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Abstract. Subspace clustering splits data instances that are drawn from
special low-dimensional subspaces via utilizing similarities between them.
Traditional methods contain two steps: (1) learning the affinity matrix
and (2) clustering on the affinity matrix. Although these two steps can
alternatively contribute to each other, there exist heavy dependencies
between the performance and the initial quality of affinity matrix. In
this paper, we propose an efficient direct structured subspace clustering
approach to reduce the quality effects of the affinity matrix on perfor-
mances. We first analyze the connection between the affinity and par-
tition matrices, and then fuse the computation of affinity and partition
matrices. This fusion allows better preserving the subspace structures
which help strengthen connections between data points in the same sub-
spaces. In addition, we introduce an algorithm to optimize our proposed
method. We conduct comparative experiments on multiple data sets with
state-of-the-art methods. Our method achieves better or comparable
performances.
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1 Introduction

Subspace clustering has been investigated and applied to various field includ-
ing image content compress and feature representation learning [1], image seg-
mentation [2] and gene expression profile clustering [3]. The high-dimensional
characteristics of data potentially produce adverse effects on performances due
to the noise disturbance [4]. Rather than being uniformly distributed across the
high-dimensional space, these data often lie a union of low-dimensional subspace.
For example, when clustering face images of a person under various illumination
conditions or tracking a moving object in a continuously temporal sequence, we
can observe that data points from a cluster are distributed in a low-dimensional
space. Searching a union of low-dimensional subspaces to explore structures in
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data helps alleviate negative effects of high-dimensional noise. Traditional clus-
tering methods exploit proximity distances of data point belonging to each clus-
ter. However, the above data distribute arbitrarily across the high-dimensional
ambient space rather than around a centroid, which means traditional methods
are not applicable to subspace clustering.

Subspace clustering approaches are grouped into [14]: algebraic-based meth-
ods, factorization-based methods, statistical-based methods and self expressive-
based methods. The first type of methods converts subspace clustering prob-
lems by fitting and differentiating polynomials concerning the input matrix X.
The second type of methods obtains segmentations through searching a proper
low-rank approximate factorization concerning X. The third type of methods
addresses subspace clustering issues by introducing a probabilistic assumption
that data are sampled from a certain mixture of Gaussian distributions. The
fourth type of methods contains two stages: learning the self-expressive matrix
and performing clustering on the learnt self-expressive matrix. Among these
methods, sparse subspace clustering (SSC) [10] and low-rank representations
(LRR) [11] are representative. The difference between them lies in that SSC
imposes ¢1-norm regularization on the affinity matrix, while LRR employs /-
norm regularization on the affinity matrix. Structured sparse subspace clustering
(S3C) [3,14] performs the affinity matrix learning and clustering by introducing
a regularization to quantify the disagreement between the affinity and partition
matrices.

Unlikely S*C, we first analyze the connection between the affinity and par-
tition matrices. This connection makes it possible the fusion of computing the
affinity and partition matrices, where the transformation on the partition matrix
is used as a substitute for the affinity matrix. Thus, the subspace clustering prob-
lem is cast as finding a proper partition matrix without explicitly computing the
affinity matrix. Besides, since both the affinity and partition matrices are ded-
icated to capturing the segmentation of data, the above fusion allows better
preserving the subspace structural information, which strengthens connections
between data instances that are drawn from the same subspace. The contribu-
tions of this paper are summarized as follows:

1. We introduce a subspace clustering framework based on the connection
between the affinity and partition matrices to avoid learning the affinity
matrix.

2. We design an algorithm to optimize the objective function of our method, and
conduct comparative experiments with state-of-the-art subspace clustering
methods. Our method achieves better or at least comparable performances.

2 Related Work

We review existing related literatures on various kinds of subspace clustering
methods. SSC [10] learns sparse representations by imposing ¢;-norm regulariza-
tion on the affinity matrix. LRR [11] finds low-rank representations by employing
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{-norm regularization on the affinity matrix. Although both SSC and LRR con-
struct the self-expressive matrix in the iteration manner, they perform badly in
dealing with noisy data. Low rank subspace clustering (LSRC) derives a closed-
form solution by recovering a clean dictionary. Efficient Dense Subspace Clus-
tering (EDSC) [25] employs £2-norm regularization to handle noise and outliers.
Correlation adaptive subspace segmentation (CASS) [18] employs the TraceLasso
norm [21] on the representation matrix. Dohyung et al. [19] propose the nearest
subspace neighbor algorithm to automatically identify neighbor data instances
that are most likely drawn from the same subspace. Yang et al. [20] propose
£o-induced sparse subspace clustering to discover the subspace-sparse represen-
tation for arbitrary distinct underlying subspaces. In [27], Ren et al. propose a
weighted adaptive mean shift algorithm to reduce effects of the sparsity caused
by high-dimensional data and the noise features. Friedman et al. [28] assign
proper weights of features based on importance of features on clustering.

The combination of deep learning and subspace clustering has emerged
recently. In [5,6], autoencoder is utilized to learn latent representations for clus-
tering. The difference between them is that the former encodes representations
from raw data, while the latter treats the predefined affinity matrix as the input
of neural network. In [7], deep autoencoder is adopted to provide initialization
for deep embedding for clustering. Deep subspace clustering with sparsity prior
[8] clusters deep representations, which incorporate the locality for reconstruct-
ing input and structured global prior. Improved Deep Embedded Clustering [9]
integrates the clustering loss and autoencoder reconstruction loss into a unified
framework, and considers the structural preservation when performing cluster-
ing and feature learning jointly. Additionally, a self-expressive matrix is learnt
by utilizing a fully connected layer in [26] with latent representations as input.

3 Methodology

In this section, we present our proposed subspace clustering approach. Let X =
[x1,%X2, - ,xy] € RN be a set of N data instances {x; € R?}¥ | that are
sampled from a special union of k subspaces {S;}¥_,, i.e., S1JS2U--- U Sk, of
dimensions {d, };?:1 in R%. Let X; € R*Ni be a sub-matrix of X of rank d; with

N; > d; data points that lie in S; with 25:1 N; = N. The subspace clustering
aims at partitioning data instances in the X into their corresponding subspaces.
3.1 Efficient Direct Structured Subspace Clustering
The objective function of a traditional clustering method is given by:
N k
min » > "P;; X — ;| = min[|X — CP|%, (1)
i=1 j=1

where X.; and C.; denote the i'" and j* columns of X and C, respectively.
C € R¥* and P € {0,1}**Y denote the cluster center and partition matrices.
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The solution to Eq. (1) can be obtained in a closed form [23] which is C =
XPT(PPT)~!. Thus, the above optimization problem is equivalent to:

2
min HX - XPT(PPT)—lpHF, st., PT1, = 1y, 2)

where 1, € R*¥ and 1y € RY are column vectors whose entries are 1.

Spectral clustering-based subspace clustering learns the affinity matrix under
the assumption that any data point can be approximated by a linear combination
of other data points, i.e., X = XZ, where Z is the coefficient matrix whose entity
Z;; measures the similarity between the it and j'* data points. When data
points are corrupted by noise, the subspace clustering problem is formulated by

win |Z], + A|E|, 5.4, X = XZ + E, diag(Z) =0, (3)

where E = [e,- -+, en] is a noise matrix with {|e;|l, < 1Y, and € > 0. A is
a trade-off parameter. The constraint diag(Z) = 0 is introduced to avoid the
solution of Z deteriorating into an identity matrix.

From Egs. (2) and (3), the coefficient matrix Z is obtained by

Z=PT"PP")'P)o (1y1} - 1) (4)

where ® is an elementwise product. I is an identity matrix with a proper size.

Structured sparse subspace clustering [3] holds that both P and Z attempt
to capture the segmentation of data. In other words, Z and P have related zero
patterns, i.e., for each Z;; # 0, the it" and j** data instances should be split
into the same subspace, and P.; = P.;, where P.; and P.; denote the i*" and
§" columns of matrix P. The subspace structured measure [14] is introduced to
evaluate the disagreement between Z and P as follows

IToZl,= > Tyz,-op (5)
.5 PLAP

where Y;; = 1 |P.; — P.j||2, and I is an indicator function. Since there are two
possible values for T;;, i.e., T;; € {0,1}, we can utilize the number of nonzero
entries in Z to quantify the cost of Eq. (5) when the i*" and j*" data instances
are split into different subspaces. Since the above measure results in a NP-hard
problem, a subspace structured norm [14] of Z concerning P is defined by

1 2
IZllp = BIT © 2l =8 12| (5 [P =Py, (6)
ij
Combining Egs. (3), (4) and (6), we can obtain the expression by
min |Zl, p + A|E[ 5.8, X = X((PT(PP")'P)o (Ix15 — D)+ E, (7
where

1200 = 3 (BT PP Py © (Lt~ ) (4 D PPt (9)

j
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3.2 Optimization

Given the objective function in Eq. (7), we solve it by introducing a Lagrange
multiplier Y'!, and obtain the augmented Lagrange as follows:

L(P,B,Y") = 2], p + A[B], + < Y', X - XZ - B> +4()X - X2 - BJ3).
(9)

When E and Y are fixed, P is updated via:

1
P <P (XTX+D)(XT(X - E; — ;Ytl)) o@anx1% -1 (10)

¢
Given P, the update of Z;;1 can be obtained from Eq. (8) naturally. When P

and Y'! are fixed, the update of E can be obtained by:

2

A 1 1,
E = in— ||E —|E—X - XZ —Y 11
o1 =argngn 2 B, + 3 g
When E and P are fixed, Y is updated as follows:
Yig <Y, +mp(X—=XZy —Eiyy) (12)

The optimization algorithm is shown in the Algorithm 1 below.

Algorithm 1. Efficient Direct Structured Subspace Clustering
Input: Data matrix X, MAXITE, X\, § and p;
Output: Partition Matrix P.

1: Initialize: P with k-means clustering, c,+ =1, Z = 0;

2: while ¢,; < MAXITE do

3:  Update the noise matrix E via Eq. (11);

4:  Update the partition matrix P via Eq. (10);

5:  Update Y via Eq. (12);
6:  Update py+1 «— ppet1
7
8

. Cnt < Cnt + 17
: end while

4 Experiment

We conduct comparative experiments on multiple data sets with the following
methods: LRR [13], LatLRR [12], BDLRR [16], CASS [18], LSR1 [17], LSR2 [17],
LRSC [15], SSC [4], KSSC [22], BDSSC [16], AE+SSC [26], SSCOPM [24], EDSC
[25], AE+EDSC [26], S*C [14] and DSC [26]. Data sets contain the Extended Yale
B, ORL, COIL20 and COIL100. We quantify performances by exploiting cluster-
ing error (Err), normalized mutual information (NMI) and subspace-preserving
rate (SPR). We repeat 10 times for each algorithm and record the averages.
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4.1 Evaluation Metrics
ERR is defined as below:

N
R 1
ERR(r,#)=1-— max N Z Lin(ri)=r:} (13)

i=1

where r and 7 denote the ground-truth and the estimated labels, respectively.
NMI is defined as follows:

Dot 25:1 Tij log(%;;j)
V(O rilog(2)) (5 75 los(%))

where 7;; denotes the number of data points shared by the it" and ;' classes.
SPR quantifies the extent to which a clustering solution satisfies the
subspace-preserving property, and is defined as follows:

SPR= 3 S (G 120 /01 2:1,) (15)

j=1 i=1

NMI(r,7) = (14)

where Gj; € {0,1} is the ground-truth affinity. Z;. is the j* row of the learnt
affinity matrix Z, and ||-||; is the ¢;-norm.

4.2 Experimental Analysis

In this part, we present comparative experimental results. First, we show trends
of cost function values of our proposed method concerning iterations in Fig. 1.
Cost values of our method decrease quick in the first 20 iterations, and remain
steady after 30 iterations. It means that our proposed method can converge fast.
In particular, the number of iterations is less than 15 for COIL20 and COIL100.
Second, we present the comparisons between our method and other subspace
clustering methods on the Extended Yale B in Table 1 in terms of Err and NMIL.
From this table, we have the following observations:

1. Among traditional methods, S* achieves the best performances, which is fol-
lowed by EDSC and LRSC. The advantage of S® attributes to the special
structured-norm that allows learning structured sparse representations for
each data point. EDSC benefits from Frobenius-norm to obtain denser con-
nections between data points, while LRSC benefits from the learning of a
clean self-expressive dictionary that reduce negative effects caused by noise.

2. Deep subspace clustering methods achieve better performances than tra-
ditional methods. For example, AE+SSC and AE+EDSC outperform SSC
and EDSC, respectively. It demonstrates that representations learnt by deep
networks can capture the abstract structural information to contribute to
performance improvement. Besides, DSC achieves better performances than
AE+SSC and AE+EDSC. The reason is that DSC utilizes a self-expressive
layer to learn pairwise affinity between all the data points effectively.

3. Our proposed method achieves better performances than traditional methods
including S*, EDSC and LRSC. It verifies that the combination of computing
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the affinity and partition matrices produces positive effects on performance
improvement. In addition, our method achieves better or comparable perfor-
mances, compared with DSC. It indicates that the above combination can
conduce to the learning of informative structural representations in the coef-
ficient matrix, which helps improve performances.

Third, we show the effects of computing the affinity and partition matrices
in a unified framework concerning SPR by varying the trade-off parameter
obtained in the above data sets in Fig. 2. From this figure, we notice that when
the value of [ increases in the range between 0 and 10, SPR rises quickly before
remaining steady or showing slight decrease trends. It is worthy mentioning that
the horizontal axis in Fig.2 is in the log scale rather than in the linear scale.
Besides, it is noted that the SPR obtained by our proposed method is higher
than that by S* when 3 changes between 0.3 and 10. It means that our method
can achieve better subspace-preserving property, which is brought about by the
combination of computing the affinity and partition matrices simultaneously.

Table 1. Performance comparison on extended Yale B w.r.t. (Err %) and (NMI %)

No. Sub. |5 15 25 35
Criterion Err |NMI |Err NMI | Err NMI | Err NMI
LRR 13.94 | 84.14 |23.22 | 71.65 |27.92 | 70.58 |41.85 |58.45

LatLRR 6.90 | 88.90 |32.47 |62.47 |32.76 |62.76 |38.75 | 60.75
BDLRR 12.97|85.38 | 31.58 | 64.86 | 34.67 | 61.25 |35.76 | 63.68

CASS 21.25|68.89 | 33.65 |62.38 |36.45 62.29 |36.57 |62.58
LSR1 13.87|75.22 | 37.64 |59.87 40.23 |63.12 |40.42 | 62.94
LSR2 13.91|76.91 |37.01 |61.21 |40.89 |63.04 |39.77 | 64.03
LRSC 7.59195.86 |15.84 |85.99 |11.46 |89.57 |14.79 1 92.05
SSC 4.32196.38 1 13.13 | 88.69 |26.22  68.28 |28.55 |65.65
KSSC 7.58191.64 |14.49 |86.75 |16.55 | 82.75 |20.48 | 80.37

BDSSC 27.5 |63.74 | 38.46 |48.85 |42.47 141.95 |38.47 |47.35
AE+SSC | 11.76 | 86.76 | 18.65 | 79.26 |18.72 |83.48 |22.13 | 78.01
SSC-OPM | 9.68|93.45 |16.22 | 86.65 |18.89 1 84.40 |20.29 |83.46

EDSC 5.11194.22 | 7.63 |89.68 |10.67 |90.82 |13.10 | 89.66
AE+EDSC| 4.45|96.68 | 6.70 |90.25 |10.27 |90.75 |13.28 |88.26
siC 3.41/95.89 | 7.54 |90.86 | 9.59 | 91.89 |14.67 | 88.47
DSC 1.80197.38 | 2.30|94.45 | 2.38/94.95| 2.85 |93.75

Proposed |1.62 |98.55| 2.29|95.26| 2.44 | 94.44 | 2.65|94.03

Fourth, we show the comparative clusterings between our proposed method
and other methods obtained in ORL, COIL20 and COIL100 in terms of Err
and NMI in Figs. 3 and 4, respectively. From these figures, we observe our pro-
posed method can still achieve best performance than other clustering methods
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Fig. 1. Trends of cost function values with respect to iterations on Extended Yale B,
ORL, COIL20 and COIL100
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Fig. 4. NMI (%) in ORL (a), COIL20 (b) and COIL100 (c)

including traditional methods and deep subspace clustering methods except on
COIL20, where DSC outperforms our method. The reason behind is that our
method may consider the affinity between data points from different subspaces
when attempting to preserve subspace structural property.
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5 Conclusion

In this paper, we propose a direct subspace clustering method without learning
the affinity matrix. We analyze the connection between the affinity matrix and
partition matrix, and incorporate the computation of the affinity and partition
matrices into a unified framework. Besides, we design an algorithm to optimize
the objective function of our proposed method. Finally, we conduct extensive
comparative experiments on multiple data sets with other representative sub-
space clustering methods. Our proposed method achieves better or comparable
performances, which demonstrates the effectiveness of our method.
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