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Abstract. With the increasing availability of unobtrusive, and inex-
pensive sensors in smart environments, online sensor data segmentation
becomes an important topic in reconstructing and understanding sensor
data. Usually, in the literature, the segmentation is either performed by
following a fixed or a dynamic time-window length. As stated in several
works, static time-window length has several drawbacks while adjusting
dynamically the window length is more appropriate. However, each of
previous methods for dynamic data segmentation targets only a particu-
lar type of application. Hence, there is a need for a general method inde-
pendent of applications providing high degree of usability. To achieve
this aim, in this paper, we propose a novel method that dynamically
adapts the time-window size. The proposal is designed to be applied
in a wide range of applications (activity recognition, decision making,
etc.) by combining statistical learning and semantic interpretation. This
hybridization allows to analyze the incoming sensor data and choose the
better time-window size. The presented approach has been implemented
and evaluated in several experiments using the real dataset Aruba from
the CASAS project.
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1 Introduction

Due to the rapid advances in sensing technology, we are witnessing a growing
interest in smart environments, in which a variety of sensors are continuously
sending data for processing and analysis in order to be used for different domain
applications. To gain a meaningful data understanding from sensor data, one of
the major tasks in this area is to divide the long sequence of sensing records into
a set of individual segments. Each segment corresponds to a “specific” concept
which can be interpreted differently according to the target application.

In the literature, the dynamic data segmentation has proven better results
than the static one [4] since it identifies the time points in a more flexible way.
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However, dynamic streaming sensor data segmentation is still a challenging prob-
lem. Generally, previous researches in this field [1-3], either assume that a pre-
segmented dataset is available for learning the suitable time-window size or being
conceived to be applied to a particular application. Accordingly, most related
work suffer from generality issue. Hence, the segmentation should be done in a
general manner. Afterwards, it can be adapted according to the application.

In this paper, in order to overcome the aforementioned issue, we propose a
novel method which combines a clustering method, that is to say, a statistical
learning method, and a logic-based method, that relies on high-level “symbolic”
representation, in order to dynamically choose the best time-window size. Ini-
tially, to tackle the cold start problem that usually concerns statistical learning
approaches, an ontology with a default classification is created. This task can
be done by the designer after the setup of the environment. Afterwards, once a
training dataset is acquired related to the target application?®, a clustering based
classification of the dataset is done offline according to a defined features. The
proposal dynamically updates offline the ontology whenever change occurs in
the obtained clusters. During the online process, the method uses the ontology
to decide which better size for the current time-window. The proposed method
thanks to this hybridization neither requires a pre-segmented dataset nor being
limited only for a particular type of application’s use. In order to prove the
accuracy of the proposal we apply it for an activity recognition application. In
addition, we test it with Support Vector Machine (SVM) [12], a machine learning
method, as an activity classifier module, with the real Aruba dataset from the
CASAS project [11]?, and synthetic datasets. In the following, we summarize
the main contributions of the paper:

— A new method for dynamic streaming sensor data segmentation. The proposal
is flexible to be used in a wide range of applications.

— A novel marriage between knowledge oriented method and machine learning
to provide a flexibility for the time-window size choice.

— The method is fully implemented and tested in the specific case of activity
recognition application. SVM is used as an activity recognizer module with
different datasets. The output is compared with SVM using fixed time-window
size as well as state of the art work. The results are promising proving the
high accuracy level.

2 Related Work

In this paper we classify previous works of dynamic streaming sensor data seg-
mentation into three main classes: (1) metric-based methods, (2) learning-based
methods, and (3) knowledge-based methods.

! Dataset of user activities for activity recognition application, for anomalies in case
of anomaly detection application, etc.
2 http://ailab.wsu.edu/casas/datasets, .
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Metrics-Based methods: the general principle of these methods is that the
window size is chosen according to the result of computed metrics such as mutual
information [2,5]. For activity recognition process, the authors in [2] propose a
segmentation method that consists of dividing the sensor events into chunks
according to the incidence of activity. To achieve this aim, they use the Pearson
Product Moment Correlation (PMC) metric to compute the correlation between
any pair of sensor events in the window. The authors in [5] propose to compute
the mutual information between each couple of sensor events within a window
and calculate a feature’s weight. Only highly related sensor events are supposed
to be in the same activity. Another work [13] proposes a similarity measure to
segment a motion stream. The proposed measure is highly related to the body
motion attributes. For accelerometer streaming data segmentation, the authors
in [6] propose to classify the data according to a set of features which are used
as metrics such the variance, mean, etc. The method is specific for accelerometer
data.

Knowledge-Based methods. This class applies mainly semantic representa-
tion (e.g ontology) and semantic reasoning (e.g logic inference) to derive dynam-
ically the window size. For example, the work in [3] proposes an ontology repre-
senting the activities that can be realized by the residents, the types of installed
sensors in the smart home, etc. The dynamic segmentation consists of either
expanding or shrinking the time-window by queering the ontology at the same
time as recognizing the activity. The work in [7] proposes a semantic based app-
roach for segmenting sensor data series using ontologies to perform a terminology
box (TBOX) and a assertion box (ABOX) reasoning, along with logical rules to
infer whether the incoming sensor event is related to a given sequences of the
activity. As in the previous work, the segmentation method is also integrated
into the activity recognition method.

Learning-Based methods. Under this class, methods use machine learning in
order to learn which suitable window size regarding the coming sensor data. Gen-
erally, a pre-segmented dataset is required for the training phase (i.e a dataset
containing the ground truth of time window sizes for the segments). The authors
in [1] propose to use a probabilistic data driven approach to identify, as a first
step, the possible window size using a pre-segmented dataset. As a second step,
they propose to learn the most likely window size for an activity based on the
computed probabilities of the possible window sizes.

To the best of our knowledge, all the previous methods are designed to be
used for a particular kind of application domain such as activity or gesture
recognition. However, it is more useful to conceive a flexible method that can be
applied in different applications.

3 Method

Through this section, we explain in details the whole process of the method for
the dynamic streaming sensor data segmentation.
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Online process

Fig. 1. Method architecture

As we can see in Fig. 1, the method holds mainly two processes: Offline and
Online executions. The former starts by applying a Clustering algorithm in
order to classify the given dataset into a set of classes based on given features.
The dataset must concern one application and the features are defined accord-
ingly. As mentioned before, the proposed method could be used with different
application domains. The clustering is executed offline once a dataset is given or
updated. Afterwards, the Ontology updater dynamically updates the ontology
when the clusters are updated or new ones appear. The ontology is designed
to contain the information that must be provided by the built clusters for each
application. Next, when the dataset is ready and the set of clusters are obtained
or changed, the ontology is dynamically updated. The online process dynamically
segments the streaming sensor data into time-windows based on the knowledge
provided by the ontology.

3.1 Clustering

The clustering aims, as a first step, to divide a given dataset into a set of clusters
based on the given features. Each target application has its own features. For
example, activity durations and used sensors are features corresponding to the
activity recognition application while the anomaly start time can be considered
as a feature for anomaly detection application.

3.2 Ontology Updater

A general ontology is designed to semantically represent the information pro-
vided by the clusters for each dataset. In order to allow a quick start of the
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Algorithm 1. Ontology Updater

Input: Ontology O, Features set sf, Clusters C, Name of the dataset name, Application app
Output: Updated ontology O

1 if (EzecuteRule(search, O, name) # () then

2 \ ExecuteRule(insertInstance, Dataset, name);

3 end

4 appC «— GetClass(O, app);

5 for (each cluster ¢; € C) do

6 for (each element el € ¢; ) do

7 \ ExecuteRule(insertInstance, el, hasElement(O, appC);
8 end

9 for (each feature f; € sf) do

10 fC «— GetClass(O,f;);

11 val «— GetValue(c;, f;);

12 ExecuteRule(insertInstance, val, fC);

13 setObj « GetObjectProperties(hasElement(appC), fC);
14 for (each objectProperty obj € setObj) do

15 ‘ ExecuteRule(insertRelation, obj, c;, val);

16 end

17 end

18 end

system even if a dataset is not yet ready, the ontology initially contains similar
information that should be provided by the clusters for each application. When
the dataset is ready and the clusters are obtained, the ontology is dynamically
updated with the content of the given clusters. The dynamic update is insured
by using program and SPARQL queries. Algorithm 1 shows the operations per-
formed by the ontology updater. Initially the ontology contains the three classes
Application, Dataset, and Element. Moreover, it contains the applications that
will be held by the method represented as subclasses of Application class. The
class Flement represents the main information provided by the application. For
instance, for the activity recognition application the ontology must contain the
class Activity, a subclass of Element, related to the class activity recognition, a
subclass of Application, and related to the classes corresponding to the applica-
tion’s features (i.e Duration). After receiving the application name, the set of
features and clusters, and the dataset name, Algorithm 1 starts by executing a
rule named search, by calling the function EzrecuteRule, which searches whether
the given dataset is already in the ontology (Line 1 and 2). It is important
to mention that the algorithm stores the corresponding classes in the ontology
for each possible application and their corresponding features. Hence, the func-
tion GetClass (Line 4) returns the corresponding ontological class for the input
application app. Afterwards, by applying a logic rule, named insertInstance, all
the different elements belonging to the given clusters become instances of the
corresponding subclass of Element related to the given application (Lines 5-8).
For example, if the application is Activity recognition the ontology must hold
the class Activity subclass of Element. In this case the activities in the clusters
become instances of the Activity class. For a better insight see Fig. 2. Next, each
feature value in the cluster becomes an instance of the corresponding feature’s
class in the ontology using a logic rule (Line 9-12). For example, 5 min is a value
in the cluster of the feature Duration. Accordingly, 5 min becomes an instance
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Fig. 2. An example of the ontology used in the experiments after being updated with
Aruba dataset’s clusters. Added elements are in red (Color figure online)

of the class Duration in the ontology (see Fig. 2). Finally, the algorithm extracts
the set of objectProperties having the feature class as a range (Line 13). Then,
it relates the instances corresponding to elements in the clusters with theirs fea-
tures values using the adequate objectProperty. For example, in the ontology
(Fig.2), the feature’s class Duration is the range of the objectProperty hasDu-
ration where the Class Activity is its domain. Therefore, Algorithm 1 links the
added activity’s instances for each cluster with their corresponding durations.

3.3 Data Processing and Window Manipulator

Generally, a sensor sequence can be represented as {51, 52...5n} where Si refers
to the it*" sensor event, and each sensor event is encoded in the template of
{date, time, sensorI D, sensorValue}. Once the coming sensor data are repre-
sented in this template, the main aim of this step is to divide this streaming
sensor data into a time windows with size “sw”. Each chunk “sw” is chosen
dynamically using the Window manipulator Algorithm 2.

Initially, the time window size is the minimum duration in the ontology
regarding the given application and dataset. It is important to note here that
Duration is defined as a features for all applications. For instance, if we target
the activity recognition application and we set up the method for aruba dataset,
then the algorithm sets the initial time window size as the minimum activity’s
durations belonging to Aruba. This duration should not be used before in the
same session (Line 7). Afterwards, the algorithm keeps extracting the set of
sensor data (sensorsData), that are in the streaming SD, occurred during the
defined time window size (actualSize). This is achieved using the function Read-
Online() (Line 8). The algorithm stops the loop when sensorsData are included,
in at least one of the feature vectors extracted from the ontology (Lines 12,18)
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Algorithm 2. Window Manipulator

Input: ontology O, streaming sensor data SD, application app, application’s features feats,
Dataset’s name dName
Output: set of possible results possRes, time window size sw

1 usedsizes«— 0;
2 sensorsData «+ 0;
3 keep « true;
4 possRes < Null ;
5 previousSize <« 0 ;
6 while (keep) do
7 actualSize « getMinimumDuration(O, usedSizes, previousSize, app, dName);
8 sensorsData <+ ReadOnline(SD, actualSize-previousSize, sensorsData);
9 EleFeatVects < getElementsVectors(O, app, feat);
10 for each appEl € EleFeatVects do
11 if (testAppart(sensorData, appFEl) then
12 ‘ add(possRes, appEl);
13 end
14 end
15 previousSize « actualSize;
16 Add(usedSizes, actualSize);
17 if (possRes!= Null) then
18 keep=false;
19 sw+«— actualSize;
20 end
21 end

using the testAppart function. In other words, based on the given application,
the algorithm extracts the features vector for each given application’s element.
For example, in case of anomaly detection, it extracts for each anomaly its fea-
tures vector holding the features’ values. Then, it checks whether the data in the
streaming are belonging to this vector. In the positive case, this element is added
to the set of possible results possRes (Line 13). Finally, if the algorithm detects
at least one possible element then it stops reading (Lines 19, 20). Otherwise,
it extends the actual time-window size (actualSize) with the difference between
it and the next minimum element’s duration extracted from the ontology (Line
(7)), the actual size becomes the previous size, and this process is repeated until
possible results are detected ( Line 17, 18).

4 Experiments and Discussion

To evaluate the usefulness of our proposal for dynamic streaming sensor data
segmentation, we have applied it in case of activity recognition application. We
tested it with 6 weeks over Aruba dataset and a synthetic dataset. On the one
hand, Aruba was collected by the Center for Advanced Studies in Adaptive
Systems (CASAS) [11]. The Aruba dataset contains ground-truthed activities of
a home-bound person in a small apartment for 16 weeks. On the other hand, we
have generated automatically two datasets that can be obtained from the GIS
MADONAH?3. For the activity recognizer method we applied the Support Vector
Machine (SVM) algorithm. More details about the dataset and the experiments
are given in the next subsections.

3 http://www.bourges.univ-orleans.fr/madonah/.
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4.1 Datasets

Data collected from Aruba dataset was obtained using 31 motion sensors, three
door sensors, five temperature sensors, and three light sensors. 11 activities were
performed for 220 days (7 months). The dataset is imbalanced, as some of the
activities occur more frequently than others. Table1 presents the statistics of
the sensor events and activities performed in the 6 weeks over Aruba dataset.
“Other activity” class contains events with missing labels. It covers 54% of the
entire sensors events sequence.

The synthetic dataset contains sensor data values similar to that provided
in GIS MADONAH. It is generated separately for half day (90 events) and
one day (185 events) of an elderly like routine. It contains a set of presence,
motions sensors and light detectors. The dataset holds principally four activities:
Sleeping, Watching TV, Discomfort, and Eating.

These datasets were used in our method, Table 1. Statistics of six weeks over
on the one hand, as training dataset for SVM 5 . ha dataset
and, on the other hand, for the clustering.

Id | Activity Number

_ of events
4.2 Evaluation Result 1 Bed to. Toilot 266
F-Score measures was used to evaluate our 2 |Eating 3207
proposal with 6 weeks over Aruba dataset. 3 | Enter.Home 404
Moreover, in order to discuss its perfor- -
mance regarding static time-window size, we 4 | Housekeeping 2117
firstly tested SVM with fixed time-window 5 |Leave Home 384
size (i.e. 5min).* Afterwards we used SVM 6 | Meal Preparation | 57029
as an activity recognizer in the method. Fur- 7 | Relax 70917
thermore, the results are compared with
the dynamic data segmentation process, 8 | Resperate 108
SWMlex [5]. SWMIex is a metrics-based 9 | Sleeping 6536
method which uses the Mutual Informa- 10| Wash _Dishes 2092
tion measure to compute sensor correlation. 11| Work 3964
SWMIex, SVM with static time window, —
and our proposal are tested in same condi- 12| Other activity 174 264

tions (i.e dataset). For the process, we used

three quarters of the dataset for the offline training and one quarter for the
online testing. Figure 3 shows the different F-score values of the three methods
for each activity belonging to Aruba dataset.

4 After doing a set of experiments with different time window sizes, five minutes has
shown best results for SVM using 6 weeks over Aruba dataset.



Dynamic Streaming Sensor Data Segmentation 75

1,2
1
M
08 g -
0,6 w W Static SVM
. ‘ HSWMiex
L 04 ——
§ ! M Our method
“ 02
0 !

Activities

Fig. 3. F-score value for the different activities in Aruba dataset using only SVM with
static time-window length (5 min), our and SWMIex methods

Table 2. Average F-score for all activities As it is shown in
Dataset /method Static SVM | Our method — Fig. 3, our proposal out-
. performs static SVM

Half day synthetic dataset |0.39 0.42 and SWMIex in terms
One day synthetic dataset |0.42 0.53 of F-score. From Fig. 3,
Six weeks over Aruba 0.40 0.64 we conclude that the

three methods have
unbalanced performance. In other words, they have higher efficiency to rec-
ognize some activities (i.e. 9. Sleeping, 11. Work) than to detect some others
(4. HouseKeeping, 10. Wash Dishes, 8. Resperate). This result, has two possible
explanations. On the one hand, since also the dataset is unbalanced then infre-
quent activities have low chance to be recognized such as the Resperate activity.
On the other hand, the used sensor is a feature for the three methods and some
activities in the dataset can have different used sensors for each occurrence. The
methods are then sometimes confused (i.e HouseKeeping).

The SVM with 5min as time-window length has the lowest performance (F-
score € [0..0.9]) since it has a static segmentation. In fact, the duration of each
activity varies according to the resident routine. For some activities five minutes
is sufficient for the recognition and for others this length is either too long or
too short. The proposal has the best performance (F-score € [0.38..0.99]) thanks
to its dynamic segmentation.

Table 2 shows the average F-score values of our method compared to Static
SVM using the synthetic datasets and Aruba. Obviously, as we can see in the
table, our method is more performing using Aruba than the two synthetic
datasets and outperforms the Static SVM using the three datasets. The bet-
ter F-score value obtained by our method using Aruba can be explained by the
high sensors number used for Aruba. Indeed, the used sensor is considered as a
feature in our method for classifying activities. Therefore, when the sensor num-
ber increased, our method differentiates better the activities and then provides
better results. For One day synthetic dataset, our proposal has better F-score
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value than for that of half day because a richer training model is built from the
former since it holds double data.

5 Conclusion

In this paper we proposed an hybrid method for dynamic streaming sensor data
segmentation. The proposal combines clustering and ontology techniques to pro-
vide high flexibility in order to be used in different types of applications. As a
matter of fact, the main advantage of our method regarding previous works
are its ability to be adapted with different applications. Moreover, it is able to
dynamically update the ontology whenever any update in the clusters occurs.
In order to prove the efficiency of the proposal, we tested it in case of activity
recognition application using a six weeks over Aruba dataset and two synthetic
datasets and SVM as an activity recognizer. The evaluation result proves the
proposal high efficiency level which is better than static method and a previous
metric-based method.
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