectiveness Evaluation

The simulated crowd model needs a descriptor to evaluate whether its performances are
similar to the real scenarios. In the past few years, some theoretic methods have been
proposed to measure the similarity between the real-world data and the simulated
results, such as [23, 24]. However, both of them are complex and heavy computing
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burden. In order to reduce the complexity of similarity measurement, we introduce a
simple method to describe the similarity of real scenarios data to crowd simulators.
Collectiveness is a common characteristic used to measure the behavior of a crowd
motion from the individuals’ behavior. Zhou et al. proposed a collectiveness descriptor
based on path similarity and velocity correlation in 2013 [18].

Figures 7 and 8 show that the collectiveness of simulating crowds created by our
simulation model is very close to the collectiveness of the real crowd scenes. The
experiment shows that the maximum collectiveness error is about 0.3 for the first MS,
and the error is below 0.1 for another. From the results of the collectiveness com-
parison, our simulation results are similar to real scenarios.
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Fig. 7. A, collectiveness of one streams of agents in 330 frames of real scenario. B,
collectiveness of one streams of agents in 330 frames of simulation. C, histogram of simulation
result’s collectiveness. D, histogram of real scenario’s collectiveness. E, the difference of
collectiveness between simulation and real data.
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Fig. 8. A, collectiveness of one streams of agents in 215 frames of real scenario. B,
collectiveness of one streams of agents in 215 frames of simulation. C, histogram of simulation
result’s collectiveness. D, histogram of real scenario’s collectiveness. E, the difference of
collectiveness between simulation and real data.

4 Conclusion

In this paper, we have presented a data-driven and collision-free hybrid simulation
model to achieve crowd simulation. As demonstrated above, our model could repro-
duce the crowd scenarios with real motion features by using Main Streams we intro-
duce. Meanwhile, it combines improved collision-free mechanism, which makes the
simulating agents evade from local mutual collisions. In the future work, we will
explore more approaches (Deep Learning etc.) to extract global features of real crowds
and develop advanced steering mechanisms in crowd simulation. Meanwhile, real-time
crowd simulation or crowd analysis of large number of agents will be an important part
of our next research.
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