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Abstract. We study the prediction of time series using Gaussian pro-
cesses as applied to realistic time series such as housing prices in
Hong Kong. Since the performance of Gaussian processes prediction is
strongly dependent on the functional form of the adopted kernel, we pro-
pose to determine the kernel based on the useful information extracted
from the training data. However, the essential features of the time series
are concealed by the presence of noises in the training data. By apply-
ing rolling linear regression, smooth and denoised time series of change
rates of the data are obtained. Surprisingly, a periodic pattern emerges,
enabling us to formulate an empirical kernel. We show that the empir-
ical kernel performs better in predictions on quasi-periodic time series,
compared to popular kernels such as spectral mixture, squared exponen-
tial, and rational quadratic kernels. We further justify the potential of
the empirical kernel by applying it to predicting the yearly mean total
sunspot number.
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1 Introduction

In recent years, Gaussian processes (GPs) have become a useful technique for
machine learning [1]. They are based on a principled approach to statistical
inference as long as correlations among the data can be estimated a priori. Hence,
it provides a Bayesian nonparametric approach to classification, regression and
prediction, and excellent results were produced [2].

The prior of the inference embodies our natural expectation about the behav-
iors of the data, and many forms of kernels have been proposed [1,2]. For exam-
ple, for quantities that have smooth variations in space or time, the Squared
Exponential (SE) kernel is a suitable choice. For data with stronger correlation
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range, one may choose the Rational Quadratic (RQ) kernel. To capture the char-
acteristics of different kernels, mixtures of kernels such as Spectral Mixture (SM)
kernel [2] have also been used.

The importance of the appropriate choice of kernels was illustrated in GP
time series prediction [2,3]. For example, while the SE kernel is suitable to
describe smoothly varying data, it performs poorly when processing time series
with periodic variations. For time series data with both long and short term
trends, kernels such as RQ can capture the long term trend but not short one,
whereas kernels such as SE performs oppositely. To improve the performance,
kernels composed of a spectral mixture [2] was proposed, and was able to over-
come the above drawbacks.

In real applications of time series prediction in science and economics, the
data are often very noisy. The quasi-periodic components of the data may be
masked by the noise. The prediction of housing prices considered in this work is a
typical example. And for the quasi-periodic time series, traditional kernels such
as SE and RQ may not be able to make meaningful predictions and sophisticated
kernels such as SM can suffer from over-parameterization and overfitting.

Financial time series have been investigated using different methods, such as
fuzzy time series [4], Support Vector Machine [5,6], and Artificial Neural Network
(ANN) [7], in recent decades for the interest of maintaining stable and profitable
market environment. However, most of the methods fail to be applicable to real
time series [4] and they are too complex and lack the power of interpretation to
capture the essential properties of the real time series.

Among various markets, the housing market might be the most appealing
one, because it is closely related to the livelihood of individuals. For example,
the Japanese housing bubble burst in 1991 exerted serious impact not only on
the housing market but also the overall Japanese economy [8], leading to the
sudden decline in both investment and consumption. However, because of the
stochastic nature of financial markets [9], it is extremely difficult for scientists
to accurately predict the subsequent observations based on the current informa-
tion. On the other hand, many researchers are seeking indicators which could
reveal the hidden states of the financial markets. For example, to prevent great
depression caused by housing bubble bursts, there were many efforts to iden-
tify the explosive behavior, which is regarded as bubble inflation, in housing
price time series. Several statistical techniques were used to confirm the exis-
tence of explosive behavior, such as root test, augmented Dickey Fuller test,
and Cointegration test [10]. One popular method was introduced by [11], called
PSY method, and gained its success in identifying multiple bubbles in historical
housing data [12]. However, it lacks evidence that it is practical in predicting
future trends in housing markets.

In this paper, we investigate the useful statistical information extracted from
a real time series, namely, the Hong Kong housing price, and propose a com-
prehensive kernel using the prior knowledge obtained from the time series. By
using this kernel, we can improve the predictive power of the GP models. In
Sect. 2 we first review the theoretical framework of GPs. In Sect. 3, we describe
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how the Fourier spectrum of the auto-covariance of the time series can be used
to construct the High Order Periodic (HOPE) kernel for Gaussian processes. In
Sect. 4, we describe the construction of the kernel from the Hong Kong housing
price data. In Sects. 5 and 6, we will present the predictions on housing price
data and yearly mean total sunspot number given by the GP models using the
HOPE kernel and some other alternative popular kernels. The paper is concluded
in Sect. 7.

2 Gaussian Processes

Given a set of points X = {x1, x2, . . . , xt}, a Gaussian process [1] assumes that
f(xi), the true value generated at point xi, satisfies the joint Gaussian distribution

f = [f(x1) . . . f(xt)]T ∼ N (μ,K(X,X)), (1)

with mean vector μ = [μ(x1), μ(x2), . . . , μ(xt)]T and covariance matrix K, where
Kij = k(θ, xi, xj) is the kernel parameterized by hyperparameter θ. And N
is the Gaussian distribution. Generally, the true value f(xi) cannot be known
and only their noisy versions yi = f(xi) + ε can be observed, here ε is the
independent identically distributed Gaussian noise with variance σ2

n. Based on
the given observations and prior distribution, the expected value and variance
of the true value generated at a set of points X ′ can be inferred. Specifically, to
estimate the true values f ′ at X ′ based on the known observations and prior,
we have the joint distribution

[
y
f ′

]
∼ N

([
μ
μ′

]
,

[
K(X,X) + σ2

nI K(X ′,X)
K(X,X ′) K(X ′,X ′)

])
, (2)

where I is the identity matrix, and the posterior predictive distribution

p(f ′|y,X,X ′) = N (m,C), (3)

where m is the estimated mean and C is the estimated variance at points X ′,
which can be analytically derived as:

m = μ′ + K(X,X ′)(K(X,X) + σ2
nI)−1(y − μ), (4)

C = K(X ′,X ′) − K(X,X ′)(K(X,X) + σ2
nI)−1K(X ′,X). (5)

Therefore, specifying the kernel k, the variance σ2
n, and the mean function μ

determines the GP, and hence, the estimated mean value can be calculated by
the model. To tune the hyperparameters of GP, we need to optimize the marginal
log-likelihood L with respect to the unknown hyperparameters in the covariance
matrix and the mean function:

L = log p(y|θ,X) = −1
2

(y − μ)T (K + σ2
nI)−1 (y − μ)

− 1
2

log det (K + σ2
nI) − |X|

2
log 2π, (6)
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where X is the set of observation points, y is the corresponding vector of
observed values at X, and |X| is the number of observations. Thus, given the
estimated hyperparameters, variance σ2

n, and mean function that maximize the
log-likelihood L, we are able to predict the expected value and standard deviation
of the unknown true value generated at points X ′ by the predictive distribution.

3 Construction of Kernels

In this section, we construct a new kernel for noisy realistic time series. Although
empirical correlation can be questionable in reflecting the true theoretical under-
lying processes [2], we may show that it is still possible to improve predictions
on noisy quasi-periodic time series by using the information extracted from sta-
tistical analysis, such as auto-covariance analysis and Fourier Transform.

The cross-covariance γFG(l) for two finite discrete real time series F = {Ft :
t ∈ T} and G = {Gt : t ∈ T} is defined as

γFG(l) =
∑

t

Ft+lGt, (7)

where l is the time that G lags F . For the case that F = G, γFG = γFF is the
auto-covariance of the time series F . For the housing price data we adopt the
definition that is without the subtraction of expected value of the time series.

Given a time series F with N observations, the auto-covariance γFF (l) can
characterize the similarity in the data up to lag N − 1. To construct the kernel
function describing the similarities between arbitrary data, we transform the
auto-covariance γFF (l) into its frequency-domain:

X(f) =
N−1∑
l=0

γFF (l)e−i2πfl/N , (8)

and obtain the auto-covariance spectrum |X(f)|
N .

Therefore, we select the significant periodic components having large enough
amplitudes to construct the kernel and ignore the other weaker components,
since the components with small amplitudes may be just noises or redundancies
and have little contribution to the true connections between the data. Thus we
propose the one-dimensional High Order Periodic (HOPE) kernel with order n:

kn(xi, xj) = αe−(xi−xj)
2/(2�2)

n∑
m=1

Am cos
(
2πfm

∣∣xi − xj

∣∣) , (9)

where n ∈ Z
+, α, �, and fm,m = 1, . . . , n, are hyperparameters, and the weights

Am,m = 1, . . . , n is the m-th largest amplitudes (peaks) of the components
in the auto-covariance spectrum. The introduction of the exponential factor
e−(xi−xj)

2/(2�2) is to ensure that the kernel vanishes when the space (time) differ-
ence between two observations points approaches infinity. Intuitively, two data
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points well separated in space (time) should have weak correlations. The HOPE
kernel can be considered as an extension of the Spectral Mixture (SM) ker-
nel [2] to deal with noisy quasi-periodic data, whereby we determine a number
of hyperparameters directly from the statistical features of the data to allevi-
ate the problem of over-parameterization and overfitting, which will be shown in
Sects. 5 and 6. Then by optimizing the log-likelihood (Eq. 6) with respect to these
hyperparameters and the mean function μ, we obtain a trained GP regression
model.

4 Hong Kong Housing Price

The data of the Hong Kong property transaction prices were obtained through
negotiations from EPRC Limited, a wholly-owned subsidiary of the Hong Kong
Economic Times that specializes in providing property information to market-
related industries. The dataset contains records of transacted properties for the
period 1992 to 2010 and amounts to 2,492,842 transaction records. Figure 1(a)
illustrates the monthly average of real price index (MARPI) (in HKD per square
foot normalized by the consumer price index) of Hong Kong housing transactions
and the Prime Lending Rates (PLR) in Hong Kong from Jan 1992 to Dec 2010
(totally 228 data points). Since the data of MARPI are very noisy, to pre-process
and denoise the data, we investigate the time series of MARPI rate of change
over 12 months (a year), defined as the slope of the linear regression line for the
past 12 months MARPI data. Similarly, the time series of PLR rate of change
over 12 months can also be calculated. As a comparison, these two time series
are illustrated in Fig. 1(b).

As shown in Fig. 1(b), quasi-periodic features exist in both the MARPI rate of
change and the PLR rate of change. The quasi-periodicity is exhibited even more
clearly in the auto-covariance (Eq. 7) of the rate of change as shown in Fig. 2(a).
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Fig. 1. (a) The monthly average real price index (MARPI) per square foot of Hong
Kong housing and the prime lending rate (PLR). (b) The MARPI rate of change and
the PLR rate of change.
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Fig. 2. (a) Auto-covariance of MARPI rate of change and PLR rate of change. (b)
Cross-correlation (normalized version of cross-covariance) of MARPI rate of change
and PLR rate of change.

The periodicity of the rate of change observed from the auto-covariance is around
30 months, as confirmed by the result of the auto-covariance spectrum in Fig. 3.
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Fig. 3. Single-sided auto-covariance spectrum of (a) MARPI rate of change and (b)
PLR rate of change. The components with the largest amplitude in (a) and (b) have
periodicity 1/0.0323 = 31.0 Month and 1/0.0277 = 36.1 Month respectively.

It is interesting to consider why housing price time series is quasi-periodic.
We found evidence that the housing price is correlated with PLR, which hap-
pened to have a quasi-periodic variation during this period of study. While the
underlying reason is beyond the scope of this study, it is natural to expect the
occurrence of cycles in the world economy. When consumption heats up, PLR
will be raised to prevent overheating, and when the economy is weak, PLR
will be reduced to stimulate consumption. As shown in Figs. 1, 2, 3, there is a
close correlation between the periods of two time series. Furthermore, the cross-
correlation (normalized version of cross-covariance) is negative near 0 months
showing that housing prices drop (rise) when the mortgage rate rises (drops).
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5 Experiments

In this section, we show that the HOPE kernel can be applied to the real time
series to improve the predictive power of the GP. At the same time, to contrast
the prediction results using the new kernel, other popular kernels, such as Spec-
tral Mixture (SM) with number of components Q = 12, Squared Exponential
(SE), and Rational Quadratic (RQ) kernel (as shown in Table 1 [1,2]) are also
applied to predict the data. Since the size of our data is small (around 200 data
points), Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [13] with cubic
interpolation is applied to optimize the log-likelihood function. The fitrgp.m
and fminunc.m functions from MATLAB [14] are used to implement the GP
and optimization. The mean function μ of the GP model is set to be a constant
function μ(x) = c. For the optimization of hpyperparameters, we randomly sam-
ple 40 initializations of hyperparameters for each model and optimizations are
repeated. The final optimal hyperparameters are the ones which yield the high-
est log-likelihood L for the model. During the sampling, the order n in HOPE
is sampled between 1 and 12.

Table 1. Expressions of one-dimensional popular kernels, where τ = |xi − xj |.

Kernel Expression Hyperparameters

SM kSM(xi, xj) =
∑Q

q=1 ωq exp
(
−2π2τ2νq

)
cos (2πτμq) ωq, νq, μq

SE kSE(xi, xj) = σ2 exp
(
− τ2

2�2

)
σ, �

RQ kRQ(xi, xj) = σ2
(
1 + τ2

2α�2

)−α

σ, α, �

5.1 Predictions on MARPI Rate of Change

To illustrate the predictive power of the GP model using the HOPE, we choose
two subsets from the time series of the MARPI rate of change as the training
set, one containing the first 152 observations in the time series and the other
constituting the first 171 observations, and the remaining data as testing sets.
The predictions using different kernels can be found in Fig. 4.

GP models using all kernels perform well in reconstructing the training
inputs, since the predictions on training data given by the models almost over-
lap with the real data in the training set. However, in future predictions, models
using SE and RQ have little predictive power, since the estimated mean obser-
vations in the future (outside the training set) diverges largely and quickly from
the testing data, and their values tend to fall back to the mean function c. The
predictions using SM are unsatisfactory, since there are many huge gaps between
the estimated mean observations and real data. On the other hand, the predic-
tions given by the model using HOPE do not deviate from the testing data
dramatically and can capture the trend of the future data up to a considerable
number of steps. At the same time, Fig. 4 indicates that generally, the errors
may increase when we predict the values to a more distant future.
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Fig. 4. Predictions on MARPI rate of change using different kernels. The training data
are on the left hand side of the vertical dashed line. (a) The first 152 observations as
the training inputs. (b) The first 171 observations as the training inputs.
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Another observation is that for the training set with 152 (171) observations,
the optimized log-likelihood L of HOPE and SM are 270.9 (311.7) and 300.4
(329.9) respectively. Although the SM has higher log-likelihood, Fig. 4 shows
that it has poorer performance in predicting the unobserved data. One sug-
gested reason for this is that using SM, possibly overparameterized, leads to the
overfitting so that the predictive power of the GP is suppressed. Meanwhile, this
observation can be considered as the evidence that compared to SM, HOPE is
able to effectively prevent the GP from overfitting and give better predictions
on the future data.

Moreover, we use another example to illustrate the problem of overfitting
induced by the SM. For one set of training inputs (first 200 observations of
MARPI rate of change), the predictions given by two GP models using SM
(Q = 12) are shown in Fig. 5. Compared to the model with log-likelihood L =
419.5, the model with the higher log-likelihood L = 428.1 has rather poorer
performance on predicting the future data.
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Fig. 5. Predictions on MARPI rate of change with first 200 observations as training
inputs, which are on the left hand side of the vertical dashed line. L is the log-likelihood
of the model. Both models are using SM with Q = 12.

5.2 Performance and Stability

Since GPs can be really sensitive to the initialization of the hyperparameters
as well as the input training data, we further compare the prediction stability
of different kernels by measuring their mean squared error (MSE) and following
the procedure of time series prediction performance assessment introduced by
Hyndman [15]. Specifically, experiments are repeated using different training
sets, each one having additional one observation than the previous one, and
during each experiment and for each training set the MSE in h-step horizon (that
is, from 1-step prediction up to h-step prediction) is computed to investigate the
performance of prediction. Initially, the training set has 151 observations. And
the average MSE of experiments of each kernel can be found in Table 2. The
smaller the average MSE, the more stable the model, because small average
MSE indicates that the model can maintain relatively good performance when
the training inputs are changed. As a comparison, the variance of the whole data
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set is 0.0232. Table 2 shows that the stability of HOPE outperforms other kernels
in several-step horizon prediction, which also justifies that HOPE has better
performance in capturing the future trends of the time series. It also indicates
that the predictive power fades away when the GP model is trying to estimate
the data in distant future, since the average MSE increases dramatically when
the prediction horizon increases. And we can also see that the performances of
SM are relatively poor, which might be the consequences of overfitting.

Table 2. Average MSE using different kernels

Horizon HOPE SM SE RQ

6-step 0.0078 0.0088 0.0092 0.0086

9-step 0.0118 0.0149 0.0130 0.0130

12-step 0.0148 0.0171 0.0153 0.0159

6 Application to Sunspot Time Series

To further illustrate the power of HOPE, we apply it to another well known time
series, yearly mean total sunspot number, which can be obtain from http://www.
sidc.be/silso/datafiles. To make comparisons, the popular kernels in Table 1 (SM
with Q = 20) are also applied. The data from year 1700 to year 1899 (totally 190
data points) are used as training inputs, and the data from year 1900 to year
1941 (totally 42 data points) are considered as testing set. The mean function of
the GP is set to be constant function μ(x) = c. BFGS algorithm and 100 random
initializations of hyperparameters are applied to search for optimal estimations
of hyperparameters for each model, and the order n in HOPE is sampled between
1 and 20.
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Fig. 6. Predictions on yearly mean total sunspot number with the first 190 observations
as training inputs, which are on the left hand side of the vertical dashed line. (a) Pre-
dictions given by HOPE and SM with Q = 20. (b) Predictions given by SE and RQ.

http://www.sidc.be/silso/datafiles
http://www.sidc.be/silso/datafiles
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Predictions on the yearly mean total sunspot number given by different ker-
nels are illustrated in Fig. 6. Similar to the cases of predictions on MARPI rate
of change, for sunspot time series, SM (L = −857.5) has a larger log-likelihood
than HOPE (L = −885.0). However, for the performance on predicting the
testing data, compared to HOPE (MSE = 1947.5), SM (MSE = 2272.3) gives
poorer predictions, which indicates the problem of overfitting caused by SM.
Also, predictions on future data given by both SE (MSE = 2588.4) and RQ
(MSE = 2599.7) are quite poor, which can be seen in Fig. 6(b), though their
log-likelihood values (LSE = −887.7 and LRQ = −887.5) are comparable to that
of HOPE.

7 Conclusion

In this paper, we have discussed the Gaussian process (GP), which is a powerful
regression model to predict the time series. Using a new kernel (HOPE) based on
the information extracted from the auto-covariance of the training time series,
we improved the predictive power of the GP model and it compares favourably
with models using other popular kernels. Our work shows that the choice of the
kernel is a very essential factor to the performance of GP. Choosing a kernel
from some popular choices may not work for noisy quasi-periodic data, in which
case extracting the kernel from the covariance functions provides an alternative.

The Gaussian process can be a powerful predictor in financial time series
analysis. Since we have only used Gaussian processes to analyze the single time
series, we believe that by incorporating multiple time series, such as Prime Lend-
ing Rate and trading volume, Gaussian processes may capture more information
underlying the series, and give more accurate predictions. However, the model
cannot predict the value at arbitrary time steps ahead, so we may further inves-
tigate the applicable range that the predicted values are still close to the real
data. On the other hand, we may also focus on predicting a few steps ahead so
that we can determine its accuracy and stability in short-term prediction.
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