
Potential and Sampling Based RRT Star
for Real-Time Dynamic Motion Planning

Accounting for Momentum
in Cost Function

Saurabh Agarwal, Ashish Kumar Gaurav, Mehul Kumar Nirala,
and Sayan Sinha(B)

Indian Institute of Technology Kharagpur, Kharagpur, India
{shourabhagarwal,ashishkg0022,mehulkumarnirala,sayan.sinha}@iitkgp.ac.in

Abstract. Path planning is an extremely important step in every
robotics related activity today. In this paper, we present an approach
to a real-time path planner which makes use of concepts from the ran-
dom sampling of the Rapidly-exploring random tree and potential fields.
It revises the cost function to incorporate the dynamics of the obstacles
in the environment. Not only the path generated is significantly different
but also it is much more optimal and rigid to breakdowns and features
faster replanning. This variant of the Real-Time RRT* incorporates arti-
ficial potential field with a revised cost function.

Keywords: Path planning · Robotics · RRT · Potential energy
Wavefront · Doppler effect

1 Introduction

Robotics challenges today involve the rapid motion of robots in a highly dynamic
environment where agents try to outperform their opponents with superior plan-
ning and strategy. At the lowest level of operation, path planning has a major
contribution to the performance of an agent. In this paper, we describe the steps
and methods involved in the making of a dynamic path planner suited for such
challenging environments. We take into consideration the real-time knowledge of
the two-dimensional coordinate representing the position of various robots. We
also assume that the data available is correct and do not question its accuracy.

Random sampling path planners have been highly used in various fields of
robotics, such as aerial robotics [6] and robosoccer [1]. Many variants of Rapidly-
exploring Random Trees (RRTs) have been used in such areas. Along with that,
path planning based on potential fields has also been popular in robotics and
are pretty commonly used in areas such as self-driving cars [3]. In this paper, we
describe the use of a variant of the RRT algorithm and discuss incorporation of
the concept of artificial potential field (APF) into it.

S. Agarwal, A.K. Gaurav, M.K. Nirala and S. Sinha—Equal contribution.

c© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11307, pp. 209–221, 2018.
https://doi.org/10.1007/978-3-030-04239-4_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04239-4_19&domain=pdf
https://doi.org/10.1007/978-3-030-04239-4_19

210 S. Agarwal et al.

2 Previous Works

Extensive research has been done on the path-planning problem in the past
few years. Traditional approaches fail to provide estimates before the motion
begins, and hence, it becomes difficult to provide proper control on motion of
agent. Moreover, their instantaneous nature is prone to making the velocity
graph abstract. This makes the motion of the robot unstable, bringing in more
error into the scenario, leading to the violation of kinodynamic constraints. Such
planners include MergeSCurve [10] and Dynamic Window [4]. Visibility Graphs
[7] is another widely used algorithm for obstacle avoidance. But, it generates
paths that are very close to the obstacles, and hence is not suitable for a dynamic
environment. Other models such as Graph Plan [2] prefer concentrating on fields
of robotics with a large number of degrees of freedom, and is difficult to be
developed into generic algorithms for path planning.

Path planning algorithm for the dynamic environment needs to be real-time
and robust. The paths need to be regenerated or updated from time to time based
on various factors. The RRT too is not suitable for dynamic environments. As
soon as a new path needs to be generated, a tree growth is performed from the
source to the destination, which can be pretty costly. However, various variants
of the RRT have been proposed to make them suitable according to specific
needs. The variant of RRT suitable in our case is the RT-RRT* [9]. Similarly,
the concept of a potential field for path planning was initially applied for static
situations only. Though later on, various research work has been performed to
introduce dynamism into Artificial Potential Field (APF) [15] algorithms and
create ameliorative APF models [11] making them suitable for a rapidly changing
environment. In this section, we first discuss the previously proposed algorithms
of the RRT. Several graph and potential based algorithms have been discussed.

2.1 Rapidly-Exploring Random Tree

Rapidly-exploring Random Tree (RRT) [8] finds path between xinit ⊂ X and
xgoal ⊂ X. It is assumed that an obstacle region Xobs ⊂ X is given and we can
check if a point lies in this region or not. If any point or edge lies in this region,
that should not be used to extend our tree to avoid collision with any obstacle.
It is a simple and fast algorithm for finding a path between two points, but it
has several limitations. It does not guarantee convergence to an optimal path.
Furthermore, no measure is taken to make this algorithm compatible with the
dynamic environment. Later, various extensions have been proposed to address
these problems. Below is a brief description of RRT and Algorithm1 presents
its pseudo code. In this algorithm, SampleFree() samples a node xrand ⊂ X
randomly in space. Then xnearest is found using Nearest(V, x) which finds a
node nearest to x among a list of nodes V . After this Steer(xt, xo) is used to
give point on path which originates from xrand and terminates to xnearest. If
(xnearest, xnode), a path joining xnearest and xnode, belong to Xfree then xnode

is inserted into V and similarly (xnearest, xnode), edge joining xnearest and xnode,
is inserted in E.

Potential and Sampling Based RRT Star 211

Algorithm 1. RRT algorithm
1: procedure RRT(xinit) � The source node
2: V ← {xinit}
3: E ← φ
4: for i = 1, 2, ..., n do
5: xrand ← SampleFree(i)
6: xnearest ← Nearest(V, xrand)
7: xnode ← Steer(xnearest, xrand)
8: if ObstacleFree(xnearest, xnode) then
9: V ← V ∪ {xnode}

10: E ← E ∪ {(xnearest, xnode)}
11: return G = (V, E)

2.2 RRT*

RRT* [5] algorithm proposes a way which tries to minimise the distance of
the root from the nodes at each new iteration. After the random sampling of
a new node, this algorithm allows rewiring of the tree to reduce the distance
from root to child node. It inspects each of the nodes of the tree which are
within a neighbourhood of the newly generated child node. This child node is
then reconnected to that node, which traces up to the tree root at the shortest
distance.

2.3 A Real-Time Path Planning Algorithm Based on RRT*

RT-RRT* [9] algorithm is similar to RRT*, but the tree growth takes place
just once, and the nodes are rewired from time to time based on a variety of
factors. Since the tree growth does not take place again and again, RT-RRT*
is suitable for a dynamic environment as the overhead costs are low. Moreover,
rewiring of nodes makes sure the tree has been modified to suit the changes in
the environment.

2.4 Potential Guided Directional-RRT*

Potential guided directional-RRT*(PDG-RRT*) [12] is a modification of RRT*
which uses Artificial Potential Field [15] for guiding the random sampling more
towards the goal. This enhances the rate of convergence and provides a more
optimal solution. At each iteration, a random node xrand is generated. This
node xrand is then moved a fixed distance α along the direction of the potential
gradient to give a new node z. This node z is then added to the tree by adding
an edge from this node to another node in the tree such that the distance from
the source to z is minimised, and we define nodesmax is the maximum number
of nodes.

212 S. Agarwal et al.

Algorithm 2. Potential Guided Directional-RRT* algorithm
1: procedure Potential Guided Directional-RRT*(xinit) � The source node
2: V ← {xinit}
3: E ← φ
4: for i = 1, 2, 3 . . . nodesmax do
5: xrand ← SampleFree(i)
6: xprand ← GradientDescent(xrand)
7: xnearest ← Nearest(V, xprand)
8: xnode ← Steer(xnearest, xprand)
9: if ObstacleFree(xnearest, xnode) then

10: V ← V ∪ {xnode}
11: E ← E ∪ {(xnearest, xnew)}
12: return G = (V, E)

3 Proposed Path Planner

The previous works describe various ways in which the RRTs have been modified
to improve the optimality, speed and dynamism of path generation. The PGD-
RRT* [12] promises more optimal paths, and we attempt to extend it to the
dynamic environment. The RT-RRT* is a variant of the RRT* which features
dynamism. In this paper, the RT-RRT* has been made more optimal, using
concepts from PGD-RRT*. Along with that, some novel concepts have been
introduced to bridge the gap, such as a new formula for computing potential
and a new cost function.

Fig. 1. (a) The graph of superimposition of potential and frequency. (b) Straight line
path is taken as cost in other planners marked in grey; actual path taken by our planner
marked in black. The black patches mark infinity.

Potential and Sampling Based RRT Star 213

3.1 Tree Growth

The RT-RRT* [9] proposes to grow the tree just once during the lifetime of the
path planner, and reuses the nodes and the edges to predict the path. We use
a similar concept here, with the difference being in the fact that the random
sampling is influenced by the potential field created.

Potential Field: The potential field generated can be compared to an electro-
static field. The obstacles are assumed to be positively charged, and the desti-
nation to be negatively charged. This places the obstacles at a relatively higher
positive potential. The aim is to descend towards lower potential as much as pos-
sible. All charges are taken as point charges. At every point x in the space, the
potential is calculated for a particular charge as Vi = kQi

ri
where Qi is the magni-

tude of the ith point charge (obstacle or destination), and ri is the distance of the
point x from it. The net potential at a point is given by

∑n
i=1 Vi = k

∑n
i=1

Qi

ri
.

Here k is a proportionality constant, and n is the total number of charges. We
determine the values of Q and k by validation.

The sampling method used in the RT-RRT* [9] to generate new nodes is
applicable here as well. Briefly, a random number between 0 and 1 is gener-
ated, and on the basis of that, it is determined where random sampling is to
be performed. LineTo(xgoal) is invoked when the random number generated is
greater than 1 − α, else if the number is less than 1−α

β Uniform(X) is invoked.
Otherwise Ellipsis(x0, xgoal) is called. Here β is a real number used for making
a distinction between the last two function calls. Next, taking inspiration from
PGD-RRT* [12], the randomly generated point is allowed to descend according
to the potential gradient for a certain amount of time. The resulting point is
treated as the initially generated node for an RRT*. The best parent to this
node is determined within the surrounding grids of the node. From that parent,
at a particular step length, the new node is created. The entire procedure, in a
nutshell, is provided in the Algorithm 3.

3.2 Hexagonal Grid

The entire area is divided into a set of grids, and all the nodes are mapped
to a specific grid. In another way, every node is assigned a particular grid ID,
which is developed in such a manner that the entire area gets divided into a set of
hexagonal grids. Hexagon ensures most efficient packing in 2D space and is quite
popular in path planning domain [13]. The potentials developed correspond to
those of the points at the centres of the respective grids.

3.3 Edge Rewiring

The RT-RRT* proposes to rewire edges under three categories. We explain the
changes we make to each of them:

214 S. Agarwal et al.

Algorithm 3. Random sampling
1: procedure Random sampling(U , G, α, β, γ, step size) � Graph G is the

existing graph, Field U is the generated field
2: A ← rand(0, 1) � Random number generation between 0 and 1.
3: if A ≥ 1 − α then
4: xrand = LineTo(xgoal)
5: else
6: if 1−α

β
then

7: xrand = Uniform(X)
8: else
9: xrand = Ellipsis(x0, xgoal)

10: xparent = BestParent(xrand)� Best parent is decided as per the recursive cost
function

11: xrandom = NodeAtDist(Angle(xparent, xrand), step size) � Finding the node
on the line joining xparent and xrand at a distance step size from xparent

12: xfinal = xrandom − γ δ(U)
δ(x)

|x=xfinal

13: U = AddToGraph(U, xfinal)
14: if Graph has been saturated then
15: return
16: else
17: RANDOMSAMPLING(U, G, α, β, γ, size)

Rewire in the Presence of an Obstacle: When a path is being approached
by an obstacle, a rewiring is necessary. According to the RT-RRT* algorithm,
any path which goes through the obstacles attain infinite cost. Similarly, when
obstacles have charge, they provide an infinite potential at their point of exis-
tence. Hence, both of them seamlessly integrate with one another. But, here, the
infinite potential is assumed for a greater radius, as deemed fit for the situation.
Accordingly, rewiring is prioritised in such regions.

Rewire from Root: Rewiring begins at the root and keeps proceeding through-
out the tree. Hence, it starts rewiring from the position where the agent lies.
Then, it continues to assign nodes which are at greater distance from the agent
to their corresponding best-matching parents.

Random Rewiring: This paper proposes to remove random rewiring from RT-
RRT* and introduces a way of determining edges which are to be rewired. At
every point of the field, these wavefronts would be perceivable. In case the robot
is moving, the frequency detected at a point would be different from that of what
had been emitted. This is known as the Doppler Effect. The frequency due to
Doppler effect is expressed as f =

(
v+vr

v+vs

)
f0 where f is the perceived frequency,

f0 is the constant frequency emitted by obstacles, v is the constant velocity of
wave in space, vr is receiver’s velocity and vs is the source’s velocity which will
be equal to the obstacle’s velocity in our case. The frequency at every point

Potential and Sampling Based RRT Star 215

in the field is calculated using sin(ω1t) + sin(ω2t) = 2 sin
(

ω1+ω2
2 t

)
cos

(
ω1−ω2

2 t
)

in a binary fashion. This has been illustrated in Fig. 2(a). Thus, we obtain the
net frequency of every point in the field. After plotting this across the field, we
obtain the local minima. Finding out the maximum among these local minima,
we rewire edges randomly in that grids.

Fig. 2. Wavefronts due to robot while stationary and while moving. This is described
mathematically by the Doppler Effect. Along the violet line, the (a) frequency graph,
(b) the potential graph and (c) the overall graph have been shown (Color figure online)

3.4 Boundary Conditions

An exponential potential control barrier function is defined in 3D space. Let the
boundary of the field/environment be defined by B(x) and let xb be a point on
the boundary. The growth of the potential function around boundary is defined

216 S. Agarwal et al.

by B(x) = 1
1−e−||xb−x|| . Thus, the potential field around the boundary of the

environment proliferates as,

limx→xb

1
1 − e−||xb−x|| → ∞

||x|| represents xT .x. A moving body incident on the barrier gets reflected, and
hence would restrict path generation.

4 Cost Function

The cost function in the RT-RRT* [9] algorithm is used to find the best parent of
a node while performing edge-rewiring. Edge rewiring, as described in previous
sections, helps in optimising an already generated path, by providing nodes with
better parents. The RT-RRT* defines cost recursively as:

costdistance(xnew) = cost(xclosest) + dist(xclosest, xnew) (1)

Where xnew is the node for which we wish to compute the cost, xclosest is the node
closest to xnew and dist(xclosest, xnew) is the distance between xnew and xclosest.
This paper proposes to make some changes to the existing cost function, making
PGD-RRT* suitable for a dynamic environment. The recursive approach to the
cost function remains the same. The difference lies in the way the distance (using
dist) is computed. Hence xclosest shall be modified as well. Nevertheless, xclosest

remains the closest node via the distance metric, but in this paper, we attempt
to replace the commonly used Euclidean distance with geodesic distance. The
two-dimensional graph of the area initially developed using an artificial potential
field is taken into consideration. The straight line path which gives the Euclidean
distance between xnew and xclosest is projected on this graph. The length of the
curve thus obtained is taken as the distance. Thus, the formula remains the same,
but the approach to computing the distance is a bit different. It is explained in
a better fashion through the illustration provided (Fig. 1).

Let the potential surface be represented as S and the position vectors of the
points xclosest and xnew be a and b. The distance is measured along the curve
formed by intersection of S with a plane which is parallel to the z axis and
passes through the straight line path between a and b. We assign n̂ to be the
cross product between a − b and a unit vector along the z axis. We obtain a
plane P as (r − a) · n̂ = 0, where r is an arbitrary point on the plane. Thus,
the curve formed along the path between two nodes becomes C : S − P = 0.
dist(xclosest, xnew) is the arclength along C from a to b. If we represent C
parametrically as p(t) = < x(t), y(t), z(t) > with t1 and t2 being the parametric
values for a and b, then the arclength is given by

dist(xclosest, xnew) =
∫ t2

t1

√(
dx

dt

)2

+
(

dy

dt

)2

+
(

dz

dt

)2

dt

Potential and Sampling Based RRT Star 217

Doppler Effect: The cost function incorporates the velocity using the Doppler
effect. This accounts for the dynamic nature of obstacles. The shift in frequency
helps in the prediction of approach/separation of the body concerning obstacles.
The frequency at every point in the field is calculated by superimposition of
waves from all the obstacles, as illustrated in Fig. 2. This shift in frequency is
plotted on a two dimensional axis for all obstacles. The obtained map explains
the relative velocity of approach/separation of obstacles with respect to the
moving body.

F(x̂, t) =
|obstacles|∑

i=0

fi (2)

where, |obstacles| represents the cardinality of the obstacle vector, fi denotes
the observed frequency of ith obstacle and t is time. The surface so obtained
corresponds to obstacles’ activity. The minima on the surface correspond to low
activity regions of obstacles. To extract the local minima the surface is descended
iteratively. xn+1 = xn − γn∇F (xn), n ≥ 0. where xn are points in Cartesian
plane with x0 as initial guess. To ensure convergence step size γ is kept small.
However an effective γ via Barzilai-Borwein method [14] yields promising results.
The Barzilai-Borwein method is shown below

γn =
(xn − xn−1)T [∇F (xn) − ∇F (xn−1)]

||∇F (xn) − ∇F (xn−1)||2 (3)

The cost is defined as

costvelocity(xnew) = λ|F(x̂, t)|at x=xnew
(4)

where λ is a constant close to unity. Thus, low activity regions would be asso-
ciated with low costs. Effective or total cost is computed as a linear combination
of given by,

cost(x) = c0costdistance(x) + c1costvelocity(x) (5)

Where c0 and c1 are two constants which depend on the environment and can
be tuned to achieve promising results. Incorporating boundary condition would
change effective cost to

cost(x)effective = cost(x)B(x)

5 Experimentation and Analysis

We conducted an experiment based on tree generation time given a set of obsta-
cles. The experimental setup included ROS based communication nodes and a
GUI based interactive platform for setting up the environment. This was per-
formed on Linux 4.4.0-127-generic with 8 GiB memory and 2.3 GHz x 8 CPU.
Thus, it can be seen that our planner takes nearly the same time to generate the

218 S. Agarwal et al.

Algorithm 4. Rewiring random edges
1: procedure Rewire random(U , G, D, grid, ε, root) � Graph G is the existing

graph, Field U is the generated field
2: F = U + εD
3: gridmin = rand(1, length(grid))
4: max min = gridmin

5: for each i; i in length(grid) do
6: flag = False
7: if F [i] < F [each neighbour of grid[i]] then
8: if max min < F [i] then max min < F [i]

9: costorg = cost(Parent(max min), max min)
10: nodefinal = max min
11: for each node i in current and neighbouring grids do
12: costhere = cost(i, max min) + cost(i, root)
13: if costhere < costorg then
14: costorg = costhere

15: nodefinal = i

16: max min.setParent = nodefinal

tree given similar set of environmental conditions. Along with that, our planner
provides a more optimised path. The average number of iterations required to
find the path to each goal was 10.36 for our method and 18.43 for RT-RRT*.

Fig. 3. The simulation environment, showing (a) our path planner and (b) RT-RRT*

Replanning: In a dynamic environment, the replanning of path is an important
aspect. Moving obstacles when come along the path, a new path has to be
found incorporating the new position of the obstacles. For better performance
of agents, this replanning of path should take place in less amount of time.

Potential and Sampling Based RRT Star 219

Table 1. Comparison of time (in milli seconds) in generation of path

Obstacles Average Traversal Time

PGD-RRT* RRT* RT-RRT* Our planner

5 4.1996 3.7078 3.7951 2.7958

7 4.2315 3.7912 3.8105 2.8110

9 4.2555 3.9105 3.8492 2.8862

10 4.2658 3.9824 3.8908 2.8873

12 4.3655 4.1473 4.1335 3.1080

15 4.4662 4.2194 4.3264 3.1866

18 4.6905 4.4505 4.5155 3.4242

20 4.9696 4.9191 4.9583 3.9823

Our proposed path planner outperforms other planners in this, hence making
it suitable for a real-time dynamic environment. With respect to the PGD-
RRT*, our path planner is very quick in replanning as the tree growth does
not take place again and again, but gets rewired when required. With respect
to the RT-RRT*, our planner provides a more optimised path, which is clear
from the illustration provided (Fig. 3) and Table 1. Our planner is based on a
dynamic environment only and can be outperformed by other planners in a static
environment (Table 2).

Table 2. Comparison of time (in milli seconds) in replanning of path

Obstacles Average Replanning Time

PGD-RRT* RRT* RT-RRT* Our planner

5 8.1996 8.7078 3.7958 3.7951

7 8.2758 8.8213 3.8501 3.8491

10 8.2783 8.8582 3.8614 3.8519

11 8.2811 8.8607 3.8688 3.8564

15 8.2902 8.9078 3.8891 3.8888

18 8.3215 8.9303 3.9011 3.8997

21 8.3414 8.9489 3.9114 3.9114

Our planner takes lesser tree generation time compared to the RT-RRT*, as
it is biased in an intelligent way to reach the destination faster, using the concept
of potential fields. Moreover, our planner features faster replanning as compared
to PGD-RRT* as the tree growth does not take place again and again and is
rewired. A similar advantage is seen over RRT* as well. The path generated is
more optimised as compared to the RT-RRT* due to intelligent rewiring, which
is evident from Table 1.

220 S. Agarwal et al.

6 Conclusion

Our work focuses on a path planner with concepts from a variant of rapidly
exploring random trees and artificial potential fields. They are merged innova-
tively, with concepts from various other domains, and a cost function redefined
to suit a dynamic environment. This remains efficient in time with respect to tree
growth and requires a lesser number of iterations for path generation, compared
to that of similar planners.

Future Work

In the future, we propose to research on how the acceleration of a robot can help
in computing a more optimal path. Though the mathematics proposed in this
paper can easily be extended to take acceleration into consideration, acceleration
is not that easy to measure and a lot of noise comes in the way of the location
data of the robots being received. Hence, our research aims to find an efficient
solution to denoising the data post which we can take into consideration the
acceleration, and if possible, other forms of kinetics.

Acknowledgement. We thank Manjunath Bhatt (manjunathbhat9920@iitkgp.ac.in),
Rahul Kumar (vernwalrahul@iitkgp.ac.in) and Shubham Maddhashiya (shubhamsi-
pah@iitkgp.ac.in) for assisting us in this project and supporting us as and when required.

References

1. Bhushan, M., Agarwal, S., Gaurav, A.K., Nirala, M.K., Sinha, S., et al.: KgpKubs
2018 team description paper. In: RoboCup 2018 (2018)

2. Blum, A.L., Furst, M.L.: Fast planning through planning graph analysis. Artif.
Intell. 90(1–2), 279–298 (1997)

3. Dolgov, D., Thrun, S., Montemerlo, M., Diebel, J.: Practical search techniques in
path planning for autonomous driving. In: Proceedings of the First International
Symposium on Search Techniques in Artificial Intelligence and Robotics (STAIR-
08) (2008)

4. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoid-
ance. IEEE Robot. Autom. Mag. 4, 23–33 (1997)

5. Karaman, S., Frazzoli, E.: Incremental Sampling-based Algorithms for Optimal
Motion Planning. Robotics: Science and Systems. arXiv preprint:1005.0416 (2010)

6. Kim, J., Ostrowski, J.P.: Motion planning of aerial robot using rapidly-exploring
random trees with dynamic constraints. In: IEEE International Conference on
Robotics and Automation (Cat. No.03CH37422), vol. 2, pp. 2200–2205 (2003)

7. Kunigahalli, R., Russell, J.S.: Visibility graph approach to detailed path planning
in CNC concrete placement. In: Proceedings of the 11th ISARC, pp. 141–147 (1994)

8. LaValle, S.M.: Rapidly-exploring random trees: A new tool for path planning.
Report No. TR 98–11. Computer Science Department, Iowa State University (1998)

9. Naderi, K., Rajamki, J., Hmlinen, P.: RT-RRT*: a real-time path planning algo-
rithm based on RRT*. In: 8th ACM SIGGRAPH Conference on Motion in Games
(MIG 2015), pp. 113–118 (2015)

Potential and Sampling Based RRT Star 221

10. Nguyen, K.D., Ng, T.C., Chen, I.M.: On algorithms for planning S-curve motion
profiles. Int. J. Adv. Robot. Syst. 5(1), 99–106 (2008)

11. Qixin, C., Yanwen, H., Jingliang, Z.: An evolutionary artificial potential field algo-
rithm for dynamic path planning of mobile robot. In: International Conference on
Intelligent Robots and Systems, pp. 3331–3336 (2006)

12. Qureshi, A.H., et al.: Potential guided directional-RRT* for accelerated motion
planning in cluttered environments. In: IEEE International Conference on Mecha-
tronics and Automation, Takamatsu, pp. 519–524 (2013)

13. Sinha, S., Nirala, M.K., Ghosh, S., Ghosh, S.K.: Hybrid path planner for efficient
navigation in urban road networks through analysis of trajectory traces. In: 24th
International Conference on Pattern Recognition (2018, in Press)

14. Tan, C., Ma, S., Dai, Y., Qian, Y.: Barzilai-Borwein step size for stochastic gradient
descent. arXiv preprint:1605.04131 (2016)

15. Vadakkepat, P., Lee, T.H., Xin, L.: Application of evolutionary artificial potential
field in robot soccer system. In: Joint 9th IFSA World Congress and 20th NAFIPS
International Conference, vol. 5, pp. 2781–2785 (2008)

	Potential and Sampling Based RRT Star for Real-Time Dynamic Motion Planning Accounting for Momentum in Cost Function
	1 Introduction
	2 Previous Works
	2.1 Rapidly-Exploring Random Tree
	2.2 RRT*
	2.3 A Real-Time Path Planning Algorithm Based on RRT*
	2.4 Potential Guided Directional-RRT*

	3 Proposed Path Planner
	3.1 Tree Growth
	3.2 Hexagonal Grid
	3.3 Edge Rewiring
	3.4 Boundary Conditions

	4 Cost Function
	5 Experimentation and Analysis
	6 Conclusion
	References

