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Abstract. Occlusion remains being a challenge in visual object track-
ing. The robustness to occlusion is critical for tracking algorithms,
though not much attention has been paid to it. In this paper, we first
propose an occlusion detection framework which calculates the propor-
tion of the target that is occluded, hence to decide whether to update the
model of target. This framework can be integrated with existing tracking
algorithms to increase their robustness to occlusion. Then we introduce
a new benchmark which contains sequences where occlusion is the main
difficulty. The sequences are chosen from public benchmarks and are fully
annotated. The proposed framework is combined with several standard
trackers and evaluated on the new benchmark. The experimental results
show that our framework can improve the tracking performance, with
explicit incorporation of occlusion detection.
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1 Introduction

Generic object tracking [1,3,5–7,12–14], where the tracker is not specialized
to any specific category of objects, is a popular research field in recent years.
Because of the category-agnostic, it is not possible to train a detector offline for a
particular type of objects, such as pedestrians or hands. Consequently, occlusion
is the most challenging factor for generic object trackers [8], since the trackers
usually cannot discriminate the occluders from the targets.

Majority of the work in handling occlusion is to add a sub-module before tar-
get model updater to monitor the tracking reliability. In [20], the feedback from
tracking results is utilized to decide whether or not to update the target model.
However, this strategy still cannot tell what is actually happening, occlusion or
target appearance variation, both of which will decrease the tracking confidence.
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COD (Context-based Occlusion Detection for Tracking) [15–17] is a frame-
work that monitors the background-patches around the target and can identify
which of them occlude the target. However, several drawbacks exist. First, the
number of background-patches that COD monitors is constant, which contami-
nates the adaptive ability of the framework. Furthermore, determining the occlu-
sion occurrence simply by the number of occluders over-simplifies the problem
and is not guaranteed to be reasonable in all occasions. To solve these issues, we
present Adaptive COD, which is adaptive to differently sized targets and able to
identify what proportion of the target is affected by occlusion. The number of
background-patches is now dependent on the perimeter of the target, hence more
background-patches will be allocated to deal with a larger target. After acquir-
ing the positions of the background-patches that occlude the target, we calculate
the proportion of the target that is under occlusion. If the proportion is greater
than a threshold, model updater will not take any action, avoiding the model
being corrupted. The background-patches that occlude the target continues to
be monitored, while other background-patches are discarded and new ones will
be generated around the new target. As a general framework, Adaptive COD
can be integrated with any existing tracking algorithm to address the occlusion
problem.

To better evaluate the performance of different trackers and promote
the development of tracking algorithms, several benchmarks have been built.
OTB [21], VOT [10], and ALOV [19] are the most widely used ones. In OTB [21],
each sequence is tagged with 9 attributes, including occlusion, illumination vari-
ation and so on, which represent the challenging factors in visual tracking. A
sequence will be tagged with attribute ‘occlusion’ if there are frames in the
sequence where occlusion happens. In VOT [10], the attribute annotation is fur-
ther refined to per-frame level. Later in NUS-PRO [11], the occlusion is classi-
fied into three levels: no occlusion, partial occlusion and full occlusion. Recently,
attribute-specific benchmarks appear. In [18], a dataset for fast moving objects
is collected. A higher frame rate video dataset is proposed in [4]. Although
occlusion is one of the attributes in OTB [21] and VOT [10], the frames where
occlusion happens only take up a small proportion of the overall sequence. More-
over, before the tracker meets these frames, the tracking results have already
drift from the groundtruth, which means that different trackers will have differ-
ent initialization setups in terms of evaluating their robustness to occlusion. In
this paper, we build an attribute-specific benchmark which contains sequences
where the target undergoes occlusion. In our proposed dataset, we exclude other
attributes and only preserve the frames relevant to occlusion. Each sequence
contains three parts: before, during and after occlusion. We evaluate our model
updating strategy by integrating it with several mediocre tracking algorithms,
including KCF [7], SAMF [14], DSST [3] and Staple [1]. The experimental
results show that the Adaptive COD improves the robustness of these tracking
algorithms.
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Algorithm 1. (Adaptive) COD
Initialize target tracker and background-patch trackers;
for t = 2 to T do

Track the target and output target tracking result;
Track the background-patches and identify occlusion;
If no occlusion, update target tracker;
Update background-patch trackers.

end for

In summary, the main contributions of this paper are as follows:

1. We improve the occlusion detection framework in [17]. The number of
background-patch trackers is adaptive to the size of target. A new model
updating strategy is proposed.

2. We establish a new dataset where the sequences contain occlusion for evalu-
ating the robustness of tracking algorithms.

3. Extensive experiments demonstrate the effectiveness of our occlusion detec-
tion framework and occlusion benchmark.

2 Occlusion Detection Framework

In this section we first briefly review the Context-based Occlusion Detection for
Tracking (COD) framework [17]. Then the proposed Adaptive COD is presented.

2.1 COD Review

Based on the assumption that both target and background-patches are involved
in occlusion, COD [17] pays attention to the background around the target to
actively detect occlusion. As is shown in Algorithm 1, two kinds of trackers
exist in the framework: target tracker and background-patch trackers. Target
tracker estimates the bounding box of target in the current frame, while the
background-patch trackers provide the position and tracking reliability of every
background-patch surrounding the target. Intuitively, if the bounding boxes of
a background-patch and the target overlap and that the background-patch has
high tracking reliability (hence it is not occluded by the target), then the target
is occluded by the background-patch. Please refer to [17] for more details.

However, COD has the following disadvantages. Firstly, the number of
background-patches N1 is constant for variously sized targets in different
sequences. For small targets, N1 is relatively too large. Therefore, many
background-patches overlay with each other, causing the double counting and
repeated calculation. For large objects, N1 becomes relatively small, so the back-
ground around the target is not fully monitored. Secondly, the target model will
be updated online if the number of background-patches that occlude the target,
N , is greater than a constant threshold Nth. Similarly, for targets of different sizes,
N as merely a counting result cannot properly measure the degree of occlusion.
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2.2 Adaptive COD

We propose an Adaptive COD to overcome the limitations of COD mentioned
in Sect. 2.1. Adaptive COD inherits the structure from COD but differs in two
important aspects: the initialization step and the criterion for identifying occlu-
sion. They are shown in Algorithm 1.

Fig. 1. In left, the number of background-patches for sequence Girl is 38, while
for sequence David3 it is 83. In right, the curve shows non-occluded propor-
tion of the target for every frame in sequence Tiger2, along with the the frames
#27,#107,#186,#238,#256,#355, corresponding to local minima of the curve. The
blue boxes show where the occlusion happens.

Denote the bounding box of target in frame t as (xt, yt, wt, ht) for t = 1, ..., T ,
where (xt, yt) are the upper-left corner point coordinates and (wt, ht) are the
width and height. Then we set N1 = [ (w1 + h1)/2 ], where [x] will round x to
its nearest integer. In this way, the number of background-patches is dependent
on the size of target. Unless the scale of target varies heavily, we keep using N1

in the following frames. The results can be seen in Fig. 1.
We propose a new criterion for identifying occlusion. For target with param-

eter (xt, yt, wt, ht), we build a mask Mt as follows:

Mt(x, y) =

{
1, if x ∈ [xt, xt + wt] && y ∈ [yt, yt + ht]
0, otherwise

(1)

I.e., Mt has the same size of frame and the region representing the target is
set as 1. The area of target region is At =

∑
Mt. Similarly, for a background-

patch with parameter (bxi
t, by

i
t, bw

i
t, bh

i
t) for i = 1, 2, ..., N1, we build a mask mi

t.
Denoting the tracking reliability of background-patch i as rit which is usually
calculated as Peak-to-Sidelobe Ratio [2], we update Mt as

Mt =

{
Mt − mi

t, if rit > rth

Mt, otherwise
(2)
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where rth is the threshold. After inspecting every background-patch and updat-
ing Mt, the area of target that is not occluded is St =

∑
Mt. We use γt = St / At

as the measurement of occlusion, as is demonstrated in Fig. 1. Compared with
using N as the indicator of occlusion in COD, the new area-based adaptive
criterion makes sense for targets of any size.

After identifying occlusion, the algorithm makes decision on whether to
update the target tracker. The background-patches that are identified as occlud-
ers will continue to be monitored. Meanwhile, the algorithm will not pay atten-
tion to the other background patches which does not occlude the target and
new background patches around the target in current frame will be added in the
monitoring set.

3 Occlusion Benchmark

In this section, we present a new specialized benchmark for evaluating the robust-
ness of tracking algorithms to occlusion. The benchmark is available at https://
pan.baidu.com/s/1qZ0KeoW.

Although occlusion is one of the attributes in OTB [21], VOT [10] and NUS-
PRO [11], these benchmarks still cannot accurately reflect the robustness of
tracking algorithms to occlusion, due to the following reason. Each sequence
usually has multiple challenging factors. Suppose a sequence s with frames
(#1,...,#t1,...,#t2,...,#T ), where the occlusion happens in frames between #t1
and #t2. Since all the trackers start tracking in frame #1, they will have differ-
ent tracking outputs before the occlusion occurs in frame #t1, which means that
the performance on frames between #t1 and #t2 is heavily influenced by the
previous frames. As a recent study [9] shows, performance measures computed
on a sequence are significantly biased to the dominant attribute of the sequence.
Moreover, besides occlusion, there may exist other challenging factors in frames
between #t1 and #t2, which makes the evaluation more unreliable.

Fig. 2. Sequences in our occlusion benchmark can be divided into three parts. The
first column shows the first frames of sequences Coke 1 and fish2 1. The second and
third columns show the targets being occluded. The last column shows targets after
occlusion.

https://pan.baidu.com/s/1qZ0KeoW
https://pan.baidu.com/s/1qZ0KeoW
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Table 1. Statistics about our occlusion benchmark.

Sequence sources # Target categories #

From OTB 31 Person 19

From VOT 12 Object 15

From NUS-PRO 8 Animal 4

Total sequences 51 Face 8

Total frames 2628 Other 5

Based on these observations, we propose an occlusion benchmark that has
the following characteristics:

1. Each sequence s with frames (#1,...,#t1,...,#t2,...,#T ) can be divided into
3 sub-sequences. In the first sub-sequence with frames (#1,...,#t1), neither
occlusion nor other challenging factor occur, so the target model can be ini-
tialized. In the second sub-sequence with frames (#t1,...,#t2), the target is
occluded. In the last sub-sequence with frames (#t2,...,#T ), occlusion disap-
pears so we can identify if the tracking succeeds. See Fig. 2 for explanation.

2. In frames (#t1,...,#t2), we exclude other attributes such as deformation, so
that the only difficulty for tracking is to handle occlusion. However, it is a
common scenario that the occluders are of the same category as the targets
and have similar appearance, so we keep these sequences in the benchmark.

3. The sequences are selected from OTB [21], VOT [10] and NUS-PRO [11] with
diversity and richness. The statistics is shown in Table 1.

In our occlusion benchmark, we propose a new metric called Normalized
Center Location Error (NCLE) for evaluating performance. For tracking result
(cx1, cy1, w1, h1) and ground-truth (cx, cy, w, h) where (cx1, cy1) and (cx, cy) are
center locations, the traditional CLE adopted by OTB [21] is defined as

CLE =
√

(cx1 − cx)2 + (cy1 − cy)2. (3)

A constant number, 20-pixel, is used for ranking trackers. However, for differently
shaped and sized targets, 20-pixel deviation may have distinct meanings. For
example, the width of a pedestrian target is usually smaller than the height, so
the deviation is more serious if it is in the horizontal direction. In NCLE, we
normalize the CLE by the width and height of target:

NCLE = min{ max{ |cx1 − cx|
w

,
|cy1 − cy|

h
}, 1 }. (4)

NCLE = 1 means a tracking failure. We utilize NCLE-based Precision Plot and
Success Plot [21] as performance measurements in our occlusion benchmark.

4 Experiments

In this section, we present the experimental results of several recent track-
ing algorithms evaluated on our occlusion benchmark, including KCF [7],
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SAMF [14], DSST [3] and Staple [1]. Meanwhile, we integrate these trackers
into our adaptive COD framework to validate its effectiveness. All the code is
available at https://github.com/xgniu/Occlusion-Benchmark.

Fig. 3. The quantitative evaluation results. Left: NCLE-based Precision Plot. The
numbers in brackets are the proportion of frames that have NCLE less than 0.5. Right:
Success Plot.

Table 2. Different γ for different tracking algorithms. Our framework is not sensitive
to the value of γ.

Precision baseline γ=0.90 γ=0.85 γ=0.8
KCF 0.739 0.755 0.758 0.760
DSST 0.779 0.779 0.779 0.795
SAMF 0.765 0.815 0.809 0.803
Staple 0.756 0.790 0.783 0.783

Success baseline γ=0.90 γ=0.85 γ=0.8
KCF 0.699 0.707 0.714 0.720
DSST 0.709 0.715 0.716 0.732
SAMF 0.705 0.739 0.724 0.723
Staple 0.690 0.727 0.721 0.719

4.1 Quantitative Evaluation

The quantitative evaluation results are shown in Fig. 3 in the form of Precision
Plot and Success Plot. All the four trackers gain improvements in performance
after being integrated into our adaptive occlusion detection framework. More-
over, we find that though different tracking algorithms require differently val-
ued γ for best performance, a wide range of γ can provide comparable results
(Table 2). The other thresholds are the same as in COD [17].

https://github.com/xgniu/Occlusion-Benchmark
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Fig. 4. The qualitative evaluation results. Red: SAMF. Blue: SAMF OD. Green: Sta-
ple. Black: Staple OD. The four sequences are Coke, fish, Tiger2 and Lemming (Color
figure online).

4.2 Qualitative Evaluation

Figure 4 visualizes several sequences from our occlusion benchmark along
with the tracking results of different algorithms. Only the tracking results of
SAMF, SAMF OD, Staple and Staple OD are shown for clarity, where the suffix
‘ OD’ stands for being integrated into our occlusion detection framework. As
the figure shows, when occlusion occurs, SAMF OD and Staple OD outperform
their baselines.

5 Conclusion

Based on COD [17], we propose an adaptive occlusion detection framework which
calculates the proportion of target that is not occluded. To better evaluate the
robustness of tracking algorithms to occlusion, we propose an occlusion bench-
mark that excludes other challenging factors. In our benchmark, normalized cen-
ter location error is adopted as the performance measure. Much work is needed
in future to solve the occlusion problem for robust visual object tracking.
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