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Abstract. Orderly automatic collection of brain slices on the silicon
substrate is critical for understanding the working principle of the whole-
brain neural network. Accurate and real-time brain slices detection with
microscopic CCD is crucial for automatic collection of brain slices.
To solve this task, an efficient simplified SSD detection model with
Cycle-GAN data augmentation is presented in this paper. The pro-
posed simplified SSD streamlines the detection network of the original
SSD architecture, leading to a more rapid detection. Moreover, the pro-
posed Cycle-GAN data augmentation method overcomes the limitation
of training images. To verify the effectiveness of the proposed method,
experiments are conducted with a self-made brain slices dataset. The
experiment results suggest that, the proposed method has a good per-
formance of rapidly detecting brain slices with only a small training
dataset.
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1 Introduction

Three-dimensional (3D) representations of cerebral ultrastructure are essential
for fully understanding the structure and working principle of the whole-brain
neural network [1]. Currently, 3D imaging with the scanning electron microscopy
provides the resolution necessary to reliably reconstruct all neuronal circuits
contained within brain tissues [2].

For achieving high quality 3D imaging, brain tissues are sliced to brain slice
ribbons, which need to be collected on silicon substrates. The slicing mechanism
and the manually collection process are shown in Fig. 1, ribbons of brain slices
floating on a knife boat are manually deposited on a silicon substrate. However,
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Fig. 1. Process for manually collection of brain slices. (a) shows the operating envi-
ronment. (b) shows the slicing mechanism of Leica UCT ultramicrotome. (c) shows the
manually collection process. (d) shows the collected brain slices.

manually collection for huge amounts of brain slices requires the high experienced
operation skills, and also consumes intensive work. Studies have been carried out
for brain slices automatic collection, e.g., Schalek et al. developed an automated
tape ultramicrotome (ATUM) which automatically collects thousands of serial
sections on a plastic tape, but the charge accumulation of the sample caused by
low conductivity of the plastic tape will influence the imaging quality [3].

In order to realize the automatic collection with silicon substrate, a simple
automatic collection prototype was proposed, which is shown in Fig. 2. The col-
lection device allows precise position and manipulation of a hydrophilic circular
silicon wafer. The position and spin velocity of the silicon wafer could be adjusted
by a displacement platform and a rotary motor, respectively. In the collection
process, the silicon wafer was inclined dipped into a custom-built knife boat
which has a baffle plate to ensure brain slices floating in the collection area,
and as sectioning progressed the wafer was moved to the position of slices to be
collected and slowly rotated to capture the nascent sections of the brain slice
ribbons. This procedure needs an accurate and fast detection of brain slices in
the microscopic live video.
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Fig. 2. The automatic collection device for brain slices. (a) shows the collection device
and the ultramicrotome. (b) shows the detailed structure of the collection device.

This detection task is challenging due to factors like variations in brain slice
shape, color and density. And the existence of reflection light of diamond knife
and lighting condition changes in the background will also pose challenges to
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detection. In addition, unlike natural image object detection task, the difficulty
for obtaining large-scale dataset poses another challenge to train deep learning
based detection models.

To address these challenges, a simplified SSD detection model was proposed
for real-time brain slices detection task. In addition, Cycle-GAN data augmen-
tation was proposed to improve the detection accuracy with limited training
dataset. The proposed simplified SSD with Cycle-GAN data augmentation could
achieve an accurate and real-time detection in the brain slices microscopic detec-
tion task.

2 Related Works

2.1 Data Augmentation

It is a common knowledge that a deep learning based algorithm would be more
effective when accessing more training data. Previous studies have demonstrated
the effectiveness of data augmentation through minor modifications to the avail-
able training data, such as image cropping, rotation, and mirroring [4].

In recent years, generative adversarial network (GAN) has been proposed as
a powerful technique to perform unsupervised generation of desired image sam-
ples [5]. For improving image classifier performance, several data augmentation
methods based on GAN have been proposed and have shown to be extremely
good at augmenting training dataset [6,7].

2.2 Microscopic Object Detection

In recent years, deep learning based methods have achieved a great success in
object detection. Unlike traditional handcrafted features, the features learned by
deep learning based methods are more effective and general. A series of studies
have been carried out for microscopic object detection with deep learning based
methods. Mao et al. proposed a Convolutional Neural Network (CNN) with
automatically learned features achieved better results than traditional methods
[8]. Oscar et al. proposed a deep learning based method which was sufficient
for visual detection of soil-transmitted helminths and schistosoma haematobium
through a mobile, digital microscope [9].

For achieving better detection results, the state-of-the-art detection mod-
els have been applied to microscopy images. A series of methods based on
Faster Region-based Convolutional Neural Network (Faster R-CNN) were used
for microscopic cell detection, these studies reveal that using Faster R-CNN
model to detect cells in microscopic image is very effective [10-12]. However, the
two-stage detection models like Faster R-CNN based on region proposal still need
expensive computations, and are difficult to use for real-time applications. To
overcome this problem, end-to-end detection methods such as Single Shot Multi-
box Detector (SSD) are much simple and faster than Faster R-CNN, which could
be used for real-time applications [13]. Yi et al. proposed an efficient neural cell
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detection method based on a light-weight SSD neural network [14], the detection
speed is 10 FPS by testing on a single Nvidia K40 GPU. However, there is still
room for improving the detection precision and speed with SSD model.

3 Data Augmentation

3.1 Data Augmentation with Traditional Techniques

Considering that the training image set is relatively small, data augmentation
by some traditional methods was performed. In order to increase the robustness
of the model for detecting various input object sizes and shapes, each training
image was randomly sampled to patches which have minimum jaccard overlap
with the ground truth bounding box of 0.1, 0.3, 0.5, 0.7, or 0.9. In addition,
extra patches were randomly sampled from the input training image, and the
overlapped part of the ground truth box will only be kept when the center of
ground truth box was in the sampled patch. After the above-mentioned sample
step, each sample patch was resized to 300 x 300 size, and some random flipping
and photo-metric distorting were additionally performed on each sampled patch.

3.2 Data Augmentation with Cycle-GAN

In this paper, Cycle-GAN is used to augment the training data for improving
microscopic object detection performance. Unlike traditional GAN, Cycle-GAN
captures special characteristics of one image set and learns how these character-
istics could be translated into other image sets [15].

For the microscopic images set augmentation task, Cycle-GAN is used to
transfer images from training dataset into the artistic styles of Monet, Van Gogh,
Cezanne, and Ukiyo-e. Figure 3 gives an augmentation example of a single train-
ing image. Through this augmentation process, additional data annotation is
avoided due to Cycle-GAN kept the target locations in original images. The
generated training images via Cycle-GAN have different color, density, lighting
conditions compared to original training images, using these augmented images
for training will improve the generalization ability of the detection network.

Original image Cezanne style Monet style Ukiyo-e style Van Gogh style
- i g —— T o ——

Fig. 3. An augmentation example of a single training image. The brain slices micro-
scopic image in the training dataset was transferred into artistic styles of Monet, Van
Gogh, Cezanne, and Ukiyo-e.
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4 Simplified SSD Detection Model

4.1 Network Architecture

The overall pipeline of the proposed approach is shown in Fig. 4. Firstly, each
input image is initially preprocessed into 300 x 300 input size. Then, the simpli-
fied SSD is formed by following the main architecture of the original SSD with
some improvements, which aims to increase detection speed and accuracy in the
brain slices microscopic detection task. The network architecture of the proposed
simplified SSD model includes two main parts: a standard base network based on
VGG-16 architecture (without any classification layers) and an auxiliary struc-
ture consists of some extra feature layers. The base network is used for feature
extraction and the auxiliary structure is used to increase detection ability at
multiple scales.

Compared to the original SSD model, the proposed simplified SSD model
removes several extra feature layers on the top of the original SSD network. Each
feature layer in the original SSD model was designed to detect objects within
the specific range of scale, the large feature maps aim to detect small objects in
the input image. The brain slices in the microscopic images are relatively small
and without large scale change. For the brain slices detection task, three large
feature layers (Conv4_3, Conv7, Conv8_2) which aim to detect small objects were
used as the feature maps.

Similar to the original SSD, each feature map contains a specific number of
default boxes, which are of certain shapes. Then object confidences and locations
of these default boxes are predicted by two convolutional filters, i.e., localization
filter and object filter. Finally, a fixed-size prediction of locations and scores for
the presence of brain slices in those default boxes can be obtained, and a followed
non-maximum suppression step will produce the final detection results.
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Fig. 4. The network architecture of the proposed simplified SSD.

4.2 Training

Unlike two-stage detection methods such as Faster R-CNN, SSD has a simple
end-to-end training process. Next the training details are described in the fol-
lowing three aspects.
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Transfer Learning. Several data augmentation methods have been used to
solve the problem of the limited training images. However, it is not enough to
train a large CNN model. In order to solve this problem, transfer learning were
adopt to initialize the proposed simplified SSD model. In particular, the VGG-16
base network pre-trained on ImageNet classification dataset was transferred to
the proposed simplified SSD model as the base network. This transfer learning
process is an effective paradigm for helping the proposed detection model extract
the features of brain slices when training data is scarce.

Matching Strategy. Each default box in feature maps needs to be matched
with the corresponding ground truth bounding boxes. In this way, the positive
examples and negative examples for training the proposed simplified SSD can
be obtained. More specially, the jaccard overlap index of each default box with
each ground truth box is calculated. For each ground truth box, the default box
with the highest jaccard overlap index will be selected for matching. In addition,
for each ground truth box, if it’s jaccard overlap index with any default box is
higher than a threshold (0.5), then they will be matched.

Training Objective. The proposed simplified SSD training objective contains
two objective losses: the localization loss and the confidence loss. The localization
loss is defined as a Smooth L1 loss, which can be written as:

Lioe(w,1,9) = Z Z xfjsmooth,;l(llm - 397"), (1)
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where N is the total number of matched default boxes; 7; = {1,0} is an indi-
cator, a: = 1 only when the i-th default box and the j- th ground truth box of
category p were matched; [ and g represent the predicted box and the ground
truth box, respectively; (cx, cy) represents the center offset of the default bound-
ing box, and (w, h) represents the width offset and height offset of the default
bounding box.
The confidence loss is a traditional softmax loss over multiple classes confi-
dences(c), which is defined as:
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The localization loss and confidence loss are combined to obtain the fully training
objective:

1
L(z,1,9,¢) = w(Lioc(x,1,9) + Leony (, c)). (5)

5 Experiments

5.1 Data

In these experiments, rat hippocampus tissues are used for serial sectioning.
Ribbons of rat hippocampus sections were cut at 30 nm section thickness using an
ultramicrotome (Leica UCT7, Wetzlar, Germany) equipped with a diamond knife
angled at 35° (Ultra Diatome Knife, Biel, Switzerland). Then the CCD camera
(Leica IC90E, Wetzlar, Germany) was adopted to collect several microscopy
videos, from which 76 microscopic images which size of 1280x1024 were sampled.
Among these images, 60 images were used for training, 16 images for testing.

The brain slices in these microscopic images were marked by bounding boxes
as ground-truth annotations. Then data augmentation process was performed by
Cycle-GAN. After the data augmentation process by Cycle-GAN, the training
dataset contains 300 training images and 16 testing images. All the images and
annotations were made into VOC format for convenient data reading by Caffe
framework.

5.2 Results

In this subsection, the effectiveness of the proposed data augmentation method
and simplified SSD are illustrated respectively. Firstly, the proposed Cycle-GAN
data augmentation method is evaluated with three recent state-of-the-art detec-
tion algorithms: Faster R-CNN, SSD and YOLO-v3. Secondly, several com-
parison experiments were performed to illustrate the high performance of the
proposed simplified SSD. The proposed data augmentation method and object
detection model are trained and tested on a workstation with an Intel i7-6850K
processor of 3.6 GHz and a single Nvidia Titan-xp GPU.

Cycle-GAN Data Augmentation. Faster R-CNN, SSD and YOLO-v3 are
implemented on the brain slices microscopic dataset, respectively, and for com-
parison, the three state-of-the-art detection model are also implemented on the
augmented dataset. For a fair comparison, VGG16 is chosen as the base network
for all of the three detection models. The experiment results are given in Table 1.
It can be seen that the Cycle-GAN data augmentation process could effectively
improve the detection performance of all the three detection models.
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Table 1. Effects of Cycle-GAN data augmentation on three state-of-the-art detection
models

Method mAP
Use Cycle-GAN augmentation?
Yes No

SSD 0.950189 | 0.886907

YOLOv3 0.929375 | 0.869549

Faster R-CNN | 0.909146 | 0.867713

Simplified SSD. Currently, SSD is an excellent detection model for its high
speed detection performance while keep a high detection accuracy. It can be
seen that SSD detection model is also very suitable for the brain slices detection
task from Tablel. Since the ultimate objective is to detect brain slices with
microscopic CCD in real time, the detection speed needs to be further accelerated
by using the proposed simplified SSD.

The comparison experiments results are listed in Table 2. To compare with
the original SSD detection model, the proposed simplified SSD has a better
detection accuracy than the original SSD. Furthermore, the detection speed of
the proposed simplified SSD has a distinct improvement than the original SSD
detection model, and the GPU memory usage is reduced too. This characteris-
tics enhanced the model portability of the proposed simplified SSD, specifically,
it will be convenient to migrate the simplified SSD detection model to other
graphics cards with lower computing ability.

Figure 5 demonstrates several examples of the final detection results. It can
be seen that the proposed simplified SSD model is able to deal with the color
change, background interference and shape deformation of the brain slices.

Table 2. Comparison of the proposed simplified SSD and the original SSD

Method mAP FPS | GPU memory
Use Cycle-GAN augmentation?
Yes No
Original SSD | 0.950189 | 0.886907 24 | 737TMB
Simplified SSD | 0.965129 | 0.890029 29 | 689MB

To illustrate the reason for selecting the three feature layers (Conv4_3, Conv7,
Conv8_2) as the feature maps, layers of the original SSD are progressively
removed for comparing the detection results. Table 3 shows that using Conv4_3,
Conv7 and Conv8_2 as the feature maps can achieve the best detection results.
From these experiments, some interesting trends can be observed. For example,
it increases the detection performance if the small feature layers are progres-
sively removed, the reason might be that the small feature maps aim to detect
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Fig. 5. Visualization of the detection results using simplified SSD. The red boxes rep-
resent the final detection results. (Color figure online)

large objects which are not present in the microscopic images, so remove these
small feature layers on the top of SSD network may reduce the interference of
the useless large default boxes. But when only keeping Conv4_3 for prediction,
although detection speed is greatly improved, the detection performance is the
worst. In order to obtain a better detection accuracy and a comparable detec-
tion speed to the original SSD, Conv4_3, Conv7 and Conv8_2 are chosen as the
feature maps for prediction.

Table 3. Comparison of using different output layers in original SSD

Prediction source layers from mAP FPS
Use Cycle-GAN?

Conv4_3|Conv7|Conv8_2 Conv9_2|Conv10_2|Convll_2|Yes No

v v v v v v 0.950189 |0.886907 |24
v v v v v 0.958645 |0.890341 |26
v v v v 0.932281 |0.890109 |27
v v v 0.965129/0.890029 29
v v 0.963461 |0.897847 |33
v 0.900577 |0.873513 |42

6 Conclusions

A real-time detection model is proposed in this paper to detect brain slices
in microscopic live video. To this end, in order to improve detection accuracy
and speed with the relatively small training dataset, firstly, a data augmentation
method based on Cycle-GAN is proposed, which significantly increases the detec-
tion accuracy. Secondly, a simplified SSD is proposed, which aims to increase the
detection speed while reduce the GPU memory usage. The experiment results
show that the proposed simplified SSD with Cycle-GAN data augmentation can
overcome the problem of limited training dataset, and has a good ability to
detect brain slices in microscopic images in real time.
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