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Abstract. In this paper, the adaptive finite-time synchronization is
investigated for inertial neural networks with time-varying delays. The
second-order inertial systems can be transformed into two first-order
differential systems by selecting the appropriate variable substitution.
Using the adaptive periodically intermittent controllers, the slave sys-
tem can realize synchronization with the master system in finite time.
By the several differential inequalities and finite-time stability theory,
some simple finite-time synchronization criteria for an array of inertial
neural networks are derived. A numerical example is finally provided to
illustrate the effectiveness of the obtained theoretical results.
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1 Introduction

Over the last few decades, periodic oscillation, chaotic behaviors, and stability
analysis for neural neural network has aroused the discussion and research of
many scholars. Meanwhile, neural networks play a significant role in different
areas, since neural networks can be applied to image processing, combinatorial
optimization, secure communication, and pattern recognition [1–6]. Synchroniza-
tion means agreement or correlation of different processes in time. Among many
dynamical behaviors of neural networks, synchronization is one of the most
significance ones that has aroused widespread attentions of many researchers.
Research on synchronization phenomena has been an active subject, such as
the analysis of synchronization of chaotic system. So far, there are many dif-
ferent types of synchronization, for example, projective synchronization [7], lag
synchronization [8], cluster synchronization [9], complete synchronization [10],
phase synchronization [11] etc.
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Most previous literature has mainly been devoted to the stability analy-
sis and periodic oscillations of different kinds of neural networks. The problem
about delayed Hopfield neural networks with global exponential stability has
been discussed in [12]. The authors in [13] investigated exponential stability
for stochastic BAM networks with discrete and distributed delays. Exponential
stability of complex-valued memristor-based neural networks with time-varying
delays have been studied in [14]. Note that many of the studies focused on neural
networks, and only the first derivative of states is important for introducing iner-
tial terms into neural networks. The inertial terms are considered as key tools
for generating complex bifurcations and chaos. Up to now, the inertial neural
networks have attracted the attention of many researchers. The authors in [15]
discussed the robust stability of inertial BAM neural networks with time delays
and uncertainties via impulsive effect. In [16], the inertial Cohen-Grossberg-type
neural networks with time delays was proposed and its stability analysis were
discussed.

Lately, a volume of the existing research on inertial neural networks were
mainly focused on exponential synchronization or asymptotical synchronization
of networks [17,18]. That it to say, as the time goes to infinity, the dynami-
cal systems only can achieve stability. However, in many actual situations, the
dynamical system might be hoped to be stabilised as speedy as possible in a
finite time. Since then, problems related to finite time synchronization for net-
works becomes a hot topic [19,20]. The work in [21] only investigated finite-time
stability for inertial neural networks. As it is well known, delays are ubiquitous
in the real world, and the introduction of delays may make neural networks their
dynamical behaviors much more complicated, even in causing instability [22,23].
However, the authors have ignored the time-varying delays in [21]. The problem
on finite-time and fixed-time synchronization analysis for inertial memristive
neural networks via state feedback control has been investigated in [24]. The
advantages of discontinuous control with different continuous control strategies
are non control sections. As far as we know, there are few results on finite-time
synchronization of inertial neural networks with time-varying delays.

Motivated by the aforementioned discussion, this paper addresses the prob-
lem of adaptive finite-time synchronization of inertial neural networks with time-
varying delay via periodically intermittent control. Rather, by the finite-time
stability analysis techniques and the linear matrix inequalities, some effective
criteria are derived, which can guarantee the master system synchronizes to the
slave system in finite time. Meanwhile, the general continuous feedback control
is discussed with inertial neural networks. In the end, an example is given to
demonstrate the effectiveness of the proposed synchronization criteria.

The rest of this paper is organized as follows. In Sect. 2, the model description
and some preliminaries are proposed. In Sect. 3, the main results and remark for
finite time synchronization of inertial neural networks with time-varying delay.
Moreover, in Sect. 4, an example is given to show the effectiveness of our results.
Finally, in Sect. 5, conclusions are given.
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2 Model Description and Preliminaries

Considering the inertial neural network with time-varying delays. The model is
described by the following equations:

d2xi(t)
dt2

= −ci
dxi(t)

dt
−dixi(t)+

n∑

j=1

aijfj(xi(t))+
n∑

j=1

bijfj(xi(t−τ(t)))+Ii, (1)

where xi(t)(i = 1, 2, ..., n) is the state vector of the ith neuron at time t, the
second derivative of xi(t) is called an inertial neural term of system (1), ci and
di are positive constants. The nonlinear function fj denotes activation function
of the jth neuron at time t, aij and bij are constants and denotes the connection
strengths, Ii is an external inputs for the ith neuron, τ(t) is the time-varying
delay of inertial neural network that satisfies 0 ≤ τ(t) ≤ τ1, τ̇(t) ≤ μm < 1, τ1
and μm are constants.

Remark 1. The chaotic neural network is a highly nonlinear dynamic system.
The research on chaotic neural network mainly lies in recognizing the chaotic
characteristics of individual neurons and the behavior analysis of simple chaotic
neural networks. The second-order inertial neural networks (1) has chaos, which
is different from the first order neural network chaos, such as chen’s system and
chua’s system.

Next, let the following variable transformation be: yi(t) = dxi(t)
dt +θixi(t), i =

1, 2, ..., n. Denote x(t) = (x1(t), x2(t), ..., xn(t))T , y(t) = (y1(t), y2(t), ..., yn(t))T ,
then inertial neural network (1) can be written as:

{
dx(t)

dt = −Θx(t) + y(t),
dy(t)

dt = −Cy(t) − Dx(t) + Af(x(t)) + Bf(x(t − τ(t))) + I,
(2)

where ci = ci − θi, di = θi(θi − ci) + di, C = diag(c1, c2, ..., cn), D =
diag(d1, d2, ..., dn), A = (aij)n×n, B = (bij)n×n, Θ = diag(θ1, θ1, ..., θn),
f(x(t)) = (f1(x1(t)), f2(x2(t))...fn(xn(t)))T , f(x(t − τ(t))) = (f1(x1(t −
τ(t))), f2(x2(t− τ(t))), ..., fn(xn(t− τ(t))))T , I = (I1, I2, ..., In)T . For simplicity,
we choose (3) as the master system, the corresponding slave system is formulated
as follows:

{
dv(t)

dt = −Θv(t) + w(t) + u1(t),
dw(t)

dt = −Cw(t) − Dv(t) + Af(v(t)) + Bf(v(t − τ(t))) + I + u2(t),
(3)

where v(t) = (v1(t), v2(t), ..., vn(t))T , w(t) = (w1(t), w2(t), ..., wn(t))T , are the
state variables of the slave system, u1(t), u2(t) are the appropriate control inputs
to be designed later.

Denote the synchronization error e(t) = v(t) − x(t), e(t) = w(t) − y(t), we
can get the following error system

⎧
⎨

⎩

de(t)
dt = −Θe(t) + e(t) + u1(t),

de(t)
dt = −Ce(t) − De(t) + A(f(v(t)) − f(x(t))) + B(f(v(t − τ(t)))

− f(x(t − τ(t)))) + u2(t).
(4)
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In order to realize adaptive finite-time synchronization of inertial neural net-
works between the master system (3) and slave system (4), the intermittent
control ui(t) is defined by:

⎧
⎪⎪⎨

⎪⎪⎩

u1(t) = k � e(t) − λsign(e(t))
− λ(

∫ t

t−τ(t)
eT (s)e(s)ds)

1
2

e(t)

‖e(t)‖2 , lT ≤ t ≤ lT + δ

u2(t) = ε � e(t) − λsign(e(t)), lT ≤ t ≤ lT + δ,
u1(t) = u2(t) = 0, lT + δ ≤ (l + 1)T,

(5)

where k = (k1, k2, ..., kn)T , ε = (ε1, ε2, ..., εn)T are the adaptive laws, and the �
is defined as k � e(t) = [k1 · e1(t), k2 · e2(t), ..., kn · en(t)]T , λ > 0 is real constant.
£ = {1, 2, ..., l} is a finite natural number set. T > 0 is called the control period.
θ = δ

T denote the control rate.
At the same time, the adaptive rule defined as follows:

k̇i =

{
−αi

(
eT (t)e(t) + λ√

αi
sign(ki) + ηie(t)

T e(t)
ki

)
, lT ≤ t ≤ lT + δ,

0, lT + δ ≤ (l + 1)T,
(6)

ε̇i =

{
−αi

(
eT (t)e(t) + λ√

αi
sign(εi) + εie(t)

T e(t)
εi

)
, lT ≤ t ≤ lT + δ,

0, lT + δ ≤ (l + 1)T,
(7)

where αi > 0 is a positive constant. ηi > 0, εi > 0 are nonnegative constants
denotes the control gain.

Assumption 1. For all x, y ∈ R
n, suppose that the activation function f(·)

satisfies the following condition,

‖ f(x) − f(y) ‖≤‖ J(x − y) ‖ .

where J ∈ R
n×n is a known constant matrix.

Definition 1 ([25]). The slave system (4) is said to reach finite-time synchro-
nization with the master system (3), if there exists a constant t1 ≥ 0 such that

lim
t→t1

‖ e(t) ‖= 0,

and ‖ e(t) ‖= 0 for t ≥ t1 , where t1 denotes the settling time.

Lemma 1 ([26]). If b1, b2, ..., bn ≥ 0 , 0 < k ≤ 1, after that

(
n∑

i=1

bi)k ≤
n∑

i=1

bk
i .

Lemma 2 ([27]). If X,Y, and Q are real matrices with appropriate dimensions,
there exists a constant σ > 0 and Q = QT > 0 such that

2XT Y ≤ σXT QX + σ−1Y T Q−1Y.
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Lemma 3 ([28]). If there exist a continuous, positive definite V (t) satisfies the
following inequality:

V̇ (t) ≤ −αV η(t) + hV (t),∀t ≥ t0, V
1−η(t0) ≤ α

h
,

where α > 0, 0 < η < 1, h > 0 are three constants, then the settling time t1 is
given by

t1 ≤ ln(1 − h
αV 1−η(0))

h(η − 1)
.

3 Main Results

Now, we are in a position to present our results. We will introduce the synchro-
nization criteria between the master system and the salve system in finite time
with time-varying delay via adaptive intermittent controllers.

Theorem 1. Suppose that Assumption 1 hold. For given positive con-
stants ρ, σ, δ, if there exist two diagonal positive definite matrices Ξ =
diag(η1, η2, ..., ηn) and Λ = diag(ε1, ε2, ..., εn) such that the following conditions
hold.

Φ =

⎛

⎝
Φ11

1
2 (In − D) 0

∗ Φ22 0
∗ ∗ ρJT J − 1

2 (1 − μm)In

⎞

⎠ < 0, (8)

(
1
2

+ δ − β)In + σJT J − Θ ≤ 0, (9)

σ−1AAT + ρ−1BBT + δ−1(In − D)(In − D)T − βIn − C − Λ ≤ 0, (10)

ρJT J − 1
2
(1 − μm)In ≤ 0. (11)

Then the master system (3) and slave system (4) can be finite-time synchro-
nized under the adaptive periodically intermittent control:

t1 =
V 1−η(0)e(1−η)(1−θ)γt

αθ(1 − η)
, (12)

where Φ11 = σJT J + 1
2In − Θ − Ξ, Φ22 = σ−1AAT + ρ−1BBT − C − Λ,

let e(t) = (eT
1 (t), eT

2 (t), ..., eT
n (t))T ∈ R

n.

Proof. Constructing the following Lyapunov-Krasovskii function: V (t) = V1(t)+
V2(t) + V3(t),

V1(t) = 1
2eT (t)e(t) + 1

2eT (t)e(t), V2(t) = 1
2

∫ t

t−τ(t)
eT (s)e(s)ds,

V3(t) = 1
2

∑n
i=1

1
αi

k2
i + 1

2

∑n
i=1

1
αi

ε2i .
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When t ∈ [lT, lT + θT ], the time derivative of V (t) along the trajectories of
the error system (5) and using Assumption 1, one have

V̇1(t) = eT (t)
(

− Θe(t) + e(t) + k � e(t) − λsign(e(t))

−λ(
∫ t

t−τ(t)

eT (s)e(s)ds)
1
2

e(t)
‖ e(t) ‖2

)
+ eT (t)

(
− Ce(t) − De(t)

+A(f(v(t)) − f(x(t))) + B(f(v(t − τ(t))) − f(x(t − τ(t))))

+ ε � e(t) − λsign(e(t))
)

≤ − eT (t)Θe(t) + eT (t)e(t) + eT (t)k � e(t) − λ | eT (t) |

−λ(
∫ t

t−τ(t)

eT (s)e(s)ds)
1
2 − eT (t)Ce(t) − eT (t)De(t)

+σ−1eT (t)AAT e(t) + σeT (t)JT Je(t) + ρ−1eT (t)BBT e(t)
+ ρeT (t − τ(t))JT Je(t − τ(t)) + eT (t)ε � e(t) − λ | eT (t) | .

V̇2(t) + V̇3(t) =
1
2

(
eT (t)e(t) − (1 − τ̇(t))eT (t − τ(t))e(t − τ(t))

)

+
n∑

i=1

1
αi

ki

[
− αi

(
eT (t)e(t) +

λ√
αi

sign(ki) +
ηie(t)T e(t)

ki

)]

+
n∑

i=1

1
αi

εi

[
− αi

(
eT (t)e(t) +

λ√
αi

sign(εi) +
εie(t)T e(t)

εi

)]

≤ 1
2

(
eT (t)e(t) − (1 − μm)eT (t − τ(t))e(t − τ(t))

)

−
n∑

i=1

kie
T (t)e(t) −

n∑

i=1

λ√
αi

| ki | −
n∑

i=1

ηie
T (t)e(t)

−
n∑

i=1

εie
T (t)e(t) −

n∑

i=1

λ√
αi

| εi | −
n∑

i=1

εie
T (t)e(t).

(13)
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By lemma 1 and combine (10) and (11), we get

V̇ (t) ≤ eT (t)
(
σJT J +

1
2
In − Θ − Ξ

)
e(t)

+ eT (t)
(
σ−1AAT + ρ−1BBT − C − Λ

)
e(t)

+ eT (t − τ(t))
(
ρJT J − 1

2
(1 − μm)In

)
e(t − τ(t))

+ eT (t)(In − D)e(t) − λ | eT (t) | −λ | eT (t) |

−λ(
∫ t

t−τ(t)

eT (s)e(s)ds)
1
2 −

n∑

i=1

λ√
αi

| ki | −
n∑

i=1

λ√
αi

| εi |

≤ ξT (t)Φξ(t) −
√

2λ
(1

2
eT (t)e(t) +

1
2
eT (t)e(t)

+
1
2

∫ t

t−τ(t)

eT (s)e(s)ds +
1
2

n∑

i=1

1
αi

k2
i +

1
2

n∑

i=1

1
αi

ε2i

) 1
2

(14)

where ξ(t) = (eT (t), eT (t), eT (t− τ(t)))T , based on the condition (9) that Φ ≤ 0,
we can obtain as V (t) ≤ −√

2λV
1
2 (t).

When lT + θT ≤ (l + 1)T , based on the conditions (10)–(12), then the time
derivative of V for t > 0 is given by

V̇ (t) = eT (t)
(

− Θe(t) + e(t)
)

+ eT (t)
(

− Ce(t) − De(t) + A(f(v(t)) − f(x(t)))

+ B[f(v(t − τ(t))) − f(x(t − τ(t)))]
)

+
1

2
eT (t)e(t)

− 1

2
(1 − τ̇(t))eT (t − τ(t))e(t − τ(t))

≤ −eT (t)Θe(t) + eT (t)e(t) − eT (t)Ce(t) − eT (t)De(t)

+ σ−1e(t)AAT e(t)

+ σeT (t)JTJe(t) + ρ−1eT (t)BBT e(t) + ρeT (t − τ(t))JTJe(t − τ(t))

+
1

2
eT (t)e(t) − 1

2
(1 − μm)eT (t − τ(t))e(t − τ(t))

≤ eT (t)
(
(
1

2
+ δ − β)In + σJTJ − Θ

)
e(t)

+ eT (t − τ(t))
(
ρJTJ − 1

2
(1 − μm)In

)
e(t − τ(t))

+ eT (t)
(
σ−1AAT + ρ−1BBT + δ−1(In − D)(In − D)T − βIn

)
e(t)

+ β(eT (t)e(t) + eT (t)e(t)) ≤ βV1(t).

(15)
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Then V̇ (t) ≤ βV (t), by Theorem 1, it follows from (18) and (20), let α =√
2λ, η = 1

2 , we get

{
V̇ (t) ≤ −√

2λV
1
2 (t), lT ≤ t ≤ lT + δT.

V̇ (t) ≤ βV (t), lT + δT ≤ (l + 1)T.
(16)

By Lemma 3, we obtain t ≤ V
1
2 (0)e

1
2 (1−θ)βt

√
2λθ

= t1. therefore, the synchroniza-
tion of inertial neural networks for the master system (3) and the slave system
(4) is achieved in a finite time. So the Theorem 1 is proved.

The adaptive periodically intermittent controller is degenerated to continuous
feedback control strategy when θ = 1. A new controller (6)–(8) are proposed as
follows:

{
u1(t) = k � e(t) − λsign(e(t)) − λ(

∫ t

t−τ(t)
eT (s)e(s)ds)

1
2

e(t)

‖e(t)‖2 .

u2(t) = ε � e(t) − λsign(e(t)).
(17)

⎧
⎨

⎩
k̇i = −αi

(
eT (t)e(t) + λ√

αi
sign(ki) + ηie(t)

T e(t)
ki

)
.

ε̇i = −αi

(
eT (t)e(t) + λ√

αi
sign(εi) + εie(t)

T e(t)
εi

)
,

(18)

then the following corollary can be obtained.

Corollary 1. Under Assumptions 1, for given positive constants ρ, σ, δ, if there
exist two diagonal positive definite matrices Ξ = diag(ε1, ε2, ..., εn) and Λ =
diag(ε1, ε2, ..., εn) such that the following conditions hold:

Ψ =

⎛

⎝
Ψ11 0 0
∗ Ψ22 0
∗ ∗ ρJT J − 1

2 (1 − μm)In

⎞

⎠ < 0, (19)

afterwards the master system (3) and the slave system (4) can achieve finite time

synchronization with the continuous controller in the setting time: t2 = 2V
1
2 (0)√
2λ

.

where Ψ11 = σJT J + (12 + δ)In − Θ − Ξ, Ψ22 = σ−1AAT + ρ−1BBT + δ−1(In −
D)(In − D)T − C − Λ.

4 Numerical Example

In this section, an example is given to verify the effectiveness of the synchro-
nization for inertial neural networks scheme obtained in the previous section.
Considering the following inertial neural networks:

d2xi(t)

dt2
= −ci

dxi(t)

dt
− dixi(t) +

2∑
j=1

aijfj(xi(t)) +
2∑

j=1

bijfj(xi(t − τ(t))) + Ii, i = 1, 2.

(20)
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x1(t)

x 2
(t)

Fig. 1. Phase portrait of the system (20).

then, the corresponding slave system is formulated as follows:
{

dv(t)
dt = −Θv(t) + w(t) + u1(t),

dw(t)
dt = −Cw(t) − Dv(t) + Af(v(t)) + Bf(v(t − τ(t))) + I + u2(t),

(21)

we can get the corresponding matrix

C =
(

0.1 0
0.1 0

)
,D =

(
0.11 0
0 0.11

)
, A =

(−0.95 0.01
0.01 −1

)
, B =

(
0.6 −0.5
1.8 0.5

)
,

where Θ = diag(0.5, 0.5), f(x) = tanh(x), let τ(t) = 0.5 sin(t) + 0.3, Obvi-
ously, τ̇(t) ≤ μm = 0.5. Moreover, the initial values are given as: x(0) =

0 10 20 30
t

-2

-1

0

1

2
x1(t)

v1(t)

0 10 20 30
t

-5

0

5

x2(t)

v2(t)

0 10 20 30
t

-2

0

2

4
y1(t)

w1(t)

0 10 20 30
t

-5

0

5 y2(t)

w2(t)

Fig. 2. Trajectory of the synchronization x(t), v(t), y(t), w(t) with the intermittent
controller.
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(0.3,−0.2)T , y(0) = (0.3, 0.2)T , v(0) = (1, 2)T , w(0) = (3, 4)T . Given θ = 0.6,
T = 3, λ = 3, k = 2.1. By the Matlab LMI Control Toolbox to solve the LMI in
the Theorem 1. We have a set of feasible solutions: Ξ = diag(13.3641, 13.3641),
Λ = diag(24.7574, 24.7574). Then, the Fig. 1 show the phase portrait of the sys-
tem (33). Then, trajectory of the synchronization x(t), v(t) and y(t), w(t) with
the adaptive periodically intermittent strategy in Fig. 2. Finally, the synchro-
nization errors are shown for the systems by using the adaptive intermittent
controller in Fig. 3.

0 5 10 15 20 25 30
t

-5

0

5

10

15
e1(t)
e2(t)
ē1(t)
ē2(t)

Fig. 3. Trajectory of the synchronization errors e(t), e(t) with the intermittent
controller.

5 Conclusion

In this paper, the finite-time synchronization for a class of inertial neural networks
with time-varying delay was studied. By selecting suitable variable substitution,
the original system can changed to two first-order differential equations. The dis-
continuous intermittent controller was proposed to adjust the system to realize
synchronization with finite time. By the some adequate conditions and finite-time
stability theory, we have proposed the finite-time synchronization of master-slave
systems. In the end, the numerical simulation given to demonstrate the effective-
ness the proposed method. In the future, a mixed intermittent controller with dif-
ferent control rates may be researched. Hence, it is worth learning the finite-time
synchronization for coupled inertial neural networks under aperiodically intermit-
tent control, impulsive control, sampled-data control and so on.
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