
Sketch-Based Image Retrieval
via Compact Binary Codes Learning

Xinhui Wu(B) and Shuangjiu Xiao

School of Software, Shanghai Jiao Tong University, Shanghai, China
kexuan@sjtu.edu.cn, xsjiu99@cs.sjtu.edu.cn

Abstract. With the exploding number of images on the Internet and
the convenience of free-hand sketch drawing, sketch-based image retrieval
(SBIR) has attracted much attention in recent years. Due to the ambigu-
ity and sparsity of sketches, SBIR is more challenging to cope with than
conventional content-based problem. Existing approaches usually adopt
high-dimensional features which require high-computational cost. Fur-
thermore, they often use edge detection and parameter-sharing networks
which may lose important information in training. In this study, we pro-
pose a compact binary codes learning strategy using deep architecture.
By leveraging well-designed prototype hash codes, we embed different
domains input (sketch and photo) into a common comparable feature
space. Besides, we present two separate networks specific to sketches and
real photos which can learn very compact features in Hamming space.
Our method achieves state-of-the-art results in accuracy, retrieval time
and memory cost on two standard large-scale datasets.

Keywords: Deep learning · Hashing · Sketch-based image retrieval

1 Introduction

Sketches are highly abstract representations which express sufficient stories.
Different from natural images, they are formed of a few hand-drawn strokes.
Humans can draw simple sketches quickly without any reference, at the same
time conveying information precisely. With such interesting characteristics, there
exists much research dealing with sketch-based image retrieval [6,17,20], sketch-
based 3D model retrieval [23] and sketch recognition [28].

In this paper, our research direction focuses on sketch-based image retrieval
(SBIR). It aims at retrieving most similar results in image gallery collection
by a query free-hand sketch. Figure 1 gives an example of retrieval flow. SBIR
can solve the situation when it is hard to describe an object in words or query
image is not available. In this situation, text-based image retrieval (TBIR) and
content-based image retrieval (CBIR) [5,25,26] fail. Essentially, SBIR has two
main advantages: (i) Science proves that people are sensitive to outlines [11,29].
Free-hand sketches can show enough key query points without noisy background.
(ii) With the appearance of touch-screen mobile devices in recent years, drawing
c© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11306, pp. 294–306, 2018.
https://doi.org/10.1007/978-3-030-04224-0_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04224-0_25&domain=pdf
https://doi.org/10.1007/978-3-030-04224-0_25


Sketch-Based Image Retrieval via Compact Binary Codes Learning 295

Fig. 1. An illustration of sketch-based image retrieval.

sketches becomes quite convenient. Even non-artists could draw sketches within
few seconds.

However, SBIR confronts several challenges. First, sketches lack texture and
color information. The feature of sparse lines is totally different with traditional
images. Second, since people depict query sketch without reference as aforesaid,
sketches usually exhibit large intra-class variations.

Over the past 25 years, the study on SBIR has developed rapidly [20]. Among
them, the bulk of methods exploit traditional hand-crafted pipeline [6,18,19].
They usually first transform real images to detected edgemap photos in order to
narrow the semantic gap between the sketch and the image. Then, hand-crafted
features of both sketches and edgemap photos are extracted and fed into bag-of-
words architecture. Whereas, their shallow features cannot handle large internal
variations well. Recently, convolutional neural networks (CNN) [10] has shown
great power on deep feature representation. By means of robust end-to-end deep
frameworks, the deep methods [17,20] are superior to hand-crafted ones typically.
Actually, the deep learning methods of SBIR come out much later than those
in CBIR due to the lack of available fine-grained sketch dataset. Since 2016, the
appearance of Sketchy [20] dataset boosts the development of SBIR. Though
deep methods have achieved progress, they mainly calculate feature distances
in Euclidean space with high complexity. It is not feasible when dealing with
large-scale retrieval task. Hence, we introduce a deep hashing architecture to
perform fast retrieval in Hamming space with low memory cost.

SBIR problem is a typical cross-domain retrieval case. To address the issue
of aforementioned sketch challenges, previous works generally translate the real
image to the approximate sketch in advance. However, salient structural infor-
mation may be lost during edge extraction process. In addition, most of the
existing methods adopt shared Siamese network. However, learning parameters
individually will perform better if possible. Besides, previous works generally
compare features in high-dimensional space requiring high-computational cost
and long retrieval time.

In this paper, we present a novel deep hashing framework to solve sketch-
based image retrieval. The main contributions of our work include: (i) Encoding
supervised information into a semantic-preserving set of prototype hash codes



296 X. Wu and S. Xiao

to achieve better guide for deep training process; (ii) Presenting a deep hashing
framework with two separate networks for sketches and photos, which is more
suitable for cross-domain challenge, capturing the internal semantic relationship
and cross-domain similarities at the same time; (iii) Achieving state-of-the-art
results in accuracy, retrieval time and memory cost compared with existing meth-
ods on two large datasets.

2 Related Work

Sketch-Based Image Retrieval. Prior hand-crafted methods first use edge
detectors like Canny [1] to generate edge or contour maps from real images. After
that, they extract features of both sketches and generated edgemap photos, such
as SIFT [15], HOG [2], SSIM [21], Gradient Field HOG [6] etc. Then, the bag-of-
words framework is used to learn discriminative semantic representation. With
the help of CNN, deep methods achieve better performance recently on category-
level [13,17] and fine-grained SBIR [27]. Wang et al. [23] use a Siamese network to
retrieve 3D models by a query sketch. Qi et al. [17] also adopt a similar Siamese
strategy to solve category-level SBIR based on a small dataset Flickr15K [6],
which is the first attempt in deep SBIR technique. Yu et al. [27] achieve a
nice result in fine-grained search with triplet loss. To our best knowledge, DSH
[13] is the only existing work that employs deep hash learning in SBIR. It uses
a relatively complex semi-heterogeneous hashing framework, achieving a good
performance in large-scale dataset. Despite that, our work surpasses DSH in
evaluation with rather compact hash code learning.

Hashing Learning. Hashing is an effective method for fast image retrieval. It
projects high-dimensional features to compact semantic-preserving binary codes,
which are called hash codes. The mapping strategy is the crucial hashing func-
tion. Early unsupervised hashing methods include LSH [3], SH [24] and ITQ
[5]. With the help of label information, supervised hashing can deal with more
complicated semantics than unsupervised hashing. The representative ones are
BRE [8], MLH [16] and KSH [14]. In recent years, deep hashing methods have
shown promising power. CNNH [26], DPSH [12] and NINH [9] are representative
methods. They leverage pair-wise or triplet-wise approaches to learn semantic
similarity, while large storage of pair or triplet samples is required. Moreover,
above-mentioned hashing methods are devoted to CBIR, which have not been
specially designed for SBIR yet.

3 Methodology

3.1 Problem Formulation

We let P = {pi}n1
i=1 be the set of all real image photos and S = {si}n2

i=1 be
the set of all sketches, where n1 and n2 are the sample number of set P and



Sketch-Based Image Retrieval via Compact Binary Codes Learning 297

S respectively. The corresponding label set of real photos is denoted as LP =
{lPi }n1

i=1, l
P
i ∈ {1, 2, ..., C}. Each photo pi is connected to one label tag lPi coming

from total C classes. Similarly, we have the label set of sketches LS = {lSi }n2
i=1,

lSi ∈ {1, 2, ..., C}.
Our target is to learn a semantic-preserving hashing function mapping orig-

inal photos P and sketches S to compact hash codes BP = {bP
i }n1

i=1 and
BS = {bS

i }n2
i=1. These hash codes are d-bit binary representation bP

i , b
S
i ∈ {0, 1}d

that well preserving intrinsic semantics. For our particular task, we need to
bridge the domain gap between real photos and sketches, in the meantime
we should maintain the similarity relationship in original feature space for
both domains themselves. More specifically, given two images, no matter which
domain they belong to (perhaps a sketch or a natural photo): (i) If their corre-
sponding labels are the same, they should be semantically similar all the way.
In other words, the hamming distance of their hash codes has to be quite small.
(ii) Otherwise, the distance between their codes should be pushed away as far
as possible.

Fig. 2. Pipeline of our proposed idea. The first step is the prototype hash code gen-
eration algorithm. The next step is the hashing function learning procedure using
prototype codes. The last step is the sketch-based image retrieval process.

To achieve our goal mentioned above, we design an efficient pipeline as shown
in Fig. 2. It consists of three parts. Firstly, we encode a set of prototype hash
codes fully utilizing the label semantic information. The next step is the hashing
function learning procedure. We propose a novel deep hashing architecture that
is specific to sketches and natural photos respectively with the help of generated
prototype codes. Finally, we conduct sketch-based image retrieval process.

3.2 Prototype Hash Code

To mend the semantic gap in cross-domain situation such as our problem, we call
for a comparable feature space applying to both sketches and real images. Hence,
we specially design a common prototype binary encoding for both domains,



298 X. Wu and S. Xiao

which we call it prototype hash code. Since label information indicates the inher-
ent semantic content for useful hashing learning aforesaid, a straight thinking is
to generate a series of prototype hash codes based on label supervision. Given
C label classes and d bit length of hash code, we denote the prototype set of
C distinct hash codes as Bo = {boi }Ci=1, b

o
i ∈ {0, 1}d. Among set Bo, every code

element boi is matched with a class label. Then, during the subsequent hashing
learning procedure, these prototype codes provide a firmly supervised support
for efficient training. The target is to train a network which can output a hash
code close to its nearest prototype code as much as possible.

To achieve our desired result, our generated prototype codes should meet
some requirements. The hamming distance between every code pairs should
be maximized, in order to capture more discriminative intrinstic structure and
reduce the error rate in retrieval. That is to say, we need to enlarge the minimum
hamming distance of this set to the greatest extent:

max
f

{
dmin = min

i,j

∥∥boi − boj
∥∥
H

}
, f : L → B0

s.t.B0 ∈ {0, 1}d×C , boi , b
o
j ∈ B0, i �= j

(1)

where dmin is the crucial minimum hamming distance, ‖ · ‖H is the Hamming
distance, L is the whole label set, f is our prototype encoding algorithm. In prac-
tice, our generation problem has no general sole solution in mathematics. Here,
we search the feasible solution through controlling dmin to grow up increasingly.
Starting with a relatively small dmin, we can easily find out a candidate set with
more than C codewords satisfying the hamming distance between any codes is
larger than dmin. Afterwards, we increase dmin by 1 repeatedly and follow the
same searching strategy. Along with the increased dmin, the number of possible
available codes of a candidate set will be reduced. We stop when the candidate
set has less than the lower bound C codes. The last candidate set satisfying the C
bound limitation is our final set resource. We randomly select C codes within it
as optimal prototype code set Bo. Consequently, we have our specially designed
prototype result well maintaining discriminative essence. It is worth noting that
with our generation algorithm, even very short hash codes can provide a large
minimum hamming distance which is quite efficient for SBIR.

3.3 Deep Hashing Architecture

In this part, we propose a novel deep hashing architecture with two networks
for sketches and photos individually as shown in Fig. 3. Such deep network can
be seen as the hashing function which is a decisive factor in hashing learning.
We denote hashing function as HS for the sketch and HP for the photo. As
previously mentioned, sketches have a quite different appearance to real photos.
It is unable to directly imitate mature network technique from CBIR here. If we
let sketches and real images share the same network, the learned model will add
extra noise on sketches and ignore detail structure of natural images, causing a
bad effect on both domains. In addition, if we follow previous works to convert



Sketch-Based Image Retrieval via Compact Binary Codes Learning 299

Fig. 3. An illustration of our proposed deep hashing retrieval architecture. We adopt
two separate networks for two domains. The upper part is the network for sketch, and
the lower part is the network for real photo.

natural images to approximate sketches by edge extraction in advance, it still
has some defects. Actually, a sketch is different from a simple tracing of image
boundary. People often draw sketches with geometry distortion and simply rely
on their vague memory. We once test this edge extraction strategy and it turned
out to be less effective.

Benefiting from prototype hash code introduced before, we adopt two sepa-
rate networks for sketches and photos. The networks will learn a shared embed-
ding in Hamming space. Prototype code set is a common binary embedding
for sketches and photos both, guiding hashing learning at the last layer. Thus,
two separate networks have the same mission that samples have to be grouped
around the targeted prototype code.

For sketches, we adopt a carefully designed network containing 6 convolu-
tional layers and 2 fully connected layers illustrated in the upper part of Fig. 3.
The last layer is a fully connected layer with d nodes, relying on the hash code
bit length. We also call it hash layer since it will encode the high-dimensional fea-
ture into binary-like one yi via a following sigmoid activation. Sigmoid function
has proved to be effective for hashing methods in that it could regulate features
within a (0, 1) real-valued range, becoming hash-like features. To train the sketch
network end-to-end, we exploit Mean Squared Logarithmic Error (MSLE) with
the supervision of prototype hash code:

L =
1
n1

n1∑
i=1

‖log(boi + 1) − log(yi + 1)‖2 (2)

where boi is the prototype hash code that yi referred to. As MSLE is more
robust to overfitting than mean squared error, we choose MSLE as our learning



300 X. Wu and S. Xiao

objective. The detailed network configuration is illustrated in Table 1. The rea-
son why we employ such kind of shallow network is based on sketch trait itself.
The sketch is a grayscale image with rather sparse lines. Due to lack of abun-
dant structure information and the unbalanced zero-one amount in sketches, a
very deep network will fall into overfitting. Besides, we employ data augmenta-
tion procedure to further avoid overfitting situation and make limited training
samples more robust. Each sketch sample runs through the augmentation pre-
processing and then be fed into the network. A Random rotation, shear, zoom
and translation will be applied.

Table 1. Detailed configuration of sketch network.

Layer Filter Size Filter Num Stride Pad Activation Output

Input - - - - - 1 × 128 × 128

Conv 3 × 3 32 1 1 ReLU 32 × 128 × 128

Conv 3 × 3 32 1 1 ReLU 32 × 128 × 128

Dropout(0.25) - - - - - 32 × 128 × 128

MaxPool 3 × 3 - 3 0 - 32 × 42 × 42

Conv 3 × 3 64 1 1 ReLU 64 × 42 × 42

Conv 3 × 3 64 1 1 ReLU 64 × 42 × 42

Dropout(0.25) - - - - - 64 × 42 × 42

MaxPool 2 × 2 - 2 0 - 64 × 21 × 21

Conv 3 × 3 128 1 1 ReLU 128 × 21 × 21

Conv 3 × 3 2048 1 1 ReLU 2048 × 21 × 21

Dropout(0.25) - - - - - 2048 × 21 × 21

GlobalAvgPool 21 × 21 - 21 0 - 2048

FC 1 × 1 256 - - ReLU 256

FC 1 × 1 256 - - ReLU 256

Dropout(0.5) - - - - - 256

FC(hash) 1 × 1 d - - Sigmoid d

For real photos, we employ a revised successful deep network Inception-v3
[22] as shown in the lower figure of Fig. 3. Because the photo retrieval task is
similar to traditional image-based task, we directly use a well-performing stan-
dard configuration from ILSVRC competition as our basic framework. Inception
net is the winner of ILSVRC 2014 proposed by Google. Real photo input is
downsampled to 140 × 140. Then we replace the last fully connected layers and
softmax layer of original Inception net by a fully connected layer with 1024 nodes
right after the global average pooling. At the end, a hash layer is applied exactly
as sketch network works. We still use MSLE as our loss function.



Sketch-Based Image Retrieval via Compact Binary Codes Learning 301

3.4 Retrieval Process

The output of training network is real-valued feature yi. To obtain the final hash
code bi, we binarize the activation output with a threshold:

bi = sgn(yi − 0.5),

sgn(x) =

{
0 x ≤ 0,
1 x > 0

(3)

Next, we carry out retrieval process. For SBIR, hashing retrieval process is
a little more complicated than CBIR. (i) With our fine trained photo hashing
function HP , all the real images in gallery set are transformed to compact d-bit
hash codes. We denote the candidate hash pool as P. (ii) Given a query sketch
sq, it will go through the trained sketch model HS and output its sketch code
bq. (iii) We compare each candidate photo code in P with a query code bq by
calculating hamming distance. The hamming distance has a positive relation
to similarity. Hence, it forms a rank of retrieval results in ascending order of
distance.

4 Experiments

In this section, we demonstrate the effectiveness of our proposed method on
sketch-based image retrieval. We conduct extensive experiments on two public
datasets and our method is compared with several state-of-the-art methods. At
last, we evaluate our method and verify its good performance.

4.1 Datasets

So far, the largest datasets in SBIR are TU-Berlin Extension and Sketchy exten-
sion. TU-Berlin benchmark [4] is aimed at sketch recognition and classification.
It consists of 20,000 sketch images evenly belonging to 250 categories covering
daily objects like teapot, car and horse. The extended TU-Berlin [30] dataset
adds 204,489 real images in total as gallery set for sketch-based image retrieval.
Sketchy [20] is the latest released dataset specifically collected for retrieval.
It contains 75,471 sketches of 12,500 natural objects from 125 categories. The
extended sketchy [13] provides another 60,502 natural images and merges original
natural images into the retrieval gallery pool. Both two collections are convincing
evaluation datasets for large-scale SBIR task.

For fair comparison to previous works, we follow the same experimental set-
ting as DSH [13]. We randomly select 2,500 sketches (10 sketches per category)
for TU-Berlin and 6,250 sketches (50 sketches per category) for Sketchy as test
query sketches. And we use the remaining natural images and the rest of sketches
for training.



302 X. Wu and S. Xiao

4.2 Implementation Details

We implement our experiments on single GTX1060 GPU with 6GB memory.
For sketch model, data augmentation is applied before entering the network.
We perform random rotation in the range of 20 degrees, horizontal and vertical
translation up to 25 pixels, zoom from 0.8 to 1.2 times and a 0.2 shear intensity to
reduce overfitting. During training, batch size is set to 40 and the initial learning
rate is 0.001. The model is trained for 200 epochs with Adam [7] optimizer. For
photo model, we do training for 40 epochs with batch size of 128. And we still
use Adam optimizer and the learning rate is 0.001.

Table 2. Performance comparison in SBIR with state-of-the-arts via mAP, Preci-
sion@200, Retrieval time per query and Memory load on TU-Berlin Extension.

Method Dimension TU-Berlin Extension

mAP P@200 Retrieval
time per
query(s)

Memory
load(MB)

HOG 1296 0.091 0.120 1.43 2.02 × 103

GF-HOG 3500 0.119 0.148 4.13 5.46 × 103

SHELO 1296 0.123 0.155 1.44 2.02 × 103

LKS 1350 0.157 0.204 1.51 2.11 × 193

Siamese CNN 64 0.322 0.447 7.70 × 10−2 99.8

SaN 512 0.154 0.225 0.53 7.98 × 102

GN Triplet 1024 0.187 0.301 1.02 1.60 × 103

3D Shape 64 0.054 0.072 7.53 × 10−2 99.8

Siamese-AlexNet 4096 0.367 0.476 5.35 6.39 × 103

Triplet-AlexNet 4096 0.448 0.552 5.35 6.39 × 103

DSH-32 32 0.358 0.486 5.57 × 10−4 0.78

DSH-64 64 0.521 0.655 7.03 × 10−4 1.56

DSH-128 128 0.570 0.694 1.05 × 10−3 3.12

Our-12 12 0.550 0.622 3.04 × 10−4 0.29

Our-24 24 0.561 0.634 4.48 × 10−4 0.59

Our-32 32 0.573 0.650 5.43 × 10−4 0.78

Our-64 64 0.591 0.668 6.99 × 10−4 1.56

Our-128 128 0.613 0.693 9.72 × 10−4 3.12

4.3 Results and Analysis

Our results are evaluated within the whole gallery set on extended TU-Berlin
and Sketchy respectively. We compare our method with several state-of-the-art
deep SBIR approaches including Siamese CNN [17], sketch-a-net (SaN) [28], GN



Sketch-Based Image Retrieval via Compact Binary Codes Learning 303

Table 3. Performance comparison in SBIR with state-of-the-arts via mAP, Preci-
sion@200, Retrieval time per query and Memory load on Sketchy Extension.

Method Dimension Sketchy Extension

mAP P@200 Retrieval
time per
query(s)

Memory
load(MB)

HOG 1296 0.115 0.159 0.53 7.22 × 102

GF-HOG 3500 0.157 0.177 1.41 1.95 × 103

SHELO 1296 0.161 0.182 0.50 7.22 × 102

LKS 1350 0.190 0.230 0.56 7.52 × 102

Siamese CNN 64 0.481 0.612 2.76 × 10−2 35.4

SaN 512 0.208 0.292 0.21 2.85 × 102

GN Triplet 1024 0.529 0.716 0.41 5.70 × 102

3D Shape 64 0.084 0.079 2.64 × 10−2 35.6

Siamese-AlexNet 4096 0.518 0.690 1.68 2.28 × 103

Triplet-AlexNet 4096 0.573 0.761 1.68 2.28 × 103

DSH-32 32 0.653 0.797 2.55 × 10−4 0.28

DSH-64 64 0.711 0.858 2.82 × 10−4 0.56

DSH-128 128 0.783 0.866 3.53 × 10−4 1.11

Our-12 12 0.762 0.839 2.21 × 10−4 0.11

Our-24 24 0.772 0.850 2.43 × 10−4 0.21

Our-32 32 0.789 0.867 2.57 × 10−4 0.28

Our-64 64 0.796 0.876 2.81 × 10−4 0.56

Our-128 128 0.810 0.890 3.57 × 10−4 1.11

Triplet [20], 3D Shape [23], as well as Siamese-AlexNet and Triplet-AlexNet [13].
Traditional hand-crafted methods HOG [2], GF-HOG [6]. SHELO [18] and LKS
[19] are also included. To better demonstrate our outstanding performance, we
conduct our experiments with 12, 24, 32, 64 and 128 bits hash code. This is
the same setting compared with deep hashing method DSH [13]. During the
comparison to SBIR baselines, we use a ranking based criterion mean Average
Precision (mAP) and precision at top 200 (P@200) to evaluate the retrieval
quality. Higher mAP and P@200 indicate a higher retrieval level in the ranking
list. The memory load over the whole gallery images and retrieval time per query
are also listed. Public results data of previous works are derived from DSH. The
comparison results on two datasets are illustrated in Tables 2 and 3.

From our extensive comparison results, we have the following findings: (i)
Our method outperforms all the baseline methods on both large-scale datasets.
We increase around 4% and 3% mAP over TU-Berlin Extension and Sketchy
Extension respectively. (ii) It is noteworthy that results on TU-Berlin are infe-
rior to Sketchy due to much more categories and larger gallery size. (iii) Deep



304 X. Wu and S. Xiao

methods strongly beat traditional hand-crafted ones, proving the powerful abil-
ity of deep features. Additionally, with the help of hashing, our method and DSH
can save memory load and retrieval time by almost four orders of magnitude.
(iv) In comparison to the only deep hashing competitor DSH, our method has
a better performance under several metrics. Especially, our method can achieve
a good behavior even with quite compact hash code. For instance, our 12-bit
hashing result surpasses 64-bit DSH in mAP. It demonstrates that our unified
prototype hash code set is suitable for fast large-scale retrieval task. Moreover,
our method utilizes a point-to-point training rather than pairwise loss in DSH,
avoid tedious sample building step and weak training guidance.

5 Conclusion

In this paper, we introduce a novel deep hashing method for sketch-based image
retrieval. Our method adopts a prototype hash code set for constraining feature
representation. A deep hashing architecture is specially designed for two dif-
ferent domains, sketches and natural photos respectively. By means of mapping
different domains into a common hamming space, our method achieves good per-
formances with very compact binary codes. Extensive experiments across large-
scale retrieval benchmarks demonstrate that our method outperforms all non-
deep and deep methods under several metrics. In general, our method exhibits
promising result in fast and efficient retrieval via compact binary codes learning.

References

1. Canny, J.: A computational approach to edge detection. In: Readings in Computer
Vision, pp. 184–203. Elsevier (1987)

2. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In:
IEEE Computer Society Conference on Computer Vision and Pattern Recognition
2005. CVPR 2005, vol. 1, pp. 886–893. IEEE (2005)

3. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proceedings of the Twentieth Annual
Symposium on Computational Geometry, pp. 253–262. ACM (2004)

4. Eitz, M., Hays, J., Alexa, M.: How do humans sketch objects? ACM Trans. Graph.
31(4), 44–1 (2012)

5. Gong, Y., Lazebnik, S.: Iterative quantization: a procrustean approach to learning
binary codes. In: IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) 2011, pp. 817–824. IEEE (2011)

6. Hu, R., Collomosse, J.: A performance evaluation of gradient field hog descriptor
for sketch based image retrieval. Comput. Vis. Image Underst. 117(7), 790–806
(2013)

7. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

8. Kulis, B., Darrell, T.: Learning to hash with binary reconstructive embeddings. In:
Advances in Neural Information Processing Systems, pp. 1042–1050 (2009)

http://arxiv.org/abs/1412.6980


Sketch-Based Image Retrieval via Compact Binary Codes Learning 305

9. Lai, H., Pan, Y., Liu, Y., Yan, S.: Simultaneous feature learning and hash coding
with deep neural networks. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3270–3278 (2015)

10. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time
series. Handb. Brain Theory Neural Netw. 3361(10), 1995 (1995)

11. Li, G., Liu, J., Jiang, C., Zhang, L., Lin, M., Tang, K.: Relief R-CNN: utilizing
convolutional features for fast object detection. In: Cong, F., Leung, A., Wei, Q.
(eds.) ISNN 2017. LNCS, vol. 10261, pp. 386–394. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-59072-1 46

12. Li, W.J., Wang, S., Kang, W.C.: Feature learning based deep supervised hashing
with pairwise labels. arXiv preprint arXiv:1511.03855 (2015)

13. Liu, L., Shen, F., Shen, Y., Liu, X., Shao, L.: Deep sketch hashing: Fast free-hand
sketch-based image retrieval. In: Proceedings of CVPR, pp. 2862–2871 (2017)

14. Liu, W., Wang, J., Ji, R., Jiang, Y.G., Chang, S.F.: Supervised hashing with ker-
nels. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
2012, pp. 2074–2081. IEEE (2012)

15. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Com-
put. Vis. 60(2), 91–110 (2004)

16. Norouzi, M., Blei, D.M.: Minimal loss hashing for compact binary codes. In: Pro-
ceedings of the 28th International Conference on Machine Learning (ICML-11),
pp. 353–360 (2011)

17. Qi, Y., Song, Y.Z., Zhang, H., Liu, J.: Sketch-based image retrieval via siamese con-
volutional neural network. In: IEEE International Conference on Image Processing
(ICIP) 2016, pp. 2460–2464. IEEE (2016)

18. Saavedra, J.M.: Sketch based image retrieval using a soft computation of the his-
togram of edge local orientations (s-helo). In: IEEE International Conference on
Image Processing (ICIP) 2014, pp. 2998–3002. IEEE (2014)

19. Saavedra, J.M., Barrios, J.M., Orand, S.: Sketch based image retrieval using learned
keyshapes (LKS). In: BMVC, vol. 1, p. 7 (2015)

20. Sangkloy, P., Burnell, N., Ham, C., Hays, J.: The sketchy database: learning to
retrieve badly drawn bunnies. ACM Trans. Graph. (TOG) 35(4), 119 (2016)

21. Shechtman, E., Irani, M.: Matching local self-similarities across images and videos.
In: IEEE Conference on Computer Vision and Pattern Recognition 2007. CVPR
2007, pp. 1–8. IEEE (2007)

22. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the incep-
tion architecture for computer vision. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

23. Wang, F., Kang, L., Li, Y.: Sketch-based 3D shape retrieval using convolutional
neural networks. In: IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR) 2015, pp. 1875–1883. IEEE (2015)

24. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: Advances in Neural Infor-
mation Processing Systems, pp. 1753–1760 (2009)

25. Wu, X., Kamata, S.i., Ma, L.: Supervised two-step hash learning for efficient image
retrieval. In: 2017 4th Asian Conference on Pattern Recognition. IEEE (2017)

26. Xia, R., Pan, Y., Lai, H., Liu, C., Yan, S.: Supervised hashing for image retrieval
via image representation learning. In: AAAI, vol. 1, p. 2 (2014)

27. Yu, Q., Liu, F., Song, Y.Z., Xiang, T., Hospedales, T.M., Loy, C.C.: Sketch me that
shoe. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
2016, pp. 799–807. IEEE (2016)

28. Yu, Q., Yang, Y., Song, Y.Z., Xiang, T., Hospedales, T.: Sketch-a-net that beats
humans. arXiv preprint arXiv:1501.07873 (2015)

https://doi.org/10.1007/978-3-319-59072-1_46
https://doi.org/10.1007/978-3-319-59072-1_46
http://arxiv.org/abs/1511.03855
http://arxiv.org/abs/1501.07873


306 X. Wu and S. Xiao

29. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks.
In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS,
vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
10590-1 53

30. Zhang, H., Liu, S., Zhang, C., Ren, W., Wang, R., Cao, X.: Sketchnet: Sketch clas-
sification with web images. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1105–1113 (2016)

https://doi.org/10.1007/978-3-319-10590-1_53
https://doi.org/10.1007/978-3-319-10590-1_53

	Sketch-Based Image Retrieval via Compact Binary Codes Learning
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Problem Formulation
	3.2 Prototype Hash Code
	3.3 Deep Hashing Architecture
	3.4 Retrieval Process

	4 Experiments
	4.1 Datasets
	4.2 Implementation Details
	4.3 Results and Analysis

	5 Conclusion
	References




