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Preface

The 25th International Conference on Neural Information Processing (ICONIP 2018),
the annual conference of the Asia Pacific Neural Network Society (APNNS), was held
in Siem Reap, Cambodia, during December 13–16, 2018. The ICONIP conference
series started in 1994 in Seoul, which has now become a well-established and
high-quality conference on neural networks around the world. Siem Reap is a gateway
to Angkor Wat, which is one of the most important archaeological sites in Southeast
Asia, the largest religious monument in the world. All participants of ICONIP 2018 had
a technically rewarding experience as well as a memorable stay in this great city.

In recent years, the neural network has been significantly advanced with the great
developments in neuroscience, computer science, cognitive science, and engineering.
Many novel neural information processing techniques have been proposed as the
solutions to complex, networked, and information-rich intelligent systems. To dis-
seminate new findings, ICONIP 2018 provided a high-level international forum for
scientists, engineers, and educators to present the state of the art of research and
applications in all fields regarding neural networks.

With the growing popularity of neural networks in recent years, we have witnessed
an increase in the number of submissions and in the quality of submissions. ICONIP
2018 received 575 submissions from 51 countries and regions across six continents.
Based on a rigorous peer-review process, where each submission was reviewed by at
least three experts, a total of 401 high-quality papers were selected for publication in
the prestigious Springer series of Lecture Notes in Computer Science. The selected
papers cover a wide range of subjects that address the emerging topics of theoretical
research, empirical studies, and applications of neural information processing tech-
niques across different domains.

In addition to the contributed papers, the ICONIP 2018 technical program also
featured three plenary talks and two invited talks delivered by world-renowned
scholars: Prof. Masashi Sugiyama (University of Tokyo and RIKEN Center for
Advanced Intelligence Project), Prof. Marios M. Polycarpou (University of Cyprus),
Prof. Qing-Long Han (Swinburne University of Technology), Prof. Cesare Alippi
(Polytechnic of Milan), and Nikola K. Kasabov (Auckland University of Technology).

We would like to extend our sincere gratitude to all members of the ICONIP 2018
Advisory Committee for their support, the APNNS Governing Board for their guid-
ance, the International Neural Network Society and Japanese Neural Network Society
for their technical co-sponsorship, and all members of the Organizing Committee for all
their great effort and time in organizing such an event. We would also like to take this
opportunity to thank all the Technical Program Committee members and reviewers for
their professional reviews that guaranteed the high quality of the conference pro-
ceedings. Furthermore, we would like to thank the publisher, Springer, for their
sponsorship and cooperation in publishing the conference proceedings in seven vol-
umes of Lecture Notes in Computer Science. Finally, we would like to thank all the



speakers, authors, reviewers, volunteers, and participants for their contribution and
support in making ICONIP 2018 a successful event.

October 2018 Jun Wang
Long Cheng

Andrew Chi Sing Leung
Seiichi Ozawa
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Abstract. This paper proposes a meta-cognitive recurrent multi-step-
prediction model called Meta-cognitive Recurrent Recursive Kernel
Online Sequential Extreme Learning Machine with a new modified Drift
Detector Mechanism (Meta-RRKOS-ELM-DDM). This model combines
the strengths of Recurrent Kernel Online Sequential Extreme Learn-
ing Machine (RKOS-ELM) with the recursive kernel method and a new
meta-cognitive learning strategy. We apply Drift Detector Mechanism
to solve concept drift problem. Recursive kernel method successfully
replaces the normal kernel method in RKOS-ELM and generates a fixed
reservoir with optimised information. The new meta-cognitive learning
strategy can reduce the computational complexity. The experimental
results show that Meta-RRKOS-ELM-DDM has a superior prediction
ability in different predicting horizons than the others.

Keywords: Time series · Recursive kernel · Recurrent
Kernel Adaptive Filter · Concept drift · Meta-cognitive learning

1 Introduction

Time series prediction impacts on humans’ daily life, e.g. weather forecasting,
wind speed forecasting for wind power systems [1], and financial trend forecast-
ing [2]. In 2015, Scardapane et al. proposed an algorithm called Online Sequential
Extreme Learning Machine (OS-ELM) with Kernel that enables implicit feature
mappings by utilising kernel method [3]. The problem of OS-ELM–the unstable
prediction results–was solved by kernel method. Its unstable feature mapping in
OS-ELM was replaced by the kernel matrix. This can solve the problem of predic-
tion deterministic in model as it is known that Extreme Learning Machine (ELM)
randomly chooses its parameters, thus its generalisation ability cannot be guar-
anteed. However, the algorithm requires an extensive computational resource in
the learning process, especially when the large-scale data sets are considered.
c© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11306, pp. 3–13, 2018.
https://doi.org/10.1007/978-3-030-04224-0_1
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Thus, Scardapane et. al. further employed Kernel Adaptive Filters (KAF) to
reduce the size of hidden neurons in the process of their algorithm–Approximate
Linear Dependency (ALD) and Fixed-Budget (FB). It was found that ALD can
reduce computational complexity while enhance the overall performance. Fur-
thermore, the majority of data sets are non-stationary that means the charac-
teristics of data streams may change–underlying distribution changes over time.
This directly causes concept drift problem. Although there are many methods
that deal with concept drift [4–6], however, these methods are only focus on clas-
sification problem. Hence, this paper pays more attention to the concept drift
problem in time series prediction.

Besides, the hidden nodes of Kernel OS-ELM (KOS-ELM) include all infor-
mation of training data, which keep the old information and cannot be over-
written with time progress. Reservoir Computing (RC) is a framework for
computation–an extension of neural networks–that is employed in time series
prediction. It is a fixed dynamical system that absorbs the information from
their recent input history. As time passes, the old information in the reservoir
is dissipated and overwritten. There are two major types of RC–Liquid-State
Machine (LSM) and Echo State Network (ESN). Again, due to the random
weight selection, this causes the unstable of forecasting performance. Therefore,
this paper defines infinitely large reservoir called recursive kernels. These kernels
can be readily analysed in terms of dynamical stability. To deal with an infinitely
large hidden states, kernel trick is applied. Thus, we end up with a kernel func-
tion that is the inner product of the hidden states of infinite networks.

In order to solve the limitations of KOS-ELM and generate the fixed dynam-
ical reservoir in its learning part, we apply recurrent multi-step algorithm with
recursive kernel to release the restriction of prediction horizon. Furthermore, the
KAF is applied to reduce the extensive computational resources. Moreover, Drift
Detector Mechanism (DDM) is also considered in order to enable the model to
have a good generalisation for concept drift in time series prediction and improve
the performance of prediction. Finally, the modified meta-cognitive strategy–a
new strategy for regression prediction–is applied to decide when the coming data
in the learning part need to be updated, retrained or discarded.

2 Methodology

This section explains the theory of recursive kernel method and modifies DDM
in the prediction model of KOS-ELM. At the end of the section, we present how
a new meta-cognitive strategy is applied in our proposed time series prediction
model.

2.1 Data Transformation

Time series data is a series of data points listed in time order. Assuming that
the data X = [X1, . . . , XN ] is given where N is the number of time series data.
Then, the data is transformed into a matrix form in order to achieve the goal of
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multi-step prediction. This technique was previously applied in [7,8]. This gives
the following training input data and target data,

S =

⎡
⎢⎣

X1,1 · · · X1,D

...
. . .

...
XL,1 . . . XL,D

⎤
⎥⎦ ; Yp =

⎡
⎢⎣

X1,D+p

...
XL,D+p

⎤
⎥⎦ , (1)

where D is the size of time window, L is the number of training data, p is the
p-th step in the prediction (p = 1, 2, . . . , P ).

2.2 Recurrent Multi-step Algorithm

Although KOS-ELM can perform well in time series prediction [3], its size of
prediction horizon is restricted to utilise in the real-world application. The recur-
rent multi-step algorithm is a feedback network which backward from the output
of current step to the input of the next step. In order to extend the prediction
horizon, we employ recurrent multi-step algorithm in the prediction model, more
details can be found at [8]. Based on the theory of recurrent multi-step algorithm,
the training input data at the (p + 1)-th becomes as follow,

Sp+1 =

⎡
⎢⎢⎢⎢⎣

X1,1+p · · · X1,D y−1
1 · · · y−p

1

...
. . .

...
...

. . .
...

XL,1+p . . . XL,D y−1
L · · · y−p

L

⎤
⎥⎥⎥⎥⎦

, (2)

where y−p represents the predicting values of training data in the p-th step and
(D + 1)≥ P .

2.3 Combining Modified DDM with Recurrent KOS-ELM

In the dynamically changing or non-stationary environments, the data distri-
bution can change over time that results in the phenomenon of concept drift.
Hence, this phenomenon should be taken into consideration in the learning part
of the model. According to the comparison of different concept drift detectors
in [9], DDM is the best contender in classification tasks. In this paper, we modify
DDM to suit with the process of the time series prediction and apply the mod-
ified DDM in Recurrent KOS-ELM (RKOS-ELM) in order to enable concept
drift detector in the model.

For a sufficiently large number of samples, if the Binomial distribution is
closely approximated by a Normal distribution with the same mean and vari-
ance, the process is wide-sense stationary. Therefore, the distribution is sta-
tionary [10]. Under this situation, no concept drift appears and the error rate
decreases. Therefore, the probability distribution is a significant flag for detect-
ing the change of context.
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In the process of detecting concept drift of time series prediction by DDM,
each of the l-th sample error-rate (ERl,p) and the standard deviation (SDl,p) in
the p-th step can be calculated by (3) and (4), respectively.

ERl,p = |Yl,p − Ŷl,p|/Yl,p, (3)

SDl,p =
√

(ERl,p × (1 − ERl,p)) /l, (4)

For each sample in time series stream, we have to update two registers in order
to keep track of error rate, including the minimum value of error rate ERmin and
standard deviation SDmin. In the learning process of RKOS-ELM, we define the
error rate in the 1−α/2 confidence interval. It is approximately ERl,p±α×SDl,p

when there are a large number of examples (L ≥ 30). The α is the confidence
level. At the same time, the initial ERmin and SDmin are defined as ER1,p and
SD1,p, when the first input samples come in. The following new samples of the
p-th step coming in the learning part of RKOS-ELM is processed and updated
ERmin and SDmin. For instance, in the learning process of RKOS-ELM in the
first step, there is the l-th sample Sl,· with corresponding ERl,1 and SDl,1. The
confidence level for concept drift is set to 99%, that is, the concept drift problem
appears if ERi+SDi ≥ ERmin+3×SDmin. Otherwise, no concept drift problem
happens if ERi + SDi ≤ ERmin + SDmin. Besides, ERmin and SDmin will be
updated.

2.4 Recursive Kernel

Assuming that there is a kernel function k(x, x′) with data points x and x′. The
kernel function can be defined by k(x, x′) = φ(x)φ(x′), where φ is a feature map.
A norm can be defined using inner product of inputs and the kernel function has
the following property:

φ(x)φ(x′) = k(x, x′). (5)

If k has φ associated with it for which (5) is valid, this means that this same
feature map can be applied for recurrent kernels. The recurrent kernel with input
data x and x′ can be written as follow:

rt,t′(x, x′) = k(kt−1(x, x′) + x(t)x′(t′), kt−1(x, x) + x(t)x(t), kt′−1(x′, x′) + x′(t′)x′(t′)). (6)

A recurrent formula that can be applied for any kernel function with the form
specified in (5) [11]. This recurrent formula also requires us to compute the
recurrent kernels kt−1(x, x) and kt′−1(x′, x′). Generally, a kernel function is only
a function of the inner product of its arguments, and not their quadratic norms.
In this case the corresponding recurrent kernel can be simplified to the following
form:

rt,t′(x, x′) = k(rt−1,t′−1(x, x′) + x(t)x′(t′)), (7)

In RKOS-ELM with DDM, Radial Basis Function (RBF), which is a popular
kernel function, is considered, k(x, x′) = exp(− ||x−x′||2

2σ2 ), where σ is a kernel
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parameter. Although ALD plays a significant role in filtering input data and
reduce the number of hidden nodes, the computing process of kernel matrix
only pays attention to the kernel matrix between the current input data and
the current memory. In order to deal with the infinitely large hidden states of
RKOS-ELM with DDM, we apply recursive kernel–which is the inner product
of the hidden states of infinite networks–to replace RBF kernel method in the
learning part. Thus, the old information of kernel matrix can be dissipated and
overwritten by the recursive kernel over the time passes. Therefore, the reservoir
of predicting model that is made by the recursive kernel has the more efficient,
completed, and variety of information than by the common kernel method. In this
paper, we utilise the recursive RBF kernel method to construct a kernel matrix.
The algorithm is called “Recurrent Recursive RBF Kernel Online Sequential
Extreme Learning Machine with DDM” (RRKOS-ELM-DDM).

According to (6), the recursive RBF can be represented as:

rt(x, x′) = exp(−||x(t) − x′(t)||2
2σ2

)exp(−rt−1(x, x′) − 1
σ′2 ), (8)

where, σ′ is the recursive kernel parameter and t represents the time sequence
of time series data. As l denotes the number of training data (l = (1, . . . , L)),
the symbol of time sequence is replaced by l in RRKOS-ELM-DDM. There-
fore, according to (8), the kernel matrix (GR) in RRKOS-ELM-DDM can be
represented as:

GR,l = [r(Sl, S1), . . . , r(Sl, Sl−1))]T , (9)

In RRKOS-ELM-DDM, denote the training input data S = {S(1,·),
S(2,·), . . . , S(L,·)}) and the corresponding target Y (Y = {Y1, Y2, . . . , YL}).
In the beginning, the kernel matrix for the first input sample is GR,1 =
exp(− ||x(t+1)−x(t+1)′||2

2σ2 ), ER1,p = 0, SD1,p =
√

ER1,p(1 − ER1,p), ERmin =
ER1,p, SDmin = SD1,p. In the updating phase, l ∈ {2, . . . , L}, the kernel matrix
can be calculated by (8) and the output weight (βl) with interval coefficient Ql

can be calculated by the following equations:

βl =
[
βl−1 − zlr

−1
l el

r−1
l el

]
, (10)

where zl = Ql−1GR,l, rl = C−1 + 1 − zT
l GR,l, el = Yl − GT

R,lβl−1, and

Ql =
[
Ql−1rl + zlz

T
l −zl

−zT
l 1

]
. (11)

C is a regularisation parameter that is defined by 1. It is noted that the initial
output weight β1 = Q1Y1 with Q1 = 1.

In the training phase of prediction, the l-th prediction value ŷl can be calcu-
lated by the kernel matrix GR,l and output weight βl as follow:

ŷl = GR,lβl. (12)
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2.5 New Meta-cognitive Learning Strategy

Seeking the optimal ALD threshold directly leads to the growth of learning time.
In order to solve this problem, a new learning strategy, which is called “meta-
cognitive learning strategy”, is considered in the prediction model. Not only
decide to add, retain or discard neuron when there is a new coming data into
the learning part, but also automatically define ALD threshold. This strategy
contains four parts, including under-sampling, neuron addition, retain sample,
and discard samples. The diagram of meta-cognitive learning for time series
prediction model is shown in Fig. 1.

Fig. 1. Meta-cognitive learning for time series prediction model.

Under-sampling is the first phase–initialisation for the model–which requires
the minimum number of hidden neurons. In the online learning models, the
minimum number of hidden neurons is defined as one. At the same time, the
initial threshold of ALD (ϕ) is equal to the current prediction error (e1). The
second phase is neuron addition, which contains ϕ and DDM criteria for new
coming data. The hidden neuron will be increased by (10), and input data is
added into the dictionary memory when the coming data fulfils the requirement
of ALD and DDM. Then the current ϕ for the l-th input sample can be defined
by the following equation:

ϕl = λ(ϕl−1) + (1 − λ)el, (13)

where λ is the slope that controls the rate of self-adaptation and is set close to
1. If the coming sample data does not have concept drift problem or has the
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similar characteristics with dictionary memory by detecting from ALD filter, it
will go to the retraining phase. The output weight will be retained by

β(l,p) = βl−1,p + Ql,pGel,p. (14)

The last phase is discarding phase that defines the maximum number of hidden
neurons to 1000 nodes. If the number of hidden neurons is more than 1000, the
corresponding sample with the minimum error pattern that is determined by FB
will be discarded from dictionary memory.

Finally, we apply meta-cognitive learning strategy in RKOS-ELM-DDM and
RRKOS-ELM-DDM, which can be called as Meta-RKOS-ELM-DDM and Meta-
RRKOS-ELM-DDM, respectively. The learning part of pseudo-code in RRKOS-
ELM-DDM is shown in Algorithm 1.

3 Experimental Results and Analysis in Synthetic
and Real-World Data Sets

We evaluate the performance of the proposed model–Meta-RKOS-ELM-DDM
and Meta-RRKOS-ELM-DDM–with its conventional technique, RKOS-ELM, in
synthetic and real-world data sets.

In the synthetic data sets, three time series data sets without concept drift
problem–containing 20,035 values each set–are generated by autoregressive pro-
cess as follows: (i) Xt = 1.5Xt−1 − 0.4Xt−2 − 0.3Xt−3 + 0.2Xt−4 + wt (TS1),
(ii) Xt = −0.1Xt−1 + 1.2Xt−2 + 0.4Xt−3 − 0.5Xt−4 + wt (TS2), and (iii)
Xt = 0.9Xt−1 + 0.8Xt−2 − 0.6Xt−3 + 0.2Xt−4 − 0.5Xt−5 − 0.2Xt−6 + 0.4Xt−7

+ wt (TS3). Then these sets are combined to new time series with concept drift
problem–the concept drift appears in the 10001-st value in the time series. TS4

is a combination of TS1 and TS2 while TS5 is a combination of TS3 and TS1.
TS6 is a combination of TS3 and TS2.

Furthermore, we employ two real-world data in the experiments, i.e., Shang-
hai Stock Exchange Composite Index (SSE) and ozone concentration of Toronto
(Ozone). SSE data from 1 January 1991 to 6 January 2017 is retrieved from
Yahoo Finance [12] and Ozone data is from 1 January 2003 to 31 December
2010 collected from the website of Ministry of the environment in Ontario [13].
We replace missing values by the mean value of their nearest values in all experi-
ments. Here, we transform the real-world time series data sets into the matrices,
including (6558 × 36) for SSE and (2887 × 36) for Ozone. In the experiments,
Symmetric Mean Absolute Percentage Error (SMAPE) is employed to measure
the performance of each model in the experiments, see [8] for more details on
SMAPE. As it is required to tune a threshold ϕ of ALD in RKOS-ELM, we
simply searched the optimal parameter uniformly in range of {0.00010, 0.00011,
. . . , 0.00100} based on SMAPE.

The performances of each contender in the four prediction horizons and
the average values of four periods of prediction horizons are shown in Table 1.
The table shows that the performances of Meta-RKOS-ELM-DMM and Meta-
RRKOS-ELM-DMM are clearly better than RKOS-ELM, except in TS6 data
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Algorithm 1. Learning Phase of RRKOS-ELM-DDM
Require: Size of prediction horizon P ; Time window size D; Number of training data

L; Training data: S by (1) with its target; Kernel parameter σ = 0.7; Recursive
kernel parameter σ′; Output weight of RKELM in the p-th step βp; Prediction
value in p-th step ŷp; Threshold of ALD (ϕ).

Ensure: Output weight βp; Prediction value ŷp.
1: for p ∈ {1, . . . , P} do
2: Initialise:
3: GR,1 = exp(− ||x(t+1)−x(t+1)′||2

2σ2 );

4: ER1,p = 0, SD1,p =
√

ER1,p(1 − ER1,p);
5: Q1,p = 1, β1,p = Q1Y1;
6: memp = Sp(1);
7: V1,p = 1;
8: ERmin = ER1,p, SDmin = SD1,p;
9: for l ∈ {2, . . . , L} do

10: Δl,p = k(Sl+1,p, Sl+1,p) − k(mem, Sl+1,p)
T Ql,pk(mem, Sl+1,p);

11: Compute ERl,p, SDl,p by (3) and (4), respectively;
12: Determine whether new coming data has concept drift problem or not;
13: if The coming data has concept drift problem then
14: CD = 1;
15: else
16: CD = 0;
17: end if
18: if CD = 1, and Δl,p ≥ ϕl then
19: Update GR,l,p by (9);
20: Update Ql,p by (11);
21: Update output weight (βl,p) by (10);
22: Add the current data into the memory dictionary (memp);
23: else
24: Update V(l,p) = Vl−1,p − G(zT

l−1,pVl−1,p);
25: Update output weight (βp,out) by 14;
26: ERmin = ERl,p;
27: SDmin = SDl,p

28: end if
29: end for
30: Add prediction value into training data as new input data for next step by (2);
31: end for

set that Meta-RKOS-ELM-DMM is worse than RKOS-ELM. This prove that
meta-cognitive strategy and DDM can enhance the prediction performance and
solve the concept drift problem. Moreover, Meta-RRKOS-ELM-DMM is the best
contender.

We further compare the results between Meta-RKOS-ELM-DDM and Meta-
RRKOS-ELM-DDM in order to prove the ability of recursive kernel technique
in the learning process of Meta-RKOS-ELM-DDM. In recursive kernel method,
σ′ has an impact on the prediction results. Therefore, σ′ is tuned in the range
of 1.0 to 30.0 with 0.1 intervals. The optimal values are 14.0, 10.0, 17.0, 20.5,
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Table 1. The performance comparison for multi-step-ahead prediction by RKOS-ELM,
Meta-RKOS-ELM-DDM, and Meta-RRKOS-ELM-DDM.

Data sets Algorithms Predicting horizon (p) Average predicting horizon

1 7 14 18 1–7 8–12 13–18 1–18

TS4 RKOS-ELM 2.13 4.20 6.21 6.33 2.94 4.84 6.00 4.49

Meta-RKOS-ELM-DDM 2.29 3.49 5.07 5.80 2.75 4.16 5.23 3.97

Meta-RRKOS-ELM-DDM 2.05 3.47 4.78 5.69 2.65 4.09 5.07 3.86

TS5 RKOS-ELM 1.96 6.66 8.59 8.77 4.15 7.26 8.03 6.31

Meta-RKOS-ELM-DDM 1.57 5.02 6.39 7.53 3.45 5.63 6.99 5.24

Meta-RRKOS-ELM-DDM 1.87 3.27 6.45 7.21 2.80 5.12 6.81 4.78

TS6 RKOS-ELM 1.27 2.80 13.25 12.56 2.74 10.27 16.84 9.54

Meta-RKOS-ELM-DDM 2.70 6.79 14.18 16.84 5.79 9.92 16.55 10.52

Meta-RRKOS-ELM-DDM 3.52 6.38 12.18 11.38 5.59 8.47 10.92 8.17

SSE RKOS-ELM 1.37 3.46 5.91 8.05 2.39 4.43 6.74 4.41

Meta-RKOS-ELM-DDM 1.29 3.36 5.40 6.42 2.27 4.13 5.86 3.98

Meta-RRKOS-ELM-DDM 1.17 3.02 4.59 5.45 2.07 3.69 4.87 3.45

Ozone RKOS-ELM 4.26 5.65 6.93 7.07 5.21 6.38 6.98 6.12

Meta-RKOS-ELM-DDM 4.15 5.74 6.61 6.92 5.10 6.38 6.80 6.02

Meta-RRKOS-ELM-DDM 4.15 5.18 6.02 6.30 4.87 6.48 6.18 5.48

Note: The best performance is in boldface.

and 7.1 in TS4, TS5, TS6, SSE, and Ozone, respectively. The results show that
using recursive kernel technique can improve the overall performance in most
of cases for all real-world data sets. Although, using recurrent kernel technique
cannot improve SMAPE in the average values of 8 – 12 periods of prediction
horizons of Ozone, but there is only a slight difference. This show that recursive
kernel method is a good way to improve the performance in multi-step time
series prediction.

4 Conclusions and Future Works

In this paper, we introduce an improvement of KOS-ELM named as Meta-
RRKOS-ELM-DDM. According to the results of the experiments, Meta-RKOS-
ELM-DDM can improve forecasting performance in different prediction horizons
in both synthetic and real-world datasets. Because of meta-cognitive learning
strategy, Meta-RKOS-ELM-DDM can decide how to deal with the new com-
ing data–when the model needs to add neuron, to retrain sample, or to discard
sample. Moreover, the threshold of ALD can be automatically defined by meta-
cognitive. This is not only save the learning time, but also solves the dependency
of threshold of ALD. Furthermore, recursive RBF kernel successfully replaces
the conventional RBF kernel in the model of Meta-RRKOS-ELM-DDM, which
enhances the predicting performance of the different periods of prediction hori-
zons. The results of Meta-RRKOS-ELM-DDM in are better than that of Meta-
RKOS-ELM-DDM. The major benefits of Meta-RRKOS-ELM-DDM are as fol-
lows: the good generalisation model for solving concept drift problem can be
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achieved; the limitation of prediction horizon is released; and new modified DDM
which is a method of deal with concept drift in time series prediction; improves
the predicting performance in the multi-step prediction.

Meta-cognitive plays a significant role in the learning time reduction and
dealing with parameter dependency while recursive kernel method generates a
fixed reservoir with optimised information by dissipating and overwriting the
information from the coming data in the learning part of the prediction model,
which is helpful for improvement of forecasting performance. However, searching
for the optimal recursive kernel parameter is computational extensive. In future
work, we will pay more attention to find out the method to automatically define
this parameter in order to reduce the computational complexity.
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Abstract. So far, we have presented several methods for chaotic time
series prediction, and shown performance improvement on predictability
horizon. However, we could not have shown the comparison of the per-
formance with other methods. In order to obtain general and absolute
performance measure of predictability horizon, this paper analyzes to
formulate the relationship between the mean predictability horizon and
the step size of the fourth-order Runge-Kutta method, or RK4. By means
of using the formula which we have obtained in this article, the step size
of RK4 corresponding to the mean predictability horizon achieved by a
learning machine can be obtained without executing RK4. We execute
numerical experiment of the prediction by several learning machines, and
compare the performance by means of the step size of RK4 correspond-
ing to the mean horizon achieved by the learning machines, and we show
the effectiveness of the present method.

Keywords: Chaotic time series prediction
Analysis and application of step size of RK4
Performance measure of predictability horizon

1 Introduction

So far, we have presented several prediction methods for chaotic time series and
shown performance improvement on predictability horizon [1–4]. In our methods,
we employ IOS (iterated one-step ahead) prediction, especially for Lorenz time
series, and try to obtain longer predictability horizon. Here, the predictability
horizon H [step] of a time series indicates the number of prediction steps after
which the time series becomes unpredictable or the prediction error exceeds a
certain threshold δy. Although we have shown our recent methods have obtained
longer predictability horizon than our previous methods, there is no general per-
formance measure of probability horizon to compare with the methods of other
researches. Here, there are several problems. A problem is that no numerical
c© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11306, pp. 14–23, 2018.
https://doi.org/10.1007/978-3-030-04224-0_2
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data have been provided for chaotic differential dynamics, such as Lorenz equa-
tions, mainly owing that numerical data can be obtained via various numerical
methods. However, it is not so easy to obtain common data because time series
is very sensitive to the initial state so that high precision data requiring large
memory capacity will be necessary. Although several typical parameter values
are provided, there are infinite number of parameter values theoretically. Fur-
thermore, a number of sampling periods are possible. Another problem is that
the predictability horizon H for different prediction start time changes largely.
A solution may be the use of the mean of H. However, necessary and/or suffi-
cient number of predictions and appropriate start points in time for obtaining
the mean H are not so clear. Incidentally, the predictability horizon H [step] is
almost the same as the critical time of decoupling Tc [LTU] (Lorenz time unit)
[5–7], defined as the first point in time after which the state vector norm error
exceeds a certain error tolerance δ. Here, Tc can be estimated for given small δ
corresponding to Lipschitz constant, but we consider H for δy much larger than
δ and the formula for estimating Tc shown in [5,6] could not be applicable to H
by simply regarding Tc as HTS with sampling period TS [LTU/step].

This paper tries to obtain the formula of the mean H and presents a perfor-
mance measure based on step size Δt of the fourth order Runge-Kutta method,
or RK4. By means of numerical experiments on the predictability horizon of
Lorenz time series, we approximate the formula of the function H of δy and Δt
of RK4 in Sect. 2. By means of using the formula, the step size of RK4 corre-
sponding to the mean predictability horizon achieved by a learning machine can
be obtained without executing RK4. In Sect. 3, we show experimental result of
the prediction by several learning machines, and compare the performance by
means of the step size of RK4 corresponding to the mean horizon achieved by
the learning machines, and we show the effectiveness of the present method.

2 Step Size of RK4 for Performance Measure
of Predictability Horizon

2.1 Numerical Solution of Lorenz Equations and Predictability
Horizon

We focus on Lorenz time series obtained from the differential dynamical system
(or Lorenz equations) for state vector xc = (xc, yc, zc)T and continuous time tc
given by

dxc

dtc
= −σxc + σyc,

dyc

dtc
= −xczc + rxc − yc,

dzc

dtc
= xcyc − bzc, (1)

where we employ σ = 10, b = 8/3, r = 28 and the initial state xc(0) =
(−8, 8, 27)T (see [8] for properties of the dynamics). We have generated time
series y(t) = xc(tTS), where t [step] represents discrete time with the relationship
tc = tTS [LTU] for t = 0, 1, 2, · · · and sampling period TS = 0.025 [LTU/step].
In the following, we use several time variables, such as predictability horizon
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H, and discriminate the domain by denoting H [step] or H [LTU]. Since yt is
obtained not analytically but numerically, yt involves an error owing to finite
numerical precision, it is impossible to make a long-term prediction. As shown
in [5–7], the critical time of decoupling Tc, defined as the first point in time after
which the norm of state vector error exceeds a certain threshold, has mathemat-
ical relationship with the step-size Δt and the number of bits of precision, P . An
important fact shown in [6] is that Tc = 35 LTU is achieved with double preci-
sion data (P = 64-bit), and Tc = 104 LTU is shown to be obtained by multiple
precision method using high order Taylor expansion scheme. However, from [7]
it is shown that 4000-digit multiple precision of initial condition is necessary to
achieve Tc = 1000 LTU, which might have no physical meanings.

On the other hand, this paper focuses on the prediction of learning machines
running on standard 64-bit Linux computer and evaluate the performance
on predictability horizon. For simple expression in the following, let ytp:hp

=
ytpytp+1 · · · ytp+hp−1 denote a time series of yt with a start time t = tp and a
horizon hp. Furthermore, let us define predictability horizon H = H

(
ytp:hp

; δy

)

by

H
(
ytp:hp

; δy

)
= max

{
h

∣
∣ ∀s < h ≤ hp; |ytp+s − y

[gt]
tp+s| ≤ δy

}
(2)

for a ground truth time series y
[gt]
tp:hp

and an error threshold δy. Note that H [step]
is almost the same as the critical time of decoupling Tc � HTS [LTU], while the
above error threshold δy is larger than the error tolerance δ = ‖xc − x

[gt]
c ‖

satisfying Lipschitz condition for estimating Tc theoretically.
For evaluating H of the prediction of learning machines implemented on

standard computer, we would like to generate a ground truth time series y
[gt]
tp:hp

easily instead of using advanced methods as developed in [5–7]. So, we employ
the classical fourth order Runge-Kutta method, or RK4, coded with GMP (GNU
multi-precision library) implemented on standard 64-bit Linux computer. Fur-
thermore, in the following, we regard a numerical solution obtained by RK4 with
GMP as a prediction.

2.2 Predictability Horizon Obtained by RK4 and GMP

In order to see the performance of the numerical method using RK4 and GMP, we
show numerical solutions obtained for several pairs of step size Δt and multiple
precision P in Fig. 1. Here, we can see that larger critical time of decoupling
Tc or larger predictability horizon H is achieved by smaller step size Δt from
(a), and larger precision P from (b) for the prediction start time tp = 0. From
the result, we have decided to use the prediction with the smallest Δt = 10−8

LTU and the largest P = 256 bit in the experiments as ground truth. From the
predictability horizon for different prediction start time shown in Table 1, we can
see that the above property holds for not each H but the mean H over different
start time tp. Namely, we can see that the mean H increases with the decrease of
step size Δt for P = 64 bits and with the increase of P for Δt = 10−8, although
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the variance of H seems large especially for small Δt. Incidentally, the result of
the mean H = 1363 for P = 64 and Δt = 10−8 indicates that Tc � 34.1 LTU
which seems consistent and compatible with Tc = 35 LTU achieved for double
precision data (P = 64 bit) obtained with high order Taylor expansion scheme
[7] as shown above.
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Fig. 1. (a) Prediction yt (t ∈ [0, 500]) obtained for Δt = 10−4, 10−6, 10−8 LTU with
P = 256 bit, and (b) prediction yt (t ∈ [3000, 3500]) obtained for P = 64, 128, 192,
256 bit with Δt = 10−8 LTU. The prediction start time is tP = 0. Here, we cannot see
the difference between the predictions for P = 192 and 256 until 5120 steps as shown
in Table 1.

2.3 Formula of Mean Predictability Horizon

The mean predictability horizon H w.r.t. Δt and δy obtained for P = 64 bits
is shown in Fig. 2. From the numerical result in (a), we have obtained a linear
function H of ln(Δt) by means of applying the least square fitting method to
the form given by

H = A ln(Δt) + B (3)

and we have obtained the values as

(A,B) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(−40.0381,−149.529) for δy = 4,
(−39.6599,−135.641) for δy = 5,
(−39.3807,−118.594) for δy = 8,
(−40.0233,−114.167) for δy = 10,
(−41.9565,−115.719) for δy = 15.

(4)

We can see that a good approximation has been achieved from Fig. 2(b), although
there are small approximation error. Here, we have excluded the data with
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Table 1. Predictability horizon H for different prediction start time tp =
0, 1000, 2000, · · · , 9000 and the mean for several pairs of numerical precision P and
step size Δt. The prediction y0:10000|P=256,Δt=10−8 is assumed the ground truth pre-
diction, and the error tolerance is δy = 15.

P 64 128 192

Δt 10−2/2 10−3 10−3/2 10−4 10−5 10−6 10−7 10−7/2 10−8 10−8

tp = 0 71 161 192 225 377 460 640 611 1371 3252 5120

1000 118 154 156 273 338 458 551 583 1255 3170 5076

2000 74 135 138 254 348 500 478 481 1369 3218 5019

3000 70 102 105 247 343 459 498 510 1263 3227 5245

4000 49 165 198 261 352 444 564 596 1328 3366 5304

5000 119 197 197 327 444 507 626 656 1320 3283 5281

6000 74 164 168 230 353 490 480 483 1486 3430 5359

7000 403 368 427 460 584 645 710 713 1463 3446 5411

8000 63 128 156 244 339 401 467 553 1338 3414 5336

9000 60 151 152 214 279 418 572 599 1437 3430 5366

mean H [step] 110 173 189 274 376 478 559 579 1363 3320 5252

mean H [LTU] 2.8 4.3 4.7 6.8 9.4 12.0 14.0 14.5 34.1 83.0 131.3

Δt = 10−8 for the fitting because they do not fit well to the above approxi-
mation lines (see below to examine the reason). Furthermore, we have tried to
make a further approximation of A and B for all δy, and we finally have the
form

H = (a0 + a1δy + a2δ
2
y) ln Δt + b0 + b1δy + τ ln δy, (5)

with (a0, a1, a2) = (−41.6501, 0.587778,−0.0406851), (b0, b1) = (−7.4675,
−239.551) and τ = 87.0274 [step] = 2.175685 [LTU]. Here, note that τ rep-
resents time constant as shown below. This approximation seems good as shown
in Fig. 2(c)–(e). Now, from (5), we have

δy =
[
Δt−(a0+a1δy+a2δ2

y)/τ exp(−(b0 − b1δy)/τ)
]
exp(H/τ). (6)

Since this equation is recursive or the right hand side involves δy itself, it is not
so easy to analyze. Here, note that δy basically represents the error threshold
with the values 4, 5, 8, 10, 15, but δy can also be regarded as the error itself for
given H and Δt. Following this context, let us derive the following equation:

δy = αδy0 exp(H/τ), (7)

where

δy0 = Δt−(a0+a1+a2)/τ exp(−(b0 + b1)/τ), (8)

α = Δt−(a2(δy−1)2+(a1+2a2)(δy−1))/τ exp (−b1(δy − 1)/τ) . (9)

This equation shows that we have δy = δy0 exp(H/τ) for δy = 1, which indicates
that the error δy increases exponentially with time constant τ from δy = δy0 at
the prediction start time H = 0.
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Δt 10−2/2 10−3 10−3/2 10−4 10−5 10−6 10−7 10−7/2 10−8

δy = 4 69.0 135.3 157.7 193.0 316.0 400.8 498.0 528.3 1313.6
5 77.6 140.2 165.7 215.1 334.3 407.6 504.3 531.4 1321.7
8 93.0 159.6 169.3 241.2 342.9 422.2 515.3 544.7 1332.3

10 101.7 163.3 181.8 244.0 355.1 458.2 528.9 546.7 1335.2
15 110.1 172.5 188.9 273.5 375.7 478.2 558.6 578.5 1363.0
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Fig. 2. Mean predictability horizon H w.r.t. step size Δt and error threshold δy. (a)
Numerical result of mean H for Δt and δy, (b) linear approximation of H via (3), (c)
further approximation of H via (5), (d) approximation of A by (a0 +a1δy +a2δ

2
y) ln Δt,

and (e) approximation of B by b0 + b1δy + τ ln δy.

Next, let us examine the relationship between Eqs. (7)–(9) and the formula
of the error tolerance, δ ≈ δ0 exp(λTc), shown in the theory of the critical time of
decoupling [5,6]. Here, the initial error δ0 consists of truncation error δ0t ∝ ΔtN

and round-off error δ0r ∝ Δt−1/2, where N is the order of numerical scheme
while we have employed RK4 with N = 4 in our experiment. Although δ0 ∝ Δt2

in [5] using N = 2, the above result Δt−(a0+a1+a2)/τ with −(a0 + a1 + a2)/τ ≈
0.47 seems very small with respect to N = 4 of RK4. The other parameter
λ is estimated by the maximum Lyapunov exponent (λ ≈ 0.9 for the Lorentz
equations) in [5], while the corresponding 1/τ ≈ 0.46 [LTU−1] in the above result
is smaller than λ ≈ 0.9. Here, one of the differences between δ and δy is that Tc is
estimated under a small δ satisfying Lipschitz condition but H has been obtained
for δy larger than Lipschitz constant. Moreover, the mean H = 34.1[LTU] for
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Fig. 3. Time evolution of state vector error ‖ex‖, prediction error |ey| and their approx-
imation δ and δy for Δt = 10−4, 10−6 and 10−8 for the prediction start time tp = 1
step = 0.025 LTU.

Δt = 10−8 compatible with Tc = 35 LTU as shown above seems to fit not the
above equations but the estimation formula of Tc.

In order to examine these facts furthermore, we have obtained time evolution
of the state norm error ‖ex‖ = ‖xc−x

[gt]
c ‖, the prediction error |ey| = |yt−y

[gt]
t |,

the error δ = δ0 exp(0.9t) for the approximation of ‖ex‖ and δy of Eqs. (7)–(9)
for the approximation of the mean H as shown in Fig. 3. Here, we can see that
‖ex‖ changes as the upper envelope of |ey| as expected from their definitions. We
can also see that δ approximates the ratio of the exponential increase of ‖ex‖
and |ey| well from the prediction start time. In contrast, δy seems to approximate
the upper envelope of |ey| as well as ‖ex‖ well only for the points in time after
|ey| increases larger than 1 (i.e. log10 |ey| = 0 in the figure) for Δt = 10−4 and
10−6. This is considered to be necessary and sufficient for approximating the
mean H for the error threshold larger than 1. However, we can see that δy for
approximating H will not work with Δt = 10−8 which provided extremely small
‖ex‖ and |ey| compared with those for Δt = 10−4 and 10−6. We do not have
clarified the reason so far, and we would like to examine it in our future research.

2.4 Step Size of RK4 for Performance Measure of Mean
Predictability Horizon

From (5), we have

Δt = exp
(

H − b0 − b1δy − τ ln δy

a0 + a1δy + a2δ2y

)
. (10)

With this equation, we can obtain the step size Δt of RK4 corresponding to
the mean H for a threshold δy of the predictions achieved by a learning algo-
rithm without executing RK4 for various Δt. Since RK4 is a standard and easily
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executable method with theoretically clear properties and the above smooth
relationship among H, Δt and δy, we would like to use the step size of Δt for a
performance measure of the mean H of learning machines.

3 Numerical Experiment on Predictability Horizon
of Learning Machines

We have conducted numerical experiment of time series prediction with learning
machines. We use a training time series y0:20000 generated by RK4 with P = 256
bit and step size Δt = 10−8, and sampling period TS = 0.025 LTU. From time-
embedding theory, we assume that yt and xt = (yt−1, yt−2, · · · , yt−k)T with
embedding dimension k has a relationship given by

yt = r(xt) + e(xt), (11)

where r(xt) is a nonlinear target function, and e(xt) represents an error. The
training set is constructed as D[train] = {(xt, yt) | t ∈ I [train]} for I [train] =
{k, k + 1, · · · , 1999}.

After the learning, the machine executes IOS (iterated one-step ahead) pre-
diction by ŷt = f(x̂t) for t = tP , tP+1, · · · , recursively. Here f(x̂t) denotes
prediction function learned by the learning machine of x̂t = (x̂t1, x̂t2, · · · , x̂tk)
whose elements are given by x̂tj = yt−j for t − j < tP and x̂tj = ŷt−j for
t− j ≥ tP . We have executed the prediction for tP = 2000, 2100, 2200, · · · , 3000.

As learning machines, we use bagging CAN2 (bagging competitive associative
net 2), MLP (multi-layer perceptron), and LSTM (long-short term memory).
For bagging CAN2, we use the same parameter values as shown in [3,4], i.e. the
embedding dimension k = 10 and the number of units N = 5i for i = 1, 2, · · · , 50.
For MLP implemented on the Chainer framework [9], we have optimized the
parameters and obtained good results with two hidden layers involving 300 units
with leaky ReLU, and dropout ratio being 0.001, which seems very small but
provided best result in our experiments. We show the result for k = 60 which
has achieved the best result among k = 10, 20, 30, 40 50, 55, 60, 65, 70, 80
and 90. We have executed 10000 epochs with batchsize being 100 for learning.
For LSTM also implemented on the Chainer framework, we have optimized the
parameters and obtained good results with two hidden layers involving 200 units
with ReLU, and dropout ratio with 0.3. We show the result for k = 11 which
has achieved the best result among k = 5, 7, 8, 9, 10, 11, 12, 13, 15, 20 and 30.
We have executed 10000 epochs for learning.

We show the achieved predictability horizon in Fig. 4. From (a), (b) and
(c), the predictability horizon for different tp changes largely. From (d), we can
estimate the property on the performance of the predictability horizon by means
of the step size Δt of RK corresponding to the mean H of each learning machine.
Here, small Δt corresponds to large H as shown in Fig. 2(b) and (c). Although
we can compare the performance of three learning machines by means of the
mean H as a relative measure, i.e. CAN2 has the largest mean H, followed in



22 S. Matsuzaki et al.

order by MLP and LSTM. On the other hand, the step size Δt of RK4 shown
in (d) indicates information much more as follows. Namely, we can see that
the performance of CAN2 for δy = 15 is Δt ≈ 5.5 × 10−4 which may be good
because we usually use RK4 with Δt = 10−3 ∼ 10−4 for a high numerical
precision. Furthermore, CAN2 has achieved the result with larger Δt for smaller
δy which indicates that CAN2 for smaller δy shows poor performance than RK4
with Δt = 5.5 × 10−4. This means that, of course, the mean H for smaller δy

of RK4 with the same Δt achieves smaller H as shown in Fig. 2(b) and (c), and
CAN2 has achieved much smaller mean H than RK4. This suggests that CAN2
may have a possibility to improve the performance for smaller δy somehow, e.g.
by means of improving learning algorithm, increasing the number of training and
test data, and so on, because RK4 with Δt = 5.5×10−4 has better performance
than CAN2. Ultimately and theoretically, it is expected that the performance of
a learning machine may be improved to the best performance of RK4 or other
numerical methods on a given computer with given precision bits.
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Fig. 4. Predictability horizon H achieved by (a) CAN2, (b) MLP and (c) LSTM, and
(d) the step size Δt of RK4 corresponding to the mean H of (a), (b) and (c). The mean
H for δy = 4, 5, 8, 10, 15 is 112, 115, 163, 177, 199 for CAN2, 90, 92, 102, 111, 149 for
MLP, and 56, 67, 90, 103, 123 for LSTM, respectively. The mean for all δy is 153, 109
and 88 for CAN2, MLP and LSTM, respectively.
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4 Conclusion

We have analyzed to formulate the relationship between the predictability hori-
zon H, the step size Δt of RK4, and the prediction error threshold δy. By means
of using the formula, Δt of RK4 corresponding to the mean H achieved by a
learning machine can be obtained without executing RK4. With the mean H
achieved by learning machines, CAN2, MLP and LSTM, the corresponding Δt
of RK4 can be used as not relative but more absolute performance measure
than the mean H of learning machines because RK4 is a standard and eas-
ily executable numerical method with clear properties. We have to clarify the
obtained formula much more from the point of view of numerical and chaos the-
ory. Especially, we could not have clarified the reason that the formula could not
be applicable to H for Δt = 10−8, which is for our future research.
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Abstract. In this paper, we propose a method for simultaneous analy-
sis of subjective and objective data. The method, named coupled tensor
self-organizing map (SOM), consists of two tensor SOMs, one of which
learns the subjective data while the other learns the objective data. The
coupled tensor SOM visualizes the dataset as three maps, namely, one
target object map, and two survey item maps corresponding to the sub-
jective and objective data. This method can be further extended to gen-
erate extra maps such as a map of attributes. In addition, the coupled
tensor SOM also provides an interactive visualization of the relationship
between the target objects and the survey items by coloring these three
maps. We applied our proposed method to the wine aroma dataset. Our
results indicate that this method facilitates an intuitive overview of the
dataset.

Keywords: Subjective and objective data · Multi-view data
Coupled tensor decomposition · Multi-relational data · Tensor SOM
Self-organizing map

1 Introduction

Simultaneous analysis of subjective and objective data plays an important role
in various fields pertaining to human senses, behavior, activity, and quality of
life. Application examples include image/audio evaluation [11,19,22], engineer-
ing design [4], ergonomics [16], food testing [15], medical care and nursing [6],
athlete coaching [18], and behavior analysis [23].
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In these fields, the aim of simultaneous surveys is not only analyzing the
target objects, but also revealing the relationship between the subjective eval-
uations and the objective evidence. This typically requires examining combina-
tions of subjective and objective survey items to determine their relationships.
As the numbers of the survey items increases, the number of combinations grows
extremely rapidly, hindering the feasibility of this analysis.

To solve this problem, we propose a method using a nonlinear dimensionality
reduction approach. The proposed method not only visualizes the target objects
by mapping them to a low-dimensional (usually two-dimensional) space, but
it also maps the survey items to their own low-dimensional spaces. Thus, the
method organizes three low-dimensional representations, corresponding to the
target objects, the subjective survey items, and the objective survey items. As
the result, each survey item is assigned to a low-dimensional coordinate, and the
relationship between two survey items is translated to a correlation between two
coordinates, which can be visualized by coloring the low-dimensional spaces.

For this purpose, we employed an extension of the self-organizing map (SOM)
to tensorial data called the tensor SOM (TSOM) [12]. The proposed method
consists of two TSOMs, one of which learns the subjective data, while the other
learns the objective data. These two TSOMs are coupled so that they integrate
the two datasets. The method, which we call coupled-TSOM (c-TSOM), orga-
nizes the following three maps: the target object map, the subjective survey item
map, and the objective survey item map. In addition, it is further possible to
organize an extra map for the attribute data by coupling a third TSOM, if
necessary.

The structure of this paper is as follows. In Sect. 2, we formulate the problem.
In Sect. 3, we overview related work. We introduce our c-TSOM algorithm in
Sect. 4. Section 5 shows the results, and Sect. 6 concludes the paper.

2 Problem Formulation

We begin by defining two terms used in this paper, view and mode. The term
view represents an aspect of data observation. A view corresponds to a data array
constituting the entire dataset. Thus, when the target objects are measured over
V views, then the dataset consists of V data arrays. The simultaneous survey
dataset usually consists of two views: the subjective view and the objective view.
A dataset may also have an additional view called the attribute view. In the case
of the wine aroma dataset, the subjective and the objective views are the sensory
and the chemical test data, respectively, and the attribute view corresponds to
the grape varieties used in the wines. Note that the proposed method can be
generalized to arbitrary V -view datasets.

The term mode represents an aspect of data analysis. A mode corresponds
to a dimension of a data array. Simultaneous surveys typically consist of three
modes: the target object mode, the subjective survey item mode, and the objective
survey item mode. If the dataset has an attribute view, then we also have the
attribute item mode. In the case of the wine datasets, there are four modes
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corresponding to the wines, the aroma types, the chemical substances, and the
grape varieties. Note that the wine mode is shared by all of the views.

Suppose that we have N target objects to be analyzed, and they are surveyed
by V -views, each of which consists of Mv survey items (v = 1, . . . , V ). Suppose we
have M1 subjective and M2 objective survey items, respectively, and let x

(1)
nm1 be

the subjective measurement data from the n-th target object on the m1-th survey
item. Then, the subjective dataset becomes an array X1 =

(
x
(1)
nm1

)
. Similarly,

the objective data becomes an array X2 =
(
x
(2)
nm2

)
, where x

(2)
nm2 represents the

measurement data from the n-th target objects on the m2-th objective survey
item. Finally, if necessary, the attribute data is given by X3 =

(
x
(3)
nm3

)
, where

x
(3)
nm3 represents the degree to which the n-th object has the m3-th attribute.

To visualize such a dataset, we assume the following data generation model.
Let zn ∈ Z be the low-dimensional (usually two-dimensional) latent variable of
target object n, which represents intrinsic properties. Without loss of general-
ity, we can assume that the latent space Z is a unit square with Dz dimension,
(i.e., Z = [0, 1]Dz ), and the probability of z is uniform on Z (i.e., p(z) = 1).
Similarly, ymv

∈ Yv is the latent variable of the mv-th survey item of the v-th
view. Thus, ym1 ∈ Y1 and ym2 ∈ Y2 are the latent variables corresponding to
the survey items of the subjective and the objective views, respectively. Then,
the observed data are assumed to be generated by x

(1)
nm1 = f (1)

(
zn, ym1

)
+ ε

(1)
nm1

and x
(2)
nm2 = f (2)

(
zn, ym2

)
+ ε

(2)
nm2 . Here, f (v) : Z× Yv → X is a smooth mapping

from the product latent space to the observation space. The observation noise is
represented by ε

(v)
nmv ∼ N

(
0, βv(ymv

)
)
, where βv(ymv

) indicates the relevance of
survey item mv. Similarly, the data of the attribute view is assumed to be rep-
resented by x

(3)
nm3 = f (3)

(
zn, ym3

)
+ εnm3 , if necessary1. Under this assumption,

the tasks consist of estimating the latent variables
{
zn

}
,
{
ym1

}
,
{
ym2

}
, and the

nonlinear mapping f (1), f (2), (and
{
ym3

}
, f (3), if necessary).

3 Related Work

In machine learning, the learning tasks presented above are referred to as multi-
view learning. When the task involves estimating a low-dimensional subspace
in an unsupervised manner, the task is referred to as multi-view dimensionality
reduction (MVDR) [20,24]. The main aim of MVDR is to map the target objects
to a low-dimensional space by integrating two (or more) views. The canonical
correlation analysis (CCA) is the most basic method for MVDR [9,14]. While
CCA is a linear method, some nonlinear methods using Gaussian processes have
been also proposed [3,5,17]. However, these methods only map the target objects
to a low-dimensional space, and they do not map the survey items. Therefore,
CCA and its extensions cannot be applied to our case directly.

1 To be precise, they must be treated as discrete variables, but in this paper we treat
them as Gaussian random variables to simplify the explanation.
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Aside from multi-view learning, similar studies have been developed in the
field of cross-domain data analysis. In particular, cross-domain recommenda-
tion (e.g., recommending books from movie preference data, and vice versa)
has become an important topic in cross-domain relational data analysis [10,25].
Though it appears different, the task of cross-domain recommendation is exactly
the same as our task. In relation to the above example, users, books, movies,
and user attributes are replaced by the wines, aroma types, chemical substances,
and grape varieties, respectively. A representative linear method used for cross-
domain recommendation is coupled tensor decomposition (CTD), which consists
of multiple tensor decompositions coupled together [1].

Whereas most tensor decompositions are linear methods, the recently pro-
posed TSOM [12] is a nonlinear tensor decomposition method. For an M -mode
dataset, TSOM generates M maps corresponding to the visualization of the
items of each mode. In addition, TSOM provides various interactive methods,
enabling intuitive analysis based on the coloring of the maps. These properties
are suitable for our task. Therefore, our aim is to extend CTD from linear to
nonlinear modeling by replacing the linear tensor decomposition by the TSOM.

4 Theory and Algorithm

The objective function of SOM has been proposed in several past works [2,7,
8,21]. Thus it is given as the log-likelihood where the neighborhood function
represents the posterior of the latent variables, as follows.

LSOM =
1
N

N∑

n=1

∫
h(ζ, zn)

(
−β

2
‖xn − f(ζ)‖2 +

D

2
ln

β

2π

)
dζ, (1)

where h(ζ, z) is the neighborhood function. In the case of TSOM, the objective
function (1) is extended to

LTSOM =
1

NM

N∑

n=1

M∑

m=1

∫∫
h1(ζ, zn)h2(η, ym)

(
−β

2
‖xnm − f(ζ, η)‖2 +

D

2
ln

β

2π

)
dζ dη,

(2)

for two-mode case, where h1(ζ, z) and h2(η, y) are the neighborhood functions,
and zn and ym are the latent variables corresponding to mode 1 and 2 respec-
tively [12].

By extending (2) for multi-view case, the objective function of c-TSOM is
obtained as follows.

Lc-TSOM =

V∑

v=1

{
1

NMv

N∑

n=1

Mv∑

mv=1

(3)

∫∫
ho

(
ζ, zn

)
hv

(
η, ymv

)( − βv(η)

2

(
x
(v)
nmv − f (v)

(
ζ, η

))2
+

1

2
ln

βv(η)

2π

)
dζ dη

}
,

where ho(ζ, z) and hv(η, y) are the neighborhood functions. Without loss of
generality, we assume that

∫
ho(ζ, z)dζ =

∫
hv(η, y)dη = 1. Note that estimating



28 K. Yoneda et al.

Algorithm 1 c-TSOM algorithm
Initialize {zn}, {ymv} randomly, and intialize βv(η) = 1.

Calculate {f (v)} using Eq. (8), and {ϕ(v)
n } {ψ(v)

mv} using Eqs. (5) (7).
repeat

Determine {zn}, {ymv} by Eqs. (4) (6).

Calculate {f (v)} using Eqs. (8), and {ϕ(v)
n } {ψ(v)

mv} using Eqs. (5) (7).
Calculate {βv(η)} using Eqs. (9) (10).

until the calculation converges.

Table 1. List of grape varieties.

1 Riesling 9 Syrah 17 Cabernet Sauvignon 25 Molinara 33 Zinfandel

2 Chardonnay 10 Sauvignon Blanc 18 Gamay 26 Nebbiolo 34 Petite Sirah

3 Pinot Noir 11 Terret Blanc 19 Arneis 27 Cabernet Franc 35 Semillon

4 Macabeo 12 Vermentino 20 Cortese 28 Sangiovese 36 Malvasia

5 Parellada 13 Merlot 21 Lagrein 29 Canaiolo 37 Mourvedre

6 Xarello 14 Montepulciano 22 Dolcetto 30 Malvasia Bianca 38 Koshu

7 Garnacha 15 Grenache Gris 23 Corvina 31 Sangiovese Grosso

8 Cinsault 16 Carignan 24 Rondinella 32 Shiraz

zn without integrating the v-th view data can be accomplished by setting the
relevance to βv(η) ≡ βv and taking βv → 0.

The objective function Lc-TSOM is optimized with respect to
{
zn

}
,
{
ymv

}
,{

f (v)
}
, and

{
βv(η)

}
. They are updated iteratively until the estimated values

converge. The latent variables {zn} are determined by

zn � arg min
ζ

{
V∑

v=1

∫
βv(η)

(
ϕ(v)

n (η) − f (v)(ζ, η)
)2

p(η) dη

}

(4)

Fig. 1. List of chemical substances.
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Fig. 2. (a) The map of wines, (b) aromas types, (c) chemical substances, (d) and grape
varieties, generated by c-TSOM. (Color figure online)

where

ϕ(v)
n (η) =

1
Hv(η)

Mv∑

mv=1

hv

(
η, ymv

)
x(v)

nmv
, Hv(η) =

Mv∑

mv=1

hv

(
η, ymv

)
. (5)

To obtain (4), we introduce some approximations according to the original
TSOM research [12]. Note that this approximation is generally used in the SOM
family. In the actual program, the integral is evaluated numerically by discretiz-
ing the latent space to grid nodes. Similarly, the latent variables {ymv

} are
determined by

ymv
� arg min

η

{
βv(η)E(v)

mv
(η) − ln βv(η)

}
(6)

where
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Wine Aroma Chemical substance Grape variety
(a)

Wine Aroma Chemical substance Grape variety
(b)

Wine Aroma Chemical substance Grape variety
(c)

Wine Aroma Chemical substance Grape variety
(d)

Fig. 3. Visualization using Conditional Component Plane (CCP). The red circles indi-
cated in the white maps show the conditioned point. The red/blue regions denote the
areas where the observed values are high/low with respect to the conditioned point.
(Color figure online)

E
(v)
mv (η) =

1

N

N∑

n=1

∫
ho

(
ζ, zn

) (
x
(v)
nmv − ψ

(v)
mv (ζ)

)2
dζ +

∫ (
ψ
(v)
mv (ζ) − f (v)(ζ, η)

)2
p(ζ) dζ

ψ
(v)
mv (ζ) =

1

Ho(ζ)

N∑

n=1

ho(ζ, zn)x
(v)
nmv , Ho(ζ) =

N∑

n=1

ho(ζ, zn). (7)
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After the latent variables are estimated, the mappings {f (v)} are estimated by

f (v)(ζ, η) =
1

Ho(ζ)Hv(η)

N∑

n=1

Mv∑

mv=1

ho(ζ, n)hv(η, ymv
)x(v)

nmv
. (8)

As for the ordinary SOM, f (v) is estimated for discretized grid nodes. Finally,
the relevance values {βv} are updated by

σ2
v(η) =

N∑

n=1

Mv∑

mv=1

∫
ho(ζ, zn)hv(η, ymv

)
(
x(v)

nmv
− f (v)(ζ, η)

)2

dζ dη (9)

βnew(η) = (1 − ε)βold(η) + εσ−2
v (η), (10)

where 0 < ε < 1 is a small positive constant.
These calculations are iterated until they converge. During the iterations,

the width of the neighborhood size is reduced, as in the ordinary SOM. Note
that the objective function (3) is reduced in every step, and the convergence is
assured (Table 1 and Fig. 1).

5 Application to Wine Aroma Analysis

We applied c-TSOM to visualize the wine aroma dataset [13]. The dataset con-
sists of data obtained from 56 wines with 18 aromas as determined by sensory
testing and 52 substances as determined by chemical measurement (1). In addi-
tion, the dataset also provides the grape varieties used in the wines (1).

Our results are shown in Fig. 2. To generate the wine map, the attribute
view (i.e., grape varieties) was not used (i.e., β3 → 0). Thus, the wine map is
determined only by the aromas and substances. In the wine map, the marker
colors denote the wine types (i.e., white, red, and rosé). Although the wine types
were not inputted to c-TSOM, they are separated correctly and clearly in the
wine map. The same observation can also be seen in the grape variety map.

By using the Conditional Component Plane (CCP) method [12], it is further
possible to analyze the relationship between different modes. Figure 3 shows
examples of CCP. In Fig. 3(a), Wine-212 is the condition point in the wine map,
and other three maps are colored indicating the observation values. The maps
suggests that Wine-21 has “berry”, “dried fruit”, and some “spicy” aromas. It
also estimates that Wine-21 made from Grenache Gris (Grape-15) or Montepul-
ciano (Grape-14) (and some Carignan (Grape-16)).

In Fig. 3(b), the “berry” aroma is the condition point in the aroma map, and
other three maps are colored indicating the observation values. Thus, the wines
in the red region of the wine map have a berry-like aroma, and they contain the
chemical substances in the red region of the substance map. It also shows that
2 Wine-21 is a French red wine produced in Collioure, made from Grenache Gris and

Carignan. This wine has aromas of “black cherry compote”, “blackberry compote”,
“violet”, and “spicy”.
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Fig. 4. (a) Correlation coefficients between aroma ‘berry’ and the chemical substances.
(b) Correlation coefficients between aromas and grape variety ‘Sauvignon Blanc’. (Color
figure online)

Fig. 5. Relevance β of aromas (left) and substances (right). Black/white indicates
high/low relevance.
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the aroma is related to the grape varieties in the red region of the grape variety
map, for example, Pinot Noir and Cabernet Sauvignon. Similarly, Fig. 3(d) shows
that wines made from Sauvignon Blanc have“citrus” and “flesh” aromas, and
contain the substances in the red regions of the chemical substance map. These
results are consistent to the correlation analysis (Fig. 4).

Fig. 6. (a) The map of wines, (b) aromas types, (c) chemical substances, (d) and grape
varieties, generated by the coupled tensor decomposition. (Color figure online)

Figure 5 shows the relevance of the survey items. The result shows that the
aromas “citrus” and“flesh” in the bottom left corner, and “berry” in the top
right corner are important for the consistent integration of the subjective and
objective data. It also shows that the substances in the bottom left and the top
right corners are important. Note that we can observe that the berry-like aroma
is related the substances located at the bottom left corner in Fig. 3 (b) (c).

To examine the performance of c-TSOM, we compared c-TSOM and CTD,
which would be the most popular method for the coupled tensor data analysis.
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Table 2. Mutual information between views in latent variable estimation.

Methods Mutual information

Coupled TSOM (Adaptive βv) 3.48 ± 0.02

Coupled TSOM (Fixed βv) 3.40 ± 0.02

Coupled tensor decomposition 0.70 ± 0.07

The mapping result of CTD is shown in Fig. 6. The obtained result was consistent
with the result of c-TSOM, suggesting that they organized the maps appropri-
ately. Furthermore, we assessed the view-integration performance by measuring
the mutual information between the subjective and the objective views in latent
variable estimation. The result is shown in Table. 2. The mutual information
of the c-TSOM is much larger than CTD. In addition, it is also shown that
relevance estimation further improves the mutual information.

6 Conclusion

In this paper, we have proposed a novel method called c-TSOM for simultaneous
analysis of subjective and objective datasets. As shown in the experimental result
on a wine aroma dataset, c-TSOM not only integrates multi-view datasets, but
also allows for interactive viewing of data maps using the CCP method. This
is useful for determining the relationship between the subjective and objective
data items.

Because c-TSOM can be generalized to any V -view datasets, the application
field of c-TSOM is not limited to subjective and objective data analysis. For
example, cross-domain analysis of e-commerce data is another potential applica-
tion field. It is likely possible to further generalize the method to any multi-view
multi-mode dataset with complex data structures.
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Abstract. Ocean measuring point is an important way to obtain many
kinds of marine data. Reasonable layout of ocean measuring points can
efficiently obtain marine data. At present, a marine measuring point can
acquire multiple types of marine data, only by comprehensively using
multiple types of ocean data we can more effectively discover the rela-
tionship between various ocean measuring points. This paper proposes
a mapping method for fusion marine multiple time series into an image,
and uses the similarity between different images to construct a com-
plex network. Also, We build a complex network of marine multiple time
series by selecting appropriate thresholds. Compared with the traditional
method, the network constructed by our approach can find more accurate
rules.

Keywords: Marine multivariate time series · Fusion image
Complex network · Relevance discovery

1 Introduction

Complex network theory has recently experienced a burst of activity, a large
number of systems can be described by complex networks [14]. In a network,
the vertices are elements in the system, and an edge connects two vertices.
Many studies [3,9,13] have shown that complex networks are successfully used
to describe various complex systems in reality, such as Internet [1], Collabora-
tion networks [17], Transportation network [6], Biological network [16], Financial
systems [5] and so on [7,12]. Due to the wide applications of network theory in
many fields, ranging from financial times analysis [18], gene therapy [8] to data
mining, the view of studying complex systems from the aspect of the evolution of
network structure have been attracting more and more attention. Related statis-
tical analyses have revealed plenty amazing structural features of real networks,
such as high network transitivity, power-law degree distributions [2].

Moreover, one ocean measuring point can obtain many kinds of marine data,
so many ocean measuring points can also establish a complex system, there may
c© Springer Nature Switzerland AG 2018
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be reciprocal ties in different Ocean measuring points of irregular number and
weight, which create a highly connected structure with the features of a complex
network. The interaction between marine data is also a complex system where the
marine data in each Ocean measuring point contains a multivariate time series
(MTS) [10]. We map the ocean measuring points as a network [15], of which the
vertices are ocean measuring points and edges between vertices are relationships
of shares. From a different angle of view, people put forward much network
construction arithmetic, such as the minimum-cost spanning tree (MST) [11],
the planar maximal filtering graph (PMFG) [19] and the correlation threshold
method [4], and use traditional threshold method to construct a ocean measuring
points network, the purpose is to study the network structure properties and
topological stability.

There are many limitations to build marine multiple time series complex net-
works using traditional methods, this paper proposes a new method to build the
network. Firstly, we convert the marine multiple time series of each ocean mea-
suring point into a corresponding Gramian Angular Field (GAF) [20] grayscale
image. Secondly, MGAF color images are combined by the multidimensional
GAF gray images, and we use the image similarity to construct a multivariate
ocean measuring point network. At last, using the method proposed our approach
has higher connection efficiency than traditional method which is constructed by
only one correlation threshold. We will introduce the method and experimental
results in detail.

2 Constructing the Merged-Image Network

In this part, we will introduce the method of constructing ocean measuring points
complex network in detail. The following is to show the process (Fig. 1):

Fig. 1. The architecture proposed by our approach. The construction process of this
method includes a total of four steps. (1) Select the corresponding subsequence from
a marine multivariate time series; (2) Convert each subsequence into a correspond-
ing image; (3) Fuse multiple marine source time series into one image; (4) Construct
complex networks with similarity of fused images.
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2.1 Feature Selection

One ocean measuring point is constituted by Multivariate Time Series (MTS).
In order to reduce the computational complexity while keeping necessary proper-
ties, the method of pearson correlation coefficient is use to reduce dimension for
time series with high similarity. The more similar the time series is, the higher
the value of pearson correlation coefficient is. The formula for calculating the
Pearson correlation coefficient is as Eq. 1.

ρxi,xj
=

cov (Xi,Xj)
σxi

σxj

(1)

where Xi represents the time series of the number of i attribute of ocean mea-
suring points X, σxi

represents the standard deviation of Xi, cov (Xi,Xj) is the
covariance of the Xi and Xj . The ρxi,xj

are restricted to the interval [-1,1], where
ρxi,xj

= 1 defines perfect correlation, and ρxi,xj
= −1 corresponding to perfect

anti-correlation. ρxi,xj
= 0 corresponds to uncorrelated pairs of ocean measuring

points.

2.2 Image Fusion and Similarity Calculation

In this part we use the selected Features to fuse a comprehensive image, how-
ever,the Gramian Angular Field (GAF) converts time-series Xi = {xi1, xi2...xin}
into grayscale images. Since the fused image is a time series, the time charac-
teristic must be preserved when the image is processed, and the GAFS method
can well preserve the time dependency.In addition,the G(i,j||i−j|=k) indicates the
superposition of the time series in the uniform direction of the time interval k.
However, one ocean measuring point has many multiple attributes, so we need
fuse many multiple attributes into one image, in this paper, the multiple GAFs
are used to be defined as Eq. 2.

MGAFm [i, j] = [G1 [i, j] , Gk [i, j] , ..., Gm [i, j]] , 0 ≤ i, j < n (2)

where Gk is GAFs image converted from subsequences respectively and [i, j] is
one pixel of the n × n pixels image. At last m GAF images fuse into one image
of MGAFm.

The full pipeline for generating the MGAFs is illustrated in Fig. 2: illustration
of the proposed encoding map of Multiple Gramian Angular Fields. From this
picture we can see that, s1, s2, and s3 represent different time series respectively,
then we respectively transform s1, s2, and s3 into a GAF image, at last, We
merge the GAF images into a MGAF image. We can see that the MGAF image,
which incorporates the many kinds of marine data, can well distinguish this
situation. The advantages of multivariate time series conversion to fused images
are well represented.

In data analysis and data mining and search engines, the similarity method
can distinguish the correlation between different attributes. In order to better
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Fig. 2. The process of converting time series into images.

reflect the difference between images, we choose a more effective method struc-
tural similarity (SSIM [21]) to calculate the correlation between images, and this
method is applied in the fields of super-resolution, image deblurring and the like.
From the perspective of image fusion, the structural similarity index can reflect
the attributes of the object structure in the scene, and has no relationship with
the brightness and contrast of the image. The distortion is modeled as three
combinations of brightness, contrast and structure. Average values are used as
luminance estimates, standard deviations are used as contrast estimates, and we
use the covariance to measure the structural similarity, Eq. 3 is used to assess
the image similarity.

MSSIM [Mi,Mj ] =
1
N

N∑

n=1

SSIM [Min,Mjn] (3)

Where in the formula, we use the same way to divide Mi and Mj into N
sub-images.

2.3 The Topological Features of Ocean Measuring Points Associated
Networks

The ocean measuring point associated network is constracted by using complex
network theory, the purpose is to better constructedfeatures of different ocean
measurement points. Here we introduce the meaning of some complex network
statistical attributes and the calculation method.

The clustering coefficient of network assumes that a node i has ki edges that
connect other nodes to it. Among the ki nodes, there are at most ki (ki − 1) /2
edges, but the number of real edges between the ki nodes is li. The ratio between
li and ki (ki − 1) /2 is then defined as the clustering coefficient of node i, that is
Eq. 4.

Ci =
2li

ki (ki − 1)
(4)

The average clustering coefficient is the average clustering coefficient of all
ocean measuring point, that is Eq. 5.

C =
1
n

n∑

i−1

Ci (5)
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The efficiency of a pair of nodes is the multiplicative inverse of the shortest
path distance between the nodes, the average efficiency is defined as Eq. 6.

E =
2

N (N − 1)

∑

i�=j

1
dij

(6)

Where N is the total number of ocean measuring point in a network and dij
is the distance of ocean measuring point i and ocean measuring point j.

We use network density to represent the degree of similarity between different
nodes, as shown in Eq. 7.

D =
2m

n (n − 1)
(7)

In formula, n means the number of nodes, m means the number of edges.
If there is a relationship between the two nodes vi and vj , it is represented as

a connecting edge in the undirected graph G.A connected component in G is a
maximally connected subgraph of an undirected graph G. The ratio between the
maximum number of links between nodes and the number of ocean measuring
points is called the coverage of the network, the formula is as Eq. 8.

F =
Smax

|V | , S = {|Vi| , Vi ⊂ V } (8)

where V is the collection of ocean measuring point in a network and Vi is the
collection of the connected component of a ocean measuring point network.

The strength of linked nodes is represented by connection efficiency. The
higher of the connectivity efficiency, the tighter the tightness between the two
nodes. It is defined as Eq. 9.

CE = F − D (9)

where D is the density of a network, F is the fraction of the coverage of the
network.

3 Experiments and Discussion

3.1 Data

In this article, data is from fifteen ocean measuring points of East China Sea,
they are belongs to four different provinces, dafeng, yangkou and lvsi belong
to jiangsu province, sheshan, lvchao, tanxu and donghai belong to shanghai,
daishan, zhenhai, wushashan and wenzhou belong to zhejiang province, pingtan,
chongwu, jinjiang and longhai belong to fujian province. Every ocean measur-
ing point contains five different factors, including air temperature, air pressure,
humidit, wind speed and water temperature, the time is from April 1, 2016, to
April 5, 2016, the frequency of obtaining data is 1 hours per time.
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3.2 Attribute Selection

We use the method of Pearson correlation coefficient to indicate the properties’
correlation between different ocean measuring points. In this paper, dimension
reduction method is adopted when the value is greater than 0.7, through the
Fig. 3, properties of an ocean measuring point are divided into five groups, then
m = 5.

Fig. 3. The relationship of various attributes of a ocean measuring point.

The MGAF5 formula is as Eq. 10.

MGAF5 [i, j] = [G1 [i, j] , G2 [i, j] , ...G3 [i, j]] , 0 ≤ i, j < n (10)

where G1,G2,...G5 is GAFs image converted from air temperature, air pressure,
humidit, wind speed and water temperature respectively and [i, j] is one pixel
of the image of the n × n pixels. We can see that the fused images in Fig. 4
are calculated by corresponding five different (m = 5) time series in an ocean
measuring point.

3.3 Results Under Different Thresholds

Different threshold networks are obtained under different thresholds. In order
to obtain more accurate threshold networks, the selection of threshold is very
important. Then empirical method is the most effective method to determine
the threshold. In this paper we choose the networks from the threshold of 0.01
to 0.86, and the global properties of the system are counted by each restriction,
which is showed in Fig. 5. From the characteristics of the network, each node
plays a very different role in the network, and some key nodes play a leading
role in the network. By comparing the central nodes under different thresholds,
we select the more stable top ten central nodes.

From the Fig. 5, we find that with the increase of threshold, the obtained
threshold network is more sparse, which means that the network density, average
clustering coefficient and so on continue to decline. However, when the threshold
is taken to a smaller value, many nodes in the network are almost connected. In
order to remove the noise edge and keep the key nodes in the network as much
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Fig. 4. The fused image.

Fig. 5. Fugure A is our method; Fugure B is results of the average of ocean measuring
points correlation threshold method (traditional method).

as possible, we select the threshold when the link efficiency is the highest to
obtain the network. From the Fig. 6, we can see that the connectivity efficiency
has increased sharply in the threshold range, and has declined rapidly after rare
extremes.

Then we calculate the image similarity MSSIM and establish ocean measur-
ing points associated networks models with different thresholds. The importance
of nodes depends on node degree. From the Fig. 6, we can see that whether the
network constructed by this method or the network constructed by the tradi-
tional method, the most suitable threshold network can be obtained when the
threshold value is 0.4. Next, We choose the best threshold to get the network,
in Fig. 7. The method proposed in this paper gets fewer edges, the relationship
between the ocean measuring points in the same province is relatively close,
and the relationship between the measuring points in different provinces is rela-
tively loose, this phenomenon is in line with the actual situation. However, the
network constructed by the traditional method gets many edges, although the
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Fig. 6. The marine network connectivity efficiency.

Fig. 7. The network.

ocean measuring points in the same province can get a strong relationship, the
ocean measuring points in different provinces also have a strong relationship,
this means the traditional method gets more meaningless edges. Concerning
Fig. 6, we can see that the network constructed by our method can clearly and
accurately express the relationship between different nodes, while the network
constructed by the traditional method can not find the relationship between the
important nodes.

4 Conclusion

In this paper, we presented a detailed study of the properties of the ocean mea-
suring points correlation network. Finding components, cliques and independent
sets in the network gives us a new tool for the analysis of the ocean measuring
points structure by classifying the ocean measuring points into different groups.
We selects the characteristics of marine multiple time teries, the time series of
different attributes of each ocean measuring point are transformed into differ-
ent images, and then the images of different attributes of each ocean measuring
point are fused into an image by image fusion method. Then the similarity
between the images is used to measure the relationship between the ocean mea-
suring points, we use the edges to represent the relationship of different ocean
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measuring points, then the ocean measuring point network is constructed. At
last, we choose different threshold networks by different thresholds, and choose
the network under the optimal threshold by analysis, and through experiments
prove that the network constructed by our method can clearly and accurately
express the relationship between different nodes, while the network constructed
by the traditional method can not find the relationship between the important
nodes, so the network constructed by our approach is better than traditional
method, it helps government department to layout the ocean measuring points
more reasonable.
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3. Barthálemy, M., Barrat, A., Pastor-Satorras, R., Vespignani, A.: Velocity and hier-
archical spread of epidemic outbreaks in scale-free networks. Phys. Rev. Lett.
92(17), 178701 (2004)

4. Boginski, V., Butenko, S., Pardalos, P.M.: Mining market data: a network app-
roach. Comput. Oper. Res. 33(11), 3171–3184 (2006)

5. Caldarelli, G., Battiston, S., Garlaschelli, D., Catanzaro, M.: Emergence of com-
plexity in financial networks. Lect. Notes Phys. 650, 399–423 (2004)

6. Colizza, V., Barrat, A., Barthélemy, M., Vespignani, A.: The role of the airline
transportation network in the prediction and predictability of global epidemics.
Proc. Natl. Acad. Sci. U.S.A. 103(7), 2015–2020 (2006)

7. Brockmann, D., Helbing, D.: The hidden geometry of complex, network-driven
contagion phenomena. Science (New York, N.Y.) 342(6164), 1337–1342 (2013)

8. Eliazar, I., Koren, T., Klafter, J.: Searching circular dna strands. J. Phys. Condens.
Matter 19(6), 160–164 (2007)
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Abstract. Shapelet is a primitive for time series classification. As a
discriminative local characteristic, it has been studied widely. However,
global shapelet-based models have some obvious drawbacks. First, the
progress of shapelet extraction is time consuming. Second, the shapelets
discovered are merely good on average for the training instances, while
local features of each instance to be classified are neglected. For that,
instance selection strategy is used to improve the efficiency of feature
discovery, and a lazy model based on the local characteristics of each test
instance is proposed. Different from the commonly used nearest neighbor
models based on global similarity, our model alleviates the uncertainty of
predicted class value using local similarity. Experimental results demon-
strate that the proposed model is competitive to the benchmarks and
can be effectively used to discover characteristics of each time series.

Keywords: Time series · Lazy learning · Local similarity · Shapelet
Instance selection

1 Introduction

In recent years, time series classification (TSC) problems have received great
attention. Although a large number of TSC algorithms have been proposed,
extensive experiments show that 1NN classifier combined with improved dis-
tance function is still a competitive model in many problem areas [1]. However,
the interpretability of 1NN based on global similarity is insufficient. It cannot
indicate the common characteristics of similar instances and the dissimilarity
among different classes. In reality, except classification accuracy, the character-
istics of distinct instances are our concern. These features can help us have a
deeper understanding of data and improve the interpretability of the classifica-
tion model [2,3].

Shapelet is a discriminative subsequence of time series [4]. Since the shapelet
can be used to establish interpretable classification models, it has been widely
concerned [5]. Shapelet-based classification models can be divided into two cate-
gories. One type method uses the top-k shapelets to create a transformed dataset,
on which traditional classification algorithms can be applied [6,7]. The other
c© Springer Nature Switzerland AG 2018
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employs selected shapelets to build the classification model directly [4,8,9]. The
shapelet extraction is always embedded in the model building process for the
latter one, while for the former one, it is independent.

The high time complexity of extracting shapelets is the main defect of the
shapelet-based algorithms. In order to reduce that, some methods have been
presented to avoid retrieving the entire candidate space. These approaches fall
into two main groups: subspace-based and approximation-based. The former one
introduces heuristic or random search algorithms to find the most discrimina-
tive characteristics [9–11]. The latter one learns shapelet candidates through
numerical optimization algorithms or some other approximation methods [8,12].
For example, Rakthanmanon et al. proposed a fast discovery algorithm based
on symbolic aggregate approximation [8]. However, compared with Brute-Force
search algorithm, it is inevitable that some meaningful characteristics may be
neglected by these two categories of methods. In addition, these global models
have the following disadvantages:

(1) The global model evaluates and selects shapelets on the whole training set,
which ignores the information contained in the instance to be classified.
Meanwhile, due to the influence of redundant instances and intra-class vari-
ability, the shapelets extracted are merely good on average for the training
instances.

(2) The main focus of the presented studies is to search shapelets in a smaller
candidate space or to find local characteristics by approximation algorithms.
However, the candidate dataset used for shapelets evaluation has not been
paid enough consideration.

In order to solve the limitations of global model, a data driven, shapelet-based
model (Lazy Shapelet Classification Route, LSCR) is proposed, which combines
lazy learning strategy with the feature extraction. Figure 1 shows the charac-
teristics discovered by the classic Shapelets Decision Tree (SDT) proposed by

Fig. 1. (a) The shapelet found by SDT on ItalyPowerDemand dataset and its cor-
responding training instance. The black bold part indicates the time series shapelet
discovered. (b) Three time series from ItalyPowerDemand dataset and their corre-
sponding shapelets captured by LSCR. Train9 and Train44 (in blue and red separately)
are instances with different classes, while Train9 and Train46 (in blue) are instances of
the same type.
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Ye et al. [4] and LSCR respectively. The symbol Trainj denotes the jth training
instance. Sj

(i,l) represents the ith shapelet from the jth instance on the lth layer

of the shapelets decision tree built by SDT. Sj
i is the ith shapelet of the jth

instance discovered by LSCR.
From Fig. 1(b), we can find that not only the heterogeneous instances are dif-

ferent, there are also differences between the homogeneous instances. In addition,
compared with SDT shapelet (as shown in Fig. 1(a)), our model may capture
characteristics that SDT cannot discover. For example, the shapelet S46

0 shown
in Fig. 1(b) does not appear in the model built by SDT. Based on the shapelets
discovered, our model can make correct predictions for the three instances. The
main contributions of this paper are summarized as follows:

(1) Unlike the 1NN model based on global similarity, our model gives priority
to local similarity.

(2) In order to reduce the huge number of redundant candidate shapelets gener-
ated by Brute-Force or approximate algorithm, a novel strategy that extracts
candidate shapelets from the instance to be classified is proposed.

(3) Instances selection strategy is used in evaluating the discrimination of
shapelets. The smaller training set can not only alleviate the interference
of intra-class variation, but also reduce the computational complexity and
improve the classification accuracy of our model.

This paper is organized as follows. Section 2 describes the model proposed and
algorithm designed in detail. Section 3 presents the experimental analysis. Case
study is presented in Sect. 4. Section 5 offers the conclusion of this paper.

2 Shapelet Extraction for Each Test Instance

This section outlines the algorithm proposed in this paper. In order to reduce
the amount of distance calculation between candidate shapelets and time series,
a smaller candidate shapelets collection is established for the instance to be
classified at first. Then, a small part of the training instances is used to evaluate
the candidate shapelets.

2.1 Candidate Shapelets Set for the Test Instance

In this paper, the symbol D = {T1, T2, ..., Tn} represents the dataset containing
n time series, where Ti denotes a time series. The symbol Wl(Ti) is used to
indicate the set of subsequence of length l for the time series Ti. Dnode is a
dataset corresponding to an arbitrary tree node in the model SDT or LSCR,
and Wl(Dnode) is the set of the candidate shapelets of length l. Wl(Dnode) in
SDT could be represented:

Wl(Dnode) =
⋃

Ti∈Dnode

Wl(Ti) (1)
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However, the set of candidate shapelets of length l for each node in LSCR is:

Wl(Dnode) = Wl(T ) (2)

where T is the test instance.
Then, the whole candidate shapelets sets W (Dnode) for each node in SDT

and LSCR can be get through the equation:

W (Dnode) =
max∪

l=min
Wl(Dnode) (3)

where min and max are the minimum and maximum candidate length, respec-
tively.

Hence, the whole candidate features set of each node in SDT contains O(sm2)
elements, where s is the size of dataset Dnode and m is the length of each time
series. However, there are only O(m2) candidates need to be evaluated on each
node in LSCR.

2.2 Building the Evaluation Dataset

The key idea of evaluation dataset is to sample the targeted training instances
with different class values for shapelet evaluation. For the test instance T , we
select k nearest neighbors with the same and different class value of its nearest
neighbor respectively to make up two sub-datasets Dsame and Ddiff . At last,
the two subsets are combined to form the neighborhoods of the test instance.

De = Dsame {Ti|cTi
= cT } ∪ Ddiff

{
Tj |cTj

�= cT
}

(4)

where cTi
is the class value of instance Ti, and cT is the class value of the nearest

neighbor instance of T .
In our model, same as the way proposed by Ye et al. [4], information gain is

used to measure the discriminability of shapelets for the dataset De. Meanwhile,
a threshold δ of the shapelet would be determined.

2.3 Lazy Shapelet Classification Route

Instead of global similarity, local characteristics are used to reduce the uncer-
tainty of prediction. When a new instance to be classified is coming, a customized
classification route will be built by LSCR. The pseudo code of LSCR is shown
in Algorithm 1.

The algorithm above shows the process of generating the classification route.
At the beginning, the shapelet evaluation collection is established with Eq. 4 for
the test instance (line 1). Then the terminating condition is judged (line 2). If
the terminating condition is not satisfied, we extract the best shapelet based
on the evaluation dataset De corresponding to the node (line 3). The candidate
shapelets extracted through Eq. 3 are sorted according to the information gain.
If the best shapelet is determined, the instance whose distance with the shapelet
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Algorithm 1. LSCR(D, T , k)
Input: D, the training dataset; T , the test instance; k, the number of neighbor

instances with the same and different class value
Output: the classification route of the test instance: CRForT
1: De ← DataSampling(D, T , k)
2: if no identification shapelet can be found in the dataset De corresponding to the

node, and the majority class value is c, then return CRForT and the predictive
value is c; otherwise:

3: best shapelet ← FindingBestShaplet(T , De)
4: D′

e ← GeneratingNodeDataset(best shapelet, De, T )
5: Build the child node and repeat 2-5 on D′

e until the end

is larger than the split threshold in the dataset De would be excluded, and then
the remaining neighbor instances constitute a new subset D′

e (line 4). After that
we create a child node and repeat steps 2–5 until the terminating condition is
met (line 5). At last, the shapelet-based classification route of the instance to be
classified will be returned.

The predicted result obtained by model LSCR may be different from the
class value of the nearest neighbor or the majority class in the initial dataset
De. This is the biggest difference between our model and the nearest neighbor
models.

3 Experiment and Evaluation

Considering the time complexity of our algorithm, we present an experimental
analysis on 44 datasets from the UEA & UCR time series repository [13].

3.1 Parameter Analysis and Selection

In order to study the effect of the neighborhood size on the discriminative evalu-
ation of the features, we try to observe the accuracy trends of LSCR based DTW
Distance (DTWLSCR) within the specified range over 16 datasets in Fig. 2.

From Fig. 2(a), we can see that most accuracy rates reach the maximum val-
ues when parameter k = 5, and then all the curves show a significant downward
trend. Therefore, in the following experiments, the value k used in DTWLSCR
on binary-class datasets is set to 5. From Fig. 2(b), we can find that, except Beef
dataset, the accuracy rates on seven multi-class datasets have a growth trend
as k rises. When k is greater than 6, the accuracy on each dataset tends to be
stable. Hence, we set the parameter k of DTWLSCR to 6 on multi-class datasets.

3.2 Performance Analysis

In this section, DTWLSCR without instance selection is first compared with
DTWLSCR (k = 5/6) on the 16 small datasets in Fig. 3. Setting parameter
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Fig. 2. The accuracy variation trends of DTWLSCR on different datasets when the
value k increases. (a) Experiments on 8 binary-class datasets. (b) Experiments on 8
multi-class datasets.

k to 0 means instance selection is not carried out in the model LSCR. Considering
the time complexity of SDT, we also compare LSCR with SDT on the 16 small
datasets.

From Fig. 3(a), we can see that DTWLSCR(k = 5/6) is significantly better
than DTWLSCR (k = 0). Hence, in the following, we choose DTWLSCR com-
bined with instance selection for further analysis. Meanwhile, in Fig. 3(b), we can
see that the classification performance of DTWLSCR is better than SDT (10 of
16) over the 16 datasets. In order to compare the time complexity of DTWLSCR
with SDT, we analysis the running time of DTWLSCR (k = 5/6) vs. SDT in
Fig. 4.

In Fig. 4(a), it is clear that the running time of both models presents a linear
increasing trend with respect to the number of instances, but SDT takes more
time than DTWLSCR under the same condition. In Fig. 4(b), the runtime of
SDT increases exponentially with respect to the length of instance. As the length

Fig. 3. Accuracy rates of DTWLSCR(k = 5/6) compared with DTWLSCR without
instances selection and SDT over 16 datasets. (a) DTWLSCR(k = 5/6) vs. DTWLSCR
(k = 0). (b) DTWLSCR vs. SDT
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Fig. 4. The running time trends of DTWLSCR (k = 5/6) vs. SDT based on different
variables. (a) The sizes of training and testing datasets increase by 10 at a time. The
length of each instance remains 60. (b) The length of time series increases by 10 at a
time. The sizes of training set and testing set both take 60.

of instance grows, SDT run significantly slower than DTWLSCR. However, the
running time of DTWLSCR is not sensitive to the length of each time series.
The above experiments indicate that, compared with SDT, DTWLSCR reduces
the time complexity.

Furthermore, three benchmark classifiers based on global similarity are used
to compare with DTWLSCR on 44 datasets, namely, 1NN model based on
Euclidean distance (ED1NN), DTW-based 1NN (DTW1NN) and DTW-based
kNN model (DTWkNN). From Fig. 5(a) and (b), we can see that DTWLSCR
is better than the DTWkNN (30 of 44) and ED1NN (30 of 44). Especially, the
average accuracy of DTWLSCR is nearly 10% higher than that of DTWkNN
(k = 10 on binary-class datasets, k = 12 on multi-class datasets). DTWLSCR is
slightly worse than DTW1NN (20 of 44) in Fig. 5(c).

Though DTWLSCR selects instances for test instance according to the class
value of its nearest neighbor, the experimental results show that the predic-
tion result is not necessarily the same as the class value of the nearest training

Fig. 5. Accuracy rates of DTWLSCR (k = 5/6) compared with three nearest neighbor
models based on global similarity over 44 datasets. (a) DTWLSCR vs. DTWkNN
(k = 10/12). (b) DTWLSCR vs. ED1NN. (c) DTWLSCR vs. DTW1NN
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instance or the majority in the neighborhoods. In conclusion, the above accuracy
comparison results suggest that narrowing the search space of class attributes
continuously based on local similarity is an effective method.

4 Case Study

In this section, the interpretability of LSCR will be discussed on MoteStrain
dataset. The classification performance of DTWLSCR on MoteStrain dataset is
significantly better than the models used for comparison, it is also competitive to
the best result provided by Bagnall et al. [13]. Figure 6 shows four instances and
their shapelets extracted through DTWLSCR. Our model can correctly predict
the class properties of these four instances, while SDT fails.

From Fig. 6, we can see that it is obvious that there are significant intra-
class variations in similar cases. For example, the differences among the two
instances with same class label Test11 and Test129 (shown in Fig. 6(a) and (b))
are noticeable, while there are no obvious common features. However, in the
shapelet decision tree built by SDT, only a shapelet is found, which is not enough
to distinguish these two classes. This is the reason why the shapelets decision
tree is poorly performing on the MoteStrain dataset. Meanwhile, because the

(a) Test11 (b) Test129

(c) Test3 (d) Test41

Fig. 6. Four test instances from MoteStrain dataset and their shapelets found by
DTWLSCR. The top two instances (a–b) are from Class1 and the bottom two (c–
d) from Class2.
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characteristics of each test instance have been considered in our model, in face
of this situation, we can achieve better classification results. In addition, based
on the shapelet obtained by DTWLSCR, the prediction process of each instance
can be explained. Since the shapelets extracted in LSCR come from the test
instance, these shapelets can be a good explanation of what features determine
its class value. For example, the reason why the 11th test instance belongs to
Class1 is that the local feature S11

0 lies in its initial stage, while the local feature
S41
0 of the 41th test instance in the middle part determines its predicted class

label. Based on the characteristics captured, the other examples shown in Fig. 6
can also explain their prediction process in the same way.

5 Conclusion

In order to create a more pertinent and interpretable classification model, we
propose to build a classification route for each time series using its own local
characteristics directly. Meanwhile, the concept of shapelets evaluation dataset
is put forward to reduce the consumption of distance calculation, and to weaken
the impact of intra-class variation on the feature assessment. Our model can
be used to answer the question: “What characteristics of the instance to be
classified determine its class properties?”. Extensive experiments and detailed
case study demonstrate the rationality and feasibility of the proposed method.
The main directions of our future work involve studying other generation and
evaluation methods of local characteristics for the test instance, and making
detailed statistical analysis of the acquired shapelets.
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Abstract. The sparse principle component analysis (SPCA) compre-
hensively considers the maximal variance of principal components and
the sparseness of the load factor, thus making up for the defects of the
traditional PCA. In this paper, we are committed to propose a novel
approach based on broad learning system with sparse PCA named as
SPCA-BLS for chaotic time series prediction. We also develop the incre-
mental learning algorithms to rapidly rebuild the network without full
retraining if the network is considered to be expanded. The core of the
SPCA-BLS is that we achieved the dimensionality reduction and the
features extraction of high-dimensional data and the dynamical recon-
struction of the network without the entire retraining. The method has
been simulated on an artificial and an actual data sets and the exper-
imental results in regression accuracy confirm the characteristics and
effectiveness of the SPCA-BLS.

Keywords: Chaotic time series prediction · Broad learning system
Sparse PCA

1 Introduction

The chaotic time series is a time sequence sampling of a dynamic system. In
the real life, most meteorological, hydrological and financial systems are chaotic,
and chaotic systems are difficult to model because of its chaotic nature and high
dimensional and complex features [1]. Therefore, time series prediction has been
a significant domains of research. So far, experts and scholars have developed
many artificial neural networks to predict the time series more accurately [2–4].

Principal component analysis (PCA) is an important data processing
method. In high-dimensional data analysis, it is an important data analysis and
dimensionality reduction technology, and it plays a great role in the fields of
biostatistics, social sciences, economics, and finance [5]. Despite its popularity,
the main drawback of PCA is that the derived principal components (PCs) are
a linear combination of all initial components [6]. Moreover, the coefficients of
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all linear combinations are usually nonzero. Therefore, each obtained principal
component lacks sparseness and may not have practical meaning [5,7].

Sparse representation is the normal requirement for data representation. In
the statistical literature, the earliest attempts of sparsitying PCA includes sim-
ple axis rotations and component thresholding, whose basic goal is the subset
selection based on the identification of principal variables. JoLiffe et al. pro-
posed the first real computing technology called SCoLTASS [8] and provided an
efficient optimization architecture using the lasso, however it was proved unprac-
tical. Soon after, Zou et al. formulated sparse PCA (SPCA) [9] using the elastic
network architecture for L1 penalized regression of conventional PCs, and the
algorithm was effectively solved by using the minimum angle regression (LARS).
The SPCA pursues an approximate sparse “eigenvectors” whose projections cap-
ture the maximal variance of the input.

Broad learning system (BLS) [10] is an efficient method in processing large-
scale data. We proposed a novel prediction network named Broad Learning Sys-
tem based on Sparse PCA (SPCA-BLS) in this paper for feature extraction and
prediction of large-scale data. We illustrate the excellent performances of the
SPCA-BLS in two different data sets.

The paper is arranged as follows. We elaborate the architecture of the pro-
posed SPCA-BLS method in Sect. 2. In Sect. 3, we introduce its incremental
learning algorithm. In Sect. 4, we present the simulations and result analysis
based on Lorenz time series and UCI time series about PM2.5. And Sect. 5 gives
the conclusions.

2 Broad Learning System Based on Sparse PCA

The evolution of any time series is determined by other time series in the same
chaotic system. Therefore, the evolution of the system in a certain moment
contains all the information of the chaotic system. In actual prediction, we use
the phase space reconstruction (PSR) [11] to represent the evolution characters
of the chaotic time series in which the topological structure is equivalent to the
original dynamic system.

2.1 Phase Space Reconstruction

A phase space can reflect a deterministic dynamical system which contains the all
possible states of a system. By using the time delay method, a one-dimensional
time series can be reconstructed into m-dimensional space where m is the embed-
ding dimension [12]. Supposing that the chaotic network has N time series of
the input, and assuming the embedding dimension as m = (m1,m2, ...,mN )T ,
after PSR, we get

X =

⎛
⎜⎜⎜⎝

x1,n x1,n−τ1 · · · x1,n−(m1−1)τ1

x2,n x2,n−τ2 x2,n−(m2−1)τ2
...

. . .
xN,n xN,n−τN · · · xN,n−(mN−1)τN

⎞
⎟⎟⎟⎠ (1)
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where τi(1 ≤ i ≤ N) is the time lag. We begin with an input matrix Xi ∈ RN × P ,
where P is the input dimension. And in this process, we set τ1 = τ2 = · · · =
τN = d. Through PSR, we obtain the reconstructed input X ∈ RN × L, where
L = Pd. The new input X will preserve all the intrinsic characteristics of the
chaotic system after PSR.

2.2 Sparse PCA

The SPCA mainly concentrates on the maximal variance of the PCs or the
minimum reconstruction error. We extract the features of high-dimensional data
by SPCA [9] to obtain the PCs with sparse loadings based on L1 penalties. For
a single component, the SPCA solves

β̂ = arg min
θ ,v

N∑
i=1

‖xi − θvT xi‖22 + λ‖v‖22 + α‖v‖1, subject to ‖θ‖2 = 1 (2)

where xi is the ith component of X, and ‖v‖1 =
∑N

i=1 |vi| is the 1-norm of v.
There are some remarks on this formulation: if N > L and both λ and α1 are
zero, we get v = θ and the direction of the largest principal component in this
condition; the second penalty on v promotes the loadings sparseness.

For multiple components, the procedure of SPCA minimizes

β̂k = arg min
vk

N∑
i=1

‖xi − ΘVT xi‖22 + λ
K∑

k=1

‖vk‖22 +
K∑

k=1

αk‖vk‖1 (3)

where ΘT Θ = IK , Θ ∈ RL × K , and vk is the columns of V ∈ RL × K . And
apparently, K is the dimension after dimensionality reduction. V and Θ are
not jointly convex in Eq. 3, but it is convex in each parameter with the other
parameter fixed. Minimizing V with Θ fixed is a kind of K elastic net problem
and can be solved easily. Similarly, minimizing Θ with V fixed is another version
of the Procrustes problem which can be done by SVD. These steps are repeated
until convergence. We define V̂k = β̂k/ ˆ‖βk‖ as the approximation of Vk, and we
get XV̂k, the kth approximated principal component. As we know, normalization
can not affect the scaling factor of Vk. Obviously, a large enough αk generates a
sparse β̂ and a corresponding sparse Vk. Given a fixed λ, Eq. 3 can be efficiently
solved for all αk by the LARS-EN algorithm [13]. Thus, we derive a sparse
representation of the kth PC.

2.3 SPCA-BLS

After dimensionality reduction, we get E = XV, the sparse principal components
as well as the extracted features. And then BLS maps the features to the m
enhancement layers through a random non-linear mapping:

Hj = ξ
(
EWhj + βhj

)
, j = 1, 2, · · · ,m (4)
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where the weights Whj and bias βhj are generated randomly. Then the output
of enhancement layers is Hm= [H1,H2, · · · ,Hm]. Finally, the mapped features
and the enhancement groups are jointly solved by the least square method on
the target Y. The output of SPCA-BLS is computed by:

Y = [E|Hm]W = Am
n W (5)

where W is the output weights of SPCA-BLS and Am
n = [E|Hm]. Then the

output weight is calculated by ridge regression learning algorithm:

W = (δI + AAT )−1AT Y (6)

where δ is the regularization parameter denoting the further constraints and it
always tends to be zero.

3 The Analysis and Incremental Learning of SPCA-BLS

SPCA achieves the feature extraction while reducing dimensions. Adding the L1

penalty to the network can get a sparse representation of the results. However,
this results still depend on the PCA. We get a self-contained method by adding
the elastic net.

In addition, we give the incremental algorithm to update features dynami-
cally, which avoids the entire retraining of the system. When the training accu-
racy cannot meet the requirement, we can implement dynamical expansion by
adding new enhancement nodes. If we denote that there are p additional enhance-
ment nodes, after adding the new representations, the output matrix is

An+1 =
[
Am

n |ξ(EWhm+1 + βhm+1)
]

(7)

where Whm+1 ∈ RK × p and βhm+1 ∈ Rp are regenerated randomly. We renew
the joint features by the following operation:

A+
n+1 =

[
A+

n − DBT

BT

]
(8)

where
D = A+

n Aa

B =
{

C+ C �= 0
(1 + DT D)−1DT (A+

n ) C = 0
C = Aa − AnD

(9)

and Aa = ξ(EWhm+1 + βhm+1). The new output weights is

Wn+1 =
[
W − DBT Y

BT Y

]
(10)

When m new samples arrive, we have

xX =
[

X
Xa

]
(11)
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where Xa = [xn+1,xn+2, · · · ,xn+m]T , is the new data matrix added into the
SPCA-BLS. And the other initial architecture conditions are the same as the
above network. The corresponding feature of the new data is donated as xE =
XaV. After feature extraction and the mapping in enhancement layers, the joint
matrix for the new data is formulated as follows:

Ax = [E|ξ(Za
nWh1 + βh1, · · · , ξ(Za

nWhm + βhm)] (12)

Therefore, the updating matrix for the new input can be donated as follows:

xAm
n =

[
Am

n

AT
x

]
(13)

Then, the updating algorithm calculating by pseudo inverse is:

(xAm
n )+ =

[
(Am

n )+ − BDT |B]
(14)

where

DT = AT
x Am

n

+

BT =

{
C+ C �= 0
(1 + DT D)−1Am

n
+D C = 0

(15)

C = AT
x − DT Am

n

Assuming that Ya is the corresponding output of additional Xa, so the new
output weights are:

xWm
n = Wm

n +
(
Ya

T − Ax
T Wm

n

)
B (16)

The above operations can handle multiple incremental learning cases without
complete retraining of the model. It is undeniable that the algorithm accelerates
the efficiency of the network.

4 Experiments and Analysis

We conduct the experiments and analyze the experimental performances in this
section to verify the designed network. In order to validate the effectiveness of
SPCA-BLS, we conduct simulations based on two large-scale time series.

4.1 Data Sets Description

The Lorenz [15] time series are generated by the following formulas:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

dx

dt
= α(y − x)

dy

dt
= (β − z)x − y

dz

dt
= xy − γz

(17)
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When α = 10, γ = 3/8 and β = 28, the series present the chaotic characteristic.
The Lorenz system is a nonlinear, aperiodic, three-dimensional and deterministic
chaotic system. We generate Lorenz series using the fourth-order Runge-Kutta
method. We set the initial state as (x, y, z) = (1, 1, 1) and the time step as
0.01. In our simulation there are 50,001 sample groups, and each group has 3
variables. Lorenz is then reconstructed into a high-dimensional phase space with
the embedding dimension setting as [20, 20, 20] and the time lag [1, 1, 1] for the
x, y, z series respectively.

We add a real-life meteorological data in the experiments. The Beijing hourly
air quality index(AQI) data set collected from Beijing Capital International Air-
port including the PM2.5 data is used in the simulation. It contains 43824 group
samples and each group consists of eight variables including PM2.5µg/µm. We
choose the first five variables in the simulation. In the processing of reconstruc-
tion, we set the embedding dimensions as [40,40,40,40,40] and the delay times as
[1,1,1,1,1] for five variables respectively. The two data sets are both normalized
into the range [−1, 1]. We divide the two data sets into two parts separately:
the former 90% for training and the rest for testing.

4.2 Experimental Results and Analysis

We carried out the simulations on MATLAB 2016a on a 64-bit Windows 7 system
with an Intel-i3 CPU and 6 GB memory. In this section, we verify the designed
method on two data sets. Simulations on the reconstructed typical chaotic time
series-Lorenz time series and Beijing Air Quality Index data set are carried out to
prove the effectiveness of SPCA-BLS. Some other methods are compared to the
proposed method: extreme learning machine (ELM), echo state network (ESN),
ESN with leaky integrator neuron (LIESN) [14] and BLS. The performances of
the prediction are measured by the four following indexes such as Root Mean
Square Error (RMSE), Normalized Root Mean Squared Error (NRMSE), Mean
Absolute Error(MAE) and Symmetric Mean Absolute Percent Error (SMAPE).

Table 1. The t + 1 step prediction results on Lorenz time series

Index RMSE (×10−4) NRMSE (×10−5) MAE (×10−4) SMAPE(×10−4)

Methods x y z x y z x y z x y z

ELM(1000) 20.2 26.4 31.6 5.35 5.13 7.30 10.7 14.4 16.1 7.06 11.7 0.70

ELM(4000) 4.61 7.21 7.32 1.22 1.40 1.69 2.15 3.96 3.90 1.05 2.04 0.17

ESN 11.2 19.5 16.4 2.76 3.78 3.79 7.64 12.5 10.2 3.92 9.41 0.44

LIESN 12.9 32.5 26.5 3.43 6.30 6.13 8.54 21.9 18.2 4.85 10.0 0.84

BLS 4.91 11.3 10.2 1.30 2.18 2.35 3.08 6.27 5.40 1.25 2.91 0.22

SPCA−BLS 8.22 4.65 3.93 2.20 0.90 0.90 5.12 3.04 2.42 2.28 1.38 0.10
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(a) Lorenz-x (b) Lorenz-z

Fig. 1. t + 1 step prediction performances on Lorenz time series by SPCA-BLS.

The testing results of t + 1 step prediction comparisons of Lorenz are tab-
ulated in Table 1. In Table 1, ELM (1000) and ELM (4000) represent that the
hidden nodes of ELM is 1000 and 4000 respectively. It is clear that: for ELM
when the hidden nodes is 1000, the RMSE of y sequence is 26.4 × 10−4 which is
vary large actually; and when the hidden nodes is 4000, the RMSE of y sequence
is just 7.21 × 10−4 which is still much larger than SPCA-BLS of it. It should
be realized that with the increase of the hidden nodes of ELM, the operation of
programs will become very slow, while the accuracy is not improved.

Fig. 2. RMSE of m-step-ahead prediction of Lorenz-z by SPCA-BLS.
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Although the x sequence predicted by SPCA-BLS is not superior to all the
methods, y and z columns predicted by it are much better than the results of
other methods. And the t + 1 step prediction results of Lorenz are presented
in Fig. 1. Prediction on m-step-ahead (1 ≤ m ≤ 30) on Lorenz-z is conducted
directly by SPCA-BLS, where the output is delayed m-step corresponding by
the time window. The RMSE of m-step-ahead prediction performance conducted
by SPCA-BLS is illustrated in Fig. 2. We can be see that in Fig. 2 the RMSE
is less than 1 even if m has increased to 13 which thoroughly demonstrates
the effectiveness of multi-step prediction of SPCA-BLS. As can be seen, the
prediction of SPCA-BLS is accurate and effective, as all the RMSEs are less
than 1. From fourteenth step, the RMSE increases fast, and the result becomes
inaccurate.

Fig. 3. t + 1 step prediction performance on Beijing AQI by SPCA-BLS.

Table 2. The t + 1 step prediction results on PM2.5 time series

Index RMSE NRMSE (×10−3) MAE SMAPE (×10−2)

Methods Train Test Train Test Train Test Train Test

ELM 4.853 4.579 5.752 5.426 3.139 3.138 6.058 8.228

ESN 4.806 3.997 5.696 4.736 2.883 2.609 5.093 5.824

LIESN 4.808 3.994 5.698 4.734 2.878 2.607 5.071 5.762

BLS 6.052 4.815 7.172 5.707 3.822 3.314 7.268 8.404

SPCA-BLS 3.284 2.670 3.892 3.165 2.177 1.863 3.959 4.644
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Fig. 4. t + 3 step prediction performance on Beijing AQI by SPCA-BLS.

Table 3. The running time comparison on 3-step-ahead predicting of Beijing Air Qual-
ity index

Time (/s) Method

ELM
(1000)

ELM
(2000)

ELM
(4000)

ESN LIESN BLS SPCA-
BLS

TraintimeofLorenz 6.3024 19.4533 77.4545 9.5785 9.3289 1.4329 6.6924

TesttimeofLorenz 0.2496 0.4992 1.014 0.8892 0.9048 0.0823 0.0312

TraintimeofPM2.5 5.6628 18.0649 65.7544 56.0044 55.3804 0.9400 10.2493

TesttimeofPM2.5 0.234 0.546 0.99841 5.7096 5.928 0.0936 0.0624

We also conducted a group of comparative simulations on a real world data.
The predicting comparison results on Beijing AQI data set list in Table 2. In the
table, all the indexes of SPCA-BLS have achieved the optimal value. The t + 1
step prediction results of PM2.5 are presented in Fig. 3. Besides, the t + 3 step
prediction results of PM2.5 are presented in Fig. 4. Obviously, we can see that
in the application of prediction of actual data, the performance of the SPCA-
BLS is more prominent. To further illustrate the effectiveness of the proposed
method, we compared the training time and test time of all methods. The com-
parison results are given in Table 3. In this table, ELM(1000) represents Extreme
Learning Machine whose hidden nodes are 1000, and similarly ELM(2000) rep-
resents the ELM with 2000 hidden nodes, ELM(4000) represents the ELM with
4000 hidden nodes. The results show that the proposed method has a shorter
training time and the shortest test time among all methods which strongly indi-
cates that SPCA-BLS can balance the prediction accuracy and the running time.
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Therefore, we can believe that SPCA-BLS can better extract the features and
learn the evolutionary rules in actual complex meteorological data.

5 Conclusion

We propose an effective chaotic time series prediction method SPCA-BLS in
this work, which achieves dynamical high-dimensional features extraction when
new nodes are added. The SPCA-BLS has some advantages, such as efficient
feature extraction and compression of input and dynamic expansion of the model.
Its performances have been testified by two simulations. Compared with the
mentioned comparison algorithms, the designed model achieves higher accuracy
especially in the real-world data. This results ensure the effectiveness of SPCA-
BLS for predicting multivariate real life time series.
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Abstract. With the increasing availability of unobtrusive, and inex-
pensive sensors in smart environments, online sensor data segmentation
becomes an important topic in reconstructing and understanding sensor
data. Usually, in the literature, the segmentation is either performed by
following a fixed or a dynamic time-window length. As stated in several
works, static time-window length has several drawbacks while adjusting
dynamically the window length is more appropriate. However, each of
previous methods for dynamic data segmentation targets only a particu-
lar type of application. Hence, there is a need for a general method inde-
pendent of applications providing high degree of usability. To achieve
this aim, in this paper, we propose a novel method that dynamically
adapts the time-window size. The proposal is designed to be applied
in a wide range of applications (activity recognition, decision making,
etc.) by combining statistical learning and semantic interpretation. This
hybridization allows to analyze the incoming sensor data and choose the
better time-window size. The presented approach has been implemented
and evaluated in several experiments using the real dataset Aruba from
the CASAS project.

Keywords: Clustering · Ontology · Segmentation
Smart environment

1 Introduction

Due to the rapid advances in sensing technology, we are witnessing a growing
interest in smart environments, in which a variety of sensors are continuously
sending data for processing and analysis in order to be used for different domain
applications. To gain a meaningful data understanding from sensor data, one of
the major tasks in this area is to divide the long sequence of sensing records into
a set of individual segments. Each segment corresponds to a “specific” concept
which can be interpreted differently according to the target application.

In the literature, the dynamic data segmentation has proven better results
than the static one [4] since it identifies the time points in a more flexible way.

c© Springer Nature Switzerland AG 2018
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However, dynamic streaming sensor data segmentation is still a challenging prob-
lem. Generally, previous researches in this field [1–3], either assume that a pre-
segmented dataset is available for learning the suitable time-window size or being
conceived to be applied to a particular application. Accordingly, most related
work suffer from generality issue. Hence, the segmentation should be done in a
general manner. Afterwards, it can be adapted according to the application.

In this paper, in order to overcome the aforementioned issue, we propose a
novel method which combines a clustering method, that is to say, a statistical
learning method, and a logic-based method, that relies on high-level “symbolic”
representation, in order to dynamically choose the best time-window size. Ini-
tially, to tackle the cold start problem that usually concerns statistical learning
approaches, an ontology with a default classification is created. This task can
be done by the designer after the setup of the environment. Afterwards, once a
training dataset is acquired related to the target application1, a clustering based
classification of the dataset is done offline according to a defined features. The
proposal dynamically updates offline the ontology whenever change occurs in
the obtained clusters. During the online process, the method uses the ontology
to decide which better size for the current time-window. The proposed method
thanks to this hybridization neither requires a pre-segmented dataset nor being
limited only for a particular type of application’s use. In order to prove the
accuracy of the proposal we apply it for an activity recognition application. In
addition, we test it with Support Vector Machine (SVM) [12], a machine learning
method, as an activity classifier module, with the real Aruba dataset from the
CASAS project [11]2, and synthetic datasets. In the following, we summarize
the main contributions of the paper:

– A new method for dynamic streaming sensor data segmentation. The proposal
is flexible to be used in a wide range of applications.

– A novel marriage between knowledge oriented method and machine learning
to provide a flexibility for the time-window size choice.

– The method is fully implemented and tested in the specific case of activity
recognition application. SVM is used as an activity recognizer module with
different datasets. The output is compared with SVM using fixed time-window
size as well as state of the art work. The results are promising proving the
high accuracy level.

2 Related Work

In this paper we classify previous works of dynamic streaming sensor data seg-
mentation into three main classes: (1) metric-based methods, (2) learning-based
methods, and (3) knowledge-based methods.

1 Dataset of user activities for activity recognition application, for anomalies in case
of anomaly detection application, etc.

2 http://ailab.wsu.edu/casas/datasets/.

http://ailab.wsu.edu/casas/datasets/
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Metrics-Based methods: the general principle of these methods is that the
window size is chosen according to the result of computed metrics such as mutual
information [2,5]. For activity recognition process, the authors in [2] propose a
segmentation method that consists of dividing the sensor events into chunks
according to the incidence of activity. To achieve this aim, they use the Pearson
Product Moment Correlation (PMC) metric to compute the correlation between
any pair of sensor events in the window. The authors in [5] propose to compute
the mutual information between each couple of sensor events within a window
and calculate a feature’s weight. Only highly related sensor events are supposed
to be in the same activity. Another work [13] proposes a similarity measure to
segment a motion stream. The proposed measure is highly related to the body
motion attributes. For accelerometer streaming data segmentation, the authors
in [6] propose to classify the data according to a set of features which are used
as metrics such the variance, mean, etc. The method is specific for accelerometer
data.

Knowledge-Based methods. This class applies mainly semantic representa-
tion (e.g ontology) and semantic reasoning (e.g logic inference) to derive dynam-
ically the window size. For example, the work in [3] proposes an ontology repre-
senting the activities that can be realized by the residents, the types of installed
sensors in the smart home, etc. The dynamic segmentation consists of either
expanding or shrinking the time-window by queering the ontology at the same
time as recognizing the activity. The work in [7] proposes a semantic based app-
roach for segmenting sensor data series using ontologies to perform a terminology
box (TBOX) and a assertion box (ABOX) reasoning, along with logical rules to
infer whether the incoming sensor event is related to a given sequences of the
activity. As in the previous work, the segmentation method is also integrated
into the activity recognition method.

Learning-Based methods. Under this class, methods use machine learning in
order to learn which suitable window size regarding the coming sensor data. Gen-
erally, a pre-segmented dataset is required for the training phase (i.e a dataset
containing the ground truth of time window sizes for the segments). The authors
in [1] propose to use a probabilistic data driven approach to identify, as a first
step, the possible window size using a pre-segmented dataset. As a second step,
they propose to learn the most likely window size for an activity based on the
computed probabilities of the possible window sizes.

To the best of our knowledge, all the previous methods are designed to be
used for a particular kind of application domain such as activity or gesture
recognition. However, it is more useful to conceive a flexible method that can be
applied in different applications.

3 Method

Through this section, we explain in details the whole process of the method for
the dynamic streaming sensor data segmentation.
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Fig. 1. Method architecture

As we can see in Fig. 1, the method holds mainly two processes: Offline and
Online executions. The former starts by applying a Clustering algorithm in
order to classify the given dataset into a set of classes based on given features.
The dataset must concern one application and the features are defined accord-
ingly. As mentioned before, the proposed method could be used with different
application domains. The clustering is executed offline once a dataset is given or
updated. Afterwards, the Ontology updater dynamically updates the ontology
when the clusters are updated or new ones appear. The ontology is designed
to contain the information that must be provided by the built clusters for each
application. Next, when the dataset is ready and the set of clusters are obtained
or changed, the ontology is dynamically updated. The online process dynamically
segments the streaming sensor data into time-windows based on the knowledge
provided by the ontology.

3.1 Clustering

The clustering aims, as a first step, to divide a given dataset into a set of clusters
based on the given features. Each target application has its own features. For
example, activity durations and used sensors are features corresponding to the
activity recognition application while the anomaly start time can be considered
as a feature for anomaly detection application.

3.2 Ontology Updater

A general ontology is designed to semantically represent the information pro-
vided by the clusters for each dataset. In order to allow a quick start of the
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Algorithm 1. Ontology Updater
Input: Ontology O, Features set sf, Clusters C, Name of the dataset name, Application app
Output: Updated ontology O

1 if (ExecuteRule(search, O, name) �= ∅) then
2 ExecuteRule(insertInstance, Dataset, name);
3 end
4 appC ← GetClass(O, app);
5 for (each cluster ci ∈ C) do
6 for (each element el ∈ ci ) do
7 ExecuteRule(insertInstance, el, hasElement(O, appC);
8 end
9 for (each feature fj ∈ sf) do

10 fC ← GetClass(O,fj);
11 val ← GetValue(ci, fj);
12 ExecuteRule(insertInstance, val, fC);
13 setObj ← GetObjectProperties(hasElement(appC), fC);
14 for (each objectProperty obj ∈ setObj) do
15 ExecuteRule(insertRelation, obj, ci, val);
16 end

17 end

18 end

system even if a dataset is not yet ready, the ontology initially contains similar
information that should be provided by the clusters for each application. When
the dataset is ready and the clusters are obtained, the ontology is dynamically
updated with the content of the given clusters. The dynamic update is insured
by using program and SPARQL queries. Algorithm 1 shows the operations per-
formed by the ontology updater. Initially the ontology contains the three classes
Application, Dataset, and Element. Moreover, it contains the applications that
will be held by the method represented as subclasses of Application class. The
class Element represents the main information provided by the application. For
instance, for the activity recognition application the ontology must contain the
class Activity, a subclass of Element, related to the class activity recognition, a
subclass of Application, and related to the classes corresponding to the applica-
tion’s features (i.e Duration). After receiving the application name, the set of
features and clusters, and the dataset name, Algorithm 1 starts by executing a
rule named search, by calling the function ExecuteRule, which searches whether
the given dataset is already in the ontology (Line 1 and 2). It is important
to mention that the algorithm stores the corresponding classes in the ontology
for each possible application and their corresponding features. Hence, the func-
tion GetClass (Line 4) returns the corresponding ontological class for the input
application app. Afterwards, by applying a logic rule, named insertInstance, all
the different elements belonging to the given clusters become instances of the
corresponding subclass of Element related to the given application (Lines 5–8).
For example, if the application is Activity recognition the ontology must hold
the class Activity subclass of Element. In this case the activities in the clusters
become instances of the Activity class. For a better insight see Fig. 2. Next, each
feature value in the cluster becomes an instance of the corresponding feature’s
class in the ontology using a logic rule (Line 9–12). For example, 5 min is a value
in the cluster of the feature Duration. Accordingly, 5 min becomes an instance
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Fig. 2. An example of the ontology used in the experiments after being updated with
Aruba dataset’s clusters. Added elements are in red (Color figure online)

of the class Duration in the ontology (see Fig. 2). Finally, the algorithm extracts
the set of objectProperties having the feature class as a range (Line 13). Then,
it relates the instances corresponding to elements in the clusters with theirs fea-
tures values using the adequate objectProperty. For example, in the ontology
(Fig. 2), the feature’s class Duration is the range of the objectProperty hasDu-
ration where the Class Activity is its domain. Therefore, Algorithm 1 links the
added activity’s instances for each cluster with their corresponding durations.

3.3 Data Processing and Window Manipulator

Generally, a sensor sequence can be represented as {S1, S2...Sn} where Si refers
to the itth sensor event, and each sensor event is encoded in the template of
{date, time, sensorID, sensorV alue}. Once the coming sensor data are repre-
sented in this template, the main aim of this step is to divide this streaming
sensor data into a time windows with size “sw”. Each chunk “sw” is chosen
dynamically using the Window manipulator Algorithm 2.

Initially, the time window size is the minimum duration in the ontology
regarding the given application and dataset. It is important to note here that
Duration is defined as a features for all applications. For instance, if we target
the activity recognition application and we set up the method for aruba dataset,
then the algorithm sets the initial time window size as the minimum activity’s
durations belonging to Aruba. This duration should not be used before in the
same session (Line 7). Afterwards, the algorithm keeps extracting the set of
sensor data (sensorsData), that are in the streaming SD, occurred during the
defined time window size (actualSize). This is achieved using the function Read-
Online() (Line 8). The algorithm stops the loop when sensorsData are included,
in at least one of the feature vectors extracted from the ontology (Lines 12,18)
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Algorithm 2. Window Manipulator
Input: ontology O, streaming sensor data SD, application app, application’s features feats,

Dataset’s name dName
Output: set of possible results possRes, time window size sw

1 usedsizes← ∅;
2 sensorsData ← ∅;
3 keep ← true;
4 possRes ← Null ;
5 previousSize ← 0 ;
6 while (keep) do
7 actualSize ← getMinimumDuration(O, usedSizes, previousSize, app, dName);
8 sensorsData ← ReadOnline(SD, actualSize-previousSize, sensorsData);
9 EleFeatVects ← getElementsVectors(O, app, feat);

10 for each appEl ∈ EleFeatVects do
11 if (testAppart(sensorData, appEl) then
12 add(possRes, appEl);
13 end

14 end
15 previousSize ← actualSize;
16 Add(usedSizes, actualSize);
17 if (possRes!= Null) then
18 keep=false;
19 sw← actualSize;

20 end

21 end

using the testAppart function. In other words, based on the given application,
the algorithm extracts the features vector for each given application’s element.
For example, in case of anomaly detection, it extracts for each anomaly its fea-
tures vector holding the features’ values. Then, it checks whether the data in the
streaming are belonging to this vector. In the positive case, this element is added
to the set of possible results possRes (Line 13). Finally, if the algorithm detects
at least one possible element then it stops reading (Lines 19, 20). Otherwise,
it extends the actual time-window size (actualSize) with the difference between
it and the next minimum element’s duration extracted from the ontology (Line
(7)), the actual size becomes the previous size, and this process is repeated until
possible results are detected ( Line 17, 18).

4 Experiments and Discussion

To evaluate the usefulness of our proposal for dynamic streaming sensor data
segmentation, we have applied it in case of activity recognition application. We
tested it with 6 weeks over Aruba dataset and a synthetic dataset. On the one
hand, Aruba was collected by the Center for Advanced Studies in Adaptive
Systems (CASAS) [11]. The Aruba dataset contains ground-truthed activities of
a home-bound person in a small apartment for 16 weeks. On the other hand, we
have generated automatically two datasets that can be obtained from the GIS
MADONAH3. For the activity recognizer method we applied the Support Vector
Machine (SVM) algorithm. More details about the dataset and the experiments
are given in the next subsections.
3 http://www.bourges.univ-orleans.fr/madonah/.

http://www.bourges.univ-orleans.fr/madonah/
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4.1 Datasets

Data collected from Aruba dataset was obtained using 31 motion sensors, three
door sensors, five temperature sensors, and three light sensors. 11 activities were
performed for 220 days (7 months). The dataset is imbalanced, as some of the
activities occur more frequently than others. Table 1 presents the statistics of
the sensor events and activities performed in the 6 weeks over Aruba dataset.
“Other activity” class contains events with missing labels. It covers 54% of the
entire sensors events sequence.

The synthetic dataset contains sensor data values similar to that provided
in GIS MADONAH. It is generated separately for half day (90 events) and
one day (185 events) of an elderly like routine. It contains a set of presence,
motions sensors and light detectors. The dataset holds principally four activities:
Sleeping, Watching TV, Discomfort, and Eating.

Table 1. Statistics of six weeks over
Aruba dataset

Id Activity Number
of events

1 Bed to Toilet 266
2 Eating 3207
3 Enter Home 404
4 Housekeeping 2117
5 Leave Home 384
6 Meal Preparation 57029
7 Relax 70917
8 Resperate 108
9 Sleeping 6536
10 Wash Dishes 2092
11 Work 3264
12 Other activity 174 264

These datasets were used in our method,
on the one hand, as training dataset for SVM
and, on the other hand, for the clustering.

4.2 Evaluation Result

F-Score measures was used to evaluate our
proposal with 6 weeks over Aruba dataset.
Moreover, in order to discuss its perfor-
mance regarding static time-window size, we
firstly tested SVM with fixed time-window
size (i.e. 5 min).4 Afterwards we used SVM
as an activity recognizer in the method. Fur-
thermore, the results are compared with
the dynamic data segmentation process,
SWMIex [5]. SWMIex is a metrics-based
method which uses the Mutual Informa-
tion measure to compute sensor correlation.
SWMIex, SVM with static time window,
and our proposal are tested in same condi-
tions (i.e dataset). For the process, we used
three quarters of the dataset for the offline training and one quarter for the
online testing. Figure 3 shows the different F-score values of the three methods
for each activity belonging to Aruba dataset.

4 After doing a set of experiments with different time window sizes, five minutes has
shown best results for SVM using 6 weeks over Aruba dataset.
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Fig. 3. F-score value for the different activities in Aruba dataset using only SVM with
static time-window length (5min), our and SWMIex methods

Table 2. Average F-score for all activities

Dataset /method Static SVM Our method

Half day synthetic dataset 0.39 0.42
One day synthetic dataset 0.42 0.53
Six weeks over Aruba 0.40 0.64

As it is shown in
Fig. 3, our proposal out-
performs static SVM
and SWMIex in terms
of F-score. From Fig. 3,
we conclude that the
three methods have

unbalanced performance. In other words, they have higher efficiency to rec-
ognize some activities (i.e. 9. Sleeping, 11. Work) than to detect some others
(4. HouseKeeping, 10. Wash Dishes, 8. Resperate). This result, has two possible
explanations. On the one hand, since also the dataset is unbalanced then infre-
quent activities have low chance to be recognized such as the Resperate activity.
On the other hand, the used sensor is a feature for the three methods and some
activities in the dataset can have different used sensors for each occurrence. The
methods are then sometimes confused (i.e HouseKeeping).

The SVM with 5 min as time-window length has the lowest performance (F-
score ∈ [0..0.9]) since it has a static segmentation. In fact, the duration of each
activity varies according to the resident routine. For some activities five minutes
is sufficient for the recognition and for others this length is either too long or
too short. The proposal has the best performance (F-score ∈ [0.38..0.99]) thanks
to its dynamic segmentation.

Table 2 shows the average F-score values of our method compared to Static
SVM using the synthetic datasets and Aruba. Obviously, as we can see in the
table, our method is more performing using Aruba than the two synthetic
datasets and outperforms the Static SVM using the three datasets. The bet-
ter F-score value obtained by our method using Aruba can be explained by the
high sensors number used for Aruba. Indeed, the used sensor is considered as a
feature in our method for classifying activities. Therefore, when the sensor num-
ber increased, our method differentiates better the activities and then provides
better results. For One day synthetic dataset, our proposal has better F-score
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value than for that of half day because a richer training model is built from the
former since it holds double data.

5 Conclusion

In this paper we proposed an hybrid method for dynamic streaming sensor data
segmentation. The proposal combines clustering and ontology techniques to pro-
vide high flexibility in order to be used in different types of applications. As a
matter of fact, the main advantage of our method regarding previous works
are its ability to be adapted with different applications. Moreover, it is able to
dynamically update the ontology whenever any update in the clusters occurs.
In order to prove the efficiency of the proposal, we tested it in case of activity
recognition application using a six weeks over Aruba dataset and two synthetic
datasets and SVM as an activity recognizer. The evaluation result proves the
proposal high efficiency level which is better than static method and a previous
metric-based method.
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Abstract. We study the prediction of time series using Gaussian pro-
cesses as applied to realistic time series such as housing prices in
Hong Kong. Since the performance of Gaussian processes prediction is
strongly dependent on the functional form of the adopted kernel, we pro-
pose to determine the kernel based on the useful information extracted
from the training data. However, the essential features of the time series
are concealed by the presence of noises in the training data. By apply-
ing rolling linear regression, smooth and denoised time series of change
rates of the data are obtained. Surprisingly, a periodic pattern emerges,
enabling us to formulate an empirical kernel. We show that the empir-
ical kernel performs better in predictions on quasi-periodic time series,
compared to popular kernels such as spectral mixture, squared exponen-
tial, and rational quadratic kernels. We further justify the potential of
the empirical kernel by applying it to predicting the yearly mean total
sunspot number.

Keywords: Gaussian processes · Time series prediction
Housing price prediction · Empirical kernels

1 Introduction

In recent years, Gaussian processes (GPs) have become a useful technique for
machine learning [1]. They are based on a principled approach to statistical
inference as long as correlations among the data can be estimated a priori. Hence,
it provides a Bayesian nonparametric approach to classification, regression and
prediction, and excellent results were produced [2].

The prior of the inference embodies our natural expectation about the behav-
iors of the data, and many forms of kernels have been proposed [1,2]. For exam-
ple, for quantities that have smooth variations in space or time, the Squared
Exponential (SE) kernel is a suitable choice. For data with stronger correlation
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range, one may choose the Rational Quadratic (RQ) kernel. To capture the char-
acteristics of different kernels, mixtures of kernels such as Spectral Mixture (SM)
kernel [2] have also been used.

The importance of the appropriate choice of kernels was illustrated in GP
time series prediction [2,3]. For example, while the SE kernel is suitable to
describe smoothly varying data, it performs poorly when processing time series
with periodic variations. For time series data with both long and short term
trends, kernels such as RQ can capture the long term trend but not short one,
whereas kernels such as SE performs oppositely. To improve the performance,
kernels composed of a spectral mixture [2] was proposed, and was able to over-
come the above drawbacks.

In real applications of time series prediction in science and economics, the
data are often very noisy. The quasi-periodic components of the data may be
masked by the noise. The prediction of housing prices considered in this work is a
typical example. And for the quasi-periodic time series, traditional kernels such
as SE and RQ may not be able to make meaningful predictions and sophisticated
kernels such as SM can suffer from over-parameterization and overfitting.

Financial time series have been investigated using different methods, such as
fuzzy time series [4], Support Vector Machine [5,6], and Artificial Neural Network
(ANN) [7], in recent decades for the interest of maintaining stable and profitable
market environment. However, most of the methods fail to be applicable to real
time series [4] and they are too complex and lack the power of interpretation to
capture the essential properties of the real time series.

Among various markets, the housing market might be the most appealing
one, because it is closely related to the livelihood of individuals. For example,
the Japanese housing bubble burst in 1991 exerted serious impact not only on
the housing market but also the overall Japanese economy [8], leading to the
sudden decline in both investment and consumption. However, because of the
stochastic nature of financial markets [9], it is extremely difficult for scientists
to accurately predict the subsequent observations based on the current informa-
tion. On the other hand, many researchers are seeking indicators which could
reveal the hidden states of the financial markets. For example, to prevent great
depression caused by housing bubble bursts, there were many efforts to iden-
tify the explosive behavior, which is regarded as bubble inflation, in housing
price time series. Several statistical techniques were used to confirm the exis-
tence of explosive behavior, such as root test, augmented Dickey Fuller test,
and Cointegration test [10]. One popular method was introduced by [11], called
PSY method, and gained its success in identifying multiple bubbles in historical
housing data [12]. However, it lacks evidence that it is practical in predicting
future trends in housing markets.

In this paper, we investigate the useful statistical information extracted from
a real time series, namely, the Hong Kong housing price, and propose a com-
prehensive kernel using the prior knowledge obtained from the time series. By
using this kernel, we can improve the predictive power of the GP models. In
Sect. 2 we first review the theoretical framework of GPs. In Sect. 3, we describe
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how the Fourier spectrum of the auto-covariance of the time series can be used
to construct the High Order Periodic (HOPE) kernel for Gaussian processes. In
Sect. 4, we describe the construction of the kernel from the Hong Kong housing
price data. In Sects. 5 and 6, we will present the predictions on housing price
data and yearly mean total sunspot number given by the GP models using the
HOPE kernel and some other alternative popular kernels. The paper is concluded
in Sect. 7.

2 Gaussian Processes

Given a set of points X = {x1, x2, . . . , xt}, a Gaussian process [1] assumes that
f(xi), the true value generated at point xi, satisfies the joint Gaussian distribution

f = [f(x1) . . . f(xt)]T ∼ N (μ,K(X,X)), (1)

with mean vector μ = [μ(x1), μ(x2), . . . , μ(xt)]T and covariance matrix K, where
Kij = k(θ, xi, xj) is the kernel parameterized by hyperparameter θ. And N
is the Gaussian distribution. Generally, the true value f(xi) cannot be known
and only their noisy versions yi = f(xi) + ε can be observed, here ε is the
independent identically distributed Gaussian noise with variance σ2

n. Based on
the given observations and prior distribution, the expected value and variance
of the true value generated at a set of points X ′ can be inferred. Specifically, to
estimate the true values f ′ at X ′ based on the known observations and prior,
we have the joint distribution

[
y
f ′

]
∼ N

([
μ
μ′

]
,

[
K(X,X) + σ2

nI K(X ′,X)
K(X,X ′) K(X ′,X ′)

])
, (2)

where I is the identity matrix, and the posterior predictive distribution

p(f ′|y,X,X ′) = N (m,C), (3)

where m is the estimated mean and C is the estimated variance at points X ′,
which can be analytically derived as:

m = μ′ + K(X,X ′)(K(X,X) + σ2
nI)−1(y − μ), (4)

C = K(X ′,X ′) − K(X,X ′)(K(X,X) + σ2
nI)−1K(X ′,X). (5)

Therefore, specifying the kernel k, the variance σ2
n, and the mean function μ

determines the GP, and hence, the estimated mean value can be calculated by
the model. To tune the hyperparameters of GP, we need to optimize the marginal
log-likelihood L with respect to the unknown hyperparameters in the covariance
matrix and the mean function:

L = log p(y|θ,X) = −1
2

(y − μ)T (K + σ2
nI)−1 (y − μ)

− 1
2

log det (K + σ2
nI) − |X|

2
log 2π, (6)
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where X is the set of observation points, y is the corresponding vector of
observed values at X, and |X| is the number of observations. Thus, given the
estimated hyperparameters, variance σ2

n, and mean function that maximize the
log-likelihood L, we are able to predict the expected value and standard deviation
of the unknown true value generated at points X ′ by the predictive distribution.

3 Construction of Kernels

In this section, we construct a new kernel for noisy realistic time series. Although
empirical correlation can be questionable in reflecting the true theoretical under-
lying processes [2], we may show that it is still possible to improve predictions
on noisy quasi-periodic time series by using the information extracted from sta-
tistical analysis, such as auto-covariance analysis and Fourier Transform.

The cross-covariance γFG(l) for two finite discrete real time series F = {Ft :
t ∈ T} and G = {Gt : t ∈ T} is defined as

γFG(l) =
∑

t

Ft+lGt, (7)

where l is the time that G lags F . For the case that F = G, γFG = γFF is the
auto-covariance of the time series F . For the housing price data we adopt the
definition that is without the subtraction of expected value of the time series.

Given a time series F with N observations, the auto-covariance γFF (l) can
characterize the similarity in the data up to lag N − 1. To construct the kernel
function describing the similarities between arbitrary data, we transform the
auto-covariance γFF (l) into its frequency-domain:

X(f) =
N−1∑
l=0

γFF (l)e−i2πfl/N , (8)

and obtain the auto-covariance spectrum |X(f)|
N .

Therefore, we select the significant periodic components having large enough
amplitudes to construct the kernel and ignore the other weaker components,
since the components with small amplitudes may be just noises or redundancies
and have little contribution to the true connections between the data. Thus we
propose the one-dimensional High Order Periodic (HOPE) kernel with order n:

kn(xi, xj) = αe−(xi−xj)
2/(2�2)

n∑
m=1

Am cos
(
2πfm

∣∣xi − xj

∣∣) , (9)

where n ∈ Z
+, α, �, and fm,m = 1, . . . , n, are hyperparameters, and the weights

Am,m = 1, . . . , n is the m-th largest amplitudes (peaks) of the components
in the auto-covariance spectrum. The introduction of the exponential factor
e−(xi−xj)

2/(2�2) is to ensure that the kernel vanishes when the space (time) differ-
ence between two observations points approaches infinity. Intuitively, two data
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points well separated in space (time) should have weak correlations. The HOPE
kernel can be considered as an extension of the Spectral Mixture (SM) ker-
nel [2] to deal with noisy quasi-periodic data, whereby we determine a number
of hyperparameters directly from the statistical features of the data to allevi-
ate the problem of over-parameterization and overfitting, which will be shown in
Sects. 5 and 6. Then by optimizing the log-likelihood (Eq. 6) with respect to these
hyperparameters and the mean function μ, we obtain a trained GP regression
model.

4 Hong Kong Housing Price

The data of the Hong Kong property transaction prices were obtained through
negotiations from EPRC Limited, a wholly-owned subsidiary of the Hong Kong
Economic Times that specializes in providing property information to market-
related industries. The dataset contains records of transacted properties for the
period 1992 to 2010 and amounts to 2,492,842 transaction records. Figure 1(a)
illustrates the monthly average of real price index (MARPI) (in HKD per square
foot normalized by the consumer price index) of Hong Kong housing transactions
and the Prime Lending Rates (PLR) in Hong Kong from Jan 1992 to Dec 2010
(totally 228 data points). Since the data of MARPI are very noisy, to pre-process
and denoise the data, we investigate the time series of MARPI rate of change
over 12 months (a year), defined as the slope of the linear regression line for the
past 12 months MARPI data. Similarly, the time series of PLR rate of change
over 12 months can also be calculated. As a comparison, these two time series
are illustrated in Fig. 1(b).

As shown in Fig. 1(b), quasi-periodic features exist in both the MARPI rate of
change and the PLR rate of change. The quasi-periodicity is exhibited even more
clearly in the auto-covariance (Eq. 7) of the rate of change as shown in Fig. 2(a).
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Fig. 1. (a) The monthly average real price index (MARPI) per square foot of Hong
Kong housing and the prime lending rate (PLR). (b) The MARPI rate of change and
the PLR rate of change.
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Fig. 2. (a) Auto-covariance of MARPI rate of change and PLR rate of change. (b)
Cross-correlation (normalized version of cross-covariance) of MARPI rate of change
and PLR rate of change.

The periodicity of the rate of change observed from the auto-covariance is around
30 months, as confirmed by the result of the auto-covariance spectrum in Fig. 3.
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Fig. 3. Single-sided auto-covariance spectrum of (a) MARPI rate of change and (b)
PLR rate of change. The components with the largest amplitude in (a) and (b) have
periodicity 1/0.0323 = 31.0 Month and 1/0.0277 = 36.1 Month respectively.

It is interesting to consider why housing price time series is quasi-periodic.
We found evidence that the housing price is correlated with PLR, which hap-
pened to have a quasi-periodic variation during this period of study. While the
underlying reason is beyond the scope of this study, it is natural to expect the
occurrence of cycles in the world economy. When consumption heats up, PLR
will be raised to prevent overheating, and when the economy is weak, PLR
will be reduced to stimulate consumption. As shown in Figs. 1, 2, 3, there is a
close correlation between the periods of two time series. Furthermore, the cross-
correlation (normalized version of cross-covariance) is negative near 0 months
showing that housing prices drop (rise) when the mortgage rate rises (drops).
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5 Experiments

In this section, we show that the HOPE kernel can be applied to the real time
series to improve the predictive power of the GP. At the same time, to contrast
the prediction results using the new kernel, other popular kernels, such as Spec-
tral Mixture (SM) with number of components Q = 12, Squared Exponential
(SE), and Rational Quadratic (RQ) kernel (as shown in Table 1 [1,2]) are also
applied to predict the data. Since the size of our data is small (around 200 data
points), Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm [13] with cubic
interpolation is applied to optimize the log-likelihood function. The fitrgp.m
and fminunc.m functions from MATLAB [14] are used to implement the GP
and optimization. The mean function μ of the GP model is set to be a constant
function μ(x) = c. For the optimization of hpyperparameters, we randomly sam-
ple 40 initializations of hyperparameters for each model and optimizations are
repeated. The final optimal hyperparameters are the ones which yield the high-
est log-likelihood L for the model. During the sampling, the order n in HOPE
is sampled between 1 and 12.

Table 1. Expressions of one-dimensional popular kernels, where τ = |xi − xj |.

Kernel Expression Hyperparameters

SM kSM(xi, xj) =
∑Q

q=1 ωq exp
(
−2π2τ2νq

)
cos (2πτμq) ωq, νq, μq

SE kSE(xi, xj) = σ2 exp
(
− τ2

2�2

)
σ, �

RQ kRQ(xi, xj) = σ2
(
1 + τ2

2α�2

)−α

σ, α, �

5.1 Predictions on MARPI Rate of Change

To illustrate the predictive power of the GP model using the HOPE, we choose
two subsets from the time series of the MARPI rate of change as the training
set, one containing the first 152 observations in the time series and the other
constituting the first 171 observations, and the remaining data as testing sets.
The predictions using different kernels can be found in Fig. 4.

GP models using all kernels perform well in reconstructing the training
inputs, since the predictions on training data given by the models almost over-
lap with the real data in the training set. However, in future predictions, models
using SE and RQ have little predictive power, since the estimated mean obser-
vations in the future (outside the training set) diverges largely and quickly from
the testing data, and their values tend to fall back to the mean function c. The
predictions using SM are unsatisfactory, since there are many huge gaps between
the estimated mean observations and real data. On the other hand, the predic-
tions given by the model using HOPE do not deviate from the testing data
dramatically and can capture the trend of the future data up to a considerable
number of steps. At the same time, Fig. 4 indicates that generally, the errors
may increase when we predict the values to a more distant future.
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Fig. 4. Predictions on MARPI rate of change using different kernels. The training data
are on the left hand side of the vertical dashed line. (a) The first 152 observations as
the training inputs. (b) The first 171 observations as the training inputs.
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Another observation is that for the training set with 152 (171) observations,
the optimized log-likelihood L of HOPE and SM are 270.9 (311.7) and 300.4
(329.9) respectively. Although the SM has higher log-likelihood, Fig. 4 shows
that it has poorer performance in predicting the unobserved data. One sug-
gested reason for this is that using SM, possibly overparameterized, leads to the
overfitting so that the predictive power of the GP is suppressed. Meanwhile, this
observation can be considered as the evidence that compared to SM, HOPE is
able to effectively prevent the GP from overfitting and give better predictions
on the future data.

Moreover, we use another example to illustrate the problem of overfitting
induced by the SM. For one set of training inputs (first 200 observations of
MARPI rate of change), the predictions given by two GP models using SM
(Q = 12) are shown in Fig. 5. Compared to the model with log-likelihood L =
419.5, the model with the higher log-likelihood L = 428.1 has rather poorer
performance on predicting the future data.
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Fig. 5. Predictions on MARPI rate of change with first 200 observations as training
inputs, which are on the left hand side of the vertical dashed line. L is the log-likelihood
of the model. Both models are using SM with Q = 12.

5.2 Performance and Stability

Since GPs can be really sensitive to the initialization of the hyperparameters
as well as the input training data, we further compare the prediction stability
of different kernels by measuring their mean squared error (MSE) and following
the procedure of time series prediction performance assessment introduced by
Hyndman [15]. Specifically, experiments are repeated using different training
sets, each one having additional one observation than the previous one, and
during each experiment and for each training set the MSE in h-step horizon (that
is, from 1-step prediction up to h-step prediction) is computed to investigate the
performance of prediction. Initially, the training set has 151 observations. And
the average MSE of experiments of each kernel can be found in Table 2. The
smaller the average MSE, the more stable the model, because small average
MSE indicates that the model can maintain relatively good performance when
the training inputs are changed. As a comparison, the variance of the whole data
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set is 0.0232. Table 2 shows that the stability of HOPE outperforms other kernels
in several-step horizon prediction, which also justifies that HOPE has better
performance in capturing the future trends of the time series. It also indicates
that the predictive power fades away when the GP model is trying to estimate
the data in distant future, since the average MSE increases dramatically when
the prediction horizon increases. And we can also see that the performances of
SM are relatively poor, which might be the consequences of overfitting.

Table 2. Average MSE using different kernels

Horizon HOPE SM SE RQ

6-step 0.0078 0.0088 0.0092 0.0086

9-step 0.0118 0.0149 0.0130 0.0130

12-step 0.0148 0.0171 0.0153 0.0159

6 Application to Sunspot Time Series

To further illustrate the power of HOPE, we apply it to another well known time
series, yearly mean total sunspot number, which can be obtain from http://www.
sidc.be/silso/datafiles. To make comparisons, the popular kernels in Table 1 (SM
with Q = 20) are also applied. The data from year 1700 to year 1899 (totally 190
data points) are used as training inputs, and the data from year 1900 to year
1941 (totally 42 data points) are considered as testing set. The mean function of
the GP is set to be constant function μ(x) = c. BFGS algorithm and 100 random
initializations of hyperparameters are applied to search for optimal estimations
of hyperparameters for each model, and the order n in HOPE is sampled between
1 and 20.
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Fig. 6. Predictions on yearly mean total sunspot number with the first 190 observations
as training inputs, which are on the left hand side of the vertical dashed line. (a) Pre-
dictions given by HOPE and SM with Q = 20. (b) Predictions given by SE and RQ.

http://www.sidc.be/silso/datafiles
http://www.sidc.be/silso/datafiles
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Predictions on the yearly mean total sunspot number given by different ker-
nels are illustrated in Fig. 6. Similar to the cases of predictions on MARPI rate
of change, for sunspot time series, SM (L = −857.5) has a larger log-likelihood
than HOPE (L = −885.0). However, for the performance on predicting the
testing data, compared to HOPE (MSE = 1947.5), SM (MSE = 2272.3) gives
poorer predictions, which indicates the problem of overfitting caused by SM.
Also, predictions on future data given by both SE (MSE = 2588.4) and RQ
(MSE = 2599.7) are quite poor, which can be seen in Fig. 6(b), though their
log-likelihood values (LSE = −887.7 and LRQ = −887.5) are comparable to that
of HOPE.

7 Conclusion

In this paper, we have discussed the Gaussian process (GP), which is a powerful
regression model to predict the time series. Using a new kernel (HOPE) based on
the information extracted from the auto-covariance of the training time series,
we improved the predictive power of the GP model and it compares favourably
with models using other popular kernels. Our work shows that the choice of the
kernel is a very essential factor to the performance of GP. Choosing a kernel
from some popular choices may not work for noisy quasi-periodic data, in which
case extracting the kernel from the covariance functions provides an alternative.

The Gaussian process can be a powerful predictor in financial time series
analysis. Since we have only used Gaussian processes to analyze the single time
series, we believe that by incorporating multiple time series, such as Prime Lend-
ing Rate and trading volume, Gaussian processes may capture more information
underlying the series, and give more accurate predictions. However, the model
cannot predict the value at arbitrary time steps ahead, so we may further inves-
tigate the applicable range that the predicted values are still close to the real
data. On the other hand, we may also focus on predicting a few steps ahead so
that we can determine its accuracy and stability in short-term prediction.
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Abstract. This paper deals with the issue of rumors propagation in
online social networks (OSNs) that are connected through overlapping
users, named multiplex OSNs. We consider a strategy to initiate an anti-
rumor campaign to raise the awareness of individuals and prevent the
adoption of the rumor for further limiting its influence. Therefore, we
introduce the Least Cost Anti-rumor Campaign (LCAC) problem to
minimize the influence of the rumor. The proposed problem defines the
minimum number of users to initiate this campaign, which reaches a
large number of overlapping users to increase the awareness of individ-
uals across networks. Due to the NP-hardness of LCAC problem, we
prove that its objective function is submodular and monotone. Then,
we introduce a greedy algorithm for LCAC problem that guarantees an
approximation within (1 − 1/e) of the optimal solution. Finally, experi-
ments on real-world and synthetics multiplex networks are conducted to
investigate the effect of the number of the overlapping users as well as
the networks structure topology. The results provide evidence about the
efficacy of the proposed algorithm to limit the spread of a rumor.

Keywords: Rumor propagation · Multiplex online social networks
Optimization · Rumor influence minimization

1 Introduction

Online social networks (OSNs), such as Twitter, Facebook, and Weibo1, are
becoming more and more popular. These OSNs are playing a crucial role in our
life, and they have infiltrated every aspect of it. Recently, statistics2 show that
three-quarters of Facebook users and the half users of Instagram use that sites
daily. Additionally, two-thirds of U.S. adults receive at least one of their news on
OSNs. Moreover, a phenomenon has emerged from OSN called “the viral propa-
gation,” which refers to a spread of information in a broader way in small laps of
1 www.weibo.com.
2 www.pewresearch.org.
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time. This phenomenon has a positive effect such as the spread of innovation and
sharing new ideas [17]. However, its adverse effect could not be avoided which
can spread misinformation or disinformation in form of a rumor [4]. The spread
of such information can shape public opinion [5] and create political issues [8]
leading to damage the reputation of individuals or companies. By apprehending
the threat posed by the spread of rumors on OSNs, it is mandatory to keep them
as a trustworthy source of information by minimizing the influence of rumors and
avoid any repercussions.

Nowadays, individuals often join several OSNs in which it is possible for users
to connect their accounts across multiple OSNs at the same time [14]. Conse-
quently, the overlapping users connect OSNs into a multiplex structure, where
the rumors can propagate across multiple networks simultaneously through these
users. These overlapping users create bridges for rumors to spread across multiple
OSNs with. The most of the approaches [3,4,7,13,19,20,23] dealing with rumor
influence minimization (RIM) work under a closed world assumption. They pos-
tulate that the rumor can only propagate from a node to another in a network
and they cannot be influenced by external sources; The role of the overlapping
nodes is ignored and failed to capture the multiplex structure of OSNs. Thus,
theses RIM approaches cannot be applied directly in a multiplex OSNs, and to
the best of our knowledge, there are no previous works which investigate the
RIM in multiplex OSNs.

Therefore, this paper attempts to address the rumor influence minimization
problem in multiplex OSNs. We consider the strategy to lunch an anti-rumor
campaign to raise the awareness of individuals to prevent the adoption of the
rumor and limit its influence. This strategy aims to confine the rumor in one
network and minimize its influence across multiple OSNs. Accordingly, we intro-
duce the Least Cost Anti-rumor Campaign (LCAC) problem. We propose to
select the least number of users to initiate this campaign, which reaches a large
number of overlapping users so as raise the awareness of individuals across net-
works. Since this problem is NP-hard, we have proved that its objective function
is submodular and monotone. Consequently, we introduce a greedy algorithm for
the LCAC problem that guarantees an approximation of within 63% of the opti-
mal solution. Finally, experiments are conducted in a real-world and synthetics
multiplex OSNs to evaluate the performance of the proposed algorithm.

The paper is organized as follows. Section 2 introduces the related work.
In Sect. 3, we formulate the problem in multiplex OSNs and introduce several
related definitions. In Sect. 4, we prove the submodularity of the objective func-
tion for LCAC problem and present the greedy algorithm. In Sect. 5, we display
the results of experiments. Finally, we conclude this paper in Sect. 6.
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2 Related Work

Last few years, there has been a growing interest in the RIM problem. The RIM
problem is dual to the influence maximization (IM) problem which was formu-
lated for the first time into an optimization problem by [12]. They studied the
IM on the widely-used information diffusion models: the Independent Cascade
(IC) and the Linear Threshold (LT) models which are the milestone for differ-
ent IM problems in general and RIM in particular. The IM aims to boost the
spread of information in an OSN, while the goal of RIM is to limit the influ-
ence of undesirable rumors. Considering the topology structure of the networks,
human behaviors, or social interactions, many works have proposed strategies to
diminish the influence of rumors. Works investigated the blocking nodes or link
[13,20,23] strategies to limit the spread of undesirable information. While, other
researchers have proposed to initiate a truth campaign that fights the false cam-
paign [3,4,7,19] to limit the influence of rumors. Accordingly, researchers have
improved the IC [4] and LT [3] models to a Multi-Campaign Model.

However, few there are the works which investigate the IM in multiplex OSNs.
The works of [6,22] are the first researchers to explore the IM problem on multi-
plex networks where they focus on the understanding of the impact of these net-
works on the information diffusion. Then, attention has been pointed to the mul-
tiplex IM problems. Some researchers propose to combine all networks into one
network by representing an overlapping user as one unique super node [18,24].
However, these works consider homogeneous diffusion process across all the net-
works in which [14] argue that these works cannot preserve the heterogeneity
of the layers. Thus, [14] formulated this problem by considering heterogeneous
propagation models. Nevertheless, scholars [15,25,26] have been attracted by
the study of the impact of the multiplex network on the propagation of rumors
under the epidemic models. However, to the best of our knowledge, there are no
previous works which investigate the RIM in multiplex OSNs.

(a) t (b) t+1 (c) t+2

Fig. 1. An example of rumor propagation in multiplex OSNs with two layers from time
t to t + 1. Nodes are represented in green while the red nodes are infected individuals.
Nodes in blue indicate a nodes added to the layers in order that each network has the
same number of nodes. (Color figure online)
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3 Problem Definition

3.1 Multiplex Online Social Networks

We consider an OSN as a directed graph G = (V,E) where the set of nodes V
represents the users and the set of edges E can be seen as relationships among
individuals. Thus, we define a multiplex OSNs.

Definition 1. A multiplex OSNs with k networks is a set Gk = {G1 = (V1, E1),
G2 = (V2, E2), ..., Gk = (Vk, Ek)} where Gi = (Vi, Ei) is a directed graph repre-
senting an OSN. If a node exists in more than one OSN, then this node is added
to set the overlapping users P of the multiplex Gk. Without loss of generality, we
consider each network of the multiplex has a same number of nodes. Therefore, if
a node v ∈ Gi does not belong to Gj we add this node to Gj as an isolated node.
Then for each node, interlayer edges are added to connect its adjacent interlayer
copies across all the multiplex networks. Finally, we consider the set of all users

of the multiplex OSNs as V =
k⋃

i=1

Vi where |V | = N.

Figure 1 shows an example of multiplex OSNs with two layers G2 = {G1 =
(V1, E1), G2 = (V2, E2)}. Each graph Gi is referred to a layer network of the
multiplex G2. Interlayer edges are represented in dash lines to connect same
nodes in each layer. The blue nodes represent the added nodes to each layer so
that each network has the same number of nodes. Since they are isolated nodes,
the blue nodes do not have any impact on the propagation process in the layer.

3.2 Rumor Influence Propagation Model

Generally, the rumor diffusion mechanism is seen similar to the spread of epi-
demics [5]. Thus, when the rumor reaches a node, we consider that this node
is infected by a rumor. The rumor influence propagation model describes the
process of the dissemination of a rumor through the network. The studies have
been widely exploiting the classical LT and IC models. The LT model describes
the behavior of the individuals to adopt a behavior when their neighbors do.
Hence, a node is infected by the rumor when the ratio of its infected neighbors
surpasses a certain threshold 0 < θ < 1. However, the LT model failed to con-
sider the individual behaviors as well as the impact of the rumor on individuals.
Therefore, we present in this work a rumor propagation model based on the IC
model in the multiplex OSNs.

Initially, a set of individuals are infected called the rumor originator set SR.
Then, the whole process proceeds in discrete time steps where the rumor will
propagate in the form of cascade from one node to another. Each time step t,
an infected node u at time t − 1 will have a single chance at time t to infected
one of its neighbors v with probability pu,v(t) at each layer of the multiplex.
When overlapping node v is infected in one graph Gi, its adjacent interlayer
copies become infected in all OSNs. Finally, the propagation process ends when
there are no more nodes to be infected in the layers of Gk. Inspired by the
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work of [11,20], we evaluate the rumor transmission probability pu,v(t) from a
node u to v in two steps: the sending probability and acceptance probability
pu,v(t) = psendu (t)paccv,u. Firstly, the sending probability estimates the chances of
a user to send a rumor to his neighbors. Considering the work of [11], they
postulate that the individual’s attraction to the rumor is initially large and then
exhibits a gradual downtrend. Thus, the sending probability is giving as follows

psendu (t) =
P0

Log(10 + t)
, (1)

where P0 is the initial sending probability at time step t0. Then, the acceptance
probability evaluates the chances of an individual to accept a rumor from his
neighbor. We consider high-degree nodes have a higher chance to send the rumor
and a greater ability (authority) to influence other nodes, but they cannot be
easily influenced called the “celebrity effect.” However, a high-degree degree node
could easily affect another high-degree. Therefore, we defined balanced weighted
probability after considering the impact of the influence of both the sender u
and the receiver v, which is defined as follows

paccv,u =
1

1 + div/diu
, (2)

where paccv,u is the acceptance probability of the node v from u, and diu and div
are the connection degrees of nodes v and u in the network Gi.

As show Fig. 1 multiplex G2, we illustrate the propagation in multiplex OSNs
with two layers. The nodes are represented in green, and infected nodes are
illustrated in red. At time t the set of rumor originator is SR = {v1, v5} (see
Fig. 1(a)). At time t + 1, the rumor propagates through the multiplex, where
the nodes v2 and v7 are infected by v1 in layer G1. Simultaneously, v4 and v9
are infected by v5 in layer G2 (see Fig. 1(b)). These newly infected nodes are
infected at the same moment across all the networks. The reason behind, in real
life a rumor infects the individuals and not the accounts in OSN in which she/he
may spread the rumor in any OSN. Moreover, if we observe the layers of G2

separately; we can see the network G2 as an example, the nodes v2 and v7 are
infected by an external source of this layer. These users will eventually infect
other individuals as shown in Fig. 1(c).

3.3 Problem Formulation

To overcome the adverse effect of rumors, the researchers have proposed various
nodes blocking strategies to limit the spread of the rumor. However, As [2]
have highlighted that if the blocking period exceeds a certain threshold, the
satisfaction of an individual toward an OSN is reduced. We distinguish few
works which have investigated the time blocking of users in these strategies as
[20]. Furthermore, the most of the works dealing with rumor detection problems
in OSNs [9,10] are performed in a single network. Generally, Twitter has become
the data source par excellence for collection and analysis of rumors. Then, since
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the rumor are detected after a period of propagation, it is very challenging to stop
its spread after it has already infected a proportion of the individuals. Therefore,
instead of excluding individuals from these strategies, we suggest involving the
users in this process to be the main actors in minimizing the influence of the
rumor. Against this backdrop, we consider the strategy to launch an anti-rumor
campaign to raise the awareness of individuals to prevent the adoption of the
rumor and further limiting its influence.

Considering that users join several OSNs, this last one can be connected
through the overlapping users forming a multiplex structure of OSNs. These
overlapping users create bridges for rumors to travel across multiple OSNs. In
this study, we assume that the rumor and the anti-rumor campaign spread in the
network by the same propagation model across all the networks. We note this two
cascades respectively as CR and CRa

. Therefore, each node can be reached either
by CR and CRa

in which it can be infected or aware of the rumor. However, we
postulate that if a node is reached by the two cascade at the same time, this user
will be aware of the rumor. We consider that a rumor is detected in an OSN, we
select the least number of nodes to spread the anti-rumor campaign which reach
a large number of overlapping nodes. This strategy aims to confine the rumor
in one network and minimize its influence across multiple OSNs. However, as
any problem, we have a limited number of users to be selected for this strategy
noted k. Thus, we define our problem as follows.

Definition 2. Least Cost Anti-rumor Campaign (LCAC) problem: Given a mul-
tiplex OSN Gk = {G1 = (V,E1), G2 = (V,E2), ..., Gk = (V,Ek)}, a set of over-
lapping nodes P , a network originator of the rumor GR and positive constant k.
The goal is to find a least number of nodes less or equal than k to start an anti-
rumor campaign such that they can reach a large number of overlapping users
so as to raise the awareness of individuals across networks.

4 Proposed Solution

In this section, we present our solution for the LCAC problem in which we prove
that its influence function is submodular and monotone. Then, we introduce a
greedy algorithm which guarantees efficiently approximated to within a factor
of (1 − 1/e).

4.1 Submodularity of the Influence Function of LCAC Problem

Considering σ(.) is the influence function of the LCAC problem where σ(A)
represents the number of the overlapping nodes reached by the set A. Since it
is NP-hard to compute a minimum number of nodes to maximize σ(.), we need
to find approximation algorithms for it. The submodularity and monotonicity of
the functions σ(.) present an excellent way to obtain an approximation algorithm
for our problem. σ(.) is submodular if its meets the following condition

σ(A ∪ {v}) − σ(A)) � σ(B ∪ {v}) − σ(B), (3)
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where A,B ⊂ V , A ⊆ B and v /∈ B. In another word, σ is submodular if it
has the diminishing marginal return property. Moreover, we can say that σ(.) is
monotone, if for all sets A ⊂ B ⊂ V , σ(A) ≤ σ(B) ≤ σ(V ).

To prove the submodularity of σ, we follow the approach of [7] of the footprint
assignment method which follows these rules: at each time step, when a node v
is infected by u ∈ SRa

or SR at time t a footprint of the propagation is left on
the node containing the source of infection and the step time (u, t). Since once
a node is infected by the CR or CRa

, it will never change its status, we keep
only the footprint with the smallest time from each source of infection. Given
a multiplex Gn = {G1, G2...Gn}, a network Gi where the rumor appears, a set
of infected individual SR and a set anti-rumor originator SRa

. We contract the
propagation cascade of the rumor CR and the anti-rumor CRa

. We note OP (SRa
)

is the set of the overlapping nodes reached by this anti-rumor campaign before
the rumor. Then, the expected influence of the anti-rumor campaign is defined
as σ(SRa

) = E(CR,CRa )
(|OP (SRa

)|). By exploiting the following lemmas, we
prove the submodularity and the monotonicity the OP (.), and consequentially
we prove the same proprieties for σ.

Lemma 1. Given any nodes u and v, u is in the cascade CR if it exists a
footprint (w, t) in u where w ∈ SR. v is in the cascade CRa

if it exists a footprint
(w′, t′) in v where w′ ∈ SRa

.

Then, given a set S and CS propagation cascade of the set S, the following
lemmas show the conditions for any node v ∈ OP (S) and v ∈ OP (S), OP ({u}).

Lemma 2. A node v ∈ OP (S) only under the following conditions: (1) v belongs
to CR and CS. (2) the existence of footprint (t, w) where t is the smallest time
in all footprints of the node v in CR and w ∈ S.

Lemma 3. A node v ∈ OP (S) and v ∈ OP ({u}) where u /∈ S only under the
following conditions: (1) v belongs to CR and CS. (2) the existence of footprint
(t, w) in which w ∈ S where t is the smallest time in all footprints of the node
v in CR. (3) the existence of footprint (t′, u) where t′ is the smallest time in all
footprints of the node v in CR. Accordingly, if we consider the case of OP ({u}) =
{v} where |OP ({u})| = 1 in this situation then, |OP (S ∪{u})|− |OP ({u})| = 0,
since v ∈ OP (S) and OP ({u}).

Theorem 1. The influence function of the LCAC problem σ(A) is submodular
and monotone.

Proof. To prove this theorem, we need to demonstrate that the function |OP (.)|
is submodular and monotone. Given a sets A,B ⊂ V and A ⊂ B and for any
node v /∈ B. For any node node w ∈ OP (B), OP ({v}) as shown in Lemma
3 this node may belong or not to w /∈ OP (A). Therefore, the marginal gain
brought by v to the set A must be greater than equal to the marginal gain
brought by v to the set B as A ⊂ B than we have |OP (B ∪ {v})| − |OP (B)| ≤
|OP (A∪{v})|−|OP (A)| is always true. We conclude that |OP (.)| is submodular.
Then, |OP (A)| is monotone since ∀v /∈ A, then |OP (A ∪ {v})| ≥ |OP (A)|. 	
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4.2 Greedy Algorithm

According to the previous analysis, we introduce a greedy algorithm for LCAC
problem. This algorithm maximize the influence function by selecting each iter-
ation the node with a largest marginal gain.

Algorithm 1. Greedy algorithm of the LCAC problem
Input: Gk = {G1, G2, ..., Gk} multiplex OSN, network of the origin of the

rumor GR, initial infected users SR and positive integer k.
initialization;
SRa = ∅;
while σ(SRa) < |P | and |SRa | < k do

u = arg max
v∈V \(SR∪SRa )

[σ(SRa ∪ {v}) − σ(SRa)];

SRa = SRa ∪ {v};

Output: Set of anti-rumor originator SRa

5 Experiments

This section analyses the results of the conducted experiments presented in two
parts. The first part aims to highlight the impact of the overlapping users as
well as the topology structures of OSNs on the proposed strategy on synthetic
networks. The second part illustrates the performance of the proposed algorithm
on real-world networks.

5.1 Data Description

In this part, we exploited two multiplexes OSNs (synthetic and real-world) pre-
sented in Table 1. For the first multiplex networks G4

1, We consider four synthe-
sized OSNs based on scale-free (SF) networks and small-world (SW) networks.
The SF networks G1 and G2 were generated according to Barabasi-Albert model
[1] with 5000 nodes and average degree 20; the exponent in the power-law degree
distribution generated by this method is 2. The SW networks G3 and G4 were
generated according to Watts-Strogatz model [21] with 5000 nodes and average
degree 40; the rewriting probability was set to p = 0.3. For the second multi-
plex network G3

2, we exploited the data-set of [16] consisting of three real-world
networks crawled from Facebook, Twitter, and YouTube.

5.2 The Role of the Overlapping Users and Network Topology

This part will spot the light on the impact of the overlapping nodes and the
networks topology structure on the rumor propagation on multiplex OSNs in
general and on the proposed strategy in particular. Therefore, we run experi-
ments on the synthetic multiplex G4

1 in which we variate the number of overlap-
ping nodes |P |. Then, by changing the size of the anti-rumor set |SRa

| = 1%N ,
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Table 1. The employed data.

Multiplex networks #Nodes Network #Nodes Avg. deg.

G4
1 10000 Scale-free 5000 40

5000 40

Small-world 5000 40

5000 40

G3
2 6407 Facebook 663 1.78

Twitter 5540 11.52

YouTube 5702 14.84

5%N and 10%N , we illustrate how the number of the overlapping nodes affect
the propagation of the rumor, where |SR| = 2%N . Figure 2 shows the obtained
results for P = 10%N , 15%N , 20%N and 25%N . Apparently, when the size of
the anti-rumor set nodes SRa

increases, the number of infected nodes decreases.
However, when the number of overlapping nodes |P | increases, the impact of the
rumor is reduced illustrated by the number of the infected individuals. Moreover,
it is observable that the propagation speed has an increasing dependency with
|P |. This observation can be explained by the fact that the proposed algorithm
selects the nodes that can reach a larger number of overlapping users to spread
the anti-rumor campaign. Thus, the anti-rumor campaign will have a more sig-
nificant impact across OSNs; as a result, it reduces the influence of the rumor.
The evidence from these results shows the rationally and the correctness of our
assumptions to minimizing the influence of the rumor.

Furthermore, we investigated the impact the topology structure of the net-
works on our strategy to minimize the influence of the rumor. Figure 3 illustrates
the evolution of the number of infected nodes for different networks originators
GR = G2, and GR = G3. Results are showing a wider propagation of the rumor
in the four networks when it network originator is G2 compared to G3. How-
ever, when GR = G3, we observe a significantly higher number of infected node
in G3 compared to the others networks. Moreover, we can see that the rumor
propagates faster in SW networks G3 and G4 in comparison with SF networks
G1 and G2. Then, in Fig. 4 we see that the number of infected nodes is always
higher when the rumor is originated from SF networks. This phenomenon is
explained by the specific topology of the SW networks and SF networks. The
SW networks are denser than the SF networks where each node has an equivalent
authority in a network. Consequently, the information will spread faster in this
networks compared to the FS networks which favor the propagation of the anti-
rumor campaign as well; we can observe the influence of the rumor is reduced by
the anti-rumor campaign. However, The SF networks favor the existence of the
high degree nodes (hub nodes) which are highly conductive and have a greater
impact as it was mentioned in Sect. 3.2. Hence, the impact of the rumor will have
a more significant effect when the hub nodes are infected. Hence, the anti-rumor
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campaign has a relatively lower performance when the rumor is originated from
SF networks.
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Fig. 2. Rate of the infected nodes for GR = G2 and |SR| = 2%N .
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Fig. 3. Rate of the infected nodes for
|SR| = |SRa | = 2%N and |P | = 0.15%N .
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Fig. 4. Rate of the infected nodes for
|SR| = |SRa | = 2%N .

5.3 The Performance of the Proposed Strategy

This section aims to evaluate the performance of the proposed algorithm to
minimize the influence of a rumor on a real-world multiplex OSNs G3

2 shown in
Table 1. Since there are no previous works to compare our results, we evaluate
the performance of our algorithms in comparison with algorithms based on the
following heuristics: (1) Max degree heuristic, select nodes according to the
descendant order of their out degree; (2) the Random heuristic which is used
as the baseline. We run experiments by varying the size the rumor originator set
|SR| = 3%N , 5%N and 10%N as well as the size of the anit-rumor set |SRa

| =
2.5%N , 3%N , 5%N and 10%N . We set Twitter network as the rumor originator
and the results are illustrated in Figs. 5, 6 and 7. It is clearly seen that the number
of the infected nodes decreases when |SR| decreases and |SRa

| increases. However,
as an overall observation, it is seen that the proposed algorithm presents the best
performance among all. Nevertheless, the proposed algorithm has a significantly
better performance when |SRa

| is higher. The proposed algorithm selects nodes
to spread the anti-rumor campaign that reaches a large number of overlapping
users before the rumor. Consequently, the influence of the rumor is reduced in
all the networks as it is displayed in the results. Moreover, we can see that the
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Fig. 5. Evolution of the rate of the infected nodes for |SR| = 3%N .
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Fig. 6. Evolution of the rate of the infected nodes for |SR| = 5%N .
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Fig. 7. Evolution of the rate of the infected nodes for |SR| = 10%N .

Max Degree algorithm has a similar performance compared to the baseline in
some cases. The reason behind, this heuristic selects nodes with higher authority
where even though these nodes will have a significant impact on the network
nevertheless it will not reduce the impact of the rumor across the networks. The
evidence from these results confirms the excellent performance of the proposed
strategy in selecting target nodes accurately to minimize the influence of the
rumor in multiplex OSNs.
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6 Conclusions

This paper investigates rumor influence minimization problem in multiplex
online social networks (OSNs) connected through overlapping users. We intro-
duce in this study the Least Cost Anti-rumor Campaign (LCAC) problem. The
strategy behind this problem is to select the least number of users to initiate
an anti-rumor campaign and raise the awareness of a large number of overlap-
ping users to spread it across the networks. We introduce a greedy algorithm
for this problem that guarantees an approximation within (1 − 1/e) of the opti-
mal solution by proving that its objective function is submodular and monotone.
Experiments performed in real-world multiplex OSNs provide the evidence about
the performance of the proposed algorithm. Besides, the results in synthetic mul-
tiplex OSNs show that the overlapping nodes could contribute the diminishing
of the influence of the rumor. Then, we illustrate the impact of the topology
structures of OSNs on the rumor propagation in multiplex OSNs in general and
on the proposed strategy in particular.
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Abstract. Video-based head motion analysis has often been used to
estimate student attention in the classroom. However, individual head
motions variously depend on semantic events in the classroom (e.g.,
lecture slides), making it difficult to stably estimate student atten-
tion. In this article, we propose an index of students’ attention in the
classroom based on head motion coherence among students. We eval-
uated this index using 40 students’ data recorded during a series of
four classes. Results indicated that both head motion coherence and
amplitude depended on the type of classroom activity the students were
engaged in (e.g., lecture, individual, or group work) while motion coher-
ence at an individual level was stable across the series of classes. These
results suggest that head motion coherence captures elements of stu-
dents’ attention and it may also reflect the role of long-term, individual
features (e.g., personality and motivation) in attention.

Keywords: Educational technology · Video motion analysis
Interpersonal synchronization · Neuroeducation

1 Introduction

Video-based head motion analysis [1] has often been used to estimate student
attention in the classroom, information that is useful for teachers in their con-
struction of efficient and engaging lectures [2]. Use of this method has demon-
strated that head motion amplitude in the classroom inversely correlates with
students’ attention defined by their subjective evaluation [3]. In addition to the
head motion, head orientation information was combined to estimate student
attention [3]. These studies successfully demonstrated the link between head
motion and students’ attention. However, in the classroom, semantic events
which can include, for example, audio or visual stimuli (e.g., lecture slides), are
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highly complicated and individual response of head motions to the events are
thought to depend on various factors, such as the cognitive state (e.g., motiva-
tion, interests in the class) and preexisting knowledge of the students. Therefore,
it is important to evaluate the stability of the evaluation of student attention
estimation against various semantic events in the classroom.

In this article, we propose an index of students’ attention in the classroom
based on head motion coherence among students. The notion of motion coher-
ence stems from the hypothesis proposed by Raca [4]. Raca proposed that stu-
dent motion synchronization reflected students’ cognitive states, which can range
from active listening to the teacher to absent-mindedness. Given this, the present
article sought to quantify students’ attentional states across a time series and
correlate this with group behavior, which is thought to reflect the many class-
room semantic contexts (Fig. 1). We assessed this index using 40 students’ data
recorded during a series of four classes and evaluated whether this measure (1)
depended on the type of classroom activity students were engaged in and (2)
reliably characterized students’ cognitive status across a series of classes.

Lecture

Individual 
work

Group 
work

Attend Attend?

Attend Attend Attend Attend

? ?

Head motion 
coherence

Medium

High

Low

(a)

(b)

(c)

“Think it”

Fig. 1. Student head motion coherence in the classroom. (a) During lecture, students
who are listening to the teacher more often move their heads in a synchronous man-
ner. (b) During group work, students in the same group more often move their heads
synchronously. (c) During individual work, students’ heads move independently. The
coherence of these head motions was hypothesized to serve as a measure of student
attention and reactivity to the class material.

2 Method

2.1 Participants

Forty students, during a series of four classes (90 min each, first-year undergrad-
uate students [29 males, age ranged from 18 to 19], class title: ‘Basic strategies of
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the network economy’, ∼240 attendees, period: 4 weeks from Nov. 11, 2017), were
recruited by an announcement at the first day of the class. They were explained
that their participation was completely voluntary and independent of the grades
of the class, and participants were not compensated. Prior to the participa-
tion, all participants provided informed consent. This study was approved by
the Ethics Committee of the Future University Hakodate (ID:201703, approval
date: July 10, 2017).

2.2 Video Recording

The class consisted of three phases: a lecture (students listened to a teacher talk),
group work (groups of four students discussed a specific topic assigned by the
teacher), and individual work (students solved several questions on a computer).
The classroom seating arrangement is depicted in Fig. 2. Students in the same
group were also seated in the same row. Seating was changed after day two of the
experiment. Three video cameras (Sony, HDR-CX485) were located at the front
of the classroom and recorded participant behaviors. All cameras were located
>2 m away from participants and were carefully angled so as to avoid capturing
non-participants. In order to preserve participants’ privacy, the recorded video
data were removed from the camera after copying to a hard disk which was
stored in a key locker after extracting motion data with anonymization.

2.3 Video Data Analysis

Video preprocessing was performed using the following multi-step procedure:
First, a video (1920×1080 pixels, 60 Hz sampling rate) was manually segmented
to create 40 movies of individual, differentially-seated participants. Second, for
each individual movie, a mask image to include the participant’s face was cre-
ated as faces were sometimes occluded by other participants or by the computer.
Individual participant postures were categorized among 25 classes using the hier-
archical clustering of grayscaled images sampled across 1 s intervals. Masks were
then manually created for each individual posture. Third, optical flow in the
face area was calculated using the Lucas-Kanade derivative of Gaussian (imple-
mented by the MATLAB opticalFlowLKDoG.m function). Finally, head motion
was calculated as the amplitude of average optical flow in the face area, as
determined by mask area skin color (hue color ranged from 0.04 to 0.1). Motion
amplitude was normalized by seat width in the video.

Head motion coherence was defined as follows: amplitude of the i-th partici-
pant at time t is given by ai(t). The correlation coefficient between head motion
of the i th and j-th participants, ai(t) and aj(t), during time period t to t + T ,
is given by cij(t). The head motion coherence of the i-th participant at time t,
si(t), was defined by the following equation:

si(t) =
∑

j �=i

cij . (1)
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Teacher’ s
desk

Camera

5m

Teacher’ s
desk

Fig. 2. Student classroom seating. Black, dark, and light gray circles indicate partici-
pating students, other students, and empty seats, respectively. The star and rectangle
at the bottom of the panel indicate locations of the camera and teacher’s desk, respec-
tively. Bottom figure indicates the side view of the lecture theater while gray triangles
indicate angles of the three cameras.

While it depends on the number of participants who simultaneously move with
the target participant, head motion coherence is independent of motion ampli-
tude. We hypothesized that a participant’s attentional state would reflect his/her
reactivity to the classroom context in multiple semantic contexts.

In the analysis, the dependency of head motion coherence on type of class-
room activity was evaluated by two-way ANOVA (40 participants× three activ-
ity types). Averaged head motion coherence for individual participants was then
assessed in terms of its stability across the series of four classes. Values across
days were compared using regression analyses (N = 40) and Z-scored corre-
lation coefficients integrated for each pair of days were evaluated. Finally, the
influence of the number of participants on the stability of individual head motion
coherence was assessed using a random sampling test.

3 Results

3.1 Calculation of Head Motion Coherence

Figure 3a shows the temporal evolution of head motion signals collected from
all 40 participants on Day 2 across 90 min. Grayscale coloring indicates the
amplitude of head motion and horizontal and vertical axes indicate time and
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Fig. 3. Head motion across a 90min class session (Day 2). (a) Head motion amplitude.
Horizontal and vertical axes denote time and participant ID, respectively. Solid and
dashed bold horizontal lines in the plot indicate periods of individual and group work,
respectively. Other time periods were considered to be lecture time (during which the
teacher was talking/teaching). (b) Example 1 s segment of motion amplitude. (c) A
matrix of correlation coefficients for the time series of motion amplitudes (b). White
strips denote no associated value. (d) Head motion coherence. Values were calculated
from the correlation matrix at each time segment. See text for additional details.

participant ID, respectively. Solid and dashed horizontal lines indicate periods
of individual and group work. The motion amplitudes appeared to associate with
these lecture events. However, except for these periods, no obvious tendency of
head motion signals, related to some postulated classroom events or individual
difference were observed.
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Fig. 4. Relationship of head motion signals to classroom activity type. (a) Average head
motion coherence during each class activity. ‘I-Work’ and ‘G-Work’ indicate individual
and group work, respectively. Error-bars indicate standard error (N = 40). (b) Average
head motion amplitude during each type of class activity. (c) Correlation between head
motion coherence and the amplitude during each type of class activity.

Head motion coherence was calculated from 1 s segments of head motion
data (Fig. 3b). Using correlation coefficients for the motion signal at each time
segment (Fig. 3c), the temporal evolution of head motion coherence was calcu-
lated (Fig. 3d). In the correlation analysis (Fig. 3c), motion coherence between
each pair of participants was plotted where increased coherence would be asso-
ciated with simultaneous response to teacher’s instruction during lecture or
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cooperative behavior during group work. In the coherence map, individual ten-
dency of the coherence motion in response to other students was quantified using
Eq. (1). Vertical patterns in the coherence map, thought to be associated with
teacher instruction, were more obvious here than in the amplitude map.

3.2 Relation Between Head Motion Coherence and Amplitude

Average head motion coherence for individual participants was related to type
of class activity (Fig. 4a). Coherence during group work was larger than that
during individual work or lecture. These findings agreed with head motion
amplitude (Fig. 4b). To investigate individual association between motion coher-
ence and amplitude, a correlation analysis between them during each class-
room activity was performed. It was found that individual head motion coher-
ence and amplitude values were inversely correlated during group work (r =
−0.35, t(38) = −2.26, p < 0.05) (Fig. 4c), and non-significantly correlated dur-
ing other class activities (individual work, r = 0.08, t(38) = 0.51, n.s.; lecture,
r = −0.12, t(38) = −0.76, n.s.). This result suggested that the motion coher-
ence and amplitude were differently quantified participants’ behavior except for
the period of group work in which participants with a large head motion were
suggested to be less correlated with head motions of other students.

3.3 Stability of Head Motion Coherence Across Days

The stability of individual head motion coherence values was evaluated via
regression analyses across days (Fig. 5a). This revealed that head motion coher-
ence was stable across the four classes assessed here, despite a seating arrange-
ment change after the second day. This suggests that these values reflect individ-
ual student characteristics during class time. Individual head motion amplitudes
(Fig. 5b) were not as stable as motion coherence and there was a significant differ-
ence between their correlation coefficients (paired t-test, t(5) = 3.54, p < 0.05).

3.4 Influence of the Number of Participants

Head motion coherence was defined here by the average of head motion sig-
nal correlation coefficients between a target participant and others (Eq. (1)).
Furthermore, the number of participants was a fundamental parameter in the
determination of head motion coherence. Therefore, the influence of the number
of participants was estimated using a random sampling test. Results of this are
shown in Fig. 6 and demonstrate that head motion coherence was stable if more
than 20 participants was used. Given this, the stability of head motion amplitude
was independent of the number of participants used here (40).
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Fig. 5. Stability of average head motion coherence (a) and amplitude (b) over four
successive classes. Note that the seating arrangement was changed after the second day.
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Fig. 6. Influence of the number of participants on the stability of calculated head
motion coherence and amplitude. The stability of head motion coherence or ampli-
tude was defined by the average correlation coefficient between individual head motion
coherence or amplitude across multiple days. In this analysis, the number of partici-
pants was simulated by a random sampling of participants. This process was performed
10 times per condition. Error bars indicate standard error (N = 10).

4 Discussion

In the present article, we proposed a measure of student attention in the class-
room based on head motion coherence among students. The results of our analy-
sis of 40 participants’ data across four days of successive 90-min classes revealed
that head motion coherence reflected the type of class activity students were
engaged in. Additionally, head motion coherence profiles mirrored those of head
motion amplitude (Fig. 4a, b). However, individual head motion coherence was
not significantly correlated with head motion amplitude (Fig. 4c) and appeared
to be more stable than individual head motion amplitude across the four succes-
sive classes assessed (Fig. 5). These results suggest that student attention esti-
mated by head motion coherence captured different aspects of attention than
those captured by head motion amplitude (Fig. 7). This point is discussed in the
following section.

4.1 Relationship Between Head Motion Coherence and Attention

The current study did not show any direct association between motion coherence
and attention, in contrast to the findings of Raca [3] who clearly demonstrated
the link between head motion amplitude and a questionnaire on attention. How-
ever, the head motion signals were also thought to capture students’ atten-
tion according to the following considerations. First, the head motion coherence
shared a common aspect of attention; as a definition, “attention” describes an
internal state which enables selective processing of a part of complicated stimuli
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Motion-reated 
attention
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Fig. 7. Schematic illustration showing the relationship between attention and head
motion signal. Head motion coherence was found to capture participant attentional
state more directly than head motion amplitude.

and it can be independent of either head or eye movements. However, in natural
environment, some type of attention would associate with the motions [5] that
were quantified using head motion coherence and amplitude. Second, the head
motion coherence associates with reactivity of students to the classroom event,
and decreases in head motion associates with an increase in attention [3]. In con-
trast, as shown in Fig. 3a, the motion coherence was thought to reflect detailed
classroom events, which may be the teacher’s key sentences, such as “In summary
. . .” or “The answer is . . .”. This type of head motion was also thought to asso-
ciate with the personality of each student, where interpersonal synchronization
is known to largely depend on participant personality [6]. Therefore, the head
motion coherence was thought to capture students’ attention associated with
individual participant characteristics (e.g., personality, learning motivation, and
basic interest in the topic being taught). As a future study, it would be worth-
while to evaluate head motion coherence using educational measures, such as
exam performance or peer-based feedback.

4.2 Possible Improvement of Calculation of Head Motion Coherence

The calculation involved in the assessment of participants’ attention via head
motion coherence required >20 participants (Fig. 6). This may be improved by
modifying the definition of head motion coherence (Eq. (1)) to focus on a par-
ticular participant subgroup in which participants move synchronously during
a particular class activity. Improvement of this parameter may allow for more
reliably detecting head motion coherence and increasing the signal to noise ratio.
In a related work by Raca [3], the spatial arrangement of seats in a classroom
was found to impact motion coherence, with a ∼2 s delay in the motion syn-
chronization of sleeping students. Thus, inclusion of these sleeping students in
the calculation of head motion coherence may also improve the stability of head
motion coherence.
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4.3 Possible Contribution to Neuroeducation Research

Neuroeducation [7–9] is a growing field of research that aims to apply insights
from neuroscience to educational settings. For example, a recent study used elec-
troencephalogram (EEG) signals, simultaneously measured from multiple partic-
ipants [10,11], to estimate students’ cognitive states in the classroom. Informa-
tion from studies such as this may be useful to teachers for their design of curric-
ula and efficient, engaging classes. As neuroscience techniques have traditionally
involved laboratory experimentation, in which complicating or confounding vari-
ables are carefully excluded from experimental tasks, applying these techniques
to the classroom can be challenging. Student participants often vary in param-
eters including attention, attitude, preexisting knowledge, social and emotional
characteristics, and other individual differences. Thus, one of important factors
in bridging neuroscience and education research is the quantification of students’
cognitive states in the classroom context.

As a technology that might be used in conjunction with classroom EEG
measurement, video-based head motion coherence was found here to accurately
quantify the timing of semantic events (as seen in the vertical patterns in Fig. 3d).
These events, which can include, for example, audio or visual stimuli (e.g., lecture
slides), are usually highly complicated and thus difficult to define. Furthermore,
with a duration that can be <1 s, defining motion-artifact-free segments without
semantic disturbance during these events, which is required for neuroscientific
analysis, is made possible by using combined methodologies. The current study
proposes and substantiates the use of a key method that might be used to bridge
neuroscience and educational technology and research in future.
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Abstract. Network embedding is to map nodes in a network into low-
dimensional vector representations such that the information conveyed
by the original network can be effectively captured. We hold that a social
network mainly contains three types of information: network structure,
node attributes, and their correlation called homophily. All of these infor-
mation could be potentially helpful in learning an informative network
representation. However, most existing network embedding methods only
consider one or two types of these information, which are possibly lead-
ing to generate unsatisfactory representation. In this paper, we propose
a novel algorithm called Structure, Attribute, and Homophily Preserved
(SAHP), which jointly exploits the aforementioned three information for
learning desirable network representation. And we design a joint opti-
mization framework to embed the three information into a consistent
subspace where the interplay between them is captured toward learning
optimal network representations. Experiments conducted on three real-
world social networks demonstrate that the proposed algorithm SAHP
outperforms the state-of-the-art network embedding methods.

Keywords: Network embedding · Network representation learning
Social network

1 Introduction

Nowadays, an increasing growth of social networks, such as WeChat, Facebook
and Twitter, produces massive amounts of networked data. Mining valuable
information from such networked data is of great benefits for human beings [26,
27]. However, the complexity of these networked data is the great challenge for
us. To deal with this problem, one promising strategy is network embedding. It
aims to map each node in the network to a low-dimensional vector representation
space while preserving the neighborhood relationship between the nodes. After
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that, the learned representations could be directly applied to subsequent network
analysis tasks, including node classification [11,12,18], community detection [2,
13,24] and anomaly detection [3,9,14].

Majority of network embedding methods are based on network structure [8,
19,21]. Nevertheless, these methods primarily focused on the network structural
information but ignore attribute information associated with each node, which
are resulting in generating suboptimal representation. It is well recognized that
node attributes are also one of the most important features of social networks,
which can measure the attribute-based similarity of nodes [11,27]. As a result,
node proximities are enhanced by the attribute information. Then, nodes sharing
similar attributes are likely to have similar vector representations. It is more
reasonable to embed the network structure with node attributes considered.

Moreover, node attributes are inherently correlated to the network structure
[10,11], which can be explained by the principle of homophily [15]. Homophily
encourages nodes with common attributes to be densely connected [6,26]. When
we re-examine in terms of overall the network, it’s easy to find that homophily
could divide the whole social network into densely-connected homogeneous parts
that are gotten weak connection with each other [6]. For the nodes within the
same homogeneous part, even they have a litter weak structural relationship in
the original network, their similarities will be strengthened by the principle of
homophily. Then, they may also have similar representation. Hence, the property
of homophily should be considered in the network embedding process.

Recently, most related works either only utilize the network structure
[8,19,21] or simply combine node attribute with network structure [11,27] for
network representation, which are possible leading to unsatisfactory perfor-
mance. It is intuitive to improve the performance of embedding algorithms
with all the aforementioned three information considered. Whereas, this solu-
tion is challenging in three aspects as follows. First, due to privacy concerns,
node attributes are often very sparse, incomplete and noisy. It is a tough job to
extract the useful information from them. Second, it is very difficult to detect
the homogeneous parts both in the original network and in the learned repre-
sentation space at the same time. Third, in the embedding process, integration
of these three types of information is a hard task due to the bewildering mutual
interplay among them.

To overcome the above problems, in this paper, we propose a Structure,
Attribute, and Homophily Preserved (SAHP) network embedding algorithm,
which takes advantage of all the three information sources, including network
structure, node attributes and homophily, to jointly generate the effective repre-
sentations for nodes. Specifically, we adopt random walk to capture the network
structural information at first. Second, we embed the attribute information via
non-linear mapping. It can filter out the noisy information from node attributes
and preserve the valuable information consistent with topological structure.
Third, in order to reflect the principle of homophily both in the primary network
structure and in the learned vector representation space, we model the homoge-
neous parts in the network as a multivariate Gaussian distribution, then perform
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the Gaussian mixture model (GMM) to enforce homophily constraints among
the nodes in the learned vector space. Finally, we formulate a joint optimization
framework to integrate three parties and capture the interplay between them.
In summary, the following three major contributions are in our paper:

– Our proposed SAHP algorithm is simultaneously considered all three infor-
mation sources (i.e., network structure, node attribute and homophily) for
learning an effective network representation.

– We introduce a joint optimization framework to integrate the aforementioned
three information sources into a joint embedding space, in which captures
their mutual interplay to generate an optimal representation for each node.

– We employ node classification experiments on three real social network
datasets to validate the effectiveness of our proposed method SHAP.

2 Related Works

In this section, two groups of network embedding methods are briefly listed: pure
network structure based methods and content augmented methods.

Network structure-based methods focused on considering that the learned
representation vector space preserved the network structure only. Inspired by
the Skip-Gram model [17], DeepWalk [19] adopted the truncated random walks
to sample node sequences, and then applied them to the Skip-Gram model to
train node representations. LINE [21] formatted two different objective functions
to preserve the first-order proximity and the second-order proximity between
nodes respectively. Node2Vec [8] modified the truncated random walk into biased
random walk, and then fed DeepWalk [19] to learn node representations. Most
recently, several deep learning models are introduced to capture the rich network
structural information from nodes to learn the network representation [4,22,23].
Nevertheless, the above works only used network structure but ignored node
attributes to learn the network embedding.

Content augmented methods took node attributes into consideration for net-
work representation learning. At the first attempt, TADW [25] imported the
node textural features into DeepWalk through the matrix factorization formula-
tion. TriDNR [18] used three types, including network structure, node content
and labels, to jointly train the informative node representations. LANE [11]
explored the potential of incorporating labels with network structure and node
attributes in the embedding process, while preserving their correlations. UPP-
SNE [27] projected profile features via a non-linear mapping into network struc-
ture to learn a joint network representation. From their reported results, node
attributes could provide helpful gains to enhance the performance of network
embedding.

3 Methodology

In this section, firstly we give several notations that used in the paper. Secondly,
we describe our problem. Besides, we introduce the proposed algorithm SAHP
in detail. Finally, we present the optimization process for SHAP.
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3.1 Problem Statement

Considering a social network is an undirected graph G = (V, E ,A), where V is
the set of nodes, then E ⊆ (V × V) is the set of edges, and A is the node attribute
matrix for all nodes in G, where row ai ∈ R

d represents the attribute feature
associated with the node vi ∈ V. Our problem is to embed each node vi ∈ V in G
to a low-dimensional vector representation Φ (vi) ∈ R

2m, where 2m � |V|. And
the mapped node representations are directly taken as the input to subsequent
network analytical tasks, like node classification.

3.2 Preserving Network Structure Information

Inspired by the idea of Skip-Gram [16], DeepWalk [19] extends from learning
word representation to learn the node representations of a network. DeepWalk
performs random walk on the network to generate the context for nodes. Then,
it maximizes the occurrence of a node vi and its context nodes within t window
size, {vi−t, · · · , vi+t} \ vi. And the representation for vi, Φ

′
(vi) is computed as:

P
(
{vi−t, · · · , vi+t} \ vi|Φ′

(vi)
)

=
j=i+t∏

j=i−t,j �=i

P
(
vj |Φ′

(vi)
)

(1)

The probability P
(
vj |Φ′

(vi)
)

in Eq. (1) is modeled by softmax function:

P
(
vj |Φ′

(vi)
)

=
exp

(
Φ(vj) · Φ

′
(vi)

)
∑

v∈V exp (Φ (v) · Φ′ (vi))
(2)

In DeepWalk, a node v has two vectors: Φ
′
(v) is the node itself and Φ (v) is the

context for other nodes. Obviously, directly computing the term P (vj |Φ(vi))
in Eq. (2) is computationally expensive, because we want to iterate through all
contexts. To reduce the computation complexity, we adopt the Skip-Gram with
Negative Sampling method [16]. Hence, we speed up the optimization process
by adopting the following objective function:

O1 = −
|V|∑
i=1

|V|∑
j=1

n (vi, vj)

[
log σ

(
φj · φ

′
i

)
+

N∑
l=1

log σ
(
−φvl

i
· φ

′
i

)]
(3)

For convenience, we set Φ (vi) to φi, and Φ
′
(vi) to φ

′
i. σ (x) = 1/(1 + exp (−x))

is the sigmoid function. And n (vi, vj) is the number of times that the node vj

occurs in the node vi’s context in a set of generated random walk sequences.
If vj never occurs in vi’s context, the value of n (vi, vj) is to 0. Here, vl

i is the
index lth sampled negative nodes for vi according to the probability r0.75

i (ri is
the vi’s degree). In total, there are N negative nodes. By minimizing the Eq. (3),
the connected nodes are projected closely together in the representation vector
space. Consequently, the space can preserve the original network structure.
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3.3 Preserving Node Attribute Information

Motivated by the fact that node attributes could be potentially helpful to
enhance network representation learning [11,27], we incorporate node attributes
into the DeepWalk [19] framework. Following the idea of [27], we map node
attributes ai to its node representation ϕ (ai) via a non-linear mapping:

Φ
′
(vi) = ϕ (ai) (4)

here ϕ (·) is a non-linear mapping function. And the kernel mapping is a com-
mon choice, where ϕ (ai) may be infinite dimensional. Nevertheless, according
to [20], the infinite dimensional kernel space could be mapped to some low-
dimensional feature space. And thus, it could provide the feasible for ϕ (ai) to
be low-dimensional. Then, the low-dimensional feature mapping ϕ (·) is calcu-
lated as follows:

ai → ϕ (ai) =
1√
m

[
cos

(
μT

1 ai

)
, · · · , cos

(
μT

mai

)
,

sin
(
μT

1 ai

)
, · · · , sin

(
μT

mai

)]T
(5)

following the idea of the distribution from the Fourier transform of the kernel
function, {μ1, · · · , μm} are the m projection sampled directions. As mention
above, node attribute are inherently correlated to the network structure [11,26,
27]. In the purpose to exploit this correlation, we plan to incorporate the feature
mapping ϕ (·) with network topological structure in the DeepWalk framework.
Therefore, we substitute ϕ (ai) for φ

′
i in Eq. (3). Then the objective function in

Eq. (3) is rewrote as:

O1 = −
|V|∑
i=1

|V|∑
j=1

n (vi, vj)

[
log σ (φj · ϕ (ai)) +

N∑
l=1

log σ
(
−φvl

i
· ϕ (ai)

)]
(6)

Here, the representation φj is a 2m-dimensional vector. By solving the Eq. (6),
we embed network structure and node attributes into a consistent subspace,
and the interplay between them is able to promote each other to generate a
consistent embedding representation space that contains the information both
from topological structure and node attributes.

3.4 Preserving Homophily Information

As the mentioned above, the principle of homophily divides a network into some
densely-connected homogeneous parts that are weakly-connected between them.
To reflect the property of homophily among the nodes, we should enforce the
nodes within the homogeneous parts to be close enough to each other. Therefore,
we combine the above-mentioned network embedding process with Gaussian
mixture model (GMM). That is, we consider a node vi’s out representation
Φ (vi) is generated by a multivariate Gaussian distribution N (ψk, Σk) from the
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homogeneous part zi = k. In this paper, we use class labels for representing
the homogeneous part. Then, for any node v ∈ V in G, we can formulate the
likelihood as:

|V|∏
i=1

K∑
k=1

p (zi = k) p (vi|zi = k;φi, ψk, Σk) (7)

where K is the number of homogeneous parts in G, p (zi = k) is the probability
of node vi belonging to the homogeneous part k, ψk ∈ R

2m is a mean vector
and Σk ∈ R

2m×2m is a covariance matrix. To be simple, we set p (zi = k) as
πik. And hence, we have πik ∈ [0, 1] and

∑K
k=1 πik = 1. In this process, these

πik’s indicate that the probability for each node vi is derived from one of the
homogeneous parts in the network G. Besides, p (vi|zi = k;φi, ψk, Σk) is defined
as a multivariate Gaussian distribution:

p (vi|zi = k;φi, ψk, Σk) = N (φi|ψk, Σk) (8)

After that, in order to encourage the homophily between nodes to be close enough
in the representation space, we define the objective function as:

O2 = − β

K

|V|∑
i=1

log
K∑

k=1

πik · N (φi|ψk, Σk) (9)

where β ≥ 0 is a trade-off parameter. As claimed by [1], we can use the
log-concavity equation to optimize the Eq. (9). Then, the objective function is
rewrote as:

O2 = − β

K

|V|∑
i=1

K∑
k=1

log [πik · N (φi|ψk, Σk)] (10)

By optimizing the Eq. (10), the homophily information is not only reflected in
the original network, but also retained in the embedding representation space.

3.5 Joint Optimization

In this paper, there are three information sources, including network structure,
node attributes and homophily, considered for the node representation learned.
Due to the heterogeneity and high dimensionality of these information, we cannot
be directly concatenated them. In order to maximize the interplay among them
toward learning the informative node representations, we adopt the unification
approach. Then, the ultimate objective function for SAHP is defined as:

O = O1 + O2 (11)

Since our objective in Eq. (11) consisted of node embedding and homophily
detection, we decompose the joint optimization process into two sub-parts, then
use an alternating way to optimize this problem.
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Fixed (v,µ), Optimize (Π,Ψ,Σ). In this part, Eq. (11) is simplified as an
inferring issue. Then we adopt expectation maximization (EM) method [5] to get
(Π,Ψ,Σ). However, we notice that O2 might be negative infinity, when diag (Σk)
becomes zero. To avoid this situation, we particularly introduce the constraints
of diag (Σk) > 0 for each k ∈ {1, · · · ,K}. Here, we randomly reset Σk > 0 and
ψk, whenever a diag (Σk) has zero at the beginning. Therefore, we can repetitive
update the parameters (Π,Ψ,Σ) by:

πik =
Nk

|V| (12)

ψk =
1

Nk
·

|V|∑
i=1

γik · φi (13)

Σk =
1

Nk
·

|V|∑
i=1

γik · (φi − ψk) (φi − ψk)T (14)

where γik = πikN (vi|ψk,Σk)
∑K

k=1 πikN (vi|ϕk,Σk)
and Nk =

∑|V |
i=1 γik. Inspired by [2], we also

initialize v by DeepWalk results in our experiment, which may make the con-
straints of diag (Σk) > 0 be easily satisfied. And then, the inference of (Π,Ψ,Σ)
could have converged at fast.

Fix (Π,Ψ,Σ), Optimize (v,µ). In this part, Eq. (11) is treated as a opti-
mization issue. We optimize O1 and O2 via using the stochastic gradient descent
(SGD) approach. And therefore, for each node vi ∈ V, we have:

∂O1

∂vi
= −

|V|∑
i=1

|V|∑
j=1

n (vi, vj) [1i (j) · σ (−φj · ϕ (ai)) ϕ (ai) (15)

−
N∑

l=1

1i

(
vl

i

) · σ
(
φvl

i
· ϕ (ai)

)
ϕ (ai)

]

∂O2

∂vi
=

β

K
·

K∑
k=1

πik · Σ−1
k (φi − ψk) (16)

where 1i (·) is an indicator function. For all μs ∈ {μs}m
s=1, we also have:

∂O1

∂μs
= −

|V|∑
i=1

|V|∑
j=1

n (vi, vj)
[
σ (−φj · ϕ (ai))

∂ϕ (ai)
∂μs

ϕ (ai) (17)

−
N∑

l=1

σ
(
φvl

i
· ϕ (ai)

) ∂ϕ (ai)
∂μs

ϕ (ai)

]

where ∂ϕ(ai)
∂μs

is a d × 2m Jacobian matrix.
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Algorithm 1. The proposed algorithm SAHP
Input: Graph G = (V, E , A), walk length l, paths per node γ, embedding dimension

m, homogeneous parts K, trade-off parameter β.
Output: The learned vector representations Φ

′
(v) for all node v ∈ V

1: P ← RandomWalk(G, l, γ);
2: Count n (u, v) in all random walk sequences P;
3: Initialize {μs}m

s=1 with random distribution [−1, 1];

4: Initialize Φ
′
(vi) by Eq.(4) and Φ (vi) by DeepWalk [19] with P, respectively.

5: for iter = 1 : T1 do
6: for subiter = 1 : T2 do
7: Update πik, ψk and Σk by Eq.(12), Eq.(13) and Eq.(14)
8: for k = 1, · · · , K do
9: if diag (Σk) has zero item then

10: Randomly reset Σk > 0 and ψk ∈ R
2m

11: for all node vi ∈ V do
12: SGD on Φ (vi) by Eq.(15);

13: for all node vi ∈ V do
14: SGD on Φ (vi) by Eq.(16);

15: for s = 1 to m do
16: SGD on μs by Eq.(17);

17: Construct the mapped image Φ
′
(v) for each v ∈ V with {μs}m

s=1.

Algorithm 1 shows the network representation generation process. In lines
1–4, we adopt random walk to generate the sequences and calculate the statis-
tics n (vi, vj), then initialize Φ (vi) and μ. In lines 6–10, we fix (v, μ) and opti-
mize (Π,Ψ,Σ) for detecting the homogeneous parts in the embedding generation
space. In lines 15–14, we fix (Π,Ψ,Σ) and optimize (v, μ). Particularly, we update
node embedding caused by GMM in lines 13–14, update the parameters {vs}|V|

s=1

in lines 11–14, and the parameters {μs}m
s=1 in lines 15–16, respectively. Finally

we construct the mapped image Φ
′
(vi) as the representation for each node vi ∈ V

in line 17.

4 Experiments

In this section, we first present the datasets and experimental settings that will be
used in our paper. Then, we perform node classification experiments and analyze
the experimental results. Finally, we investigate the parameters sensitivity.

4.1 Experimental Setup

Datasets. Three real social network datasets are used in our experiments. Ego-
Facebook1 is a social friendship network for Facebook users, which contains

1 https://snap.stanford.edu/data/.

https://snap.stanford.edu/data/
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4,039 nodes and 176,468 edges. Every node has a 477-dimensional vector that
indicates its attribute information. We set user’s education types as class labels.
The other two datasets are Hamilton and Rochester2, both of which are
collected from 100 US university Facebook networks. The two networks con-
sist of 2,314 nodes, 192,788 links, and 4,563 nodes, 322,808 links respectively.
Every node uses a 144-dimensional, and a 235-dimensional feature vector as its
attribute information separately. The student/faculty status flags are treated as
class labels. The statistics of three datasets are listed in Table 1.

Table 1. The statistics of three real social network datasets

Ego-Facebook Hamilton Rochester

# of nodes 4,039 2,314 4,563

# of edges 176,468 192,788 322,808

# of attributes 477 144 235

# of labels 4 6 6

Baselines. The following methods are comparing in our paper:

– DeepWalk [19] learns network representation using network structure only.
– Node2Vec [8] extends DeepWalk [19] to generate the network representation

based on network structure only.
– LINE [21] only considers network structure to learn network representation.
– LANE [11] maps three kinds of information (i.e., network structure, node

attributes, labels) into a consistent latent space as the final node representa-
tion. Here, we only choose the version that ignores label information.

– UPP-SNE [27] takes user profile information as node attribute, and seam-
lessly projects it with network structure into a consistent embedding subspace
to train the representation for nodes in a network.

Settings. We adopt node classification task to evaluate the quality of different
methods. To be fair comparisons, we vary the training ratio from 1% to 6%
by an increment of 1%. For each training ratio, we randomly pick up a small
number of labeled nodes as training set, and the rest of the nodes removed their
labels are for testing set at first. Then, we train a linear SVM implemented by
Liblinear [7] based on the training set (nodes). And we use the learned SVM
classifiers to predict the test set (nodes). After that, we use the Accuracy metric
as the evaluation criteria to measure the classification performance. We repeat
this process 10 times and report the averaged results in Tables 2, 3 and 4.

We set all baselines as default parameters according to they reported. For
all datasets, the learned dimension is set to m = 128. In SAHP algorithm, the
number of negative samplings N is 5, trade-off parameter β is 0.1, walks per
node γ is 10, learning rate η is 0.1, walk length l is 40, window-size t is 10.
2 https://escience.rpi.edu/data/DA/fb100/.

https://escience.rpi.edu/data/DA/fb100/
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4.2 Node Classification

From the results shown in Tables 2, 3 and 4, we find that the proposed SAHP
consistently outperforms all baselines. On Ego-Facebook, SAHP gains nearly 2%
improvement over the best baselines. And on Hamilton and Rochester, SAHP
achieves around 2.4% and 3% improvement over the best baselines, respectively.

To be specific, we observe that our proposed method SAHP consistently
outperforms the pure structural embedding methods, such as DeepWalk [19],

Table 2. Accuracy (%) of the classification experiment on Ego-Facebook.

Dataset Ego-Facebook

Training ratio 1% 2% 3% 4% 5% 6%

DeepWalk 58.61 59.62 60.79 60.91 61.44 62.23

Node2Vec 58.95 59.34 61.39 60.68 62.11 63.08

LINE 66.56 67.65 68.66 69.29 69.97 69.47

LANE 73.22 74.44 74.97 75.49 69.95 76.25

UPP-SNE 83.81 84.13 84.96 84.69 85.03 85.58

SAHP 85.70 86.40 86.73 87.29 87.93 88.42

Table 3. Accuracy (%) of the classification experiment on Hamilton.

Dataset Hamilton

Training ratio 1% 2% 3% 4% 5% 6%

DeepWalk 84.77 86.16 87.63 89.44 89.75 90.44

Node2Vec 84.85 87.46 88.42 88.78 89.68 90.39

LINE 80.40 81.82 83.43 86.78 86.79 87.87

LANE 79.42 80.04 80.54 81.43 81.16 82.25

UPP-SNE 85.35 86.89 89.14 90.68 90.76 91.71

SAHP 87.69 89.04 91.82 92.12 93.01 93.88

Table 4. Accuracy (%) of the classification experiment on Rochester.

Dataset Rochester

Training ratio 1% 2% 3% 4% 5% 6%

DeepWalk 82.29 83.12 87.63 84.16 84.55 90.44

Node2Vec 83.01 83.45 83.84 88.78 84.37 85.39

LINE 81.29 81.80 82.43 83.09 84.99 83.78

LANE 80.89 80.98 80.78 80.88 81.11 81.03

UPP-SNE 83.29 84.89 85.89 86.14 87.20 87.83

SAHP 85.99 86.59 88.16 89.15 89.38 90.66
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Node2Vec [8] and LINE [21]. This fact demonstrates that incorporating node
attributes makes the node embedding representation obtain better perfor-
mance. In addition, SAHP also achieves a better performance than the content-
augmented network embedding baselines, including LANE [11] and UPP-SNE
[27]. This fact can be explained that, by benefiting from incorporating the
homophily information, SAHP get more informative representations than LANE
and UPP-SNE. It demonstrates that homophily could provide an important
property for network embedding, especially when node attributes are exploited.

4.3 Parameter Sensitivity

SAHP has three major parameters: dimension m, walk length per node l and
the trade-off parameter β. To investigate the effect of these parameters, we per-
form the experiments on node classification to evaluate the effectiveness. In this
process, there are any two of the three parameters fixed, and the training ratio
is set at 10%, then we study the impact of the third one in the measure of clas-
sification accuracy. As shown in Fig. 1, we can observe that on Ego-Facebook,
Hamilton and Rochester datasets, the performance of SAHP is less sensitive to
these three parameters. This fact shows that the SAHP model is stable.
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Fig. 1. The effect of parameters m, l, and β

5 Conclusion

In this paper, we propose a Structure, Attribute and Homophily Preserved Social
network embedding method that considers three information sources, including
network structure, node attributes, homophily, to jointly train an effective vec-
tor representation for a social network. A joint optimization framework is also
designed to map the network into a consistent embedding representation space
that could enhance the node proximity by taking advantage of these three infor-
mation sources as much as possible. As a result, the learned vector representa-
tions not only preserve the topological structure proximity between nodes and
their attribute similarity, but also explicitly reflect the principle of homophily
among the nodes in this new space. Experimental results indicate that the pro-
posed algorithms SAHP achieves improvements than the state-of-the-art network
embedding methods.
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As nodes in a real-world network are associated with abundant textual fea-
tures, in the future, we plan to apply the SAHP model to effectively incorporate
these features of nodes with other information in the network embedding process.
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Abstract. In the group recommender system, most of methods through
aggregating individual preferences of each member in the group to group
preference, which neglect the correlation among the members of the
group. In this paper, group recommendation based on neural collab-
orative filtering (GNCF) and convolutional neural collaborative filter-
ing (GCNCF) frameworks are proposed, which simulate the interaction
between the members of the group and make recommendations directly
for the group. GNCF and GCNCF frameworks predict group ratings by
learning user-item interaction matrices. They project sparse vectors to
dense vectors by utilizing the full connection layer, and improve the non-
linear capability of the model by using the deep neural networks. Com-
paring with the traditional method, our method builds a new group rec-
ommendation model, and its effectiveness is well demonstrated through
experiments.

Keywords: Group recommendation · Neural network
Context-aware · Collaborative filtering

1 Introduction

Collaborative filtering is the most widely used technique in recommender sys-
tem, it generates recommendation information for the user by finding a similar
group to the user. Matrix factorization (MF) is the most popular means of col-
laborative filtering, which decomposed user-item interaction matrices into latent
features that simulate user-item interactions, and provides users with more accu-
rate recommendations. Lee et al. [12] proposed the prototype of MF algorithm
and decomposed user rating matrix into users and items latent vectors. Based
on it, a large number of researchers had improved MF. For example, Koren
et al. [10] proposed a new method which added users and items biases to the orig-
inal factorization function. Rendle et al. [16] further improved the performance
of the recommender system by simulating the interaction between contextual
information through the factorization machines (FMs).

The majority of recommender system makes recommendations for individual
users, however, many of the activities in life (such as restaurant dining, watch-
ing movies and group travel) require group participation. When recommending
c© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11306, pp. 131–143, 2018.
https://doi.org/10.1007/978-3-030-04224-0_12
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information for a group, the system must consider the preferences of each group
member. Seko et al. [18] represented the group preference model as a multidi-
mensional feature space, in which the group recommendation information can
be obtained by calculating the distance between the candidate item and the
high-density area. In recent years, with the introduction of context-aware, the
performance of the recommender system has been further improved. For exam-
ple, Li et al. [13] proposed a group-coupon recommender system which consider
user preference, geographic convenience, and friends influence. Liu et al. [14]
provided recommendation information for tour groups through location context
and seasonal context. Bok et al. [5] proposed a method of recommending groups
for users based on user profile and social networks. And Lu et al. [15] proposed
a hierarchical Bayesian model based on location. They first utilized the group
members, the group flow area and the group preference to generate the group
geography topic model, then recommended activity venues for groups by com-
bining a geographic model with a collaborative filtering framework.

Neural networks have made great progress in the fields of natural language
processing, image processing, pattern recognition and so on. The combination of
traditional recommendation algorithm and neural network is the development
trend of recommender system. In the recommender system for individual users,
Devooght et al. [6] proposed a recurrent neural network (RNN) framework. They
regarded consumer behavior as a time-sequence problem, and utilized RNN to
predict the user’s next consumption behavior. He et al. [8] proposed a neural
collaborative filtering framework to predict user’s next interactive item by learn-
ing user-item interaction functions through the multi-layer perceptrons (MLP)
and MF. Dieleman and Wang et al. [7,24] proposed to use neural networks to
describe texts, music, and images, and further assists the recommender system.
Comparing with recommender system for individual users, the known research
seldom involves the application of neural network for group recommendation.
Hu and Jian et al. [9] constructed a general depth model by collective deep
belief networks and dual-wing restricted Boltzmann machines, it is applicable
to many other areas that study the group behavior with coupled interactions
among members. Wang et al. [23] proposed a group recommendation algorithm
based on the probability matrix factorization of dynamic convolution. In this
algorithm, they first used CNN and matrix factorization model to analyze user
preferences comprehensively through combining with service description docu-
ment, profile file and time factors, then used the average strategy to merge the
individual preference into group preference.

Traditional group recommendation technologies mainly utilizes simple lin-
ear fusion to extend personal preference to group preference, which is too much
dependent on personal recommendation technology, and magnify the error rec-
ommended by the group. In this paper, we take recommending movies for groups
as an example, and utilize contextual information, such as the location, time and
weather of the members of the group, to directly recommend the information
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that meets the interests of the group. The main contributions of this paper are
as follows:

1. We proposed group recommendation based on neural collaborative filtering
(GNCF) and convolutional neural collaborative filtering (GCNCF) frame-
works, which simulate interaction between groups and items by mapping
sparse vectors into dense vectors.

2. We showed that GNCF and GCNCF is a generalization of FMs, and it is
proved by experiments that the use of neural network can better describe the
nonlinear relationship between the groups and the items.

3. We performed experiments on Movielens and Netflix datasets, and compared
the results with the traditional methods to verify the effectiveness and gen-
erality of the proposed algorithm.

2 Preliminaries

2.1 Problem Statement

For predicting individual rating questions, we first define users U =
{
u1,

u2, ..., um

}
, and items I = {i1, i2, ..., in}. The rating R is predicted by user

U and item I, the target function y : U × I → R. y(u, i) is the rating of user u
for item i. The task of the rating prediction is to approximate prediction rating
ŷ(u, i) to the original rating y(u, i). Similarly, for predicting group rating ques-
tions, we can also define the groups G = {g1, g2, ..., gz}, items I = {i1, i2, ..., im},
and the target function y : G × I → Rg, in which Rg is the rating of group g
for item i. The aim of the rating prediction is to approximate prediction rating
ŷ(g, i) to the original rating y(g, i).

2.2 Context-Aware

In context-aware recommender system, recommendation information is influ-
enced by user context-aware. For example, people are more likely to watch com-
edy movies when they are sad. Defining the user’s context variable c ∈ C, the
user’s mood can be expressed as C (C = happy, sad, etc.). FMs model utilized
context-aware information to predict the ratings, it can be expressed as:

y : U × I × C3 × ... × Cs → R, (1)

where U denotes users, I denotes items, Ci denotes contextual information, and
subscript i denotes the number of contextual information, and starts counting
from 3. The method proposed in this paper also uses this encoding.

In Fig. 1, we shows an example for context-aware data. In which C3 denotes
mood and C4 denotes the weather:

U = {Abby,Bob, Cathy}
I = {Titanic, Spider − man,ForrestGump,ResidentEvil}
C3 = {Sad,Normal,Happy}
C4 = {Sunny,Cloud,Rain}
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The left side of Fig. 1 shows the user’s viewing record, for example, the first
line means Abby rated Titanic with 4 stars, and she had watched this movie
with Bob while she was Happy and the weather was sunny.

Fig. 1. Binary representation of the user viewing record

2.3 Rating Prediction with Factorization Machines

FMs [16] is the generalization of generalized matrix factorization, and the con-
textual information is added to the traditional matrix factorization. FMs models
all interactions between pairs of variables with the target, including nested ones,
by using factorized interaction parameters:

ŷ(x) = w0 +
s∑

i=0

wixi +
s∑

i=1

s∑

j=i+1

ŵijxixj , (2)

where ŵij are the factorized interaction parameter between pairs:

ŵij := <vi,vj> =
k∑

f=1

vifvjf , (3)

where w0 is the global bias, wi models the interaction of the target with the i-th
variable, and ŵij models the factorized interaction a pair of variables the target.

Comparing the FMs model with the generalized matrix factorization model
[21], FMs not only decomposed interaction matrix between user and item, but
also decomposed all pairwise interactions with all context variables.

In the group recommendation, we first get each user rating of the item in
the group by using the FMs method, and then utilize the preference aggregation
strategy to obtain the score of the group.

3 General Framework

3.1 Group Neural Collaborative Filtering Framework

Group neural collaborative filtering uses MLP learning user-item interaction
matrix. As shown in Fig. 2, uj denotes the j-th user, and the input layer includes
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Fig. 2. Group neural collaborative filtering framework

multiple users. These users belong to the same group uj ∈ gtl , and the number
of users in the group is t. The user information is encoded by the binary code
format like Fig. 1, and ygi denotes the group’s real ratings for item i, ŷgi denotes
the model’s output.

Above the input layer is the embedding layer, which is used to represent the
sparse information of the user into dense binary vectors. The generated vectors
can be regarded as the model used to describe the user and item latent vectors.
The obtained n dense vectors are connected in series, and the connection method
is widely used in multi-modal depth learning [22,25]. The linked vectors are fed
into NCF layers, which is used to learn the interaction between the user and the
item latent vectors. The output layer can be regarded as a multi-class problem.
Comparing with the FMs method, the framework can give the model a higher
non-linear modeling ability. Since the principle of GNCF is similar to those
of GCNCF mentioned below, it is only different from CF Layers. The GNCF
framework is no longer detailed in this section, the principle of GNCF can be
referred to the following GCNCF.

3.2 Group Convolutional Neural Collaborative Filtering Framework

In GNCF, latent vectors are connected to a group-item vector by serial connec-
tion and sent to NCF Layers for training. If we change the serial link method
to a parallel link method, we can get the group feature matrix. Each row of
this matrix denotes a vector. The matrix obtained by the attended mode can
further model the recommendation process using convolutional neural networks.
The model structure is shown in Fig. 3.

The GCNCF framework adds a convolutional pooling layer to the GNCF
framework. The group feature matrix consists of latent vectors learned by each
group member. In the convolution process, multiple convolution kernel is used
to extract different local features of the group feature matrix. The pooling oper-
ation is used after the convolution is completed. The purpose of pooling is
to reduce the number of parameters and extract the most useful eigenvalues
in the matrix. When we recommend information for a large scale group, the
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Fig. 3. Group convolutional collaborative neural collaborative filtering framework

recommendation matrix obtained by the embedding layers may be very large.
After being processed by the pooling layer, the parameters of the model are
reduced, which effectively prevents the model overfitting. After some convolu-
tion pooling operations, the extracted local features are synthesized into global
features in the fully connected layer, and the global features are further learned.
Finally, we output the classification results at the output layer.

The GCNCF model is defined as follows:

ŷgi = f(P T
1 v

U
u1

,P T
2 v

U
u2

, ...,P T
t v

U
ut

,QTvI
i |P 1,P 2, ...,P t,Q, Θf ), (4)

where u1, u2, ..., ut ∈ g, P j ∈ RM×K and Q ∈ RN×K denote the latent factor
matrix of users and items, and Θf denotes the model’s parameters, respectively.
The function f can be expressed as follows:

f(P T
1 v

U
u1

,P T
2 v

U
u2

, ...,P T
t v

U
ut

,QTvI
i |P 1,P 2, ...,P t,Q, Θf )

= φout(φZ(...(φX(...φ2(φ1(P T
1 v

U
u1

,P T
2 v

U
u2

, ...,P T
t v

U
ut

,QTvI
i )...))...)),

(5)

where φout denotes output layer function, φX and φZ denote the mapping func-
tion for X-th CF layer and Z-th fully-connected layer, respectively.

3.3 Learning GNCF and GCNCF

The group rating prediction can be transformed into a multi-objective classifi-
cation problem, we use the softmax function at the output layer to output the
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probability of each category. The cross-entropy loss function is defined as follows:

J(Θ) = −
∑

gi∈y

N∑

n=1

sign(ygi = n) log p(ŷgi = n|P,Q.Θf ), (6)

where N denotes the number of categories. It represents the level of rating in
this article.

Although cross-information entropy rarely investigated papers about the rec-
ommendation algorithm, literature [8] proved the effectiveness of this method
through experiments.

3.4 GNCF, GCNCF and FMs

Generalized MF decomposes the matrix into user and item latent vectors. As a
comparison, FMs takes full advantage of contextual information to decompose
interaction matrix between users and items. FMs can also be seen as a special
form of GNCF and GCNCF. For G(C)NCF, a fully connected layer is first used
to project users and items binary sparse vectors to latent feature vectors. Then
(C)NCF layers are used to learn group feature matrix, and output layer predicts
group rating for which category. Supposed that puj

is the user latent vector
P T

j v
U
uj

, qi is the item latent vector QTvU
i . We define the mapping function of

the first (C)NCF layer as:

φ1(pu1
,pu2

, ...,put
, qi) =

t∑

a=1

t∑

b=a+1

pua
� pub

+
t∑

a=1

pua
� qi, (7)

where � denotes the element-wise product of vectors and the output of the model
can be expressed as follows:

ŷgi = aout(hT (
t∑

a=1

t∑

b=a+1

pua
� pub

+
t∑

a=1

pua
� qi)), (8)

where aout and h denote the output layer activation functions and connection
weights, respectively. If we use an identity function for aout and enhance h to
uniform vector of 1, then the model can be regarded as the deformation of FMs.
Comparing with FMs, the G(C)NCF framework takes advantage of the non-
linear modeling ability of neural network to further learn the feature matrix.

The input layer and the embedding layer of GNCF and GCNCF are the
same, but the difference is that GCNCF has increased the feature extractor
composed of Convolution layer and Pooling layer. The GNCF directly establishes
the connection between each group member by the full-connection layer and
directly considers the preferences of each group member. This approach is more
difficult to converge to the optimal solution. As a comparison, GCNCF makes
full use of the local perceptive ability of convolutional neural networks, and uses
different convolution kernel to learn the different preferences of some members
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in the group, and then the information of the local group members is integrated
into the global information at the high layer. So this approach can find group’s
favorite information more accurately.

4 Experiments

In order to verify the effectiveness of the proposed algorithm, we explore the
GNCF and GCNCF method from three aspects.

1. Comparing with the state-of-the-art group recommendation algorithm, we
verify the effectiveness of our algorithm.

2. Network structure exploration is also the focus of this article. By setting
different number of embedding factors and predictive factors, the effect on
the experimental results can be observed.

3. Setting up different group size training multiple models to verify the gener-
ality of the proposed algorithm.

4.1 Experimental Settings

Datasets. This paper uses the MovieLens [1] and Netflix [2] datasets, which
contains 100 thousand ratings for 1682 movies by 943 users and 100 million
ratings for 17 thousand movies by 480 thousand users, respectively. We construct
a semi-simulated dataset by adding reasonable context generation rules. The
constructed data set includes:

User: ID, age, sex, and occupation
Item: ID, release date and type
Rating: user rating for the item
Context-aware: time, mood, location and weather.

Baltrunas et al. [3] divides the group into 2 parts, random groups and high
inner similar group. Considering the randomness of members in a group, we
select 10 users as a group (the limitation of dataset size) and the rating records
of 100,000 groups randomly. During the experiment, 80% of the data was selected
as the training set and 20% of the data as the test set. Since the group’s ratings
is not given in the data set, the mean value strategy [4] is used here to obtain
the group’s ratings.

Evaluation Protocols. The evaluation indexes in this paper are RMSE [16] and
nDCG [3]. RMSE measures the degree of proximity between prediction ratings
and actual ratings, and it can accurately predict user’s preference degree of
recommendation information. nDCG is used to measure the satisfaction of users
with a recommendation list, the main idea means users prefer items that appear
in the front of the recommendations list.

Parameter Settings. The model parameters are initialized to a normal distribu-
tion random number with a mean of 0 and a standard deviation of 0.005. With
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a small batches of Adam to optimize this model, the batch size is set to 64,
the learning rate is set to 0.005. The activation functions of the convolutional
layer and the fully connected layer are selected as rectified linear units (ReLU).
This experiment takes the GCNCF structure for two identical convolution pool-
ing layers. Convolution kernel parameters are taken as follows, size = 3 ∗ 3,
number = 16, strides = [1, 1, 1, 1], the maximum pool method is used in the
pooling layer, and there is strides = [1, 2, 2, 1]. After the pooling layer, we use
local response normalization (LRN) to create the competition mechanism of
local neurons. In the GCNCF framework, both the number of neurons in the
embedding layers and the last fully-connected layer determine the performance
of the model, which is referred to here as the embedding factors and the pre-
dictive factors. The model is evaluated by selecting different embedding factors
[8, 16, 32, 64] and predictive factors [16, 32, 64, 128]. For example, when the
embedding factors is 16, the predictive factors is 32 and the number of group
members is 10, the GNCF structure of embedding layer and NCF layer are
11×16 → 256 → 128 → 64 → 32, the GCNCF structure of embedding layer and
CNCF layer are 11 × 16 → 6 × 8 × 16 → 3 × 4 × 16 → 64 → 32 (here 16 is the
number of convolution kernels). Without special mention, GNCF and GCNCF
use four CF layer (a convolution pool layer in GCNCF as a CF layer).

4.2 Effectiveness of Group Recommendation

Our algorithm is based on group modeling, and we will compare GNCF and
GCNCF with KNN [17], FMs methods [16], CARS2 [19] by setting different
predictive factors. For FMs and CARS2, the number of predictive factors is
equal to the number of latent factors, and that in KNN is equal to the number of
nearest neighbors. When we set the embedding factor size to 32, the experimental
results are shown in Fig. 4.

(a) MovieLens-nDCG@5 (b) MovieLens-nDCG@10 (c) MovieLens-RMSE

Fig. 4. Performance of nDCG@5, nDCG@10, and RMSE change with predictive factors
using Movielens.

Figures 4 and 5 show the experimental results of GCNCF and GNCF in
different datasets. The experimental results on the Netflix dataset are worse than
those on Movielens dataset. In general, Netflix dataset is higher than Movielens
dataset 4% in RMSE, and is lower than Movielens dataset 3% in nDCG, which
is caused by the sparse data of Netflix. Comparing with the traditional method,
GNCF and GCNCF have been significantly improved on both datasets, they have



140 W. Zhang et al.

(a) Netflix-nDCG@5 (b) Netflix-nDCG@10 (c) Netflix-RMSE

Fig. 5. Performance of nDCG@5, nDCG@10, and RMSE change with predictive factors
using Netflix.

better non-linear modeling capabilities and can further describe the user-item
matrix interaction by constructing a network structure. Moreover, the GCNCF
has better performance than GNCF, it explains that the way of extracting local
features by CNN is better than getting global features by using fully connection
layers directly. The experimental results of GNCF and GCNCF are optimal when
the predictive factors are 16 and 32, respectively. Here optimal values for these
two methods are obtained for different size of predictive factors. The reason is
that when GCNCF is extracted features from multiple convolution kernels, the
dimension of mapping to full link layer will be relatively high, and few predictive
factors can not learn enough features. While GNCF passes through multiple fully
connected layers, the dimension has been reduced to a certain extent, the model
can be well predicted without too many predictive factors.

4.3 The Structure of GCNCF

In the last section, we observed that the experimental results of GCNCF are
better than that of GNCF. In this section, We further explore the different
experiments by setting different the structure of GCNCF, the size of the embed-
ding factors is set as 8, 16, 32, and 64, and the size of the predictive factors is
16, 32, 64, and 128. The experimental results are shown in Table 1.

When the number of predictive factors are 32 and embedding factors are
64, Table 1 shows the experimental results almost achieves an optimal value.
With the increase of the number of embedding factors, the value of RMSE is
reduced in general. For nDCG@5, the experimental results of embedding factors
32 are better than those of 64. But for nDCG@10, it is just the opposite. The
reason is that the model can not fully learn all the features of the group when the
embedding factors is 32. In other words, a small amount of predictive factors can
provide high quality recommendation when the size of the recommendation list is
small, but the quality of recommendation will decrease with the recommendation
list increases.

The difference between the experimental results of Netflix and those of Movie-
lens becomes smaller with the number of network nodes increases. It can be
explained as follows, the complex network structure is more useful for mining
the members of the group for the larger dataset (Netflix), but the effect on the
experimental results are not obvious for the small dataset (Movielens).
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Table 1. Performance of GCNCF with different network structures

E-Factors P-Factors 16 32 64 128 16 32 64 128

Movielens Netflix

8 nDCG@5 0.899 0.891 0.897 0.888 0.851 0.861 0.853 0.856

nDCG@10 0.891 0.889 0.883 0.885 0.846 0.843 0.851 0.853

RMSE 0.605 0.586 0.607 0.612 0.638 0.634 0.643 0.638

16 nDCG@5 0.905 0.906 0.904 0.895 0.863 0.865 0.863 0.853

nDCG@10 0.889 0.893 0.893 0.884 0.867 0.862 0.871 0.866

RMSE 0.582 0.577 0.585 0.598 0.623 0.617 0.618 0.619

32 nDCG@5 0.909 0.910 0.911 0.910 0.877 0.878 0.871 0.875

nDCG@10 0.898 0.897 0.901 0.901 0.876 0.875 0.873 0.869

RMSE 0.576 0.569 0.547 0.564 0.591 0.578 0.581 0.591

64 nDCG@5 0.901 0.910 0.905 0.904 0.869 0.871 0.864 0.867

nDCG@10 0.900 0.903 0.903 0.902 0.879 0.873 0.881 0.884

RMSE 0.564 0.536 0.551 0.557 0.579 0.557 0.567 0.563

4.4 Groups of Different Sizes

In theory, the proposed method can train any size of group model, but the size of
the group cannot be set too large due to the reason of dataset. In this experiment,
the group size is divided into 2, 4, 6, 8 and 10, and the experimental results are
shown in Table 2.

Table 2. Performance of GNCF and GCNCF with different groups size

Group size Movielens Netflix

nDCG@10 RMSE nDCG@10 RMSE

GNCF GCNCF GNCF GCNCF GNCF GCNCF GNCF GCNCF

2 0.8243 0.8345 1.0796 0.964 0.8042 0.81 1.1189 1.0028

4 0.8417 0.8509 0.8338 0.7496 0.8171 0.8308 0.872 0.7874

6 0.8539 0.8801 0.754 0.6626 0.825 0.8485 0.7882 0.7008

8 0.8642 0.899 0.6645 0.5996 0.8366 0.8657 0.7019 0.6343

10 0.8719 0.9034 0.6041 0.5363 0.8462 0.8735 0.6355 0.5711

In the training set, it will be terminated when the loss is less 0.005. In the test
set, the experimental results of GCNCF are better than those of CNCF, which
shows that CNN has better nonlinear modeling capability than MLP. Due to
the limitation of data set in this paper, the maximum size of the group is not
more than 10. From the experimental results, we can see that the larger the
size of the group, the better the results of the experiment. The reason is that
the larger group provide more group characteristics, and the trained models
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provide better predictions. In particular, when the group size is set to 1, this
framework is similar to the individual recommendation model proposed by [8].
The convolution pooling process of group feature matrix can be regarded as a
feature learning process of a fully connected layer.

5 Conclusion

In this paper, group recommendation frameworks are proposed, and neural net-
works are applied to the group recommender system. Comparing with the tradi-
tional matrix factorization, the GNCF and GCNCF framework take advantage of
the non-linear modeling ability of neural networks, which fully learn user-item
interaction matrix, improve the accuracy of the recommended results. Mean-
while, the framework has good generality and opens up a new modeling method
for group recommendation.

In the future, there is a lot of content to be explored. On the one hand, as
the dataset used in this paper is small, the size of the group is not too large. In
practical applications, the group membership can be divided into larger groups
of 50, 100 and 200, the simple 4-layer networks structure can not meet the needs
of certain recommender system, exploring for the new network structure becomes
the focus of future work. On the other hand, the convolutional neural network is
used for image processing, the size of training sets can be increased by flipping
and cropping of images [11,20]. In the GCNCF framework, data can be processed
similarly. A group can consist of any number from 1 to N, and the dataset can
be increased by changing the composition and number of members in the group.
In the training process, we can first use all members in the group to pre-train
the model, then use different number of group members to fine tune the model
on this basis.
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Abstract. With the advent of Online Social Networks (OSNs), opin-
ion formation dynamics continuously evolves, mainly because of the
widespread use of OSNs as a platform of social interactions and our
growing exposure to others’ opinions instantly. When presented with
neighbours’ opinions in OSNs, the natural clustering ability of human
agents enables them to perceive the grouping of opinions formed in the
neighbourhood. A group with similar opinions exhibits stronger influence
on an agent than the individual group members. Distance-based opin-
ion formation models only consider the influence of neighbours who are
within a confidence bound threshold in the opinion space. However, a
bigger group formed outside this distance threshold can exhibit stronger
influence than a group within the bound, especially when that group con-
tains influential or popular agents like leaders. To the knowledge of the
authors, the proposed model is the first to consider the impact of cluster-
ing capability of agent and incorporates the influence of opinion clusters
(groups) formed outside the confidence bound. Simulation results show
that our model can capture several characteristics of real-world opinion
dynamics.

Keywords: Opinion · Clustering · Centrality · Consistency

1 Introduction

The dynamics of forming public opinion in a society is still poorly understood due
to the inherent complexity of human behaviour under the presence of various
social influences. Over the last decade, the exposure of individuals to others’
opinions, the characteristics of their interactions and the extent of the social
influences have evolved, mainly because of the wide acceptance and prevalent
use of Online Social Networks (OSNs) as the platform of expressing opinions and
as the medium of social interactions. Opinion formation models need to embrace
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this major shift in public opinion formation process by incorporating the factors
originating from the OSNs that affect the nature and composition of the final
opinion.

The seminal works of DeGroot [3], Clifford and Sudbury [4], Hegselmann and
Krause [5], Deffuant and Weisbuch [6] and Sznajd [2] have established opinion
formation modelling as an active area of research, which continues to attract
researchers across multiple disciplines. The existing opinion formation models
moslty measure the influence between two interacting agents as a function of
their opinion distances [1,5–7,9–11]. In these models, an agent is influenced by
another agent, only if their opinion distance is bounded by a confidence interval.
However, the bounded confidence models and their derivatives fail to consider
the impact of any agents beyond this confidence bound, especially when these
neighbouring agents cluster together to form a strong group, which the agent
cannot ignore while updating her opinion. When presented with neighbours’
opinions in OSNs, the natural clustering ability of human beings enables them
to find if there is any group formed in the neighbourhood. In the presence of
multiple groups, the influence on agent depends on several factors such as, (i) the
distance of the group from the agent’s opinion, (ii) the size of the group and the
number of neighbours in that group, (iii) the closeness/compactness of the group
members’ opinions, and (iv) the presence of influential members in the group.
Please note that bounded confidence models consider all neighbours inside the
confidence bound as the only group that has influence on an agent. However,
a group can be formed outside the confidence bound of an agent, and still can
exhibit stronger influence on the agent than a closer-distant group, specially if
that distant group has influential agents. The existing models lack such consid-
eration, thus creating a research gap that our proposed model addresses in this
paper. To the knowledge of the authors, the proposed model is the first to incor-
porate the clustering capability of agent in opinion dynamics, and incorporates
the influence of opinion clusters (groups) formed outside the agent’s confidence
bound.

In the proposed model, while updating opinion, an agent first determines
the number of groups formed in her neighbours’ opinions (i.e., opinion clusters)
and computes the four influencing factors presented in the previous paragraph.
The perceptual ability of human agents in clustering data can be modelled by
existing clustering algorithms. We utilise the centroid based K-means clustering
algorithm in the proposed model to emulate such ability, as K-means clustering
is successfully used for semi-supervised learning in computer vision where com-
puters automate the task of human visual system. It is also used in numerous
applications requiring data analysis. The compactness of a group is represented
by the consistency of the comprising opinions as proposed in [9]. On the other
hand, the presence of any influential person in a group is determined by the
centrality measure of the corresponding node in the underlying social network
graphs.

The impact of number of groups present in neighbours’ opinions on the steady
state outcome of the dynamics is observed using simulation. Results shows that
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our model can exhibit the polarisation characteristics of bounded confidence
models, even though we do not consider any confidence bound threshold. In
bounded confidence models, the agents’ opinions reach consensus in the steady
state of the dynamics, for any confidence thresholds greater than a particular
value. On the other hand, our model does not yield any such consensus as a
steady state outcome. Please note that having no consensus is a natural phe-
nomenon for opinion dynamics occurred in OSNs with a large number of people,
where the participants hardy agree on any issue.

2 Proposed Opinion Formation Model

Consider that G = (V,E) represents a social network, where V denotes the set of
agents participating in the opinion formation process and E is the set of edges
interconnecting the agents. For an agent i ∈ V , Ni = {j|j ∈ V ∧ (i, j) ∈ E}
designates the set of neighbours the agent is connected with in the underlying
social network. Opinion is formed through an iterative process in discrete time
steps T = {0, 1, 2, . . . , t}. At each time step T = t, an agent i is associated with
an opinion Oi(t) ∈ [0, 1]. Here, the range [0, 1] is referred as the Opinion Space
(OS). At T = t, agent i is also exposed to her neighbours opinions, represented
as ONi

(t) = {Oj(t)|j ∈ Ni}.

2.1 Conceptual Model

Figure 1 illustrates a conceptual diagram of the proposed model. In the figure,
an agent opinion is placed at 0.3 at time t. While updating opinion, the agent
observes five different groups in her neighbours’ opinions placed at different
distances from the agent. The number of neighbours in each group is measured
by the agent along with the closeness of their opinions in the group. Moreover, the
neighbouring agents also have social power, which is determined by the number
of connections they have in their social networks. This factor is not shown in the
diagram.

When neighbours are clustered into opinion groups, the agent is not influ-
enced by any individual neighbour, instead individual groups separately exhibit
their influences on the agent. Under these circumstances, the distance of the
agent with the group, the number of agents in each group, their closeness in the
opinion space and the influential power of the group members contribute to the
overall impact of the group on the opinion forming agent. The agent chooses
one from the groups to interact with and to update her opinion. In the follow-
ing section, the model is described elaborately with the ways of computing the
corresponding model parameters.

2.2 Computing Model Parameters

When an agent i is presented with her neighbours’ opinions, the perceptual abil-
ity of the agent enables her to determine whether there is any formation of opin-
ion clusters in the neighbourhood. Here, a opinion cluster represents a group of
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Fig. 1. Conceptual realisation of the proposed model showing important model
parameters.

neighbours sharing similar thoughts (opinions) on a topic, which is clearly distin-
guishable from any other group of opinions on that topic. Human agent is capable
of manually distinguishing those groups and counting the number of groups that
the neighbours’ opinions are divided into. Consider that neighbours’ opinions
of agent i are divided into ζ number of groups {Ni1(t), Ni2(t), . . . Niζ(t)}. Here,
Nik(t) ⊂ Ni and ∪k=ζ

k=1(Nik(t)) = Ni, denotes the kth group formed in i’s neigh-
bourhood, and ONik

(t) denotes the set of opinions that belong to the neighbour
group Nik(t). It is worth noting that the groups are identified by an agent based
on the closeness of their opinions. A group Nik(t) is recognised by a represen-
tative opinion ONik

(t), which can be the average of the constituting opinions of
that group,i.e., the average of opinions in the set ONik

(t).
The influence of an opinion group Nik(t) on an agent i depends on (i) the

opinion distance between the agent and the group dik(t) and (ii) the inner-group
distance Sik, where Sik represents the distance between the agents in that group
Nik(t). The closer the neighbour group is from the agent (smaller dik(t)), the
higher the impact of the group on the agent’s opinion update. Similarly, the
closeness of the group members in the opinion space increases its impact an
any opinion forming agent. Equations (1) and (2) formally define dik(t) and Sik

respectively.
dik =‖ (Oi(t) − ONik

(t)) ‖, (1)

Sik =

∑
j∈Nik(t)

(Oj(t) − ONik
(t))2

|Nik(t)| , (2)

where, ONik
(t) =

∑
j∈Nik(t) Oj(t)

|Nik(t)| represents the centroid of the corresponding
cluster and |Nik(t)| is the number of agents belonged to kth cluster in agent i’s
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neighbourhood. Here, the number of group members also strengthen or weaken
the overall impact of the group on the agent.

However, the extent of influence also depends on several other factors. One of
them is the distribution of the group’s opinions in the opinion space. A densely
packed group of opinions certainly exhibits more influence than a loosely coupled
group. The closeness of a group of opinions can be measured by it’s consistency as
proposed in [9]. It utilises Shannon’s entropy from information theory to measure
the consistency of a set of values. The reason behind this is that entropy of a
set with similar values is smaller that of a diverged valued set, thus having
a reciprocal relationship with the notion of consistency. Thus, the consistency
ξONik

(t) of a group Nik(t) of opinions in the neighbourhood of agent i can be
measured by the following equation.

ξONik
(t) =

emax − eONik
(t)

emax
(3)

Here, eONik
(t) is the Shannon’s entropy which is defined as per Eq. (4), where p

represents the probability.

eONik
(t) = entropy(ONik

(t)) = −
∑

O(t)∈ONik
(t)

p(O(t)) × log(p(O(t)) (4)

While computing probability p(O(t) of an opinion, we consider that the opinion
space comprises of 10 equal length bins as motivated by the work presented in
[9].

In Eq. (3), emax is the maximum possible entropy value. Equation (3) ensures
the reciprocal relationship between consistency and entropy, and the values to
be normalised between [0, 1]. It is worth to mention here that, although Sik and
ξONik

(t) measure similar property of a set of data (here quality of an opinion
group in terms of their closeness), the first one depends on the centroid of the
group and can be highly impacted by outliers, whereas the latter one measures
the quality of the distribution and suffers less from outliers’ impact.

Finally, an opinion group has greater impact on an agent if the group mem-
bers are influential persons in the society. An influential person in OSNs is usu-
ally followed by a large number of people, and her opinion is also shared and
disseminated by those followers. Degree centrality of a node in the underlying
social network graph captures the importance of a person in her opinion group.
Degree centrality (Ci) of agent i is defined as the number of neighbouring agents
i is connected with, i.e., Ci = |Ni|. The overall centrality (CNik(t)) of a group
Nik(t) is defined as per Eq. (5).

CNik(t) =
1

(
∑

j∈Nik(t) |Cj∗−Cj |
(|Nik(t)−1|)×(|Nik(t)|−2) )

× (

∑
j∈Nik(t)

Cj

|Nik(t)| ) (5)

where, j∗ ∈ Nik(t) is the node with highest centrality in the group Nik(t). Here,
the first term in Eq. (5), as defined in [12], captures the difference between the
centrality scores of all nodes with the highest central nodes. A group with similar
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centrality measures yield a higher value for the first term. On the other hand, the
second term represents the average centrality scores of the set. The combination
of these two factors ensures that both high and similar centrality scores of a
group exhibits larger influence on an agent.

2.3 Opinion Update Process

While updating opinion at time step T = t, an agent measures the overall influ-
ence of each group in her neighbours’ opinions using the parameters discussed in
the above section, and find the group with higher overall influence than others.
The influence of a group is measured using the following equation.

INik(t) =
ξONik

(t) × CNik(t)

dik × Sik
(6)

The rationale for defining the influence using Eq. (6) is already explained in
Sect. 2.2. In a nutshell, the smaller distance between an agent and a group of
opinions, the larger is the influence on that agent. On the other hand, the other
three factors has positive impact on the agent. The more the number of neigh-
bours in a group, the higher the influence. Similarly, higher opinion consistency
of the group reflects a close-knit group, which has stronger influence on the
agent. Finally, the centrality measures the presence of influential members in a
group, with higher values reflecting more influence on the agent.

Thus, the group with the highest influence, i.e., N∗
ik(t) is determined using

Eq. (7).

N∗
ik(t) = argmax

k
(INik(t)) = argmax

k

ξONik
(t) × CNik(t)

dik × Sik
(7)

After selecting the group to interact with, agent i updates her opinion using
the weighted average of her own opinion and the representative opinion of the
selected group, as defined in Eq. (8).

Oi(t + 1) =
1
2

× Oi(t) +
1
2

× ON∗
ik

(t) (8)

The reason for using the weighted averaging in Eq. (8) is that it is the most
predominant opinion update rule adopted in the literature for opinion formation
models with a continuous opinion space [0, 1]. Here, the agent considers equal
weights while combining her opinion with those of the neighbouring groups.

3 Simulation Results and Analysis

To emulate the social network graph, we adopted the scale-free graph with power-
law degree-distribution for the social network connectivity. This is because social
network resembles well with the scale-free graph. Our simulated social networks
consisted of 1000 nodes to represent the opinion forming agents. The agents’
initial opinions were sampled in the range [0, 1] following an uniform random
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distribution. The most important parameter of the proposed model is the selec-
tion of clustering algorithm for determining the number of groups in an agent’s
neighbourhood. We adopted the K-means clustering algorithm to estimate the
groups’ location. The number of clusters ζ (groups in the context of our proposed
model) is a configurable parameter for the K-means algorithm. Consequently, we
simulated our model by varying the values of ζ. It is worth to mention here that
ζ refers to the number of opinion groups that an agent is able to predict when
she is presented with the neighbours’ opinions. We varied ζ in the range of [2, 10],
where ζ = 2 represents that an agent coarsely determines the group numbers,
whereas ζ = 10 denotes a fine-grained agent in determining the same. While
measuring consistency of an opinion group using Eq. (3), we considered 10 equal
length bins in the Opinion Space, as motivated by the opinion scale of 0 to 10 in
a survey. Finally, degree centrality measured from the graph connectivity of the
generated nodes in the simulation is considered to estimate the social influence
of the participating agents, as per Eq. (5).

3.1 Varying the Number of Clusters ζ

The results obtained by varying the number of predictable clusters ζ are pre-
sented in Fig. 2. Figure 2(a) illustrate the results obtained for the value of ζ = 2,
whereas Figs. 2(b)–(c) depict the results for ζ = 5. Finally, ζ = 10 is chosen for
Fig. 2(d).

The first rows of the figures show how the dynamics of opinion changes for
the participating agents. Here, the X-axis stands for the time steps, while the
Y-axis represents the opinion space [0, 1]. Initially, the opinions are distributed
uniformly, which is also depicted in the second rows of the figures as a histogram
of the distribution (labelled as “Initial Opinion”). The bar heights represent
the fraction of agents that have opinions in the corresponding opinion bins.
As discussed above, we use 10 equal length bins for generating the histogram
distribution. As time progress, agents update their opinions by compromising
with the opinion groups chosen based on their influence level as computed using
Eq. (8), which is shown in the third row of the figures. As a result of this
interactions, the groups become stronger by the joining of more agents in that
groups.

At the steady state, the final opinions are merged together to form two strong
polarisation groups for ζ = 2 (Fig. 2(a)). When ζ = 5, the number of polarisation
groups, their strength (number of agents belonged to each polarisation group)
and their position in the opinion space might vary. The final distribution of
agents’ opinions into multiple polarisation is illustrated with histogram distri-
bution as labelled by “Final Opinion” (Fig. 2(b)–(c)). With ζ = 10, the opinion
formation process goes through an unstable dynamics, where agents are moving
from one group to another (illustrated as jumps in the opinion space by the
same agent), and ultimately results in the formation of a strong polarisation
group along with some weak ones.

The outcome of the dynamics as presented in Fig. 2 resembles the outcome
of a true opinion dynamics happened in OSNs and in societies in general. In
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Fig. 2. Steady state outcome of the dynamics. (a) ζ = 2, (b)–(c) ζ = 5 and (d) ζ = 10.
In the figures, the first rows depict the traces of opinion changes for all participating
agents, the second rows show the initial opinion distribution using histogram, whereas
the third rows present the final opinion distribution

the presence of two strong schools of thought for any topics in the OSNs plat-
form, people rarely converge to a global consensus value, as both opinions are
supported by a large number of people. The debate may keep going for a long
time. Even in the topic of discussion on the benefit and harm of the “Vaccina-
tion” debate, a large number of people in the OSNs argue against the necessity
of child vaccination. In a democratic country with two major political parties,
they have large number of supporters always opposing each other on most issue.
With more than two political parties, or multiple competing opinions on a topic,
each of them is also supported a portion of the society, as reflected by the
results obtained for ζ = 5, 10. Interestingly, some opinion groups might attract
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supporters in the early stages, however disappear in the long-run if it dissemi-
nate propaganda or untrue opinions. This is illustrated in Fig. 2 (c) (the opinion
group formed in the middle).

3.2 Impact of Variable Clusters ζi

The results presented in this section were obtained for an agent population that
have personalised clustering perception, i.e., the number of clusters present in
the neighbouring opinion space perceived by each agent varies. For this, the
number of predictable clusters ζ by agent i, here referred as ζi, are assigned
randomly from a range [ζmin, ζmax]. It is different from the results presented in
the prevision section, as for the earlier case, ζi = ζ,∀i. For results presented in
Fig. 3(a)–(c), the cluster range is [2, 5], whereas for Fig. 3(d), the range is [2, 10].
The interpretation of this range is that, for range [2, 5], an agent i can have a
clustering ability between 2 to 5. Clustering ability of a particular agent remains
the same throughout the simulation.

From the results, it is evident that the number of polarisation groups found
in the final opinion distribution of the dynamics is less than ζmax. For ζmax = 5
in Fig. 3(a)–(c), two very strong polarisations are formed as compared to results
presented in Fig. 2(b)–(c) where more than two polarisation groups are formed,
although their positions in the opinion space and the number of their constituting
agents have been changed. Polarisation groups can be formed very quickly, with
the agents merging to a consensus value for that polarization (both polarisation
in Fig. 3(a), lower polarisation in Fig. 3(b) and upper polarisation in Fig. 3(c)).
On the other hand, polarisation can be formed slowly, where the agents gradually
merge towards a value (upper polarisation in Fig. 3(b) and lower polarisation in
Fig. 3(c)). Sometimes a polarisation can start forming, but does not survive in
the long-run. We have found another type of polarisation group that are small in
size, but never be merged with a strong nearby group. The results for ζmax = 10
follow similar trend. The only difference is that the number of final polarisation
groups are five instead of two found with ζmax = 5. The interesting finding for
ζmax = 10 is that the dynamics are more unstable, as seen by agents moving
between groups during the later stage of the dynamics.

The results are consistent with the outcome of real-world opinion formation
dynamics. Although there might be multiple schools of thought at the start of
any opinion formation dynamics, not all of them survive at the end. People start
interacting and merging together to form strong group of opinions. Some opinions
do not sustain in the long-run, if they cannot be substantiated by proper causes
or evidences. On the other hand, a small group of opinions can survive if they
are supported by an agent group who are reluctant to change their opinions at
any cause.

3.3 Impact of Centrality

In this subsection, we present the impact of centrality on the proposed opinion
formation dynamics. The number of predictable clusters ζ are kept same for all
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Fig. 3. Steady state outcome of the dynamics. (a)–(c) [ζmin, ζmax] = [2, 5], (d)
[ζmin, ζmax] = [2, 10]. In the figures, the first rows depict the traces of opinion changes
for all participating agents, the second rows show the initial opinion distribution using
histogram, whereas the third rows present the final opinion distribution

agents. To show the impact of centrality, the agents at one end of the opinion
space (either 0 or 1 side) are assigned with higher centrality values, whereas
the agents residing at the other end have lower centrality scores. Therefore, an
opinion cluster formed with higher centrality agents has greater impact on an
agent. The Figs. 4(a)–(b) present the simulation results with ζ = 2, whereas
Figs. 4(c)–(d) illustrate those for ζ = 5. The left-side column of the figures
depicts the results where the higher centrality nodes are placed at the ‘0’ end
of the opinion space, while for the right-side column central agents are assigned
with opinions from the ‘1’ end of the opinion space.

From the figures it is evident that the final opinions are divided into two
polarisation groups. The size of the group formed near the high-centrality-agents
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end of the opinion space is larger than that formed at the other end. When, ζ = 2,
the dynamics becomes stable very quickly and two polarisation groups are well
formed. On the contrary, for ζ = 5, agents from weak polarisation group never
stop moving towards the stronger group. Movements in the other direction also
happen and the two polarisation groups never merge to a single opinion value.
This is a consistent observation with the real world opinion dynamics. An opinion
supported by people with higher degree centrality always gains popularity and
adopted by a large number of followers. However, agents with less number of
followers also survive with their opinions.

Fig. 4. Steady state outcome of the dynamics. (a)–(b) ζ = 2 and (c)–(d) ζ = 5. For
(a) and (c) higher centrality nodes were placed at ‘0’ side, whereas for (b) and (d) they
are placed at ‘1’ side of opinion space.
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4 Conclusions

In this paper, we introduce an opinion formation model by considering the nat-
ural tendency of an agent to be influenced by the clusters formed in her neigh-
bours’ opinions. We emulate such natural tendency of a human being by adopting
the well known K-means algorithm to determine the groups of opinions in an
agent’s neighbourhood. Instead of considering only the opinions within a pre-
determined distance threshold, an agent takes into account the influence of all
opinion groups and chooses the most influencing one to interact with. Simu-
lation results show that the clustering capability of agents has a considerable
influence on the final opinion distribution. The number of polarisations depends
on an agent’s ability to perceive the number of opinion groups in her neighbour-
hood, the closeness of the group’s opinions and the social power of the consti-
tuting agents. The persistent support of people on different schools of thought,
the emergence and dissolution of opinions and the tendency of people to move
between different opinions are some interesting natural phenomena captured by
the proposed model.
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Abstract. Sky computing is a new computing paradigm leveraging
resources of multiple Cloud providers to create a large scale distributed
infrastructure. N2Sky is a research initiative promising a framework for
the utilization of Neural Networks as services across many Clouds. This
involves a number of challenges ranging from the provision, discovery
and utilization of services to the management, monitoring, metering and
accounting of the infrastructure.

Cloud Container technology offers fast deployment, good portability,
and high resource efficiency to run large-scale and distributed systems. In
recent years, container-based virtualization for applications has gained
immense popularity.

This paper presents the new N2SkyC system, a framework for the
utilization of Neural Networks as services, aiming for higher flexibil-
ity, portability, dynamic orchestration, and performance by fostering
microservices and Cloud container technology.

Keywords: Problem solving environment · Neural networks
Cloud computing · Containers · Microservices

1 Introduction

The Cloud computing paradigm provides access to a set of computational power
by aggregating heterogeneous resources and software and offering them as a sin-
gle system composition. It hides the details of implementation and management
of software and hardware from the end user. Cloud computing has been evolved
from technologies like Cluster computing and Grid computing and has given rise
to Sky computing [8].

Sky computing combines multiple Cloud-based infrastructures in such a way
that the Sky providers aggregate the services scattered across several Clouds thus
becoming the consumers of the Cloud providers. Sky computing in this way copes
with the problem of vendor lock-in and extends the flexibility, transparency, and
elasticity of the integrated infrastructure as compared to that of a single Cloud.
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Sky computing has taken another step forward towards the realization of vir-
tual collaborations, where resources are logical, and solutions are virtual. The
exchange of information and resources among researchers is one driving stimulus
for development. That is just as valid for the neural information processing com-
munity as for any other research community. As described by the UK e-Science
initiative [2] several goals can be reached by the usage of new stimulating tech-
niques, such as enabling more efficient and seamless collaboration of dispersed
communities, both scientific and commercial.

In the course of our research we designed and developed N2SkyC, a micro-
service oriented Cloud container enabled neural network simulation environment,
which is based on N2Sky [14], a virtual organization for the computational intel-
ligence community. It provides access to neural network resources and enables
infrastructures fostering multi Cloud resources. On the one hand, neural network
resources can be generic neural network objects trained by a specific learning
paradigm and training data for given problems whereas on the other hand these
objects can also represent already trained neural networks, which can be used
for given application problems. The vision of N2SkyC is the provisioning of a
neural network problem solving virtual organization where any member of the
community can access or contribute neural network objects all over the Internet.

In this paper, we present the new N2SkyC. The original system was devel-
oped as a monolithic application. That proved feasible for image-based virtual-
ization mechanisms as in classical Cloud infrastructures. However, by the actual
advent of containers and microservice architecture aiming for higher flexibil-
ity, portability, dynamic orchestration, and performance there was a need for a
redesign of N2SKy to foster this new technology. By interpreting N2SkyC as a
highly-distributed, service-based organizational body, a break-up of the mono-
lithic system into various, self-contained N2SkyC microservices was done.

The layout of this paper is as follows: The state of the art of neural network
simulators and the baseline research is given in Sect. 2. The architecture of
N2SkyC is presented in Sect. 3 followed by a description of the use cases of the
new N2SkyC platform in Sect. 4.2. The paper is closed by a summary and a
short lookout for current and future research issues.

2 Related Work and Baseline Research

A virtual organization (VO) [4] is a temporary or permanent alliances for cooper-
ation of human beings, organizations or enterprises that come together to share a
wide variety of geographically distributed computational resources (such as work-
stations, clusters and supercomputers), storage systems, databases, libraries and
particular purpose scientific instruments to present them as a unified integrated
resource transparently [12].

Large number of neural network simulation environments have been devel-
oped during last years [11]. It started with systems for specific network fam-
ilies, as Aspirin/MIGRAINES [10], SOM-PAK [9]. Some systems aimed for a
more comprehensive environment, as SNNS [17]. Resource management became
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a problem as well and numerous frameworks were developed to tackle this prob-
lem, such as JointDNN [3], SafetyNets [5], MCDNN [16]. With the advance
of virtual resources by Grid and Cloud computing new collaborative environ-
ments motivated the authors of this paper to aim for an “everything about
sharing” approach leading the way towards virtual collaborative organizations,
as N2Grid [15] and N2Cloud [7]. In the course of our research, we designed
and developed N2Sky [14], a virtual organization for the computational intelli-
gence (CI) community, providing access to neural network resources and enabling
infrastructures to foster federated Cloud resources. N2Sky is an artificial neural
network provisioning environment facilitating the users to create, train, evaluate
neural networks fostering different types of resources from Clouds of different
affinity, e.g., computational power, disk space, networks, etc. N2Sky aroused
strong interest even beyond the CI community1.

To describe and identify neural network objects in N2Sky we developed
ViNNSL (Vienna Neural Network Specification Language) [1]. ViNNSL allows
for easy sharing of resources between the paradigm provider and the customers.
ViNNSL is an XML-based domain specific language providing mechanisms to
specify neural network objects in a standardized way by attributing them with
semantic information. Initially, it was developed as a communication framework
to support service-oriented architecture based neural network environments.
Thus, ViNNSL is capable of describing the static structure, the training and
execution phase of neural network objects in a distributed infrastructure, as
Grids and Clouds.

3 N2Sky Architecture

Technically speaking, N2Sky is an artificial neural network simulator, which pur-
pose is to provide different stakeholders with access to robust and efficient com-
puting resource [14]. It was designed to provide natural support for Cloud deploy-
ment with distributed computational resources. However, the current N2Sky
implementation is based on the Java programming language and deployed as a
single monolithic application, which is not well aligned with the chosen paradigm.
Main bottlenecks of such architecture are the inability to split the infrastruc-
ture workload according to the available computational resources within the
“shared-nothing” infrastructure which leads to the inefficient usability of the
system. That led us to a redesign of the N2Sky platform using microservices
approach and the new technology stack for the Cloud infrastructure, which will
allow us to utilize the benefits of Cloud computing to its full extent. This app-
roach was not only used on the backend services but also on the frontend and its
services. Microservices application architecture is a considerably new approach
in software architecture, and like any new idea, it is evaluated in the variety of
projects. The conclusions from practice are:

1 http://cacm.acm.org/news/171642-neural-nets-now-available-in-the-Cloud/.

http://cacm.acm.org/news/171642-neural-nets-now-available-in-the-Cloud/.
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– It is simpler to develop and maintain small applications. However the com-
plexity of such an approach does not disappear, it just transfers on the more
abstract level: to the relationships between components.

– Microservices are easier to split between developers or other parties - as each
part is not strongly bound to others, it is possible to work on the same project
without a huge amount of collisions.

– Technological stack flexibility - each component can be implemented in a
language that suits better the concrete task.

– Horizontal scalability - as services are small, it is cheaper and faster to deploy
them horizontally. With a Cloud infrastructure, this feature becomes very
important.

On the other hand, there are some drawbacks, which have to be considered:

– The complexity of the distributed system is higher than with a monolithic
approach.

– Maintenance costs are also higher, due to the constant redeployment, moni-
toring, and logging.

There is no definitive answer about the feasibility of microservices architec-
ture; it depends on the domain. But in the case of a Virtual Organization for
computational science, where resources and scientists work together in parallel
there is a necessity to have control over the executing environment. Thus, new
components integration and deployment costs are lower, and researchers can
allocate computational resources according to their demands without additional
difficulties.

From the general point of view, the environment system components are
divided into three main layers:

– Frontend UI,
– Orchestration tool layer, and
– Cloud platform layer.

In such architecture all communication with the Cloud infrastructure level
is handled through the orchestration tool layer: spawning and stopping con-
tainers and virtual machines, uploading new containers, and updating them.
That approach allows to focus on the deployment and maintenance process. In
cases, when there is a need to edit and access internal components of the Cloud
infrastructure directly, it can be done by the Cloud API. The Cloud platform
provides infrastructure and environment for container deployment only, and it is
not related to the current software application design. It provides great support
for microservices paradigm implementation but implies no boundaries on the
software developers.

The original N2Sky Java implementation is well designed: Java is a powerful
programming language, which allows splitting the functionality between classes
and maps them to the corresponding services of the platform. Source code and
interaction between components are part of the same monolithic application.
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Even that the application is well designed it creates the additional level of bind-
ings between components of the software.

To redesigning the original architecture according to the microservices
paradigm, it was necessary to perform additional steps:

– Decomposition of the business logic into microservices,
– Design storage according to data, stored by services,
– Neural network data archive: database with data, which is used to train and

test neural networks, and
– Define endpoints and API for each service.

As a result, apart from technological and infrastructure improvements, the
following changes to the main components of the system were performed:

– Neural network training and Neural network evaluation components are now
separate microservices, which are run on demand. Resource allocation in such
case can be performed on the orchestration layer, according to the computa-
tional cost of the task,

– Neural network data archive is a separate service on top of the database. It is
not associated with a single database, as was in the previous implementation.
It provides a specific API to add any external data sources,

– N2Sky Database has its own database storage,
– Business model module is split into two different parts: one part is respon-

sible for the internal business logic of the application, and the second part
is responsible for infrastructure management and handled by the orchestra-
tion component. Internal business logic functionality is also encapsulated into
microservices.

The current working version of the new architecture with the described
changes is presented in Fig. 1.

By implementing architectural changes to both infrastructure and software
levels of the N2Sky platform, we achieve higher scalability and make the platform
more suitable for usage in a Cloud environment. The shift to new technologies,
as container base execution environment and orchestration tools for load and
deployment management, increase efficiency and convenience of N2Sky neural
network platform rigorously.

4 User-Centered Interface Based on Modular Frontend

The basis of N2SkyC is the user-centered design. Moving from the complex mono-
lithic design to a more comprehensible one we fostered past user experiences.
Thus, a fundamental requirement was to gain the functionality and increase the
performance of the application.
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Fig. 1. New N2Sky architecture

4.1 User Role as an Independent User Interface

The N2SkyC web interface, as well as the mobile portal, provide an intuitive user
interface. Since N2SkyC supports different knowledge level users it was decided
to differentiate between various user roles. So, every user role has its own user
interface, which deeply reflects the specific user needs:

– Arbitrary User. The Arbitrary User must not have deep knowledge of the
neural network field or programming language skills. Her main goal is to find
a suitable neural network for a given problem. Thus she uses already existing,
trained neural networks and evaluates them.

– Neural Network Engineer. The Neural Network Engineer is allowed to create
new neural network resources based on existing paradigms. She has access
to her own dashboard and publicly available resources on the main applica-
tion module. She can perform a semantic search for available neural network
paradigms and use them. This user can create own neural network instances
from existing neural network paradigms and can also train the running neural
network instances and evaluate the trained models. She can share her trained
neural networks by making them public.

– Contributor. The Contributor is an expert user, which has enough knowledge
and experience to develop his own new neural network paradigm by using
the ViNNSL template schema [1] and publish them on N2SkyC. This user
can deploy neural networks on the N2SkyC environment as well as on her
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own environment by providing training and testing endpoints. The goal of
the contributor is to study how networks will behave with different network
structures, input parameters and training data that can also be provided by
other users.

– System Administrator. The System Administrator is a user who has full
access to the application including environment management, monitoring and
alerting features. The administrator can manage OpenStack and Cloudify
instances. She also can shadow any N2SkyC user to observe the application
from different perspectives. The administrator has access to all dashboards
in every module.

4.2 Modular Frontend Application Design

Since N2SkyC supports microservices approach in the backend it was a design
decision to apply the same approach on the frontend too.

Microservices in the frontend are small independent web applications, which
are consolidated into one application. The main benefits of this approach are:

– Maintainability. It is possible to divide the application between different
teams. Developers do not even need to have some knowledge about other
parts of the application.

– Diversity of technologies. Monolithic approach makes the whole application
stick to one framework. Microservices allow using any technology without the
need to rewriting the application.

– Independent deployment. Every application has some releases periods, every
release is accompanied by redeployment procedure. There is no need to rede-
ploy the whole application, but just only the required components.

The microservices approach in frontend application is shown in “Fig. 2”. It
breaks the whole application into the following small micro applications:

– Shell. Is a top-level component, which wraps Components picker and Con-
tainer for the component. It contains application specific configuration.

– Component picker. Is a router, which manages the micro applications.
– Container for Component. Container, where the component will be injected.
– Micro Application. Independent application, which can be written in any

programming language, but has to use one of the shards.
– Shards. Is a code base, which is shared between Micro Applications. Shards

can have multiple levels.

5 A Sample Workflow

To support Software as a Service (SaaS) distribution every web service can work
independently. The different user roles can use N2SkyC both via the web portal
and the N2SkyC API directly. The N2SkyC API allows to:

– Authorise users in the System.
– Create new neural network objects from existing paradigm.
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– Deploy own neural network objects on N2SkyC environment.
– Perform training against own as well published neural network objects.
– Perform testing and evaluating trained models.

Fig. 2. Microservices approach in frontend application

Sample workflow overviews for different user roles show the microservices
architecture in action, see Fig. 1:

1. Contributor
(a) The Contributor authorizes via the N2SkyC portal using a browser on

desktop PC or mobile device. She is redirected to her own dashboard
according to permissions, which will be received from User Management
Web Service.

(b) The user described her own neural network paradigm using the ViNNSL
template and deploying it in the N2SkyC Cloud as it shown in Fig. 3.

(c) The Contributor performs training of her neural networks. Since she is an
expert she can perform this operation using Simulation Service via Model
Repository Web Service API.

(d) The user publishes her paradigm via N2SkyC UI or available API.
(e) The Contributor awaits that other N2SkyC users will use her neural net-

work paradigm in order to monitor the behavior of the neural network.
(f) The user modifies, redeploys and retrains her neural network after first

results.
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Fig. 3. The user uploads the neural network paradigm description in ViNNSL format

2. Neural Network Engineer
(a) The Neural Network Engineer authorizes via the N2SkyC portal using a

browser on a desktop PC or mobile device. She is redirected to her own
dashboard according to permissions, which will be received from User
Management Web Service.

(b) From the dashboard, the user creates a neural network from existing
paradigms using Model Repository Web Service. The user specifies the
neural network structure as shown in Fig. 4.

(c) The user performs training against her newly created neural network using
the N2SkyC platform as shown in Fig. 5.

(d) If the user is satisfied with a trained model, she can perform data analysis
using N2SkyC.

(e) The neural network engineer user publish her neural network and trained
model in order to make it available to other N2SkyC users.

3. Arbitrary User
(a) The Arbitrary User authorizes via the N2SkyC portal using a browser on

desktop PC or mobile device. She will be redirected to her own dashboard
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according to permissions, which will be received from User Management
Web Service.

(b) She performs a semantic search in order to find possible neural network
as well as trained models according to her needs, see Fig. 6.

(c) The user copies existing neural networks and trained models into her
project.

(d) The user performs training of copied neural networks with default input
parameters data.

(e) The user evaluates trained neural network models with default parame-
ters.

4. System Administrator
(a) The System Administrator authorizes via the N2SkyC portal using her

browser on a desktop PC or mobile device. She will be redirected to the
administration dashboard.

(b) The user observes the Cloud environment.
(c) She creates new monitoring charts showing specific metrics and adds it

to the administration dashboard.
(d) She creates alerts for newly created monitoring
(e) The user is notified by the Alert Management System, if some events

occur.

Fig. 4. The user specifes the neural network structure
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Fig. 5. The user performs neural network training

Fig. 6. The user performs semantic search in Neural Network Repository

6 Conclusion and Future Work

We presented the novel microservice based N2SkyC architecture, which aims
for increased extensibility, portability, dynamic orchestration and performance
fostering Cloud container technology.

Tied to the presented new architectural design is also a shift of the appli-
cation domain of N2SkyC from neural networks to arbitrary machine learning
operators. Hereby a new specification of ViNNSL is under development, which
aims for compatibility with PMML (Predictive Model Markup Language) [6].
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A further new development of N2SkyC is N2Query [13], which allows the seman-
tic discovery of N2SkyC services through a natural language querying mechanism
using ontology alignment mechanisms.

The novel N2SkyC system and its documentation can be accessed and down-
loaded from http://www.wst.univie.ac.at/projects/n2skyc.
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Abstract. Dialogue response generation is a fundamental technique
in natural language processing, which can be used in human-computer
interaction. As the quick development in neural networks, the sequence
to sequence (seq2seq) model which employed recurrent neural networks
(RNN) encoder-decoder has archived great success in machine transla-
tion. Many researchers began to apply this model in dialogue response
generation. However, the conventional seq2seq model counters several
problems, e.g., grammatical mistake, safe response and etc. In this
paper, motivated by the great success of generative adversarial net-
works (GANs) in generating images, we propose an improved seq2seq
framework by employing GANs to rewrite questions in order to retrieve
more information from the question. Afterwards we combine the origi-
nal question and the rewritten question together to generate responses.
The experiments on the public Yahoo! Answers dataset demonstrated
the proposed framework’s potential in dialogue response generation.

Keywords: Dialogue generation · Generative adversarial networks
Question rewriting

1 Introduction

Dialogue response generation can be used in many fields of human-computer
interaction, e.g. order a task or offer tutoring. The goal of dialogue response
generation is to generate reasonable responses to a question. Earlier widely used
dialogue models are normally based on a large corpus of templates and a large
database called knowledge base. However, these models might not generate suit-
able responses if questions are not included in the templates. Also, they can
not generate reasonable responses for open-ended questions [2]. Another kind of
models called retrieve based models was proposed to learn responses from his-
torical data [23]. These models’ common method is to calculate the similarity of
question and responses. However, these models are also not capable of generating
responses when questions are not shown in historical data.
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Nowadays, with the development of idea of deep learning, many methods
based on artificial neural networks (ANNs) have been proposed, among which
sequence to sequence (seq2seq) model [22] with attention mechanism [1,13]
has achieved great improvement in neural machine translation (NMT). Seq2seq
model generally contains an encoder and a decoder based on recurrent neu-
ral networks (RNN) to build a general end-to-end language model with fewer
restrictions. As such researchers begin to use these models in dialogue response
generation. However, it is widely found that these dialogue models tend to gen-
erate simple and safe responses, which means these responses may be weakly
correlated to the question.

There are several possible reasons for these phenomena and one of them is
that the information in the question may be not sufficient [25]. Many questions
contain the same structure such as “What is ...”, “How can ...” etc, which makes
language model not able to obtain enough information to generate responses.
Furthermore, though RNN is a powerful structure to model sentence, it is more
suitable for predicting because of its recurrent compute mode [15]. However, the
meaning of sentences can be changed by a single word, which is hard for RNN
to capture the critical information in the question.

To relieve this problem, many methods have been proposed. For example,
Li et al. [11] tried to avoid generating simple and safe responses by penalizing
these responses’ generation probabilities. Xing et al. [25] tried to bring more
information by using topics which related to the question. In this work, we also
want to bring more information when generating responses. Specifically, we pro-
posed question rewriting method to retrieve more information from questions
by using generative adversarial networks (GANs) [4] to rewrite questions, which
is an unsupervised learning framework. It contains a generator and a discrim-
inator. The generator is responsible to generate rewritten questions with the
input of original question. A discriminator is responsible to distinguish whether
the rewritten question is semantically close to the original question. There are
no target sequences and the direction of training generator is led by the dis-
criminator, which give feedback to the generator by distinguishing the original
questions (real sample) and rewritten questions (fake sample). Afterwards we
combine the original question and rewritten question as the response generating
input to generate responses.

Convolution neural network (CNN) is able to capture local features of data
[14]. This structure can enhance the local features by pooling operation. Moti-
vated by the different advantages and limitations in RNN and CNN, we further
propose to improve seq2seq framework in GAN’s generator by using both the
RNN and CNN in the encoding phase. In our encoder, RNN is responsible to
generate the initial state of the decoder and the encoded context by timesteps.
CNN is responsible to generate a global encoded context. We expect that encoder
can capture more comprehensive information from the input questions so that
the rewritten question can contain more useful information. Our experimental
study demonstrates that the rewriting method incorporated with the improved
seq2seq model has the potential to generate more reasonable responses.
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The rest of this paper is organized as follows. Section 2 introduces related
work about dialogue generation. Section 3 describes the details of our pro-
posed framework, including the network structure of rewriting framework and
the improved seq2seq framework. The experimental study is presented in
Sects. 4 and 5 concludes this paper and indicates some possible future research
directions.

2 Background

When we treat dialogue response generation as a seq2seq task, it is similar to
a machine translation task where we give the model a sentence and the model
generate a translated sentence. But dialogue response generation is a more diffi-
cult task because the mapping relationship is more complicated [19]. In general,
seq2seq model has several challenges in terms of safe response and weakly related
responses [26]. There are many ideas proposed to solve these problems which can
be roughly divided into two category. The first one is to optimize the seq2seq
structure. For example, Li et al. [11] proposed a model to maximize the mutual
information between the response and the question which use a term in lost func-
tion to penalize the safe responses but this model is difficult to train because
penalization term is difficult to tract. Similarly Shao et al. [21] employed the
attention mechanism in the decoder to generate longer sentences.

Another direction is to bring more information into the response generation
process. Seq2BF model [16] used two seq2seq models in forward decoding and
backward decoding. The model will choose a keyword when generating response
as such the safe response problem will be relieved. A similar work by Xing
et al. [25] used the twitter-LDA model to find topic words and then use a joint
attention to generate response with topic words. Also, alternative information
like emotions [8] can be used in generating responses.

Question rewrite is a popular field in web search which can bring more infor-
mation by rewriting the query. In web search, people can use question rewriting
to improve search ranking performance and an example of such methods is statis-
tical machine translation (SMT) [18]. There are some other rewrite models rely-
ing on deep learning methods, such as encoder-decoder architecture [5]. These
methods can generate a list of questions which will be selected by the learning-
to-rank algorithm. However, these methods are mainly based on the frequency
of word terms, therefore semantic information should also be considered.

Deep generative models have the ability to learning from large unlabeled
data. The semantic information can be caught when using these model to gener-
ate sentences [12]. But many popular generative models such as deep belief nets
(DBN) [6], variational autoencoder (VAE) [10] are suffered from the intractable
probabilistic computations. Goodfellow et al. proposed GAN to overcome this
challenge [4], which plays a minmax game between a generator and a discrimi-
nator and this framework has archived great success in computer vision field
[3]. However GAN is hard to apply in generating text because of the non-
differentiability of natural language words. There are two kinds of methods
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proposed to solve this problem, one method is to change the non-differentiable
function to an approximate differentiable function [28], another is to adopt rein-
forcement learning method [27]. In this paper, we adopt policy gradient given
by discriminator to guide to training process of the generator.

3 Methodology

3.1 Question Rewriting Framework

The proposed question rewrite based dialogue response generation framework is
depicted in Fig. 1, where the left part in dotted rectangle is the detail architecture
of the generator.
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Fig. 1. Improved response generating framework

Generator. Generator is used in this paper to improve seq2seq model, whose
task is to estimate the probability of Y by given X:

p(Y |X) =
n∏

t=1

p(yt|x1, x2, ..., xn, y1, y2, ..., yt−1)

=
n∏

t=1

exp(f(ht − 1, cyt))∑
y exp(f(ht−1, cy))

.

(1)

In the forward pass, Generator G encodes the input question Qo(x1, x2, ..., xm)
into m hidden states, where m indicates the length of input question. We
improved the basic seq2seq model by employing RNN and CNN to joint encode
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input question which will be used both in question rewriting and response gen-
erating. Its architecture is shown in the right side of Fig. 1. The RNN encoder
of the generator adopted bidirectional RNNs [20] which include a forward RNN
and a backward RNN. The forward RNN reads input question from begin to end
(X1,X2, ...,Xm), then outputs hidden states (

−→
h1,

−→
h2, ...,

−→
hm). The backward RNN

reads input question in reverse order (Xm,Xm−1, ...,X1) and outputs hidden
states (

←−
h1,

←−
h2, ...,

←−
hm). Finally, we concatenate the forward hidden states and the

backwards hidden states as our final hidden states of encoder, i.e., ht = [
−→
ht ,

←−
ht ].

The hidden states of encoder is wrapped by attention mechanism to get con-
text vector ct. In order to relieve the gradient vanishing/exploding problem, we
change the RNN units to Long Short-Term Memory (LSTM) [7] units.

CNN is known for its ability to capture local feature and has been widely
used in image processing. Also, it is widely used in text classification [9], NMT
[14]. Here we also adopt CNN as part of the encoder. For instance, suppose the
input X’s length is L, after word embedding operation, the input sequence is
S ∈ R

L×D, where D is the dimension of word vectors. We adopt S as the input
of CNN encoder:

S = [s1 ⊕ s2 ⊕ ... ⊕ sL], (2)

where si is word vector. The filter size is l×D. l represents that choosing l words
to do convolution operation:

ci = σ(wxi:i+l−1 + b), (3)

where w,b are weight parameters, ci is feature vector get from convolution opera-
tion. Suppose stride length is 1, we can get feature map C = [c1, c2, ..., cL−l+1] ∈
R

L−k+1×D. We can get the different number of feature map by adjusting the
number of filters. Also, we adopt max-pooling operation between the two con-
volution operation. Different from RNN encoder, CNN encoder outputs a global
context vector c ∈ R1×N where N is the feature dimension. This context vector
will participate in every timestep in decode phase. The input of the decoder’s
LSTM units will be:

xt = [yt−1, ct, cg], (4)

where ct is RNN encoder’s context vector in timestep t wrapped by attention
mechanism, similar to the encoder in question rewriting framework’s generator.
cg is the global context vector produced by CNN encoder.

When generating text at decoder stage, we use LSTM as the basic units.
The decoder is responsible to estimate the joint probability over each predicted
output token:

G(y|x) =
m∏

t=1

p(yt|y<t, x). (5)

For instance, at every timestep, the decoder will output the probability distri-
bution of the vocabulary. Then we use argmax function to get the most likely
words:
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hdec
t = LSTMdec(yt−1, h

dec
t−1, ct),

p(yt|y<t, x) = softmax(Wst + b),
yt = argmax(p(yt|y<t, x)),

(6)

where hdec
t are hidden states of decoder cells.

Discriminator. In this research we employed CNN as discriminator. The dis-
criminator’s task is to distinguish whether an input question is original question
or generated question. We can consider it as a classification task. The structure
is shown in Fig. 2.

Flatten
REAL

FAKE

Word 
embedding 

size

Sequence 
length

Fig. 2. Discriminator structure

3.2 Policy Gradients Training

After softmax operation, yt is not differentiable, we can leverage the policy gra-
dients to update the parameters of generator θg. Policy gradients are widely used
in reinforcement learning training [24]. Here we consider generator as a policy
network and the loss (reward) function can be defined as:

∑

y∈Pθg

Q(y)G(y|x), (7)

where Q(y) is action-value function which is the rewards of rewritten question
generated by G. We define it as:

Q(y) = log(1 − D(y)). (8)

In GANs, generator needs to fool discriminator D, in other words, maximize
D(y). So we can change it to minimize L. The gradients of L is calculated as
follows:
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�θg
L =

∑

y∈Pθg

[�θg
Q(y)G(y|x) + Q(y)�θg

G(y|x)]

=
∑

y∈Pθg

Q(y)�θg
log(G(y|x))

= Ey∼Pθg
log(1 − D(y))�θg

log(G(y|x)).

(9)

Then we can update the θg by:

θg = θg − α · �θg
L. (10)

4 Experimental Study

4.1 Experiment Configuration

We conduct our experiment on a subset of Yahoo! Answers corpus1. This dataset
includes 4,483,032 questions and their candidate answers. Because of the limita-
tion of computing resources, we randomly choose one category as our experiment
dataset which contains 9,984 questions and answers. We use the best answer of
each question as our expected answer. When processing this dataset, we use fol-
lowing rules: 1. The maximum length of questions and answers are limited to 50
and 20, which cover 85.35% questions and 73.95% answers. 2. Remove all spe-
cial characters such as “!#$%&()*+,-./:;<=>?@ˆ\ ‘{—}˜”. 3. All alphabetical
characters in the dataset have been converted to lowercase. We randomly shuffle
the whole dataset and divided the dataset into training set, dev set and test set
by 8:1:1.

The word embeddings used in this experiment is randomly initialized with
truncated normal distribution. The dimension is 512. All LSTM cells used in
the experiment with size 512. As for CNN encoder, we have 12 kinds of filters
and the maximum filter numbers for a layer is 200. Furthermore, we employed
Adam optimization in gradient descent, which is provided with the advantages
of RMSProp and momentum. The learning rate is set to 0.0005.

We conduct the experiment with several baselines for comparison against our
framework and also test whether their performance will be improved by rewriting
input questions2.

4.2 Evaluation Metric

The evaluation of response generation is an open problem so we follow the exist-
ing work and adopt the following metrics:

1 https://webscope.sandbox.yahoo.com/catalog.php?datatype=l&guccounter=1.
2 The source code is available at https://github.com/HenryL-study/GAN-for-

Question-Rewrite.

https://webscope.sandbox.yahoo.com/catalog.php?datatype=l&guccounter=1
https://github.com/HenryL-study/GAN-for-Question-Rewrite
https://github.com/HenryL-study/GAN-for-Question-Rewrite
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BLEU. BLEU [17] is widely used in NMT and this score evaluates the similarity
between the generate sentence and target sentence. In our experiment, we cal-
culate BLEU-1, BLEU-2, BLEU-3, BLEU-4 for each model. It can be calculated
by:

BLEU = BP · exp(
N∑

n=1

wnlogpn),

BP =
{

1 if lc > ls
exp(1 − ls

lc
)) if lc ≤ ls

.

(11)

Distinct-1 & Distinct-2. These metrics calculate the total distinct unigrams
and bigrams in the generated response. Following the previous work [11], we
divided the numbers by the total unigrams and bigrams. This score can evaluate
how diverse the generate response are. The higher number indicates that the
generated responses may have more information.

Perplexity. Perplexity is normally used to measure how well the model predicts
a response. It is defined as Eq. 12. The lower the perplexity score are, the better
generating performance the model will has.

PPL = exp(− 1
N

N∑

i=1

log(p(Yi))). (12)

Human Evaluation. Besides these automatic metrics mentioned above, we
also employed human to judge the quality of generating responses. We ran-
domly shuffled all generated responses by experiment models and send them to
human labelers. The score range is from 1 to 5. 1 indicates that the generated
response is totally irrelevant to the question or have severe grammar mistake. 5
indicates that the generated response is not only relevant to the question, but
also informative.

4.3 Results and Discussion

Tables 1 and 2 shows the comparison results of the proposed framework against
different baselines on the dataset.

Table 1 shows all BLEU scores from different models. It is clear that rewrit-
ten questions will improve the performance of all models. Also our proposed
framework obtains the highest score in this evaluation metric. Table 2 shows
other evaluation metrics result. Our framework with question rewrite gets the
highest human evaluation score. Also, our framework without question rewrit-
ing archives best scores in distinct-1 & distinct-2. If we adopt question rewriting
methods, it will decrease the perplexity score and increase the human evaluation
score.
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Table 1. BLEU score

Model BLEU1 BLEU2 BLEU3 BLEU4

RNN encoder 2.45 0.87 0.33 0.16

RNN encoder + question rewrite 4.09 1.43 0.73 0.46

CNN encoder 3.16 0.92 0.36 0.17

CNN encoder + question rewrite 3.73 1.21 0.66 0.48

RNN+CNN encoder 4.17 1.51 0.51 0.19

RNN+CNN encoder + question rewrite 4.93 1.93 0.98 0.61

Table 2. Results on other metrics

Model distinct-1 distinct-2 Perplexity Human

RNN encoder 1.51% 2.27% 346.78 1.42

RNN encoder + question rewrite 1.17% 1.97% 325.37 1.68

CNN encoder 1.42% 2.45% 355.06 1.41

CNN encoder + question rewrite 1.32% 2.29% 356.12 1.57

RNN+CNN encoder 3.46% 7.42% 372.28 1.64

RNN+CNN encoder + question rewrite 2.00% 4.07% 351.72 1.70

When we look at the generated responses, it is found that when we use
the rewritten questions and the original questions to generate responses, the
responses will be longer than responses generated by only using with origi-
nal questions. Also, responses generated with original questions and rewritten
questions have more nouns rather than “OK”, “It is a question”, which may
cause higher BLEU scores and human evaluation scores. As responses are longer,
the distinct-1 & distinct-2 scores will be lower, a possible reason is that when
responses are longer, the frequency of common words will be higher.

But longer responses will be more natural and have less grammar mistakes,
that is also part of reason why human evaluation score is higher.

We also visualize the attention mechanism to understand the how the rewrit-
ten question will help the generating process. As we can see in Fig. 3, the words
in rewritten question like “implement” and “attachment” got more attention in
generating response.
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Fig. 3. Attention mechanism visualization

5 Conclusion and Future Work

In this research we propose a framework which use GAN to rewrite questions
and use the joint encoder to encode questions which can get a better perfor-
mance in response generating compared with the existed baselines. To relieve
the non-differentiable problem in GAN’s training process, we adopt policy gra-
dient method. We also find the rewritten questions can improve the performance
of baseline models which indicates rewritten questions can bring more informa-
tion when generating responses. In response generating, except RNN encoder, we
use CNN encoder to get a global context in order to fetch more local information.

Concerning the future work, we prepare to use other methods to build the
rewriting framework. For example, we could apply the Bi-LSTM and CNN into
the generator of the GAN. Furthermore, we will project to design more powerful
and flexible generator model in our generating framework. We can modify the
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attention mechanism in response generating phase. It is also interest to consider
using CNN in decoder part.
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Abstract. This paper presents an execution stack for neural network
simulation using Cloud container orchestration and microservices. User
(or other systems) can employ it by simple RESTful service calls. This
service oriented approach allows easy and user-friendly importing, train-
ing and evaluating of arbitrary neural network models. This work is influ-
enced by N2Sky, a framework for the exchange of neural network specific
knowledge and is based on ViNNSL, the Vienna Neural Network Specifi-
cation Language, a domain specific neural network modelling language.
The presented execution stack runs on many common cloud platforms.
It is scalable and each component is extensible and interchangeable.

Keywords: Neural network simulation · Neural network modelling
Cloud computing · Container technology · Microservices
Service orientation

1 Introduction

Getting started with machine learning and in particular with neural networks
is not a trivial task. It is a complex field with a high entry barrier and most
often requires programming skills and expertise in neural network frameworks.
In most cases a complex setup is needed to train and evaluate networks, which is
both a processor- and memory-intense job. With Cloud computing getting more
and more affordable and powerful, it makes sense to shift these tasks into the
Cloud. There are existing platforms for neural network simulation (see [11] for
a survey), however, lacking at least one of the following criteria:

– Simple, user friendly but effective interface (e.g. by RESTful calls)
– Neural network are described by a domain specific modelling language,
– No programming skills required to define and train neural network models,
– Platform is open-source,
– Can be deployed on-site and/or in the Cloud (of your choice), and
– Components are extensible and replaceable by developers.

Thus we developed a neural network execution stack, that achieves all of
that.
c© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11306, pp. 181–192, 2018.
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The proposed system architecture fosters the Kubernetes1 container orches-
tration and a Java based microservice architecture, which is exposed to users
and other systems via RESTful web services and/or a web frontend. The whole
workflow including importing, training and evaluating a neural network model
is purely service oriented. The presented stack runs on popular Cloud platforms,
like Google Cloud Platform2, Amazon AWS 3 and Microsoft Azure4. Furthermore
it is scalable and each component is extensible and interchangeable. This work
is influenced by N2Sky [14], a framework to exchange neural network specific
knowledge and aims to support ViNNSL, the Vienna Neural Network Specifica-
tion Language [4,13]. ViNNSL is a domain specific modelling language that does
not require programming skills to define, train and evaluate neural networks.

The presented project combines these techniques and demonstrates a proto-
type that is open-source and supported by common Cloud providers. Developers
can integrate their own solutions into the platform or exchange components ad
libitum.

The layout of this paper is as follows: The state of the art of neural network
simulators and the baseline research is given in Sect. 2. In the following Sect. 3
we present the requirements and specification of our approach. The technology
stack the developed system is based on is specified in Sect. 4. A use case demon-
strating and evaluating our prototype is shown in Sect. 5. The paper is closed
by a summary and a short look on future research.

2 Related Work and Baseline Research

Over the last decades, a very large number of artificial neural network simulation
environments have been developed, which aim to mimic the behaviour biological
neural networks [11]. It started with systems which were developed for specific
network families, as Aspirin/MIGRAINES [10], SOM-PAK [9]. Some systems
aimed for a more comprehensive environment, as SNNS [16]. With the advance
of virtual resources by Grid and Cloud computing new collaborative environ-
ments motivated the authors of this paper to aim for an “everything about
sharing” approach leading the way towards virtual collaborative organisations,
as N2Grid [15] and N2Cloud [7]. In the course of our research, we designed
and developed N2Sky [14], a virtual organisation for the computational intelli-
gence (CI) community, providing access to neural network resources and enabling
infrastructures to foster federated Cloud resources. N2Sky is an artificial neural
network provisioning environment facilitating the users to create, train, evalu-
ate neural networks fostering different types of resources from Clouds of different
affinity, e.g., computational power, disk space, networks, etc [12]. N2Sky aroused
strong interest even beyond the CI community5.

1 https://kubernetes.io.
2 https://cloud.google.com/kubernetes-engine.
3 https://aws.amazon.com/eks.
4 https://azure.microsoft.com/services/container-service.
5 http://cacm.acm.org/news/171642-neural-nets-now-available-in-the-Cloud/.

https://kubernetes.io
https://cloud.google.com/kubernetes-engine
https://aws.amazon.com/eks
https://azure.microsoft.com/services/container-service
http://cacm.acm.org/news/171642-neural-nets-now-available-in-the-Cloud/
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To describe and identify neural network objects in N2Sky we developed
ViNNSL (Vienna Neural Network Specification Language) [4,13]. ViNNSL allows
for easy sharing of resources between the paradigm provider and the customers.
ViNNSL is an XML-based domain specific language providing mechanisms to
specify neural network objects in a standardized way by attributing them with
semantic information. Initially, it was developed as communication framework to
support service-oriented architecture based neural network environments. Thus,
ViNNSL is capable of describing the static structure, the training and execution
phase of neural network objects in a service-oriented infrastructure, as Grids and
Clouds.

3 Requirements and Specification

As starting point for a novel system adhering to our envisioned goals we defined
functional and non-functional requirements for the system to be developed.

3.1 Functional Requirements

Due to the fact that neural network training requires a lot of computing power,
the main requirement is to design an architecture that can be executed in the
Cloud or on-site cluster hardware.

To enable developers to extend the application, it is designed as a platform
that is open-sourced and documented. An easy setup on a local computer and
small micro-services with a clear structure and manageable code base make it
easier to get acquainted with the architecture.

The neural network platform should also offer a way to be extended or used
by external applications and services. Therefore, a well documented RESTful
webservice is provided, that can be consumed by various clients.

3.2 Non-Functional Requirements

The execution stack shall comply with the following quality features:

– Standard RESTful API
– The user interface works on all common browsers and devices (responsive

design)
– Loading time of the user interface should be less than three seconds

3.3 User Groups

The neural network execution stack focuses on two main user groups: data sci-
entists and developers:

– Data scientists use the provided services in a deployed environment (Cloud
or own computer) to develop and train their neural networks. The system
should be easy to setup and no programming knowledge should be needed to
get started.

– Developers can extend the neural network stack with features or use the
provided web services to implement their own custom solution.
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3.4 User Interface

The system has to provide two different user interfaces:

– a brittle but powerful RESTful API interface based on a pure and simple
command line, which aims for high flexibility and reusability in a service
oriented environment, and

– a web-based graphical user interface (GUI). The GUI is a web application
that gives a quick overview of all neural networks and their training status.
The frontend uses the RESTful API as backend source. However, it does not
cover the whole function range of the API.

RESTful API. The functionality of the whole neural network simulation frame-
work is defined by eight use cases realized by respective HTTP service calls.

1. Import Neural Network: An existing ViNNSL XML file with a neural net-
work description is imported via the ViNNSL web service into the database.
Actor: Data Scientist
Call: The actor sends a POST request to the ViNNSL web service including
a XML body.

2. Train Neural Network: An imported neural network is trained by passing
the configuration over to the worker service.
Actor: Data Scientist
Call: The actor sends a POST request to the working service including the
identifier of the neural network that should be trained.

3. Monitor Training Status: The Data Scientist monitors the training status
to evaluate the trained network afterwards.
Actor: Data Scientist
Call: The actor sends a GET request to the status endpoint of the ViNNSL
service including the identifier of the neural network that is in progress.

4. Evaluate Neural Network: The Data Scientist evaluates the accuracy of
the network after its training.
Actor: Data Scientist
Call: The actor sends a GET request to the status endpoint of the ViNNSL
service including the identifier of the neural network that is finished.

5. Upload Files: The Data Scientist uploads files, that are usable as datasets
(e.g. CSV files or pictures) to the storage service.
Actor: Data Scientist
Call: The actor sends a POST request to the storage service endpoint con-
taining a multipart file.

6. List Neural Networks: Imported neural networks are listed.
Actor: Data Scientist
Call: The actor sends a GET request to the ViNNSL web service optionally
including a neural network identifier.

7. Extend Service: An existing micro service can be extended by developers.
Actor: Developer
Call: The developer downloads the source code and extends functionality of
a micro service.
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8. Replace Service: An existing micro service can be replaced by developers.
Actor: Developer
Call: The developer writes a new implementation of an existing service
respecting the API definition.

Graphical User Interface. Figure 1 shows the user interface design for the
frontend web service. This GUI just uses the API calls presented above.

Fig. 1. User interface design for ViNNSL-NN-GUI

3.5 Neural Network Life Cycle

New neural networks are created by sending a POST request including a XML
ViNNSL network description in the request body. The vinnsl service creates a
new neural network based on the definition and answers with the HTTP status
code 201 (CREATED). The location header points to the URL where the created
network can be retrieved. The URL contains the unique identifier. Using this
identifier the next step is to add the ViNNSL definition XML file to the network.
This is done via a POST request appending the id and the /definition endpoint.
The XML file is placed in the request body. Resources that are required for the
training (like the training set) need to be uploaded to the storage service, which
returns a unique file id. Before the training can start, the training set needs to
be linked to the neural network. This is possible with the /addfile endpoint.

Next the network is marked for training by calling the worker service with
its identifier. The worker service confirms that the training is queued. As soon
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as the training is finished, the worker service updates the neural network object
with the result schema and uploads the trained binary model to the storage
service for retraining.

A simple GET request to the ViNNSL service along with the identifier returns
the current trained neural network model.

4 Technology Stack

To fulfil the requirements presented above for the envisioned system we chose a
number of proven and widely accepted paradigms and tools. Guiding principles
was acceptance and support by the software developer community and open-
source availability:

RESTful services. Representational State Transfer (REST) is an architec-
tural style for the development of webservices. A REST client is an appli-
cation program interface that uses RESTful API HTTP requests to GET,
PUT, POST and DELETE data.

Microservices. The micoservice architecture pattern is a variant of a service-
oriented architecture (SOA). Monolithic applications bundle user interface,
data access layer and business logic together in a single unit. In the microser-
vice architecture each task has its own service. The user interface puts infor-
mation together from multiple services. This leads in our approach to separa-
tion of the specific services in own components, as database, storage, worker,
GUI services etc.

Docker Containers. Containers enable software developers to deploy appli-
cations that are portable and consistent across different environments and
providers by running isolated on top of the operating system’s kernel. As an
organisation, Docker6 has seen an increase of popularity very quickly, mainly
because of its advantages, which are speed, portability, scalability, rapid deliv-
ery, and density [3] compared to other solutions. Building a Docker container
is fast, because images do not include a guest operating system. The container
format itself is standardized, which means that developers only have to ensure
that their application runs inside the container, which is then bundled into
a single unit. The unit can be deployed on any Linux system as well as on
various Cloud environments and therefore easily be scaled. Not using a full
operating system makes containers use less resources than virtual machines,
which ensures higher workloads with greater density [8]. Docker containers
build the execution framework for all our ViNNSL services.

Kubernetes Container Orchestration Technologies. As every single
microservice runs as a container, we need a tool to manage, organise and
replace these containers. Services should also be able to speak to each other
and restarted if they fail. Services under heavy load should be scaled for better
performance. To deal with these challenges container orchestration technolo-
gies come into place. According to a study from 2017 published by Portworx,

6 https://docker.com.

https://docker.com
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Kubernetes [2] is the most frequently used container orchestration tool in
organizations. Kubernetes realizes the orchestration of all Docker services.

Neural Network Execution. We chose Deeplearning4J, which is a Neural
Network Execution Frameworks providing a deep learning programming
library written for Java and the Java virtual machine (JVM) and a comput-
ing framework with wide support for deep learning algorithms. However, any
other simulation framework can be easily integrated. Deeplearning4J imple-
ments the neural network worker service.

Putting all these components together leads to the following architecture of
our envisioned system (see Fig. 2):

Fig. 2. Architecture of neural network execution stack
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5 Use Cases

For demonstration of the simplicity of the usage of the presented neural network
execution stack we present a practical use case where we create a neural network,
train and evaluate it. This whole process consists of three RESTful POST calls
only: one for the creation, one for the training specification, and one for the
execution of the neural network. This is described in detail in the following.

5.1 The Iris Flower Data Set

Ronald A. Fisher published 1936 [6] a dataset that is known as the Iris flower
data set. The data set [6] features 50 examples of three Iris species: Iris setosa,
Iris virginica and Iris versicolor. A table lists four measured features from each
sample: the length and the width of the sepals and petals. The dataset used for
training is available from the UCI Machine Learning Repository [5] as a CSV
(comma separated value) file7. The first example has a sepal length/width of 5.1
cm/3.5 cm, a petal length/width of 1.4 cm/0.2 cm and is an Iris setosa.

The first lines of the dataset explain the structure of the dataset. The columns
are formatted for better readability. The species column is an enumerated value
(0 = Iris setosa, 1 = Iris virginica, and 2 = Iris versicolor).

Sepal length, Sepal width, Petal length, Peta width, Iris species
5.1 , 3.5 , 1.4 , 0.2 , 0
4.9 , 3.0 , 1.4 , 0.2 , 0
...

5.2 Creation of the Neural Network

This step is done by a simple HTTP POST call

POST https://cluster.local/vinnsl

The body of the call contains the description of the 4-3-3-3 multi-layer back-
propagation network in the domain specific ViNNSL modelling language:

<vinnsl>

<description>

<identifier><!-- will be generated --></identifier>

<metadata>

<paradigm>classification</paradigm>

<name>Backpropagation Classification</name>

<description>Iris Classification Example</description>

</metadata>

<creator> Nussbaum </creator>

<problemDomain>

<propagationType type="feedforward">

7 https://archive.ics.uci.edu/ml/datasets/iris.

https://archive.ics.uci.edu/ml/datasets/iris
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<learningType>supervised</learningType>

</propagationType>

<applicationField>Classification</applicationField>

<networkType>Backpropagation</networkType>

<problemType>Classifiers</problemType>

</problemDomain>

<endpoints>

<train>true</train>

<retrain>true</retrain>

<evaluate>true</evaluate>

</endpoints>

<structure>

<input>

<ID>Input1</ID>

<size>4</size>

</input>

<hidden>

<ID>Hidden1</ID>

<size>3</size>

</hidden>

<hidden>

<ID>Hidden2</ID>

<size>3</size>

</hidden>

<output>

<ID>Output1</ID>

<size>3</size>

</output>

<connections>

<fullconnected>

<fromblock>Input1</fromblock>

<toblock>Hidden1</toblock>

<fromblock>Hidden1</fromblock>

<toblock>Output1</toblock>

</fullconnected>

</connections>

</structure>

</description>

</vinnsl>

As successful response we get a 201 CREATED message. Aside from the HTTP
Status Code, we also get HTTP headers in the response. The one needed for
further requests is named location. The value of this field is the URL of the
network that was created and can be used to get and update fields on the dataset.

5.3 Training of the Neural Network

For the training we have to specify additional parameters: The activation func-
tion is set to hyperbolic tangent, the learning rate is 0.1 and the training is
limited to 500 iterations. A seed, set to 6, allows reproducible training score.
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Also this step is done by a simple HTTP POST call. The {id} of the new
network is returned by the creation step of the neural network.

POST https://cluster.local/vinnsl/{id}/definition

The body contains the additional parameter information:

<definition>

<identifier><!-- will be generated --></identifier>

...

<resultSchema>

<instance>true</instance>

<training>true</training>

</resultSchema>

<parameters>

<valueparameter name="learningrate">0.1</valueparameter>

<comboparameter name="activationfunction">tanh</comboparameter>

<valueparameter name="iterations">500</valueparameter>

<valueparameter name="seed">6</valueparameter>

</parameters>

<data>

<description>iris file, 3 classes, 4 inputs</description>

<dataSchemaID>name/iris.txt</dataSchemaID>

</data>

</definition>

The created neural network is queued for training by

POST https://cluster.local/worker/queue/{id}

which is acknowledge after success by 200 OK.

5.4 Execute Training and Evaluate Result

During the training it is possible to open the graphical user interface called DL4J
Training UI in a browser, that is provided with the Deeplearning4J package, to
see the learning progress of the neural network.

https://cluster.local/train/overview

Figure 3 shows the network training of the Iris Classification. The overview
tab provides general information about network and training.

Testing takes place automatically after training and evaluates the accuracy
of the trained neural network. In this case 65% of the dataset is used for training
and 35% for testing.
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Fig. 3. DL4J Training UI shows training progress of Iris Classification network

Examples labeled as 0 classified by model as 0: 19 times

Examples labeled as 1 classified by model as 1: 17 times

Examples labeled as 1 classified by model as 2: 2 times

Examples labeled as 2 classified by model as 2: 15 times

==========================Scores===========================

# of classes: 3

Accuracy: 0.9623

Precision: 0.9608

Recall: 0.9649

F1 Score: 0.9606

Precision, recall & F1: macro-averaged (equally weighted

avg. of 3 classes)

===========================================================

By examining the result file it can be noticed that the accuracy of the net-
work was 96 percent. All Iris setosa and Iris versicolor from the testset were
recognized correctly, two Iris virginica were incorrectly recognized as Iris versi-
color.

6 Conclusion and Future Work

In this paper we presented an effective and efficient way for the neural network
simulation using simple RESTful webservices fostering Cloud container orches-
tration and microservices. A respective prototype system was demonstrated and
evaluated on the Iris flower data set.

In the near future we will integrate our approach with other systems on the
market. A first step is the use of Tensorflow [1] as alternative neural network
execution engine. A second step will be the embedding of our presented system
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into the N2Sky simulation framework [14]. The system and its documentation
can be accessed and downloaded from http://www.wst.univie.ac.at/projects/
n2container.
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Abstract. The extension of the actual university library information systems
(ULISs), in order to offer intelligent support for the registered students, was
identified - both by users and specialists - as a necessity. During the docu-
mentation process, performed by the students in the library, the need to for-
mulate various issues for which they wish to find rapid answers frequently
emerges. The students’ requests could be very diverse, ranging from simple
questions to complex issues. Our paper introduces a type of complex, intelligent
university library information system that we refer to as NextGenULIS.
A NextGenULIS is able to intelligently support students in finding answers to
the issues formulated within a network of students, teachers and other possible
intelligent agents. Several novel related paradigms, such as hybridization of a
library information system, specialization in providing support, and complexity
hiding, are also proposed. NextGenULIS is briefly compared with a recently
introduced ULIS called IntelligUnivLibSys.

Keywords: Intelligent library information system
Computational intelligence in a library information system � Intelligent agent
Cooperative hybrid search

1 Introduction

The present paper approaches the computational system’s intelligence in terms of
advanced problem solving abilities (especially efficiency and flexibility) of difficult
problems. The intelligent behavior is implemented at the system’s creation, but many
intelligent agent-based systems (IABSs) are designed to be able to improve it by
autonomous learning during their life cycle. IABSs include intelligent agents (IAs) and
intelligent cooperative multiagent systems (ICMASs). The learning process enhances
the possibilities of a system, leading to new features [1, 2]: improved problem solving
ability, self-adaptation, evolution, which can be achieved during several generations.

In [3] the authors outline the importance of computing technology for library and
information science research. An integrated Library Information System, hereinafter
referred as LIS (also known as Library Management System) [4, 5], is a planning
system used to track the resources owned, orders made, and students who access the
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resources. These may be books, scientific articles, book chapters, reference work
entries, book series, journals etc. In what follows, a LIS used by a university library is
called University Library Information System (ULIS).

Recent LISs offer numerous functionalities for librarians and for the registered
students. In [6] the concept of universal library is introduced. In [7] an intelligent
library and tutoring system is presented. In [8] an intelligent library management
system based on an RFID technology is proposed. IntelligUnivLibSys, a complex ULIS
based on a hybrid cooperative learning, is proposed in [4]. A study on the imple-
mentation of smart library systems using IoT is presented in [9], while [10] displays an
interesting study related to the students’ perception on the e-library.

From a librarian’s points of view, a good ULIS should provide all the necessary
functionalities. Studying a large number of ULISs, we concluded that, in fact, the
assistance offered to the students is very poor. Therefore, we identified the enhance-
ment of the ULISs with intelligent features as a necessity. We define the intelligence of
such a system as the capacity to intelligently support the students along their docu-
mentation and learning processes that take place in the library.

Our approach on the intelligence of an ULIS considers its ability to solve problems
intelligently. Computational intelligence (CI) covers the domains of evolutionary
computation [11], neural networks [11], and fuzzy systems [12]. An ULIS could use
one or more algorithms based on computational intelligence for different problem-
solving, but this does not necessarily makes it an intelligent system. We further provide
an illustrative example in this regard. Meanwhile, an intelligent ULIS could use
computational algorithms for solving specific problems.

We propose a new type of intelligent ULIS that we called NextGenULIS. Next-
GenULIS is able to intelligently support students in finding answers to the issues
formulated when they carry on documentation, during the learning sessions in the
library. Students’ queries are supposed to have different degrees of difficulty. Searching
for a book that describes a specific topic, when the student cannot identify the book, is
an example of a simple issue. The case of a student who reads an algorithm but he is
not able to test it on some sample data, therefore he needs supplementary texts to
accomplish this task, is a kind of difficult task for an ULIS. We will discuss our
proposal and compare it with the IntelligUnivLibSys ULIS [4].

The upcoming part of the paper is structured as follows: state-of-the-art results
related to IABSs and CI algorithms used by LISs are presented in Sect. 2. Section 3
introduces our ULIS proposal: Sect. 3.1 describes the NextGenULIS architecture, in
Sect. 3.2 the cooperative search process is presented, while Sect. 3.3 introduces a novel
paradigm called partial merging of LIS. In Sect. 4 the proposal is discussed. Section 5
presents the conclusions of the research.

2 Applicability of Intelligent Agent-Based Systems

In [13, 14] a comprehensive review of the literature related to the utilization of IABSs
agents in modern libraries environment is performed. According to [13, 14] the IABSs
have applications in two main areas: digital library and services in traditional libraries.
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The performed research shows that the agents have a great potential in many areas
related to the library context.

Many of the Artificial Intelligence (AI) researches are focused on topics of CI and
IABSs. Among others, AI has many applications in education and library information
science, like: estimating individualized treatment effects in students’ studies [15] and
intelligent tutoring systems [16]. Many difficult real-life problems solving requires CI.
On another side, numerous situations require the use of IABSs [1, 2, 17]. As an
illustrative scenario, the case of an early carrier physician, who may need a decision
support system when he/she should take difficult decisions, can be mentioned.

An intelligent system [1, 2] can offer advantages in solving problems, versus a
system that does not possess intelligence. Researches in IABSs are focused on
developing embodied computing systems, which can be considered intelligent based on
the nature of the problems that they can solve.

Very often, an agent should be able to communicate and cooperate with other
artificial agents and/or humans [1, 2]. These characteristics are demanded in order to
provide the agents with other capacities such as autonomous learning [1, 2]. Usually,
autonomous learning allows the agents to adapt, for an efficient approach of the
problems to be solved. The capacities to self-adapt and to self-evolve are frequently
associated with the intelligent behavior, as well. Frequently, the self-adaptation of an
agent is a consequence of autonomous learning.

In a cooperative multiagent system (CMAS), the intelligence can be considered at
the multiagent system’s level [1, 2]. Many researches prove that if the agents cooperate
efficiently, they could solve difficult problems more properly, in an intelligent manner.
The intelligence of an efficiently cooperating multiagent system could be superior to
that of its member agents. It is the case of many cognitive multiagent systems. Some of
them are composed of relatively simple agents, whose collective intelligence manifests
at the multiagent system’s level.

3 NextGenULIS - Intelligent Library Information System

3.1 NextGenULIS Architecture

This paragraph introduces the architecture of the LIS that we propose. NextGenULIS
consists of a set denoted IntCom = Stud[Edu[AS. Stud = {Stud1, Stud2, …, Studn}
is the set of the students who access the LIS services. Edu = {Edu1, Edu2, …, Edum} is
the set of the educators; by “educators” we understand those persons who are in
position to offer consultancy to the students, during the time they spend in the library.
Educators could be teachers with different specializations at the university or other
persons (such as librarians), able to offer help in finding answers to the issues for-
mulated by the students. AS = Ass[Asu represent the set of all the intelligent assistant
agents of NextGenULIS. Each assistant agent holds information about the owner, which
could be student or educator: Ass = {Ass1, Ass2, …, Assn} is the set of students’
intelligent assistant agents. Each student enrolled in the library owns an assistant agent:
own(Stud1) = Ass1, own(Stud2) = Ass2, …, own(Studn) = Assn. Asu = {Asu1, Asu2, …,
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Asum} is the set of educators’ intelligent assistant agents. Each member of Edu owns an
assistant agent: own(Edu1) = Asu1,…, own(Edum) = Asum.

As well, NextGenULIS includes a set of knowledge-based agents able to perform
intelligent retrieval for students’ queries: Ia = {Ia1, Ia2, …, Iap}. These agents use
computational intelligence algorithms. Moreover, each assistant agent also holds
information about the other agents from AS[ Ia. With the components and notations
described above, the architecture of NextGenULIS is presented in Fig. 1.

Each agent has two characteristics that we denote as capability and capacity. The
capacity is determined by the computing resources that it can access. The capability is
defined by the specializations of the agent: a set of problems/tasks that the agent can
solve. Semantic analysis of a text (available in digital format) in the library is an
example of specialization.

In the framework of NextGenULIS, we also assume that each educator owns several
specializations based on which he can assist students. Students are also allowed to have
various specializations, thus being able to help other colleagues.

Therefore, the system possesses two types of specializations: human (with the
subtypes: educator and student) and artificial (with the subtypes: assistant agent spe-
cialization and intelligent agent specialization).

Let IssType = {IssType1, IssType2, …, IssTypeq} represent the types of issues that
could be solved in the frame of IntCom. An agent is capable of returning an answer if it
has the adequate capability (problem-solving knowledge and the necessary
data/information), as well as the proper capacity. The agents in AS have specializations
that allow them to assist the owners (students and educators).

The agents in Ia have different sets of specializations. The concept of specialization
of an intelligent agent has been extensively studied. Expert systems for assistance [14]
are only an example, which has specializations detained in a knowledge base. How-
ever, specialization was rarely integrated into LISs, even if it has a great potential for
university libraries. The field that benefited most of specialized intelligent agents is
medicine, with several well-known medical expert systems.

Fig. 1. The architecture of NextGenULIS
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3.2 NextGenULIS. Cooperative Search Process and Examples

The Cooperative Hybrid Search (CHS) algorithm presented below describes the
cooperative search process that returns the answer to an issue denoted Prd, formulated
by a student Studj, 1 � j � n. Details and comments are given in what follows. The
CHS algorithm uses the following notations: Prd is the formulation of the
issue/question addressed by student Studj; Std denotes the initial problem representation
returned by Assj in a universal format, intelligible for humans and agents; and denotes
an announcement, sold denotes the solution of Std; filtered(AS[ Ia) is the selected set of
agents to whom the announcement is transmitted (the selection is done based on the
available information); “!” denotes a communication process; “)” denotes an
analysis followed by a processing. The search for finding the answer to an issue is
sometimes a recursive process to which more entities (students, educators, and/or
artificial agents) contribute consecutively. A complex issue can be passed from agent to
agent until the answer to that issue is found or a failure in answering is reported (when
the issue cannot be solved).

The series of transformations below illustrates a generic search process for finding
the answer to a complex issue Prq (in a successful case):

Prq ) Sta ) Sta Sq
� � ) Stb Swð Þ ) : : : ) Sty Srð Þ ) Stg ð1Þ

With Sq, Sw, …, Sr we have denoted the specializations accessed during the search
process. Processing Sta uses Sq and leads to Stb (a new issue to be solved), processing
Stb uses Sw and provides Stc and so on, finally leading to Stg. Stg is the statement that
contains the solution of issue Prq.

Let Ty1, Ty2, …, Tyn be the types of the parameters that describe the problem
solving statements. All these types are known to all the agents; therefore they can
interpret the parameters. Let N1, N2, …, Nn be the specifications of the sub-
questions/sub-issues generated from the initially formulated issue; id1, id2, …, idn the
identifiers associated to the types Ty1, Ty2, …, Tyn; mi1, mi2, …, min the minimum
number of values that should be retained in the parameters; ma1, ma2, …, man the
maximum number of values that can be retained in the parameters.

With these notations, (2) presents the set of parameters used for the representation
of the successive solving statements in a universally understandable form.

\ Ty1 N1j jid1jmi1;ma1½ �; Ty2 N2j jid2jmi2;ma2½ �; : : : ; Tyn Nnj jidnjmin;man½ �[ ð2Þ

The following two examples are meant to illustrate the meaning of the parameters
presented above.

Example “Melanoma”. Melanoma is a type of cancer that develops from the pig-
ment. We consider the scenario of a medical student interested by dermatology. He/she
wants to know the early signs of malignant melanoma; therefore he/she searches for the
information: “early signs of malignant melanoma”. This issue formulation requires a
single parameter (see (2), the parameters set). The form [Ty1 = “signs of an illness”|
N1 = “early signs of melanoma”; id1 = 1; mi1 = 1; ma1 = ∞] specifies that the
parameter that could be associated to the type Ty1 (type with number 1) may contain as
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values the specifications of the signs of an illness. During the search process, if the
corresponding parameter is completed, it must contain the specification of at least one
sign (mi1 = the minimal number) and may specify an unlimited numbers of signs
(ma1 = the maximum number of admissible values).

CHS: Cooperative Hybrid Search Algorithm
IN:Prd;//A question formulated by a student.  
OUT:Answd;//The answer to the formulated question.
Step 1. Formulation of an issue by a student. 
@Studj formulates Prd;//Understandable to humans/agents.
@Assj helps Studj to formulate Prd in a universal format; 
Std:= Reprez(Prd);//Std the established formulation. 
Step 2.Initial analysis of the formulated Prd question.
@Assj checks if it is able to answer to the Prd; 
//Based on its capacity and capability and communicating 
with the agents. Let Answd be the answer to Prd; 
If (Assj founds the answer to Prd) Then
@report Answd to Studj; Endif

Step 3. Case if the answer to the question was not found. 
While (the answer to the Prd issue has not been found) Do
//The cooperative hybrid search for finding the answer.
 @Assi is assigned to currently handle the issue. 
If (Assi jointly with the owner Studi is capable to
processes Std) Then

  [Studi,Assi](Std) Sth;//Std is processed. 
If (Sth contains the solution of Std) Then Goto Step4; 
Else Assi(Sth) and;//The issue is announced.
//and is transmitted to selected agents
Assi(and)→filtered(AS∪Ia); 

EndIf
Else Assi(Std) and;//Std is announced in the system.
//and is transmitted to selected agents.    
Assi(and)→filtered(AS∪Ia); 

EndIf
While (the answering time has not expired) Do

  @Assi evaluates the bids to and;
EndWhile. 

 @Assi allocates the solving to a suitable agent Asb; 
from AS∪Ia who answered positively to the announcement. 

EndWhile
Step 4. Formation of the problem solution. 
if (Prd was solved) Then @sold is extracted from the last 
problem-solving statement; 
//Answd consist in sold and the last problem-solving. 
@report Answd to Studj;
Else @Report Failure to Studj; 

EndIf
EndCooperativeHybridSearch
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Example “Wonders”. “Wonders of the World” are the masterpiece of the skill and
handwork of the people of ancient era. We consider the scenario of a student who
develops a research that includes the question: “What is the list of the most significant
Wonders of the World?”. This issue formulation requires a single parameter:
[Ty9 = “Knowledge about culture”|N9 = “Wonders of the World”; id9 = 9; mi9 = 1;
ma9 = ∞]. If it is completed, it should contain the specification of at least one
(mi9 = 1) wonder of the world and may specify an unlimited number of wonders
(ma9 = ∞). More students may answer consecutively to this question, each one being
allowed to include at least one more new wonder, which was not previously included
by other students.

The CHS algorithm presents the following search process. Initially, an issue-
solving statement is formulated by a student in a very general form. At Step 1, the
solving statement structured description is completed with some detailed data. On the
path from the initial form of the issue to its answer, the problem-solving statement
suffers consecutive transformations, if the answering process involves multiple, suc-
cessive contributions. This is done by adding new data, the description is completed
step-by-step. The aim of each added item is to lead to an exhaustive description of the
solution, which is also completed step-by-step.

Formula (3) presents an issue-solving statement at a generic stage of the search
process (after several consecutive improvements were performed).

ida; noa;Kga½ �; idb; nob;Kgb½ �; . . . ; idt; not;Kgt½ �ð Þ ð3Þ

For the example “Melanoma” presented above, let the answer be: [idj; noj; Kgj] = [1;
5; “Asymmetry”, “Borders (irregular)”, “Color (variegated)”, “Diameter (greater than
6 mm)”, “Evolving over time”]. The interpretation of the answer items is as follows.
idj = 1: this is the identifier of the type “early signs of an illness”; noj = 5: this is the
number of the early signs retained; Kgj = “Asymmetry”, “Borders (irregular)”, “Color
(variegated)”, “Diameter (greater than 6 mm)”, “Evolving over time”: these are the
values of the five early signs.

For the example “Wonders”, let the answer be: [idj; noj; Kgj] = [9, 10; “The Great
Wall of China”, “Petra”, “Cristo Redentor Statue”, “Taj Mahal of Agra”, “Machu
Picchu”, “Hagia Sophia”, “Chichen Itza”, “Colosseum”, “Leaning Tower of Pisa”,
“Roman Baths”]. In this case, idj = 9 is the identifier type, and noj = 10 denotes the
number of retained Wonders of the World which are listed in Kgj.

Step 3 of the CHS algorithm introduces the announcements. An announcement and
is written as (4) where the parameters are as follows. Stj: the issue to be solved;
Emittedj: numerical value which holds the moment in time when and was generated;
Deadlinej: numerical value which stores the maximum time allowed for searching for
the answering to Stj.

and ¼ \Stj;Deadlinej;Eligibilityj;Emittedj [ ð4Þ

Based on the values of Deadlinej and Emittedj, an agent who receives and specifies the
remaining time for the processing of Stj. The value of Eligibilityj specifies the eligibility
criteria for the bid acceptance. For example, let us consider the specification of a very
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difficult issue to which an educator is expected to answer. In this case Eligibil-
ityj = “Educator”: the agent who generates the problem announcement should specify
that the problem is considered difficult and requires an educator to solve it.

We formally describe the response Rj,d to the statement Stj announced by and as

Rj;d ¼ \and;Ofi; Tmi;Cbi [ ð5Þ

with the following parameters. Cbi: list of the specializations that the announcement
receiver can use when processing Stj; Tmi: numerical value which specifies the esti-
mated processing time needed for answering; Ofi: specifies the bid to the processing of
Stj, with Ofi = “yes” (acceptance of processing) or Ofi = “no” (rejection of processing).
When an agent receives the bids to an announcement, it can improve its decisions about
how to respond to the announced problem using the information already embedded in
the responses.

The algorithm Cooperative Hybrid Search describes - as its name points - the
hybrid search for finding the answer to an issue formulated by a student. An elementary
case holds when the issue formulated by a student Studk is simply answered by another
student Studs or by an educator Edur. Obviously, a NextGenULIS must be able to solve
multiple issues, which are simultaneously formulated by students. For this reason, the
algorithm is presented in a general form, capturing the process of a hybrid search for
answers to complex issues, eventually raised by many students and solved with the
contribution of many students and/or educators and/or agents. The communication
between them is efficiently and flexibly mediated by the assistant agents, whose role is
to minimize the human effort.

3.3 Novel Paradigm Called Partial Merging of Library Information
Systems

We now propose a novel paradigm that we call “partial merging of library information
systems”. Let us consider the case of a university library, at a given moment in time. If
an issue is submitted and a human (student or educator) should answer to it, there is a
certain probability to find a human available and qualified to answer. If the university
has a larger number of students, the probability to find the answer easily is higher.
Based on this observation, an approach we consider important for the future is the
partial merging of a number of ULISs. This would contribute to an increase in the
efficiency of searching answers to the issues formulated by the users, and to the
internalization of the university libraries as a side effect. The partial merging of ULISs
is very appropriate in case of universities with small number of students, but it is also
beneficial in universities with large number of students, where these wish to find
answers to more complex issues. In this case, the complexity and the variety of the
required answers could require the existence of a larger number of human respondents.

In deciding upon the partial merging of library information systems, students’
specializations are among the most important criteria to consider. For example, con-
necting all the medical university libraries in a country would emerge a highly complex
global ULIS endowed with increased capacity and adaptability. These features come
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from the links between humans, generated by their collaboration, and improve as long
as the collaboration increases.

We consider that, in time, NextGenULIS could improve the human interpersonal
relations (student-student and student-teacher) that are formed during the interactions
involved when searching answers to the formulated issues. New professional rela-
tionships and interactions are also facilitated.

4 Discussions

After performing an extensive study of the related scientific literature, we considered a
fundamental limitation of actual university library information systems, namely the
ability to offer intelligent assistance to the students. Based on our experience in the field
of intelligent systems and computational intelligence, we considered as most appro-
priate the creation of ULISs based on the principles of intelligent hybrid multiagent
systems. In this paper, the architecture of a highly complex ULIS called NextGenULIS
was proposed. We consider that its features to be very appropriate for the next gen-
eration of intelligent library university information systems. Embedding the principles
of a very complex system, NextGenULIS cannot be designed and developed in a single
step. Its life-cycle requires generating more consecutive versions until a fully functional
and efficient version is obtained.

As a novel paradigm, the hybridization of a LIS was introduced. The proposed
hybrid system consists of: intelligent agents (able to make intelligent computations),
supporting students (who can help their colleagues, therefore they can be considered
part of the ULIS) and educators (part of the ULIS as well, due to their role in sup-
porting students’ information search process). In the context of our ULIS, the signif-
icance of the concept “educators” differs than the usual one, as it is accepted in
classroom setting. Here we call “educators” the persons (be they teachers at the uni-
versity or librarians) who are able to offer support in finding answers to various issues
formulated by the students. It is obvious that acting as teacher in a library is different
than teaching in the classroom. The notion of “hybrid system” was used in order to
illustrate that both human and non-human (artificial) agents can contribute to the
problem-solving process, but this behavior of the system is not necessarily transparent
from the outside. The student who formulates the problem does not see when a human
or an artificial agent contributes to its solving.

A novel hybrid search for answers to the formulated issues/questions, in the frame
of a ULIS, was introduced. It is partially based on the contract net task allocation
protocol described in the Artificial Intelligence literature in [18, 19]. During the doc-
umentation and/or learning process occurring in the library, a student formulates an
issue to be solved. The search for a satisfactory, complete answer could involve stu-
dents and/or intelligent agents and/or educators. A study performed on the complexity
of the contract net task allocation protocol in [20] is presented. Contract net was
approached even in recent studies and researches [21–23].

In the frame of the NextGenULIS, the search process is efficient and flexible. It
allows finding answers to a wide variety of formulated issues (containing structured or
unstructured data, information and knowledge) that require an intelligent approach.
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NextGenULIS can find answers for simple questions and for more complex issues as
well. A simple question may have an immediate response. Most often, a complex issue
does not get an immediate response; the search for finding its answer could consist in
several consecutive processing steps.

The hybrid search algorithm proposed in this paper allows students to find the
answers to questions and issues formulated by them. Since other students participate in
this process, the latter can also benefit from this non-formal learning process. This is a
solution to handle the complexity of finding answers.

From the perspective of the cognitive systems theory, the intelligence of Next-
GenULIS can be considered to manifest at the system’s level. Each issue formulated by
a student is solved cooperatively. One or more intelligent agents and/or students and/or
educators contribute at this cooperative search. The issues solved by NextGenULIS can
have different types and complexities (ranging from very simple to extremely complex
ones).

The system IntelligUnivLibSys [4] can be mentioned as another recent ULIS being
able to offer intelligent help for personalized learning of students. In [4] there were
defined some novel paradigms in the context of a novel kind of cooperative hybrid
personalized learning, such as learning role, sub-role, and learning intelligence level.
The main difference between NextGenULIS and IntelligUnivLibSys consists in the
usability. IntelligUnivLibSys is proposed with the purpose of efficient learning of dif-
ficult problems solving in a library. NextGenULIS has the main advantage that offers
more flexibility in learning, communication and collaboration between the students.
Our future research will consider integrating the ideas of the two systems, in order to
obtain a highly complex ULIS that is appropriate to a broad range of needs.

5 Conclusions

Some of the recent, modern University Library Information Systems (ULISs) are
moderately complex, being able to offer different functionalities for librarians and for
the students. A low degree of intelligent behavior was identified as one of their major
drawbacks. Therefore, we analyzed various aspects related to intelligence in ULISs:
what does ULIS intelligence consists of and what Computational Intelligence means
for ULISs. An ULIS can use computational intelligence algorithms, but this does not
mean that it can be considered an intelligent system.

The intelligence of an ULIS was defined as the ability to intelligently support the
enrolled students during their documentation and learning processes in the library. This
imposed the analysis of the learning paradigm in the context of an ULIS, where
learning is different from that in a classroom-based setting. When learning in a library
with the support of an ULIS, the learning process of the students is not coordinated by a
teacher. Students can be interested in topics that are different from those approached in
the classroom. A novel paradigm that we introduced consists in the ULIS hybridization
and its Cooperative Hybrid Search algorithm that it uses in order to find answers to the
students’ demands.

The complexity of the proposed system NextGenULIS is hidden from the external
point of view. An issue formulated by a student is treated autonomously by the system.
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It develops an efficient search for the answer, by intelligently combining the human and
computing systems capabilities and capacities. At the moment of an issue formulation,
the student does not need to know any details. The internal complexity of the system is
handled by the specific operations of the system. As a conclusion, the intelligent library
information system that we proposed is very complex. It cannot be designed and
developed in a single step: its life cycle is expected to have more consecutive versions,
until a fully functional form is obtained. Some interesting studies related to complexity
issues and to complex systems are available for the reader in the chapters of the book
[24]. One of the main subjects approached in the book was the study of nonlinear
dynamics in the context of complex systems. In the frame of NextGenULIS, the
interactions are nonlinear and dynamic.

Our next researches will approach the study of different learning algorithms that
can be implemented in the frame of the NextGenULIS, increasing the system’s intel-
ligence by more efficient and flexible help offered to the students in learning and
documentation. The second research direction will consist in studying and measuring
the ULIS intelligence. We already proposed a metric for measuring the machine
intelligence of cooperative multiagent systems in [25].
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Abstract. Crowd predictions have demonstrated powerful performance
in predicting future events. We aim to understand crowd prediction effi-
cacy in ascertaining the veracity of human emotional expressions. We dis-
cover that collective discernment can increase the accuracy of detecting
emotion veracity from 63%, which is the average individual performance,
to 80%. Constraining data to best-performers can further increase the
result up to 92%. Neural networks can achieve an accuracy of 99.69%
by aggregating participants’ answers. That is, assigning positive and
negative weights to high and low human predictors, respectively. Fur-
thermore, neural networks that are trained with one emotion data can
also produce high accuracies on discerning the veracity of other emotion
types: our crowdsourced transfer of emotion learning is novel. We find
that our neural networks do not require a large number of participants,
particularly, 30 randomly selected, to achieve high accuracy predictions,
better than any individual participant. Our proposed method of assem-
bling peoples’ predictions with neural networks can provide insights for
applications such as fake news prevention and lie detection.

Keywords: Emotion veracity · Crowd prediction · Neural network
Fake news

1 Introduction

Acted emotions are facial expressions whose performers do not carry genuine
feeling [2]. By using acted emotions, human beings attempt to convince others
that they are experiencing the pretended mental state. For example, sales staff
act smiles to their customers in order to express friendly attitudes. Commonly
acted emotions in our daily life include anger, surprise, fear, and happiness. These
four emotions are assumed to be recognizable regardless of cultural background
[7]. The ability to distinguish between acted and genuine emotion expression can
aid in lie detection, advertising effect assessment, and other applications [3,18].

Research indicates that in general, human beings perform poorly in verbally
differentiating between genuine and acted emotion expressions [2]. Hossain et al.
c© Springer Nature Switzerland AG 2018
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reported that the accuracy of participants’ verbal responses in respect of smile
veracity was approximately 60% [2], which was better than random guessing
(50%). However, their work did not investigate the accuracy of a collection of
participants’ responses to a particular emotion expression as a whole. Instead,
they considered only the accuracy of an individual’s reply. That is, an individual
might demonstrate poor performance in discerning the emotion veracity. Never-
theless, utilizing a majority response from a group of individuals as their final
collaborative answer may present a higher-accuracy response.

Moreover, researchers in social sciences have shown the promise of utilizing
the crowd to predict future events [19]. Their work indicated that the prediction
results from crowds, of five US presidential elections, were more accurate than the
traditional pools 74% of the time [9,16]. Due to this higher accuracy of crowd
forecasting, it has been adopted by a range of industries including healthcare
companies, technology corporations and so on [14].

However, the previous applications of crowd forecasting weighted all the par-
ticipants’ responses with the same importance. That is, they did not acknowl-
edge that people’s predicting capabilities can vary. To supplement this defect, in
2015, researchers improved the traditional forecasting methodology by extract-
ing top-performing predictors through an array of prediction tasks and assigning
them into elite teams called superforecasters [12]. These teams composed of the
selected top-performers demonstrated a 50% greater accuracy than traditionally
assembled crowd forecasting teams [5].

Nonetheless, all of these previously conducted experiments on crowd fore-
casting provided financial rewards for correct predictions. As such, a natural
question to ask is whether crowd forecasting can still give high-quality pre-
dictions without any payments. A study conducted in 2004 showed a positive
result by comparing the prediction qualities from providing participants with
real and play money [15]. That is, recompense is not essential for stimulating
high-quality predictions. Furthermore, both crowd predictions exhibited more
significant power than individual humans [15].

Inspired by the success of crowd predictions, we would like to know whether
aggregating a group of people’s responses will lead to better answers for dis-
cerning emotion veracity. Furthermore, considering Meller et al.’s results on the
success of utilizing elite teams [12], we also found that some participants may
also demonstrate better capability in discerning pretended emotion expressions
than others. We would also like to know whether a team of elites detecting
emotion veracity will present higher accuracy than a team consisting of average
participants.

Moreover, it is also worthwhile investigating if a neural network can distin-
guish better emotion discerners and assign higher weights to their responses. In
contrast, there may also exist people who are particularly poor in the emotion
recognizing task and who tend to always give incorrect answers. We wish to
know whether neural networks can learn to assign them negative weights to flip
their responses so that even these poor performers can make contributions to a
higher accuracy.
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Furthermore, we would also like to know the minimum number of partic-
ipants to achieve a highly accurate result, which can make contributions to
reducing the data collection cost when utilizing this technique. Additionally, we
also want to know whether elites who can discern one emotion expression accu-
rately can still give a high-accuracy performance for detecting other emotions.
Similarly, we wish to study the transfer learning ability [13] of our neural net-
works. That is, whether a neural network built for discerning one emotion can
also work well on other emotions. In the future, we wish to discover the poten-
tial similarity between distinguishing genuine and acted emotion expressions and
identifying fake news. Ideally, the methodologies in discerning emotion veracity
can be applied to other forms of veracity detection and hence be useful in the
prevention of fake news spread.

2 Methods

2.1 Stimuli

Previous work conducted by Hossain and Gedeon investigated people’s ability
to distinguish acted and genuine smiles, using both verbalized descriptions and
pupil dilation responses from the participants [8]. Chen et al. extended this
research to investigate the emotion of anger [2] with the same methodology.
However, Hossain and Gedeon used minimal stimuli [8], where videos are cropped
to only include the faces [11], while Avezier et al. suggested that the contextual
backgrounds for displaying emotional expressions are essential to differentiating
emotions [1]. We used the same stimuli as what Chen et al. have collected and
utilized, which include contextual backgrounds [2].

The raw videos for the experiments were sourced from YouTube. Each emo-
tion type consisted of 20 videos, which were selected considering balancing eth-
nicity, gender, and background context to reduce unnecessary noise in the exper-
iment. Genuine emotion expressions were collected from live news reports as well
as documentaries and acted ones were obtained from movies containing similar
scenes.

2.2 Neural Networks

A simple feedforward neural network [17] is utilized to give participants different
weights in order to value high/low-quality responses differently. Specifically, the
neural network contains 117 input neurons, corresponding to 117 participants’
answers to a stimulus video. In addition, we also provide the neural network with
the correct label of that video. That is, whether the video is a genuine or acted
emotional expression, 1/0 respectively. The number of inputs corresponds to the
number of human predictors. For example, if there are 117 participants, then
the input layer will have 117 nodes. Each input corresponds to a participant’s
prediction. Specifically, 1 for genuine and 0 for acted emotions. This structure
guarantees that the network can learn from the behavior of specific individuals,
as each input represents one person.
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The network has a single hidden layer consisting of 10 neurons, which use
the logistic activation function, and achieved excellent results. We attempted
various numbers of hidden neurons, up to 20 which all produced similar results.
The network classifies its inputs, corresponding to the likelihood of the emotion
presented in the video as being genuine or acted emotion. We train our neural
network with stochastic gradient descent and cross entropy. We trained for 5000
epochs, with a learning rate being 0.01. Additionally, we utilize leave-one-video-
out cross-validation to test the performance of our neural networks. That is,
we train a neural network to learn the reliabilities of each participant using the
first 19 videos, and test with the last one video, and repeat 20 times, reporting
average results. This is a highly reliable testing approach.

We are aware that the training with 5000 epochs may be likely to result in
overfitting. Nonetheless, even overfitting still does not influence the performance
of our neural network. This is because an overfit network means it has learned
who are reliable predictors, which is the consequence that we expect. Moreover,
We note that we used results for 80 videos in total, being 4 emotions × 20 videos
per emotion. This is a considerable dataset for human data: 117 people × 80
videos × 2 mins (to watch a short video and decide on veracity, occasional short
rests) = 312 h. Furthermore, we have also tested a neural network trained with
significantly fewer epochs, namely 30. It showed very similar performance with
5000 epochs (98.75%).

2.3 Elite Detectors

Similar to superforecasters who are teamed up to give accurate predictions on
future events [12], we also selected elites from the participants who demon-
strated higher individual accuracy in discerning emotional veracity. Afterward,
we utilized the majority response from those elites as the unified decision on a
particular emotional expression. We also tested a range of elite sizes in order to
find the best-performing elite ratio.

3 Results

3.1 A Collective Voting Approach Can Increase the Accuracy
of Human Ability to Discern Emotion Veracity

Previous research indicates that the individual capability of discerning emotion
veracity, including smile and anger, is little above randomly guessing [2,8]. It is
also expected that a similar level of accuracy will be obtained for fear and hap-
piness [4,6]. Although individuals tend to give low-accuracy answers for emotion
veracity, our experiments revealed that by adopting the most common response
among a crowd, the accuracy can be increased to 80% for determining the
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veracity of an emotional expression. For example, if the majority prediction from
a group believes that an emotion is genuine, then the final prediction will be
genuine.

3.2 Teaming up Elites Can Increase the Accuracy of Discerning
Emotion Veracity

Preliminary analysis on participants’ responses indicated that people’s capabil-
ity to discern emotion veracity varied. That is, there exist some people who
demonstrated higher accuracies in detecting veracity of emotional expressions.
Our results revealed that teaming up better emotion veracity detectors and
averaging their responses can produce higher accuracies than considering all the
participants’ responses. We also found that an elite ratio of 5% would lead to
the best performance in detecting emotional veracity, at an accuracy of approx-
imately 92%, as Fig. 1 indicates.

Fig. 1. Accuracy vs elite ratios
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3.3 Neural Networks Assist in Synthesizing Participants’ Responses
to Present Higher Accuracy

The neural network, specified in Sect. 2.2, demonstrated high-level performance
in discerning emotional veracity from participants’ responses. Specifically, an
overall 99.69% accuracy for all of four emotion types, tested by the leave-one-out
cross-validation approach and take the average accuracies of 20 repeated runs.
The quantity of training data matters to the performance of neural networks,
such that more training data can result in higher accuracies. This is shown in our
results: increasing the number of folds in cross-validation leads to corresponding
performance growth, as Fig. 2 indicates. The shapes of the curves also tell us
that, e.g, anger is most strongly recognized, and that of smiles, the least strongly.
This is consonant with the Psychological literature of emotion recognition, see
our Introduction, and a validation of our techniques that this just falls out of
the data.

Fig. 2. Fold effects on neural network predicting accuracies
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3.4 Neural Networks that Are Trained from One Emotion Perform
Well on Other Emotions

In order to investigate the transfer learning ability of our neural networks, we
trained them with one emotional expression data and tested their performance
with the other three kinds of emotional data. For example, we trained a neural
network with the anger data and tested using the smile, fear, and happiness data.
As Table 1 indicates, our neural networks demonstrated high accuracy (90% on
average) when identifying the veracities of other emotional expressions. This
suggests that emotions may share similarities in the way they are acted or that
human have generalized veracity detectors.

Table 1. Train one emotion and test on the other three

Anger Smile Fear Happiness

Training 0.75 0.9 0.9

0.95 Training 0.9 0.9

0.95 0.85 Training 0.9

0.95 0.95 0.9 Training

3.5 Combining All the Emotion Data to Train Neural Networks
Still Produces High-Accuracy Performance

In order to further investigate the similarities among predictability of veracity of
the different emotional expressions, instead of dividing the data into four parts,
corresponding to the four emotional expressions, and do the training as well
as testing for each of them separately, we combined the data for all the four
emotions. Sticking to the leave-one-out cross-validation approach, the accuracy
increased to 100% with 20 reputational runs. Again, this implies that distinct
emotions may share some likeness. It appears that people who are expert in
distinguishing the veracity of one emotion are also excellent in discerning the

Table 2. Elites of one emotion to predict others

Anger Smile Fear Happiness

Training 0.8 0.9 0.65

1.0 Training 0.9 0.85

1.0 1.0 Training 0.9

0.8 0.85 0.8 Training
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(a) Overlapping rate of elites for discerning
different emotion veracities

(b) Overlapping rate of individual assigned
weights and accuracies

Fig. 3. Overlapping rate analyses

veracity of other emotions. This can also be seen in Table 2, which shows the
results of utilizing elites of one emotion to discern the veracities of other emo-
tions.

Figure 3a demonstrates the overlapping of the top n elites for distinguishing
the four emotional expressions. For example, we separately picked the top 5
elites in discerning each emotion type. Among these 20 people (5 elites times 4
emotions), 20% of them were the same.

3.6 The Effects of Participation Numbers on Accuracy

We wish to discover the relationship between accuracy levels and the numbers of
participants. Finding a minimum number will minimize resource costs of using
such crowd prediction techniques. To investigate, we randomly picked various
numbers of participants from all the participants and repeated this process 20
times for each size of the group to ensure the reliability.

For example, we randomly chose 40 participants from all 117 and tested the
accuracy using the 40 responses of those selected participants. In order to reduce
noise resulting from the random selection, we repeated the action of randomly
picking 40 participants and testing their accuracies 20 times, and averaged the
20 accuracy results as the final accuracy for this size of group.

As Fig. 4 indicates, when the number of participants increased, the accuracy
also grew. Moreover, the growth became smoother when the total number of
participants has reached approximately 20. This suggested that a high accuracy
in discerning the emotion veracity did not require a very large size of total
participants. In our case, specifically, 1/4 of the original participant size could
lead to an overall over 99% accuracy of discerning all the four kinds of emotions.
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Fig. 4. Accuracies for different participant numbers

4 Discussion

4.1 An Explanation of Why Neural Networks Can Give High
Accuracy Discerning Results

Our results indicated that neural networks can effectively aggregate various par-
ticipants’ responses and so identify the veracity of emotional expressions in order
to give precise answers. We hypothesized that neural networks would assign pos-
itive weights to the responses of participants who give many correct answers and
would assign negative weights to those participants who are more likely to give
wrong responses. Thus, the wrong answers can still contribute to correct predic-
tions. We suspected that this exploitation of incorrect responses explains why
our neural networks performed better than teaming up elites.

In order to verify our hypothesis, we composed a dummy dataset in which
the first three participants would always present correct answers, whereas the
remaining seven would keep giving wrong answers.

After training with this dummy dataset, our neural networks would assign
positive weights to the first three elements and negative weights to the



214 Z. Qin et al.

remaining seven. Therefore, the hypothesis which states neural networks negated
the responses of people who always present wrong answers in order to predict
right results seemed to hold.

Furthermore, we would like to know whether the assigned weights to each
participant correlated to the person’s individual discerning accuracy. For exam-
ple, if a subject’s accuracy in detecting the emotional veracity is the highest, will
the neural networks also assign him or her the highest weight? Neural networks
fed by the dummy data above demonstrated a negative answer to this question.
This is justified by the fact that although the individual accuracies of the first
three participants were the same, their assigned weights varied significantly. In
order to further understand this, we plotted the overlapping rate given the top
n individuals. That is, among the top n participants sorted by their discerning
accuracies and assigned weights, what is the proportion of overlapped individ-
uals between these two? This is as Fig. 3b indicates. Specifically, given approxi-
mately the top half individuals, i.e., the top 60 participants, the overlapping rate
is 54%. Moreover, the probability of maintaining the same or higher overlapping
rate through random selection was 0.2610. This result was a little bit high to
defend the null hypothesis, which stated that it was very unlikely to randomly
generate the same overlapping rate without neural networks’ operation.

Overall, this suggests that neural networks do give positive weights to people
who are apt to give true answers and negative weights to those who present false
responses, however, it is not necessarily perfectly correlated in assigning to levels
of accuracy.

4.2 The Difficulty of Discerning the Different Kinds of Emotion
Veracities Varies

As Figs. 2 and 4 indicate, anger converged faster than the other three emotional
expressions. This implies that: 1. It does not require a lot of training data in
order to discern the veracity of anger expressions; 2. It needs fewer participants
in order to give accurate aggregated answers on distinguishing anger veracity.
This means that it is easier to detect the veracity of anger expressions than
others. This observation is consistent with the work of Mather and Knight [10],
which indicated that anger is quicker to detect overall.

5 Future Work

In the future, we will extend our method of discerning the veracity of fake versus
real news. First, we will conduct experiments on utilizing the wisdom of crowds
collectively in order to recognize fake news. Second, if the crowd’s accuracy
on discerning fake news is satisfactory, privacy will be an issue to solve, as
our neural networks need to be aware of the quality of specific participants’
responses. However, people may resist the fact that they are found to often
present incorrect answers or they may behave differently if they know that they
are usually right.
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6 Conclusion

In this paper, we aggregated peoples’ verbalized responses to predict the verac-
ity of emotional expressions comprising four universal emotions, namely anger,
surprise, fear, and happiness. We discovered that by adopting collective voting
instead of using individual responses, the accuracy of human discernment of
emotion veracity overall could be increased from 63% to 80%. We also found
that there exist people who demonstrate better abilities in ascertaining emotion
veracity. By incorporating the responses from these elite predictors, the over-
all accuracy could be further increased to 92% in collective voting. Finally, we
introduced neural networks to aggregate participants’ responses and obtained an
overall 99.7% accuracy. Additionally, we found that training with one emotion
data leads to high accuracies when testing with the other three kinds of emo-
tion data using our neural network approach, a novel emotion transfer result.
Our neural networks did not require a large number of participants for high-
accuracy performance. A closer look revealed neural networks achieved these
high-level results by assigning positive and negative weights to the participants
who tended to give consistently good and bad answers, respectively. However,
the weightings of participants in the neural networks may not simply reflect
the ranking of participants’ accuracies on ascertaining emotion veracity. In the
future, we will utilize the same methods to investigate the feasibility of utilizing
crowds to discern genuine and fake news.
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Abstract. Ransomware is now the highest risk attack vector in cybersecurity.
Reliable and accurate ransomware detection and removal solutions require a
deep understanding of the techniques and strategies adopted by malicious code
at the file system level. We conducted a large-scale analysis of more than 1.7
billion lines of I/O request packets (IRPs), and additional file system event logs,
to gain deeper insights into malicious ransomware behaviors. Such behaviors
include crypto-ransomware file system attacks achieved by either encrypting
individual files or modifying the Master Boot Record (MBR). Our large-scale
analysis shows that crypto-ransomware preferentially attacks certain file types;
greedily performs file operations more frequently on more diverse types of files;
randomizes novel filename generation for malicious executables; and exhibits a
preference for alternating file access. We believe that these insights are vital to
building the next generation of ransomware detection and removal solutions.

Keywords: Ransomware � Malware � Cybersecurity � File system

1 Introduction

In recent years, ransomware has developed to become one of the most significant
cybersecurity threats on the Internet. According to a recent report [1], the global
damage caused by ransomware is predicted to reach US$11.5 billion by 2019, up from
US$315 million in 2015. This is a more than 35-time increase in just four years, and
many cybersecurity experts have warned that cyber ransoms are the “fastest growing
threats” since they first emerged in 2013 [2].

Ransomware executes on victims’ computers by making important user documents
and sensitive data inaccessible, and then demanding ransom payments from victims to
release the restrictions. The ever-growing cases of high-profile ransomware attacks on
hospitals, universities, government agencies and corporates have caused numerous
disruptions in services offered by the affected entities, and indirect financial losses
incurred due to the disruptions that are often more than ransom payments [3, 4]. In
response to the rising ransomware threats, users are often advised to regularly backup
their data, use security software, and be vigilant while opening files from unknown
sources. However, ransomware developers can target unsophisticated users, e.g., those
who often do not follow such recommendations, and continue to create new, evolved
and more sophisticated attacks to evade detection.
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Current defense solutions, often based on pure-detection approaches such as mal-
ware signature matching, are insufficient, since modern ransomware implements
multiple techniques, e.g., polymorphism, to evade detection [5]. A forward-thinking
solution to the issue could be to equip operating systems with a generic and practical
self-defense system against ransomware intrusions. This would only be possible when
the security developers have a large scale understanding of what ransomware attacks
are, and how the code behaves under conditions that are likely to lead to successful
detections.

The main purpose of this paper is to investigate and present characteristics of
crypto-ransomware attacks based on our large-scale study of analyzing hundreds of
ransomware samples, and the billions of system calls generated by them. We performed
quantitative and qualitative analysis on the file system activities of benign applications
and crypto-ransomware, and identified a range of hitherto unknown behavioral char-
acterizations. These insights were only made possible by the large-scale analysis.

2 Related Work

A long-term ransomware study between 2006 and 2014 on 1,359 ransomware samples
[5] was the first to analyze a significant quantity of ransomware samples, and con-
tributed to the theory base of strategically monitoring, analyzing and protecting file
systems integrity. Scaife et al. developed CryptoLock [6], which aimed to halt mali-
cious processes as early as possible if they were found to be tampering with large
amounts of user data. CryptoLock checked several pre-defined indicators during run-
time, e.g., file type changes, similarity, file deletions, file type funneling. Their system
managed to achieve a 100% detection rate against 492 real-world ransomware samples.
However, the shortfall of their technique was with file loss. Even after successful
detection, there was a medium loss of 10 files that were permanently damaged by
ransomware and became irrecoverable.

In contrast, Kharraz et al. proposed UNVEIL [7], a dynamic analysis system that
automatically created an artificial execution environment. UNVEIL was able to identify
previously unknown evasive ransomware before most security vendors, such as dis-
covering the new family of SilentCrypt. However, the consumption of CPU usage and
RAM allocation was high, making it unsuitable for an endpoint solution.

At a lower level, Continella et al. implemented ShieldFS [3], a self-healing,
ransomware-aware file system that checked both file system I/O activities and cryp-
tographic primitives in processes in system memory, and updated a set of adaptive
profiling models. ShieldFS made assumptions that the ransomware would use a known
cryptographic library, would pre-compute the key schedule in predictable locations in
the memory, and that the encryption key schedule could be scanned and located easily.
The researchers acknowledged the estimated average runtime overhead was 26%,
possibly due to employing copy-on-write technique to shadow protected file copies.

For real-time analysis, Kharraz and Kirda presented Redemption [8], a generic
system that monitored file system I/O request patterns on a per-process basis.
Redemption performed system-wide monitoring, and used content-based features
(entropy, file overwrite, delete operations) and behavior-based features (directory
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traversal, output file types, access frequency), to calculate a malice score and estimate
how malicious a process could be. While the implementation of Redemption achieved a
low runtime overhead of 2.6%, its decision to calculate a malice score per-process
could potentially mark legitimate Windows modules as malicious; this could occur
when some ransomware inject themselves into legitimate Windows processes like
svchost.exe, or when ransomware execute in the form of PowerShell scripts.

While previous approaches presented useful progress towards a more generalizable
solution, these techniques were not based on a more nuanced understanding of how
ransomware works across a wide range of samples. For example, does ransomware
target system or user files? Or, by focusing on protecting a subset of all files, can
scalability problems observed in previous solutions be remedied? These are the kinds
of behavioral knowledge deficits that we have tried to remedy in this study.

3 Approach and Methodology

3.1 Ransomware Dataset

To achieve a comprehensive dataset of file system IRPs, we used two sources of data:
the same IRP logs collected and studied by ShieldFS in [3] for our own quantitative
analysis, and file system event logs collected using a custom-implementation of a file
system monitoring utility we developed for qualitative analysis. The ShieldFS dataset
contains 1.7 billion IRPs generated by 2,245 applications, either benign or infected by
ransomware samples. The IRP log includes information of the IRP operation type,
operation time, Process ID, IRP major operation type, IRP minor operation type, and
file name. The file paths and the file names have been hashed except for the file
extension names. This makes it impossible to discover any corresponding relationship
between processes and any specifics about file operations.

To resolve such limitation, we further developed a file system monitoring utility to
capture the information of which process performed what type of file operations to what
files and when. This allowed us to thoroughly investigate and characterize file system
activities by benign software applications and malicious ransomware.

3.2 Data Analysis

Data cleansing was performed on the IRP logs to exclude log entries that did not
contain valid process names or target file names. Because the original IRP logs were in
the format of compressed 7z files containing txt files, all files were first decompressed
into different folders. Another utility was used to parse the text files, count the numbers
of log entries grouped in different combinations of parameters (e.g., operation time, file
extension names, Process ID etc.), and export the results into csv files. The csv files
were then opened using Microsoft Excel to generate graphs.

File system event logs collected by our utility were displayed as unhashed plaintext
output on the terminal after capture. This enabled us to associate file system events with
software operations performed by us and develop an understanding of what happened
at the file system level when testers performed different software operations.
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4 Characteristics of Crypto-Ransomware Behaviors

In this section, how crypto-ransomware typically attack victims’ systems is charac-
terized based on the findings from our data analysis.

4.1 Crypto-Ransomware Must Attack the File Systems

Researchers [5] found that although different families of crypto-ransomware carried out
attacks with different levels of sophistication, they shared similar characteristics from a
file system perspective: there is a sudden and significant change in the file system
activities involving either the MBR, the IRPs or a combination of both. To encrypt user
file contents, ransomware must call Windows file system APIs, which will in turn
generate IRPs and send them through the I/O stack. [5] proposed to protect the MBR
because the Seftad ransomware family locked up the MBR of victim computers to
prevent proper booting. [5] was conducted before the discovery of Petya, which
overwrites MBR to gain privileged access to encrypt the Master File Table (MFT) of
NTFS partitions [9]. MFT contains file metadata information, including how they are
stored in different locations of the disk partition. Without the MFT, even if MBR is
restored, the operating system cannot easily reconstruct the user files [9].

Crypto-ransomware encrypts user data using strong encryption algorithms and a
key obtained from the remote criminal server [6]. Due to the nature and engineering of
NTFS relying on a healthy MFT, it is possible to capture such data-centric behaviors of
crypto-ransomware to develop effective detection and defense mechanisms [5, 6].

4.2 Two Entry Points of Targeted Attacks

Selected User Files based on File Types. Many crypto-ransomware samples, such as
TeslaCrypt and WannaCry, have been found to selectively encrypt files, often based on
file types. They quietly search and index victims’ files in the background. They select
files based on filename extensions, and target documents, photos and presentations,
with pdf, odt, docx, pptx and txt file types being the most frequently attacked [5].
Selecting and encrypting certain types of files is more efficient, allowing the encryption
to complete within the shortest time possible, before the intrusion is noticed. Operating
system modules usually do not get encrypted; there is no valuable individual data in
them and they can be recovered by reinstalling the operating system.

Master Boot Record. Since Microsoft Windows Vista, Windows offers two different
disk-partitioning options: the MBR and a Globally Unique Identifier Partition
Table (GPT) [10]. The MBR was introduced earlier and was designed for BIOS-based
systems; it contains a piece of simple executable code, known as “bootstrap” or
“bootloader”, which will in turn select and load the actual operating system. GPT
works with UEFI-based systems and contains a protective copy of MBR. UEFI pro-
vides a simple Boot Manager to select an operating system, and each operating system
provides its own bootloader. When SecureBoot is enabled in UEFI settings, only
properly signed and trusted modules can be loaded during the boot process.
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A few variants of ransomware, such as Petya and Redboot, would instead attempt to
attack the MBR first, in order to gain control during the next reboot to be able to
encrypt the MFT, a database containing information about every file and directory on
an NTFS volume. On a BIOS/MBR-based system, encrypting the MFT is carried out in
a two-staged attack, which involves (1) modifying the MBR and rebooting to gain
control and (2) encrypting the MFT after the reboot [9, 11]. Most unsophisticated users
do not need to perform operations that require writing into MBR of the boot drive,
unless they are installing a new operating system. Because detailed file information can
be either stored in MFT entries or external spaces described by MFT entries, it would
be difficult and sometimes impossible to rebuild MFT to regain access to files; the
encryption of MFT in combination with a compromised bootloader leaves most victims
no choice but to pay the ransom. On a UEFI/GPT-based system with SecureBoot
enabled, Petya would still write its own bootloader into the MBR. However, when the
system reboots, the Boot Manager inside UEFI cannot find a signed and trusted
bootloader, and would fail to boot the operating system. As a result, Petya does not
damage the actual MFT on a UEFI/GPT-based system but would still make it unusable
until the GPT is repaired.

4.3 Preference to Access Non-system Files and Folders

Users are often likely to store their files in certain folders of their choice [12]. Users
overwhelmingly preferred location-based file search, by going to the most likely
storage folder and performing a file listing and browsing [12]. There are three special
folders on Microsoft Windows platforms: “Windows” for modules of the operating
system, installed drivers, system logs and services, “Program Files” containing
installed applications, and “Documents and Settings” (later renamed as “Users” since
Windows Vista) containing the folders for each user account on the computer,
including domain profiles [10, 13]. A few documents and shell folders are created by
Windows inside each user folder, such as “Documents”, “Pictures” and “Desktop”,
where most computer users usually store their user files [13].

Crypto-ransomware demonstrates a preference to access non-system files and
folders. Each IRP log collected by [3] contained information on where the target file
was located, but if the files were not located in “Windows” or “Program Files” folders,
the folder names in the path were hashed. The IRP logs were re-examined based on the
location of the target files, to count what percentage of files accessed were in the
“Windows” folder, in “Program Files” folders or in other folders. The overall algorithm
to investigate the percentage of IRP access against different folders is demonstrated in
the Algorithm 1. If the paths contained “\Windows\”, the target files were considered to
be in the “C:\Windows” folder. If the paths contained “\Program Files”, the target files
were in the “C:\ Program Files” or “C:\ Program Files (x86)” folders.
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Figure 1 shows that the average percentage of IRP access to other folders (the solid
bars) is 47% on benign machines (left), but it rose significantly to the average of 87%
on infected machines (right) during ransomware attacks, showing that crypto-
ransomware attacks increased the percentage of IRP access to files and folders that
were neither in the “Windows” folder nor in “Program Files” folders. Given that
computer users do not usually store user files in those folders, there appeared to be a
strong preference for crypto-ransomware to access user files.

4.4 Aggressiveness Towards File Systems

Past research [5] noted the unusual and aggressive file system activities by crypto-
ransomware, which generated a large amount of create, read, write and rename
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Fig. 1. Percentage of IRP access on benign machines (left) vs on ransomware-infected machines
(right)
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operations on many different types of non-system files. In [7], they discovered that
statistically, crypto-ransomware performed more diverse types of file operations (cre-
ate, read, modify, rename, delete, move etc.), on more types of files (all files within a
wider set of file extensions), and much more frequently. Another study [8] concluded
that “modify” and “move” were potentially more dangerous file operations that were
more often involved in file encryption performed by crypto-ransomware.

We calculated the speed of IRP requests to modify file contents or file information
of PDF files outside of different folders as shown in Algorithm 2. We chose the PDF
files because PDF files were the most abundant file type of documents in user files in
the IRP logs. The IRP operations were grouped and counted by operation time accurate
to minutes, to calculate the speed of modifications to PDF files per minute.
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Fig. 2. Number of IRP requests to modify file contents or file information of PDF files outside
“Windows” and “Program Files” directories in each log
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As shown in Fig. 2, ransomware-infected systems demonstrated extremely high file
operations within shorter time periods. For example, “the ransom log 5” had an average
of 600–800 IRP requests per minute to modify files within less than 60 min. In con-
trast, both benign systems only generated a very small number of IRPs per minute
(< 100) over a long period of time.

4.5 Greediness for Modifying More Diverse Types of Files

Both [3] and [5] noted that crypto-ransomware could modify the file contents of more
diverse types of files (based on file extension names) than many other benign appli-
cations, because of the need to encrypt as many files as possible and because temporary
files with random filenames during the encryption process can be generated.

We examined the IRP logs to count the number of different file types, based on file
extension names, modified by the program which modified the most file types outside
the “Windows” and the “Program Files” folders in each log. To modify files, the IRP
request must contain the major function IRP_MJ_WRITE. A dictionary was created,
using the program name as the key and a HashSet of file extension names as the value.
For each new line of log, if the program name existed in the dictionary, the extension
name of the target file was added to the HashSet linked to the program; otherwise a new
dictionary record was created containing the program name and file extension name.
After processing all records, the numbers of different extension names in each HashSet
were counted, and the highest number of different file types modified by a single
program would be revealed.
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The key findings from Algorithm 3 are shown in Fig. 3, and can be summarized as:

• On the 11 benign systems not attacked by crypto-ransomware, with the label
indicating benign 1–11 in the graph, the number of different file types that can be
modified by a single program was between 5 and 51.

• On the 19 systems, with the label indicating ransom-log1–17 in the graph, during
ransomware attacks, all but 2 systems had a single program in each system that was
able to modify thousands of different file types. Upon the inspection of each log,
many different file extension names were found to be associated with those
applications.

• On systems infected by crypto-ransomware, ransomware executables could be
involved in modifying file contents of more diverse file types – that was 500 times
more on average!

Based on the findings, it is believed a “File Type Rule” on file system activities
could be implemented to detect file modifications performed by crypto-ransomware.

4.6 Change of Behaviors

Process Injection is defined as executing the code of one program in the memory of
another process by forcing the carrier process to load a dynamic-linked library, and can
cause the carrier process to exhibit unexpected behaviors [14]. Some Windows system
modules, like rundll32.exe and svchost.exe, do not usually modify user files directly.
The Windows File Manager Explorer.exe may perform “delete” and “rename”

1

10

100

1000

10000

be
ni

gn
 1

be
ni

gn
 3

be
ni

gn
 5

be
ni

gn
 7

be
ni

gn
 9

be
ni

gn
 1

1

ra
ns

om
-lo

g1

ra
ns

om
-lo

g3

ra
ns

om
-lo

g5

ra
ns

om
-lo

g7

ra
ns

om
-lo

g9

ra
ns

om
-lo

g1
1

ra
ns

om
-lo

g1
3

ra
ns

om
-lo

g1
5

ra
ns

om
-lo

g1
7

N
um

be
r o

f D
iff

er
en

t F
ile

 T
yp

es

Fig. 3. Number of different file types modified by the program which modified most file types
outside “Windows” and “Program Files” directories in each log
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operations on user files, but only “modify” the content of “zip” files that are placed in
user directories.

The logs of ransom-log1 and ransom-log5 were re-examined, due to their low
number of file types of modified files (shown in Fig. 4). It was found that for ransom-
log1, “svchost.exe” was responsible for creating or modifying 13 different types of
files, including bmp files; “svchost.exe” is not a known viewer editor of bmp files, so
it’s likely that “svchost.exe” was injected with ransomware processes, or crypto-
ransomware masqueraded as “svchost.exe” during the attacks. In the log of ransom-
log5, a program named “lknwy-bc.exe” created or modified files of 48 different file
types, including jpg, js, zip, docx, xlsx; it suggested that “lknwy-bc.exe” was either a
sophisticated multi-purpose editor, or a ransomware executable. Searching the Internet
for “lknwy-bc.exe” returned no results, suggesting the filename “lknwy-bc.exe” of the
program appeared to be randomly generated and the program could be ransomware.

4.7 Randomness of File Information of Executables

According to the file event logs captured by our prototype utility, benign and legitimate
software are usually designed and developed with pre-determined functional specifi-
cations. If the software are file editors, they usually only know how to open and decode
certain types of files. Their executables usually have identifiable and meaningful file-
names, and are installed to and executed from their installation paths; their filenames
and installation paths usually do not change during the lifetime of the application.
Some ransomware executables had the following characteristics:

Random File Names or Paths: Ransomware like CryptoLocker and TeslaCrypt
generate executables in the “AppData\Roaming” folder of affected users with random
file names. A few samples of GandCrab placed copies of executables into the “App-
Data\Local\Temp” folder of affected users, renamed them into random file names like
“poerlbm.exe” or “hociexd.exe”, and executed from that location.

Fake Description: One WannaCry sample described itself as “DiskPart” in Fig. 4,
while a Jigsaw sample carried the description of “Firefox”.

Fig. 4. WannaCry sample describing itself as “DiskPart” in windows task manager
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4.8 Alternative File Access Patterns

On a system not infected by any ransomware, utilities like Disk Cleanup (cleanmgr.
exe) may perform many file operations within a short period of time, but the file
operations are usually of the same type, e.g. batch-deleting and batch-renaming. Most
utilities do not modify file contents. The utilities used to compress files only “modify”
files of archive formats. On a system infected by ransomware, there is often an alter-
nating pattern of file operations. A file gets modified and often renamed or moved
before the next file gets modified and so on.

5 Discussion

Based on the findings in Sect. 4, we believe a forward-thinking behavior-based
detection system on crypto-ransomware activities should focus on protecting the file
system, by applying physical control to reject unauthorized MBR modifications on the
boot drive and statistical controls on monitoring and restricting file system activities on
user files. Protecting the MBR and preventing malicious modifications can ensure
ransomware or any malware would not take control over the system during the next
reboot by writing malicious bootloader into MBR. Blocking MBR modification dis-
rupts a critical step of Petya attack, causing Petya to error and exit.

Using statistical controls to monitor and restrict file system activities can help to
distinguish file system activities by benign applications from those by crypto-
ransomware and to terminate those malicious activities at the earliest time possible to
minimize file damages we saw earlier in the state-of-art [3, 8]. In addition, such
statistical control can also provide opportunities of using machine learning to make
judgements on what activities may be malicious or unintended without human
knowledge.

Because ransomware has a preference to access non-system user files, the efficiency
of monitoring algorithm can be significantly improved, by not monitoring file system
activities of all directories unnecessarily like previous researchers [3, 6–8]. Ran-
somware are generally more aggressive when modifying file contents, so additional
security rules can be enforced, such as “speed rule” to detect excessive number of file
content modifications within a given threshold time. Ransomware are found to be
greedier for modifying more types of files, and an additional security rule can be
applied to permit/deny file access depending on their file operation authorization or to
detect applications that are too versatile by modifying different types of non-plaintext
files with specialized encoding schemes. To prevent process injection by ransomware
into known Windows operating system modules, it is possible to deny out-of-ordinary
file system behaviors of those modules after profiling them. The randomness of file
information of executables, either random file names or descriptions, can be used
against those executables if the application file names are unknown or appear in
unexpected directories. Finally, it is possible to implement a “File Access Pattern” rule
to catch ransomware like WannaCry, which modifies, renames and moves one file,
before continuing to modify the next file and so on.
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6 Conclusion and Future Work

While previous studies on monitoring file system activities have provided useful
insights on the nature of ransomware attacks, the depth and insights they provided were
proven to have shortfalls. Due in large, the cause of the problem does not come from
the lack of appropriate cyber algorithms [15] but from the quantity and quality of the
data previous studies used which were incapable of driving more useful knowledge,
especially given the sophistication of modern malware [16]. By running a large-scale
behavioral analysis on hundreds of ransomware samples and billions of IRP calls
generated by them, we were able to discover significant insights previously unknown.
This is a significant step forward in the next generation of information processing that
requires big data on ransomware behaviors.
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Abstract. Pose estimation is an important step in the grasping of workpieces.
However, most previous works aim to use the 3D vision system to locate the 3D
pose of the object. This paper develops a pose estimation of 3D object with 2D
vision system. The proposed method includes two steps: (a) a hierarchy model
of 2D views of the object is firstly constructed off-line; (b) the pose of object is
then estimated by measuring the similarity of the model and target image. The
proposed method is inherently robust against noise and illumination changes,
and also efficient in real applications.

Keywords: 3D object recognition � Shape context � Similarity measure

1 Introduction

Picking of workpieces randomly placed on a conveyor belt require robots to precisely
estimate the pose of the object. To achieve a precise location has been widely studied in
the last decades due to its strong impact in the productivity for manufacturer.
Recognition and pose estimation of the parts are mainly based on 2D or 3D vision
techniques, where pose estimation with 2D vision system is ideal for a planar part
whose three dimensions are negligible, and for complex objects, the 3D representation
approach is highly preferable. However, the 3D vision still has some limitations [1]:
(a) the cost of such industrial sensors is still higher than a conventional high resolution
industrial camera; (b) with a 3D sensor is usually impossible to recognize specific
patterns drawn on the object surfaces that may identify the correct object side.

In order to reduce the cost of the vision system, some researchers aim to acquire the
pose of 3D parts with 2D vision system. Hinterstoisser et al. [2] developed a real-time
template recognition approach to match the target object with the template and then
detect its pose. In their recent work [3], a template-based Line-Mod approach with a
Kinect is given to detect the objects. Rios-Cabrera and Tuytelaars [4] detected multiple
specific 3D objects based on the Line-Mod template-based method in which they
learned the template online and speed up the detection based on cascades. Brachmann
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et al. [5] discuss the estimate of the 3D Pose of specific objects from a single RGB-D
image, where the key concept is an intermediate representation in form of a dense 3D
object coordinate labelling paired with a dense class labelling. Bonde et al. [6] pre-
sented a learning-based instance recognition framework from single view point clouds.
They used a soft label shape features of an object to classify both the location and the
pose of object. Borgefors et al. [7] estimate the pose of a target object by comparing the
detected image and its precomputed 2D views with a matching metric, which is cal-
culated by the edges similarity of the models and the image, but it suffers from the
occlusion. Steger et al. [8, 10] computed the similarity by the dot product of the pixel
gradient vector, where they claim the method is robust to the light and occlusion.
Belongie et al. [9] developed the shape context method to calculate the similarity,
which could obtain high matching accuracy but is time-consuming.

This paper develops a pose estimation of 3D object with 2D vision system. We
firstly establish the 2D view library of the object with the 3D model of the workpiece.
And then, the shape context is employed to calculate the similarity of the target contour
and the sample contours in the 2D view library. The template matching method usually
suffers from the noise and changes in illumination, which will reduce the precision of
the location. Our work is similar to reference [10], but the main difference is that we
measure the similarity of the 2D view and target image using a few points sampled
from the shape contours, while [10] calculate the dot product of the pixel gradient
vector as a similarity. Compared with [10], our method would reduce the complexity of
the computation of the similarity.

The rest of the paper is organized as follows: the construction of 2D view library with
3DCADmodel is firstly described in Sect. 2. And, the description of shape context of the
sampling point is presented in Sect. 3. Finally, several experiments are given in Sect. 4.

2 Construction of Hierarchical View Library

Generally, a 2D view of an object could be obtained by projecting the CAD model of
the object on a planar; hence, it is able to establish the 2D view library by projecting on
various planar. Inspired by work [10], we use the “view ball” to establish the view
library of the object, where a virtual camera is employed to project the object on the
ball. Thus, the 3D pose of an object, i.e., X(a, b, r), could be described by a point on
the sphere, where a denotes the longitude of the point, b denotes the latitude of the
point, and r denotes the distance of the point from the center of the sphere (Fig. 1).

Fig. 1. The description of the “view ball”.
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By projecting the CAD model from different position, a vary view images of the
model are obtained (Fig. 2).

Once the 2D images of the object are captured, it is possible to establish the view
library. In this work, we employ pyramid structure to layer the projection view, which
includes three steps as shown in Fig. 3: (a) a view that achieves a degree of similarity is

Fig. 2. Obtain 2-D projection images, where “1” represent virtual camera and “2” represent
CAD model.

Level 3 Level 4

Level 1 Level 2

Fig. 3. Resulting aspects on pyramid levels 1 to 4 of the hierarchical model. The cameras of the
aspects are visualized by small black pyramids. The blue region visualizes the set of aspects on
the different levels that end up in a single aspect on the top pyramid level. (Color figure online)
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firstly sorted as a ‘aspect’ class; (b) the ‘aspects’ are stored on the second floor of the
pyramid store; (c) the similarities of the images on the second pyramid layer are
calculated and clustered again until four layers pyramid are obtained.

As the pyramid model of the view library has been established, the matching search
can be performed using of the hierarchical search method, which will improve the
searching efficiency for an object needed to be identified [11–14]. A coarse scale
searching is firstly performed at the bottom level, i.e., level 4. At each level, the simi-
larities of the input image with all the nodes on the layer are calculated. And, the node
with the largest similarity is selected, which would decide the child node. This process is
repeated until all the nodes at the bottom of the pyramid are traversed. Repeat this
process until we find the most similar model in first layer as shown in Fig. 4.

3 Computation of Similarity

This work aims to estimate the pose of a target object by calculating the similarity
between the image of target and the template view in library.

It believes that there is a certain correspondence between the extracted feature and
the geometric features of the 3D object [7–10]. Therefore, the position of the 3D object
could be calculated from the corresponding feature set by matching the extracted
feature with the geometric features of the 3D object. However, in the previous work [7–
10], the calculation of similarity using the dot product of the pixel gradient vector is
time consuming.

Borrowed the idea from the shape context [9], we introduce a new shape descriptor
to match the extracted feature with the geometric features. The shape descriptor con-
tains only coordinate information, through which we can calculate the Euclidean dis-
tance and cosine similarity between two shapes. Notice that the shape context [9]
includes the gray-value, the location and the set of vectors originating from a point to
all other sample points on the shape, but the proposed shape descriptor only contain the
points ðxk; ykÞ where k = 1, …, n, on the contours to denote the shape context. For

(a)                                        (b) 

Fig. 4. (a) Object images; (b) object recognition using the hierarchy of views.
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example, there are 50 points on the edge of the bearing to describe its shape as shown
in Fig. 5.

Once the points on the shape are detected, the hierarchical search is performed by
calculating the shape similarity of the object. So, for a new input image, the contour of
the object is extracted by a simple image processing. For multi-object, the contours of
the target object can be selected by it shape or area. In the following, a new algorithm is
proposed for calculating the similarity between two contours.

Assuming that a point pi is on a target shape (where i stands for the serial number,
the same as bellow), our first task is to find a matching point on the sample shape. After
finding all the matching points, we calculate the distance of the matching pairs, which
is denoted by shape similarity. If the two shapes are identical, the distance between the
corresponding points is zero. In other word, the shape similarity is 100%.

For example, if there are m points P ¼ fp1; p2; p3; . . .; pmg on the target contour,
we randomly select n sampling points from the set P. And then, we sort those points,
where the point with the minimum x coordinate is denoted as the initial point, and
another point closest to the first point is selected as the second point, and the point
closest to the second point is selected as the third point, etc. After sorting the points, we
denote pi by the point on the target shape and qi by matching point on the sample
shape. We set a distance threshold dthd to avoid the mistake matching. The mis-
matching points are also used as the penalty in calculating the similarity. That is, more
mismatching points show the lower similarity of the two shapes.

The distance of the two shapes would be obtained by:

dp ¼ 1
nsamp

Xnsamp

i¼1

ðpi � qiÞ2 where pi � qij j � dt hd ð1Þ

de ¼ dp=dthd ð2Þ

where dp represents the average distance between each matching point. Assuming that
the maximum distance between two points is dthd , which means that 0\de � 1. Next,
we define similarity between two point sets as 1 − de.

The computations of similarity with Eqs. 1 and 2 suffer from the image noise. In
order to improve the robustness of the matching, we introduce the vector sets to
calculate the similarity of two shapes. Assuming that p1 is the initial point, we connect

Fig. 5. Sample 50 points on the edge of the bearing.
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p1 and other points to build vectors, and obtain a vector set Pvector ¼ f~p12;~p13;
. . .~p1nsampg, as illustrated in Fig. 6.

We built vector set Qvector ¼ f~q12;~q13; . . .q*1nsamp
g for the sample shape. Therefore,

the similarity of the vectors using the dot product could be defined as follows.

Sv ¼ 1
nsamp � 1

Xnsamp

i¼2

p1i � q1i
p1ik k � q1ik k

�����

�����
ð3Þ

It is expected that the higher similarity of the two shapes, the smaller angle between
the two vector sets. We regard Sv as the cosine similarity between the two shapes.

Considering the Euclidean distance between the matching points and the cosine
similarity between the matching vectors, we define the similarity function as:

S ¼ 1
2
ð1þ sv � deÞ � nleft

a � nsamp ð4Þ

Where nleft is the number of points with wrong match.
Note that in this algorithm, the size of the sample point and the value of the

threshold dthd depend on the size of the actual target object and the size of the image. In
the experiments, we set the number of selected points by nsamp = m/20, and the
threshold by dthd = 0.00001. The reason why nleft=nsamp is divided by a is that penalty
term should not too big. Experiment shows that when a = 3, the result is best.

4 Experiments

We firstly create a layered 2D view library by projecting the bearing CAD model from
different pose, where the scope of the view library is shown in Table 1. And then, the
three layers of the pyramid layer are shown in Figs. 7, 8 and 9, respectively. When the
pyramid model is established, the number of layers is 3, and the number of 2D views
from top to bottom is 27,208,1002.

Once we take a bearing picture shown in Fig. 10, we could find the model whose
pose is most similar to the target object by the following steps: (a) we execute a rough

Fig. 6. Vector sets from p1 to the rest of points
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search to find the model whose pose is similar with target object roughly in the third
layer as shown in Fig. 7, where the result is marked by a red box. Thus, we could
decide the child node. (b) we repeat the searching until all the nodes at the bottom of
the pyramid are traversed. The model which is most similar with the target object has
been selected in second layer and first layer, as shown in Figs. 8 and 9.

Fig. 8. The second layer of the view library

Table 1. The scope of the view library

Parameter The meaning of the parameter Value

rmin � rmax Distance from object to camera 0.5 m–0.55 m
amin � amax Longitude range −90°–90°
bmin � bmax Latitude range 0°–90°
dthd Points distance threshold 0.00001

Fig. 7. The third layer of the view library

Fig. 9. The first layer of the view library
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Since each 2D projection view corresponds to a position relationship between the
camera and the actual object, it is easy to determine the position relationship between
object and the camera by finding a 2D view that best matches the actual object (Fig. 11).

In order to test the experimental results, we place each object in two different
places. In the same place, we take five pictures and use the mean value as the final
position results. Table 2 shows the comparison of the results by the algorithm and the
actual position of the target object.

To illustrate the difference between our approach and the approach proposed in
[10], we compare the two different algorithms by calculating the accuracy and
recognition times shown in Fig. 12, while [10] calculating the dot product of the pixel
gradient vector as a similarity.

Table 2. Results of the accuracy evaluation

Presented method Dot_product-based method
Object Epos [mm] Erot [°] Time [s] Epos [mm] Erot [°] Time [s]

Bearing 0.42 0.52 0.760 - - -
Metal polyhedron 0.51 0.67 0.794 - - -
Block 0.78 0.82 0.830 0.58 0.48 0.961

Fig. 10. The object’s image

Fig. 11. Use model to locate metal polyhedron (a, b) and bearing (c, d)
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It can be seen from Table 2, the position error is about 0.78 mm and the compu-
tation time is less than 1 s. The recognition of our approach is faster, whereas the
accuracy is worse.

5 Conclusion

This paper develops a pose estimation of 3D object with 2D vision system. We propose
a new way of calculating the similarity between the model and the target image, which
is based on the sampling point on the shape of the object. We firstly get the model and
object contours and then sample the points on the contours and use the coordinate of
the sampling points as the descriptor of the points. We sort those points on a certain
way to determine the correspondence between two shapes. Through a distance
threshold, we filter out the wrong match points. Finally, by calculating the Euclidean
distance and cosine distance between these matching points, the similarity between the
model and the target image is obtained, and the 3D position of the object is determined.
The proposed approach has a significant advantage in terms of speed and anti-noise
interference, relative to the way in which the similarity is calculated by the pixel value.
However, the limitation of this algorithm is that it is difficult to guarantee the stability
of the algorithm for objects with complex shapes, or objects without obvious contour
features and difficult to extract, and the wrong results will be matched. Therefore, in the
future work, we will improve the algorithm for this aspect.
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Abstract. The purpose of this paper is to study the use of hybrid iterative
reconstruction (HIR) technique for radiation dose reduction and its effect on
low-contrast resolution. This method is designed to create prior information for
improving image quality from low dose CT scanners. We compare the perfor-
mance of lower radiation dose with the HIR and standard dose with the filtered
back projection (FBP) using catphan®504 phantom, which is used to measure
various image quality parameters. Results show that there are continuous linear
reduction of noise and linear increase of CNR with increasing HIR levels
compared to FBP for any given scanning protocol. It is possible to provide
equivalent diagnostic image quality at low dose. In this paper, we use a quan-
titative method to evaluate the noise characteristics. Evidence from phantom
tests demonstrates that the shape of NPSHIR is shifted continuously to low
frequency with increasing HIR levels compared to FBP for any given scanning
protocol. Our study confirms that even if there are continuous reduction of noise
and increase of CNR with increasing HIR levels, the performance of human
observers did not seem to be improved simultaneously because coarser noise
could appear. Our finding that the low-frequency components (HIR) are greater
than one of FBP (previously believed) may result in the discrepancy between the
performance of human observers and that of the ideal low-contrast objects.

Keywords: Computed tomography � Low contrast � Noise power spectrum
HIR � Image quality � Iterative reconstruction

1 Introduction

A major task in CT today is to minimize the radiation dose while preserve image
quality. A limiting factor for radiation dose reduction has been the current CT
reconstruction algorithm, filtered back projection (FBP). The main reason for the usage
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of FBP lies within its straight forward mathematical rational and relative low demand
on computation. FBP has a major inherent obstacle for dose reduction: increased
quantum noise with decreased radiation dose. Iterative reconstruction (IR) has been
widely used in SPECT/PET to improve the image noise and was introduced to CT
some time ago [1]. A limiting factor of using iterative reconstruction, however, is the
long computing time. A modified and computationally faster IR technique is recently
developed. Examples include Adaptive Statistical Iterative Reconstruction (ARIS) by
GE [2–5], iDose by Philips [6, 7], IRIS [8, 9] by Siemens and AIDR [10] by Toshiba
(Adaptive Iterative Dose Reduction). These different iterative reconstruction algo-
rithms were compared [11]. Several clinical and phantom studies consistently showed
that image noise decreased and contrast-to-noise ratio improved with IR reconstructed
images thus indicating great potential for dose reduction. To fully utilize the dose
reduction potential with IR, its performance needs to be studied in correlation with
diagnostic outcome. In general, image quality revolves around the ability to accurately
resolve anatomy with two main features: high-contrast resolution (spatial resolution)
and low-contrast resolution. It has been recognized, that image noise, measured as a
simple pixel standard deviation, only reflects the noise magnitude and omits the spatial
variation pattern, which could affect image visualization in particularly of low-contrast
objects. Noise power spectrum (NPS) has been shown to provide better characteriza-
tion of noise behavior on image systems [12]. The purpose of this study is to find out
the effect of HIR compared with standard FBP, on image noise and NPS, and their
correlation with the diagnostic performance in terms of spatial resolution and low
contrast detectability. Different radiation doses were tested to understand the dose
reduction limit using IR while providing sufficient spatial and low-contrast resolution.

2 Materials and Methods

2.1 Iterative Reconstruction Method in CT

Iterative image reconstruction is becoming popular for the following two reasons: (1) it
is easy to model and handle projection noise, especially when the counts are low; and
(2) it is easy to model the imaging physics, such as geometry, non-uniform attenuation,
scatter, and so on. The reconstruction of an image from the acquired data is an inverse
problem. Often, it is not possible to exactly solve the inverse problem directly. In this
case, a direct algorithm has to approximate the solution, which might cause visible
reconstruction artifacts in the image. Iterative algorithms approach the correct solution
using multiple iteration steps, which is allowed to obtain a better reconstruction at the
cost of a higher computation time.

In computed tomography, this approach was the one first used by Hounsfield. There
are a large variety of algorithms, but each starts with an assumed image, computes
projections from the image, compares the original projection data and updates the
image based upon the difference between the calculated and the actual projections.
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There are typically five components to iterative image reconstruction algorithms:

1. An object model that expresses the unknown continuous-space function X(r) that is
to be reconstructed in terms of a finite series with unknown coefficients that must be
estimated from the data.

2. A system model that relates the unknown object to the “ideal” measurements that
would be recorded in the absence of measurement noise. Often this is a linear
model.

3. A statistical model that describes how the noisy measurements vary around their
ideal values. Often Gaussian noise or Poisson statistics are assumed.

4. A cost function that is to be minimized to estimate the image coefficient vector.
Often this cost function includes some form of regularization.

5. An iterative algorithm for minimizing the cost function, including some initial
estimate of the image and some stopping criterion for terminating the iterations.

The basic process of iterative reconstruction is to discretize the image into pixels
and treat each pixel value as an unknown. Then a system of linear equations can be set
up according to the imaging geometry and physics. Finally, the system of equations is
solved by an iterative algorithm. The system of linear equations can be represented in
the matrix form as:

P ¼ AXþRN; ð1Þ

where X = [x1, x2, …, xj, …, xn]
T is pixel values of the image, P = [p1, p2, …, pi, …,

pm]
T is projection measurements, aij in the M � N response matrix A is a coefficient

that is the contribution from pixel j to the projection bin i, and RN is an M � 1 random
noise vector.

The diagram in Fig. 1 shows the basic procedure for using an iterative algorithm.
Each loop in Fig. 1 represents one iteration.

In iterative algorithm, a pixel is an area, which is used to form the projections of the
current estimate of the image. It tries to solve a system of linear equations instead of

Fig. 1. Flow chart of iterative image reconstruction scheme
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trying to solve an integral equation. Iterative algorithms are used to minimize an
objective function. This objective function can effectively incorporate the noise in the
measurement. The desired image function X̂ can be estimated by finding a penalized
solution:

X̂ ¼ argmin
X

kP� AXk22 þ kkEX � Dak22
n o

ð2Þ

where || ∙ ||2 is L2 norm, and the regularization parameter k is a positive constant chosen
to balance the data inconsistency(first term) and the penalized function(second term)
from the prior information, which is typically structural feature. E is the matrix to
extract prior information from the image; D is predetermined from a training set, which
should contain representative structures in the image; a is intermediate variables.

The reconstruction method solves the low dose CT problem iteratively, which is
designed to create prior information on target images for improving quality of images. It
is an innovative statistical iterative reconstruction technique in which iterations are
performed both in the projection and image domain, using sophisticated system and noise
models in the domain that is best suited for the correction of the relevant noise/artifact
characteristics while keeping structure intact. Primary role is noise reduction.

The HIR method works on image data area, reducing the time-consuming loops on
raw data and noise removal is obtained in subsequent iterative steps with a smoothing
process. It consists of the following 2 denoising components: (a) An iterative maximum
likelihood-type sinogram restoration method based on Poisson noise distribution; and
(b) A local structure model fitting on image data that iteratively decreases the uncor-
related noise. While the FBP method directly calculates the image in a single step, IR
method repeatedly update the image for a more precise result with some prior infor-
mation such as typically structural features. When performed, HIR allows users to
adjust the image noise level by inputting a parameter called HIR level. The larger the
HIR level is, the larger the noise reduction is, allowing users to prospectively decrease
the dose at the time of the scan (expecting that HIR will cancel the associated increased
noise level during the reconstruction process).

2.2 Phantom Study

In this study, catphan®504 phantom (The phantom Laboratory, Salem, New York) [13]
was used for the acceptance testing and commissioning for clinical use of 64 slice CT.
It is composed of several modules that can be used to measure various image quality
indices. A commercial designed semi-iterative HIR algorithm was used in the recon-
structions of the images from the raw data for different iterative percentages (HIR 1 to
HIR 6). The image characteristics were found using clinical protocols and relevant
phantom with and without HIR. Image Quality (IQ) metrics were assessed in same
location to analyze noise, noise power spectrum (NPS) low contrast detectability and
spatial resolution.
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2.3 Data Acquisition

A Catphan®504 phantom was scanned using a 64 slice CT(Ingenuity, Philips Medical
Systems) with two different tube voltages (100 kVp, and 120 kVp) at three different
dose (CT Dose Index Volume) levels, a reference dose of 42 mGy and two reduced
doses of about 50% and 75% (see Table 1). A collimation of 0.64 mm and 0.8 pitch
were used. Data sets were reconstructed with FOV of 350 mm and 512 � 512 pixel
matrix using FBP and different HIR levels at 4 mm thickness, and standard filter.

The low-contrast module (CTP 515) was used to study the effect of HIR on the
visibility, which contains 3 groups of supra-slice disks with diameters ranging from 2-
15 mm and subject contrasts of 1%, 0.5%, and 0.3%. The uniformity module (CTP
486) was used to calculate the spatial uniformity in the circular ROIs located in the
center and four peripheral regions. The CTP486 module was used to calculate image
noise and noise power spectrum (NPS).

2.4 Performance Evaluations

Image quality may be objectively measured in terms of physical measurements. These
measures include: noise characteristics, and low contrast resolution.

2.4.1 Spatial Resolution
The resolution properties of an imaging system are commonly described by its mod-
ulation transfer function (MTF). The MTF of a radiographic system can be calculated
using Fourier Transformation by either evaluating the response of the system to
periodic patterns, or more commonly measuring the line spread function (LSP). The
CTP528 module of the CatPhan®504 phantom contains a bead point object with a
diameter of 0.28 mm. The point object can be used to calculate the modulation transfer
function (MTF) which characterizes the spatial resolution of images. The images
reconstructed using HIR algorithms are comparable with FBP in terms of spatial res-
olution by observing the maximum spatial resolution (lp/mm).

2.4.2 Image Noise and Noise Characteristics
The CTP 486 module in the Catphan®504 phantom contains a uniform material that is
designed to have HU values within 2% (20HU) of the CT number of water. Image

Table 1. Scanning protocols.

Voltage
(KVp)

Current
(mAs)

CTDI_vol
(mGY)

Reduced
dose

Reconstruction
algorithm

120 650 42.36 0% FBP, HIR 1–6
120 325 21.20 49.95% Same as above
120 163 10.66 74.83% Same as above
100 550 21.63 48.94% Same as above
100 275 10.83 74.43% Same as above
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noise measurements were performed using the CTP 486 module. Standard deviation of
pixel intensities over a region of interest (ROI) is indicative of the image noise. We
used circular regions of interest (ROIs) with 150 mm2 for evaluating noise and HU
value (see Fig. 2). We report the mean of the noise evaluated in five ROIs that are
located at the center and four peripheral regions of the phantom. The mean of the five
mean HU values in ROIs was calculated to evaluate the HU stability.

As described elsewhere [12], to capture the noise characteristics, the noise power
spectrum (NPS) is often used to characterize CT reconstruction algorithms. NPS
measurements are best achieved using a large homogenous region. This ensures that
measured frequency variations are due to noise properties from the system acquisition
and the impact of the reconstruction algorithm without influence from variations due to
physical object texture arising from anatomy or pathology. The homogeneous section
of the CTP 486 module in the Catphan®504 phantom was reconstructed. A noise
image was produced by subtracting two neighbor slices. The NPS was calculated by
the following equation:

NPSðu; vÞ ¼ 1
A

ZZ
nðx; yÞe�2pðxuþ yvÞdxdy

����
����
2

" #
ð3Þ

where n(x, y) is the reconstructed noise image, u and v are frequency variables, and
A represents the area over which n is defined.

The NPS was measured using a centered box with M � M pixels of the homo-
geneous phantom region.

To examine the variance and spatial frequency characteristics of image noise, we
measured the noise power spectrum (NPS) on reconstructed images obtained with the
FBP and HIR algorithm. The NPS was calculated from the uniformity module of the
Catphan®504 phantom images using the following procedure:

(a) The M � M matrix subimage located at the center was isolated from each
phantom image;

(b) The mean of the isolated subimage was subtracted from the subimage to avoid
having a direct current (DC) component in the Fourier transform.

Fig. 2. ROIs for evaluating noise Fig. 3. Experimental data vs fitting curve
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The noise image was then zero-padded to a 512 � 512 image and was calculated
using the 2D Fourier Transform averaged radially in the frequency domain to provide a
1-dimensional representation of the frequency distribution. To get a better idea of the
power spectrum for one-dimensional NPS, we can do a rotational average of the two-
dimensional NPS.

An analytical curve was suggested that fits the NPS accurately [14]. The curve we
fit based on part data (not including low-frequency portion) is given by Eq. (2) that is
similar to Weibull distribution.

NPSðxÞ ¼ A
a x

me�
xk
a x� 0

0 x\0

�
ð4Þ

where x denotes the location of spatial frequency, A, m, k and a are unknown
parameters to be solved.

The one-dimensional NPS can be calculated from a rotational average of the two
dimensional NPS. Experimental data vs fitting curve are shown in Fig. 3.

The similarity in texture to FBP was defined as the ratio of the NPS for the low dose
HIR technique (NPSHIR) divided by the NPS for routine dose FBP (NPSFBP) as a
function of frequency. The resulting NPS ratio would be a value of NPSHIR matched
NPSFBP. The spectrum change was calculated by the following equation:

spectrum change ðSCÞ ¼ 1
N

XN
i¼1

NPSHIRðiÞ
NPSFBPðiÞ � 1

����
����� 100% ð5Þ

where the N samples of the NPS curves represent the noise spectrum range of interest.
For estimate the noise characteristics, a value of spatial frequency splitting (SFS

value) was calculated to divide noise power spectrum into two parts: lower image noise
power spectrum and higher image noise power spectrum, which have the same amount
of integral spectrum.

2.4.3 Low Contrast Resolution
The Catphan®504 phantom was used for imaging. The low-contrast module, CTP 515
(Fig. 4) consists of supra-slice and sub-slice targets. The supra-slice targets are of three
contrast levels: 0.3%, 0.5% and 1.0%. The three outer groups include nine supra-slice
targets with various diameters: 15.0 mm, 9.0 mm, 8.0 mm, 7.0 mm, 6.0 mm, 5.0 mm,

Fig. 4. Low-contrast module Fig. 5. Signal (green) and back-
ground (blue) (Color figure online)
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4.0 mm, 3.0 mm, and 2.0 mm. The low contrast detectability for any given contrast is
defined as the diameter of the smallest visible sphere within the group.

To find out the changes of image noise and possibly CT value associated with
different scanning parameters and HIR algorithms, circular regions of interest (ROIs)
with 50 mm2 were placed on the image of the largest 1% contrast-filled sphere and on
the background (BG) as indicated in the Fig. 5. Background ROIs were placed both at
smaller and larger radii measured from the centre of the phantom. The two background
values were averaged. The CNR is often used as a parameter for the image quality
characterization to obtain practical measures of object detectability. CNRs were derived
from mean CT numbers (CT) in the ROIs and the standard deviations (SD) in the
background ROI as [15]:

CNR ¼ li � lbj j
rb

ð6Þ

where li is the mean CT number in HU of the tissue of interest, lb the mean HU of the
background tissue and rb the standard deviation in HU of the background tissue.

3 Results

3.1 Spatial Resolution (MTF Estimation)

The acquisition and the image reconstruction parameters are presented blow: 150 mm
field of view; 0.90 mm slice thickness; 768 � 768 matrix; standard resolution and
standard reconstruction kernel (SRK) or high resolution and Y-sharp reconstruction
kernel (YRK). Results of the estimation of MTF are summarized in Table 2.

Table 2. Modulation transfer function (MTF) of FBP and various HIR levels with SRK and
YRK

Tube
voltage/current

Reconstruction
algorithm

MTF50 (lp/cm)
with SRK

MTF50 (lp/cm)
with YRK

MTF10 (lp/cm)
with SRK

MTF10(lp/cm)
with YRK

120 kVp,
325 mAs
21.20 mGy

FBP 3.398 6.533 6.007 8.945
HIR 1–6 3.401–3.406 6.546–6.574 6.015–6.026 8.972–9.1777

120 kVp,
163 mAs
10.66 mGy

FBP 3.328 6.469 5.807 8.869
HIR 1–6 3.331–3.354 6.475–6.499 5.914–5.953 8.905–9.059

l00 kVp,
550 mAs
21.63 mGy

FBP 3.347 6.422 5.998 9.328
HIR 1–6 3.354–3.374 6.450–6.598 6.006–6.014 9.369–9.512

l00 kVp,
275 mAs
10.83 mGy

FBP 3.272 5.937 5.698 8.880
HIR 1–6 3.289–3.371 5.995–6.082 5.793–6.001 8.955–9.156
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The estimation of the MTF or spatial resolution are very similar for FBP and
various HIR levels with any given scanning protocol in shape and position. There isn’t
obvious improvement in the spatial resolution of images reconstructed with different
HIR levels compared with the FBP images at both 10% and 50% MTF. There is
obvious change with different focal spot resolution and reconstruction kernels for MTF.

3.2 Image Noise

Reconstruction images with FBP and HIR levels are shown in Fig. 6. Figure 7 showed
that there is continuous linear reduction of noise with increasing HIR levels for any
given scanning protocol. With various HIR levels (HIR1–HIR6), image noise was
improved from 0.40 to 1.86 at 325 mAs@120kVp, from 0.64 to 2.66 at 163
mAs@120kVp, from 0.42 to 1.92 at 550 mAs@100kVp, from 0.56 to 2.46 at 275
mAs@100kVp. For protocols with lower doses, every increasing HIR level resulted in
relatively greater dose reduction. This indicates that HIR is effective to reduce noise
with marked x-ray photon deprivation. However, as the HIR level increases, the images
can have the appearance of being noise-free, which can present as an artifactual over
smoothing of the images.

3.3 Noise Power Spectrum

Noise or CNR isn’t only parameter to evaluate the low contrast resolution of recon-
structed image. HIR resulted in a noise texture described as coarser. Texture change
was more evident as the increase of HIR levels.

To capture the noise characteristics, the noise power spectrum (NPS) is often used
to characterize CT reconstruction algorithms. NPS measurements are best achieved
using a large homogenous region. A 64 � 64 pixels noise image was produced by
subtracting two neighbor slices in the homogeneous section of the CTP 486 module.
The NPS was calculated by Eq. (3) and the curve was fitted by Eq. (4). The normalized
NPSHIR4 for any given scanning protocol were shown in 10, respectively.

In our study, the plots of the NPS (Figs. 8 and 9) show near identity of the
frequency responses of images reconstructed with any given scanning protocol dose
using FBP or different HIR level, respectively. This implies that the distribution of
noise power remained the same for the entire spatial frequency. Consequently, the

Fig. 6. Noise images: FBP (left); HIR4 (mid-
dle); HIR6 (right).

Fig. 7. Noise reduction with different HIR
levels
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noise texture of images reconstructed with FBP or HIR was not significantly different,
although noise was significantly different for any given scanning protocol.

The NPS reflected improvements in the image noise with different HIR levels as
compared with FBP at any given scanning protocol as shown in Fig. 9, which show the
noise power spectrum normalized by the maximum NPS (NPSFBP) at 163
mAs@120kVp. The results show different frequency responses of images recon-
structed for FBP and various HIR levels, respectively. This implies that the distribution
of noise power remained difference for the entire spatial frequency and noise frequency
band is reduced with increasing HIR level for any given scanning protocol. Results
demonstrate that HIR algorithm is effective to reduce noise based on the NPS analysis.
Results of the estimation of the image noise, spectrum change (SC) for FBP and
various HIR levels with different scanning protocols are summarized in Table 3.

The HIR NPS studies show an improvement for high-frequency noise compared
with FBP NPS. Low contrast object is mainly determined by the low-frequency portion
of the NPS. There are continuous increase of low-frequency components (reduction of
SFS value) and larger spectrum change with increasing HIR level compared to FBP for
any given scanning protocol. But even if there are continuous reduction of noise and
increase of CNR with increasing HIR levels, the performance of human observers did
not seem to depend on them absolutely. In some cases, coarser noise (low-frequency
noise) could appear.

Fig. 8. Normalized NPS of HIR4 with differ-
ent scanning protocols

Fig. 9. NPSFBP vs NPSHIR with different
levels

Table 3. Image noise and spectrum change (SC).

Tube voltage/current Parameters FBP HIR 1 HIR 2 HIR 3 HIR 4 HIR 5 HIR 6

120 kVp, 325 mAs
21.20 mGy

Noise 4.22 3.82 3.58 3.30 3.02 2.72 2.36
SC 0% 2.35% 3.90% 5.38% 8.64% 11.51% 15.63%

120 kVp, 163 mAs
10.66 mGy

Noise 6.10 5.46 5.14 4.76 4.36 3.94 3.44
SC 0% 2.48% 4.33% 5.95% 8.48% 10.80% 14.89%

l00 kVp, 550 mAs
21.63 mGy

Noise 4.42 4.00 3.74 3.48 3.18 2.90 2.50
SC 0% 2.41% 3.86% 5.89% 8.63% 11.97% 15.38%

100 kVp, 275 mAs
10.83 mGy

Noise 5.70 5.14 4.82 4.50 4.10 3.70 3.24
SC 0% 2.42% 4.14% 6.31% 8.96% 12.36% 16.29%
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3.4 Low Contrast Resolution

Catphan phantom was employed as the imaging target: low contrast detectability and
CNR were compared for routine dose CT with FBP and low dose CT with different
HIR levels. Following figure show results calculated the CNR on images acquired at
120 and 100 kVp with the FBP and the different HIR levels using the CTP401 module
of the Catphan® 504 phantom.

There are still very high CNR values using HIR method at the low-dose protocol.
The plot in Fig. 10 is from a set of graphs that indicate the potential for dose reduction
when using HIR. CNRs are generally decreased with decreasing radiation dose and
increased with HIR levels, because noise decrease with increasing radiation dose and
Hounsfield values are relatively contrast with varying radiation dose. We found CNR at
a lower dose to be equivalent to that at a standard dose. For dose reduction of 50%, the
CNRs of images reconstructed with HIR 5–6 at 325 mAs@120kVp, with HIR 4–6 at
550 mAs@100kVp are all higher than that of standard image. For dose reduction of
75%, the CNRs of images reconstructed with HIR 6 at 325 mAs@120kVp, and 550
mAs@100kVp are all higher than that of standard image.

3.5 Low Contrast Objects Detectability

A set of images with subject contrast of 0.5% were compared for FBP and different
HIR levels (HIR 2, HIR 4 and HIR 6) at 163 mAs@120kVp with same reduced doses
of 75%. The noise of Fig. 11(a)–(d) are 6.10, 5.14, 4.36 and 3.44, respectively. There is
continuous reduction of noise with increasing HIR levels. Results show that there is not
equally visibility evaluation. High HIR level may result in detail blurring.

Fig. 10. CNR with different HIR levels for
dose reduction

Fig. 11. Low-contrast resolution

Fig. 12. Images with subject contrast of
0.5%

Fig. 13. Same noise with different scanning
protocol
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Figure 12 showed the subjective low-contrast resolution as a function of noise for
different scanning parameters and HIR algorithms, which contains the supra-slice disks
with diameters ranging from 2–15 mm and subject contrast of 0.5%. Each colored
marker represent data from the same scanning protocol but seven varying HIR levels
(FBP, HIR 1-HIR6); markers from right to left correspond to increased HIR levels. The
low-contrast resolution in general improves with noise reduction.

Low contrast detectability and noise were compared for low dose CT with different
HIR levels. Four images have similar noise with different HIR levels and radiation dose
reduction in Fig. 13. The parameters of Fig. 13(a)–(d) are 325mAs@120 kVp and HIR
1; 163 mAs @ 120 kVp and HIR 6; 550mAs@100kVp, HIR 1; and 275
mAs@100kVp and HIR 6, respectively. The HIR NPS curves show an improvement
for high-frequency noise compared with FBP NPS. Low contrast object is mainly
determined by the low-frequency portion of the NPS. There is continuous increase of
low-frequency components and larger spectrum change with increasing HIR level
compared to FBP for any given scanning protocol. Even if there are continuous
reduction of noise and increase of CNR with increasing HIR levels, the performance of
human observers did not seem to be improved simultaneously because coarser noise
(low-frequency noise) could appear. Our finding that the low-frequency components
are greater than one of FBP (previously believed) may help to explain the discrepancy
between the performance of human observers and that of the ideal low-contrast objects.
Visually, it is quite apparent that HIR 4 stays much close the option, because HIR 6 has
much greater low-frequency components.

Our results demonstrated that even at the same noise level, the low-contrast limit is
different among different scanning protocols. There is no one-to-one correspondence
between the noise and low-contrast resolution. Reducing scanning dose decreased low-
contrast detectability at the same image noise level. Therefore it implicates that there is
an examination specific limit on the dose reduction. As there are continuous reduction
of noise and increase of CNR with increasing HIR levels, the performance of human
observers did not seem to be improved simultaneously. According to Hanson’s opinion
[16], our finding that the low-frequency components (HIR) are greater than one of FBP
(previously believed) may help to explain the discrepancy between the performance of
human observers and that of the ideal low-contrast objects. Visually, it is quite apparent
that HIR 4 stays much close the option selected in clinical medicine, although HIR 6
has much greater low-frequency components. These results agree well with clinical
observation.

4 Conclusion

The phantom study provides objective assessment with HIR technique on image
quality parameters. Compared with the conventional FBP, HIR results in Noise
reduction with increase of HIR levels; improved contrast noise ratio; improved low
contrast detectability and texture change or spectrum shift. Reducing scanning dose
decreased low-contrast detectability at the same image noise level. Therefore, it
implicates that there is a limit on the dose reduction when designated low-contrast
structures are of clinical interest. There are continuous linear reduction of noise and
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linear increase of CNR with increasing HIR level for any given scanning protocol. Our
study confirms that the MTF of the reconstructed image with HIR doesn’t have decline
along with the noise level decreasing. This indicates that high-contrast spatial resolu-
tions were not lost while using HIR.

Our results demonstrated that even at the same noise level, the low-contrast limit is
different among different scanning protocols. There is no one-to-one correspondence
between the noise and low-contrast resolution. Reducing scanning dose decreased low-
contrast detectability at the same image noise level. Therefore it implicates that there is
an examination specific limit on the dose reduction when designated low-contrast
structures are of clinical interest.

Noise or CNR isn’t an only parameter to evaluate the low contrast resolution of
reconstructed image. Even if there are continuous reduction of noise and increase of
CNR with increasing HIR levels, the performance of human observers did not seem to
be improved simultaneously because coarser noise (low-frequency noise) could appear.
The HIR NPS curves show an improvement for high-frequency noise compared with
FBP NPS. There is continuous increase of low-frequency components and larger
spectrum change with increasing HIR levels compared to FBP for any given scanning
protocol. HIR resulted in the change of noise texture. This change has the potential to
affect spatial resolution and low contrast detectability. The shape of NPS is shifted
continuously to low frequency with increasing HIR levels compared to FBP for any
given scanning protocol.

Our finding that the low-frequency components (HIR) are greater than one of FBP
(previously believed) may help to explain the discrepancy between the performance of
human observers and that of the ideal low-contrast objects. Visually, it is quite apparent
that HIR 4 stays much close the option selected in clinical medicine, although HIR 6
has much greater low-frequency components.

References

1. Hounsfield, G.N.: Computerized transverse axial scanning (tomography). Part 1. Description
of system. Br. J. Radiol. 46, 1016–1022 (1973)

2. Hara, A.K., Paden, R.G., Silva, A.C., Kujak, K.L., Lawder, H.J., Pavlicek, W.: Iterative
reconstruction technique for reducing body radiation dose at CT: feasibility study. AJR 193,
764–771 (2009)

3. Nuyts, J., De Man, B., Dupont, P., Defrise, M., Suetens, P., Mortelmans, L.: Iterative
reconstruction for helical CT: a simulation study. Phys. Med. Biol. 43, 729–737 (1998)

4. Liu, Y.J., Zhu, P.P., Chen, B., et al.: A new iterative algorithm to reconstruct the refractive
index. Phys. Med. Biol. 52, L5–L13 (2007)

5. Cheng, L., Fang, T., Tyan, J.: Fast iterative adaptive reconstruction in low-dose CT imaging.
In: Proceedings of the IEEE International Conference on Image Processing, pp. 889–892.
IEEE, New York, NY (2006)

6. Casey, B., Keen, C.: Philips Touts MRI Advances, CT dose reduction at RSNA. RSNA, Oak
Brook (2009)

7. Noël, P.B., Fingerle, A.A., Renger, B., et al.: A clinical comparison study of a novel
statistical iterative and filtered backprojection reconstruction. In: Physics of Medical Imaging
Proceedings of SPIE, vol. 7961 (2011)

Hybrid Iterative Reconstruction for Low Radiation Dose Computed Tomography 255



8. Division, Siemens Healthcare Imaging: Mathematical Approach Contributes to Lower
Radiation Dose in Computed Tomography: Siemens Develops Innovative Method for
Iterative Reconstruction of CT Images. Siemens, Erlangen (2009)

9. Bruder, H., Raupach, R., Sedlmair, M., Sunnegardh, J., Stierstorfer, K., Flohr, T.G.:
Reduction of radiation dose in CT with an FBP-based iterative reconstruction technique
(abstract). B-568, insight into imaging (ECR abstract book). S131 (2010)

10. Joemai, R.: Improved image quality in clinical CT by AIDR. Toshiba Med. Syst. J. Vis. 16,
1–3 (2010)

11. Jensen, K., Catrine, A., Martinsen, T., Tingberg, A., et al.: Comparing five different iterative
reconstruction algorithms for computed tomography in an ROC study. Eur. Radiol. 24,
2989–3002 (2014)

12. Hsieh, J.: Computed Tomography Principles, Design, Artifacts, and Recent Advances, vol.
2. SPIE Press, Bellingham (2009)

13. Catphan@504 Phantom Manual (The phantom Laboratory, Salem, New York). http://www.
phantomlab.com/library/pdf/catphan504manual.pdf

14. Benítez, R.B., Ning, R., Conover, D., Liu, S.H.: NPS characterization and evaluation of a
cone beam CT breast imaging system. J. X-Ray Sci. Technol. 17, 17–40 (2009)

15. Gupta, A.K., Nelson, R.C., Johnson, G.A., Paulson, E.K., Delong, D.M., Yoshizumi, T.T.:
Optimization of eight-element multi-detector row helical CT technology for evaluation of the
abdomen. Radiology 227, 239–745 (2003)

16. Hanson, K.M.: Detectability in computed tomographic images. Med. Phys. 6, 441–451
(1997)

256 J. Sheng et al.

http://www.phantomlab.com/library/pdf/catphan504manual.pdf
http://www.phantomlab.com/library/pdf/catphan504manual.pdf


Fast Single Image De-raining via a
Weighted Residual Network

Ruibin Zhuge, Haiying Xia(B), Haisheng Li, and Shuxiang Song

Guangxi Normal University, Guangxi 541000, China
653140685@qq.com, 573023049@qq.com, 187373363@qq.com,

songshuxiang@mailbox.gxnu.edu.cn

Abstract. Deep learning based methods for single image de-raining
have shown great success in recent literatures. However, it is still a chal-
lenge to reduce the computation time while maintaining the de-raining
performance. In this paper, we introduce a weighted residual network
(WRN) to address above challenge. Inspired by the image processing
knowledge that a rainy image can be decomposed into a base (low-pass)
layer and a detail (high-pass) layer, we train the network on a weighted
residual between the weighted detail layer of rainy image and the detail
layer of clean image, which can significantly reduce the mapping range
from input to output and easily employ the image enhancement oper-
ation on the base layer and the detail layer separately to handle the
heavy rain with hazy looking. We also introduce a weighted convolution-
deconvolution network structure to make the training easier. The first
layer of network is a multi-scale convolution to expand the receptive field
of the network. Our WRN requires less computation time for processing
a test image because we set the stride of intermediate layers to 2 with-
out zero-padding. Experiment results on both synthetic and real-world
images demonstrate our WRN achieves high-quality recovery compared
to several advanced methods of single image de-raining.

Keywords: Rain removal · Deep learning · WRN

1 Introduction

Many outdoor computer visual systems need clear and visible images, such
as surveillance and navigation. The precision of most computer vision algo-
rithms (e.g. object detection, location, tracking) depends on the quality of
images. Under the rainy weather, objects are blurred by dense rain streaks,
which severely degrades image quality. Thus, it is necessary to design effective
approaches for removing rain streaks from images.

With the abundant temporal information from video sequences, great works
have been made in video de-raining tasks [1,2,5,14,17,19]. Rain streaks can be
easily detected and removed by using the frame difference information. However,
it is challenging to remove rain streaks from a single image duo to the lack
c© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11306, pp. 257–268, 2018.
https://doi.org/10.1007/978-3-030-04224-0_22
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temporal information. To handle this challenge, several algorithms [8,9,11,12]
have been proposed. For example, the first single image de-raining algorithm
was proposed by Kang et al. [8]. They utilized a bilateral filter to decompose
the rain image into the low and high frequency parts. The rain streaks remained
in the high frequency were removed by performing sparse coding and dictionary
learning algorithms. In [9], a kernel regression algorithm was introduced for
detecting the rain streaks in a single image while an adaptive nonlocal means
filter was used to restore the detected rain streaks. Luo et al. [12] proposed a
discriminative sparse coding algorithm to solve a non-linear screen blend model
of rain images. In [11], Li et al. introduced simple patches based on the Gaussion
mixture models (GMMs) to impose constraints on both the background and
the rain layer for accommodating multiple orientations and scales of the rain
streaks. These methods try to build models for rain streaks removal and employ
optimizations to solve the mathematical models, which requires lots of manual
parameters and computation resources.

Recently, the deep convolutional neural network (CNN) based methods have
been proven usefully in the single image de-raining tasks [3,4,16,18]. In [3],
Fu et al. separated the input rainy image into a base layer and a detail layer.
They proposed a three-layer CNN to remove the rain streaks from the detail
layer while a image enhancement was merged into the network to handle the
heavy rain with hazy looking. To explore more effective information, Fu et al. [4]
adopted the deep residual network (ResNet) structure [7] as the parameter layers
and introduced a negative residual mapping to reduce the mapping range of the
network. To deal with the environment with rain accumulation, Yang et al. [16]
proposed a recurrent network structure to restore the rain accumulation images.
A dehazing network was embedded in the base network to remove atmospheric
veils. However, there still exist two challenges. One is the improvement for de-
raining performance. As shown in Fig. 1, the results of methods [3,4,16] remain
some rain streaks or artifacts. Another is the reduction for computation time.
For example, method [16] requires approximately 126s for testing a 500 × 500
rainy image, which is hard for practical applications. To address aforementioned
challenges, we propose a weighted residual network (WRN) to remove the rain
streaks from a single image effectively. We first decompose a rainy image into
a base layer and a detail layer by a low-pass filter. Then we directly use the
clean image to subtract the base layer of rainy image to get the detail layer of
clean image. Based on the decomposition operation, image enhancement can be
used to enhance image visibility when the image suffers from heavy rain with
hazy looking. After obtaining the detail layers, we introduce a weighted learning
strategy to make the training easier. Different with methods in [3,4], it directly
learns a weighted residual between the weighted rainy detail layer and the clean
detail layer. Inspired by the encoder-decoder network with skip connections [13],
we propose a weighted convolution-deconvolution network structure to adjust
the contributions of parameter layers. We also use the multi-scale convolution to
expand the receptive field and promote feature fusion. A key step of proposed
network is the stride of intermediate layers is set to 2 without zero-padding, so
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(a) (b) (c)

(d) (e) (f)

Fig. 1. De-raining results of different methods. (a) Ground truth (b) Rain image (c)
The result of method [3] (d) The result of method [4] (e) The result of method [16] (f)
The result of proposed WRN

that the computation time can be significantly cut down. We only require 1.9s
to test a 500 × 500 rainy image on our CPU. The de-raining result of our WRN
is shown in Fig. 1(f). It removes almost all of the rain streaks while preserving
the image details well. Our contributions can be summarized as follows:

(1) We propose a weighted residual network (WRN) for single image rain
removal. The designed network is composed by a weighted residual learn-
ing strategy and a weighted convolution-deconvolution network structure.

(2) Some strategies are used to boost the de-raining effectiveness: a multi-scale
convolution; stride of intermediate convolution-deconvolution layers is set to
2 without zero-padding.

(3) Experiment results on both synthetic and real-world images prove the effec-
tiveness of WRN.

2 Proposed Method

Our proposed WRN is illustrated in Fig. 2. It consists of a weighted residual
learning strategy and a weighted convolution-deconvolution network.

2.1 Weighted Residual Learning Strategy

As described in [3], a rainy image X and the corresponding clean image Y can
be separately decomposed into a base layer and a detail layer by a guider filter
[6],

X = Xbase + Xdetail, Y = Ybase + Ydetail (1)
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Fig. 2. The architecture of proposed WRN

where the subscript ‘detail’ denotes the detail layer, and ‘base’ denotes the base
layer.

Detail layers are more sparse than the whole image, so training on the detail
layers is more easier than directly training on the whole image. The detail layers
are described in the following equations,

Xdetail = X − Xbase, Ydetail = Y − Ybase (2)

In [3], Xbase and Ybase are considered as approximately equal, which are
removed from the training process. Actually, Xbase and Ybase can not be equal. As
shown in Fig. 3, the pixel values of Xbase are higher than the pixel values of Ybase

duo to the influence of rain. But the network is trained to learn Xtrained detail ≈
Ydetail, which causes the following result,

(Xtrained detail + Xbase) > (Ydetail + Ybase) (3)

This will lead to the derained results to be brighter than the clean images. To
address this limitation, we directly use the filtered result Xbase as Ybase since
the rainy image can be regarded as adding the rain streaks to the clean image,

Ybase = Xbase (4)
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(a) (b) (c) (d)

Fig. 3. Examples of base layers. (a) Ground truth (b) Rainy image (c) The base layer
of ground truth (d) The base layer of rainy image

According to Eq. 4, the negative residual mapping in [4] can be described as,

Nneg = Y − X = Ydetail + Xbase − (Xdetail + Xbase) = Ydetail − Xdetail (5)

where Nneg refers to the negative residual mapping. To further reduce the map-
ping range of network, we introduce a weighted residual learning strategy (Fig.
2),

Nneg ∗ β = Ydetail − Xdetail ∗ α (6)

where α and β indicate weights, which are adjusted in the training process.
The proposed learning strategy combines the advantages of method [3,4] and

makes some improvements. Firstly, the prior of detail layer is used to reduce the
mapping range. Different from the method [3], we just need a guider filter to get
both the rainy detail layer and the clean detail layer, which reduces the training
time. Secondly, the negative residual between the clean detail layer and rain
detail layer becomes a special case of the proposed weighted residual since the
parameters α and β are adjustable. Our proposed learning strategy is able to
adjust contributions of the negative residual and the input detail while reducing
the mapping range, which is has better learning than method in [4]. Thirdly, as
shown in Fig. 2, we can easily employ the image enhancement operation on the
base layer and the detail layer separately to handle the heavy rain looks hazy.
Similar with method [3], we multiply the detail layer by two and use a non-liner
function [10] to enhance the base layer,

Yenhanced = (Xbase)enhanced + 2(Xdetail) (7)

2.2 Weighted Convolution-Deconvolution Network

In [13], Mao et al. introduced a deep symmetrically link encoding-decoding net-
work with skip connections for image restoration tasks, which tackles the prob-
lem of gradient vanishing and obtains performance gains. Based on the encoding-
decoding network structure, we propose a weighted convolution-deconvolution
network as parameter layers to make the training process easier, as shown in
Fig. 2. Instead of using a symmetric encoding-decoding network, we first employ a
multi-scale convolution to expand the receptive field and promote feature fusion.
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Since the feature size needs to be same, we set the stride of convolution to 1 with
zero-padding. Then we introduce a weighted module,

Y = w1 ∗ Ydeconv + w2 ∗ Yconv (8)

where w1 and w2 refer to weights, Yconv means the results of convolution layer.
Ydeconv indicates the results of deconvolution layer. The result of each con-
volution is added to the result of corresponding deconvolution, including the
multi-scale convolution layer and the intermediate convolution layer. Compared
with the network in [13], the proposed weighted network can not only enjoy
the gains of skip connection, but also adjust the contributions of convolution-
deconvolution layers to make full use of the effective information. Since the com-
putation time of network needs to be considered, we set the stride of intermediate
convolution-deconvolution layers to 2 without zero-padding, which significantly
cuts down the test time. Figure 4 shows the results of different learning strate-
gies. We can see the proposed WRN with stride 2 convergences faster than the
10-layer network in [13] and the WRN with stride 1.

Fig. 4. Training loss and validation loss of different training strategies. ‘RED’ refers
to the network in [13]. ‘s-1-t’ means training loss with stride 1. ‘s-2-v’ is the validation
loss with stride 2.

2.3 WRN

Loss function. Combining the weighted residual learning strategy and the
weighted convolution-deconvolution network, the objective function of WRN can
be written as,

J =
1
N

i=1∑

N

‖β ∗ f(Xi,detail,W, b) + α ∗ Xi,detail − Yi,detail‖2F (9)

where N is the number of training images, f(·) is the proposed convolution-
deconvolution network, W and b are the network parameters. α and β refer to
weights, ‖·‖F means Frobenius norm.
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Table 1. The detail setting of WRN

Layers Filter sizes Use ReLU Features Strides Zero-padding

Convolution ×1 3×3/5×5/7×7 Yes 32/32/32 1 Yes

Convolution ×4 3×3 Yes 32 2 No

Deconvolution ×4 3×3 Yes 32 2 No

Convolution ×1 3×3 No 3 1 Yes

The proposed WRN has 10 layers to balance the trade-off between perfor-
mance and computation efficiency. In the first layer, we use 3 × 3, 5 × 5 and
7 × 7 filter sizes to generate 32 features separately. The stride of each convolu-
tion is set to 1 with zero-padding to make sure the features are the same size.
Then the features are concatenated to 96 followed by 4 convolution layers and
4 deconvolution layers. The stride of each layer is set to 2 without zero-padding
and each layer generates 32 features. In the last layer, we use 3 × 3 convolution
with 1 stride and zero-padding to fuse the different features. The detail design
is shown in Table 1.

3 Experiments

In this section, the performance of our proposed WRN is compared with
four advanced de-raining methods [3,4,11,16] on both synthetic and real-world
images. All the networks are trained on a computer with Inter Xeon E3 CPU,
8GB RAM and NVIDIA Geforce GTX 750ti. We test the images on a PC with
Inter Core i3 CPU. The implementation code of [11] is provided in Matlab version
by authors. For methods of [3,4,16], the codes are exhibited on the websites1,2,3.

3.1 Datasets

Since it is difficult to obtain the clean and rainy image pairs, we use three public
synthetic datasets for comparison. Dataset 1: A large dataset is provided by [4],
which contains 1000 clean images and 14000 synthetic rainy images. We random
select 9100 image pairs to generate three million 64 × 64 rainy/clean image
patch pairs for training. 700 pairs of rainy/clean images are used for validation.
For testing, we random select 100 rainy/clean images from the remaining 4200
image pairs. Dataset 2: [16] provides 200 training image pairs and 100 testing
image pairs. We use the 200 training image pairs to generate 800 thousand 64×64
image patch pairs for training. Dataset 3: 12 image pairs provided by [11]. We
use the 100 testing image pairs from Dataset 2 to generate 400 thousand 64×64
image patch pairs for training.

1 https://xueyangfu.github.io/projects/cvpr2017.html.
2 https://xueyangfu.github.io/projects/tip2017.html.
3 http://www.icst.pku.edu.cn/struct/Projects/joint rain removal.html.

https://xueyangfu.github.io/projects/cvpr2017.html
https://xueyangfu.github.io/projects/tip2017.html
http://www.icst.pku.edu.cn/struct/Projects/joint_rain_removal.html


264 R. Zhuge et al.

3.2 Parameter Setting

We use Adam with weight decay of 10−10 to train our WRN and set the mini-
batch size to 20. The learning rate is initialized as 10−3 and divided by 10 at
100 K iterations for Dataset 1. We terminate training at 180 K iterations. For
Dataset 2 and Dataset 3, the learning rate is divided by 10 at 4 and 8 epochs
separately. The training is terminated at 10 epochs. For the other methods, we
use the optimal settings published in the literatures. The parameters α, β and
‘w5-w10’ of our WRN are initialized as 0.5 while the ‘w1-w4’ are initialized as
0.25.

SSIM:1
PSNR:Inf

(a)

SSIM:0.8720
PSNR:25.28

(b)

SSIM:0.8719
PSNR:26.38

(c)
SSIM:0.8991
PSNR:25.18

(d)

SSIM:0.8935
PSNR:26.11

(e)

SSIM:0.9270
PSNR:28.54

(f)

Fig. 5. De-raining results of different methods on Dataset 1. (a) Ground truth (b)
Rain image (c) The result of method [11] (d) The result of method [3] (e) The result
of method [4] (f) The result of proposed WRN

Table 2. Average SSIM and PSNR on different datasets.

Dataset 1 Dastaset 2 Dataset 3

Ground truth 1/Inf 1/Inf 1/Inf

Rain images 0.7046/21.34 0.8255/25.52 0.8371/28.82

Method [11] 0.7844/23.75 0.8712/28.36 0.8928/30.70

Method [3] 0.8333/21.97 0.9134/28.17 0.9033/29.42

Method [4] 0.8703/27.32 0.9161/31.39 0.8947/30.68

Method [16] / 0.9696/35.21 0.9447/34.49

WRN 0.8888/28.31 0.9686/35.26 0.9542/35.05
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PSNR:25.81

(b1)

SSIM:0.8830
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(c1)
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(d1)
SSIM:0.9083
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PSNR:30.94
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PSNR:35.00

(g1)
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PSNR:Inf

(a2)

SSIM:0.7216
PSNR:24.16

(b2)

SSIM:0.0.8694
PSNR:28.44

(c2)
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PSNR:24.92
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PSNR:29.58

(e2)
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PSNR:28.41
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SSIM:0.9216
PSNR:30.26
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Fig. 6. De-raining results of different methods on Dataset 2 and Dataset 3. (a1)-(a2)
Ground truth (b1)-(b2) Rain images (c1)-(c2) Results of method [11] (d1)-(d2) Results
of method [3] (e1)-(e2) Results of method [4] (f1)-(f2) Results of method [16] (g1)-(g2)
Results of proposed WRN

3.3 Results on Synthetic Images

We compare the de-raining performance of different methods on synthetic images
quantitatively and qualitatively. We use SSIM [15] and PSNR for quantitative
evaluation. Since the training code of method [16] is not provided. We just
compare it with other methods on Dataset 2 and Dataset 3. The results
of all synthetic images are shown in Table 2. As can be seen, the proposed WRN
achieves the best quantitative performance compared to other methods. Our
WRN is able to handle different types of the rainy images. It is more capable of
learning by the weighted network structure, which can adjust the contribution
between layers dynamically. We also show the qualitative comparison of different
methods in Figs. 5 and 6. It can be clearly observed that the de-raining results of
methods [3,4,11,16] can not remove all the rain streaks. Those methods contain
rain artifacts or remove the image details. Our WRN can remove the rain streaks
and preserve the image details effectively.



266 R. Zhuge et al.

(a1) (b1) (c1)

(d1) (e1) (f1)

(a2) (b2) (c2)

(d2) (e2) (f2)

Fig. 7. De-raining results of different methods on real-world images. (a1)-(a2) Rain
images (b1)-(b2) Results of method [11] (c1)-(c2) Results of method [3] (d1)-(d2)
Results of method [4](e1)-(e2) Results of method [16] (f1)-(f2) Results of proposed
WRN

3.4 Results on Real-World Images

We also compare the different methods on the real-world images. The qualitative
results of real-world images are shown in the first and second row of Fig. 7. As
we can seen, our proposed WRN provides better visual performance by preserv-
ing details, compared to other methods. In Fig. 7 (a2)-(f2), we use the image
enhancement to handle the heavy rain with hazy looking. Methods [4,11,16]
are based on the post-processed, which means directly employing the non-liner
function [10] on the de-raining results. For method [3] and WRN, we employ the
enhancement operation on the base layer and detail layer separately, as described
in Sect. 2.1. We can observe the results based on decomposition are better than
the post-processed results. The proposed WRN can remove rain streaks and
enhance the visualization since it combines the effective de-raining network with
image enhancement based decomposition.
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Table 3. Average running time of different methods on three image sizes(seconds)

Image sizes Method [11] Method [3] Method [4] Method [16] WRN

250 × 250 144.8 6.7 3.3 42.4 1.0

500 × 500 681.2 24.8 7.4 126.9 1.9

750 × 750 1557.9 54.2 14.6 234.6 3.5

3.5 Running Time

Table 3 shows the average running time of ten rainy images by using methods [3,
4,11,16] and our WRN. As observed, method [11] consumes lots of time because
of the complex optimizations. The computation time of methods [3,16] is limited
by the redundant network parameters. Compared with the fast method [4], our
proposed WRN takes about a quarter of the time for testing a 750×750 image
since it has simple convolution-deconvolution structure with stride 2.

4 Conclusion

This paper has proposed a weighted residual network (WRN) for single image
rain removal, including a weighted residual learning strategy and a weighted
convolution-deconvolution network. The weighted residual learning strategy aims
to reduce the mapping range of the network and make the training easier.
Based on the encoder-decoder network, we proposed a weighted convolution-
deconvolution network with a multi-scale convolution to explore more effective
information and adjust the contributions of parameter layers. We set the stride
of convolution-deconvolution to 2 without zero-padding to accelerate comput-
ing. Experiment results on different synthetic datasets and real-world images
show our WRN achieves the state-of-the-art while less computation resources
are required. The performance of proposed WRN can be improved by the fusion
design of loss function, which is targeted for future work.
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Abstract. Effective image features are of vital importance for content-
based image retrieval task. Recently, deep convolutional neural networks
have been widely used in learning image features and have achieved
promising results. However, there are still two questions need to be
addressed. The first is the limitation of the image size in some works,
and the second is the convolutional feature may not directly suitable
for image retrieval. In our paper, we comprehensively solve these two
problems by proposing a novel feature selection approach based on a
pre-trained CNNs. Compared with others feature selection methods, our
approach takes a two-stage strategy. The first stage is to select the effec-
tive feature sets using our proposed Median Sum Pooling Feature Selec-
tion method, and the second stage boosts the selected feature sets using
the Space Channel Enhancement model. We evaluate our method on
three benchmark datasets including Oxford5K, Paris6K, and Holiday.
The experimental results show that our proposed method achieves com-
petitive performance on both Oxford and Paris buildings benchmarks.

Keywords: Image retrieval · Feature selection
Convolutional neural networks

1 Introduction

Content-based image retrieval (CBIR) has been an active research topic in the
computer vision society for decades due to its wide range of applications in both
academic and industrial fields. Most existing approaches adopt low-level visual
hand-crafted local feature, e.g. SIFT [1] and DoG, and then encode them with
bag-of-words (BoW) model, vector locally aggregated descriptors (VLAD) or
c© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11306, pp. 269–281, 2018.
https://doi.org/10.1007/978-3-030-04224-0_23
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Fisher vectors (FV) as the final representation. Since local features extracted
by SIFT descriptors are good at capturing object characteristics well, such as
edges and corners, it usually exhibits a better performance in instance image
retrieval. However, three major issues still need to be addressed. One is that the
SIFT-features lack discriminability [8] to tell the difference in images. Although
this drawback can be relieved to some extent by embedding SIFT feature to
higher dimensional space, there is still a huge semantic gap between SIFT-based
image representation and human perception on image instances. The second issue
is the strong burstiness effect [2], i.e. numerous descriptors are nearly similar
in the same image and it largely degrades the quality of SIFT-based image
representation for the image retrieval task. The last issue is that it is still a
challenging problem for SIFT-feature to handle complex image change, such as
shape deformation, illumination variation, and heavy occlusion.

Recently deep convolutional neural networks (CNNs) has demonstrated
excellent performance on image classification task on the datasets such as PAS-
CAL VOC and ImageNet Large Scale Visual Recognition Challenge (ILSVRC)
[3,4], and it also has achieved great success in object detection [5], semantic seg-
mentation [6], etc. The CNNs trained on a large annotated dataset like ImageNet
automatically capture multilevel rich information at higher semantic levels and
achieve superior performance compared to hand-crafted features. The middle lay-
ers of the CNNs preserve more specific information on edges, corners, patterns
and structures and so they are more suitable for image retrieval compared with
the fully connected layers. Some works [7–9] have shown that the convolutional
feature maps extracted from the CNN can be viewed as a set of local descriptors,
which can be aggregated into powerful global features for image retrieval. These
local deep descriptors are learned by training a CNN on large annotated image
dataset or fine-tuning a pre-trained CNN on task-specific datasets. The state-of-
the-art results achieved by these works suggest that the local deep descriptors
are more discriminative than the hand-crafted local feature. And some image
retrieval algorithms using the off-the-shelf representation from CNNs have been
proposed [10].

Although some approaches have applied pre-trained CNNs to extract gen-
eral features for image retrieval and get promising outcomes, two questions
still remain there. First, some works [8] have the limitation that the size of
a test image must be the same as the training image. However different sizes of
the input images may affect the behavior of convolutional layers as image pass
through the network, and may have an unstable influence on the final retrieval
results. Second, CNNs are trained for classification tasks by default, the fea-
ture from the final layer (or higher layers) are usually used for making decision
because that this layer extract more semantic features for category-levels classi-
fication. So it is difficult to decide whether it directly extracts the feature from
the final layers or higher layers for instance image retrieval.

In our paper, we comprehensively solve these two problems. For the first
problem, we drop out the final fully connected layers so our CNN model have
no limits on the image size. The key difference between our method and exist-
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ing approaches is that we do not resize the input image as the work in [12]
which means that our input image preserves more detailed information. The
second problem is solved by our proposed Median Sum Pooling Feature Selec-
tion (MSPFS) method. The purpose of our method is to effectively select the
discriminant feature sets which distinguish different types of images well and
boost the final image representation. Inspired by the SEnet model [13], we then
propose Space Channel Enhanced Median Sum Pooling Feature Selection (SCE-
MSPFS). We add modeling channel part based on MSPFS method. So in this
paper, we takes a two-stage strategy for the image retrieval. The first stage is to
select the effective feature sets, and the second stage is to enhance the selection
effect. More details will be given in the remaining sections. Our experiments show
that applying our methods on the public image retrieval datasets significantly
improves image retrieval accuracy.

2 The Proposed Approach

In this section, we first describe how to get the convolution features and explain it
from two points of view based our understanding. We then propose some methods
to boost the deep feature representation, namely MPFS, SPFS, and MSPFS.
Then our proposed method MSPFS incorporates space channel enhancement
model and we name it SCE-MSPFS method, which is inspired from SEnet model.
At last, we describe the whole process of our image retrieval algorithm.

Fig. 1. Pipeline of our proposed retrieval method. (The figure best view in color)
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2.1 Understanding Convolution Features

For an arbitrary-sized image, we put it through a pre-trained CNN (e.g., VGG-
19 [4]) with all fully connected layers discarded. Then we extract a 3 dimension
tensor from a layer in CNN. Now we donate X ∈ R

K×H×W as the order-3 feature
tensor from a layer(e.g., pool5), where W and H refer to the height and width
of the feature map, and K is the total number of channels (or feature maps) in
that layer.

We may view the deep feature from two aspects. One is that the feature
tensor includes a set of 2 dimension feature map Fi(i = 1, ...K) and the Max-
Pooling is in this way. From another point of view, X can also be considered
as having H × W feature vectors and each vector is K-dimensional, and our
methods are based on this perspective. The latter view is a popular perspective
now and some works treat this kind of feature as the SIFT-based feature vector,
and many works conduct experiments in this manner.

Let us give a specific example, We feed an image with 1024 in height and 768
in width into the pre-trained VGG-19 network and extract the pool5 feature,
and we will obtain a 512 × 32 × 24 activation tensor. So from the former view
we get 512 feature maps and from the latter view we get 512-D feature vectors
of size 32 × 24 from the latter view.

2.2 Selective Convolutional Features

We now propose some methods to boost the deep feature representation, namely
MPFS (Max Pooling Feature Selection), SPFS (Sum Pooling Feature Selection),
and MSPFS (Median Sum Pooling Feature Selection). The first two are straight-
forward methods while the last one is our proposed method. We get inspiration
from the concept of RoI (Region of Interest) [21], which is just like a kind of
attention mechanism and it can find the most interest response automatically. So
compared with the traditional hand-craft features, our proposed methods may
get the final feature representation more suitably.

A. MPFS. Max pooling [14] is first used to get the powerful feature vector
representation and experiments show it does get effective image retrieval results.
So we would like to try this method first and we formulate the MPSE method
in the following. For every channel in X , there are different activation responses
and we choose the max activation value on that feature map to construct the
final feature vector Fmax.

Fmax = {F1, ...,Fk, ...,FK} Fk = max x, x ∈ Xk (1)

B. SPFS. MPFS only use the channel max activation response, and the rest
of activation values are deprived, which may contain more effective discriminate
features than the max value. So based on that, someone propose SPSE method to
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(a) (b) (c) (d)

Fig. 2. Examples of visualization results of the methods MPFS, SPFS, MSPFS. The
original image are showed on the first column. The second column displays the MPFS
visualization result. The SPFS, MSPFS corresponding images are showed in the last
two columns (The figure best view in color).

handle this situation. The core of this manner is including all activation values.
Formally, we define the final feature vector as follows:

Fsum = {F1, ...,Fk, ...,FK} Fk =
∑

x, x ∈ Xk (2)

C. MSPFS. Compared with MPFS method, SPFS method uses all activation
values to encode the feature vector, and the tensor values may include some noisy
data which may effect the final image retrieval precises. These two methods are
two extreme cases. One only uses the max value information and the other uses
all of value activation. We select more effective elements to construct the final
feature to make the results more discriminative.

Here we give a detailed description. In Fig. 2, Fig. 2(a) is the original input
image. Figure 2(b) and (c) are the visualization results of MPFS and SPFS
methods separately. The last image is the response visualization of our MSPFS
method. We can see that all visualization results have a response to the main
object in the input image. The difference between Fig. 2(b) and (c) is the strength
of the response. Figure 2(b) have a dimmed light and there is some discontinuous
light trace compared with Fig. 2(c). So it to some extent reflects the fact that
the SPFS method is more discriminative than the MPFS method. However, we
can also observe that there are some irrelevant light spots existing in Fig. 2(c).
According to our former discussions, we call those irrelevant light spots as noise
data. After the operation of our MSPFS method, the noise data are cut off in
Fig. 2(d). The main object response is more clear than before. So our method
exhibits its effectiveness. In the following part we will conduct a more compre-
hensive experiment to check whether our method is valid or not.

Our method works as follows, first, we get the sum along the channel, i.e.,
Si,j =

∑K
1 Xi,j , where i ∈ (1,W ) and j ∈ (1,H). Now we will give the formula-

tion of our method.
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Here we refer to the concept of mask to simplify the whole process. let’s
denote

Mi,j =

{
1, if Si,j > median(S) × α

0, otherwise
(3)

The parameter α is a control factor for the purpose of selecting the useful
feature map. We choose the median rather than max because in our experiments
the median is more stable and exhibits better results. After getting the mask,
we put the mask through the X along channel side, and finally come out the
appropriate feature map, and then we do the same thing as the SPFS does on
the masked feature map. The evaluation of the effectiveness of the control factor
α will be tested in the experiment part.

2.3 Space Channel Enhancement Model

In this part, we discuss Space Channel Enhancement Model. We get the inspira-
tion form the SEnet model. In the SEnet model, it focuses on the channels and
proposes a novel architectural unit, i.e., “Squeeze-and-Excitation” (SE) block
that adaptively recalibrates channel-wise feature responses by explicitly mod-
eling interdependencies between channels. This method dynamically performs
a weight on the channels so we also do the same thing based on our MSPFS
method. The difference between our method and the SE block method is that
our method is static, as a result, our network model does not need to be retrained,
but the SE block is not. It needs plenty of training data to reshape the network
weight to get better performance. So it is not possible to directly use their SE
block model.

After operating MSPFS method, the feature maps are all zeros except the
selective feature sets. So we can get every channel weighting according to the
sparsity of the feature maps. Now we define the sparsity of every channel as Zk:

Zk = 1 − Nk (4)

where Nk = 1
W∗H

∑
ij 1[λij > 0]. And the sparsity of the channels may provide

more distinguishability. So from this perspective, we get the same concept with
inverse document frequency. Now we define the every channel weight Ck

Ck = log
ε +

∑
i Ni

ε + Nk
(5)

where ε is small constant to avoid divided by zero. Then we perform channel
weights on MSPFS method.

2.4 Image Retrieval

For all database images and a query image, we first extract convolutional features
as our proposed MSPFS method, and then use the SCE-MSPFS method to get
the final 512 dimensional feature vector. Image retrieval is done by calculating
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the similarity measurements like L2 distance or cosine distance between the
feature vector of the query image and database images. At the same time, we
consider using PCA to compress the original feature vector to relatively low-
dimensional vectors so that the computation of similarity measurements can be
done efficiently. We test the effect of different final feature vector dimensions.
More details will report in the experiments parts.

3 Experiments

In this section, we first describe the datasets and experimental environments.
Then we discuss and analysis the impact of control factor α. At last we report
the our image retrieval results and we also compare our results with other state-
of-the-art works.

3.1 Datasets and Implementation Environments

We evaluate our methods on three publicly available image retrieval datasets:
Holidays [15], Oxford5K [16] and Paris6k [17].

The Holidays contains 1491 vacation snapshots corresponding to 500 groups
each having the same scene or object. One image from each group serves as a
query. The performance is reported as average precision over 500 queries.

The Oxford5K contains 5063 photographs from Flickr associated with Oxford
landmarks. 55 queries corresponding to 11 buildings(landmarks) are fixed, and
the ground truth relevance of the remaining dataset w.r.t. these 11 classes is
provided.

The Paris6k are composed of 6412 images of famous landmarks in Paris.
Similar to Oxford5k, this dataset has 55 queries corresponding to 11 build-
ings/landmarks. The performance of all three datasets are reported as average
precision.

In experiments, for the pre-trained deep model, the publicly available VGG-
19 model is employed to extract deep convolutional descriptors using the Caffe
deep learning framework. For all the retrieval datasets, the subtracted mean
pixel values for zero-centering the input images are provided by the pre-trained
VGG-19 model.

3.2 Effectiveness of Control Factor α

In this section, we investigate the impact of the control factor α. We experiment
on the Paris6k and Oxford5K dataset to explore the effect of α. The final evalu-
ation criteria is mAP. We compare our MSPFS method with the SPFS method
in different dimensions.

As shown in Fig. 3, the first row is the results on the Paris6k dataset.
Figure 3(a) is the comparison of our proposed MSPFS method and the SPFS
method with the 512 dimensional feature vector, and Fig. 3(b) is the same as
the Fig. 3(a) only the difference with 256 dimensional feature vector. The green
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curve is the result of our MSPFS method, and the blue curve is the SPFS method.
From the first two images, we observe that when α is 0.8 we get the best perfor-
mance. Although when α equals 0.2 the accuracy of our method is lower than
the SPFS method, it performs better than the SPFS method in some situation.
It is that the dynamic selection of α contributes to the better performance. The
last two images in the first row are also the results on the Paris6k dataset. The
result is consistent with the former results. With the difference in the former
two images, our MSPFS method performs better than the MSPFS method in
all range of α and it is attributed to the chosen of the median value as the mask
selector rather than the max value as mask selector which is commonly used in
other works. In the Fig. 2(d), there is almost 5 percent performance improvement
of our MSPFS method over SPFS method.

The second row is results on the Oxford5K dataset, and the situation is
almost the same as the Paris6K dataset. The performance of our method on
the Oxford5K dataset is somehow inferior to the performance on the dataset,
but our focuses are not on this. We concern more about whether our method
is effective or not. From Fig. 3, we see that the control factor α does affect the
final results, and when α belongs to 0.5-0.8 our method can get almost the best
performance. The difference in the performance with different values of α may
be huge, and the maximum performance gap is almost 5 percent. So we come
to the conclusion that our method is effective compared with the SPFS method
and the latter experiments also support our conclusion.

Fig. 3. Analysis of control factor α in different dimension and different datasets (The
figure best view in zoom in).

3.3 Comparison of MSPFS and SCE-MSPFS

In this section, we will conduct experiments on our proposed MSPFS method
and the SCE-MSPFS method to check whether our SCE-MSPFS is effective
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or not. We experiment on the Paris6k and Oxford5K datasets. The results are
shown in the Fig. 4 and it does not include the result of SPFS because Fig. 3 has
shown the same results so it is unnecessary to show the results in the Fig. 4.

Similar to Fig. 3, the first line is the results on the Paris6K dataset.
Figure 4(a) is the comparison of our proposed MSPFS method and the SCE-
MSPFS method with the 512 dimensional feature vector. The green curve is the
result of our MSPFS method, and the blue curve is the SCE-MSPFS method.
From Fig. 3(a), we can see that the SCE-MSPFS method is consistently out-
performs the MSPFS method and when α is 0.8 it achieves get the best results
which is the same as the results in Fig. 3(a). The largest performance gap shown
in Fig. 3(a) between SCE-MSPFS method and the MSPFS method is one per-
cent. The other images in the first line also get the similar results where the
SCE-MSPFS method wins all the time. The second line are the results on the
oxford dataset. The results in Fig. 4 (e) are just like Fig. 4(a), the difference
is that the max gap on Fig. 4(e) is about two percents which is better than
the gap on Fig. 4(a). The Fig. 4(h) is not like other image because there are
some overlap, however our propose SCE-MSPFS method is still larger than the
MSPFS method. From the results we can conclude that, our proposed SCE-
MSPFS method is effective and we will set it as our final proposed method.

Fig. 4. The comparison of MSPFS and SCE-MSPFS in different dimension and on
different datasets (The figure best view in zoom in).

3.4 Result Collection

The comparison results on Oxford5k, Paris6k, and Holidays datasets are reported
in Table 1. First, we can observe that the SPFS method outperforms the MPFS
method in all dimensions. As the dimension becoming lower, the mAP is also
reduced at the same time. However in the MPFS results, the 256 dimension cor-
responds to the best performance in the Paris and Oxford datasets even surpass
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Table 1. Comparison of different methods. The “Bold” values indicates the best per-
formance in each method and the “Underline” values indicates best performance across
all methods.

Method Dimension Paris Oxford Holiday

MPFS 512 71.1 59.8 -

256 71.5 59.9 -

128 68.1 52.2 -

SPFS 512 80.1 71.0 -

256 77.1 68.1 -

128 73.8 61.4 -

MSPFS 512 80.6 71.4 79.8

256 78.0 68.6 77.1

128 76.1 63.0 75.4

SCE-MSPFS 512 81.4 73.0 80.2

256 79.3 71.0 77.9

128 77.3 64.4 75.3

SCE-MSPFS with QE(10) 512 84.6 75.2 82.3

256 81.7 74.1 80.7

128 80.2 67.4 77.4

the 512 dimension performance. The reason may be that the MPFS method of
512 dimensions is not as compact and discriminative as the MPFS method of 256
dimensions. The MSPFS and SCE-MSPFS method also get the same result as
the MPFS method. Secondly, our proposed three different selective feature meth-
ods have mutually superimposed effect. The MSPFS method enhance the SPFS
method, and based on that, SCE-MSPFS method enhance the MSPFS method
also. So compared with the MPFS method, the effect that SCE-MSPFS method
boost the feature selection is obvious. Additionally, with the simply query expan-
sion strategy, our proposed method get further performance improvement. In the
next section, we will compare our method with the state-of-art methods.

3.5 Comparison to Other State-of-the-art Methods

In this section, we compare our proposed method with other state-of-the-art
methods in image retrieval task. We report experimental results in Table 2. For
the convenience of comparison, Table 2 is divided into three parts. The first part
reports the retrieval results using SIFT local features or VLAD encoding. The
second part and the third part report the retrieval results at dimensionality of
512 and 256.

From the first part in Table 2, we can see traditional SIFT features results is
lower than the CNN-based feature results even in higher dimensions. From the
second part in Table 2, our proposed method SCE-MSPFS achieve the highest
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Table 2. Comparisons with STATE-OF-THE-ART image retrieval methods on the
three public datasets

CNN-based Method Dimension Paris Oxford Holiday

Neural Codes [19] 4096 38.6 54.5 79.3

MOP [20] 2048 - - 80.2

Tr. Embedding [18] 1024 - 56.0 72.0

Tr. Embedding [18] 512 - - 70.0

Gong et al. [20] 512 - - 78.3

Neural Codes [19] 512 - 43.5 78.3

R-MAC [11] 512 83.0 66.9 -

CroW [10] 512 79.6 68.2 84.9

MSPFS(Our method) 512 80.6 71.4 79.8

SCE-MSPFS(Our method) 512 81.4 73.0 80.2

Tr.Embedding [18] 256 - - 65.7

Neural Codes [19] 256 - 43.5 75.9

SPoC [8] 256 - 53.1 80.2

R-MAC [11] 256 72.9 56.1 -

CroW [10] 256 76.5 68.4 85.1

MSPFS(Our method) 256 78.0 68.6 77.1

SCE-MSPFS(Our method) 256 79.3 71.0 77.9

performance on the Oxford5K dataset, and the result of MSPFS method is also
surpass other methods on the Oxford5K dataset. On the Paris6K and Holiday
datasets, our results are also higher than most of other methods. The R-MAC
method achieves the best result on the Paris6K dataset and Crow method get the
best performance on the Holiday. Because generating R-MAC features considers
both multi-scale feature map and local spatial information and generating Crow
feature also considers more complicated operations. From the third part, our
proposed method achieve the best performance both on Paris6K and Oxford5K
datasets. There are almost 3 percents improvements on both datasets. Thus
our proposed MSPFS and SCE-MSPFS methods effectively improve the image
retrieval results.

4 Conclusion

In this paper, we propose an efficient and straightforward MSPFS method based
on the convolutional layer feature from the convolutional neural network. The
MSPFS method provides a simple yet effective way to choose the most discrimi-
native feature vector, which improves the retrieval accuracy significantly. Based
on this, we then propose space channel enhanced MSPFS, namely SCE-MSPFS
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method, which largely boosts the final feature representation. Extensive experi-
mental results show that the proposed methods exhibit competitive performance
as compared with the state-of-the-art approaches.
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Abstract. Despite recent advances in medical diagnosis domain, many chal-
lenges remain in obtaining more accurate conclusions and in presenting
semantically and visually interpretable results during the diagnosis process. An
interpretable diagnosis process is proposed through the implementation of a deep
learning model. This consists of three interrelated models, an image model, an
attention model and a conclusion model. The proposed image model extracts the
semantic feature using convolutional neural networks (CNNs). The conclusion
model, integrated with the semantic attributes attention model, aims to predict the
conclusion label by long-short term memory (LSTM), which captures the dis-
criminative relationship between semantic attributes. The network is trained in
end-to-end way with different weight of each model. Based upon a cervical
intraepithelial neoplasia images, diagnostic report and labels (CINDRAL)
dataset, the approach demonstrates significant improvement when comparing the
baseline in the conclusion result.

Keywords: Deep learning � Visual interpretability
Pathology diagnosis process

1 Introduction

In recent years, computer-aided medical diagnosis (CAD) has achieved remarkable
progress with rapid development of deep learning. Traditional methods treat the pro-
cess as a standard classification problem [1]. However, it is less efficient and of lower
performance when diagnosing diseases [2]. The reason is the classification model
simplifies the actual diagnosis process and lacks the discriminative information to
support the conclusion. Doctors often find it difficult to understand how the model
captures features and makes the diagnostic conclusion. Therefore, this challenge needs
to be addressed through an interpretive method in order to support the decision-making
process.

In clinical practice, process and output of the deep learning model, which is
effective and important in the CAD process, must be evaluated by pathologists. In other
words, the model should capture the discriminative features from the pathology image
and generate the words, context and the visual attention regions to help pathologists
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make a decision. Such a method is more efficient and convenient for medical doctors
than models which only generate conclusion labels.

This has prompted us for further research into the proposition of a model to
automatically capture latent and discriminative features, then generates the report and
attention region. Three key challenges remain to be addressed. The structured report
has to contain different semantic attribute descriptions to support the conclusion. The
output of the model must be clearly understood by medical professionals. The model
needs to generate the discriminative attention region of semantic attribute label.

The above challenges are addressed through the implementation of an end-to-end
network which consists of images, attention and conclusion models. The image model
based upon CNNs extracts the discriminative features from the image. A new method is
proposed for the attention model which generates the visible attention region and the
structured report. The attention model is treated as a multi-label classification task so
that the model generates full-structured context. In this approach, the conclusion model,
combined with the attention model, possesses the ability to learn the contextual
dependencies among the semantic attributes with the “memory” of LSTM for con-
clusion making.

Generally speaking, the main contributions of our method are:

• A new approach is proposed which can generate the structured report and support
the conclusion on interpretable vision for pathology images.

• We build the pathology cervical intraepithelial neoplasia images, diagnostic report
and attribute labels (CINDRAL) dataset (explained later in Sect. 3) with Shang Hai
International Peace Maternity and Child Health Hospital (IPMCH).

• We perform extensive experiments and evaluations on the CINDRAL dataset, and
demonstrate accuracy and effectiveness of the approach.

The rest of the paper is organized as follows. Section 2 reviews related works.
Section 3 descripts the details of the dataset. The proposed model including the
extracted features and how attention model works is described in Sect. 4. Then, Sect. 5
conducts detailed performance studies and analysis on CINDRAL dataset. Section 6
concludes the paper.

Fig. 1. One example in the CINDRAL dataset. It consists of a pathology image and a structured
report (four semantic attributes, each with four state labels). No extra locations on images are
needed in the dataset. (Best viewed in color).
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2 Related Work

2.1 Image and Conclusion Model

Recent advances in the performance of medical diagnostics [3, 5, 7, 14] have achieved
rapid progress as a result of the development of deep CNNs [4] and the memory
mechanism of recurrent neural networks (RNNs). Traditional methods treat the CAD as
a classification problem, in cases such as skin lesions [6], lung squamous cell carci-
noma [1], and conclusion of pathological images [8].

However, these methods for CAD typically aimed at finding one particular type of
disease, concealing correlations between semantic attributes. Some researchers have
considered latent dependent information from the report and pathology images by LSTM
[11] in order to overcome this issue. The construction of CNN-RNN based framework
model to predict the conclusion label of chest X-rays, is a prime example, Shin et al. [9].
This method implements CNN to extract the feature of a disease and RNN to describe the
attributes of the disease. Another methods uses CNN to obtain visual and semantic
features from chest X-rays while using hierarchical LSTM to get amore natural report and
conclusion, Jing et al. [10]. The work most closely related to medical report and con-
clusion is recently contributed by Zhang et al. [12]. This group proposed the CNN-LSTM
model to describe the semantic attributes report, which draws the conclusion. However,
some words (e.g. “along”, “the”, and “is”) present in their report (e.g. Polarity along the
basement membrane is negligibly lost) contain no medical sematic information sup-
porting the conclusion. In this case, the most important word in the sentence is “negli-
gibly”, which provides the discriminative features to help the LSTMdraw the conclusion.

Following the work of Wang et al. [13], this problem can be addressed by changing
the conclusion problem to multi-label classification which allows the conclusion model
to obtain accurate sematic attribute description labels. Our methods can generate the
attribute report including the conclusion, which has more accurate performance than
the previously mentioned methods.

2.2 Attention Model

There has been a significant amount of research focused on the attention mechanism
which achieves interpretability of context and vision in traditional natural image datasets,
such as ImageNet [4], and so on [23, 30]. For the attention model, our works is similar to
several previous works [15–20]. Xu et al. [18] proposed the sequence-to-sequence model
and attention model in the image captioning task. In their work, the attention map was
determined using the CNN features and the previously hidden states of LSTM. Pedersoli
et al. [20] provided an association between the attention region and caption words.

These previous works have inspired researchers to improve in CAD domain, and
several works have aimed to generate reports for medical images. Additionally, these
works focus on interpretable visual diagnosis [8, 10, 12, 21, 22], which can support the
pathologist’s decision-making process.

Zhang et al. [12] introduced an attention model which focuses on the image region
while every word is generated from the model. However, words, like the, a, along and
so on, have no factual attention region in the image.
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To address the problem, our method aimed at the visual interpretation of semantic
attributes (e.g. in CINDRAL dataset, there are four type), rather than the single word
from the report.

3 Dataset

The cervical intraepithelial neoplasia images, diagnostic report and labels (CINDRAL)
dataset was collected in collaboration with Shanghai International Peace Maternity and
Child Health Hospital (IPMCH). Whole-slide images (WSI) at 20� magnification of
stained tissue sections obtained from 50 patients at risk of cervical neoplasm. One
thousand 600 � 600 RGB images were randomly selected from the dataset, close to
cervical intraepithelial neoplasm.

The pathologists provided a paragraph describing four semantic attribute features
(Fig. 1). These attributes included, the state of condyloma, cell polarity, cell crowding,
and nuclear pleomorphism, followed by a diagnostic conclusion. The attributes and the
conclusion are both comprised of four labels; normal, high-grade, low-grade, and
insufficient information. Contained within different reports, each description of

Fig. 2. The overall illustration of our model. A pathology image with its structured report and
labels, presented as an example. Image model extracts the features, attention model demonstrates
the attention region and the structured report, while conclusion model predicts the conclusion.
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semantic attributes has two or three very similar description (i.e. “part of the nuclear are
clumped together” and “extremely crowded nuclei can be seen”). Thus there are five
sentences, four attributes and one conclusion, per image.

The dataset was pre-processed by cropping, rotating (90°, 180° and 270°),
horizontal/vertical flipping for data augmentation. Then we randomly selected 20% of
the images as testing data and the remaining 800 images for training and cross-
validation. In the dataset, the four attributes and conclusion are treated as 5 separate
tasks for the structured report and LSTM, trained to support the conclusion model.

4 Method

Figure 2 illustrates the architecture of the proposed method. The pathology image is
first sent into a resnet18 ConvNet, which is fast to train and achieves similar or better
performance than most commonly used VGG16 [24] or AlexNet [25] model. The
network processes the image with convolutional (conv) layers to extract the conv
feature map, denoted as F Ið Þ. Then the weight map is obtained from every attribute
attention model and the conclusion model comprising an LSTM network predicts the
last result from the attention map. Finally, the scores from four attention maps are fused
to achieve the final conclusion label distribution.

4.1 Attention Model with Structured Report

As we all know, attention mechanism, the work in Xu et al. [18], is aimed to learn the
attention region in the whole image so that it can support the final prediction. But in our
work, we focus on the relationship between four semantic attributes, which implicitly
provide the discriminate information for LSTM to draw the conclusion. So we propose
attention models which present the four semantic attributes of the CIN images. The
attention model dynamically computes a weight map for every attributes, which pre-
sents the visual attention region corresponding to input image.

For one attribute (Fig. 2), we duplicate the feature F Ið Þ fourfold, since every
residual network in the attention model can learn the accurate features for each attribute
with different parameters. The residual network extracts features, denoted as Fk Ið Þ with
a dimension of 256� 14 � 14ð Þ, and k = {1, 2, 3, 4} represents the four attributes. After
a global average pooling layer, feature denoted as fk Ið Þ with dimension 1� 256, is
obtained from Fk Ið Þ.

Specifically, following [27], the weight map can be computed as follows

Ok ¼ softmax fk Ið ÞTk þ bð Þ ð1Þ

Ti
k ¼ SkTk ð2Þ

Wk ¼ ðTi
kÞTFk Ið Þ ð3Þ

where Tk is a learned fully connection layer parameter with dimension 256� 4. Sk; k ¼
1; 2; 3; 4f g is the one-hot representation of the k-th image attribute generated by Ok.
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Then we can get the one column of Tk , denoted as Ti
k; i ¼ 1; 2; 3; 4f g with dimension

256� 1, which contains the discriminate information of the k-th semantic attributes.
Finally, the weight map, denoted as Wk with dimension 14� 14, which corresponds to
the attribute attentional regions in the input image is generated by bilinear interpolation.

The matrix Wk presents the visual interpretability for the pathologists. In other
words, the Wk indicates which regions the attention model focuses on. As shown in
Fig. 2, the weight map Wk and the feature map Fk Ið Þ need to work collaboratively in a
fused manner so that the 256-dim feature fk can contain the accurate k-th attribute
feature selected by weight map.

fk ¼ WkðFk Ið ÞÞT ð4Þ

To better train the attention model, we use two loss functions: (1) we use the
semantic attributes label for the feature fk Ið Þ, (2) and apply the severity level label of
each attribute for the feature fk. The motivation is two-fold. First, the feature generated
by residual network can better extract the attribute information which is critical for next
procedure. Second, a structured diagnostic report can be generated by the second loss
function which can describe the symptom information of every attribute. The two loss
functions serve as a supervision on the attention model, which can make sure the
attention model training towards to accurate semantic features for the next conclusion
model.

4.2 Conclusion Model

From our pathologists, we find that symptom descriptions of semantic attributes sup-
port the conclusion, and the latent relationship between attributes also provide support
to lead the conclusion. Considering relevance and dependence, we adopt the LSTM
network to draw the conclusion.

In generating diagnostic report of image captioning domain, there are a lot of
works, like [8, 12, 18, 21, 22] and so on, treating the natural language word or sentence
as the input for LSTM in training stage. However, the natural diagnostic report contains
some words, like a, the, along, and so on, which present no medical information and
provide less accurate feature to draw the conclusion. As shown in Fig. 2, our work
proposed a new method, which treat the discriminate attribute features as the input of
LSTM, to directly consider the critical feature into conclusion.

Following [11], LSTM is defined by the following equations

xk ¼ relu W xð Þfk þ bx
� �

; k 6¼ 0 ð5Þ

ik ¼ sigmoid W ið Þxk þU ið Þhk�1 þ bi
� �

ð6Þ

fk ¼ sigmoid W fð Þxk þU fð Þhk�1 þ bf
� �

ð7Þ
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ok ¼ sigmoid W oð Þxk þU oð Þhk�1 þ bo
� �

ð8Þ

~ck ¼ tanh W cð Þxk þU cð Þhk�1 þ bc
� �

ð9Þ

ck ¼ fk � ck�1 þ ik � ~ck ð10Þ

hk ¼ ok � tanh ckð Þ ð11Þ

zk ¼ relu W zð Þhk þ bz
� �

ð12Þ

sk ¼ W sð Þzk þ bs ð13Þ

where the computation process represents k-th (k 6¼ 0) LSTM network, and fk in Eq. (5)
is a 256-dim vector containing the attribute information to support conclusion; hk�1 and
ck�1 are the hidden state and memory cell of the previous LSTM; The k-th LSTM hidden
state hk is used to predict score distribution, denoted as sk, of the conclusion by Eqs. (12)
and (13). Note that we initialize the hidden state with the feature f0 extracted from image,
and the initial process for the LSTM network is set to be:

h0 ¼ f0 ð14Þ

z0 ¼ relu W zð Þh0 þ bz
� �

ð15Þ

s0 ¼ W sð Þz0 þ bs ð16Þ

Then we can get the final predict conclusion, denoted as sf , with softmax function
and add five predicting score distributions, s0; s1; s2; s3; s4:

sf ¼ s0 þ s1 þ s2 þ s3 þ s4 ð17Þ

4.3 Network Optimization

The overall model has three sets of parameters: hI in the image model I, hA in the
attention model A, hC in the conclusion model C. The overall optimization problem in
our method is expressed as:

maxhI;hA;hC LI lc; I I; hIð Þð ÞþLA ls;A I I; hIð Þ; hA½ �ð ÞþLC lc;C A I I; hIð Þ; hA½ �; hCf gð Þ
ð18Þ

where I; lc; lsð Þ is a training tuple: I is a pathology image, lc denotes the conclusion
label, and ls is the semantic attribute label. Modules I, A and C are supervised by three
negative log-likelihood loss function LI , LA and LC.
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In the training stage, we adopt the method of Adam and standard back-propagation
to optimize the joint model. For end-to-end training, we treat the loss function as two
stages with different weights and learning rates. Thus, the training loss is computed
through:

LossI;A;C ¼ k LossI þLossAð Þþ 1� kð ÞLossC ð19Þ

where Loss I;A;Cð Þ is the joint loss function of the whole model. In the first 10
epoches, the parameter kð0\k\1Þ is lager so that the accurate feature can be extracted
from input image. With the training process, the k is becoming smaller to support the
better predicted conclusion.

5 Experimental Results

In this section, we validate the proposed model on four aspects to demonstrate the
significant improvement. The experiments are implemented on the CINDRAL dataset
as follows: (1) we start by validating the diagnosis conclusion accuracy (DCA) with the
purpose to show its superior performance against several other CNNs and image
captioning methods; (2) then we conduct experiments on the semantic attributes pre-
diction accuracy (SAPA) with medical diagnosis network [12] to prove our method
have the ability to generate the same diagnosis report by different methods; (3) we
conduct the experiment on the different sequence of semantic attributes with the pur-
pose to validate the robustness of the conclusion model; (4) we demonstrate the
attention region towards semantic attributes to support the conclusion on vision.

5.1 Diagnosis Conclusion Accuracy on CINDRAL

In the computer-aided medical diagnosis process, our pathologist usually expects to get
more accurate conclusion so that the DCA of evaluation metrics is critical for our
method. To validate the effectiveness of our model, we conduct the experiments by
comparing with CNNs, AlexNet, VGG16, ResNet [28], DenseNet [26]. In this setting,
the CNNs use the conclusion label and our model treats the semantic attributes and
conclusion as the label to support that the semantic attributes do significant

Table 1. Diagnosis conclusion accuracy on CINDRAL

Method Image classification

Model AlexNet VGG16 Resnet18 Resnet34

Pre-trained ✔ ✘ ✔ ✘ ✔ ✘ ✔ ✘

DCA
(%) ± std

71.2 ± 2.0 71.2 ± 2.5 66.0 ± 4.3 66.0 ± 5.8 78.4 ± 2.5 78.6 ± 1.5 77.2 ± 4.0 78.2 ± 3.5

Method Image classification Image captioning Our

Model Densenst40 MDNET Show and tell Our Method

Pre-trained ✔ ✘ ✔ ✘ ✔ ✘ ✔ ✘

DCA
(%) ± std

75.0 ± 2.4 75.4 ± 1.9 78.0 ± 2.3 78.2 ± 2.2 75.2 ± 4.5 74.9 ± 3.6 85.0 – 1.7 84.8 – 2.4

A Pathology Image Diagnosis Network with Visual Interpretability 289



improvement for decision-making. We also consider the factor like pre-trained model
on ImageNet. Moreover, we do the comparison with MDNET [12] in DCA, which our
method is closest to.

From Table 1, we can find that pre-trained universal CNN model is not available in
the medical image domain for the reason that there is a huge difference in features
between the natural images from the ImageNet and pathology images. And with the
increase of model depth, the CNNs models achieve the best accuracy,which is 78% in
CINDRAL, as the same as MDNET.

Our method achieves obviously better accuracy rate (84% in CINDRAL). The
results demonstrate that our method, which treats the semantic attributes as label,
substantially improves the performance of network.

5.2 Structured Diagnosis Report

In clinical practice, not only natural language but also visual interpretation is necessary
for pathologists to understand the specific symptom towards every semantic attribute.
Thus, we address the problem by generating the structured diagnosis report to help
pathologists understand the rationale for the conclusion. In the experiment, we compare
the discriminative information, semantic attributes prediction accuracy (SAPA), in the
structured report with MDNET [12] in different manners.

Table 2 shows the mean scores over 5 folds. As can be observed, in the four
semantic attributes, the accuracy of the result is almost as the same as MDNET. In our
method, we achieve the prediction by treating the problem as multi-label classification
problem, rather than treating the problem as image captioning with the natural language
report in MDNET. Generally speaking, we propose a new way to generate the diag-
nosis report, which demonstrates the same performance as MDNET.

Table 2. SAPA performance comparison with MDNET

Model Condyloma Cell polarity Cell crowding Pleomorphism

MDNET Our MDNET Our MDNET Our MDNET Our

SAPA
(%) ± std

72.4 ± 1.6 72.8 ± 1.0 76.0 ± 1.6 75.2 ± 2.3 76.0 ± 1.5 76.0 ± 1.5 78.0 ± 1.1 78.6 ± 1.7

Table 3. Influence of semantic attributes input sequence on model performance

Model Sequence of attributes DCA(%) ± std

CNN-RNN [29] Previous order(ABCD) 76.6 ± 4.2
Order 1 (BCAD) 65.4 ± 3.4
Order 2 (DBCA) 70.2 ± 3.8
Order 3 (CADB) 70.0 ± 3.1

Our method Previous order (ABCD) 85.0 – 1.7
Order 1 (BCAD) 85.2 – 2.9
Order 2(DBCA) 84.4 – 1.3
Order 3(CADB) 84.8 – 1.2
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5.3 Different Sequence of Semantic Attributes

We conduct the experiment compared with CNN-RNN [29] on the purpose to inves-
tigate the influence on different sequences on LSTM. CNN-RNN model also considers
the latent relationship between the attribute labels in natural images. Hence in our
work, we change the attribute sequence. We denote the previous sequence, which is
type condyloma, polarity, crowd and pleomorphism, as ABCD. Then we compare the
DCA with the sequence of BCAD, DBCA and CADB.

The results are shown in Table 3. Our proposed method outperforms the baseline
model by demonstrating significantly improved DCA with the different sequence.

5.4 The Attention Model with Visually Interpretation

In this experiment, we show the attention region for each semantic attribute (an
example in Fig. 3). The four attention models (as Fig. 2) computes and shows the
attention region to interpret how the network support the diagnosis conclusion. Rather
than the attention region for a single word in [12], we generate four attention maps to
support four semantic attributes. Our pathologist draws the region of interest
(ROI) which significantly support the decision-making process. we can observe the
result which expresses strong correspondence between the pathologist annotations and
our attention regions for four semantic attributes in the Fig. 3. Note that there are no
regional annotations in the training stage. Our work demonstrates the model has
learned the critical information to support its conclusion.

Fig. 3. The illustration of diagnosis report and four semantic attribute attention regions. Best
viewed in color.
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6 Conclusion

This paper presents a new approach to read the pathology image, generating structured
diagnosis report with visual interpretation towards the attention region. Specifically, we
propose the method to treat the four semantic feature as the input of LSTM, which learn
the accurate information to support the conclusion. Practically, our pathologist also
expresses appreciation to our work in the pathology image diagnosis. Experimental
results on CINDRAL dataset demonstrate that our proposed deep model can signifi-
cantly improve the performance in both accuracy and efficiency.
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Abstract. With the exploding number of images on the Internet and
the convenience of free-hand sketch drawing, sketch-based image retrieval
(SBIR) has attracted much attention in recent years. Due to the ambigu-
ity and sparsity of sketches, SBIR is more challenging to cope with than
conventional content-based problem. Existing approaches usually adopt
high-dimensional features which require high-computational cost. Fur-
thermore, they often use edge detection and parameter-sharing networks
which may lose important information in training. In this study, we pro-
pose a compact binary codes learning strategy using deep architecture.
By leveraging well-designed prototype hash codes, we embed different
domains input (sketch and photo) into a common comparable feature
space. Besides, we present two separate networks specific to sketches and
real photos which can learn very compact features in Hamming space.
Our method achieves state-of-the-art results in accuracy, retrieval time
and memory cost on two standard large-scale datasets.

Keywords: Deep learning · Hashing · Sketch-based image retrieval

1 Introduction

Sketches are highly abstract representations which express sufficient stories.
Different from natural images, they are formed of a few hand-drawn strokes.
Humans can draw simple sketches quickly without any reference, at the same
time conveying information precisely. With such interesting characteristics, there
exists much research dealing with sketch-based image retrieval [6,17,20], sketch-
based 3D model retrieval [23] and sketch recognition [28].

In this paper, our research direction focuses on sketch-based image retrieval
(SBIR). It aims at retrieving most similar results in image gallery collection
by a query free-hand sketch. Figure 1 gives an example of retrieval flow. SBIR
can solve the situation when it is hard to describe an object in words or query
image is not available. In this situation, text-based image retrieval (TBIR) and
content-based image retrieval (CBIR) [5,25,26] fail. Essentially, SBIR has two
main advantages: (i) Science proves that people are sensitive to outlines [11,29].
Free-hand sketches can show enough key query points without noisy background.
(ii) With the appearance of touch-screen mobile devices in recent years, drawing
c© Springer Nature Switzerland AG 2018
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Fig. 1. An illustration of sketch-based image retrieval.

sketches becomes quite convenient. Even non-artists could draw sketches within
few seconds.

However, SBIR confronts several challenges. First, sketches lack texture and
color information. The feature of sparse lines is totally different with traditional
images. Second, since people depict query sketch without reference as aforesaid,
sketches usually exhibit large intra-class variations.

Over the past 25 years, the study on SBIR has developed rapidly [20]. Among
them, the bulk of methods exploit traditional hand-crafted pipeline [6,18,19].
They usually first transform real images to detected edgemap photos in order to
narrow the semantic gap between the sketch and the image. Then, hand-crafted
features of both sketches and edgemap photos are extracted and fed into bag-of-
words architecture. Whereas, their shallow features cannot handle large internal
variations well. Recently, convolutional neural networks (CNN) [10] has shown
great power on deep feature representation. By means of robust end-to-end deep
frameworks, the deep methods [17,20] are superior to hand-crafted ones typically.
Actually, the deep learning methods of SBIR come out much later than those
in CBIR due to the lack of available fine-grained sketch dataset. Since 2016, the
appearance of Sketchy [20] dataset boosts the development of SBIR. Though
deep methods have achieved progress, they mainly calculate feature distances
in Euclidean space with high complexity. It is not feasible when dealing with
large-scale retrieval task. Hence, we introduce a deep hashing architecture to
perform fast retrieval in Hamming space with low memory cost.

SBIR problem is a typical cross-domain retrieval case. To address the issue
of aforementioned sketch challenges, previous works generally translate the real
image to the approximate sketch in advance. However, salient structural infor-
mation may be lost during edge extraction process. In addition, most of the
existing methods adopt shared Siamese network. However, learning parameters
individually will perform better if possible. Besides, previous works generally
compare features in high-dimensional space requiring high-computational cost
and long retrieval time.

In this paper, we present a novel deep hashing framework to solve sketch-
based image retrieval. The main contributions of our work include: (i) Encoding
supervised information into a semantic-preserving set of prototype hash codes
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to achieve better guide for deep training process; (ii) Presenting a deep hashing
framework with two separate networks for sketches and photos, which is more
suitable for cross-domain challenge, capturing the internal semantic relationship
and cross-domain similarities at the same time; (iii) Achieving state-of-the-art
results in accuracy, retrieval time and memory cost compared with existing meth-
ods on two large datasets.

2 Related Work

Sketch-Based Image Retrieval. Prior hand-crafted methods first use edge
detectors like Canny [1] to generate edge or contour maps from real images. After
that, they extract features of both sketches and generated edgemap photos, such
as SIFT [15], HOG [2], SSIM [21], Gradient Field HOG [6] etc. Then, the bag-of-
words framework is used to learn discriminative semantic representation. With
the help of CNN, deep methods achieve better performance recently on category-
level [13,17] and fine-grained SBIR [27]. Wang et al. [23] use a Siamese network to
retrieve 3D models by a query sketch. Qi et al. [17] also adopt a similar Siamese
strategy to solve category-level SBIR based on a small dataset Flickr15K [6],
which is the first attempt in deep SBIR technique. Yu et al. [27] achieve a
nice result in fine-grained search with triplet loss. To our best knowledge, DSH
[13] is the only existing work that employs deep hash learning in SBIR. It uses
a relatively complex semi-heterogeneous hashing framework, achieving a good
performance in large-scale dataset. Despite that, our work surpasses DSH in
evaluation with rather compact hash code learning.

Hashing Learning. Hashing is an effective method for fast image retrieval. It
projects high-dimensional features to compact semantic-preserving binary codes,
which are called hash codes. The mapping strategy is the crucial hashing func-
tion. Early unsupervised hashing methods include LSH [3], SH [24] and ITQ
[5]. With the help of label information, supervised hashing can deal with more
complicated semantics than unsupervised hashing. The representative ones are
BRE [8], MLH [16] and KSH [14]. In recent years, deep hashing methods have
shown promising power. CNNH [26], DPSH [12] and NINH [9] are representative
methods. They leverage pair-wise or triplet-wise approaches to learn semantic
similarity, while large storage of pair or triplet samples is required. Moreover,
above-mentioned hashing methods are devoted to CBIR, which have not been
specially designed for SBIR yet.

3 Methodology

3.1 Problem Formulation

We let P = {pi}n1
i=1 be the set of all real image photos and S = {si}n2

i=1 be
the set of all sketches, where n1 and n2 are the sample number of set P and
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S respectively. The corresponding label set of real photos is denoted as LP =
{lPi }n1

i=1, l
P
i ∈ {1, 2, ..., C}. Each photo pi is connected to one label tag lPi coming

from total C classes. Similarly, we have the label set of sketches LS = {lSi }n2
i=1,

lSi ∈ {1, 2, ..., C}.
Our target is to learn a semantic-preserving hashing function mapping orig-

inal photos P and sketches S to compact hash codes BP = {bP
i }n1

i=1 and
BS = {bS

i }n2
i=1. These hash codes are d-bit binary representation bP

i , b
S
i ∈ {0, 1}d

that well preserving intrinsic semantics. For our particular task, we need to
bridge the domain gap between real photos and sketches, in the meantime
we should maintain the similarity relationship in original feature space for
both domains themselves. More specifically, given two images, no matter which
domain they belong to (perhaps a sketch or a natural photo): (i) If their corre-
sponding labels are the same, they should be semantically similar all the way.
In other words, the hamming distance of their hash codes has to be quite small.
(ii) Otherwise, the distance between their codes should be pushed away as far
as possible.

Fig. 2. Pipeline of our proposed idea. The first step is the prototype hash code gen-
eration algorithm. The next step is the hashing function learning procedure using
prototype codes. The last step is the sketch-based image retrieval process.

To achieve our goal mentioned above, we design an efficient pipeline as shown
in Fig. 2. It consists of three parts. Firstly, we encode a set of prototype hash
codes fully utilizing the label semantic information. The next step is the hashing
function learning procedure. We propose a novel deep hashing architecture that
is specific to sketches and natural photos respectively with the help of generated
prototype codes. Finally, we conduct sketch-based image retrieval process.

3.2 Prototype Hash Code

To mend the semantic gap in cross-domain situation such as our problem, we call
for a comparable feature space applying to both sketches and real images. Hence,
we specially design a common prototype binary encoding for both domains,
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which we call it prototype hash code. Since label information indicates the inher-
ent semantic content for useful hashing learning aforesaid, a straight thinking is
to generate a series of prototype hash codes based on label supervision. Given
C label classes and d bit length of hash code, we denote the prototype set of
C distinct hash codes as Bo = {boi }Ci=1, b

o
i ∈ {0, 1}d. Among set Bo, every code

element boi is matched with a class label. Then, during the subsequent hashing
learning procedure, these prototype codes provide a firmly supervised support
for efficient training. The target is to train a network which can output a hash
code close to its nearest prototype code as much as possible.

To achieve our desired result, our generated prototype codes should meet
some requirements. The hamming distance between every code pairs should
be maximized, in order to capture more discriminative intrinstic structure and
reduce the error rate in retrieval. That is to say, we need to enlarge the minimum
hamming distance of this set to the greatest extent:

max
f

{
dmin = min

i,j

∥∥boi − boj
∥∥
H

}
, f : L → B0

s.t.B0 ∈ {0, 1}d×C , boi , b
o
j ∈ B0, i �= j

(1)

where dmin is the crucial minimum hamming distance, ‖ · ‖H is the Hamming
distance, L is the whole label set, f is our prototype encoding algorithm. In prac-
tice, our generation problem has no general sole solution in mathematics. Here,
we search the feasible solution through controlling dmin to grow up increasingly.
Starting with a relatively small dmin, we can easily find out a candidate set with
more than C codewords satisfying the hamming distance between any codes is
larger than dmin. Afterwards, we increase dmin by 1 repeatedly and follow the
same searching strategy. Along with the increased dmin, the number of possible
available codes of a candidate set will be reduced. We stop when the candidate
set has less than the lower bound C codes. The last candidate set satisfying the C
bound limitation is our final set resource. We randomly select C codes within it
as optimal prototype code set Bo. Consequently, we have our specially designed
prototype result well maintaining discriminative essence. It is worth noting that
with our generation algorithm, even very short hash codes can provide a large
minimum hamming distance which is quite efficient for SBIR.

3.3 Deep Hashing Architecture

In this part, we propose a novel deep hashing architecture with two networks
for sketches and photos individually as shown in Fig. 3. Such deep network can
be seen as the hashing function which is a decisive factor in hashing learning.
We denote hashing function as HS for the sketch and HP for the photo. As
previously mentioned, sketches have a quite different appearance to real photos.
It is unable to directly imitate mature network technique from CBIR here. If we
let sketches and real images share the same network, the learned model will add
extra noise on sketches and ignore detail structure of natural images, causing a
bad effect on both domains. In addition, if we follow previous works to convert
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Fig. 3. An illustration of our proposed deep hashing retrieval architecture. We adopt
two separate networks for two domains. The upper part is the network for sketch, and
the lower part is the network for real photo.

natural images to approximate sketches by edge extraction in advance, it still
has some defects. Actually, a sketch is different from a simple tracing of image
boundary. People often draw sketches with geometry distortion and simply rely
on their vague memory. We once test this edge extraction strategy and it turned
out to be less effective.

Benefiting from prototype hash code introduced before, we adopt two sepa-
rate networks for sketches and photos. The networks will learn a shared embed-
ding in Hamming space. Prototype code set is a common binary embedding
for sketches and photos both, guiding hashing learning at the last layer. Thus,
two separate networks have the same mission that samples have to be grouped
around the targeted prototype code.

For sketches, we adopt a carefully designed network containing 6 convolu-
tional layers and 2 fully connected layers illustrated in the upper part of Fig. 3.
The last layer is a fully connected layer with d nodes, relying on the hash code
bit length. We also call it hash layer since it will encode the high-dimensional fea-
ture into binary-like one yi via a following sigmoid activation. Sigmoid function
has proved to be effective for hashing methods in that it could regulate features
within a (0, 1) real-valued range, becoming hash-like features. To train the sketch
network end-to-end, we exploit Mean Squared Logarithmic Error (MSLE) with
the supervision of prototype hash code:

L =
1
n1

n1∑
i=1

‖log(boi + 1) − log(yi + 1)‖2 (2)

where boi is the prototype hash code that yi referred to. As MSLE is more
robust to overfitting than mean squared error, we choose MSLE as our learning
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objective. The detailed network configuration is illustrated in Table 1. The rea-
son why we employ such kind of shallow network is based on sketch trait itself.
The sketch is a grayscale image with rather sparse lines. Due to lack of abun-
dant structure information and the unbalanced zero-one amount in sketches, a
very deep network will fall into overfitting. Besides, we employ data augmenta-
tion procedure to further avoid overfitting situation and make limited training
samples more robust. Each sketch sample runs through the augmentation pre-
processing and then be fed into the network. A Random rotation, shear, zoom
and translation will be applied.

Table 1. Detailed configuration of sketch network.

Layer Filter Size Filter Num Stride Pad Activation Output

Input - - - - - 1 × 128 × 128

Conv 3 × 3 32 1 1 ReLU 32 × 128 × 128

Conv 3 × 3 32 1 1 ReLU 32 × 128 × 128

Dropout(0.25) - - - - - 32 × 128 × 128

MaxPool 3 × 3 - 3 0 - 32 × 42 × 42

Conv 3 × 3 64 1 1 ReLU 64 × 42 × 42

Conv 3 × 3 64 1 1 ReLU 64 × 42 × 42

Dropout(0.25) - - - - - 64 × 42 × 42

MaxPool 2 × 2 - 2 0 - 64 × 21 × 21

Conv 3 × 3 128 1 1 ReLU 128 × 21 × 21

Conv 3 × 3 2048 1 1 ReLU 2048 × 21 × 21

Dropout(0.25) - - - - - 2048 × 21 × 21

GlobalAvgPool 21 × 21 - 21 0 - 2048

FC 1 × 1 256 - - ReLU 256

FC 1 × 1 256 - - ReLU 256

Dropout(0.5) - - - - - 256

FC(hash) 1 × 1 d - - Sigmoid d

For real photos, we employ a revised successful deep network Inception-v3
[22] as shown in the lower figure of Fig. 3. Because the photo retrieval task is
similar to traditional image-based task, we directly use a well-performing stan-
dard configuration from ILSVRC competition as our basic framework. Inception
net is the winner of ILSVRC 2014 proposed by Google. Real photo input is
downsampled to 140 × 140. Then we replace the last fully connected layers and
softmax layer of original Inception net by a fully connected layer with 1024 nodes
right after the global average pooling. At the end, a hash layer is applied exactly
as sketch network works. We still use MSLE as our loss function.
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3.4 Retrieval Process

The output of training network is real-valued feature yi. To obtain the final hash
code bi, we binarize the activation output with a threshold:

bi = sgn(yi − 0.5),

sgn(x) =

{
0 x ≤ 0,
1 x > 0

(3)

Next, we carry out retrieval process. For SBIR, hashing retrieval process is
a little more complicated than CBIR. (i) With our fine trained photo hashing
function HP , all the real images in gallery set are transformed to compact d-bit
hash codes. We denote the candidate hash pool as P. (ii) Given a query sketch
sq, it will go through the trained sketch model HS and output its sketch code
bq. (iii) We compare each candidate photo code in P with a query code bq by
calculating hamming distance. The hamming distance has a positive relation
to similarity. Hence, it forms a rank of retrieval results in ascending order of
distance.

4 Experiments

In this section, we demonstrate the effectiveness of our proposed method on
sketch-based image retrieval. We conduct extensive experiments on two public
datasets and our method is compared with several state-of-the-art methods. At
last, we evaluate our method and verify its good performance.

4.1 Datasets

So far, the largest datasets in SBIR are TU-Berlin Extension and Sketchy exten-
sion. TU-Berlin benchmark [4] is aimed at sketch recognition and classification.
It consists of 20,000 sketch images evenly belonging to 250 categories covering
daily objects like teapot, car and horse. The extended TU-Berlin [30] dataset
adds 204,489 real images in total as gallery set for sketch-based image retrieval.
Sketchy [20] is the latest released dataset specifically collected for retrieval.
It contains 75,471 sketches of 12,500 natural objects from 125 categories. The
extended sketchy [13] provides another 60,502 natural images and merges original
natural images into the retrieval gallery pool. Both two collections are convincing
evaluation datasets for large-scale SBIR task.

For fair comparison to previous works, we follow the same experimental set-
ting as DSH [13]. We randomly select 2,500 sketches (10 sketches per category)
for TU-Berlin and 6,250 sketches (50 sketches per category) for Sketchy as test
query sketches. And we use the remaining natural images and the rest of sketches
for training.
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4.2 Implementation Details

We implement our experiments on single GTX1060 GPU with 6GB memory.
For sketch model, data augmentation is applied before entering the network.
We perform random rotation in the range of 20 degrees, horizontal and vertical
translation up to 25 pixels, zoom from 0.8 to 1.2 times and a 0.2 shear intensity to
reduce overfitting. During training, batch size is set to 40 and the initial learning
rate is 0.001. The model is trained for 200 epochs with Adam [7] optimizer. For
photo model, we do training for 40 epochs with batch size of 128. And we still
use Adam optimizer and the learning rate is 0.001.

Table 2. Performance comparison in SBIR with state-of-the-arts via mAP, Preci-
sion@200, Retrieval time per query and Memory load on TU-Berlin Extension.

Method Dimension TU-Berlin Extension

mAP P@200 Retrieval
time per
query(s)

Memory
load(MB)

HOG 1296 0.091 0.120 1.43 2.02 × 103

GF-HOG 3500 0.119 0.148 4.13 5.46 × 103

SHELO 1296 0.123 0.155 1.44 2.02 × 103

LKS 1350 0.157 0.204 1.51 2.11 × 193

Siamese CNN 64 0.322 0.447 7.70 × 10−2 99.8

SaN 512 0.154 0.225 0.53 7.98 × 102

GN Triplet 1024 0.187 0.301 1.02 1.60 × 103

3D Shape 64 0.054 0.072 7.53 × 10−2 99.8

Siamese-AlexNet 4096 0.367 0.476 5.35 6.39 × 103

Triplet-AlexNet 4096 0.448 0.552 5.35 6.39 × 103

DSH-32 32 0.358 0.486 5.57 × 10−4 0.78

DSH-64 64 0.521 0.655 7.03 × 10−4 1.56

DSH-128 128 0.570 0.694 1.05 × 10−3 3.12

Our-12 12 0.550 0.622 3.04 × 10−4 0.29

Our-24 24 0.561 0.634 4.48 × 10−4 0.59

Our-32 32 0.573 0.650 5.43 × 10−4 0.78

Our-64 64 0.591 0.668 6.99 × 10−4 1.56

Our-128 128 0.613 0.693 9.72 × 10−4 3.12

4.3 Results and Analysis

Our results are evaluated within the whole gallery set on extended TU-Berlin
and Sketchy respectively. We compare our method with several state-of-the-art
deep SBIR approaches including Siamese CNN [17], sketch-a-net (SaN) [28], GN
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Table 3. Performance comparison in SBIR with state-of-the-arts via mAP, Preci-
sion@200, Retrieval time per query and Memory load on Sketchy Extension.

Method Dimension Sketchy Extension

mAP P@200 Retrieval
time per
query(s)

Memory
load(MB)

HOG 1296 0.115 0.159 0.53 7.22 × 102

GF-HOG 3500 0.157 0.177 1.41 1.95 × 103

SHELO 1296 0.161 0.182 0.50 7.22 × 102

LKS 1350 0.190 0.230 0.56 7.52 × 102

Siamese CNN 64 0.481 0.612 2.76 × 10−2 35.4

SaN 512 0.208 0.292 0.21 2.85 × 102

GN Triplet 1024 0.529 0.716 0.41 5.70 × 102

3D Shape 64 0.084 0.079 2.64 × 10−2 35.6

Siamese-AlexNet 4096 0.518 0.690 1.68 2.28 × 103

Triplet-AlexNet 4096 0.573 0.761 1.68 2.28 × 103

DSH-32 32 0.653 0.797 2.55 × 10−4 0.28

DSH-64 64 0.711 0.858 2.82 × 10−4 0.56

DSH-128 128 0.783 0.866 3.53 × 10−4 1.11

Our-12 12 0.762 0.839 2.21 × 10−4 0.11

Our-24 24 0.772 0.850 2.43 × 10−4 0.21

Our-32 32 0.789 0.867 2.57 × 10−4 0.28

Our-64 64 0.796 0.876 2.81 × 10−4 0.56

Our-128 128 0.810 0.890 3.57 × 10−4 1.11

Triplet [20], 3D Shape [23], as well as Siamese-AlexNet and Triplet-AlexNet [13].
Traditional hand-crafted methods HOG [2], GF-HOG [6]. SHELO [18] and LKS
[19] are also included. To better demonstrate our outstanding performance, we
conduct our experiments with 12, 24, 32, 64 and 128 bits hash code. This is
the same setting compared with deep hashing method DSH [13]. During the
comparison to SBIR baselines, we use a ranking based criterion mean Average
Precision (mAP) and precision at top 200 (P@200) to evaluate the retrieval
quality. Higher mAP and P@200 indicate a higher retrieval level in the ranking
list. The memory load over the whole gallery images and retrieval time per query
are also listed. Public results data of previous works are derived from DSH. The
comparison results on two datasets are illustrated in Tables 2 and 3.

From our extensive comparison results, we have the following findings: (i)
Our method outperforms all the baseline methods on both large-scale datasets.
We increase around 4% and 3% mAP over TU-Berlin Extension and Sketchy
Extension respectively. (ii) It is noteworthy that results on TU-Berlin are infe-
rior to Sketchy due to much more categories and larger gallery size. (iii) Deep
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methods strongly beat traditional hand-crafted ones, proving the powerful abil-
ity of deep features. Additionally, with the help of hashing, our method and DSH
can save memory load and retrieval time by almost four orders of magnitude.
(iv) In comparison to the only deep hashing competitor DSH, our method has
a better performance under several metrics. Especially, our method can achieve
a good behavior even with quite compact hash code. For instance, our 12-bit
hashing result surpasses 64-bit DSH in mAP. It demonstrates that our unified
prototype hash code set is suitable for fast large-scale retrieval task. Moreover,
our method utilizes a point-to-point training rather than pairwise loss in DSH,
avoid tedious sample building step and weak training guidance.

5 Conclusion

In this paper, we introduce a novel deep hashing method for sketch-based image
retrieval. Our method adopts a prototype hash code set for constraining feature
representation. A deep hashing architecture is specially designed for two dif-
ferent domains, sketches and natural photos respectively. By means of mapping
different domains into a common hamming space, our method achieves good per-
formances with very compact binary codes. Extensive experiments across large-
scale retrieval benchmarks demonstrate that our method outperforms all non-
deep and deep methods under several metrics. In general, our method exhibits
promising result in fast and efficient retrieval via compact binary codes learning.
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Abstract. Automated nuclear segmentation on histopathological
images is a prerequisite for a computer-aided diagnosis system. It
becomes a challenging problem due to the nucleus occlusion, shape vari-
ation, and image background complexity. We present a computerized
method for automatically segmenting nuclei in breast histopathology
using an integration of a deep learning framework and an improved
hybrid active contour (AC) model. A class of edge patches (nuclear
boundary), in addition to the two usual classes - background patches
and nuclei patches, are used to train a deep convolutional neural net-
work (CNN) to provide accurate initial nuclear locations for the hybrid
AC model. We devise a local-to-global scheme through incorporating the
local image attributes in conjunction with region and boundary informa-
tion to achieve robust nuclear segmentation. The experimental results
demonstrated that the combination of CNN and AC model was able to
gain improved performance in separating both isolated and overlapping
nuclei.

Keywords: Convolutional neural network · Active contour model
Nuclear segmentation · Histopathology

1 Introduction

With the recent advent of whole slide digital scanners and advances in compu-
tational power, it is now possible to use digitized histopathological images and
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computer-aided image analysis to facilitate breast diagnosis and prognosis [12].
An automatic, high-throughput image analysis system usually requires accurate
and robust nuclei segmentation as the first and critical step. Nuclear segmenta-
tion becomes a difficult problem particularly for routinely stained hematoxylin
and eosin (H&E) slides due to the nucleus occlusion or overlapping, shape varia-
tion, inter- and intra-nucleus inhomogeneity, background complexity, and image
artifacts [13].

Fig. 1. Workflow of the presented nuclear segmentation method

A large variety of segmentation techniques to tackle these problems have been
applied to histopathological images [6,9]. Active contour (AC) models remain
the most popular methods in segmenting medical images [5]. For instance, the
classic Chan-Vese model [1] computed the gray level of homogeneity derived from
image foreground and background. Hybrid AC models incorporating boundary,
region, and shape information, have been approved to be effective methods to
segment nuclear structures. These methods depended on the choice of initial-
ization which limit their ability in segmenting multiple touching or overlapping
cells. Recently, many nuclei detection methods using deep learning strategies
have been developed on histopathological images. Xu et al. [14] utilized a staked
sparse autoencoder to learn high-level features to distinguish nuclei and non-
nuclei. In [13], a deep convolutional neural network (CNN) was used to generate
a probability map served as shape initializations for a deformable model. These
learning-based methods could provide accurate initial seed points for subsequent
application of segmentation models. This motivates our work on building a fine
nuclear segmentation method by fusing CNN technique and AC model.

In this work, we present a computerized image-based method for automat-
ically segmenting nuclei in digitalized breast histopathology. The workflow of
the presented method is depicted in Fig. 1. We integrate a deep learning frame-
work and an improved hybrid active contour model to perform a robust nuclear
segmentation. A light fully convolutional neural network model is employed to
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Fig. 2. (a) Original histopathology image; (b) Binary image with manually labeled
nuclei boundaries; (c) Nuclei contours using the morphological erosion operation; (d)
Enhanced images using de-convolution operation and histogram equalization; (e) Nuclei
detection with edge patches; (f) Nuclei detection without edge patches.

reduce the computational burden of training deep CNN model and applicable to
large-scale datasets. In order to accurately detect touching or overlapping nuclei,
we introduce a third class of edge patches (nuclear boundary), in addition to the
two usual classes - background patches (outside all nuclei) and nuclei patches
as input samples, to train the CNN model. The probability map obtained from
the trained CNN model is to form an initial curves close to the real nuclear
boundary, enabling to accelerate the computation of the following AC segmen-
tation, thus solving the problem that general AC models are sensitive to the
initial contour curves. Moreover, we integrate the local image attributes, reflect-
ing the intensity homogeneity of the nuclear regions, with region and boundary
information into the devised hybrid AC model to partition touching nuclei as
well as isolated nuclei from the image background. The combination of CNN and
AC model could be useful in building an image analysis tool for computational
histopathology.

2 Methodology

2.1 Image Pre-processing

Color Normalization: There are undesirable color variations between digital
tissue images often caused by differences in stain vendors, staining protocols,
scanning parameters, and illumination. Color normalization has been proved to
be able to improve tissue segmentation by maintaining color constancy in digi-
talized pathology meanwhile preserving biological structure information present
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in the images. We utilized a color-map based quantile normalization method [6]
at a pixel basis to reduce color differences across the histopathological images.

Training Sample Generation: We created three classes of training samples,
referred as nuclei, edge, and background through a semi-automated method.
The nuclei patches were generated based on manually labeled nuclear bound-
aries. We then applied a morphological erosion operation on the binary images
(see Fig. 2(b)) resulting from the manually delineated images to form a three-
pixel width nuclei contours shown in Fig. 2(c). The edge patches were selected
around these nuclei boundaries. Subsequently, we used a de-convolutional oper-
ation to find the erosion stain components in order to obtain non-nuclei pixels.
A histogram equalization method was employed to further improve the con-
trast between the nuclei and non-nuclei pixels (see Fig. 2(d)). The background
patches were chosen based on the detected non-nuclei pixels. All the three types
of patches were the same size with 64× 64 pixels. Different sizes of patches were
also considered. The patch size was determined by the trade-off between the
coverage of large nuclei as well as the useful context information and the com-
putation complexity. The training dataset consisted of positive samples (nuclei
patches) and negative samples (edge and background patches). Unlike the gen-
eral training process, we added the edge patches as the negative samples in order
to improve nuclei detection performance. Figures 2(e) and (f) show two exam-
ples of nuclei detection results using and without using edge patches as training
samples. we noted that the edge patches allowed a better learning process for
the nuclei boundaries within the CNN model, particularly useful for these over-
lapping nuclei with connected margins.

Fig. 3. Illustration of the architecture for the presented fully convolutional neural
network

2.2 Nuclei Detection

We adopted a CNN-based architecture to train a patch-based classifier to distin-
guish nuclei or non-nuclei patches. The nuclei detection task was converted into
a patch-based classification problem. A probability map on a pixel basis for the
entire histopathological image was computed based on the classification result of
each patch centered pixel. As mentioned before, we introduced the edge patches
describing nuclei boundaries into the training negative samples in addition to
the usual binary of foreground (inside any nucleus) and background (outside
every nucleus), thus allowing a better identification of overlapping nuclei.
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Algorithm 1. The H-minima based nuclei marker identification
Input: Gradient map Gmap, area threshold tarea, disk size dsize
Output: Nuclei markers M

1. M = ∅, h = 1
2. repeat
3. Given Gmap using H-minima to suppress noise.
4. Mcurr ← Region minima (hmap)
5. Mcurr ← Remove small regions (Mcurr, tarea)
6. Mcurr ← Remove overlapping (M,Mcurr, dsize)
7. M = M

⋃
Mcurr

8. h = h + 1
9. until Mcurr = ∅

We presented a fully convolutional neural network model based on the
AlexNet [8], which contained only the convolutional layers (see Fig. 3). We
replaced the pooling layers and fully connected layers by the convolutional lay-
ers in order to reduce the size of the input at each layer. This led to a large
reduction in the number of network parameters and a avoidance of over-fitting
problem. As the network became deeper and the input size shrank, we increased
the number of kernels so that essentially each layer was computed in the same
amount of time, which was similar as the scheme for selecting the number of ker-
nels used in the VGG model [10]. This scheme offered a good ability to predict
the computational time of the training and testing processes. Further, we used
the batch normalization layers before the activation layers to avoid over-fitting
[3]. After the patch-based classification, we created a pixel-level probability map
for the whole histopathological image using a bilinear up-sampling operation.
A gradient map Gmap was adopted to iteratively identify the nuclei markers.
Algorithm 1 shows the iteration process using the H-minima transform to miti-
gate the noise interference due to the image artifacts [7].

2.3 Nuclei Fine Segmentation

In the fine segmentation phase, we devised an improved hybrid AC model via
fusing both boundary- and region-based information within a local-to-global
strategy to achieve a robust nuclei segmentation in breast histopathology. For
the initialization of AC model, we used the previously detected nuclei markers,
rather than using the manual delineation or automated approaches, such as
uniform griding, watershed algorithm [5]. Although these methods are easy to
implement, the arising over-segmentation problem leads to many inaccurate non-
nuclei segments. The CNN detection method provided better performance in real
nuclei detection on the histopathological images. The probability maps from the
CNN results after thresholding were used as initial shapes for AC model. The
hybrid AC model was then driven via a level set method, in which the energy
function to be minimized could be expressed as:

E(ψ) = −a

∫
Ω

(A − η)H(ψ)dΩ + b

∫
Ω

ξ|∇H(ψ)|dΩ, (1)
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where Ω represents image domain, ψ is the zero set of embedding function rep-
resenting the active contour C = {y|ψ(y) = 0}, where points inside and outside
of C have positive and negative ψ values. A denotes the image to be segmented,
ξ = ξ(|∇|A) is a boundary feature map obtained from image gradient, and H(ψ)
is the regularized approximation of Heaviside function. The constants a and b
are predefined weights to balance the two terms. The first term defines the region
term and η is a parameter indicating the lowest value of gray level of the target
object. We assumed here that the target object of nucleus had relatively high
gray level values. If this was not the case, a simple gray-level remapping tech-
nique could be applied to achieve it. The second term of geodesic active contour
function guides the contours to attach to the regions with high image gradients.

Moreover, we incorporated the local image information into the hybrid AC
model in order to overcome the disadvantage of inhomogeneous intensity dis-
tribution appearing in the initial contours. The local term El derived from the
local image statistical information can be defined as: El =

∫
in(C)(ζ(A)) − A) −

d1)2dC +
∫

out(C)(ζ(A)) − A) − d2)2dC, where ζ(A) is an averaging filter, d1 and
d2 are the intensity averages of the difference image (ζ(A) − A) inside contour
in(C) and outside contour out(C), respectively. This local term had been used in
our previous work and obtained a superior segmentation performance in refining
the boundaries of multiple overlapping nuclei [5]. This global-to-local scheme
improved the hybrid AC model for better segmenting both individual and over-
lapping nuclei in the breast histopathological images.

3 Experimental Results and Discussion

3.1 Experimental Design

Data Description: We collected a dataset containing 137 histopathological
images scanned at 40× magnification from 89 patients who diagnosed with breast
cancer. All the images were de-identified and H&E stained. We extracted 141
regions of interest (ROIs) from the data cohort. Among these ROIs, approx-
imately 16,000 breast cancer nuclei were manually annotated by an expert
histopathologist. The annotated data were separated into training dataset (80%)
and testing dataset (20%). We also ensured that the training and testing samples
were not from the same patient study simultaneously.

Data Augmentation: Because of unbalance between the number of nuclei
and background patches, the classification could be biased towards the back-
ground (non-nuclei). Therefore, a data augmentation method was applied to the
nuclei patches by rotating the patches with 90◦, 180◦ and 270◦, thus producing
three times of positive samples. In the experiment, we used 48, 000 positive and
120, 000 negative samples for breast cancer histopathology.
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Parameters Setting: Our CNN model was implemented under a parallel com-
puting platform CUDA using a Caffe framework [4]. The learning rate of model
was 0.001, and epoch was 10. The learning process was optimized via a stochastic
gradient descent method [4]. In the nuclei detection task, the parameter of initial
depth for the H-minima transform was set as h0 = 1, tarea = 3, and dsize = 3.
The AC model was empirically tuned to achieve the best segmentation perfor-
mance. In all the experiments, we used a = 0.03, b = 1.0, η = {0.47 − 0.50} in
the nuclei fine segmentation process.

Fig. 4. Nuclei detection results. (a) Ground truth; (b) The presented CNN-based
method; (c) The deconvolution method [11]; (d) The MPAV method [2]. Green dots
and yellow dots represent the manual annotated nuclei centers and the detected nuclei
centers, respectively (Color figure online).

Table 1. Quantitative comparison of nuclei detection methods.

Method CNN-based method Deconvolution [11] MPAV [2]

Precision 0.85 0.82 0.81

Recall 0.78 0.74 0.72

F-measure 0.82 0.78 0.76

3.2 Evaluation Metrics

The performance of the presented CNN-based nuclei detection method was quan-
tified in terms of three popular metrics of precision, recall, and F-measure,
which were defined as: Precision = TP

TP+FP , Recall = TP
TP+FN , F − measure =

2 × Precision×Recall
Precision+Recall , where TP, FP, FN are the true positive, false positive, and

false negative. F-measure is the harmonic mean of precision and recall. In this
work, TP was defined as the correctly identified nuclei, in which the center of the
nuclei was within the distance of 15 pixels to the center of manually annotated
nuclei.

For the nuclei fine segmentation, three measures, including Dice similarity
coefficient (DSC), F-measure, and average Housdroff distance (AveHd), were
used to quantitatively evaluate the segmentation performance. The DSC met-
ric can be expressed as: DSC = 2|Ωsr

⋂
Ωgt|

|Ωsr|+|Ωgt| , where Ωsr and Ωgt are the areas
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enclosed by the automated segmentation (Csr) and manual segmentation (Cgt),
respectively. The closer the DSC value is to 1, the more similar the automated
nuclear segmentation is to the manual reference segmentation. The Housdroff
distance, which penalizes distance of furthest pixels on contours of two shapes,
is calculated as: AveHd = 1

|Csr|
∑

Csr
[minCgt

‖zsc − zgt‖], where |Csr| is the total
number of points on Csr, zsc and zgt are the points on the automated segmenta-
tion contour and the corresponding closest points on the manual segmentation,
respectively. AveHd reflects the average error between the automated and man-
ual segmentations.

Fig. 5. Segmentation results. (a)(e) Original images; (b)(f) The presented method;
(c)(g) The Chan-Vese model [1]; (d)(h) The Otsu’s method [15]. The green contours
are superimposed on the original images

3.3 Nuclei Detection Performance

The presented CNN-based nuclei detection method was compared with the other
two recent reference approaches. The deconvolution method was a region-based
segmentation method, in which the nuclei were detected through the color decon-
volution and a generalized fast radial symmetry transform [11]. The multi-pass
adaptive voting approach (MPAV) utilized the symmetric property of nuclear
boundary and selected gradient from edge fragments to perform voting for a
potential nucleus location [2]. For a fair comparison, we used their original imple-
mentation code to generate the detection results.

Figure 4 demonstrates the visual results using three methods. By observing
the figures, we noted that the presented CNN-based method achieved the best
detection results, where the position of the detected nuclei were closely matched
with the manual detection. Both reference methods produced more non-nuclei
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detection and miss the real nuclei locations. In addition, we conducted a quan-
titative evaluation using the three metrics of precision, recall, and F-measure
shown in Table 1. The measurement values were obtained using the histopatho-
logical images in the testing set. The evaluation provided a consistency with the
visual results. The devised CNN-based method achieved the best quantitative
results in all three metrics. The main reason was that in the training procedure,
we added the edge patches to allow the CNN model to learn the nuclei bound-
aries and improve the detection performance in the overlapping nuclei, which
further enhanced the following nuclear segmentation.

Table 2. Quantitative comparison of nuclei segmentation methods.

CNN+AC C-V [1] Otsu [15] Xing [13] Kumar [9]

DSC 0.78 0.72 0.58 0.68 0.75

F-measure 0.85 0.81 0.78 0.84 0.72

AveHd 6.22 8.32 8.54 7.14 6.04

3.4 Nuclear Segmentation Performance

For the nuclei fine segmentation, we qualitatively compared our results with
two classic region-based segmentation methods. The Chan-Vese (C-V) model
employed the global image statistics inside and outside the evolving curve [1].
The Otsu’s binarization method is one of the most popular thresholding meth-
ods used in image segmentation [15]. The visual evaluation of our segmentation
method was performed across all the testing images. The segmentation results
are illustrated in Fig. 5. Our presented method outperformed the C-V model [1]
and the Otsu’s method [15] in terms of good nuclei separation and smooth con-
tour enclosure. We noted that the C-V model (see Figs. 5(c) and (g)) failed to
handle the nuclear overlapping problem due to the inaccurate curve convergence
on the outer boundaries enclosing multiple clumped nuclei. The Otsu’s method
yielded worse segmentation results compared with the other approaches, espe-
cially for the challenging cases with crowded nuclei (see Fig. 5(a)).

Furthermore, we quantitatively compared our segmentation method with
two alternative deep learning based approaches. Xing et al. [13] introduced a
deep learning-based framework for nucleus segmentation with shape preserva-
tion. Kumar et al. [9] developed a deep learning based technique, in which a CNN
model was used to produce a ternary map, to perform a nuclear segmentation.
Since the implementations of these two methods are not available, we used the
original measure results reported in their papers which were also validated using
the breast histopathological images. Table 2 shows the comparison results evalu-
ated using DSC, F-measure, and AveHd. Our segmentation method achieved the
highest DSC, F-measure, and second lowest AveHd. This indicated that combi-
nation of deep learning technique and the improved active contour model could
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lead to superior nuclear segmentation, particularly useful in accurately separat-
ing multiple overlapping nuclei with a high density on digital histopathological
images.

4 Conclusions and Future Work

We presented a computerized method for automated nuclear segmentation using
an integration of a deep learning framework and an improved hybrid active
contour model on histopathological images. Three classes of patches, including
nuclei, edge, and background, were utilized to train a modified fully convolutional
neural network model. The edge patches, containing nuclear pixels, were able to
find inter-nuclear boundaries irrespective of the configuration of the crowded
nuclei. Thus, the CNN-based nuclei detection method could help in solving the
problem of general AC models which were sensitive to the initial contour shapes.
Both qualitative and quantitative evaluation demonstrated that the presented
method outperformed other alternative deep learning based methods and classic
AC models. This suggested that the combination of CNN and AC model could
provide improved nuclear segmentation in separating clumped nuclei as well as
chromatin sparse nuclei.
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Abstract. Multi-person articulated pose tracking is a newly proposed
computer vision task which aims at associating corresponding person
articulated joints to establish pose trajectories. In this paper, we pro-
pose a region-based deep appearance model combined with an LSTM
pose model to measure the similarity between different identities. A novel
hierarchical association method is proposed to reduce the time consump-
tion for deep feature extraction. We divide the association procedure into
two stages and extract deep feature only when the pairs of identities
are difficult to distinguish. Extensive experiments are conducted on the
newly released multi-person pose tracking benchmark: PoseTrack. The
results show that the tracking accuracy gains an obvious improvement
when adopting multiple association cues, and the hierarchical association
method could improve the tracking speed obviously.

Keywords: Multi-person pose tracking · Hierarchical association
Region-based deep network · LSTM pose model

1 Introduction

Multi-person articulated pose tracking (MPT) is a newly proposed computer
vision task and aims at associating corresponding person articulated joints in
consecutive video frames to get the pose trajectories. MPT is the basic work
for human action recognition and human behavior prediction, and has a wide
application in robotics, surveillance and human-computer interaction.

Multi-person pose tracking is a similar problem with multi-object tracking
(MOT), but there are still many differences between them. MOT focuses on the
surveillance scenarios, and objects in such situation move smoothly and regularly.
The goal of MOT is to get consistent trajectory for each object. However, MPT
focuses on more complicated situations such as unconstrained dance and sports
videos, so there are more challenges such as severe occlusion, deformation, similar
appearance and non-linear motion, and the objective of MPT is to associate
corresponding pose joints and get the pose flow. Considering MOT is a deeply
explored computer vision task, some inspirations could be token from it for MPT.
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Following traditional online MOT methods, which could be formulated as
tracking by detection framework [12], MPT could be solved by tracking by esti-
mation technique, i.e., human articulated points are previously estimated in
each frame and then the pose flows are built by associating corresponding joints.
This task could be formulated as an assignment problem and the key issue under
this framework is to establish reliable affinity matrix. Variety of measurements
have been explored in MOT field. [19] adopts the deep neutral network to build
appearance model and measure the appearance similarity between objects. [2]
employs the Kalman Filter to measure position similarity. [16] proposes an inter-
action model to explore the group behavior. Inspired by previous works, similar
attempts have also been introduced into MPT field. [21] proposes the pose dis-
tance to measure pose similarity in consecutive frames. [20] measures the motion
similarity by optical flow. In recent years, Long Short-Term Memory(LSTM) [8]
network has shown its strong ability on sequential problems and their special
structures make them gain the ability to learn long term dependencies. [5] intro-
duces an LSTM model to fuse different affinities and calculate the final matching
likelihood. In this paper, we propose a novel LSTM pose model to learn the limb
motion information and predict the limb angles, and then the pose affinity is
measured by the limb angles similarity.

Appearance model is a key factor for affinity computation. In complex and
crowded scenarios, many objects are presented with similar appearance and may
be partly occluded. The result is that the tracker can not associate the objects
consistently. With recent development in convolutional neutral network (CNN),
deep feature has shown its strong representative ability. Some previous works
[2,5,18,19] have introduced CNN to extract deep feature for appearance sim-
ilarity computation, but it is time consuming to extract deep feature for each
person at each frame. In this paper, we propose a region-based deep CNN for
part-based appearance feature extraction. This model could generate reliable
similarity score even if the persons are occluded with each other and improve
the tracking accuracy significantly. To reduce the time consumption for feature
extraction, we propose a novel hierarchical association method. The associa-
tion procedure is divided into two stages, at first stage, the pose tracklets and
detected poses are divided into easy and hard associations according to the basic
affinity matrix which is established based on simple metrics. At second stage,
the region-based deep appearance network is employed to extract deep feature
for appearance similarity computation and get more distinguishable scores for
hard associations. In this way, the part-based deep feature is adopted only when
pairs of identities are difficult to distinguish.

In this paper, we focus on multi-person pose tracking task, and our main
contributions are summarized as below:

1. We propose a region-based deep network to extract part-based appearance
feature, and in this way, our tracker could associate correctly even if the
objects are partly occluded;

2. We propose a novel LSTM pose model to learn the limb motion information
and predict limb angles which is then adopted for pose similarity computation;
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3. To reduce the time consumption for deep feature extraction, we propose a
hierarchical association method and extract deep feature only when pairs of
identities are difficult to distinguish. We conduct extensive experiments on
PoseTrack [1] benchmark, and the results show that our tracker could improve
the tracking accuracy and reduce the time consumption significantly.

2 Our Proposed Approach

2.1 Problem Formulation

Under tracking by detection framework, the online multi-person pose tracking
task could be formulated as an assignment problem [4] between pose tracklets
and new pose joints. Suppose that there are m existing pose tracklets and n
detected poses at frame t. A matrix Ct ∈ Rm∗n indicates the costs to assign
tracklets with corresponding objects. The objective is to find the optimal solution
with minimal cost. Suppose m < n, we first expand Ct to a square matrix with
dummy rows, then formulate this assignment problem as below:

min
n∑

i=1

n∑

j=1

cijxij

s.t.
n∑

i=1

xij = 1 j = 1, 2, ..., n

n∑

j=1

xij = 1 i = 1, 2, ..., n

(1)

where cij is an element of cost matrix. xij is a binary variable indicating whether
to associate i-th tracklet with j-th pose. We adopt the famous O(n3) Hungarian
algorithm [10] to address above problem and accomplish fast online association,
and the main issue under this framework is to get reliable cost matrix. Dur-
ing tracking, we calculate the similarities between pairs of identities, and the
opposite numbers of the similarity scores are regarded as the cost scores.

2.2 Multi-person Pose Estimation

Our main focus in this paper is multi-person pose tracking based on predetected
human joints, and we adopt top-down method to accomplish multi-person pose
estimation. The Faster RCNN [15] detector is firstly employed to detect the
positions and scales of persons in each frame, then the Pyramid Network [22] is
adopted to estimate pose keypoints for each person.

2.3 Hierarchical Multi-person Pose Tracking

In recent years, CNN has shown its strong representative ability in variety of
computer vision tasks. To get reliable affinity for association, a simple idea may
be introducing CNN for deep appearance feature extraction, but such method
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is time consuming owning to the procedure for frequent forward propagations.
We propose a novel hierarchical association method to address above problem.
In most cases, the movement of same identities in consecutive frames is minor,
and adopting spatial constraints such as pose box IOU (intersection area over
union area) could get a satisfactory association result. There is no need to extract
deep feature for these objects. However, when occlusion, camera motion or severe
deformation happens, spatial constrains are no longer reliable, and deep appear-
ance feature should be employed in such situation to get robust affinity score.
Based on above criteria, the association procedure is divided into two stages as
demonstrated in Fig. 1. At first stage, the basic affinity matrix is established
based on basic association metric and divided into easy associations and hard
associations according to the basic score. At second stage, deep association met-
ric is applied to the hard associations to obtain more distinguishable affinity
score. Finally, Hungarian algorithm is adopted based on easy association matrix
and modified hard association matrix to get the final association result.

Tracklets

Detections

Basic
Association

Matrix

Easy
Association

Set

Hard
Association

Set

Deep 
Metric

Refined
MatrixBasic 

 Metric

Final
Results

Fig. 1. The framework of hierarchical association.

Fig. 2. The network structure of LSTM pose model.

Basic Similarity Metrics. We adopt pose IOU and LSTM pose model as
basic similarity metrics to accomplish fast association. Pose IOU acts as the
basic spatial constrain and is the IOU between corresponding pose boxes which
are square boxes centered at the joint points. We select 7 joints lying on head
and body region to compute pose IOU as they are more stable compared with
limb joints. The width of pose box is set to 60 pixels during experiment. In
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this place, we did not design velocity model as most motions in MPT are always
non-linear, and adopting history velocity information could cause identity switch
easily. When the objects are difficult to distinguish by spatial constrains, our
tracker would rely more on pose and region-based appearance similarity.

Beyond that, we propose a novel LSTM pose model to measure the pose
similarity of corresponding identities. As demonstrated in Fig. 2, the pose model
is composed of a 6-time-step LSTM unit followed by one fully-connected layer. A
residual connection is added to reduce the difficulty for network training. During
tracking, the network takes the tangent values of 8 limb angles in 6 consecutive
frames as inputs and predicts the limb angles in next frame. The time step is
set to 6 as most occlusions on PoseTrack dataset last less than six frames. The
network is trained based on PoseTrack [1] training dataset. Pose similarity is
calculated by the euclidean distance of the limb angles and then restricted to
[0,1] by negative exponential function. The final basic affinity is the average value
of pose IOU and pose similarity.

Deep Appearance Similarity Metric. To get reliable affinity even if when
there exist occlusion, camera motion or severe deformation, we propose a region-
based deep network for deep appearance feature extraction. The pipelines are
demonstrated in Fig. 3, at first, the Fast RCNN detector and Pyramid Network
are employed to accomplish multi-person detection and pose estimation. Then
the region-based deep network is adopted to extract three types of deep features
based on input image patches and body part positions.

Fig. 3. The framework of region-based deep network

The region-based deep network could be divided into two components, i.e.
the base network and the part feature extraction network. The base network is
composed of three convolutional layers followed by one inception unit. The input
image patches are first resized into 96 * 96 and then processed by base network
to generate a shared feature map with spatial size of 24 * 24. The following
part feature extraction network is composed of three branches denoted as F-
Branch, H-Branch and B-Branch, which extract full object (FO), head region
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(HR) and body region (BR) appearance feature respectively. The main structure
of these three branches is an inception unit [17] followed by pooling layer and 256-
dimension fully-connected layer. However, different from the F-Branch, which
takes the entire shared feature map as input, B-Branch and H-Branch adopt the
ROI pooling layer to extract appearance feature from corresponding region in
the shared feature map. The ROI pooling layer first maps the scale and position
of the body or head region from original image patch to the shared feature
map and obtains the corresponding ROI windows, then divides the h ∗ w ROI
window into an H ∗ W grid of sub-window with approximate size h/H ∗ w/W
and maxpools the values in each sub-window into corresponding output grid
cell [6]. The adoption of ROI pooling method significantly reduces the time
consumption of the additional part-based model as they extract features from
the shared feature maps.

For each joint keypoint, there exist a confidence score generated during detec-
tion and pose estimation. We calculate a confidence score for each region which is
the average value of the scores of all the joints belong to it. During experiment,
the region with highest confidence score is employed for similarity computa-
tion. We select the body and head region for part feature extraction as they
are more stable compared with the limb regions. A three-layer BP network is
trained to measure the appearance affinity which takes the deep features of two
corresponding identities as inputs and outputs the affinity in range of [0,1].

To make our network gain the ability to distinguish different persons, we
collect a large person re-identification datasets for network training including
Market-1501 [23], PRID [7], CUHK02 [11] and Shinpuhkan2014 [9]. The net-
work is trained hierarchically, firstly the base network and F-Branch are trained
together with softmax classification loss for 60k iterations. Then we freeze the
weights of base network, replace F-Bracnch with H-Branch and train the weights
for H-Branch. Same procedure is applied to B-Branch for weight training. Finally
three branches are integrated together and the whole network is fine-tuned with
a low learning rate to get the final model.

Hierarchical Association. At first, the basic association matrix (BAM) is
established based on basic similarity metric. Then a simple double thresholds
method is applied to divide BAM, let AB ∈ Rm∗n indicate the BAM between
m pose tracklets and n detected poses in current frame. Ai means the i-th row
of AB , if the maximal value of Ai is greater than τ1 and the difference value
between the largest two values is larger than τ2, the i-th pose tracklet and
corresponding pose with maximal score would be regarded as easy association.
After establishing the easy association set, the remaining tracklets and poses are
regarded as hard associations.

Under above rules, there might exist two or more trajectories fighting for
same one object in the easy association set, which means there exist objects that
are not detected because of severe occlusion, and the missed objects would be
reconstructed by the history information in the tracklets. For hard associations,
the region based deep network would be employed to calculate the appearance
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similarity between pairs of identities. A linear SVM is trained for affinity fusion
which takes two types of similarities as inputs and outputs the final similarity
in range of [0,1]. The Hungarian algorithm is adopted based on the easy and
modified hard association matrix to get the final association relationship.

3 Experiment

3.1 Dataset and Evaluation Metrics

The PoseTrack benchmark [1] is a newly released dataset for video-based multi-
person pose tracking, and contains 550 video sequences covering many different
scenarios such as sports, dancing and driving. Three different tasks are supplied
and we focus on the multi-person pose tracking task only. This benchmark pro-
vides an online evaluation server to quantify the performance of different trackers
on the test dataset. The multi-object tracking accuracy (MOTA) [3] is adopted
as the evaluation metric which penalizes the false positives, false negatives and
identity switches during tracking.

As the multi-person pose estimation results would affect the tracking accu-
racy under tracking by detection framework, the mean average precision (mAP)
[13] metric is adopted to indicate the precision of the pose estimation results.

3.2 Experiment Results

Double Thresholds Selection. To get robust thresholds to divide the basic
association matrix, we test our tracker with grid search method on the PoseTrack
val dataset. The results are demonstrated in Fig. 4. With the increase of τ1 and
τ2, the MOTA score gradually become stable. According to the results, the final
threshold τ1 is set to 0.7 and τ2 is set to 0.3 to obtain a competitive tracking
speed and accuracy.
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Fig. 4. Double thresholds selection on PoseTrack val dataset
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Time Performance. To explore the effect of the hierarchical association metric
and different cues, five types of tracker are tested on the PoseTrack val dataset,
and the tracking speed (dose not contain the time consumption for detection and
pose estimation) is shown in Table 1. All the results are tested on the Intel E5V3
CPU and Quadro M4000 GPU with the python interface of Caffe. Metrics mean
the association methods. G denotes traditional global association and H denotes
the hierarchical association method. The association cue I means pose box IOU,
L means LSTM pose model, F means deep appearance model without B-Branch
and H-Branch and R means region-based deep appearance model. The results
in Table 1 show the hierarchical association metric significantly reduces the time
consumption for deep feature extraction and the tracking speed increases from
2.85 fps to 9.41fps. Beyond that, there is just minor speed loss for the added
part-based model as we adopt the ROI pooling method to extract region-based
features from the shared feature maps.

Table 1. Tracking speed analysis

Metrics G G H H G

Cues I I+L I+L+F I+L+R I+L+R

Speed(fps) 47.8 25.01 11.08 9.41 2.85

Ablation Studies. To explore the effect of the LSTM pose model and region-
based deep appearance feature, we do ablation studies on PoseTrack val dataset.
The results are demonstrated in Table 2. The tracker’s name in Table 2 has same
meaning with that in Table 1. After selecting correct double thresholds, hierar-
chical association metric could get similar performance with global association
metric. The results also show that the adoption of LSTM pose model and region-
based deep appearance feature could improve the tracking accuracy obviously.

Table 2. Multi-person pose tracking results on posetrack val dataset

Cues Metric MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTP

Head Shou Elb Wri Hip Knee Ankle Total Total

I G 58.8 66.3 57.8 51.9 54.5 56.0 50.5 56.7 51.1

I+L G 62.4 69.3 56.9 52.2 59.3 57.0 50.5 58.5 51.2

I+L+F H 63.0 70.7 62.0 55.4 58.3 59.7 53.5 60.6 51.3

I+L+R H 64.1 71.8 63.1 56.5 59.4 60.8 54.6 61.7 51.3

I+L+R G 64.2 72.0 63.3 56.6 59.5 61.0 54.8 61.8 51.3
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Comparison. To compare with other trackers, we test our tracker on PoseTrack
test dataset and upload the results to the online evaluation server. As shown in
Table 3, the accuracy of our tracker is competitive compared with other trackers
and yields higher MOTA score. The joints MOTA score of some trackers could
not be found as the evaluation server only reports the overall performance and
the author does not publish their methods. Our tracker dose not perform better
than FlowTrack [20], and it is mostly due to their high mAP score i.e., they
employ more accurate detection and pose estimation methods and obtain more
accurate pose joints. If performing on same detection results, our tracker could
get more competitive accuracy score. More details can be found on the online
leaderboard with challenge 3: https://posetrack.net/leaderboard.php.

Table 3. Multi-person pose tracking results on posetrack test dataset

Methods MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTA MOTP mAP

Head Shou Elb Wri Hip Knee Ankle Total Total Total

FlowTrack [20] - - - - - - - 57.81 - 74.57

ProTracker [5] - - - - - - - 51.82 - 59.56

PoseFlow [21] 52.0 57.4 52.8 46.6 51.0 51.2 45.3 50.98 16.9 62.95

ML-Lab [14] - - - - - - - 40.77 - 70.33

HMPT(ours) 51.9 59.7 50.8 48.5 52.0 52.7 47.6 51.89 40.4 63.73

Some sampled tracking results are demonstrated in Fig. 5, and the numbers
following ‘#’ denote the frame numbers in corresponding video sequence. Dif-
ferent identities are distinguished with different colors. The results demonstrate
that our tracker could handle the occlusion problem successfully.

Fig. 5. Sampled tracking result in PoseTrack test dataset.

4 Conclusion

In this paper, we propose a region-based deep CNN for part-based appear-
ance feature extraction, and this makes our tracker gain the ability to associate

https://posetrack.net/leaderboard.php
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correctly even if the objects are partly occluded. Besides, we propose a novel
pose LSTM model to measure the pose similarity. The hierarchical association
method is proposed to reduce the time consumption for deep feature extraction.
The results in PoseTrack benchmark show the hierarchical association method
could reduce the time consumption significantly and multiple association cues
could improve the tracking accuracy obviously.

Acknowledgments. This work is supported by National High-Tech R&D Program
(863 Program) under Grant 2015AA016402.
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Abstract. Image matting plays an important role in both computer
vision and graphics applications. Natural image matting has recently
made significant progress with the assistance of powerful Convolutional
Neural Networks (CNN). However, it is often time-consuming for pixel-
wise label inference. To get higher quality matting in an efficient way,
we propose a well-designed SDPNet, which consists of two parallel
branches—Semantic Segmentation Branch for half image resolution and
Detail-Preserving Branch for full resolution, capturing both the semantic
information and image details, respectively. Higher quality alpha matte
can be generated while largely reducing the portion of computation. In
addition, Spatial Attention Module and Boundary Refinement Module
are proposed to extract distinguishable boundary features. Extensive
Experiments show that SDPNet provides higher quality results on Por-
trait Matting benchmark, while obtaining 5x to 20x faster than previous
methods.

Keywords: Portrait · Fast matting · Detail-preserving · Deep learning

1 Introduction

Matting refers to the problem of accurate foreground estimation in images and
videos. It is one of the key techniques in many image editing and film produc-
tion applications. Mathematically, the input image can be modeled as a convex
combination of a foreground and background colors as follows [7]:

Ii = αiFi + (1 − αi)Bi (1)

where Ii, Fi, Bi and αi denote the natural RGB image, foreground, background
color and alpha matte at pixel i respectively. Thus, for a three-channel color
image, at each pixel, there are 7 unknown values but only 3 known values.

Given an input image I, finding F , B, and α simultaneously without any
user interaction makes natural matting problem highly ill-posed. Image matting
c© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11306, pp. 329–339, 2018.
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(a) (b) (c) (d)

Fig. 1. (a) Image from our Synthetic dataset(1280 × 960 pixels). (b) Trimap. Red color
stands for definite foreground and blue color stands for definite background. The rest
of the region stands for unknown. (c) Result of Our SDPNet. The running time is 40ms
on GPU. (d) Our labeled groundtruth.

techniques [5,11] require a trimap (or strokes) indicating definite foreground,
definite background and unknown region. Traditional matting algorithms can
be divided into two classes, color sampling based methods and matting affin-
ity based methods. The limitation of these methods is that the distinguishing
feature largely rely on color. When the color distributions overlay between the
foreground and background, it is really tough for such approaches to generate
clear alpha matte without low-frequency “smearing” or high-frequency “chunky”
artifacts. To overcome this problem, recently deep learning based methods are
proposed for image matting. Instead of relying primarily on color information,
CNN also extracts structure and semantic information, which helps to produce
high quality alpha matte (Fig. 1(c)).

Although CNN [10] provides powerful assistance for image matting, amount
of the huge parameter and calculation make it expensive for multi-megapixel
images produced by digital cameras. Shen et al. [14] proposed an automatic
matting with the help of semantic segmentation [12]. But their approach has
a high computational complexity. Zhu et al. [20] designed a fast and effective
method for portrait matting. It can realize real-time matting on the mobile
phone for a low-resolution image. However, their approaches fail to distinguish
tiny details in the hair areas because they downsample the input size of image to
128× 128. When the resolution of input image get higher, the speed of inference
will be largely limited and it is not detail-preserving.

In this paper, we focus on fast portrait matting techniques with decent pre-
diction accuracy. To achieve our goal, we propose a network, named Spatial
Detail-Preserving Network(SDPNet). Different from previous single branch mat-
ting network [14,20], our SDPNet uses two branch to utilize processing efficiency
of low-resolution images and high inference quality of high-resolution ones. The
idea is that low-resolution images can go through the full semantic segmentation
network first for a coarse score map. The second branch is used to capture details
structure to refine the coarse semantic map. Then the output of two branches
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will be aggregated to generate a high quality alpha matte. We also consider
the impact of different pixels in full-resolution feature map to improve matting
performance. Our contributions in this work are as follows:

– A Spatial Detail-Preserving network (SDPNet) is proposed, which utilizes
semantic and structure information in lower-resolution branch along with
details from higher-resolution branch efficiently.

– Further more, we present Spatial Attention Module to improve the quality of
feature map via spatial embedding. Boundary Refinement Module is adopted
to refine the boundary of feature map produced by Semantic Segmentation
Branch.

– Experiments show that our proposed method achieves 5x+ speed of inference.
SDPNet can run at resolution 800 × 600 in speed of 40 fps while accomplishing
high-quality portrait alpha matte.

2 Related Work

2.1 Natural Image Matting

Natural image matting is crucial for image and video editing, but it remains
challenging because it is a severely underconstrained problem. Interactive image
matting aims to predict alpha matte in unknown regions. [7] tried to apply Gaus-
sian mixture models on both background and foreground. To infer the alpha
matte in the unknown regions, closed-form matting [11] uses a matting Laplaian
matrix, under a color line assumption. Large-Kernel Laplacian [9] helps acceler-
ating matting Laplacian computation. Shared matting [8] was the first real-time
matting algorithm running on modern GPUs by shared sampling. Inter-Pixel
Information Flow Matting [1] proposed a purely affinity-based natural image
matting method.

Recently, deep-learning based methods have shown great potential on solving
computer vision tasks. DCNN [6] is the first attempt to apply deep learning on
image matting problem. They used a relatively shallow neural network to deal
with patches of images, with the result of closed-form and KNN matting as extra
input. Xu [18] released a large matting dataset with high-quality foreground and
alpha matte. Then they trained an encoder-decoder structure network on this
dataset.

2.2 Semantic Segmentation

Traditional semantic segmentation methods adopt hand-craft feature to learn
the representation. Recently, CNN based methods largely improve the perfor-
mance. FCN [12] is the pioneer work to use fully convolution layers in seman-
tic segmentation task. Encoder-decoder structures [2] can restore the feature
map from higher layers with spatial information from lower layers. ICNet [19]
incorporates multi-resolution branches under label guidance to achieve realtime
inference without significantly reducing performance.
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3 Proposed Algorithm

As shown in Fig. 2, the proposed SDPNet consists of two branches, Semantic
Segmentation Branch, and Detail-Preserving Branch, which respectively cap-
tures the structure and details components of the input image. Specially, the
input size of Detail-Preserving branch is full resolution (h × w), and the input
size of Semantic Segmentation Branch is lower resolution (e.g. h

2 × w
2 ), with input

image height h and width w. Given a high-resolution image and trimap, each
branch has different functionalities. The Semantic Segmentation Branch pro-
vides the roughly boundary and semantic information of the image from lower
resolution. The Detail-Preserving Branch captures the detail information, such
as points, lines or edges, from full resolution. Finally, the feature maps from two
branches are fused together, resulting in a high quality alpha matte.

Fig. 2. Overall architecture of SDPNet. It contains two branches, Semantic Segmenta-
tion Branch and Detail-Preserving Branch and a feature fusing module. The Semantic
Segmentation Branch (Sect. 3.1) generates a rough boundary mask from half resolu-
tion and the Detail-Preserving Branch (Sect. 3.2) captures details and structures from
full resolution. Detail-Preserving Branch contains a Spatial Attention Module. Finally
SPDNet fuses results from two branches by Feature Fusing Unit. The whole SDPNet
is end-to-end trainable.

3.1 Semantic Segmentation Branch

Image resolution is the most critical factor that affect speed, since above analy-
sis shows a half-resolution image only uses nearly quarter time compared to the
full-resolution one. A naive approach is to directly use small-resolution image as
input. We downsample images with ratios 1/2 and feed the resulting images into
our Semantic Segmentation Branch. The detail structure of Semantic Segmen-
tation Branch is shown in Table. This sub-network consists of an Encoder and
a Decoder. Similar to Unet [3], we employ skip connections in encoder-decoder
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network. The encoder network consists of one convolutional layer and 11 resnext
[17] blocks. The decoder network uses deconvolution as upsampling module. At
each stage after upsampling, the feature maps are fed to Boundary Refinement
Modules, which will be illustrated later.

3.2 Detail-Preserving Branch

The tiny structures and details components of image will be destroyed during
downsampling operations, such as max pooling or convolution with stride 2.
Hence, we design a Detail-Preserving Branch to capture low-level features that
are missing in the half-resolution branch. We can limit the number of convo-
lutional layers since half-resolution branch already catches most semantically
information. Here we use only three convolutional layers with kernel stride size
3 × 3 and stride 1 to extract low-level features. The Details structure of this
branch is shown in Fig. 3.

Fig. 3. (a) Details of structures in spatial attention module. (b) The score map gener-
ated by spatial attention module.

3.3 Spatial Attention Module

Spatial Attention Module aims at improving Detail-Preserving Branch features.
Following previous attention mechanism in [15], we apply Spatial Attention Mod-
ule in Detail-Preserving Branch. The module’s target is to output scores for each
pixel of feature maps. Given the input image I and trimap T with height h and
width w, max pooling are performed several times to increase the receptive field
rapidly after a small number of convolution layers. After reaching the lowest
resolution, the global information is then expanded by a symmetrical upsample
operations. We use linear interpolation up sample the output after one 1 × 1
convolution layer with stride 1. The number of upsampling module is the same
as max pooling to keep the output score map size the same as the input feature
map. Then we use a sigmoid layer to normalize the output score maps range to
[0, 1]. The full module is illustrated in Fig. 3(a). It also shows that the consecutive
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up-sample and down-sample operations can expand receptive filed. Experiment
in is conducted to verify this.

3.4 Boundary Refinement Module

We propose a Boundary Refinement Block, schematically depicted in Fig. 4(b).
The feature maps after upsampling go through the Boundary Refinement Block,
which is designed to model the boundary alignment as a residual structure.
More specially, we use ˜S denote refined score map: ˜S = S +R(S), where S is the
coarse score map, and R(·) is residual branch. After refinement, the boundary
information is embeded in its output feature map, as show in Fig. 4(a).

Fig. 4. (a) Refine feature map from coarse to fine. (b) Components of the boundary
refinement blocks (BR)

4 Experiments

In this section, we evaluate the performance of SDPNet on publicly available 2K
Portrait Matting Dataset [14] and our Synthetic Portrait Matting Dataset.

4.1 Datasets

2K Portrait Matting Dataset: We choose the primary dataset from [14],
which is collected from Flickr. We evaluate the proposed method on the bench-
mark dataset. This dataset collects 2000 portrait image with labeled alpha matte
as ground truth. These images are split into the training and testing sets with
1700, 300 images respectively.

Synthetic Portrait Matting Dataset: We further evaluate our method using
real-world examples. We download some pictures, whose background color is
pure, from Internet and manually label the trimap. With the selected portrait
images, we labele alpha values with intensive user interaction tools provided by
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[16] to make sure they are with high quality. The alpha matte is calculated while
labeling. After this labeling process, we collect 200 image with high-quality alpha
mattes. These images are randomly split into the training and testing sets with
150 and 50 images respectively. We also download some background pictures in
real scenes. We randomly sample N background images in them and composite
the portrait foreground onto those background images. Finally we got 20,000
(N = 100) training portrait images and 50 (N = 1) test images.

4.2 Implementation Details

Inspired by the work [4], we use the “poly” learning rate policy in which current
learning rate is defined as the base one multiplying (1 − iter

maxiter
)power. We set

base learning rate to 0.001 and power to 0.9. Momentum and weight decay are set
to 0.9 and 0.0001 respectively. The proposed network is trained on the training
set above. To avoid overfitting, we randomly crop a 480 × 480 patch and this
patch can cover the unknown region in the trimap. In order to generate trimaps
for training, we randomly dilate the alpha matte by random size to make our
network more robust to different quality of trimap. For data augmentation, we
adopt random flip and random resize between 0.75 and 1.5 for all images, and
additionally add random rotation between −45 and 45◦. We also apply random
Gamma transforms to increase color variation.

4.3 Accuracy Measure

We select the gradient error and mean squared error to measure matting quality,
which can be expressed as:

G(αp, αgt) =
1
T

∑

i

‖ �αp
i − �αgt

i ‖ (2)

MSE(αp, αgt) =
1
T

∑

i

(αp
i − αgt

i )2 (3)

where αp is the predicted alpha matte and αgt is corresponding ground truth. T
is the number of pixels in unknown region of given trimap. � is the operator to
compute gradients. Specially, alphamatting [13] points out that the correlation
of SAD and MSE with the percption of average human observer is rather low,
Gradient Error, which is more reliable, outperforms both of other two metric
with a higher correlation.

4.4 Ablation Study on Synthetic Portrait Matting Datasets

In this subsection, we will step-wise decompose our approach to revel the effect
of each component. In the following experiments, we evaluate all comparisons
on Synthetic Portrait Matting dataset.



336 S. Cai et al.

Ablation for Boundary Refinement Module: To refine the coarse feature
scores after upsampling, we use our Boundary Refinement Module to refine score
map. As show in Table 1, this module further improves the performance on two
metrics – – MSE and gradient error. It reduces gradient error from 24.70 to 22.92
and MSE from 0.0133 to 0.0113.

Ablation for Detail-Preserving Branch: By contrast, the proposed SDP-
Net is motivated by the decomposition of a image signal into structure and
details. For fair comparison, we keep the same amount of calculations of the sin-
gle Semantic Segmentation Branch’s and Two Branch Network, show as Table 1.
Especially, gradient error decreases dramatically from 24.7 to 20.45, which is an
obvious improvement.

Ablation for Spatial Attention Module: We evaluate the effectiveness of
spatial attention learning mechanism. As show in Table 1, the network trained
using spatial attention module consistently outperform the networks without it,
which proves the effectiveness of our method.

Table 1. The quantitative comparisons of proposed SDPNet on the Synthetic Portrait
testing dataset. SS: Semantic Segmentation. BR: Boundary Refinement Module. SA:
Spatial Attention Module. DP: Detail-Preserving Branch.

Method Grad Error MSE

SS Branch 24.70 0.0133

SS Branch + BR 22.92 0.0113

SS Branch + DP Branch 20.45 0.0126

SS Branch + DP Branch + BR 20.12 0.0113

SS Branch + DP Branch + BR +SA 19.63 0.0107

4.5 Comparison with State-of-the-Art Methods on 2k Portrait
Matting Dataset

To further confirm the performance of our method, we also compare our methods
with others. We visually and quantitatively evaluate our methods in 2k-Portrait
Matting Dataset [14].

Quantitative Analysis. In experiments, we quantitatively evaluate the SDP-
Net on 2k Portrait Matting Dataset [14] and compared it with DAPM [14] and
LDN+FB [20]. We also use FCN [12] to generate trimap, then using closed-form
[11] to calculate alpha matte. As show in Table 2, our method achieves lower
gradient error than other two deep learning based methods.

Running Time. We evaluate our method and state-of-the-art methods on the
same PC with an Intel(R) Core i7 CPU and a Nvidia Titan X GPU. Table 3
shows speed comparison between our method and other methods. Running time
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Table 2. Results on 2k-Portrait Matting of [14]. DAPM means the approach of Deep
Automatic Portrait Matting in [14]. LDN +FB means the approach in [20].

Method Trimap-FCN [12] +
Closed-form [11]

DAPM [14] LDN+FB [20] Ours

Grad (× 10−3) 4.14 3.03 7.40 2.48

Table 3. Speed comparison with other methods. Running time for a 800 × 600 image.
All the method run by their publicly available scripts except for DIM [18], which we
implement as its paper. G:GPU. C:CPU

Method Closed-form [11] Shared [8] Info [1] DIM [18](G) Ours(C) Ours(G)

Time (sec) 9.88 63.65 9.15 0.23 1.76 0.024

(a)Image (b)Trimap (c)Ours (d)Shared (e) Info (f)Closed-form

Fig. 5. Visual comparisons on 2k portrait matting dataset. (a) Image (b) Trimap (c)
Ours (d) Shared-Matting [8] (e) Information-flow [1] (e) Closed-form [11]
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for a 800 × 600 image, our SDPNet is nearly 5.6 times faster than closed-
form [11], 36.11 times faster than shared-matting [8] and 5.19 times faster than
Information-flow [1] matting on CPU. DIM [18] achieves state of the art per-
formance in public available test set, but it is very time-consuming for a large
resolution input. SDPNet is almost 10 times faster than DIM, while still generate
alpha matte with fine details. Visually Comparison is showed in Fig. 5.

5 Conclusion

This paper proposes the Spatial Detail-Preserving Network (SDPNet) for fast
portrait matting. SDPNet can simultaneously capture semantic structure and
low-level details by its network design, which contains two branches: Semantic
Segmentation Branch for lower resolution and Detail-Preserving Branch for full
resolution. With the spatial attention mechanism and stage-wise refinement,
our approach can capture the discriminative features for portrait matting. Our
experimental results show that the proposed approach indeed takes less time for
inference. Besides, SDPNet can also improve the quality of alpha matte, which
shows our approach is comparable with the state-of-the-art matting methods.

Acknowledgements. This work is supported by the National Natural Science Foun-
dation of China (No. 61472023) and Beijing Municipal Natural Science Foundation
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Abstract. Modelling software applications vary from construction to
gaming, but learning a modelling software and becoming a skilled user
takes a long time and effort. Reducing the time to learn a modelling
software is an important topic in human-computer interaction (HCI). To
develop futuristic computer-aided design (CAD) systems that require lit-
tle or no training, it is important to study the user-dependent factors that
affect the system performance directly and indirectly by analysing the
cognitive activity of the users. In this research, we have presented a new
method to segment the EEG data: we segmented designer’s actions and
then used it to align with the EEG data, while they draw a 3D object
in AutoCAD. We video recorded the design activities and Electroen-
cephalography (EEG) signals while users were performing the task. The
mean EEG power of the alpha, beta, theta and gamma bands has been
used to analyse the designer behaviour. We found that the users who
completed the experiment in a short time-frame were performing more
physical actions than perceptual and conceptual actions. Participants
with low Completion Time (CT) participants perform 30% more actions
per minute than high-CT participants. EEG analysis demonstrated that
the task completion time (CT) was negatively correlated with physical
actions. Alpha-and beta-band analysis showed that low-CT participants
were more comfortable in performing physical action and high-CT par-
ticipants are relaxed in performing conceptual actions.

Keywords: Cognitive activity · CAD · EEG · HCI · 3D modelling

1 Introduction

Skills and expertise are developed after learning basic techniques and practising
those techniques over time, but to define those activities during a design task is
quite difficult. Even skilled users cannot articulate what kind of techniques are
involved in performing a certain task and how they are using these techniques.
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Our aim is to understand the behaviour of a skilled designer to guide a novice
and also to use it to develop next-generation design and modelling systems.

3D modelling or CAD/CAM tools has a great impact on design efficiency
[6], but it requires a specific set of skills, training and experience to master
these tools. Skilled users are able to capitalize on their design skills at the early
stages compared to novice users, but little research has been done on analysing
the stages in conceptual design process. One way to tackle this problem is to
study the cognitive processes behind the designer’s actions. Protocol analysis
is one major method to examine the cognitive activity of a designer, but these
methods mainly focus on designer’s actions and do not incorporate the mental
or emotional state of the designer.

In the last few years, psycho-physiological methods have been used to anal-
yse and understand the science behind a designer’s actions. This increase in
psycho-physiological research is due to the widespread use of non-invasive, inex-
pensive and easy to use psycho-physiological equipment. Researchers have used
electrocardiograms (ECG) [20], galvanic skin response (GSR) [22], eye-tracking
[12], gesture analysis [28], and electroencephalography (EEG) [21] to study the
behaviour of design protocols and process. The most popular technique reported
in the literature to analyse design process is verbal protocol analysis, but it
has some limitations [2]. These limitations are exploited when analysing non-
reportable processes such as creativity, judgement or task insights [17], so other
techniques for analysing a designer’s actions must be investigated.

Due to the limitations of verbal protocol analysis, alternative techniques to
study a designer’s actions have been introduced including sketching [14], gesture
analysis [13] and eye-tracking [12]. Some researchers use modelling tools and
techniques by analysing the activity through psycho-physiological signals [18].
In this research, we present a new approach to use EEG signals’ segmentation
in the analysis of the designer’s cognitive activity. The aim of our research is
to prove the idea that the content-oriented approach for analysing a designer’s
activities can benefit from overlying EEG signals to understand the cognitive
behaviour of the designer.

The research questions addressed in this paper are:

1. What is the relationship between task completion and mental effort?
2. What are the factors affecting the task completion of a designer with 3D

modelling?
3. What are the relationships between alpha, beta, theta, and gamma bands

activities and task completion?

These questions are addressed by the following research tasks:

1. To monitor the cognitive states of designers as they perform a certain 3D
modelling task.

2. To investigate the individual modelling behaviour involved in 3D object mod-
elling and develop a methodology to understand the behaviour.

3. To validate the modelling behaviour through EEG signal analysis.
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4. To determine if there is a correlation between designer’s performance and
psychological signals.

The rest of the paper is organized as follows. Section 2 provides a brief survey
of the literature related to a designer’s actions and psychological signal analysis.
Section 3 explains the methodology. The coding scheme and its implementation
are described in Sect. 4 followed by EEG signal analysis in Sect. 5. Section 6
concludes the paper by summarizing our findings.

2 Psychological Signals and Mental States

Identifying cognitive states of a user is a very complex assignment and has been
studied extensively in the field of psychology and the cognitive science. With the
advancement in the field of clinical psychology, devices such as an EEG headsets,
ECG and GSR have become more accessible and easy to use. With these devices,
we can analyse the user behaviour using quantitative techniques. The relation-
ship between psycho-physiological signals and mental states has been studied
over the last few years [19]. Many researchers have used heart-rate variability
(HRV) to predict the user’s mental states. [25] have found an association between
mental stress level and low-and high-frequency bands. Hjortskov et al. [11] also
tried to measure mental stress when users are in a demanding and unfriendly
working environment. Some researchers also used HRV to compare resting and
working conditions and found distinct differences [16].

EEG signals are also used in recent literature to measure cognitive load.
Researchers have reported an increase in theta-band activity and a decrease
in alpha-band activity with increasing task complexity [7]. In video games, an
increase in front mid-line theta and a decrease in posterior alpha is observed
as the game proceeds [23]. The same kind of relationship has been observed in
visual scanning tasks [10]. The decrease in alpha activity has been found in high
cognitive load tasks but no significant variation was found in low-and medium-
load tasks in flight-simulation experiments [26]. Nguyen et al. also used EEG
along with the heart rate to measure a designer’s mental states and found that
mental effort is lowest at the highest mental stress, and no significant differences
were observed at low-and medium-mental stress levels [21].

In our research, we have used EEG signals to investigate the user’s mental
activity while the users perform a 3D object modelling task. The theta band over
the parietal lobe has been observed to associate with low-and high-cognitive load
tasks better than the beta and alpha bands [5]. The beta band relates to cortical
activation, an increase in beta-band activity over the occipital lobe has also
been observed in high-visual-attention tasks [8]. After reviewing the literature,
we identified a hypothesis that alpha-band activity is negatively, and theta-and
beta-band activity is positively, correlated with mental effort.
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3 Methodology

3.1 Experimental Setup

The experimental task was to design a 3D table with three parts: a base, a pillar
and a top. In the literature, 5–10 participants were used to analyse the cognitive
activity [18,21,22], so a total of eight participants were selected for the experi-
ment. All of them are computer-science students at Macquarie University. The
ages of the participants range from 21 to 30 years. The participants have no
prior experience of using AutoCAD or any other 3D modelling tool. As all the
participants are novices, so we use task completion time to divide the partici-
pants. Task completion is one of the fundamental usability metrics that is used
to quantify effectiveness of an interface [24]. The participants who completed the
task quickly are called low completion time (low-CT) participants, and who take
a long time to finish the task are called high completion time (high-CT) partici-
pants. The experiment was approved (Approval no. 5201700784) by the Faculty
of Science and Engineering Human Research Ethics Sub-Committee, Macquarie
University. Each subject was given a tutorial of 10 min before the experiment. A
video log has been created for each subject and EEG signals were also recorded.
For analysing EEG signals, we used an off-the-shelf research edition of the Emo-
tiv EEG headset, which has 14 channels and records signals at a sampling rate
of 128 Hz. The electrode placement is based on the international 10–20 system.
The subjects were given an open-ended task to depict the real-world setting,
which results in different cognitive processing and analysis strategies. A picture
of the experimental setup is shown in Fig. 1.

Fig. 1. The experimental setting

3.2 Experimental Procedures

The process can be divided into 5 experimental procedures:

1. Information about the experiment was given to each subject along with the
consent form. After reading and signing the consent form, the experimenter
gives a walk-through of the experiment and some instructions to minimize
the body and head movements.

2. The EEG headset was placed on the head of the subject and the experimenter
made sure that all channels were in good contact with the skull. The subjects
were asked to rest for two minutes with their eyes open with hands on their
laps, and after that the subjects were asked to start drawing.
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3. After the completion of modelling task, the subjects were asked to fill in a
questionnaire about the experiment.

4. EEG data were filtered and segmented with the help of the video log.
5. The mean power for the different EEG bands was calculated using Welch

power spectral density.

4 Coding Scheme

To examine the differences between the subjects mental states and their task
completion time (CT), we used a coding scheme that allows us to assign codes
to the cognitive actions of the designers using the video recordings. This coding
scheme is an extension of the coding scheme used by Kavakli et al. [14].

4.1 Codes for Modelling Actions

To analyse a certain set of cognitive actions, there are two approaches: the
process-oriented approach and the content-oriented approach. We have used the
retrospective protocol analysis method that lies under the content-oriented app-
roach, similar to the one used by Suwa and Tversky [27]. We have categorized the
actions of the subjects into three groups: Physical, Perceptual and Conceptual.
There is also a functional category, but for this experiment the subjects were
already given a function (ie. “Table”) therefore, this category was not used in
the analysis. The perceptual and physical actions present the visual information
and the conceptual and functional actions presents non-visual information. The
modelling actions of each participants were coded for each cognitive segment.

Physical Actions. Physical actions are all the actions that involved in drawing
new objects, tracing over the sheet and copying previously drawn elements, pay-
ing attention to previously drawn elements etc. In this paper, we have defined
three group of physical actions: D-actions (Drawing, coping), L-actions (paying
attention to previous design) and M-actions (movements on design depictions).
The details of the Physical actions are given in Table 1.

Table 1. Sub-codes for D-actions, L-actions and M-actions

D-Actions L-actions M-Actions

Pd: Drawing depictions Pl: Viewing (Camera Manipulation) Pm: Moving depictions

Pl: Manipulating depictions

Perceptual Actions. The actions that are related to visual features of the
objects and spatial relations among them are known as perceptual actions (P-
Actions). Perceptual actions have a further eight categories, but in this research
we have defined only three perceptual actions as shown in Table 2.
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Table 2. Sub-codes for Perceptual (P-actions) and Conceptual (C-actions)

P-Actions related to implicit space P-actions related to features C-Actions

Ps: Selecting depictions Pc: Colouring depictions Ct: Thinking

Psd: Deleting depictions Cr: Reading

Ci: Idle state

Conceptual Actions. Conceptual actions are those actions that are used to
retrieve knowledge, previous similar cases or setup goals. In this research, we
only examined the retrieval of knowledge and represent these as C-actions. We
defined three conceptual actions as shown in Table 2.

4.2 Coding of Modelling Actions

We examined the actions of the participants who completed the task in different
time windows. We found that the participants with a low task completion time
(Users A, B, C) have an average action rate of 20 action/minute, which is 30%
higher than for high-CT participants (Users D, E, F). High-CT subjects have
an average action rate of 14 actions/minute.

We analysed the video records and assigned codes to each action performed
by participants. The tasks were grouped together to find the ratios between CT
levels and cognitive actions. Table 3 shows a summary of the modelling actions
performed based on task completion time.

Table 3. Summarized action performance comparison based on task completion time

Perceptual Low-CT High CT Physical Low-CT High CT Conceptual Low-CT High CT

Ps 22% 17% Pd 18% 13% Ct 14% 18%

Pc 9% 9% Pm 22% 15% Ci 2% 2%

Psd 0% 1% Pl 10% 7% Cr 3% 19%

Total 31% 27% Total 51% 34% Total 19% 39%

The statistical results (chi-squared test, X2 < c, p< 0.05) show that there
are significant differences in the modelling actions of low-CT and high-CT users.
The maximum difference is observed in conceptual tasks. Low-CT users per-
formed 1.5 times as many physical actions as high-CT users. High-CT users
spend a large amount of time on conceptual actions. They were relying more on
the experimental instructions rather than their short-term memory. The rate of
conceptual actions for high-CT users was twice as high as for low-CT users. The
biggest difference was in reading the experiment instructions from the handouts.
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Fig. 2. EEG data processing steps

5 EEG Preprocessing and Signal Analysis

EEG data is very prone to noise and artefacts because the signals are highly sen-
sitive and can be easily contaminated by various artefacts such as eye blinking,
speaking, and other muscle movements. There are also some external sources
of noise, for instance electrical line noise which can be removed by applying a
notch filter at that particular frequency (i.e. 50 or 60 Hz). Noise and artefact
removal from EEG data is one of the main parts of EEG signal processing. The
EEG data of six participants were used for EEG analysis, as the data of the two
participants was corrupted with noise. The preprocessing was done in MATLAB
2017 using the EEGLAB toolbox [4]. The baseline was removed from the EEG
signal and low-pass filtering at a cut-off frequency of 45 Hz was performed using
a linear-phase FIR filter. EEG signals were then high-pass filtered at a cut-off
frequency of 0.1 Hz and notch filtered at 50 and 60 Hz using a linear phase FIR
filter. The order of the filter in all cases was 300. After filtering the data, Inde-
pendent Component Analysis (ICA) decomposition was performed to detect and
remove artefacts such as eye blinking and muscle movements. The artefacts were
removed manually. Once the data was clean enough, we calculated the Welch
power spectral density (PSD) with a window size of 128 without overlapping.
Data from all electrodes were incorporated in the analysis. A block diagram
of all the EEG data processing steps is shown in Fig. 2. After calculating the
PSD, the mean power for each band has been extracted as shown in Figs. 3–5.
We have divided the dataset based on the completion time (CT) of the users
for comparison. The threshold was set at 190 seconds by calculating the mean
and standard deviation of the completion time. Figure 3 shows the alpha-band
energy in perceptual, physical and conceptual actions. The subjects on the left
side of the figure have a low task CT, whereas the subjects on the right side of
the figure have a high task CT. As alpha-band activity is associated with cogni-
tive functions such as task performance preparation [3], language comprehension
and memory [9], so a change in alpha activity indicates a change in the cognitive
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(a) User A (b) User D

(c) User B (d) User E

(e) User C (f) User F

Fig. 3. Mean alpha activity at different segments

activity. In the literature, researchers have established that task complexity is
inversely related to alpha-band activity [7].

In Fig. 3, the alpha power in the conceptual segment is higher than in the
physical segment for low-CT subjects, which means that the subjects are more
relaxed in performing the conceptual tasks or they have spent less time in con-
ceptual tasks than in other segments. Subjects A and B have performed more
physical tasks and the corresponding alpha-band activity is less in that segment,
meaning that their attention highly focus on physical actions. For the users with
a high-CT, the alpha activity is less in the conceptual actions (excluding User D)
which is a sign that they were more relaxed or comfortable when they were think-
ing or reading handouts compared to others while performing modelling actions.
The variation in alpha activity is higher in the frontal cortex than in other regions
for low-CT users. The frontal cortex of the brain is responsible for higher men-
tal functions such as concentration, planning, and problem solving [1], so it is
also an indication that low-CT users were performing more cognitive activity
than high-CT users. For subjects with high-CT, alpha activity variations were
more in the motor, temporal and parietal cortex (electrodes T7, FC6, and P4)
than in the frontal cortex. These locations are more associated with voluntary
motor functions [1]. The continuous activation on the left frontal cortex (elec-
trodes FC5 and F3) in the perceptual segment of high-CT subjects is possibly
due to the continuous eye movements because of the nature of the experiment.
We have also observed that the change in alpha activity for users with low-CT
is quicker than for subjects with high-CT. The reason behind this response may
be that the low-CT subjects change the design stages very rapidly compared
to the other subjects. Figure 4 shows the beta activity of the three segments.
The beta band usually relates to alertness and has a very low amplitude [15].
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By looking at the beta activity response in Fig. 4, we can say that on average
the beta activity is high in physical segments for low-CT users and in the per-
ceptual segments in high-CT users. As we mentioned above in Sect. 2 that the
beta activity directly relates to concentration, the high beta activity is an indi-
cation that the concentration is high in the physical segments compared to the
perceptual and conceptual segments of low-CT users. The higher concentration
can be due to the higher number of physical actions performed by low-CT users
as seen in Table 3. For high-CT users, on average, the beta activity is lower in
physical segments than in other segments, and this finding can also relate to the
fact that fewer actions are performed in physical sections. Users with low-CT
are more attentive in physical segments whereas users with high-CT concentrate
more on perceptual and conceptual activities.

(a) User A (b) User D

(c) User B (d) User E

(e) User C (f) User F

Fig. 4. Mean beta activity at different segments

The theta-band response is observed in adult individuals who are in a state
of focus and is also associated with memory performance and functional pro-
cesses [9]. We observe that the theta-band activity varies in each segment for
low-CT users, especially for users A and B, whereas for other users the relative
change is very small as shown in Fig. 5. This is also an indication that the focus
or attention level of users with low-CT varied based on what actions they were
performing. We have also observed that, by looking at the gamma-band activ-
ity and comparing it with the actions performed in each segment, the average
gamma-band activity is low in segments where actions are more and high in
segments with fewer actions.
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(a) User A (b) User D

(c) User B (d) User E

(e) User C (f) User F

Fig. 5. Mean theta activity at different segments

6 Conclusion

In this paper, we have proposed a new method to segment EEG signals for
understanding cognitive actions and their relation to brain activities. For this
purpose, we have conducted an experiment in which each user had to draw a 3D
table and we have used video recording and EEG signals to analyse the user’s
cognitive activities. All the participants had no prior experience of designing
3D objects in AutoCAD, so we have used task completion time as a measure
to differentiate between designers. We have analysed the reasons for why some
users completed the task earlier than the other users.

We have used a coding scheme designed by Suwa et al. [27] to analyse the
quantified designer’s actions. The coding analysis for EEG segmentation provides
two advantages: the first is that we can see the EEG power variation in different
segments, and the second is that we can use the results of coding analysis and
compare with EEG power to easily track the cause of particular behaviour. From
video recording, all the actions were decoded and divided into three segments:
Perceptional, Physical and Conceptual actions. These segments were used to
segment out the EEG data. We have analysed the alpha, beta, theta and gamma
activity of the users. The findings from our data analysis are listed below:

1. Low-CT users performed 1.5 times more physical actions, which gave them
the advantage of drawing quickly.

2. The rate of conceptual actions for high-CT users was twice as high as for
low-CT users. This slows the overall design process.

3. The action rate per minute for low-CT users is 30% higher than for high-CT
users. This is an indication that they are utilizing their short-term memory
more efficiently.
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4. The alpha band shows that low-CT users were comfortable in performing
physical tasks whereas high-CT users were not relaxed in physical segments
as their mean alpha-band power was high.

5. The maximum variation in the frontal cortex was found in low-CT users,
which indicates that they were using their short-term memory more.

6. From beta activity, we have found that low-CT users were more attentive to
physical segments, whereas the attention of high-CT users was focused on
perceptual and conceptual actions.

7. We have found more variation in theta-band activity for low-CT users than
for high-CT users, which indicates that the focus level of low-CT users was
changing in relation to the action performed.

From the above analysis, we have concluded that if a user would utilize short-
term memory more, reducing their attention to the conceptual actions and per-
forming more physical actions instead, then their performance would improve.

In future work, we will use the above mentioned finding to develop a feedback
system that will motivate the user to perform more physical actions and less
conceptual actions to help them complete the tasks. We will also expand our
research to analysis of novices and experts to see whether coding-based cognitive
analysis and EEG segmentation can be used to analyse and compare the design
behaviour of novices and experts and improve novices’ performance. We also
plan to use a high-end EEG system to increase the quality of the EEG data.
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Abstract. As machine learning evolves, it is significant to apply
machine learning techniques to the intelligent analysis on educational
data and the establishment of more intelligent academic early warning
system. In this paper, we use Gaussian process (GP)-based models to
discover valuable inherent information in the educational data and make
intelligent predictions. Specifically, the mixtures of GP regression model
is adopted to select personalized key courses and the GP regression model
is applied to predict the course scores. We conduct experiments on real-
world data which are collected from two grades in a certain university.
The experimental results show that our approaches can make reasonable
analysis on educational data and provide prediction information about
the unknown scores, thus helping to make more precise academic early
warning.

Keywords: Academic early warning · Key course selection
Course score prediction · Gaussian process regression
Mixtures of Gaussian processes

1 Introduction

Academic early warning (AEW), which can give prompt warnings to the stu-
dents who have poor grades, is very popular in many colleges and universities.
It is recently discussed in [1] as one of the computational education problems.
Effective warning strategies will help students to study more purposely and effec-
tively. However, most existing AEW systems just work with simple statistical
methods which can only discover the explicit information in data. For exam-
ple, the students who have failed more than ten credits in a semester will be
warned. Further, the existing AEW systems are only able to send a single warn-
ing message to students without any advice. With the development of machine
learning (ML), it is very meaningful to upgrade the AEW systems through ML
models to provide students with smarter and more personalized learning advice.
For instance, some intelligent analysis of educational data, such as key course
selection and course score prediction, will provide much valuable information
for students and educators. Therefore, discovering useful information implicit in
c© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11306, pp. 353–362, 2018.
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educational data and then making predictions through some machine learning
methods is significant and practical [2–4].

Recently, a method of key course selection for AEW based on Gaussian
progress regression (GPR) model [5] is proposed. The selected key course can
warn the students to pay more attention to some specific courses. GPR model is
a typical probabilistic model for nonlinear regression [6,7]. However, when used
for key course selection, GPR assumes that the data are generated from a single
mode and provides the universal key courses for all students in a class, which is
unreasonable because different students may have different weaknesses in their
studies. For dealing with specific problems, several GPR-based improvements
were also proposed, such as sparse GPs [8,9] and mixtures of GP regression
(MGPR) [10–12]. Among them, MGPR model is able to capture the multimodal
characteristics of data, which provides methods for discriminately data analy-
sis. For the case of key course selection, the mixture components in the MGPR
model can represent different groups of students. In this paper, we employ MGPR
model to make personalized key course selection for different kind of students.
Moreover, we use the GPR model to predict the courses scores by utilizing the
historical scores of key courses.

Key course selection can be regarded as feature selection in the machine
learning area [5]. There are deterministic methods and Bayesian probabilistic
models for feature selection. Bayesian probabilistic models can provide uncer-
tainty estimate for features. Thus features with much higher weights are more
likely to be the key courses. Further, the MGPR model is very suitable for this
selection task because of the following two facts. Firstly, like GPR, MGPR has an
elegant form of modeling nonlinear mappings as well as the flexibility of choos-
ing kernel functions, which would capture the relationship between courses and
warning results. Secondly, MGPR is capable of dealing with multimodal data
which correspond to different groups of students. Specifically, we use MGPR
model with several automatic relevance determination (ARD) kernels to select
key courses. The length-scales as hyperparameters in the ARD kernels can be
learned through the model selection procedure, which represents the importance
of different courses. Compared with GPR, MGPR can provide personalized and
diversified key courses, since it can obtain different ARD parameters for different
components.

Course score prediction can be regarded as regression in the machine learning
area. As described above, GPR is an effective method for regression, and has
been widely used and developed [13–16]. The relationship between the historical
course scores and the unknown course scores in the next semester can be learned
through the GPR model. Besides models, another key to prediction is feature
design. Considering that every student may choose multiple courses and the
courses vary from person to person even in the same group, we use the selected
key courses as the input features of the regression model. In addition, in order
to jointly learn a prediction model on different courses over a semester, the
predictive courses are encoded as input features as well. Specifically, we calculate
the correlation coefficient between the predictive courses and the historical key
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courses as the features for the predictive courses. We will introduce the details
of feature construction in the later sections.

We conduct experiments on real-world data which include academic perfor-
mance of two grades throughout their university period. We test our approach on
two practical tasks, i.e., key course selection for every semester and course score
prediction for every next semester. The experimental results show that our app-
roach can discover implicit information like key courses in the educational data
and provide reasonable prediction of unknown scores, which is of significance for
both students and educators.

The remainder of this paper is organized as follows. Section 2 introduces
the MGPR model which is used to select key courses for different groups of
students. In Sect. 3, we present the method of predicting the course scores with
GPR model. Experimental results and analysis are provided in Sect. 4. Finally,
we conclude this paper and discuss the future work in Sect. 5.

2 Key Course Selection with MGPRs

MGPR models multimodal data by using varying covariances for different mix-
ture components, which can automatically adjust the number of mixture compo-
nents by integrating a Dirichlet process prior [17]. Suppose there are N training
points {xn, yn}Nn=1(xn ∈ RD), and each GP component has a support set of M
training points (M < N). The kernel kk(xi,xj) is a covariance function used
to capture the relationship within the kth GP support set Ik, which is usually
specified as a squared exponential kernel with hyperparameters θk. In this paper,
we use the ARD kernel with different hyperparameters for different components,
which is defined as:

κ(x,x′) = σ2
f exp

{
−1

2

D∑
d=1

1
�2d

(xd − xd
′)2

}
, (1)

where �d is the length-scale of the covariance and σ2
f is the signal variance.

Such a covariance function implements automatic relevance determination, since
the inverse of the length-scale determines how relevant an input feature is: if
the length-scale is very large, the covariance of the input will become almost
independent, effectively removing it from the inference. Thus, we select the key
courses according to the values of the corresponding length-scales.

Given the input x and the component indicator variable z = k, the distribu-
tion of an observed output is expressed as

p(y|x, z = k,wk, rk) = N (y|w�
k φk(x), r−1

k ), (2)

where φk(x) represents the connections between x and the support set Ik, which
is formulated as φk(x) = [kk(x,x′

1), kk(x,x′
2), ..., kk(x,x′

M )]�(x′
i ∈ Ik). The

weight vector wk with a Gaussian prior N (wk|0,U−1
k ) shows the responsibility
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of the kth Gaussian. The precision matrix Uk is set to Kk + σ2
kbI, where σ2

kb is
the Gaussian noise variance and

Kk = [φk(x1),φk(x2), ...,φk(xN )]. (3)

Thus the hyperparameters of ARD kernel for the kth component are denoted as
θk = {{�kd}, σ2

kf , σ2
kb}. The inverse variance rk has a Gamma prior distribution

with parameters a0 and b0.
The MGPR distinguishes from GPR by introducing the indicator variable z

and multiple GP components. MGPR can be regarded as a more general model
than GPR, which assembles multiple results of GPR in a principled way. The
ARD kernels for the k components provide the basis for key course selection for
different groups of students, where the support sets Ik divide the students into
groups.

The distribution of an input point for a mixture component is given by a
Gaussian distribution with a full covariance [18],

p(x|z = k,μk,Rk) = N (x|μk,R−1
k ), (4)

where parameters μk and Rk are embodied by the Gaussian and Wishart dis-
tributions μk ∼ N (μ0,R−1

0 ) and Rk ∼ W(W0, ν0), respectively.
The distribution of the indicator z given the input x is calculated according

to Bayesian rules,

p(z|x) =
p(z|ν)p(x|z)∑
z p(z|ν)p(x|z)

, (5)

where the prior distribution of z is a discrete distribution with parameters
denoted as ν = {ν1, ..., ν∞} from a Dirichlet process with the hyperparameter
α0. Denote all the hidden variables as Ω = {{νk}, {μk}, {wk}, {Rk}, {zi}, {rk}}.
The joint distribution of all the random variables is given by

p(X,Y,Ω) =
∏∞

k=1
p(νk)p(μk)p(wk)p(Rk)p(rk)∏N

i=1
p(zi|ν)p(xi|zi,μzi ,Rzi)p(yi|xi, zi,wzi , rzi).

With the above model assumptions, the MGPR model can be trained by the vari-
ational expectation maximization (EM) method [10]. It is implemented through
alternatively inferring variational posterior distributions of latent variables and
optimizing hyperparameters and support sets.

The advantage of MGPR is to capture the multimodal characteristics of
data, which provides methods for discriminately data analysis. For the case of
key course selection, the mixture components in the MGPR model represent the
different groups of students, and the learned groups of ARD kernel hyperparam-
eters offer personalized key course information for different groups of students.

3 Course Score Prediction

Course score prediction is a regression problem. We use the GPR model to
predict the course scores, where the input features are constructed by historical
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key course scores and the correlation coefficients between the predictive course
and historical key courses.

3.1 Feature Construction

For making course score prediction, the historical course scores can be directly
used as input. However, in this case, the dimension of input features will be very
high which may include redundant information [19]. What’s more, a separate
GPR model should be trained for each predictive course, which is not appropri-
ate. In order to reduce the dimension of input features, the key course scores
instead of all the course scores are used as input. In addition, in order to jointly
train a GPR model for all the predictive courses over a semester, we encode
the predictive course as the additional input features. As all we can obtain from
the data are the historical scores of all the courses, we calculate the well-known
correlation coefficient between the predictive course and historical key course
scores as the codes for the predictive course. The correlation coefficient between
two random variables is calculated as

r(X,Y ) =
Cov(X,Y )√

V ar[X]V ar[Y ]
. (6)

3.2 Course Score Prediction with GPR

The GPR model assumes that data are generated from a GP. As a regression
model, it can be used to make prediction. With the GPR model being trained,
the joint distribution of the observed outputs y and the test outputs f∗ given
the observed inputs X and test inputs X∗ is[

y
f∗

]
∼ N

(
0,

[
K(X,X) + σ2

b I K(X,X∗)
K(X∗,X) K(X∗,X∗)

])
. (7)

Similar to Eq. (3), K is the covariance matrix calculated by the kernel func-
tion κ(x,x′). After deriving the conditional distribution, we arrive at the key
predictive distribution for the GPR model as

p(f∗|X,y,X∗) = N (f̄∗, cov(f∗)), (8)

where

f̄∗ = K(X∗,X)[K(X,X) + σ2
b I]−1y, (9)

cov(f∗) = K(X∗,X∗) − K(X∗,X)[K(X,X) + σ2
bI]−1K(X,X∗). (10)

Thus, the mean f̄∗ is used as the prediction result of course score for the next
semester.

4 Experiments

In this section, we will analyze the key courses selected by MGPR models on
real-world data and make prediction for the course scores in the next semester
by using the historical key course scores.
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4.1 Dataset and Setups

The educational dataset we use is the scores and warning results (failed credits)
of seven semesters for the Grade 2010 and Grade 2011 students in the department
of computer science and technology of a university. There are two classes for each
grade, namely pedagogical class and regular class. Therefore, we have totally 28
semesters of scores from 4 classes. The student number of each class is different.
For Grade 2010, there are 47 students in the pedagogical class and 51 students
in the regular class, while Grade 2011 has 23 and 52 students, respectively. Since
the original data are incomplete and the number of courses chosen by different
students varies in each semester, we employ the nearest neighbor (NN) data-
filling method to reconstruct the data.

The component number of MGPR is set to three, which means that we treat
the students as three groups, and thus we will obtain three groups of key courses.
Both the maximum EM iteration number and the maximum variational inference
iteration number are set to 25.

For course score prediction with GPRs, we use the first six key courses per
semester selected by the MGPR and their correlation coefficients with the pre-
dictive course as the input features. Therefore, for the i + 1th semester, the
dimension of input features is 12 ∗ i. The maximum iteration number for opti-
mizing the GPR model is set to 1000.

For all the experiments, we preprocess the data to make them suitable for
the zero-mean GP based models. In order to construct zero-mean output in our
experiment, we change the zero-value outputs to be negative values. Moreover,
we scale the input into the range of [0, 1].

4.2 Experimental Results and Analysis

Key Course Selection with MGPRs. As mentioned, MGPRs can help to
make personalized key course selection. It is implemented by assuming multiple
mixture components. We use the course scores and warning results from dif-
ferent classes and different grades to train MGPR models. In this experiments,
we obtain three groups of key courses through the MGPR model with three
components. We report three groups of the most critical courses for the peda-
gogical and regular class in Grade 2010 in Table 1. The full name of the courses
corresponding to the abbreviations in the table is provided in the appendix.

From the table, we can find the MGPR model gives diverse key courses which
correspond to different students. The corresponding students are expressed as
support sets in the MGPR. Note that there may exist the same key courses for
different groups, e.g., the same ‘C’ in Table 1. Seen from Table 1, for instance, in
the pedagogical class, the courses ‘C Programming (C)’ and ‘Education (Edu.)’
are key courses for all students. This is convincing because ‘C’ is the basis of
programming which is very important for computer science students, and ‘Edu.’
is a professional course for pedagogical students in order to cultivate their teach-
ing ability. Further from Table 1, we find that the third group of students is poor
in ‘English (Eng.)’, and the first two groups of students are advised to pay more
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Table 1. The most critical courses for the pedagogical and regular class in Grade 2010
selected by MGPRs.

Sem. 1 Sem. 2 Sem. 3 Sem. 4 Sem. 5 Sem. 6 Sem. 7

2010-pedagogical-class ICSP Java C AM DLP AI Edu.

C CPP C PMS Edu. AM Edu.

C Eng. Psy. COA Edu. Eng. DLP

2010-regular-class C AM OCMH COAP Eng. CPP LA

PE CP CP OS DM XML MC

C CP CP AA DM XML Eng.

attention to ‘Advanced Mathematics (AM)’. In addition, ‘Introduction to Com-
puter Science and Practice (ICSP)’ is a key course for the first group. A similar
analysis can also be performed in the regular class in Grade 2010 according to
Table 1. Thus, MGPR model has offered personalized study advice, which can
help students to make study plan more purposely and effectively.

Course Score Prediction. In this part, we show the course score predic-
tion results for the Grade 2011 by using the key course information learned from
Grade 2010 and the correlation information between courses. In order to demon-
strate the importance of key course information, we compare the experimental
results using different historical course scores, i.e., using all courses and using
key courses.

The average prediction errors of the course scores for different semesters are
listed in Table 2, where the root mean squared error (RMSE) is calculated. Seen
from the table, all the results using key courses except for the fourth semester
performs better than that using all courses. In addition, we show the average
prediction errors of the failed course numbers per student in different semesters
in Table 3. The results in terms of RMSE implies a similar conclusion to Table 2.
In order to display the prediction performance of our approach better, we also
list the last five predicted rankings and the corresponding true rankings. The
rankings on ‘C’ in the fifth semester are shown in Table 4, which tells that the
obtained prediction results can provide valuable information for AEW.

Table 2. Average prediction errors of the course scores in different semesters in terms
of RMSE.

Sem. 2 Sem. 3 Sem. 4 Sem. 5 Sem. 6 Sem. 7

Use all courses 23.44 14.11 15.26 15.06 16.33 11.40

Use key courses 15.50 12.69 16.49 13.24 15.26 9.24
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Table 3. Average prediction errors of the failed course numbers per student in different
semesters in terms of RMSE.

Sem. 2 Sem. 3 Sem. 4 Sem. 5 Sem. 6 Sem. 7

Use all courses 3.13 3.88 3.03 5.14 3.12 1.88

Use key courses 2.27 3.34 3.43 4.92 2.00 1.18

Table 4. The last five true rankings and predicted rankings of the students on ‘C’
course in the fifth semester.

True rankings 19 20 21 22 23

Predicted rankings 20 23 19 21 22

5 Conclusion

We have proposed two GP based educational data analysis methods. Firstly, we
select personalized key courses of different groups of students by MGPR model
which is capable to capture the multimodal characteristics of data. The weights
of courses are determined by the parameters of the ARD kernels. Secondly, we
use the GPR model to intelligently predict the courses scores by utilizing the
historical scores of key courses and the correlation coefficient between the pre-
dictive course and historical key course scores. From the experimental results on
the real-world data, we conclude that our approaches can make reasonable anal-
ysis of key courses and provide useful prediction information about the unknown
scores. The information obtained by the above two methods can warn students
to pay more attention to some specific courses and help educators to make proper
teaching policies, which makes significant progress in AEW systems and educa-
tional data analysis. In the future work, we will consider using more features
about courses or students to make more accurate prediction.
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Appendix

The following is the comparison table for abbreviations and full names of different
courses.

Abbreviation Full Name

AA Abstract Algebra

AI Artificial Intelligent

AM Advanced Mathematics

C C Programming

COA Computer Organization and Architecture

COAP Computer Organization and Architecture Practice

CP College Physics

CPP Computer Programming Practice

DLP Digital Logic and Practice

DM Discrete Mathematics

Edu. Education

Eng. English

ICSP Introduction to Computer Science and Practice

LA Linear Algebra

MC Modular Class

OCMH Outline of Chinese Modern History

OS Operating System

PE Physical Education

PMS Probability and Mathematical Statistics

Psy. Psychology

XML XML Programming
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Abstract. The image super-resolution aims to recover a high-resolution
image using a single or sequential low-resolution images. The super
resolution methods based on deep learning, especially the deep convo-
lutional neural network, have achieved good results. In this paper,we
propose Dual-Convolutional Enhanced Residual Network (DCER) for
remote sensing images based on residual learning, which concatenates
the feature maps of different convolutional kernel sizes (3× 3, 5× 5).
On the one hand, it can learn more high-frequency detail information
by combining the local details of different scales; on the other hand, it
reduces network parameters and greatly shorten the training time. The
experimental results show that DCER achieves favorable performance
of accuracy and visual performance against the state-of-the-art methods
with the scale factor 2x, 4x and 8x.

Keywords: Dual-Convolutional Enhanced Residual Network (DCER)
Single super-resolution · Remote sensing images

1 Introduction

High-resolution (HR) images contain more information and better accuracy,
which is helpful to the further mining, understanding and processing of image
contents. The spatial resolution of the satellite remote sensing image depends
on the accuracy of the sensor, and the improvement of the performance of the
imaging system is accompanied with an expensive manufacturing cost. Super-
resolution (SR) [10] is to use a single or sequential low-resolution (LR) images
with complementary information to obtain high-resolution images, which is of
great significance to improve image quality.

At present, there are many researches on super-resolution of images. The
super-resolution technology is divided into three categories: interpolation, multi-
frame reconstruction and learning-based methods. The early interpolation
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method [5] generally uses an interpolation kernel to estimate the value of an
unknown pixel in a high-resolution grid. Because the interpolation kernel can-
not adapt to the image and does not introduce effective high-frequency infor-
mation. Therefore, the upsampled image is easy to blur, and many sharp edge
details cannot be retained. The super-resolution technology based on multi frame
reconstruction [1,6,9,15,16] uses the prior information of the image to estab-
lish a mathematical model or gradually improve the HR by using an iterative
method. Due to the need to fuse information from multiple frames of LR, the
applicability and accuracy of the motion model will greatly affect the recon-
struction effect. The learning-based super-resolution algorithm [17,20] searches
for the mapping relationship between LR and the corresponding HR image by
the training dataset, and finds the optimal solution for LR.

Recently, with the development of deep neural networks, Dong et al. [2] pro-
posed a Super-Resolution Convolutional Neural Network (SRCNN) with three
convolutional layers for SR. Kim et al. [7] proposed a Very Deep Convolutional
Networks (VDSR), which increased the network depth by cascading small filters
and learning residuals. But since both SRCNN [2] and VDSR [7] need to use
the bicubic interpolation as the upsampling operator to enlarge images to the
size of the target, thus it increased the unnecessary computing cost. Dong et
al. [3] proposed Accelerating the super-resolution convolutional neural network
(FSRCNN) to construct the SR images at the last step by deconvolution. Kim
et al. [8] used a deep recursive neural network which got better performance
at a small number of parameters. Kolte et al. [11] used the Laplacian Pyramid
Super-Resolution Network (LapSRN) to progressively extract features and carry
out upsampling, which then computed the output of the previous layer into the
loss function, and supervised the results of each stage. Ledig et al. [12] used
16 blocks deep ResNet (SRResNet) to construct loss function, Lim et al. [14]
proposed Enhanced deep residual networks (EDSR) which also applied resid-
ual network for SR. EDSR [14] removed batch normalization from SPResNet
[12], simplifying the network while improving its performance, which won the
championship in the NTIRE2017 Super Resolution Challenge.

Multi-frame reconstruction has been widely used in remote sensing image SR
[13,21], and multi-frame reconstruction needs to obtain multiple images of the
same scene. However, in many specific satellite applications, multiple images of
the same scene are difficult to obtain because of the different angle and resolution
of the sensor, or the long revisit time of the same sensor. Therefore, single frame
SR is more suitable for remote sensing. The traditional based on learning method
[19] is mostly based on low-level feature design, and reconstruction results are
poor in complex space remote sensing images. Therefore, Dual-Convolutional
Enhanced Residual Network (DCER) is proposed to better reconstruct super-
resolution images by combining local image details at different scales.

The main contributions of this paper can be summarized in the following two
points:

(1) DCER is applied to the single super-resolution of remote sensing images to
enhance the details of remote sensing images.
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(2) DCER with different convolutional kernels (3× 3, 5× 5) can combine the
local details of different scales, and uses 1× 1 convolutional layer to reduce
the dimensions, and speed up network training.

2 Related Works

In recent years, the deep neural network, after a rapid development, has shown
its superior capability in the field of computer vision. Dong et al. [2] first pro-
posed SRCNN for SR, and established the end-to-end mapping between LR and
HR. SRCNN consists of three operations:patch extraction and representation,
non-linear mapping and reconstruction. As the network deepens, the advanced
features learned on the one hand will become much more. On the other hand, the
correlation between gradients in backward propagation will become increasingly
worse, and the degradation of the network will lead to greater errors. He et al. [4]
presented a residual learning framework to train deeper networks. The Residual
block was implemented by shortcut connection to stack the input and output.
Adding element-wise overlays does not add extra parameters and computational
complexity to the network. When the number of network layers increases, the
residual learning framework can solve the gradient disappearance and over fitting
problem of deep convolutional network.

SRResnet [12] and EDSR [14] applied a residual learning to the super res-
olution. Each residual block structure in SRResnet [12] has two convolutional
layers. The batch normalization and Relu activation functions are used between
the convolutional layers. Batch normalization is to process the mean and variance
of each training batch data with the addition of translation and scaling parame-
ters, but it destroys the spatial information of the image to a certain extent and
offsets the gain brought about by the network depth. Given that, EDSR [14]
removed batch normalized modules in the residual structure. Since the batch
normalization layer consumes memory, after removing the batch normalization,
EDSR [14] stacks more convolutional layers and extracts more features at each
layer, resulting in better performance. The final version of EDSR [14] has 32
residual blocks, each convolutional layer with 256 channels. The huge amount of
network parameters leads to a slow network training. For upsampling factor 3x
and 4x, initializing model parameters with pre-trained 2x network parameters.
Even though this can reduce the training time of the high upsampling factor
model, the network training time per epoch still takes a lot of time.

Increasing the depth or width of the network model will inevitably increase
the computational complexity. In order to prevent over-fitting and increased
computational complexity, Szegedy et al. [18] proposed an efficient deep neural
network architecture called GoogLeNet. The core of the GoogLeNet architecture
is the Inception module, with a depth of 22 layers. In terms of model depth,
in order to avoid the problem of gradient disappearance, GoogLeNet increases
two loss at different depths; and when it comes to the width of the model, the
Inception architecture consists of filter sizes 1× 1, 3× 3, 5× 5. With different
sizes of convolutional kernels, the sizes of the receptive fields are also different,
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and the final splicing merges features of different scales. Concating the feature
maps of different convolutional kernel sizes fuses local detail information. In
order to reduce the huge computational complexity of the 5× 5 convolutional
kernel, the 1× 1 convolutional kernel is used for dimensionality reduction, and
then multi-scale convolution is performed separately. Therefore, the Inception
not only improves the ability of convolution to extract features, but also eases
the bottleneck of computing resources.

This paper is based on the use of multi-scale convolutional filters to improve
EDSR [14], shorten the network training time, and achieve excellent perfor-
mance.

3 Proposed Methods

In this section, we will specifically describe the proposed DCER network and
the training details of the network.

3.1 Dual-Convolutional Enhanced Residual Networks

The EDSR [14] has been applied to super resolution which has achieved excellent
results. It has restored image details better than other methods. The applica-
tion of residual learning in EDSR [14] increases the number of network layers,
and at the same time, more convolutional kernels are used on each layer, result-
ing in a huge amount of parameters. To solve this problem, we proposes Dual-
Convolutional Enhanced Residual Networks. In Fig. 1, (a) is the residual block
of EDSR [14], and (b) is the residual block presented in this paper. Firstly,
we change the single 3× 3 convolutional kernel to the 3× 3 and 5× 5 convo-
lutional kernels to jointly extract features. Secondly, after the Relu activation,
1× 1 convolutional kernel is used to reduce the dimension of the previous 256
features to 64. Then, two convolutional operations are respectively performed
using 3× 3, 5× 5 dual-channel networks, and finally feature fusion is performed.
Comparing the parameter quantities of a block (only calculating the convolu-
tional weight parameters and ignoring the deviation parameters), EDSR [14] has
1179648 parameters and DCER has 851968 parameters, so in a residual block,
DCER reduces the parameter amount of about 21.78%.

As for the network depth, the deeper the network is, the greater the receptive
field is, that is, the larger the mapping range of the output result is, the higher
the globality and the abstractness are. Deep networks are mostly used for image
classification and recognition. For super-resolution, no specific features and high
abstract features are needed to determine the final output. On the other hand,
as network layers deepen, the network model is likely to degenerate and reduce
the effective dimension of the model. So this paper sets up 16 residual blocks for
network. The overall network structure is shown in Fig. 2.
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(a) EDSR (b) Proposed

Fig. 1. Comparison of residual blocks in EDSR and ours

3.2 Training Details

During the training phase, we downsample high-resolution images to correspond-
ing low-resolution images, which form training-label sample pairs. The sample
size and total number of different sampling times can be referred to in Sect. 4.1.
The activation function is Relu. Batchsize is 2. The initial learning rate is set to
0.001, with inverse time decay, setting the globalstep to 2500. The loss function
uses L1 Loss. Although the mean squared error is the most important measure
used in image quality assessment, the image output by minimizing the mean
squared error is too smooth, and the PSNR could not effectively capture the
complex features of the human visual system [22]. All experiments are carried

Fig. 2. The architecture of the proposed DCER network structure. A low-resolution
image goes through the first convolutional layer, and then enters 16 residual learning
blocks. The high-resolution image is obtained by transposed convolutions
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on an Inter E5-2690 CPU 2.6 GHz with 188 GB RAM and Tesla K80 using the
tensorflow package.

4 Experiments

4.1 Datasets

The experimental data in this paper is remote sensing image with spatial reso-
lution of 1.07 m/pixel provided by Beijing AXIS Technology Company Limited.
According to the spectral response of the objects, three channels are selected to
synthesize three channels of RGB images. The image segmentation step is based
on the image size, ensuring that there is no cross between images. The segmented
image randomly selects 20% as the testing set and the rest is the training set. In
the experiment, considering the size of the image after x8 upsampling, we reduce
the size of original image, so the image input sizes of different upsampling fac-
tors are different, as shown in Table 1. All images are down-sampled to get the
corresponding low-resolution image.

Table 1. Dataset of different up sampling factor

Scale LR size Training samples Testing samples

x2 64× 64 13600 3400

x4 64× 64 10000 2500

x8 32× 32 10000 2500

4.2 Comparisons with the State-of-the-Arts

To confirm the ability of the proposed network, we compare our network with
four state-of-the-art SR algorithms:Bicubic, SRCNN [2], VDSR [7], EDSR [14].
The quantitative results with the scale factor 2x, 4x and 8x are shown in the
Table 2. Image reconstruction quality uses PSNR and SSIM as two evaluation
indicators, and PSNR calculation method is as shown in formula (1) and formula
(2). MAX is 255, and C, H, and W are the number of channels, height, and width
of the image, respectively. X(i, j, k) and Y(i, j, k) represent network output results
and high-resolution image pixel values. Among these methods, DCER has the
best performance with the highest PSNR and SSIM over 2, 4, 8 scale. We also
present the qualitative results in Fig. 3. By visual comparison, DCER performs
well in SR applications of remote sensing images. Compared with other methods,
the edges of the HR images obtained by DCER are clear, and the details of the
image texture are obviously enhanced, and the edge structure features of the
images are well preserved.
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PSNR = 10 × lg(
MAX2

MSE
) (1)

MSE =
1

C ×H ×W
×

C∑

i=1

H∑

j=1

W∑

k=1

||X(i, j, k) − Y (i, j, k)||2 (2)

Table 2. Mean PSNR (dB) and SSIM over different scale

Scale Bicubic SRCNN VDSR EDSR DCER

PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

x2 31.366/0.87 32.037/0.88 32.977/0.90 33.975/0.91 34.155/0.92

x4 26.503/0.70 27.443/0.71 28.077/0.74 28.880/0.77 29.000/0.78

x8 21.989/0.48 24.182/0.54 24.501/0.56 26.053/0.63 26.098/0.64

4.3 Network Parameters and Training Time

DCER is improved based on the network structure of EDSR [14]. In this section,
we analyze the network parameter settings of EDSR [14] and DCER, and com-
pare the parameter capacity. In addition, referring to the EDSR [14] paper and
code, we implement and apply the data set of this paper to train and test the
model. By reason of diverse the input sizes of different sampling multiple net-
works, we list the number of model parameters of different sampling factors,
time of each epoch training and their corresponding training results, as shown
in Table 3.

Table 3. Comparison of parameters and training time

Scale Method Parameters Training time/epoch (min) Mean PSNR (dB)

x2 EDSR 1179648 85.11 33.975

x2 DCER 854968 60.05 34.155

x4 EDSR 1179648 65.05 28.880

x4 DCER 854968 40.04 29.000

x8 EDSR 1179648 21.32 26.053

x8 DCER 854968 11.20 26.098

In the training process, we test all the test data after each training epoch
to observe the training result. As shown in Fig. 4, comparing the training/test
results of EDSR [14] and DCER at different sampling factor per epoch, it can
be clearly seen that DCER can reach a steady trend quickly, and is higher than
EDSR [14] in each round of PSNR evaluation indicators. This illustrates the
effectiveness of DCER network extraction features.
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HR
PSNR
SSIM

Bicubic
29.174dB
0.881

SRCNN
29.198dB
0.883

VDSR
32.038dB
0.922

EDSR
31.813dB
0.927

DCER
32.327dB
0.932

HR
PSNR
SSIM

Bicubic
23.295dB
0.620

SRCNN
23.793dB
0.621

VDSR
24.260dB
0.644

EDSR
26.075dB
0.749

DCER
26.496dB
0.768

HR
PSNR
SSIM

Bicubic
22.735dB
0.533

SRCNN
24.954dB
0.595

VDSR
24.964dB
0.616

EDSR
26.926dB
0.689

DCER
27.593dB
0.705

Fig. 3. Qualitative comparison of our models with other works on scale different super-
resolution, 2x, 4x, 8x upsampling from top to bottom

5 Conclusion

In this paper, we propose a Dual-Convolutional Enhanced Residual network
for single super-resolution of Remote Sensing Images. DCER combines different
scale features in the basic blocks, and uses local residual learning between each
module to improve the model degradation caused by the depth of the network.
During training and testing models on remote sensing image datasets, compared
with other methods, DCER has achieved very good results. In particular, when
compared to the EDSR [14] and DCER training process in each epoch, DCER
has a stronger ability to extract features and can achieve overall fast convergence.
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Fig. 4. Qualitative comparison of the results of EDSR and DCER (our models) on
each training epoch
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Abstract. Based on U-shaped Fully Convolutional Neural Network
(UNET), Convolutional Neural Network (CNN) classifier and Deep Fully
Convolutional Neural Network (FCN), this paper proposes a thyroid
nodule segmentation model in form of cascaded convolutional neural
network. In this paper, we study the segmentation of thyroid nodules
from two aspects, segmentation process and model structure. On the
one hand, the research of the segmentation process includes the gradual
reduction of the segmentation region and the selection of different model
structures. On the other hand, the research of model structures includes
the design of network structure, the adjustment of model parameters and
so on. And the experiment shows that our thyroid nodule segmentation
in ultrasound images has a good performance, which is superior to the
current algorithms and can be used as a reference for the diagnosis of
the doctor.

Keywords: Thyroid ultrasound image
Image semantic segmentation · Fully convolutional neural network

1 Introduction

Thyroid nodules refer to a common lesion in the endocrine system [9], and among
them, thyroid malignant tumor is treated with the greatest attention. Thyroid
cancer has no obvious clinical symptoms, so doctors often need to analyze the
patient’s case comprehensively if there being a goiter in clinic. Thyroid ultra-
sound examination is the best choice among imaging methods for judging benign
and malignant thyroid nodules, which is easy to operate and repeat with no
wounds, no ionizing radiations, high speed and low price.

For the reason that medical images are endowed with abundant information,
radiologists make a diagnosis for the thyroid nodule by observing a series of
features of thyroid nodules such as aspect ratio and margin shape. However,
due to the diversity of cognitive capability, subjective experience and fatigue
c© Springer Nature Switzerland AG 2018
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degree, different doctors may come to different classifications for only one thyroid
ultrasound image. Besides, low contrast and speckle noises in ultrasound images
also affect the doctor’s diagnosis. Therefore, computer-aided identification is
critical to medical diagnosis, whose main mode is image segmentation. And
Semantic segmentation, which has always been an important research field in
computer vision and image processing, has made remarkable progress with the
development of deep learning.

Before deep learning was widely used for processing images, Texton Forest
[5] and Random Forest based classifiers [2] were common methods for seman-
tic segmentation. Since then, Convolutional Neural Network (CNN) has been
widely used in image semantic segmentation. The traditional CNN method is
patch classification, which will produce a large number of repeated calculations,
thus leading to a low computational efficiency. Moreover, each pixel can only be
classified according to the local features contained by the patch, which results in
the lack of reliability and accuracy for classification. However, after the concept
of Fully Convolutional Networks (FCN) [7] was put forward, a series of semantic
segmentation algorithms have emerged one after another which facilitate image
semantic segmentation. Under the guidance of FCN, this paper, based on the
understanding and analysis of thyroid ultrasound image, puts forward a seg-
mentation model of thyroid nodules, namely, layer-by-layer segmentation. This
model can respectively segment the ROI (Region of interest) of the ultrasound
image, the targeted nodal area and the edge of the nodule, thus obtaining the
ultrasound image with segmented thyroid nodule margins. The input of the algo-
rithm is thyroid ultrasound image containing the nodule when the final output
is the accurate segmentation result of the thyroid nodule in ultrasound images.

In this paper we aim to work out the algorithm of layer-by-layer segmenta-
tion, the selection and adjustment of neural network in ROI extraction algorithm,
as well as the selection and adjustment of nodule segmentation algorithm. The
working process is shown in Fig. 1. This algorithm can automatically segment
nodules in thyroid ultrasound images.

2 Related Work

Medical image segmentation is a hot issue in image processing, and its accuracy
directly influences the validity of following processing. Traditional medical image
methods include Level Set-based method, which was applied by Chunming Li et
al. to cardiac MRI image segmentation [6] and glandular staining images [12].
However, due to the low contrast, speckle echoes, blurred margins of thyroid
nodules and shadows of calcification points in the thyroid ultrasound images,
Level Set-based method is insufficient in accuracy for segmenting thyroid nod-
ules. But in recent years, owing to the rapid development of deep learning, CNN
in the field of image segmentation has achieved a far higher accuracy and effi-
ciency than those of traditional methods [3]. And Jinlian Ma et al. were the first
to use CNN for the nodule segmentation of thyroid ultrasound images [8], with
a satisfactory accuracy.
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Fig. 1. System architecture: First, we input the original ultrasonic image, then use
the EASY-UNET to extract ROI, and then locate the nodules based on the artificial
markers, and finally use VGG19-FCN to accurately locate the nodules and output the
results

After the convolutional layer, the traditional CNN uses the feature vector of
fixed length obtained from the fully connected layer for classification. However,
the Fully Convolutional Neural Network (FCN) [7] by Jonathan Long replaced
the fully connected layer with the convolutional layer. And then deconvolutional
layer was used to up-sample the feature map of the last convolutional layer to
make it restored to the size of the original image, thus generating a prediction for
each pixel and preserving the spatial information in the original image. Finally,
FCN made the classification from pixel to pixel on the feature map that had
been up-sampled. Huang Lin et al. applied FCN to Ct image segmentation of
osteosarcoma [4]. And the stacked fully convolutional networks put forward by
Leibi et al. utilized medical image segmentation [1] and achieved good perfor-
mance in chest X-ray, Echocardiographic images and histological images. What’s
more, Ronneberger’s U-net model [10] based on FCN won the champion in ISBI
cell tracking challenge 2015. It is obvious that FCN has a significant potential
in the field of medical image segmentation.

In recent years, the medical image semantic segmentation technology is to
directly segment the original image, which is expected that the neural network
will learn the differences between nodules and other parts. However, there are
various kinds of other information in ultrasound images, which easily cause
interference to the segmentation of nodules. For that reason, this paper tries
to segment the ultrasound image layer by layer in three steps to achieve a more
accurate segmentation.

3 Research Methods

3.1 ROI Extraction from Ultrasound Images

The ultrasound image is composed of the region of interest (ROI) and back-
ground regions. The ROI contains important diagnostic information, while the
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background region contains a large number of highlighted letters and symbols
that may interfere with the detection of human markers. In this case, this paper
firstly extract the ROI from input ultrasound images.

ROI is a rectangular region located near the center of the whole image,
accounting for a large area. Despite that the ROI of ultrasonic images acquired
from different kinds of diasonographs have some slight differences in aspect ratio,
square measure and hues, etc., the discrepancies between background regions
and themselves are similar, thus facilitating the study of neural network. In this
paper, we propose a simple FCN model based on U-net for ROI semantic seg-
mentation of thyroid ultrasound images. And the network structure is illustrated
in Table 1.

Table 1. Simple full convolution neural network

Layer name Output shape Activation

conv1 1 224× 224× 64 ReLU

conv1 2 224× 224× 64 ReLU

pool1 112× 112× 128

conv2 1 112× 112× 128 ReLU

conv2 2 112× 112× 128 ReLU

pool2 56× 56× 256

conv3 1 56× 56× 256 ReLU

conv3 2 56× 56× 256 ReLU

pool3 28× 28× 256

conv4 1 28× 28× 512 ReLU

conv4 2 28× 28× 512 ReLU

pool4 14× 14× 512

conv5 1 14× 14× 1024 ReLU

conv5 2 14× 14× 1024 ReLU

pool5 7× 7× 1024

deconv1 14× 14× 512

deconv2 28× 28× 256

deconv3 56× 56× 128

deconv4 112× 112× 128

deconv5 224× 224× 2

In this paper, five times convolution and pooling are used to extract the deep
features from the input image. The essence of convolution is the dot product of
the filter (also called convolution kernel) and the local region of the input data,
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as shown in Formula 1.

y[m,n] = x[m,n] × h[m,n]

=
∑

j

∑

i

x[i, j] × h[m − i, n − j] (1)

The feature map of the original image can be obtained by sliding the fil-
ter on the original image. The depth of the feature map corresponds to the
number of convolutional kernels, representing different features of the original
image. Besides, there is a positive correlation between the size of the convolu-
tional kernel and the number of the convolution’s receptive fields and parame-
ters. Large convolutional kernels could extract more features, but it also contains
more parameters to reduce the training speed and computational efficiency of
the model. Such being the case, two continuous 3× 3 convolutional kernels are
used in our experiment to replace 5× 5 convolutional kernels, which can reduce
the complexity of convolutional kernels and improve the computational efficiency
without changing the size of receptive field.

The essence of pooling is sampling. The input feature image is compressed
under an algorithm. And using maximum value is one of the common pooling
algorithms, as shown in Formula 2.

y = max(a, b, c, d) (2)

Pooling can reduce the number of parameters while increasing the receptive
field of the subsequent convolutional layers, thus reducing the complexity of the
model. Furthermore, the output of the pooling layer can stay still when the
pixels of the input image have some slight displacements in the neighborhood.
Taking this into consideration, pooling has the advantage of anti-disturbance
effect, which can improve the robustness of the network.

After five successive down-sampling, the resolution of the feature image is
lower than that of the original image, so the pixel category can not be restored
in the original image. To solve this problem, the resolution of the feature image
is gradually restored to the same value with that of the original image after up-
sampling five times. And during restoration, each down-sampling feature image
is interpolated with the corresponding up-sampling feature image in proper order
so as to supplement the lost details in the process of pooling.

The mask images produced by the model often have irregular margins. After
analysis and observation, the difference between the irregular boundary and the
label mask could be found as 2–3 pixels. Since some large nodules in the ROI
almost occupy the whole region, the artificial mark would appear on the edge of
the ROI. And if a small number of pixels with irregular boundaries are discarded,
cross marks may be missed, resulting in a failure of localization. Such being the
case, that segmented ROI contains all nodal areas is ensured by finding the
largest margin of the mask picture in this paper.
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3.2 The Algorithm of Segmentation for Thyroid Nodules

When ultrasound doctors make ultrasonic examination for patients, they will
make artificial marks in the upper, lower, left and right parts of the ultrasonic
image, according to the ROI obtained in the previous section. Firstly, we adopt
the method of combining image processing with convolutional neural network,
and then find the artificial marks in ROI and determine the specific location of
thyroid nodules in ultrasound images according to the location of the marks.

The manual sign recognition and boundary adjustment method [13] is used
by us to locate the thyroid nodules in ultrasound images, the region of the
thyroid nodule cut out in this method is shown in Fig. 2. Most of the areas in
the image are part of the thyroid nodule, but some nodules have calcification
points which would cause acoustic shadows in the ultrasound image thus leading
to the fusion of the margin and the shadow outside the nodule, as is shown
in Fig. 2(a). Besides, some nodules are difficult to identify due to the blur of
the margin itself, as shown in Fig. 2(b). Therefore, the margin segmentation of
thyroid nodules is a challenging job.

Fig. 2. (a) The fusion of acoustic shadows and the shadow around the nodule, (b) The
blurred boundary of nodule

A deep VGG19 [11] is selected in this paper, as the down-sampling layer to
extract the deep features from the nodule’s image. Besides, the three pooling
layers in the up-sampling process and the down-sampling process are respec-
tively interpolated to obtain the details of the shallow features, and then a fully
convolutional neural network for thyroid ultrasound images is constructed. The
network structure is illustrated in Table 2.

The down-sampling process based on VGG19 model is divided into five con-
volutional steps, in which the first two convolutions replace a 5 × 5 convolution
kernels with two 3 × 3 convolution kernels, and in the last four steps a 11 × 11
convolution kernel is replaced by four 3×3 convolution kernels. With the increase
of the number of convolution layers, the required parameters are less than that
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Table 2. Full convolution neural network based on VGG19

Layer name Output shape Activation

conv1 1 224× 224× 64 ReLU

conv1 2 224× 224× 64 ReLU

pool1 112× 112× 64

conv2 1 112× 112× 128 ReLU

conv2 2 112× 112× 128 ReLU

pool2 56× 56× 128

conv3 1 56× 56× 256 ReLU

conv3 2 56× 56× 256 ReLU

conv3 3 56× 56× 256 ReLU

conv3 4 56× 56× 256 ReLU

pool3 28× 28× 256

conv4 1 28× 28× 512 ReLU

conv4 2 28× 28× 512 ReLU

conv4 3 28× 28× 512 ReLU

conv4 4 28× 28× 512 ReLU

pool4 14× 14× 512

conv5 1 14× 14× 1024 ReLU

conv5 2 14× 14× 1024 ReLU

conv5 3 14× 14× 1024 ReLU

conv5 4 14× 14× 1024 ReLU

pool5 7× 7× 1024

conv6 7× 7× 1024 ReLU

conv7 7× 7× 1024 ReLU

conv8 7× 7× 2 ReLU

deconv1 14× 14× 512

deconv2 28× 28× 256

deconv3 224× 224× 2

of the single 11 × 11 convolution kernel and the complexity of the model is
reduced, under the circumstance of ensuring the down-sampling receptive field.
And the multi-layer convolution implies more activation functions, which make
the decision function more discernible and have a better capability to distinguish
different categories.

In this network, the last three fully-connected layers of VGG19 are replaced
by convolutional layers, the sizes of whose convolution kernels are 7 × 7 × 4096,
1× 1× 4096 and 1× 1× 2. The last layer has a convolution depth of 2, resulting
from that our thyroid nodule segmentation is essentially a problem of binary
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classification for pixel. The resolution of the input image is reduced by 2, 4,
8, 16 and 32 times respectively after down-sampling. And the feature maps in
the fifth, fourth and third layer are up-sampled by three times of deconvolution
correspondingly, in which the first two up-samples are interpolated with pool4
and pool3 one by one. So that the detailed information lost during the down-
sampling could be complemented. Finally the final mask image is obtained and
the margin of the node is drawn in the image of the nodal area by the mask
image.

4 The Experimental Results

All thyroid ultrasound images in our experiment were obtained from Tianjin
Medical University Cancer Institute and Hospital and the number of the images
is 1000. To train and test the model, all these 1000 ultrasound images were
labeled with the ROI and nodule margins, under the guidance of ultrasound
doctors and radiologists in Tianjin Medical University Cancer Institute and Hos-
pital. The data set of our experiment is finally established with the training set
containing 800 images and the testing set containing 200 images.

Intersection-over-Union (IoU) is a commonly used method of computing
accuracy in image processing. It is the overlap rate between the generated image
and the original image, that is, the ratio of the intersection and union of two
images. Ideally, there would be a complete overlap with a ratio of 1. And IoU is
defined by the Formula 3.

IoU =
area(A) ∩ area(B)
area(A) ∪ area(B)

(3)

where A is the area of manual segmentation, and B represents the region
of automatic segmentation by model. This method is used in calculating the
accuracy of both ROI extraction and nodule segmentation.

4.1 ROI Extraction from Ultrasonic Image

The performance of the ROI semantic segmentation model in the training set
is illustrated in Fig. 3. The accuracy of the model changes as the increase of
training epoches, which is demonstrated in Fig. 4(a). We can see from the figure
that in the early stage of training, the accuracy of the model increases sharply,
then it tends to be stable at about 100 epoches, and finally stabilizes at about
96%.

In order for a straightforward comparison, the image processing method is
used for ROI segmentation of the thyroid ultrasound images. As there is a circle
of black margin between the background region and the ROI, we scan from
the center of the image and calculate the sum of the pixel values of each line.
When the value is less than a certain threshold value, the ROI margin could be
confirmed to be here. However, in the nodules with calcification points, for the
reason that the acoustic shadow is also a large area of pixels in the color of pure
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Fig. 3. (a) is the original thyroid ultrasound image, (b) is the ROI extracted from (a)
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Fig. 4. (a) is the changing trend of the accuracy of the ROI semantic segmentation
model, (b) is the trend of the accuracy of thyroid nodule segmentation in nodular area

black, it is easy to be misjudged as the boundary thus resulting in some of the
nodules segmented outside the ROI, as shown in Fig. 5(a). But in this paper,
The segmentation model performs well on this kind of images, as is shown in
Fig. 5(b).

4.2 The Algorithm of Segmentation for Thyroid Nodule

In the thyroid nodule segmentation experiment, we use the manual sign recog-
nition and boundary adjustment method to locate the thyroid nodule. As for
Fig. 6(a) where there are four marks, the algorithm draws a rectangular box
according to the estimated boundary position given by the four marks, the area
in the rectangular box being the position of the nodule. And as for Fig. 6(b)
where there are only two marks, the algorithm estimates the upper and lower
boundaries of the nodule according to the relative position of the two marks,
and then gives out a square box, in which the nodule is coarsely located.
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Fig. 5. Comparison of image processing method and semantic segmentation method for
segmentation of ROI: (a) is a poor result of image processing method for segmentation
of ultrasound image ROI, (b) is the result of segmenting the same ultrasound image
ROI by semantic segmentation method.

Fig. 6. Nodule coarsely located based on identified markers: (a) is the nodular region
coarsely located based on four marks, (b) is the nodular region coarsely located based
on two marks

After that, we use the parameters pre-trained by VGG19 in the ImageNet
data set to speed up and optimize the learning efficiency of the model. The accu-
racy of the testing set varies with the training epoches as shown in Fig. 4(b). We
can see from the figure that in the early stage of training, for the existence
of pre-trained parameters, the accuracy of the testing set increases rapidly but
fluctuates greatly. After the analysis of our team, that results form that the Ima-
geNet data set used in parameter pretraining is inconsistent with the ultrasound
image data set of thyroid nodules in this experiment. But then, after 350 times
of training, the accuracy rate gradually levels off and finally becomes stabilized
at 87%.
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Fig. 7. Nodular edge segmentation: The first column is the original nodular region, the
second column is the edges of the nodules drawn under the guidance of a doctor, the
third column is the nodular edges obtained by the method in this paper.

In accordance with the method for segmenting thyroid nodules proposed
in this paper, the margin of the thyroid nodule located with artificial marks is
segmented, with its outcomes shown in Fig. 7. Compared with the margins drawn
under the guidance of the doctor which are showed in the second column, the
margin images of the thyroid nodule by means of the segmentation algorithm
presented in the third column, are not accurate enough in details. However, our
method can accurately describe the shape characteristics and the aspect ratio
of nodules, both of which plays a crucial role in the identification of benign and
malignant nodules and the diagnosis of doctors.

5 Conclusion

The aspect ratio and margin shape of the nodules in thyroid ultrasound images
have a significant impact on the diagnosis of the doctor. The method in this
paper can not only help doctors to find the specific location of nodules, but
also provide the diagnosis references such as the margin, shape and aspect ratio
of the nodule. In the experimental results, the segmentation results of nodules
with complicated margin details are not accurate enough, which makes us realize
that FCN still has some demerits for an accurate segmentation and it is difficult
to restore all details by up-sampling and interpolation, so we will focus on the
study of edge segmentation fineness in the future. This paper is aimed to provide
a promising thread for scholars in this field to explore more deeply and find a
better method for the margin segmentation of thyroid nodules.
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Abstract. Low-dose CT imaging has been applied in modern medical practice,
because it can greatly reduce the radiation for patients. However, with the
decrease of radiation dose, noise level is getting much higher. The widely used
traditional filtered back-projection (FBP) method is not competent for dealing
with the low-dose CT projection data because it lacks of consideration on noise
characteristic. Therefore, the statistical iteration algorithm which can consider the
noise characteristics is gradually taken into account. But the slow convergence
speed and heavy time-consuming limits its application in clinic. Many
researchers are also working on the state-of-the-art iterative algorithms, so that
they can adapt to low dose CT reconstruction and greatly reduce time. In this
paper, we first analyzed the noise characteristics of low-dose CT projection.
Then, considering the statistical property of noisy sinogram and the superiority
and inferiority of the iterative algorithm, we proposed an adjustable dynamic self-
adapting OSEM method (ADSA-OSEM). This method combines variable subset
strategy with the least squares merit algorithm applied to maximum likelihood
function on OSEM algorithm instead of fixed subsets of traditional OSEM
method. A simulation study is performed to test the effectiveness and advantage
of the proposed method by comparing with FBP and traditional OSEM method.
Through flexible adjustment of the adaptive parameters, results show the new
method has greater performance in reconstructed image quality with fewer iter-
ations, the granularity noise and streak-like artifacts could be well suppressed.

Keywords: Low-dose CT � Noise characteristic � Image reconstruction
Iteration algorithm � ADSA-OSEM
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1 Introduction

The x-ray computed tomography (CT) has been used in a wide range of fields since its
advent, especially in the diagnosis of disease. However, more and more people are
worried about its high levels of radiation now [1]. Therefore, to ensure the image
quality meets the clinical requirements also reduce the radiation dose as far as possibly,
with the principle of as low as reasonably achievable (ALARA) has become a leading
research direction. Low dose CT technology development of the next generation is very
urgent [2]. In clinical practice, the most effective and practical methods of obtaining
low dose CT are scanning at low current intensity [3]. However, the low intensity of
current causes the “photon starvation” phenomenon in detectors, which brings a lot of
noise to projection data and resulting in a significant decline in the quality of the
reconstructed image [4]. As we know that the projection data received by the detector
bins is in Poisson distribution. Thus, the photon counting caused by photon starvation
will introduce Poisson noise [5]. In addition, electronic noise should not be ignored as
well. Zeng et al. studied the low dose simulation CT technology based on high dose
scanning. They suggested that the low-dose CT noise include Poisson noise and
electronic noise [6]. By analyzing the statistical characteristics of low dose CT from
repeated scanning data, Lu et al. proposed that the low-dose projection data, after
systematic calibration and logarithmic transformation, is subject to a spatial nonsta-
tionary Gauss distribution, and there is a nonlinear relationship between the mean and
the variance [7].

Generally, CT image reconstruction technologies include filtered back projection
and iterative reconstruction. However, in low dose CT image reconstruction, FBP
method is highly affected by noise and the reconstruction effect is poor. The iterative
method can reconstruct better images because of considering the noise characteristics.
For example, Maximum likelihood expectation maximization (MLEM) is a good
algorithm, which can address the noise well. Unfortunately, the slow convergence
speed and heavy time-consuming limit its application in clinic. Hudson proposed the
OSEM algorithm, which is based on MLEM to accelerate the convergence speed by
introducing an order-subset technology. The division of subsets can be divided into
different projection angles [8]. Our previous work had studied the ordered subset with
different subset division. It is considered that different subset partition can greatly affect
the quality and time cost of image reconstruction. In previous study, the number of
subsets can be varied from more to less in each complete iteration, so that high-
frequency parts of the image can be restored more quickly in the early stages. In the
later iteration process, fewer subsets can reduce the introduction of noise and make the
image smoother [9]. In this paper, for low dose condition, we proposed an adjustable
dynamic self-adapting OSEM method, which can flexibly deal to image iteration
reconstruction. By taking full account of low dose noise characteristics, the experi-
mental results showed that the new algorithm can reconstruct the images with high
quality and reduce the number of iterations.
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2 Methods

2.1 Low-Dose Noise Model and Simulation Procedure

As we know that the projection data received by the detector bins is subject to Poisson
distribution. Thus, the Poisson distribution is used for noise modeling. At the same
time, there will be electronic noise in the process of signal transmission. Therefore, the
two aspects should be considered in the noise model of low dose CT. In view of that,
Zeng et al. simulate low-dose projection by add noise to the raw sinogram. A statistical
model of CT transmission data by energy integrating detection can be described as a
statistically independent Poisson distribution and a statistically independent Gaussian
distribution [6]. The formula can be expressed as follows:

Î ¼ Poisson kð ÞþGaussian me; d
2
e

� � ð1Þ

where Î is the noisy transmission data and k is the number of photons passing through
the body of patient. The value of k is determined by the mAs value. me and d2e are the
mean and variance of the electronic noise, respectively. Generally, me in each scan are
usually calibrated to be zero. On the other hand, d2e can be estimated from the sample
variance of a series of dark current measurements [10].

Then, we based on Zeng’s low-dose CT simulation procedure [6], depending on the
Shepp-Logan phantom of Matlab. The following low dose simulation steps were listed:

1. Obtain the raw sinogram data Praw, shown on the left of Fig. 1, by normal CT scan
from the Shepp-Logan phantom.

2. Transform the raw projection data Praw into the transmission one:

Traw ¼ exp �Prawð Þ:

3. Calculate the low-dose transmission data Îld;sim = I0 * Traw, where I0 is the incident
fluxes of photon.

4. Inject Poisson and Gaussian noise into �Ild;sim, Ild;sim = Poisson(�Ild;sim) + Gaussian
(me,d

2
e ).

5. Achieve the desirable low-dose projection by applying logarithm to transform I0
and Ild;sim.

6. Pld;sim = log(I0=Ild;sim), which is shown on the right of Fig. 1.

Fig. 1. Original raw projection (left) and low-dose projection (right)
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2.2 Adjustable Dynamic Self-Adapting OSEM Method

In general, the maximum likelihood expectation maximization (MLEM) algorithm
have been found to produce very good results in applications [11]. Equation (2)
describes the classical MLEM iterative algorithm.

x̂nþ 1
j ¼ x̂njPM

i¼1 cij

XM

i¼1
cij

yiPN
l¼1 cilx̂

n
l

ð2Þ

where x̂j is the jth element of the reconstructed image, n is iteration number, i is
projection number, and j is the pixel number. However, it requires a large number of
iterations, because of the slowly convergence speed. The OSEM algorithm is an
MLEM algorithm acting on a subset S of the projections at the time. Compared with
MLEM, the OSEM algorithm divides the projection data into a finite set of ordered
subsets, the MLEM algorithm is used in each subset to update the image. All the
subsets are used in a complete iteration. Actually, the OSEM algorithm updates n times
in one iteration process, thus the image convergence speed could be increased to a great
extent. It can be written as followed:

x̂nþ 1
j ¼ x̂njP

i2St cij

X
i2St cij

yiPN
l¼1 cilx̂

n
l

ð3Þ

The subsets St in (3) may correspond properly to groups of projections. The
problem of subset partition and subset projection arrangement of OSEM has great
influence on it. A subset of data can be composed of 1, 2 or more directions of
projection data. When a subset of OSEM contains all projections, it is equivalent to
MLEM method. The high frequency part of the reconstruction process will be evenly
distributed and it’s hard to be recovered. When the number of subsets equals to the total
number of projection angles, it is equivalent to the algebraic reconstruction method
(ART). In the case of low dose CT projection, the reconstructed image is easily covered
by noise. Nowadays, under the trend of low dose CT scanning, normal OSEM is no
longer able to meet the precise and speed in clinical requirements. In this paper, we
proposed an adjustable dynamic self-adapting OSEM (ADSA-OSEM) based on the
normal OSEM. This method adjusts the number of projections and iteration step size in
each sub-iteration. Meanwhile, the EM algorithm combined maximum likelihood and
least squares merit function. Therefore, in the process of reconstruction, the part of high
frequency would be restored in the early iteration and the introduction of noise could be
minimized in the later stage. The following formulas reasoning can be divided into two
parts. Equation (4–6) are the OSEM method for analyzing the subset. The latter part is
the analysis of the combination of EM and least squares. Based on (2), another
equivalent form of it could be expressed in (4).

x̂nþ 1
j ¼ x̂nj þ

x̂njPM
i¼1 cij

XM

i¼1
cij

yiPN
l¼1 cilx̂

n
l

� 1

" #
ð4Þ
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Next, through an analogy between the block iterative EM algorithm [13] and
OSEM algorithm. We have developed an extended algorithm, the algorithm updates
the current image estimate using only a portion of the projection data, the algorithm is
as follows:

x̂nþ 1
j ¼ x̂nj þ lk

x̂njPM
i¼1 cij

X
i2St cij

yiPN
l¼1 cilx̂

n
l

� 1

" #
ð5Þ

In (5), a relaxation factor is variable for different subset to control convergence
behavior, it can be computed as lk ¼ f tw; kð Þ, k is the index of the whole cycle, tw
denotes the scaling factor. It can be defined as:

tw ¼ minj

P
i2st cijPM
i¼1 cij

The following part introduces the least square method to the iterative algorithm of
OSEM. We know that the iterative reconstruction algorithm is based on the Poisson
distribution model. From [11], it indicates that estimation of image vectors by using
maximum likelihood function, which L xð Þ is subject to non-negative constraints on X.
The formula is as follows:

L Xð Þ ¼
XM

i¼1
yilog

XN

j¼1
cijxj �

XN

j¼1
cijxj

h i
ð6Þ

where X is the N � 1 activity image vector. Next, with a penalized function, Eq. (7)
could be represented as follows

argmaxG Xð Þ ¼ argmax L Xð Þ � cF Xð Þ½ � ð7Þ

where F(X) is a penalty function, c is a positive weight coefficient. F(X) is the quadratic
sum of the difference between the estimated value and the actual projection value. So, F
(X) is formed as follows:

F Xð Þ ¼
XM

i¼1

XN

j¼1
cijxj � yi

� �2
ð8Þ

Equation (8) is characterized by fast convergence, but the accuracy will be reduced
to a certain extent. From (7), the former is maximum likelihood, it is mainly devoted to
the good fitting of X. The latter contributes to penalize the roughness of reconstructed
image by penalty function penalty function F(X). In this case, c is crucial to the speed
of convergence and image smoothness.
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The next step is aimed to maximize G(X), in general, the formula can be obtained as
follows

@G Xð Þ
@xj

¼
XM

i¼1
yi

cijPN
l¼1 cilxl

� cij � 2cijc
XN

l¼1
cilxl � yi

� �" #
ð9Þ

With Kuhn-Tucker conditions solving (9) and combined (5), the new formula
named ADSA-OSEM can be written as

x̂nþ 1
j ¼ x̂nj þ lk

x̂nj
P

i�St cijyi
1PN

l¼1
cilxl

þ 2c
� �

PM
i¼1 cij 1þ 2c

PN
l¼1 cilxl

� � ð10Þ

On the one hand, accelerating the reconstruction speed through variable subsets.
Meanwhile, this algorithm can modify iteration steps according to different subsets
instead of fixed subsets of OSEM method. The principle to adjust the number of subsets
is based on that the number of subsets in a complete iteration is a non-increasing
sequence from more to less. Secondly, lk in the algorithm controls the convergence
degree according to the ratio of subset information to total information in each iteration.
On the other hand, c control least squares penalty is applied to the reconstruction
process. It achieves better image smoothness by controlling the weight of the penalty
function, which can suppress noise of low dose projection very well. As described
above, the algorithm can respond well to the effect of high noise in low dose cases by
adjusting the dynamic parameters and adjusting the constraint coefficient of the penalty
function. In the following simulation experiments, we will explore and verify this
algorithm from multiple perspectives.

3 Simulation Study

The computer simulations were performed to evaluate the proposed method by using
the 2D Sheep-Logan head phantom. In the simulation, the phantom was set as
512 � 512 pixels. A total of 729 parallel beam projections were simulated at each
projection view. The angles of projection are 0°–179° with step length of 2°. Thus, all
the projections were collected as a sinogram of 729 � 90 array size. In order to verify
our algorithm, we compared it with normal OSEM (NOSEM), FBP methods.

The angles of projections were grouped into 5 subsets, with 18 angles of projection
data in each subset. With regard to FBP, we applied the classical Ram-Lak kernel as the
filter of FBP. In the ADSA-OSEM method, in order to illustrate the low-dose CT image
reconstruction quality was affected by diverse subsets data subdivision, we deliberately
set up many tests in the sequence of different number of subsets. During the experi-
ments, we manually set different number of iterations correspondingly. In these simu-
lation experiments, we selected several representative experiments to conduct a
comprehensive analysis. For example, we set the sequence of subsets in the way of A,
A 2 18 ! 10f g. In this case, the first number in the braces means total number of
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subsets in the first iteration and the second number is the total number of subsets in the
second iteration.

Considering that we need quantitative indicators to evaluate the quality of recon-
structed images and the convergence rate. Here we applied three criterions to measure:
signal noise rate (SNR), normalized average absolute distance (NAAD) and normalized
mean square distance (NMSD). SNR is used to evaluate the SNR of reconstructed
images from low-dose CT projections. Both NAAD and NMSD are used to evaluate
the convergence rate. The smaller the value, the better the convergence, these equations
are followed:

SNR ¼ 10 log

PM
i¼1 f̂i � mf̂

� �2

PM
i¼1 f̂i � fi

� �2
8><
>:

9>=
>; ð11Þ

NAAD ¼
PM

i¼1 f̂i � fi
�� ��PM
i¼1 fij j ð12Þ

NMSD ¼
PM

i¼1 f̂i � fi
� �2

PM
i¼1 fi � mf

� �2
" #1

2

ð13Þ

where f̂i and fi are the value of pixel i of the reconstructed image and origin image. mf̂

and mf are separately the value of mean in reconstructed image and origin image. M is
the total sum of pixels.

In the process of simulation experiment, first of all, according to low-dose noise
model, the low-dose sinogram was produced by the simulation of parallel beam scan,
which is shown in Fig. 1. The parameters setting of the model were illustrated as
follows: me = 0, d2e = 0.05 and incident fluxes I0 = 1e5, within the range of low-dose
scan [12]. In this case, in order to illustrate the influences of variable subsets, the
parameter ck was set to 0. The reconstructed image in FBP, NOSEM, ADSA-OSEM
(sequence A), with 2 numbers of iterations, were presented as followed in Fig. 2:

From the Fig. 2, one can see that reconstructed image by FBP is the worst one, its
strip artifact and granularity noise of background are very strong. In addition, we found
that with the same number of iterations, the resolution of reconstructed image with
ADSA-OSEM is higher than NOSEM. At the same time, the quantitative parameters
are following shown in Table 1.

Furthermore, in order to make a clearer comparison of the reconstructed image
details, the zoomed images of ROI are shown in Fig. 3. Presented by the Fig. 3,
the FBP result is the worst, with strong noise stripe and granularity noise. Comparison
between pictures in the center and the right one in Fig. 3, image outline of the center is
clearer than that of right one, which showing better resolution with more high fre-
quency components are restored.

At the same time, the comparison of vertical profiles through the different recon-
structed images are shown in Fig. 4. Obviously, FBP method has poor effect on low

An Adjustable Dynamic Self-Adapting OSEM Approach to Low-Dose 391



dose CT projection reconstruction. The image convergence effect of NOSEM is not
good to ADSA-OSEM image. Furthermore, on the condition of ADSA-OSEM
(sequence A), NOSEM with more iterations was applied. After several experiments, we
found that when the number of iterations is 5, the two methods achieved the same
effect, the result is shown in Fig. 5.

Fig. 2. Original Shepp-Logan phantom and reconstructed images with FBP, NOSEM, ADSA-
OSEM

Table 1. Quantitative parameters of Fig. 2

NMSD NAAD SNR

ADSA-OSEM 0.3953 0.3264 9.3071
NOSEM 0.4451 0.3797 8.2774
FBP 0.5232 0.5812 7.281
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On the condition of low-dose CT scan, the ADSA-OSEM algorithm is different
from NOSEM, which applies different subset numbers to accelerate convergence at
each iteration in ADSA-OSEM. From the above test, the number of iterations reduced 3
times the speed increased by nearly 60%. On the other hand, we applied a sequence of
B in ADSA-OSEM, B 2 18 ! 10 ! 10 ! 9f g. Correspondingly, the number of
iterations of NOSEM is 4 times. But the result is similar to the sequence of A, when the
iterations reached 7 times, the reconstructed image can converge same level to the
ADSA-OSEM with sequence B and it can save 3 times of iterations. For more illus-
trations, a sequence C was chosen, C 2 18 ! 10 ! 9f g. What’s the difference to the
method mentioned above is that the number of subsets of NOSEM algorithm are a fixed

Fig. 3. Zoomed images of ROI from the reconstructed images with FBP (left), ADSA-OSEM
(center) and NOSEM (right) in Fig. 2.

Fig. 4. Vertical profiles through the original image and reconstructed image with FBP, NOSEM
(2 iterations) and ADSA-OSEM (sequence A, 2 iterations).
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Fig. 5. Vertical profiles through the original image and reconstructed image with NOSEM (5
iterations) and ADSA-OSEM (sequence A, 2 iterations).

Fig. 6. Vertical profiles through the original image and reconstructed image with IOSEM
(5 iterations) and ADSA-OSEM (4 iterations).
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number, such as: 10. Through our simulation experiments, we found that ADSA-
OSEM only used 3 iterations, and the same quality of NOSEM needed 4 iterations.
What’s more, we had also carried out several experiments with similar sequences, the
results showed that when the number of NOSEM subset is 10, ADSA-OSEM need less
1–2 iterations than the NOSEM method.

Next, we compared our algorithm with an ordinary variable subset OSEM method
(IOSEM). In the following example, the sequence of ADSA-OSEM was set as { 18 !
10 ! 10! 9} and the sequence of IOSEMwas set as { 18 ! 10 ! 10 ! 9 ! 5}, l0
= 14, ck was a group of dynamic variable constants with k, where k is the index of
iterations. The figure of vertical profiles is showed in Fig. 6. One can intuitively see that
the effect of image convergence is basically consistent when the number of iterations is
respectively 4 and 5.

Similarly, related quantitative indicators is showed in Table 2.

From Table 2, it illustrates that the image quality is almost the same or even
slightly better under the condition with one time difference in the number of iterations.
On the condition of low-dose CT scanning, reducing the number of iterations means
saving more time and improving the efficiency of clinical examination, when the good
reconstructed image could be acquired. Thus, the ADSA-OSEM algorithm shows
better performance and it has a wider foreground of applications.

4 Discussions and Conclusion

The CT image reconstruction algorithm has been developed for a long time. However,
with the increasing demand for low-dose CT, some algorithms have gradually lost their
dominant position. For example, the FBP algorithm is too sensitive to noise. The
traditional iterative reconstruction algorithm is good at dealing with noise, such as the
MLEM algorithm, but it costs a lot of time. The OSEM algorithm divides the pro-
jections into several subsets in one iteration and each subset contains the same numbers
of projection, which accelerates the convergence rate and speed of reconstructed
images to a great extent.

In this paper, we have studied the characteristics of low dose CT and proposed a
new algorithm based on the normal OSEM algorithm. The ADSA-OSEM algorithm
takes a division of subsets into account in each iteration. For different subsets, adjusting
the parameters and adjusting the penalty function coefficients so that can adapt to low
dose CT imaging with fast speed. Of course, with the introduction of some extreme low
dose CT or its application to practical CT machine, it is necessary to make great
adjustments and improvements to this algorithm.

Table 2. Quantitative parameters of the test in Fig. 6.

NMSD NAAD SNR

ADSA-OSEM 0.3780 0.3132 9.6962
NOSEM 0.3812 0.3163 9.6227
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With the enhancement of computing power, many neural network-based deep
learning methods have also been applied to low-dose CT imaging and denoising
problems [14, 15]. In the future, we will explore the combination of our method and
deep learning theory to synthesize the advantages of artificial intelligence so that
developing a new low-dose CT imaging technology.
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Abstract. To predict the OCR accuracy of document images, text
related image quality assessment is necessary and of great value, espe-
cially in online business processes. Such quality assessment is more inter-
ested in text and aims to compute the quality score of an image through
predicting the degree of degradation at textual regions. In this paper,
we propose a deep based framework to achieve image text quality assess-
ment, which is composed of three stages: text detection, text quality pre-
diction, and weighted pooling. Text detection is used to find potential
text lines and the quality is solely estimated on detected text lines. To
predict text line quality, we train a deep neural network model with our
synthetic samples. The overall text quality of an image can be computed
through pooling the quality of all detected text lines by way of weighted
averaging. The proposed method has been tested on two benchmarks
and our collected pictures. Experimental results show that the proposed
method is feasible and promising in image text quality assessment.

Keywords: Image quality assessment · Text detection · Text quality
Deep neural network

1 Introduction

With the pervasive use of smart devices in our daily life, mobile captured doc-
ument images are often required to be submitted in business processes of Inter-
net companies. For the purpose of intelligent analysis of such document images,
image text quality assessment (ITQA, for short) are generally needed before text
detection and text recognition since the performance of document recognition
and analysis is highly dependent on text quality of acquired images.

The text recognition accuracy of mobile captured document images is often
decreased with the low text quality due to artifacts introduced during image
acquisition [15], which probably hinders the following business process severely.
Different from traditional image quality assessment [3,7], image text quality
assessement is closely related to text, where the major concern is word/text.
Inspired by this observation, we expect to only compute the quality score on
interesting textual areas, which is more beneficial and practical than computing
on the whole area in ITQA.
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Current studies mainly focus on document images, which is also called DIQA
(short for document image quality assessment). Many no-reference algorithms
have been developed to estimate document image quality. According to the dif-
ference of feature extraction, these methods can be categorized as two groups:
metric-based assessment and learning-based assessment.

The metric-based methods are usually based on hand-crafted features that
have shown to correlate with the OCR accuracy. Around 30 degradation-specific
quality metrics have been proposed to measure noise and character shape preser-
vation [10]. Although much progress has been made in metric-based assessment,
there still exists a clear problem. Features used in existing methods are generally
extracted from square image patches, many of which do not have visual meaning
involving character/text. Therefore, the resultant features, probably containing
much noise, are suboptimal for image text quality assessment.

The learning-based methods take advantage of learning techniques, such as
[8,12], to extract discriminant features for different types of document degrada-
tions. In [8], the authors proposed a deep learning approach for document image
quality assessment, which crops an image into patches and then uses the CNN
to estimate quality scores for selected patches. However, the strategy of select-
ing text patches is based upon the simple technique, Otsu’s binarization, which
often can not work well for images with complicated background.

To ensure that the text legibility of an image is sufficient for character or
text analysis, we propose a no-reference image text quality assessment frame-
work, based on deep learning techniques. The proposed method manages to take
advantage of valid text lines as significant character patches, and modifies a deep
neural network to describe the text quality model involving text lines. The image
quality with respect to text is obtained through pooling quality scores of valid
text lines by way of weighted averaging.

To train the text quality model, it is necessary to collect for training enough
text line samples containing text quality labels. However, the publicly available
datasets have only ground truth quality for documents, not for text lines. As a
result, we design a way of generating training data with quality labels in this
work. In the generated dataset, blur is considered as the main factor of affecting
image text quality, consistent with the real-world captured image samples where
blur seems the most common issue [1,2]. To do this, we model the Gaussian blur
to smooth textual regions and produce images with blurry text.

The main advantages of this proposed method is that it can not only deal
with pure document images but also scene images or document images with com-
plicated background. The proposed method has been tested on two benchmarks
and our private dataset. Experimental results demonstrate that the proposed
method is feasible and promising in image text quality assessment.
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2 Methodology

In this paper, we propose a deep based framework, DeepITQA, for image text
quality assessment. This framework can be divided into three stages: text detec-
tion, text quality prediction, and weighted pooling. Different stages of the Deep-
ITQA framework are described in detail in the consecutive subsections.

Fig. 1. The proposed framework for image text quality assessment.

2.1 Framework

A high-level overview of our framework is illustrated in Fig. 1. In this framework,
an image is first fed into a text detector to find significant and valid text lines
and then text line quality is assessed with a text quality prediction network.
The overall image text quality is eventually computed with a weighted pooling
strategy on the basis of text line areas.

During the text quality prediction stage, we modify a residual network
(ResNet) [6] to predict text quality of text lines. The network model will directly
output a quality prediction score for input text lines. To train this network model,
we need to synthesize some training samples with ground truth labels involving
text quality. According to the point of view in [15], blur seems the most common
issue in mobile captured images, which suggests that detecting the blur degra-
dation is more attractive and useful in practical applications. As a result, our
synthetic data is mainly produced under different levels of blur degradations.

2.2 Text Detection

Before applying a text quality measure, it is necessary to extract meaningful
features to describe the attributes of the image. Motivated by the fact that
the most significant characteristic for text quality assessment is character/text
in images, we are supposed to replace an image with text lines that contain
characters during text quality assessment. Text detection aims to find meaningful
text lines with a text detector.

Comprehensive reviews about text detection can be found in survey papers
[16,19]. Previous text detection approaches [4,14] have already obtained promis-
ing performances on various benchmarks and deep neural network based algo-
rithms [14,17,18] are becoming the mainstream in this field. In [14], the con-
nectionist text proposal network (CTPN) is proposed to accurately localize text
lines in natural image. Exploring rich context information of image, CTPN is
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powerful in detecting extremely ambiguous text and works reliably on multi-
scale and multilanguage text without further post-processing. Due to its high
efficiency and good performance in text detection, CTPN is selected as the text
detector in this work, as presented in Fig. 2a. In this work, CTPN is directly
utilized for detection without finetuning.

Fig. 2. Illustration of our method.

2.3 Text Quality Prediction

To predict text quality, it is straightforward to cast text quality assessment as a
regression problem since the estimation is essentially to predict a scalar. It has
been proved in [8] that deep features are effective in document image quality
assessment, therefore we employ a deep neural network to extract significant
features of text lines for quality prediction, as shown in Fig. 2b.

In the prediction network, the early layers are based on any standard archi-
tecture truncated before the classification layer. An auxiliary regression layer,
whose output is a neuron, is added behind the early layers for estimation. In our
method, the ResNet [6] is adopted as a base, where the extracted deep features
are of 512 dimensions, due to its good performance in feature representation,
but other networks should also produce good results.
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Loss Function. To predict text line quality, the estimation loss adopts
Euclidean loss for quality regression, which is stacked with the customized
ResNet. Specifically, the estimation loss Lq is defined as

Lq = ‖Q − Q‖22, (1)

where Q and Q are respectively the predicted and ground truth quality.

Fig. 3. Examples of synthetic text lines with different quality.

Training Strategy. As shown in Fig. 2, the detection and prediction networks
are sequentially concatenated and are thus two separate models in our frame-
work. This allows us to independently train each network with its own set of
training parameters.

The prediction network is optimized with synthetic text lines labeled with
ground truth quality. The convolutional layers of the prediction network are
initialized using the ResNet weights pre-trained on ImageNet. The weights for
the regression layer are randomly initialized under a uniform distribution in the
range (−0.1, 0.1).

In order to optimize the prediction network, the Adam optimizer is utilized
with a learning rate 1e-5. A weight decay of 2e-4 is applied to all layers and
the dropout with probability 0.5 is used after global pooling in the prediction
network.

Data Generation for Training. To train the prediction network model, it is
required that the training samples must contain labels involving quality scores
of text lines. However, the publicly available datasets have only ground truth
quality for documents, not for text lines. For example, the DIQA dataset [9]
provides OCR accuracies of documents as ground truth quality scores. As a
result, we need to collect text lines with text quality labels to train the prediction
model.
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In this work, we design a new way of generating training data with quality
labels. Since blur seems the most common issue in mobile captured images, we
model the Gaussian blur to smooth textual regions and produce images with
blurry text. The whole process is briefly introduced as follows:

Step1: create characters to form clear text lines with the standard size of
40×400, and label text lines with quality score 1;

Step2: blur each text line using a Gaussian function with a random kernel size
s ∈ [3, 30];

Step3: label each blurred text line with ground truth quality qt = 1 − s/32.

In each produced text line, there are about 10 Chinese characters or 5 English
words, and the backgrounds are of seven different intensities. In total, we synthe-
size 100,000 text lines for training, and some examples are shown in Fig. 3. Our
ground truth qt has been normalized and is inverse proportional to the kernel
size s in the synthetic data.

Table 1. Comparison on the document-wise protocol.

Median LCC Median SROCC

Moments [5] 0.8197 0.8207

Proposed 0.9175 0.9429

2.4 Weighted Pooling

For an image, the overall quality q̂ with regard to text is defined as the weighted
pooling of the quality of all text lines in this image. It can be computed in the
following form,

q̂ =
∑

j

wjqt(j), (2)

where wj is a weight on the j-th text line of the image. The weight is linearly
proportional to the text line area, wj = Rt(j)∑

k Rt(k)
, where Rt(j) represents the

area of the j-th text line in the image. In this pooling strategy, we expect to put
more emphasis on large textual regions that attract more attention after all.

3 Experiments

To evaluate the performance of the proposed method, we conducted experiments
of image text quality assessment on two public benchmarks and some compli-
cated images we collected.
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3.1 Datasets and Protocols

The DIQA dataset [9] contains a total of 175 color images with resolution 1840
× 3264. These images are captured from 25 documents with different levels of
blur degradations. In SmartDoc-QA [11], there are 30 different documents used
to capture 4260 images, where 142 different images are captured per document.

To compute the correlation between the predicted quality scores and ground
truth OCR accuracies, we use the Linear Correlation Coefficient (LCC) and the
Spearman Rank Order Correlation Coefficient (SROCC) as evaluation metrics.

3.2 Comparative Analysis

In our experiments, the prediction model obtained with our synthetic data is
directly applied to all detected textlines from each document image. The overall
image text quality is computed in the fashion of the weighted pooling.

We first conducted experiments on the DIQA dataset. The median LCC
and SROCC computed independently document-wise are respectively 0.9175 and
0.9429. We compared the proposed method with the Moments based method [5]
that computes the correlation coefficients as well in view of the Tesseract OCR
accuracy. As shown in Table 1, the proposed method achieves the higher median
LCC and SROCC than the Moments based approach that takes advantage of
hand-crafted features.

To avoid the bias towards the good results in terms of the document-wise
evaluation protocol, we directly computed one LCC (0.8082) and one SROCC
(0.8560) on all document images in the DIQA dataset. Table 2 shows that our
method performs better in SROCC than the other two metric-based meth-
ods: MetricNR [10] and Focus [13]. In addition, the SmartDoc-QA dataset was
also evaluated on all images over the average accuracy. The LCC and SROCC
are respectively 0.7506 and 0.8045. The higher SROCC demonstrates that the
trained network model has a good ability in describing the monoticity of pre-
dicted text quality scores. The possible reason causing the low LCC is that the
ground truth for training in our synthetic samples is linearly related to the kernel
size, but these two benchmarks use the OCR accuracy as the ground truth for
text quality, which is overwhelmingly dependent to the OCR engines.

Table 2. Comparison on all document images

LCC SROCC

MetricNR [10] 0.8867 0.8207

Focus [13] 0.6467 N/A

Proposed 0.8082 0.8560
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Fig. 4. Two collected images with a document and two objects.
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3.3 Other Results

The main advantage of our method is that it can effectively assess the quality of
complicated images with regard to text. Figure 4 is a typical case, where the top
image presents a blurry document with low text quality and two objects look
clear with high dynamic range; on the contrary, the document has good text
legibility at the bottom image but those objects have bad contrast and seem not
too good in quality. If text areas are the regions of interest, the right image will
be considered of higher quality than the left one, which is consistent with our
subjective judgement of image quality with respect to text. These two images
can be well evaluated with text quality of 0.0893 and 0.3636 respectively, where
previous state-of-the-art methods for document image quality assessment can
not work in a good way.

Figure 5 presents another three natural images with text we captured, and
their predicted text quality scores are 0.9546, 0.7631, and 0.4061, respectively,
from left to right. All these results are consistent with our subjective judgement
of image text quality, good, normal, and poor, respectively, from left to right.

It is also worth noting that text detector plays an important role in computing
final image text quality since the weighting strategy is based on the area of
detected text lines. For instance, for the same image, if only a clear and big text
line is found with a detector, but both clear and blurry text lines are extracted
with the other detector, two overall image text quality scores, computed with
the weighted pooling strategy, will be totally different. That is, the more blurry
text lines the detector finds, the lower the overall image text quality is. But, in
essence, as long as all potential text lines, clear and blurry, are correctly detected,
the overall score strategy can work in a regular way.

Fig. 5. Three collected scene pictures with different levels of text quality.
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4 Conclusion and Future Work

This paper proposes a deep based framework to estimate image text qual-
ity, mainly including three stages: text detection, text quality prediction, and
weighted pooling. Our motivation is to compute the image quality only on text
lines that can be found with a text detector. To predict text line quality, we
train a deep network model with synthetic data. The final image text quality is
obtained with a weighted pooling strategy on the basis of detected text lines.
Refining the prediction network model to improve the LCC value on image text
quality assessment is our future work.
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Abstract. Rapid and quantitative magnetic resonance T2 imaging plays
an important role in medical imaging field. However, the existing quan-
titative T2 mapping method are usually time-consuming and sensitive
to motion artifacts. Recently, a novel single-shot quantitative param-
eter mapping method based on overlapped-echo detachment technique
has been proposed by us, but an efficient reconstruction algorithm is
necessary. In this paper, a multi-stage DenseNet was utilized to recon-
struct single-shot T2 mapping efficiently. The contributions of the paper
mainly include the following aspects. First, an end-to-end neural network
is proposed, which can directly obtain the reconstructed images without
any secondary processing. Second, DenseNet was introduced into the
reconstruction network to better reuse the features. Third, a weighted
Euclidean loss function is proposed, which can be better used for image
reconstruction.

Keywords: Magnetic resonance imaging (MRI)
Single-shot T2 mapping · Reconstruction
Deep learning · DenseNet

1 Introduction

Quantitative information of the relaxation properties of different tissue and orga-
nization can be represented by quantitative parameter MR mapping (T1 map-
ping, T2 mapping, T2∗ mapping etc.) which has been wildly used in clinical
MRI. The irrelevant effects can be eliminated via quantitative parameter MR
mapping [1], and make it possible to compare between different research result.
Especially, quantitative T2 mapping has a decisive application value in clinical
practice, and has draw more and more attention in the diagnosis of many dis-
eases, such as neuro-degenerative diseases, multiple sclerosis and epilepsy [2], etc.
c© Springer Nature Switzerland AG 2018
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However, quantitative T2 mapping often needs a long acquisition time, and the
artifacts caused by consciously or unconsciously movements can affect the qual-
ity of imaging. Thus real-time imaging cannot be achieved.

Recently, a novel ultrafast quantitative parameters mapping method based on
overlapping echo detachment (OLED) technique has been proposed, and applied
in obtaining single-shot T2 mapping [3] and diffusion mapping [4]. OLED method
aims to reconstruct a clean image from the phase-aliased image via efficient
reconstruction algorithm, which can reduce the sampling time of T2 mapping
from minutes to milliseconds and has strong immunity to motion. To detach
the overlapped echoes as well as reconstruct the clear T2 mapping, a separation
algorithm based on some priors such as sparsity and structural similarity was
proposed (called as echo-detachment-based method). However, this algorithm
has very limited reconstruction efficiency, which still impedes its application in
clinical practice.

Deep learning, especially convolutional neural networks (CNN), has received
increasing attention in image processing and many other fields because of its pow-
erful nonlinear mapping capability and ultrafast forward propagation process.
Especially in the area of medical image processing, deep CNN have approached
or even surpassed human experts in many aspects [5–7]. Therefore, a recon-
struction method [8] based on residual neural network (ResNet) [9] has been
proposed and can achieve the better reconstruction results compared to tradi-
tional optimization-based method. In this method, none of the priori constraint
is required, the network is used to study the complicated nonlinear mapping
from phase-aliased image to clean image, thus reduces the reconstruction time
to milliseconds. However, the loss function in this method is inappropriate, and
it leads the network to pay too much attention to the area with larger T2 values
during the training process. Besides, we need a guided filter [10] in the post-
processing stage to remove the residual noise, and the parameters such as the
radius of the guide filter may affect the quality of reconstructed results under
the different noise levels.

An end-to-end neural network based on DenseNet [11] was utilized in this
paper to further improve the reconstruction of OLED without the help of guided
filter.

2 Proposed Method

2.1 Pulse Sequence

In this paper, we use the OLED pluse sequence shown in the Fig. 1. Two small
flip angle α RF pulses produce two echo signals which have different echo time.
G1 is the first echo-shifting gradients (ESGs), G2 second, and Gcr is defined
as crusher gradients along three directions. β is the flip angle of the refocusing
pulse.
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Fig. 1. Single-shot OLED sequence. TE1 and TE2 represent the first and the second
echo time respectively.

After the refocusing pulse β, we can get the following signal formula.

SOLED = S1(TE1) + S2(TE2) + S3(
TE2

2
)

S1(TE1) =
1
2

∫
ρ(r)| sin α · cos α| · (1 − cos β)e−TE1/T2(r)dr

S2(TE2) =
1
4

∫
ρ(r)| sin α| · (1 + cos α) · (1 − cos β)e−TE2/T2(r)dr

S3(TE2/2) =
1
4

∫
ρ(r)| sin α| · (1 − cos α) · (1 − cos β)e−TE1/T2(r)dr

(1)

where ρ(r) means spin density at position r. As can be seen from the above for-
mula, there are actually three echo signals, S1(TE1), S2(TE2) and S3(TE2/2),
with different modulation phases. We observe that the amplitude of the double-
spin echo signal S3(TE2/2) is relatively small at the small RF pulse angle, so
we use a Gaussian filter to filter out the double-spin echo during the data pre-
processing. Thus, we get only two spin echoes in k-space.

2.2 Dataset

Because it is difficult to obtain real training dataset for potential reconstruction
of ultrafast MR images, the simulated data pairs were utilized to train the neural
network, as described in the previous works [8]. After the network is trained, real
data pairs was fed to the network and we can get the forward propagation result.
Each simulation sample consist of 300 different shapes (ellipse, lines, squares,
etc.) with random size, T2 values and spin density distribution. The simulated
OLED training data was obtained using SPROM (Simulation with PRoduct
Operator Matrix) developed by our group [12], and produced through using
the same pulse sequence and the same parameters as the real data. Figure 2
shows the simulated data pairs and real brain data pairs. They all have a size of
256 × 256 pixel after Fourier transform with zero padding.
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Fig. 2. (a) The simulated data pairs. (b) The real brain data pairs.

As far as we know, the reason why the simulated dataset suitable for real
brain dataset is as follows. First, we make the statistics between two dataset be
relatively similar as much as possible. Second, simulated dataset and real dataset
have the same modulation pattern because they use the same parameters and
sequence, therefore, they have the same nonlinear mapping relationship between
phase-aliased images and clean images theoretically. Third, in a relatively small
reception field, simulation data and real data share a similar textures and struc-
tural features [8].

2.3 Network Architecture

As is shown in Fig. 3, the network architecture is a two-stage DenseNet. The
first stage of the network is built for reconstruction, and the second stage for
fine-tuning. The entire process is an end-to-end mapping without any additional
operations. The reconstruction network consists of two dense blocks. Each dense
block has three bottleneck layers. The growth rate of channel is 64. At the end of
last bottleneck layer of each dense block, we reserve the transition layer, which
is used in original paper to reduce the size and number of feature maps. The
fine-tuning network has similar structure as reconstruction network except that
fine-tuning network uses only one dense block.

The input of the network is a two-channel data, the first channel is the real
part of the input plural image and the second channel the imaginary part. In the
training phase, we randomly crop the full FOV image into 64×64 patches (each
patch can be overlapped) and send it to the network. This process can not only
save computing resources, but also make a data augmentation. In testing phase,
we directly feed the full FOV images to network and get the reconstructed T2

mapping. Since the proposed network does not have a fully connected layer, it is
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C OutIn

Conv_256 Conv_64 ReLU C ConcatenateConv_1

C C

DenseBlock TransitionLayer

reconstruction 
network out

×2

×1

fine-tune 
network out

Fig. 3. Network Architecture. Conv 256 means the convolution has an output channel
of 256 feature maps, with 1 × 1 convolution kernel; Conv 64 and Conv 1 means the
convolution has an output channel of 64 and 1 feature maps respectively, with 3 × 3
convolution kernel. The feature maps in all layers have the same size as the input
image.

feasible to use the different input size for training phase and testing phase respec-
tively [13]. We chosen the ReLU [15] activation function and did not use the BN
[14] operation. RMSProp [16] algorithm were chosen. The size of batch is 16,
and the weight and bias is initialized with Xavier [17] and constant respectively.

2.4 Loss Function

The loss function used by the network is a weighted Euclidean distance, which
can be expressed as a formula as following:

L =
1
N

N∑
i=1

‖(f(Xi,W, θ) − Y i) · Ychange‖2F (2)

where · means Hadamard product, N denotes the number of data in one mini-
batch, f(·) denotes the nonlinear mapping of deep convolutional neural network,
X denotes OLED images, Y denotes the ground truth label images, W and θ
denote the weight and bias. Ychange can be expressed as a formula as following:

Ychange =

⎧⎪⎪⎨
⎪⎪⎩

1
a

if yij ≤ a

1
yij

if yij > a
(3)

where α is a hyperparameter, in experiment we set it 0.05, yij is the pixel T2

value of Y at ith row jth column.
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3 Experimental Results and Analysis

We performed experiments on a whole-body 3T MRI instrument. Before the
experiment, we obtain the informed consent from volunteers, and the authorized
MRI protocols from local research ethics committees. Simulated data were gen-
erated using SPROM on a windows computer. Both the simulated data and the
real brain data were preprocessed using MATLAB R2016b software. The archi-
tecture is implemented using TensorFlow framework [18]. The reconstruction
was performed on a Linux computer with one NVIDIA GTX1080 GPU.

(a) (b)

(c) (d) (e) (f)

Fig. 4. Simulated MR brain images (22× 22 cm2) gained by using single-shot overlap-
ping echo detachment sequence. We set the acquisition matrix and sw the same value
as we used before. The echo chain of the OLED and EPI sequences has a duration time
90ms. The perpendicular and horizontal line are phase-encoded and frequency-encoded
respectively. Prior to the fast Fourier transform, the image matrix will be expand shape
with 256×256 by zero padding. (a) Original OLED amplitude image. (b) SE-EPI image.
(c) Reference T2 mappings. (d–f) T2 mappings reconstructed by echo-detachment-based
method (d), ResNet & guided filter (e) and proposed method (f).

It spends about 6 h to train our network. The training process was alternated.
In first 50k iterations, the reconstruction network is optimized, while in the next
50k iterations, the fine-tuning network is optimized, and in last 50k iterations,
both network is optimized. In order to evaluate the proposed method, we make
an compare on the result between the proposed and those previous methods, i.e.
echo-detachment-based and ResNet & guided filter methods.
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Fig. 5. T2 values and T2 errors(absolute value) relative to reference of Fig. 4 (c)–(f)
trace on the red circle in Fig. 4(b). It starts at the east direction of the circle and
rotates counterclockwise.

3.1 Reconstruction on Numerical Human Brain Data

The results of numerical human brain simulation data were shown in Figs. 4
and 5. The reconstructed T2 mappings from almost all methods are very con-
sistent with the reference T2 mapping (Fig. 4c–f). However, the method we pro-
posed gives more details and less noise-like artifacts at many regions. Besides,
echo-detachment-based method, ResNet & guided filter method and the pro-
posed method gives the mean error of T2 values 3.3141 ms, 2.3346 ms, 1.4503 ms
respectively. As T2 errors shown in Fig. 5, proposed method outperforms others
obviously which has smaller T2 errors.

3.2 Reconstruction on in Vivo Human Brain Data

We obtain the overlapped echo detachment images and SE images from four
healthy volunteers with age ranging from 26 to 44 years. 17–20 brain slices per
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(a) (b) (c) (d) (e)

Fig. 6. The reconstruction of MR images (22 × 22 cm2) of a human brain. (a) OLED
original images. (b–d) Reconstructed T2 mappings by echo-detachment-based method
(b), ResNet & guided filter (c) and proposed method (d). (e) Reference T2 mappings.

volunteer were acquired. Scanning for motion-corrupted was done at the same
time. Both sequences have the same parameters and conditions such as acquisi-
tion matrix and FOV and thickness of slice. Especially, we set sw = 751 Hz/pixel,
α = 50◦, and ΔTE ≈ 45 ms for OLED sequence. While in conventional SE
sequence, a different sw is used with its value 201 Hz/pixel, and we have four
different echo time with their value is 35 ms,50 ms,70 ms, and 90ms respectively,
thus we got a total scan time 17 min.

T2 mappings reconstructed for real human brain data are shown in Fig. 6.
Quantitative analysis is shown in Fig. 7, we can see that almost all methods
are consistent with SE mapping in many areas. However, the method we pro-
posed outperforms others in most regions of interest (ROIs). The mean error of
the mean T2 values between SE and each method is 1.4638 ms, 1.4342 ms and
0.9659 ms respectively. The expanded images are shown in Fig. 8.

3.3 Discussion

For numerical human brain data, the model is relative simple compared with
real human brain, and ResNet & guided filter method also show quite well recon-
struction result. However, the proposed method still shows obvious improvement
on reconstruction accuracy and image fidelity. In Fig. 4(f) at expanded image,
DenseNet method shows better performance at tiny cerebrospinal fluid areas,
this areas generally have larger T2 values, as can also be seen in Fig. 5. This phe-
nomenon reflects that DenseNet does play a role to some extent at feature reuse
and leads the network to find some useful features at final reconstruction. On
the other hand, the weighted Euclidean loss function also gives the higher recon-
struction accuracy at the regions with the relatively smaller T2 values (Fig. 5 at
160◦–180◦, 200◦–210◦, 325◦–335◦).
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Fig. 7. Mean T2 values with standard deviations and mean T2 errors (absolute value)
relative to reference for 15 ROIs circled out by red circles and numbered in Fig. 6(e)
for above methods.

For in vivo human brain data, we can see from Fig. 6(b–e) that the deep-
learning-based methods have a relatively high quality and low mean error than
echo-detachment-based method. Moreover, the quantitative analysis in Fig. 7
also show that DenseNet method can give the higher reconstruction accuracy in
the most of ROIs. In Fig. 8(f), we can see especially in red rectangles marked
regions that the reconstructed images share more similar structural features and
texture details with reference both in large T2 value regions and in small T2 value
regions, which also reflect that the proposed method has strong generalization
and robustness.
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(a) (b) (c) (d) (e) (f)

Fig. 8. Magnifying images for five different slices selected from 21 MR images of a
human brain T2 mapping. (a) Full FOV SE images. (b) Magnifying SE images. (c–f)
Magnifying T2 mappings from echo-detachment-based method (c), ResNet & guided
filter (d), proposed method (e) and reference T2 mappings (f). Magnifying ROIs were
circled out by red rectangles show in (a). (Color figure online)

4 Conclusion

In this paper, a new reconstruction method based on multi-stage DenseNet
was proposed for single-shot T2 mapping through OLED sequence. The recon-
structed results show that the proposed method outperforms the traditional
echo-detachment-based reconstruction method and ResNet & guided filter recon-
struction method, not only on fidelity of T2 values, but also on texture fidelity
of T2 images. Without the utilizing of guided filter, the DenseNet method would
be more robust to the different noise level.
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Abstract. It is very crucial for large-scale image retrieval tasks to extract
effective hash feature representations. Encouraged by the recent advances in
convolutional neural networks (CNNs), this paper presents a novel cascaded
deep hashing (CDH) method to generate compact hash codes for highly efficient
image retrieval tasks on given large-scale datasets. Specifically, we ingeniously
utilize three CNN models to learn robust image feature representations on a
given dataset, which solves the issue that categories with poor feature repre-
sentation have a fairly low retrieval precision. Experimental results indicate that
CDH outperforms some state-of-the-art hashing algorithms on both CIFAR-10
and MNIST datasets.

Keywords: Image retrieval � Convolutional neural networks � Hash code
Image representation

1 Introduction

In recent years, multimedia data including images have being produced on the Internet
every day, making it extremely hard to retrieve similar data from a large-scale database.
Content-based image retrieval (CBIR) is a popular image retrieval method, which
searches for similar images according to compare the content of images [1–3]. The
main steps in CBIR include image representation and similarity measurement. Along
this research track, the most challenging issue is to improve the “semantic gap”
between the pixel-level information captured by machines and semantics from human
perceptions [3, 4].

Recent studies [5–8] revealed that the deep features obtained by convolutional
neural networks (CNNs) are more suitable for computer vision tasks, which is a sig-
nificant breakthrough compared with traditional methods using hand-crafted features
[1, 2, 9]. Better effect of deep features gives the credit to advantages of deep CNNs
which can learn high-level abstractions in images. But deep features are high-
dimensional, which makes it unwise to directly compute the similarity between two
high-dimensional vectors. For a large scale image database, it is an undesirable method
would consume a lot of time and computing resources.
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Hashing approaches have been turned out to be more appropriate when images
need to be retrieved from a large-scale image database, because of its fast speed for
searching process and low memory costs [10–17]. Projecting the high-dimensional data
into a low-dimensional space, hashing methods can generate compact binary codes that
approximately preserve the data structure in the original space. Binary codes are easy to
store and compare, which dramatically reduces the computational and memory cost.
Hashing algorithms consist of two groups: data-independent and data-dependent
methods [10–17].

Most of early researchers pay more attention to data-independent methods which
employ random hash functions to map data points to similar hash codes. The most
representative one is the locality-sensitive hashing (LSH) [10] and its variants [11],
which use random projections to produce binary codes. However, data-independent
methods are unpractical because they would produce long codes.

Fortunately, data-dependent hashing methods through machine learning have
shown their effectiveness in overcoming the issue mentioned above [12–17]. The data-
dependent methods can better access compact and short hash codes from the large-scale
data. In general, these techniques are made up of two parts: (1) Generating visual
descriptor feature vectors from images; and (2) Encoding vectors into binary hash
codes by implementing projection and quantization steps. Existing data-dependent hash
methods can be further split into supervised (semi-supervised) and unsupervised
methods. The unsupervised methods only utilize the training data without labels to
acquire hash functions, which encode neighborhood relation of samples from a certain
metric space into the Hamming space [12, 13]. For instance, Spectral Hashing
(SH) [12] tries to preserve the similarity structures defined in the original space.

Supervised methods boost hash codes by taking advantage of label information to
learn more complex semantic similarity [14–17]. In the inspiration of deep learning,
some researchers utilized deep architectures for hash learning under the supervised
framework. Xia et al. [15] proposed a hashing method based on the supervised data to
acquire binary hashing codes through deep learning. Although this approach is proven
effective, it consumes too much computational time and considerable storage space for
the input of a pair-wised similarity matrix of data. Very recently, Lin et al. [16] put
forward an effective method that based on a deep CNN model to learn simultaneously
binary codes and image representation when the image data are labeled.

There is such a phenomenon in this method that the retrieval performance is closely
related with the classification accuracy of deep CNN models. The categories which can
be recognized well by a CNN model also have a high retrieval performance, but the
categories with low classification accuracies have a fairly low retrieval precision. Thus,
the images recognized bad could reduce the efficiency of image retrieval.

In order to address the issue mentioned above, a novel and effective cascaded deep
hashing (CDH) algorithm based on multiple CNNs is developed for the task of large-
scale image retrieval. Different from other supervised methods (such as [16]), we use
three CNNs, a global CNN and two local CNNs, to generate binary codes. The global
CNN is used to recognize the label of images and generate candidate binary codes. The
two local CNNs can improve the representation ability of deep features, especially the
categories with poor classification ability.

420 J. Lu and L. Zhang



The rest of this paper is as follows. Section 2 elaborates on details of CDH. Sec-
tion 3 compares CDH with several state-of-the-art methods and reports experimental
results. Finally, we conclude this paper in Sect. 4.

2 Our Method

Recent studies have proved that deep hashing methods using CNN can achieve better
results in content-based image retrieval [15, 16]. But the precision of image retrieval
depends on the classification accuracy of CNN models, and the categories with low
classification accuracies have a fairly low retrieval precision. That means hash-like
binary codes learned from deep features of poor representation are inefficient for image
retrieval tasks in this case. In order to improve this situation, we present a cascaded
deep hashing (CDH) method for hash code learning.

We expect that CDH could raise the classification accuracy of the categories with
poor classification ability, which makes the hash-like binary codes of all categories
have a good representation ability to be used for retrieving.

2.1 Cascaded Models

Consider a large-scale image database consisting of c categories as X ¼ Xif gci¼1, where
Xi represents the set of ith category. Let the label set of images be Y ¼ 1; 2; � � � ; cf g.
Further, we partition X into two subsets, the validation set Xvalidation and the training set
Xtrain.

Figure 1 shows the training framework of CDH. From Fig. 1, we can see that the
CDH model includes three CNNs, one global model CNN1, and two local models
CNN2 and CNN3. The training data for CNN1 is the whole training set Xtrain. The
training data for both CNN2 and CNN3 are subsets of Xtrain, which are dependent on the
classification results of CNN1.

Fig. 1. The training framework of CDH
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First, we determine the structure of CNNs a priori, so that the network would have a
good classification ability on Xtrain. A typical CNN architecture is given in Fig. 2,
which is usually composed of convolution layers, pooling layers and fully connected
layers. Then the global model CNN1 can be obtained by training this network on the
training set Xtrain. Second, we apply CNN1 to the subset Xvalidation and calculate the
classification accuracy of each class in Xvalidation. Let CP ¼ p1; p2; � � � ; pcf g be the set
of classification accuracy for all class, where pi is the classification accuracy for class i.
Sort elements in the set CP in descending order and define the sorted CP as
CPS ¼ ps1 ; ps2 ; � � � ; pscf g.

Next, we consider how to divide the set X into two subsets Xgood and Xbad , where
Xgood consists of samples belonging to categories have higher classification accuracies,
and Xbad ¼ X � Xgood . Thus, we need to determine a threshold to separate categories at
first. If

i� ¼ argmax
i¼2;���;c�1

psi � psi�1ð Þ ð1Þ

we can partition CPS to two subsets ps1 ; ps2 ; � � � ; psi�f g and psi�þ 1 ; � � � ; psc
� �

. Therefore,
the corresponding subset Ygood ¼ s1; � � � ; si�f g�Y represents the set of categories with
good classification ability. The remaining categories construct the subset
Ybad ¼ Y � Ygood . Correspondingly, the samples in Xgood belong to the classes in Ygood ,
and those in Xbad to the classes in Ybad .

Then, we train the same CNN on Xgood and Xbad to obtain the local model CNN2

and CNN3, respectively.

2.2 Learning Binary Codes with Cascaded CNN Models

Lin analyzed the deep CNN and showed that the final outputs of the classification layer
rely on a set of k hidden attributes with each attribute on or off [16]. It means images
having the same label would induce similar binary activations. According to the above
point of view, it is an effective way to learn hash-like binary codes by binarizing the k
activations by a threshold h 2 R. As shown in Fig. 2, we set the latent layer with k
nodes in front of the output layer in the network.

Fig. 2. A typical CNN architecture
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For an image xi, we denote the output vector of the latent layer by oi ¼ oi1; . . .;
�

oik�T 2 R
k. Then, the binary codes of image xi can be represented as hi ¼ hi1; h

i
2; � � � ;

�
hik� 2 0; 1f gk , where

hij ¼ 1; if oij � h
0; otherwise

�
ð2Þ

We must decide an appropriate value for the threshold h for different database, which
makes the binary codes more effective for image retrieval.

Using the above mentioned method, we use CNN1, CNN2 and CNN3 to generate
hash codes for X, Xgood and Xbad , respectively. Let Hglobal, Hgood and Hbad represent the
hash code sets that are obtained from X, Xgood and Xbad , respectively.

2.3 Image Retrieval

For a query image, our goal is to search similar images from the given dataset. The
method in [16] directly retrieves the query image in one hash code database, or Hglobal.
However, we should strength the representation ability of the images, especially those
recognized bad by CNN1. To fulfill this idea, we use a cascaded search method to
retrieval the similar images. Figure 3 shows the retrieval process.

Given a query image x, we input it into CNN1 and receive the output as the
prediction result denoted as yglobal. If yglobal is a component of Ygood , we use CNN2 to
get the prediction label of x and define it as ygood . If yglobal is in Ybad , we input x to
CNN3 to obtain the prediction ybad .

Since we have generated three hash code sets: Hglobal, Hgood and Hbad , from which
we need to select an appropriate hash code set for image retrieval. The final hash code
set Hgoal is defined as

Hgoal ¼
Hgood; if yglobal ¼ ygood
Hbad; if yglobal ¼ ybad
Hglobal; otherwise

8<
: ð3Þ

Fig. 3. The retrieval process of CDH
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Once Hgoal is determined, we can generate the hash code h for x using the corre-
sponding CNN model. For example, if Hgoal ¼ Hgood , then we use the local model
CNN2 to generate h. Moreover, retrieval is carried out in Hgoal.

Suppose we need to search out t images that are most similar to x. The Hamming
distance between the hash code of query image and that of any training sample is taken
as their similarity. The smaller the Hamming distance is, the higher level the similarity
of the two images is. The candidates are ranked in ascending. We select the top t
images as the results of retrieval.

3 Experiments

To verify the effectiveness of our proposed method, we perform experiments on two
image datasets, MNIST [18] and CIFAR-10 [19]. In the following, we first describe
datasets and experimental settings, and then analyze experimental results.

3.1 Datasets

MNIST Dataset [18] contains 70 K 28 � 28 gray scale images belonging to 10
categories of handwritten Arabic numerals from 0 to 9. There are 60,000 training
images, and 10,000 test images.

CIFAR-10 Dataset [19] contains 60 K 32 � 32 color tiny images which are cate-
gorized into10 classes (6 K tiny images per class). Each image belongs to one of the 10
classes in a single-label dataset.

3.2 Experimental Setting

The basic network is made up of three convolution-pool layers and three fully con-
nected layers sequencely. The size of filters in convolution layers is 3 � 3 and the
stride is 1. There are 64, 64, and 128 filters in the three convolution layers, respectively.
Each convolution layer follows a pool layer with a stride of 2. Besides, the first fully
connected layer contains 500 nodes, the second (latent layer) has k (the hash code
length) nodes and the third (output layer) has c nodes (the label number).

To illustrate the effectiveness of our retrieval method, we compare CDH with six
typical hashing methods: DLBHC [16], CNNH+ [15], KSH [17], BRE [14], LSH [11],
and SH [12]. We evaluate the retrieval procedure by a Hamming ranking-based cri-
terion. Given a query image, we find the t images with the smallest Hamming distance
between it and training samples. The average precision (AP) for this query image is as

Precison@t ¼
Pt

i¼1 RelðiÞ
t

ð4Þ

where Rel ið Þ is the ground truth relevance between a query x and the ith ranked image
[16]. Here, we consider only the category label in measuring the relevance so
Rel ið Þ 2 0; 1f g, where Rel ið Þ ¼ 1 if the query and the ith image have the same label;
otherwise Rel ið Þ ¼ 0. The mean retrieval precision (MRP) is used to measure the
retrieval ability of these methods, which is the mean of AP on all query images.
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3.3 Experimental Results on CIFAR-10 Dataset

A. Performance of Image Classification

When training the CNN model on CIFAR-10, the output layer is set as 10-way softmax
to predict 10 object categories. In the latent layers, we fit the nodes of neurons k range
from 16 to 64 to measure the performance of the latent layer embedded in the deep
CNN model. The stochastic gradient descent (SGD) method is adopted to train CNN
with 150 iterations and a learning rate of 0.01 on the CIFAR-10 dataset.

Table 1 gives MRP of three models. As shown in Table 1, the local models can
effectively improve the classification performance of Xgood and Xbad compared with the
global model.

B. Performance of Images Retrieval

In this experiment, we map images to the hash codes from 16 to 64 for image retrieval
measured with the hamming distance. To compare with traditional hashing approaches
in hand-craft representation, 512-dimensional generalized search tree (GIST) features
are extracted from each image [20].

Table 2 shows the MRP of the top 500 returned images with different lengths of
hash codes, where the best results are in bold. Figure 4 shows MRP regarding to
various numbers of the top images received from compared methods. From experi-
mental results, we can see that CDH obviously has the best experimental results among
the compared methods, including unsupervised and supervised ones.

We also investigate more details for the relationship between classification accuracy
and retrieval accuracy. We take the hash codes of 48 as an example, as shown in Fig. 5.

In Fig. 5(a), we can see that categories with slightly lower classification accuracy
obtained by the global model CNN1 have the bigger difference between the mean
classification accuracy (MCP) and the mean retrieval accuracy. Figure 5(b) shows that
we can improve the classification accuracy to enhance the deep feature representation
ability with the help of local models CNN2 and CNN3. Inspection on Fig. 5(b) indicates
that those categories with poor classification accuracy also receive pretty good retrieval
accuracy by CNN3. Figure 5(c) reports that CDH can generally obtain higher retrieval
accuracy in the cascade way.

Table 1. MPR (%) of three models on data
partition of CIFAR-10 dataset.

Data subset Model
CNN1 CNN2 CNN3

Xtrain 88.96 – –

Xgood 91.53 93.35 –

Xbad 82.21 – 88.96

Fig. 4. MRP vs. top t images with 48 bits
on CIFAR10
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Figure 6 shows the top images retrieved by our method CDH and the state-of-the-
art method DLBHC. CDH can successfully retrieve images with relevant categories
and similar appearance. It can be easily found that the images retrieved by CDH are
more appearance-relevant according to our empirical eyeball checking, which makes
CDH have better performance.

(a) Relationship on CNN1 (b) Relationship on CNN2 and CNN3

(c) Relationship on Cascaded Model

Fig. 5. Relationship between mean classification prediction (MCP) and MRP of each category
on different models.

Table 2. MAP (%) with various number of bits on the CIFAR-10 dataset

Method 16 bits 32 bits 48 bits 64 bits

CDH 82.08 82.96 83.40 83.78
DLBHC 73.39 74.18 75.16 75.99
CNNH+ 58.63 58.94 59.31 59.98
KSH 41.03 41.78 42.07 42.22
BRE 19.22 19.88 20.43 20.51
SH 19.63 19.87 19.99 20.06
LSH 15.66 16.21 16.44 16.51
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3.4 Experimental Result on MNIST Dataset

A. Performance of Image Classification

To transfer the deep CNN to the dataset of MNIST, we modify the latent layer to 10-
way softmax to predict 10 digit classes and k is also set from 16 to 64. We then train
our cascaded model on the MNIST dataset. In Table 3, we list the classification
accuracy of three models on different parts of MNIST.

B. Performance of Images Retrieval

In order to make a comparison fairly with other hashing methods, we unify the eval-
uation method that retrieves the relevant images by hash codes from 16 to 64 and using
the Hamming distance. We still use the 512-d GIFT features for traditional hashing
learning approach. We can see the precision (MRP) of top 500 returned image with
different lengths of hash codes in Table 4, where the best results are in bold. It can be
seen that our method has excellent results no matter how many images are retrieved.
Figure 7 gives the relationship curves of the precision (MRP) vs. the number of the top
retrieved samples. CDH can also stand out when compared with other fine methods.

Fig. 6. The retrieval process of CDH

Fig. 7. MRP vs. top t images with 48 bits
on MNIST.

Table 3. MPR (%) of three models on data
partition of MNIST dataset.

Data subset Model
CNN1 CNN2 CNN3

Xtrain 99.41 – –

Xgood 99.49 99.72 –

Xbad 99.23 – 99.51
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4 Conclusions

We present a cascaded framework to generate compact and short hashing codes for
large-scale image retrieval. We use multiple CNN models to boost feature expression
ability of images, so that our hash-like binary codes are more suitable for image
retrieval. Experimental results show that CDH has superior performance over the
previous best retrieval results, which has an elevation of about 8% and 1% on the
CIFAR-10 and MNIST datasets, respectively.
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Abstract. This paper presents a method of text-independent speaker
verification from mixed speech of multiple speakers via using pole distri-
bution of speech signals. The poles of speech signal derived from all-pole
speech production model are obtained via a neural net called bagging
CAN2 (competitive associative net 2) for learning efficient piecewise lin-
ear approximation of nonlinear function. We show an analysis that poles
of mixed speech are expected to be composed of the poles farther from
zeros of ARMA (autoregressive moving average) models of constituent
speeches. By means of experiments using unmixed and mixed speeches,
we show the distribution of the poles of speeches has two typical regions:
one involves poles which change suddenly with the change of the speech
from unmixed to mixed, and the other involves poles which change con-
tinuously with the change of the mixing weight, which is considered to
support the analysis. We execute experiments of speaker verification, and
obtain the following properties of recall and precision as measures of ver-
ification performance: the recall decreases suddenly with the change of
the speech from unmixed to mixed, while the precision does not decreases
so much with the decrease of SNR (signal to noise ratio) until below 0
dB. Finally, we show the usefulness of the present method.

Keywords: Text-independent speaker verification
Mixed speech of multiple speakers · Pole distribution of speech signals

1 Introduction

This paper presents a method of text-independent speaker verification from
mixed speech of multiple speakers via using pole distribution of speech signals.
Here, the poles of speech signal is derived from all-pole speech production model
[1,2], and we obtain them by competitive associative nets (CAN2s). Here, a single
CAN2 is an artificial neural net for learning efficient piecewise linear approxi-
mation of nonlinear function [3]. We have shown that feature vectors of pole
c© Springer Nature Switzerland AG 2018
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distribution extracted by bagging (bootstrap aggregating) CAN2 extract non-
linear and time-varying features of the speaker stably than a single CAN2 [4].
Here, although the most common way to characterize the speech signal in the lit-
erature is short-time spectral analysis, such as Linear Prediction Coding (LPC)
and Mel-Frequency Cepstrum Coefficients (MFCC), they extract spectral fea-
tures of the speech from each of consecutive interval frames spanning 10–30 ms
[1], while the CAN2 obtains PLPCs (piecewise linear predictive coefficients) cor-
responding to poles of a speech spanning about 1 ms (with the prediction order
k = 8 and sampling rate 8 kHz as shown below). Thus, a single feature vector of
LPC and MFCC corresponds to a kind of average of multiple PLPCs obtained
by the CAN2. Namely, the CAN2 learns more precise information on the speech
signal than conventional methods. For example, the CAN2 is able to reproduce
vowel signals with very high precision, while the LPC cannot [5].

So far, we have shown the effectiveness of the feature vector of the distri-
bution of poles obtained by bagging CAN2 in several speaker recognition tasks,
such as single step speaker recognition [4], flexible multistep speaker verifica-
tion [6] and speaker detection [7]. Although these researches have shown the
improvement of the performance and the flexibility on speaker recognition, they
have been evaluated with unmixed speech sounds of multiple speakers. So, in this
paper, we deal with mixed speech of multiple speakers and examine the property
and the performance in a simple and basic task of text-independent and single
step speaker verification. This task has a close relationship with cocktail party
problem [8] studied researches on psychoacoustics, auditory scene analysis, and
attention. Although the researches focus mainly on binaural speech perception
and localization, the present method uses speech sounds from a single channel.
There are also speech processing researches for speaker recognition from mixed
speech of multiple speakers, such as a method using MFCC and statistical deci-
sion theory [9]. Here, MFCC is considered to have a relationship with the poles
of speech signal, which we would like to clarify much more in our future research.
Furthermore, some additional functions, such as the above decision theory, mul-
tistep processing developed in [6], may be necessary for practical use, which is
also for our future research studies.

This paper is for clarifying basic ability of speaker verification from mixed
speech of multiple speakers by means of using feature vectors of pole distribution.
We describes the system of speaker verification using bagging CAN2 and pole
distribution of speech signals in Sect. 2. Next, we analyze the pole distribution
of mixed speech of multiple speakers in speaker verification task in Sect. 3. We
show experimental results and analysis in Sect. 4, followed by the conclusion in
Sect. 5.
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2 Speech Processing System for Speaker Verification
Using Bagging CAN2 and Pole Distribution of Speech
Signals

Figure 1 shows the present speaker verification system. In the same way as gen-
eral speaker recognition systems [1], it consists of four steps: speech data acquisi-
tion, feature extraction, pattern matching, and making a decision. Different from
other research studies, we use feature vectors of pole distribution, q, obtained
from speech signal by means of bagging CAN2, which we denote CAN2[PLPC]

for obtaining PLPCs. Furthermore, we utilize bagging CAN2s for learning q to
execute speaker verification, which we denote CAN2[si] for the verification of a
speaker si. The system is almost the same as the one presented in [4], but we
execute speaker verification from mixed speech of multiple speakers and examine
the ability and the performance.

Bagging CAN2[si]
Bagging CAN2[PLPC]

for Obtaining
Feature Vector q

of Pole Distribution

q

Binarization
.

.

.

two-class classifiers

ŷ[si] ẑsi

feature
extraction

pattern
matching

speech data
aquisition

Filtering
and A/D
Conversion

microphone

decision

.

.

.

Bagging CAN2[s1]
ŷ[s1]

Bagging CAN2[s|S|]
ŷ[s|S|]

ẑs1

ẑs|S|

Binarization

Binarization

accept/reject
for verification

Fig. 1. Diagram of speaker verification system using CAN2s

2.1 Model of Speech Signal Production and Pole Distribution

The most standard model of the speech production is all-pole model, or AR
(autoregressive) model described as follows (see [1,2] for details); a speech signal
yt at a discrete time t is modeled by a linear combination of its past values
xt = (yt−1, yt−2, · · · , yt−k)� as

yt = α�xt + βut. (1)

Here, α = (α1, α2, · · · , αk)� and β represent linear coefficients, the input ut is
unknown, and k is called prediction order. It is supposed that α and β do not
change for a short period of time, while they change during a speech.
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By means of z-transform of (1) and partial fraction expansion, we have

Y (z) =
k∑

m=1

cm

1 − pmz−1
=

k∑

m=1

cm

1 − rm exp(jθm)z−1
, (2)

where j represents the imaginary unit, i.e. j2 = −1, and the pole pm =
rm exp(jθm) has the magnitude rm ≥ 0 and the argument θm ∈ [0, 2π]. Now, we
evenly divide the regions of the magnitude, [0, rmax], and the argument, [0, π],
into nr and nθ regions, respectively, and obtain the regions R

[r]
i × R

[θ]
l given by

R
[r]
i = [iΔr, (i + 1)Δr) (3)

R
[θ]
l = [lΔθ, (l + 1)Δθ) (4)

for Δr = rmax/nr, Δθ = π/nθ, i = 0, 1, 2, · · · , nr − 1 and l = 0, 1, 2, · · · , nθ − 1.
Then, by counting the number of poles in each region up during a certain period
of time, we obtain kq = nr × nθ dimensional feature vector of pole distribution,
q = (q00, q10, · · · , qnr−1,nθ−1)�, where the n (= i + nrl)th element, qil, of q cor-
responds to the region R

[r]
i × R

[θ]
l for i = mod(n, nr) and l = floor(n/nr). Here,

mod(·) and floor(·) represent the mod and the floor function, respectively. Note
that we neglect the poles with negative imaginary part because the pole distri-
bution is symmetric with respect to the real axis on the z-plane. Furthermore,
we also neglect the poles on the real axis because we could not have obtain the
effectiveness in the experiments shown below.

2.2 Pole Distribution and Speaker Verification via Using Bagging
CAN2

We utilize bagging CAN2 to obtain a number of piecewise linear coeffi-
cients of speech signal (see [4] for details of single and bagging CAN2). Let
D[train] = {(xt, yt)|t ∈ Itrain} be a training data set consisting of xt =
(yt−1, yt−2, · · · , yt−k) and yt of speech signal given by (1) whose linear coeffi-
cient α changes from period to period in time. The bagging CAN2 for obtaining
PLPCs, or CAN2[PLPC], has a number, b, of single CAN2s, or CAN2[PLPC,i] (i =
1, 2, · · · , b), and CAN2[PLPC,i] learns the ith bag D[train,i] generated via resam-
pling with replacement from D[train]. After the learning, CAN2[PLPC,i] with N

units has associative matrices M [i]
c = (M [i]

c0 ,M
[i]
c1 , · · · ,M

[i]
ck) (c = 1, 2, · · · , N) to

execute linear approximation of yt by

y
[i]
t = M [i]

c x̃t = M [i]
c (1, yt−1, yt−2, · · · , yt−k)�. (5)

From (1) and (5), we can expect that CAN2[PLPC,i] obtains (M [i]
c1 , · · · ,M

[i]
ck) ≈

α� and M
[i]
c0 ≈ βut. Then, the approximation of the poles pm = rm exp(jθm) in

(2) can be obtained from M [i]
c . By means of counting the obtained poles up in

the regions given by (3) and (4), we derive feature vector q reflecting the pole
distribution.
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For learning q to verify a speaker, bagging CAN2 is also employed. Here,
bagging CAN2 basically is for solving regression problems but we use it as a
two-class classifier by means of binarizing the output of the CAN2. Let S =
{s1, s2, · · · , s|S|} be a set of speakers, and Q[s] be the set of feature vectors
q obtained from a speaker s. Then, the verification function that a learning
machine should learn to predict is given by

y[s] = f [s](q) =
{

1, if q ∈ Q[s]

−1, if q �∈ Q[s] (6)

We train bagging CAN2 for speaker s, or CAN2[s] = ∪i∈{1,2,··· ,b[s]}CAN2[s,i],
with training bags Q[s′,i] generated by the resampling with replacement from
Q[s′] for s′ ∈ S. Then, we execute the verification with CAN2[s,i] after the
learning by binarizing the mean output of CAN2[s,i] as

ẑ[s] =

⎧
⎪⎨

⎪⎩
1, if ŷ[s] =

1
b[s]

b[s]∑

i=1

M [s,i]
c q̃ ≥ 0,

−1, otherwise,

(7)

where ẑ[s] = 1 indicates accept, and −1 reject for the input test vector q.
Here, q̃ =

(
1, q�)� = (1, q1, q2, · · · , qkq

)�. Thus, CAN2[si] is expected to ver-
ify the speaker s correctly after learning

(
βut,α

�)
by bagging ensemble of

1
b[s]

∑b[s]

i=1 M [s,i]
c .

3 Speaker Verification from Mixed Speech of Multiple
Speakers

Here, we analyze speaker verification from mixed speech of multiple speakers.
By means of inverse z-transform of (2) for sampling period TS , we have

yt =
k∑

m=1

cm(rm)TSt exp(j θmTSt) (8)

for t = 0, 1, 2, · · · . From the discretization of the pole space with small Δr and
Δθ corresponding to (3) and (4), we can approximate the above yt by

yt �
nr−1∑

i=0

nθ−1∑

l=0

k∑

m=1

qilmcm(iΔr)TSt exp (j(lΔθ)TSt) , (9)

where qilm is 1 when the pole (rm, θm) is in the region R
[r]
i ×R

[θ]
l , and 0 otherwise.

Thus, the n (= i + nrl)th element of the feature vector q of pole distribution is
given by qil =

∑k
m=1 qilm.
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Next, let us examine a mixed speech of two speakers s1 and s2 weighted by
γ and 1 − γ, respectively, for 0 ≤ γ ≤ 1, i.e.

y
[s1,s2,γ]
t = γy

[s1]
t + (1 − γ)y[s2]

t , (10)

where y
[s1]
t =

∑k
m=1 α

[s1]
m y

[s1]
t−m+β[s1]u

[s1]
t and y

[s2]
t =

∑k
m=1 α

[s2]
m y

[s2]
t−m+β[s2]u

[s2]
t .

Then, from (9) and the left hand side of (10), we have

y
[s1,s2,γ]
t ≈

nr−1∑

i=0

nθ−1∑

l=0

k∑

m=1

q
[s1,s2,γ]
ilm c[s1,s2,γ]

m (iΔr)TSt exp (j(lΔθ)TSt) , (11)

and from (9) and the right hand side of (10), we have

y
[s1,s2,γ]
t ≈

nr−1∑

i=0

nθ−1∑

l=0

k∑

m=1

(
γq

[s1]
ilmc[s1]

m + (1 − γ)q[s2]
ilmc[s2]

m

)
(iΔr)TSt exp (j(lΔθ)TSt). (12)

Here, (11) indicates an approximation of mixed speech signal, while (12) the
sum of the approximation of two speech signals. Since the number of non-zero
q
[s1,s2,γ]
ilm , q

[s1]
ilm and q

[s2]
ilm, respectively, is k for all i and l, the number k of non-

zero q
[s1,s2,γ]
ilm are considered be q

[s1γ]
ilm and q

[s2γ]
ilm with k largest values among

γc
[s1]
m and (1 − γ)c[s2]

m because they minimize the difference of (11) and (12).
Thus, the poles corresponding to large γc

[s1]
m of a speaker s1 are expected to

appear in the pole distribution q
[s1,s2,γ]
ilm of mixed speech. Furthermore, it may

be effective to execute a learning of pole distribution obtained from mixed speech
in order to neglect the pole distribution corresponding to large (1 − γ)c[s2]

m of
other speaker s2. Incidentally, it is expected that small c

[·]
m corresponds to the

zeros of ARMA (autoregressive moving average) model, which is the most general
speech production model more precise than all-pole model given by (1) (see [10]
for details of speech production models). Thus, the poles with larger c

[·]
m are

expected to correspond to the poles farther from zeros.

4 Experiments

4.1 Experimental Setting

We have recorded speech data sampled with 8 kHz of sampling rate
and 16 bits of voltage resolution in a silent room of our laboratory.
They are from seven speakers (2 female and 5 mail speakers): S =
{fHS, fMS,mKK,mKO,mMT,mNH,mYM}. We use ten digits (words) of
Japanese pronunciations: D = { /zero/, /ichi/, /ni/, /san/, /shi/, /go/, /roku/,
/nana/, /hachi/, /kyu/ }. For each speaker and each digit, ten samples are
recorded on different time and date among two months, where we denote the
index set by L = {1, 2, · · · , 10}. Let y

[s,d,l]
t denote the spoken digit signal for

s ∈ S, d ∈ D and l ∈ L, and X [s] = {y
[s,d,l]
t |d ∈ D, l ∈ L} be the dataset for

s ∈ S.
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For each speech signal y
[s,d,l]
t ∈ X [s], we have made mixed speech

y
[s,d,l,s′,d′,l′,γ]
t = γy

[s,d,l]
t + (1 − γ)y[s′,d′,l′]

t for γ = 0.8, 0.6, 0.4, 0.2, and s′,
d′ and l′ are selected randomly from S\{s}, D and L, respectively. Here,
before making the mixture, we have normalized the power of a speech signal

y
[·]
t (t = 0, 1, · · · , T − 1) as y

[·]
t := y

[·]
t /

√
∑T−1

i=0

(
y
[·]
i

)2

/T . Therefore, SNR (sig-

nal to noise ratio), or 20 log10 γ/(1 − γ), for γ = 0.8, 0.6, 0.4 and 0.2 is about
12, 3.5, −3.5 and −12 [dB], respectively. Furthermore, when two signals have
different lengths, we have added y

[·]
t = 0 for shorter signal so that two speech

signals will have the same length. Let X [s,γ] denote the set of y
[s,d,l,s′,d′,l′,γ]
t for

γ = 0.8, 0.6, 0.4, 0.2, and X [s,1] be the same as X [s].
In order to obtain pole distribution of yt ∈ X [s,γ] for t = 0, 1, 2, · · · ,

we have trained bagging CAN2 with input-output pairs (xt, yt) for xt =
(yt−1, yt−2, · · · , yt−k), t = k, k + 1, · · · and k = 8. We have employed bagging
CAN2 with 20 bags resampled with bagsize ratio of α = 0.7 and N = 24 units
for each constituent single CAN2. (see [11] for bagsize ratio) For the feature
vector q of pole distribution, we use rmax = 2, nr = 2 and nθ = 18 in (3) and
(4), and then the dimensionality of q is kq = 36. Let Q[s,γ] denote the set of q
obtained from X [s,γ]. In order to estimate the performance in text-independent
speaker verification, we have employed bagging CAN2 with 40 bags, bagsize
ratio α = 1.6, and N = 100 units for each constituent single CAN2, to learn
the relationship from q ∈ Q[s,γ] to s. In order to use test data different from
training data, we have employed OOB (out-of-bag) estimate, with which we can
evaluate the performance of bagging CAN2 in speaker verification tasks (see [11]
for details of OOB estimate).

4.2 Example of Pole Distribution and Feature Vector

We show an example of the distribution of poles pm and feature vector q in
Fig. 2. We can see that the distribution of poles pm of the speaker fHS changes
to the one for speaker mKK with the change of γ from 1 to 0. Here, the number
of poles in the region around rm � 1 and θm � 2π/3 increases rapidly at the
change of γ from 1 to 0.8, where the distribution for γ = 0.8 seems more similar
to that for γ = 0 than for γ = 1. This sudden change of the poles can be expected
when there are poles with large c

[s2]
m in the region as mentioned in Sect. 3.

This sudden change of the pole distribution corresponds to the sudden change
of green bars at n = 22 and 24, which corresponds to θm = (n/nr)(π/nθ) =
11π/18 and 2π/3, respectively, for the feature vector q. Here, the green bar
represents the poles pm = rm exp(jθm) with the magnitude rm < 1, while red
bar with rm ≥ 1. Here, by means of looking closely at the red bars for n ≤ 15,
we can see that they change gradually for the change of γ from 1 to 0, which is
expected to contribute to continuous performance in verification task shown in
the next section.
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-2

-1

 0

 1

 2

-2 -1  0  1  2
 0

 50

 100

 150

 200

 250

 0  5  10  15  20  25  30  35

rm < 1
rm ≥ 1

qn

n
-2

-1

 0

 1

 2

-2 -1  0  1  2
 0

 50

 100

 150

 200

 250

 0  5  10  15  20  25  30  35

rm < 1
rm ≥ 1

qn

n

(c) γ = 0.6 (f) γ = 0

Fig. 2. Example of the distribution of poles pm (left) and feature vector q (right) of
mixed speech of two speakers fHS and mKK having pronounced /san/ mixed with
γ = 1, 0.8, 0.6, 0.4, 0.2, 0.

4.3 Experimental Result of Speaker Verification of Mixed Speech

We have examined the performance of speaker verification from mixed speech
of multiple speakers via OOB estimate from the learning and prediction of q ∈
Q[s,γ] to s.

For performance measure of verification, we have obtained precision rprec =
TP/ (TP + FP) and recall rrecall = TP/(TP + FN), where we regard acceptance
and rejection as positive and negative classes, respectively, in two class classi-
fication. The experimental result is shown in Fig. 3. Here, we can see that the
largest mean value of rprec and rrecall has been achieved for unmixed speech
data with γ = 1 followed by with γ = 0.8, 0.6, 0.4 and 0.2. This continuous
order of the performance is considered to be owing that the pole distribution
changes continuously with the change of γ. Next, a big decrease of the recall
rrecall has occurred for the change of γ from 1 to 0.8. Here, rrecall indicating the
ratio of the correct acceptance to all (positive) speech uttered by the reference
speaker decreases with the increase of γ from 1 to 0.8. This is supposed to be
owing that in the situation where we are detecting speech periods of a reference
speaker from mixed speech with other speakers’, we may not be able to detect
all periods of reference speaker’s speech because the power of the speech changes
from time to time although the average power is normalized. Namely, a decrease
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Fig. 3. Experimental result of rprec and rrecall in speaker verification from mixed speech.
The mean value for γ = 1, 0.8, 0.6, 0.4, 0.2 is rprec = 0.926, 0.896, 0.889, 0.850, 0.832,
and rrecall = 0.938, 0.451, 0.451, 0.439, 0.424, respectively.

of rrecall is supposed to be inevitable in speaker verification from mixed speech
except for γ � 1. On the other hand, the decrease of the precision rprec seems
small for the decrease of γ from 0.8 to 0.2. This property is considered to be
obtained by the present method using pole distribution feature vectors. Namely,
from the analysis in Sect. 3, this property is considered to be achieved by the
learning machine which learns the feature vector q corresponding to the poles
with large γc

[s1]
m of the reference speaker s1 and neglect other speaker’s feature

of (1 − γ)c[s2]
m .

The above result of the precision rprec from 0.896 to 0.832 for γ from 0.8
(SNR of 12 dB) to 0.2 (SNR of −12 dB), seems competitive with other related
methods. Namely, the method using MFCCs and statistical decision theory [9]
achieved error rate rerr = 22.6% in three-speaker environment, and a method
for robust speaker recognition using SVD has achieved the correct recognition
accuracy racc = 32% for SNR of 0dB [12]. Although the present speaker verifi-
cation task from mixed speech of two speakers is different from the tasks of the
above two methods, it may be remarkable that our method works in much noisy
environments with SNR below 0 dB, e.g. by means of obtaining the error rate
by rerr = (FP + FN)/(TP + TN + FP + FN) and the accuracy by racc = 1− rerr,
the present method has achieved the error rate rerr = 18.9% or the accuracy
racc = 81.1% for SNR of −12 dB (or γ = 0.2). Incidentally, there are a number
of research tasks on cocktail party problem executed in environments with SNR
below 0 dB [8], while the tasks are complicated and we could not have clarified
the correspondence and the difference with the present experiments.
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Finally, the result of rprec = 0.832 and rrecall = 0.424 for γ = 0.2 can be
interpreted as that rprec = 83.2% of accepted speeches are correct although only
rrecall = 42.4% of the reference speaker’s speeches are accepted correctly. These
performance in text-independent speaker verification from mixed speech will be
useful for speaker detection, or the act of detecting a specific speaker in an
audio stream [2], and our probabilistic multistep prediction methods developed
for unmixed speech [7] are considered to be applicable.

5 Conclusion

We have presented a method of text-independent speaker verification from mixed
speech of multiple speakers via using pole distribution of speech sounds. An
analysis of the formula of mixed speech shows that poles of mixed speech are
expected to be composed of the poles farther from zeros of ARMA models of
constituent speeches. The distribution of the poles of speeches obtained in the
experiment has two typical regions: one involves poles which change suddenly
with the change from unmixed (γ = 1) to mixed (γ = 0.8) speeches, and the
other involves poles which change continuously with the change of the mixing
weight γ from 1 to 0.2, which is considered to support the analysis. By means
of experiments of speaker verification, we have shown that the recall decreases
suddenly with the change from unmixed to mixed speeches, or rrecall changes
from 0.938 to 0.451 for the change of γ from 1 to 0.8 (12 dB). On the other
hand, the precision does not decreases so much with the decrease of SNR until
−12 dB, or rprec changes from 0.896 to 0.832 for the change of γ from 0.8 (12 dB)
to 0.2 (−12 dB).

One of the application of the present method will be speaker detection to find
out a specific speaker in an audio stream, which will be in our future research.
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Abstract. In order to solve the challenges of In-plane/Out-of-plane Rotation
(IPR/OPR), fast motion (FM) and occlusion (OCC), a new robust visual tracking
framework combining an adaptive template update strategy and tracking validity
evaluation, named (AU_DKCF) is presented in this paper. Specifically, the
proposed appearance discriminant models are firstly used to determine the
tracking validity, and then a new adaptive template update strategy is introduced,
which provides an efficient update mechanism to distinguish IPR/OPR from FM
and OCC states, and furthermore, a new visual tracking framework AU_DKCF is
presented, which combines object detection to distinct FM and OCC states. We
implement two versions of the proposed tracker with the representations from
both conventional hand-crafted and deep convolution neural networks (CNNs)
based features to validate the strong compatibility of the algorithm. Experiment
results demonstrate the state-of-the-art performance in tracking accuracy and
speed for processing the cases of IPR/OPR, FM and OCC.

Keywords: Visual tracking � Kernelized correlation filters
Discriminant model � Convolution neural network � Object detection

1 Introduction

Recently, computer vision is developing very fast, and meanwhile, visual tracking has
significant academic value and wide application prospect, which make it rapidly and
successfully applied in many fields [1, 2], e.g., smart surveillance, robotic services,
medical imaging, etc. Many scholars and institutions have conducted lots of researches
with demonstrated success, however, IPR/OPR, FM and OCC are still the bottlenecks
that restrict the wide application of visual tracking.

Kernelized correlation filters (KCF) [3] attracts many scholars’ attention for the
efficient computation ability and superior performance in object tracking. KCF cre-
atively utilizes the fast Fourier transform to conduct template training and object
detection on the densely-sampled samples, and accordingly, achieves the real-time
tracking. However, no extra processing is adopted for cases of FM and OCC. And
meanwhile, each frame is used for template update to reduce the effects of few training
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samples, while plentiful background information is added into the template, leading to
the rectangle drift and performance decline.

Aiming at the problems above, the latest tracking methods mainly make promotions
from two aspects: one is the optimization and design of object features, and the other is
the design of robust classifiers.

The optimization and design of object features is an important research clue, which
focus on the design of the object representation. In [4–8], new feature representations
are achieved based on traditional features. Considering the superiority of feature rep-
resentation in deep learning, deep convolutional neural networks (CNNs) are adopted
to mine high-level convolutional features, and the tracking performance is further
improved [9–13]. To be specific, Ma et al. [9] exploit features from pre-trained deep
CNNs and learn adaptive CFs on several CNN layers to improve tracking accuracy and
robustness. Wang et al. [10] present a sequential training method for CNN that is
regarded as an ensemble with each channel of the output feature map as an individual
base learner. These methods validate the strong capacity of CNNs for the target rep-
resentation at the cost of time consumption and high requirements of computational
resources.

In summary, the feature design methods make certain achievements. However, the
tracking algorithms aim to distinguish background and object region, and the learned
features only represent the object vision information, and the constraint for background
is not referenced, which causes the quite limited discrimination of the template.
Accordingly, how to obtain discriminative features is still a difficulty.

The design of robust classifiers used to construct optimization mechanism and
restrict the samples for template update, and thus the detection effect is assured. In
order to fully utilize the advantage that Structured output SVM can deal with complex
outputs like trees, sequences, or sets rather than class labels, Hare et al. [14] employ
this algorithm in the visual tracking for the first time and improve tracking accuracy
considerably. In order to further reduce computation complexity, Ning et al. [15]
propose a dual linear structured SVM (DLSSVM) algorithm, which approximates
nonlinear kernels with explicit feature maps. DLSSVM improves tracking performance
significantly, while its tracking speed is not fast enough for real-time applications.
Consequently, Wang et al. [16] propose a high-confidence update strategy, which uses
samples with high confidence, and thus avoids the introduction of background infor-
mation. Nevertheless, the varying object shape results in smaller confidence, and thus
the shape variation can’t be captured.

The two kinds of methods above aim to design more complex features and clas-
sifiers, which improves the tracking accuracy, and yet undoubtedly increase the
complexity, and thus restrict the real-time performance of visual tracking. Meanwhile,
few approaches are used for fast motion and occlusion.

2 Proposed Works

In this part, we describe the proposed new framework AU_DKCF in details, illustrated
in Fig. 1. This framework is divided into four parts: (1) Initial information extraction,
tracking template and discriminant model training. (2) Appearance discriminant model
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for tracking quality evaluation. (3) Adaptive template update strategy definition.
(4) Determination of Object states as IPR/OPR, FM and OCC for long-term and high-
speed tracking. Specifically, the training and update of appearance discriminant model
is marked in light blue, and the adaptive template update strategy is marked in light
orange in Fig. 1.

2.1 Tracking Evaluation with Appearance Discriminant Models

In order to test if the tracked object is a ghost, a new tracking validity index based on
appearance discriminant models is proposed, which provides the confidence of tracking
results in a certain appearance state, and thus contributes to efficient object tracking.
The specifics of proposed tracking validity index are as follows. Furthermore, the
object state corresponding to the proposed appearance discriminant models and the
update process are detailedly shown in Fig. 2.

Step 1. Object detection is conducted, and then the initial object information is
obtained, including the initial position and size of the object.

Step 2. Certain step size is firstly utilized to densely sample multiple sample
images. And then, assuming the overlap threshold being Tovp between the obtained

Fig. 1. An overview of the proposed new framework for visual tracking.
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samples and the object, the overlap is computed accordingly. Specifically, if it is more
than Tovp, the sample label is set as 1. Otherwise, 0.

Step 3. With the inspiration of PCA-net [17], the dimension reduction of HOG
features for all samples are further conducted to obtain the low-dimensional repre-
sentation feat.

Step 4. For all training samples, step 3 is repeated to obtain low-dimensional
representation of all samples. And the discriminant model svm1 is learned and added
into the model set SVMobj, each of which corresponds to one appearance state.

Step 5. Aiming at the easily confused samples, category constraint is introduced
into the objective function of SVM learning. Specifically, if the following misclassi-
fications occur, that is: (1) featobj of the object is misclassified as background, namely
that the score on the object is smaller than that on background; (2) featbgd of the
background is misclassified as object, namely that the score belonging to background is
smaller than that to object. In order to correct the above misclassifications, the category
constraint is introduced as Eq. (1).

scoreðfeatobj; svm1Þ � scoreðfeatbgd ; svm1Þ[ 0 ð1Þ

Equation (1) assures that the positive samples shouldn’t be classified into the
background, and meanwhile, background samples not into object class, and thus the
misclassifications occurring in the training set can be effectively corrected, and
the discriminative ability of classifier is improved.

Step 6. KCF is used to obtain tracking result, and then the classification result
scoreðfeat; SVMobj Þ that descriptor feat corresponding to the tracking area on SVMobj

are obtained to judge if the current tracking state trk sta is normal, namely the current
rectangle contain the true object, which is determined as Eq. (2).

Fig. 2. Discriminant appearance state and model update strategy
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trk sta ¼ normal; if scoreðfeat; SVMobjÞ[ Tsco
abnormal; otherwise

�
ð2Þ

where Tsco is the threshold of tracking results on the discriminant model, and
scoreðfeat; SVMobj Þ is defined as follows.

scoreðfeat; SVMobjÞ ¼ maxðscoreðfeat; svm1Þ; . . .; scoreðfeat; svmnÞÞ ð3Þ

where n is the current number of appearance discriminant models. Equation (3) shows
what appearance state the object is in now.

Specifically, if trk sta is normal, it means that the tracking result is reliable;
Otherwise, it indicates that the tracking is abnormal and the object is in one of the three
states, IPR/OPR, FM and OCC.

Step 7. If the object is in abnormal tracking state, and further judged in IPR/OPR
state by the method in Sect. 2.2, namely that the object appearance changes largely,
then steps 1–5 is repeated to learn new discriminant model svm2, which is added into
SVMobj; Otherwise, the tracking results is retained for subsequent model update.

2.2 Minimum-Based Template Update Strategy

During object tracking, it can be observed that the tracking confidence may present an
upward parabola in several continuous frames, which can be interpreted to two cases:
(1) The object shape first deviates from the original template, and then recovers sim-
ilarly to template gradually, such as in-plane rotation. (2) The object shape deviates far
away from the original template, and meanwhile the background exists an area similar
to the template, which causes the tracking drifting to the background, such as the out-
of-plane rotation.

Further analysis indicates that the object shape changes in the two cases above, and
the template needs to be updated immediately. Consequently, the adaptive update
strategy is defined as follows: the tracking confidence of continuous several frames
present as an upward parabola. Figure 3 shows the curves of response value vs frame
num in the two above cases of object rotation. The specific steps of proposed update
strategy are as follows.

Step 1. KCF is applied to the inputted frame to obtain tracking results and corre-
sponding confidence.

Step 2. The above step is repeated to extract the confidence set for continuous num
frames Conf ¼ fconf1; . . .; confnumg, and then the variation trend is analyzed. The
update flag F indicates that if the tracking result corresponds to the minimal confi-
dence. F is determined by Eq. (4).

F ¼ 1; if ðargminðConf Þ ¼¼ num� 1Þ
0; otherwise

�
ð4Þ

Equation (4) shows that if the variation trend Conf presents as an upward parabola,
namely that the first num� 1 frames decreases, while confnum increases, namely that
the minimum occurs at confnum�1, and then F is set as 1. Otherwise, F is 0.
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Step 3. If F is 1, the tracking result corresponding to the minimum is used for
template update. Furthermore, considering that the template possesses memory prop-
erty with a certain weight coefficient, the following num� 1 frames are all used for
template update.

Step 4. If the template is updated, the confidence for all of the num frames is
removed. Otherwise, the last num� 1 frames are retained when the minimum occurs at
Franum, while only confnum is retained in other cases. And then, steps 1–4 are repeated.
New confidence set Conf 0num is updated as follows.

Conf 0n ¼
fg; if ð argminððConf Þ ¼¼ num� 1Þ
fconf2; . . .; confnumg; if ðargminððConf Þ ¼¼ numÞ
fconfnumg; otherwise

8<
: ð5Þ

2.3 Object Tracking New Framework

In this paper, an adaptive updated discriminant KCF tracking new framework is pre-
sented, which is able to supervise tracking condition, and meanwhile capture and
distinguish the abnormal tracking state from IPR/OPR, FM and OCC, and furthermore,
the loss recovery mechanism is designed to assure a long-term and high-speed tracking.
The specifics are as follows.

Step 1. Input image and utilize the approach proposed in Sect. 2.1 until the tracking
state is abnormal, namely the current object is in one of the three states, IPR/OPR, FM
and OCC.

Step 2. Utilize the proposed update strategy in Sect. 2.2 to obtain F. F ¼ 1 means
that the object in IPR/OPR state, and it is required to update the template. F ¼ 0 means
that little effect is made on the object shape variation, and thus the object is in state of
FM or OCC.

t  t+1  t+2  t+3

response value

frame num
0

In-plane rotation

Out-of-plane rotation

Case1:

Case2:

Dragonbaby

Girl

Fig. 3. Response value vs frame num in two cases of object rotation
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Step 3. Conduct object detection. If the object is correctly detected, it means that
the object is in FM state, and the detected object, rather than tracking object is used for
subsequent tracking. Otherwise, it means that the object is in OCC state. In this case,
assuming that occlusion has the property of small displacement in object motion and
short duration span, the tracking result is kept as that of the last frame in following
several frames until the tracking state is normal or the object is correctly detected.

3 Experiments and Analyses

In order to demonstrate the validity of the proposed framework, we first analyze
AU_DKCF on 50 videos in OTB-100 dataset [18]. Then, several sequences with
IPR/OPR, FM and OCC attributes are respectively used to evaluate the robustness of
our framework. One-pass evaluation (OPE) is adopted for evaluation, where the mean
precision indicates the percentage of frames in which the estimated locations are within
20 pixels compared to the ground-truth positions. The success scores are defined as the
average of the success rates corresponding to the sampled overlap threshold 0.6.
Meanwhile, FPS indicates frame number per second.

3.1 Datasets and Experimental Setups

We implement experiment on the OTB-100 benchmark datasets. All sequences are
annotated with 11 attributes which cover various challenges, including scale variation
(SV), OCC, illumination variation (IV), motion blur (MB), IPR/OPR, FM, and etc.
These attributes are useful for characterizing the behavior of trackers. Our tracker is
implemented for AU_DKCF and DAU_DKCF with a 3.10 GHz CPU (Fig. 4).

Fig. 4. Some example frames of OTB-100 video sequences
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The experiment parameter settings are as follows. (1) Frame number n used to
judge if the minimum exists is set as 4. (2) The overlap threshold Tovp is set to 0.7.
(3) Tsco is also set to 0.7.

3.2 Experiments with New Framework

Table 1 list the results of our AU_DKCF and DAU_DKCF as well as contrastive
methods. It is obvious that relatively high performance is obtained, which is superior to
those in contrastive methods. The reasons lie in that the proposed AU_DKCF and
DAU_DKCF distinguishes the object state once tracking failure, and meanwhile uti-
lizes different mechanisms to recover the lost object, and thus realizes the long-term
and efficient tracking. AU_DKCF runs faster than 143 fps, while DAU_DKCF runs
faster than 71 fps.

3.3 Experiments with Sequence Attributes

In this section, the experiment of object tracking on OTB-100 dataset with specific
attributes, including IPR/OPR, FM and OCC are conducted to demonstrate robustness
to the challenges. Table 2 list the object tracking results of AU_DKCF and contrastive
methods on videos with specific attributes.

Table 1. Object tracking results of proposed method and contrastive methods on OTB-50

Method OPE FPS
Mean precision (20 px) (%) Success rate (%)

KCF [3] 73.20 52.00 172.00
DCF [3] 72.80 50.40 292.00
LMCF [16] 83.90 62.40 85.23
Struck [19] 65.60 38.38 20.00
TLD [20] 60.80 33.40 28.00
ORIA [21] 45.70 23.10 9.00
AU_DKCF 85.40 64.30 143.00
DAU_DKCF 88.00 66.10 71.47

Table 2. Object tracking results of proposed methods and contrastive methods on OTB-100
with sequence attributes

Method Occlusion Fast motion In-plane/out-of-plane rotation
Mean precision (%) Mean precision (%) Mean precision (%)

KCF [3] 74.90 65.00 74.00
Struck [19] 58.40 53.90 52.10
TLD [20] 58.30 57.60 51.20
LMCF [16] 62.70 – 58.85
AU_DKCF 76.60 73.80 81.9
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From Table 2, it is noticed that a large improvement is achieved with AU_DKCF
regarding IPR/OPR, FM and OCC. Under the abnormal states, AU_DKCF is able to
distinguish IPR/OPR from the three attributes by using the proposed adaptive template
update strategy. Afterwards, the discrimination and failure recovery mechanism is
made out for the object in FM state, which focus on object re-detection. In the case of
OCC, the properties of small displacement and short duration are applied to recover the
object. Consequently, the tracking accuracy are undoubtedly improved, and the
tracking continuity is also assured. However, the methods like KCF, TLD, CT and
LMCF fail to judge which attribute causes the tracking failure in real-time, and
meanwhile too much time is spent on the object recovery.

3.4 Qualitative Results

To visualize the impact our framework makes on tracking performance, we show
examples with attributes IPR/OPR, FM and OCC of each baseline method compared to
our framework on sample videos from OTB-100 in Fig. 5. It can be easily observed
that the proposed new tracking framework achieves better performance, especially in
processing videos with attributes IPR/OPR, FM and OCC.

Fig. 5. Tracking results of two baseline CF trackers compared to proposed AU_DKCF. Videos
are (from top to bottom): Soccer, Boy and Basketball
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4 Conclusion

On the foundation of adequate analysis, study and experiment, following conclusions
are drawn from this paper. (1) A tracking evaluation approach based on discriminant
model is proposed, which judges if the current tracking state is normal, in order to
recovery the object immediately. (2) A new minimum-based model update strategy is
presented, which selects samples with various shapes to improve the generalization
ability. (3) A new object tracking framework, with the fusion of tracking evaluation and
template update, is proposed, which discriminates the tracked object state in real-time,
and meanwhile, finds the lost object by making out different recovery mechanisms, and
furthermore, achieves the efficient tracking with high precision and speed. In addition,
our further work will devote ourselves to combining the existing methods with deep
learning to research more complicated visual tracking.
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Abstract. Generative Adversarial Networks (GANs) are a machine
learning approach that have the ability to generate novel images.
Recent developments in deep learning have enabled a generation of
compelling images using generative networks that encode images with
lower-dimensional latent spaces. Nature-inspired optimisation methods
has been used to generate new images. In this paper, we train GAN
with aim of generating images that are created based on optimisation
of feature scores in one or two dimensions. We use search in the latent
space to generate images scoring high or low values feature measures and
compare different feature measures. Our approach successfully generate
image variations with two datasets, faces and butterflies. The work gives
insights on how feature measures promote diversity of images and how
the different measures interact.

1 Introduction

In recent years, Generative Adversarial Networks (GANs) [13] have been used
to map low dimensional real-valued latent vector into images. There has been
work in using GANs to generate and mix novel images [24] and perform style
transfer [10], along with other applications. However, to date there has no work
using evolutionary to explore the latent space of a GAN to generate images
according to feature measures. Evolutionary search has frequently been used to
generate artistic images [4,15,16]. In previous work [2,4], have either reduced
the dimensionality of the search space through programmatic encodings or have
constrained the images with priors [3,21]. In this work, we employed GANs to
generate novel images by evolving the latent vector to maximise and minimise
single and two-dimensional image feature values for two datasets, faces and but-
terflies. In our system, images are created by optimising the latent space of the
GAN in order to create images that score high or low on feature measures. We
show that the generation of images in this space requires the use of carefully
constructed constraints on image realism. We also show that GANs trained on
different image sets appear to impose different bounds on the values of features
measures that can be evolved. We show that GANs can be successful in generat-
ing of photorealistic images and used nature-inspired methods in order to create
c© Springer Nature Switzerland AG 2018
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diverse images. By training GANs we can apply our approach for the discovery
of new images that can be used in field of designing video games.

The paper is structured as follows. Section 2 outlines related work. Section 3
presents the methodology used for evolving images. Section 4 presents our results
on single dimensional feature experiments with constraint. The main approach
is described in Sect. 5. Finally, Sect. 6 discusses results and future work.

2 Related Work

Aesthetic feature measures have been often applied to the creation of new artistic
images using evolutionary search [4,15,16,22]. There has also been work in the
evolution of existing images [20,23]. This work differs from previous work in the
use of a GAN as a mapper from latent search vector to the image feature space
and also in the use of the discriminator network and feature metrics to constrain
these images.

In terms of deep learning, Gatys [9–11] used a convolutional network to trans-
fer artistic style into existing image. These new approaches in network architec-
tures and training methods enabled the generation of realistic images [7,26].
Recently Dosovitskiy and Brox [6] trained networks of generating images from
feature vector and combining an auto-encoder-style approach with Deep Con-
volutional Generative Adversarial Networks training. Furthermore, Nguyen [24]
used priors from Deep Generative Network to generate image variants that look
close to natural within a preferred inputs for neurons.

The nature-inspired algorithm for diversity optimisation was introduced
in [8], based on optimisation for Traveling Salesman Problem (TSP) which is
a NP-hard combinatorial optimisation problem with real world applications. For
our investigation we consider recent work [3] on feature based diversity optimi-
sation for images.

3 Methodology

Fig. 1. The final setup of the
system. The latent vector Z
is randomly seeded and sent
through the system, mutating
until it reaches an optimal solu-
tion or the termination condi-
tion is reached.

In this section, the methods used to evolve
images are discussed. Follows, the descriptions
of technical system, features, and features opti-
mization applied in this paper.

3.1 Our System

Now, we describe our system that is based on
Generative Adversarial Networks (GANs) [13].
In the nutshell, GANs are based on a two-player
game in which the generator network produces
sample, competes against the discriminator net-
work, that has to distinguish between the train-
ing data and generator samples [12]. Figure 1
shows the structure of our system. We train two
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networks: (1) a generator, to generate images from a latent vector Z of 100 real
numbers, and (2) a discriminator which scores the images in the generator for
realness as both networks are trained. We make two copies of the GAN formed
by these networks and train one with two different image datasets: the Celeb-
faces attributes (CelebA) dataset containing more than 150k celebrity faces [17]
and the other with imagenet [5] class of butterflies containing over 45k butterfly
images. In this paper, we present our experiments as a proof-of-concept.

Our GAN implementation is build on a modified version of the PyTorch GAN
code [1]. The generator component of the network consists of 5 deconvolutional
layers. The activation functions for the first 4 layers are a ReLU activation [19].
The last deconvolutional layer uses Tanh. The discriminator uses LeakyReLU
activation in all layers. The generator takes 100 elements of vector Z as input
and generates a 128 × 128 pixels image. The discriminator takes an image and
generates a normally distributed realness score with the most real images scoring
zero. As a final step, Fig. 1 (at the top) shows, we applied the feature function,
as described in [3].

The GAN and the necessary feature functions are linked together to drive
evolution. The combined system works as follows. A randomly initialised latent
feature vector is sent into the generator, which outputs an image. This image is
run through both the chosen feature function and the discriminator, and both
contribute to a score. The evolutionary process, guided by the score, mutates
Z with the goal of optimising both the realness and the desired feature of the
output image.

3.2 Features

This section describes in more detail the features used in our experiments. We
denote a function f for an image I, representing feature. This function maps an
image I to a scalar value f(I). The features are neutral measures of the properties
of an image. We intend to use features that taken from the literature [25], and
have been empirically derived from surveys studies or from databases of popular
images. For our experiments we use the following features: hue, mean-saturation,
smoothness, Reflectional Symmetry [15] and Global Contrast Factor [18]. The
features are defined as follows.

Hue is the value of the hue of every pixels in the image I. The range of Hue
is [0, 1]. Note that both 0 and 1 represent the colour red and hue has a periodic
quantity.

Mean-saturation is the mean value of saturation for all pixels of image I.
The range is [0, 1] with 0 representing low saturation and 1 representing high
saturation. Smoothness of an image is computed, for a given image I with N
pixels as:

1 −
∑N

i=1

∑3

c=1
gradient(Iic)/3N,
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where gradient is the gradient magnitude image produced by MATLAB inter-
mediate image gradient method, which calculated gradients between adjoining
pixel values on each colour channel. We perceive from this thus smoothness(I)
is the disparity of colour between adjacent pixels and also lies within the range
[0, 1]. Reflectional Symmetry is a measure based on den Heijer’s work [15] to
measure the degree which an image reflects itself. Symmetry divides an image
into four quadrants and measures horizontal, vertical, and diagonal symmetry.
Note Symmetry is defined for image I as:

Symm(I) = Sh(I) + Sv(I) + Sd(I)/3.

Global Contrast Factor (GCF) is a measure of mean contrast between neigh-
bouring pixels at different image resolutions. GCF is determined by calculating
the local contrast at each pixel at resolution r:

lcr(Iij) =
∑

Ikl∈N(Iij)
|lum(Ikl) − lum(Iij)|

where lum(P ) is the perceptual luminosity of pixel P and N(Iij) are the four
neighbouring pixels of Iij at resolution r. The mean local contrast at the current
resolution is defined as:

Cr = (
∑m

i=1

∑n

j=1
lcr(Iij))/(mn).

From these local contrasts, GCF is calculated as:

GCF =
∑9

r=1
wr · Cr.

The pixel resolutions correspond to different superpixel sizes of 1,2,4,8,16,25,50,
100, and 200. Each superpixel is set to the average luminosity of the pixel’s it
contains. The wr are empirically derived weights of resolutions from [18] giving
highest weight to moderate resolutions.

3.3 Feature Optimisation

In this work we investigated the use of single and two-dimensional features opti-
mization. We explore this optimisation space with respect to feature values. For a
single feature our system optimise particular feature. We define the minimization
process feature and maximization process (1.0−feature)1. For two-dimensional
features (f, g) we have four optimisation targets representing the combinations
of minimizing and maximizing f and g.

1 Note that for feature GCF maximisation is achieved through 1/GCF and scaling in
the range [0, 1].
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To maintain image realness we penalise the combined score with a measure
for realness from the GAN discriminator. Thus our fitness functions for single
features are shown in Eqs. (1–2) and for two-dimensional features in (3–6).

feature × discriminator (1)
(1.0 − feature) × discriminator (2)

feature 1 × feature 2 × discriminator (3)
feature 1 × (1.0 − feature 2) × discriminator (4)
(1.0 − feature 1) × feature 2 × discriminator (5)

(1.0 − feature 1) × (1.0 − feature 2) × discriminator (6)

Fig. 2. The first two images obtained by using evolutionary algorithms: (1+1) EA.
Two following images obtained without realness constraints by minimizing saturation
and hue.

In two-dimensional feature experiments we use 6 feature combinations: hue-
saturation, hue-symmetry, saturation-symmetry, smoothness-saturation, GCF-
smoothness and GCF-saturation. These combinations were chosen to produce
potentially interesting outputs. GCF-smoothness and GCF-saturation were
selected due to related work indicating GCF-smoothness would constrain each
other [3], resulting in lower image diversity.

4 Preliminary Experiments

We refined the methodology through an experimental process. Initial experimen-
tation used (1+1) EA and Covariance Matrix Adaptation Evolutionary Strategy
(CMA-ES) [14] frameworks to determine the performance of both algorithms.
CMA-ES is well-know for evolving vectors of real numbers. Because of this useful
property for optimizing non-linear, non convect problem in the continuous space
we applied CMA-ES for 2000 mutations (the equivalent of 80000 iterations),
and (1+1) EA for 80000 iterations. As illustrated in Fig. 2 CMA-ES was able
to achieve more extreme feature value. This superiority of optimisation applied
to all feature metrics. We ran all of our experiments on single nodes Intel R©
CoreTM i7-6700 series with 4 core processors. CMA-ES ran for 80 minutes and
(1+1) EA ran 240 minutes for an optimisation run.
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4.1 Feature Experiments Without Realness Constraint

It was initially assumed that the GAN would be able to create face-like images
with some input vector. The tests were performed which did not incorporate a
constraint on realness as part of the optimisation process. As Fig. 2 demonstrates
optimizing features without the discriminator produces abstract images. To con-
strain images to be more realistic three constraining methods were tested: (1)
reducing the degrees of freedom in the covariance matrix, (2) discarding images
that failed, according to the discriminator, a certain given realness threshold,
and (3) incorporating the discriminator’s return value into the optimisation
function. It was found that the third option of integrating realness as a variable
discriminator gave the most visually interesting results. The option of discarding
images resulted in CMA-ES failing to progress.

4.2 Single Dimensional Feature Experiments with Constraint

Single feature experiments require the fewest variables to optimise and as such,
could be expected to evolve the image with the least difficulty. The results of
each feature values are shown in Table 1 (col. 1-2). As can be seen the ranges
of features above are very small, with the exception of symmetry. In these runs
the discriminator term has strong effect on constraining the feature values. For
symmetry, the larger range might be explained by presence of both symmetric
and asymmetric faces in the training dataset. In line with the small feature
ranges, the constrained images only showed small variations as seen in Fig. 3(a)–
(b) corresponding to the hue and symmetry measures in Table 1.

(a) Hue (b) Symmetry (c) Sat-Symm (d) Sat-Symm

Fig. 3. Images (a) and (b) obtained by single features. The first image corresponds
to minimizing features hue (0.0841) and symmetry (0.7985). The second image corre-
sponds to maximizing features hue (0.1275) and symmetry (0.9198). Images (c) and (d)
obtained by two-dimensional features. The first image corresponds to minimizing and
the second image corresponds to maximizing features saturation (Sat) and symmetry
(Symm).
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Table 1. Single features value with cut-off of 0.2 for faces and butterfly datasets. Single
dimensional feature values obtained from experiments with constraint for butterfly
datasets.

Feature MIN-F const MAX-F const Min-Face Max-Face Min-Butter Max-Butter

Hue 0.0841 0.1275 0.0337 0.4886 0.1083 0.5282

Saturation 0.3306 0.3543 0.2176 0.4954 0.1205 0.5918

Smoothness 0.9737 0.9843 0.9582 0.9843 0.9462 0.9887

Symmetry 0.7985 0.9198 0.5904 0.9198 0.5568 0.9428

GCF 0.0276 0.0286 0.0106 0.0348 0.0090 0.0417

4.3 Two-Dimensional Feature Experiments with Constraint

Running the experiments on two-dimensional features gave similarly constrained
images to the single features. Figure 3(c) and (d) shows images evolved to min-
imise and maximise saturation and symmetry. As can be seen, there is some
success in evolving different amounts of symmetry but not a particularly strong
difference in saturation. It appears, for all feature combinations, the realness
constraint is preventing strong exploration of the feature space.

4.4 Impact of Cut-Off Function

In order to maintain balance between image realness and exploration we adjusted
the discriminator term by passing the raw result of discriminator = x for an
image. The cut-off function f are defined as follows:

f(x) =

{
x if x ≥ c

s if x < c
(7)

with a cutoff c and stable value s. In the experiments that follow we set s to
the value close to zero, returning maximum realness, and adapted c to test its
effect. With the cut-off function, the search is unaffected until the image reaches
a certain threshold of realness. When the threshold is reached the system has no
variation in respect to the realness value, thus giving priority to aesthetic features
over realness values. A subjective analysis of possible cut-off values needed to
be performed in order to determine the optimal value for future experiments.
Figure 4 demonstrates the effect of different cut-off values on both image realness
and aesthetic feature value.

A relationship can be observed from the above images. As the cut-off
decreases, so does the degree we are able to evolve the feature value. However, it
can be noted that even the 0.02 cut-off was able to create a far lower hue com-
pared to the constrained results – while still being realistic enough to be called
a face. The 0.02 cut-off was used in the remaining single feature experiments.
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5 Results

This section presents the results of evolution in single and two-dimensional image
features. The previous experiments were all carried on faces. In the following,
GANs generated from both the faces and the butterfly datasets were used.

5.1 Single Dimensional Feature Experiments with Cut-Off Function

We conducted single feature dimension experiments using faces and butterfly
datasets and optimised the following features: hue, saturation, smoothness, sym-
metry and GCF. For these experiments, we use a cut-off of 0.02 on the discrim-
inator output for both GANs. The results were obtained for the minimum and
maximum feature values from each experiment. Figure 5 shows the results of the
experiments for the single dimensional feature with corresponding to an image
minimising (left) and maximising (right) the feature for faces and butterflies
respectively.

Fig. 4. The results of minimizing hue with cut-off at 0.2 (left), 0.05 (middle) and 0.02
(right).

(a) Hue (b) Saturation

(c) Smoothness (d) Symmetry

(e) GCF

Fig. 5. All single feature optimisations with 0.02 cut-off.
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Table 1 (col. 3− 6) shows the minimum and maximum value for each feature
for the faces (Min-Face, Max-Face) and butterfly datasets (Min-Butter, Max-
Butter), respectively. We observe that hue has the highest range with respect
to feature value. The use of the butterfly dataset provides good way to see
how evolution with aesthetic measure responds to the priors embedded in GAN.
For the single dimensional experiments we observe in Fig. 5 that images gener-
ated with the faces dataset appear more real than the images generated with
butterfly dataset. This is likely to be due to the more diverse nature of the
butterfly dataset. The images shown in Fig. 5(a) have the most variance in the
hue dimension. Images with the lowest value for hue appear most realistic. In
contrast the image with higher value for hue appears less realistic. We observe
that image generated from the butterfly dataset achieves a higher feature range.
Figure 5(b) shows that in spite of the saturation feature for faces extending over
a narrow range the resulting faces are not very realistic. The butterfly dataset is
able to produce higher values of saturation, resulting in a realistic and colorful
image. In Fig. 5(c) we observe that minimization produces realistic images with
superimposed darker shadows. In contrast maximizing smoothness produces less
realistic images. The images shown in Fig. 5(d) produce high values for symme-
try for both datasets. These images appear symmetrical and less real. Images
with lower symmetry value are more real. Finally, the images shown in Fig. 5(e)
exhibit less realness for faces and butterfly dataset in minimization and more
realism in maximization.

5.2 Two-Dimensional Feature Experiments with Cut-Off Function

In our next experiment, we evolve images using the GAN to minimise and max-
imise in two feature dimensions. These experiments aim to give us insight into
how features interact with each other and also the impact of the image priors as
embedded in the GAN on the extent to which features can be optimised. After
training our GAN models on the faces and butterfly dataset, We run experiments
with the following feature combinations: GCF-saturation; GCF-smoothness; hue-
saturation; hue-symmetry; saturation-symmetry; and smoothness-saturation.

GCF

Sat

0.15

0.35

0.55

0.01 0.02 0.03

GCF
0.005 0.02 0.04

0.96

0.97

0.98

0.99 Smooth

Fig. 6. Images obtained by two-dimensional features with a 0.008 cut-off constraint.
Images correspond to 2 feature pairs, GCF, saturation and GCF, smoothness for faces
and butterfly dataset, from top left, respectively. Note the images follow their positions
on the graph.
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The feature pair values resulting from these experiments are shown in
Tables 2 (for faces) and 3 (for butterflies). The images corresponding to these val-
ues are shown in Figs. 6 and 8. The first column of Figs. 6 and 8, show images, in
clockwise order from top-left, for min-max, max-max, max-min, min-min com-
binations of features for faces. The corresponding pictures butterflies dataset
is shown in the second column. The last column, plots the positions in feature-
space, of the four face images from the first column (in red) and the four butterfly
images from the second column (in blue). The shape of the quadrilateral in these
plots provides an indication of how feature values are constrained with respect
to each other and by the GAN used to generate them. Figure 7 shows the trace
of GCF and Saturation for faces as the evolutionary run proceeds.

Fig. 7. The trace of GCF and Sat-
uration for the four face images
shown in Fig. 6(a).

Based on our findings from the previ-
ous experiments with single dimension diver-
sity, we reduced the cut-off to 0.008 for the
two-dimensional feature experiments to try
to maintain the realism of the images. The
impact of this smaller cut-off can be observed
in Figs. 6 and 8 in terms of the relatively
small areas of feature space contained by the
plots. Looking at two-dimensional features in
turn. The images shown in Fig. 6(a) have the
highest GCF values and for max-min and
max-max optimisation appear most realistic.
We observe in Fig. 6(a) that image generated on the butterflies dataset achieve
a higher score for GCF and permit a higher range of saturation. The feature
plot in Fig. 6 shows that GCF and Saturation can vary independently. In con-
trast, Fig. 6(b)’s plot indicates some difficulty in minimising both smoothness
and GCF. From the plot it also appears to be relatively difficult to simultane-
ously maximise GCF and smoothness. This result is in concordance with the
observations in [3] which found that GCF and smoothness, being spatial fea-
tures, appeared to be in conflict with each other. More specifically the high
contrast required for high GCF scores is in direct conflict with the low contrast
required for high smoothness scores. Also notable from Fig. 6(b) is a relative
lack of realism in the faces as compared to those in Fig. 6(a). The images shown
in Fig. 8(a) illustrate the relationship between hue and saturation. The butter-
fly pictures show the most variance in the saturation dimension and the face
pictures show marginally more variance in hue. Images high in saturation seem
to appear sharper – with the face image that maximises both features having
quite harsh colour, more contrast, and a mask-like appearance. For Fig. 8(b)
both sets of images have similar ranges of symmetry but faces have a much nar-
rower range of hue. Highly symmetric images seem to be less realistic, tending
to ovoid shapes, with detail seemly sacrificed in order to maximise symmetry.
In contrast asymmetric images appear to have more realistic textures and more
intense colours.
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Figure 8(c) combines saturation and symmetry. As before, highly symmetric
images appear less realistic. The evolutionary process seems to have difficulty
maximising both saturation and symmetry for both GANs. Clearly it is possible
to create artificial images that score highly on both feature dimensions so this
difficulty may be reflective of the rarity of this feature combination in the training
sets for these GANs. As a final observation, the butterfly picture maximising
both features resembles an insect’s face, perhaps an interesting consequence of
having diverse images in the training set.

Finally, the images in Fig. 8(d) show difficulty in minimising both smoothness
and saturation. There is a smaller corresponding problem in maximising both fea-
tures. In both data sets the most realistic images are produced by the minimisa-
tion of smoothness and the maximisation of saturation, perhaps indicating that
the priors in the dataset are biased toward rougher and more colourful images.

Fig. 8. Images obtained by two-dimensional features with a 0.008 cut-off constraint.
The first four images correspond to features hue and saturation, hue and symmetry, sat-
uration and symmetry, smoothness and saturation, from top, respectively. The images
follow their positions on the graph.

Table 2. Two-dimensional features with cut-off for faces dataset.

Feature pairs Min.f1–Min.f2 Min.f1–Max.f2 Max.f1–Min.f2 Max.f1–Max.f2

Hue-Saturation 0.0426–0.3318 0.0457–0.3671 0.2900–0.2727 0.4651–0.4257

Hue-Symmetry 0.0480–0.7233 0.0549–0.9577 0.2523–0.6448 0.0935–0.9722

Saturation-Symmetry 0.2573–0.7020 0.3190–0.9654 0.4256–0.6336 0.3582–0.9679

Smoothness-Saturation 0.9814–0.2378 0.9751–0.4876 0.9901–0.2912 0.9903–0.3670

GCF-Saturation 0.0164–0.2930 0.0126–0.4048 0.0310–0.2796 0.0332–0.4160

GCF-Smoothness 0.0166–0.9890 0.0166–0.9890 0.0326–0.9762 0.0290–0.9893
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Table 3. Two-dimensional features with cut-off for butterfly dataset.

Feature pairs Min.f1–Min.f2 Min.f1–Max.f2 Max.f1–Min.f2 Max.f1–Max.f2

Hue-Saturation 0.1622–0.1956 0.1218–0.4772 0.4659–0.1402 0.3458–0.5912

Hue-Symmetry 0.1286–0.7232 0.1744–0.9558 0.5067–0.6701 0.3075–0.9614

Saturation-Symmetry 0.1447–0.7133 0.1594–0.9554 0.5760–0.6512 0.3014–0.9647

Smoothness-Saturation 0.9840–0.1469 0.9706–0.6177 0.9852–0.1291 0.9868–0.4661

GCF-Saturation 0.0100–0.1743 0.0102–0.3820 0.0334–0.1983 0.0357–0.5205

GCF-Smootness 0.0094–0.9826 0.0093–0.9840 0.0378–0.9638 0.0319–0.9838

6 Discussion and Future Work

In this work, we have shown how to apply GAN in order to generate images
scoring high or low for given feature values. We used evolutionary search to
maximise and minimise single features and pairs of features for two datasets,
faces and butterflies. We have shown that GANs known for their successful gen-
eration of photorealistic images with combination of evolutionary search can be
a powerful technique for creating novel images. We have presented a novel latent
variable approach based on nature-inspired methods and have shown how to
explore the latent space of a GAN to create semi-realistic images that sample
different regions of feature spaces. Additionally, we studied the effects of dif-
ferent values of the cut-off function on the appearance of the images. Finally,
our experimental results on 2 datasets demonstrated that proposed approach
is promising image transformation in regards to maximizing diversity in single-
and two-dimensional spaces applications.

For future research, it would be interesting to explore intermediate points
in the feature space to gain more insight into the relationships between features
and to explore additional constraints and their effect on the process of generating
novel images. The potential are of the future work is to use Multi-Objective Opti-
mization Algorithms to evolve the latent vector in terms of choosing multiple-
criteria. The work can be extend by exploring different aesthetic features and can
be use in fields of industrial design, entertainment (video games) or architecture
that can beneficial to the exploration of variant solutions.
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Abstract. Convolutional Neural Networks (CNNs) have demonstrated
great results for the single-image super-resolution (SISR) problem. Cur-
rently, most CNN algorithms promote deep and computationally expen-
sive models to solve SISR. However, we propose a novel SISR method
that uses relatively less number of computations. On training, we get
group convolutions that have unused connections removed. We have
refined this system specifically for the task at hand by removing unnec-
essary modules from original CondenseNet. Further, a reconstruction
network consisting of deconvolutional layers has been used in order to
upscale to high resolution. All these steps significantly reduce the num-
ber of computations required at testing time. Along with this, bicubic
upsampled input is added to the network output for easier learning. Our
model is named SRCondenseNet. We evaluate the method using vari-
ous benchmark datasets and show that it performs favourably against
the state-of-the-art methods in terms of both accuracy and number of
computations required.

Keywords: Convolutional Neural Networks · Deep learning
Image super resolution · Learned group convolutions

1 Introduction

Super Resolution (SR) problem is defined as recovering a high resolution image
from a low resolution image. This is a highly ill-posed problem with multiple
solutions possible for a single input image. This problem finds many applications
such as medical imaging, security and surveillance among others.

In recent years, deep learning methods have performed better as compared to
interpolation-based [2], reconstruction-based [6,7] or other example-based meth-
ods [3–5,8] that have been used in the past. This is proved by the fact that the
first effort in the direction of deep learning for solving the problem of single
image super resolution [9] performed better than several previous models not
using deep learning algorithms.
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This lead to development of several other methods that used deep learning
[11–19]. However, all these methods in order to get a slight performance improve-
ment (in terms of PSNR) promoted use of deep, computationally heavy CNN
models. It would be objectively correct to say that such heavy resources are not
available at all situations for such lengthy periods of time. In order to solve this
problem, it is required to build a model that uses less number of multiplication-
addition operations (FLOPs) to come up with a high resolution image.

In this work, we present a novel super resolution model termed SRConde-
seNet that uses the concept of removing unused connections in the network to
form group convolutions. Normal group convolutions also help in reducing the
number of connections but the latter method comes with a huge loss in accuracy.
Once the features are extracted using this reduced model, reconstruction is done
using deconvolutional layers with 1 × 1 kernels to produce a high resolution
image. Also applied is the concept of residual learning i.e. the bicubic upsam-
pled input is added to network output so that the model only has to learn the
difference [11]. Our contributions through this work are:

1. Our model incorporates the use of group convolutions and pruning in the
field of super resolution thereby producing a lightweight CNN model for this
problem.

2. Setting state-of-the-art in terms of performance metrics such as PSNR and
SSIM along with using less number of FLOPs as compared to current light
weight SISR methods.

2 Related Work

Here we focus on various deep learning methods that have been used to solve the
SISR problem. Also we go through various methods that have been proposed to
come up with efficient, lightweight CNNs.

2.1 Single Image Super Resolution

Various deep learning methods have been applied in the past, to solve the SISR
problem, many of which have been summarized in [23]. First, Dong et al. pro-
posed in [9] the replacement of all steps to produce a high resolution image -
feature extraction then mapping then reconstruction - by a single neural network.
The deep learning model performed better than other example-based methods.
However, it was proposed in [9] that deeper networks may not be effective for
SISR. This was proved wrong by Kim et al. in [11]. They used a very deep CNN
model that performed better than [9]. Kim et al. in [11] used residual learning
proposed by He et al. in [30] to combat the problem of vanishing gradients that
arises in deep models. Since then, the concept of residual learning has been used
by many CNN models [13,15,17–20]. Hence, we also include the feature of global
residual learning in order to avoid the vanishing gradient problem that is bound
to happen in a deep model like ours. Moreover, some models [12,17,19,20] advo-
cate the use of recursive layers in the CNN. This helps in reducing the number of
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effective parameters required. However, these models require heavy computation
power, significantly higher than our model. To achieve real time performance,
[21] proposed use of sub-pixel convolutions instead of bicubic upsampled image
taken as the input. Similarly, [10,15,18] start with low-resolution image as input
to the network. This way the model works on low resolution image thereby
helping in reducing the number of computations. We also use this idea for the
aforementioned purpose. Some methods [13,14] have advocated the use of GAN
(Generative Adverserial Networks) to produce visually-pleasing images along
with promising results on quantitative metrics like PSNR and SSIM.

2.2 Efficient Convolutional Neural Networks

Many attempts have been made to build CNNs that use less computation power
without compromising accuracy. One such method is weight pruning. Weight
pruning is removing unwanted connections in a neural network. CondenseNets
[1] which are explained below use weight pruning.

CondenseNet. Our model employs blocks that are modified version of Con-
denseNet blocks [1]. Original CondenseNet blocks use learned group convolu-
tions. In this method, the model goes through two kinds of stages: condensing
stages and optimization stage. In the former, using sparsity inducing regulariza-
tion, unimportant filters are removed. The convolutional layers used here have
1 × 1 kernels. Thus, number of connections depend on number of input channels
and number of output channels only. The condensation is done by calculating
L1-norm over every incoming feature and every filter group. Then we remove
those columns that have L1-norm value lesser than other columns. The number
of feature map connections that are left after every condensing stage depends on
the condensing factor C. Once we get the lighter model, it goes through opti-
mization stage where it is trained. Every block contains several denselayers and
structure of each original denselayer is described in Fig. 1 (left).

3 Proposed Method

In this section, we describe our proposed method, SRCondenseNet, in detail.
First we take as input the low resolution(LR) image and pass it into an input
convolutional layer. The output of this layer is fed into modified CondenseNet
that contains denselayers that are stacked into four blocks. The output of the
last block is sent to what is called as the reconstruction network. It comprises of
a bottleneck layer, a set of deconvolution layer, whose number depends on the
scaling factor. Next comes the reconstruction layer with one output channel to
get the final image.

3.1 Modified CondenseNet Blocks

In Sect. 2.2, we explained original CondenseNet blocks. However, CondenseNet
has been designed for classification task. Hence, several modifications have been
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Fig. 1. Comparison between structure of denselayer of CondenseNet [1] (left) and
SRCondenseNet (right). BN layer is removed and Relu is replaced by LeakyRelu.

done to suit it for the SISR problem. SRCondenseNet contains denselayer struc-
ture, which has been depicted in Fig. 1 (right).

Every block contains many denselayer named structures. We have removed
Batch-Normalization layers as suggested by Nah et al. [22] and Lim et al. [16].
This removes unnecessary computations. Also Relu activation has been replaced
by LeakyRelu to combat the “dying ReLU” problem. We stack up four blocks
each containing 7 denselayers (blue) as shown in Fig. 2. Only one out of four
blocks (black dashed line) is shown in the figure to avoid clutter. Number of input
channels in every denselayer depends on growth rate and increase in number
linearly according to it. Every block has its own growth rate. After testing several
values for trade-off between model size and accuracy, we set growth rate of all
the blocks to 20. Thus, every subsequent denselayer has 20 more input channels
than the previous one.

Moreover, original CondenseNet contains transition layers between blocks
comprising of average pooling layers. For SISR problem, there was no need of
pooling layers. We have skipped these transition layers in our model. Thus, width
and height of input into first block is equal to width and height of output from
last block.

3.2 Reconstruction Network

The reconstruction network comes after the modified CondenseNet blocks as
shown in Fig. 2. It starts with the bottleneck layer (green) which is a 1 × 1 layer
to reduce the output feature maps to a very less number thereby reducing the
number of computations in further layers. 1 × 1 kernel also helps in the purpose.
Number of output feature maps are set to 128. Next, this is followed by a set
of deconvolutional layers (pink). Their number depends on the scaling factor(r).
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Fig. 2. Our model (SRCondenseNet) structure. We have four such blocks (black dashed
line) each containing seven denselayer (blue) structures. Only one block is shown for
clarity. This is followed by the reconstruction network containing bottleneck, deconvo-
lution and reconstruction CNN at the end. (Color figure online)

With r equal to 2, we have a single deconvolutional layer with stride 2. Decon-
volutional layers help in reducing the number of parameters and computational
complexity by a factor of r2 throughout the model. This is because, by using
bicubic interpolated image as an input, instead of upscaling it at the last using
deconvolutional layers, increases the size of input to all feature extraction layers
by a factor of r2. This method of upscaling also improves performance in recon-
struction. Again, number of feature maps are set to 128 for all deconvolutional
layers. Finally, we end up the model with a convolutional layer (yellow) with one
channel as output to get the final YCbCr image.

3.3 Global Residual Learning

Deep CNN models with high number of layers tend to suffer from vanishing gra-
dient problem. Hence, as proposed by He et al. in [30], this problem is solved by
adding a global residual connection. In our model, we add a residual connection
in which we add a bicubic interpolated image to the output received from the
model. This makes the learning easier and more and more layers can be stacked.

4 Experiments

4.1 Datasets

We have used 91 images from Yang et al. [24] and 200 images from the Berkeley
Segmentation Dataset (BSD)[25] for training. We cut out several patches of the
original images with a stride of 64, size of which depends on the scaling factor.
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For every case, during training, input size of the image to the network is 32 × 32.
Hence, for scaling factor of 2, we cut out patches of 64 × 64. Further, we have
performed data augmentation on these patches. Eventually, we get five patches
for a single original patch. These are converted to YCbCr image and only Y-
channel is processed.

We test our model on standard datasets: SET5 [26], SET14 [27] and Urban100
[28].

4.2 Implementation Details

We set the initial learning rate to 0.0001 and keep the cosine learning rate
method as used by Huang et al. in [1]. We run the network for 180 epochs with
both condensing factor and number of groups set to 4 to have every condensing
stage with 30 epochs. LeakyReLUs have negative slope set to 0.1. We train our
network on a Tesla P40 GPU. All networks were optimized using Adam [29]. We
have used a robust Charbonnier loss function instead of L1 or L2 function that is
generally used [9,11,12,16] to aid high-quality reconstruction performance [18].

4.3 Comparison with State-of-the-Art Methods

Comparison on the Basis of Accuracy. Peak signal-to-noise Ratio (PSNR)
and structures similarity (SSIM) are the two standard metrics for comparison.
Table 1 shows comparisons for SISR results for various models (scale = x2).
Clearly, our method performs handsomely when compared to current state-
of-the-art models using similar computation power. Various standard testing
datasets have been used. Figure 3 shows a qualitative comparison of images from
various testing datasets.

Table 1. Average PSNR/SSIM values for x2 scale factor for various models on different
models. Red indicates best value and blue indicates second best value.

Dataset SRCNN [9] VDSR [11] LapSRN [18] DRRN [19] SRCondenseNet(ours)

Set5 36.66/0.9542 37.53/0.9587 37.52/0.9590 37.74/0.9591 37.79/0.9594

Set14 32.45/0.9067 33.03/0.9124 33.08/0.9130 33.23/0.9136 33.23/0.9137

Urban100 29.50/0.8946 30.76/0.9140 30.41/0.9100 31.23/0.9188 31.24/0.9190

Comparison on the Basis of FLOPs. SRCondenseNet uses the concept of
learned group convolutions. Thus, it requires relatively less computation power
to produce better results. Here, for comparison, we have used the definition
of FLOPs(number of multiplications and additions) to compare computational
complexity. Similar method was used in the original CondenseNet [1] paper. We
have used the same method to calculate FLOPs for all models. Scale is taken as
2 here as well. SRCNN [9], VDSR [11] & DRRN [19] take bicubic interpolated
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Fig. 3. Qualitative comparison. The first row shows low resolution input, bicubic inter-
polation of LR input, output from our model, original HR image (left to right) of image
from set5. Similarly second row are images for img 013 from set14.

Fig. 4. Graph showing average PSNR vs FLOPs(SET5 [26] scale x2) trade-off.
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input, hence we take input image size as 64 × 64 for these models. Whereas, we
take 32 × 32 input image size for LapSRN [18] & our model as these models use
original low resolution image. Table 2 shows that our model is lighter than most
models. There is a trade-off between computational complexity and PSNR as
can be seen in Fig. 4. SRCNN [9] contains only three parameterised convolutional
layers and thus is unable to learn good enough mapping between a low resolution
image and its coressponding high resolution image. Number of layers in SRCNN
[9] is very less as compared to all other models mentioned in Tables 1 and 2
which makes it computationally less expensive (without explicitly applying any
technique to reduce number of parameters) than other models (including ours).
However, it should also be noted that it produces significantly poorer results than
all other models. On the other hand, rest of all the models are computationally
heavier than our model.

Table 2. FLOPs count (x1e6) for various models with suitable input to produce a size
64 × 64 output image and scale factor of 2. Red indicates best value and blue indicates
second best value.

Model SRCNN [9] VDSR [11] LapSRN [18] DRRN [19] SRCondenseNet(ours)

FLOPs(x1e6) 332.32 2727.61 1988.38 30235.17 668.88

5 Conclusion and Future Work

In this paper, we propose a single image super resolution method that uses
pruned CNNs to solve the problem using less number of computations. The
proposed method outperforms state-of-the-art by a considerable margin in terms
of PSNR and SSIM while maintaining less number of FLOPs than comparable
methods. Learned group convolutions after our modifications are found to be
performing well for the SISR task. This work promotes the use of efficient CNNs
that have been used widely in high-level computer vision tasks into low-level
vision tasks such as SISR.

In this work, Charbonnier loss has been used throughout the process. We
intend on integrating perceptual loss in the proposed method in order to produce
visually pleasing images as claimed by Ledig et al. [13] and Sajjadi et al. [14] in
future.
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Abstract. Extracting relevant information from noisy multidimensional
signals has tremendous impacts in numerous applications, ranging from
audio separation to electrophysiological recording analysis. Linear fil-
ters are often considered to reconstruct and interpret the latent sources
generating the data. Known properties of the sources can be used to
guide their separation. In neuroscience, the cortical processes underlying
perception in different modalities (visual, auditory, ...) is often studied
using electroencephalography (EEG) during periodic stimulation, elicit-
ing periodic activity in neural sources, some of which being specific to the
considered modality. Whereas current approaches extract sources either
periodic or discriminative, none of them accounts for both aspects at
once. This paper proposes several methods extracting periodic sources
specific between two classes, hence termed as Linear Periodic Discrimi-
nant Analysis methods. They are validated on synthetic data and EEG
recordings of subjects to whom periodic stimulation from two modalities
is applied. The methods highlight modality-specific periodic responses.

Keywords: Linear filtering · Specific periodic components
Generalized Rayleigh Quotient · Source separation · Steady-states
EEG

1 Introduction

Multidimensional signals are encountered in a broad range of situations includ-
ing music editing, speech recognition or physiological monitoring. In many cases,
such observed signals result from the noisy mixing of several components or
sources of interest [6]. So-called source separation algorithms are therefore con-
sidered to recover the latent sources. The mixing is often linearly approximated,
allowing an easy interpretation of the sources in the original sensor space. Inde-
pendent Component Analysis (ICA) methods are probably the most well-known
approaches to this kind of problems, only relying on the minimal assumption of
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independence between the source signals [8]. ICA has proven to be very useful
in many contexts, including the extraction of single speech signal from mixed
recordings [7] or artifacts removal from electrophysiological signals [12]. In sev-
eral applications however, specific structures of the latent sources are expected,
which can be used to guide the definition of source separation algorithms. In
audio signal processing for instance, diverse forms of guidance have already been
considered, using either priors on the mixing processes or the temporal dynamics
of the sources [20]. Such temporal structures are also exploited in the study of
biological signals, for instance to enhance periodic components of a given mul-
tidimensional signal [14]. Other works have extended this kind of methods to
extract quasi-periodic signals such as the electrocardiogram [17].

In this line, structured, and in particular periodic, signals also often arise
in neuroscience. For instance, periodic stimulation is increasingly proposed to
probe sensory perception in humans [3]. This kind of stimulus elicit a peri-
odic activity at the stimulation frequency in some neural populations, known
as a steady-state response (SSR), which can be partly recorded with electroen-
cephalography (EEG). Each source contributing to the SSR associated to stimuli
from one modality (e.g. visual, auditory, tactile,...) can be common to several
studied modalities, or specific to a particular one. As an example, if cool and
warm periodic stimuli are applied to a subject, part of the SSR can be expected
to be common to the two classes, warm and cool, since both stimuli share some
characteristics (they both activate the spinothalamic system). To study the spe-
cific cortical processing of each class of stimulus however, one is more interested
in finding the most discriminant components of the SSR. Although linear fil-
tering methods aiming to extract either periodic or discriminant components
exist and are well-documented in the literature, the optimization of filters defin-
ing periodic components which are specific to one class of signals among two
has surprisingly not yet been studied. Such a method would better capture the
mechanisms governing specific sensory perception in humans, thereby helping
to understand and subsequently diagnose sensory disorders. In this context, this
paper presents methods to extract such sources. The approach is inspired, on the
one hand, by the source separation methods aiming to maximize periodicity of
the extracted components [14] and, on the other hand, by the Common Spatial
Pattern (CSP) algorithm largely studied and adapted in Brain-Computer Inter-
facing (BCI) researches [2,11]. The specific periodic components are obtained
by optimizing interpretable linear filters, hence the name of the presented app-
roach: Linear Periodic Discriminant Analysis (LPDA). Several objective func-
tions are proposed, compared and assessed on synthetic and real data. In par-
ticular, results on both simulated and real data are convincing, the presented
methods enabling the discovery of modality-specific periodic structures. Our
methodology, combining periodicity and discrimination maximization, outper-
forms state-of-the-art approaches accounting for one of both aspects at once.

The paper is organized as follows. Section 2 introduces and motivates the
definition of several LPDA objective functions. Experiments are conducted in
Sect. 3, both on synthetic and EEG data. Section 4 finally concludes the work.
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2 Linear Periodic Discriminant Analysis Methods

This section defines and justifies the proposed approaches to extract periodic
components specific to one among two multidimensional signals, belonging to
two different classes. The zero-mean (over time) signals from the first and second
classes, respectively denoted by x1(t) and x2(t) ∈ R

C , are assumed to result from
the linear mixing of latent periodic sources. For instance, they can be C-channel
EEG signals recorded on one subject in two different conditions, e.g. exposed to
periodic warm vs. cool stimulation. The sources, of period T� and fundamental
frequency f� = 1/T� for both classes 1 and 2, can either be common to both
signals or specific to x1 or x2. This leads to the noiseless latent model

xi(t) = Auzu(t) + As,izs,i(t), (1)

where i ∈ {1, 2} and s (resp. u) indexes the specific (resp. unspecific) mixing
matrices As,i ∈ R

C×Ns,i (resp. Au ∈ R
C×Nu) and periodic sources zs,i(t) ∈

R
Ns,i (resp. zu(t) ∈ R

Nu), Ns,i (resp. Nu) being the number of specific (resp.
unspecific) sources. In practice, different sources of noise will also affect the
observed signals. Also, each specific source has a distinct level of specificity
expressed by its variance. For convenience, the sources in a vector are ordered in
decreasing order of specificity; for instance, z1s,1(t) is the most specific source for
class 1, where the exponent indicates the component of the vector zs,1(t). Each
column of a mixing matrix A is a spatial pattern of the associated source [16].
Under this framework, both the specific spatial patterns As,i and the specific
source time courses zs,i(t) should be recovered using x1 and x2. To this end,
spatial filters w ∈ R

C are optimized to obtain filtered signals si(t) := wTxi(t)
such that s1(t) ≈ z1s,1(t). Similarly, the filters can be optimized for class 2 to
obtain s2(t) ≈ z1s,2(t) instead. Once a first optimal filter w1 for class i is found
by optimizing a cost function F , a second optimal filter can be obtained, leading
to a component in the orthogonal subspace of the first one. A matrix W ∈ R

C×C

is hence recursively built, whose columns wk are the filters ranked according to
F . The first Ns,i columns of the pseudo-inverse of WT then estimate the spatial
patterns of the extracted components for class i:

[
(WT )−1

]
(:, 1 : Ns,i) = Âs,i.

In order to obtain optimized filters, one must first define relevant cost func-
tions characterizing the class-specific periodicity of the filtered signals. In the
following, we propose several such objective functions, based on generalized
Rayleigh quotients capturing periodicity differences, to obtain the filters for the
specific activity of class 1, without loss of generality; both classes can be swapped
to obtain the specific activity of class 2.

• Method 1 (M1). Periodic Component Analysis [14,19] aims to extract
periodic sources from a single data set based on the periodicity measure
(
∑

t(s(t + T�) − s(t))2/(
∑

t(s(t))2) of the signal s(t). In the studied two-classes
setting, a ratio of periodicity inspired by this measure can be optimized to find
components si(t) = wTxi(t), being periodic in class 1 and not necessarily in
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class 2:

w1 = arg min
w

{
F1(w) =

∑
t(s1(t + T�) − s1(t))2∑
t(s2(t + T�) − s2(t))2

=
wT R1(T�)w
wT R2(T�)w

}
, (2)

where Ri(T�) = Et{(xi(t + T�) − xi(t)) (xi(t + T�) − xi(t))
T }. It can be noted

that F1(w) ≥ 0 and that F1(w) = 0 for a perfectly periodic signal s1(t). How-
ever, F1(w) = 0 as well when s1(t) = 0 even though a flat signal may probably
not be related to the sources of interest. This objective should hence be used
with caution when some channels are correlated, in which case s1(t) could be 0.

• M2. Alternatively, the periodicity of the filtered signals can be emphasized by a
simple averaging over the fundamental periods: sμi(t) := 1

K ·∑K−1
k=0 si(t+kT�) :=

wTxμi(t), with K the number of periods in the available signals. As in the CSP
algorithm [2], the variance ratio of these averaged signals can be optimized as

w1 = arg max
w

{
F2(w) =

∑
t(sμ1(t))2∑
t(sμ2(t))2

=
wT Cμ1w
wT Cμ2w

}
, (3)

where Cμi = Et{xμi(t)xμi(t)T }.

• M3. Another approach is based on Canonical Correlation Analysis (CCA),
which was already proposed to extract periodic components [15]. In the present
work however, the method maximizes the correlation between the differences of
the filtered signals in both classes and an arbitrary periodic signal wT

y y(t) of
the same length as si. This periodic signal is defined from the Fourier series
of a periodic signal of fundamental frequency f�: y(t) = (sin(2πf�t) cos(2πf�t)
sin(2π2f�t) . . . sin(2πNhf�t) cos(2πNhf�t))T , where Nh indicates the number of
accounted harmonics. Since the correlation Et{wT (x1(t)−x2(t))y(t)Twy} must
be maximized with scale invariance, the optimization problem is formulated as

(w1,w1,y) = arg max
w,wy

⎧
⎨

⎩
F3(w,wy) =

wT (C1;y − C2;y)wy√
wT C12w · wT

y Cywy

⎫
⎬

⎭
, (4)

where Ci;y = Et{xi(t)y(t)T }, C12 = Et{(x1(t) − x2(t))(x1(t) − x2(t))T } and
Cy = Et{y(t)y(t)T }. This method is only well suited when the common activity
is assumed to be highly similar (in terms of amplitude and phase) in both classes,
leading to its cancellation through the point-by-point difference x1(t) − x2(t).

• M4. Inspired by the Spectral Contrast Maximization (SCM) approach [18],
the ratio of spectral content at the fundamental frequency f� and its harmonics
in both classes can be optimized. With Si(f) := Ff{si(t)} = wT Ff{xi(t)} =
wT Xi(f) the Fourier transform of the filtered signals at frequency f , a fourth
objective can be formulated in the following way:

w1 = arg max
w

{
F4(w) =

Ef∈ν{|S1(f)|2}
Ef∈ν{|S2(f)|2} =

wT Sx1w
wT Sx2w

}
, (5)
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with ν := {±f�,±2f�, . . . ,±Nhf�} the set of frequencies of interest and Sxi
:=

Ef∈ν{Xi(f)Xi(f)∗}. This objective is expected to be maximized by concentrat-
ing the frequency content of s1(t) to these frequencies. It should however be
stressed that it can also be maximized if its denominator tends toward 0 while
keeping the numerator bounded.

• M5. The quantity
∑

t(si(t+T�)−si(t))2 is used in (2) to describe the periodic-
ity of the signal si(t). An alternative periodicity measure which can be considered
is

∑
t si(t + T�) · si(t) [17], leading to the optimization problem

w1 = arg max
w

F5(w), with (6)

F5(w) =
∑

t s1(t + T�) · s1(t) − s2(t + T�) · s2(t)∑
t(s1(t))2 + (s2(t))2

=
wT (C1(T�) − C2(T�))w
wT (C1(0) + C2(0))w

,

where Ci(τ) = Et{xi(t+τ)xi(t)T }. Note that a difference of periodicity between
the two classes is considered instead of a ratio similar to (2), because the matrices
Ci(T�) are not necessarily positive definite contrarily to Ri(T�).

• M6. Another variant of (2) can be defined using a difference instead of a ratio
of periodicity. A distinct normalization ensures the scale-invariance of the filters:

w1 = arg min
w

{
F6(w) =

wT (R1(T�) − R2(T�))w
wT (C1(0) + C2(0))w

}
. (7)

• M7. A similar change can be applied to (5), leading to a last formulation:

w1 = arg max
w

{
F7(w) =

wT (Sx1 − Sx2)w
wT (C1(0) + C2(0))w

}
. (8)

All the objective functions above, except the third one, are expressed as
generalized Rayleigh quotients of the form (wT Aw)/(wT Bw) and can be solved
by the generalized eigenvalue decomposition (GEVD) of the matrix pair (A,B),
yielding a set of filters {wk}C

k=1 corresponding to the generalized eigenvectors
ranked in decreasing or increasing order of cost function values, depending on
whether the objective function is maximized or minimized. When A is symmetric
and B positive-definite, the decomposition is real and hence interpretable [5].
The formulation (4) is also solved analytically, as for classical CCA [9].

It is here assumed that the filters are ranked in decreasing order of specificity
for class 1, hence with w1 being the most specific filter for class 1. The successive
extracted sources are denoted by sk

i (t) := wT
k xi(t).

3 Experimental Results

This section assesses the methods introduced in Sect. 2. Their behavior and
performances are first studied and compared in Sect. 3.1 on synthetic data, for
which the latent sources are known. Then, preliminary results on a real EEG
data set are presented in Sect. 3.2, for which the specific patterns are obtained.
As to the quality assessment, different criteria are proposed in Sect. 3.1.
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3.1 Synthetic Data

As stated in Sect. 1, the studied methods aim to extract class-specific peri-
odic components from two multidimensional signals. Therefore, synthetic data
are generated by linearly mixing specific and common components for the two
classes, with additional noise. Denoting by Xi(t) ∈ R

C the simulated data from
class i at time sample t, Zu,i(t) ∈ R

Nu and Zs,i(t) ∈ R
Ns the common (i.e.

unspecific to the class) and specific periodic factors respectively, for i ∈ {1, 2},
data are simulated according to the model

Xi(t) = Au · Zu,i(t)︸ ︷︷ ︸
periodic interference

+As · Zs,i(t)︸ ︷︷ ︸
signal

+Ni(t)︸ ︷︷ ︸
noise

, (9)

with the common and specific mixing matrices Au ∈ R
C×Nu and As ∈ R

C×Ns ,
Ni(t) ∈ R

C being additive random noise. The common activity can be seen as
interferences in this problem. Although the mixing matrices are common to both
classes, the factor (or source) time courses are not. In particular:

• the specific factors Zs,1 and Zs,2 are mutually independent, with distinct speci-
ficity levels expressed by their variances which are proportional to (Ns −1, Ns −
2, . . . , 1, 0) and (0, 1, . . . , Ns − 2, Ns − 1) [21]. These sources are ordered in
decreasing order of specificity for class 1, the first (resp. last) �Ns

2 � being specific
to class 1 (resp. 2). If Ns = 1, there is no specific factor for class 2.

• The common factors Zu,i are equal in both classes, up to an arbitrary time
lag, as the common activity can have distinct latencies, e.g. due to differences
in fiber conduction velocities in the case of EEG signals.
For each simulation, the entries of the mixing matrices are uniformly distributed
in [0, 1] and the factors are random periodic signals of period T�. However, since
the performances of the optimized filters highly depend on the relative position
in R

C of the columns of Au with respect to the ones of As, the columns of As

can be altered to reach some pre-defined angles with respect to the ones of Au.
Regarding the assessment, different types of metrics can be considered.

• The reconstruction quality of the mixing matrix is evaluated using the canon-
ical angle (CA) between the subspace spanned by the columns of As and its
estimate Âs computed from the optimized filters. The CA is the maximum
angle found between orthogonal bases of these subspaces [5], and is therefore
invariant to permutation and scaling of the columns of each matrix. Focusing
on the most discriminant periodic source, the angle between the first true and
estimated spatial patterns (A1

s := As(:, 1) and Â1
s := Âs(:, 1)) is also evaluated.

• The time-correlation corr(s11(t), z
1
s,1(t)) between the first true and estimated

sources, z1s,1(t) being the first component of zs,1(t), is insensitive to the pseudo-
inversion required to obtain the spatial patterns from the optimized filters.

• The periodicity difference between s11(t) and s12(t) assesses the relevance of the
first filter w1 in terms of periodicity and discrimination. The following measure
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is employed to quantify the periodicity of a signal y(t) ∈ R at a frequency f�:

Mπ(y) = 100 ·
∑�fs/(2·f�)�

k=1 YNS(k · f�)∑
f |Y (f)| , (10)

where fs is the sampling frequency, Y (f) = Ff {y(t)} and YNS is the noise-
subtracted spectrum. At frequency f , YNS(f) ∈ R is obtained by subtracting the
average amplitude at 10 neighboring frequencies (5 higher and 5 lower) from
the frequency amplitude |Y (f)|. Additional details are provided in [13,14]. The
components extracted using the methods from Sect. 2 should maximize Mπ(s11)−
Mπ(s12), while providing topographical patterns of the extracted components
which can be interpreted thanks to the linear filtering. Only this criterion can
be used on real data as it does not rely on the ‘true’ sources.

In the following, each signal is generated with C = 20 channels, a sampling
rate of 500 Hz, f� = 0.5 Hz and a duration of 20 seconds. The signal variances are
defined over the channels and time samples [18]. Denoting σ2

u := var(Au ·zu,i(t)),
σ2

s := var(As · zs,i(t)) and σ2
N := var(ni(t)), the two first quantities control

the signal-to-interference ratio (SIR), while the signal-to-noise ratio (in dB) is
defined as SNR = 10 · log10(σ2

s/σ2
N ). In order to simulate realistic EEG data,

which are studied in Sect. 3.2, pink additive noise is chosen for Ni(t), i.e. with a
frequency power spectrum proportional to 1/f [1]. Unless stated otherwise, there
are Nu = 10 unspecific factors and the SIR is fixed with σu = 1 and σs = 1.
The canonical angles between Au and As are ≥ 70◦ and there is a time lag of
0.3 seconds between Zu,1(t) and Zu,2(t). The performances of the methods are
commented with either 1 or 4 specific pattern(s) and then with varying unspecific
activity according to Nu and σu.

• The performances of the methods with Ns = 1 specific factor are depicted
in Figs. 1a to d. The angular position of the first specific pattern A1

s is also
compared to the C-length vector of the Fourier frequency coefficients of the
mixed signals at f� in Fig. 1a (curve labeled ‘FFT’). Although this pattern is
usually employed in neuroscience studies to describe the periodic cortical activity
elicited by periodic stimuli, it can be highly different from the spatial pattern of
the source of interest. All the quality measures considered indicate the superiority
of M7 to recover the specific pattern, followed by M2 and M5. Comparing Figs. 1b
and c indicates that M3 probably amplifies common instead of specific activity,
leading to both high Mπ(s11) and Mπ(s12). As this method uses a point-by-point
difference between the two classes of signals, it is sensitive to a non-zero time
lag between the common activity in both data sets.

• When Ns = 4, the results in Figs. 1e to h confirm the overall previous conclu-
sions. The canonical angles between all the true and estimated specific patterns
shown in Fig. 1f are larger than the angles computed only using the most spe-
cific pattern (Fig. 1e), indicating that the methods indeed recover more easily
the first specific pattern. All methods are affected by the increased number of
specific sources, and this effect is more pronounced for M1.
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Fig. 1. Methods performances (mean ± std of 500 runs) on synthetic data as a function
of the SNR. The two rows of markers below each figure indicate (1) the best method
on average for each SNR and (2) the best method which is significantly outperformed
by the best one (t-tests, Holm-Bonferroni corrected).
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Fig. 2. Angle between the first specific true and estimated patterns, for M7 on synthetic
data as a function of the SNR and either Nu (a, b) or σu (c, d). Results are averaged
over 500 signal generations and σs = 1.

• The effects of σu and Nu on the M7 performances (the seemingly most efficient
method) are shown in Fig. 2. For a fixed SIR, the number of common factors Nu

only affects the performances when the SNR gets closer to 0, leading to improved
results as Nu increases. On the other hand, increasing σu deteriorates the recov-
ery of the most specific pattern, especially when Ns = 4. Let us note that, unlike
the angle, the correlation between the first true and estimated sources is almost
independent of σu (not shown due to a lack of space), suggesting that increasing
σu does not affect the first optimal filter but rather the following ones, which in
turn influences the first pattern after inverting the filter matrix.

The results presented in this section are obtained on data with 20 channels.
Similar conclusions can be drawn with different dimensions, although on average
all the angles tend to increase with the dimension, as a consequence of the curse
of dimensionality [10]. Results are also similar with different canonical angles
between Au and As, with overall decreasing performances when they tend to be
small as it becomes impossible for a filter to be orthogonal to the interference
patterns Au. M2 is especially affected by the reduction of these angles, while M5
and M7 are more robust (results not shown due to a lack of space).

3.2 Electroencephalogram (EEG) Data

This section shows brief results of the LPDA methods and of state-of-the-art
filters on a real EEG data set, with 64 channels and sampled at 1000 Hz, which
was recorded on 15 healthy subjects to whom periodic stimulation from four
classes was applied: painful warm or non-painful cool, each applied on a variable
or fixed skin surface (denoted resp. by w1, w2, c1 and c2). Each subject received
each kind of stimulus with a frequency f� = 0.2 Hz and a duration T = 75 s
(15 cycles). From a neuroscientific point of view, interest lies in finding the
specific components of the condition w1 compared to c1 and w2 compared to
c2. It would allow to disentangle the neural processing of warm and cool stimuli,
thereby providing cues on the specific brain responses to painful stimuli.

As to the compared methods, to the best of our knowledge, there is no exist-
ing approach optimizing both the periodicity and the specificity of an extracted
component at once. The results of our methods are hence compared to one
method maximizing the periodicity (SCM [14]), another one optimizing the dis-
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crimination (CSP [11]) and Principal Component Analysis (PCA), a widely used
non-guided filtering method.

LPDA methods are applied on the EEG data of each subject to obtain, for
each ordered pair of conditions among w1–c1, w2–c2, c1–w1, c2–w2, the most
specific source for the first condition of the pair and its associated spatial pat-
tern and filter. Each optimal filter w1 can be applied to both signals of the pair
to obtain s11(t) and s12(t). Table 1 confirms the superiority of method M7, fol-
lowed by M5, in terms of difference of periodicity in any two compared classes,
as it was observed on synthetic data, with the periodicity measure (10). M2,
M3 and M6 results are of the same order of magnitude as the ones of M4 and
are not shown due to a lack of space. Except for M7, the standard deviations
are roughly of the same order as the mean results, indicating a high variability
across subjects. It should be stressed that the performances of all methods vary
coherently with respect to the subjects since M7 always statistically significantly
outperforms the other schemes. These results are encouraging as they show that
periodic components specific to one class can be extracted, M7 overcoming the
three baselines. Further validations should be undertaken to disentangle physi-
ologically interpretable patterns from potentially slightly overfitted results.

Table 1. For each pair of conditions (in row), mean(std) for the 15 subjects of the
difference of periodicity Mπ (10) between the filtered signals in both conditions using
the most specific filter for the first condition of the pair. The best performances per row
are in bold. Non-italic characters indicate that the corresponding signal is significantly
less periodic than the best one of the same row (paired t-tests with Holm-Bonferroni
correction). For M4 and M7, Nh = 10.

LPDA methods Baseline methods

M1 M4 M5 M7 SCM CSP SVD

w1–c1 0.55(0.42) 0.35(0.43) 0.55(0.94) 3.25(1.04) 2.84(1.08) 0.25(0.56) 0.22(0.32)

w2–c2 0.31(0.46) 0.09(0.15) 0.68(1.23) 3.25(1.05) 2.98(0.98) 0.15(0.29) 0.17(0.37)

c1–w1 0.10(0.53) 0.30(0.27) 0.31(0.39) 2.43(0.67) 1.59(0.86) −0.12(0.28) −0.19(0.28)

c2–w2 0.11(0.46) 0.19(0.14) 0.42(0.47) 2.44(0.55) 1.78(0.69) −0.01(0.36) −0.12(0.43)

-.050.05
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(a) FFT topographies
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0
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(b) Specific spatial patterns (M7)

Fig. 3. Group-level average spatial patterns of (a) the frequency amplitudes at f� = 0.2
Hz and (b) the most specific components extracted by M7 (Nh = 10) for the first class
in each pair.

Finally, Fig. 3 shows the spatial pattern of the frequency spectrum at f�,
usually analyzed in neuroscience, and the most specific spatial pattern extracted
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for each class of signals. The specific patterns of the two warm conditions are
relatively similar but different form those of the cool conditions. The specific
warm patterns have a larger central positive cluster than the corresponding
FFT topographies, while the specific cool patterns are more diffuse, reflecting a
larger inter-subjects variability. Cold receptors being known to habituate rapidly
to repeated stimuli [4], this could affect the stability of the SSR.

4 Conclusions and Perspectives

This paper proposes several linear filtering methods for multidimensional signals
aiming to extract periodic components which are specific to one class among two.
Seven objective functions are defined, combining discrimination and periodic-
ity maximization in simple formulations. The methods are discussed and their
results compared on synthetic data sets, allowing to study their behavior and
reliability in a controlled context. They are also applied on real EEG recordings
to highlight modality-specific spatial patterns of brain activity elicited by peri-
odic cool and warm stimulation. The results are encouraging, as the extracted
patterns are consistent with the nature of the considered stimuli and indeed
exhibit a markedly increased periodicity for the considered class.

Further investigations will be carried regarding the proper validation of the
extracted specific patterns to enable their fair interpretation in the neuroscience
context. This validation is however not trivial due to the very limited number
of trials available for each subject and condition. While the current results are
assessed by quantifying the difference of periodicity between each compared pair
of modalities, the discriminative power of the filters could also be analyzed.
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Abstract. Although Correlation Filters (CF) tracking algorithms have inherent
capability to tackle various challenging scenarios individually, none of them are
robust enough to handle all the challenges simultaneously. For any online
tracking based on Correlation Filters, feature is one of the most important factors
due to its representation power of target appearance. In this paper, we proposed a
new tracking framework by integrating the advantage of complementary features
to achieve robust tracking performance. The key issue of this work lies in the fact
that different features respond to different tracking challenges, which also applies
to deep learning features and hand-craft features. Moreover, for the tracking
speed balance, we train a light-weight deep CNN features by using end-to-end
learning method, which has the same Parameter magnitude as the hand-crafted
features. Experimental results on OTB-2013, OTB-2015 large benchmarks
datasets show that the proposed tracker performs favorably against several state-
of-the-art methods.

Keywords: Visual tracking � End-to-end learning � Correlation filters

1 Introduction

In recent years, tracking based on correlation filter (CF) [1–6] has greatly improved the
tracking speed and performance. The popularity of correlation filters has the following
important properties: First, CF-based tracking algorithms can significantly improve
tracking speed due to computing the spatial correlation in the Fourier domain as
element-wise product. Second, correlation filters provide a more power discriminative
model by taking the surrounding context information into account. In addition, it is also
well known that feature is one of the more important and effective factors in visual
tracking frame-work [7]. With the rapid development of deep Neural Network [8–10],
CF-based tracking using deep learning features [11–13] has achieved remarkable
successes because those features have good invariance in image translation, rotation
and deformation.

Despite above advantages, due to the huge number of parameters, tracking using
deep learning features are limited in the low speed, also have some failure cases. For
example, in some extreme light conditions, deep learning features tracker is often
vulnerable to tracking failures. As shown in Fig. 1(d) in the singer2 of OTB benchmark
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tracking using deep learning features has already fallen to tracking failure from frame
50, but tracking using hand-crafted features has been successful tracking in Fig. 1(d).
These scenarios can also be found in more benchmark sequences. On the other hand,
due to the lack of priori knowledge of the tracked target, such CNN trained for image
recognition task often lead to over-fitting on tracking.

There are two methods to tackle this shortcoming: The first is using an end-to-end
training of deep architectures in which CF is treated as a special correlation filter layer
added in a Siamese network. This network is a lightweight CNN architecture [14, 15]
with only thousands of parameters, which make CF-based tracker using CNN features
achieve similar speed to that using hand-crafted features. Second, multiple features has
shown its power in tracking task and performs favorably against the state-of-the-art
[16–18]. Motivated by above discussion, we propose a novel tracker using lightweight
CNN features and HOG features to get the CF response maps which are chosen by
comparing their Peak to Side-lobe Ratio (PSR) [19] to estimate target location.
Extensive evaluations demonstrate that the proposed tracker achieves the state-of-the-
art results.

In brief, the main contributions of this paper are as follows

(1) We propose a new tracking framework which jointly considers the advantage of
two different kinds of features. This framework not only improves the whole
tracking performance but also achieves real-time speed.

(2) A lightweight CNN feature is trained by end-to-end learning method for tracking
features fusing. This makes these two CF trackers using complementary features
work synchronously.

2 Related Works

2.1 Tracking Based on Correlation Filter

Tracking based on correlation filters have attracted wide attention due to its high
computing speed by using fast Fourier transforms [6, 19, 20]. Correlation filters

Fig. 1. On video sequence with deformation and rotation (a, b), tracking with HOG feature fall
to tracking failure, while on video with extreme illumination condition (c, d), CNN feature fall to
the tracking failure. (red: tracking result with CNN feature; green: tracking result with HOG
feature) (Color figure online)
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tracking establish a model using cyclic sampling which is a dense sampling method and
obviously superior to sparse sampling for tracking algorithm. Early correlation filtering
tracking algorithms, like Minimum Output Sum of Squared Error filter tracker
(MOSSE) and cycle kernel structure tracker (CSK), only use GRAY features for
tracking, achieve extremely high tracking speed. By adopting the HOG features, ker-
nelized correlation filter (KCF) using circularly generated samples, further improve the
tracking performance and remained a high tracking speed. Based on KCF, several
improvements have been proposed through a variety of different methods, like Dis-
criminative Scale Space Tracking (DSST) [21], Context-Aware Correlation Filter
Tracking (CACF) [22], Learning Spatially Regularized Correlation Filters (SRDCF)
[23] and Long-term Correlation (LCT) [24]. These algorithms using single hand-
crafted features are mainly improved on ridge regression model. Recently, some
trackers use multiple features to improve tracking performance. Staple [25] combine
HOG and global colour histogram (CN) features for target tracking, reach tracking
speed of 80 FPS. [26] proposed a co-trained KCF tracker which fuse different con-
volutional features and handcrafted features. Moreover, [28] propose a novel incre-
mental oblique random forest tracker which uses a more powerful proximal SVM to
obtain oblique hyper planes to capture the geometric structure of the data better.
Although using multiple features, the different between our work and [26] are as
follows: (1) we use a lightweight convolutional neural network as the feature extractor;
(2) The features we use to train the CF are completely unrelated.

2.2 CNN Feature Based Tracker

In recent years, deep convolutional neural networks (CNN) have been widely used in
target tracking. Early CNN based trackers mainly use a pre-trained CNN as a feature
extractor and build upon discriminative or regression models. Based on particle filter
framework, FCNT [12] fuses the high-level and low-level CNN feature to track target.
MDNET [11] proposed a multi domain network tracking algorithm which add con-
volutional neural network to target classification layer. HCF [27] proposed a coarse-to-
fine tracking framework which use a hierarchical convolutional feature, further
improves the tracking precision. The promotion [18] of HCF interprets correlation
filters as the counterparts of convolution filters in deep neural networks. ECO [29] use
feature dimensionality reduction to achieve a peak performance with high tracking
speed. More recently, several tracking methods use end-to-end training networks to run
at high frame rates while achieving state-of-the-art performance. SiamFC [30] devel-
oped a three-layers CNN architecture to learn the mapping between two consecutive
frames as a spatial correlation response. As an extension of SiamFC, CFnet [14] treats
the CF as a special layer of the whole end-to-end learning architecture. [15] presents an
end-to-end lightweight network architecture to learn the convolutional features and
perform the correlation tracking process simultaneously. By using this lightweight
CNN features, CF-based tracker achieves almost the same tracking speed as those
trackers using hand-crafted features, additionally with relatively high tracking
performance.
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3 The Proposed Tracker

In this section, we introduce the framework of our tracker which consists of Correlation
Filter Tracking, End-to-end representation learning and complementary features
ensemble tracking.

3.1 Correlation Filter Tracking

A typical correlation filtering tracker is to learn a discriminative classifier and locate the
target by searching for the maximum response value of the correlation map. Denote x
with size M � N as the input feature of the correlation filtering tracker, where M, N,
indicates the width and height. At first, the ideal response y 2 R^(M � N) need to be
given by the following equation:

yðm; nÞ ¼ e�
ðm�M=2Þ2 þðn�N=2Þ2

2r2 ð1Þ

where r is the kernel width. The correlation filter w can be learned by minimizing the
ridge regression loss:

w� ¼ argmin
X
m;n

w � xðm; nÞ � yðm; nÞk k2 þ k wk k2 ð2Þ

where k is a regularization parameter used to reduce over-fitting, ∙ is an inner product
symbol. As a ridge regression formula, (2) has a close-form. So the w can be given by
solving (2) using least- square method:

W ¼ XTXþ kI
XTY

ð3Þ

Since X is circulant, it can be diagonalized so that Eq. (3) can be rewritten in the
Fourier domain [10]:

ŵ ¼ x̂� � ŷ
x̂� � x̂þ k

ð4Þ

where x̂ means x̂ = FFT(x) as well as other symbols, � indicates the element-wise pro-
duct, * means the complex conjugate of x̂. Let z be the feature vector of the next frame
image which has a circulant matrix Z, its correlation response can be calculated by:

f̂ ¼ ẑ� ŵ ð5Þ

The target can be located by searching for the position of maximum value of the
correlation response map f̂ .
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3.2 End-to-End Representation Learning

In many existing deep learning DCF tracker, correlation filter only connect to a pre-
train CNN feature extractor without any deep integration. The feature extractor has
been learned off-line by using a huge image detection dataset, which are not necessarily
fit for tracking tasks. In this section, we introduce an end-to-end training of deep
architectures with a few thousand parameters which is generally preferable to training
individual components separately. As shown in Fig. 2, in the end-to-end training
architecture, CF is treated as a special correlation filter layer added in a Siamese
network so that back-propagate gradients through an entire SGD learning procedure.

This end-to-end learning architecture is a Siamese convolutional framework which
has a training image pairs (x′, z′) representing the object of interest and the search area.
For example, in a CF training explanation, the image pairs can be considered as the
video frame T and T + 1 according to the Training image and Testing image of in
Fig. 2. Each input image is processed by a CNN to extract features. The response maps
of these two features are cross-correlated by equal:

LðhÞ ¼k f � ~f k2 þ c hk k2
s:t: f ¼ F�1ð̂z� ŵÞ ð6Þ

where F−1 is inverse discrete Fourier transform, ~f is the real response map of z. Here,
z ¼ uðx0Þ is the feature extracted from the CNN. To avoid non-convergence condition,
we also use the weight decay method in the CNN parameter optimization.

In the proposed end-to-end framework, the derivative of the Correlation Filter has a
closed-form expression so that the gradient can be back-propagated. Since the com-
putation in CF tracking is converted in Fourier domain, the gradient of discrete Fourier
transform and inverse discrete Fourier transform can be formulated as:

f̂ ¼ Fðf Þ; @L
@ f̂ �

¼ F
@L
@f

� �
;
@L
@f

¼ F�1 @L

@ f̂ �

� �
ð7Þ

CNN

CNN

125x125x3

125x125x3

CF

Tes ng image

Training image

Fig. 2. The end-to-end learning architecture
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The whole propagated backwards is given by:

@L
@z

¼ @L
@uðxÞ ¼ F�1 @L

@ðûðxÞÞ� þ @L
@ûðxÞ

� ��� �
ð8Þ

The back-propagation in correlation filter layer still can be computed in Fourier
frequency domain so that the CNN connected a CF layers apply the offline training on
large-scale datasets with. Since this ultra-lightweight CNN feature has approximately
the same number of parameters as hand-crafted features, we use the two kinds of
feature to improve the whole tracking performance.

3.3 Complementary Features Ensemble Tracking

Tracking with single feature may be not powerful enough to handle extreme illumi-
nation and complex background. The obvious way to tackle this is using multiple
features. Many existed works have used multiple features such as combining pre-
trained CNN or hand-crafted features to improve the tracking performance. However,
due to the huge number of parameter, CNN based tracker suffers from high compu-
tational time which makes them unsuitable for real-time applications.

In this work, we train CF by using lightweight CNN and HOG feature respectively,
comparing the two CF response maps with PSR to locate the target. The lightweight
CNN has been trained by end-to-end representation learning method mentioned in
Sect. 3.2. As shown in Fig. 3, the architecture of the proposed tracker has two parallel
correlation filters, which are trained in each frame by lightweight CNN features and
HOG features respectively. The filters of the two CFs can be solved by formula:

WCNN ¼ XT
CNNXCNN þ kI

XT
CNNY

WHOG ¼ XT
HOGXHOG þ kI

XT
HOGY

8>>><
>>>:

ð9Þ

Both formulas in (10) can be calculated in Fourier domain to get the response maps
by (6).

HOG

CNN DCF

DCFInput

PSR

Output

Fig. 3. The proposed training architecture
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In general, CF-based trackers evaluate the tracking result by estimating on the
highest peak of the response map. However, this tracking result may be disturbed by
similar objects or background clutters leading to incorrect detection. As a result,
incorrect detection would further affect the CF model duo to inaccurate training
samples. Consequently, we use PSR as the criterion to measure the response map
generated by the two kinds of features. PSR is defined by formula:

PSR ¼ fmax � meanðf Þ
d

ð10Þ

Where f is the response map, d is the standard deviation of f. The measure formula is
defined as:

P ¼ maxðPSRCNN ;PSRHOGÞ ð11Þ

Thus, we use the response map with higher PSR to estimate the target location and
update the training samples for the next frame. Note that our method does not only use
CF maximum response value, like LCT [24], to determine the tracking result. That is
due to that CF maximum response value may not really reflect the tracking result when
the CF model is contaminated in case of hard tracking challenge, e.g., heavy occlusion,
deformation and rotation.

4 Experiments and Analysis

In this section, we first describe the implement details of the proposed tracker. Then,
we introduce favorable benchmark datasets and their evaluation metrics used in the
experiment. Last, we evaluate the tracker from overall and sub attribute performance
compared to other state-of-the-art trackers.

4.1 Implement Details

The overall procedure of the proposed tracker is presented in Algorithm 1. The
lightweight CNN have two convolutional layers partly come from VGG [31] without
pooling layers and the output forced to 32 channels. The training sets come from the
videos of ImageNet [32] that overlap with the test set. Each pair of frames is chosen in
the nearest 10 frames and cropped 1.5� padding of target patches. We set stochastic
gradient descent (SGD) with momentum of 0.9, learning rate of R = 0.0001 to train the
network from the scratch.

The proposed tracker framework is based on KCF with three target scales.
According to the discussion in KCF, We use linear kernel instead of Gauss kernel, to
map the feature space. For combining features of the CF tracker, we propose a parallel
tracking structure in which CNN feature extraction is applied in GPU and HOG feature
is processed in CPU at the same time.

494 W. Wang et al.



Algorithm 1: 
Input: the first frame of the image and the lightweight CNN. 
Output: target position. 
1  Extract the lightweight CNN and HOG features from the crop patch of the 

target in the first frame. 
2  Train the CF model WCNN, WHOG by Eq. (4) 
3  From 2 to N 
  4    Extract the lightweight CNN and HOG features from the crop patch of the 

target in the current frame.  
5  get the response map fCNN, fHOG by Eq. (5) with the current features 
6  Get the optimal response map by comparing the PSR with Eq. (11) 

     IF PSR (fCNN) >= PSR (fHOG) 
f= fCNN

     ELSE 
f= fHOG

7  Estimate the target position with response map f. 
8  Update the CF model. 
9  End 

10  End 

4.2 Data Sets and Evaluation Metrics

OTB [33] is a popular tracking benchmark that contains a large number of annotated
videos with substantial variations. Its video sequences are categorized with 11 attri-
butes based on different challenging factors [33]. To better analyze the performance of
our approach, we evaluated our tracker on all above the 11 challenges.

OTB provides three evaluation metrics: one pass evaluation (OPE), time robustness
evaluation (TRE) and spatial robustness evaluation (SRE). Each metrics use Precision
plot and Success plot to evaluate the tracker performance. The area under curve
(AUC) of success plot is the average of the success rates according to the sampled
overlap thresholds. Given a tracked bounding box Kt and the ground-truth bounding
extent K0 of a target object, the overlap score is defined as:

uK ¼ K0 \Kt

K0 [Kt

����
���� ð12Þ

where \ and [ are regional intersection and union operation, while |*| is definite for
the number of pixels in the frame. In the success plot, the x-axis depicts a set of
thresholds for the overlap to indicate the tracking success, while in the precision plot
the x-axis depicts a set of thresholds for the error to indicate the tracking precision.
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4.3 Comparisons with More State-of-the-Arts

Evaluation on OTB2013
Our tracker is compared with recent proposed trackers including CF2 [27], MEEM
[34], KCF [20], DSST [21] and Staple [25] on the 50 sequences of OTB2013. Among
the compared trackers, CF2 use deep CNN features and the others use hand-crafted
features. It needs to be emphasized that Staple is a complementary features tracker
which combines the response map of HOG and CN features with their weighted sum to
track target. The distance precision rate and overlap success rate of OPE and SRE are
shown in Fig. 4.

The larger the area of the curve, the better the performance of the algorithm is. Overall,
our algorithm performs favorably against the compared state-of-the-art tracker in two
metrics: OPE and SRE. Our complementary feature tracker leads to 3.5% and 6.5%
increases in success plots of OPE compared with CF2 using hierarchical deep features
and DSST using HOG features respectively.

Evaluation on OTB2015
We also evaluate our tracker on a larger benchmark OTB2015 comparing with 5 state-
of-the-art methods. As shown in Fig. 5, our tracker also has superior annotated with
overall performance than the compared methods.

In order to demonstrate the feasibility of the proposed complementary feature
Methods, we also provide a baseline tracker which only uses the lightweight CNN or
HOG features as the feature extractor. The accuracy of OPE of the ablation comparison
on OTB2015 are shown on Fig. 6. It is easy to see that the performance of our
proposed tracker is superior to the baseline due to the use of complementary features.
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Tracking Speed Analysis
Speed is another important factor in tracking task. It is obvious that tracking with deep
CNN features often have a low speed due to the expensive computing of feature
extracting. For the speed analysis, we compare the feature extracting speed of three
kinds of feature: deep feature (using VGG4-3), end-to-end light-weight CNN feature
and HOG feature in Table 1.

Notice that the two CNN features and HOG feature extraction are computed in
GPU and CPU respectively. The compared tracker CF2 using VGG-net as the feature
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extractor runs at a speed of 10 FPS. The average tracking speed of ours is 48 FPS and
nearly 5 times faster than CF2. The main reason is that the lightweight CNN features
only have several thousand parameters, far less than traditional deep CNN feature.

5 Conclusions

In this paper, we proposed a new simple tracker based on complementary features,
which use end-to-end light-weight CNN feature and HOG feature to train the corre-
lation filter respectively. The proposed tracker also uses PSR instead peak value to
select the appropriate response map to locate the target. Evaluation on large-scale
benchmark dataset demonstrates that our tracker achieves favorable performance
against the compared state-of-the-art methods. It should be pointed out that our pro-
posed tracker not only has superior performance, but also runs at a fast speed which is
enough for real-time applications.
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Abstract. Deep neural network has been successfully used in various fields,
and it has received significant results in some typical tasks, especially in com-
puter vision. However, deep neural network are usually trained by using gra-
dient descent based algorithm, which results in gradient vanishing and gradient
explosion problems. And it requires expert level professional knowledge to
design the structure of the deep neural network and find the optimal hyper
parameters for a given task. Consequently, training a deep neural network
becomes a very time consuming problem. To overcome the shortcomings
mentioned above, we present a model which combining Gabor filter and
pseudoinverse learning autoencoders. The method referred in model optimiza-
tion is a non-gradient descent algorithm. Besides, we presented the empirical
formula to set the number of hidden neurons and the number of hidden layers in
the entire training process. The experimental results show that our model is
better than existing benchmark methods in speed, at same time it has the
comparative recognition accuracy also.

Keywords: Pseudoinverse learning autoencoder � Gabor filter
Image recognition � Handcraft feature

1 Introduction

Neural network has attracted many researchers to study, and it has been used in many
fields successfully. Currently the most used model for image recognition is convolu-
tional neural networks (CNN). In 1998, Yann LeCun and Yoshua Bengio published a
paper on the application of neural networks in handwriting recognition and opti-
mization with back propagation algorithm, and presented model LeNet5 in [1] is
considered as the beginning of CNN. Its network structure includes the convolutional
layer, the pooling layer and the full connection layer, which are the basic components
of the modern CNN network. In 2012, Alex used AlexNet [2] in the contest of Ima-
geNet to refresh the record of image classification and set the position of deep learning
in computer vision. AlexNet uses five convolution layers and three fully connected
layers for classification. Subsequently, there are many other successful CNN models,
which became deeper and more complex. In 2015, He et al. proposed the ResNet [3]
model which reached 152 layers.
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Recently, successful CNN models usually have complex structure and need to set
many hyper-parameters. Those parameters are related to the performance of the CNN
models and they are difficult to tune. Many research groups have presented their
research results, however it is difficult to repeat them. On the other hand, because there
are too many hyper-parameters, the training of the CNN model is a time-consuming
process. Moreover, most deep neural networks are trained by the gradient descent
(GD) based algorithms and variations [1, 4]. Also, it is found that the gradient descent
based algorithm in deep neural networks has inherent instability. This instability blocks
the learning process of the previous or later layers. In addition, gradient descent method
is easy to be stuck in vanishing gradient problem. Though CNN has good performing
result, it need much professional knowledge to use and it takes a lot of time to train.

In order to reduce the training time and improve the generalization ability of neural
network, we present a model, which combines the Gabor filter [5] and pseudoinverse
learning autoencoders (PILAE) [6], to deal with image recognition problem. Gabor
transformation belongs to the window Fourier transformation, and the Gabor function
can extract relevant characteristics in different scales and directions in the frequency
domain. In addition, Gabor function is similar to the biological function of human eyes,
so it is often used for texture recognition and has achieved good results. The main
advantage of using CNN based deep nets is the features are leant from images, while
the advantage of using traditional handcraft - features is that the feature extraction
speed. Therefore, to extract features using Gabor filter (GF) is much easier than that of
using CNN. In Feng et al.’s work [7], histogram of oriented gradient (HOG) is used to
extract features. However, the generation processing of the HOG descriptor is tedious,
resulting in slow speed and poor real-time performance. Besides, due to the nature of
the gradient, the descriptor is quite sensitive to noise. Hence, we choose Gabor filter to
extract features first. Then, PILAE based feed forward neural net is adopted to extract
independent feature vectors and perform image recognition.

Our proposed GF + PILAE model optimization does not need gradient descent
based algorithms. The learning procedure of our model is forward propagating and the
whole structure of network is determined with a given strategy in the process of
propagation, including the depth of the network and the number of neurons in the
hidden layer. It is a completely quasi-automatic learning procedure, so even users
without professional knowledge they can easily use it. It is our efforts to prompt
democratized artificial intelligence development.

2 Related Work

2.1 Gabor Filter

The class of Gabor functions was presented by Gabor [8]. The basic idea of Gabor
function is to add a small window to the signal. The Fourier transform of the signal is
mainly concentrated in the small window, so it can reflect the local characteristics of
the signal. Daugman [9] extended Gabor function to two-dimensional cases. Gabor
wavelet function was regarded as the best model for simulating visual sensory cells in
the cerebral cortex [10]. Each visual cell can be viewed as a Gabor filter with a certain
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direction and scale. When an external stimulus such as image signal inputs visual cells,
the output response of visual cells is the convolution of image with Gabor filter, and the
output signal is further processed by the brain to form the final impression of cognition.
This model can better explain human vision’s tolerance to scale and direction change.

The two-dimensional Gabor kernel function is defined as follows [11]:

Gk;h;u;r;c x; yð Þ ¼ exp � x02 þ c2y02

2r2

� �
cos 2p

x0

k
þu

� �
;

x0 ¼ x� x0ð Þcoshþ y� y0ð Þsinh;
y0 ¼ � x� x0ð Þsinhþ y� y0ð Þcosh:

ð1Þ

Equation (1) is obtained by the multiplication of a Gaussian function and a cosine
function. The arguments x and y specify the position of a light impulse, where (x0, y0) is
the center of the receptive field in the spatial domain. H is the orientation of parallel
bands in the kernel of Gabor filter, and the valid values are real numbers from 0 to 360. u
is the phase parameter of cosine function in Gabor kernel function, and the valid values
is from −180 to 180°. c is the space aspect ratio, which represents the ellipticity of the
Gabor filter. k is the wavelength parameter of the cosine function in the Gabor kernel
function. r is the standard deviation of Gaussian function in the Gabor kernel function.
This parameter determines the size of acceptable area in the Gabor filter. Its value is
related to the Bandwidth b and the value of k. The Bandwidth b indicates the difference
in high and low frequency. Equation (2) presents the relationship of b, r and k:
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Usually we use the Gabor filter in 8 directions, 5 scales, and these parameters can
be adjusted. Figure 1 is a sample of Gabor filter bank with forty different Gabor filters.

Feature extraction is performed using Gabor filter, as shown in Eq. (3).

IG ¼ I�G: ð3Þ

where I is the grayscale distribution of the image, IG is the feature extracted from I,
“⊕” stands for 2D convolution operator, G is the defined Gabor filter. Equation (3) can

Fig. 1. Gabor filter bank. These filters are in different scales and orientations [12]
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be efficiently computed by fast Fourier transform, IG ¼ F�1 F Ið ÞF Gð Þð Þ, where F−1 is
the inverse Fourier transform.

Gabor filters are sensitive to the edge information of images and able to adapt to the
obvious environments with different light. Studies have found that Gabor wavelet
transformation is very suitable for texture expression and separation. Gabor filter needs
less data and can meet the real-time requirements compared with other methods. On the
other hand, it can tolerate a certain degree of image rotation and deformation.

2.2 Autoencoders

An autoencoder [13] was first proposed by Rumelhart et al. in 1986. The autoencoding
neural network is an unsupervised learning scheme, which uses the back propagation
algorithm and tries to encode input vectors into hidden vectors, and decode hidden
vectors into input vectors. Autoencoders are usually used to reduce dimension and
feature learning task. The autoencoder consists of two parts: encoder and decoder. The
autoencoder can compress the input into potential space representation and the decoder
can reconstruct the input from potential space representation. The loss function of
autoencoder can be defined as reconstruction error function in Eq. (4),

E ¼
XN

i¼1
Wd f Wex

i þ be
� �� �þ bd

� �� xi
�� ��2; ð4Þ

where We and Wd is respectively the weights of encoder and decoder, be and bd is the
bias of the encoder and decoder respectively.

A stacked autoencoder is a feed forward neural network in which the outputs of
each encoder layer are the inputs of the successive layer. A way to obtain good
parameters for a stacked autoencoder is to use greedy layer-wise training [14]. This
method trains the weight parameters of each layer individually while freezing
parameters for the remains of the model. To produce the better results, after this phase
of training is complete, fine-tuning with backpropagation algorithm can be used to
improve the results by tuning the parameters of all layers at the same epoch.

2.3 Pseudoinverse Learning Autoencoder

Pseudoinverse learning algorithm (PIL) [15–17] was originally proposed by Guo et al.,
which is a fast algorithm for training feedforward neural networks. The whole training
process of the PIL just needs simple matrix inner product operation and pseudoinverse
operation. It improves the learning accuracy by adding layers, without iteration opti-
mization like other gradient descent based algorithms. Moreover, it is convenient to use
and does not require users to set various hyper-parameters. The depth parameter in the
training process are automatically adjusted.

For a classification task, suppose that the data set D ¼ Xi;Oif gNi¼1 denotes
N samples, where Xi ¼ x1; x2; . . .; xdð Þ 2 Rd and Oi ¼ o1; o2; . . .; omð Þ 2 Rm denotes
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the i-th input sample and the corresponding expected output respectively. For a single
hidden layer forward network, the most used sum-of-square objective function is as
follows,

E ¼ 1
2N

XN

i¼1

Xm

j¼1
gj xi; ĥ
� 	

� oij

��� ���2; ð5Þ

where gj xi; ĥ
� 	

is the j-th output neuron, which shows the map from input value into

predicted value, and it is defined as follows,

gj x; ĥ
� 	

¼
Xp

i¼1
w1
i;jf

Xd

k¼1
w0
k;ixk þ b

� 	
: ð6Þ

To simplification, we can represent the map in matrix form. The hidden layer is
defined as follows,

H ¼ f XW0 þ bð Þ; X 2 RN�d; W0 2 Rd�p; ð7Þ

where H is a matrix representing the output of hidden layer, X is the input matrix which
has N vectors with d dimension, W0 is the weights matrix between input and hidden
layer which has d rows and p columns, b is a bias parameter in the input layer, f(�) is an
activation function. Details of the PIL can be found in Refs. [15–17].

3 Proposed Methodology

3.1 Proposed Classification Model

We proposed a classification model combining Gabor filter and pseudoinverse learning
autoencoders (PILAE), which is a forward network without needing iterative opti-
mization by gradient descent algorithm. The structure of the model is shown in Fig. 2.

The input image is first filtered by Gabor filter bank, then we can obtain feature
maps. Gabor feature map is a kind of Handcraft feature, and it is easy to obtain. The

Fig. 2. The proposed method combining Gabor filter and PILAE. Gabor filters extract features
from input image to form feature maps, then the PILAE extract features further and make
classification.
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feature maps are fused into a vector as the input of PILAE. PILAE is used to further
extract features and make classification.

3.2 Feature Extraction

In our model, feature extraction is set to two parts. First, image features is extracted by
Gabor filter. With different scales and different orientations, Gabor filters can extract
different features from original image input. Moreover, the biological model function of
human eyes is similar to Gabor function, so Gabor filter performs well in extract
features. Second, PILAE can extract features from input vector. PILAE is consist of
several layers, in which there are different number of neurons. If the number of neurons
in hidden layer is less than the dimension of the input, it is equivalent to extracting
features from the input vectors.

3.3 Training Model

The Gabor filter part can be considered as data preprocessing, which transforms input
data to a first feature data space, while the training focuses on the PILAE section. For a
single autoencoder that uses pseudoinverse algorithm to train, the encoder part can be
represented as follows,

H ¼ f WeXð Þ; ð8Þ

where X is the input, which can be considered as the succeed feature data input. H is
the hidden output, which can be considered as the succeed feature data output. f (�) is
the activation function, We is the weight between input and hidden layer. And the
decoder part can be represented as follows,

G ¼ g WdHð Þ; ð9Þ

where G is a vector mapped from vector H, g(�) is the activation function, Wd is the
weight between hidden layer and output layer. Our objective function is as follows,

J ¼ 1
2

WdH � Xk k2 þ k̂
2

Wdk k2; ð10Þ

where k̂ is a regularization parameter which can be selected with a formula in Ref. [19].
This is an error function with weight decay. The goal of training the auto-encoder is to
find the weight parameter to minimize the error function. By using pseudoinverse
learning algorithm, we can get the weight of decoder is as follows,

Wd ¼ XHT HHT þ k̂
� 	�1

: ð11Þ

The weights We and Wd can be set as Wd ¼ WT
e , which is termed as tied weights.

The basic low-rank approximation is adopted to avoid identity mapping [18]. To get
the optimal result, we can add layer to the model, which is called as stacked
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autoencoders in the literatures. The number of first hidden layer neuron is set to equal to
the rank of input matrix. For succeeding hidden layer the number of neuron is set to be
p = bDim(x), b 2 (0, 1], where Dim(x) is the dimension of input vectors. Because the
autoencoder is trained with PIL algorithm, we name it as PILAE [18]. When the
autoencoder training is finished, we discard the decoder parts and cascade the encoders
to form a stacked autoencoder network. For the task of classification or regression, in
the final network output layer, a classifier at the end of the network is used to get the
final result of classification. The classifiers can be a PIL as well as its variants [20], a
support vector machine (SVM), a multilayer neural network (MLP), or a radial basis
function network, and so on. In this work, a Softmax classifier is used to get final
output results.

4 Performance Evaluation

To evaluate the performance of the proposed methods, we conduct experiments to
compare our method with other methods based on benchmark data set. In the exper-
iments, the parameters of Gabor filter are set as follow: the scale of Gabor filter is 2, 4
and 6, respectively, the wave length k is p/2, the orientation h is set as 8 different
orientations from 0 to 7p/8, and the difference between the two adjacent orientations is
p/8, standard deviation of the Gaussian function r is 1.0, spatial aspect ratio c is 0.5,
phase parameter u is 0. We conduct experiments to generate different numbers of
Gabor feature maps, which are fused into a feature vector input to the following
network layer. The MNIST dataset and the CIFAR-10 dataset are used in the experi-
ments. All the experiments are conducted on the same hardware computer with Core i7
3.20 GHz processors.

4.1 MNIST Dataset

In deep learning and pattern recognition, MNIST is the most widely used database.
MNIST is a handwritten digits images recognition data set including 70,000 hand-
written digital images of 0–9, 60,000 images out of which are used as training samples
and the rest 10,000 images are the test samples. Each image in the dataset is
28 � 28 = 784 pixels.

Table 1 shows the comparison results of our method and other benchmark methods
using MNIST dataset. In our method, we use four Gabor feature maps and three layers
of PILAE to get the result. The structure of PILAE is 705-635-571 in GF + PILAE.
5 and 10 convolution kernels are used in different layers in LeNet5. MLP uses one
hidden layer and the number of hidden neuron is 300. PILAE has one encoder layer in
this experiment. We use 4 HOG (Histogram of oriented gradient) feature maps in the
method of HOG + PILAE. From Table 1, we observe that our method can obtain
comparable accuracy to other baseline method, while the training speed of our method
is fast than others.

Figure 3(a) shows that the highest accuracy was obtained as the number of Gabor
features was four, and the accuracy decreases as the number of Gabor features con-
tinued to increase. The reason may be the fact that the more feature maps are used the
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more noise will be learned. From Fig. 3(b) we observe that the training time increases
as the number of Gabor features increases. With the number of Gabor features
increasing, the dimension of the network’s input increases, so the training time will
become longer. In the future, we will continue to study how to fuse the features to get
better performance.

Table 1. Performance comparison of MNIST dataset.

Model Training accuracy (%) Testing accuracy (%) Training time (s)

GF + PILAE 98.86 98.42 103.25
LeNet5 98.51 98.49 1270.8
PILAE 93.88 93.78 33.54
MLP 97.87 97.80 411.68
SVM 98.72 96.46 2593.28
HOG + PILAE 98.36 98.02 112.58

Fig. 3. (a) The accuracy with different numbers of Gabor feature maps for MNIST. (b) The
training time with different numbers of Gabor feature maps for MNIST.
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4.2 CIFAR-10 Dataset

CIFAR-10 image database includes 60,000 32 � 32 color images. The images are
divided into 10 categories, and there are 6000 images in each category. The whole
database is divided into five training packages and one test package. Each package
contains 10,000 images, so there are 50,000 training images and 10,000 test images in
total. We use different numbers of Gabor filters in this experiment, and the structure of
PILAE is 3012-2955-2524.

Figure 4 shows that the best test accuracy is obtained at the 6 feature maps. As the
number of feature maps increasing from 1 to 6, the training accuracy and the test
accuracy is increasing. When the number of feature maps is greater than 6, the accuracy
decreases, but the change is small. We made experiments using other methods, such as
MLP with one hidden layer and 2000 neurons, PILAE with 3 layers, HOG + PILAE
with 4 HOG features and LeNet5 with 20 and 50 kernels in different layers. The results
are shown in Table 2. All the results show that when getting the same accuracy, our
method is faster than other methods. However, our method is not perfect on the
accuracy on CIFAR-10. The reason maybe the color information is lost when filtered
by Gabor. In the future, we will pay more attention on processing color images.

4.3 Discussion

From experimental results presented in Tables 1 and 2, we can know that training
speed of our model is fast compared with other models. In the proposed model, Gabor
filter is used to extract features, and extracted feature is a kind of handcraft feature.
Compared with features learned with CNN, the Gabor feature is easier to obtain and
less time consumption. With Gabor features, it can meet the real-time processing
requirements compared with other learning feature methods. On the other hand, the
training processing of the PILAE is a completely forward propagation without iteration.
The connecting weights of PILAE are computed by using pseudoinverse learning
algorithm directly. In additions, the depth of the network is dynamically increasing, and
the number of hidden layers in PILAE is data dependent. That is, relative simple data
set will generate relative simple network structure. While complex data set will require

Fig. 4. The accuracy with different numbers of Gabor feature maps for CIFAR-10.
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the network architecture has more hidden layer to learn better data representation, and
consequently reach good performance for given task.

In the training process, compared with gradient descent based learning algorithm,
we need not set those learning optimization related hyper parameters, such as learning
rate, momentum, and iterative epoch number. Those hyper parameters are difficult to
tune if without rich experiences and professional knowledge. The transfer learning
based on convolution neuron network (CNN) may be fast in inference stage, but it
cannot be faster in training stage. As we known, CNN based network such as Alexnet
is trained by gradient descent based algorithm, which is iterative and needs to adjust the
learning hyper parameters also. So it is time consuming in training stage.

Our method performs well on MNIST data set, however, it does not obtain good
test accuracy on CIFAR10 data set. The reason is that we only use one color channel to
conduct experiments, this will lose the color information about the RGB image in
CIFAR10. In the future, we will design the more complicated network architecture to
improve the classification accuracy to the color image.

5 Conclusions

In this paper, we proposed a fast image recognition model that combines Gabor filter
and pseudoinverse learning autoencoder. This model integrates the advantages of both
Gabor filter and PILAE. Gabor filters extract features from input in different scales and
orientations, and then the feature maps are sent to PILAE. The training of our model is
fast, because it does not need back propagation or iterative optimization. Moreover, the
number of layers is automatically determined, and we give the method to set the
number of hidden neurons. We estimate the performance of our network using some
benchmark datasets such as MNIST, CIFAR-10. The results show that on classification
tasks, our model has a better performance than other models especially in learning
speed. Because our model has no empirical parameters, it is easy to use even for person
without professional knowledge. This is our effort to prompt the development of
automatic machine learning and expect to democratize artificial intelligence.

Acknowledgements. The research work described in this paper was fully supported by the
grants from the National Natural Science Foundation of China (Project No. 61472043), the Joint
Research Fund in Astronomy (U1531242) under cooperative agreement between the NSFC and
CAS, and Natural Science Foundation of Shandong (ZR2015FL006). Prof. Ping Guo and Qian
Yin are the authors to whom all correspondence should be addressed.

Table 2. Performance comparison of CIFAR10 dataset.

Model Training accuracy (%) Testing accuracy (%) Training time (s)

GF + PILAE 48.34 47.02 388.23
LeNet5 64.31 63.02 6743.82
PILAE 45.16 44.08 151.47
MLP 38.98 38.32 765.68
HOG + PILAE 46.57 46.05 436.58

510 X. Deng et al.



References

1. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proc. IEEE 86(11), 2278–2324 (1998)

2. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105
(2012)

3. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–
778 (2016)

4. Karen, S., Andrew, Z.: Very deep convolutional networks for large-scale image recognition.
ArXiv:1409.1556[cs.CV] (2014)

5. Tai, S.L.: Image representation using 2D Gabor wavelets. IEEE Trans. Pattern Anal. Mach.
Intell. 18(10), 959–971 (1996)

6. Wang, K., Guo, P., Yin, Q., et al.: A pseudoinverse incremental algorithm for fast training
deep neural networks with application to spectra pattern recognition. In: 2016 International
Joint Conference on Neural Networks (IJCNN), pp. 3453–3460. IEEE (2016)

7. Feng, S., Li, S., Guo, P., Yin, Q.: Image recognition with histogram of oriented gradient
feature and pseudoinverse learning autoencoders. In: 24th International Conference on
Neural Information Processing (ICONIP 2017), pp. 740–749. Springer, Cham (2017)

8. Gabor, D.: Theory of communication. J. Inst. Electr. Eng. I Gen. 93(26), 429–441 (1946)
9. Daugman, J.D.: Two dimensional spectral analysis of cortical receptive field profiles. Vision

Res. 20(10), 847–856 (1980)
10. Jones, J., Palmer, L.: An evaluation of the two-dimensional Gabor filter model of simple

receptive fields in cat striate cortex. J. Neurophysiol. 58(6), 1233–1258 (1987)
11. Kruizinga, P., Petkov, N.: Nonlinear operator for oriented texture. IEEE Trans. Image

Process. 8(10), 1395–1407 (1999)
12. Fazli, S., Afrouzian, R., Seyedarabi, H.: High-performance facial expression recognition

using gabor filter and probabilistic neural network. In: 2009 IEEE International Conference
on Intelligent Computing and Intelligent Systems, pp. 93–96 (2009)

13. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Nature 323(6088), 533–536 (1986)

14. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief nets. Neural
Comput. 18(7), 1527–1554 (2006)

15. Guo, P., Chen, P.C.L., Sun, Y.: An exact supervised learning for a three-layer supervised
neural network. In: Second International Conference on Neural Information Processing
(ICONIP 1995), pp. 1041–1044 (1995)

16. Guo, P., Lyu, M.R., Mastorakis, N.E.: Pseudoinverse learning algorithm for feedforward
neural networks. In: Advances in Neural Networks and Applications, pp. 321–326 (2001)

17. Guo, P., Lyu, M.R.: A pseudoinverse learning algorithm for feedforward neural networks
with stacked generalization applications to software reliability growth data. Neurocomputing
56, 101–121 (2004)

18. Wang, K., Guo, P., Xin, X., Ye, Z.: Autoencoder, low rank approximation and
pseudoinverse learning algorithm. In: 2017 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), pp. 948–953. IEEE (2017)

19. Guo, P., Lyu, M., Chen, P.: Regularization parameter estimation for feedforward neural
networks. IEEE Trans. Syst. Man Cybern. B 33(1), 35–44 (2003)

20. Guo, P.: A VEST of the pseudoinverse learning algorithm. Preprint arXiv:1805.07828
(2018)

Fast Image Recognition with Gabor Filter 511

https://arxiv.org/pdf/1409.1556
http://arxiv.org/abs/1805.07828


TiedGAN: Multi-domain Image
Transformation Networks

Mohammad Ahangar Kiasari, Dennis Singh Moirangthem, Jonghong Kim,
and Minho Lee(B)

School of Electronics Engineering, Kyungpook National University,
Daegu, South Korea

ahangar100@gmail.com, mdennissingh@gmail.com,

jonghong89@gmail.com, mholee@gmail.com

Abstract. Recently, domain transformation has become a popular chal-
lenge in deep generative networks. One of the recent well-known domain
transformation model named CycleGAN, has shown good performance
in transformation task from one domain to another domain. However,
CycleGAN lacks the capability to address multi-domain transforma-
tion problems because of its high complexity. In this paper, we pro-
pose TiedGAN in order to achieve multi-domain image transformation
with reduced complexity. The results of our experiment indicate that
the proposed model has comparable performance to CycleGAN as well
as successfully alleviates the complexity issue in the multi-domain trans-
formation task.

Keywords: Generative models · Generative adversarial networks
Image domain transformation

1 Introduction

Recently, deep generative models have been proposed to learn any complex dis-
tribution of a large dataset. [1] proposed generative adversarial networks (GAN),
which consists of a generator and a discriminator. The discriminator learns to
distinguish between the generated data and real data while the generator tries
to fool the discriminator by generating data similar to the real data. By train-
ing the paired discriminator and generator alternatively, the network is able
to imitate the real data distribution. GANs have found various applications in
recent times [5–7]. In the conventional GAN, the input of the generator is usually
random samples z drawn from a simple known distribution such as a uniform
distribution. However, in recent past, the definition of generative models have
changed in order to utilize it for domain transformation tasks. In these models,
multiple generators are able to produce its outputs in multiple domains in the
dataset with different modalities.

[2] introduced a multi domain transformation based on the variational
autoencoder (VAE). The distribution of the latent variables in the bottle-neck of
c© Springer Nature Switzerland AG 2018
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the variational autoencoder is confined to a normal Gaussian distribution with
the help of Kullback–Leibler (KL) divergence loss. However, the results show
that the generated images lack high frequency information. In other words, the
generated images are suffering from blurriness. To our knowledge, it is because
of the higher constraints set in the bottle-neck of the autoencoders.

Researchers in [3,8] concurrently proposed a novel domain transformation
method based on GAN named CycleGAN. The model has a superior perfor-
mance on a wide range of image categories. However, CycleGAN is originally
designed to transfer images between two domains. But, in real-world applica-
tions, a multi-domain transformation algorithm is much more desirable. The
aim of this paper is to find a way to improve CycleGAN to make it applicable
for multi-domain transformation tasks. If CycleGAN in the current form is used
for a multi-domain transformation task, the number of generators required in the
network will increase exponentially due to the current structure of CycleGAN.
To this end, we propose TiedGAN where we introduce one auxiliary loss function
to the networks which can efficiently reduce the number of generators required
in the presence of multiple domains. Our experiments and results show that
the proposed model is able to simultaneously and efficiently translate images
between multiple domains.

2 Related Works

2.1 Generative Adversarial Networks (GANs)

GAN is a deep model for generating a complex dataset from a prior distribution
in order to mimic a target data distribution. GAN consists of a generator and a
discriminator. The discriminator is a logistic regression network that gradually
learn to distinguish the fake data (generated by the generator) and the real data
while the generative model learns to fool the discriminator by generating fake
data more similar to the target distribution.

Let x represent the training dataset and z be randomly sampled from a prior
distribution. In the framework, the generator provides fake data G(z) given the
input z and the discriminator tries to distinguish the fake data G(z) from the
training data x,D(G(z)).

The parameters of the G(·) and D(·) are updated simultaneously to minimize
Ez∼pz

[log(1 −D(G(z))] and maximize Ex∼px
[logD(x)].

Generally speaking, the optimization process is based on a minimax opti-
mization as shown in Eq. (1) [1].

min
G

max
D

V (G,D) = Ex∼px
[logD(x)] + Ez∼pz

[log(1 −D(G(z))] (1)

where px and pz indicate the distribution of original and the random data,
respectively.
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2.2 CycleGAN

Recently, the concept of generative models has been adapted to domain transfor-
mation tasks in which the generator gets one of the domains in the dataset as an
input and then translate it to another domains. One of the well-known domain
transformation models is CycleGAN proposed by [8]. In the case of two domains,
CycleGAN consists of two generators G12, G21 and two discriminators D1, D2.
G12 tries to fool D1 in order to transfer images from the first domain to the
second one. The generator G21 and the discriminator D2 are defined similarly.
In addition, cycleGAN applied “cycle consistency” to find the existing inherent
similarities between the domains.

3 Proposed TiedGAN

The proposed model has been inspired by the CycleGAN. Figure 1 illustrates the
structure of the proposed model named TiedGAN. In Fig. 1, xi, where i = 1, 2, 3,
presents the data in ith domain in the dataset. The model consists of multiple
generators Gij that present transfer functions from ith domain to jth domain.
Corresponding to Fig. 1, in the case of three domains, G12 and G13 transfer
images from first domain to the second and third domains, respectively. G21 and
G31 are defined similarly. All the generators Gij have one encoder Eij and one
decoder Decij each.

In the model, one of the domains is set as a mediator between all the other
domains. In the sense that the model is trained to learn the proper transfer
functions from each domain to the mediator, and from the mediator to any
other domains. To this purpose, we apply adversarial, consistency and tie losses
together in the proposed model. The adversarial loss is to match the distribution
of the generated samples with the target distribution. The consistency loss is to
reconstruct the same image while we are transforming that particular image
from one domain to another one and then transforming it back to the original
domain [8]. In addition, in order to reduce the number of generators in the model,
we applied tie loss between the second and third domains. As shown in Fig. 1, tie
loss equation is elucidated in Eq. (2).

d̃2 = Dec12(E31(Dec13(E21(x))))

Ltie = Ex∼p2 [||d̃2 − x||22]
(2)

where p2 represents the second domain distribution. In the case of transforma-
tion between three different domains, the original CycleGAN needs six autoen-
coders to transfer images between the domains while our model needs only four
autoencoders.
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The total loss of the model including adversarial, consistency, and tie losses
are as follows:

Lcycle1 = Ex∼p1 [||x−G21(G12(x))||22]
Lcycle2 = Ex∼p2 [||x−G31(G13(x))||22]
LG12 = Ex2∼p2 [log(D1(x2))] + Ex1∼p1,x2∼p2 [1 − log(D1(G12(x1)))]
LG13 = Ex3∼p3 [log(D2(x3))] + Ex1∼p1,x3∼p3 [1 − log(D3(G13(x1)))]
Ltotal = LG12 + LG13 + Lcycle1 + Lcycle2 + Ltie

(3)

where x1, x2 and x3 represent the input data of the first, second, and third
domains, respectively. Lcycle1, and Lcycle2 are the consistency losses. LG12 and
LG21 are the adversarial losses for G12 and G13, respectively.

Fig. 1. Schematic of the model for three domains. L1 and L2 represent the consistency
losses. The x2 and x̂2 are the input and the target for computing the tie loss.

4 Experiments and Results

To evaluate the effectiveness of the proposed model, we conduct our experiments
on the Large-scale CelebFaces Attributes (CelebA) [4] dataset. This dataset com-
prises of 202,599 images, each with various characteristics. The images have 40
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Fig. 2. Results of the cross-domain transformation from a couple of faces with black
hair to the second and third domains corresponding to smiling faces and blond-haired,
respectively. The figure has three panels of celebrity faces. (a) The first panel shows the
original black-haired faces. (b) The second panel shows the corresponding generated
smiling faces. (c) The last panel illustrates the corresponding generated blond-haired
faces.
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different attributes based on their characteristics and modalities. We can cate-
gorize the dataset into different domains as per the attributes of the images, but
the domains have no paired images between each other. In our work, the images
were separated into various styles depending on the attributes, for example, faces
with blond or black hair, non-smiling and smiling faces, etc. The size of the orig-
inal images in the dataset was 178×218. However, the original images have been
cropped to 64 × 64 by selecting and aligning only the facial areas of the images
in order to focus on the relevant parts as well as decrease the computation load.

In the experiment, we used the images with back hair, blond hair, and smiling
face domains. Here, we would like to emphasize that there are no paired images
between domains in the dataset, and hence supervised learning is not possible.
The results show the promising performance in the multi-domain transformation.
The results of the proposed model for the CelebA dataset is illustrated in Fig. 2.
Figure 2(a), shows the original black-haired faces. The translated images to the
blond-haired and smiling faces are shown in Figs. 2(b) and (c), respectively.
The results show that the model not only has less complexity compared to the
CycleGAN, but also can generate plausible images in different domains.

5 Conclusion

In this paper we introduced TiedGAN, an enhanced version of CycleGAN, to
efficiently address multi domain image transformation problem. We performed
experiments on three domains of the popular CelebA dataset including black
haired, blond-haired and smiling faces domains. The results of our experiments
showed that the proposed model illustrates a good performance in the multi
domain transformation task with much lesser complexity.
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Abstract. Graph matching is important in pattern recognition and
computer vision which can solve the point correspondence problems.
Graph matching is an NP-hard problem and approximate relaxation
methods are used to solve this problem. But most of the existing relax-
ation methods solve graph matching problem in the continues domain
without considering the discrete constraints. In this paper, we propose a
fast normalized cut based graph matching method which takes the dis-
crete constraints into consideration. Specifically, a regularization term
which is related to the discrete form of the permutation matrix is added
to the objective function. Then, the objective function is transformed to
a form which is similar to the fast normalized cut framework. The fast
normalized cut algorithm is generalized to get the permutation matrix
iteratively. The comparisons with the state-of-the-art methods validate
the effectiveness of the proposed method by the experiments on synthetic
data and image sequences.

Keywords: Graph matching · Fast normalized cut
Discrete constraints

1 Introduction

Graph matching is a fundamental problem in computer vision, pattern recog-
nition and image understanding, which can be used to find the correspondence
between two point sets extracted from two images. Graph matching further lays
the foundation for many computer vision tasks, such as feature tracking [12],
object recognition [17] and shape matching [15]. In this paper, we mainly focus
on solving the point correspondence problems by graph matching.
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The problem of finding the correspondence between two point sets can be
solved by RANSAC [7], Iterative Closet Point (ICP) [20] and other methods
which based on the appearance descriptors. But these methods only consider
the relationships between feature points and may fail in the presence of local
appearance ambiguities. Many recent graph matching methods incorporate both
the relationships between points and edges which explore pairwise consistency in
frames. Since these methods encode the geometric information when construct
a graph and match two graphs, they can develop a more satisfactory correspon-
dence than these methods only based on feature points. But graph matching with
pairwise constraints is an NP-hard problem which is not easy to find an exactly
result and an approximate relaxation method is needed to find the approximate
result. An important kind of approximate methods is based on spectral decom-
position. Umeyama’s [18] method is regarded as the first spectral method in
this domain. Leoedeanu and Hebert [13] proposed the Spectral Matching (SM)
method and introduced the notation of affinity matrix which can encode the sim-
ilarity of feature points and edges extracted from two images. This method solved
the graph matching problem by calculating the optimal rank-one approximation
of the affinity matrix. Cour et al. [6] incorporated the mapping constraints within
the relaxation scheme when formulated the permutation matrix and this method
was called the Spectral Matching with Affine Constraint (SMAC). The rank-one
approximation of the affinity matrix was also used to get the final result. Cho et
al. [4] introduced a method called Reweighted Random Walks for graph Match-
ing (RRWM). Graph matching problem is solved by simulating random walks
with reweighted jumps which enforced the matching constraints on the affin-
ity graph. Another kind of methods tries to gain the discrete solution of graph
matching problem. The Integer Projected Fixed Point (IPFP) method [14] was
proposed by Leodeanu et al., which optimized the objective function in discrete
domain and can get the discrete permutation matrix directly. In [11], Jiang et al.
also proposed a new graph matching algorithm which can get the discrete solu-
tion. They added the L2-norm as a binary constraint of the objective function
and the final discrete matrix was calculated by the increase of the L2-norm.

Normalized Cut is a widely used graph-cut technique in many applications,
such as image segmentation [16] and clustering [9]. Since finding the optimized
cut is an NP-hard problem, several spectral methods are used to obtain the mini-
mize normalized cut approximately by eigen-computation. Xu et al. [1] proposed
a Fast Normalized Cut with Linear Constraints method based on the original
graph cut method [16], which incorporated the prior knowledge as a linear con-
straint into normalized cut problems. Their also designed an algorithm which
can be used to optimized a general problem. The approximate relaxation meth-
ods which are presented above usually optimized graph matching problem in a
continuous domain. These methods relaxed the constraint to continuous domain
and defined a new problem firstly. Then they solved the continuous problem and
got a global optimum solution. The continues optimal solution would be mapped
back to discrete domain in the end. But when these methods redefined the graph
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matching problem, they only considered the continuous constraints which may
result in a local optimum solution.

In this paper, we propose a graph matching method based on the fast normal-
ized cut method and discrete constraint. First, we take the discrete constraint
into consideration when redefine the problem in continuous domain and a graph
matching model is set up. Second, the fast normalized cut method which has
the similar model with this method is utilized to obtain the solution. Last, the
Hungarian Algorithm is used to get the discrete solution.

2 Problem Formulation

Given two graphs G(Vg,Eg) and H(Vh,Eh), where Vg(Vh) and Eg(Eh) rep-
resent the node set and edge set respectively. Each node vi ∈ Vg and vj ∈ Vg

are connected by an edge eij ∈ Eg. Each edge is assigned an attribute which
could be a real number or an attribute vector. Graph H has the same definition.
Graph matching problem aims at finding a correspondence between node sets
Vg and Vh. We construct an affinity matrix W which can measure the com-
patible between node vi and node vj by two kinds of attributes. The diagonal
element of W represents the similarity between node vi ∈ Vg and v′

i ∈ Vh.
The non-diagonal element of this matrix represents the comparability of edge
eij ∈ Eg and edge ei′j′ ∈ Eh. A permutation matrix X is used to denote the
one-to-one correspondence solution. If the element in Xij equals to 1, it means
that node vi in graph G corresponds to node vj in graph H. Else, the Xij = 0
presents the opposite situation. In this paper, we only consider the equal-sized
graph matching problem.

In most recent research [4,6,8,14], the graph matching problem is calculated
by the following model:

max xTWx

s.t. Ax = 1, xi ∈ {0, 1} , (1)

where x is the row-wise vector of permutation matrix X and A is a matrix of
size 2N × N2. The alphabet N is the number of nodes. And the matrix A is
used to ensure the doubly stochastic constraint of X. In most occasions, affinity
matrix W is not a positive definite matrix and the objective function is usu-
ally non-convex. The above function defines the permutation matrix in discrete
domain which had been proved to be an NP-hard problem. Some research pro-
posed the relaxation methods to solve this problem [5,6,20,21]. They relaxed
the constraint from discrete domain to continuous domain and constructed the
following function:

max xTWx

s.t. Ax = 1, xi ≥ 0. (2)

The solution of this problem can be obtained by approximate methods in con-
tinuous domain firstly. Then this solution will be mapped back to the discrete
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domain by Hungarian Algorithm or other methods. But these existing graph
matching methods solved the problem without consideration of discrete con-
straints which may get a weak local optimization solution in continuous domain.

3 Graph Matching Based on Fast Normalized Cut

In this section, we propose a graph matching based on fast normalized cut
method [1]. The discrete constraints are taken into consideration when construct
the objective function. The new objective function has a positive definite matrix
and it is similar to the graph cut model.

3.1 Graph Matching Model

The original graph matching problem is a discrete problem and the permuta-
tion matrix X only can contain number 1 or 0. This matrix also has the double
stochastic constraint. So when the right discrete solution is obtained, the per-
mutation matrix has the following algebraic properties:

‖x‖22 = N. (3)

The operation ‖·‖2 represents the L2-norm. From the mathematical theory of
‖·‖2 we know that as the number of 1 increases, the value of L2-norm increases
when it is less than N. The maximum value of ‖x‖22 is obtained when x only
contains 1 and 0 and the value is equals to N. The number of 1 is fixed to N
when the optimal discrete solution is obtained. The vector x is a column vector
and it has the property that:

xTx =
∑

i

x2
i , (4)

which is equal to the square number of ‖x‖2. So we used xTx represents ‖x‖22
to encode the discrete attribute of the solution. The objective function can be
rewrote as follows:

max xTWx

s.t. Ax = 1,xTx = N, xi ∈ [0, 1]. (5)

The above function incorporates the discrete constraint into graph match-
ing. But the discrete constraint is added as a part of the function’s
constraints and this function may not easy to be solved directly. The
Lagrange Multiplier Method is used to optimize this problem. And the objective
function is presented as follows:

max xTWx + αxTx

s.t. Ax = 1, xi ∈ [0, 1], (6)
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where αxTx is a regularization part and α is a control parameter which can
affect the solution of this function. If permutation vector x is more discrete, the
value of xTx is lager and the objective function is closer to the discrete case.
Equation (6) can be transformed to the following form:

max xTW̃x

s.t. Ax = 1, xi ∈ [0, 1], (7)

where W̃ = W + αI1. The notation I1 denotes a identity matrix with size
N2 ×N2. We find that as the α is equal or greater than a number β, matrix W̃
becomes a positive semidefinite matrix. The number is:

β = |min{λmin, 0}|, (8)

where λmin is the smallest eigenvalue of affinity matrix W.

3.2 Fast Normalized Cut

Normalized cut is an important method in graph cut problem. This method
usually defines a weighted graph and the weight of the graph edges denotes the
similarity between two nodes. But finding the real cut of the nodes is a discrete
problem which is also an NP-hard problem. The spectral relaxation methods had
been applied to get the approximate solution of this problem based on eigen-
computations [16]. In [1], the authors proposed a new algorithm called Fast Nor-
malized Cut with Linear Constraints. They incorporated the prior knowledge
of the graph cut problem into the original framework by adding the linear con-
straints. Then they designed a iterative algorithm to find the feasible solution.
Our graph matching mode has the resemble part with this framework. In this
paper, we are inspired by the graph cut method and the solution of the graph
matching problem is calculated iteratively. The algorithm based on Eq. (7) is
showed in Algorithm 1.

The main idea of the Algorithm is similar to the Fast Normalized Cut algo-
rithm and SMAC. According the constraints of the objective function, the vec-
tor v can be decomposed into two part n0 and u. The matrix P is a projection
matrix which can encode the constraints [16]. Notation dv is a parameter matrix
which measures the difference of each iterative result. In each iteration step, vk is
closer to the real result. This vector has the similar significance with the transfer
matrix in the PageRank Algorithm [2]. It can accelerate the convergence proce-
dure. From research [1], we know that xTWx is an increasing function when W
is a semidefinite positive matrix. So this function can obtain a maximum value
at a fixed point. In our method, the affinity matrix is a semidefinite positive
matrix. So the proposed algorithm will converge and return a result. The final
result of Algorithm 1 is continues, we choose the Hungarian algorithm [10] which
is a linear assignment method to map the result back to discrete domain. Then
the satisfactory permutation matrix is obtained.
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Algorithm 1 Graph Matching based on Fast Normalized Cut

Input: Affinity matrix ˜W, graph size N , initialized vector n0, constraint matrix A

P = I − AT(AAT)
−1

A, k=0

n0 = AT(AAT)
−1

1

γ =
√

1 − ‖n0‖2

v0 = γ P˜Wn0

‖P˜Wn0‖
repeat

uk+1 = γ P˜Wvk

‖P˜Wvk‖
vk+1 = uk+1 + n0 × dv

dv = |vk+1 − vk|
k = k + 1

until v converges
Output: A permutation vector v

4 Experiments

In this section, the proposed method is applied to both synthetic point matching
and the CMU house dataset matching tasks. This methods is compared with the
state-of-the-art methods, including the Spectral Matching(SM) [13], the Spectral
Matching with Affine Constraint (SMAC) [6], the Reweighted Random Walks
for graph Matching(RRWM) [4], the Probabilistic graph and hypergraph match-
ing(PGM) [19] and the Integer Projected Fixed Point (IPFP) [14].

4.1 Synthetic Graph Matching

The setting of this experiments is following [6]. We need to construct two random
graphs G and H firstly. The first graph G which contains N nodes and M edges
is generated in the 2D surface randomly and uniformly. The sparsity of this
graph is set to be 0.5. A weighted matrix WG is generated uniformly in [0, 1].
Each edge of the graph will be assigned a weight WG

ij . The second graph H
is generated from the first graph. The graph G is permutated by a permutation
matrix P firstly. Then the Gaussian noise N (0, σ) is added to disturbed the
graph H. The affinity matrix W is computed as follows:

Wii′,jj′ = exp(− ∣∣WG
ij − WH

i′j′
∣∣2 /ε). (9)

The notation ε is the scaling factor which is set to be 0.15.
Since we focus on the equal-sized graph matching in this paper, two compar-

isons are performed with respect to the number of nodes N and the Gaussian
noise level σ respectively. The nodes number N is increased from 30 to 50 by
step size 1 when σ is set 0.1. The noise level is increased from 0 to 0.2 by step
size 0.025, with the node number N is set to be 40.

The comparison results are showed in Fig. 1. The left sub-figure depicts the
comparison results with respect to the nodes number, from which we can observe
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that as the number of nodes increases the matching accuracy decreases and the
proposed method performs better than other methods. The right sub-figure is
respect to the noise level σ, and we can obtain the similar observation as the
left sub-figure generally.
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Fig. 1. Synthetic graph matching result. The matching accuracy is compared with
respect to node number and noise level.

4.2 CMU House Matching

In this experiment, the feature point matching tasks on the CMU House sequence
is performed [3,4]. This dataset contains 101 images of a toy house in different
viewpoints. Each image in the dateset is marked 30 landmark points. We match
all possible image pairs spaced by 0, 10, 20, 30, 40, 50, 60, 70, 80, 90,100 and 110
frames. Average matching accuracy of per sequence gap is calculated. Matrixes
WG

ij and WH
i′ j′ denote the Euclidean distance between two points respec-

tively in this experiment. The affinity matrix is then computed by the same
format as the Synthetic graph matching.

The edge density is also set 0.5 and ε = 0.15. Figure 2 shows the results of
this dataset. The left sub-figure illustrates the results related to the sequence
gap. We can observe that as the sequence gap increases, the accuracy decreases.
Since a constraint which can bring an discrete solution is added in our method,
our method obtain a better correspondence than other methods. The result of
this experiment is consistent with the synthetic graph matching. A sample of
house matching is exhibited on the right (We choose the sequence gap which
equals to 70). In the sample graph, the green lines represent right matching
results.

5 Complexity Analysis and Future Work

The complexity of the proposed work is O(N4) when the graph is connected
by the complete method. In the outside loop of the algorithm, the complexity
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(c) Matching accuracy w. r. t. sequence gap (d) CMU house matching sample

Fig. 2. The CMU House sequence matching result and sample

is O(N2) in order to compute P and n0. It costs O(N4) in the inside loop.
Since O(N4) is bigger than O(N2), O(N2) is neglected in this algorithm. But
in some real experiments, graph is usually constructed by the sparse connection
method. In that way, the complexity of the proposed method is related to the
sparsification technique which will reduce the complexity.

Graphs which are compared in this paper are supposed to be equal-sized.
In real tasks, there exists graphs with different number of nodes. In the future
work, we will extend the proposed method to the unequal-sized graph matching.
Since the inside loop costs the most complexity, some modification will be done
to save the computations in the future.

6 Conclusion

In this paper, we propose a graph matching algorithm based on fast normalized
cut algorithm. It incorporates the discrete constrain into the objective function.
The discrete constraint is added as a part of the function and can be seen as
a parameter which can control the discreteness of the function. The proposed
framework of objective function is resemble to the fast normalized cut and an
effective algorithm is designed to calculate the result iteratively. The experiments
both in synthetic graph and CMU house dataset demonstrate the effectiveness
of the proposed method.
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Abstract. A robust two-phase transmission map estimation framework
is proposed in this paper for single image dehazing. The proposed frame-
work first estimates the coarse transmission map through the statistical
assumption of dark channel prior (DCP). To refine the coarse transmis-
sion map, a novel image-gradient-guided high-order variational method
is then proposed in the second phase. The resulting L1-regularized high-
order nonsmooth optimization problem will be effectively solved using
the primal-dual algorithm. Once the fine transmission map is accu-
rately obtained, the final haze-free image could be restored based on
the haze imaging model of Koschmieder. To further enhance dehazing
performance, an improved tolerance mechanism is incorporated into the
proposed method to suppress the undesirable artifacts usually produced
by DCP in large sky regions. Numerous experiments on both synthetic
and realistic images were performed to compare our proposed method
with several state-of-the-art dehazing methods. Dehazing results have
illustrated the superior performance of the proposed method.

Keywords: Image dehazing · Image restoration · Dark channel prior
Total generalized variation · Primal-dual algorithm

1 Introduction

Images captured under hazy imaging condition often suffer from noticeable visi-
bility degradation and apparent contrast reduction. The low vision quality could
easily produce negative effects in practical applications, such as intelligent trans-
poration, remote sensing and video surveillance, etc [1,2]. To enhance image
quality, current dehazing methods can be mainly classified into four types [1–
4]: multi-scale fusion methods, contrast enhancement methods, Retinex-based
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methods and physics-based methods. This paper mainly focuses on the physics-
based dehazing methods since only these methods take the essential principles
of haze-degraded images into consideration.

The dehazing performance of physics-based methods is strongly dependent
on the image features and priors adopted to estimate clean images. It has been
observed that small image patches in haze-free images exhibit a uniformly col-
ored surface and the same depth [5]. As a consequence, the contrast color-lines
prior [5,6] has been proposed to enhance imaging quality in different applica-
tions. Recently, the non-local haze-lines prior [7,8] generated the reliable dehaz-
ing quality based on the assumption that colors of a haze-free image are well
approximated by a few hundred distinct colors leading to tight clusters in RGB
space. Current research [1,9] has shown that the accurate estimation of trans-
mission map, which is inversely proportional to scene depth, can generate high-
quality dehazing results. He et al. [10] discovered the simple but effective dark
channel prior (DCP) to reliably estimate the transmission map. To make dehaz-
ing more desirable, many improvements were considered to refine the DCP-based
coarse transmission map, e.g., standard median filtering [11], anisotropic diffu-
sion [12], guided image filtering [13], and weighted guided image filtering [14,15],
etc. The popular total variation (TV) regularizer [16] has also been introduced
to optimize the transmission map. However, the resulting map often suffers from
unwanted staircase-like artifacts since TV encourages piecewise constant solu-
tions. Under DCP assumption, variational methods [17,18] were proposed to
perform simultaneous depth map estimation and haze-free image restoration. It
is obvious that DCP-based methods perform well in dehazing due to the assump-
tion that most local non-sky patches in clean images have pixel values close to
zero [19]. The restored images with large sky regions easily suffer from block
effects or serious color distortion because of the underestimated transmission
map [14]. Correction mechanism [20] or sky detection (or segmentation) [19,21]
should be incorporated into traditional dehazing methods to enhance dehazing
performance.

The latest generation of deep neural networks (DNN) [22,23] has recently
achieved impressive results in the field of image dehazing. For example, convo-
lutional neural networks (CNN) [24] and its modified version with coarse-to-fine
strategy [25] have been adopted to estimate the medium transmission map which
is subsequently used to restore the latent haze-free image through atmospheric
scattering model. If the transmission map is not estimated accurately, it would
bring negative effects on haze-free image restoration. To address this problem,
CNN-based learning method [26,27] has been proposed to directly estimate the
clean image from its degraded version. However, the dehazing performance is
usually dependent on the volume and diversity of training datasets. If the train-
ing datasets donot include the similar geometrical features existed in images
to be restored, it is difficult to generate satisfactory image quality. Generative
adversarial network (GAN) [28,29] could be used to generate realistic-looking
synthetic images and improve dehazing performance. To make dehazing easier
and more flexible, we still tend to propose a robust dehazing method based on
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traditional but effective two-step framework. In particular, it first estimates the
transmission map, and then restores the latent haze-free image.

In this work, we propose to develop a two-phase transmission map estimation
method for single image dehazing. The proposed method follows the general two-
step dehazing framework (i.e., transmission map estimation and haze-free image
restoration) and mainly generates the contribution in the first step. In this step,
the coarse transmission map is pre-estimated under DCP assumption [10]. To
obtain the refined transmission map, an image-gradient-guided high-order vari-
ational method is proposed to optimize the transmission map. Compared with
previous refinement methods, our proposed method is able to yield more natural-
looking transmission map, which generates homogeneous appearance within sur-
faces/objects and significant edges at depth discontinuities. The optimized trans-
mission map could guarantee satisfactory dehazing performance. The quality of
restored haze-free image in the second step will be further enhanced using an
improved tolerance mechanism.

The remainder of this paper is organized as follows: Sect. 2 briefly overviews
the DCP-based coarse transmission map estimation. The image-gradient-guided
high-order variational method for refining transmission map is proposed in
Sect. 3. The latent haze-free image is restored in Sect. 4. Experiments on dif-
ferent types of images are performed in Sect. 5. Finally, we conclude this paper
with our main contributions in Sect. 6.

2 Coarse Transmission Map Estimation

The coarse transmission map estimation in our proposed two-phase framework
is pre-estimated through the widely-used local prior, i.e., DCP [10]. Here we
will briefly overview the image degradation model and the DCP-based estima-
tion method. The Koschmieder’s physical model [30,31] commonly adopted to
describe the formation of hazy image is given by

I(x) = J(x)t(x) + A (1 − t(x)) , (1)

where x ∈ Ω is the pixel coordinate with Ω being image domain, I is the observed
hazy image, J is the latent sharp image (i.e., haze-free image) to restore, A is the
global atmospheric light, and t denotes the scene transmission map. The moti-
vation of DCP [10] is that at least one color channel in local non-sky patches has
very low intensity values, even close to zero. Under the homogeneous atmosphere
assumption, the transmission map t is given by t(x) = exp (−μd(x)) with μ being
the scattering coefficient of atmosphere and d(x) being the depth of scene. Let
J be an outdoor haze-free image. The dark channel Jdark(x) can be formulated
as follows

Jdark(x) = min
y∈Ωl(x)

(
min

c
(Jc (y))

)
→ 0, (2)

where c ∈ {r, g, b} denotes the color channel, Ωl(x) is the local patch centered at
x ∈ Ω with Ω being image domain. He et al. [10] proposed to roughly estimate the
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scene transmission map based on DCP assumption. The atmospheric scattering
model (1) can be transformed into the following version

min
y∈Ωl(x)

(
min

c

(
Ic(y)
Ac

))
= t0(x) min

y∈Ωl(x)

(
min

c

(
Jc(y)
Ac

))
+ (1 − t0(x)) .

It is easy to estimate the coarse transmission map t0, i.e.,

t0(x) = 1 − υ min
y∈Ωl(x)

(
min

c

(
Ic(y)
Ac

))
, (3)

where υ is a constant parameter used to keep some amount of haze for distant
object. Through a large number of experiments, we empirically set the parameter
to be υ = 0.90 in this work. The global atmospheric light A is obtained by
selecting the top 0.1% brightest pixels in the dark channel (see [10] for details).

3 Refined Transmission Map Estimation

3.1 TGV-Regularized Variational Model

The coarse transmission map gained by Eq. (3) is assumed to be constant in
local image regions. It is easy to cause the unwanted blocking effects in final
restored images [10]. The transmission map should have homogeneous appear-
ance within surfaces/objects and significant edges at depth discontinuities. To
achieve a good balance between surface/object-smoothing and edge-preserving,
a second-order total generalized variation (TGV)-regularized variational model
[32,33] with a guided image will be proposed to optimize the coarse transmis-
sion map. Compared with commonly-used TV regularizer [16,17,34] which favors
piecewise constant solutions, TGV encourages piecewise smooth solutions from
both theoretical [32] and practical aspects [18]. It means that TGV essentially
has the capacity of generating more natural-looking transmission map leading to
satisfactory dehazing results. Therefore, the nonsmooth TGV-regularized varia-
tional model is proposed for refining the coarse transmission map t0, i.e.,

E(t) =
1
2

∫

Ω

|t − t0|2 +
λ

2

∫

Ω

|∇t − ∇I|2 + TGV2
α(t), (4)

where t is the refined transmission map to estimate, λ is a positive parameter,
and I represents the grayscale of the input color hazy image I. The first two
terms in Eq. (4) are both convex data-fidelity terms. In particular, the first part
denotes a measure of the distance between the refined transmission map t and
its coarse version t0. Thus, the optimized transmission map could preserve the
main structural details of the input image. Inspired by guided image filtering
[13], we tend to utilize the gradient of hazy image ∇I in the second term as a
guided image constraint to sharpen the edge of refined transmission map. This is
similar as He et al.’s guided image filtering [13]. This data-fidelity term ensures
that t has an edge only if I has an edge. The second-order regularizer TGV2

α(t)
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in Eq. (4) is able to suppress undesirable staircase-like artifacts in estimated
transmission map. Consequently, the proposed variational model can smooth
the objects in smooth regions and preserve the sharp edges in discontinuous
regions. Mathematically, the discrete formulation of TGV2

α(t) can be defined as
follows

TGV2
α(t) = min

ω∈C2
c (Ω,R2)

α1

∫

Ω

|∇t − ω| + α0

∫

Ω

|E (ω)|

where α1 and α0 are positive parameters, C2
c

(
Ω,R2

)
denotes the space of the

vector field, and E represents the symmetrized derivative operator. To further
enhance the accuracy of transmission map estimation, the local geometrical fea-
tures should be considered to assist in improving the estimation performance. A
2-D binary mask M is incorporated into the TGV-regularized variational model
(4) in this work. Thus, the original second-order variational model (4) for gen-
erating refined transimission map could be rewritten as follows

E(t) =
1
2

∫

Ω

|t − t0|2 +
λ

2

∫

Ω

|∇t − ∇I|2 + α1

∫

Ω

|(∇t − ω) ◦ M| + α0

∫

Ω

|E (ω)|

∝ 1
2

∫

Ω

∣∣∣∣t − t0 + λ∇T ∇I

1 + λ∇T ∇
∣∣∣∣
2

+ α1

∫

Ω

|(∇t − ω) ◦ M| + α0

∫

Ω

|E (ω)| , (5)

where ◦ denotes the element-wise multiplication operator. It is necessary to select
the proper mask M using the local geometrical features of transmission map.
In this work, an experience-guided threshold Kt is simply determined based
on image gradients ∇t, i.e., Kt = mean (|∇t|). In particular, for any element
mi ∈ M, mi = 0 if the corresponding value ∇ti < Kt, and mi = 1 otherwise.
To compensate some missing elements, we tend to further optimize mask M
by directly using the morphology dilation operation. Although the mask M is
selected based on the manually-selected threshold Kt, it is still worthy of con-
sideration because the dehazing results have illustrated the satisfactory imaging
performance.

3.2 Numerical Optimization

The unconstrained optimization problem (5) related to image dehazing in this
work is convex but nonsmooth. To guarantee solution stability and efficiency,
the primal-dual algorithm of Chambolle-Pock [35–37] is introduced to handle
the TGV-regularized variational model (5). The related dual formulation of the
primal problem (5) can be defined as follows

min
t,ω

max
u∈U,v∈V

1
2

∫

Ω

∣∣t − t̂
∣∣2 + 〈(∇t − ω) ◦ M, u〉 + 〈E (ω) , v〉, (6)

with t̂ =
(
t0 + λ∇T ∇I

)
/
(
1 + λ∇T ∇)

. In Eq. (6), u and v are dual variables.
The convex variable sets U and V are respectively given by

U = {u = (u1, u2) | ‖u‖∞ ≤ α1} , (7)
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Algorithm 1. Primal-dual algorithm for model (5)
1: Input: M, I, α1, α0, δ, τ and λ.
2: while j ≤ Jmax do
3: uj+1 = projU

(
uj + δ

((∇t̄j − w̄j
) ◦ M

))
,

4: vj+1 = projV
(
vj + δ

(E (
w̄j

)))
,

5: tj+1 =
τ((t0+λ∇T ∇I)/(1+λ∇T ∇))+tj+τdiv(uj+1)

1+τ
,

6: wj+1 = wj + τ
(
uj+1 + div�

(
vj+1

))
,

7: t̄j+1 = 2tj+1 − tj , w̄j+1 = 2wj+1 − wj .
8: end while
9: Output: t ← tJmax .

V =
{

v =
(

v11 v12
v21 v22

)
| ‖v‖∞ ≤ α0

}
. (8)

The primal-dual algorithm for solving the TGV-regularized variational model
(5) is detailedly summarized in Algorithm 1. The Euclidean projectors projU (u)
and projV (v) are defined as follows

projU (u) =
u

max (1, |u| /α1)
, (9)

projV (v) =
v

max (1, |v| /α0)
. (10)

The divergence operators div (u) and div� (v) in Algorithm 1 are defined as
div (u) = ∂−1

x u1 + ∂−1
y u2 and div� (v) =

(
∂−1

x v11 + ∂−1
y v12, ∂

−1
x v21 + ∂−1

y v22
)T .

In our experiments, the parameters δ = τ = 1/
√

12 are pre-selected to guarantee
the convergence of the primal-dual algorithm.

4 Latent Haze-Free Image Restoration

After generating the refined transmission map t, we can restore the latent haze-
free image according to the atmospheric scattering model (1), i.e.,

J(x) =
I(x) − A

max (t(x), tlb)
+ A, (11)

where tlb denotes the lower bound of transmission map t. As suggested in [10],
selecting tlb as 0.1 is available for most practical applications. It is generally
known that DCP-based dehazing models often fail to restore hazy images with
large sky regions. To overcome this limitation, a tolerance-based correction mech-
anism is incorporated into the image restoration model (11) as follows

J(x) =
I(x) − A

min
(
max

(
K

|I(x)−A| , 1
)

· max (t(x), tlb) , 1
) + A, (12)
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where K is a predefined tolerance. It means that for any pixel in hazy image I,
the areas with |I(x) − A| < K will be considered as sky areas. The correspond-
ing transmission map should be corrected. The constant parameter K used in
Eq. (12) limits the improvement of image dehazing. To further enhance imaging
performance, an adaptive method for tolerance selection is proposed as follows

K = min (median (|I(y) − A|) ,Kub) , y ∈ Ωl(x), (13)

with Kub being the upper bound of K. According to our experimental experience,
the manual selection Kub = (0.15 0.15 0.15) is satisfactory for most applications
without further modification. The whole procedure of our two-phase transmission
map estimation method for image dehazing is visually summarized in Fig. 1.

Fig. 1. Framework of our proposed dehazing method: (a) input hazy image, (b) coarse
transmission map t0 using DCP, (c) dehazing result with (b), (d) refined transmission
map t using our two-phase estimation method, (e) initial dehazing result with (d), (f)
final dehazing result with a tolerance mechanism implemented for (e).

5 Experiment Results and Discussion

To verify the effectiveness of the proposed method, we first present several dehaz-
ing results to illustrate the influence of transmission map estimation on dehazing
performance. Numerous experiments are then conducted on realistic images to
compare our proposed method with several state-of-the-art dehazing methods,
e.g., Tarel-09 [31], He-13 [13], Meng-13 [38] and Berman-16 [7]. The experience-
dependent parameters α1 = 1.0, α0 = 2.0 and λ = 5.0 were exploited throughout
all experiments. The size of local patch Ωl(x) in Eq. (3) is set to be 15 × 15 for
all DCP-based dehazing methods (including He-13 [13], Meng-13 [38] and our
proposed method).
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Fig. 2. Dehazing results on different realistic hazy images: (a) input hazy images,
(b) estimated coarse transmission maps t0 using DCP, (c) recovered haze-free images
with (b), (d) refined transmission maps t using our two-phase estimation method, (e)
recovered haze-free images with (d).

5.1 Influence of Transmission Map on Image Dehazing

Experiments are performed on six different realistic images to investigate the
influence of transmission map on dehazing performance, shown in Fig. 2. It can
be found that the DCP-based coarse transmission maps t0 in Fig. 2(b) contain
obvious textures of different scales. To guarantee high-quality dehazing, the esti-
mated transmission maps should contain few or (ideally) no visible textures since
there is essentially no relationship between the textures and the amount of haze.
As a consequence, the dehazing results in Fig. 2(c) suffer from the unwanted
halo effects around image edges leading to visual quality degradation. In con-
trast, our two-phase estimation method could effectively oversmooth the textures
while generating refined transmission maps with piecewise smooth property in
Fig. 2(d). The final dehazing results in Fig. 2(e) could eliminate the undesirable
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halo effects and benefit from more natural-looking appearance. The visual image
quality is improved accordingly.

Fig. 3. Comparison of dehazing results on three different natural images. From left to
right: (a) hazy image, restored images generated by (b) Tarel-09 [31], (c) He-13 [13],
(d) Meng-13 [38], (e) Berman-16 [7] and (f) Ours.

5.2 Experimental Results on Natural Images

To further assess the dehazing performance, we implement the comparative
experiments on several natural hazy images. The comparison results are visu-
ally illustrated in Fig. 3. We find that Tarel-09 [31] generates the worst dehazing
results. He-13 [13] is able to yield satisfactory imaging performance for “Image 1”
but fails to work for “Image 2” and “Image 3” due to the presence of sky regions.
The undesirable halo effects have seriously degraded the image quality. Meng-13
[38] and Berman-16 [7] could effectively reduce the haze effects. However, the
resulting artifacts or color distortion bring negative impacts on final imaging
performance. In contrast, the proposed two-phase estimation method performs
well in haze removal as well as artifacts suppression. High-quality images could
be guaranteed with more natural appearances.
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Fig. 4. Comparison of dehazing results on three different maritime images. From left
to right: (a) hazy image, restored images generated by (b) Tarel-09 [31], (c) He-13 [13],
(d) Meng-13 [38], (e) Berman-16 [7] and (f) Ours.

5.3 Experimental Results on Maritime Images

We extend our proposed method to handling maritime hazy images in this sub-
section. Due to the specific imaging conditions, maritime images commonly con-
tain different geometrical structures compared with other natural images. In par-
ticular, they sometimes include large sky regions leading to the ineffectiveness
of widely-used DCP in practical applications. The dehazing results are visually
illustrated in Fig. 4. It could be observed that Tarel-09 [31] fails to effectively
remove the haze. In contrast, the other competing methods could significantly
reduce the haze and enhance the image quality. However, He-13 [13], Meng-13
[38] and Berman-16 [7] still suffer from color distortion or severely block effect
in sky regions. By contrast, the proposed method can generate a good balance
between haze reduction and artifacts suppression. This is due to the superior
properties of TGV regularizer and correction mechanism. The visual quality has
been significantly enhanced.
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6 Conclusion

A novel two-phase transmission estimation framework is proposed for robust
image dehazing. The DCP-based coarse transmission map was estimated in the
first phase. The coarse version was then refined using the TGV-regularized varia-
tional method in the second phase. The proposed method benefits much from the
image-gradient-guided data-fidelity term, which effectively sharpens the edge of
refined transmission map. In addition, because of the detail-preserving property
of TGV regularizer, the final restored images contain more fine details without
unwanted artifacts. Numerous experiments have demonstrated that our proposed
method is comparable or superior to current state-of-the-art single image dehaz-
ing methods. It is well known that TGV-regularized variational methods have
the capacity of removing undesirable noise while preserving important image
structures. Therefore, there is a huge potential to extend the proposed method
to image dehazing in the presence of noise in our future work.
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Abstract. Recent works on single-image super-resolution are concen-
trated on improving performance through enhancing spatial encoding
between convolutional layers. In this paper, we focus on modeling the
correlations between channels of convolutional features. We present an
effective deep residual network based on squeeze-and-excitation blocks
(SEBlock) to reconstruct high-resolution (HR) image from low-resolution
(LR) image. SEBlock is used to adaptively recalibrate channel-wise fea-
ture mappings. Further, short connections between each SEBlock are
used to remedy information loss. Extensive experiments show that our
model can achieve the state-of-the-art performance and get finer texture
details.

Keywords: Single image super resolution
Squeeze-and-excitation block · Channel-wise recalibrate
Deep residual learning · Image restoration

1 Introduction

Single-image super-resolution (SISR) is a popular computer vision problem,
which aims to reconstruct a high-resolution (HR) image from a low-resolution
(LR) image. However, SISR is still considered as an ill-posed inverse problem
due to high-level information loss during image downsampling. To solve this
problem, many algorithms have been proposed.

Early methods [15,17,19–21], besides bicubic and bilinear interpolation,
learned the mapping from LR to HR pairs directly by sacrificing certain accu-
racy or speed for improvements. Super-Resolution Convolutional Neural Network
(SRCNN) proposed by Dong et al. [3] was the first successful model that adopted
CNN structure to solve SISR problem and obtained great performance improve-
ment. In SRCNN, convolutional neural network was used to learn non-linear
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mapping from each LR vector to a set of HR vector. Due to the outstanding
performance of SRCNN, several deeper and more complicated models has been
proposed to follow it, such as VDSR proposed by Kim et al. [8]. Though VDSR
achieved excellence performance, its speed remained slow speed as it use a very
deep residual convolutional network and an upscale image preprocess.

To avoid the complexities of feature extraction network and upscale prepro-
cess, Shi et al. [16] replaced upscale preprocess with sub-pixel convolution layers.
The sub-pixel layers could produce HR image from feature maps directly with a
set of up-scaling filters. This architecture greatly improved the speed of networks.
Therefore, following the strategy of up-sampling layer, Ledig et al. [12] further
proposed a SRResNet with a very deep ResNet [5] architecture. Lai et al. [11]
proposed the LapSRN, which use learned kernel as up-sampling unit to direct
produced SR images.

In spite of great success achieved in the above architectures, the main
issue that how to model mapping from LR to HR images better in a fast
and flexible way remained unsolved. In this paper, we have proposed a Super-
Resolution Squeeze-and-Excitation Network (SrSENet) for SISR. The concept
of SEBlock [6] is employed to better modeling interdependencies between chan-
nels. Short connections from input to each SEBlock are used to remedy informa-
tion lost. And different deconvolution layers are used for different scales under
the same feature extraction architecture. The proposed method is evaluated on
some popular publicly available benchmarks. Extensive experiments show that
our proposed model can achieves competitive accuracy in a more accurate and
flexible way. It can greatly reduce models complexity by using less layers and
allow designing more flexible applications.

The contributions of this paper are two folds:

– We have introduced an effective super-resolution network with SEBlock. It
performs dynamic channel-wise feature recalibration to provide a new power-
ful architecture to improve the representational ability of information extrac-
tion part from low-resolution images.

– We have set up a new state-of-the-art super-resolution method with fast
running speed and accurate result in the measurement of PSNR and SSIM
without increasing the complexity of the network, especially in case of large
upscale rate.

2 Related Work

2.1 Single-Image Super-Resolution

In this section, we are mainly concentrated on reviewing mainstream deep learn-
ing based single-image super-resolution methods. Typically, a SISR network
could be approximately divided into two parts. The first part could be seen
as a feature extraction block, which is composed of many stacked convolutional
layers. The second part records up-scaling information from LR images to HR
images. Recent works are concentrated on improving the first part by changing
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the way of skip connections between inputs of each layer. In other words, they
focus on changing the proportion of information captured by initial layers.

Fig. 1. Comparisons on network architectures of four typical deep learning based SISR
categories.

We group mainstream deep learning based SISR models into four categories,
as shown in Fig. 1. The (a) category contains feature extraction, such as network
in [3]. The (b) category like [8] introduces short connection as residual-learning.
The (c) category like accepts input in each feature extraction layer. Our proposed
model could be categorized into the last category (d). The difference from the
other three categories is that each extraction layer block receives input before
channel-wise modeling. In this way, network could better learn mapping between
LR-HR images.

2.2 Squeeze-and-Excitation Channel

Different from works on enhancing spatial encoding, SENet [6] was proposed
to fully capture channel-wise dependencies through adaptive recalibration. The
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SENet was separated into two steps, squeeze and excitation, to explicitly model
channel interdependencies.

Fig. 2. Our proposed Network architectures of SrSENet in upscale of 4x. Blue blocks
represent a Convolutional layer. Yellow blocks represent a LeakRelu layer. Green Blocks
represent a Transposed Convolutional layer. (Color figure online)

After initial images were input into the first convolution layer, the output fea-
ture U ∈ R

W×H×C was passed to a SEBlock to do squeeze and excitation oper-
ator. The squeeze operator was used to embed information from global receptive
field into a channel descriptor in each layer. Then a sigmoid activation function
and FC layer were later used to gain nonlinear interaction between each layers.
The squeeze operator produced a sequence S in 1 × 1 × C which represented the
correlations of each layer. The excitation operator later was employed to perform
feature recalibration through reweighting the original feature mappings

Ũ = Fscale(U, S) = uc × sc,

where uc refers to the parameters of the c-th filter and sc denotes the element
of c-th channel descriptor. This architecture can help feature extraction parts
better capture the information from input to output. In our work, we combined
SEBlock with ResNet for feature extraction.

2.3 Transposed Convolutional Layer

In order to obtain super-resolution images, a simple idea is to upscale original
image first, then final HR image is directly generated from the resulted scaled
image. It is not difficult to find that this kind of strategy wastes much time on
preprocessing without any obvious advantage.

Shi et al. [16] first proposed to use sub-pixel convolution layer to produce
HR images directly. It upscale a LR image by periodic shuffling the elements of
a W × H × C · r2 tensor to a tensor of shape rH × rW × rC. However, it didn’t
make full use of the correspondence information from LR to HR. LapSRN [11]
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was proposed by to use a multiple transposed convolutional layer to deal with
different upscale rate in a progressive way. Without any preprocessing step like
upscale, LapSRN achieved more accurate information between LR and HR in a
fast way.

Following previous works, we use transposed convolutional layer with differ-
ent parameters for different upscale rate, which can keep network simple and
improve the power of networks to record reconstruction information.

3 Proposed Method

The proposed method aims to extract information from the LR image IL and
learn mapping function F from IL feature maps to HR images IH . We describe
IL with C channels in size of W × H. With upscale rate r, IH is in size of
rW × rH. Our ultimate goal is to minimize the loss between the reconstructed
images and the corresponding ground truth HR images. In the following, we will
describe the details of the proposed method.

3.1 Network Architecture

Our proposed method is inspired from SRResNet [12] and LapSRN [11]. Follow-
ing LapSRN, our model contains two parts: residual learning stage and image
reconstruction stage, as shown in Fig. 2.

Unlike SRResNet and LapSRN, in the residual learning stage, we introduced
SrSEBlock to extract features from LR images. The SrSEBlock structure inte-
grates ResNet and SENet, which can better capture information from inputs
and better modeling interdependencies between channels.

As VDSR [8] suggested, in the SR ill-posed problem, surrounding pixels were
useful to correctly infer center pixel. With larger receptive field a SR model has, it
could use more contextual information from LR to better learn correspondences
from LR to HR. In our proposed network, the filters of SrSEBlock is in size of
3 × 3 × 64. Therefore, in case of depth D layer, its receptive field could be seen
as (2 × D + 1) × (2 × D + 1) in the original image space. The bigger receptive
field means our network can use more context to reconstruct images.

As we know, with the increase of network depth, gradient disappearance or
explosion will occur during training and the high-frequency information will also
disappear. So, we introduce a short connection between SrSEBlocks which can
receive input information before channel-wise modeling.

In the proposed network, we employ 8 SrSEBlocks to generate a feature map-
ping, and then we employ a transposed layer to transform the resulted mapping
directly into a residual image by applying a deconvolutional layer. On differ-
ent upscale rates, we don’t increase the number of deconvolution layers, just
directly change parameters such as the kernel size, stride and padding steps,
to obtain corresponding residual image. In image reconstruction stage, the up-
sampled LR image feature mappings and the learned residual feature mappings
are added together to reconstruct HR image. By using residual image learning,
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network converges efficiently. The final feature mapping is output directly as the
SR image.

Fig. 3. The architecture of SELayer.

3.2 Channels Excitation in SrSEBlock

Different from recent work that focus on enhancing spatial encoding, we use
SrSEBlock to model correlations between channels. In this section, we will
describe how the SrSEBlock work in our network.

In details, feature maps are input into a SELayer as Fig. 3 shows. The cor-
responding excitations to each channel are output to scale original feature map.
Taking a feature maps U in size of W × H × C as input, we first do a global
average pooling to generate channel-wise statistics z in size of 1×1×C., as show
in below

zc =
1

W × H

W∑

i=1

H∑

j=1

uc(i, j).

In order to learn nonlinear interaction between each channels, we use two FC
layers with non-linear activations to form a bottleneck, as done in He et al. [5].
This architecture could limit model complexity and benefit for generalization.
The reduction ratio r at 16 is accepted to do dimensionality reduction. The final
output s of SELayer is use to scale corresponding channels of residual feature
mappings.
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In this way, noise information in previous feature mappings could be reduced.
And channels that contain useful information will be highly activated, helping
to boost feature’s discriminative abilities. In the later ablation experiment, we
will show its effectiveness.

4 Experiments

In our experiment settings, given a set of HR images {Yi} and the corresponding
down-sampled LR images {Xi} through bicubic, our goal is to minimize the
Charbonnier Penalty Function [2] defined as below, which is a differentiable
variant of L1 norm

ρ(z) =
√

z2 + ε2.

The loss is minimized using stochastic gradient descent with the standard back-
propagation. We solve:

G∗ = arg min
G

1
n

n∑

i=1

ρ(Yi − G(Xi)),

where G represents our SR image networks.

4.1 Datasets for Training and Testing

Different from previous work, we use DIV2K [1] to train our model for more
realistic modeling. DIV2K is a newly distributed high quality image dataset for
image super resolution. Its training data has 800 high definition, high resolution
images. In our experiments, we find different image processing framework will
produce different bicubic downscale results. So for fair comparison, we all use
the bicubic downsampling algorithm in Matlab image processing tool to generate
LR-HR image pairs for our network training. For each pair, we crop HR sub
image in 96 × 96 size and downscale it to LR images by different downscale
factors. We export the pairs as MAT variable in HDF5 type.

4.2 Experiment Setup

We compare our proposed SrSENet with several state-of-the-art methods such as
SRCNN [3], FSRCNN [4], SelfExSR [7], VDSR [8], DRCN [8] and LapSRN [11] on
five common used benchmark datasets Set5, Set14 [22], BSDS100 [13], Urban100
[7] and Manga109 [14]. The restoration quality of the resulted SR is evaluated
by using PSNR and SSIM [18].
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Three scaling cases {2×, 4×, 8×} are considered. On each case, the architec-
ture of feature extraction part of our network is kept the same, and the trans-
posed convolutional layer size is changed according to different up-scale rate.
The source code of our method is available on GitHub1.

4.3 Training Details

We use 8 SrSEBlocks to do feature extraction. For each upscale deconvolution
layer, we use respective convolutional kernels [4, 2, 1], [8, 4, 2], [16, 8, 4] for
2x, 4x, 8x rate up-scaled super-resolution image respectively. Here in the format
[∗, ∗, ∗], the first represents kernel size, the second represents stride steps, and
the last is padding size in transposed layer. If dealing with odd multiples of
magnification, we can also easily achieve an odd magnification by modifying
the kernel size of the convolutional network to an odd number (e.g., [3, *, *]).
During the training, we set the initial learning rate at 0.0001. We use Adma
optimizer [10] with β1 = 0.9 to let network convergence and the training batches
is 64. It roughly takes half day on a machine using four TitanX GPUs for a
single upscale training. For illustration, the respective PSNR testing curves of
our SrSENet on Set14 are shown in Fig. 4.

Fig. 4. Respective PNSR testing curves of SrSENet on dataset Set14 for three scaling
cases. Left: scale 2×, Middle: scale 4×, Right: scale 8×.

The quantitative performance comparisons are shown in Table 1. From the
experiment results, we can easily find that our proposed method obtains compet-
itive performance in all datasets in different upscale rates. Especially in larger
scale case, the advantages of our method are more obvious. Our method can
achieve top performance with less network depth. In Fig. 5, we further show
some realistic results for visual comparison. We can find that the fine texture of
images in our method are recovered better.

In order to verify the effectiveness of the introduced SEblock, we addition-
ally have set up an ablation experiment. We construct a reduced version network
by removing SElayers out of the proposed SrSENet, while keeping other parts
remained. We have compared the reduced version with our SrSENet. The perfor-
mance comparisons on 4× scale are shown in Table 2. From the results, we can

1 Source code: https://github.com/MKFMIKU/SrSENet.

https://github.com/MKFMIKU/SrSENet
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Table 1. Quantitative comparisons of state-of-the-art methods. Red text indicates the
best performance and blue italics text indicates the second best performance. We use
results from LapSRN to do comparation, and attention that Layers in the table include
convolution and deconvolution.

Algorithm Scale Set5

PSNR/SSIM

Set14

PSNR/SSIM

BSDS100

PSNR/SSIM

Urban100

PSNR/SSIM

Manga109

PSNR/SSIM

Bicubic 2x 33.65/0.930 30.34/0.870 29.56/0.844 26.88/0.841 30.84/0.935

SelfExSR [7] 2x 36.49/0.954 32.44/0.906 31.18/0.886 29.54/0.897 35.78/0.968

SRCNN [3] 2x 36.65/0.954 32.29/0.903 31.36/0.888 29.52/0.895 35.72/0.968

FSRCNN [4] 2x 36.99/0.955 32.73/0.909 31.51/0.891 29.87/0.901 36.62/0.971

VDSR [8] 2x 37.53/0.958 32.97/0.913 31.90/0.896 30.77/0.914 37.16/0.974

DRCN [9] 2x 37.63/0.959 32.98/0.913 31.85/0.894 30.76/0.913 37.57/0.973

LapSRN [11] 2x 37.52/0.959 33.08/0.913 31.80/0.895 30.41/0.910 37.27/0.974

SrSENet 2x 37.56/0.958 33.14/0.911 31.84/0.896 30.73/0.917 37.43/0.974

Bicubic 4x 28.42/0.810 26.10/0.704 25.96/0.669 23.15/0.659 24.92/0.789

SelfExSR [7] 4x 30.33/0.861 27.54/0.756 26.84/0.712 24.82/0.740 27.82/0.865

SRCNN [3] 4x 30.49/0.862 27.61/0.754 26.91/0.712 24.53/0.724 27.66/0.858

FSRCNN [4] 4x 30.71/0.865 27.70/0.756 26.97/0.714 24.61/0.727 27.89/0.859

VDSR [8] 4x 31.35/0.882 28.03/0.770 27.29/0.726 25.18/0.753 28.82/0.886

DRCN [8] 4x 31.53/0.884 28.04/0.770 27.24/0.724 25.14/0.752 28.97/0.886

LapSRN [11] 4x 31.54/0.885 28.19/0.772 27.32/0.728 25.21/0.756 29.09/0.890

SrSENet 4x 31.40/0.881 28.10/0.766 27.29/0.720 25.21/0.762 29.08/0.888

Bicubic 8x 24.40/0.657 23.19/0.568 23.67/0.547 20.74/0.515 21.47/0.649

SelfExSR [7] 8x 25.52/0.704 24.02/0.603 24.18/0.568 21.81/0.576 22.99/0.718

SRCNN [3] 8x 25.33/0.689 23.85/0.593 24.13/0.565 21.29/0.543 22.37/0.682

FSRCNN [4] 8x 25.41/0.682 23.93/0.592 24.21/0.567 21.32/0.537 22.39/0.672

VDSR [8] 8x 25.72/0.711 24.21/0.609 24.37/0.576 21.54/0.560 22.83/0.707

LapSRN [11] 8x 26.14/0.738 24.44/0.623 24.54/0.586 21.81/0.581 23.39/0.735

SrSENet 8x 26.10/0.703 24.38/0.586 24.59/0.539 21.88/0.571 23.54/0.722

easily find that the introduced SEblocks indeed plays great importance on final
excellence performance. On the other scales, we could achieve similar conclu-
sions as well. We owe the its effectiveness to it introducing channel-wise atten-
tion mechanism, which makes channel information of each pixel on SR image
adaptively learnable.

Table 2. Ablation experiment: quantitative comparisons on 4× scale.

Algorithm Set5

PSNR/SSIM

Set14

PSNR/SSIM

BSDS100

PSNR/SSIM

Urban100

PSNR/SSIM

Manga109

PSNR/SSIM

Reduced version 31.30/0.880 28.10/0.766 27.16/0.720 25.08/0.760 28.84/0.886

SrSENet 31.40/0.881 28.10/0.766 27.29/0.720 25.21/0.762 29.08/0.888
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HR x8
Manga109

GT Bicubic SRCNN FSRCNN VDSR LapSRN SrSENet

GT Bicubic SRCNN FSRCNN VDSR LapSRN SrSENet

HR x4
Urban100

GT Bicubic SRCNN FSRCNN VDSR LapSRN SrSENet

GT Bicubic SRCNN FSRCNN VDSR LapSRN SrSENet

HR x2
Set14

GT Bicubic SRCNN FSRCNN VDSR LapSRN SrSENet

GT Bicubic SRCNN FSRCNN VDSR LapSRN SrSENet

Fig. 5. Visual comparisons on Bicubic, SRCNN, FSRCNN, VDSR, LapSRN and
SrSENet on upscale rate of 8×, 4×, 2×.

5 Conclusions

In this paper, we have proposed a new effective super-resolution model by using a
deep residual network with SrSEBlock. Our method focuses on modeling chan-
nels correlations between feature mappings from the LR image. By modeling
channel wise, we have confirmed that our method could produce more realis-
tic texture on realistic images. We set a new state-of-the-art super-resolution
method without increasing the complexities of the network. We believe that
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our approach can be applied to other real-world computer vision problems and
achieve competitive results.
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Abstract. In many areas images can be corrupted by various types
of noise and therefore image denoising is a prerequisite. For example,
medical images like the 4D-CT or ultrasound ones, are prone to noise
and artifacts that can affect diagnostic confidence. Remote sensing is
another field for which image preprocessing is mandatory to improve the
quality of source images. Synthetic Aperture Radar (SAR) images are
typically corrupted by multiplicative speckle noise. In this paper, a deep
neural network able to deal with both additive white Gaussian and mul-
tiplicative speckle noises is developed, showing also some blind denoising
capacity. The experiments on noisy images show that the proposal, which
consists in a encoder-decoder, is efficient and competitive in comparison
with state-of-the-art methods.

Keywords: Image denoising · Additive and multiplicative noises
Deep learning · Encoder-decoder

1 Introduction

In today’s digital world, an increasing amount of digital images is produced every
day. Nevertheless, the visual quality of an image is not guaranteed, since different
sources of noise can influence the pixel values. A main source is the acquisition
process and particularly the presence of defaults in the capturing device: noise
can be produced by the sensor, misaligned lenses, and so on, but noise can also
be added during its edition, storage or transmission. As a result, different types
of noise can appear in a digital image, such as Gaussian noise, Salt-and-pepper
noise, etc., and at different levels. For an observer, the impact of noise can range
from isolated speckles up to images that seem to show nothing but noise.

To recover as precisely as possible a clean image y from a noisy version x
that is the outcome of an arbitrary stochastic corruption process n: x = n(y), an
efficient image denoising method is needed. Formally, the goal of image denoising
is thus to find a function f that approximates as well as possible the inverse
function of n:

f = argmin
f

Ey ‖ f(x) − y ‖22 . (1)

c© Springer Nature Switzerland AG 2018
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It should be noticed that additive white Gaussian noise is often targeted, in
which case the corruption process can be rewritten as x = y + N (0, σ) where σ
is the standard deviation.

To solve this problem, there are two main categories of methods: model-
based optimization methods and discriminative learning methods. The objective
of the former methods is to directly solve the optimization problem, but, as
this problem is usually complex, they are time consuming. On the other hand,
discriminative learning methods try to learn a set Θ of parameters defining
a nonlinear function f̂ that approximates n−1 by minimizing a loss function
according to a data set that consists of clean-noisy images pairs. In that case,
the previous problem can be expressed as follows:

Θ = argmin
θ

1
N

N∑

i=1

‖ f̂ (xi) − yi ‖22 (2)

where xi is the noisy version of yi and N is the size of the data set. Compared to
model-based methods, discriminative ones are less flexible since they are usually
trained to deal for a specific underlying model of corruption.

Typical examples of model-based methods are BM3D [4] and WNNM [7],
while neural networks are representatives of the discriminative family. Obvi-
ously, even if the MLP has been investigated [2], with the current rise of deep
learning, deep neural networks are now the most actively studied discriminative
methods. One of the first deep network proposal was made by Xie et al. [18] in
2012, it consisted in a stacking of auto-encoders where each auto-encoder was
trained one after the other. In 2014, Long et al. [10] introduced the Fully Convo-
lutional Networks (FCN) for semantic segmentation, an architecture that allows
to produce segmentation maps whatever the image size and faster than with
patch classification approaches. A work that has led to the widespread use of
deep networks in which the fully connected part is dropped for dense predictions.

Image denoising is such a dense prediction task, whose objective is to recover
for each pixel its original gray level value. Consequently, among the various deep
networks that have recently been investigated to tackle the image denoising prob-
lem, almost all of them have adopted the FCN paradigm. However, even if these
networks belong to the same family, differences among them can be observed.
First, a FCN can be trained to recover directly the clean image or to predict a
residual image that is subtracted from the noisy input one [19]. Second, a cen-
tral problem when using a CNN for image denoising (or segmentation) is due to
pooling layers. Indeed, a pooling layer usually performs a spatial downsampling
and as the input and output images must have the same size, it means that an
upsampling process is needed. On the one hand the pooling permits to enlarge the
field of view, but on the other hand the aggregation throws away useful spatial
information. To address this issue, several different architectures have emerged:
architectures without pooling layers and the encoder-decoder architecture.

The proposal is presented thereafter throughout the following sections.
Section 2 starts with a discussion on related existing discriminative denoising
methods and more specifically deep learning ones. An overview of the proposed
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deep neural network design with its main characteristics is given in the following
section. Section 4 is dedicated to the experiments, showing the relevance of the
proposed approach. Finally, some concluding remarks are given in Sect. 5.

2 Related Works

A first example of architecture for image denoising that only has convolutional
layers is the deep network called DnCNN (Deep network CNN) proposed by
Zhang et al. [19] considering a residual learning formulation. The CNN is com-
posed of layers with three different convolutional blocks using a unique con-
volution kernel size of 3 × 3: Convolution+ReLU for the first layer, Convolu-
tion+BatchNorm+ReLU in the intermediate layers, and only Convolution in
the final layer. It has a receptive field whose size depends on the network depth
and which is correlated with the effective patch size of other denoising methods.
In fact, most of the denoising methods such as BM3D, WNNM, MLP, and so on
operate on patches. The authors have thus chosen to increase the receptive field
through a large depth. The networks of 17 and 20 layers that they trained for
additive Gaussian denoising, respectively for a specific noise level and for blind
denoising, outperformed slightly both BM3D and WNNM on the BSD68 data
set of grayscale images. A recently proposed alternative to an increased depth
or to increasing filter sizes is the use of dilated kernels, also known as atrous
convolution. Indeed, convolutional layers that only use 3 × 3 kernels but with
multiple atrous rates perform an analysis of the image at multiple scales without
needing a large depth. This approach has also been studied by Zhang et al. in
another work [21], leading to similar denoising performances.

Zhang et al. have finally introduced another architecture [20] to handle a
wide range of noise levels and spatially variant noise. This architecture, called
FFDNet for fast and flexible denoising convolutional neural network, consists of
a CNN similar to the one of DnCNN, but that does not predict the noise. The
CNN receives as input four sub-images obtained from the initial input image
using a reversible downsampling operator (factor is set to 2) and a tunable
noise level map. As output it produces four denoised sub-images which are then
upsampled to recover the final output image. For Additive White Gaussian Noise
(AWGN) removal, the experiments show that DnCNN is better for low noise
levels (σ ≤ 25), whereas for larger values FFDNet becomes gradually slightly
better with the increase of noise level. This result is all the more interesting as
it is the version of DnCNN trained for a specific noise level that is considered,
whereas FFDNet is trained in a blind context with noise level σ ∈ [0; 75].

An encoder-decoder is quite different. The encoder consists of convolutional
layers that successively downsample the input image into small abstraction maps
from which the noise is removed as the process goes deeper. The decoder is then
fed by the final abstraction map in order to reconstruct a clean image thanks
to deconvolutional layers. The reconstruction by the decoder is clearly the most
difficult part since image details might be lost during the features extraction per-
formed by the encoder. To mitigate this problem, a common approach is to adopt
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the skip connection method. In this work we have considered an encoder-decoder
with such connections. A similar architecture, but considering a residual learning
pattern, has been investigated by Gu et al. in [6] for SAR image despeckling.
Compared to SAR-BM3D and DnCNN, this Residual Encoder-Decoder NET-
work (RED-NET) has given improved denoising performances.

3 The Proposed Deep Network for Image Denoising

3.1 Network Architecture

Our network is similar to a generator architecture introduced by Isola et al. [8]
in their investigation of conditional adversarial networks to solve image-to-image
translation problems, an architecture which is itself an adaptation of one issued
from [14]. The generator we consider is the U-Net [15] version corresponding
to an encoder-decoder having skip connections between mirrored layers in both
encoder and decoder stacks. The encoder extracts salient features preserving
the detailed underlying structure of the image, while simultaneously removing
the noise, whereas the decoder produces a clean version of the input image by
recovering successive image details as it progresses through its layers in a bottom-
up way from the bottleneck layer of the encoder. Each skip connection allows
to directly shuttle the information from an encoder layer to its corresponding
decoder one, and this is appealing since the input noisy image and output clean
version share large parts of the low-level information like the location of promi-
nent edges. In fact, skip connections allow to remember different levels of details
that are useful to reconstruct the final output image.

Symmetric skip connections are very interesting because they facilitate the
training and improve image recovery. On the one hand, skip connections allow
to solve the vanishing gradient problem by backpropagating the signal directly
and, on the other hand as both input and output images have the same content,
the recovery of the clean version can benefit from the details appearing in the
corrupted one. Thus, better results are usually obtained with skip connections.

From an architecture point of view, following the specification given in [8],
the encoder is almost exclusively composed of Convolution-BatchNorm-ReLU
layers, a typical choice in CNN, except the first layer that does not undergo the
batch normalization. Let us notice that, as illustrated in the previous section,
this kind of convolutional block is also the one used in many FCN that do not
have an encoder-decoder architecture. For its part, the decoder consists of a
mixing of this kind of layer and a variant of it integrating a dropout rate of
50% before the ReLU activation. Neither pooling nor unpooling operations are
used, because aggregation induces some losses of details which, in the context
of image denoising, can be awkward. Since convolutions and deconvolutions use
4 × 4 kernels with stride 2, each encoder and decoder layer will produce feature
maps which are downsampled and upsampled, respectively, by a factor of 2.
The last top decoder layer is mapped back to the output clean image with a
deconvolution followed by a tanh activation. Our code is available on GitHub1.
1 https://github.com/rcouturier/ImageDenoisingwithDeepEncoderDecoder.

https://github.com/rcouturier/ImageDenoisingwithDeepEncoderDecoder
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Fig. 1. Schematic diagram of the proposed deep encoder-decoder network architecture.

Figure 1 shows the detailed structure of the proposed encoder-decoder. The
symmetric u-shape of the network can be in particular noticed, with the con-
tracting path which consists of the encoding layers (left-right arrows) on the
top part, while the expansive path on the bottom part is made of the same
number of decoding layers (right-left arrows). Each light blue box represents a
set of feature maps issued from an encoding layer and each greenish-blue box
with horizontal line pattern one from a decoding layer. Obviously, the size of the
input image defines an upper bound on the number of layers in the encoder and
decoder. The x-y size of the feature maps, as well as their number, is provided
on the top (encoding part) or bottom (decoding part) of each box. For example,
in the case of the decoder, 42 × 512 × 2 means that there are 1024 maps of size
42, where 512 maps are the result of the decoding of the bottleneck layer and
the other 512 ones the higher resolution features map copied from encoder. The
different arrows denote the different operations. On the one hand convolution
operations are represented by left-right arrows and on the other hand deconvolu-
tion ones by right-left arrows. The respective TensorFlow module implementing
each operation, namely conv2d and conv2d transpose, are used in the labels.
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3.2 Loss Function

A factor that has a major impact on the obtained neural network is obviously
the loss function used to drive the training process. Despite its importance, the
choice of this function is hardly ever discussed in most research works. Usually
the choice simply consists in deciding whether to use the L1–norm or the L2–
norm, the latter being the most popular option. However, even if properties of
the L2–norm explain why it is the default choice, in the case of image restoration
tasks and particularly for image denoising it is disputable. First, the key objective
of image denoising is to improve the visual quality from a human observer’s point
of view and the L2–norm is clearly not correlated with this desirable objective.
Second, it is known that the Euclidean metric is optimal when white Gaussian
noise is encountered, but for other noise schemes alternative metrics should be
considered [5]. Therefore, a loss function that is based on a metric reflecting the
visual quality should be investigated.

Such an investigation can be found in [22], a paper in which the authors
compared several losses considering two state-of-the-art metrics for image qual-
ity: the Structural SIMilarity (SSIM) index [16] and the MultiScale Structural
SIMilarity (MS-SSIM) index [17]. They compared both norms, SSIM, MS-SSIM,
and their own loss function that is a combination of MS-SSIM and L1–norm on
different image restoration tasks, among which joint denoising and demosaicking
of color image patches (31 × 31 pixels) using a FCN of three layers with PReLU
activation in the first two ones. We independently came up with the same idea
to investigate a loss function that combines the losses LL1 and LSSIM denoted
by LL1+SSIM in the following. It should be noted that the work presented in
[22] focuses on the analysis of loss functions and not on the design of a FCN for
image denoising. Formally, LL1 and LSSIM losses are defined by:

LL1(x, y) =
1

|x|
∑

p∈x

|x − y| ,LSSIM (x, y) = 1 − 1

|x|
∑

p∈x

2μxμy + C1

μ2
x + μ2

y + C1
· 2σxy + C2

σ2
x + σ2

y + C2

(3)

where x is the noisy version of the clean image y and μ, σ, are means and
standard deviations that depend on pixel p. Both are computed using a Gaussian
filter with standard deviation σG. C1 = (K1L)2 and C2 = (K2L)2 are two
constants, where L is the dynamic range of the pixel values (1 in our case due
to normalization in [0; 1]), K1 � 1 and K2 � 1. In fact, the SSIM index is a
similarity measure that combines three comparison functions measuring different
kinds of changes between images: luminance, contrast, and structure, but thanks
to a simplification it can be expressed as a product of two terms.
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4 Experimental Results

4.1 Data Set and Network Training

For image denoising, images from the Berkeley Segmentation Data Set (BSD
or BSDS)2 [13] are widely used for training and testing. For example, in [12]
they used the 300 images from BSDS300 to generate patches for training and
200 images for testing (the 200 fresh images from BSDS500). In [19], Zhang
et al. followed [3] and hence trained their image denoising model DnCNN using
400 BSD images considering three different noise levels. More precisely, for each
noise level they cropped 128 × 1, 600 patches of size 40 × 40. In [20], they used
a similar approach to train FFDNet for AWGN denoising in grayscale images.

However, it is admitted that the training of deep networks can benefit from
a large data set and therefore the question of extending the routinely used small
BSD training set arises. Hence, in their most recent works [20,21], Zhang et al.
not only considered 400 images from BSD, but also selected 400 images from the
validation set of ImageNet database and 4, 744 images of Waterloo Exploration
Database [11]. According to their experimental study in [21], the training with
an enlarged data set does not improve the denoising performance. In a first
evaluation we do not consider the BSD data set, neither for training, nor for
testing. We used as data set a subset of the 10, 000 gray images of 512×512 pixels
provided by the BOSS database [1]: the first 3, 000 images of the database are
used, with 2, 800 images for training and the 200 remaining ones for testing.

A network is trained during 50 epochs for a specific type of noise, using the
Adam optimizer [9]. The traditional SGD is replaced due to the observation of
Mao et al. [12] that Adam provides a faster training convergence of their encoder-
decoder networks. The computations have been completed on a NVIDIA Tesla
Titan X GPU, with a training time for a given noise level of about 5 h.

4.2 Denoising Performance

A measure used to assess the denoising performance of an approach is the Peak
Signal-to-Noise Ratio (PSNR), even if it is known to be a poor quality metric
when the purpose is to compare the images as perceived by the human visual
system. Indeed, a high PSNR value and good visual quality do not necessarily
go together [16]. It is rather the simultaneous taking into account of PSNR and
mean SSIM index which is a good indicator of the visual quality: when both
metrics have high values, the quality is regarded as high.

Quantitative Results. Table 1 shows the quantitative results gained for
AWGN, including noise levels σ ∈ {10, 30, 50, 70, 80}, and speckle reduction
on the test set of 200 images. The speckle noise is modeled as a multiplicative
noise that follows a Gamma distribution Γ (L, 1) of unit mean and variance 1

L ,

2 https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/
segbench/.

https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
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where L = 1. In each case the average PSNR and SSIM values of the noisy input
images are given, as well as the corresponding outcomes produced by BM3D,
and those issued by the proposed encoder-decoder and DnCNN. The results of
DnCNN have been obtained by using directly network models provided by the
authors in the GitHub3 of their Matlab implementation. For the speckle case,
the BM3D values have not been computed since the corresponding SAR ver-
sion should have been used, while DnCNN is dropped due its focus on Gaussian
denoising. As can be seen, the encoder-decoder can achieve satisfactory denois-
ing results and outperforms almost systematically BM3D and DnCNN. Indeed,
except for AWGN with σ = 10, in which case the encoder-decoder gives high val-
ues but slightly lower than those of BM3D and DnCNN, better PSNR and SSIM
results are obtained. Moreover, the noisier the images, the more advantageous it
is to use the encoder-decoder to recover clean images. For the speckle case, a com-
parison with the RED-NET results [6] shows that the proposal achieves a nearly
similar performance for L = 1. Finally, we can notice that the encoder-decoder
is able to deal with AWGN and speckle noise, once trained on the targeted noise,
an important feature which is looked for in the perspective of blind denoising.
Overall, the residual learning strategy adopted by DnCNN seems interesting for
low noise levels, but as the noise increases the reconstruction of a clean image
as performed by the proposed network is clearly more appropriate.

Table 1. Average PSNR (dB)/SSIM obtained for AWGN and speckle.

AWGN Noisy input images LL1+SSIM

σ BM3D Encoder decoder DnCNN

10 28.37/0.5798 36.97/0.9282 36.07/0.9273 37.23/0.9304

30 19.17/0.2002 31.02/0.8284 32.06/0.8626 31.11/0.8334

50 15.10/0.1052 27.56/0.7591 29.97/0.8181 27.45/0.7613

70 12.64/0.0664 24.97/0.7091 28.48/0.7865 24.55/0.7041

80 11.69/0.0545 23.76/0.6882 27.99/0.7743

Speckle L = 1 10.24/0.1441 27.86/0.7852

To further highlight the suitability of the encoder-decoder, it might be inter-
esting to have an idea of the denoising performance given by other methods.
Therefore, in Table 2 are shown the behaviors observed by Zhang et al. on BSD68
set [20] for AWGN removal with BM3D [4], WNNM [7], MLP [2], DnCNN, FFD-
Net. It can be seen that DnCNN and FFDNet outperform other methods. Even
if these results are obtained on a different data set, considering the performances
of BM3D and DnCNN in both tables as reference, the proposed encoder-decoder
appears as a valuable competitor for state-of-the-art approaches.

We have also completed a preliminary evaluation of the encoder-decoder blind
denoising ability for AWGN. To train the network, the first thousand image from
3 https://github.com/cszn/DnCNN.

https://github.com/cszn/DnCNN
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Table 2. Average PSNR (dB) obtained by Zhang et al. [20] for AWGN on BSD68.

AWGN BM3D WNNM MLP DnCNN FFDNet

σ

15 31.07 31.37 - 31.72 31.63

25 28.57 28.83 28.96 29.23 29.19

35 27.08 27.30 27.50 27.69 27.73

50 25.62 25.87 26.03 26.23 26.29

75 24.21 24.40 24.59 24.64 24.79

data set are used, where for each image its corresponding noisy versions with
σ = 10, 30, 50, and 70 are computed. The training set size is thus increased by
43% (4, 000 images), as is the computation time (7.2 h). Once trained, this blind
denoiser yields the following results for σ = 80: a PSNR of 27.50 dB and 0.7564
for SSIM value. Obviously, these values are inferior to the ones obtained with the
network trained specifically for σ = 80 shown in Table 1. But they are slightly
better than those given by the network trained only for σ = 70: a PSNR of
27.33 dB and 0.7542 for SSIM value. These results are encouraging but a deeper
investigation is needed to confirm that the proposed network can be suitably
trained to deal simultaneously with different unknown noise levels.

Visual Results. Images (a) to (g) of Fig. 2 illustrate the visual results of BM3D
and the proposed deep network, considering a same image, for AWGN with
σ = 30 and 70. It can be seen that the encoder-decoder preserves sharp edges
and finer details as the noise level increases. This point is clearly highlighted
through the comparison of images (f) and (g), since the clock on the left shaded
part of Big Ben appears far blurrier with BM3D. Furthermore, even if for σ = 30
the PSNR result is better for BM3D, the neural network yields an image with
a better visual quality: a look on the cloudy upper left part in the images (c)
and (d) is convincing in our opinion. This observation is further supported by
the SSIM value which is equal to 0.9021 for the clean image recovered by the
encoder-decoder, whereas the one for BM3D is equal to 0.8929.

Figure 2 also shows the denoising results on two different images with noise
level 70 given by DnCNN. In both cases the proposed network recovers a clean
image with far more details and a better visual quality. This is again con-
firmed by the higher values of PSNR and SSIM: for Big Ben the values obtained
from the image recovered by the encoder-decoder are, respectively, 25.01 dB and
0.8204 versus 24.11 dB and 0.7875 for DnCNN, while for the image with the
bird they are 21.86 dB and 0.7162 versus 21.24 dB and 0.6547. In the case of the
speckle noise presented in Fig. 3, despite the huge corruption interesting details
are brought out, especially in the shaded part of the building.
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(a) Ground-truth (b) Noisy (σ 30) (c) BM3D (d) Proposal
(18.83 dB) (29.54 dB) (29.06 dB)

(e) Noisy (σ 70) (f) BM3D (g) Proposal (h) DnCNN
(12.46 dB) (24.36 dB) (25.01 dB) (24.11 dB)

(i) Noisy (σ 70) (j) Ground-truth (k) Proposal (l) DnCNN
(21.86 dB) (21.24 dB)

Fig. 2. AWGN denoising results (PSNR) of an image with noise level σ = 30: (a)–(d)
and two images with noise level σ = 70: (e)–(h) for Big Ben and (i)–(l) for the bird.

(a) Ground-truth (b) Noisy (L 1) (c) Proposal
(7.18 dB) (24.54 dB)

Fig. 3. Speckle denoising results (PSNR) of one image with L = 1.
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5 Conclusion

In this paper, a fully convolutional network that consists in an encoder-decoder
with skip connections has been proposed for image denoising. The great lines
of the network have been presented and the choice of the loss function used to
carry out the training discussed. The results obtained on grayscale images show
that the network can remove AWGN and multiplicative speckle noise, provided
that it is suitably trained for the targeted noise. Moreover, compared to some
competing approaches for image denoising, the network appears to be able to
produce state-of-the-art denoising results. Finally, a preliminary evaluation of its
ability to address blind Gaussian denoising has yielded favorable performance.
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Abstract. With the recent advancement in the deep learning tech-
nologies such as CNNs and GANs, there is significant improvement in
the quality of the images reconstructed by deep learning based super-
resolution (SR) techniques. In this work, we propose a robust loss func-
tion based on the preservation of edges obtained by the Canny opera-
tor. This loss function, when combined with the existing loss function
such as mean square error (MSE), gives better SR reconstruction mea-
sured in terms of PSNR and SSIM. Our proposed loss function guar-
antees improved performance on any existing algorithm using MSE loss
function, without any increase in the computational complexity during
testing.

Keywords: Loss function · CNN · GAN · Super-resolution · Mean
square error · Mean square Canny error · Edge preservation · PSNR
SSIM

1 Introduction

Super-resolution is the process of obtaining a high resolution (HR) image from
one or more low resolution (LR) images. Classical reconstruction based image
super-resolution requires multiple low-resolution images with sub-pixel misalign-
ment at the same scale, whereas single image super-resolution requires a database
of LR and HR matched pairs to learn a mapping function between the patch
pairs at different scales [1]. Given a low resolution image during testing, this
learned function or representation can be used to reconstruct the corresponding
HR image.

Since the advent of deep learning technologies in the past decade, super-
resolution algorithms have shown remarkable improvement in the quality of the
reconstructed image. Most of the work reported in the literature have used mean
square error (MSE) loss function to minimize the error between the reconstructed
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model output and the ground truth image [2–7]. Minimizing this loss function
may reduce the high frequency content in the reconstructed image and thus may
blur the edges in it. Also, the reconstructed image may not lie precisely in the
manifold of the HR image. Researchers have endeavored to find ways to solve
this problem to a good extent as can be seen in SRGAN [8], where the authors
claim that the reconstructed output lies precisely in the manifold of HR images,
even if the reconstructed images have less peak signal to noise ratio (PSNR) and
structural similarity (SSIM). Ledig et al. [8] have used a weighted combination
of MSE loss, content loss [9] and adversarial loss to reconstruct the HR image.
This approach requires a deep architecture, such as the VGG net [10], to obtain
the local covariance structure in the image. Most of the image transformation
tasks use mean square error as loss function, which provides smooth transformed
images.

Our main contributions in this paper are as follows:

– We have performed a large number of experiments to obtain a robust loss func-
tion that improves the performance of the existing algorithms that employ
MSE loss function.

– While training, we apply Canny edge detector [11] the reconstructed output
(in batches) and also separately on the corresponding ground truth image to
compute the proposed mean square Canny error (MSCE) and assign weights
(convex combination) based on our experiments i.e. the loss function can be
given as: μ × MSE + (1 − μ) × MSCE.

– Our approach guarantees performance improvement in terms of PSNR and
SSIM over the existing approaches, if the model is trained on one dataset and
tested on different datasets as mentioned in Tables 1 and 2.

– Our model does not incur additional overhead in terms of computation during
testing to obtain the performance gain reported in Tables 1 and 2 due to our
proposed MSCE loss function.

2 Related Work

Super-resolution and image denoising can be assumed as image transformation
tasks. In super-resolution, a LR image is fed to a transformation network such as
a multilayer neural network to generate a HR image. Most of the image process-
ing tasks such as image denoising and super-resolution minimize a per-pixel loss
function to obtain reconstruction. In this work, our focus is on improving the
quality of existing super-resolution algorithms such as SRCNN [2] and ESPCN [3]
that use per-pixel loss function. Recently proposed perceptual loss function has
shown significant improvement in the perceptual quality of the images. Simonyan
et al. [12] use perceptual loss for feature visualization. Gatys et al. [13] and [14]
use perceptual loss for texture synthesis and style transfer, respectively. These
approaches solve an optimization problem and hence, are slower.

Johnson et al. [9] and Pandey et al. [15] use the benefits of per-pixel as well as
perceptual loss functions and propose a computationally efficient, optimization-
free approach that provides results for image transformation tasks that are quali-
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tatively similar to those of the above optimization-based approaches. The super-
resolution algorithm SRGAN [8] uses a weighted combination of three different
loss functions, namely mean square error, perceptual and adversarial loss to
obtain a sharper reconstruction. The images reconstructed by these methods
perceptually look sharper, even if they have low values of PSNR and SSIM.

In this work, our focus is on improving the perceptual quality, PSNR and
SSIM without incurring any additional computational overhead during testing
by the addition of a new, robust loss function that aims to preserve the edge
information.

3 The Proposed Edge-Preserving MSCE Loss Function

We employ Canny edge detector [11] to detect the edges in the reconstructed
and ground truth images. We have chosen this algorithm, since Canny operator
provides the most reliable edges amongst all the edge detection algorithms in
the literature, and also satisfies all the general edge detection criteria.

Most of the recent papers on image super-resolution and denoising use mean
square error as the loss function. This loss function may smooth the edge com-
ponents in an image. We thought of preserving the edges by defining the loss
function as a convex combination of mean square error loss and our edge pre-
serving loss as follows:

Suppose the training set consists of image pairs {Li,Hi} ; i = 1...N , where
N is the total number of training examples. The model Θ, parameterized by λ,
predicts the output Oj for a given input Lj . Let C denote the Canny operator.
Let C(Θλ(Lj))) be the resultant image obtained by applying Canny operator on
the predicted output image, Oj = Θλ(Lj). The proposed edge preserving loss
function, called the mean square Canny error - (MSCE) is given by:

Loss = μ × 1

N

N∑

j=1

‖ Θλ(Lj) − Hj ‖F

︸ ︷︷ ︸
MSE Loss (lmse)

+(1 − μ) × 1

N

N∑

j=1

‖ C(Θλ(Lj)) − C(Hj) ‖F

︸ ︷︷ ︸
Edge preserving loss (ledge)

(1)

The first term in the equation above is the mean square loss function used
to minimize the error between the reconstructed output and the ground truth
image. The second term in the loss function is the edge preserving loss function.
After a large number of experiments, the weighing factor μ has been fixed to lie
in the range 0.8 ≤ μ ≤ 0.99. To minimize this loss function, Adam optimizer [16]
is used with learning rate (lr) = 0.001, β1 = 0.999 and β2 = 0.99.

3.1 Choosing the Value of µ

– Exhaustive Experimentation: We performed experiments varying μ in
the range 0.8 ≤ μ ≤ 0.99 by incrementing its value by 0.01 each time. We
found that the models were consistently giving better results for the particular
values of μ = 0.84, 0.85 and 0.86. For the results reported in the Figs. 1, 2, 3
and 4 and Tables 1 and 2, the value of μ used is 0.85.
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– Dynamic Choice of μ: While performing the experiments, we found that
sometimes, values of μ (still in the range 0.8 ≤ μ ≤ 0.99) other than the three
specific ones mentioned above, gave better results. We made a list of those
different values of μ and tried each of them parallely in each epoch. For the
subsequent epoch, we select the model corresponding to the least value of the
loss function. Let lmse and ledge denote the mean square error loss and our
edge-preserving loss, respectively, as mentioned in Eq. 1. Let {λ̂, μ̂ } be the
optimal model parameters and μ be the weighing parameter currently chosen
during training. In each epoch, we selected the value of μ that minimized the
loss function in the right hand side of Eq. 2:

μ̂ = argmin
μ

{μ × lmse + (1 − μ) × ledge} (2)

We used the earlier approach for calculating the loss in our experiments,
results for which have been reported in the Tables. A dynamic choice of the
value of μ gives similar results in less number of epochs. It can be experi-
mented further to possibly achieve still better results.

4 Datasets Used for Training and Testing

The models are trained on DIV2K [17] training dataset with the original architec-
ture (without changing the architectural details of the existing model) proposed
in the respective papers. We have performed testing on different datasets such
as Set5 [18], Set14 [19], BSD [20] and URBAN100 [21] for the different scale
factors of 2, 3, 4 and 8. We have found that there is consistent performance gain
over the original models, in terms of PSNR and SSIM, on all the datasets on
which our MSCE loss function has been tested so far. These results are seen
quantitatively in Tables 1 and 2.

(a) SRCNN original (b) SRCNN MSCE (c) ESPCN original (d) ESPCN MSCE

Fig. 1. Qualitative comparison of the results for an upscale factor of 2, when the ppt
image from Set14 is directly fed to the original model and the model modified with
MSCE loss trained by us. (a) The output image reconstructed by the original SRCNN
model. (b) The output image reconstructed by SRCNN model modified with MSCE
loss function. (c) Image reconstructed by the original ESPCN model. (d) Output image
reconstructed by ESPCN model modified with MSCE loss function.
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5 Experiments and Discussion

We have performed extensive experiments on different super-resolution algo-
rithms proposed recently, by augmenting the original loss function with our
proposed mean square Canny error loss function.

We have validated the effectiveness of our proposed MSCE loss function on
the recent techniques of SRCNN [2] and ESPCN [3]. We found that the addition
of our MSCE loss leads to better results and the improvement is consistent on
both methods across different upscaling factors of 2, 3, 4 and 8.

(a) SRCNN original (b) SRCNN MSCE (c) ESPCN original (d) ESPCN MSCE

Fig. 2. Comparison of the results for an upscale factor of 3, when the comic image
from Set14 is directly fed to the original model and the model modified with MSCE
loss trained by us. (a) Output image reconstructed by the original SRCNN model.
(b) Output image reconstructed by SRCNN model modified by MSCE loss function.
(c) Output image reconstructed by the original ESPCN model. (d) Output image
reconstructed by ESPCN model modified by MSCE loss function.

(a) SRCNN original (b) SRCNN MSCE (c) ESPCN original (d) ESPCN MSCE

Fig. 3. Comparison of the results for an upscale factor of 4, when the baby input image
from Set5 is directly fed to the original model trained by us and the model modified
with MSCE loss trained by us. (a) Output image reconstructed by the original SRCNN
model. (b) Output image reconstructed by SRCNN model modified by MSCE loss
function. (c) Output image reconstructed by the original ESPCN model. (d) Output
image reconstructed by ESPCN model modified by MSCE loss function.
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(a) SRCNN original (b) SRCNN MSCE (c) ESPCN original (d) ESPCN MSCE

Fig. 4. Comparison of the results for an upscale factor of 8, when the baboon input
image from Set14 is directly fed to the original model trained by us and the model
modified with MSCE loss trained by us. (a) Output image reconstructed by the orig-
inal SRCNN model. (b) Output image reconstructed by SRCNN model modified by
MSCE loss function. (c) Output image reconstructed by the original ESPCN model.
(d) Output image reconstructed by ESPCN model modified by MSCE loss function.

Table 1. P∗ and S∗ are the PSNR and SSIM values obtained by the method * for the
upscaling factors of 2, 3, 4 and 8, whereas P c

∗ and Sc
∗ are the corresponding PSNR and

SSIM values obtained after augmenting the loss function by the MSCE loss function
designed by us. All the models other than bicubic (non-learnable) have been trained
on DIV2K training dataset. For testing, we have used 4 datasets, namely Set5, Set14,
Urban and BSD.

Dataset Pbicubic Sbicubic Psrcnn Ssrcnn Pc
srcnn Sc

srcnn Pespcn Sespcn Pc
espcn Sc

espcn

Set5 2x 27.02 0.92 28.44 0.93 28.57 0.93 26.48 0.92 26.59 0.92

3x 25.41 0.89 26.59 0.90 26.75 0.91 25.882 0.91 25.888 0.91

4x 21.96 0.79 23.22 0.82 23.37 0.83 22.35 0.81 22.49 0.82

8x 18.10 0.61 18.740 0.63 18.743 0.63 18.33 0.62 18.43 0.62

Set14 2x 24.10 0.86 25.22 0.88 25.32 0.88 23.50 0.87 23.56 0.87

3x 22.65 0.81 23.62 0.84 23.68 0.84 23.06 0.84 23.06 0.84

4x 20.01 0.70 20.96 0.73 21.04 0.73 20.12 0.71 20.32 0.72

8x 17.13 0.53 17.57 0.56 17.58 0.56 17.20 0.56 17.27 0.56

Urban 2x 20.66 0.84 22.26 0.87 22.44 0.87 21.38 0.87 21.42 0.87

3x 20.22 0.79 21.47 0.83 21.53 0.83 21.18 0.83 21.18 0.83

4x 16.92 0.65 17.81 0.69 17.84 0.69 17.54 0.70 17.59 0.70

8x 14.63 0.48 15.04 0.50 15.04 0.50 14.94 0.507 14.99 0.509

BSD 2x 25.88 0.89 25.96 0.90 26.18 0.90 23.36 0.87 23.41 0.88

3x 21.86 0.77 22.49 0.81 22.54 0.81 22.34 0.81 22.35 0.81

4x 21.43 0.73 22.08 0.77 22.13 0.77 21.28 0.76 21.41 0.77

8x 18.43 0.57 18.78 0.59 18.81 0.59 18.47 0.587 18.58 0.589
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(a) SRCNN 2x (b) SRCNN MSCE 2x (c) ESPCN 2x (d) ESPCN MSCE 2x

(e) SRCNN 3x (f) SRCNN MSCE 3x (g) ESPCN 3x (h) ESPCN MSCE 3x

(i) SRCNN 4x (j) SRCNN MSCE 4x (k) ESPCN 4x (l) ESPCN MSCE 4x

(m) SRCNN 8x (n) SRCNN MSCE 8x (o) ESPCN 8x (p) ESPCN MSCE 8x

Fig. 5. Comparison of the results obtained on down-sampled (by bicubic interpolation
without blurring) images on different upscaling factors. (a), (b), (c) and (d) have been
down-sampled by a factor of 2 and reconstructed. (e), (f), (g) and (h) have been down-
sampled by a factor of 3 and reconstructed. (i), (j), (k) and (l) have been down-sampled
by a factor of 4 and reconstructed. (m), (n), (o) and (p) have been down-sampled by
a factor of 8 and reconstructed.
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6 Results

Figures 1, 2, 3 and 4 show both the results qualitatively: one obtained by passing
the input image directly to the original models SRCNN [2] and ESPCN [3]
with the loss functions used in the original papers, and the other obtained by
augmenting the loss function with our MSCE loss function. Comparison of the
results obtained on down-sampled (by bicubic interpolation without blurring)
images are shown in Fig. 5, for different upscaling factors.

Tables 1 and 2 list the quantitative results obtained by the two superres-
olution methods on the datasets Set5, Set14, URBAN and BSD for different
upscaling factors and the corresponding values obtained after they are modified
by our MSCE loss function.

Note 1: Table 1 lists the results obtained from the LR images created by
downsampling using normal bicubic interpolation. Whereas, the results reported
in Table 2 are obtained by blurring the image by a Gaussian filter with radius
2 and then downsampling by bicubic interpolation to obtain the LR images at
different scales.

Table 2. P∗ and S∗ are the PSNR and SSIM values obtained by the method * at
the different upscaling factors of 2, 3, 4 and 8, whereas P c

∗ and Sc
∗ are the corre-

sponding PSNR and SSIM values obtained by augmenting the loss function by the
MSCE loss function designed by us. All the models other than bicubic (non-learnable)
are trained on DIV2K (blurred by Gaussian blurring, then downsampled by bicubic)
training dataset. For testing, we use 4 datasets, namely Set5, Set14, Urban and BSD.

Dataset Pbicubic Sbicubic Psrcnn Ssrcnn Pc
srcnn Sc

srcnn Pespcn Sespcn Pc
espcn Sc

espcn

Set5 2x 21.10 0.77 23.96 0.83 24.06 0.84 21.21 0.75 21.87 0.79

3x 21.63 0.79 22.38 0.85 24.75 0.86 22.50 0.80 22.88 0.83

4x 20.12 0.72 21.92 0.78 21.94 0.78 21.53 0.77 21.92 0.78

8x 17.72 0.59 18.17 0.61 18.34 0.61 18.48 0.613 18.56 0.614

Set14 2x 19.35 0.67 21.75 0.76 21.78 0.76 19.50 0.67 20.08 0.70

3x 19.84 0.69 20.64 0.77 22.25 0.78 20.63 0.73 20.99 0.74

4x 18.67 0.62 20.02 0.69 20.07 0.69 19.75 0.68 20.04 0.69

8x 16.84 0.52 17.16 0.54 17.29 0.54 17.35 0.55 17.43 0.54

Urban 2x 16.57 0.63 18.87 0.74 18.86 0.74 16.93 0.63 17.33 0.66

3x 17.63 0.66 18.96 0.76 20.03 0.76 18.68 0.71 18.87 0.72

4x 15.85 0.58 17.05 0.65 17.07 0.65 16.96 0.64 17.05 0.64

8x 14.42 0.47 14.74 0.49 14.81 0.49 14.96 0.49 14.97 0.48

BSD 2x 21.00 0.71 23.27 0.80 23.28 0.80 20.92 0.71 21.67 0.75

3x 19.82 0.66 20.27 0.75 21.59 0.75 20.30 0.70 20.60 0.72

4x 20.13 0.67 21.32 0.73 21.35 0.73 21.06 0.73 21.38 0.73

8x 18.18 0.56 18.38 0.58 18.51 0.58 18.70 0.58 18.70 0.58
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7 Conclusion

A large number of research papers have been published in the recent past by
designing different models or algorithms that work reasonably well. The unique
contribution of our work is that it improves the performance of any existing
method, rather than proposing another technique. In this paper, we have pro-
posed a robust edge-preserving loss function that adds performance gain in terms
of PSNR and SSIM to any existing model, without increasing the computational
cost involved in testing. We train the existing model by adding weighted Canny
edge based loss. Minimizing this loss function helps to preserve the edges by
giving more weightage to the edges. As shown by the Tables of results, the
PSNR and SSIM values obtained after including our MSCE loss function are
consistently better.
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