q

Check for
updates

Approximate Spectral Clustering
Using Topology Preserving Methods
and Local Scaling

Mashaan Alshammari®™® and Masahiro Takatsuka

School of Information Technologies, The University of Sydney,
Sydney, NSW 2006, Australia
mals6571@uni. sydney. edu. au,
masa. takatsuka@sydney. edu. au

Abstract. Spectral clustering is the type of unsupervised learning that separates
data based on their connectivity instead of convexity. However, its computa-
tional demands increase cubically with the number of points n. This triggered a
stream of studies to ease these demands. An effective solution is to provide an
approximated graph G* = (V*,E*) for the input data with a reduced set of
vertices and edges. Recent similarity measures used to construct the approxi-
mated graph G* = (V*,E*) have some deficiencies such as: (1) weights on
edges highly depend on the cluster density, and (2) larger memory footprint
compared to conventional similarity measures. In this work, we employed
topology preserving methods (e.g., neural gas) to obtain G* = (V*, E*) due to
their ability to preserve input data topology. Then we used a conventional
similarity measure to assign weights on the graph. The experiments reveal that
graphs obtained through topology preserving methods and passed to a locally
scaled similarity measure, produce performances comparable to the recent
measures with a significantly smaller memory footprint.

Keywords: Spectral clustering - Topology preserving methods
Neural gas

1 Introduction

Spectral clustering uses the spectrum of the affinity matrix A to partition the connected
components of the graph G that connects data points {x;,xy, .. .,x,}. Unfortunately,
storing A requires O(n*) and performing eigendecomposition needs computations of O
(n’) [1]. Due to the effectiveness of spectral clustering, many studies investigated
minimizing its computational demands. Reducing the graph vertices V shrinks the size
of A from n X ntom x m, where m < n. On the other hand, reducing the number of
edges E results in a sparse matrix [2] which reduces the overall computations. Nev-
ertheless, achieving both reductions is not trivial and has been the subject for most of
spectral clustering researchers [2].

The idea behind using m representatives out of n points is to perform spectral
clustering on a reduced set of points then generalize the outcome. The selection of
representatives could be obtained through sampling [2]. The more sophisticated the

© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11304, pp. 109-121, 2018.
https://doi.org/10.1007/978-3-030-04212-7_10


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04212-7_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04212-7_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04212-7_10&amp;domain=pdf
https://doi.org/10.1007/978-3-030-04212-7_10

110 M. Alshammari and M. Takatsuka

sampling scheme, the more we are confident that small clusters are not left out. A more
effective approach would be using a learning algorithm to place the representatives [1].
However, both approaches are incapable of constructing the graph G(V, E) and we have
to rely on the similarity measure to produce a sparse graph.

To construct the graph G(V, E) we could use a similarity measure penalized by a
global scale () which controls the decay of the affinity as proposed in [3]. Never-
theless, ¢ is insensitive to local statistics [4] and difficult to tune. An alternative
solution proposed in [4] is to use a local scale g; (i € {1,2,...,m}) set as the distance
to K™ neighbor. However, K is another parameter that needs tuning. Moreover, local
scaling measure is unable to produce a sparse graph (i.e., eliminating some edges) and
it is highly depending on the graph selection like knn or ¢ graphs. Recently, novel
similarity measures were introduced [2]. On one hand, these measures can produce a
sparse graph by eliminating weak edges. On the other hand, their computational
demands are much higher than their conventional counterparts.

In this work, we propose the use of topology preserving methods and demonstrate
that they are more efficient in placing representatives to approximate input data. Unlike
other approximation methods such as KASP [1], topology preserving methods can
produce a sparse graph, since edge drawing is part of their training. A topology pre-
serving method has two components: vector quantization and establishing lateral
connections [5]. We tested self-organizing maps (SOM) [6], neural gas (NG) [7], and
growing neural gas (GNG) [8]. We found out that graphs obtained through topology
preserving methods improve the accuracy of the local scaling measure with markedly
smaller memory footprint than other measures.

2 Related Work

Two topics were the subject for most research on spectral clustering. The former relates
to the question: how to draw edges between data points by quantifying their similarity.
The second topic is approximate spectral clustering (ASC) which concerns of placing m
representatives to cluster n points.

2.1 Similarity Measures for Spectral Clustering

Defining similarities between data points is crucial for spectral clustering accuracy.
Those similarities are represented as weights on edges of the graph G which should be
informative to highlight the optimal cut for spectral clustering. Ideally, large weights
are assigned between the points in same cluster, and relatively small weights (or no
edges at all) between points in different clusters. There are number of options for the
similarity measures (see Appendix D in [9]). Globally scaled similarity which is the
Euclidean distance between the compared points penalized by a Gaussian scale:

Ay = exp(ﬂ) (1)

o2



Approximate Spectral Clustering Using Topology Preserving Methods 111

However, this similarity measure ignores the local statistics around the compared
points [4]. An advanced option introduced in [4], that penalizes the Euclidean distance
by the product of local scales ¢;. and ¢;. The local scale of a particular point is set as the
distance to its K" neighbor:

Ay — exp (“””) @)

The local scale set as o; = d(i,ix). This measure is sensitive to local statistics and
adjusts itself accordingly. However, setting the K" neighbor is an issue for this
measure. All aforementioned measures are unable to eliminate edges to produce a
sparse affinity matrix. To avoid this, one could restrict the Euclidian distance to a
certain threshold [9]. Unfortunately, this means one more parameter that needs tuning.

There are number of similarity measures that can produce sparse versions of the
graph G. A measure called common-near-neighbor (CNN) is defined as the number of
points in the intersection of two spheres with radius ¢ centered at i and j [10]. The
weight of the edge in CNN graph is determined by the number of shared points.
Intuitively, if there are no shared points between i and j, there will be no edge con-
necting them, hence it results in a sparse graph. Nevertheless, in large datasets com-
puting CNN requires heavy computations [2]. Connectivity matrix (CONN) is suitable
for vector quantization methods [2]. It utilizes the concept of induced Delaunay tri-
angulation presented in [5]. CONN(i,j) is defined as the number of points which i and j
are their best-matching-unit and second-best-matching-unit. Like CNN, CONN can
eliminate edges in case of no common neighbors. However, CONN is much faster than
CNN since its computations are embedded in vector quantization training.

CONN(i,j) = |{v € V;UV;}| (3)

2.2 Approximate Spectral Clustering

High computational demands of spectral clustering stimulate a stream of studies
addressing what is known as approximate spectral clustering (ASC) [1, 2]. The basic
idea of ASC is to carry out the spectral clustering with m representatives, where m < n,
then generalize the results to the entire dataset. However, the fundamental question is
how to choose m representatives. Choosing m via random sampling, introduces the risk
of missing small clusters. A different approach is to set a low rank approximation of the
affinity matrix A (e.g., Nystrom method). However, some studies reported high
memory consumption of such methods [1].

Vector quantization methods (e.g., k. -means and SOM) proved to be an efficient
way to approximate spectral clustering [1, 2]. Even though they require a training time,
the m representatives inherent density information found in n points. Thus, the training
step mitigates the risk of missing small clusters. The initial effort in this direction was
by Yan et al. [1], where they used k-means to approximate n points. However, k-means
is unable to preserve the topology of the input data. Topology preserving methods,
namely self-organizing maps (SOM) and neural gas (NG), were used to approximate



112 M. Alshammari and M. Takatsuka

input data [2]. Nevertheless, the edges drawn by SOM and NG were replaced by the
edges drawn via CONN [2]. In other words, the vector quantization component of
SOM and NG was used, whereas the lateral connection component was not utilized.
This means the training time spent on lateral connections was wasted.

The approximation process should place representatives and draw edges between
them to justify its training time. If we could get edges through the approximation step,
the similarity measure will weigh those edges and skip non-existing ones. This will
result in a sparse affinity matrix A. Topology preserving methods are perfectly suited to
this objective, since they produce a new graph with a reduced set of representatives.

3 Proposed Approach

The algorithm passes through four main steps to perform approximate spectral clus-
tering with smaller memory footprint. (1) It approximates the input data using one of
four methods: k-means, SOM, NG, or GNG, each of which is coupled with an edge
drawing scheme. (2) The weights on edges were set using local ¢ [4] or CONN [2]
followed by an eigendecomposition for the graph Laplacian L. (3) It passes through a
cost function that automatically selects the dimensions needed to construct an
embedding space where the clusters could be detected. (4) The number of clusters in
the embedding space was estimated by another cost function.

3.1 Approximating Input Data

The computational bottleneck in the spectral clustering could be avoided by performing
vector quantization and carry on with a reduced number of representatives. For this
purpose, four vector quantization methods were used to produce an approximated
graph, three of which contain a topology preserving component. A map M satisfies the
topology preserving condition if points i and j which are adjacent in R are mapped to
neurons w; and w; which are adjacent in M, and, vice versa [11].

k-means. k-means is a well-known method for vector quantization. Given data points
{x1,x2,...,%,} distributed around m centroids {;, i, . . ., i, } . It attempts to minimize
the squared distances between data points and their closest centroids:

. - - 2
min >3 eollv — ui Y
(b des} 57 =7

where ¢; € {0,1} such that ¢; = 1 if x; was assigned to the cluster x; and ¢; =0
otherwise. k-means was used to approximate input data. Unlike SOM, k-means is not
equipped with a topology preserving component. Therefore, its centroids were con-
nected using nearest neighbor graphs (NN).

Self-Organizing Map. SOM consists of set of neurons attached to lateral connections.
During SOM training, the map attempts to capture input data topology. Its training



Approximate Spectral Clustering Using Topology Preserving Methods 113

starts by randomly selecting a data sample x;. Its closest neuron is called the best
matching unit wy:

b= wyl] = min{ |, — [} (5

This process is the competitive stage in which neurons compete to win x;. Then, wy,
pulls its topological neighbors to be closer in a process known as the cooperative stage:

wi(t+ 1) = w;(1) + a(0)n (1) (x; — wi(1)) (6)

where o(f) is the learning rate monotonically decreasing with time 7 and 7(¢) is the
neighborhood kernel. In our case, SOM was set to 2D hexagonal grid.

Neural Gas. One of SOM deficiencies is that the network adaption is performed based
on grid connections regardless of neurons positions in the input space. Another
problem is the fixed connections which may restrict its ability to capture data topology.
These two problems were addressed by the neural gas (NG) [11]. NG initiates neurons
in the input space without lateral connections. Initially, a random point x; is introduced
to neurons and its best matching unit w; is identified. Other neurons are ordered
ascendingly based on their distance from w; and updated as per the following adaption
rule:

wi(t+1) = wi(t) +e- e (x; — wi(r)) (7)

where j € {1,2,...,m}, k is the rank associated with w; based on its distance from wy.
¢ € {0, 1} controls the extent of the adaption and A is a decaying constant. Next, NG
applies the competitive Hebb learning (CHL) to connect best matching unit wg and the
second best matching unit w}, to maintain a perfectly topology preserving map (see
Theorem 2 in [11] and the discussion therein). Due to neurons movement, these edges
are allowed to age and perhaps removed if they are not refreshed. In our experiments,
we set the stopping criteria to the stability in quantization error.

Growing Neural Gas. Although neural gas was an improvement over SOM, it kept
some properties of original SOM. It uses a fixed number of neurons and relies on
decaying parameters for adaption. These two deficiencies were overcome by growing
neural gas (GNG). It starts by introducing a random x; to the competing neurons and
selects the best matching unit and computes its error using:

erroryy1 = error,+ ||wp — x,-||2 (8)

wp, and its topological neighbors are adapted using the following adaption rules:



114 M. Alshammari and M. Takatsuka

wp(t+1) = e — wp) 9)

Wk(t—|—1) zsk(xi—wk) (10)

where k indicates all direct topological neighbors of wy. ¢, and ¢; are the fractions of
change. Then, GNG applies competitive Hebb learning (CHL) to connect BMU and the
second BMU and set the weight on the edge to zero. If the current iteration is an integer
multiple of the parameter /, a new neuron is inserted in halfway between the neuron
with the maximum accumulated error w, and its topological neighbor with the largest
error wr. The newly inserted neuron is connected to both w, and wy, and the old edge
connecting them is removed. The training continues until the stopping criteria is met,
which was set in our experiments to the stability in quantization error.

3.2 Constructing the Affinity Matrix A

To construct the affinity matrix A, a similarity score should be set for each pair of
neurons. We used two measures to set the similarity between neurons. The first is local
o [4] defined as:

Ay = exp (M) (11)

Oy, O;

It cannot draw a sparse graph by itself, because its formula does not produce zero
values. Therefore, we have to rely on edges in the graph obtained through approxi-
mation methods. This similarity measure can preserve the local statistics between the
neuron w; and w; regardless of the density around them as illustrated in Fig. 1. It is
obvious that the density of the points on the outer ring is much less than the middle
ring. However, this similarity measure set similar weights on the outer ring edges as the
middle ring.

local o

k-means, 3NN k-means, SNN SOM, SOM grid NG, CHL GNG. CHL
o Py — ~N AT
14N AW //,,., 7 7N 7N
[ 6y 62 J ( X F oy { ol
\ 4/ // l\‘ X#=] \ Xl A \\ et ] \ ./
\ / | / \ /
v S N’ \\_/ / \\,_/// N
o
CONN

k-means SOM NG GNG

Fig. 1. Constructing an approximated graph G* = (V*, E*) using local ¢ and CONN

The second measure is CONN [2]. It is suitable for vector quantization since it
measures the density between neurons. Unlike local g, the weight of the edge is entirely



Approximate Spectral Clustering Using Topology Preserving Methods 115

determined by the number of points in the Voronoi region V), shared by w; and w;.
Examples of CONN graphs shown in Fig. 1

Ay = HV € Vi, U ijw,-H (12)

Setting K for Computing Local ¢. Selection of the K™ neighbor is a problem for the
use of local g. Although some studies have used K =7 [4, 9], it remains as an
empirical selection and have not been used in approximate spectral clustering. Per-
forming vector quantization affects our decision to set K. It is probable that the selected
value has no actual edge in the approximated graph G* = (V*, E*).

Let K be the direct neighbor of the current neuron w; (i.e., K = 1). For nearest
neighbor graphs, this edge is guaranteed to exist since each neuron has k edges (i.e., 3
or 5 edges). For SOM with a hexagonal grid the existence of this edge is guaranteed
since each neuron on that grid has at least 2 edges. For NG and GNG, the existence of
this edge is guaranteed by the definition of competitive Hebbian rule that connects best
matching neuron with the second best matching neuron. Therefore in all experiments
we set K = 1 that is the direct neighboring neuron.

Memory Footprint for Local ¢ and CONN. Computing each of the similarity
measures, requires a certain array needs to be present in the memory. That array
contains values needed to compute the similarities between neurons. Starting with local
o, it requires a value attached to each neuron. That value represents the local scale ;.
Therefore, a one-dimensional array of size 1 x m is needed to be present in the memory
to construct the affinity matrix A using the local scaling measure. For CONN similarity
measure, the edge between w; and w; is determined by the number of points where w; is
the BMU and w; is the second BMU, in addition to the points where w; is the BMU and
w; is the second BMU. To achieve that, a two dimensional array is needed.

3.3 Embedding Space Dimensions R"**

The graph Laplacian is computed as L =1 — D 2AD 2. Then, eigendecompsition is
performed on L to obtain the largest eigenvectors that partition the graph. In the
original spectral clustering algorithm in [3], it is recommended to build an embedding
space using k eigenvectors then run k-means on that space to find clusters. In that work,
k was set manually, however, automating the selection of k would make the algorithm
more practical. The automation could be achieved by counting the number of eigen-
values of multiplicity zero. However, eigenvalues could deviate from zero due to noise
leaving this technique unreliable [4].

For an eigenvector v; to be included in the embedding space R™*¥ it must be able
to sperate the neurons. An eigenvector that cannot separate the neurons could confuse
the clustering in the embedding space. v; discrimination power could be measured by:
(1) a clustering index that gives a score on how well data is separated, and (2) its
corresponding eigenvalue /;. The closer A; to zero the more discriminative v; becomes.
Therefore, we used the following formula to evaluate all eigenvectors {vy,va, ..., v, }:



116 M. Alshammari and M. Takatsuka

, 2<i<m (13)

For every eigenvector v; containing one dimensional data {wl,wz, .. .,wm}, we
compute how well it can separate them into 2, 3, and 4 clusters (¢ € {2,3,4}) using the
Davies-Bouldin index (DBI). This quantity was penalized by the eigenvalue 4; cor-
responding to the eigenvector v; The Davies-Bouldin index is defined as:

1 Se(0i) +5:(0))
Zmﬁ{m} "

Given neurons {wy,wy, ...,w,} clustered into {Q1, 0>, ..., Q.} clusters. S.(Q;) is
within-cluster distances in cluster i, and d,, (Qi, Qj) is the distance between clusters i
and j. After scoring all eigenvectors {vi,vs,...,v,}, the scores were fit into a his-
togram. The bin size was determined via Freedman-Diaconis rule, defined as 2Rm~1/3,
where R is the inter-quartile range. The desired eigenvectors fall outside the interval
[4 + g], where p is the mean and ¢ is the standard deviation.

3.4 Number of Clusters in the Embedding Space

The embedding space R™** is spanned by eigenvectors qualified through the method
explained in the previous subsection. In this space the connected components of the
graph G* = (V* E*) form convex clusters could be detected by k-means. However, the
parameter k must be set prior to performing k-means.

One way to select k would be through a clustering index (like DBI in Eq. 14) then
use k that yields the lowest score. However, this approach tends to favor large values of
k for better separation. This could be avoided by examining the eigenvalues of the
graph Laplacian L. As stated in [12] the number of connected components of the graph
equals the number of eigenvalues with multiplicity zero. Therefore, we should penalize
each value of k by the sum of eigenvalues it accumulates (Fig. 2).

Fig. 2. (left) input data, (middle) G* = (V*, E*) via GNG, (right) histogram for eigenvectors
scores, suggesting the top two eigenvectors are sufficient for clustering (best viewed in color).



Approximate Spectral Clustering Using Topology Preserving Methods 117

k
DBI(X)+ Y w,  2<k<m (15)
i=1

4 Experiments

The experimental design contains three experiments to test the competing methods. The
experiments vary in the input type. The edges weights were assigned using local o [4]
and CONN [2]. The local scaling used all the 5 approximation graphs, whereas, CONN
used only four. CONN only needs vector quantization without the edge drawing
component. Apart from the second experiment, all methods used an automated
selection of k discussed in Sects. 3.3 and 3.4. The experiments were run on a windows
10 machine (3.40 GHz CPU and 8 GB of memory) where methods were coded in
MATLAB 2017b.

4.1 Synthetic Data

The competing methods were tested using synthetic data (shown in Fig. 3). The number
of representatives m was set by running multiple values using k-means++ algorithm
then select the one that represents an elbow point in quantization etror curve.

Spirals Rings Lines Smile
/.«/’“‘m e, ) vV N P, ':“:f s
\, N / e, o . PN s’

L e B A ]

Fig. 3. A collection of synthetic data.

Local o outcomes in Table 1, suggest that 3NN, 5NN, and SOM are not very
useful. However, it could be considerably improved by using edges obtained through
NG and GNG. Since these two methods used the competitive Hebbian learning
(CHL) [11], they can eliminate edges where the probability of x; is discontinued. This
was extremely helpful for local ¢ to assign weights on these edges and discard the ones
that do not exist, resulting in a better clustering outcome. This demonstrates that the
local ¢ outcome is highly influenced by the quality of the graph. The results were not
surprising, it was anticipated by looking at Fig. 1, where 3NN, 5NN, and SOM added
unnecessary edges between clusters. On the other hand, NG and GNG provided better
graphs that clearly show the separation between clusters.

Moving to the other side of the table where graphs were weighed by CONN. It is
observable that k-means struggled compared to its peers (i.e. SOM, NG, and GNG).
This could be explained that in k-means centroids are moving independently from each
other. Therefore, the concept of BMU and second BMU which is required by CONN



118 M. Alshammari and M. Takatsuka

Table 1. Clustering accuracies for data in Fig. 3. All values are averages of 100.

local o CONN
k-means, k-means SOM GNG,
? ? > NG,CHL 7| k= s SOM NG GNG
n  m | 3NN 5NN SOM grid cyL | eans

Spirals 1000 64 | 0.59+0.1 046+0.1 037+0.0 097+0.1 0.97+0.1| 0.85+0.2 0.88+0.1 0.96+0.1 0.97 £0.1
Rings 299 32 | 0.89+0.1 094+0.1 0.67+0.0 0.92+0.1 0.97£0.1| 0.88+0.2 0.97+0.1 0.82+0.2 0.95+0.1
Lines 512 64 [099+0.0 099+0.1 0.76+02 0.98+0.1 0.99+0.0| 0.86+0.2 093+02 0.86+02 0.87+0.2
Smile 266 32 |0.96+0.1 0.99+0.1 091+0.1 0.99+0.0 097+0.1| 0.84=02 095+0.1 0.90+0.1 0.88+0.1
Moons 1000 64 [0.89+0.2 0.89+0.2 0.67+02 095+0.1 0.76+0.2] 0.81+0.2 0.96+0.1 091+0.1 0.89+0.2

was not fully implemented. For other methods, graphs obtained through SOM yields
the best performance. While, NG and GNG performed in a similar manner with an
advantage for GNG. This could be explained that SOM provided better neurons density
than NG and GNG. Neurons density is determined by their adaptation to the input data
using Egs. (6), (7), and (9) for SOM, NG, and GNG respectively.

The outcome of this experiment emphasizes on the efficiency of the local scaling
similarity measure if it was passed the appropriate graph. In addition to its small
memory footprint, local ¢ produced the best accuracy in 3 datasets out of 5. Another
advantage for local ¢ over CONN is that local ¢ weighs edges regardless of the density
around neurons. This is clearly demonstrated by the performance drop in NG and GNG
when they are weighted by CONN. On the other hand, local ¢ could perform poorly
when the graph contains unnecessary edges as we saw in 3NN, SNN, and SOM graphs.

4.2 UCI Datasets

In this experiment, we used datasets retrieved from UCI repository. The automatic
estimation of ¢ discussed in Sects. 3.3 and 3.4 was disabled to reduce the volatility and
provide better comparison. For graphs weighted by local ¢ in Table 2, SOM was the
best performer, NG and GNG being closely comparable except for BC-Wisconsin
dataset where SOM was considerably higher. On the other hand, graphs weighted by
CONN did not produce exceptional performance especially in Wine dataset.

Table 2. Clustering accuracies on UCI datasets for 100 runs.

local o CONN
k-means, k-means SOM GNG,
: : > NG, CHL " | kmeans  SOM NG GNG
n m | 3NN 5NN SOM grid cHL | means
Tris 150 16 |083+0.1 0.85+0.1 0.78+0.1 086+0.1 0.85+0.1]0.86=0.1 0.88%0.1 0.88+0.1 0.87+0.1
Wine 178 16 |082+0.1 0.82+0.1 0.83+0.1 0.81+0.1 0.83+0.1[0.75=0.1 0.72+0.1 0.76+0.1 0.75+0.1

BC-Wisconsin 699 16 [0.77+0.1 0.79+0.1 0.97+0.0 0.84=0.1 0.83=0.1|/0.96=0.0 0.96+0.0 0.95+0.0 0.95+0.0
Segmentation 2100 32 [0.48+0.1 0.49+0.1 057+0.1 0.55+0.0 0.56+0.0(0.58 0.1 0.54+0.1 0.56+0.1 0.56+0.1
Pen Digits 10992 64 |0.70+0.1 0.66+0.1 0.73+0.1 0.66+0.0 0.65+0.0) 0.73+0.1 0.75+0.1 0.68+0.1 0.67 0.1




Approximate Spectral Clustering Using Topology Preserving Methods 119

The memory footprint is where local ¢ and CONN are split apart. In Fig. 4, it is
clear that the memory footprint of CONN is exponentially increasing with m. This was
not the case with local ¢ where it maintained a linear increase with m. With local ¢
performing similar to CONN in terms of clustering accuracy, it represents a memory
efficient option if it was coupled with a topology preserved graph (Fig. 5).

7000

5000
3000
2000
1000
P [ [ [ —— II\ Il’

k-means, 3NN k-means, 5NN SOM, SOM grid NG, CHL GNG, CHL k-means

@
=1
3
S

Memory Allocation (Bytes)
]
3
S

local o CONN

®liris WWine = BC-Wisconsin Segmentation M Pen Digits

Fig. 4. Similarity measures average memory consumption (best viewed in color).

4.3 Berkeley Segmentation Dataset (BSDS500)

Berkeley Segmentation Dataset (BSDS500) contains 500 images. It uses 3 clustering
quality metrics: segmentation covering (covering), rand index (RI), and variation of
information (VI). It important to mention that the achieved segmentation results are
lower than the numbers reported in the original study [13]. This mainly due to the
absence of the edge detection component, which is beyond the scope of this work.
From local ¢ part in Table 3, one could observe that 3NN, SNN, and SOM graphs,
fluctuated over the clustering metrics. NG and GNG maintained a consistent perfor-
mance over all measures compared to CONN graphs. In terms of covering, they
deviated by 0.03 and 0.04 respectively from the best performer. For RI, they were off
by 0.06 and 0.08 from the best performer. Finally, for VI, their performance was in line
with CONN graphs. For CONN graphs (on the right side in Table 3), the best per-
former in terms of covering was NG and the others were not far away from its score. In
terms of RI, all methods achieved an equal score. This emphasizes that CONN is highly
influenced by the edges it draws rather than the vector quantization method used.

9000

2000
E 7000
;8
6000
5000
4000
3000
2
1000
i ’_- | | |
k-means, 3NN k-means, SNN SOM, SOM grid NG, CHL GNG, CHL k-means GNG
local & CONN

Fig. 5. Average memory needed to compute the similarity measure for methods in Table 3.

Memory Allocation (B

<1
3
3




120 M. Alshammari and M. Takatsuka

Table 3. Image segmentation evaluation using BSDS500

local o CONN
k-means, k-means, SOM, GNG,
Evaluation metric INN SNN SOM egrid NG, CHL CHL k-means SOM NG GNG
Segmentation covering 0.33 0.36 0.34 0.36 0.35 0.37 0.36 0.39 0.38
Rand index 0.59 0.58 0.64 0.62 0.6 0.68 0.68 0.68 0.68
Variation of information|  3.06 2.75 3.03 291 2.94 291 297 2.81 2.83

5 Conclusions

The computational demands for spectral clustering stimulated the research on
approximate spectral clustering (ASC). In ASC, learning methods have been effectively
used to produce an approximated graph. Nevertheless, prior ASC efforts have either
density dependent edges or large memory footprint. In this study we employed
topology preserving methods to produce an approximated graph with a preserved
topology. The edges were weighed via a locally scaled similarity measure (local o) that
is independent from the density around them. The experiments reveal that local o
coupled with topology preserving graphs could match the performance of recent ASC
methods with less memory footprint.

Approximation methods for spectral clustering are known for long preprocessing
time to obtain the approximated graph. For future work, we attempt to minimize the
preprocessing computations required to produce the approximated graph.

References

1. Yan, D., Huang, L., Jordan, M.1.: Fast approximate spectral clustering. In: Proceedings of
the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 907-916 (2009)

2. Tasdemir, K.: Vector quantization based approximate spectral clustering of large datasets.
Pattern Recogn. 45, 3034-3044 (2012)

3. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In:
Advances in Neural Information Processing Systems (2002)

4. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: Proceedings of the 17th
International Conference on Neural Information Processing Systems, pp. 1601-1608 (2004)

5. Martinetz, T., Schulten, K.: Topology representing networks. Neural Netw. 7, 507-522
(1994)

6. Kohonen, T.: The self-organizing map. Proc. IEEE 78, 1464-1480 (1990)

7. Martinetz, T., Schulten, K.: A “Neural-Gas” Network Learns Topologies. University of
Illinois at Urbana-Champaign, Champaign (1991)

8. Fritzke, B.: A growing neural gas network learns topologies. In: Advances in Neural
Information Processing Systems, pp. 625-632 (1995)

9. Sugiyama, M.: Dimensionality reduction of multimodal labeled data by local fisher
discriminant analysis. J. Mach. Learn. Res. 8, 1027-1061 (2007)



10.

11.

12.
13.

Approximate Spectral Clustering Using Topology Preserving Methods 121

Zhang, X., Li, J.,, Yu, H.: Local density adaptive similarity measurement for spectral
clustering. Pattern Recogn. Lett. 32, 352-358 (2011)

Martinetz, T.: Competitive hebbian learning rule forms perfectly topology preserving maps.
In: Gielen, S., Kappen, B. (eds.) ICANN 1993, pp. 427-434. Springer, London (1993).
https://doi.org/10.1007/978-1-4471-2063-6_104

Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17, 395-416 (2007)
Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image
segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33, 898-916 (2011)


http://dx.doi.org/10.1007/978-1-4471-2063-6_104

	Approximate Spectral Clustering Using Topology Preserving Methods and Local Scaling
	Abstract
	1 Introduction
	2 Related Work
	2.1 Similarity Measures for Spectral Clustering
	2.2 Approximate Spectral Clustering

	3 Proposed Approach
	3.1 Approximating Input Data
	3.2 Constructing the Affinity Matrix {\varvec A} 
	3.3 Embedding Space Dimensions {\mathbb{R}}^{m \times k} 
	3.4 Number of Clusters in the Embedding Space

	4 Experiments
	4.1 Synthetic Data
	4.2 UCI Datasets
	4.3 Berkeley Segmentation Dataset (BSDS500)

	5 Conclusions
	References




