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Abstract. Brain functional connectivity analysis and crucial channel
selection, play an important role in brain working principle exploration
and EEG-based emotion recognition. Towards this purpose, a novel
channel-wise convolution neural network (CWCNN) is proposed, where
every group convolution operator is imposed only on a separate chan-
nel. The inputs and weights of the full connection layer are visualized
by using the brain topographic maps to analyze brain functional con-
nectivity and select the crucial channels. Experiments are carried out
on the SJTU emotion EEG database (SEED). The results demonstrate
that positive and neutral emotions evoke greater brain activities than
negative emotions in the left frontal region, which is consistent with the
result from the power spectrum analysis in the literature. Meanwhile, 16
crucial channels, which are mainly distributed in the frontal and tem-
poral regions, are selected based on the proposed method to improve
emotion recognition performance. The classification accuracy by using
the selected crucial channels is similar to that without channel selection.
But the model with the 16 selected channels is more memory-efficient
and the computation time can be reduced substantially.
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1 Introduction

Correct recognition of emotions can make artificial intelligence better serve
human beings in many aspects, such as human-machine interaction [1], emo-
tional disorder diagnose and therapy [2,3], and lie detection [4]. In the earlier
research on emotion recognition, physical signals were mainly used, which include
facial expressions, gestures, voice information, etc. [5,6]. However, these exter-
nal features are easy to be disguised and unstable, which will lead to inaccu-
rate recognition results. On the contrary, physiological indicators [7], including
galvanic skin response, electrocardiogram, and especially electroencephalogram
(EEG), can directly reflect emotional changes with a high temporal resolution.
Therefore, EEG-based emotion recognition has become an important research
direction.

Many features (differential entropy, power spectral density, common spatial
pattern, etc.) and classifiers (SVM, fuzzy logic, neural network, etc.) have been
proposed for EEG-based emotion recognition [8–10]. However, basic research on
brain functional connectivity under different emotions is still in the phase of
infancy. Tandle et al. found that positive emotions could induce a higher theta
power in the left hemisphere, while negative emotions could induce a higher theta
power in the right [11]. Zheng et al. found that features from beta and gamma
rhythms were more closely related to emotion recognition [12]. Zheng and Lu
proposed a deep belief network based method to investigate crucial frequency
bands and channels for emotion recognition, and the best classification accuracy
with the selected channels was 86.65% on the SEED database [13]. However,
there still exist several related problems, two of which concerned in this paper
are given as follows:

• Firstly, the relationship between brain functional connectivity and emotions
of different valence is still not well understood. Studying the influence of differ-
ent emotions on the brain functional connectivity, and exploring topological
properties of brain network, can provide a new evidence and perspective for
brain functional network research.

• Secondly, in the process of multi-channel EEG data collection, signals from
different channels are usually redundant, which has a negative effect on com-
putation efficiency. Therefore, it is necessary to find crucial EEG channels
for emotion recognition. Channel selection can make data processing more
efficiently, while ensuring recognition rate with minimal loss.

To address the issues mentioned above, we propose a channel-wise convolu-
tion neural network (CWCNN), where every group convolution operator is only
imposed on a separate input channel. Specifically, we divide the signals into 62
groups, of which the number is same to that of the original EEG channels. For
each channel, different convolution kernels are allocated to extract characteris-
tics of each channel, which ensures that the information from each channel is
independent. The main contributions of this paper can be summarized as follows:

1. A novel channel-wise CNN is proposed, which can be used to analyze brain
functional connectivity and select crucial channels.
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2. The brain functional connectivity is analyzed based on the full connection
layer’s inputs, which are visualized by using the brain topographic maps.

3. The channel importance to emotion recognition is determined by analyzing
inputs and weights of the full connection layer. 16 channels are selected as
the crucial channels for emotion recognition. It is found that crucial channels
are mainly concentrated in the frontal and both sides of temporal regions.

4. The emotion recognition performance before and after channel selection are
compared. From the comparison, it can be seen that after channel selection the
classification accuracy can be maintained while the computational efficiency
can be improved substantially.

The remainder of this paper is organized as follows: Descriptions of short time
Fourier transformation (STFT) and CWCNN model structure are presented in
Sect. 2. Experiment setups and result analysis are given in Sect. 3. Finally, this
paper is concluded in Sect. 4.

2 Methods

2.1 Short Time Fourier Transformation

Temporal-frequency spectra, which are obtained by STFT of the EEG signals,
are used as the inputs of the emotion recognition model of this paper. The
principle of the STFT is to extract the local signal by a sliding time window
first, and then the Fourier transform is applied to the extracted signal to get
the time-varying frequency spectrum. The sliding time window ensures that the
Fourier transform only applies in a small range of the signal, which avoids the
deficiency of the FFT’s local analysis capability and makes Fourier transform
have the ability to local orientation.

2.2 Design of the CWCNN Model

CNN has been developed in recent years and is widely applied in the field of pat-
tern recognition. Compared with the fully connected network, CNN has two char-
acteristics, namely weight sharing and local perception. Weight sharing refers to
sharing of weights between certain neurons in the same layer. Local perception
refers to the fact that the neurons are not fully connected, but local. Because
of these two features, the number of parameters can be reduced greatly, thus
reducing the complexity of the model.

The convolution operation is the most important operation in CNN, which
is used to extract characteristics. In the convolution layer, different convolution
kernels are set to operate on the input data to obtain different characteristics.
Different characteristic expressions can be obtained by different convolution ker-
nels, and the effective features will be strengthened in the continuous iterative
training process. In this way, the feature extraction can be implemented.

In order to ensure information independence among channels, the collected
data are grouped by different channels and convolution operation is carried out
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for each group in this paper, which means each kernel is imposed on one channel
only.

Let the size of input data be N×M×T (channel numbers × frequency nodes
× time nodes), and the class number of output data be 3, then the specific
structure of the CWCNN model can be described by Fig. 1.

Fig. 1. The structure of the CWCNN model. The descriptions in yellow rectangles are
parameter settings for each channel. The final mauve neurons, whose size are 1×1, are
taken as the full connection layer’s inputs.

From Fig. 1, it can be seen that all operations prior to the full connection layer
are imposed on one channel. The average inter-class inputs of the full connection
layer (I) and contributions of different channels to recognition results (P) can
be calculated by:

ic =
1

Dc

Dc∑

d=1

(i(d)) (1)

Wc = diag(w1, w2, ..., wN ) (2)

pc = Wc · ic (3)

I = [i1, i2, i3] (4)

P = [p1, p2, p3] (5)

where Dc means the number of samples with the label of c, and c ∈ {1, 2, 3},
representing positive, neutral and negative emotions, respectively; i ∈ RN×1

represents the inputs of the full connection layer; ic ∈ RN×1 means the average
inter-class inputs of the full connection layer obtained by the samples whose
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original label is c. Wc ∈ Rn×n is a diagonal matrix and represents the full
connection layer’s weights, which are related to the class c.

From the equations above we can see that, I ∈ RN×3 represents the average
inter-class inputs of the full connection layer for positive, neutral and negative
emotions. It can reflect the activities of different brain regions under different
emotions, and therefore, the activation degrees of brain can be got roughly by
analysis of the brain topographic maps based on I. The analysis result about
brain activation degrees is consistent with the previous study [11], which verifies
the validity of the data. Moreover, P ∈ RN×3, represents channel contributions
to recognition results of different emotions. The crucial channel selection can be
realized based on the P matrix.

The detailed implementation process is given in Fig. 2. It can be seen that the
experiment is divided into two modules. The first module is the training process
of the CWCNN model. The second module is for analysis. On one hand, the
average inter-class inputs of the full connection layer is calculated and visualized
by brain topographic maps to analysis brain activation degrees and functional
connectivity. On the other hand, channel contributions to emotion recognition
results, which are calculated according to the weights and average inter-class
inputs of the full connection layer, are analyzed to select crucial channels.

Fig. 2. The system block diagram for brain connectivity analysis and crucial channel
selection.

3 Experiments and Results

3.1 Emotional Dataset

The dataset used in the experiments is the SJTU emotion database (SEED) [13],
which contains 15 subjects’ EEG data (7 males and 8 females). 15 Chinese film
clips with three types of emotions, including positive, neutral and negative, were
selected to arouse the subjects’ inner feelings. All these films were simple, easy
to understand, emotional, and the duration of each film was around 4 minutes.
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The EEG data were collected by a 62-channel Neuroscan system at a sampling
rate of 1000 Hz when they were watching each film clip. After each experiment,
the subjects were asked to report their feelings by filling in a questionnaire to
ensure that they had produced the same emotions as the film conveyed. To
improve the reliability of the EEG signals, each subject was required to perform
the experiment three sessions. The time interval between two sessions was at
least one week. Therefore, there were 15 trials for each subject and each session,
and 675 trials totally.

3.2 Data Processing and Model Training

The raw EEG signals were downsampled at 200 Hz, and band-pass filtered with
a frequency band between 1 Hz and 100 Hz, which can cover all the important
EEG rhythms. The preprocessed EEG signals were decomposed by the STFT
with a 3-s sliding window (hamming window) and 1.5-s overlap. The resulting
spectra were divided into 60 fragments without overlapping to increase training
samples, and each sample inherited its parent’s label with size of 62 × 295 × 2
(channel numbers × frequency nodes × time nodes). Therefore, 40500 samples
were obtained (675 × 60), and one fifth data chosen in random were used as the
validation set, and others as the training set.

The CWCNN model was composed by three convolution layers and one full
connection layer, which was same to that of Fig. 1. The first two convolution
layers were used to extract the frequency domain information of each channel
at each time node, and the first convolution layer was followed by an average
pooling layer with size 2×1. The temporal domain characteristics were obtained
by the last convolution layer. The group number was set equal to that of EEG
channels. Kernel sizes for the convolution layers were 50 × 1, 123 × 1 and 1 × 2,
respectively.

All experiments were established in Pytorch framework with the batch size
of 32 [14]. The SGD method with 0.01 learning rate was used as the optimizer.
Categorical cross entropy and Relu were used as the loss function and activation
function, respectively.

3.3 Experiment Results

Once the final CWCNN model is determined, the weights of the full connection
layer will be fixed, and the inputs of the full connection layer will be changed with
the input data. The average inter-class inputs of the full connection layer can
be calculated by (1) and (4). In order to analyze brain functional connectivity
and select crucial channels, brain topographic maps associated with the average
inter-class inputs and weights are shown in Figs. 3 and 4.

From Fig. 3, it can be seen that the overall connectivities of the brain are
similar to each other for different emotional states. The areas with high activation
are mainly distributed in the left side of prefrontal and bilateral frontal regions,
while a small part of the parietal region is also highly activated. This means that
the emotional processing unit of the brain is mainly distributed in the frontal
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Fig. 3. Brain topographic maps of the inputs of the full connection layer under three
emotions of different valence.

Fig. 4. Brain topographic maps of the weights of the full connection layer under three
emotions of different valence.

region. In detail, compared with positive or neutral emotions, negative emotions
evoke a lower activation in the left side of the brain, which is consistent with the
results of previous study [11].

As shown in Fig. 4, for positive emotions, the channels with high weights are
mainly distributed in both the left sides of the frontal and parietal regions. For
neutral emotions, the channels with high weights are mainly distributed in right
side of the temporal region. For negative emotions, channels with high weights
are mainly distributed in the right frontal and temporal regions.

By comparing the high peak distributions in the above two figures, it can
be seen that, the channels with high activation degrees are not necessarily of
high importance to emotion recognition; on the contrary, the channels which are
important to emotion recognition, are not necessarily high activated. The aver-
aged channel contributions to emotion recognition results, which are calculated
according to (2) and (3), are given in Table 1.

According to Table 1 and the channel distributions in brain (asymmetric
properties in brain emotion processing), we selected 16 channels having relatively
big contributions, as the crucial channels. The specific channel distributions in
three different brain regions are given in Fig. 5.

In order to determine whether the selected channels have the ability to
improve emotion recognition performance, an emotional classification neural net-
work based on the general CNN, which consists of two convolution layers and
two full connection layers, were designed. The first convolution layer aimed to
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Table 1. Crucial channels and channel contributions to emotion recognition

Emotional
valence Channel ranking (Channel name/Contribution [%])

Positive FT8
5.0

F7
3.9

PO7
2.7

FT7
2.6

P7
2.4

FP1
2.2

TP7
2.0

Neutral T8
3.2

FC5
2.5

P1
2.3

CP4
2.1

F2
2.1

P5
1.9

F4
1.8

Negative P6
3.2

C6
3.0

FP1
2.6

F4
2.5

FT8
2.5

TP7
2.4

FPZ
2.4

Fig. 5. The final selected channels which are distributed in frontal, temporal and pari-
etal regions, respectively.

extract the characteristics in the frequency domain (kernel size: 50× 1), and the
second convolution layer was mainly used to extract the characteristics in the
temporal and frequency domains (kernel size: 2 × 2). It should be noted that,
owing that the coupling relationships among different channels are difficult to be
reflected by the CWCNN, it is needed to design this emotion recognition model.

Performances of the classifiers including classification accuracy, model size,
parameter number, and run-time performance are given in Table 2.

Table 2. Emotion recognition performance

Model
name

PARM
Accuracy [%] Mode Size [M] Parameter Number

Run-Time
Performance [ms]

CNN-16 91.14±0.26 23.03 5,895,891 40.49
CNN-62 92.89±0.41 80.50 20,607,783 90.25

Note: “CNN-16”and “CNN-62” mean classifiers that input EEG data with the
selected channels (16), and all the EEG channels (62), respectively. “Run-Time
Performance” means that the time required for processing one sample.
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From Table 2 we can see that, in terms of classification accuracy, there is
basically no difference between the models of CNN-16 and CNN-62. But in terms
of model size, number of parameters, and run-time performance, CNN-16 is much
better than CNN-62, which verifies that the channel selection method of this
paper can reduce the amount of memory and computational cost substantially.

4 Conclusion

In this paper, a channel-wise CNN is proposed, based on which the brain func-
tional connectivity analysis and the crucial channel selection are implemented.
The results show that connectivity for different emotions are similar to each
other. The areas with high activation are mainly distributed in the left side of pre-
frontal and bilateral frontal regions, meanwhile, a small part of the parietal region
is also highly activated. Compared with the positive or neutral emotions, the neg-
ative emotions evoke a lower activation in the left side of the brain. According
to the channel contributions to the emotion recognition results, 16 channels are
selected as the crucial channels. The comparison experiment between the two
classifiers, the inputs of which were obtained respectively from the 16 selected
channels and all of the channels, were carried out. The results show that similar
classification accuracy can be obtained by the two classifiers. But in terms of
model size and run-time performance, the classifier by using the selected chan-
nels is much better, which means the model with the selected channels are more
memory-efficient and less time-consuming.
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