
123

Eric Bonjour · Daniel Krob
Luca Palladino · François Stephan
Editors

 Complex
 Systems
 Design
 & Management

Proceedings
of the Ninth International Conference
on Complex Systems Design
& Management
CSD&M Paris 2018

Complex Systems Design & Management

Eric Bonjour • Daniel Krob
Luca Palladino • François Stephan
Editors

Complex Systems Design &
Management
Proceedings of the Ninth International
Conference on Complex Systems
Design & Management, CSD&M Paris 2018

123

Editors
Eric Bonjour
Université de Lorraine
Laxou, France

Daniel Krob
CESAMES
Paris, France

Luca Palladino
Safran
Magny Les Hameaux, France

François Stephan
Be-Bound
Marnes La Coquette, France

ISBN 978-3-030-04208-0 ISBN 978-3-030-04209-7 (eBook)
https://doi.org/10.1007/978-3-030-04209-7

Library of Congress Control Number: 2018960915

© Springer Nature Switzerland AG 2019, corrected publication 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-04209-7

Preface

Introduction

This volume contains the Proceedings of the Ninth International Conference on
“Complex Systems Design & Management” (CSD&M 2018; see the conference
Web site: http://www.2018.csdm.fr/ for more details).

The CSD&M 2018 conference was jointly organized on 18–19 December 2018
at the Cité Internationale Universitaire de Paris (France) by the three following
partners:

1. CESAM Community managed by the Center of Excellence on Systems
Architecture, Management, Economy & Strategy (CESAMES);

2. AFIS, Association Française d’Ingénierie Système, the French Chapter of the
International Council on Systems Engineering (INCOSE);

3. The Ecole Polytechnique; ENSTA ParisTech; Télécom ParisTech; Dassault
Aviation; Naval Group; DGA; Thales “Engineering of Complex Systems” chair.

The conference also benefited from the technical and financial support of many
organizations such as Airbus Apsys, Alstom Transport, ArianeGroup, INCOSE,
MEGA International, Renault and Thales. Our sincere thanks therefore to all
of them.

Then, many other organizations have been involved in the CSD&M 2018
Committee. We would like to thank all their members who helped a lot through
their participation during the one-year preparation of the conference.

Why a CSD&M Conference?

Mastering complex systems require an integrated understanding of industrial
practices as well as sophisticated theoretical techniques and tools. This explains the
creation of an annual go-between forum at European level (which does not exist
yet) both dedicated to academic researchers and industrial actors working on

v

http://www.2018.csdm.fr/

complex industrial systems architecture and engineering. Facilitating their meeting
was actually for us a sine qua non condition in order to nurture and develop in
Europe the science of systems which is currently emerging.

The purpose of the “Complex Systems Design & Management” (CSD&M)
conference is exactly to be such a forum. Its aim, in time, is to become the European
academic–industrial conference of reference in the field of complex industrial
systems architecture and engineering, which is a quite ambitious objective. The last
eight CSD&M Paris conferences—which were all held in the last quarter from 2010
to 2017 in Paris—were the first steps in this direction. In 2017, participants were
again almost 250 to attend the two-day conference which proves that the interest for
architecture and systems engineering does not fade.

Our Core Academic–Industrial Dimension

To make the CSD&M conference a convergence point of the academic and
industrial communities in complex industrial systems, we based our organization on
a principle of parity between academics and industrialists (see the conference
organization sections in the next pages). This principle was first implemented as
follows:

• Program Committee consisted of 50% academics and 50% industrialists,
• Invited Speakers came in a balanced way from numerous professional

environments.

The set of activities of the conference followed the same principle. They indeed
consist of a mixture of research seminars and experience sharing, academic articles
and industrial presentations, software and training offer presentations, etc. The
conference topics cover the most recent trends in the emerging field of complex
systems sciences and practices from an industrial and academic perspective,
including the main industrial domains (aeronautics and aerospace, transportation
and systems, defense and security, electronics and robotics, energy and environ-
ment, health care and welfare services, media and communications, software and
e-services), scientific and technical topics (systems fundamentals, systems archi-
tecture and engineering, systems metrics and quality, systemic tools), and system
types (transportation systems, embedded systems, software and information sys-
tems, systems of systems, artificial ecosystems).

The 2018 Edition

The CSD&M Paris 2018 edition received 52 submitted papers, out of which the
Program Committee selected 19 regular papers to be published in the conference
proceedings. A 37% acceptance ratio was reached which guarantees the high

vi Preface

quality of the presentations. The Program Committee also selected 16 papers for a
collective presentation during the poster workshop of the conference.

Each submission was assigned to at least two Program Committee members,
who carefully reviewed the papers, in many cases with the help of external referees.
These reviews were discussed by the Program Committee Co-chairs during an
online meeting by 26 June 2018 and managed via the EasyChair conference system.

We also chose several outstanding speakers with industrial and scientific
expertise who gave a series of invited talks covering all the spectrum of the con-
ference during the two days of CSD&M Paris 2018. The conference was organized
around a common topic: “Products and Services Development in a Digital World.”
Each day proposed various invited keynote speakers’ presentations and a “à la
carte” program consisting in accepted papers’ presentations and in different sessions
(thematic tracks on Day 1 and sectoral tracks on Day 2).

Furthermore, we had a “poster workshop”, to encourage presentation and dis-
cussion on interesting but “not-yet-polished” ideas. CSD&M Paris 2018 also
offered booths presenting the last engineering and technological news to
participants.

August 2018 Eric Bonjour
Daniel Krob

Luca Palladino
François Stephan

Preface vii

Conference Organization

Conference Chairs

General Chair

Daniel Krob CESAMES and Ecole Polytechnique, France

Organizing Committee Chair

François Stephan Be-bound, France

Program Committee Co-chairs

Eric Bonjour (Academic
Co-chair)

Université de Lorraine, France

Luca Palladino (Industrial
Co-chair)

Safran, France

Program Committee

The Program Committee consists of 21 members (10 academics and 11 industri-
alists) of high international visibility. Their expertise spectrum covers all of the
conference topics.

Academic Members

Co-chair

Eric Bonjour Université de Lorraine, France

ix

Members

Vincent Chapurlat Mines Ales, France
David Flanigan Chesapeake INCOSE Chapter, USA
Cecilia Haskins NTNU, Norvegia
Neil Handen Ergin Systems Engineering Penn State University,

USA
Eric Levrat Université de Lorraine, France
Anja Maier Technical University of Denmark, Denmark
Eduarda Pinto Ferreira ISEP-IPP, Portugal
Donna Rhodes MIT, USA
Zoe Szajnfarber George Washington University, USA

Industrial Members

Co-chair

Luca Palladino Safran, France

Members

Ifede Joel Adounkpe PSA, France
Raphael Faudou Samares, France
Davide Fierro INAF, Italy
Annabelle Meunier-Schermann DGA (State Organization), France
Aurelijus Morkevicius No Magic, Lithuania
Frederic Paci Zodiac, France
Amaury Soubeyran Airbus, France
Lawrence Toby Jaguar Land Rover, UK
Lonnie Vanzandt Sodius, USA
Christophe Waterplas ResMed, Australia

Organizing Committee

The Organizing Committee consists of 18 members (academics and industrialists)
of high international visibility. The Organizing Committee is in charge of defining
the program of the conference, identifying keynote speakers, and has to ensure the
functioning of the event (sponsoring, communication, etc.).

x Conference Organization

Organizing Committee

Chair

François Stephan Be-bound, France

Members

Patrick Anglard Assystem, France
Emmanuel Arbaretier Airbus, France
Jean-François Bigey MEGA International, France
Philippe Bourguignon Engie, France
Guy-André Boy Estia Institute of Technology, France
Eric Duceau Airbus, France
Didier Dumur CentraleSupelec, France
Gauthier Fanmuy Dassault Systèmes, France
Pascal Foix Thales, France
Alan Guegan Sirehna, France
Omar Hammami Ensta ParisTech, France
Fabien Mangeant Renault, France
Luca Palladino Safran, France
Pascal Poisson Alstom Transport, France
Alain Roset La Poste, France
Alain Roussel AFIS, France
Richard Schomberg EDF, France

Invited Speakers

Plenary sessions

Come Berbain Chief Technical Officer of the French State,
DINSIC

Manfred Broy Professor, Technical University of Munchen
Yves Caseau Group Chief Information Officer, Michelin
Pierre Chanal VP Engineering Transformation, Alstom
Vincent Danos Research Director, CNRS
Marc Fontaine Head of Digital Transformation, Airbus
Hervé Gilibert Chief Technical Officer and Quality,

ArianeGroup

Conference Organization xi

“Methods and Tools” Track

Martin Neff Chief Architect Systems Engineering, Audi
Marie Capron Engagement Manager and System

Engineering, Sogeti High Tech

“Design, Manufacture and Operation of Complex Products and Services”
Track

Yann Bouju Project Manager, Virtual and Augmented
Reality, Naval Group

Olivier Flous VP Digital Transformation, Thales Digital
Factory

“Aeronautics” Track

Thierry Chevalier Chief Engineer Digital Design and
Manufacturing, Airbus

“Energy” Track

Yannick Jacquemard R&D Director, RTE
Isabelle Moretti Chief Scientific Officer, Engie
Guillaume Brecq Product Owner, Engie

“Healthcare Services” Track

Philippe Baron Chief Executive Officer, AxDaNe
Fabrice Lejay R&D Product Line Manager, Stago

“Transportation & Mobility” Track

Brigitte Courtehoux Executive Vice President Head of PSA Group
New Mobility, PSA

xii Conference Organization

Acknowledgements

We would like to thank all members of the Program and Organizing Committees for
their time, effort, and contributions to make CSD&M Paris 2018 a top-quality
conference. Special thanks go to the CESAM Community team who permanently
and efficiently managed all the administration, logistics, and communication of the
CSD&M Paris 2018 conference (see http://cesam.community/en).

The organizers of the conference are also grateful to the following partners
without whom the CSD&M Paris 2018 event would not exist:

• Founding partners

– CESAM Community managed by the Center of Excellence on Systems
Architecture, Management, Economy & Strategy (CESAMES),

– Association Française d’Ingénierie Système (AFIS),
– The Ecole Polytechnique – ENSTA ParisTech – Télécom ParisTech –

Dassault Aviation – Naval Group – DGA – Thales “Engineering of Complex
Systems” chair.

• Industrial and institutional partners

– Airbus Group,
– Alstom Transport,
– ArianeGroup,
– INCOSE,
– MEGA International,
– Renault,
– Thales.

• Participating engineering and software tools companies

– Airbus Apsys,
– Aras,
– Dassault Systèmes,
– Easis Consulting,

xiii

http://cesam.community/en

– Esteco,
– Hexagon PPM,
– Intempora,
– No Magic Europe,
– Obeo,
– Persistent Systems,
– SE Training,
– Siemens,
– Sodius.

xiv Acknowledgements

Contents

Regular Papers

Formal Methods in Systems Integration: Deployment of Formal
Techniques in INSPEX . 3
Richard Banach, Joe Razavi, Suzanne Lesecq, Olivier Debicki,
Nicolas Mareau, Julie Foucault, Marc Correvon, and Gabriela Dudnik

Ontology-Based Optimization for Systems Engineering 16
Dominique Ernadote

On-Time-Launch Capability for Ariane 6 Launch System 33
Stéphanie Bouffet-Bellaud, Vincent Coipeau-Maia, Ronald Cheve,
and Thierry Garnier

Towards a Standards-Based Domain Specific Language
for Industry 4.0 Architectures . 44
Christoph Binder, Christian Neureiter, Goran Lastro, Mathias Uslar,
and Peter Lieber

Assessing the Maturity of Interface Design . 56
Alan Guegan and Aymeric Bonnaud

Tracking Dynamics in Concurrent Digital Twins 67
Michael Borth and Emile van Gerwen

How to Boost the Extended Enterprise Approach in Engineering
Using MBSE – A Case Study from the Railway Business 79
Marco Ferrogalini, Thomas Linke, and Ulrich Schweiger

Model-Based System Reconfiguration: A Descriptive Study
of Current Industrial Challenges . 97
Lara Qasim, Marija Jankovic, Sorin Olaru, and Jean-Luc Garnier

xv

A Domain Model-Centric Approach for the Development
of Large-Scale Office Lighting Systems . 109
Richard Doornbos, Bas Huijbrechts, Jack Sleuters, Jacques Verriet,
Kristina Ševo, and Mark Verberkt

Through a Glass, Darkly? Taking a Network Perspective
on System-of-Systems Architectures . 121
Matthew Potts, Pia Sartor, Angus Johnson, and Seth Bullock

Generation and Visualization of Release Notes for Systems
Engineering Software . 133
Malik Khalfallah

Safety Architecture Overview Framework for the Prediction,
Explanation and Control of Risks of ERTMS . 145
Katja Schuitemaker, G. Maarten Bonnema, Marco Kuijsten,
Heidi van Spaandonk, and Mohammad Rajabalinejad

Formalization and Reuse of Collaboration Experiences
in Industrial Processes . 157
Diana Meléndez, Thierry Coudert, Laurent Geneste,
Juan C. Romero Bejarano, and Aymeric De Valroger

An MBSE Framework to Support Agile Functional Definition
of an Avionics System . 168
Jian Tang, Shaofan Zhu, Raphaël Faudou, and Jean-Marie Gauthier

Analyzing Awareness, Decision, and Outcome Sequences of Project
Design Groups: A Platform for Instrumentation of Workshop-Based
Experiments . 179
Carl Fruehling and Bryan R. Moser

Systemic Design Engineering . 192
Jon Wade, Steven Hoffenson, and Hortense Gerardo

Field Guide for Interpreting Engineering Team Behavior
with Sensor Data . 203
Lorena Pelegrin, Bryan Moser, Shinnosuke Wanaka,
Marc-Andre Chavy-Macdonald, and Ira Winder

A Review of Know-How Reuse with Patterns in Model-Based
Systems Engineering . 219
Quentin Wu, David Gouyon, Éric Levrat, and Sophie Boudau

Posters

The Systems Engineering Concept . 233
Henrik Balslev

xvi Contents

From Document Centric Approach to MBSE Approach: BPMN,
UML, SysML and Wire Framing Implementation 234
David Schumacher

Towards a Better Modelling and Assessment of Project Management
Maturity in Industry 4.0 . 235
Felipe Sanchez, Davy Monticolo, Eric Bonjour, and Jean-Pierre Micaëlli

Integrated Framework for Design and Testing of Software
for Automotive Mechatronic Systems . 236
Nick Van Kelecom, Timothy Verstraete, Sam Silverans,
and Mathieu Dutré

Complex Systems Engineering Approach for Condition Monitoring
for the Digital Transformation: Integration into Mining Industry
Control Systems . 237
Mariya Guerroum, Ali El-Alaoui, Laurent Deshayes, Mourad Zegrari,
Janah Saadi, and Hicham Medromi

Cyber Physical Systems Real Time and Interactive Testing
and Governance . 238
Sara Sadvandi, Franck Corbier, and Eric Mevel

Machine-Executable Model-Based Systems Engineering
with Graph-Based Design Languages . 239
Benedikt Walter, Dennis Kaiser, and Stephan Rudolph

Cyber-Physical System Modeling Using a Case Study 240
Sara Mallah, Khalid Kouiss, Oualid Kamach, and Laurent Deshayes

The SERC 5-Year Technical Plan: Designing the Future
of Systems Engineering Research . 241
Jon Wade, Dinesh Verma, Thomas McDermott, and Barry Boehm

Understand Corporate Culture for a Better Steering Model 242
Paul Maitre, Jérôme Raby-Lemoine, and François Videau

Correction to: Systemic Design Engineering . C1
Jon Wade, Steven Hoffenson, and Hortense Gerardo

Author Index . 243

Contents xvii

Regular Papers

Formal Methods in Systems Integration:
Deployment of Formal Techniques

in INSPEX

Richard Banach1(B), Joe Razavi1, Suzanne Lesecq2, Olivier Debicki2,
Nicolas Mareau2, Julie Foucault2, Marc Correvon3, and Gabriela Dudnik3

1 School of Computer Science, University of Manchester,
Oxford Road, Manchester M13 9PL, UK

{richard.banach,joseph.razavi}@manchester.ac.uk
2 CEA, LETI, Minatec Campus, 17 Rue des Martyrs, 38054 Grenoble Cedex, France

{suzanne.lesecq,olivier.debicki,nicolas.mareau,julie.foucault}@cea.fr
3 CSEM SA, 2002 Neuchatel, Switzerland

{marc.correvon,gabriela.dudnik}@csem.ch

Abstract. Inspired by the abilities of contemporary autonomous vehi-
cles to navigate with a high degree of effectiveness, the INSPEX Project
aims to create a minaturised smart obstacle detection system, which
could find use in a wide variety of leading edge smart applications. The
primary use case focused on in the project is producing an advanced
prototype for a device which can be attached to a visually impaired
or blind (VIB) person’s white cane, and which, through the integration
of a variety of minaturised sensors, and of the processing of their data
via sophisticated algorithms, can offer the VIB user greater precision
of information about their environment. The increasing complexity of
such systems creates increasing challenges to assure their correct opera-
tion, inviting the introduction of formal techniques to aid in maximising
system dependability. However, the major challenge to building such sys-
tems resides at the hardware end of the development. This impedes the
routine application of top-down formal methods approaches. Some inge-
nuity must be brought to bear, in order that normally mutually hostile
formal and mainstream approaches can contribute positively towards sys-
tem dependability, rather than conflicting unproductively. This aspect is
illustrated using two strands of the INSPEX Project.

1 Introduction

The contemporary hardware scene is driven, to a large extent, by the desire
to make devices smaller and of lower power consumption. Not only does this
save materials and energy, but given the commercial pull to make mobile phones
increasingly capable, when small low power devices are incorporated into mobile
phones, it vastly increases the market for them. The smartphone of today is
unrecognisable (in terms of the facilities it offers) from phones even as little as
a decade old. This phenomenon results from ever greater advances in system
c© Springer Nature Switzerland AG 2019
E. Bonjour et al. (Eds.): CSD&M 2018, Complex Systems Design & Management, pp. 3–15, 2019.
https://doi.org/10.1007/978-3-030-04209-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-04209-7_1

4 R. Banach et al.

structure, and from the trend to incorporate minaturised sensing technologies
that were well beyond the state of the art a short while ago. This trend continues
unabated, and also massively propels advances in the Internet of Things.

The availability of such minaturised devices inspires the imagination to con-
ceive novel applications, previously unrealised due to technological barriers. The
INSPEX Project is the fruit of one such exercise in imagineering. Taking the
autonomous vehicle [15] as inspiration, along with the data fusion that enables
autonomous vehicles to elicit enough information about their environment from
the data gathered by a multitude of sensors to navigate sufficiently safely that
autonomous vehicles ‘in the wild’ are forseen within a few years [28,35], INSPEX
aims to minaturise a similar family of sensors to create a device that offers
comparable navigational support to a wide variety of smaller, more lightweight
applications.

In the remainder of this paper we do the following. In Sect. 2 we cover the
potential application areas for INSPEX, pointing to the key VIB use case that
forms the focus of the project. In Sect. 3 we focus more narrowly on the technical
elements of the VIB use case. In Sect. 4 we address ourselves to the deployment of
formal modelling and verification technologies within the INSPEX development
activity. We focus on two areas within which formal techniques were deployed in
INSPEX, namely in the power management design and in the data acquisition
pathway. Section 5 contains discussion and concludes.

2 INSPEX Application Use Cases

Figure 1 gives an indication of the range of applications that the INSPEX
imagineering effort generated. The figure is divided into four broad aplication
areas. Working left to right, we start with some examples of small autonomous
vehicles. Autonomous navigation for these demands the small size, weight and
power requirements that INSPEX seeks to provide. Small airborne drones have
demands that are very similar, and as their number increases, their navigation
and collision avoidance needs increase correspondingly. Considerations of size,
weight and power also impinge on humanoid robots and specialised devices such
a floor cleaning robots. INSPEX navigation capabilities will also increase auton-
omy and flexibility of use for factory based transport robots, which have to be
prepared to avoid unexpected obstacles, unless their environment is sufficiently
tightly constrained.

At the bottom of Fig. 1 we see some examples concerned with large enclosed
environments, such as highly automated factories featuring assembly lines con-
sisting of hundreds of robots. To increase the flexibility of reconfiguration of
these, increased autonomy in the participating robots is one necessary ingre-
dient. INSPEX, appropriately deployed, can significantly assist in meeting this
requirement. The issue becomes the more forceful when the robots involved are

Formal Methods in Systems Integration 5

Fig. 1. Potential INSPEX use cases.

mobile, since along with the need to be more smart, they particularly need to
avoid harm to any humans who may be working nearby. Security surveillance
systems, traditionally relying on infra-red sensors, can also benefit from the extra
precision of INSPEX.

At the top of Fig. 1 we see some examples concerned with distance estimation.
Modern distance measuring tools typically make use of a single laser beam whose
reflection is processed to derive the numerical result. For surfaces other than
smooth hard ones, the measurement arrived at may be imprecise, for various
reasons. INSPEX can perform better in such situations by combining readings
from a number of sensors. A very familiar application area for such ideas is
autofocus in cameras. These days, camera systems (typically in leading edge
phones) employ increasingly sophisticated algorithms to distinguish foreground
from background, to make up for varying lighting conditions, and generally to
compensate for the user’s lack of expertise in photography. INSPEX can add to
the capabilities available to such systems.

6 R. Banach et al.

Fig. 2. The INSPEX
white cane addon.

On the right of Fig. 1 we see the use cases for human
centred applications. We see the VIB use case which
forms the focus of the INSPEX project, and which will be
discussed in detail later. There are also other prominent
use cases. The first responder example includes cases like
firefighters, who need to be able to enter hazardous envi-
ronments such as smoke filled rooms, in which normal
visibility is impossible. An aid like an INSPEX device
can be of immeasurable help, in giving its users some ori-
entation about the space in which they find themselves,
without resorting to tentative feeling about, which is
what firefighters are often reduced to. Other applications
include the severely disabled who may have impediments
to absorbing the visual information from their surround-
ings. And the able bodied too can benefit from INSPEX,
when visibility is severely reduced. Although the cases
of heavy fogs which reduced visibility to almost zero
are thankfully history, today’s mega-cities now feature
smogs due to different sources of atmospheric pollution
which can be just as bad.

3 The INSPEX VIB White Cane Use Case

Although a large number of use cases are envisaged for a system such as INSPEX,
the primary use case addressed within the INSPEX Project is the smart white
cane to assist visually impaired and blind persons. Figure 2 shows a schematic
of one possible configuration for the attachment of a smart addon to a standard
type of white cane. The white cane application needs other devices to support
the white cane addon, in order that a system usable by the VIB community
ensues. Figure 3 shows the overall system architecture.

Fig. 3. The architecture of the INSPEX system.

As well as the Mobile
Detection Device addon to
the white cane, there is
an Audio Headset contain-
ing extra-auricular binau-
ral speakers and an inertial
measurement unit (IMU)—
the latter so that an audio
image correctly oriented
with respect to 3D space
may be projected to the
user, despite the user’s
head movements. Another
vital component of the system is a smartphone. This correlates the information

Formal Methods in Systems Integration 7

obtained by the mobile detection device with what is required by the headset.
It also is able, in smart city environments, to receive information from wireless
beacons which appropriately equipped users can access. This enables the whole
system to be even more informative for its users.

The white cane add-on contains the sensors that generate the data needed
to create the information that is needed by the user. The chief among these
comprise a short range LiDAR, a long range LiDAR, a wideband RADAR, and a
MEMS ultrasound sensor. Besides these there are the support services that they
need, namely an Energy Source Unit, environmental sensors for ambient light,
temperature and humidity, another IMU and a Generic Embedded Platform
(GEP).

The main sensors are subject to significant development and minaturisation
by a number of partners in the INSPEX project. The short range LiDAR is
developed by the Swiss Center for Electronics and Microtechnology (CSEM)
and the French Alternative Energies and Atomic Energy Commission (CEA).
The long range LiDAR is developed by the Tyndall National Institute Cork and
SensL Technologies, while the wideband RADAR is also developed by CEA. The
MEMS ultrasound sensor is from STMicroelectronics (STM). Cork Institute of
Technology (CIT) design the containing enclosure and support services, while
the audio headset is designed by French SME GoSense.

The GEP has a noteworthy challenge to confront. Data from the sensors
comes in at various times, and with varying reliability. Distance measurements
from the sensors are just that, merely distance data without any notion of direc-
tion, or orientation with respect to the user. The latter is elucidated by reference
to data from the IMU in the mobile detection device. Data from both the IMU
and directional sensors is timestamped, since freshness of data is crucial in pro-
viding information to the user that is not only accurate but timely. This enables
distance sensor data to be aggregated by time and IMU data.

Once the data has been correctly aggregated, it is passed to the module
in the GEP that computes the occupation grid. This is a partition of the 3D
space in front of the user into cells, each of which is assigned a probability of
its being occupied by some obstacle. The occupation grid idea is classical from
the autonomous vehicle domain, but in its standard implementation, involves
intensive floating point computation [28,35]. This is too onerous for the kind
of lightweight applications envisaged by the concept of INSPEX. Fortunately
INSPEX is able to benefit from a highly efficient implementation of the occupa-
tion grid, due to a careful analysis of the computations that are needed to derive
a good occupation grid result [13]. The integration of all the hardware and soft-
ware activities described, constitutes a non-trivial complex systems undertaking.

The wide range of sensors and their concomitant capabilities in the INSPEX
white cane application is necessitated by the detailed needs of VIB persons nav-
igating around the outdoors environment (in particular). Although a standard
white cane can give good feedback to its user regarding the quality and charac-
teristics of the ground in front of them, especially when the ground texture in
the urban environment is deliberately engineered to exhibit a range of standard

8 R. Banach et al.

textures signifying specific structures [31], it gives no information about hazards
to be found higher up. It is a fact of life for VIB persons, that, like it or not,
unanticipated collisions with obstacles at chest or head height are an unavoidable
occurrence [25]. Many VIB persons are prone to wearing some sort of headgear,
more or less involuntarily, to try to mitigate the worst effects of such unantic-
ipated high level collisions. The possibility of alleviating this situation, even in
the absence of other use cases, makes for ample justification for the development
of INSPEX.

4 Formal Modelling and Verification in INSPEX

By now, formal techniques of system development have had a substantial history.
After the early years, and the widespread perception that such approaches were
‘hard’ and did not scale, there was a concerted effort to dispel this view in classic
works such as [11,12,19]. It was increasingly recognised, especially in niche areas,
that formal techniques, wisely deployed, can add a measure of dependability not
achievable by other means.1 It became recognised that tools, particularly ones
that worked in a reasonably scalable way,2 were key to this [33,34]. This spurred
the idea of ‘Grand Challenges’ in verification, one purpose of which was to both
test and further inspire the scalability of tools [23,38,39]. Later surveys include
[3,8], and this trend is also evident in [5].

The classic way of applying formal approaches is top-down. One starts with
an oversimplified, but completely precise, definition of the desired system. This
is then enriched, via a process of formal refinement, to take into account more
system detail in order to address more of the system’s requirements. Eventually
one gets close enough to the code level that writing code is almost a transcription,
or the code can be generated automatically.

There are many variations, small and large, on this basic idea. An early
account is in [30]. The Z approach is represented by [21,32]; the VDM apporach
is in [17,22]; TLA+ is in [24]; Alloy in [1]. There are many others. The B-Method,
of which more later, is represented by [2,4,29].

Accompanying these developments grew the subdiscipline of behaviour ori-
ented, or process oriented descriptions of system behaviour. Early references are
[7,20,26]. Not long afterwards, it was observed that many process oriented prop-
erties of interest for systems conformed to a so-called model checking pattern,
and this led to an explosion of research and tool building, since model checking
could then be completely automated, leading to tools that could work in a push-
button manner, and that could be embedded in development environments, in
which they worked ‘behind the scenes’, i.e. without explicit user control or invo-
cation. Among the tools in this style that have proved to be of interest for the
INSPEX project are FDR [16], NuSMV [27], Uppaal [36].
1 In some niche areas, the recognition came as a direct result of painful and expensive

failure, the Pentium Bug and Arianne Disaster being iconic examples.
2 It became apparent at this time that scalable formal tools were not an impossi-

ble dream, even if the degree of scalability was not as great as typically found in
conventional approaches.

Formal Methods in Systems Integration 9

Whereas all the preceding approaches relied on there being a model of the
system that was presented in a relatively abstract language, the growing power
and scalability of tools generated an interest in techniques that worked directly
on implementation level code. By now there are many well established tools
that input an implementation in a given language such as C or C++, and that
take this implementation and then analyse it directly for correctness properties
[37]. Very often these properties are predefined runtime correctness properties
concerning commonly introduced programmer errors, such as (the absence of)
division by zero or (the absence of) null pointer dereference. Some however, e.g.
[6,9] allow more application specific properties to be checked.

While direct checking of implementations would appear to be a panacea for
verification, it nevertheless risks overemphasising low level system properties at
the expense of the higher level view. When we recognise that deciding what
the system should be is always a human level responsibility, and that formal
approaches can only police the consistency between different descriptions of the
same thing, abandoning the obligation to independently consider the abstract
high level view of the system risks abandoning a valuable source of corroboration
of the requirements that the system is intended to address. It is this kind of
‘stereoscopic vision’ on what the system ought to do and to be that constitutes
the most valuable contribution that a top-down formal approach makes to system
development, quite aside from the formal consistency checking.

In normal software developments, one starts the process with a good idea
of the capabilities of software in general, so in principle, it is feasible to use
a relatively pure top-down approach. Likewise in most hardware developments
that take place at the chip level, one starts the process with a good idea of the
capabilities of the technology platform that will be used, and working top-down
is perfectly feasible (and in fact is unavoidable given the scale of today’s chips).
In both of these cases deploying top-down formal techniques (if the choice is
made to do so) is feasible.

In INSPEX however, the development of the devices at the physical level
is a key element of ongoing project activity, and the low level properties of all
the devices used in the INSPEX deliverable are contingent and emergent to a
significant extent. This makes the naive use of top-down approaches problematic,
since there is no guarantee that the low level model that emerges from a top-
down development process will be drafted in terms of low level properties that are
actually reflected in the devices available, since the constraints on the system’s
behaviour that are directly attributable to physics are simply incontestable. As
a result of this, the approach to incorporating formal techniques in INSPEX was
a hybrid one. Top-down and bottom-up approaches were pursued concurrently,
with the aim of meeting in the middle.

The next sections cover how this hybrid approach was applied in two of
the INSPEX Project’s activities, namely the design of the power management
strategy for the mobile detection device module, and in the verification of the
data pathway from the sensors to the data fusion application.

10 R. Banach et al.

4.1 Power Management Formal Modelling and Verification

In INSPEX, power management poses a number of challenges. As stated earlier,
the concentration of effort in INSPEX is on engineering a suitable outcome at
the hardware systems level. Each sensor and subsystem creates its own problems.
However they all share a common goal, one common to all mobile systems, of
making the smallest demand on the power system that is possible. However, a
focus on individual submodules risks paying insufficient attention to issues of
coordination. A higher level view offers a number of benefits.

The first benefit is an issue of correct functioning. A naive combination of
low level modules, each of them correct in itself, is not guaranteed to generate in
a straightforward manner (from a systems level perspective), a globally correct
behaviour. For example a submodule might conceivably be left running when it
ought not to be running as an unexpected consequence of some complex sequence
of events. The second benefit is the issue of global optimality. Focusing on the low
level prevents the global optimisation of performance (in this case power saving)
by balancing criteria from competing interests originating in diverse submodules.

A formal approach rooted in a higher level view can assist in both of these
aspects of the development. Formal techniques are suited sans pareil to targeting
correctness aspects of a development. Moreover, they are capable of capturing
the global consequences of a collection of submodels when they are combined into
a single entity, since they do not suffer from the variability of focus that humans
can exhibit when they concentrate on one or another aspect of an activity.

Power management design in INSPEX proceeded top-down. From a human
perspective this might mean considering broad properties of the power regime
first, descending to low level detail at the end — this would fly in the face what
has been stated above since what is most incontestable about the design is the
low level properties of individual sensors etc. We reconcile these views by observ-
ing that formally, ‘top level’ properties are those that will not be contradicted in
subsequent steps of development. This implies that they will be the most prim-
itive rather than the most far reaching among the properties that the system
satisfies.

Dormant Active

LowPower

LP-Advert
Cmd 0,0

Reset
UART on

UART off

Cmd A

Timeout

Fig. 4. A simplified Bluetooth transition diagram.

The most primitive properties include the state transition diagrams of the
various sensors and other components. Figure 4 gives an example of a transi-
tion diagram for the Bluetooth submodule, rather drastically simplified from

Formal Methods in Systems Integration 11

the description in [10]. To incorporate this into a wideranging formal model we
used the Event-B formalism [4]. This enables many levels of abstraction to be
formally related to each other via refinement, and is supported by the Rodin tool
which features many provers and plugins [29]. A state transition diagram such
as Fig. 4 can be captured in Event-B in a fragment like:3

EVENTS
Dor2Act
WHEN state = Dormant ∧ Reset
THEN
state := Active

END
LP2Act
WHEN state = LowPower ∧

UART on
THEN
state := Active

END
LPA2Act
WHEN state = LP Advert ∧

Cmd A
THEN
state := Active

END

.
Act2Dor
WHEN state = Active ∧ Cmd 0, 0
THEN
state := Dormant

END
Act2LP
WHEN state = Active∧UART off
THEN
state := LowPower

END
Act2LPA
WHEN state = Active ∧ Timeout
THEN
state := LP Advert

END

A formal model such as the fragment above relates to the low level real
time software and firmware as follows. Each event in the model corresponds to
a software or firmware command, or an interrupt routine. The guard portion,
expressed in the WHEN clause of the event, corresponds to the entry condition
code in the command, or scheduler code that checks the cause of the interrupt.
The event’s THEN clause corresponds to the software command body, or the
interrupt handler routine. As stated earlier, capturing all the commands and
sources of interrupt enables questions of overall consistency to be examined.

Once the low level integrity has been established, other considerations can be
brought to bear. A major element is the quantitative aspect. Event descriptions
as above are embellished with numerical data regarding the energetic conse-
quences of executing the event, enabling overall conclusions about energy con-
sumptions to be drawn. Finally, considerations of overall power management
policy can be layered onto the formal model and made to correspond with the
implementation code.

4.2 The Data Acquisition Pathway

Another major area in which formal techniques were deployed in INSPEX to
add robustness to the software design was the data acquisition pathway. As
3 For reasons of the confidentiality of the future commercial exploitation of the

INSPEX platform, what is shown here is not actual code.

12 R. Banach et al.

outlined earlier, in INSPEX, there are several sensors, each working to different
characteristics, but all contributing to the resolution of the spatial orientation
challenge that is the raison d’être of INSPEX.

The various INSPEX sensors work at frequencies that individually can vary
by many orders of magnitude. For example, the LiDARs can produce data frames
with extreme rapidity, whereas the ultrasound sensor is limited by the propaga-
tion speed of pressure waves through the air, which is massively slower than the
propagation characteristics of electromagnetic radiation. The ultrasound sensor,
in turn, can produce data frames much faster than typical human users are able
to re-orient their white canes, let alone move themselves to a significant degree,
either of which requires a fresh occupation grid to be computed. This means
that the data integration performed by INSPEX has to be harmonised to the
pace of the human user.

The main vehicle for achieving this is the IMU. The IMU is configured to
supply readings about the orientation of the INSPEX mobile detection device
addon at a rate commensurate with the needs of human movement. This ‘pace-
maker rate’ is then used to solicit measurements from the other sensors in a
way that not only respects their response times but is also staggered sufficiently
within an individual IMU ‘window’ that the energy demands of the individual
measurements are not suboptimal with respect to the power management policy
currently in force.

The above indicates a complex set of information receipt tasks, made the
more challenging by the fact that all the sensors speak to the same receiving
hardware. The goal of the information receipt tasks is to harvest a collection
of data frames from the individual sensors, each timestamped by its time of
measurement, and each related to a before- IMU data frame, and an after- IMU
data frame, each itself timestamped. The two successive IMU data frames, and
way their data might differ due to user movement, enable the interpolation of
orientation of the distances delivered at various times by the other sensors.

Timing is evidently of critical importance in the management of the incoming
data. This notwithstanding, all the tasks that handle these information manage-
ment duties are executed at the behest of the generic embedded device’s low
level scheduler. The scheduler used belongs to the real time operating system
employed in the GEP, which is a version of FreeRTOS [18].

Turning to the formal modelling of what has just been described, it may
well seem that the complexity of the situation might defeat efforts to add useful
verification to the design. The situation is helped considerably by the existence
of a formal model of the FreeRTOS scheduler [14]. This is in the kind of state
oriented model based form that can be made use of in the modelling and verifi-
cation of the data acquisition pathway in INSPEX. Accordingly, the properties
of the FreeRTOS scheduler derived in [14] can be translated into the Event-B
framework used for INSPEX and then fed in as axioms in the Event-B models
that contribute to the INSPEX data acquisition pathway verification.

Within this context, the rather delicate modelling of timing issues indicated
above can be based on a sensible foundation. The complexities of the behaviour

Formal Methods in Systems Integration 13

of the INSPEX data acquisition pathway imply that relatively straightforward
models of time, as typically included in timed tools, are not sufficiently incisive to
capture the potentially problematic aspects of the system, so a bespoke approach
to the modelling of time within Event-B is needed, and this consequently drives
the structure of the verification activity.

5 Discussion and Conclusions

In the preceding sections, we introduced the INSPEX Project and its intended
use cases, before homing in on the VIB white cane add-on use case which forms
the focus of the project itself. The main objective of this paper was to describe
the use of formal techniques within INSPEX, to which we addressed ourselves
in Sect. 4. This contained a summary of the deployment of formal techniques in
the data acquisition pathway and the power management design.

Given the practical constraints of the project, it was impossible to follow a
pristine top-down formal development approach in combining formal and more
mainstream techniques. Given that the two approaches were being pursued con-
currently, one of the greatest challenges that arises is to keep both activities in
step. Little purpose is served by verifying the correctness of a design that has
been superseded and contradicted in some significant aspect. The formal activity
therefore paid significant attention to checking whether the growing implementa-
tion continued to remain in line with what had previously been formally modelled
and verified. This way of working contributed the greatest element of novelty
to the combined use of formal and conventional techniques in the project, and
constitutes a stimulus for finding further novel way of reaping the benefits of
fusing the two approaches.

Acknowledgement. This project has received funding from the European
Union’s Horizon 2020 research and innovation programme under grant agree-
ment No. 730953. The work was also supported in part by the Swiss Secretariat for
Education, Research and Innovation (SERI) under Grant 16.0136 730953. We thank
them for their support.

References

1. Alloy. http://alloy.mit.edu/
2. Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University

Press (1996)
3. Abrial, J.R.: Formal Methods in Industry: Achievements. Problems Future. In:

Proceedings of ACM/IEEE ICSE 2006, pp. 761–768 (2006)
4. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. CUP (2010)
5. Andronick, J., Jeffery, R., Klein, G., Kolanski, R., Staples, M., Zhang, H., Zhu, L.:

Large-scale formal verification in practice: a process perspective. In: Proceedings
of ACM/IEEE ICSE 2012, pp. 374–393 (2012)

6. Astrée Tool. http://www.astree.ens.fr/

http://alloy.mit.edu/
http://www.astree.ens.fr/

14 R. Banach et al.

7. Baeten, J.: Process Algebra. Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press (1990)

8. Banach, R. (ed.): Special Issue on the State of the Art in Formal Methods. Journal
of Universal Computer Science, vol. 13(5) (2007)

9. BLAST Tool. https://forge.ispras.ru/projects/blast/
10. Bluetooth Guide. http://ww1.microchip.com/downloads/en/DeviceDoc/

50002466B.pdf
11. Bowen, J., Hinchey, M.: Seven more myths of formal methods. IEEE Software 12,

34–41 (1995)
12. Clarke, E., Wing, J.: Formal methods: state of the art and future directions. ACM

Comput. Surv. 28, 626–643 (1996)
13. Dia, R., Mottin, J., Rakotavao, T., Puschini, D., Lesecq, S.: Evaluation of occu-

pancy grid resolution through a novel approach for inverse sensor modeling. In:
Proceedings of IFAC World Congress, FAC-PapersOnLine, vol. 50, pp. 13,841–
13,847 (2017)

14. Divakaran, S., D’Souza, D., Kushwah, A., Sampath, P., Sridhar, N., Woodcock, J.:
Refinement-based verification of the FreeRTOS scheduler in VCC. In: Butler, M.,
Conchon, S., Zäıdi, F. (eds.) Proceedings of ICFEM 2015. LNCS, vol. 9407, pp.
170–186. Springer (2015)

15. Fausten, M.: Evolution or revolution: architecture of AD cars. In: Proceedings of
IEEE ESWEEK (2015)

16. FDR Tool. https://www.cs.ox.ac.uk/projects/fdr/
17. Fitzgerald, J., Gorm Larsen, P.: Modelling Systems: Practical Tools and Techniques

for Software Development. Cambridge University Press (1998)
18. FreeRTOS. https://www.freertos.org/
19. Hall, A.: Seven myths of formal methods. IEEE Software 7, 11–19 (1990)
20. Hoare, C.: Communicating Sequential Processes. Prentice-Hall (1985)
21. ISO/IEC 13568: Information Technology – Z Formal Specification Notation – Syn-

tax, Type System and Semantics: International Standard (2002). http://www.iso.
org/iso/en/ittf/PubliclyAvailableStandards/c021573 ISO IEC 13568 2002(E).zip

22. Jones, C.: Systematic Software Development Using VDM, 2nd edn. Prentice-Hall
(1990)

23. Jones, C., O’Hearne, P., Woodcock, J.: Verified software: a grand challenge. IEEE
Comput. 39(4), 93–95 (2006)

24. Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (2002)

25. Mandruchi, R., Kurniavan, S.: Mobility-Related Accidents Experienced by People
with Visual Impairment. Insight: Research and Practice in Visual Impairment and
Blindness (2011)

26. Milner, R.: Communication and Concurrency. Prentice-Hall (1989)
27. NuSMV Tool. http://nusmv.fbk.eu/
28. Qu, Z.: Cooperative Control of Dynamical Systems: Applications to Autonomous

Vehicles. Springer (2009)
29. RODIN Tool. http://www.event-b.org/, http://sourceforge.net/projects/rodin-b-

sharp/
30. de Roever, W.P., Engelhardt, K.: Data Refinement: Model-Oriented Proof Methods

and their Comparison. Cambridge University Press (1998)
31. Rosburg, T.: Tactile ground surface indicators in public places. In: Grunwald, M.

(ed.) Human Haptic Perception: Basics and Applications. Springer, Birkhauser
(2008)

https://forge.ispras.ru/projects/blast/
http://ww1.microchip.com/downloads/en/DeviceDoc/50002466B.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/50002466B.pdf
https://www.cs.ox.ac.uk/projects/fdr/
https://www.freertos.org/
http://www.iso.org/iso/en/ittf/Pub liclyAvailableStandards/c021573_ISO_IEC_13568_2002(E).zip
http://www.iso.org/iso/en/ittf/Pub liclyAvailableStandards/c021573_ISO_IEC_13568_2002(E).zip
http://nusmv.fbk.eu/
http://www.event-b.org/
http://sourceforge.net/projects/rodin-b-sharp/
http://sourceforge.net/projects/rodin-b-sharp/

Formal Methods in Systems Integration 15

32. Spivey, J.: The Z Notation: A Reference Manual, 2nd edn. Prentice-Hall Interna-
tional (1992)

33. Stepney, S.: New Horizons in Formal Methods. The Computer Bulletin, pp. 24–26
(2001)

34. Stepney, S., Cooper, D.: Formal Methods for Industrial Products. In: Proceedings
of 1st Conference of B and Z Users. LNCS, vol. 1878, pp. 374–393. Springer (2000)

35. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. MIT Press (2005)
36. UPPAAL Tool. http://www.uppaal.org/
37. Wikipedia: List of tools for static code analysis. https://en.wikipedia.org/wiki/

List of tools for static code analysis
38. Woodcock, J.: First steps in the the verified software grand challenge. IEEE Com-

puter 39(10), 57–64 (2006)
39. Woodcock, J., Banach, R.: The verification grand challenge. JUCS 13, 661–668

(2007)

http://www.uppaal.org/
https://en.wikipedia.org/wiki/List_of_tools_ for_static_code_analysis
https://en.wikipedia.org/wiki/List_of_tools_ for_static_code_analysis

Ontology-Based Optimization
for Systems Engineering

Dominique Ernadote(B)

Airbus Defence and Space, Elancourt, France
dominique.ernadote@airbus.com

Abstract. Model-Based Systems Engineering techniques used with
decriptive metamodel such as NAF, SysML or UML often fails to provide
quick analyses of huge problem spaces. This is generally compensated by
Operations Research technique supporting the resolution of constraint-
based problems. This paper shows how both perspectives can be com-
bined in a smooth continuous bridge filling the gap between the two
universes whilst hiding the operations researchs complexity for the mod-
elers and automating the exploration of a very huge problem space for
the finding of optimized solutions.

Keywords: MBSE · Model-Based Systems Engineering
Systems engineering · Operations research

1 Introduction

System engineering is a multi-domain process that encompasses the design, real-
isation, delivery, and management of complex systems or system of systems.
Best-practices that ensure the quality of such processes has been documented
in standards, such as ISO 15288 [15], and system engineering resources, such as
the INCOSE handbook [2,12]. These standards assess and describe the different
activities of the system engineering process, detail the involved stakeholders and
their responsibilities with respect to these activities, and specify the required
and the produced deliverables. These descriptions are highly useful, but they
mainly remain document centric. Meanwhile, a Model-Based System Engineer-
ing (MBSE) approach is commonly accepted by the system engineers commu-
nity [17] that depends up on the creation of centralized models to produce the
expected deliverables. Standard metamodels such as UML [21], SysML [20] or
NMM/NAF [18] are typically used to describe the relevant concepts for these
descriptive models.

A concrete implementation of an MBSE approach implies that system engi-
neers know the corresponding metamodels. Such metamodels are typically well
understood within technical domains, for example software development based
on UML, or database development using conceptual data models and schemas.
However, if one considers the stakeholders involved in the entire system engineer-
ing process, he has to include the V&V stakeholders, the stakeholders involved in
c© Springer Nature Switzerland AG 2019
E. Bonjour et al. (Eds.): CSD&M 2018, Complex Systems Design & Management, pp. 16–32, 2019.
https://doi.org/10.1007/978-3-030-04209-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-04209-7_2

Ontology-Based Optimization for Systems Engineering 17

the system rollout, the end-users. . . each in a specific domain with its own vocab-
ulary. Even if there are some commonalities, each specialist integrates specific
terms due to the type of systems designed. With those sharing constraints, the
usage of a predefined metamodel creates barriers between the modeling experts
and the stakeholders responsible for other activities. Thus, an efficient collabo-
ration requires the adoption of the model presentation to this later audience via
domain specific languages (DSLs) also named ontologies (see [13] for a discussion
of the differences between DSL, ontology, and metamodel).

The author proposed an approach in [6] to reconcile the usage of complex
but necessary metamodels with dedicated ontologies which are more friendly for
the end users. Briefly, the method is based on the mapping of the user-defined
ontology against a modeling tool metamodel. This added layer eases the creation
of models by different communities of users whilst ensuring the storage mode
is valid against a selected standard metamodel which is of interest when the
modeling tools interoperability becomes a concern.

However, all these mechanims rely on common desciptive languages which
means the models are first depicted in the selected language by creating one by
one the modeling elements, setting their property values and linking them each
other. Then the models are assessed against engineering criteria, stakehoders
needs, or system requirements. Then, the system engineer applies such or such
analysis technique on 2, 3, or more model alternatives. The more models are
studied, the more confident the engineer is regarding her/his final choice.

The main drawback of this way of doing resides in the time consuming effort
to produce the models. According to [9], the current complexity increase in
system design is posing dramatic increasing challenges for a system engineer-
ing under time and resources constraints. System architecture designs have been
proved to be NP-Hard [10] and the direct consequence is that the system architec-
ture design by itself should be considered as an optimization problem. This non-
linear complexity increase accompanied with few changes regarding the resource
availability enforce to seek for new means and specifically to be machinely helped
during the optimal system discovery process.

Still focusing on the engineering productivity, this raises the following ques-
tions: Is there a way to handle the variability of a system such a way that the
modeling activities are effortless, or at least not linear against the number of
system solutions to be compared? Extending again the expectations, is it pos-
sible to declare the constraints from the stakeholder perspectives and then to
automatically produce a model that fulfills all the constraints and is proved to
be one of the best solutions? These are the questions addressed in this paper.

2 Prerequesites for an Automated System Design
Optimization

This paper presents the optimization of descriptive models in two parts. First,
there is a step of description of the model variability which defines the solutions
space of the expected models. The notion of variability includes information on

18 D. Ernadote

both the individual modeling elements and the sets of those elements. The Sect. 3
addresses this topic.

Secondly, the constraining expression of the model variability are used to find
out an optimal solution. An appropriate algorithm must be found to efficiently
find the solution, and the impact of an existing model have to be considered so
that the solution is stored in the model repository. This topic is addressed in the
Sect. 4.

2.1 The Modeling Planning Process

The Modeling Planning Process (MPP) is a modeling method detailed in [6]
which aims to objectively tailor the system engineering modeling activities. This
is not the subject of this paper to explain the method but the presented opti-
mization of descriptive models presented here relies on it so its main phases are
briefly summarized as follows:

1 - Identify and prioritize the modeling objectives. By identifying the modeling
objectives we except to find out the rationale for the modeling activities. The
question to answer is “what are the expected outcomes of the models?”

2 - Determine the relevant concepts to be modeled which help achieving the mod-
eling objectives. Doing so, a conceptual data model emerges which must be
expressed in the end-users’ terms including the relations between the concepts
and their properties. At this level, there is no technical standards involved.

3 - Map the identified concepts to a selected modeling standard. Even though a
dedicated ontology could be used to implement the modeling tool aligned with
the designed data model, we recommend to rely on existing standards such as
NAF, SysML or UML. The rationale for this recommendations is to ensure the
lifespan of the data and the ability to read and write the information in different
modeling tools (data interoperability).

4 - Define the contents of the expected deliverables. The modeling activities
achievement is concretized thanks to human-readable documents. This is still
a mandatory step for the final validation of the design. The contents of such
documents can be expressed by referring to the end-user concepts, the relation,
and the properties.

Since all these phases require traceability from the objectives to the final
deliverables, the method is itself implemented by modeling the involved notions
which allows a quick automation of the deliverable production (step MMP-4).
In the following sections, we name MB2SE this modeling framework because the
model-based systems engineering is itself model-based.

3 Model Variability

Variability modeling approaches define different ways to express the space of
freedom for a model. It is in this space that an optimal solution is searched for.

Ontology-Based Optimization for Systems Engineering 19

According to [3], there are two kinds of variability modeling approaches: fea-
ture modeling (FM), and decision modeling (DM). Feature modeling captures
features defined as capabilities of systems having a specific interest for the end-
users. On the other hand, a decision model focuses on decisions trading-off the
different branches of a variation model. [3] compares different approaches includ-
ing both the two modeling types and concludes there are mainly similar. In our
context, the models based on SysML or NAF do not integrate by themselves the
notion of decision. This should be added but for standard compatibility reason
which is often a customer requirements in the defense sector, we have to reduce
the metamodel extension. This is why we will consider the feature modeling in
more detail.

Regardless the modeling mode, there are one of the compared characteristics
studied in [3]. Orthogonality : the degree to which the variability is separated from
the system model. This is for us an important concern in order to ensure the
constraints elicitation can be listed by family and then applied to an independent
specific system model. Data Types: types refer to the primitive and composite
values which opens the solution space. Still according to [3], DM and FM are
similar. Modularity : Ability to reuse variability expression in order to handle the
variability model complexity.

One conclusion of this comparison paper, is that the Common Variability
Language (CVL) [11], which is a variability modeling language, presents most
of the expected advantages including orthogonality, and a large expressiveness.
Another advantage is the standardization of this language since the Object Man-
agement Group organization (OMG) is under the process of integrating the lan-
guage proposal. This should be made easier by the fact it is a sublanguage of
OCL (Object Constraint Language) [19,22,24], an already standardized con-
straint language for UML. By the way, the compositional layer of CVL provides
ways to encapsulate and reuse variability specifications through Configurable
Units and Variability Interfaces [4, Sect. 2.5].

3.1 Link with the MB2SE Conceptual Data Model

OCL-like constraint language have been developed to specify contraints on UML
model. Thus, such language integrates a grammar which takes advantages from
the classifier characteristics: attributes, and association ends. These languages
usually encompass both characteristics under the term property. Figure 1 shows
an example of UML class diagram illustrated in [22]. Through this example,
constraints can be written in the OCL language which uses the dot notation to
access the different properties either directly or via a path. As an example, the
constraint “Person self.age > 0” indicates that the attribute age of a class
Person shall be greater than 0. The constraint:

RentalStation self.employee->forAll(p |

p.income(‘‘98/03/01’’) > 2000)

20 D. Ernadote

includes a reference to the association end employee and the function income().
The dot notation can be used to concatenate association ends via the notion of
Set [19, Sect. 7.5.3, p. 18].

Fig. 1. UML class diagram.

This kind of notation suits perfectly the MB2SE framework; since the model-
ing objectives are mapped to a conceptual data model (step MMP-2) of the MPP
method, the notions of classes, attributes, and association ends are also present.
The MB2SE foundation uses a very small subset of the class diagram capabilities
(for example, no functions are described) but at least the important property
notions are there and should be integrated into the constraint language finally
selected to support the design process. By using a model to describe the con-
ceptual data model allows linking the corresponding modeling elements (class,
attribute, and association ends) to the constraints. Thus syntax checking are
possible by analyzing the data model for example to check a path is valid.

4 Fulfilling the Modeling Constraints

Once the variability modeling has been expressed, it is time to exploit it in order
to find out 1 or several optimal solutions to the design problem. As exposed in
the introduction of this chapter, the search for an optimal solution is proven to
be NP-Hard. Thus, operations research techniques are mandatory to solve the
listed contraints in a reasonable time.

Operations Research (OR) is a discipline involving analytical methods to help
finding optimal or near-optimal solutions to complex decision-making problems.
This is a practical discipline used in combinatory problem such as critical path
analysis, project planning, network optimization, allocation problems. . . In the
context of the system engineering OR is used to solve thermal, or mechanical
problems, or any other domains relying on strong mathematical foundations. The
current lack for a theoretical formalism of descriptive models based on SySML
or NAF makes the usage of such techniques very rare. This is a gap we aim to
fill with the research perspectives exposed in this chapter.

[5, Sect. 1] exposes a state of the art of the Operations Research. This first
chapter demonstrates the complexity of the discipline; the applied algorithms
shall be selected with care depending on the nature of the constraints to be
solved. [8] also confirms how the fine-tuning of the algorithm is a key aspect of

Ontology-Based Optimization for Systems Engineering 21

the high-performance of the research. Some algorithms are based on analytical
approaches to find out exact solutions to linear problems. Other algorithms use
heuristics mimicing behaviors observed from the nature such as the simulated
annealing or genetic algorithms. In this case, these algorithms return approxi-
mate solutions in a reasonable time compared to the size of the problem space.
Even though the algorithms have considerably progressed during the last decade,
they remain a matter of experts and the selection of the appropriate algorithm
depends of the nature of the constraints. For example, the ratio between the num-
ber of variables against the number of constraints influences the choice of such
or such algorithm and subsequently the resolution performance [5, Sect. 1.3.1].

Another concern encountered with a large amount of the existing algorithms,
is the numeric approximation of the real numbers. Some algorithms must be
cautiously adapted so that the approximation errors have less impacts on the
problem resolution [5, Sects. 1.2.4, 1.3.2].

Finally, the tuning of OR tools such as IBM CPlex also requires a specific
expertise; an important number of options have to be set which impact the
resolution problem capabilities.

4.1 Operations Research and Systems Engineering

In the context of the systems engineering process, there are two distinct phases
inducing different concerns: the bid phase where the provider answers for a quo-
tation proposal, and the complete design phase where the provider has won a
contract and has to complete the design of the foreseen system. In both the
two steps, the left part of the V lifecycle corresponding to the design phases –
Concept, and Development in [12, Sect. 3.3] – have to be completed but the con-
ditions are not the same; the bid step is extremely constrained regarding human
resources and time. In this step, the research for an optimal solution contributes
to the cost evaluation and so it is a strong support for the gain of the contract.
Hardly constraint resources and time, and huge impact on the capability to win
a contract militate for a very accessible technique of research operations. By the
way, this accessibility quality generates additional benefits; the more the tech-
nique is made easy, the more the system engineers will use it, even in the case
of won contract, to optimize every aspects of their design. This is then a major
feature to support an holistic optimization of the system.

4.2 Local Search Algorithm Tuning Delegation

[1] proposes a black-box local search software component, named LocalSolver
in order to combine both these accessibility and performance expectations. This
black-box implements an heuristic based algorithm starting from a point in the
solution space and moving in a reasonable time towards a non optimal but of
high quality solution. The authors demonstrate that the tuning of the moves
and the incremental evaluation algorithms consume respectively 30% and 60%
of the development time. So, the idea consists on a programmatic transfer of the
local search practionners’ knowledge into the software black-box. LocalSolver

22 D. Ernadote

performs structured moves tending to maintain the feasibility of solutions at
each iteration. The tool main specifities are: a simple mathematical formalism
to model the problem in an appropriate way for local search resolution, and an
effective black box local search based solver focused on the feasibility and the
efficiency of moves.

The model formalism remains simple; the constraints and the space problem
are declared through a simple language named LSP (which stands for Local
Search Programming [14]), and there is no specific or very few code to write in
order to tune the problem resolution (see an example in [1, Sect. 3]). This kind
of black-box perfectly suits the need for supporting the systems engineering the
way exposed in the previous paragraphs.

4.3 A Pragmatic Implementation of the Constraint Language

In 3.1, we showed that languages like OCL or CVL are convenient to express the
constraints linked to the conceptual data model used in the MB2SE approach.
Thus, one topic to be studied is the link between such constraint language and
the LSP language. A first approach consists of analyzing the OCL grammar,
and trying to convert all combinations into the equivalent LSP syntax. The
main blocking point is the language equivalence; the grammars are different
and designed for specific purpose: a generic constraint declarations based on
a conceptual data model on one hand, and the declaration of constraints for
research operation treatments on the other hand. Thus, the OCL usage shall be
limited to what the LSP language can address.

After, a first attempt in that direction we decided to implement the opposite:
what about writing the constraints in the LSP language but adding it the dot
notation? That way, there is no complex translater to implement but the one
converting the dot notation based paths into something LSP understands: we
chose to convert the path into LSP lists where items refers to the different data
model elements (class, attribute, association end). The Sect. 3.1 demonstrates
that the relevant benefit of the constraint language is the alignment with the
data model which is still fulfilled that way. Regarding the constraint capabilities
both implementations are finally restricted by the LSP language functionalities
so there is no technical loss by using this final approach.

4.4 The Ontology-Based Optimization Process

Having resolved this language link, the engineering steps integrating the dele-
gation of the optimization resolution to a local-search blackbox would be (see
Fig. 2):

1. A system engineer describes her/his contraints an easy way from a modeling
tool,

2. the constraints are automatically converted into a LSP-like language accom-
panied with the current model instances,

Ontology-Based Optimization for Systems Engineering 23

3. the black-box local search tool searches for a solution to the constraints con-
sidering the current model instances,

4. the solution is pushed back into the modeling tool with some facilities to help
the system engineer understanding the changes.

Fig. 2. Model optimization chain.

5 Example of an Optimization-Based Systems
Engineering

The two following examples illustrate the usage of the optimization chain in an
incremental approach.

The first example is split into two parts: First, we start from customer
requests for application-based functions. The provider has a portfolio of appli-
cations supporting the expected functions by sets. We first try to answer the
customer request through an optimized subset of applications covering all the
requested functions and optimizing the cost.

Once selected, the applications have to be deployed into servers. The servers
are themselves hosted into racks. Each items has a cost which must be minimized.
Other constraints will be detailed later which are related to the disk space, the
weight of the servers in the racks. . . The answer shall proposed an optimized
infrastructure technology (IT) to deploy the selected applications.

A second example takes exactly the same customer requests but the idea is
then to consider the global picture: optimizing the application coverage AND
the IT deployment in the same row. The intent is to demonstrate that a global
consideration which is possible through a well-managed MBSE implementation
yields to a better optimized solution compared with the two chained but separate
optimization problems.

5.1 Selecting the Applications

The first part of the problem is to select optimized subsets of the applications.
Figure 3 shows the information model related to this question.

In order to test the proposed chain, 5 CustomerNeeds have been created. Each
of them represents 5 different customer requests. A CustomerNeed is connected to
a subset of the 100 Functions. The provider proposes 50 Applications, each of
them supporting some of the Functions. Resolving the problem is then to create

24 D. Ernadote

Fig. 3. Example of information model to be optimized.

1 ApplicationPackage per CustomerNeed which links some of the applications
so that the following constraints are fulfilled. These constraints are expressed
with an LSP-like language where sets of modeling elements are aggregated by
declaring dot-notated pathes. Native keywords of the LSP language are displayed
bold, while keywords refering to the data model are underlined.

R01 Minimize the application package costs.

for [cn in CustomerNeeds]

minimize mlSum(cn.selectedPackage .applications.cost);

R02 Ensure all requested functions are provided in the corresponding package.

for [cn in CustomerNeeds]

mlIsSubSetOf (cn.selectedPackage .applications.functions ,

cn.requestedFunctions

R03 1 package is provided for each customer needs set and vice-versa.

for [cn in CustomerNeeds]

mlCard(cn.selectedPackage) <= 1;

for [ap in ApplicationPackage]

mlCard(ap.deployedPackage) <= 1;

The function mlIsSubSetOf, mlSum and mlCard respectively indicates
whether a set is included in another one, returns the sum of the set elements
attribute values, and counts the number of elements in a set. Since we start with
5 independent CustomerNeeds, 5 ApplicationPackages are proposed in a 1 to
1 mode (requirement R03).

5.2 Designing the Optimized IT

Once the applications are selected, an appropriate IT has to be selected to
deployed the applications. Figure 4 shows the related concepts to be modeled.

An IT solution (TechnicalInfrastructure) is to be provided for each
ApplicationPackage. An IT solution is composed of Racks hosting Servers.
We want to optimize the cost which is the sum of the servers costs + the sum of

Ontology-Based Optimization for Systems Engineering 25

Fig. 4. A complementary example of information model to be optimized.

the racks costs, and ensure all the applications are deployed. On the other hand,
the solution must fulfill the following technical constraints:

– The weight of servers is compatible with the Rack specification,
– The size in U (Unit) of the server is compatible with the Rack specifications,
– The disk space of the server is compatible with the application specifications,
– Assuming the applications are runned by the hosting server (for simplification

purpose), the global processor usage consumption shall be < 0.9 (90%).

This is more formally translated into the LSP-like language:

R04 Minimize the IT Solution Cost.
for [ti in TechnicalInfrastructure]

minimize (mlSum(ti.selectedRacks .cost) +

mlSum(ti.selectedRacks .hostedServers .cost);

R05 Find a solution for each Package.

for [ap in ApplicationPackage]

mlCard(ap.deployingIT) <= 1;

R06 Weight constraint.

for [r in ApplicationPackage.deployingIT.selectedRacks]

mlSum(r.hostedServers <= r.acceptableWeight);

R07 Processing Usage Constraint.

for [s in ApplicationPackage.deployingIT.selectedRacks .hostedServers]

mlSum(s.hostedApplications.processorUsage <= 0.9);

5.3 Optimizing with the HOPEX-LocalSolver Bridge

A prototype has been developed which is based on the HOPEX for NAF model-
ing tool (MEGA company) and the LocalSover local-search black-box component
(Innovation24 company). The implementation follows the principle described in

26 D. Ernadote

the Fig. 2. The HOPEX for NAF contains both the initial model and the LSP-
Like constraint declarations. Fake data have been created for the purpose of
the test of this paper but actual optimization has also been performed for a
French MoD project on a more representative set of data. Each modeling con-
cept (Application, ApplicationPackage. . .) involved in a constraint is con-
verted from the HOPEX tool to a corresponding flat file (see Fig. 5).

Fig. 5. A CSV flat file corresponding to the application concept.

Other CSV flat files are also generated for each relation between two concepts.
Refer to Fig. 6 for an example of the relation between the applications and the
functions displayed as a 2-D table.

Fig. 6. A 2-D table corresponding to the relation between applications and functions.

The usage of this modeling tool allows creating transparent links between the
textual constraint and the referenced data model artefacts. These links are used
to automate the export of the appropriate flat files according to the constraints
contents. Once the computation is done, the results are against transferred into
the flat files for difference visualization and re-import into the modeling tool.

From the local search toolbox perspective, the CSV files are the input data.
What is missing to complete the solution research are the constraints. All the
constraints expressed in the LSP-like language for friendliness purpose have to
be converted into the actual LSP language. In this language, the constraints are
declared and contribute to the building of a constraint tree which is solved by

Ontology-Based Optimization for Systems Engineering 27

the local search tool. Such conversion leads to the rewriting of the requirements
as follows:

RA Defines the solution space for problem A.

mlDecideRelation(selectedPackage);

mlDecideRelation(applications);

mlDecideRelation(functions);

R01 Minimize the application package costs.

local sumCosts = {};

for [cn in md.[CustomerNeeds]]

minimize mlSum (cn, { selectedPackage , applications , cost });

R02 Ensure all requested functions are provided in the corresponding package.

for [cn in md.[CustomerNeeds]]

mlIsSubSetOf (cn, { selectedPackage , applications , functions },

cn, { requestedFunctions });

R03 1 package is provided for each customer needs set.

for [cn in md.[CustomerNeeds]]

mlCard(cn, { selectedPackage }) <= 1;

for [ap in md.[ApplicationPackage]]

mlCard(ap, { deployedPackage }) <= 1;

RB Define the solution space for problem B.

mlDecideRelation(deployingIT);

mlDecideRelation(selectedRacks);

mlDecideRelation(hostedServers);

mlDecideRelation(hostedApplications);

R04 Minimize the IT Solution Cost. This is transformed the same way. . .

As explained in the Sect. 4.3, the LSP-like language is simply converted by
replacing any concept C into a statement md[C] where md is a map of modeled
data and the index matches the concept identifier in the modeling tool. For this
index, the map returns of the concept instances with their property values. A
dot-based path o.r1.r2a is converted into a sequence o, {r1, r2, . . . , a}, so
the first element of the path followed by a list of identifiers matching the path.
Depending on the context the last attribute can be optional. The result of such
a path must be the set of the elements explored from o (e.g mlCard()) or the
result of a function applied on the a property of the set elements (e.g. mlSum());

The implementation of the constraints into the actual LSP language raised
several writing and transformation rules. First of all, each rule must be inde-
pendent to the others. This means the variables declared in the context of a
constraint shall not conflict with any other constraint. This is obvious if the
LSP program is written in the context of a program editor but the initial con-
text is the modeling tool where the constraints are individual modeling elements
refering to the MB2SE information model. In this context, all the variables are
declared local (see sumCosts in requirement R01 as an example). The To-LSP

28 D. Ernadote

converter also adds curling braces around each constraint so that to ensure the
variable declarations are only specified in the context of the constraint.

Secondly, the space of the solution must be explicitely declared. For the
first optimization problem, only the relations selectedPackage, applications,
and functions are allowed to be updated. This must be explicitely said so
the added requirements RA and RB. For simplification reason, the function
mlDecideRelation() hides the LSP code which transforms the relation between a
pair of modeling elements into an open boolean which can take one of the false
or true values, the last one indicating the relation exists. For all the variables not
allowed to be changed, their values are initiated from the modeling repository
data with fixed values.

This problem space definition mechanism is replicated for the concept of the
data model; each concept corresponds to a list of arrays matching the concepts’
attributes. They are initiated according to the modeling repository data and only
those used in the left part of a constraint are included in the problem space. In
this case, the user has nothing to do but declaring the constraints.

Note also that requirement R03 is in fact already formalized by the
association multiplicities set on the relation between CustomerNeeds and
ApplicationPackage (Fig. 2). So, we can remove the explicit requirement and
introduce an automated generation based on the multiplicities this for the sake
of simplicity.

5.4 Performance of the Optimal Solution Search

Once converted into LSP program, the constraints are analyzed by the tool and a
simulated annealing algorithm [23] is launched to find out an optimal solution. A
solution which is not guaranteed to be the best – but at least a “good” solution
– is computed in a timeframe defined by the user. The longer the timeframe
is, the greater is the probability to be closed to an optimal solution. Then, the
opened relations, attributes, and set of individuals are updated according to the
found solution. All the changes are transferred again into the flat files (see Figs.
5 and 6) which allow understanding which are the changes, and automating the
reimport into the modeling tool.

Even though the local search toolbox is considered a black-box fed with
declared constraints, we have to consider the impact of the different ways the
constraint can be written. Let’s consider the requirement R01 stating the mini-
mization of the application package costs.

for [cn in CustomerNeeds]

minimize mlSum(cn.selectedPackage .applications.cost);

Ontology-Based Optimization for Systems Engineering 29

This requirement can be written using only the LSP native language as
follows:

local sumCosts = {};

for [cn in CustomerNeeds] {

sumCosts[cn] <- sum[ap in ApplicationPackage](

selectedPackages[cn][ap] ? (

sum[app in Application](

Applications[ap][a] ?

Application[a].Cost : 0)) : 0);

minimize sumCosts[cn];

}

The main idea of the first formulation is: to sum on Applications[a].Cost,
we need to check if there is a path from cn to ap. This path is decomposed in
two relations: CustomerNeeds – selectedPackage → ApplicationPackages,
and ApplicationPackages – applications → Application. The sum checks
whether there is path between cn and ap, if so it looks for a path between ap
and a.

Another way of writing the same objective is the following:
local sumCosts = {};

for[cn in CustomerNeeds] {

sumCosts[cn] <- sum[ap in ApplicationPackage]

[app in Application](

selectedPackage[cn][ap] * applications [ap][a] * Application [a].Cost);

minimize sumCosts[cn];

}

The main idea here is that we sum of every 3-tuple on cn, ap and a, and if no
path exists between the three, the following product : selectedPackage[cn][ap]×
applications[ap][a] × Application[a].Cost results to 0 (taking into account that
boolean values are 0 and 1 in LSP language).

As far as the LocalSolver tool is concerned, both formulations are not equiv-
alent in terms of performance to obtain the results. We run LocalSolver twice on
a set of 5 customer needs (CN1 . . . CN5), changing the formulation of the above
constraint, leading to the different results expressed in the Table 1. Best results
are displayed in bold format.

Table 1. Local solver execution with different constraint writings.

Formulation CN 1 CN 2 CN 3 CN 4 CN 5 Iteration Moves Time

First 16846 18886 29591 22653 35088 401404 802870 10 s

Second 19562 23763 33514 37210 37735 240000 464145 10 s

Second’ 16846 23763 33514 27983 35382 27713443 55425069 10 mn

In the same given time (10 s), the first formulation gives better results in every
customer needs. Even after 10 min, the solution of the second formulation doesn’t

30 D. Ernadote

reach the quality of the first formulation. In this example, time isn’t enough
to compensate for a computationally expensive formulation. For an identical
time (10 s), we can observe that the numbers of iterations and moves – which
reflects the heuristics based algorithm used to solve the problem – are higher
for the first formulation, meaning LocalSolver could better explore the space of
feasible solutions (i.e. could explore more solutions in the same time). So, the
formulation of the constraint not only affects the complexity of the evaluation,
but also the quality of the results given by LocalSolver. As LocalSolver’s time
spent is controllable, the issue to properly face is not the time that LocalSolver
spends on solving the problem but the quality of the operations that the local
search tool can do during this given time.

One way to reduce the risk of bad solutions due to the writing of constraint
expressions by non LSP experts is by transforming the constraint graphs into an
equivalent one but proven to be optimal regarding the search performance. There
are currently works done in that direction by the developers of the LocalSolver
tool so for us the issue of finding an optimal solution will continue to be deletaged
to the optimization tool as a black box regardless the writing of the expressions.
Another more affordable way, is by wrapping the constraint implementation into
predefined functions with the best known approach regarding the implementa-
tion. This is what has been done by proposing the functions mlIsSubSetOf(),
mlSum(), or mlCard(). This function hides the complex implementation and
give the end-user a more friendly understanding of the constraint meanings.
Regarding the mlSubSetOf() function, a naive implementation leads to the res-
olution of an actual project in 37 mn. By considering the function as a pure func-
tion (which from a programmactic perspective always returns the same result for
a given input and has no side-effect), it is possible to optimize the computation
time of this recursive function by using a memoization mechanism [16]. This
dramatically reduced the general complexity and the same computation is now
done in 2 s while still keeping the same function declaration for the end-users.

6 Future Work

This paper demonstrates how the declaration of constraints against a conceptual
data model can be automatically converted into an LSP program including the
modeling data which enables the computed search for optimal solutions satysi-
fying the constraints. This mechanism allows the update of concept attributes,
and corresponding relations through the simple declaration of contraints based
on the LSP language augmented with the dot notation for pathes.

We also explained how the writing of the constraints can alterate or improve
the obtention of a solution within a reasonable time. This is why a library of
predefined functions hides this writing complexity. By applying this approach
in an actual French MoD project, we learnt that additional functions are again
necessary to be developed to foster the usage of the constraint declarations, espe-
cially all the set functions diving into the model (union, intersection, different
modes of properties agregation. . .).

Ontology-Based Optimization for Systems Engineering 31

The modeling principles established by the MB2SE framework [6] create new
issues regarding the research for optimality. This framework relies on the decla-
ration of a modeling data model mapped to a storage metamodel such as NAF.
This mapping separates the business perspectives from the technical require-
ments relate to modeling tool interoperability. As illustrated in [7], two system
engineers can create distinct data models pointing to the same modeling ele-
ments. So the following questions to be studied and solved: How to solve system
engineering constraints declared in two different perspectives? How to detect
whether the system engineering constraints declared for one perspective impact
the ones declared in another perspective? Is there similar issues to be solved in
the context of a unique conceptual data model? For example, how to handle the
inheritance between two concepts dealing with a common subset of modeling
elements?

Acknowledgement. I warmly thank Thierry Benoist from the LocalSolver company
for his precious help regarding the constraints implementation. I also thank Erwan
Beurier from IMT Atlantiques (Institut Mines-Telecom Bretagne, France) for his first
implementation of the MEGA to LocalSolver converter.

References

1. Benoist, T., Estellon, B., Gardi, F., Megel, R., Nouioua, K.: Localsolver 1. x: a
black-box local-search solver for 0-1 programming. 4OR Q. J. Oper. Res. 9(3),
299–316 (2011)

2. BKCASE. Sebok, guide to the systems engineering body of knowledge. http://
sebokwiki.org

3. Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., W ↪asowski, A.: Cool fea-
tures and toughdecisions: a comparison of variability modeling approaches. In: Pro-
ceedings of the Sixth International Workshop on Variability Modeling of Software-
Intensive Systems, pp. 173–182. ACM (2012)

4. Dumitrescu, C.: CO-OVM: a practical approach to systems engineering variability
modeling. Université Panthéon-Sorbonne - Paris I, Theses (2014)

5. Dupin, N.: Modélisation et résolution de grands problèmes stochastiques combina-
toires. Ph.D. thesis, Université Lille 1, Laboratoire Cristal (2015)

6. Ernadote, D.: An ontology mindset for system engineering. In: 2015 1st IEEE Inter-
national Symposium on Systems Engineering (ISSE), pp. 454–460. IEEE (2015)

7. Ernadote, D.: Ontology reconciliation for system engineering. In: 2016 IEEE Inter-
national Symposium on Systems Engineering (ISSE), pp. 1–8. IEEE (2016)

8. Estellon, B., Gardi, F., Nouioua, K.: Two local search approaches for solving real-
life car sequencing problems. Eur. J. Oper. Res. 191(3), 928–944 (2008)

9. Hammami, O.: Multiobjective optimization of collaborative process for modeling
and simulation-< q, r, t. In: 2015 IEEE International Symposium on Systems
Engineering (ISSE), pp. 446–453. IEEE (2015)

10. Hammami, O., Houllier, M.: Rationalizing approaches to multi-objective optimiza-
tion in systems architecture design. In: 2014 8th Annual IEEE Systems Conference
(SysCon), pp. 407–410. IEEE (2014)

11. Haugen, Ø., Wasowski, A., Czarnecki, K.: CVL: common variability language.
SPLC 2, 266–267 (2012)

http://sebokwiki.org
http://sebokwiki.org

32 D. Ernadote

12. INCOSE: INCOSE System Engineering Handbook, 4 edn. (2015)
13. InfoGrid. What are the differences between a vocabulary, a taxonomy, a the-

saurus, an ontology, and a meta-model? http://infogrid.org/trac/wiki/Reference/
PidcockArticle

14. Innovation24. Lsp reference manual. https://www.localsolver.com/documentation/
lspreference/index.html

15. ISO: ISO/IEC 15288:2008, Systems and software engineering–System life cycle
processes (2008)

16. Milewski, B.: Category theory for programmers (2014)
17. Morkevicius, A.: Integrated modeling: adopting architecture frameworks for model-

based systems engineering. http://163.117.147.32/joomlaaeis/sese/slides/SESE
2014-Integrated Modeling Aurelijus.pdf

18. NATO. Naf v4 meta-model (model) (2013). http://nafdocs.org/modem/
19. OMG: Object Constraint Language, version 2.4, February 2014. http://www.omg.

org/spec/OCL/2.4/PDF
20. OMG: OMG Systems Modeling Language (OMG SysML ™), version 1.4. June

2015. http://www.omg.org/spec/SysML/1.4/PDF
21. OMG: OMG Unified Modeling Language ™(OMG UML). Structured Classifiers,

p. 181. OMG, March 2015. http://www.omg.org/spec/UML/2.5/PDF
22. Richters, M., Gogolla, M.: On formalizing the UML object constraint language

OCL. In: International Conference on Conceptual Modeling, pp. 449–464. Springer
(1998)

23. Van Laarhoven, P.J., Aarts, E.H.: Simulated annealing. In: Simulated Annealing:
Theory and Applications, pp. 7–15. Springer (1987)

24. Warmer, J.B., Kleppe, A.G.: The Object Constraint Language: Precise Modeling
with UML (Addison-Wesley object technology series) (1998)

http://infogrid.org/trac/wiki/Reference/PidcockArticle
http://infogrid.org/trac/wiki/Reference/PidcockArticle
https://www.localsolver.com/documentation/lspreference/index.html
https://www.localsolver.com/documentation/lspreference/index.html
http://163.117.147.32/joomlaaeis/sese/slides/SESE_2014-Integrated_Modeling_Aurelijus.pdf
http://163.117.147.32/joomlaaeis/sese/slides/SESE_2014-Integrated_Modeling_Aurelijus.pdf
http://nafdocs.org/modem/
http://www.omg.org/spec/OCL/2.4/PDF
http://www.omg.org/spec/OCL/2.4/PDF
http://www.omg.org/spec/SysML/1.4/PDF
http://www.omg.org/spec/UML/2.5/PDF

On-Time-Launch Capability for Ariane
6 Launch System

Stéphanie Bouffet-Bellaud(&), Vincent Coipeau-Maia, Ronald Cheve,
and Thierry Garnier

ArianeGroup, Route de Verneuil, 78133 Les Mureaux, France
{stephanie.bouffet,vincent.coipeau,ronald.cheve,

thierry.garnier}@ariane.group

Abstract. For space transportation systems used to place satellites in space, the
launch rate fulfillment (turnover) and the launch delay reduction (avoid addi-
tional cost) are key parameters driving the launch cost. In addition, launching
on-time is beneficial to the payload operator business model.
In Europe, Ariane 5 has demonstrated its unmatched reliability with more

than 80 successful consecutive launches. Due to increasing competition
worldwide for space transportation systems, Ariane 6 will have to achieve the
same reliability but with twice the launch cadence.
This is the reason why, on Ariane 6, the On-Time-Launch capability has been

taken into account since upstream development phases. Firstly, the main drivers
for this performance have been identified (lessons learnt) on the complete life
cycle. Based on cost approach, an allocation methodology has been defined,
including risk severity and occurrence management. Then, mitigation actions
and robustness to degraded cases have been deduced.
In the frame of CSDM 2018, the On-Time-Launch Capability for Ariane 6

Launch System and associated methodology is proposed to be presented during
a 30 min talk.

1 Context and Study Logic

Ariane 6 is the new European launcher with two versions A62 and A64. Its perfor-
mances to geostationary transfer orbit will be 5 tons (A62 with 530 t weight at lift-off)
and more than 10,5 tons (A64 with 860 t weight at lift-off) (Fig. 1).

Ariane 6 development is in progress. First flight is planned in 2020.
Ariane 6 launcher is composed of:

• a Central Core providing thrust with a Lower Liquid Propulsion Module (LLPM)
equipped with a Vulcain engine and an Upper Liquid Propulsion Module (ULPM)
equipped with a Vinci engine;

• two (A62) or four (A64) Equipped Solid Rockets (ESR) boosters depending on the
Ariane 6 Launcher configuration;

• an Upper Part including the fairing, the Launch Vehicle Adaptor, the Payload
Adaptor Fitting (to fit with payload interface diameter) and any system allowing to
perform dual launch or multiple launch.

© Springer Nature Switzerland AG 2019
E. Bonjour et al. (Eds.): CSD&M 2018, Complex Systems Design & Management, pp. 33–43, 2019.
https://doi.org/10.1007/978-3-030-04209-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-04209-7_3

Ariane 6 fully integrated launcher is built with the following process (Fig. 2).

Fig. 1. Ariane 6 versions

Fig. 2. Ariane 6 integration logic

34 S. Bouffet-Bellaud et al.

European Space Agency (ESA) is in charge of Ariane 6 Launch System (Launcher
System and Launch Base). ArianeGroup is prime contractor and design authority for
Ariane 6 Launcher System. As design authority, ArianeGroup is in particular
responsible for requirement derivation, design rules and requirement verification.

Due to increasing competition worldwide for space transportation systems, Ariane
6 will have to achieve the same reliability as Ariane5 with twice the launch cadence.

The Ariane 6 On-Time-Launch approach aims at considering this topic in upstream
development phase in order to anticipate as much as possible launch delay risk. The
objective is the improvement of launch availability by limiting launch delay and
reducing associated cost.

The launch planning delay and disruption during operation have a cost impact. The
fact to master these operation disruptions or planning delays can be a way to reduce
Recurring Cost (risk management ref.1).

The global logic (Fig. 3) is based in three main steps:

– identification of delay risks (lessons learnt and current project specificities)
– classification and selection of major delay risks
– reduction of major delay risks (occurrence and severity aspects)

The DOORS system engineering tool is used for the requirements allocation and
flow down in the technical specification (Fig. 4).

Requirements are based on either Probabilistic approach (like MTTR (Mean Time
To Repair)/MTBF (Mean Time Before Failure) or determinist approach (see ref.2 for
vocabulary definition).

Fig. 3. Ariane 6 On Time Launch study logic

On-Time-Launch capability for Ariane 6 Launch System 35

2 Delay Risks Identification

The On-Time-Launch activity has firstly analyzed the customer need on this topic and
performed a lessons-learnt on similar complex system.

2.1 Lessons-Learnt

The purpose of the present chapter is to have a status about risk of launch schedule
slipping by performing a “lessons learnt” activity on similar projects (Ariane 5 and
other Space-Systems projects).

The lessons-learnt activity was based on twenty years of experience in space
domain, on three major space program and many databases of incidents.

This activity aims to identify causes and consequences of disruptions in operation
and the stakeholders.

A classification and summary has been performed to identify the main unavail-
ability contributors (Launcher, Ground, Weather, Check, etc.…).

A list of recommendations has been extracted from these lessons learnt.
Due to Ariane 6 launch rate specificities, some new unavailability contributors

could appear. Indeed, the Ariane 6 launch rate objective (customer requirement) is
twice higher than Ariane 5 one. The fact to be in a tight planning will highlight some
new contributors. Complementary unavailability will appear and lessons-learnt activity
is not sufficient to address the global Ariane 6 topic. A global Ariane 6 approach is
necessary and proposed in paragraphs below.

2.2 Functional Risk Analysis

In order to take into account Ariane 6 specificities, a functional risk analysis for On-
Time-Launch needs has been performed to identify the possible delay risk. Co-
engineering working sessions (experts review) were organized (Fig. 5) for following
life phases:

• Europe activities
• Europe ! Centre Spatial Guyanais Transports

Fig. 4. DOORS tool

36 S. Bouffet-Bellaud et al.

• Centre Spatial Guyanais activities.

This functional risk analysis consists on going through process of Assembly
Integration and Tests (AIT) in each factory (exhaustive approach) and identifying risk
of delay (examples: means failure, means not available, integration difficulties, etc.…).

All information gathered during the co-engineering working sessions were sum-
marized in an excel file afterwards based on an “Ariane 6 APQP+ (Advanced Product
Quality Planning) template.

A verification process was implemented in parallel to confirm that the process was
adapted to the need.

An exhaustive list of around 5000 delay risks was obtained for all the phases
analyzed. The need to classify and select the major ones was highlighted and it is the
point of the following chapter.

3 Delay Risk Classification and Selection

Once the risk identification performed, the next step is the classification and
selection/prioritization of possible delay risk in each life phase before launch.

3.1 Cost Analysis Wrt “Delay Cost and Cost Acceptability”

The global logic is based on three main parameters: delay duration/delay cost/cost
acceptability. The objective is to elaborate a severity table on launch delay. This table
shall cover all the life phases of the Launcher System.

The cost topic has been managed through qualitative criteria and lessons-learnt
figure.

Fig. 5. Co-engineering working sessions with high tech tools

On-Time-Launch capability for Ariane 6 Launch System 37

The ranking of the delay duration severity is based on the cost (money lost
acceptability). The scale of this occurrence acceptability uses the Likelihood class table
(Fig. 6) below:

The Launch Pad destruction is treated at P4 which will be our limitation level for
the On-Time-Launch severity table: The On-Time-Launch severity table will then used
the likelihood level from P1 to P3.

The severity table allows linking cost and occurrence acceptability, this table
concerns cost topic and is managed through qualitative criteria. Finally, the severity
table makes a connection between the delay duration and the likelihood objective.

In order to derive the On-Time-Launch severity table, the objective is shared
between the different life phases of the launcher preparation.

In this sharing allocation objective, it has been chosen to put more constraints on
operations which are far from the expected launch slot because it is easier (more time)
to treat contingencies. Indeed, very close to the “expected launch slot”, it remains very
short time to treat contingencies without impact on “expected launch slot”.

That means that:

• constraints are higher on phase “Before integration process in Kourou”.
• constraints are minimized for Launch-Pad activities.

The allocation is shared between Europe, Kourou CSG before Launch Pad arrival,
Launch Pad. The severity table makes a link, for each previous life phase, between the
delay duration and the likelihood objective.

Likelihood
class

Level Description

Extremely
rare

P4 They are those failures so unlikely that they are not
anticipated to occur during the entire operational life of
Ariane, but nevertheless, have to be regarded as being
possible.

Very rare P3 They are those failure conditions unlikely to occur
during Ariane life but that may occur once when
considering the total operational life of the Ariane fleet

Rare P2 They are those failures not anticipated to occur to each
Ariane launcher but that may occur a few times when
considering the total operational life of the fleet.

Occasional P1 They are those failures anticipated to occur once during
the operations of a limited set of Ariane launchers

Probable or
frequent

P0 They are those failures anticipated to occur during the
operations of each Ariane launcher.

Fig. 6. Likelihood class table

38 S. Bouffet-Bellaud et al.

It is proposed to transform allocations in number of barriers. A barrier is a miti-
gation measure (storage, logistic logic, failure treatment, etc.…) put in place to avoid
delays. The objective is to design an AIT concept robust to feared events which could
lead to launch delay.

The assumption is taken that:

• 1 barrier allows avoiding an occurrence of P2.
• 2 barriers allow avoiding an occurrence of P4.
• Lessons learnt recommendations based on similar program, allows reducing risk

(occurrence of P1: risk reduction by recommendation application).

This assumption (link between barrier and occurrence) is a convention which is usually
used but it has to be shared and agreed with the authority who is the recipient of the
evaluation.

Finally, the severity table makes a connection, for each previous life phase,
between the delay duration and the “barrier/mitigation action” number to be
implemented.

3.2 Major Delay Risk Selection

In order to classify the delay risks identified during the functional analysis, some
criticality matrix have been established in consistency with On Time Launch Severity
table.

Three criticality matrix have been established: Europe criticality matrix,
Kourou CSG before Launch Pad arrival criticality matrix, Launch Pad criticality
matrix.

These criticality matrix allocate for each delay risk, the risk level with regards to its
severity and its occurence.

Once the matrix elaborated, the selection has been performed and lead to around
100 delay risks to be mastered. At this step, the classification in term of Ariane 5 lesson
learnt occurrence level has not been used yet because the objective was first to catch
and then master the delay risk in term of severity (duration) in consistency with On
Time Launch Severity table. This Ariane 5 lesson learnt occurrence level will be used
afterwards during the internal value analysis on delay cost evaluation when needed.

Based on these criticality matrix, the exhaustive list of around 5000 delay risks (see
Sect. 2.2) has been reworked and a selection of major risks is created.

This selection is consistent with On Time Launch Severity table of Sect. 3.1:

• In Europe: selection of risks leading to delay wrt Launcher constitution in Kourou.
For Europe factory: selection of risks leading to delay wrt factory exit

• In Kourou: selection of risks leading to delay wrt expected launch slot.

Additionally to this selection, Ariane 6 specific risks, leading to shorter delay wrt
expected launch slot, have been also retained in order to focus on Ariane 6 specificities.

At this step, a list of Ariane 6 major delay risks is identified (100 risks).

On-Time-Launch capability for Ariane 6 Launch System 39

4 Delay Risk Reduction

The On Time Launch approach is based on the fact that mitigation actions are
implemented to avoid delay risk (delay occurrence reduction). In a perfect allocation,
all the major delay risks identified won’t occur because mitigation actions (occurrence)
are implemented. In the real allocation, in front of some delay risks, no adequate
mitigation actions (occurrence) are found. In this case, the delay risk can appear and it
corresponds to an On-Time-Launch degraded case. This On-Time-Launch Degraded
Case shall be managed as quickly as possible (mitigation actions (severity)) in order to
limit as much as possible launch delay duration.

This mitigation action (barrier) logic is described in the following picture (Fig. 7):

4.1 Mitigation Action to Reduce Delay Risk Occurrence

The occurence mitigation actions (barrier) are answers to reduce On-Time-Launch
Delay risk. The different types of mitigation actions to face risk occurrence are:

• SIZING ex: Means/infras sizing (MTBF/MTTR)
• HARDWARE ex: Means mechanical device
• ANALYSIS (development phase) ex: FMEA, Zonal Analysis
• PROCEDURES (exploitation phase)
• BUFFER
• etc.…

Fig. 7. Ariane 6 On-Time-Launch mitigation actions (barriers) logic

40 S. Bouffet-Bellaud et al.

Few examples of delay risks and associated mitigations are detailed below:

1- Ground means and/or infrastructures failure leading to launch delay
In front of this delay risk, the following mitigations are proposed:

• Total Corrective Maintenance (TCM) management through failure occurrence
reduction (MTBF - Mean Time Before Failure) and corrective maintenance
(MTTR - Mean Time To Repair)

• Recovery procedure (including hardware implementation) to mitigate the delay

2- Operation (assembly/integration/test/maintenance) scheduling leading to launch
delay
In front of this delay risk, the following mitigations are proposed:

• Operation duration specified for AIT and maintenance, learning curve follow
and associated actions in case of drift

• Availability objectives specified in Maintenance and Exploitation Contracts.

3- Weather alerts leading to launch delay
In front of this delay risk, the following mitigations are proposed:

• Launcher system shall be operated with a value of ground wind in Kourou
compatible with availability need, including sizing of launcher vehicule wrt to
level of ground wind. The ground wind value is based on a database (ground
wind measurements in CSG during 20 years) associated with an annual prob-
abilistic approach.

4- Equipments/Products alerts leading to launch delay
In front of this delay risk, the following mitigations are proposed (Fig. 8):

• APQP+ (Advanced Product Quality Planning) method

5- Logistic and transport difficulties leading to delay

Fig. 8. APQP Method

On-Time-Launch capability for Ariane 6 Launch System 41

In front of this delay risk, the following mitigations are proposed:

• Analysis: Management of Transport Plans and Authorizations, Transport
means, Handling means, Rupture of supply, etc.… to avoid delay

4.2 Mitigation Action to Reduce Delay Risk Severity

Once the task on delay risk occurrence reduction performed, some delay risk remain
not mastered (no adequate mitigation actions (occurrence) found) and they can occur
during Ariane 6 life.

In this case, we speak in this article about On-Time-Launch major degraded case.
These On-Time-Launch major Degraded Case shall be managed as quickly as possible
in order to limit as much as possible launch delay duration.

The following types of On-Time-Launch degraded cases are identified and shall be
managed in limited duration consistent with On-Time-Launch severity table:

• Launcher element or Payload damage
• Equipments/Products alerts
• Problem during tests leading to change equipments
• Transatlantic boat failure
• Strike in Port
• Etc…

5 Conclusion and Way Forwards

Due to world competitiveness increasing, launch rate fulfillment and launch delay
reduction are key parameters for launcher program.

For Ariane 6, On-Time-Launch capability has been taken into account during
upstream phases.

Based on cost approach, an allocation methodology has been defined, including
risk severity and occurrence management implementation. Then, mitigation actions and
degraded cases have been deduced.

The way forwards will consist on requirement verification logic definition and
requirement compliance verification through DOORS tool (Requirement Verification
Plan, Verification Compliance Document). The On-Time-Launch performance will be
monitor with indicators implementation and with continuous improvement in
exploitation.

The On Time Launch objectives achievement is foreseen at Full Operational
Capability after 2023, benefiting from learning curve during the transition period since
the first flight in 2020.

42 S. Bouffet-Bellaud et al.

References

1. Walden, D., Roedler, G., Forsberg, K., Hamelin, D., Shortell, T.: Systems Engineering
Handbook

2. ECSS-Q-ST-30-09C - Availability analysis

On-Time-Launch capability for Ariane 6 Launch System 43

Towards a Standards-Based Domain
Specific Language for Industry 4.0

Architectures

Christoph Binder1(B), Christian Neureiter1(B), Goran Lastro1, Mathias Uslar2,
and Peter Lieber3

1 Center for Secure Energy Informatics, Salzburg University of Applied Sciences,
Urstein Süd 1, 5412 Puch/Salzburg, Austria

{christoph.binder,christian.neureiter,goran.lastro}@fh-salzburg.ac.at
2 OFFIS – Institute for Information Technology, Escherweg 2, 26121 Oldenburg,

Germany
mathias.uslar@offis.de

3 LieberLieber Software GmbH, Handelskai 340, Top 5, 1020 Wien, Austria
peter.lieber@lieberlieber.com

Abstract. Advances in research and development paved the way for a
new revolution concerning industrial manufacturing, called Industry 4.0.
Cyber-Physical Systems (CPS) contain methods for ubiquitous moni-
toring of information and synchronizing it with any other component
on each hierarchical level participating in the value chain. Developing
Industry 4.0 architectures for pointing out the structural cooperation
of these Systems of systems (SoS) is a challenging task including a lot
of different stakeholders. To bring together knowledge and experience,
a common methodology is necessary. Regarding this, several German
industrial associations created a suitable reference architecture, called
Reference Architecture Model Industry 4.0 (RAMI 4.0). In this paper, a
Domain Specific Systems Engineering approach using a Domain Specific
Language (DSL) based on the results of this reference architecture is
proposed and evaluated by a suitable case study.

1 Introduction

Optimized management of available resources in order to maximize profit and at
the same time reducing costs and expenses is the main goal of most manufactur-
ing companies. Results from research and development in the area of information
technology (IT) offer new possibilities to support this goal, which drive change
in the present industrial area and lead the path to a new form of an automation
driven industry, the so-called Industry 4.0. An example of a technology result-
ing from this change is cyber-physical system (CPS). CPS are mainly intelligent
components of a manufacturing process, where they take over a specific task.
The main advantage regarding productivity is, that CPS are able to find the
economically most valuable decision on their own, based on information pro-
vided by other CPS taking part in the system [6]. As discussed before, the aim
c© Springer Nature Switzerland AG 2019
E. Bonjour et al. (Eds.): CSD&M 2018, Complex Systems Design & Management, pp. 44–55, 2019.
https://doi.org/10.1007/978-3-030-04209-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-04209-7_4

Towards a Standards-Based Domain Specific Language 45

of Industry 4.0 is to advance automation in manufacturing companies. In order
to achieve this, data between machines, processes and lots need to be exchanged
over direct communication structures. In [8], several documents concerning the
definition of Industry 4.0 and its components have been analyzed and some cri-
teria describing it have been formulated. According to [23], a Digital Twin of
the physical production system needs to be realized. As the name assumes, this
concept refers to the digital representation of a physical asset, containing its
information throughout the whole life cycle. Since some lots like screws do not
have any possibility to communicate, its Digital Twin helps collecting useful
data and provides them to other CPS in the industrial system.

To describe the structure and behavior of a system, a system architecture
needs to be defined. Therefore, a tailored architecture to describe Industry 4.0
based systems must be available, managing the complexity that comes with it.
Furthermore, this type of architecture should (1) be able to deal with dynamic
changes that occur in this area (2) simplify complexity in order to improve
user experience and (3) increase productivity instead of generating overhead,
according to [25]. To deal with this issue, several approaches like RAMI 4.0 [7]
or IIRA [16] have been launched. Although both reference architectures provide
a certain tool-set for developing concrete industrial system architectures, the
goal and used methods differ from each other. A comparison between RAMI 4.0
and IIRA can be found in [9].

The definition of RAMI 4.0 as well as its use and methods are clearly defined
in the German norm DIN SPEC 91345 [5]. However, the application of RAMI 4.0
is not properly formalized and there are no solutions yet existing dealing with
this. This is a big issue to solve, because ensuring the applicability of RAMI
4.0 could take this approach a big step forward towards establishing it in the
industry. A suitable technology needs to be determined in order to deal with this
open gap. Since the aspects concerning Industry 4.0 are usually too complicated
to be treated with a generic technology, a domain specific approach tailored to
the application domain must be specified. Furthermore, another required action
is to provide comprehensive tool support for developing architectures of systems
based on RAMI 4.0.

To address these aspects, this contribution is structured as follows: In Sect. 2
an overview of RAMI 4.0 and domain specific systems engineering is given.
Hereafter, the creation of the domain specific language (DSL) is stated in Sect. 3.
Based on a suitable demonstration example, the applicability is demonstrated
in Sect. 4. Finally, in Sect. 5 the paper is summarized and then the conclusion is
given.

2 Related Work

2.1 Domain Specific Architecture Framework

The Reference Architecture Model Industrie 4.0 (RAMI 4.0), depicted in Fig. 1,
has been developed by the Plattform Industrie 4.0, a union of leading German

46 C. Binder et al.

associations in the industrial area. The three-dimensional model, derived from
the already established Smart Grid Architecture Model (SGAM) [5], has been
developed to create a common understanding. To do so, it contains standards
and use cases related to Industry 4.0. Due to the big influence on the German
industry of its creators, the reference architecture encloses multiple industry
sectors and its span ranges over the complete value chain. This allows the system
to be seen as a whole to find connections and display tasks or sequences of events
over the whole process as well as create the possibility of providing a detailed
consideration of parts from the system [1].

Fig. 1. Reference Architecture Model Industrie 4.0 (RAMI 4.0) [1]

To represent an asset over its whole life cycle, the horizontal axis has been
introduced. It defines a product according to IEC 62890 [12] as type and instance,
whereas the type represents the asset during development and prototype cre-
ation. However, the instance states a product as individuality and all its admin-
istration. Furthermore, the second axis deals with the classification of an item
within the factory. Based on IEC 62264 [11] and IEC 61512 [10] a single product
can be located regarding its spreading, from connected world over enterprise
up to a single device used in production [1]. The top-down arrangement of the
layers enables the classification of subjects according to their task areas. This
also enables the mapping of the single system development processes to their
respective area. The system analysis takes place at the top layers, more detailed
the Business Layer and the Function Layer. It describes the conditions and busi-
ness processes the system has to follow and in further consequence the run-time
environment of the system with all functionalities of its services and applica-
tions. The Information Layer provides all kind of data to its adjacent layers and

Towards a Standards-Based Domain Specific Language 47

the Communication Layer takes care of the connections within the system. To
deal with all characteristics of CPS the Integration Layer has been defined only
to display the physical objects on the Asset Layer.

2.2 Domain Specific Systems Engineering

Since Industry 4.0 is a widespread and challenging domain, engineering of sys-
tems is a complex task and needs to be confronted with suitable methods. Usu-
ally, in a complex field not a single system is constructed but an interaction
of multiple homogeneous systems called System-of-Systems (SoS). According to
[15], two disciplines need to be fulfilled. On the one hand, decent knowledge
about the domain to operate with should be appropriated, on the other hand, it
is mentioned that systems engineering management contributes significantly to
the overall success. While a system is determined to fulfill a certain purpose, a
SoS offers a solution for a more complex and extensive problem area [2]. Dynamic
structures and changing conditions hinder the modeling of such a system with a
generic approach.

To keep the overview of every single aspect included during the engineering of
a SoS the concept of Model Based Systems Engineering (MBSE) is usually used.
It enables stakeholders to gain different viewpoints by abstracting the archi-
tecture into different levels. Furthermore, it provides technologies to ensure the
availability of an iterative development process. The application of the concepts
of MBSE must be assured by a suitable modeling language. Due to its freedom,
a so-called General Purpose Language (GPL) can be used in a wide variety of
application domains. These language with low constraints is tailored to develop
systems working in multiple areas. On the other hand, for describing detailed
processes within a certain area, this kind of language is missing specifications.
Therefore, the designing of a DSL usually is unavoidable in order to consider
all domain-specific features [24]. To increase the effectiveness of the application
of MBSE, a well-known approach called Model Driven Architecture (MDA) can
be used, which has been introduced by the Object Management Group (OMG).
The views specified in MDA are (1) Computation Independent Model (CIM)
to provide an understandable description of the system for end users, (2) Plat-
form Independent Model (PIM) to define functionalities and display components
of the system, (3) Platform Specific Model (PSM) to formulate interfaces and
other technical specifications and (4) Platform Specific Implementation (PSI) to
maintain a detailed presentation of code used for describing components within
the system [14].

An example of how to generate interoperability throughout the whole engi-
neering process has already been successfully overcome in the Smart Grid
domain. The SGAM has been introduced in order to provide an environment
that helps building Smart Grid systems [21]. In [19] the design and implementa-
tion of a tool called SGAM Toolbox is described, which ensures the applicability
of the theoretical approach. By doing this, the SGAM Toolbox consists of three
major parts:

48 C. Binder et al.

• MDG Technology, which contains the specifications stated in the DSL and
provides them for usage

• Model Templates, which support system engineers by providing a fully mod-
elled example and giving information about specific problems

• Reference Data, that contain information about the matrix used in SGAM
and make sure to integrate those information into the model

With the help of the SGAM Toolbox, several international projects have already
been realized. Through years of use it has established itself as main technology
driver to create Smart Grid systems. Adopting these successful concepts to the
industrial area can bring the approach of RAMI 4.0 a major step forward.

3 Approach Taken for Transfer

As already mentioned, the goal behind this approach is to adopt the already
established concepts of the SGAM Toolbox for the scope of RAMI 4.0. Although,
in the Smart Grid domain, the process of generating energy and providing it to
the customers is hierarchically structured. The energy flow passes through mul-
tiple zones including several elements, where information is exchanged only with
adjacent elements over defined interfaces. This keeps a specific abstraction level,
and therefore, allows the modeling of Smart Grid systems to remain structured
and understandable, as required from the design principles “divide and con-
quer” as well as “separation of concerns”. However, cross-linking in the Smart
Factory is considerable more difficult due to versatile connections and dynamic
changes of elements communicating within the network. Adopting the Smart
Grid approach to Industry 4.0 including the integration of new domain-specific
features and the problem of outcome validation is a big challenge. To deal with
this complexity, a new methodology needs to be developed, where all industrial
particularities are considered. A similar approach dealing with this issues using
the IIRA is introduced in [18]. However, to create a DSL tailored to RAMI 4.0, a
dynamic approach needs to be used, where adaptations of the concept may take
place anywhere during the engineering process. The concepts introduced by the
Agile Design Science Research Methodology (ADSRM) [3] are tailored to this
problem. In Fig. 2, a visual representation of this methodology adapted to the
development of the DSL for RAMI 4.0 is given.

In three phases the designing of a dynamic technology, like the creation of
the DSL for RAMI 4.0, can take place. In the analysis phase, the domain is elab-
orated and requirements derived from the Case Study are specified. Afterwards,
the development of the Process Model, the DSL and the Toolbox itself takes
place during the implementation phase, resulting in an applicable yields model.
The last step is the evaluation of the developed technology towards the problem
domain. The big advantage of this method is the loose coupling between the
single phases, which allow flexible interactions and therefore changes may take
place in every phase without influencing the functionality of the whole process.

Towards a Standards-Based Domain Specific Language 49

Fig. 2. Agile design science research methodology for RAMI 4.0

3.1 Case Study Design and Requirements

According to ADSRM, the first step is to draw up a suitable Case Study. In this
case a typical use case concerning Industry 4.0 is presented. More precisely, this
example makes use of a shoe manufacturing company that offers the creation
of individual shoes to its customers. The manufacturer provides all tools used
for customer interaction as well as the factories where the shoes are produced.
The goal is to optimize production processes, therefore raw materials and sup-
plier goods need to be available at the time they are used in production. On
the other hand, the customer wants to create his individual pair of shoes out
of his mind. The ideology of Industry 4.0 is the fully automated processing of
the order and the consequent production of the shoes. Therefore, all machines
should communicate with each other in order to find the optimal solution con-
cerning resources. Firstly, to keep track of administrative and change efforts, the
requirements that the system underlies are elaborated. Concerning the classifi-
cation of non-functional requirements, the following five requirements have been
specified:

1. Functionality: The system to be developed needs to contain all important
aspects of Industry 4.0 to allow a detailed and complete description. To
achieve this, the framework should support the creator of the system by
using well known methods and without raising complexity or administration
expenses.

2. Usability: Users may come in contact with Industry 4.0 based systems for the
first time. Therefore, usage should be clear and supported by demonstration
examples as well as automation tools.

3. Efficiency: After all, the framework is used to increase productivity, this
means that resources should be kept low and time-consuming tasks should
be avoided.

50 C. Binder et al.

4. Reliability: The proper creation of a system could be a problem for first-time
users. The consideration and prevention of incorrect statements needs to be
part of the solution too.

5. Changeability: RAMI 4.0 and Industry 4.0 is in consistent change, therefore
the framework should be adaptable to these changes. In addition, it should
be possible to integrate user-specific solutions in order to react to proprietary
implementations.

3.2 Process Model

To manage the creation of industrial models, a specific development process is
needed. Technically this process is comparable with the model transformations
used by MDA. Furthermore, the single steps of the process are described by the
technical processes introduced by the ISO 15288, as depicted in Fig. 3.

Fig. 3. Development process for RAMI 4.0 models

Firstly, the system is analyzed concerning its functionality and business
requirements. This functional architecture should give an overview of the system
and be understood by people not familiar with the domain but well known with
business aspects. Therefore, the aim is to model the basic conditions the system
should follow. The system analysis is the base for building a more detailed view-
point, the system architecture. It describes the components of the system with
their interfaces and connections. The type of connection and technology used to
transfer data is the major part designed in this phase of the process. The last
step is the detailed modeling of the single components specified by the system
architecture. The so-called design of the system displays all elements included
and helps dynamically integrating new ones. All in all, this development process
deals with an uniform creation of Industry 4.0 models and makes sure that the
different abstraction levels of the system are being kept.

3.3 Domain Specific Language

To design a DSL it is important to understand the application domain such as
the physical world of Industry 4.0 and CPS. Resulting from this, the behav-
ior and context of the physical domain could be analyzed in order to create a

Towards a Standards-Based Domain Specific Language 51

model of the real world. Semantics and structure of this model help defining the
abstractions of the Metamodel, dependencies between physical and virtual world
formulate the connections of its elements, according to [17]. The Metamodel rep-
resenting RAMI 4.0 is composed by a conceptual architecture, constituted of the
Unified Modeling Language (UML). It describes the conceptional aspects a lan-
guage needs to contain to model a system based on Industry 4.0. By doing so, the
Metamodel is structured in the six layers of RAMI 4.0. On each layer, design ele-
ments for describing a viewpoint on a system are provided. The Business Layer
therefore consists of elements like business actors, business goals and business
cases for representing the cooperation between two actors. With these elements
desires of stakeholders can be formulated. High-level use cases are specified to
realize business cases on the Function Layer in order to fulfill the defined require-
ments. Information objects, characterized by a specific data model standard, as
well as the connection paths they are exchanged over are being modeled in the
lower layers. The Integration Layer offers a representation of the Asset Adminis-
tration Shell (AAS), a model of the digital twin every physical asset has. Those
assets itself are being depicted in the same called Asset Layer.

As the Metamodel is a graphical representation of domain-specific elements
and their interconnections, a language is designed for a detailed description of
those. Similar to the concepts presented in [4], the conceptual architecture serves
as a base to create a specific DSL. This language needs to be utilized throughout
the whole development process, from designing the system followed by describing
up to modeling it. Consisting of an UML profile, the DSL itself can be designed
using well known methods provided by UML. The profile contains all elements
previously elaborated from the physical world. Given by UML, the elements itself
are consisting of a stereotype and a metaclass. The metaclass is representing the
underlying model element where the stereotype is describing the element as it
will be used in the DSL.

3.4 Toolbox Implementation

There are several software applications on the market tailored to systems devel-
opment. Concerning its functionality to extend, the modeling tool Enterprise
Architect (EA) developed by Sparx Systems [22] is suitable for providing an envi-
ronment in order to architect and design Industry 4.0 based systems. To achieve
this, the already given general modeling functionalities need to be extended by
implementing the DSL. The result is an Add-In called the RAMI Toolbox1. The
main part of this toolbox is the DSL described in the previous section. It consists
of the UML profile and two other profiles for the utilization of a tool-set as well
as a suitable UML diagram to describe an industrial model. Adapted from the
SGAM Toolbox it also provides demonstration examples showing how to use
RAMI 4.0. To make use of this DSL, EA needs to load it during its start-up
process to provide a set of tools supporting the modeling of industrial systems.

1 The RAMI Toolbox is publicly available for download at http://www.rami-toolbox.
org/download.

http://www.rami-toolbox.org/download
http://www.rami-toolbox.org/download

52 C. Binder et al.

4 Application of the Toolbox

4.1 Case Study Model

The Case Study2 itself is created by using the development process described in
Sect. 3.2. According to these considerations, the Business Layer contains three
major actors, the customer, the manufacturer and the supplier. In the system
analysis the goals of each actor are elaborated through requirements engineering.
Those goals specify the boundary and rules the system should follow. To keep
it simple, this scenario identifies one High Level Use Case (HLUC) “Create
Custom Shoes” with the three previously mentioned actors. Out of the generic
business model a more specific functional viewpoint can be created. The HLUC is
decomposed into more detailed Primary Use Cases (PUCs). “Order Processing”
or “Factory Maintenance” could be representatives of this kind. In the Function
Layer, every Use Case has actors interacting with them. Figure 4 depicts the most
detailed functionalities in the development process like forming supplier goods
or assembling raw materials. By doing so, the single functions are represented as
Use Cases with their related Actors. The resulting Logical Architecture builds
the base for the real architecture of the system including all components and
parts. The architectural solution is built referring to the results of the system
analysis. The modeled processes need to be represented by physical components.
Technological speaking, a model transformation introduced by MDA takes place
by mapping Logical Actors to their physical components. In the Information
and Communication Layer of RAMI 4.0, the interaction of these components
is modelled based on the specifications coming from OPC Unified Architecture
(OPC UA). The first step of the system architect is to find out which kind
of information is exchanged between the elements. This process is followed by
designing and specifying the communication paths and interfaces of which the
information is sent. During this phase the components are seen as Black-boxes
and only those needed for interaction are described.

The decomposition of the components itself takes place on the Integration
and Asset Layer. On these layers, the elements are described as physical units like
they are in the real world. The Integration Layer generates a Digital Twin out of
the physical units. This means, one AAS containing all information and data as
well as safety and security aspects is created for each asset or a group of assets
working together. Furthermore, the Integration Layer has to deal with Human
Machine Interfaces (HMIs) in order to access the needed data. Technologies like
Near Field Communication (NFC), Bluetooth, Barcodes and USB find its place
on this layer.

4.2 Findings

Although this generic example enabled the evaluation on a superficial perspec-
tive, the used concepts worked fine in general. However, the next iteration step

2 A click-through model is available at http://www.rami-toolbox.org/UseCaseShoes.

http://www.rami-toolbox.org/UseCaseShoes

Towards a Standards-Based Domain Specific Language 53

Fig. 4. RAMI function layer diagram of the case study

of ADSRM needs to deal with more detailed problems. For example, it was
shown that some specifications of DIN 91345 need to be refined or adapted to
suit for every domain included. Furthermore, an extension of the process model
with familiar standards results in the definition of a more detailed development
process. Hence, the standard ISO/IEC 42010 [13] provides a formalization of an
architecture framework that may well fit for RAMI 4.0, for example deriving
viewpoints and views for each layer. In the same step, the concepts of the Uni-
fied Architecture Framework (UAF) standard are elaborated on their suitability
for the RAMI Toolbox. The general approach and its enhancements need to be
validated by an external domain stakeholder providing a more sophisticated case
study in the last step.

5 Conclusions and Future Work

An example of how to deal with modeling and analyzing complex energy systems
is the SGAM Toolbox. The already established technology for developing Smart

54 C. Binder et al.

Grid systems has all functionalities needed for system engineering. Due to the
similarities between energy and industry domains, the concepts of the SGAM
Toolbox [20] may be applicable to Industry 4.0. In this paper, two major concepts
have been tested on applicability in the RAMI Toolbox. First, the modeling of
Use Cases on basis of an existing reference architecture has been approved by the
shoe manufacturing industry example. Although modeling took only place on a
superficial perspective, existing concepts and technologies seem to work in the
industrial domain as well. The domain specific representation and visualization of
components as entry point for discussions or building a common understanding is
realized by the DSL. The findings of this paper build a base for the future work of
the authors. With the results mentioned above, an application of RAMI 4.0 has
been developed for the first time. Now, the results need to be applied to a more
sophisticated case study in order to adapt the concept to upcoming domain-
specific requirements. In future work, the integration of well-known standards
for architectures, processes or industrial specifications and the development of
new features may lead the path towards establishing this approach to become a
widely used technology for building Industry 4.0-based architectures.

Acknowledgments. The support for valuable contributions of LieberLieber Software
GmbH and successfactory consulting group is gratefully acknowledged.

References

1. Bitkom, VDMA, ZVEI: Umsetzungsstrategie Industrie 4.0, Ergebnisbericht der
Plattform Industrie 4.0. ZVEI (2015)

2. Boardman, J., Sauser, B.: System of systems-the meaning of. In: IEEE/SMC Inter-
national Conference on System of Systems Engineering, 2006, pp. 6–pp. IEEE
(2006)

3. Conboy, K., Gleasure, R., Cullina, E.: Agile design science research. In: Interna-
tional Conference on Design Science Research in Information Systems, pp. 168–180.
Springer (2015)

4. Dänekas, C., Neureiter, C., Rohjans, S., Uslar, M., Engel, D.: Towards a model-
driven-architecture process for Smart Grid projects. In: Digital enterprise design
& management, pp. 47–58. Springer (2014)

5. DIN SPEC: 91345: 2016-04. Reference Architecture Model Industrie 4.0 (2016)
6. Drath, R., Horch, A.: Industrie 4.0: Hit or hype? IEEE Ind. Electron. Mag. 8(2),

56–58 (2014)
7. Hankel, M., Rexroth, B.: The Reference Architectural Model Industrie 4.0 (RAMI

4.0). ZVEI (2015)
8. Hermann, M., Pentek, T., Otto, B.: Design principles for Industrie 4.0 scenarios.

In: 49th Hawaii International Conference System Sciences (HICSS), pp. 3928–3937.
IEEE (2016)

9. Industrial Internet Consortium and Plattform Industrie 4.0: An Industrial Internet
Consortium and Plattform Industrie 4.0 Joint Whitepaper (2017)

10. International Electrotechnical Commission: IEC 61512: Batch control (2001)
11. International Electrotechnical Commission: IEC 62264: Enterprise-control system

integration (2016)

Towards a Standards-Based Domain Specific Language 55

12. International Electrotechnical Commission: IEC 62890: Life-cycle management for
systems and products used in industrial-process measurement, control and automa-
tion (2016)

13. International Organization for Standardization: ISO/IEC/IEEE 42010: Systems
and software engineering – architecture description (2011)

14. Kempa, M., Mann, Z.A.: Model driven architecture. Informatik-Spektrum 28(4),
298–302 (2005)

15. Lightsey, B.: Systems engineering fundamentals. Technical report, DTIC Document
(2001)

16. Lin, S.W., Miller, B., Durand, J., Joshi, R., Didier, P., Chigani, A., Torenbeek, R.,
Duggal, D., Martin, R., Bleakley, G., et al.: Industrial Internet Reference Archi-
tecture (IIRA). Industrial Internet Consortium (IIC), Technical report (2015)

17. Mezhuyev, V., Samet, R.: Geometrical meta-metamodel for cyber-physical mod-
elling. In: 2013 International Conference on Cyberworlds (CW), pp. 89–93. IEEE
(2013)

18. Morkevicius, A., Bisikirskiene, L., Bleakley, G.: Using a systems of systems mod-
eling approach for developing Industrial Internet of Things applications. In: 2017
12th System of Systems Engineering Conference (SoSE), pp. 1–6. IEEE (2017)

19. Neureiter, C.: Introduction to the SGAM Toolbox. Technical report, Josef Res-
sel Center for User-Centric Smart Grid Privacy, Security and Control, Salzburg
University of Applied Sciences (2013)

20. Neureiter, C., Engel, D., Trefke, J., Santodomingo, R., Rohjans, S., Uslar, M.:
Towards consistent Smart Grid architecture tool support: From Use Cases to
Visualization. In: 2014 IEEE PES Innovative Smart Grid Technologies Conference
Europe (ISGT-Europe), pp. 1–6. IEEE (2014)

21. Neureiter, C., Uslar, M., Engel, D., Lastro, G.: A standards-based approach for
domain specific modelling of Smart Grid system architectures. In: 2016 11th System
of Systems Engineering Conference (SoSE), pp. 1–6. IEEE (2016)

22. Sparks, G.: Enterprise Architect user guide (2009)
23. Uhlemann, T.H.J., Lehmann, C., Steinhilper, R.: The digital twin: Realizing the

cyber-physical production system for Industry 4.0. Procedia Cirp 61, 335–340
(2017)

24. Van Deursen, A., Klint, P., Visser, J., et al.: Domain-specific languages: an anno-
tated bibliography. Sigplan Not. 35(6), 26–36 (2000)

25. Weyrich, M., Ebert, C.: Reference architectures for the Internet of Things. IEEE
Softw. 33(1), 112–116 (2016)

Assessing the Maturity of Interface Design

Alan Guegan1(&) and Aymeric Bonnaud2

1 Sirehna, 5 rue de l’Halbrane, 44340 Bouguenais, France
alan.guegan@sirehna.com

2 Naval Group, 5 rue de l’Halbrane, 44340 Bouguenais, France
aymeric.bonnaud@naval-group.com

Abstract. It is widely accepted that the way the interfaces between subsystems
are designed is a major aspect of system architecture. The task of designing
interfaces is made difficult by the technical diversity of subsystems, of inter-
faces, of functional requirements and integration constraints. Change manage-
ment processes have long been implemented by the industry to monitor and
control interface design (see, e.g. Eckert 2009). In this paper, change request
data from several projects completed by Naval Group is analyzed. The Change
Generation Index is introduced and a heuristic formula is proposed to link the
maturity of interface design with change request generation. This approach
comes as a complement to existing results on change propagation patterns
within large systems. A promising parallel is established between the design
process of a large system and learning processes well known to the social
sciences community.

1 Introduction

The complexity of a system is higher when the number of interactions is large with
respect to the number of subsystems within the system. Often, when the design of a
subsystem is refined or redefined, the subsequent impacts extend well beyond the
subsystem itself. It is thus necessary to perform design iterations to take into account
unexpected impacts and relax towards a consistent system design.

Due to the large number and the diversity of interactions between subsystems,
information about the design is generated as the design is being worked out. The design
process is not linear; rather, the design follows a “maturation” process distributed over
the many subparts of the system. In these conditions it is difficult to assess the maturity
of the design. Any part in the system can call for re-work, at virtually any time, due to
unforeseen interactions between this part and the rest of the system.

In order to assess thematurity of the design,we propose to view the design process as a
learning experience inwhich the design teams accumulate over time a body of knowledge
about subsystems, the interactions between subsystems, and the system as a whole.

The maturity of each subsystem can be inferred from subsystem design artefacts
such as plans, models, technical reports. The maturity of the design of the system as a
whole is assessed with the help of design reviews and technical assessments by experts.
From our experience, it is more difficult to assess the maturity of the interfaces between
subsystems, which makes most of the system’s architecture.

© Springer Nature Switzerland AG 2019
E. Bonjour et al. (Eds.): CSD&M 2018, Complex Systems Design & Management, pp. 56–66, 2019.
https://doi.org/10.1007/978-3-030-04209-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-04209-7_5

In this paper we propose to use change requests as a marker for the maturity of the
design of interfaces within the system. The analysis of actual data from industrial
programmes involving hardware, software, or both shows a clear, reproducible trend
for the number of design changes identified over the course of a project. We propose a
theoretical explanation for this trend and discuss the agreement with the data. Even-
tually, we discuss how KPIs can be derived to monitor interface design maturity during
the development of complex systems.

2 Design Change Requests Data: Main Characteristics

2.1 Available Data and Characteristic Patterns

In iterative design processes it is common practice to trace design change requests.
A design change request is issued when the design team has identified that the design
of a subsystem should be changed to accommodate constraints from another subsys-
tem. For instance, if system A proves to be larger than expected, it might be necessary
to move or reconfigure neighboring system B; if the command and control network is
replaced by an ethernet network, it might be necessary to change system C and add a
network card to it.

Design change requests are generated throughout the development process.
Figure 1 shows the number of design change requests that have been generated weekly
over the course of six projects delivered by Naval Group. These projects consist in the
design, manufacturing, testing and delivery of five naval systems that range from pure
software or mechanical devices to process systems involving embedded software;
project number 6 is a software project. The sizes of the projects range from a hundred
thousand euros to several millions, with design teams staffed accordingly. The pro-
cesses vary from pure V-cycle to agile development.

Change request generation varies a lot from one week to the next but it exhibits a
consistent overall pattern. Although extremely different in size and scopes, all projects
show the same trends:

– Few design changes are generated during the earlier and later weeks of each project.
– A maximum is reached at half of the total project duration, roughly.
– Some projects exhibit deviations from a smooth “bump” shape, like spikes in

project 5, uneven distribution over time in project 3, long-lasting change request
generation in project 4 or even a holiday-season dip around week 295 in project 6.

– On the whole, the curves of change request generation exhibits the shape of a
roughly symmetrical “bump” that extends over the duration of the project.

We propose to call the number of design change requests generated each week the
Change Generation Index (CGI), and investigate its general trend across projects.
A discussion about the measure of the CGI is provided in Sect. 2.2 and a short theory is
proposed in Sect. 3 to explain the trend observed in change request generation over time.

Assessing the Maturity of Interface Design 57

2.2 Potential and Limitations of an Analysis Based on the CGI

The benefits that can be expected from analyzing the Change Generation Index depend
on the quality of the available data. The variability that can be expected in CGI data is
of two types: 1/ variability in time, 2/ variability across teams.

From our experience, once the change request management process has been
implemented within a given project variability is low except for characteristic events
such as the ones discussed in Sect. 2.1, Fig. 1. Still, in the early phases of most design
projects few change requests are generated. After a short investigation we have been
able to trace this to two main reasons:

– early design often focuses on subsystem design driven by rough assumptions on the
interfaces. The design of each subsystem is undertaken with these assumptions as
input requirements; the assumptions are not questioned until the design has reached
enough maturity to justify that interface requirements are refined.

– The first phases of the design process are characterized by intense iterations and the
design teams would be slowed down if they traced each and every change request.
On most of the projects we have analyzed the change request management process
has been implemented a little later in the design process, when the main assump-
tions about system architecture had been validated.

Variability may also be observed across teams within a project, or across different
projects. The latter has little impact on the analysis of the CGI, as Sect. 3 will show.
The analysis focuses on the date when the CGI reaches a maximum and on the
characteristic time it takes the CGI to decrease. These two parameters are independent
from the change request tracing policy of a project. Also, the CGI is a statistical index
that smooths out variability across teams, very much like the group learning curves

Fig. 1. Number of change requests registered each week during the development process of six
hardware/software/mixed systems (solid lines). All of these curves exhibit a similar shape
(“bump” shape outlined by dashed lines), with project-specific deviations discussed in more
detail in Sect. 4.

58 A. Guegan and A. Bonnaud

addressed in Gallistel et al. (2004) smooth out individual differences in the learning
rates and performances. As a consequence, the unavoidable variability between pro-
jects has not proven a difficulty in the analysis of the CGI.

It is useful to place the present paper in the perspective of other change request
management processes. Conventional change request management usually focuses on
the absolute number of change requests that has been generated over a given period of
time, the number of changes that have been implemented, or the average time needed to
implement change requests. In the present approach the focus is shifted to the rate at
which change requests have been generated, regardless of whether the design changes
have been actually implemented or not, and regardless of how many still need to be
implemented or how many have been implemented in total.

It is not the first time the importance of tracking the rate at which changes are
generated is acknowledged (see, e.g. Giffin (2007)). This rate was seen as a conse-
quence of project staffing and project events rather than an indicator of the learning
process associated with design activities, as we propose here.

Some key performance indicators have been introduced in the past, for instance the
Change Rejection Index (Alabdulkareem et al. 2013) that reflects the rate at which
change requests are rejected by a subsystem (not implemented), or the Change Prop-
agation Index (Giffin et al. 2009) that reflects the likelihood of a subsystem generating
new changes after implementing a modification. These papers focus on change prop-
agation or rejection with a view to assign change requests to those subsystems that are
more prone to evolution, thus increasing the efficiency of the change management
process. We expect that shifting the focus onto the overall pattern of change requests
generation will yield complementary and similarly useful information about the design
process.

3 Design Change Request Generation as a Heuristic Measure
of Interface Design Maturity

3.1 Change Requests and Interface Design Maturity

In project management, change requests are often viewed as a risk for the project since
they incur unforeseen delays and costs. In this view, change requests should be avoided
to minimize risks. From a design engineer’s point of view, change requests are a sign
that, at some point in the design process, technical decisions being made conflict with
decisions made earlier. A change request is neither good or bad; it might lead to the
implementation of an actual change in the design, or it might be rejected owing to
unaffordable costs or delays. In this sense, a change request is the indication that the
design process has unveiled previously unsuspected interactions between technical
decisions made at different times; it is the trace of knowledge being acquired.

In most learning processes – and more specifically, group-learning processes - the
amount of knowledge accumulated over time is reasonably well represented by a sig-
moïd, or S-curve. A sigmoïd function is a bounded, differentiable, real function that is
defined for all real input values and has a non-zero derivative at each point (see e.g., Han
and Morag 1995). Gallistel et al. (2004) provide one such example of a group-learning

Assessing the Maturity of Interface Design 59

curve (Fig. 1 in cited paper). We chose to use the following sigmoïd function as the
reference in our analyses:

S tð Þ ¼ 1þ erf tð Þð Þ=2;

where erf is the error function and t is time. Function S has a number of characteristics
that make it a convenient reference for analyzing the knowledge generated during
design processes:

– S goes from 0 to 1, which is consistent with the knowledge about a system’s
interfaces increasing from 0% to 100% over the course of the design process,

– The derivative of S is a gaussian function,
– S can be fitted to the characteristics of any individual project, by the affine change

of variables T = a(t + b).

Function S is displayed in Fig. 2 (solid line). Early in the design process, little is
known about the system’s interfaces and teams have few opportunities to assess how
the parts within the system work together: the learning process is slow. Halfway
through the design process, a lot more is known about the system, its subparts, and the
interactions between them. Many decisions made during this phase conflict with pre-
vious work and induce change requests: design teams generate a lot of knowledge
about the interfaces and the S-curve has a steeper slope. By the end of the design
process, little remains to be learnt about the interfaces within the system and the
S-curve levels off.

50%

width

date

height

95%

Fig. 2. Number of change requests registered each week for project 6, Fig. 1. The thick solid
line represents the learning curve (axis on the right), the dotted line is its derivative,
corresponding to the intensity of the learning (gaussian curve). We postulate that the Change
Generation Index scales like the product of these two quantities (dashed line, axis on the left).
The parameters for the CGI have been fitted on the actual data (thin, solid line). The learning
curve can then be used to infer a “maturity” indicator, here pictured at 50% and 95% maturity
(circles).

60 A. Guegan and A. Bonnaud

The learning process we describe here is actually stepwise at small scales and
continuous (represented by function S) at a global scale. Each time a change request is
issued, it is a sign that a piece of knowledge has been acquired that contributes to the
global learning curve, very much like the stepwise learning of several individuals
within a group contribute to the sigmoïd-shaped knowledge accumulation by the group
as a whole (Galistel et al. 2004). The knowledge accumulated weekly is the derivative
(slope) of the learning curve: it is the intensity of knowledge acquisition (dotted line in
Fig. 2).

As stated in Sect. 3.1, change requests are generated when technical decisions
being made conflict with technical decisions made earlier. Following this interpreta-
tion, it is reasonable to assume that the number of change requests being generated at
any time in the project scales with both the amount of knowledge being acquired and
the knowledge already accumulated:

CGI tð Þ � Knowledge tð Þ x d Knowledgeð Þ=dt tð Þ :

With the assumption that Knowledge (t) scales like S, the Change Generation Index
scales like:

CGI tð Þ � eð�t2ÞS tð Þ:

The CGI as defined by the above formula is displayed in Fig. 2 (dashed line). The
“heuristic” CGI curve resembles the actual data in Fig. 1. The section that follows
investigates the relationship between the heuristic and the actual data and shows that
the heuristic shows a good match with the actual data.

3.2 Procedure to Evaluate the Maturity of Interface Design

The heuristic CGI devised in Sect. 3.2 is characterized by two parameters that are in
direct relationship with the parameters of the S-curve:

– Parameter 1: the date when the maximum is reached. This date is linked with the
date when the S-curve reaches its inflexion point, that is, the date when half the total
amount of knowledge that will be accumulated eventually has already been
acquired.

– Parameter 2: the “width” of the bump. This stems from the steepness of the S-curve,
or the standard deviation of the Gauss curve representing learning intensity.

The interpretation of these two parameters is straightforward: a faster design pro-
cess will lead to a narrower CGI curve, and a design process developed later in time
will lead to a CGI curve centered on a later date.

To match the actual data, it is necessary to introduce the “height” of the CGI curve
as a third parameter. This parameter is the maximum number of changes that are
generated weekly during the design process. It may vary depending on the complexity
of the project: complex projects should generate more change requests in absolute
value than simpler ones. This parameter acts as a simple “scaling” of the CGI curve

Assessing the Maturity of Interface Design 61

along the y-axis, and it won’t change the shape of the curve that is given by the date
and width parameters.

In what follows, parameters 1, 2, and 3 will be called the “date”, “width”, and
“height” parameters. Practically, the date and width parameters are implemented by
replacing variable t by u = a(t + b), with a being the “width” parameter and b being the
“date” parameter. The “height” parameter comes as a multiplying coefficient applied to

e �t2ð ÞSðtÞ.
We propose to apply the following procedure to infer project maturity from the

measure of the Change Generation Index:

– 1/ plot the actual number of change requests generated each week versus time,
– 2/ plot the heuristic CGI curve, and match the “date” parameter with the date at

which the maximum number of change requests has been generated according to the
measure,

– 3/ tune the “height” parameter so as to match the maximum number of change
requests generated weekly,

– 4/ tune the “width” parameter to fit the measured data,
– 5/ adjust parameters so that the heuristic CGI curve superimposes the actual data in

the best possible way,
– 6/ plot function S with the “date” and “width” parameters found at 5/ and use it the

assess the maturity of the design of the interfaces.

In this procedure parameter identification is done “by hand”, which leaves room to
interpretation. However, we have found it to yield consistent results across projects,
and to be more resilient to specific (meaningful) deviations in the data than an auto-
mated identification algorithm would.

An example is shown in Fig. 2. The development process took approximately 10
months (between weeks 15 and 55); in average, up to 13 change requests were created
each week, with a maximum around week 30. Interface design maturity reached 50%
around week 25, and 95% at week 45.

Section 4 provides several examples of actual data and what conclusions can be
drawn by using this approach.

4 Examples

4.1 The Perfect Project

Figure 3 shows the CGI measured from the change requests database of an industrial
project achieved by Naval Group. A number of 1029 change requests were registered
over the approximately 9 years of the project. The measured CGI exhibits a general
trend similar to the one observed in Fig. 1.

The steeper increase in change request generation in the beginning of the project is
a sign that the traceability of change requests has improved progressively between
weeks 90 and 120 (see Sect. 2.2). By the time the CGI reaches a maximum, change
requests are traced thoroughly and the curve follows the theory nicely.

62 A. Guegan and A. Bonnaud

The project that is displayed in Fig. 3 was a success. Commissioning started around
week 280. The learning curve that we have derived from the interpolated CGI indicates
a 97% maturity by that time. The large majority of the projects that we have analyzed
show a similarly good agreement with the theory, with a maturity comprised between
95% and 98% at comissioning. Some of them, however, depart from the theory quite
significantly. Sections 4.2 and 4.3 show two such examples of “unorthodox”
behaviours.

4.2 Late Overshoot: End of Design Declared Prematurely

Figure 4 shows the CGI measured from the change requests database of an industrial
project similar to the previous one. A number of 925 change requests were registered
over 3 years. The measured CGI exhibits a general trend similar to the one observed in
Figs. 1 and 3, except for the significant overshoot that can be observed between weeks
180 and 200.

The project was significantly shorter (by a factor of 3) than the one in Sect. 4.1;
commissioning started at week 130. A possible explanation for the surge in change
requests at week 180 is that the design process missed a number of technical issues that
were identified only when the system had been built and tested. In this sense, the
change requests generated in excess between weeks 180 and 200 are the visible part of
the “technical debt” accumulated over the design process. They are also a – late but
backed up by data - sign for project management that the maturity curve shall be
questioned (the learning curve depicted in Fig. 4 does not reflect the actual learning
accumulated by the design team) and that additional work needs to be done before the
system can be declared good for service.

The data in Fig. 4 provides signs that the design process, in the way it was com-
pleted on this specific project, needs improvement, to ensure that no design issues are
overlooked in future projects.

Fig. 3. Change Generation Index as measured for a naval system (thin, jagged line). Heuristic
parameters have been tuned to fit the measured data (fitting curve in dotted line), with rather good
agreement between weeks 100 and 400.

Assessing the Maturity of Interface Design 63

4.3 The Flat Project: A Volatile Environment

Figure 5 shows the CGI measured from the change requests database of an embedded
software. A number of 152 change requests were registered over a little more than a
year. The measured CGI is “flat”: there were between 2 and 4 change requests each
week during 70 weeks, with no sign of a peak or decrease in the number of change
requests over time.

Fig. 4. Change Generation Index as measured for a naval system (thin, jagged line). Heuristic
parameters have been tuned to fit the measured data (fitting curve in dotted line), with rather good
agreement between weeks 50 and 180. The maturity of the design (thick, solid line), as inferred
from the parameters of the heuristic CGI, shall be reconsidered in view of the “technical debt”
that shows in the excessive number of change requests observed over the last 20 weeks of the
project.

Fig. 5. Change Generation Index as measured during the development of an embedded software
(thin, jagged line). A sliding average over 11 weeks is displayed as a thick dashed line, to
highlight the flatness of the CGI over time.

64 A. Guegan and A. Bonnaud

This project lasted much longer than originally planned, due to unceasing changes
in the specification from the client entity. Detailed software design was initiated early,
at a time when the system supporting the software had not yet been designed in enough
detail. This resulted in changes originating outside the software design process, making
it impossible to “drain” the subject of designing a software that fits the customer’s
needs. In this case, a flat CGI curve is the sign of a Sisyphean project constrained by an
endlessly moving environment.

5 Discussion

The present work suggests that change requests might be used as a marker for design
maturity. The heuristic that has been introduced in Sect. 3.2 reproduces the trends
observed in change request generation, and preliminary analysis shows that maturity as
inferred from parameter identification is in good agreement with project milestones (see
4.1: 97% maturity corresponds to system commissioning).

If confirmed, the approach would provide a way to assess the maturity of interface
design based on data, which would be an invaluable complement to expert-based
assessment. The scarce data in the first phases of the design does not allow for precise
maturity assessment, yet the “peak change” can be identified with little ambiguity –

indicating a 70% maturity milestone – and the remaining 30% maturation can be
evaluated and tracked with reasonable precision with the CGI.

Further work is needed to assess the statistical robustness of the approach. Still, we
believe that this work is a new confirmation that change request management is an
essential part of the design processes that shall be applied to complex systems. Sec-
tion 2.2 raises the question of when during the development process design changes
shall be traced. Change management is often viewed as a costly process, at least in the
first stages of the design. It might be of interest to establish more informal change
management very early, to dispose of change request data as early as possible to the
benefit of design maturity assessment.

The heuristic we propose also offers an opportunity to diagnose project weaknesses.
In Sects. 4.2 and 4.3, the diagnosis is performed a posteriori to provide return of
experience on the development process. It is possible to identify, if not quantify, the
technical debt accumulated during the early stages of the design. A late surge in change
requests is the telltale sign of an incomplete system design. It is also possible to identify
projects that have suffered from inefficient learning.

The most promising aspect of the present work lies in the fact that we explicitly
viewed the design process as a learning process. This has implications on the metrics
associated with the design process - the CGI is one such metric. By pushing this
paradigm further, it could also have consequences on the way complex systems are
designed, or on the tools that are being used to develop complex systems. If the design
team is a group in the process of learning something by itself, then maybe education
sciences can bring some interesting methods, best practices and tools to improve and
organize the learning.

Assessing the Maturity of Interface Design 65

References

Alabdulkareem, A., Alfaris, A., Sakhrani, V., Alsaati, A., de Weck, O.: The multidimensional
hierarchically integrated framework for modeling complex engineering systems. In: CSD&M
(2013)

Eckert, C., de Weck, O., Keller, R., John Clarkson, P.: Engineering change: drivers, sources, and
approaches in industry. In: Proceedings of ICED 2009 (2009)

Gallistel, C.R., Fairhurst, S., Balsam, P.: The learning curve: Implications of a quantitative
analysis. PNAS 101(36), 13124–13131 (2004)

Giffin, M.L.: Change Propagation in Large Technical Systems. Ph.D. thesis, MIT (2007)
Giffin, M.L., de Weck, O., Bounova, G., Keller, R., Eckert, C., John Clarkson, P.: Change

propagation analysis in complex technical systems. J. Mech. Des. 131 (2009)
Han, J., Morag, C.: The influence of the sigmoid function parameters on the speed of

backpropagation learning. In: From Natural to Artificial Neural Computation, pp. 195–201
(1995)

66 A. Guegan and A. Bonnaud

Tracking Dynamics in Concurrent
Digital Twins

Michael Borth and Emile van Gerwen(&)

ESI, High Tech Campus 25, 5656 AE Eindhoven, The Netherlands
{Michael.Borth,Emile.vanGerwen}@tno.nl

Abstract. The availability of machine-generated data for the management of
complex systems enables run-time technologies for diagnosis, predictive
maintenance, process control, etc. that find their apex in digital twins. Such
model-based replica of cyber-physical assets represent system elements and their
behavior within their environment, which is often dynamic. These dynamics of a
system’s environment can render the underlying model unfit w.r.t. the changing
reality and thus cripple the whole approach. We provide the means to detect
such a transgression of the operational space of digital twins and similar tech-
nologies using a novel combination of probability-of-findings calculations with
established process control methods and localize necessary updates to ensure
efficient model maintenance.

1 Introduction

Machine-generated data, i.e., data that was produced entirely by machines, e.g., from
sensor readings [1], became the backbone of many industrial and societal development.
It is mission-critical for Smart Buildings, Industry 4.0, the Internet-of-Things (IoT), and
Autonomous Driving [2], but also enables system stakeholders to address business
concerns like total-costs-of-ownership with novel applications for, e.g., process control,
diagnosis, and predictive maintenance that are driven by data analytics. These means
are realized as digital twins in their most versatile and comprehensive form. Digital
twins, which were identified by Gartner as one of the current top strategic technology
trends [3], are digital replica of assets or systems together with their processes. They are
based on models of the knowledge of domain experts as well as the real-time data
collected from the systems and their environments. As such, they are subject to real
world dynamics that change what the twins are about. We address these dynamics and
their consequences for the digital twin in this article and provide a novel approach to
detect and cope with them.

2 Digital Twins for Process Control and Analysis

Digital Twins, as originally defined by Grieves around 2001–2002 (see the newer [4])
provide a virtual representation of operational systems or other assets that aims at
tightening the loop between design and execution. One of their strengths is the explicit
use of expectations w.r.t. a system’s behavior according to both domain engineering

© Springer Nature Switzerland AG 2019
E. Bonjour et al. (Eds.): CSD&M 2018, Complex Systems Design & Management, pp. 67–78, 2019.
https://doi.org/10.1007/978-3-030-04209-7_6

http://orcid.org/0000-0002-9132-8532
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-04209-7_6

knowledge and to analysis models derived from data in comparisons with observations
about the actual behavior (Fig. 1). The term ‘behavior’ has a wide interpretation in this
context: for automated process control, it is typically understood according to the
functional specifications of a system’s performance, while diagnosis includes expec-
tations about reliability, mean-time between failures, etc., as does prognosis, especially
for the purpose of predictive maintenance.

Simpler twins offer primarily insights into the operations of the systems as well as
in the larger interconnected systems-of-systems such as a manufacturing plant that form
the environment of the system. Oracle, listing those as ‘virtual twins’ in [5], points out
that they go beyond simplistic documents enumerating observed and desired values,
but reserves the inclusion of analytics models built using a variety of techniques for
‘predictive twins’. The respective analysis models are typically based on data science,
even though domain application experts, system architects and engineers, and data
scientists often need to pool their expertise for success.

Once established, a digital twin typically serves various purposes. In cooperation
with our industrial partners, we normally aim for an operational use that has a direct
positive impact on total cost of ownership (TCO), e.g., energy savings with smart
lighting controls for buildings, in addition to one or two service purposes, especially
model-based diagnosis and prognosis. Furthermore, we strive to capture the causal
relationships between systems, their components and functionality, and their state
(especially failure modes and effects). As Pearl laid out in [6], this allows to investigate
interventions, i.e., changes to the system, in a systematic manner. We described our use
of this approach in [7].

2.1 Dynamics: A Challenge for Concurrent Digital Twins

Both virtual and predictive digital twins start out with a set of assumptions about the
status quo of the systems they mirror: It is typical that they model the system as
realized, using design information among other sources, and integrate insights gained

Fig. 1. Workflows for digital twins

68 M. Borth and E. van Gerwen

from data analysis over an initial time period, typically one that consists of smooth
operations – a so called happy flow – that illustrates which observations are expected if
the system works well.

Seen as that, the digital twin is stationary: It mirrors the system in accordance to the
knowledge and observations that were available at one point in time. Therefore, their
status quo becomes a status quo ante, literally ‘the state in which before’, meaning here
the state of affairs that existed previously – i.e., before the system and its environment
changed.

Such change is ubiquitous. Even rather unassuming and mostly mechanical systems
like wind turbines, which are monitored to prevent prohibitively expensive damage in
case of a catastrophic failure [8], experience differences in the viscosity of lubricants or
the stiffness of welded joints based on temperature, and thus season. These differences
affect, e.g., the signatures and transfer of vibrations, a prime indicator of bearing issues
among other items. The experts who build the digital twin might take that into account
to a certain extent, but most likely there is no data and possibly even a lack of
understanding for extreme situations, which are thus not adequately covered by the
digital twin. The operation of a concurrent digital twin with this limitation will
therefore lead to warnings that the condition of the system is degrading or that there is a
failure, as the observations are abnormal. This, however, is a false positive, given that
the observations can be explained by the impact of the environment. More complex
examples illustrate that the dynamics systems face, and thus their digital twins as well,
cannot always be foreseen and thus ‘modeled in’, as one might argue in the example
above. Industrial production, realized with systems-of-systems typically orchestrated
by a production management system [9], becomes, e.g., more and more flexible, up to
the point of the so-called ‘lot-size one’. Here, the number of items manufactured in a
single production run is one, meaning that each item is made to order, following a
unique process. This trend, which is made possible by the concepts and technologies
covered under the term Industry 4.0 [10], leads to production processes, settings, and
parameters that were unknown in the conception phase of the factory as market
demands and insights into process improvements result in constant change.

Dashboard showing data
from 9 production runs
producing ca. 900 products.

The product quality varies,
but a correlation between
the quality and observable
effects of the two major
production steps (middle) is
difficult due to the variation
that stems from diverse
impact factors together with
changes to the production
settings between runs.

Section 5 describes the use
case behind this data.

Fig. 2. Dynamics within flexible production setups

Tracking Dynamics in Concurrent Digital Twins 69

In our work, we investigated the range of dynamics in production process settings
for flexible production lines and their impact to key performance indications regarding
the product quality (see Sect. 5). As Fig. 2 illustrates, there are both stable and unstable
process steps observable within individual production runs for specific products, but
more importantly, a process setting that causes quality issues for one product can be
perfectly fine for another. This is mainly due to the grade of orchestration, as settings
need to fit to each other over interlocking control loops – a highly complex matter that
leads even to expensive trial and error during setup.

2.2 Safeguarding the Digital Twin’s Operations

Given the dynamics that we and others encounter, we see the need to safeguard a
concurrent digital twin’s operation against them: As changes in the real world will lead
to a twin’s assessment that new observations, which deviate from expectations, indicate
problems, we require mechanisms that separate real issues from underlying dynamics
in the environment in order to achieve foremost long-term operations with a constantly
low rate of false alarms, but also the insight that the modelled reality changed to an
extend that a maintenance operation on the digital twin is both needed and warranted.

We call the process for this endeavor ‘tracking of dynamics’. As shown in Fig. 3, it
consists of a detection component that confirms whether a computational model of a
digital twin is used within or out of its scope or operational space (detailed in Sect. 3)
and adaptation mechanisms for maintaining the model, i.e., keeping it aligned to the
dynamic reality (Sect. 4). Our tracking process is not computationally expensive,
allowing us to run it in parallel with the operational use of the digital twin, e.g., in its
prognostic capacity. If there is a feedback loop regarding the quality of the digital
twin’s findings, e.g., its error rates or (un-) certainty, we can include this information
into the detection as well (not detailed in this article).

3 Detecting Transgressions of a Model’s Operational Space

Given our digital twin’s purpose of diagnostics and prognostics, we chose Bayesian
networks [11] for their underlying computational models, as they excel at these tasks.
These graph-based representations of the joint probability distribution over all modeled
variables offer causal probabilistic modeling [6], optimal to investigate cause-effect

The core model (BN core) of a twin
is instantiated from data and profiles.
The resulting model (BN) is used
within a tracking loop that monitors
for out of scope use, i.e., trans-
gressions of operational space and
lack of certainty in its diagnostic or
prognostic use.
It is kept valid (BN online) via
continuous adaptations.

Fig. 3. Safeguarding a digital twin’s operations

70 M. Borth and E. van Gerwen

relationships, e.g., what impact a production setting has on product quality. Further-
more, Bayes nets allow sensitivity analyses to investigate the impact of factors [12],
e.g., to determine the dependency of a system’s performance on the environment. The
listed literature provides details on Bayesian networks, whereas the remaining article
only assumes familiarity with the core concepts: Bayes nets are graphs with (random)
variables as nodes. Directed edges between nodes show their relationships, i.e.,
probabilistic or causal dependencies, encoded as conditional probability distribution of
a variable given all its parents.

Several modeling techniques exist that enable the efficient use of Bayes nets for
system modeling, e.g., by supporting re-use with object-orientation [13], and semi-
automated construction of networks from knowledge bases [14] or system descriptions
[15]. Such techniques allow us to use consistently generated network building blocks,
called network fragments, as re-usable and maintainable parts of the underlying model
of digital twins. Being able to do so is critical for our work, as the networks will grow
very large, resulting in disproportional efforts to ensure their correctness otherwise.

3.1 Probability of Findings for Model Fragments

As Bayes nets encode the joint probability distribution over the modeled variables, we
can interpret our objective to determine the fit between model and changing reality as
investigation if the data that we observe adheres to this distribution. This is possible
given the notion of probability of findings that also supports situations of partial
observability, which we normally encounter, both w.r.t. missing data (e.g. due to sensor
failure) and variables that are part of the model but not observable (e.g. variables that
encode an inner state of a component).

The probability of finding is defined as PrðEjHÞ, where E is the evidence (the
observed data) and H the hypothesis (the model).

The probability of finding for a fragment E1, where E2 is the evidence not in the
fragment, is PrðE1jE2;HÞ.

We use Bayes Rule to rewrite this to PrðE1jE2;HÞ ¼ PrðE1jE2;HÞ
PrðE2jHÞ .

This allows us to calculate the probability of finding for a fragment: the numerator
is the probability of finding of all evidence, the denominator can be calculated if we
retract the evidence in the fragment.

3.2 Monitoring Findings with Western Electric Rules

The probability of findings calculation provides a measurement for the fit of a set of
observation for one point in time to the expectations defined by the computational
model of the digital twin. To detect relevant dynamics, i.e., real world change that
renders our model unsuitable, we use this calculation in an investigation of the
respective time-series which follows the approach of statistical process control that
establishes a ‘normal’ series and a criterion to identify ‘not normal’.

One of the often-used criteria for these purposes are the Western Electric Rules
(WER) that were introduced around 1950 at the Western Electric Company as decision
rules for detecting ‘out-of-control’ or non-random conditions on control charts and thus

Tracking Dynamics in Concurrent Digital Twins 71

process instability and the presence of assignable causes. The idea is to measure the
mean and variance of a process when it is assumed to be stable and use a series of rules
to flag suspicious data. Within the rules, locations of observations relative to the control
chart control limits (typically at ±3 standard deviations for symmetrical processes) and
centerline defined by the mean indicate whether the process in question should be
investigated for assignable causes. The core concept here is that the occurrence of data
in certain locations, or of certain series of locations, is too unlikely to be ignored safely.
Conceptually, we use the major four Western Electric rules as described in [16]:

1. A single data point is more than 3 standard deviation (sigma) from the mean
2. Two out of three consecutive points are beyond 2 sigma on same side of the mean
3. Four out of five consecutive points are beyond 1 sigma on same side of the mean
4. Eight consecutive points are on the same side of the mean.

Originally, the WER operate on sensor measurement expressed in numbers. We
look at probabilities and are only interested in values below the mean, as any value
above the mean cannot indicate a decreasing fit between the Bayes net and the data.
Given that probabilities form a ratio scale, the WER translate into the appropriate part
of the scale from mean towards 0, as shown in Fig. 4 (left) for a ¼ to ¾ ratio. The four
major WER are interpreted for probability of finding (Fig. 4 right), wherein the ratios
were selected to capture the same likelihoods as the original WER.

To our knowledge, we realized a novel approach with the interpretation of statis-
tical process control for probability of findings. As we describe below, we see several
advantages in it. For related work, please refer to [17] and [18] for overviews on
adaptation to change and on novelty detection techniques.

4 Tracking for Digital Twin Maintenance

Above, we described our methods to detect and localize discrepancies between the
current, observable reality that a system operates in and the computational model that a
digital twin uses to monitor and analyze that system and its behavior, and, e.g., to
provide diagnosis and prognosis for predictive maintenance.

We developed these methods to maintain the computational model, i.e., to keep it
and thus the concurrent digital twin up to date w.r.t. the dynamics of the real world. As
we face large models that monitor potentially mission-critical systems for which both

1 beyond 3 sigma: single PoF<0.003*mPoF
2 out-of 3 beyond 2 sigma: 2 out of any 3 with PoF < 0.046mPoF
4 out-of 5 beyond 1 sigma: 4 out of any 5 with PoF < 0.32mPoF
8 consecu ve on one side: 8 out of 8 with PoF < mPoF

with mPoF = mean(PoF) for suitable sample size and PoF =
probability of a finding, i.e., a set of observations, according to the
joint probability distribution over the respective variables
according to the BN.

Fig. 4. Western Electric rules interpreted for probability of findings

72 M. Borth and E. van Gerwen

down-time and non-optimal operations induce high costs, we require that the main-
tenance of the digital twin occurs timely and that its quality is assured. This leads to a
set of requirements for its processes and methods:

• no significant delay in the detection of an operational space transgression (no false
negatives)

• no unwarranted maintenance (no false positives)
• efficient mechanisms to update the model:

localized maintenance without complete re-building or re-training
• low efforts to ensure the updated model’s quality:

only local effects of updates, no needs to re-evaluate the whole.

As presented in Sect. 3, we address the latter two requirements in our approach via
the fragmentation of the Bayesian networks. It allows us to adjust only the parts of the
model that are outdated. Given the advantages of causal modeling, quality assurance
techniques like testing and expert evaluations are also restricted to the respective
fragments and the envelope that consists of nodes connecting to them. Consequently,
we also require

• localization of change w.r.t. the parts of the model:
detection only triggers for relevant model fragments.

Figure 5 displays an overview of the resulting workflow for the maintenance of
Bayes nets by local adaptations. While its technical details are out of the scope for this
article, we show that the methods defined here fulfill the requirements listed above via
the experimental validation described in Sect. 6 after an introduction of the underlying
industrial use case in Sect. 5.

5 Industrial Use Case

We applied our methods to an industrial use case that we will describe in anonymized
terms because of confidentiality. As our work is set to improve complex manufacturing
processes that span factory equipment from multiple vendors, our goal is to safeguard a
digital twin that monitors production equipment against dynamics that stem either from
changes within the factory control, e.g., parameter settings for new products, or from
changes to the factory’s setup, e.g., updates to equipment and processes. For this
article, we consider a simplified production line in which two production steps P1 and
P2 precede our own production equipment (Fig. 6).

The out of scope detection runs
the detection criteria against all
fragments and localizes change
in those that violate the rules.
Learning from data and expert
revision adjust the respective
fragments. The Bayes nets is
rebuilt after a new check.

Fig. 5. Maintenance of Bayes nets model by local adaptations

Tracking Dynamics in Concurrent Digital Twins 73

A digital twin’s purpose in this setup is twofold: it monitors the health of the
equipment and it provides information towards process step optimization. The latter
acts on partial information, as P1 and P2 are acting as so-called grey boxes, and data
from the end of the production line arrives too late to form a feedback that impacts
production runs directly. Based on expert knowledge on optimization schemes and fed
with historical data, we developed a Bayesian Network for the model core of the
envisioned digital twin’s second purpose. Figure 7 depicts a variant of this network
fitting to the simplified version of our use case.

6 Experimental Validation

We validated our methods in an experimental setting that simulates our industrial use
case, but allows us to control the location of scope of change within the production line,
thus providing the ground truth that the tracking needs to cope with.

For this, we generated time-series of 4000 data-points per observable and changed
the setup with progressive changes: first altering the machine setup parameters, then
replacing production machine P1 with another one having different characteristics, and
last introducing an additional source of influence in the P1 production process that

P1 P2 E P3

Production steps P1 and P2 precede
our equipment E.
In addition to the material flow
(hatched arrows), the data flow
(solid arrows) provides partial
information on the production
processes.

Fig. 6. Production line (simplified example)

Fig. 7. Bayesian network to monitor process step optimization

74 M. Borth and E. van Gerwen

cannot be sensed directly but does affect the physical properties of the product leaving
machine P1. The changes resulted in a significant decrease of the probability-of-
findings (PoFs), i.e., the fit between the model and the data, as Fig. 8 shows.

The three changes that we introduced to the setup happened subsequently after
1000 time-steps each. The out-of-scope detection triggered at least with one of its rules
basically immediately for each change, as Fig. 9 shows. (There is an inherent delay of
one time-step for the first rule, up to eight time-steps for rule 4.)

In the picture, we see experimental results from the use of the detection rules
introduced in Sect. 3 working on three different models: the original one that was
generated for the digital twin and those generated from it in two successive mainte-
nance operations in which we updated the parts of the model for which the detection
localized the transgression of the models’ operational space (top left to top right to
lower right).

6.1 Successful Localization of Change

In each section, we show the results for the rules that picked up the real-world
dynamics together with possible drill-down steps that facilitate the localization of the

The visual inspection shows a drop by a
order of magnitude for the PoFs after 1000
time steps. This likelihood continues to fall
later, but maintenance of the digital twin
would replace the model prior to that.

The visual inspection shows a drop by a
order of magnitude for the PoFs after 1000
time steps. This likelihood continues to fall
later for the initial Bayes net model, but
maintenance of the digital twin would
replace the model prior to that.

Fig. 8. Probability-of-findings for all observations

Fig. 9. Experiments on out-of-operational-space detection

Tracking Dynamics in Concurrent Digital Twins 75

change. In the first section, e.g., it was possible to explain the change of the probability-
of-findings within the production parameter settings, indicating a new production run,
while the second section correctly identifies a change in the P1 step, while the data
shows that P2 is still covered correctly by the model. The third section shows an
interesting special case in this regard: the detection picks up a difference between the
expected and the observed KPI data, but cannot localize a change that would cause the
product quality to change. This is consistent with the change we introduced as it was
outside the scope of the digital twin.

All in all, we saw that our approach’s ability to check both the whole model that
underlies the digital twin, but also relevant fragments of the Bayes nets individually
enabled an exact localization of the parts of the probabilistic model that required
maintenance. This is a major asset to us, as it allows us to keep very large models on
track efficiently, a requirement to work with digital twins of industrial scope in dynamic
settings.

6.2 Fast and Accurate Detection of Change

Next to that our detection rules trigger on observable change basically without delay,
we also see a high precision and accuracy: We have nearly no false positives – instead,
we see a clear jump-function in our signal. Furthermore, we have the option to suppress
false positives without significant disadvantages, e.g., by requiring that 3 out of 4 rules
trigger or by checking for two subsequent observation sets for which the change
detection occurs.

We attribute the accuracy to our decision to monitor probability-of-findings instead
of the raw data, for which an earlier investigation showed a signal-to-noise ratio so bad
that it rendered our detection attempts to be futile. This unusual choice requires a
correct interpretation of the results, though: the existence of individual observations
that do not trigger the detection rules while we observe a massive set of true positives is
inherent to the ideas that we laid out in Sect. 3.2 and Fig. 4 and do not constitute a
meaningful false negative, as we only look for the point in time for which the trigger
events start. As Figs. 8 and 9 show, we do look for the drop in the mean value of
probabilities – but there will always be observations with a higher likelihood than the
mean, which results in rules not triggering.

Altogether, both the detection speed and the accuracy visible in our experiments
show the suitability of our approach for the tracking of dynamics in concurrent digital
twins.

7 Future Work and Conclusion

There are several areas in which we foresee sensible extensions of our work. First and
foremost is automation and the generation of a seamless workflow for the continuous
tracking of real-world dynamics in digital twins. This is primarily an industry issue, as
such a workflow must fit within the operational use of the digital twin and adhere to the
respective company’s quality assurance procedures.

76 M. Borth and E. van Gerwen

We believe that the latter requires an additional investigation on how to conduct
maintenance operations for digital twins in ways that ensure that automated updates to
probabilistic reasoning models do not erase the model’s ability to cope with odd but
probably important cases just because they did not occur often enough recently to
register in the data analysis. Such an examination of coverage could be based on the
sensitivity analysis techniques that are available for probabilistic models.

Another, more academic, topic for future work is the integration of expectations w.
r.t. the real-world dynamics that is, in certain areas, available to domain experts. The
integration of knowledge into data science approaches is typically beneficial and
sometimes necessary to successfully support engineering and system analysis tasks, as
we pointed out in [19]. In the context of the work we present here, we expect that we
can improve our results further by fine-tuning the out-of-scope detection to the origin
and nature of dynamics and the behavior of control loops that adapt the monitored
systems to the situation at hand.

The need for further developments of this kind is debatable, as efforts need to
remain in balance with expected improvements. Drawing only from experiences in
industrial R&D within a single domain, we cannot provide a general notion w.r.t. its
necessity: our detection of transgressions from the operational space of predictive twins
worked very fast and accurate. We were, without mentionable efforts, able to set up our
detection mechanisms such that neither false positives nor false negatives impacted
results in our controlled experimental setup – an achievement that outperformed the
individual technologies which inspired our approach – and could do so based on
relatively small time-series, thus fulfilling all our requirements.

Further improvements would therefore need their justification in the demands on
the original system, the digital twin, and its operation itself: safety-critical systems
warrant extra care w.r.t. the unlikely, but potentially catastrophic event; systems with
excessive down-time costs should not be taken offline to maintain their twins, which
translates to high demands on a twin’s robustness versus manageable dynamics,
warranting dedicated handling of foreseeable dynamics; but concurrent twins that
monitor systems that are expected to operate in a stable fashion will require only the
safe-guards that the work we presented can provide.

Given that digital twins are, by themselves, a new technology for the control and
management of complex systems, we hope that our work helps to ensure their con-
tinued success, but also that we raised awareness on the challenge that real-world
dynamics pose to them.

References

1. Monash, C.: Examples and Definition of Machine-Generated Data. Monash Research
Publication (2010). www.dbms2.com/2010/12/30/examples-and-definition-of-machine-
generated-data. Accessed Apr 2018

2. Laney, D., Jain, A.: 100 Data and Analytics Predictions Through 2021. Gartner Report
G00332376 (2017)

3. Gartner Press Release: Gartner Identifies the Top 10 Strategic Technology Trends for 2017.
Gartner (2016). www.gartner.com/newsroom/id/3482617. Accessed Apr 2018

Tracking Dynamics in Concurrent Digital Twins 77

http://www.dbms2.com/2010/12/30/examples-and-definition-of-machine-generated-data
http://www.dbms2.com/2010/12/30/examples-and-definition-of-machine-generated-data
http://www.gartner.com/newsroom/id/3482617

4. Grieves, M., Vickers, J.: Digital twin: mitigating unpredictable, undesirable emergent
behavior in complex systems. In: Transdisciplinary Perspectives on Complex Systems,
pp. 85–114. Springer International Publishing (2016)

5. Oracle: Digital twins for IoT applications. Oracle White Paper (2017). www.oracle.com/us/
solutions/internetofthings/digital-twins-for-iot-apps-wp-3491953.pdf. Accessed Apr 2018

6. Pearl, J.: Causality. Cambridge University Press, New York (2009)
7. Borth, M.: Probabilistic system summaries for behavior architecting. In: Proceedings of the

Complex Systems Design and Management 2014 CEUR Workshop, pp. 71–82 (2014)
8. Christensen, J.J., Andersson, C., Gutt, S.: Remote condition monitoring of Vestas turbines.

In: Proceedings European Wind Energy Conference, pp. 1–10 (2009)
9. Gupta, S., Starr, M.: Production and Operations Management Systems. CRC Press, Boca

Raton (2014)
10. Schwab, K.: The Fourth Industrial Revolution. Portfolio Penguin, London (2017)
11. Jensen, F.V.: Bayesian Networks and Decision Graphs. Springer, New York (2001)
12. Jensen, F.V., Aldenryd, S.H., Jensen, K.B.: Sensitivity analysis in Bayesian networks. In:

Carbonell, J.G., et al. (eds.) Symbolic and Quantitative Approaches to Reasoning and
Uncertainty. Springer Lecture Notes in CS, vol. 946, pp. 243–250 (1995)

13. Koller, D., Pfeffer, A.: Object-oriented Bayesian networks. In: Geiger, D., Shenoy, P.
P. (eds.) Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence (UAI
1997), pp. 302–313. Morgan Kaufmann Publishers Inc. (1997)

14. Laskey, K.B., Mahoney, S.M.: Network fragments: representing knowledge for constructing
probabilistic models. In: Geiger, D., Shenoy, P.P. (eds.) Proceedings of the 13th Conference
on Uncertainty in Artificial Intelligence (UAI 1997), pp. 334–341. Morgan Kaufmann
Publishers Inc. (1997)

15. Borth, M., von Hasseln, H.: Systematic generation of Bayesian networks from systems
specifications. In: Musen, M.A., Neumann, B., Studer, R. (eds.) Intelligent Information
Processing, pp. 155–166. Kluver (2002)

16. Western Electric Rules: From Wikipedia. en.wikipedia.org/wiki/Western_Electric_rules.
Accessed May 2018

17. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, H.: A survey on concept drift
adaptation. ACM Comput. Surv. (CSUR) 46, 44 (2014)

18. Pimentel, M.A., Clifton, D.A., Clifton, L., Tarassenko, L.: A review of novelty detection.
Signal Process. 215–249 (2014)

19. Borth, M., van Gerwen, E.: Data-driven aspects of engineering. In: IEEE SoSE 2018, Paris
(2018, accepted)

78 M. Borth and E. van Gerwen

http://www.oracle.com/us/solutions/internetofthings/digital-twins-for-iot-apps-wp-3491953.pdf
http://www.oracle.com/us/solutions/internetofthings/digital-twins-for-iot-apps-wp-3491953.pdf
http://en.wikipedia.org/wiki/Western_Electric_rules

How to Boost the Extended Enterprise
Approach in Engineering Using MBSE –

A Case Study from the Railway Business

Marco Ferrogalini1(&), Thomas Linke2, and Ulrich Schweiger2

1 Bombardier Transportation, 1 Place des Ateliers, 59154 Crespin, France
marco.ferrogalini@rail.bombardier.com

2 Knorr-Bremse Systeme für Schienenfahrzeuge,
Moosacher Str. 80, 80809 Munich, Germany

{thomas.linke,ulrich.schweiger}@knorr-bremse.com

Abstract. This paper presents an overview of why Model Based System
Engineering (MBSE) is the mandatory solution to engineer complex railway
systems and subsystems, giving some insights about the complexity and tech-
nical challenges. But its main focus will be on how MBSE can be a key enabler
on the implementation of an extend enterprise approach in the engineering
domain. The case study is on rolling stock systems and brake subsystems
developed by the two companies Bombardier Transportation and Knorr-Bremse
which are in a customer-supplier relationship.

1 Introduction

1.1 Railways Business OEM, a System Integrator

OEMs for rolling stock products such as Bombardier Transportation are providing train
sets to railway operators (final customers and end users together with the passengers).
Except few subsystems like the carbody, the propulsion, the bogies and the train
control and monitoring system, all the rest of the twenty to twenty-five subsystems are
purchased from external suppliers. The core system engineering activities are:

• Gathering and consolidating all the input requirements (customer, standards and
regulations)

• Developing architectural concepts (mechanical, functional, performance) at vehicle
level (system of interest) and deriving requirements into the technical subsystem
specifications to precisely define the scope of supply of any integrated subsystems

• Maximizing the re-use of existing subsystem solutions
• Verifying and validating the final product (integrated systems) to ensure full

compliance of the input requirements and customer satisfaction (Fig. 1).

© Springer Nature Switzerland AG 2019
E. Bonjour et al. (Eds.): CSD&M 2018, Complex Systems Design & Management, pp. 79–96, 2019.
https://doi.org/10.1007/978-3-030-04209-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-04209-7_7

1.2 Railways Business OEM, a System Integrator

The vision of rolling stock subsystem suppliers such as Knorr-Bremse is to provide
comprehensive solutions for a specific functional vehicle domain. Knorr-Bremse tar-
gets to free up the system integrator from the hassle of dealing with subsystem specific
details by providing pre-developed, approved, high level products with a defined set of
functions and variability to satisfy different customer needs. The core system engi-
neering activities are:

• Gathering and consolidating all input requirements (customer, standards, regula-
tions) on subsystem level.

• Advising system integrators in subsystem specific topics and supporting them in
defining an efficient solution for their train system.

• Specifying and defining the architecture of the subsystem to fit into the overall
vehicle architecture.

• Maximizing the re-use of existing solutions, but customizing it to project specific
requirements.

• Integrating, testing and validating the subsystem inhouse and on-site together with
the system integrator.

1.3 Rolling Stock Systems Complexity Growth

As for many other systems (e.g. smart phones), there’s a general trend to increase
complexity for rolling stock systems acting on several axes:

• More and more integrated functionalities for passenger services (public
announcement, infotainment and multimedia, video surveillance, internet access).

• IoT (internet of things) makes the train seen as a “connected object”, therefore new
interfaces with external systems requires new functionalities (e.g. drive from remote
control center) and with a very high level of safety and security (cyber-security).

Fig. 1. Role of the system integrator

80 M. Ferrogalini et al.

Looking to the technology evolution on the control systems for rolling stock, it’s
important to note that these systems started as fully mechanical systems (steam loco-
motives), and once electronics appeared, all the «non-mechanical» functions to monitor
and control the system were realized initially with wiring logic (relays logic). It’s just
much more recently (last decade) that with the introduction of the “train control and
monitoring system” the control started to be realized with a combination of software
and hardwired logic. Typically, safety functions and reliability performance are granted
by hardwired implementation.

One of the most important factors of this complexity growth is the transformation to
reduce more and more hardwired function in favour of software. Typically, around
twenty to twenty-five different subsystems (traction, braking, doors, HVAC, passenger
info and entertainment, CCTV, signaling, etc.) shall be functionally integrated by using
several different types of communication buses to interconnect within themselves and
with other legacy rolling stock.

1.4 Rolling Stock Subsystems Complexity Growth

There are different factors which increased the complexity of the subsystems. Technical
complexity growth by increased electronic and software driven functionality of the
subsystem. Increased performance requirements lead to a more sophisticated and
precise control of the subsystem.

For example classical power head driven trains had a central pneumatic brake pipe
pressure control and each coach contained a pneumatic distributer valve. Usage of
electronic control is limited to wheel slide protection and a limited diagnostic
functionality.

Modern trainsets with fully distributed power have a full electronic per bogie
control of the brake pressure providing quick response to brake demands and full
blending with electrodynamic brake and eddy current brakes to optimize the energy
consumption, life cycle cost. Brake performance is improved to maximise the line
capacity. Electronic Adhesion Management maintains a constant deceleration rate even
in emergency brake (Fig. 2).

As mentioned above, when the train shall provide all the typical services of a
connected object (IoT) then the subsystems have been forced to deeply modify their
traditional data communication architectures. Indeed the introduction of Ethernet
technology in the rolling stock control domain have been required to support additional

Fig. 2. Number of signals vs application

How to Boost the Extended Enterprise Approach in Engineering 81

services like web based maintenance, improved diagnostic capabilities as well as
condition monitoring and predictive maintenance. Ethernet technology is also an
enabler for interconnecting different subsystems to provide additional customer valued
functionality. Cyber security and safety integrity levels also drive additional engi-
neering tasks. Upcoming demands like “virtual” coupling, wireless TCMS, full drive
by wire and autonomous driving will increase the system complexity even further.

Additional to these technical complexity drivers, there is a number of non-technical
drivers. In the past years all successful companies had to go global. This is not only
affecting the customer interfaces but also internal engineering departments. For
example, a global acting company like Knorr-Bremse has more than 100 subsidiaries in
30 countries. To provide an outstanding customer interface, application engineering is
located very close to our global distributed customers. All these complexity drivers can
be tackled by different technical options, but efficient system engineering methods
become a crucial factor to remain competitive in the business.

2 Functional Architecture Concept Process and MBSE
at Bombardier

This chapter will provide insights about the engineering phases performed at BT to
conceptualize a rolling stock system functional architecture and also some insights
about how the concept phase has been implemented by using a model based approach
based on the SysML language [2, 4, 11, 17].

2.1 Functional Architecture Engineering Process and Modelling
Methodology

The process is divided in the following phases, described here below.

Input Requirements Analysis
This phase consists of analysing and consolidating all the input requirements which can
influence the definition of the functionalities of the rolling stock system. The possible
sources are the customer specifications, standards and norms, but also Bombardier
internal requirements and constraints. The full set of requirements is considered during
the concept phase and traceability measures are put in place to ensure that all of them
are covered by the design.

Train Operability Analysis
This phase aims to provide full understanding of the operational context, environmental
constraints and therefore to define the operational scenarios and to capture the train
external interfaces. The analysis is structured following a standard structure called OBS
(Operability breakdown structure) made of three levels:

• Level 1 – Operational contexts: define the contexts in which the train performs its
mission (they have been standardized into the following: Normal, Restricted,
Degraded, Emergency and Maintenance). A state diagram shows all the possible
transitions between the different contexts. Each operational context is further
decomposed into operational scenarios.

82 M. Ferrogalini et al.

• Level 2 – Operational scenarios: each operational context is broken down into more
granular ones. This breakdown is formalized through a set of activity diagrams, one
per each operational context. Operational scenarios are modelled as activities.

• Level 3 – Consist use cases: basic “bricks” of the train behaviour which are defined
in the next process phase. As for the previous step, each consist use case is mod-
elled as an activity (and as a use case), each operational scenario is formalized
trough an activity diagram.

Consist Operational Analysis
Once defined the system operational needs (ConOps), the next step is to perform the
“external” functional analysis to determine the rolling stock black box functions which
will support the full set of operational scenarios. This phase is mainly based on the
following activities:

• Define the environment and actors.
• Define all the possible usages (use cases) of all the actors and environment which

will interact with the train in both normal condition and degraded conditions to fully
cover the operational scenarios. As mentioned before those use cases are combined
into activities diagrams to describe the operational scenarios.

• Characterize the train external interfaces by formalizing all the exchanges
(inputs/outputs).

• Define the train states and the related transitions. This analysis is structured fol-
lowing a standard functional breakdown structure (three levels); all the use cases are
organized under the functional breakdown structure (FBS) level three. This means
that the expected behaviour of the train is defined for each of the level three
functions.

Consist Functional Analysis
This phase consists of performing the functional analysis of the system as a white box;
all the required behaviour defined from a black box point of view in the precedent step
is now decomposed into more granular functions (level four). For each function level
three, this phase aims to identify the set of functions which will decompose the main
function level three and which other functions which decompose other functions level
three will contribute by providing outputs or consuming inputs. This phase is mainly
based on the following activities:

• Decompose each function level three to the next level and determine which other
functions level four (belonging to other functions level three) are contributing.

• Functional interactions (functional signals) between the functions and with the
system external actors (coherently with what defined in the operational analysis
step), elaborating the functional architecture (per each function level three)

• Determine the behavior of each function level four and formalize it through:
– functional derived requirements
– state machine diagrams (this will enable the model simulation)

• Describe the holistic dynamic behavior of the function level four trough sequence
diagrams.

How to Boost the Extended Enterprise Approach in Engineering 83

Consist Technical analysis
This phase runs in iteration with the previous one. To enable the implementation of the
defined functional architecture, any functions level four shall be allocated in a unique
manner to one subsystem. This means that the functional decomposition analysis is
normally performed several times until reaching the optimal setup.

This phase is mainly based on the following activities:

• Decompose the rolling stock into the physical subsystems.
• Allocate each function level four to a given subsystem, as mentioned this might

require to review the functional decomposition.
• Define for each functional signal a real physical signal (signal type and signal

name), fully defining the functional ICDs.

2.2 MBSE Tool Chain and Main Outputs

Bombardier transportation has chosen the SysML language and developed on it a BT
owned modelling methodology briefly described in the previous chapter. The mod-
elling tool that is currently in use is Magic Draw with a centralized server which
permits concurrent engineering from distributed teams on the same model. Because the
tool to manage requirements across the company is DOORS, we interfaced it with
MagicDraw thanks to the Cameo Data hub plugin and following a strict synchro-
nization process. Out of the MagicDraw models all the functional specifications
(documents) are automatically generated and stored in the PLM system (Siemens
TCUA) for the several functional baseline releases. Those functional specifications
(documents) are then typically shared with:

• The customer during the project design reviews
• The suppliers (like Knorr-Bremse) because they define their functional scope of

supply (functional requirements and functional ICDs).

The model is verified trough static checks (verifying that all the modelling rules
have been respected) and trough simulation, permitting to verify in a very early stage
the correctness and completeness of the functional architecture (Fig. 3).

2.3 Deployment Status

The large-scale rolling-out of MBSE in Bombardier Transportation started around three
years ago with a key pilot project which is now the base of one of the most important
product family for the mainline segment. Because of the positive return on experience
and investments, it has been decided to set this approach as mandatory for all the future
product definitions; the implementation has already started on several other product
families beyond the first pilot. The deployment of MBSE has concerned a population of
around hundred functional engineers which are required to formalize their concept
through the described approach and a population of around three hundred engineers
which are the customers of what is formalized in it and therefore they have been trained
as model readers.

84 M. Ferrogalini et al.

3 Functional Architecture Concept Process and MBSE
at Knorr Bremse

The key idea of shifting from the classical document based engineering approach to the
model based engineering approach is not in discarding the whole set of documents but
rather keep all the development artefacts in a common and concise model. Out of this
model the typical system engineering process documents of the railway industry can be
generated. The model is continuously enriched and detailed with the information
created during each design step being the single source of truth.

It helps the engineers to maintain coherency, consistency and provides a “real-time”
common view on the system design. The integration of the subsystem into the vehicle
requires advanced engineering methods to achieve a seamless integration and an effi-
cient on-site commissioning, testing and vehicle homologation. Mains benefits are:

• Clearly defined and managed interfaces, not only on static interface definition, but
as well as behavioural description to improve the quality of the whole process.

• A modular approach with defined variation points enables re-usable building blocks
as a product line approach. This allows the system integrator for a quick and easy
adaption of their vehicle platform to different operator requirements.

The following chapter deals with the model based process based on SysML lan-
guage which has replaced the conventional document driven approach.

3.1 Functional Architecture Engineering Process

A closed circular process model (see picture hereafter) describes the key activities of
the domain engineering but also of the application engineering as defined by the
standard ISO 26550 [8].

Fig. 3. MBSE tool landscape at BT

How to Boost the Extended Enterprise Approach in Engineering 85

The core concept is to feed and re-use a common asset base made of subsystem
functions, subsystem complex technical elements which realize system functions, and
system architectures which combine different technical elements to a train sub system
(Fig. 4).

3.2 Modelling Methodology

With SysML, a standardized language for system modelling has been defined by the
OMG organization (Object Management Group). However, there is no standardized
approach for the methodology of system modelling or the structure of a system model.
SysML 1.3 [2, 4, 11, 17] is used as the common modelling language in all parts of the
System Model except the Feature Model. The Feature Model was originally formulated
in a feature-based ad-hoc notation based on [9], but it has been transferred to OVM
[12], the variant modelling notation used in PTC Integrity Modeler. OVM (Orthogonal
Variability Model) is not part of the SysML standard. The System Model is the central
repository for Domain Assets, i.e. the results of Domain Engineering which are stored
in a structured way to be re-used by Application Engineering. The structure of the
model is based on the methodology developed in the projects SPES 2020 [13, 15] and
CESAR [14].

Views and Levels
Views and levels can be seen as two dimensions defining a matrix in which all model
content is represented (see figures hereafter). The relation typically used for connecting
elements of different levels within the same view (vertical direction) is the composition
(whole-part relation); the allocation relation is used to connect elements of the same
level from the Functional to the Technical View (horizontal direction) (Fig. 5).

The most important entities in the model are the Main Functions and the Function
Carriers. The Main Functions define the functional breakdown of the complete system.

Fig. 4. KB Functional architecture engineering circular process

86 M. Ferrogalini et al.

The Function Carriers are technical products ready to be used in customer projects;
they are located on the same level of the Technical View. Function Carriers and
discipline-specific elements (on levels D…) can be grouped into System Families. On
the left side of the matrix, the column Requirements shows the connection between the
System Model and the textual requirements stored separately in the requirements
management tool. The same levels used to structure the System Model are also used to
structure the textual requirements which might be linked to model elements of the same
level to ensure traceability between requirements and solutions. The light-blue colour
used for the Operational Analysis View in the figures below illustrates the special role
of that view as a bridge between the textual requirements and the design models in the
Functional and Technical View (orange columns). The Feature Model containing
information about the variability of the system is orthogonal to both views and levels;
feature constraints may be connected with elements of any view and any level. The
Feature Model thus represents a third dimension of the Generic System Model and is
not represented in the matrix.

The three views in the model are:

Operational Analysis View
The Operational Analysis View falls in two parts: the Context Model and the Use Case
Model.

Context Model
The context of a system is the sum of all human, natural or technical entities that
surround the system and are relevant for the correct operation of the system in its

Fig. 5. KB MBSE approach – views and levels matrix

How to Boost the Extended Enterprise Approach in Engineering 87

environment. The context does not belong to the system; in a development project, it
must usually be accepted as is, because it may not be changed. Therefore, the context
has a strong impact on the requirements for the system. The purpose of the Context
Model is to analyze influences and constraints on the system originating in its envi-
ronment. Such influences may be of physical (e.g. climate conditions), technical (e.g.
communication protocols), social (e.g. ergonomics and usability), or legal nature (laws,
standards and other regulations). In Context Diagrams, the System of Interest (SoI) is
represented as a black box interacting with Context Elements. The Context Model
serves as an entry point to the Generic System Model. It includes separate Context
Diagrams for all Main Functions. In combination, these diagrams yield a Context
Diagram for the complete brake system, or, in a similar way, for any other train
subsystem included in the model.

Use Case Model
Use Case Modelling is a high-level method to characterize the functionality of a system
from the individual perspectives of the different users. Users in this sense may be
humans as well as technical systems that use services of the system of interest. In the
KB System Model, there are no special rules for Use Case Diagrams; they simply
follow the standard as defined in UML or SysML.

Functional View
The modelling approach at KB is function-based, meaning that modelling activities
typically start with a functional analysis that abstracts from technical details. The
function of a technical system is the action or purpose for which it is designed.
Analysing and decomposing the function of a system is a way to find abstract
descriptions of its actions and purposes. Functional descriptions are solution-neutral,
which means that they don’t anticipate design decisions or technical details.

Function Classification
A model-wide Function Classification is defined for the complete functionality of the
systems considered in the model. The Function Classification is a tree with Main
Functions as leaf nodes. It is represented as a structure of nested model packages and
used as a common structuring backbone in several model parts. The Function Clas-
sification is a classification scheme which is similar, but not identical with the system
levels (S0, S1, etc.). While the Function Classification is used to classify Main
Functions on the same level, and to group them into packages for easier orientation, the
system levels are used to model functions that combine several Main Functions in a
certain way to realize more comprehensive functionality (called System Functions).
Currently, the Function Classification comprises the functionality of the Brake System.
In the future, it may be extended to include other train subsystems, such as Propulsion,
Doors, Air Conditioning, etc.

The most important diagrams used in the Functional View are Functional Context
Diagrams (which define the link to the Context Model), Function Trees (decomposi-
tions of functions into Sub-Functions), and Function Networks (showing the interre-
lations of Main Functions within a System Function or Sub-Functions within a Main
Function).

88 M. Ferrogalini et al.

Technical View
Describing how the System of Interest is composed of technical or physical compo-
nents. Like the other views of the model, the Technical View is organized in multi-
discipline system levels (S0, S1,…) and discipline-specific levels (D1, D2,…). Each
model element of the Technical View is classified into one of the levels, and for each
model element the following information is provided:

• its system boundary;
• its constituents (the model elements of lower levels of which it is composed);
• its interfaces at the system boundary;
• the interfaces of its constituents and how they are interconnected;
• the engineering discipline it belongs to (for discipline-specific elements).

The central model elements in the Technical View are the Function Carriers.
A Function Carrier is a standardized subsystem of system level S3 which implements a
defined set of standardized functions (Main and/or Sub-Functions), and is composed of
standardized units of one or more disciplines (mechanical, pneumatic, electrical, elec-
tronic (including software)) realized on physical devices in a defined arrangement. The
model elements of the Technical View are described by the following two diagram types:

• Decomposition Diagrams: Block Definition Diagrams (BDD) that define which
parts an element consists of;

• Architecture Diagrams: Internal Block Diagrams (IBD) that show how the parts
within an element are connected through their interfaces.

These diagram types occur on each of the model levels in a similar fashion:
On level S3, for example, they describe the interfaces and internal architecture of

Function Carriers; whereas, on level D1, they describe the interfaces and internal
architecture of Function Carrier Elements.

Levels
To structure the model according to abstraction and granularity, the following levels are
defined. The levels starting with S… (for “system”) contain mixed-discipline items,
those starting with D… (for “discipline”) contain items that are discipline-specific, i.e.
purely mechanical, pneumatic, electrical, or electronic. For Requirements Management,
the same level numbering is used as in the System Model.

Variability
The Variability Model constitutes a cross-cutting aspect of the model. It is used to
model and manage the variation of the System Model and of other development
artefacts (e.g. documentation). The Variability Model contains features and their
interdependencies. According to ISO/IEC 26550 [8], features are abstract functional or
non-functional characteristics of a System of Interest for end-users and other stake-
holders. The Variability Model has relationships with all other views: artefact depen-
dencies can be used to describe variability anywhere in the System Model. Thus, the
Variability Model is orthogonal to the rest of the System Model and may be regarded as
a third dimension added to the Level/View Matrix (see Views and Levels). In the

How to Boost the Extended Enterprise Approach in Engineering 89

Knorr-Bremse System Model, variability is expressed in a graphical notation called
Orthogonal Variability Model (OVM), which may be considered an “add-on” to
SysML.

Tools and Infrastructure
With SysML, a standardized language for system modeling has been defined. Knorr
Bremse has chosen SysML 1.3 as the common modeling language in all parts of the
System Model except the Feature Model which is expressed in OVM [12]. The MBSE
approach was started with Enterprise Architect, a simple user friendly general-purpose
modeling tool. It was important to focus on the SysML language and the modeling
methodology and keep the obstacle of a complex design tool very low. Enterprise
Architect served this approach very well.

In 2017 the MBSE tooling for the System Model has been changed as large-scale
enterprise requirements and IT strategies had to be considered when rolling out the
MBSE approach to a large-scale community. The modelling tool PTC Integrity
Modeler took the place of Enterprise Architect and the model content had been
migrated. Requirements have been already gathered with PTC Integrity Lifecycle
Manager. Lately the OSLC interface between Lifecycle Manager and Modeller has
been introduced. As document generation engine KnowDocs from KnowGravity is
going to be deployed.

3.3 Deployment Status

KB’s MBSE Methodology has been developed and applied during a pilot project
focusing on functional standardisation. Following the positive outcome of the pilot, the
method has been extended to cover also the technical deployment of the functional
elements. By beginning of 2018 the method and also the tools have reached a level of
maturity where it has been decided to promote it as a company standard approach for
the brake system domain engineering. The roll out is currently ongoing by the
implementation of brake subsystem product lines under development as a major pro-
duct involving around 50 product system engineers acting as model architects. A much
higher number of engineers will be trained as “readers” of the model with particular
focus on getting the buy-in of an audience which is not used to a model based approach
and to extensive modelling tools and abstract languages like SysML.

4 Rolling Stock Integrator Versus Subsystem Supplier –

A Key and Complex Relationship

This chapter will provide insights on the main focus of this paper: the customer-
supplier relationship between a system integrator and a subsystem provider. This is a
key area where the extended enterprise approach can be successfully implemented,
especially when boosted by the application of the MBSE on both sides.

90 M. Ferrogalini et al.

4.1 State of the Art

As it’s explained in the introduction, the most important element of this interface is the
set of requirements which are provided from the rolling stock integrator as the result of
the architectural/integration work. This set of requirements shall span all the integration
aspect, mechanical, functional and performance and shall be managed in configuration
and changes.

This set is the main input for the subsystem supplier. According to the life cycle
stage, different feedbacks on each requirement shall be provided:

• During the bid phase: a clause by clause, stating compliance status
• During the detailed design phase:

– A list of satisfaction arguments which explain how the requirements will be
covered by an intended design solution

– List of means of proof (the way the requirements will be validated)
– The technical documentation which describes the solution
– The ICDs (Interface control documents)
– The software release notes

• The validation evidence that the requirements are effectively implemented into the
solution.

All those exchanges back and forth are normally based on traditional Microsoft
Office documents (Word, Excel). As state of the art of the integrator-subsystem supplier
relationship this approach has shown some typical inconvenients, causes of ineffi-
ciency, which have many commonalities with the document based engineering
approach:

• Misunderstanding/interpretation of requirements (text based)
• Lack of visibility/understanding of the integration environment for the subsystem

concerned
• Low level re-use of existing off-the-shelf solutions – the state of art approach is

typically top-down and doesn’t support a structured re-use methodology
• Very-long life cycle stages, each step requires several cycles to get the same

understanding/alignment between the two parties
• Ambiguous interface definitions, on functional level and dynamic behaviour.

4.2 Extended Enterprise, the Next Generation Supply Management

What Is Extended Enterprise? The term “extended enterprise” represents a new concept
where a company goes beyond its traditional perimeter and may include its business
partners, its suppliers, and its customers in it. When we focus on the suppliers, the
notion of extended enterprise can be translated into virtual integration, outsourcing,
joint global R&D programs, partnership agreements and preferred supplier approach.

The traditional way of thinking of an enterprise considers a linear value chain from
marketing to service all along the product life cycle where suppliers are thought to be
“outside” the organization’s domain. The railwaymarket is currently evolving having the
product development life cycle duration dramatically reducing, the competition inten-
sifying and the level of risk of not delivering on time consequently increasing. This trend

How to Boost the Extended Enterprise Approach in Engineering 91

has pushed smart organizations to rethink the way of delivering value to customers, for
instance by reshaping the relationship with suppliers. A way to pave this is improving
collaboration and communication to share the end goal and the related risks.

According to Jan Duffy and Mary Tod, IDC, the authors of the article “The
Extended Enterprise: Eliminating the Barriers” [3], the extended enterprise can only be
successful if all the component groups and individuals have the information they need
to do business effectively.

We came here to the core part of this paper, where it will be described how two
companies in a customer-supplier relationship in the railway business, respectively
Bombardier Transportation and Knorr-Bremse, have defined a model based method-
ology to support the extended enterprise approach for the functional integration of a
brake subsystem in the rolling stock product.

5 The BT-KB MBSE Cycle

This chapter will give insights on a model-based collaboration concept between Bom-
bardier Transportation (BT) and Knorr-Bremse (KB). The process is a cyclic process
passed through as long as necessary to achieve a solution accepted by both partners. It is
built on system models as they are used in Model-Based Systems Engineering (MBSE).
Both partners possess system models that have been developed separately and in dif-
ferent tools, yet based on the same modelling language (SysML). The BT-KB MBSE
Cycle proposes to connect these models and to use them in a well-defined way to foster
model-based collaboration. The goals of the BT-KB MBSE Cycle are:

• Simplifying the definition of interfaces
• Generating interface control documents based on consistent models
• Traceability of functional requirements and design decisions across company

borders
• Facilitating iterative refinement and change management
• Effect analysis across company borders
• For subsystems (e.g. Brakes, Doors, etc.): Using standardized products taken from a

portfolio of standard system functions, function carriers and reference architectures
• On vehicle level: Integration of standardized subsystem products into standardized

functional building blocks.

5.1 The BT-KB Model-Based Systems Engineering Cycle

The following figure illustrates the steps involved in the BT-KB Engineering Cycle.
Each step is explained in a separate section below (Fig. 6).

Step 1 (BT to KB): Forward Requirements and Map to Functions
The functional model of BT is structured into Functional Contexts (Functional
Breakdown Structure Level 3) and Functional Blocks (Functional Breakdown Structure
Level 4). The derived requirements which are forwarded to KB are corresponding to
the Functional Blocks of Level 4. KB receives requirements for each Functional Block
which is allocated to the Brake subsystem (“SBA Brakes”). KB maps the requirements

92 M. Ferrogalini et al.

received from BT to functions of its functional model. The BT Functional Contexts
(Level 3) correspond roughly to the KB System Functions, the BT Functional Blocks to
the KB Main Functions and Sub-Functions used in a System Function. Since the BT
requirements are scoped to Functional Blocks, they will eventually be mapped to Main
Functions and Sub-Functions on the KB side. This process is repeated for all Func-
tional Contexts which contain any Functional Blocks allocated to the Brake subsystem.

Step 2 (KB): Find a Technical Solution Based on Standardized Function Carriers
On the KB side, the KB Asset Portfolio of Standard System Functions and Function
Carriers is used to find a technical solution which satisfies the requirements. In the KB
generic system model, Standard System Functions and Function Carriers are con-
nected. For a specific OEM project, a reduced branch of the generic system model is
generated that contains only project-specific content. This is accomplished by selecting
features (variability items) describing the OEM project. After the project-specific
selection of features a model transformation is triggered which results in a project-
specific model. This model contains a set of Function Carriers appropriate for
designing a technical solution tailored to the specifics of the OEM project.

Step 3 (KB to BT): Return Interface Details
For each Functional Block allocated to the Brake subsystem on the BT side, KB
provides a Technical Solution Block satisfying the requirements. The technical solution
for a Functional Block includes:

• A complete specification of the interface,
• A White Box view showing how the Function Carriers are interconnected to realize

the technical solution.

Fig. 6. BT-KB model-based systems engineering cycle

How to Boost the Extended Enterprise Approach in Engineering 93

To make the interface alignment traceable on both sides, the KB technical ports are
mapped to the BT functional signals, because the BT functional view has roughly the
same level of technical detail as the KB technical view. This mapping should be
supported by a tool linking the corresponding elements of the two models together.
Once the model elements are linked, this information can be used in further iterations
and will speed up the process of alignment in the BT-KB MBSE Cycle. There is a
special reason why a White box view of a Technical Solution Block is delivered by KB
in addition to the interface specification: Some of the connections between the Function
Carriers in the Technical Solution Block might be realized by BT as part of the train
infrastructure (bus systems, wiring, pipes). In the model, the connections for which this
is true may be marked with special attributes. By analysing these attributes of the
connections within the Technical Solution Blocks, requirements to the BT train
infrastructure (e.g. bandwidth and performance of bus systems) can be derived.

For simplicity, the technical solution exchanged between the partners in this step is
not instantiated yet. This means that groups of technical elements which need to be
repeated several times in the train architecture are only represented once in the models
exchanged. During the mapping process, discrepancies between both models become
evident and can be analysed. Because this might lead to changes of requirements or of
interface elements in the model, the process described here is a cyclic process com-
prising as many iterations as necessary to achieve a solution accepted by both partners.

Step 4 (BT and KB): Instantiate the Technical Solution
After BT has received a non-instantiated technical solution from KB, both sides
independently work on instantiating it. Instantiating means adding information on how
often the technical elements are repeated in the train architecture. The system of interest
for this design step is a consist. On the KB side, a portfolio of reference architectures
supports the instantiation. The results of the instantiation are project-specific technical
models on both sides. The KB model will contain information on the correct number of
Function Carriers needed to realize the technical solution for a complete consist,
together with the correct multiplicity of bus signals needed for the communication
between the Function Carriers. The BT model contains similar information about the
communication between the different subsystems (e.g. Brakes, Propulsion, etc.).

Step 5 (BT and KB): Align ICDs
After the instantiated models have been developed independently by both partners, the
results need to be aligned. To this end, corresponding model elements of the instan-
tiated models are mapped. This mapping will draw on the results of step 3, i.e. the
mapping of the non-instantiated models will be refined adding information about
multiplicity. During this process, inconsistencies in the interface definitions of the two
partners become evident and can be corrected. This might even cause another cycle of
the complete MBSE process if the inconsistencies can’t be solved by just correcting the
instantiations made in step 4.

Just as in step 3, the mapping results will be stored in a tool. This ensures trace-
ability between the two models, allowing further cyclic refinement and simplifying
change management. Due to slightly different modelling approaches on both sides,
technical signals on the BT side will be mapped to technical ports on the KB side.

94 M. Ferrogalini et al.

Based on this mapping, Interface Control Documents (ICDs) may be generated,
combining the interface information of both models. These documents contain the
corresponding interface elements with names following the respective naming con-
ventions of either side. They represent the authoritative interface definition agreed upon
by the two partners.

6 Conclusion

Railway market evolution is challenging the current status quo of how the companies
working on this business are organized and are interacting with each other. Improving
collaboration and communication to share the end goal and the related risks between
rolling stock integrator and subsystems suppliers is becoming a must to remain
competitive.

The extended enterprise approach answers to that need, but it requires some
enablers, while MBSE can definitively be the one for the functional content of the
product.

Unfortunately, the only available and widely adopted standards in the MBSE
domain are the generic system modelling language SysML giving basic elements and
diagrams to depict system structure and behaviour plus some generic modelling
methodologies which remain quite abstract. No common industrial standard on mod-
elling methodology for the railway industrial sector has been developed yet.

In some other engineering domains like software, there are coding standards like
MISRA which give a guideline how to apply the language, or in other industrial sectors
like automotive, standards like AUTOSAR (Automotive Open System Architecture)
[1] have established an open and standardized software architecture for automotive
electronic control units (ECUs), permitting the scalability to different vehicle and
platform variants, transferability of software, the consideration of availability and
safety requirements, as well as collaboration between various partners and maintain-
ability throughout the whole “Product Life Cycle”.

The lack of such standards requires companies that want to implement an MBSE
approach (like Bombardier and Knorr-Bremse) to develop by their own specific profiles
of the SysML language and related modelling methodologies. As major consequences
it’s very difficult on one hand to interlink models across companies, especially when
different tool environments are used, and on the other hand to extend the usage on the
functional models linking down to behavioural simulation environments like Modelica.

The case study presented in this paper is an exceptional lucky case where the lack
of those standards hasn’t been impeding Bombardier and Knorr-Bremse to explore the
feasibility of implementing a real MBSE based extended enterprise approach and to
appreciate all the possible benefits of it. Both the companies strongly believe in MBSE
and in the potentialities to enable a strong extended enterprise approach, and wish that
an open modelling methodology standard will be developed providing a common
MBSE framework across the railway industry.

How to Boost the Extended Enterprise Approach in Engineering 95

References

1. AUTOSAR: Standards. https://www.autosar.org/standards. Accessed 10 July 2018
2. Delligatti, L.: SysML Distilled. Addison-Wesley, Upper Saddle River (2015)
3. Duffy, J., Tod, M.: The Extended Enterprise: Eliminating the Barriers. IDC
4. Friedenthal, S, Moore, A., Steiner, R.: A Practical Guide to SysML, 3rd edn. Morgan

Kaufmann (2014)
5. Grady, J.O.: Universal architecture description framework. Syst. Eng. 12(2) (2009)
6. International Council on Systems Engineering (INCOSE): Systems Engineering Vision

2020, version 2.03. INCOSE-TP-2004-004-02, Seattle (2007)
7. International Council on Systems Engineering (INCOSE): Systems Engineering Handbook,

version 3.2.2. INCOSE-TP-2003-002-03.2. San Diego (2012)
8. International Organization for Standardization (ISO): Software and systems engineering –

Reference model for product line engineering and management. ISO/IEC 26550 (2013)
9. Kang, K.C., et al.: Feature-Oriented Domain Analysis (FODA) Feasibility Study. Carnegie

Mellon University, Technical report CMU/SEI-90-TR-2
10. Krob, D.: Eléments d’architecture des systèmes complexes. In: Gestion de la complexité et

de l’information dans les grands systèmes critiques, Alain Appriou editor, CNRS (2009)
11. Object Management Group: OMG Systems Modeling Language (SysML), version 1.3,

https://www.omg.org/spec/SysML/1.3. Accessed 10 July 2018
12. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering. Springer,

Berlin (2005)
13. Pohl, K., Hönninger, H., Achatz, R., Broy, M. (eds.): Model-Based Engineering of

Embedded Systems. The SPES 2020 Methodology. Springer, Berlin (2012)
14. Rajan, A., Wahl, T. (eds.): CESAR - Cost-efficient Methods and Processes for Safety-

relevant Embedded Systems. Springer, Berlin (2013)
15. Ratiu, D., Schwitzer, W., Thyssen, J.: A System of Abstraction Layers for the Seamless

Development of Embedded Software Systems. SPES 2020 Deliverable D1.2.A-2. Technis-
che Universität München (2009)

16. Van Gaasbeek, J.R.: Model-Based System Engineering (MBSE), presented in the
INCOSE L.A. Mini-Conference. INCOSE (2010)

17. Weilkiens, T.: Systems Engineering mit SysML/UML, 2nd edn. dpunkt.verlag (2008)
18. Wymore, A.W.: Model-Based Systems Engineering. CRC Press, Boca Raton (1993)

96 M. Ferrogalini et al.

https://www.autosar.org/standards
https://www.omg.org/spec/SysML/1.3

Model-Based System Reconfiguration:
A Descriptive Study of Current Industrial

Challenges

Lara Qasim1,2(&), Marija Jankovic2, Sorin Olaru3,
and Jean-Luc Garnier1

1 Thales Technical Directorate, 1 avenue Augustin Fresnel,
91767 Palaiseau Cedex, France

{lara.qasim,jean-luc.garnier}@thalesgroup.com
2 Laboratoire Génie Industriel, CentraleSupelec,
3 rue Joliot Curie, 91190 Gif-sur-yvette, France

lara.qasim@centralesupelec.fr, marija.jankovic@ecp.fr
3 Laboratoire de Signaux et Systemes, CentraleSupelec,

3 rue Joliot Curie, 91190 Gif-sur-yvette, France
sorin.olaru@centralesupelec.fr

Abstract. System Reconfiguration is essential in management of complex
systems because it allows companies better flexibility and adaptability. System
evolutions have to be managed in order to ensure system effectivity and effi-
ciency through its whole lifecycle, in particular when it comes to complex
systems that have decades of development and up to hundreds of years of usage.
System Reconfiguration can be considered and deployed in different lifecycle
phases. Two significant phases are considered for configuration management
and System Reconfiguration: design-time – allowing system performances by
modifying the architecture in early stages – and run-time – allowing optimiza-
tion of performances during the in-service operations. This paper gives an
overview of a field research currently ongoing to capture the strengths and the
shortages in the current industrial landscape. It also discusses possible future
management strategies with regard to identified issues and challenges.

1 Introduction

In today’s competitive market, companies are concerned with developing systems
effectively while reducing cost and time overruns. The primary objective of Systems
Engineering is to develop systems that are operational regarding defined contexts and
environments. Systems Engineering sustains complex systems activities with the aim to
satisfy internal and external stakeholders requirements [1, 2]. Configuration manage-
ment, technical management and life cycle model management are formalized as a set
of processes during design-time and run-time for management of systems through their
lifecycles [1–3].

“System configuration” is defined in Systems Engineering as a set of elements that
compose a system in terms of hardware devices, software, interfaces, human profiles
and processes [2]. System configuration is one of the important aspects addressed by

© Springer Nature Switzerland AG 2019
E. Bonjour et al. (Eds.): CSD&M 2018, Complex Systems Design & Management, pp. 97–108, 2019.
https://doi.org/10.1007/978-3-030-04209-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-04209-7_8

the system management. The objective of system configuration management is to
ensure effective management of an evolving system during its lifecycle [2]. System
configuration can be characterized with regards to economic, environmental, legal,
operational, behavioral, structural, and social aspects that are necessary to demonstrate
a capability. As a counterpart, “System Reconfiguration” is defined in this paper by
subsequent changes of the system configurations with the objective of maintaining or
improving the capabilities provided by the system. System Reconfiguration is in par-
ticular necessary in two major system life-cycle phases: development (or “design-
time”) and in-service phase (or “run-time”).

At design-time, one can identify several reasons for configuration changes. Systems
may evolve to improve the performance by taking into account information coming
from operational data. Changes are introduced to system configurations in order to
correct errors and mismatches during the development, testing and deployment of the
system. Stakeholders’ requirements for system evolution may also drive to changes.

At run-time, the objective is to optimize system performances according to the
context or the mission. Configuration optimization in terms of capabilities and available
resources is needed to cope with environment or mission evolutions. In case of star-
vation of resources, the end-user needs must be dealt with by optimizing the remaining
resources.

This paper aims at presenting current challenges that are related to system con-
figuration based on industry research. Section 2 gives the state of the art of the domains
related to System Reconfiguration. Section 3 describes the methodology used in this
research. Section 4 presents the industrial challenges and the issues. Section 5 analyzes
and discusses the industrial observation and also gives an insight into future works.
Finally, Sect. 6 draws conclusions.

2 State of the Art

To keep the system functioning correctly, companies need to manage evolutions of
system configurations. System Reconfiguration has been treated in several research
domains with different levels of maturity. The concept of system configuration has
been initially developed in the fault detection, isolation, and reconfiguration related
studies. Reconfiguration in fault tolerant control (FTC) is mainly addressing the dys-
function of interconnected dynamic systems that are more or less complex (see
Sect. 2.1 addressing both considerations). These two considerations shall be addressed
in Systems Engineering and during configuration management at run-time (see
Sect. 2.2). Configuration management at design-time can be yielding from different
development activities with consideration of system configuration and evolution in the
case of change management and propagation (see Sect. 2.3).

2.1 Fault Detection, Isolation and Reconfiguration

In operations, it is important to supervise and control component or sub-system
operations, for example via a feedback loop, to maintain the system desired behavior.
Once a fault in one component has been identified within a supervision activity, the

98 L. Qasim et al.

control activities must react by reconfiguring the system to cope with these abnormal
behaviors. Literature is addressing these concerns as fault detection, isolation, and
reconfiguration or FTC. The primary purpose of FTC functionalities is to overcome the
malfunctions while maintaining desirable stability and performance properties [4, 5].

Passive and active FTC functionalities exist, depending on their management of
detected faults. Passive FTC functionalities sustain robust control activities that handle
faults within a predefined quality of service. On the other hand, active FTC func-
tionalities allow reaction to a detected fault and perform reconfiguration so that the
stability and the performances can be maintained [6]. In active FTC functionalities, the
fact that the control activities are reconfigurable means that one can adaptively address
non-predefined faults.

A typical active FTC functionality relies on two fundamental mechanisms: fault
detection and isolation (FDI) sometimes referred to as “fault diagnosis” [7], and
reconfiguration control mechanisms (RC) [4]. The reconfiguration control aims at
masking the fault either by switching to a redundant system/component or by revising
the controller structure. In some cases, the available resources do not allow counter-
acting fault effects. In such cases, the best solution is to allow system degradation when
the performance is accepted to be out of the optimal area [5].

There are different techniques used in fault detection and isolation. They are
classified into model-based and data-based techniques [4]. Model-based techniques use
system models to estimate the system states and parameters. Data-driven techniques, on
the other hand, rely on classifiers and signal processing [4]. In this paper, the interest
lies in changes and deviations in the system state addressed by model-based techniques
while data-driven techniques fall out of interest.

Reiter [8], in his theory of diagnosis, proposes a method that requires a model
describing the system. Given observations of a system, diagnosis compares the observed
system with the expected behavior (modelled system) to determine the malfunctioning
components. Reiter’s theory has been extended to deal with the model-based diagnosis
of different kinds of systems in different domains of applications [9, 10]. Identifying
faults in malfunctioning systems is important but repairing these systems so that they
can continue their missions is an essential problem to be addressed. Reiter’s theory of
model-based diagnosis has been extended to a theory of reconfiguration [11]. Much
research has been conducted to use the model-based analysis concepts in the recon-
figuration control design and analysis algorithms [12–15].

2.2 Configuration Management and System Adaptability

Adaptability can be understood by the fact that systems have to face continuously
evolving situations and must be able to reconfigure their structure or their behavior to
maximize their ability to accomplish required functions [16].

Moreover, research efforts have been conducted to design flexible and agile sys-
tems supported by a reconfiguration agent. Boardman and Sauser [17] define agility as
the ability of the system to quickly detect and destroy unintended behaviors. In Systems
Engineering, flexibility means the ability of the system to respond effectively and
efficiently to potential internal or external changes [18]. AlSafi [19] proposes an
approach based on reconfiguration software agents that allows manufacturing systems

Model-Based System Reconfiguration: A Descriptive Study 99

to adapt to changes in the manufacturing requirements and the environment by gen-
erating an alternative of a new feasible configuration. An approach of designing
reconfigurable systems using a multi-agent system is described in [20]. A model-based
oriented approach that supports the adaptation processes based on a run-time trans-
formation of the system architecture is proposed in [21].

2.3 Change Prediction and Propagation in the Conceptual Design
and Basic Engineering Phase

Most design activities can be considered as modifications of previous designs. New
product or system development is then an incremental process involving modifications
(changes) to existing designs where innovation and ideas are only used in some parts of
the products while other parts remain relatively unchanged [22]. Literature underlines
several strategies addressing system configuration and reconfiguration at design time
including system modularity, reusability (Components of the shelf - COTS), system
platform design and change management.

As products or systems are often based on past designs rather than designing from
scratch, change management and change propagation are very important to manage the
development of complex systems. Giffin [23] defines change propagation as the process
where a change to one part of an existing system configuration can lead to changes that
are not always wished.

To manage the risk of changes early in the design process, there is a need to assess
which systems are most likely to be affected by a change, and what the impact of such a
change would be. Clarkson [24] proposes a change prediction method to calculate the
risk of direct and indirect change propagation. In [25], an efficient engineering change
management (ECM) is presented as a key enabler for the agile product development of
physical products.

After analysis of the academic state of the art, no research has currently been found
on integrated approach aiming at describing reconfiguration process and actions for
both design-time and run-time; even if such an approach should provide a global
strategy to enhance flexibility, efficiency, reusability, modularity, and configurability.

3 Methodology

The research presented in this paper is action-based research [26]. This means that at
least one of the researchers is also an engineer in Industry. This paper is addressing the
first stages of this research. The research methodology (Fig. 1) is based on the
exploration of current literature through the examination of papers supported by data
collection. According to Blessing and Chakrabarti [27], observation and data gathering
are essential to analyze and understand the industrial context and to propose a
descriptive study that covers both empirical studies and their analysis to form new
hypotheses.

In the first phase of this action-based research, the aim is identifying the current
challenges in management of system configurations and overall System Reconfigura-
tion process with regard to existing literature, including norms and standards. This

100 L. Qasim et al.

research is based on triangulation of the data: interviews, direct observations and
company reference documents. To understand where challenges, limitations, and
opportunities lie, interviewing can be used to support engineering design research [28].
To ensure objectivity, the interview has been designed according to a structured list of
questions. Objective of the interviews is to find out the definitions related to system
management (including system configuration and System Reconfiguration), in terms of
artefacts and processes that govern system or product life cycle activities, like Systems
Engineering, manufacturing and in-service operations. Moreover, questions about the
different methods and tools used in the configuration management and System
Reconfiguration processes have been included in our survey.

For the interviews, 17 Thales experts have been identified with different levels of
involvement in system management. Since Thales deals with different types of systems
in various operational contexts, the identified persons are classified into two categories:
people working in transversal activities and subject matter experts. Currently, inter-
viewed persons belong to the first category. The results of these interviews are pre-
sented in Sect. 4.

4 Analysis of Current Industrial Challenges

The objective of this research is to propose integrated model-based support for
instantiation of system configurations and System Reconfiguration addressing both
design-time and run-time. In this context, a field study is conducted to identify existing
data, process, issues and challenges in order to better understand the type of needed
support.

With a systemic approach, System Reconfiguration is considered as a mean to
improve the system performance and quality of service. An essential benefit of System
Reconfiguration is to reduce the redundancy that comes along with different problems
like increased cost, space limitations, weight, and high energy consumption. To allow
system management, including instantiation of system configurations and reconfigu-
ration, interviewed experts highlight the importance of concurrent element manage-
ment, i.e., resources, functions, (Fig. 2) in different lifecycle phases of safety and
security-critical systems. Reconfiguration allows improving systems in terms of per-
formance and effectiveness to ensure an increased availability and a continuity of
service.

Fig. 1. Research methodology

Model-Based System Reconfiguration: A Descriptive Study 101

Experts interviewed during this research have emphasized the need to support
systems evolution during each lifecycle phase. According to them, “Reconfiguration is
an everyday question.” For instance, during dismantling one should think of recon-
figuration because dismantling a service or a product might have an impact on the
overall services provided by the system. However, as for the perimeter considered in
the enterprise, 2 phases of systems lifecycle seem to be critical: design and operations
(Fig. 3).

At design-time, a system has to be studied in terms of functions permitting to
accomplish specific operational capabilities. Reconfiguration at design-time means
optimizing the implemented resources to achieve capabilities demanded by the
stakeholders. At deployment, before starting the mission, instantiation of a configu-
ration aims at ensuring that the total resources provide the functions needed to
accomplish the mission.

At run-time, the functions and resources essential for the mission are monitored as
the reconfiguration process relies mainly on the awareness of the system state con-
cerning the health of available resources with regards to the functional modes to be
guaranteed. When a function becomes unavailable because of a faulty resource,
reconfiguration may pick up the capability from other available resources (P1 to P2 in
the example of Fig. 4). If the function is no more accessible, then reconfiguration aims
at steering the system into a degraded mode (P3 to P4 in the example of Fig. 4).

Fig. 2. Optimization of the concurrent elements (resources, functions)

Fig. 3. Reconfiguration in different lifecycle stages

102 L. Qasim et al.

Configuration management and System Reconfiguration are needed at both design-
time and run-time. These processes rely on different data and models to be collected,
reused, generated and managed during the whole relevant system or product life cycle,
according to formal and unformal contracts committed with stakeholders. Some
challenges pertaining to configuration management and reconfiguration have been
identified: challenges related to data, modeling issues, contracting and certification,
system and context taxonomy. The following sub-sections discuss these issues.

4.1 Data Related Challenges

The instantiation of configurations and reconfiguration processes rely fundamentally on
data. Data need to be collected and verified from day zero up to the retirement. Indeed,
these data can originate from different phases of system or product lifecycle and can
have different structure and management systems. This sub-section discusses the issues
related to these data.

(a) Data availability and accessibility

Data availability and accessibility can be a real issue at the technical or operational
levels. For instance, in some applications, data collection cannot be possible due to
harsh working environments; for example, fuel rod temperature measurement within a
nuclear reactor in operation. In other cases, measured data cannot be transmitted
directly; therefore communication technologies are needed to give access to these data.
However, when communicating data, one should take into account all the measures to
secure these data. When dealing with operational data, privacy, integrity and confi-
dentiality become a real issue. Consequently, secured data processing for strategic and
tactical applications (e.g. military systems) may become an essential requirement.

(b) Data shared across stakeholders

Different stakeholders are involved in complex systems, such as system designers,
developers, customers and end-users. In addition to that, a specific team can be
responsible for the system at each of the system lifecycle stages. Therefore, it could be
difficult to collect data shared between the different stakeholders because of complex
organizational interfaces and intellectual property.

Fig. 4. Reconfiguration during operation to optimize the resources

Model-Based System Reconfiguration: A Descriptive Study 103

(c) Data storage

The quantity of data needed for instantiation of configurations and reconfiguration
can be considerably depending on data saving strategy. In that case, data storage for
instantiation of configurations and reconfiguration is also being considered as a critical
issue. To avoid storing data continuously, front-end pre-processing can be implemented
as a way to lessen data storage. In this case, pre-processing typically relies on detection
of thresholds and hence the problem of threshold definition can arise.

(d) Uncertainty and data verification

Data necessary in the instantiation of configurations and reconfiguration process
can have different sources. In particular, system monitoring data are collected from
sensors installed either as external interface of the system or in embedded components.
External observation of the system; from operators or maintenance teams, is also
considered a source of data. Indeed, the uncertainty about the collected data is variable.
Data verification is necessary to address this uncertainty. However, data verification is
not evident because it is linked at least to the level of knowledge and completeness of
the data.

(e) Data combination

Instantiation of configurations and reconfiguration rely on a priori and a posteriori
data. These data need to be combined to allow instantiation of configurations and
reconfiguration at both design-time and run-time. These data can be of different nature
and are collected in one phase and later used in other phase of the life cycle. For
example, during design-time, data from past systems can be used to modify the system
design. At run-time, data from maintenance or the current operational situation can lead
to system reorganization. Data combination is not trivial and requires in-depth data
analysis to consider the degrees of uncertainty.

4.2 Modeling Issues

Different types of models can be used for the instantiation of configurations and
reconfiguration. Depending on the system and its context, models can be continuous or
discrete. Systems are built of constituent sub-systems leading to nested modeling. In
instantiation of configurations and reconfiguration, different kinds of systems are
involved: the system of interest (the system fulfilling the operational mission); but also
enabling systems for development, manufacturing, maintenance, health monitoring,
supervision and control. In order to achieve instantiation of configurations and
reconfiguration, multi-level modeling is needed to combine and conjointly manage
these levels. In addition to that, data to be modeled can be of different nature: internal
(technical), external (environmental and operational). There is a difficulty in modeling
these data. The modeling and analysis techniques need to be adapted to address dif-
ferent types of data.

104 L. Qasim et al.

4.3 Contracting and Certification

In the industry, developers and solution providers are usually concerned with con-
tracting and certification. Contracts include information about usage profiles, config-
uration alternatives, operational contexts, quality of service, reliability, availability,
safety, security, etc. The contracted configurations are tested, validated and certified in
advance. However, when considering dynamic operation, new alternatives can be
instantiated during operations; therefore they are not initially approved. The efforts
needed to cope with this situation are not negligible because of lack of metrics required
for the certification process. This activity may last for a long time leading to penalties
due to a schedule overrun. Consequently, challenges related to certifying, assessing and
selecting the newly emerging configurations have to be taken into account.

4.4 System and Context Taxonomy

The Thales Group develops a very large set of system and product types. Most of the
time, these systems and products do not stand alone and are integrated into different
operational contexts (e.g., platforms or infrastructures) and larger systems (or systems
of systems). Consequently, the concerns related to these systems are extremely dif-
ferent. For example, reconfiguring a closed system (an assembly or a platform) is
needed to propose new configurations while integrating new technologies. When
considering distributed System Reconfiguration, there is a need to address the problem
of connectivity between the system elements. Moreover, in a system of systems (SoS),
constituent systems are mostly independent and this can lead to emerging effects. In
addition to that, the interfaces between these constituent systems of a SoS may evolve.
Consequently, the System Reconfiguration of SoS must be considered as an agile
capability. The methods and mechanisms for System Reconfiguration might be slightly
different according to the system types. Indeed, this variation leads to complexity when
trying to build the support framework progressively with the aim of overall general-
ization across systems and industry. A holistic method for System Reconfiguration is
an essential challenge because it must be as abstract as possible to adapt to system and
context taxonomies.

5 Discussion and Future Work

This research seeks to build on previous work and aims at proposing an integrated
approach for model-based instantiation of system configuration and reconfiguration
addressing both design-time and run-time. In particular, the approach aims at using
models for representing system configuration and health monitoring system to harness
complexity. A system management framework will be studied in order to propose a
configuration manager (Fig. 5) including an engine and a knowledge base. This
knowledge base will contain models representing the system configurations and
reconfiguration rules. The configuration engine will be in charge of applying relevant
configurations.

Model-Based System Reconfiguration: A Descriptive Study 105

As foreseen, instantiation of configurations and reconfiguration problems are at the
intersection of different domains. Indeed, the knowledge base needs to include models
related to technical, contractual and operational domains. When events occur, the
engine part of the configuration manager generates reconfiguration actions. This pro-
cess is possible by referring to policies included in the knowledge base as models.

Future work should concentrate on identifying models and data to be included in
the knowledge base. Models and data can be clustered in two main categories:
(1) models and data allowing reconfiguration (giving the system configurations with
states and modes), (2) models and data for performance of reconfiguration (including
rules and conditions).

This research seeks to address action models representing the mechanisms of
reconfiguration in both phases: design and operation. Methods from complexity science
sound promising to address reconfiguration in the design phase. Change prediction
method can be used to predict how changes propagate in the system linkage model
(Design structure matrix DSM) while addressing the risks related to propagation to
allow evaluation of possible alternatives and redesign. The Model Predictive Control
(MPC) can be used to address the on-line (run-time) optimization of systems. This
method relies on enriching values for process input (feedback from operation), and the
control action is determined as a result of the online optimization problem. Future work
should focus on demonstrating the utility and underlying limitations of such methods.
With regard to the challenges identified in Sect. 4, the application of the proposed
approach within industry requires careful consideration.

A better understanding of the reconfiguration process and the characteristics of
related data and mechanisms are necessary to improve the proposed approach.

In next steps of the research, interviews will be completed with case studies in order
to capture the specifics related to system and context taxonomy. Attention is required to
identify the mechanisms of reconfiguration for both design-time and run-time. This
allows addressing life cycle processes in an overall manner with the goal of general-
ization across systems and Industry.

6 Conclusion

System configuration and System Reconfiguration are essential as they support system
evolutions to ensure affectivity and efficiency of systems through their life cycles. This
paper identifies current industrial challenges related to system configuration and Sys-
tem Reconfiguration at design-time (development) and run-time (in-service phase).
This paper discusses identified challenges – with regard to the literature review and

Fig. 5. Configuration manager implementation

106 L. Qasim et al.

interviews of experts – and gives initial proposals to address the reconfiguration
problem. Some difficulties such as modeling issues and system taxonomy have been
identified. An initial reflection on configuration manager is presented. Future work
addressing change prediction (CPM) and model predictive control (MPC) methods
have been discussed allowing for definition of further actions.

References

1. ISO/IEC/IEEE/15288: Systems and software engineering–system life cycle processes (2015)
2. INCOSE: Systems engineering handbook: a guide for system life cycle processes and

activities. In: Walden, D.D., Roedler, G.J., Forsberg, K., Hamelin, R.D., Shortell, T.M.,
(eds.) International Council on Systems Engineering, 4th edn. Wiley, San Diego (2015)

3. NASA: NASA Systems Engineering Handbook, vol. 6105 (2007)
4. Zhang, Y., Jiang, J.: Bibliographical review on reconfigurable fault-tolerant control systems.

Annu. Rev. Control 32(2), 229–252 (2008)
5. Stoican, F., Olaru, S.: Set-Theoretic Fault Detection and Control Design for Multisensor

Systems (2013)
6. Eterno, J., Weiss, J., Looze, D., Willsky, A.: Design issues for fault tolerant-restructurable

aircraft control. In: 24th IEEE Conference on Decision and Control, pp. 900–905 (1985)
7. Isermann, R.: Supervision, fault-detection and fault-diagnosis methods–an introduction.

Control Eng. Pract. 5(5), 639–652 (1997)
8. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)
9. Kuntz, F., Gaudan, S., Sannino, C., Laurent, É., Griffault, A., Point, G.: Model-based

diagnosis for avionics systems using minimal cuts. In: Sachenbacher, M., Dressler, O.,
Hofbaur, M., (eds.) DX 2011, Oct 2011, pp. 138–145. Murnau, Germany (2011)

10. Ng, H.T.: Model-based, multiple fault diagnosis of time-varying, continuous physical
devices. In: Proceedings 6th Conference on A. I. Applications, pp. 9–15 (1990)

11. Crow, J., Rushby, J.: Model-based reconfiguration: toward an integration with diagnosis. In:
Proceedings of AAAI 1991, pp. 836–841 (1991)

12. Provan, G., Chen, Y.-L.: Model-based diagnosis and control reconfiguration for discrete
event systems: an integrated approach. In: Proceedings of the 38th IEEE Conference on
Decision and Control, vol. 2, pp. 1762–1768 (1999)

13. Russell, K.J., Broadwater, R.P.: Model-based automated reconfiguration for fault isolation
and restoration. In: IEEE PES Innovative Smart Grid Technologies (ISGT), pp. 1–4 (2012)

14. Cui, Y., Shi, J., Wang, Z.: Backward reconfiguration management for modular avionic
reconfigurable systems. IEEE Syst. J. 12(1), 137–148 (2018)

15. Shan, S., Hou, Z.: Neural network NARMAX model based unmanned aircraft control
surface reconfiguration. In: 9th International Symposium on Computational Intelligence and
Design (ISCID), vol. 2, pp. 154–157 (2016)

16. Ludwig, M., Farcet, N.: Evaluating enterprise architectures through executable models. In:
Proceedings of the 15th International Command and Control Research and Technology
Symposium (2010)

17. Boardman, J., Sauser, B.: System of systems–the meaning of of. In: 2006 IEEE/SMC
International Conference on System of Systems Engineering, pp. 118–123 (2006)

18. Nilchiani, R., Hastings, D.E.: Measuring the value of flexibility in space systems: a six-
element framework. Syst. Eng. 10(1), 26–44 (2007)

19. Alsafi, Y., Vyatkin, V.: Ontology-based reconfiguration agent for intelligent mechatronic
systems in flexible manufacturing. Robot. Comput. Integr. Manuf. 26(4), 381–391 (2010)

Model-Based System Reconfiguration: A Descriptive Study 107

20. Regulin, D., Schutz, D., Aicher, T., Vogel-Heuser, B.: Model based design of knowledge
bases in multi agent systems for enabling automatic reconfiguration capabilities of material
flow modules. In: IEEE International Conference on Automation Science and Engineering,
pp. 133–140 (2016)

21. Rodriguez, I.B., Drira, K., Chassot, C., Jmaiel, M.: A model-based multi-level architectural
reconfiguration applied to adaptability management in context-aware cooperative commu-
nication support systems. In: 2009 Joint Working IEEE/IFIP Conference on Software
Architecture and European Conference on Software Architecture, WICSA/ECSA, pp. 353–
356 (2009)

22. Otto, K., Wood, K.L.: Product design: techniques in reverse engineering and new product
development, September 2014 (2001)

23. Giffin, M., de Weck, O.L., Bounova, G., Keller, R., Eckert, C., Clarkson, P.J.: Change
propagation analysis in complex technical systems. ASME J. Mech. Des. 131, 1–14 (2009)

24. Clarkson, P.J., Simons, C., Eckert, C.: Predicting change propagation in complex design.
J. Mech. Des. 126(5), 788 (2004)

25. Schuh, G., Riesener, M., Breunig, S.: Design for changeability: incorporating change
propagation analysis in modular product platform design. Procedia CIRP 61, 63–68 (2017)

26. Ottosson, S.: Participation action research. Technovation 23(2), 87–94 (2003)
27. Blessing, L.T.M., Chakrabarti, A.: DRM, a Design Research Methodology, vol. 1 (2009)
28. Summers, J.D., Eckert, C.M.: Design research methods: interviewing. In: Workshop in

ASME Conference 2013, Portland, Oregan, USA (2013)

108 L. Qasim et al.

A Domain Model-Centric Approach
for the Development of Large-Scale Office

Lighting Systems

Richard Doornbos1(&), Bas Huijbrechts1, Jack Sleuters1,
Jacques Verriet1, Kristina Ševo2, and Mark Verberkt2

1 Embedded Systems Innovation (ESI), TNO, Eindhoven, The Netherlands
richard.doornbos@tno.nl

2 Professional Lighting Systems, Signify (Formerly Philips Lighting),
Eindhoven, The Netherlands

Abstract. The high-tech system industry faces many challenges, such as
continuously increasing system complexity, scale and customer demands. We
address these challenges using a domain model-centric approach. This approach
focuses on clear and formal system specifications, connected to a chain of
automatic transformations for system analysis, including virtual prototyping,
and system synthesis, e.g. code generation. We have applied the approach to the
development of large-scale office lighting systems in order to reduce develop-
ment effort and handle the complexity of system control.

1 Introduction

The development of high-tech systems is challenged by the ever-increasing complexity,
signified by various trends such as the integration of IT, mobile and embedded systems
into smart cyber-physical systems. The scale of systems increases tremendously. It is
not exceptional for a high-tech system to have hundreds or thousands of processing
units, more than 100 million lines of code, and requiring many design documents.
A second major trend is the increasing speed of development, required by rapidly
changing business models and increasing customization demands. The industry is
trying to cope with these trends by adopting continuous engineering, and model-based
engineering approaches.

In system development exchanging knowledge and information is crucial. Mainly
written documents are used to convey in-depth technical information; these are static,
and often in practice incomplete and out-of-date. Especially for the specification of
dynamic behavior, textual documents are often vague and ambiguous [1]. A typical
source of confusion is the description of the required system behavior (in the problem
domain) using knowledge and terminology from the solution domain. Next to that, in
our experience often only happy flow behavior is described.

An important assumption in developing systems is that requirements and early speci-
fications correctly describe what is needed. However, there are two complications in
industrial practice: uncertainty what the specifications actually should be, and secondly,
there is ambiguity due to lackofformality in the specifications [2].Therefore, the correctness

© Springer Nature Switzerland AG 2019
E. Bonjour et al. (Eds.): CSD&M 2018, Complex Systems Design & Management, pp. 109–120, 2019.
https://doi.org/10.1007/978-3-030-04209-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-04209-7_9

of the specifications is very difficult to assess. Only in the later stages of development,
system elements will be implemented and can be checked and tested. However, in practice
system-level testing is often immature, and very limited due to time pressure.

In general, errors are introduced during the manual steps from specification to coding
and configuring high-tech systems, impacting the quality of the product. Especially in
testing software, finding errors (and their solutions) may prove time consuming [3].

From a business point of view these delays in development lead to an increase in
time to market for products, which is a definite adverse effect. The perceived quality of
products will strongly be influenced by the occurrence of failures in the field, which are
the result of missed faults in development, installation or commissioning phases. In
many cases, repair, reconfiguration, or even recall of products in the field has proven to
be extremely expensive [3]. Obviously, the resulting low overall development effi-
ciency will lead to a high development cost of the product.

2 Domain Model-Centric Approach

Given the mentioned issues and challenges, we aim at devising an approach to improve
the development process in a fundamental way. The two main goals are: (1) reduce
development effort and (2) handle complexity of control.

The aim is to reduce the effort for the full lifecycle: specification, development,
validation, installation, commissioning, upgrade, etc. A specific goal is to replace the
costly on-site testing of a physical system by off-site analysis of virtual prototypes.

Our focus is on the improvement of the specification process and the subsequent
processes during development. This leads to several benefits, such as easy validation and
verification of specifications and proposed solutions, and alignment and harmonization of
operations along the development path (e.g. handovers between development phases).

Fig. 1. High-level diagram of the domain model-centric approach. DSLs form the central
domain model for system specification and information.

110 R. Doornbos et al.

The basic idea behind the domain model-centric approach is the use of a set of
languages (capturing the stakeholders’ terminology) that allow specifying system
information. In essence these languages and the specifications expressed in these
languages replace the documents that currently capture the knowledge of experts and
system information, as depicted on the left side of Fig. 1.

2.1 Domain-Specific Languages for System Specification

Domain-specific languages (DSLs) are a well-known way to define and separate system
concerns [4–6]. The approach aims at a precise, fully declarative system specification;
this requires a collection of DSLs, each of which describes one aspect of a system.
These DSLs will provide for each stakeholder a natural and comprehensible way to
describe the concerns, requirements and constraints with respect to the system. For
instance, an office lighting system’s topology structure of physical devices is described
independently of the system’s behavior.

In defining a DSL it is crucial to restrict oneself to the essentials, thus keeping the
language concise. This makes very clear what is allowed and what not, therefore a lot
of discussions are avoided. Also, the relations between DSLs have to be defined to
enable cooperation and handover of work artefacts. This is usually done by defining
automatic transformations, in which the semantics become explicit.

Next to DSLs specifying the system, the approach requires DSLs specifying the
system’s environment. These DSLs describe the interaction of a system with its users
and other environmental interactions. For instance, for lighting systems, these DSLs
describe how sensors are being triggered by the building’s inhabitants and the natural
light coming through windows. To allow tests of realistic system behavior, the envi-
ronment is described in terms of usage profiles that are calibrated by data collected in
existing buildings.

Having a formal specification enables powerful and advanced features:

• Automatic and aspect-specific checking of specifications. This is typically built into
the language editor used to create a specification. Given the DSL and the checking
rules, this language editor is usually automatically generated by the tooling.

• Automatic transformations to various aspect models and targets, see Fig. 1. Two
main outlets exist: analysis and synthesis. For analysis purposes a variety of checks,
simulator files, etc. can be generated. For synthesis purposes, the same (analyzed)
system information can be used to generate code, configurations, tests, etc.

2.2 Aspect Analysis and Virtual Prototyping

In virtual prototyping a system model is created that exhibits all relevant features of a
real prototype, except its physical presence. It is a computational model that allows
exploitation of the flexibility of models: one can investigate performance, functional
behavior, and other system characteristics with changing scale, different components,
settings, and features by simply changing the DSL-based system specifications.

A Domain Model-Centric Approach for the Development 111

A specification of a system and its environment allows a system’s behavior and
performance to be analyzed by transforming the specification into a simulation model.
Two kinds of simulation can be considered: closed simulations that fully capture the
system’s environment to analyze certain cases (e.g. for testing specific scenarios) and
interactive simulations that allow for more explorative analysis (e.g. a user may trigger
the system and observe its response). A visualization of the simulation state has proved
to be very helpful to understand system behavior, especially for the interactive simu-
lation case. Clearly, it is also very beneficial in the communication to stakeholders,
especially to customers.

Next to simulation, system specifications can also be used in model checking.
Where simulation allows a single scenario to be analyzed, model checking offers
exhaustive analysis of all possible scenarios. Summarizing, simulation and model-
checking can be used to guarantee desired system behavior or to identify unlikely
failure scenarios already early in the system development (which saves costs).

2.3 System Configuration and Code Generation

To create an implementation, the (validated) system specification can be used in the
transformations to generate code, configurations, test scenarios, etc. In these transfor-
mations usually a template implementation is adapted at certain variation points. In
these variation points the specification information is inserted.

2.4 Industrial Application

It is important to know when to apply such a domain model-centric approach [7]. We
have identified a few criteria that will help to decide. (1) DSLs can best be applied in
the domains where knowledge is stable and mature. Continuously changing domain
knowledge leads to continuously updating DSLs and transformations, which typically
involves a large effort. (2) There should be a reasonable amount of reuse, over com-
ponents, variants, system configurations, deployment environments, or products.
(3) Having not too many variants (e.g. system component types, device types, control
rules) is helpful; commonality increases the value of the approach. With these generic
criteria the approach seems to be applicable to many industries: telecom, transportation,
logistics, lighting, energy, and more.

The following list of concrete steps summarizes the approach:

1. Identification of specification needs: (a) Identify the goals and intentions in the
development organization (e.g. show behavior to clients, check system KPIs).
(b) Create overview of the overall development workflow and its stakeholders.
Identify aspects, aspect interactions, roles, etc.

2. Definition of aspects: (a) Define for each aspect the relevant information and
concepts, and the required transformation targets. (b) Develop for each aspect the
domain languages and transformations.

112 R. Doornbos et al.

3. Analysis: (a) Create specifications using the languages, typically starting with
simple ones and gradually increasing in complexity and size. (b) Validate the
specification of the system statically (performed by the language editor). (c) Create
and validate the transformations. (d) Perform the transformations to the various
analysis targets. (e) Validate system behavior dynamically in various ways: simu-
lation, model checking, model-based testing, etc.

4. Synthesis: When step 3 has proved successful one can safely generate system
configurations or code. (a) Create and validate the transformations. (b) Transform
specifications to the various synthesis targets. (c) Use the generated artefacts in the
final product environment. (d) As a last step usually acceptance tests of the gen-
erated system are performed.

5. Feedback and improvement: Wider introduction in the organization and further
usage of this approach leads to a secondary process of feedback and improvement of
the specification process, languages and transformations. It may become part of
existing improvement activities within the organization.

The introduction of the domain model-centric approach leads to new ways of
working and new functional roles. We separate language creation from language usage,
as there are clearly different capabilities involved. The language creators perform
‘language engineering’ and should be able to isolate domain concepts and capture them
into abstract language elements. The experts working in the company will be heavily
involved in this process to provide their domain knowledge, and direct the language
and its usage. The users of the languages, mainly the system specifiers, are typically
focusing on one aspect, or one domain.

The transformation experts create the bridge between the abstract specification and
the target, therefore they should be able to span this gap. The users of the transfor-
mation results can be split into system analyzers (e.g. system architects) and system
implementers (e.g. engineers). For the latter, work may change significantly as many
implementation activities become automated.

Of course, the languages, specifications, and transformation code as well as tools,
need to be versioned and maintained [8, 9]. This may require a dedicated role: e.g.
modeling manager.

3 Office Lighting

A smart indoor lighting system (e.g. for an office building) is a prime example of a
complex system as described in the Introduction: it is a large-scale distributed system,
containing thousands of sensor, controller, and actuator components, connected via a
network. The system can have very many configurations, but is comprised of only a
limited number of types of components (see Fig. 2). Typical for modern lighting
systems is the complicating factor of having to cooperate with other systems (HVAC,
network, power, security, building and cloud services), often leading to conflicting
requirements.

To complicate things further, office lighting systems have a lifespan of several
decades. Because market requirements and legislation change over time, lighting

A Domain Model-Centric Approach for the Development 113

systems go through multiple development cycles consisting of system design, instal-
lation, commissioning (i.e. software configuration), and operational use (see Fig. 2).
Installation involves the set-up of a lighting system’s physical components in its
environment (e.g. an office building) which is a very costly phase in the lifecycle.
Commissioning involves the configuring of the system’s software to guarantee the
required system behavior, which currently requires a lot of manual testing. Detecting
and solving errors in this phase is expensive, especially because this is done on-site [3,
10]. In maintenance one has to deal with the complexity of component stocking and
compatibility issues.

The key requirements for an office lighting system are: low response times, high
synchronicity, low energy usage, and high availability. The first three requirements are
typically addressed in the architecting and design phases. To fulfil the availability
requirement, errors that are either made during installation and commissioning or occur
during operational use, should be detected, diagnosed, and repaired as quickly and
effortlessly as possible.

3.1 Office Lighting Systems

The lighting systems we consider in this paper are deployed in large office buildings
(e.g. 2 wings, 15 floors), consisting of up to 10,000 luminaires (light points). These
luminaires each contain a LED group (that acts as one light point), zero or more sensors
(light intensity, presence, etc.) and a controller board. A luminaire uses a wired or
wireless network connection to communicate data or control messages.

The control setup of the lighting system consists of 100’s to 1,000’s of controlled
areas in the building, that interact with each other. The behavior of one area, which
contains multiple luminaires, is usually defined in a number of so-called ‘scenes’ (e.g.
10 different scenes, designated as ‘concentration’, ‘presentation’, ‘relaxation’, etc.).
Each scene has a specified light intensity, color, timing, intra-scene behavior (e.g.
daylight compensation) and scene-to-scene transition behavior for each luminaire. The
control configuration depends on (1) the topology of the building (location of rooms
and corridors, but also windows and doors), (2) the functional assignments of the
rooms and corridors, and (3) specific user wishes. The lighting behavior is determined
by triggers originating from manual switches, presence of users (in the current or
neighboring areas), daylight, and the control schedule system.

The complexity of office lighting control originates from the large number of
luminaires, the physical distribution, the control interactions and the interaction with
other systems.

Fig. 2. Development process in the (office) lighting area.

114 R. Doornbos et al.

The development challenges of office lighting systems can be distinguished for the
various phases of the life cycle. Some typical questions during system development
are: How to specify system behavior in the language of the end user, and how to
translate it towards test cases? How to prove the correctness of the lighting behavior for
a given building before the actual installation in the building? How to determine the
system performance, e.g. energy usage, response times, before installation? Can we
perform design space exploration to optimize system performance, and find the best
system configuration for a specific customer?

For the operational phase there are different challenges: Can we add new features to
the system, when the system is already deployed and operational, and be sure the
addition will not break current behavior? How to easily reconfigure the system to
address changes in its usage or environment?

4 Application in Office Lighting

For office lighting systems, the domain model-centric approach is very beneficial since
there is a vast amount of system configurations, and these systems are built up from a
small set of component types. It is clear that for lighting systems there is a significant
amount of inherent reuse.

In the application of our approach we have focused on the control behavior. We
have addressed four main outlets (see Fig. 3): (1) the static validation of specifications,
(2) the dynamic validation of system behavior, (3) analysis of system performance, and
(4) system configuration and code generation.

We have performed the steps mentioned in Sect. 2.4, and we will focus in the
remainder of this section only on the notable results.

Fig. 3. A set of office lighting specific languages form the central domain knowledge.

A Domain Model-Centric Approach for the Development 115

4.1 Language Modularity

A strong complexity-reducing feature is the modularity in our office lighting languages.
The separation is made along the various aspects identified for these systems, see
Fig. 4.

The Light Behavior DSL describes the lighting behavior of the system, which can
be applied to rooms with any number of luminaires. The behavior is parameterized in
scenes; some examples: ‘concentration’, ‘presentation’, ‘relaxation’. The dynamic
behavior is expressed in terms of a set of lighting-specific state machines with sensor
and actuator groups.

The building in which the lighting system is to be deployed is specified in the
Building DSL. This DSL describes the site, its topology (rooms, corridors, staircases,
etc.) and the locations of lighting equipment (luminaires, buttons); information typi-
cally available in building information models (BIMs) [11].

The Control DSL is a specification that binds the actual building model to the light
behavior specification. It maps the behavior specification onto rooms and corridors.
With this specification it is clear which sensors and actuators are involved in a given
control structure.

As mentioned in Sect. 2.1 the environment specification is needed for the analysis
activities. The Scenario DSL allows the specification of simple usage scenarios; it
describes sensor events occurring in specified sensors at given moments in time. For
more elaborate scenarios, we have defined an Occupancy DSL that describes the user’s
activities, and their mapping on locations in the building. The interaction of the
environment with the system is (obviously via sensors and buttons) therefore specified.
One level of automation was added by the definition of a Usage DSL, which describes
user profiles. The automatic transformation to Occupancy specifications allows to
generate many office user instances, to be deployed in the virtual prototype.

The Requirement DSL describes system-level properties that have to be verified in
the analysis step. This language consists of a generic and an office lighting specific part
[12], allowing the generic part of the language to be reused in other business areas.

The Experiment DSL couples all the mentioned specifications needed for analysis.
It does not describe details about the analysis as such.

State Machine DSL

Building DSL

Control DSLLight Behavior DSL Experiment DSL

Scenario DSL

Requirement DSL

used by

used by

used by

used by

used by

used by

used by

generate

Occupancy DSL

used by

used by
Usage DSL

used by

Fig. 4. The set of languages describing the lighting control domain.

116 R. Doornbos et al.

The State Machine DSL describes the state machines used to express the behavior
of sensors, controllers, actuators, and office users. This generic language is fully
lighting independent, and is a starting point for transformations towards analysis
models, see Fig. 1.

We have used Xtext in combination with Xtend in an Eclipse development envi-
ronment as language technology [13]. This choice is not critical, but in our experience
it is easy to use, has powerful features, and has a large community for development and
support.

4.2 Virtual Prototyping

As mentioned in Sect. 2.2, the system behavior and performance can be analyzed by
transforming the specification into a simulation model. The interactive simulation
allows a user to trigger the system and observe its response in a dedicated visualization,
see Fig. 5.

We implemented the simulation via a Java-based co-simulation framework, which
couples the simulators of sensors, controllers, actuators, and environment. An energy
monitor and the system visualization were also connected. Using this modular
framework, models of actual (or future) buildings and their lighting system can be
created and investigated at full scale. This allows analyzing system aspects such as
KPIs and other performance parameters (e.g. latency), scalability, resource usage,
functional correctness, and feature interaction.

As an example of such architectural investigation, we show the results of our
analysis about the dependency of the energy usage on the hold time parameter (the time
the light in a room stays on after leaving the room). This dependency changes with the
number of persons in the building. For this analysis we used the information of one

Fig. 5. Interactive lighting system visualization showing the floor layout. The inset zooms in on
(orange) light points, (red, green when activated) sensors, and (purple) office users. On the right
energy usage graphs are shown.

A Domain Model-Centric Approach for the Development 117

floor of a real building, containing 367 luminaires and more than 1300 behavioral
functions. In Fig. 6 the curves are shown, created by 20 simulations.

This investigation provides valuable new insights to make trade-offs on acceptable
hold time settings and energy usage. In contrast, performing this type of investigations
with installed systems is simply too time-consuming, too costly, and too late.

Another virtual prototype application is to find behavior anomalies and their causes.
Simulating system behavior is in general not sufficient, especially for systems with
large state spaces. Therefore, we generate input models for a model-checker (in our
case we use Uppaal [14]). This enables us to find unwanted behavior in the large
number of parallel running systems. Fortunately, the scope of the typical behaviors is
limited to a small number of rooms, so we can avoid state space explosions. The
mentioned Requirement DSL is used to express the wanted behaviors. These behav-
ioral properties are transformed into monitor automata that are added to the modelled
system. If a violation of a specified system property is detected by the monitors, a
failure trace will be available to diagnose the violation [12].

4.3 Generation of Configuration Settings and Code

We have generated configuration settings for hardware (firmware) for three different
Philips Lighting product implementations and have demonstrated the value of the
approach. The automatic transformations were using specification data to insert at
certain locations in existing code fragments. This approach improved the efficiency and
flexibility of the development process: a significant speed up, very limited manual
coding, more flexibility in configuring, and certainty of generating the correct
configuration.

5 Discussion and Conclusions

The advantages of the domain model-centric approach occur in various areas: orga-
nizational, business, architectural, and technical. Having formal and unambiguous
system specifications leads to a more predictable development process. Note that the

Fig. 6. Simulation results of the energy usage of the entire floor for various hold times and
occupancy levels. Each experiment simulates one hour of typical behavior, the energy values are
not calibrated.

118 R. Doornbos et al.

behavior specification only has to be made once and can be deployed across multiple
product solutions. A shared ‘domain language’ connects engineers from different
domains and leads to less misunderstanding. In most cases it leads to a simpler, more
user-centric but formal specification. Another advantage is that the marketing depart-
ment is enabled to show product characteristics and behavior via virtual prototypes in
the customer’s environment.

On the technical side it is very important to have clear specifications in an
understandable, solution-independent language. The enabled automation leads to a
significant speed up, via automatic checks, code generation, and generation of virtual
prototypes. Design-time simulation and analysis provides a tremendous risk reduction
by more reuse of (proven) building blocks, and easy architectural exploration of novel
solutions. Less on-site commissioning work is needed as better off-site checks are
performed, leading to considerable cost savings.

Summarizing, the domain model-centric approach is a key step towards virtual-
ization of product development. It allows model-based architectural validation and
provides early insight in consequences of architectural decisions and configuration
settings. It provides better control over system complexity and reduces significant cost
and effort in system development in industrial practice.

Acknowledgement. The research is carried out as part of the Prisma programme and H2020
OpenAIS project under the responsibility of Embedded Systems Innovation (ESI) with Philips
Lighting as the carrying industrial partner. The Prisma programme is supported by the Nether-
lands Ministry of Economic Affairs, the OpenAIS project is co-funded by the Horizon 2020
Framework Programme of the European Union under grant agreement number 644332 and the
Netherlands Organisation for Applied Scientific Research TNO.

References

1. Akesson, B., Hooman, J., Dekker, R., Ekkelkamp, W., Stottelaar, B.: Pain-mitigation
techniques for model-based engineering using domain-specific languages. In: Proceedings of
MOMA3N 2018 (2018)

2. Hooman, J.: Industrial application of formal models generated from domain specific
Languages. In: Theory and Practice of Formal Methods, pp 277–293 (2016)

3. Westland, J.C.: The cost of errors in software development: evidence from industry. J. Syst.
and Softw. 62, 1–9 (2002)

4. Mooij, A.J., Hooman, J., Albers, R.: Gaining industrial confidence for the introduction of
domain-specific languages. In: 2013 IEEE 37th Annual Computer Software and Applica-
tions Conference Workshops (COMPSACW) (2013)

5. Schuts, M., Hooman, J.: Industrial Application of domain specific languages combined with
formal techniques. In: Proceedings of Workshop on Real World Domain Specific
Languages, The International Symposium on Code Generation and Optimization, pp. 2:1–
2:8 (2016)

6. Bettini, L.: Implementing Domain-Specific Languages with Xtext and Xtend. Packt
Publishing Ltd., Birmingham (2016)

7. Evans, E.: Domain-Driven Design: Tackling Complexity in the Heart of Software. Addison-
Wesley, Boston (2004)

A Domain Model-Centric Approach for the Development 119

8. INCOSE: Systems engineering handbook: a guide for system life cycle processes and
activities, version 3.2.1. International Council on Systems Engineering (INCOSE), INCOSE-
TP-2003-002-03.2.2, San Diego, CA, USA (2012)

9. Bernstein, P.A.: Applying model management to classical meta data problems. In:
Proceedings of the 2003 CIDR Conference (2003)

10. Stecklein, J.M., Dabney, J., Dick, B., Haskins, B., Lovell, R., Moroney, G.: Error cost
escalation through the project life cycle. In: Proceedings of the 14th INCOSE Annual
International Symposium, June 2014

11. Eastman, C., Teicholz, P., Sacks, R., Liston, K.: BIM Handbook: A Guide to Building
Information Modeling for Owners, Managers, Designers, Engineers and Contractors. Wiley
(2011)

12. Buit, L.J.: Developing an Easy-to-Use Query Language for Verification of Lighting Systems.
Master’s thesis (http://essay.utwente.nl/74020/), University of Twente (2017)

13. Mooij, A.J., Hooman, J.: Creating a Domain Specific Language (DSL) with Xtext. http://
www.cs.kun.nl/J.Hooman/DSL, ESI/Radboud University (2017)

14. Uppaal. http://www.uppaal.org/

120 R. Doornbos et al.

http://essay.utwente.nl/74020/
http://www.cs.kun.nl/J.Hooman/DSL
http://www.cs.kun.nl/J.Hooman/DSL
http://www.uppaal.org/

Through a Glass, Darkly? Taking a Network
Perspective on System-of-Systems

Architectures

Matthew Potts1(&), Pia Sartor1, Angus Johnson2, and Seth Bullock1

1 University of Bristol, Faculty of Engineering, Bristol, UK
{matt.potts,pia.sartor,seth.bullock}@bristol.ac.uk

2 Thales Research and Technology UK, Reading, UK
Angus.Johnson@uk.thalesgroup.com

Abstract. A system-of-systems architecture can be thought of as a complex
network comprising a set of entities of different types, connected together by a
set of relationships, also of different types. A systems architect might attempt to
make use of the analytic tools associated with network science when evaluating
such architectures, anticipating that taking a “network perspective” might offer
insights into their structure. However, taking a network perspective on real-
world system-of-systems architectures is fraught with challenges. The rela-
tionship between the architecture and a network representation can be overly
simplistic, meaning that network-theoretic models can struggle to respect, inter
alia, the heterogeneity of system entities and their relationships, the richness of
their behavior, and the vital role of context in an architecture. A more mature
conceptualization of the relationship between architectures and their network
representations is required before the lens of network science can offer a usefully
clear view of architecture properties.

1 Introduction

System designers are increasingly faced with the challenge of architecting complex
systems that may have to operate within the context of a wider System of Systems
(SoS). It can be natural to think of an SoS architecture as a network of entities con-
nected together by relationships, and to regard this network as complex in the sense that
it exhibits interesting structure. Architects require tools that can support architecture
analysis. Network science provides a toolbox of techniques developed to shed light on
complex networks of all kinds. However, in applying networks science analyses to
real-world architectures, several challenges and limitations become clear. The purpose
of this paper is to highlight these challenges and suggest ways to help bridge the gap
between academic theory and industrial practice.

The paper is structured as follows; first a brief summary of prior work applying
network science techniques to real-world SoS architectures is provided before cautions
surrounding the use of graph-theoretic approaches to assess such architectures are
described. These address difficulties in correctly identifying important architectural
entities, evaluating architecture structure, and anticipating the response of architectures

© Springer Nature Switzerland AG 2019
E. Bonjour et al. (Eds.): CSD&M 2018, Complex Systems Design & Management, pp. 121–132, 2019.
https://doi.org/10.1007/978-3-030-04209-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-04209-7_10

to perturbations, but also identify more general conceptual challenges in aligning a
network perspective with an understanding of systems architecting. The paper then
discusses challenges that may impede progress towards more effective graph-theoretic
evaluations of architectures, suggesting open research questions for the community.

1.1 Prior Work

Prior work [1] considered a network perspective on a Search and Rescue
(SAR) Architecture developed by Thales and Airbus in order to inform systems
architecture training and inform the development of the NATO Architecture Frame-
work (NAF) v4 [2]. Several Architecture Views (AVs) were modelled as a directed
graph of vertices, each of which represented a capability, service or physical entity,
connected by edges representing communications connectivity and dependencies. The
modelled graph was interrogated to determine which entities were the most important
in the architecture by examining the degree (the number of connections in and out) of
each vertex. The structure of the architecture was also evaluated in terms of edge
density, D, a metric employed as an indicator of the likely integration and dependency
management challenge presented by the architecture, and calculated as per Eq. (1),
where E is the number of edges in the graph and V is the number of vertices.

D ¼ Ej j
Vj j Vj j � 1ð Þ ð1Þ

The structure of the architecture was also evaluated in terms of strongly connected
components (groupings of entities within which a path exists linking each pair of
entities in both directions [3]) to reveal the presence of a core and periphery structure.
Finally, a community detection algorithm [4] was used to suggest an alternative
approach to partitioning a complex SoS architecture by grouping entities into com-
munities within which connectivity was relatively strong by comparison with con-
nectivity to entities outside the community.

Here we briefly report additional results drawn from the analysis of a second use
case, a tactical military communications enterprise architecture (MComms). The
architecture was created in accordance with the Ministry of Defence Architecture
Framework (MODAF) [5], to enable Thales and their customer to have a shared
understanding of the complex environment within which a tactical military commu-
nications solution would have to interoperate. The MComms use case describes the
challenge of enabling effective tactical communications between soldiers. Systems,
services, functions, artefacts (components), software and capability configurations were
modelled as vertices and the communications and dependency relationships, such as
systems fulfilling functions and hierarchical compositions, modelled as edges in a
directed graph.

In the following section we use these two real-world use cases to highlight the
challenges facing an architect trying to take advantage of a network perspective.

122 M. Potts et al.

2 Cautioning Network Perspectives on System Architectures

2.1 Identification of Important Entities

A network perspective on complex SoS architectures might be expected to enable the
identification of important entities in an architecture. Perhaps highly connected entities
could be expected to play a crucial role, or entities that are in some sense located in the
“core” of the system. Alternatively, an entity that is located such that it mediates
between many parts of an architecture might be identified as a key asset. Finally,
entities located such that they dominate flows of resource in a network might be
assumed to be key. The implication here is that an architect must be clear on what
constitutes importance for their architecture – there is no single network science metric
or concept that will do this job for the architect. Important entities may be those that are
geometrically close to many other entities in a graph, according to metrics such as
Closeness, Harmonic Closeness and Betweenness Centrality, or those that benefit from
favourable connectivity, according to measures such as Degree and Eigenvector
Centrality. It is beyond the scope of this paper to detail the plethora of metrics
available, an interested reader is directed to [6], instead centrality measures used
selected that several authors used to determine which entities are important in an
architecture [7–10], often using one with no consideration of other alternatives.

The Closeness Centrality, Ci, of a vertex i is the reciprocal of the sum of the
distances of the shortest paths from i to all other n − 1 vertices in the graph, normalized
(to enable comparison between architectures with different numbers of vertices) by
multiplying this reciprocal by the sum of the minimum possible distances, n − 1 [11].

Ci ¼ n� 1
P

j d j; ið Þ ð2Þ

The Harmonic Closeness Centrality, Hi, of a vertex i is the sum of the reciprocal of
the shortest path distances,d j; ið Þ, from i to all other n − 1 vertices in the graph
(Eq. (3)) [12].

Hi ¼
X

j6¼i

1
d j; ið Þ ð3Þ

The Betweeness Centrality, Bi, of a vertex i is given by Eq. (4) where rst is the total
number of shortest paths from vertex s to vertex t and rst(i) is the number of those paths
that pass through i [13].

Bi ¼
X

s 6¼i6¼t

rst ið Þ
rst

ð4Þ

The Eigenvector Centrality,Ei, is given by Eq. (5) where aj;i is the adjacency matrix
of the graph (the adjacency matrix is a square matrix representing the graph, where
aj,i = 1 if vertex j is connected to vertex i and aj;i ¼ 0 otherwise) and k 6¼0 is a
constant [14].

Through a Glass, Darkly? Taking a Network Perspective 123

Ei ¼ 1
k

X

j2G aj;i ð5Þ

While each of these measures can be applied to a network representing a system
architecture, there are three main concerns when using them to determine important
entities within it. First, there are practical limitations in their calculation. Second, they
do not agree on which entities are most important. Finally, and most importantly, they
neglect the rich context inherent to a complex SoS architecture, potentially allowing an
architect to be misled by a numerical analysis that ignores more significant determi-
nants of importance.

A limitation in calculating these measures is the treatment of disconnected entities
and entities with connectivity in only one direction (e.g., a node that has one incoming
edge from its sole neighbor but no out-going edges linking it to the network). Both the
SAR and MComms architectures have a large number of entities with relationships in
only one direction (e.g., node i depends on node j, but not vice versa) which results in
many entities being assigned an importance score of zero by some of the network
metrics, due to the effectively “infinite” distance between the node and parts of the
network that it cannot reach. Calculating the shortest path distances, d j; ið Þ, takes
account of directionality in a directed graph, noting it is from i to all other n − 1
vertices. For example, 74% of the entities in the MComms architecture are given a
Closeness Centrality of zero and 82% are given a Betweenness Centrality of zero,
similarly the 27% of the SAR entities have an Eigenvector Centrality score of zero. It
may be the case that high scoring entities are the most important within an architecture,
but the inability of the measures to cope with the directed, tree-like structure of the
networks is not encouraging. Confidence in these results can only be obtained through
further analysis of what each centrality scores measure, and how this corresponds to a
notion of importance that makes sense to an architect. Rather than expecting a single
network science measure to identify key entities, a more useful approach for an
architect would be to iterate between two questions: ‘what makes an entity important in
this complex SoS architecture and how might that be reflected in the network repre-
sentation of it?’ and ‘what network properties are these measures capturing and what
are their implications for my understanding of the architecture itself?’. Note that rather
than conflate the network and the architecture together as though they are the same
thing, these questions explicitly separate the architecture (the thing we are interested in)
from the network (a particular abstraction of that thing that may help us understand it).

Unsurprisingly, there is little agreement between the centrality measures regarding
which entities they identify as most important (Fig. 1). This reinforces the point that
caution must be exercised in their use. Despite employing similar concepts such as
geometric distance or connectivity, there is little significant correlation between them.

Most importantly, however, it may be that network measures of the type described
above are not capable of tracking importance in a sense that is relevant to a system
architect’s needs. For example, in the case of the SAR and MComms architectures,
what makes an entity important may be less to do with its location in the network and
more to do with its contribution to mission effectiveness. Unless this contribution is

124 M. Potts et al.

either explicitly coded in the network as a node property, or implicitly reflected in some
aspect of network structure, this importance criterion will be invisible to graph-
theoretic analysis. The graph-theoretic signifiers of importance do not necessarily even
have any meaning in the real-world system, an architect would need to determine what
terms like the ‘shortest path’ correspond to in a heterogeneous architecture abstracted
into a simple directed graph of vertices and edges.

Fig. 1. Relationships between five importance metrics for the 41 entities represented in the SAR
architecture network (left), and the 235 entities represented as vertices in the MComms
architecture network (right).

Through a Glass, Darkly? Taking a Network Perspective 125

2.2 Evaluating Structure

Edge density has previously been suggested by the authors as a proxy measure indi-
cating the degree to which integration or dependency management will be a challenge
for an architecture [1]. In reality, however, the metric is too simplistic to be useful for
architecture evaluation [15]. The metric neglects context specific information that is
likely to be more important to an architect such as the geographical separation between
entities, the frequency of communication or the format of information, data or resource
transfer [16–18]. Network perspectives do provide an opportunity to quantify the
complexity of an architecture, by quantifying the number of components, the number
of interfaces and various graph topology measures [19]. However, there is little
agreement on complexity definitions or how complexity should be measured [20–22].

Another structural evaluation available to an architect who adopts a network per-
spective is exploring whether a core and periphery structure exists. Detecting such a
structure within a SoS may be desirable to determine which entities are more important
to overall functionality and hence where intervention effort should be directed. Existing
literature highlights an approach using path lengths [23], and previous work by the
authors used the detection of strongly connected components [1]. The MComms use
case had only 6% of the architectural entities identified as belonging to the core, which
could indicate that this architecture does not demonstrate a significant core and
periphery structure. Perhaps more likely, however, is that strongly connected compo-
nents are too naïve a measure of core and periphery structure. The MComms use case
has a tree-like structure, with several entities that can only be reached in one direction.
What such a structure means for the real-world system is currently difficult to assess
due to the heterogeneity of entities modeled and depends on what has or has not been
modelled in the directed graph. One can imagine the identification of a core and
periphery of the architecture by more sophisticated and context specific measures, such
as say the frequency and criticality of communication between entities, or their con-
tribution to mission objectives [16, 17, 24, 25].

A similar problem occurs when using community detection to partition an archi-
tecture. Just because a set of architectural entities have strong connectivity between
them does not guarantee that they form a “community” or that it is sensible to treat
them as a distinct architectural “unit”. It is the failure of the network view to capture the
relevant contextual information that causes this limitation.

Architecture structure can also be examined in terms of how reciprocal connections
are, that is the tendency for entities within an architecture to have mutual directed
connections [26]. In theory, such an approach may provide a numerical means to
characterize SoS type, for example “collaborative”, which would have a high
reciprocity, or “directed” which would not exhibit significant reciprocity [27]. The SAR
architecture reciprocity is on average over six times that of the MComms architecture.
Both architectures have more reciprocity than would be expected by chance in an
architecture with the same number of vertices and edges, and the same in- and out-
degree distribution. This was demonstrated by comparing the real-world architectures
with 1000 null models, each containing the same number of vertices and edges but
where the in- and out-degrees are shuffled at random. The SAR architecture reciprocity
was greater than every random architecture generated, and the MComms architecture’s

126 M. Potts et al.

reciprocity was greater than 99.6% of random architectures. However, the characteri-
zation of a SoS may need to go further than comparison with an entirely structureless
null model. In order to determine if an architecture’s reciprocity values are high for an
architecture of its type, it would need to be compared against a null model that respects
the constraints under which architectures are arrived at. Since these constraints, whether
fundamental or conventional, are to a large extent unknown, such a null model is hard to
arrive at. Making progress will require a closer appreciation of the role of reciprocity in
real-world architectures. Indeed, it might be argued that one positive associated with
taking a network perspective is pressure to formulate the thinking that is required by
such null models – thinking that has been painstakingly undertaken in other fields that
have benefitted from networks science approaches [28, 29].

2.3 Network Perturbation

A system architect may be concerned with several dynamic properties such as flexi-
bility and resiliency [30–33]. In networks arenas, it is common to explore the resiliency
of networks, often measuring the impact of the removal of vertices on some proxy
measure of network effectiveness such as diameter (the number of nodes involved in
the longest of the shortest paths between all pairs of nodes) or the size of the largest
component (the numbers of nodes in the largest fragment of the network) [34–36], but
others have noted that more detailed simulation is needed rather than simply assessing
the result of single vertex removal [37, 38].

When subjected to perturbations that removed vertices, both use case architectures
were found to have a significantly greater vulnerability to vertex removal when the
highest degree vertices were removed (compared to targeting vertices for removal at
random). However, this vulnerability was measured in terms of changes in average
centrality scores, such as average Closeness Centrality, or average Betweenness
Centrality. These averaged centrality scores may not be suitable proxies for the
effectiveness of the remaining architecture as they do not consider the topology of the
surviving architecture, nor do they capture the differential importance of entities and
their relationships. Similarly, network diameter and the size of the largest component
are also naive measures of architecture effectiveness; while the size of the largest
surviving network component may make sense as a proxy for effectiveness of a
communications network, is this also true for a complex SoS? Perhaps a relatively
small but critical subset of architecture entities and their connectivity are required for
the overall operation of an SoS – or, in extremis, perhaps the loss of any entity in the
architecture would compromise system operation? Conversely, many system entities
may have some capability to resist perturbation through inherent resiliency and
adaptability. This type of capability may be captured in the full representation of a
system architecture, but could be difficult to represent in a simple graph.

2.4 Evaluating Vulnerability to Failure Cascades

Taking a network perspective also enables an architect to inquire about their archi-
tecture’s vulnerability to cascades, simulating single or multiple nodes being degraded,
to represent perturbations of the real-world that may have several uncorrelated issues,

Through a Glass, Darkly? Taking a Network Perspective 127

but could result in cascading failure. The fundamental limitation with trying to char-
acterise this vulnerability is that achieving sufficiently secure knowledge about failure
dynamics is likely to be extremely hard at the early stages of a system lifecycle.
Further, an architect has a significant challenge in conceptualizing how failures and
failure cascades could affect a SoS architecture that encompasses a diverse, potentially
autonomous and independent collection of systems [39–41]. Whilst the explicit cascade
dynamics may not be known at the early stages of a design lifecycle, it may be useful to
consider the possibility of local failures creating global, SoS wide failures. It then may
be possible to lean on network science approaches to explicitly design against cas-
cading failures [42] by introducing protection to the nodes with the highest degree or
implementing control mechanisms to distribute the functionality a failed node pro-
vided. However, their effectiveness hinges on understanding the cascade dynamics for
the system, for example a protection strategy that assumes cascades follow a perco-
lation model may not provide the same benefits for epidemic models of cascades.

The next section highlights the challenges to making progress in using a network
perspective to evaluate complex SoS architectures and details the other open research
questions.

3 Challenges to Progress

There is a challenge in modelling the heterogeneity of entities and relationships present
in a complex SoS; in the SAR architecture entities as different as a Command and
Control capability and a communications service coexist, and relationships as different
as hierarchical dependencies and service to capability mapping coexist. One solution is
to assign attributes to each entity and each relationship in the graph-theoretic model to
capture the autonomy, diversity and richness of behavior present. These attributes
could be numerical or textual and used to model issues relating to resiliency such as
robustness, adaptability and recoverability. Other authors have used this approach and
tried to model integration challenges by using an attribute for System Readiness Levels
(SRLs) (similar to Technology Readiness Levels (TRLs)) [43]. However, there is a
danger in attempting to improve the fidelity of graph-theoretic models by adding an
increasing number of attributes to entities and relationships; how can confidence in
these values be determined given the early stage of a lifecycle architecting focuses on?
More fundamentally, however, a network perspective is exactly that, a lens through
which to view a system, not a detailed model that provides direct answers about to how
robust, complex or desirable an architecture is.

The more sophisticated the network representation, in terms of multiple types of
vertex, multiple types of edges, edge weights, nested, layered, or interdependent sub-
networks, etc., the more complicated the interpretation of network properties. Simple
network concepts such as clustering or path length have relatively straightforward
interpretations in, e.g., networks of Facebook pages, where every vertex is a page and
every edge is a friendship relationship. The same cannot be claimed for a network in
which some nodes represent physical resources, some are software services, and some
are governance structures, where some nodes have geographic locations, some are
multi-site and some are not localized at all, where some edges are dependencies, some

128 M. Potts et al.

are communication channels, and some represent flows of resource. Interpretation
becomes even more challenging for more complicated properties such as betweenness or
assortativity, also dynamics on such networks, e.g., cascades, flows, fragmentation, etc.

There is another feature of SoS and their complexity that creates a challenge for an
architect; their scale and scope. With many views already available to an architect
following a methodology like NAF or MODAF; how can an architect choose which
areas of the SoS to explore using a network perspective? It is feasible that some
architecture views are more amenable to graph-theoretic analysis, for example logical
node interactions or resource connectivity. However, a full investigation has not been
completed. Similarly, one can imagine certain architecting activities, e.g., architecture
partitioning, as being particularly amenable to a network perspective but again a
thorough evaluation has not been completed [27, 44]. A compounding challenge is how
an architect can validate their graph-theoretic models given the scarcity of data likely
available at the start of a system lifecycle. We thus stop short of recommending a
formal, dedicated ‘Complexity View’ or ‘Network View’ when architecting complex
SoS but further work is needed to explore the utility of such a view.

The search for a widely applicable importance metric or complexity metric is
perhaps unwise given the role that context plays in complex SoS architectures. Instead,
perhaps utility comes from the opportunity to not only reflect on what network per-
spectives do and do not provide, but also on why they were offered as a potential tool in
the first place. The scale, diversity and connectivity of a complex SoS suggested
network science tools could signpost important entities in an architecture. The answer
from these tools is that it depends on what modelling assumptions importance is
defined by. This suggests the community needs to tackle the challenge of identifying
what makes an entity important in an architecture; is it their connectivity, the effect
removal has, the role they play in a mission, their utility in brokering services from
diverse and geographically separated entities? Although a network perspective may not
provide the answer, it promotes consideration of what can be understood as important
to a complex SoS. A similar argument exists for the evaluation of desirable non-
functional requirements such as resiliency and flexibility; if they cannot be assessed
numerically with confidence using a network perspective, how can we evaluate these
properties? Network terms such as the size of the largest component, or average
shortest path, currently have no easy translation to a complex SoS architecture but that
does not mean the search for a corresponding term or application of such terms is a
futile endeavor.

4 Conclusion

Given the impact of network science on fields as diverse as neuroscience [45] and
archaeology [46], it is highly likes that there are insights to be gained from taking a
network perspective on SoS architectures; which entities in an architecture are most
important to one another, is one architecture likely to be more robust, efficient, or
manageable than another, to what degree and in what ways might an architecture be
vulnerable to failure? In seeking these insights, however, it becomes clear that the tools
from network science cannot straightforwardly be applied without developing a more

Through a Glass, Darkly? Taking a Network Perspective 129

sophisticated understanding of how they map onto the diversity, richness and context
sensitivity characteristic of complex SoS architectures. The social sciences spent sev-
eral decades developing a set of interpretations and conceptualizations that allowed the
effective mobilization of networks concepts. Developing an equivalent set of concep-
tual tools for the analysis of complex SoS architectures remains an open research
challenge.

References

1. Potts, M., Sartor, P., Johnson, A., Bullock, S.: Hidden structures: using graph theory to
explore complex system of systems architectures. In: Paper presented at the International
Conference on Complex Systems Design & Management. CSD&M, Paris, France,
December 2017

2. North Atlantic Treaty Organization: NATO architecture framework v4.0 documentation
(draft) (2017). http://nafdocs.org/

3. Diestel, R.: Graph Theory, Electronic. In: Graduate Texts in Mathematics, vol. 173.
Springer, Berlin (2005)

4. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities
in large networks. J. Stat. Mech. Theory Exp. 10, P10008 (2008)

5. Biggs, B.: Ministry of defence architectural framework (MODAF) (2005)
6. Newman, M.: Networks: an Introduction. Oxford University Press, Oxford (2010)
7. Okami, S., Kohtake, N.: Transitional complexity of health information system of systems:

managing by the engineering systems multiple-domain modeling approach. IEEE Syst. J.,
1–12 (2017)

8. Bartolomei, J.E., Hastings, D.E., de Neufville, R., Rhodes, D.H.: Engineering systems
multiple-domain matrix: an organizing framework for modeling large-scale complex
systems. Syst. Eng. 15(1), 41–61 (2012)

9. Santana, A., Kreimeyer, M., Clo, P., Fischbach, K., de Moura, H.: An empirical
investigation of enterprise architecture analysis based on network measures and expert
knowledge: a case from the automotive industry. In: Modern Project Management, pp. 46–
56 (2016)

10. Iyer, B., Dreyfus, D., Gyllstrom, P.: A network-based view of enterprise architecture. In:
Handbook of Enterprise Systems Architecture in Practice, p. 500. PFPC Worldwide Inc.,
USA (2007)

11. Freeman, L.C.: Centrality in social networks conceptual clarification. Soc. Netw. 1(3), 215–
239 (1978)

12. Boldi, P., Vigna, S.: Axioms for centrality. Internet Math. 10(3–4), 222–262 (2014)
13. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25(2), 163–177

(2001)
14. Newman, M.E.: The mathematics of networks. In: The New Palgrave Encyclopedia of

Economics, 2nd edn., pp 1–12 (2008)
15. IEEE/ISO/IEC Draft Standard for Systems and Software Engineering - Architecture

Evaluation, pp. 1–76 (2017). ISO/IEC/IEEE DIS P42030/D1, December 2017
16. Kossiakoff, A., Sweet, W.N., Seymour, S.J., Biemer, S.M.: Systems Engineering Principles

and Practice, vol. 83. Wiley, London (2011)
17. Buede, D.M., Miller, W.D.: The Engineering Design of Systems: Models and Methods.

Wiley, London (2016)

130 M. Potts et al.

http://nafdocs.org/

18. Bullock, S., Barnett, L., Di Paolo, E.A.: Spatial embedding and the structure of complex
networks. Complexity 16(2), 20–28 (2010)

19. Sinha, K., de Weck, O.L.: Structural complexity metric for engineered complex systems and
its application. In: Gain Competitive Advantage by Managing Complexity: Proceedings of
the 14th International DSM Conference Kyoto, Japan, pp. 181–194 (2012)

20. Lloyd, S.: Measures of complexity: a nonexhaustive list. IEEE Control Syst. Mag. 21(4), 7–8
(2001)

21. Sheard, S.A.: 5.2. 1 systems engineering complexity in context. In: INCOSE International
Symposium, vol. 1, pp. 1145–1158. Wiley Online Library (2013)

22. Fischi, J., Nilchiani, R., Wade, J.: Dynamic complexity measures for use in complexity-
based system design. IEEE Syst. J. 11(4), 2018–2027 (2015)

23. MacCormack, A.: The architecture of complex systems: do “core-periphery” structures
dominate? In: Academy of Management Proceedings, vol 1, pp. 1–6. Academy of
Management (2010)

24. Rechtin, E.: Systems architecting: Creating and building complex systems, vol. 1. Prentice
Hall, Englewood Cliffs (1991)

25. Sillitto, H.: Architecting Systems: Concepts, Principles and Practice. College Publications,
London (2014)

26. Newman, M.E.: Mixing patterns in networks. Phys. Rev. E 67(2), 026126 (2003)
27. ISO/IEC/IEEE International standard - systems and software engineering – system life cycle

processes, pp. 1–118 (2015). ISO/IEC/IEEE 15288 First edition 2015-05-15. https://doi.org/
10.1109/ieeestd.2015.7106435

28. Freeman, L.: The Development of Social Network Analysis. A Study in the Sociology of
Science 1. Empirical Press, Vancouver (2004)

29. Gilbert, N., Bullock, S.: Complexity at the social science interface. Complexity 19(6), 1–4
(2014)

30. Crawley, E., De Weck, O., Magee, C., Moses, J., Seeringk, W., Schindall, J., Wallace, D.,
Whitney, D.: The influence of architecture in engineering systems (monograph) (2004)

31. De Weck, O.L., Roos, D., Magee, C.L.: Engineering Systems: Meeting Human Needs in a
Complex Technological World. Mit Press, Cambridge (2011)

32. De Weck, O.L., Ross, A.M., Rhodes, D.H.: Investigating relationships and semantic sets
amongst system lifecycle properties (Ilities) (2012)

33. De Neufville, R., Scholtes, S.: Flexibility in Engineering Design. MIT Press, Cambridge
(2011)

34. Newman, M.E.: Complex systems: a survey (2011). arXiv preprint arXiv:11121440
35. Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45(2), 167–

256 (2003)
36. Albert, R., Jeong, H., Barabási, A.-L.: Error and attack tolerance of complex networks

(2000). arXiv preprint cond-mat/0008064
37. Khoury, M., Bullock, S.: Multi-level resilience: reconciling robustness, recovery and

adaptability from a network science perspective. Int. J. Adapt. Resil. Auton. Syst. (IJARAS)
5(4), 34–45 (2014)

38. Khoury, M., Bullock, S., Fu, G., Dawson, R.: Improving measures of topological robustness
in networks of networks and suggestion of a novel way to counter both failure propagation
and isolation. Infrastruct. Complex. 2(1), 1 (2015)

39. Boardman, J., Sauser, B.: System of systems-the meaning of of. In: Proceedings of the 2006
IEEE/SMC International Conference on System of Systems Engineering Los Angeles, CA,
USA, pp. 118–126, April 2006

40. Maier, M.W.: Architecting principles for systems‐of‐systems. In: INCOSE International
Symposium, vol 1. Wiley Online Library, pp. 565–573 (1996)

Through a Glass, Darkly? Taking a Network Perspective 131

http://dx.doi.org/10.1109/ieeestd.2015.7106435
http://dx.doi.org/10.1109/ieeestd.2015.7106435
http://arxiv.org/abs/11121440

41. ISO/IEC/IEEE Draft international standard - systems and software engineering - systems of
systems considerations in engineering of systems, pp. 1–43 (2017). ISO/IEC/IEEE P21839,
April 2017

42. Fu, G., Dawson, R., Khoury, M., Bullock, S.: Interdependent networks: vulnerability
analysis and strategies to limit cascading failure. Eur. Phys. J. B 87(7), 148 (2014)

43. Marvin, J.W., Garrett Jr., R.K.: Quantitative SoS architecture modeling. Procedia Comput.
Sci. 36, 41–48 (2014)

44. ISO/IEC/IEEE DIS 42020 Enterprise, systems and software - architecture processes (2017)
45. Barnett, L., Buckley, C.L., Bullock, S.: Neural complexity: a graph theoretic interpretation.

Phys. Rev. E 83(4), 041906 (2011)
46. Brughmans, T.: Connecting the dots: towards archaeological network analysis. Oxf.

J. Archaeol. 29(3), 277–303 (2010)

132 M. Potts et al.

Generation and Visualization of Release Notes
for Systems Engineering Software

Malik Khalfallah(&)

AIRBUS DS, 31 rues des Cosmonautes, Toulouse, France
malik.khalfallah@airbus.com

Abstract. Designing complex systems such as satellites requires delivering
design data with the associated list of updates regularly in a form of release
notes. Creating release notes for system data delivery is challenging for system
architects because it requires analyzing all resolved issues during a particular
period of time and then summarizing them in a readable format for other
architects. In this paper we present an approach for creating release notes. We
performed an empirical study involving large amount of satellite projects data to
categorize the content of release notes delivered by architects. We have iden-
tified the main patterns. We developed an algorithm that discovers these patterns
given the history of project data. We applied our approach to system data
managed in configuration.

1 Introduction

1.1 Paper Scope

Developing systems engineering software applications requires providing features such
as systems modeling, systems simulation and systems data definition. Nevertheless,
system engineering process is a collaborative effort that involves many engineers
creating different kinds of data and thus all these data should be managed in config-
uration [1]. Many software applications for engineers rely on version control systems
such as SVN or Git to manage in configuration their data [2]. This enforces the
traceability, the coherency and the consistency of the data. Nevertheless, this is not
sufficient to obtain a rigorous data definition process. Indeed, the configuration man-
agement responds to the “what question” of system data definition. It keeps track of all
defined data. However, we need also to respond to the “why question” of systems data
definition. Any system data update should be an answer or a part of an answer to an
issue. If this is not done, then during the data inspection or utilization, we cannot know
clearly why a system data update has been made.

To answer this problem, it is possible to interconnect the version control system
into an issue management system. Then, every system data update will be associated to
an issue to provide clearly the reason of the update.

© Springer Nature Switzerland AG 2019
E. Bonjour et al. (Eds.): CSD&M 2018, Complex Systems Design & Management, pp. 133–144, 2019.
https://doi.org/10.1007/978-3-030-04209-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-04209-7_11

1.2 Addressed Problems

System engineering developments rely more and more on agile processes [3]. This
means the delivery of intermediate versions of the system data at different milestones.
Accordingly, it is necessary to provide release notes at each milestone. Release notes
are valuable assets in system development projects. Not only do they serve as a
communication medium for issue resolution – an activity that accounts for as much as
40% of software and system development effort [4] - but they are also often consulted
even after the issues have been resolved [5].

In this paper we aim at conducting a study in collaboration with different system
architects in order to:

1. Analyze different satellite projects data as well as the delivered release notes during
the projects development

2. Identify system data definition patterns that are mostly repeated and how architects
have mapped them into release notes prior to their delivery.

3. Develop an adaptable model-based approach that discovers these patterns and
generates the release notes automatically.

1.3 Motivating Example

Although our study aims to be generic and applicable to different system definition
software, we provide an example using an industrial software application to present the
study’s results. Airbus DS has developed a software application of type SRDB (System
Reference Database) [8] to define satellite systems structures and all their related data
(TM/TC, Electrical, Functional) called RangeDB [6, 7, 9]. Working with an SRDB is a
collaborative effort involving system architects that locally define their data and then
share them with other engineers using a version control system.

In RangeDB, the concept of a dataset refers to a folder that contains particular
system data. A dataset has a version and can depend on one or more versioned datasets.
In configuration, a dataset can belong to a trunk but also to a branch or to a tag.

Generating release notes was a manual task. Starting from the dataset representing
the system concerned by the release note, the architect browses the modifications that
have been made since the last milestone. He notes down every resolved issue from
redmine and the associated modifications.

Fig. 1. Car data example in RangeDB

134 M. Khalfallah

Let’s consider multiple engineering teams working on the design of a car. We chose
a car example because it is simpler to illustrate our approach using a car rather than
using a satellite system. Figure 1 shows how the dataset of the Car and its branches and
dependencies are evolving. Basically the dataset Car has been branched at the first
version and starting from version 200.9, it has started to have dependencies with other
subsystems’ datasets.

At the end of the milestone, the architect wants to generate the release note of all
resolved issues between the last version 300.4 (depicted by a square) and 200.9 of the
trunk. The details of this history contain two important pieces of information:

• Information about the modifications of the dataset Car between the versions 300.4
and 200.9

• Information about the modifications made on the dependencies and branches of this
dataset during the interval [200.9, 300.4].

The release note is presented as an excel document that shows the issue number, its
description and the version of the dataset impacted by the modification. An example of
such a table is given in the following figure.

2 Framework to Generate Release Notes

2.1 Data Model to Capture Release Notes Building Blocs

The release notes built by architects have a uniform structure that can be captured in a
data model and that can be populated by an automated process. The release note
captures intervals of resolved issues between two versions of datasets. This is mate-
rialized by a class release object. Each release note contains one root release object that
captures the starting point of release note computation. In our running example, this
root release object concerns the dataset Car with its two versions 300.4.0 and 200.9.0.
Then the release object itself contains child release objects that concern the intervals
associated to dependencies and reintegrated branches of the current dataset (Car). In
our example child release object concern the Wheel datasets. The challenge to auto-
matically generate release notes concerns the determination of the content of the release
note when datasets properties have changed between one version and another in terms
of dependencies and branches.

Issue Description Dataset Version

#12 Fix GPS_ERROR_MSG (XTF 1432) Car v300.4.0

#21 Some RIU packets/parameters are duplicated in
occurrences

Car v300.4.0

Fig. 2. Manually developed release note in excel file

Generation and Visualization of Release Notes for Systems 135

2.2 Determination of Patterns

2.2.1 Empirical Study
The goal of the study is to analyze the datasets and their associations on three different
satellite projects. One of these projects has already been finished which means that it is
quite rich in terms of datasets definition and manual release notes generation. The other
projects are nearly finished as well. We aim at answering the following research
question:

RQ—Datasets Association Patterns: What are the patterns of relationships between
datasets that architects have faced when they generated release notes?

To address this research question we have conducted an empirical study. The
context of this study consists of the projects’ datasets and their associations. We had
access to the three projects and their datasets. In the SRDB, we had also access to the
history of all commits, their comments and the issues IDs.

In order to cover a maximum number of situations that architects might face when
generating a release note, we have simulated the need to generate release notes for the
couples nþ 1; nð Þ of the dataset versions representing the satellite of each project. For
example for the first satellite project we have simulated the generation of a release note
between the couples of versions (3.14.2, 3.14.1), until (1.0.1, 1.0.0).

In addition we have simulated the need to generate the release notes for the couples
nþ 1; nð Þ of the dataset versions of all satellite’s systems and subsystem. Hence,
knowing that the dataset for each system has evolved though numerous versions, we
deem that we have covered enough cases to say that the patterns found are represen-
tative for the incoming projects data. We classify the faced cases into 4 categories: (i)
No Dependencies exist for the current dataset version and its preceding dataset version,
(ii) Similar Dependencies exist for the current dataset version and its preceding dataset
version, (iii) Different Dependencies exist between the current dataset version and its
preceding dataset version and (iv) there exist Reintegrated Branches in the current
dataset version that were not reintegrated in its preceding version.

Figure 2 shows the distribution of these categories compiled for the three satellite
projects and for all systems and subsystems of these satellites:

From these categories of datasets association, we classified them into 11 patterns
that can be discovered automatically. We present each pattern and give the graphical
view illustrating an example of that pattern in order to simplify its understanding. In
addition, for each pattern, we depict the release objects and their relationships that
capture the history of resolved issues for that pattern.

136 M. Khalfallah

2.2.2 Study Results: Patterns Identification

Graphical representation and the created
hierarchy

User defined object

No Dependency, No Branch: In this pattern
we have one dataset in the trunk and we need
to find the resolved issues for the last release.
The dataset versioned 300.4 is represented as
a square in order to say that it is the last
release

Multiple Comparable Dependencies: This
pattern concerns the case where the source
and target datasets have dependencies to
different versions of the same dataset. Since
these dependencies belong to the same axis,
this means that they are comparable. In this
case the result of the history analysis should
list: (1) Issues resolved between 300.4 and
200.9 of the dataset Car and (2) Issues
resolved between 1.0.58 and 1.0.57 of the
dataset Engine
Nested Comparable Dependencies: This
pattern is similar to the pattern number 2, but
with multiple number of dependencies. We
should notice that the number of
dependencies is not infinite. At a certain level
we reach the commons dataset that has no
dependency. This allows to the search process
to end

Tailored Dependencies: This pattern
concerns the removal and/or addition of
dependencies to and from dataset. In other
terms, the version n of the dataset has
references to datasets that the version n + 1
has lost and dually, the version n + 1 has
acquired new dependencies that the version n
did not have
For this pattern, it is not always possible to
create a coherent history of resolved issues.
Indeed, since the dataset Car in the version
300.4.0 has no longer a dependency to the
dataset Tinted Glasses

(continued)

Generation and Visualization of Release Notes for Systems 137

(continued)

Graphical representation and the created
hierarchy

User defined object

Multiple Reintegrated Branches: This
pattern concerns the reintegration of different
branches created before or from the target
dataset into the source dataset
The result returned for this pattern concerns
the issues resolved in all reintegrated branches
plus the issues resolved between versions
300.4 and 200.9 of the dataset Car
Nested Branch Reintegration Branches:
Following the same idea of dependencies
having other dependencies (c.f. pattern 3), we
can consider the case where branches have
themselves other branches. In this case, the
final result is constituted by the issues
resolved in all reintegrated branches
(recursively) plus the issues resolved between
300.4 and 200.9 of the dataset Car

Several Reintegration of the Same Branch:
We can face this case where a single branch is
reintegrated several times into the original
trunk. For this pattern it is necessary to return
only the resolved issues for intervals whose
history has not been returned in previous
results

Reintegrated Branch without Previous
Release: In this case it is not possible to
create a history for the branch since it has no
release. Accordingly, the issues retuned in the
final result are those resolved for the dataset
Car between versions 200.9 and 300.4

Multi-Origin Dependency: This particular
case is not possible to have in the SRDB since
a dataset can have one and only one
dependency to another dataset. Nevertheless
if it was allowed, the result would have been
to make the union of issues resolved in the
branch and issues resolved in the dependency

(continued)

138 M. Khalfallah

(continued)

Graphical representation and the created
hierarchy

User defined object

Multi-Origin Dependency [Different
Depth]: This pattern is a particular case of the
previous one

Unchronological Dependency: This pattern
could occur when the user prefers switch to
an old dependency in comparison to the
previous version of the dataset. The result that
is retuned for this case is empty regarding the
issues resolved for the dependency

2.2.3 Model-Based Patterns Discovery Algorithm
The pattern discovery algorithm is modeled using Colored Petri Nets (CPN). Using
CPNs has two main advantages: (1) It allows architects to define different behaviors of
the discovery algorithm and thus making it generic and adaptable for different projects.
(2) It allows us to prove certain properties of our algorithm.

In the following we elaborate on this algorithm:

• dataset is defined by the tuple: hdatasetname; versionnumber; trunkname=tagnamef gi.
• hasNoDep(dataseti) is a function that checks whether the dataset dataseti has no

dependency. In RangeDB there are no cyclic dependencies and hence there is
always at least one dataset in the dependencies chain that has no dependency.

• Two dataset tokens hd1; v1; t1i and hd2; v2; t2i are comparable iff: d1 � d2 ^ t1 � t2.
The symbol* between d1and d2means that the two datasets belong to two different
tags but these tags originate from the same trunk. Similarly, the symbol * between
t1 and t2means that these two tags are different but originate from the same trunk.

• A guard G in the CPN on two dataset tokens dsource; dtarget is formalized by
the following condition: G ¼ hasNoDep dsource:dð Þ ^ hasNoDep dtarget:d

� �� �

_ dsource:d� dtarget:d
� � ^ dsource:t� dtarget:t

� �

To build the CPN that computes the release objects of two datasets, we first create a
place that will contain the token representing the dataset source and a place that will
contain the token representing the dataset target. In addition we create a guarded
transition using G that computes the resolved issues between these two datasets and
creates the corresponding release object. Figure 3 depicts the CPN.

The transition is fired if and only if G returns TRUE. In this case, the function
rcomparable dsource; dtarget

� �
is called. This function creates the release object corre-

sponding to the couple hdsource; dtargeti and puts it into the place R. In addition, it places
that release object into the right place in the hierarchy of release objects. Placing a

Generation and Visualization of Release Notes for Systems 139

newly created release object under its parent is performed if and only if among all
release objects there is one that has a dependency between its source dataset and p1.
dataset and a dependency between its target dataset and p2.dataset.

When all token elements satisfying r_comparable condition have been consumed,
at the end the places p1, p2 will contain only datasets that are not comparable (*) and
thus should be treated depending on the patterns identified above. These details are
implemented in the function r_not_comparable. Nevertheless, since each project could
decide to create different release objects, in this case the implementation of the function
r_not_comparable can be updated to manage the project specificities.

To obtain the complete history of resolved issues we need to include the issues
resolved in the dependencies and the issues resolved in branches as well. Accordingly
the CPN of Fig. 3 computes the dependencies and the reintegrated branches of the
given couples hdatasetsource; datasettargeti and then compute the resolved issues for
them. Nevertheless, to compute the dependencies and the reintegrated branches for the
initial datasets we need to use their associated tokens. Hence to make the tokens of the
initial datasets available for both history computation and also to compute branches and
dependencies, we need to create duplicates for these tokens. This duplication has the
advantage to allow the parallel computation of reintegrated branches, dependencies and
the history of resolved issues too.

Proposition1: Computation made by this CPN ends.

Proof: Since this CPN contains cycles, we need to prove that these cycles end at a
certain time. In other terms, we need to prove that the generation of tokens representing
branches and dependencies ends at a certain time. More formally, we consider two
functions:

A function that computes the reintegrated branches of a given dataset:

reintegrated branches:Dataset ! 2Dataset

A function that computes the dependencies of a given dataset:

dependency:Dataset ! 2Dataset

Project 1 3 525 31 15 3,34 21,61

Project 2 24 443 13 12 3,14 19,27

Project 3 0 193 8 7 2,99 33,38

Projects (i) (ii) (iii) (iv) Mean number of resolved issues in an Mean release
interval of two versions of a dataset time (day)

Fig. 3. Categories of datasets associations for the three projects

140 M. Khalfallah

In order to prove that the computation made by our CPN ends, we put the two
following hypotheses:

1. There is always in the graph of dependencies the last dependency into which all
datasets have a direct or indirect dependency called the common dataset that sat-
isfies the following condition:

dependency commondatasetð Þ ¼ ;

2. The number of reintegrated branches for any dataset is limited. More formally:

8dataseti: reintegrated branch datasetið Þj j\1

Using the first hypothesis, we conclude that when the data source place contains
dataseti = commondataset then no dependency will be generated. Using the second
hypothesis, we conclude that we reach a dataset that has no branch at that time and
consequently the place containing branches will be empty. Moreover, the common
dataset will be reached as a last dependency. Accordingly, the computation ends since
the dataset source and dataset target will no longer be populated. ■

Fig. 4. CPN-based pattern discovery algorithm

Generation and Visualization of Release Notes for Systems 141

Proposition2: A child release object cannot have two parents.

Proof: Let r1, r2 two release objects. The release r1 is a child of r2 iff r1.datasetSource
and r2.datasetSource have a dependency as well as r1.dataSetTarget and r2.
datasetTarget have a dependency and are of the same nature. Or they are branches.
Since a branch can have only one origin then there will be one parent.

The proof continue by enumeration on the different patterns. ∎

2.2.4 Implementation
We have developed a prototype for this approach. We have built a CPN model in EMF
and its visualization in GMF. Architects can update the behavior of that CPN according
to their needs. Additionally, we have developed the visual representation of the release
note in Eclipse RCP that constitutes a plugin to RangeDB. Figure 4 depicts an excerpt
of the release note visualization corresponding to the example above: (Fig. 5).

Fig. 5. Generated release note for the car example

142 M. Khalfallah

3 Related Work

Generating and visualizing release note is an active research field. Klepper et al. [10]
developed a semi-automated approach for the generation of release notes. The principle
of their approach consists in identifying the changes in the commits between two
releases of a project. They summarize the code changes and link it to information
commit notes and issue tracking system. This approach would provide relevant
information of interested people but authors do not elaborate how they automatically
gather all relevant information. In our case we provided a workflow designed by a CPN
that elaborates on how we perform the generation of the release note.

[11] developed a tool called ChangeScribe. The purpose of ChangeScribe is to
assist users to generate the right message to associate to commits. Its principle consists
in extracting and analyzing the differences between two versions of the source code and
generates a commit message. The analysis of the source code relies on code summa-
rization techniques, stereotype detection and impact analysis. The generated commit
message provides an overview of the changes. Basically, it describes the why and what
of a change using natural language. For simple source code files this approach could
work as demonstrated by the authors. However, when committing many files this tool
could fail. Moreover, the generated messages do not contain the issue number which is
fundamental to show other developers which issue has been resolved by the commit.

[12] developed RCLinker that aims at predicting if a link exists between a commit
message and an issue defined in a system such as redmine. It relies on ChangeScribe to
automatically generate commit messages. Then it tries to extract features from the
automatically generated commit messages and issues description. These features allow
RClinker to link the generated commit messages with their corresponding issues.

RCLinker made the hypothesis that in many cases software developers could
perform a commit without associating it to an issue [13–15]. In our case (system
development) it is always mandatory that database architects associate an issue to their
commits. This is due to the difference between systems and software. In software we
could refactor the source code and commit it without informing the final user. At the
end, the behavior of the software remains the same. However in system development
the final users are system architects and every data update will probably impact their
design. Therefore every data update should be backed by an issue.

4 Conclusion

In this paper, we have presented the foundations of a release note generation frame-
work for systems engineering software. We first determined the need for such
framework that results from a business need expressed in AIRBUS DS. Second we
have performed an empirical study on a large sample of satellite projects data in order
to categorize the entries of a release note. Third we have defined patterns corresponding
to these categories and we have developed a CPN based discovery algorithm to gen-
erate the release note. We finally proved important properties of that algorithm.

In the future we aim at enriching that framework by developing a generic interface
between System engineering software and issue management systems.

Generation and Visualization of Release Notes for Systems 143

References

1. Madni, A., et al.: Model-based systems engineering: motivation, current status, and needed
advances. In: Disciplinary Convergence in Systems Engineering Research (2018)

2. Lanubile, F., et al.: Collaboration tools for global software engineering. IEEE Softw. 27(2),
52–55 (2010)

3. Schindel, B., et al.: Introduction to the agile systems engineering life cycle MBSE pattern.
In: INCOSE International Symposium (2016)

4. Boehm, B.: Software defect reduction top 10 list. IEEE Comput. J. 34(1), 135–137 (2001)
5. Lotufo, R., et al.: Modelling the ‘Hurried’ bug report reading process to summarize bug

reports. J. Empir. Softw. Eng. 20(2), 516–548 (2015)
6. Eisenmann, H.: MBSE has a good start; requires more work for sufficient support of systems

engineering activities through models. INCOSE Insight 18(2), 14–18 (2015)
7. Eisenmann, H., et al.: RangeDB the product to meet the challenges of nowadays system

database. In: SESP-ESA (2015)
8. Eickhoff, J.: Onboard Computers, Onboard Software and Satellite Operations. Springer,

Berlin (2012)
9. Cazenave, C., et al.: Benefiting of digitalization for spacecraft engineering. In: SESP-ESA

(2017)
10. Klepper, S., et al.: Semi-automatic generation of audience-specific release notes. In:

IEEE/ACM CSED 2016 (2016)
11. Cortès-Coy, L., et al.: ChangeScribe: a tool for automatically generating commit messages.

In: IEEE SCAM 2014 (2014)
12. Le, T., et al.: RCLinker: automated linking of issue reports and commits leveraging rich

contextual information. In: IEEE ICPC 2015 (2015)
13. Bachmann, A., et al.: The missing links: bugs and bug-fix commits. In: ACM SIGSOFT FSE

(2010)
14. Bird, C., et al.: Fair and balanced?: bias in bug-fix datasets. In: ACM SIGSOFT FSE (2009)
15. Thanh, N., et al.: A case study of bias in bug-fix datasets. In: Working Conference on

Reverse Engineering (2010)

144 M. Khalfallah

Safety Architecture Overview Framework
for the Prediction, Explanation and Control

of Risks of ERTMS

Katja Schuitemaker1(&), G. Maarten Bonnema1, Marco Kuijsten2,
Heidi van Spaandonk3, and Mohammad Rajabalinejad1

1 Department of Design, Production and Management, University of Twente,
Enschede, The Netherlands

{k.schuitemaker,g.m.bonnema,

m.rajabalinejad}@utwente.nl
2 Safety Department, NS, Utrecht, The Netherlands

marco.kuijsten@ns.nl
3 Safety Department, ProRail, Utrecht, The Netherlands

heidi.vanspaandonk@prorail.nl

Abstract. The proposed framework includes modelling of interfaces between
risk analysis, risk evaluation and scenario’s representing flows of safety infor-
mation of the European Railway Traffic Management System (ERTMS). In this
study, we propose a functional framework combining safety data generation,
data processing and structuring, definition of interactions and finally, the cre-
ation of customized representations in order to predict, explain, and control
risks. Through literature review and ERTMS applicability, we develop a safety
architecture overview framework. The comprehensive overview of the safety
architecture can illustrate the main interactions between government, regula-
tions, company management, technical and operational management, physical
process and activities, and environment. Explicit representation delivers insight,
stimulates striving for completeness, and leads to consistency of the safety
analyses.

1 Introduction

The European Railway Traffic Management System (ERTMS) is subject to an
increasing number of stakeholders [1], open specifications [2], and split-responsibilities
[3]. Many and varied interactions among the individual components are approached
proactively and qualitatively where little time and pressure towards cost-effectiveness
can inadvertently lead to generating adaptive responses [4]. In previous study [5], the
effects of the safety case regime, interoperability, deregulation and dynamic specifi-
cations on the ERTMS have been researched at the Dutch national level. This study
concluded that achieving an interoperable and safer railway system by implementing
ERTMS appears not to be straightforward for three key reasons:

• The safety case argument involves descriptions and observations including various
explanations and interpretations from stakeholders.

© Springer Nature Switzerland AG 2019
E. Bonjour et al. (Eds.): CSD&M 2018, Complex Systems Design & Management, pp. 145–156, 2019.
https://doi.org/10.1007/978-3-030-04209-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-04209-7_12

• For the Dutch situation, the absence of a central designer [6] and overarching safety
decision-making processes between railway and train transportation lowers the
degree to which the parties succeed in harmonizing various processes.

• An increased number of actors has caused a lack of insight into cross-border
information.

These challenges require improvements in resilience, more awareness and increased
sensitivity for interrelationships between hazards and risks, but even more: joint
comprehension of the safety architecture and creation of cross-discipline
understanding.

In this study, we create a safety architecture overview framework representing
structured scenarios including hazards, consequences, RACs, risks and decisions in
various layers. We model interfaces between scenarios, risk analysis and risk evalua-
tion so that stakeholders are able to verify data origin, argumentation route, and
application. Also, we argue that the proposed framework addresses the explained
challenges through combining safety data generation, data processing and structuring,
definition of interactions, and finally the creation of customized representations in order
to predict, explain, and control risks.

Section 2 provides an overview of ERTMS and state of the art of safety models
aiming at modelling elements of the safety architecture. The methodology is discussed
in Sect. 3. Section 4 explains the creation of the safety architecture overview frame-
work and how this complies with the challenges described above. These results are
discussed in Sect. 5. Section 6 summarises the results, draws conclusions, and explains
future work in order to test the proposed framework.

2 Background

ERTMS is a command, control, signalling, and communication system for railway
management and safe regulation. It is composed of two technical components:
(1) European Train Control System (ETCS): the Automatic Train Protection
(ATP) system that makes sure trains do not exceed safe speeds or run too close together
and (2) Global System for Mobile Communications – Railways (GSM-R): helps to
provide communication for voice and data services.

The Dutch House of Representatives took an official preferential decision in 2014
that included a phased implementation of ERTMS. The Commission Implementing
Regulation (EU) 402/2013 concerns the regulation on a Common Safety Method
(CSM) for risk evaluation and assessment (CSM RA). This regulation is mandatory for
railway duty holders in Europe, including the Netherlands. The safety of ERTMS
should comply with the European Norm (EN) 50126, 50128, 50129 and 50159.
Typical safety assessment methods for safety case creation used in railway industry, but
also in other industries such as offshore, nuclear plants, and air traffic control are the
Preliminary Hazard Analysis (PHA) and Hazard and Operationally studies (HAZOP).
For these analysis, it is important to first define causal scenarios: potential sequences of
events of an initiating event that could lead to a potential dangerous scenario.

146 K. Schuitemaker et al.

Stakeholders involved with the creation of the safety case are the Dutch Ministry of
Infrastructure and the Environment (I&W), the Dutch infrastructure provider (ProRail),
and train operating companies such as the Dutch railways (NS). Next, the safety case
must show that the correct management for controlling safety is in place. For the
Dutch ERTMS, this management system refers to the safety management systems
(SMS) of both ProRail and NS.

In short, ERTMS is subject to the influence of the Dutch House of Representatives,
the application of the CSM and EN5012x, the SMS of the infrastructure provider and
train operating companies, multiple technical components, trains operating on tracks,
and of course, the consideration that ERTMS is an important link in the ambition to
ensure the passengers and shippers view the railway system as an attractive mode of
transportation. This indicates active layers in the area of government, regulations,
company management, technical and operational management, physical process and
activities, and environment. These levels of decision making that are involved in risk
management and control hazardous processes, are explained in [7].

2.1 State of the Art

Model-Based Systems Engineering (MBSE) allows systems engineers to create the
system structure and behaviour using interrelated models. MBSE is mostly used for
creating the system description, and safety is often considered as a dependent attribute.
On the other hand, for the missing link between MBSE and safety, several models for
safety analyses have been developed.

Multiple languages have been established for safety annotation, for example the
Goal Structuring Notation (GSN) [8], AltaRica [9], EAST-ADL [10], and SAML [11].
GSN is a graphical notation, using hierarchical goal structures to document the safety
case. In AltaRica, the expression is in the form of a collection of Node possessing
hierarchical structures, focussing on computation of dysfunctional models. EAST-ADL
is an architecture description language intended to support the development of auto-
motive embedded software. One of its extensions concerns dependability and captures
information related to safety. A SAML model combines discrete probability distribu-
tions and non-determinisms.

Some studies have used SysML for safety argumentation. Safety models that are
system-oriented, are often using SysML, or a modified language based on SysML.
MéDISIS, using SysML for PHA and FMEA, focus more on reliability [12]. Some
models use SysML for safety modelling, but not on the safety analyses itself. Examples
are SafeSlice focussing on requirements and inspections [13], a model focussing on
requirements [14], SafetyMet focussing on compliance with standards [15], a model
focusing on the certification process [16], and O&SHA focussing on requirements and
on the integration between SE and safety [17], though O&SHA does create operational
views and defines a safe functional architecture. Belmonte and Soubiran [18] use both
DSML (which is based on SysML) and AltaRica for the creation of PHA and FMEA.
MSA is based on a combination of RobotML, AltaRica and OpenPSA for the Fault
Tree Analysis (FTA) [19]. HiP-HOPS uses EAST-ADL and Boolean expressions for
FTA and FMEA [20]. Some of these models zoom in on scenarios or hazardous flows.
However, none of these models focus on both detailed characterisation of the evidence

Safety Architecture Overview Framework 147

underlying the safety case, and customisation of risk analysis and risk evaluation
representations for enabling communications between safety stakeholders.

3 Method

This study and the design of the Safety Architecture Overview Framework is carried
out in four successive steps, though execution of step three and four are iterative.

• Step 1. Translate need/requirements to a top-level use case diagram. The resulting
use cases can be considered as top-level functionalities of the framework and related
to system requirements.

• Step 2. Decompose to a set of functions. The functions explained in the use case
diagram are decomposed to a set of functions. Per top-level functionality, we define
input and output.

• Step 3. Finding solutions. For each functionality, literature review is combined with
ERTMS application in order to find suitable solutions.

• Step 4. Evaluation on functionality and compatibility between solutions. This step is
interrelated with step 2 and 3, because this evaluation can suggest a change of flow
or solutions that contradict one another.

The first two steps are executed through following the Design Research Method-
ology (DRM) described by [21]. Step 3 and step 4 are executed through following the
systematic search with the help of classification schemes described in Engineering
Design by [22]. This approach is shown in Fig. 1.

Fig. 1. Approach used for this study

148 K. Schuitemaker et al.

4 Results

The aim of this study is to create a framework that addresses an interdisciplinary
approach on both the social and technical level, and shows how parts interact and fit
together. First we define interdependencies between entities and top functionalities of
the framework. Next, we explain how actors are interacting with the framework. We
explain each functionality in more detail and how these can be realised.

4.1 Top Functionalities

According to EN50126 (The Specification and Demonstration of Reliability, Avail-
ability, Maintainability and Safety), in order to supply relevant input, safety analysis
must be performed by, at the minimum, a safety expert (key individuals or domain
experts who understand the system under consideration) and a safety manager (has the
responsibility over the risk assessment and ensures the traceability of safety related
decision-making). For the creation of the total safety architecture, an integrator should
create an integral coherence of the claims, arguments and evidence and the interde-
pendencies between them. The task of this so-called “safety architect” is to define a
complete, comprehensive and defensible argument.

For the interdependencies between entities, the use case diagram in Fig. 2 repre-
sents top functionalities of the framework, how an overview can be created, and how
actors are interacting with the framework.

For the explanation of Fig. 2, the risk assessment approach requires analyses where
hazards, risks, and mitigations are identified by following guidelines and logical rea-
soning of experts during requirements engineering and design. This data must be
processed to create comprehensive information and avoid specialist terminology and
linguistic ambiguity. Next, in order to consider the safety for the ERTMS as well as the
safety for subsystems, it is important to clarify boundaries and relationships. Struc-
turing the safety information evaluates and clarifies trade-offs between analyses.
Technological risks must be understood within their context, where there are many
active entities like actors, organisations, authorities, government, etc. Finally, stake-
holders have various interests and various viewpoints, depending on the structure from
which the process is viewed. To take into account these viewpoints, we need to
customize the view to be analysed.

4.2 Safety Architecture Overview Framework

The proposed framework for creating the safety architecture overview combines gen-
erating and processing of safety data, structuring of information, defining interactions,
and creating customized representations.

Data generation refers to the creation of data from risk assessment performed by
safety experts. For identification of links between hazards and accidents, consequence
analysis is often performed. For the generation of RACs of the Dutch railway system,
this means that risks should be reduced to as low as reasonable practicable (ALARP).
A risk matrix approach is used in conjunction with an ALARP based approach to risk
reduction. Depending on the safety analysis phase, data can consist of hazards,

Safety Architecture Overview Framework 149

consequences, risk matrices including tolerability limits, ALARP evaluations and
decisions. This data is still in the form of raw data, obtained through oral sessions
generated in real-time or documentation.

Data processing concerns the translation of raw extracted data from stakeholders,
to valuable information. For the purpose of detailed characterisation of the evidence
underlying the safety case, and customisation of safety analysis representations, GSN is
not suitable. For the purpose of enabling communications between safety experts,
safety architects, and safety managers, EAST-ADL, AltaRica and SAML are not well-
known and do not focus on information presentation for these stakeholders. The
Systems Modeling Language (SysML) is a more standardized and institutionalised
language and has been shown to improve development communication during system
design [23]. SysML also provides principles for partitioning and layering modules,
which are crucial for structuring data and defining interactions. To be able to create
valuable information from raw data, we need to select, abstract, and synthesize
information:

• Select data. The process of collecting required and recommended data.

Fig. 2. Use case diagram representing top functionalities of the safety architecture overview
framework.

150 K. Schuitemaker et al.

• Abstract data. We translate informal raw data to a formal language that creates
common understanding. Next, we filter information to prevent information over-
load, and to deal with safety complexity.

• Synthesize information. The fitting together of parts or elements to produce new
effects and to demonstrate that these effects create an all over order [22]. Grouping
indicates that elements belong together based on some common characteristic. In
this function, filtered information is labelled (stereotypes) according to their type.

This processing from raw data to interpretive safety information is shown in the
activity diagram in Fig. 3.

In PHA, high-level system hazards are identified inductively by asking “what if this
component fails”, and hazard are also identified deductively by asking “how this could
happen”. Scenario-guided hazard analysis is to be structured around the flows within a
system. For example, each HAZOP contains complex chains of flow of information,
and each flow can have hazardous effects. As for identification of hazards, their causes,
and their effects, the focus within this framework is on the properties and behaviours of
flows in the system.

A typical methodology for scenario identification is ETA; Cause-Consequence
Analysis in particular may also be applied to identify scenarios. Causal analysis aims to
identify the logical sequences of hazardous events that may lead to an undesirable
effect (EN50126). Typical causal analysis techniques are FTA and FMECA. The use of
inductive and deductive safety analyses results in downstream and upstream flows, see
Fig. 4.

Fig. 3. Activity diagram representing the processing of safety data to interpretive safety
information.

Safety Architecture Overview Framework 151

As for ERTMS and moreover, the Dutch Railway industry, the safety case
approach is applied to construct an argument that the system is adequately safe for a
given application in a given environment. In accordance with the safety case, the
structure upon which the Safety Architecture Overview Framework is built consists of:

• Claims. A conclusion or premise to be demonstrated. For example, that the system
is safe to operate.

• Evidence. References that can be a result of a safety analysis. For example, FTA’s
or FMEA’s.

• Arguments. Set of inferences between claims and evidence.

As for the example in Fig. 4, flow 1 includes some hazards (resulting for example
from a HAZOP) for which mitigation M(f1, 1) and M(f1, 2) are applied in order to
reduce the risk. For this reason, one can claim that execution of Flow 1 is acceptably
safe.

The definition of interactions includes the identification of all factors that contribute
to a failure. According to EN50126, the definition of the operational context is nec-
essary to evaluate the risks specific to a hazard within its accident scenario. Identifi-
cation of causal scenarios allows architects to discover interactions between various
flows and layers such as human, technological, organisational and external, that might
contribute to the failure at the system output. Each element of the scenario is allocated

Fig. 4. Activity diagram of the flows representing safety analyses performed in the safety
architecture overview framework.

152 K. Schuitemaker et al.

to one of the earlier explained 6 layers (government, regulations, company manage-
ment, technical and operational management, physical process and activities, and
environment). It is intended that each layer is considered when generating causal
scenarios. We model these layers in SysML as partitions that share content. Each
partition represents one of the six layers. Its content can be allocated accordingly.

For the presentation of views, graphic presentation exposes the interrelationships of
system events and their interdependence upon each other. By visualisation, we make
boundaries of safety decisions explicit, and reveal patterns such as links, inferences,
and contextual relationships, that would be otherwise hard to find. In order to under-
stand the overall safety level of ERTMS, various views of its safety architecture have to
be investigated:

• Risk analysis overview. This overview includes the top-level safety architecture
including risk analysis elements such as top-claim, argument and supporting
evidence.

• Risk evaluation overview. This overview includes expected total risks to which the
user is exposed in the form of likelihood and severity. Through consulting this
view, the user is able to evaluate the integral risk analysis architecture and make
judgements about the overall safety level of ERTMS.

• Scenario analysis detailed views. This view includes the scenario to be analysed. It
represents combinations of flows including safety functions, hazards, consequences
and mitigations and layers. This view is important for more in-depth analysis of a
scenario.

5 Discussion

Some benefits of the Safety Architecture Overview Framework have been shortly
explained in earlier sections. Though, there are some specific added values and chal-
lenges that require more explanation. First, the abstraction reduces complexity and
emphasizes the system under consideration. This can be useful in collaborative work
and should reduce ambiguity. In order to predict, explain and control risks, it is of
primary importance to find a balance between concreteness and abstraction. Main
challenge is to extract data without losing essential information necessary for defining
the architecture. Second, incorporating structure allows better partitioning. This mod-
elling of interfaces also allows that parts can be independently produced. Structuring
the safety architecture eliminates vagueness in descriptions and clarifies tradeoffs
among analyses. Third, the risk decision-maker requires an understanding of social and
political issues, technical issues, management issues, and communication issues. An
overview of risk analysis, risk evaluation, and detailed view of layered scenarios will
improve readability and comprehension [24].

As for compatibility between top-level functionalities of the framework, hazard
identification should be systematic and structured, which means taking into account
factors such as system boundaries, interactions with the environment and modes of
operation and environmental conditions. SysML incorporates the advantages of sys-
tematic structure of object- and process-oriented methods, which can easily describe

Safety Architecture Overview Framework 153

the connection and data exchange among systems [23]. There is evidence that SysML
proved its value in other safety models (see Sect. 2 about background). Information
interpretation depends on information structure. Structuring information improves
readability and comprehension, contributing to the creation of representations, and
essential for the quality of data generation. Also, the scenarios in various layers require
structure of causal relationships between the scenarios. Finally, the origin of a failure
can come from decisions made earlier in the process. Complex systems come to be in
the interaction of components. Baxter explains that undesirable events are simplisti-
cally seen as the result of organisational findings [25]. For these reasons, it is important
to define the interactions between earlier explained layers.

6 Conclusion

The proposed framework combines safety data generation, data processing and struc-
turing, definition of interactions and finally the creation of customized representations
in order to predict, explain, and control risks by various safety experts, safety architects
and safety managers.

For safety data generation, data will come from scenario-guided hazard analysis,
consequences from causality analysis, risk matrices including risk acceptance criteria,
and ALARP evaluations and decisions that influence the safety analyses. The focus of
the Safety Architecture Overview Framework is on the properties and behaviors of
functional flows and hazardous flows of the system under consideration. The structure
upon which the framework is built consists of claims, evidence and arguments. The
identification of causal scenarios allows safety experts, safety architects and safety
managers to discover interactions between various flows and layers. Graphic repre-
sentation exposes the interrelationships of events and their interdependence upon each
other. By visualization, we make boundaries of safety decisions explicit, and reveal
patterns such as links, inferences, and contextual relationships, that would be otherwise
hard to find. The views consist of: a risk analysis overview, a risk evaluation overview,
and a detailed view of scenario analyses. These views can illustrate the main inter-
actions between the various layers and system components. Also, it is possible to
illustrate the criticality of each layer and subcomponent. Explicit representation
delivers insight, stimulates striving for completeness, and leads to consistency of the
safety analysis.

In terms of acceptance, factors that would be of interest to the stakeholders for
adoption of the framework are described in [5]. These are, among other things, more
awareness and sensitivity for interrelationships between hazards and risks, but even
more: comprehending the safety architecture and creating cross-discipline under-
standing. In response, we plan to test this framework in a real-life Dutch railway case
that, at this moment, is setting up their risk analyses and evaluations.

154 K. Schuitemaker et al.

References

1. Alexandersson, G., Hultén, S.: The Swedish deregulation path. Rev. Netw. Econ. 7(1), 1–19
(2008)

2. European Union: Commission Decision of 25 January 2012 on the technical specification for
interoperability relating to the control-command and signaling subsystems of the trans-
European rail system. Off. J. Eur. Union 55, 1–51 (2012)

3. UNIFE: UNISIG, An industrial consortium to develop ERTMS/ETCS technical specifica-
tion. http://www.ertms.net. Accessed May 2018

4. Rajabalinejad, M., Martinetti, A., Dongen, L.A.M.: Operation, safety and human: critical
factors for the success of railway transportation. In: Systems of Systems Engineering
Conference, pp. 1–6 (2016)

5. Schuitemaker, K., Rajabalinejad, M.: ERTMS challenges for a safe and interoperable
European railway system. In: Proceedings of the Seventh International Conference on
Performance, Safety and Robustness in Complex Systems and Applications, pp. 17–22
(2017)

6. Stoop, J.A.A.M., Dekker, S.: The ERTMS railway signaling system: deals on wheels? An
inquiry into the safety architecture of high speed train safety. In: Proceedings of the Third
Resilience Engineering symposium, pp. 255–262 (2008)

7. Svedung, I., Rasmussen, J.: Graphic representation of accident scenarios: mapping system
structure and the causation of accidents. Saf. Sci. 40, 397–417 (2002)

8. Kelly, T.: Arguing safety a systematic approach to managing safety cases. PhD Thesis
(1998)

9. Arnold, A., Point, G., Griffault, A., Rauzy, A.: The AltaRica formalism for describing
concurrent systems. Fundam. Informatica 40(2), 109–124 (1999)

10. Cuenot, P., Chen, D.J., Gerard, S., Lönn, H., et al.: Towards improving dependability of
automotive systems by using the EAST-ADL architecture description language. In:
Architecting Dependable Systems IV. Lecture Notes in Computer Science, vol. 4615,
pp. 39–65 (2006)

11. Güdemann, M., Ortmeier, F.: A framework for qualitative and quantitative formal model-
based safety analysis. In: Proceedings of the 12th IEEE International Symposium on High-
Assurance Systems Engineering (HASE), pp. 132–141 (2010)

12. Cressent, R., David, P., Idasiak, V., Kratz, F.: Designing the database for reliability aware
model-based system engineering process. Reliab. Eng. Syst. Saf. 111, 171–182 (2013)

13. Falessi, D., Nejati, S., Sabetzadeh, M., Briand, L., Messina, A.: SafeSlide: a model slicing
and design safety inspection tool for SysML. In: Proceedings of SIGSOFT FSE, pp. 460–
463 (2011)

14. Sabetzadeh, M., Nejati, S., Briand, L., Evensen Mills, A.: Using SysML for modeling of
Safety-critical software-hardware interfaces: guidelines and industry experience. In: IEEE
13th International Symposium on High-Assurance Systems Engineering, pp. 193–201
(2011)

15. De la Vara, J.L., Panesar-Walawege, R.K.: SafetyMet: a metamodel for safety standards. In:
International Conference on Model Driven Engineering Languages and Systems, pp. 69–86
(2013)

16. Biggs, G., Sakamoto, T., Kotoku, T.: A profile and tool for modelling safety information
with design information in SysML. Softw. Syst. Model. 15(1), 147–178 (2016)

17. Mauborgne, P.: Operational and system hazard analysis in a safe systems requirement
engineering process – application to automotive industry. Saf. Sci. 87, 256–268 (2016)

Safety Architecture Overview Framework 155

http://www.ertms.net

18. Belmonte, F., Soubiran, E.: A model based approach for safety analysis. In: International
Conference on Computer Safety, Reliability, and Security, pp. 50–63 (2012)

19. Yakymets, N., Dhouib, S., Jaber, H., Lanusse, A.: Model-driven safety assessment of robotic
systems. In: Intelligent Robots and Systems, pp. 1137–1142 (2013)

20. Sharvia, S., Papadopoulos, Y.: Integrating model checking with HiP-HOPS in model-based
safety analysis. Reliab. Eng. Syst. Saf. 135, 64–80 (2015)

21. Blessing, L.T.M., Chakrabarti, A.: DRM, a Design Research Methodology. Springer,
London (2009)

22. Pahl, G., Beitz, W., Feldhusen, J., Grote, K.H.: Engineering Design, a Systematic Approach.
Springer, Berlin, Heidelberg (2003)

23. Wang, P.: Civil Aircraft Electrical Power System Safety Assessment: Issues and Practices.
Butterworth-Heinemann (2017)

24. Brussel, F.F., Bonnema, G.M.: Interactive A3 architecture overviews. Proc. Comput. Sci. 44,
204–213 (2015)

25. Baxter, G., Sommerville, I.: Socio-technical systems: from design methods to systems
engineering. Interact. Comput. 23, 4–17 (2011)

156 K. Schuitemaker et al.

Formalization and Reuse of Collaboration
Experiences in Industrial Processes

Diana Meléndez1(&), Thierry Coudert2, Laurent Geneste2,
Juan C. Romero Bejarano1, and Aymeric De Valroger1

1 Axsens bte, 20 Impasse Camille Langlade, 31400 Toulouse, France
{sofia.melendez,juan.romero,

aymeric.devalroger}@axsens.com
2 INP-ENIT, University of Toulouse,

47 Avenue d’Azereix, 65000 Tarbes, France
{thierry.coudert,laurent.geneste}@enit.fr

Abstract. Collaboration is a key factor for carrying out activities in industrial
processes and an efficient collaboration is essential to accomplish an overall
improvement of any process. In this article, we introduce a collaborative
process-modeling framework, which allows evaluating collaboration throughout
all the activities of an industrial process. The proposed framework uses expe-
rience management notions towards the creation of a repository of collaboration
experiences. This experience base facilitates the reuse of past experiences to
support decision making for the organization and execution of future collabo-
rations. The article concludes by discussing the contributions and limitations of
the proposed collaboration model.

1 Introduction

To confront the upcoming challenges of the market, companies must continuously
evolve and improve. In order to succeed in this endeavor, an effective collaboration
between companies and between people plays a central role to improve or optimize
processes.

At the companies level, collaboration can be defined as the cooperative effort
between two or more entities striving towards a common goal (Durugbo et al. 2011). In
the last decades, the rise of outsourcing has been a strong trend for industrial firms and
therefore, collaboration between companies plays a key role in the achievement of
successful results in industrial processes.

At the people level, projects and industrial processes are composed by different
tasks, and participants with specific characteristics contribute to these tasks. For that,
participants must work together based on durable relationships and strong commit-
ments to reach a common goal with the aim of pooling expertise and standardizing
tasks (Durugbo et al. 2011).

In order to improve performance in industrial processes, the capitalization and use
of past experiences is a key aspect (Skyrme 2007). More specifically, experience and
knowledge management applied to collaboration processes can create value in inter-
organizational activities (Lambert et al. 1999).

© Springer Nature Switzerland AG 2019
E. Bonjour et al. (Eds.): CSD&M 2018, Complex Systems Design & Management, pp. 157–167, 2019.
https://doi.org/10.1007/978-3-030-04209-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_13&domain=pdf
https://doi.org/10.1007/978-3-030-04209-7_13

The overall aim of this paper is to propose a conceptual collaboration model that
allows capitalizing how individuals collaborate in a process in order to reuse these
collaboration experiences in the future.

This article is organized as follows: Sect. 2 describes the related works on col-
laboration characterization and Knowledge Management Systems applied to collabo-
ration in processes. In Sect. 3, the collaboration model and capitalization methodology
are presented. Finally, Sect. 4 presents the conclusions and discusses some limitations
of the proposed model and perspectives for future research.

2 Literature Review

Collaboration has been analyzed in several studies due to its impact on the enterprise
success. This section presents the current research of two key domains in our model:
collaboration characterization in industrial processes and Knowledge Management
Systems applied to collaboration in processes.

2.1 Collaboration Characterization in Industrial Processes

Collaborative Engineering (CE) emerged in the 1990s as an approach to structure the
collective aspects of product and system design (Segonds et al. 2014). CE is defined as
a technological approach that supports distributed, multi-disciplinary, and multi-
organizational teams during the product development and manufacturing processes
(Ma et al. 2008).

The main characteristic of CE is that the different project stakeholders are requested
to work together and interact with each other in order to reach an agreement and make
shared decisions (Segonds et al. 2014). To breakdown the wall between functional
design and industrial design and to perform the design process with a unique team,
(Mas et al. 2013) emphasize the importance of creating a new methodology that needs
new procedures and new PLM tools. CE works if the team members’ abilities are
combined to perform complex tasks in a short time, which individual members will not
be able to achieve on their own (Gogan et al. 2014).

On the other hand, Collaborative Business Processes Management - cBPM -
intervenes across organizational boundaries involving actors from inside or from
outside an organization (Hermann et al. 2017). In addition, (Roa et al. 2015) com-
plement the definition with the inclusion of inter-organizational systems interactions.

Collaboration in organizations can be analyzed as complex networks as shown in
Fig. 1 (Durugbo et al. 2011). They propose a mathematical model that enables to study
how individuals in organizations work together to solve a problem or achieve a
common goal. The two main objectives of this model are: (i) to define topologies for
the information structure and (ii) to propose quantitative indicators for the information
behavior that can be used to characterize collaboration in organizations. This model
focuses on information flow but it does not consider other elements of the collaboration
context such as contracts, commitments and indicators of quality among others.

From Durugbo’s mathematical model three indicators of collaboration have been
proposed: Team work scale; Decision making scale; Coordination scale. The team

158 D. Meléndez et al.

work scale measures the ease with which social vertices can pool resources, it is
calculated by aggregating two mathematical measures: the clustering coefficient and the
centrality degree of the collaboration graph. This indicator allows for assessing the
activity of an actor and interconnectedness within a cluster for teamwork. The decision
making scale measures the ease with which social vertices can make choices, it is
calculated by aggregating the clustering coefficient and the closeness degree. This
indicator assesses the ease with which an actor within the intra-organizational network
can make decisions based on the interconnectedness and connections for relationships.
Finally, coordination scale measures the ease with which social vertices can harmonize
interactions; it is calculated by aggregating the closeness and the centrality degree.
These indicators permit to characterize the performance of collaboration between actors
to perform activities.

2.2 Knowledge Management Applied to Collaboration in Processes

Principles of Knowledge Engineering (KE) have been introduced in cBPM towards a
collaboration model based on ontologies and deduction rules in order to build a col-
laboration information system (Rajsiri et al. 2010). This model is a collaborative
process model that describes interactions and information exchanges between business
partners. This work proposes a higher abstraction level of a given collaboration. It
allows characterizing collaboration from existing knowledge. Therefore, the precision
of collaboration characterization strongly relies on the quantity and quality of the
knowledge provided by business partners (i.e. the experts). High-level knowledge such
as general deduction rules are difficult to implement in specific contexts. Thus, it is
necessary to have a detailed level of knowledge modelling consistent with an actual
context in order to be able to deduce general knowledge based on actual experiences.

The systematic reuse of experience in industry allows making better use of expe-
riences during an industrial process. Experience Management (EM) supports the cap-
ture, storage, search, and retrieval of past experiences (De Mendonça Neto et al. 2001)
and its ultimate goal is experience reuse (Bergmann 2002).

Accompanying this logic of experience reuse, Case Based Reasoning (CBR) is an
approach that facilitates the resolution of problems by recovering, adapting and reusing
previous experiences. This approach requires the characterization of the context in
which the experiment took place and the lesson learned in this context for solving a
given problem (Kolodner 1993).

In summary, the main purpose of this paper is the use of Experience Management
principles in order to establish a model of collaboration experience, capitalize the

Fig. 1. Collaboration as a graph (Durugbo et al. 2011).

Formalization and Reuse of Collaboration Experiences 159

contributions of each actor throughout the activities of a collaborative process and
reuse experiences to improve the future execution of the process or the definition and
execution of similar processes.

In the next section we will describe the experience feedback process, the elements
of the collaboration model and an illustrative application based on a real process
execution.

3 Experience Feedback Process for Collaboration

3.1 Experience Feedback Process

The main goal of this study is to propose an experience feedback process in order to
capitalize experiences of collaboration in industrial processes and to reuse them to
define future collaborations. The capitalization of an experience is done for all activities
of a process as shown in Fig. 2, it is formalized through the elements of the knowledge
base in order to standardize the capitalization and facilitate the future reuse of past
experiences.

In order to facilitate the reuse of experiences, it is necessary to define a collabo-
ration model corresponding to a generic experience frame. This collaboration model is
stored in a knowledge base. Every collaboration experience will be an instance of this
model. In order to define the characteristics of a collaboration experience without
ambiguity, it is necessary to standardize the main concepts and to store them. There-
fore, the knowledge base also contains a taxonomy of concepts that are used to
characterize the different elements of the experience. Once an experience has been
properly defined from the available knowledge, it is stored into the Experience Base
(EB). It is important to be able to capitalize the planned collaboration and the actual
one within an experience, since this will allow to compute some performance indicators
corresponding to the experience. When a process has to be planned for a new exe-
cution, the prior experiences stored into the Experience Base, and corresponding to the
activities of the process, can be reused.

The collaboration model and the taxonomy are described in the next section.

Activity Activity Activity Activity

Experience
capitalization

EB

KB

Fig. 2. Overall experience feedback process

160 D. Meléndez et al.

3.2 Collaboration Model

This section describes the collaboration model that allows standardizing the experience
capitalization and which is used by the experience feedback process. The concepts
organized in the taxonomy are also presented. An experience is modeled by an oriented
graph which is based on the collaboration model as shown in Fig. 3.

The proposed collaboration model is based on the execution of an industrial pro-
cess. Different organizations can contribute to the execution of several activities of an
industrial process in order to reach for defined goals. These goals are represented in our
model by commitments and they must accomplish one or several requirements. In
order to formalize the different participation of the organizations, they are governed by
contracts. The interaction between the organizations to fulfill the commitments of a
contract engenders an industrial process. It is a structured, managed and controlled set
of activities with the purpose of transforming inputs into specified outputs. During the
execution of the process activities, actors collaborate in order to reach the process
commitments. Every actor exerts different roles and contribute to one or several
activities throughout the process.

Two or more organizations are involved by a contract in order to achieve one or
several commitments, and the contract includes all the agreed commitments. Fur-
thermore, these commitments must contribute to fulfill one or several requirements. In
the model this relation is named requires. The commitments are the result of one or
several activities of the process, this means that one activity contributes to one or
several commitments. At this level, there are the interactions between people to execute

- Acceptance
- Type of
requirement

Requirement

- Start date
- Due date
- Type of contract

Contract
- Name
- Foundation date
- Type of
organization

Organization

- Deadline
- Type of
commitment

Commitment

- id
- Cost
- Duration
- Total effort
- Type of activity
- Competences

Activity

- Name
- Last Name
- Cost per hour
- Competences
- Department

Actor

- Duration
- Type of interaction

interacts with

- Years of service

employs
- Duration
- Role

involves

includes

requires
- Effort hours
- Information access
- Cost per hour
- Role

takes part in

contributes to

1

1

1 ...* 1 ...*
*1

*
*

1

*

1*1
1

Fig. 3. Collaboration model frame

Formalization and Reuse of Collaboration Experiences 161

an activity. Thus, an actor takes part in one or several activities and he interacts with
one or several actors during the execution of the activity. Figure 3 shows the set of
elements of the proposed collaboration model.

An organization is a group of people, structured in a specific way to achieve
shared commitments. For this element, we must identify the name, the foundation date
and the type of organization. A contract represents one or several agreements where an
organization provides goods or services to another organization; these agreements can
also be verbal, what allows starting collaborative activities without a written contract.
For this element, we must identify the start date, end date and the type of contract.
A commitment in the proposed collaboration model represents the output of a process
activity. It is characterized by a type of commitment classified in: product, report,
service and systems for example. A requirement is a specific need that the commit-
ments have to meet. For this element, we must identify the type of requirement. An
activity of an industrial process describes the work, which transform one or several
inputs in intermediate or final outputs of the process. The following information must
be identified for each activity: cost, duration, total effort, and type of activity. The cost
attribute includes the cost of all actors who participate in the activity and others costs
such as material cost, transportation cost, etc. The duration attribute is the difference
between the start date and the due date. The total effort is the sum of all workloads in
person-hours needed to carry out the activity. An actor a person who participate in one
or more activities of an industrial process. They are characterized by: name, cost per
hour, department and one or more competences.

For the relations between vertices, the main relations are: Takes part in, Interacts,
Includes, Contributes, Involves, Requires and Employs.

The relation “Takes part in” is the relation between an actor and an activity. It is
the contribution of the actor for a given activity and it is characterized by the total
number of hours required by the actor to execute his/her contribution otherwise the
actor’s effort. Another characteristic is the information access. We propose to measure
this indicator with a number between the 0 and 1. The value 1 indicates that the
information necessary to carry out an activity is easily obtainable. The value 0 means
that it is impossible to access to the information. The relation “Interacts” is the relation
between an actor i and actor j. The relation “Contributes” is the relation between an
activity and a commitment, it indicates which activity contribute to a commitment. The
relation “Requires” is the relation between a commitment and a requirement, it rep-
resents the requirements that must be met. The relation “Involves” represents the
relation between an organization and a contract. It is characterized by the duration and
the organization’s role for a specific contract. The relation “Includes” is the link
between a contract and a commitment. A contract may have one or several commit-
ments. The relation “Employs” represents the link of work between an actor and an
organization. An actor cannot have a direct link to two or more organizations.

The attributes of vertices and edges must be standardizing in order to facilitate the
future reuse. Then, a taxonomy of concepts allows this standardization and it ensures
an accurate capitalization.

162 D. Meléndez et al.

3.3 Taxonomy of Concepts

Each vertex and some edges must be characterized from a taxonomy of concepts. An
example of taxonomy, which can be used for the characterization of collaboration
experiences, is represented in Fig. 4. A taxonomy is a hierarchical structure described
through relations between concepts included in the hierarchy (Van Rees 2003). Tax-
onomies create a consistent representation of concepts through their structuration into a
tree according to their similarity (Jabrouni et al. 2011).

In our work, taxonomies are defined for some attributes in order to characterize the
collaboration experiences and facilitate their retrieval into the experience base where all
experiences will be stored. This will be develop in Sect. 3.4. An example of taxonomy
for collaboration experiences is represented in Fig. 4. This taxonomy of concepts is
based on existing taxonomies proposed by (System Requirements - SEBoK, 2015) for
requirements, (Boucher et al. 2007) for actor’s roles and (Mayer et al. 2012) for
contracts.

3.4 Collaboration Experience Building

The knowledge base contains the collaboration model frame to structure a collaboration
experience, and the taxonomy to characterize, with validated and standard concepts, all
the elements of a collaboration experience. The KB is essential in our model because it
facilitates the experience formalization and reuse. In addition to the elements and their
interactions previously described, it is necessary to distinguish two stages of the col-
laboration experience: the planned collaboration and the actual collaboration.

The first stage is the planned collaboration where all the necessary actors, activities,
commitments, requirements, contracts and organizations of the process to execute are
included. They are planned a priori. Figure 5 shows an example of an instantiation for

Request
Delivery
Analyze
Design
Produce
Order

Role

ActorOrganization

Leader
Monitor
Diffuser
Contractor
Regulator
Negotiator
Expert
Operator
Technical bond

Regulator
Customers
Suppliers
Sponsor
Creditors
Community

UNIVERSAL

Vertex

Activity

Actor

Commitment
Requirement Contract

Entreprise

Functional
Performance
Usability
Operational
Physical
Environmental
Cost
Schedule
Logistical

Employs
Edge

Involves

Requires
Contribute to Includes

Takes part in

Interacts with
Monitoring
Management
Cooperation
Learning
Assistance
Planning
Communication
Coordination
Validation

Teaming
Consortium
Joint venture
Sponsored
Verbal contract
Fixed-price contract
Cost reimbursable

contract

�
� �

� � �
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�

Fig. 4. Extract from taxonomy of concepts

Formalization and Reuse of Collaboration Experiences 163

one vertex actor and one vertex activity. For each element, there are certain attributes
for which their values will be found in the proposed taxonomy. In Fig. 5, for the vertex
activity 1, the given value for the attribute competence is “Quality control” and the
given value for the attribute type of activity is “Production”. Both values are coming
from the taxonomy of concepts.

Figure 6 represents an example of a planned collaboration instance. It is the
instance of a real case of a process in the consulting sector.

The second level is the actual collaboration. It means the actual information of the
process execution. The Fig. 7 represents the changes of the execution of planned
collaboration experience, which mainly concerns the activity 2; the other elements have
not been represented because they are identical to the planned experience. This allows
the calculation of performance indicators in order to identify the gap between the
planned collaboration experience and the actual collaboration experience. These per-
formance indicators are commitment acceptance, process delay and respect of the
budget among others.

The second step of the proposed approach is the storage in the Experience Base
(EB) (after validation) of the planned collaborative experience, the actual collaborative
experience and the indicators. When the EB has a significant number of experiences,
the information can be reused to facilitate the decision making process of future col-
laborations. The reuse of experiences is described in the next section.

3.5 Collaboration Experience Reuse

The main objective of the Experience Feedback Process is the reuse of past experiences
to improve current situations. In order to fall within this reuse logic, we have proposed
a characterization of the context of a process by using a labelled graph. In the Sect. 3.2,
we defined a collaboration model frame of a process that forms the basis of the search
mechanism for similar experiments. This frame allows creating an experience base and

-Name : Peter
- Last Name : Sullivan
- Cost per hour : 30 $
- Competences : Quality control
- Department : Quality

- Effort
- Information access : 1
- Cost per hour : 30 $
- Role : Monitor

- Id : activity 1
- Cost : 60 $
- Duration : 3 days
- Total effort : 8 hours
- Type of activity : Production
-

Identify the concepts and the relations types of each element of collaboration experience

hours : 6 hours

Competences : Quality control

ACTOR ACTIVITY 1

Fig. 5. Example of instantiation and link with taxonomy for two elements

164 D. Meléndez et al.

to develop a mechanism of research to build on previous experiences. These experi-
ences can then be used to improve the selection of key actors for similar processes. This
choice could be done by one of several criteria of the collaboration frame and the
characteristics of the actor. For example, given a non-quality situation in an industrial
process, the process of problem solving can be improved thanks to the experience base

- Edge: takes part in
- Effort hours : 2h
- Information access:
1
- Role : Monitor

- Edge: takes part in
- Effort hours : 21 hours
- Information access: 1
- Role : Monitor

- Edge: takes part in
- Effort hours : 21h
- Information access: 1
- Role : Executor

- Edge : interacts
- Duration : 6h
- Type: communication

- Name: Enterprise 1
- Vertex: organization
- Foundation date: 18/10/1990
- Type: Manufacturing

- Name: Enterprise 2
- Vertex: organization
- Foundation date: 12/03/1994
- Type: Department

Vertex : contract

- Vertex : commitment
- Deadline : 24/06/2017
- Type: Delivrable

- Vertex : activity
- Id : 1
- Cost : 2100 $
- Duration : 3 days
- Total effort : 63 hours
- Type: Delivery
- Competences : Quality, Logistics,
Lean

- Vertex : activity
- id: 2
- Cost : 420 $
- Duration : 2 days
- Total effort : 8 hours
- Type : Analyze
- Competences : Six-sigma

- Vertex : actor
- Name 3
- Last Name 3
- Cost per hour : 30 $
- Competences : Aircraft production
- Department : Quality

- Vertex : actor
- Name 1
- Last Name 1
- Cost per hour : 30 $
- Competences : Project management
- Department : Logistics

- Vertex : actor
- Name 2
- Last Name 2
- Cost per hour : 40 $
- Competences : Six-Sigma
- Department : Lean

- Vertex : actor
- Name 4
- Last Name 4
- Cost per hour : 30 $
- Competences : Know-
How

- Vertex:
requirement
- Acceptance : yes
- Type :
performance

- Edge : interacts
- Duration : 7h
- Type: communication

- Edge : interacts
- Duration : 7h
- Type: monitoring

- Edge : interacts
- Duration :6h
- Type: assistance

- Edge : interacts
- Duration :6h
- Type :
coordination

- Edge : interacts
- Duration : 6h
- Type: communication

- Edge : interacts
- Duration : 5h
- Type: validation

Edge : interacts
-

Duration : 5h -

Edge: takes part in -
Effort hours : 21h -

Information access: 1-
Role : Expert -

Edge: takes part in -
Effort hours : 6h -

Information access: 1 -
Role : Executor -

- Edge: contributes
Edge: contributes -

- Edge: requires

Edge : involves -
Duration : 6 months -

Role : Customer -

- Edge: involves
- Duration : 6 months
- Role : Supplier

Fig. 6. Example of planned collaboration experience

Formalization and Reuse of Collaboration Experiences 165

where the actors of the process who have previously participated in the problem
solving can be identified and filtered by more specific characteristics such as product
type, years of experience or competences.

4 Conclusion

Due to the increasing complexity of industrial processes with outsourcing activities,
collaboration has become one of the relevant areas of performance measurement. The
analysis of the collected literature indicates that there is a lack of methodologies for
collaboration characterization between companies based on the characterization and
performance of team collaboration, as well as an absence of a formal inclusion of
experience feedback process.

In this article, a collaboration model for experience collaborations characterization
has been defined. This model allows characterizing the collaboration experience in two
stages: (i) team stage and (ii) company stage. The collaboration model proposed within
the formalization of elements such as contracts, commitments and requirements is
novel. Also, this article has shown the importance of experiences capitalization and
reuse, in order to improve and to facilitate future collaborations in industrial processes.

Despite the model described in this article allows the calculation of performance
indicators focused on requirements, activities and actors, it is important to notice that
the quality of the collaboration process cannot be evaluated. Therefore, the perspectives
of this research are to propose some new indicators which will reflect how good is the
collaboration within an experience. This will enable to characterize how two or more
organizations are collaborating within the experiences.

- Edge: interacts
- Duration :6h
- Type:
communication

-Edge : interacts
-Duration :6h
-Type:
monitoring

- Vertex : activity
- id: 2
- Cost : 580 $
- Duration : 2 days
- Total effort : 18 hours
- Type : Analyze
- Competences : Six-
sigma

- Vertex : actor
- Name 2
- Cost per hour : 40 $
- Competences : Six-
Sigma
- Department : Quality

- Vertex : actor
- Name 4
- Cost per hour : 30 $
- Competences : Know-How
- Department : Quality

- Edge: takes part in
- Effort hours : 8h
- Information access: 0,5
- Role : Executor

- Edge: takes part in
- Effort hours : 2h
- Information access: 1
- Role : Monitor

- Edge : interacts
- Duration :6h
- Type :
coordination

- Edge : interacts
- Duration :6h
- Type: assistance

- Vertex : actor
- Name 5
- Cost per hour : 20 $
- Competences : Six-
Sigma
- Department : Lean

-Edge: takes part in
-Effort hours : 8h
-Information access: 1
-Role : Executor

- Edge: interacts
- Duration :6h
- Type: coordination

- Edge: interacts
- Duration :6h
- Type: assistance

Fig. 7. Example of an actual collaboration experience (activity 2)

166 D. Meléndez et al.

From these quality indicators, it will be possible to help to define efficient asso-
ciations of organizations following the past experiences with regard to collaboration.

Finally, the experience feedback process is still at a preliminary stage and requires
further development. The first axis of development is the definition of (i) a method to
reuse experiences and (ii) a mechanism to generalize several experiences in knowledge.

References

Bergmann, R.: Experience Management: Foundations, Development Methodology, and Internet-
Based Applications. Springer, Heidelberg (2002)

Boucher, X., Bonjour, E., Grabot, B.: Formalisation and use of competencies for industrial
performance optimisation: a survey. Comput. Ind. 58(2), 98–117 (2007)

Durugbo, C., Hutabarat, W., Tiwari, A., Alcock, J.: Modelling collaboration using complex
networks. Inf. Sci. 181(1), 3143–3161 (2011)

Gogan, L., Popescu, A., Duran, V.: Misunderstandings between cross-cultural members within
collaborative engineering teams. Procedia Soc. Behav. Sci. 109, 370–374 (2014)

Hermann, A., Scholta, H., Bräuer, S., Becker, J.: Collaborative business process management-a
literature-based analysis of methods for supporting model understandability. In: Proceedings
Internationale Tagung Wirtschaftsinformatik, vol. 13, pp. 286–300 (2017)

Jabrouni, H., Kamsu-Foguem, B., Geneste, L., Vaysse, C.: Continuous improvement through
knowledge-guided analysis in experience feedback. Eng. Appl. Artif. Intell. 24(8), 1419–
1431 (2011)

Kolodner, J.: Case-Based Reasoning. Morgan Kaufmann (1993)
Lambert, D., Emmelhainz, M., Gardner, J.: Building successful logistics partnerships. J. Bus.

Logistics 20(1), 165 (1999)
Ma, Y.-S., Chen, G., Thimm, G.: Paradigm shift: unified and associative feature-based

concurrent and collaborative engineering. J. Intell. Manuf. 19(6), 625–641 (2008)
Mas, F., Menéndez, J., Oliva, M., Ríos, J.: Collaborative engineering: an airbus case study.

Procedia Eng. 63, 336–345 (2013)
Mayer, D., Warner, D., Siedel, G., Lieberman, J.: The Law, Sales, and Marketing (2012)
De Mendonça Neto, M.G., Seaman, C., Basili, V.R., Kim, Y.M.: A prototype experience

management system for a software consulting organization. In: SEKE, pp. 29–36 (2001)
Rajsiri, V., Lorré, J.P., Benaben, F., Pingaud, H.: Knowledge-based system for collaborative

process specification. Comput. Ind. 61(2), 161–175 (2010)
Roa, J., Chiotti, O., Villarreal, P.: Detection of anti-patterns in the control flow of collaborative

business processes. In: Simposio Argentino de Ingeniería de Software - ASSE 44 (2015)
Segonds, F., Mantelet, F., Maranzana, N., Gaillard, S.: Early stages of apparel design: how to

define collaborative needs for PLM and fashion? Int. J. Fash. Des. Technol. Educ. 7(2), 105–
114 (2014)

Skyrme, D.: Knowledge Networking: Creating the Collaborative Enterprise. Routledge (2007)
Pyster, A., et al.: Guide to the systems engineering body of knowledge (SEBoK) v. 1.0. 1. Guide

to the Systems Engineering Body of Knowledge (SEBoK) (2012)
Van Rees, R.: Clarity in the Usage of the Terms Ontology, Taxonomy and Classification.

CIB REPORT 284. 432, pp. 1–8 (2003)

Formalization and Reuse of Collaboration Experiences 167

An MBSE Framework to Support Agile
Functional Definition of an Avionics System

Jian Tang1, Shaofan Zhu1, Raphaël Faudou2,
and Jean-Marie Gauthier2(&)

1 Beijing Aeronautical Science and Technology Research Institute of COMAC,
Future Science Park, Changping District, Beijing, China

{tangjian1,zhushaofan}@comac.cc
2 Ethics Biotope, Samares Engineering, 2, Av. Escadrille Normandie Niemen,

31700 Blagnac, France
{raphael.faudou,jm.gauthier}@samares-engineering.com

Abstract. In avionics domain, there have been many efforts in recent years to
build a MBSE methodology with tooling support. The main purpose is often to
improve quality and efficiency of system definition, architecture and integration.
Sometimes there is also an additional objective to ease system verification and
validation. This paper introduces an additional challenge with the support of an
agile development cycle to ease impact analysis and incorporation of late and
changing requirements at different times. It presents key principles and
requirements of an agile MBSE approach and presents associated modeling
activities with illustration on an avionics case study.

1 Introduction

Model-Based Systems Engineering (MBSE) is a recognized good practice to improve
detection of errors and ambiguities in requirements early in the system development life
cycle and its adoption is rising in industry [1]. Concurrently, there is a growing demand
for support of an agile Systems Engineering approach and traditional SE methods have
started to adapt mainly by supporting MBSE as means to be more agile [2]. But an
agile MBSE approach requires a modeling framework to be responsive for changes
from requirements and currently there is not much support for that. This is quite an
interesting challenge, especially in avionics domain where there are certification rules
and guidelines that require all engineering artifacts to be traced to requirements.

Agile approaches rely on iterative and incremental development cycle with the
objective to frequently deliver values that satisfy the customer. In 2001, the agile
manifesto1 was published, listing the common principles to all agile method. Those
principles, mainly applied on software development, are now spreading in the systems
engineering community.

In addition to the agile principles, continuous integration and test driven devel-
opment are common practices in the software engineering domain. We believe that this
capability can be applied in an MBSE context, meaning that a system model should be

1 http://agilemanifesto.org/principles.html.

© Springer Nature Switzerland AG 2019
E. Bonjour et al. (Eds.): CSD&M 2018, Complex Systems Design & Management, pp. 168–178, 2019.
https://doi.org/10.1007/978-3-030-04209-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_14&domain=pdf
http://agilemanifesto.org/principles.html
https://doi.org/10.1007/978-3-030-04209-7_14

continuously validated regarding the requirements. Finally, the International Council
on Systems Engineering (INCOSE) has identified needs and potential outcomes to the
practice of agile methods in a Systems Engineering context [3, 4]. For instance, Quick
Reaction Capability (QRC) is an identified need for an agile acquisition process.

The main contribution of this paper is the presentation of an agile MBSE frame-
work that supports system definition compliant with ARP4754A [5]. The objective of
the proposed agile MBSE approach is to improve responsiveness of modelling activ-
ities when requirements are modified or when new requirements are given by cus-
tomers or by system domain experts (safety, physical simulation, control, etc.). To
achieve this objective, the proposed approach relies on several steps that permits to
capture requirements and to perform impact analysis on actual architectures using the
Systems Modeling Language (SysML) [6].

The rest of this paper is organized as follows: Sect. 2 presents the key principles of
the proposed MBSE approach. Section 3 presents introduces requirements to achieve
agile MBSE. Section 4 details the case study and discusses experiment results with
regards to agile approach. Finally, after reviewing the related work in Sect. 5, we
conclude and outline further work in Sect. 6.

2 Key Principles of the Proposed Agile MBSE Approach

At the beginning, all functional needs or requirements are collected from the different
stakeholders identified for the System of Interest (SoI). They are imported in the model
to be easily manipulated and related for traceability. Then, the proposed MBSE
framework is made of organized sets of model elements and 4 modeling activities that
populate and update those elements with traceability.

2.1 Capture Intended Behaviors from Input Functional Needs

The first principle of the approach consists in structuring the functional needs around
system functionalities using Use Cases (UC) and scenario-based approach. A func-
tionality (from ISO15288 [7]) represents a set of interactions of system with its
operating environment to achieve a functional goal. We use UML use case recognized
modeling technic to identify functionalities of the system [8, 9]. Identification of use
cases provides a set of independent high-level functionalities of the system, what is a
very interesting property for teamwork in an agile context: each person of the team can
work on a different use case with some autonomy.

A use case has a simple documentation that defines the starting event(s), the goal,
the end success conditions and the identified errors. Use cases are traced to input
functional needs/requirements with SysML Refine link to monitor progress and ease
review of their analysis.

After structuring functional needs within use cases, we propose to capture the
expected behaviors using black-box operational scenarios. The black-box operational
scenarios are defined as SysML Interactions owned by a use case (owned behaviors).
Those interactions are represented graphically by Sequence Diagrams (SD). For each
use case, the focus is put on functional messages between the SoI and use case’s

MBSE Framework to Support Agile Functional Definition 169

associated actors. The first message shows the triggering event of the scenario while the
expected responses of system is described with reflexive messages attached to the SoI
lifeline. The capture of those reflexive messages is useful to provide a first list of top
level functions, but it is not main priority at that stage because that list is likely to
change when other requirements are considered. Focus is rather put on functional
interfaces, i.e. the incoming and outgoing functional messages, and on the causal
dependencies between those functional messages. The goal is to deduce consistent
functional scenarios that cross the SoI, i.e. interactions between the SoI and its func-
tional operating context represented by actors.

2.2 Define System Functional Interfaces and Top-Level Functions

The second principle concerns definition of functional interfaces and top-level func-
tions. Concerning functional interfaces, an Interaction message cannot fit because it
only addresses one usage, not a definition. Hence, a concept is needed to define
functional interfaces exchanged between the SoI and its operating context, but also one
to define the associated event matching reception of the message by the system. For this
purpose, UML Signal and Signal Event are used to support those definition concepts.

Concerning the definition of top-level functions, ARP4754A recommends using
function-based approach from aircraft level down to software and hardware items. We
want to keep that recommendation and have the same concept to formalize functions at
different engineering levels, in an iterative and incremental approach. Furthermore, this
concept shall support breakdown relation to go from one level to another, as well as
definition of inputs and outputs. For this purpose, SysML Activity is used to define
functions and CallBehavior is used for functions call. Using SysML activity to define
function is debatable as we get two options:

1. either formalize functions as blocks and complete each block with an activity
containing actions to define behavior and allow simulation,

2. or formalize functions as activities and complete those activities with actions to
define behavior.

Both options would work but the first one requires synchronization of block
interface (ports) and activity interface (parameters) for consistency. This is additional
effort compared to option 2.

The proposed MBSE framework enables the automation of functional interfaces
and top-level functions synthesis from all the different validated use cases and sce-
narios. As use cases are independent, it means that it is possible to identify by con-
struction a full set of top-level functions without overlap. It is a good property to ensure
consistency between functions. Furthermore, traceability between sequence diagrams
and generated top-level functions is ensured. In the same time, the proposed framework
can generate executable actors’ behavior to prepare functional simulation and contin-
uous validation of the system in its operating context.

170 J. Tang et al.

2.3 Define Functional Architecture

A functional architecture is a structural arrangement of functions that specifies their
relations. It includes the hierarchical refinement between levels, the flows between
functional interfaces of a parent functions, functional interfaces of children functions,
and flows between functions of same level. The third principle concerns the design and
refinement of top-level functions. The goal is to refine each top-level function with
lower-level technical functions identified from domain knowledge while considering
non-functional requirements. The Fig. 1 gives an example of top-level function refined
by interface functions and internal functions. We use SysML Activity as behavioral
container, Action nodes to express behavioral elements, and Control Flow to specify
their execution logic. In addition, functional interfaces of the SoI are specified using
Send Signal Action (to send a signal), Accept Event Action (wait for a given event), and
“call behavior actions” represent function calls. Each functional interface is embedded
in interface function for further functional refinement.

We reuse same functional definition framework to manage all functions and their
functional interfaces. UML stereotypes are used to tag functions according to their
source (required function, technical functions, product functions) to better identify
owners of the functions. This refinement is performed recursively down to a level
where either function specification is clear enough for allocation or realization without
further decomposition, or there are identified products that realize it.

During this step, functions interfaces (inputs and outputs) are identified. This
identification is mainly driven by data/energy continuity principle. This principle
ensures that any data/energy needed as input by a function is produced by another
function or comes directly from SoI context. By following this principle, we can
identify required inputs decide if those inputs are provided by the input signal that
triggered top-level function, by another function or are already available in the system.
In that latter case it means that we need a function to retrieve/read that information.

Concurrently to the refinement of top-level functions, it is also important to define
their validity over time, i.e. conditions of the mission when activation of those func-
tions is valid. The proposed approach suggests using SysML state machine to represent
the different states and transitions that formalize the mission profile. It is possible to set
input signal of the function as trigger of a state transition. Next, the functions are
executed either as effect of a transition or as a doActivity of a target state, as illustrated
in Fig. 2. Progressively, all functions are connected to the state machine that is the top-
level system behavior.

2.4 Simulation of Scenarios

The fourth principle of the proposed MBSE approach concerns support of functional
simulation using fUML [10]. For instance, the Fig. 3 depicts an fUML simulation. The
left and right sides of the Figure show the behaviors of the actors that stimulate the
functional architecture at the center of the Figure. The goal here is to verify that the SoI
behaves as expected in the different validated scenarios once they have been combined
in a centralized definition. This simulation can be automated but can also be interactive
so that the customer may use it as a mean for early functional validation. At any time,

MBSE Framework to Support Agile Functional Definition 171

one can select a validated UC scenario and use it to simulate functional architecture
model in its operational context.

When simulation passes for all validated scenarios, then the model contains a
consistent set of system interfaces and top-level functions that address all source
functional needs capturing by scenarios validated by customer. Hence, using model
simulation helps in preparing V&V and continuous integration of systems models in an
agile context. Furthermore, ensuring consistency in the model is a key factor to derive a

Fig. 1. Example of top-level function formalized through a SysML activity

Fig. 2. Simplified example of state-machine containing top-level functions

Fig. 3. Simulation of functional architecture for validated scenario

172 J. Tang et al.

set of system requirements with good quality (correct, necessary, unambiguous,
complete, consistent with each other), and traced to stakeholder functional
requirements.

3 Requirements for Agile System Definition and V&V

The proposed MBSE approach aims at supporting late arrival or late analysis of
functional requirements, with immediate integration of new functions and updated
functions into current definition. As we apply a scenario-based approach for functional
requirements, customers must be able to analyze and validate changes in use case and
scenarios at any time. Indeed, in an agile context, the customer is involved in the
development process, especially to write and review user stories. Therefore, logics
(if/else and loops) are prohibited as this behavior is likely to change during functional
refinement. This leads to a first requirement:

REQ 1: The framework shall enable customers to validate use cases and sce-
narios. The scenarios shall remain conceptual and functional to be easily understood
by customer and validated at some point in time.

Changes in use cases and scenarios shall be immediately reflected into the current
functional definition. Such immediacy implies a second requirement:

REQ 2: The framework shall be able to identify new and updated functions from
scenarios and inject those changes into functional definition model.

In addition, the signals identified from input and output messages shall also be
updated when new scenarios are created or modified. We call those signals “system
external functional flows” as they represent functional exchanges between the SoI and
its environment.

REQ 3: The framework shall be able to identify new and updated system external
functional flows from scenarios.

Analyzing changes in an agile context is a strong asset to perform risk analysis.
Hence, the definition model elements (signals an activities) shall be traced to source
requirements, but through the scenarios to get easy support of change management
thanks to the traceability links. In addition, traceability is mandatory when developing
safety critical systems.

REQ 4: The framework shall be able to provide complete traceability between
requirements, scenarios, and functional architecture.

To maintain the capability of validating functional definition at any time, the
framework shall support the creation of simulated functional behavior for system
operating environment (represented by actors interacting with SoI).

REQ 5: The framework shall be able to generate and update behavioral model to
stress the system with inputs coming from actor’s behavior involved in the context of a
given UC scenario.

Teamwork is also an important part of agile method. Each team member should be
able to deliver value on the model without overlaps:

REQ 6: The framework shall be able to assess the independence of use cases. In
case a function is shared between several use cases, then the granularity of uses cases
should be modified to avoid overlap.

MBSE Framework to Support Agile Functional Definition 173

4 Experiments and Discussion

To assess the relevance of those activities and illustrate them, we used the Onboard
Maintenance System (OMS) as an industrial case study. The OMS is a software
intensive avionics system that monitors the health of the aircraft during flight and
supports run of tests while on ground. The main functions of the OMS are as follows:

• Monitor continuously aircraft avionics during flight
• Analyze faults, diagnosis of the root cause, and alert crew
• Inform maintenance crew of needed repairs
• Perform on-ground testing on aircraft avionics

In this experiment we focused on the operational use of the OMS without considering
the physical aspects (electrical, thermal, …) of the system. Then, since the OMS is a
software intensive system, we mainly specified the discrete aspect of the system.
Experiments were conducted using Cameo suite (Systems Modeler, Simulation Toolkit
and DataHub). Requirements were imported from DOORS Database.

The approach was applied in an engineering team comprising 7 systems engineers.
As depicted by the Fig. 4, high-level functional needs were captured from input
functional requirements and structured with use cases. Then, each use case was
assigned to one systems engineer whose goal was to provide black-box operational
scenarios. For each black-box scenario, the proposed approach was performed itera-
tively: scenario writing, scenarios combining (automated) and scenarios simulation.

4.1 Results

During functional needs and requirement capture, 8 main use cases and 4 actors were
identified for OMS. Among those use cases, 3 were considered as representative
enough to be detailed through the MBSE approach:

• Execute ground tests: this use case has a lot of interactions with aircraft equipment
and with maintenance technician.

• Aircraft Condition Monitoring Function (ACMF): it provides important function-
ality with regards to failure messages and good health of aircraft equipment.

• Upload data to target member system: it provides important functionality with
regards to aircraft equipment configuration.

From those 3 use cases, and with help of textual functional needs and requirements,
17 operational black-box scenarios were created, containing 108 functional messages
between actors and the OMS. The scenarios permitted to generate 71 signal definitions
all traced to the initial messages for impact analysis. Then, scenarios were combined to
create 18 executable top-level functions, 15 internal sub-functions, and 51 interface
functions that define the first level of the functional architecture model.

Concerning the “agile performance” of the approach here are our findings from the
experiments. First, it appears that the independence of use cases is a strong asset for
parallel teamwork. Indeed, we did not find any shared function between the use cases.
This is interesting as each team member can go from scenario down to functional
design without overlapping other team members work, at least at the functional level.

174 J. Tang et al.

Therefore, everyone was able to contribute to the same model at the same time by
delivering frequently added values to the system models.

The second finding concern traceability. In the proposed approach, interaction
messages are traced input requirements (when direct capture), and each extracted
signal, interface function and internal function are traced to the messages that generate
them. Therefore, when modifying a scenario or when adding a new one, team members
were able to identify impacts on the functional architecture under design.

Finally, the third finding concern continuous validation. Indeed, the simulation
context representing actors’ behaviors permitted to validate the functional architecture
during the design phase.

4.2 Discussion

Let us now discuss the use case modelling approach. For use case identification we
may have used the functions allocated from upper engineering level (aircraft and
avionics system in our case). However, there is often overlap between those functions
and it is not easy to detect overlaps because of limited function description. Hence, we
suggest performing the use case technics without relying on assumption that upper
level functions are the use cases. The purpose is to reach good use cases with “com-
plete” property, i.e. a use case shall be executed up to its end to fully address the
functionality it describes and reach a new stable state or error state of the system.

The second point of discussion concerns the use of actors instead of real external
systems in the black-box operational scenarios. This choice is motivated by two main
reasons. First, an actor is a role that can be played by any kind of real external systems
but irrespectively of the real interfaces: it let the problem space open, reusable, and
abstract, especially in avionics domain when operating context is often complex
(ARINC and AFDX network with redundancy for instance). However, this does not
mean that no operating context is needed. This is the point for the second reason: actors
can be allocated to real external systems present in the operating context. In that way,
the generated actors’ behaviors (UML Activity) could be automatically allocated to one
or several different real external systems for simulation.

Fig. 4. MBSE approach for agile functional definition

MBSE Framework to Support Agile Functional Definition 175

The third point concerns the synthesis of activity diagram from sequence diagrams.
While several MBSE approaches [9, 11–13] suggest creating definition diagrams like
SysML Activity diagram or EFFBD (Enhanced Function Flow Block Diagram) to
combine the different UC behaviors. We consider that the sequence diagrams define
user stories that are also acceptance test cases to validate the system. Hence, sequence
diagrams and synthetized activity diagrams have not the same value. The first one is
validated by customers, who are non-model experts, and is a usage diagram, while the
second one is a definition diagram that enables refinement and design.

Finally, the end of Sect. 2 just touches upon requirements derivation process. The
derivation process creates requirements from top-level functions definitions (inputs and
outputs, trigger event, conditions of activation) all along functional breakdown hier-
archy. As depicted by the Fig. 5, one can derive a set of good-quality system
requirements from the validated functional definition, what is not guaranteed by
document-centric approaches. This could be done using generation patterns and tem-
plate. The functional hierarchy leads to requirements decomposition, while the different
kind of functions (interface, internal, top-level) lead to different requirements. We have
done a proof of concept, but this is mainly part of further work.

5 Related Work

Use case driven development and use of Sequence Diagrams are common practices.
Yue et al. [14–16] propose a set of rules and use case templates to reduce ambiguities
and generate Activity Diagrams and State-Machine. The rules are applied on the use of
Natural Language and enforce the use of specific keywords to document a use case, i.e.
its precondition, dependency, basic flow steps, alternative flow. Song et al. [17] provide
a method to create Sequence Diagrams and check their consistency with regards to the
corresponding use case and class diagram. While those papers deal with scenario
consistency, they do not address the concept of function and generation of functional
chains in a Systems Engineering context.

Fig. 5. Good quality requirements from structured functional definition

176 J. Tang et al.

Function modelling within Sequence Diagrams has been addressed in several
published researches. The SysCARS approach [18] proposed to refine system scenarios
by adding functions modeled as SysML operations attached to the System of Interest
lifeline. Felician et al. introduced Enhanced Sequence Diagram (ESD) [19] for func-
tions modelling. It proposed to augment lifelines with multiple “flowlines” representing
Energy, Material, and Information. In that way the ESD offers a mapping between
different flows and message nature to functions.

While agile method apply to Systems Engineering has been addressed in [2, 20]
from the conceptual point view, our paper deals with real industrial application and
experiments with an integrated team project. We provide a framework and tooling
support to validate and to deliverer frequently value in a model-based approach. In
[21], the authors proposed to use Object Process Methodology (OPM) in an incre-
mental system development. However, the approach is demonstrated on a hypothetical
system, and does not make any link with continuous delivery, customer in the loop or
continuous validation.

6 Conclusion

We have presented motivations, principles, recommended activities, and requirements
for an MBSE framework that supports agile functional definition with consistency by
construction and validation through simulation. In addition, conducted experiments on
an avionics subsystem has demonstrated that the proposed MBSE framework can be
used in an incremental and iterative manner. The proposed activities help to detect, and
fix uncomplete or wrong functional definition (missing function, functional flow,
missing or wrong behavior…) and they can be conducted at any time.

In a very near future, we plan to assess the agile property of the approach during
functional allocation on technical components. Teamwork and continuous validation
should be assessed during technical architecture tradeoff. We also plan to conduct
experiments on products identification from model. Those products can be reused in the
physical architecture. Finally, we have started requirements generation from models.
This ongoing work would provide consistent by construction system requirements for
suppliers or domain experts.

References

1. Cloutier, R., Bone, M.: MBSE survey: initial report results, INCOSE IW, Los Angeles,
USA, January 2015

2. Douglass, B.P.: Agile Systems Engineering, San Francisco, CA, USA (2015)
3. Rosser, L., Marbach, P., Lempia, D., Osvalds, G.: Systems engineering for software

intensive projects using agile methods. In: International Council on Systems Engineering
IS2014, Las Vegas, USA (2014)

4. Schindel, B., Dove, R.: Introduction to the agile systems engineering life cycle MBSE
pattern. In: INCOSE International Symposium, 2016

5. Society of Automotive Engineers (SAE): Guidelines for Development of Civil Aircraft and
Systems - ARP4754A (2010)

MBSE Framework to Support Agile Functional Definition 177

6. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: The Systems Modeling
Language. Morgan Kaufmann (2014). ISBN 978-0-12-800202-5

7. ISO/IEC 15288: Systems Engineering-System Life Cycle Processes. ISO 2015
8. Adolph, S., Cockburn, A., Bramble, P.: Patterns for Effective Use Cases. Addison-Wesley

Longman Publishing Co., Inc., Boston (2002)
9. Weilkiens, T.: SYSMOD-The Systems Modeling Toolbox (20160
10. OMG: Object Management Group Foundational Subset for Executable UML Models

Specification (2017). https://www.omg.org/spec/FUML/1.3/
11. Vitech: STRATA Methodology – One Model, Many Interest, Many Views. http://www.

vitechcorp.com/resources/white_papers/onemodel.pdf
12. Hoffmann, H.: Harmony SE A SysML Based Systems Engineering Process (2008)
13. Pearce, P., Hause, M.: OOSEM and model-based submarine design. In: SETE/APCOSE

(2012)
14. Yue, T., Briand, L., Labiche, Y.: A use case modeling approach to facilitate the transition

towards analysis models: concepts and empirical evaluation. In: Proceedings of the 12th
International Conference on Model Driven Engineering Languages and Systems.
(MODELS), Denver USA (2009)

15. Yue, T., Briand, L., Labiche, Y.: An automated approach to transform use cases into activity;
diagram. In: Proceedings of the European Conference on Modelling Foundations and
Application, Paris, France (2010)

16. Yue, T., Ali, S., Briand, L., Automated transition from use cases to UML state machines to
support state-based testing. In: Proceedings of the 7th European Conference on Modelling
Foundations and Application, Birmingham, UK (2011)

17. Song, I.Y., Khare, R., An, Y., Hilbos, M.: A multi-level methodology for developing UML
sequence diagram. In: Proceedings of the 27th International Conference on Conceptual
Modeling, Barcelona, Spain (2008)

18. Piques, J.D.: SysML for embedded automotive systems: SysCARS methodology. In:
Proceedings of the Embedded Real Time Software and Systems Conference, Toulouse,
France (2011)

19. Campean, F., Yildirim, U., Enhanced sequence diagram for function modelling of complex
systems. In: Proceedings of the 27th Complex Systems Engineering and Development,
Cranfield, UK (2017)

20. Douglass, B.P.: Real-Time Agility: The Harmony/ESW Method for Real-Time and
Embedded Systems Development. Pearson Education (2009)

21. Mordecai, Y., Dori, D.: Agile modeling of an evolving ballistic missile defense system with
object-process methodology. In: IEEE Systems Conference Proceedings. Vancouver, BC
(2015)

178 J. Tang et al.

https://www.omg.org/spec/FUML/1.3/
http://www.vitechcorp.com/resources/white_papers/onemodel.pdf
http://www.vitechcorp.com/resources/white_papers/onemodel.pdf

Analyzing Awareness, Decision, and Outcome
Sequences of Project Design Groups:

A Platform for Instrumentation
of Workshop-Based Experiments

Carl Fruehling1 and Bryan R. Moser2(&)

1 Chair of Product Development,
Technical University of Munich, Munich, Germany

cfruehling@mytum.de
2 System Design and Management,

Massachusetts Institute of Technology, Cambridge, USA
bry@mit.edu

Abstract. Activity dependencies gain importance as engineering programs
become more complex and global. We treat the planning of engineering pro-
grams and projects as a collaborative exercise by teams to design their shared
project. An Awareness-Decision model and sensors for measurement were
developed to correlate attentions and actions to outcomes during project design.
A cloud-based platform allows teams to model projects and to simulate a pro-
ject’s cost and duration. This approach enables efficient deployment of experi-
ments with global project design groups. During experimental sessions, we
captured attention allocation, project change and performance data across
38 groups at three global sites to explore their decision-making process and
exploration of the cost-duration-tradespace. In this set of experiments, the
groups that were stimulated to pay more attention to dependencies did not show
a correlation with improved outcomes. Employing several sequence analyses,
including return time distribution, proximity walk, element focus, and vision
distribution, we attempted to draw insights on awareness and attention to
dependence and overall outcomes. Based on our analysis results, we give rec-
ommendations for research to more completely expose the role of attention to
dependence during project design.

Keywords: Project Design � Complexity management � Dependencies
Situational awareness � Attention allocation � Decision-making
Project management, team performance � Workshop-based experiments

1 Introduction

Large-scale engineering programs and projects face increasing complexity in coordi-
nating activities as their teams are globally dispersed. The dependencies between
activities cause coordination efforts which are not taken into account in classical project
planning tools. Project Design is a method which allows to model the architecture of

© Springer Nature Switzerland AG 2019
E. Bonjour et al. (Eds.): CSD&M 2018, Complex Systems Design & Management, pp. 179–191, 2019.
https://doi.org/10.1007/978-3-030-04209-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_15&domain=pdf
https://doi.org/10.1007/978-3-030-04209-7_15

complex projects [1]. The agent-based simulation software TeamPort forecasts the
project’s cost and duration including the dynamics driven by coordination efforts [2].

A project’s team leaders come together in a workshop at the project’s front-end to
design the project architecture and model its activity dependencies. They rely on
known theories and their experience from previous projects. When modelling depen-
dencies, they face the Rumsfeld-Dilemma of known unknowns and unknown knowns
[3]. While known unknowns can be simulated with the help of probability functions,
unknown knowns need to be discovered by social interactions and experiments. These
so-called blind spots are often not visible in the first place but occur to be obvious when
reflecting the project after it has been completed [4]. Common examples are large
public projects like building a shopping mall or an airport where cost and duration
suddenly explode due to unseen conditions. Afterwards, the reasons for failure appear
to be simple and one does wonder why they have not been discovered earlier.

To unveil these blind spots, a Project Design group needs to become aware of the
causes and effects of critical activity dependencies in order to establish interactions
between those teams who are assigned to the dependent activities [5]. When modelling
the dependencies in TeamPort correctly (with respect to environmental system
boundaries), the group can decrease both the cost and duration of a given project
model. This ability is defined as the subject’s Project Design performance (outcome).
In our research, we relate the three levels of awareness, decision, and outcome with
each other. The detailed research framework and methodology is explained in the
following.

2 Research Framework

To research the group behavior and decision-making during a predefined Project
Design exercise, we formulated the Awareness-Decision-Model (Fig. 1). The model
consists of a three-step cycle process. First, a subject becomes aware of a certain project
element. This situational awareness implies a sufficient amount of concentration and
cannot be intuitive. As described by Endsley [6], the subject first perceives the element,
then comprehends the element’s conditions and relations within the model. Finally, the
subject projects its comprehension and makes a decision. The decision on making a
change in the project model leads to an outcome, after the subject simulates the new
status of the model. The achieved performance is fed back to the subject. Now the
subject perceives the new situation and initiates a new iteration in its awareness-
decision process.

In order to reframe the situation the subject needs to activate its “System 2” [7].
From our perspective, this is achieved by applying a structuring method in the Project
Design process. This process is simulated in a workshop-based experiment where the
subjects work in teams of multiple persons on a project model in the simulation
software TeamPort. A subject gets a “scrambled” project model. The objective is to
minimize the forecasted project time and cost by making changes in the project model
(e.g. team size, resources per activity, dependencies etc.). The lower the forecasted time
and cost, the higher the subject performance is ranked. Before making changes, the
subject needs to lay out the project architecture by dragging and dropping elements

180 C. Fruehling and B. R. Moser

apart and clearing up the structure. This structuring method is understood as treatment
in the following. A control group would not conduct the layout exercise but receive a
ready structured project model from the beginning on. Two research questions
emerge: (1) Does a structuring method increase a group’s awareness for activity
dependencies? (2) Does the awareness for activity dependencies increase a group’s
performance?

To answer these questions, we designed an experiment in a workshop setup for
Project Design groups. We used TeamPort as platform and orientated the design of
experiment on an approach which was previously defined by Moser et al. [1]. Later we
elaborated the approach by implementing the learnings of Chucholowski et al. [8].

In our workshop-based experiment, the participants were assigned to either a
control group or a treatment group. Each Project Design group consisted of four
participants. Social interactions between the group members fostered the participants’
learning. On the one hand, they could discuss and reflect on their modeling approach.
On the other hand, they could support each other on technical questions. After a
briefing and tutorial phase which explained the software controls, all groups worked on
the same predefined project model and tried to reduce its cost and duration. The
treatment groups began with the layout structuring exercise, while the control group
started with an already prepared clear structure. The exercise lasted 1.5 h. After
completing the exercise, the participants were debriefed. The groups compared their
modeling results. Each participant filled out a survey regarding their Project Design
approach. The feedback from the participants given in the surveys on the workshop-
based experiment indicates a high benefit from the interactive way of solving a problem
with the simulation software using an intuitive graphical interface as well as the social
experience of working in group and developing solution strategies together. The
feedback was also used to collect improvement suggestions for further research.

Fig. 1. Awareness-decision-model and experiment sensors

Analyzing Awareness, Decision, and Outcome Sequences of Project Design Groups 181

Based on this design of experiment, we formulated the following five hypotheses:
(1) High performing Project Design groups allocate their attention differently than low
performing Project Design groups. (2) High performing Project Design groups allocate
their attention more to activities and dependencies than do low performing groups.
(3) High performing Project Design groups focus on the project architecture before
making changes on the project model. (4) Project Design groups increase awareness of
activity dependencies through laying out the project architecture themselves. (5) High
performing Project Design groups follow similar action patterns which low performing
Project Design groups do not follow.

To test these hypotheses, we implemented several sensors to the software and
collected data about the groups’ attention allocation, their decisions, and their perfor-
mance in real-time during the experiment (Fig. 1). First, the demographic data of the
participants was collected. Second, the Fingerprint Report protocoled all mouse clicks
on the graphical user interface of the software. As a result, the action sequences show
on which elements and for how long the groups focused on. Third, the Change Log
protocoled all changes a group made between to simulation runs. This allows a
comparison between the attention allocation of a group and the actual changes that the
group performed on the project model. We can thus capture behavioral patterns in
project design. Fourth, Design Walk collected the performance of each group in
reducing the cost and duration of the project. Each time a simulation is ran, a data point
is added to the Tradespace (a plot with two axes for cost and duration). Finally, the
Comprehension Questionnaire asked the participants how they did approach the
exercise and what they would do differently next time. It also allowed them to reflect
their group work and give feedback on the design of experiment. The collected data
was aggregated and analyzed to identify patterns of success-promising Project Design
strategies.

The analysis methods are explained in Fig. 2.

3 Clustering Analysis

When analyzing the attention allocation data of a subject, not only the absolute number
of perceptions (mouse clicks) must be taken into account, but the relative order of
occurrences as well. We used Bioinformatic algorithms to perform a sequence analysis.
In Bioinformatics, sequences of genomes are aligned with each other. After counting
the number of matches between two sequences, their similarity is accessed. Comparing
all sequences from one data set allows to draw a phylogenetic tree which shows the
relationship between the genomes. Looking at two genomes, the less branches lie
between them, the closer they are related. In our sociotechnical research, a sequence
alignment would not work as it would imply that similar behaving groups would click
on the same elements at the same time. Instead, we use an alignment-free approach and
define features which are frequency-based. For each feature, we first generate a first
distance matrix for all groups (G) and a second distance matrix for each included
sequence (S). Next, we cluster the matrices hierarchically and compare the clusterings
of predictive and outcome features. After accessing the degree of similarity, we

182 C. Fruehling and B. R. Moser

determine p-values with respect to a null hypothesis. This allows us to identify
performance-related features, validate our hypotheses and draw conclusions.

We defined four features for the clustering analysis. The Performance Impact
represents the outcome variable, while the Return Time Distribution, the Proximity
Walk and the Element Focus represent the predictive variables. The following firstly
describes the defined features. Secondly, it interprets the achieved results.

The Performance Impact (PI) of a sequence is defined as achieved performance
compared to a baseline. The PItot refers to the project’s initial status and reflects the
total performance. The PIinc refers to the incremental change compared to the last
simulation run. We combine the measures PItot and PIinc of the ith and jth sequence in

distance matrix DPI ¼ dPIij
h i

. Each pairwise distance is calculated with

dPIij ¼
ffi
PIitot � PIjtot
� �2 þ PIiinc � PIjinc

� �2q
ð1Þ

Next, we calculate the Return Time Distribution (RTD). This feature is deter-
mined by the frequency of elements which appear in sequence until the same element
appears again [9]. In our case, we take the number of clicks on other element types,
until an element of the same type is clicked again. The smaller this number (the Return
Time) is, the higher is a subject’s attention allocation towards that element. As a result,
we get the frequency of each Return Time for each element. The means and standard
deviations of these frequencies give the RTD. The pairwise distances of this feature

(DRTD ¼ dRTDij

h i
) are calculated with

1. Conducting Experiment

2. Compiling Data

Feedback
& Learnings

Attention
Data

Performance
Data

3.1 Computing Distances

4. Building Clusters

Attention
Distances

Performance
Distances

5. Comparing Trees

Attention
Tree

Performance
Tree

6. Identifying Patterns

Insights
& Experiences

Return Time Distribution
Proximity Walk
Element Focus

Performance

3.2 Process Changes

Change
Distribution

Change Rate
Change
Consistency

Change Focus

Change
Velocity

3.3 Classify GroupsClass
Consistency
Approach

Main Class

Class
Distribution Approach

Fig. 2. Steps in the analysis method

Analyzing Awareness, Decision, and Outcome Sequences of Project Design Groups 183

dRTDij ¼
ffiXX

r¼A
lRTDir � lRTDjr

� �2
þ

XX

r¼A
rRTDir � rRTDjr

� �2
r

ð2Þ

where

lRTDr ¼
P

Return Time� Frequencyð ÞP
Frequency

ð3Þ

rRTDr ¼
ffi
RðFrequency � lRTDr Þ2

RFrequency

s
ð4Þ

8r 2 fA;B;C;D;E;F;G;H;Xg ð5Þ

The index r represents the element type. In TeamPort, we measure eight different
element clicks (A� H) plus the click for a simulation run (X). The element types are
separated into objects (products, teams, activities, and phases), relations between
objects (dependencies and contracts), as well as locations and projects.

Further, we examine the groups’ Proximity Walk (PW). The PW is defined by the
structural distances a subject covers between two consecutive clicks. The structural
distance is the shortest path on connections between to objects. Each click is given a
Proximity distance with respect to the previous click. The frequency distribution of all
Proximity distances gives the PW. Two different frequency profiles exist. Either, A
subject clicks incrementally from element to element what results in a short PW. Or, it
jumps forth and back between different segments of the project what results in a long
PW. We use the means (lPW Þ and standard deviations (rPW) to compute the distance

matrix DProx ¼ dProxij

h i
. The pairwise distances are calculated with

dPWij ¼
ffi
lPWi � lPWj

� �2
þ rPWi � rPWj
� �2

r
ð6Þ

Next, we determine the Element Focus (EF) of each subject. This feature is defined
by the ratio (RET) of number of clicks on one element types (ET) to number of clicks in
total.

RET ¼ clicksET
clickstotal

ð7Þ

We calculate the ratios for eight element types (A� H). The pairwise distances

(DEF ¼ dEFij
h i

Þ are calculated with

dEFij ¼
ffiXH
r¼A

Rir � Rjr
� �2

vuut ð8Þ

184 C. Fruehling and B. R. Moser

8r 2 A;B;C;D;E;F;G;Hf g ð9Þ

Finally, we analyzed the View Distribution (VD). This feature is analogically
calculated to the EF. Table 1 gives an overview of all defined features for the clustering
analysis. It shows which statistical sub-features have been applied for calculating the
pairwise distances.

Each distance matrix was normalized to its highest value. This allows to directly
compare them with each other. Next, all distance matrices were clustered hierarchically
with the Neighbor Joining algorithm. The Neighbor Joining algorithm minimizes the
sum of branch lengths for each node and results in an unrooted tree. The method is
computational more efficient than other clustering algorithms [10].

In total, we examined the features of 38 groups (two had to be excluded as their data
was insufficiently recorded). We gained 303 sequences for our analysis. The PIs are
plotted in Fig. 3. The four quadrants of the scatter plot represent the four possible
outcomes of a sequence. If both PItot and PIinc are positive, the group is performing well.
If PItot is positive but PIinc is negative, the group’s performance is still better than the
initial status but is moving in the wrong direction. It should consider stepping back to its
last project model version. If PItot is negative but PIinc is positive, the group moves in the
right direction, but should consider loading a different project model version, as its total
performance is still negative. If both PItot and PIinc are negative, the group is completely
on the wrong track as it is declining project performance in both ways.

In our data, we can see that most groups could make a positive incremental as well
as total impact on the project performance. However, the treatment groups (those who
used the structuring method) underperformed the control groups on average. Therefore,
the treatment was not effective.

Nevertheless, we applied the clustering algorithm and produced a PI clustering (not
shown here). The PI clustering is very distinct as it has multiple large and small
clusters. To draw a conclusion, we need to analyze the predictive features. For that
purpose, we show a cell plot of the attention allocation over the exercise time initiated

Table 1. Clustering features overview

Var. Features G S Mean SD Sum Max. Ratio

out. Performance Impact ✓ ✓ ✓ ✓ – ✓ ✓

pre. Return Time Distribution ✓ ✓ ✓ ✓ – – –

pre. Proximity Walk ✓ ✓ ✓ ✓ ✓ – –

pre. Element Focus ✓ ✓ ✗ ✗ ✓ ✗ ✓

pre. View Distribution ✓ ✓ ✗ ✗ ✓ ✗ ✓

G = group-based, S = sequence-based,
out. = outcome variable, pre. = predictive variable
✓ Applied – Not applied
✗ Not applicable

Analyzing Awareness, Decision, and Outcome Sequences of Project Design Groups 185

by mouse clicks (Fig. 4). The length of each bar in the cell plot indicates the relative
time spent in one view mode. This data is gained from the Fingerprint Report as
explained above. It shows the participants’ mouse clicks and the mode in which they
view the project model.

The Architecture view allows to sketch the project structure. The Forecast window
is used to trace back the reasons for cost and duration effects. The Matrix view shows
relations between objects in a sorted table. Additionally, the project model can be
viewed in three different Breakdown Structures (BS). The Location Map gives an
overview about the project teams’ locations and the environmental boundaries. The
Meeting Coordination tab allows to schedule meetings for the project teams. By rowing
the view modes of each group together, their action sequences are gained.

The groups’ action sequences have been ranked for their maximum performance.
A qualitative analysis of the cell plot gives only little information. It seems that high
performing groups first plan their approach before starting to work on the model. Low
performing groups seem to use a trial-and-error approach instead. Additional analyses
have shown the effectiveness of the treatment. If many clicks occur in a short time
during the first part of an action sequence, the group clicked on many elements while it
was laying out the project model.

4 Results Interpretation

In the next step, we derive the predictive clusterings. Figure 5 shows the RTD clus-
tering which consists of a few large clusters and many small clusters. The other
clusterings are not shown here. The distance between two elements is calculated as
RTD (fingerprint based). Nodes bundle elements with short distance to each other.

Fig. 3. Total versus incremental performance impact per simulation run

186 C. Fruehling and B. R. Moser

Clusters can be defined by “cutting” the tree at a certain diameter. In other words, one
node can represent a cluster. The node itself has no meaning. There are large and small
clusters. The farther a knot is away from the middle, the smaller a cluster is. Large
clusters are a sign of typical behavior shared with many subjects. Small clusters are
“exotic” behaviors only few subjects showed.

The idea of clustering visualization is to identify correlations between features by
layering their clusterings over each other. However, this qualitative comparison is only
practicable for a small sample. On the other hand, a large sample size gives a pre-
dictability. A quantitative comparison method is needed to analyze the correlation of
different clusterings. Therefore, we used the Fowlkes-Mallows-Index (FMI) to compare
the clusterings and determine their degree of similarity. The FMI takes values between
0 and 1. At 1, the examined clusterings are identical. At 0, they are not related at all.
Both clusterings must consist of the same number of groups (n). The number of clusters
(k) takes all integer number from 2 to n� 1. Monte Carlo samplings show that the FMI
converts against 0 for higher number of clusters what differentiates it from other
similarity indices [11].

Fig. 4. The attention allocation cell plot over exercise time

Analyzing Awareness, Decision, and Outcome Sequences of Project Design Groups 187

The FMI needs to be contrasted by its null hypothesis to determine the p-Value of
the resulting values. In our case, we used a bivariate normal sample of 20 pairs with the
null hypothesis values

n ¼ 303; l ¼ 0
0

� �
; r ¼ 1 0

0 1

� �
ð1Þ

The sample size equals the size of data set. Figure 6 shows the FMI Distribution of
three clustering comparisons (PI with RTD, PI with PW, and PI with EF) as well as the
null case.

If the line lies above the dashed null case line, the degree of similarity is higher than
random. The analysis shows that the FMI of PI with RTD is lower than null for cluster
numbers higher than 39. The same applies for the FMI of PI with PW for cluster
numbers higher than 26. Only the FMI of PI with EF stays over null for the entire
interval. Nevertheless, we need to add a confidence level to null case (Table 2).

The calculated p-values do not satisfy a statistical threshold of 0.05. So far, we
could not find a feature which would be a good predictor in our clustering analysis.

Fig. 5. Clustering example for the return time distribution

188 C. Fruehling and B. R. Moser

5 Conclusion

We conducted four workshop-based experiments with in total 38 Project Design
groups. We measured the groups’ attention allocation, decisions, and performance to
identify patterns and success-promising Project Design strategies. From the hypotheses
formulated in the beginning of the paper, only two could be proven as valid. The first
hypothesis (high performing groups allocate their attention differently) and the second
(high performing groups allocate their attention more to dependencies) indicated
validity. Hypothesis 3 (High performing groups focus on the project architecture) and 4
(groups become aware of activity dependencies through laying out the project archi-
tecture themselves) could not be proven as valid. The last hypothesis (High performing
groups follow similar action patterns) is only been proven to a certain degree. Pre-
liminary results indicate that high iteration speed combined with a change-observe
approach (rather than trial and error) can lead to higher success.

In summary, project design groups can benefit from using planning software that
visualizes the project architecture and highlights dependencies between project activ-
ities. To gain performance improvements a project design group should first plan their
approach on how the handle the different activity dependencies before starting to revise

Fig. 6. The fowlkes-mallows-index distribution of performance impact and return time
distribution

Table 2. The p-values for selected FMI distributions

FMI distribution PI with RTD PI with PW PI with EF

Mean (p) 0.8900 0.9439 0.1142
StdDev (p) 0.3129 0.2192 0.3070

Analyzing Awareness, Decision, and Outcome Sequences of Project Design Groups 189

the project architecture. After increasing their awareness for activity dependencies,
project design groups should use a respective approach for making decision in the
project design phase. Decision-making data was collected throughout the experiments.
This data has not been analyzed, yet. Next, we would like to add different clustering
techniques to our analysis methods to test the recorded data for more features.

The method proposed in this paper is a first step in various directions of our
research strategy. First, it proposes activity dependencies more richly characterized
than precedence as a relevant research topic. Complex dependencies are a crucial
aspect in complex programs and can have a big impact on the performance. By
modelling dependencies explicitly and being able to capture how teams are aware and
interact with them, we bring the topic closer to the practitioners and give them a way to
evaluate and steer the behavior of the team. Second, the research platform and approach
we propose opens possibilities of fast, global experiments in real time.

The instrumentation of the decision-making process, together with the algorithms
and analysis techniques proposed, enable teams to gain more insights on their behavior.
Teams can recognize best practices and adapt their collaboration accordingly. With a
globally deployable approach for the proposed workshop-based experiments, large
amounts of data would be gathered. Analyses techniques like machine learning could
be used to process the resulting data and build a prediction model for project design
practices. Further research should leverage the gained insights on how to steer projects
in the right direction for the design of new projects.

Acknowledgements. The authors would like the thank the contributions of the Global Team-
work Lab (GTL) at MIT and University of Tokyo, as well as Dr. Eric Rebentisch of CEPE at
MIT and Nepomuk Chucholowski of Technical University of Munich.

References

1. Moser, R., Grossmann, W., Starke, P.: Mechanism of dependence in engineering projects as
sociotechnical systems. Presented at the 22nd ISPE Concurrent Engineering Conference (CE
2015) (2015)

2. Moser, B.R., Wood, R.T.: Design of complex programs as sociotechnical systems. In:
Stjepandić, J. (ed.) Concurrent Engineering in the 21st Century, pp. 197–220. Springer
International Publishing, Switzerland (2015)

3. Rumsfeld, D.H.: DoD News Briefing. Federal News Service Inc., Washington, D.C. (2002)
4. Luft, J., Ingham, H.: The Johari Window: a graphic model of awareness in interpersonal

relations, Human relations training news, vol. 5, pp. 6–7 (1961)
5. Marle, F., Vidal, L.-A.: Managing Complex, High Risk Projects - A Guide to Basic and

Advanced Project Management. Springer-Verlag, London (2016)
6. Endsley, M.R.: Toward a theory of situational awareness in dynamic systems. Hum. Factors

37, 32–64 (1995)
7. Kahneman, D.: Thinking, Fast and Slow, 1st edn. Farrar, Straus and Giroux, New York

(2011)

190 C. Fruehling and B. R. Moser

8. Chucholowski, N., Starke, P., Moser, B.R., Rebentisch, E., Lindemann, U.: Characterizing
and measuring activity dependence in engineering projects. Presented at the Portland
international conference on management of engineering and technology 2016, Honolulu,
Hawaii, USA (2016)

9. Kolekar, P., Kale, M., Kulkarni-Kale, U.: Alignment-free distance measure based on return
time distribution for sequence analysis: applications to clustering, molecular phylogeny and
subtyping. Mol. Phylogenet. Evol. 65, 510–522 (2012)

10. Saitou, N., Nei, M.: The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Mol. Biol. Evol. 4, 406–425 (1987)

11. Fowlkes, E.B., Mallows, C.L.: A method for comparing two hierarchical clusterings. J. Am.
Stat. Assoc. 78, 553–569 (1983)

Analyzing Awareness, Decision, and Outcome Sequences of Project Design Groups 191

Systemic Design Engineering

Curriculum and Instructional Results

Jon Wade1(&), Steven Hoffenson1, and Hortense Gerardo2

1 Stevens Institute of Technology, Castle Point on Hudson,
Hoboken, NJ 07030, USA

{jon.wade,steven.hoffenson}@stevens.edu
2 Lasell College, 1844 Commonwealth Avenue, Auburndale, MA 02466, USA

hgerardo@lasell.edu

Abstract. This paper describes a methodology, Systemic Design Engineering,
that integrates systems thinking for sustainability, design thinking for human
centricity, and systems and software engineering for implementation efficiency.
Based on these operating principles, an integrated set of learning objectives for this
approach are described. A supporting syllabus is presented which is suitable to a
semester-long undergraduate or graduate design course. A pilot of this curriculum
in a graduate level systems and software engineering design course has been
conducted. The learning results from this pilot are presented. These results are
compared and contrasted with the results from a similar, traditional systems
engineering design course and a dedicated systems thinking course. Finally,
conclusions and areas for further refinement and developments are described.

1 Background

The Concept Phase of Systems Engineering, which is often referred to as “preliminary
design” in other engineering disciplines, is most critical for it determines most of the cost,
complexity and value of a system. Figure 1 illustrates how the committed costs and the
costs to remediate defects increase as the design process progresses over
time [1].

The percentages along the timeline represent the actual life cycle cost (LCC) ac-
crued over time based on a statistical analysis performed on projects in the US
Department of Defense (DoD), as reported by the Defense Acquisition University
(1993). However, perhaps due to the traditional role of systems engineering in the
contract-driven defense/aerospace industry, systems engineers are often thought of as
starting with a set of high-level customer requirements and developing the architecture,
design and implementation through integration, often handing off the program to
manufacturing and logistics. In addition, as systems continue to become more human-
centric, it is critical that these aspects are also considered throughout the lifecycle in
such a manner that the systems are sustainable.

Given the interdisciplinary nature of conceptual and detailed design, it is no wonder
that a wide variety of methods, processes and approaches have been developed to aid in

The original version of this chapter was revised: Third author name has been corrected.
The correction to this chapter is available at https://doi.org/10.1007/978-3-030-04209-7_29

© Springer Nature Switzerland AG 2019
E. Bonjour et al. (Eds.): CSD&M 2018, Complex Systems Design & Management, pp. 192–202, 2019.
https://doi.org/10.1007/978-3-030-04209-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_16&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_16&domain=pdf
https://doi.org/10.1007/978-3-030-04209-7_29
https://doi.org/10.1007/978-3-030-04209-7_16

addressing design problems [2–10]. Even within the engineering community, designers
from different disciplines working on different types of problems have devised their
own frameworks to demystify the design process. As academia and industry are
moving towards becoming transdisciplinary, it is important to find ways to train stu-
dents with knowledge from various disciplines. Part of the challenge is to identify
where these disciplines overlap and find a common language to communicate among
practitioners with different training. It no longer makes sense to have separate design
processes for different disciplines that seek to solve technical problems, and there is a
need to create a codified standard to optimally equip students who will be designing the
products, services, and systems of the future [11].

The objectives for this interdisciplinary approach are [11]:

• To create a methodology that is logical, easy to follow, and can be taught as part of
any curriculum that teaches approaches to problem-solving, complex systems, and
product development.

• To create a process that promotes exploration of innovative ideas and a systematic
way to select the most promising option (engineering design).

• To promote a process that results in a low-risk, realizable, and profitable solution
(systems engineering).

• To create resulting products that satisfy a real user need (design thinking).
• To demonstrate that resulting products are sustainable in the changing and

increasingly connected marketplace (systems thinking).
• To verify that the approach can be used for systems which are humancentric,

including complex social systems (systemic design).
• To establish a framework that can be tailored to be used on systems and products of

all types (agile systems/software engineering).

Fig. 1. Committed Life Cycle Cost against Time. 3.1. Fort Belvoir, VA: Defense Acquisition
University. (Source: DAU, 1993)

Systemic Design Engineering 193

2 Systemic Design Engineering

Systemic Design Engineering (SDE) [11] was developed to satisfy the aforementioned
objectives. This approach combines the most advantageous elements of: (1) systems
thinking to ensure that the resulting design is appropriate to its context and is sus-
tainable, (2) design thinking to ensure that the design properly considers human cen-
tricity, and (3) systems and software engineering to ensure that the design can be
implemented, deployed and supported at the required performance, cost and quality.

One commercial example of success in each of these areas is the iPhone. In this
case, Apple has enabled an ecosystem of application developers such that they are not
direct employees, but rather are the emergent result of a system that was established by
Apple. This ecosystem is such a formidable barrier to entry that only two have been
successfully established, those for the IOS and Android. Other phone makers, such as
the pioneer Nokia, are no longer in the market as their businesses were not sustainable
without the existence of such an ecosystem. Hence, the critical importance of systems
thinking. Design thinking is a critical partner to systems thinking, as it ensures that the
product properly considers the human-centric nature of systems and their interactions
with people. In the smart phone example, the iPhone utilized a successful human
interface that has resulted in many consumers staying with the iPhone despite the
sometimes significant advantages of competitors’ hardware platforms. Learning a new
user interface is simply too great of a hurdle for many, even if the competing interfaces
apply many of the same interface principles (e.g., swipes and other gestural motions).
In addition, understanding the ethnographic and cultural contexts of the users can be
critical to the success of the products. Finally, systems and software engineering are
critical to enable successful engineering of the product such that it can be rapidly
ramped up to tens of millions of units per month all while achieving the necessary
levels of cost and quality.

The following is a brief description from [11] of how SDE is used which provides
context for the development of the course curricula that was developed for the
instruction of conceptual design. As noted earlier, it is in the front-end conceptual-
ization and design of the system where design and systems thinking can make the
greatest contributions. Using this approach, the Cynefin system taxonomy [12], shown
in Fig. 2, is used to first identify and classify different types of systems.

As noted in this diagram, simple systems can be addressed by best practices using
an approach where one senses the system, categorizes it, and then responds with the
best practice that is applicable for that situation. Those skilled in bureaucratic are most
comfortable with this approach. Complicated systems are ones in which cause and
effect are well-understood, and the most appropriate approach is to sense the system to
collect data, perform analysis, and then make decisions based on this analysis. This is
the system type with which engineers are most comfortable with the result that all
systems are seen to be complicated. Chaotic systems require immediate action, and as a
result, there is no time for data collection and analysis. Thus, the appropriate response
is one of act, sense the results of the action, and then base further responses on these
results. Authoritarian are most comfortable with these types of systems with the result

194 J. Wade et al.

that the firefighters might be the ones who start the fires through the lack of proactive
measures.

Simple systems are rare and generally do not require the attention of engineering.
Chaotic systems require rapid response and thus are not appropriate for engineering
responses. While complicated systems are already addressed well by existing analytic
engineering practices, this is not the case for complex systems. In addition, the
importance of complex systems is growing rapidly due to the increasing predominance
of humans and social elements in our socio-technical systems. In fact, with the
inclusion of humans in systems, anthropological approaches resulting in an under-
standing of the cultural norms and “interwoven meanings and practices” of the
stakeholders and system users becomes critical [11]. In complex systems, engineers
need to play the role of scientists, probing the systems through experimentation probing
the system and then sensing the results to begin to understand the relationships between
cause and effect, which then enables an educated response. The design of experiments
and use of rapid iterative prototyping are essential skills in this area, for the goal is not
to ‘quickly fail’, but rather to quickly learn.

Thus, the combination of systems and design thinking is critical in addressing the
challenges of complex systems. Systems thinking approaches are necessary to ensure
that the overall context of the system is well understood so that resulting systems can
evolve in an acceptable fashion and be sustainable. Many different systems thinking
methods and tools can be deployed in this effort, but they will need to define the extent
of the systems, its critical interconnections and interactions, the overall dynamics of the
system, and the potential leverage points that might need to be used to influence the
system to have the desired behavior [13]. Through system and design thinking, critical

Fig. 2. Cynefin Framework (source: Kurtz, 2003 [12])

Systemic Design Engineering 195

assumptions must identified, and anthropological approaches should be used to
establish ground truth [14]. These can be short studies, or they can involve weeks or
even months of fieldwork observation, which might be very difficult for action-oriented
engineers to conduct, particularly where observation skills are critical. In these situa-
tions, knowledge in the development of design of experiments is critical, and scientific
approaches of discovery are highly valued. Ideally, this is where engineers might enlist
the assistance of those who are experts in the field, particularly in the social sciences.

Once the context, including the social and human factors are understood, these
results can be used in models that enable the generation and selection of design con-
cepts which can then support the more traditional activities of systems and software
engineering. This will enable the development of the traditional systems and software
engineering artifacts such as a concept of operations, top-level system requirements and
derived requirements, both functional and non-functional requirement (e.g., perfor-
mance, reliability, cost, etc.), competitive analysis, profitability and so on.

This approach, entitled Systemic Design Engineering, is a tailorable framework,
extending existing engineering frameworks to incorporating the most critical elements
of systems and design thinking, depending on the system type and need. Design
thinking is present through the emphasis on the users and stakeholders throughout the
process, particularly in the early stages, and elements of systems thinking ensure that
the designers are thinking about how the product fits into the world, related markets,
sustainability concerns, and synergistic opportunities. By combining the elements of
the existing predominant design paradigms, the success criteria enumerated above for a
unified approach to design should be satisfied by Systemic Design Engineering.

3 Course Curricula

Once this Systemic Design Engineering concept was created, it was tested in the
context of a course called the Conception of Cyber-Physical Systems, which is part of a
four course graduate series covering the lifecycle of conception, design, implementa-
tion and sustainment of cyber-physical systems. The core modules for the course are
based on the critical aspects of systems thinking, design thinking, and systems and
software engineering that are described below, along with the structure and learning
objectives for each module.

3.1 Context – Systems Thinking

The learning objective for this major section is that the students understand systems
concepts and are able to properly classify systems so that they can apply appropriate
analysis and design approaches to them. In addition, they learn how to identify the
interrelationships and structures of systems, analyze and predict system dynamics, and
determine where and how to best influence and modify systems to achieve the desired
outcomes. The objectives for the section modules are noted below.

196 J. Wade et al.

3.1.1 Systems Perspectives
Objectives:

• Identify different system types: simple, complicated, complex and chaotic
• Understand the basic components of systems thinking
• Understand the basics of the soft systems methodology
• Be able to construct a root definition for a system of interest
• Be able to view a system from multiple perspectives using CATWOE.

3.1.2 Relationships
Objectives:

• Understand how systemigrams are constructed and used
• Be able to transform a root definition into a systemigram mainstay
• Be able to construct a systemigram for a system of interest
• Be able to tell a story using a systemigram.

3.1.3 Dynamics
Objectives:

• Understand the elements and operation of causal loops
• Understand the difference between reinforcing and balancing loops
• Be familiar with some causal loop archetypes
• Be able to construct a causal loop
• Be able to tell a story with causal loops.

3.1.4 Leverage Points
Objectives:

• Understand the concept of system leverage points
• Understand the various types of leverage points and how they differ
• Be able to identify leverage points in your system of interest and determine which

are most appropriate to achieve your objectives.

3.2 Human Centricity – Design Thinking

The objective for this major section is for the students to understand design thinking
concepts informed by anthropocentric analysis to enable informed understanding of the
needs of customers and stakeholders, thereby creating a system in which a design
concept can be created that meets preliminary requirements. The objectives for the
section modules are noted below.

3.2.1 Design Thinking Essentials
Objectives:

• Become familiar with the elements of design thinking
• Hear the views of prominent design thinkers regarding process and objectives

Systemic Design Engineering 197

• See examples of design thinking success
• Experience a one hour Ideation Process
• Learn the importance of storytelling
• Create artifacts that can be used throughout this course.

3.2.2 Identifying Opportunities
Objectives:

• Describe a framework (Real-Win-Worth it) by which to evaluate opportunities
• Describe situations that enable opportunity
• Discuss the importance and characteristics:

• Appropriate Problem Statement
• Market Segmentation
• Stakeholders
• Business Model and Scale
• Product and Market type.

3.2.3 Identifying Customer Needs
Objectives:

• Understand the Voice of the Customer (VOC) process that can be used to elicit
valid customer needs, including the means to:
– Create a design of experiments
– Gather raw data from customers
– Interpret the raw data in terms of customer needs
– Organize the need into a hierarchy of primary, secondary, and (if necessary)

tertiary needs
– Establish the relative importance of the needs
– Reflect on the results and the process.

3.2.4 Preliminary Product Specifications
Objectives:

• stakeholder requirements categorized as “characteristics”
• Introduce one potential method to facilitate this translation: Quality Function

Deployment
• Introduce the concept of acceptance criteria and emphasize their importance for

maintaining project focus.

3.3 Realization – Systems and Software Engineering

The objective for this major section is that the students translate the results determined
from systems and design thinking into a concept of design, concept of operations, use
cases and systems requirements that can be used for subsequent engineering activities,
all while satisfying the economic requirements for the systems. The objectives for the
section modules are noted below.

198 J. Wade et al.

3.3.1 Concept Design
Objectives:

• Discuss the development of system implementation concepts
• Describe how to use a Pugh Concept Selection Matrix
• Learn when rapid prototyping is appropriate
• Understand the various types of rapid prototypes
• Know how to create and execute a design of experiments
• Learn how and when to use rapid prototyping.

3.3.2 Concept of Operations
Objectives:

• Introduce the context diagram for clarifying the boundary of the system being
envisioned

• Define the active stakeholders and relate them to the context diagram
• Describe and develop a Concept of Operations.

3.3.3 Use Case Scenarios
Objectives:

• Have the capability to describe the required capabilities of the system using Use
Cases and Sequence Diagrams.

3.3.4 System Requirements
Objectives:

• Understand how to translate the use case and sequence diagram analysis into system
requirements; and translate system objectives into system requirements

• Introduce the concept of managing system requirements, developing a readable
requirements organizing scheme (whether for a database model or a document)

• Understand the characteristics of “good” requirements.

3.3.5 Economics and Financial Analysis
Objectives:

• Estimate costs associated with production and operations
• Understand the concepts of cash flow, net present value (NPV), break even analysis,

return on investment (ROI)
• Be able to create a financial analysis of a new product development.

3.4 Learning Integration

In this major section, the learning and results from the prior sections are assembled into
an integrated whole. This is accomplished through a project presentation that serves as
a funding proposal and conceptual design review, and a final report which serves as the

Systemic Design Engineering 199

high-level business and conceptual plan for a program. The project presentations are
made after the modules have been presented, but before the students have completed
the detailed work which is contained in the final report. A rubric is presented at the
beginning of the course such that it can be reinforced in the subsequent instruction. The
outputs from this course have been used as the preliminary design concept for a
complete system development, which includes architecture and design, implementa-
tion, and sustainment in a four-course series that forms the core of a systems engi-
neering of cyber-physical systems program.

4 Pilot Results

While much of the lecture and course materials for this course existed in a series of
prior separate courses, they were first integrated into a single Systemic Design Engi-
neering graduate course targeted for introduction in the summer of 2017. The pilot
class was composed of eight professional masters students in an aerospace corporation.
The greatest concern when assembling this course was not whether the materials were
useful, but rather if it would be possible to successfully cover this amount of material in
a single course. The prior version of the course had successfully combined elements of
design thinking with systems and software engineering. In addition, it was believed that
the course already was full of content even before adding the new major section on
systems thinking and its four modules. The problem was addressed by comparing the
learning objectives and modules from this course with those of a separate Systems
Thinking course and determining the relative importance of the learning objectives in
each as well as their overlap. The four essential modules from Systems Thinking were
identified, and through the removal of some overlapping material and less critical
material in the existing course, there was time to accommodate all of them.

Despite these challenges, the instruction of the material in the pilot course went
smoothly with a small number of changes noted for subsequent courses. Most critical,
however, was the assessment of the student’s results to determine how well they had
learned the concepts taught in the course. This was assessed subjectively by instructor
in two different ways. The first assessment was in systems thinking concepts in which
the comparison was between the results obtained in an existing course devoted entirely
to systems thinking, and to this new course which included the core of systems
thinking. The results were surprising. The systems thinking modeling and analysis in
the Systemic Design Engineering course was judged to be the equal and, in some ways,
superior to what is produced by similar professional master’s students in a course
dedicated to systems thinking. While the analysis may not have been as deep as would
be seen in the dedicated systems thinking course, the quality of the analysis was at least
on par. The lessened depth of the analysis is easily explained by the fact that final
reports are limited in size and thus the systems thinking analysis is also limited.

The second area of comparison is in the design thinking, and systems and software
engineering portions of the course. These areas also were judged to be on par or
superior to the results seen in the prior conceptualization courses which did not contain
the systems thinking material. The inclusion of the systems thinking material provides
the basis for a more sustainable proposed system concept.

200 J. Wade et al.

While the sample size is very small (the pilot contained eight students grouped into
two teams), the results are promising in that the learning objectives of all the material in
the Systemic Design Engineering course was mastered by most, if not all the students,
without any notice of loss from that of the individual courses containing this material.
The only noted downside was that some of the students noted that this course required
more time than they had anticipated. However, this same comment was just as
prevalent on prior courses that did not have this additional material.

5 Conclusions and Further Work

The results of creating a Systemic Design Engineering course for systems and software
engineering masters engineering students were quite positive. The students in the pilot
successfully mastered the systems thinking concepts that were added to the existing
course, with results that were judged to be at least equivalent to what students were
learning in a course dedicated to that subject. The additional material also provided an
increased richness in the resulting designs. The course will continue to be refined based
on feedback from the students and instructors, and a thorough analysis of the learning
results. The future plan is to update the Systemic Design Engineering course such that
it can be used as the design course for systems, software, cyber-physical and socio-
technical systems masters’ degree program, as the three elements of systems thinking,
design thinking, and systems and software engineering makes it relevant to each of
these four systems types in the Cynefin framework. It will be interesting to see how the
course will be optimized to support design efforts for each of these different system
types. It is believed that this understanding will enable the continued evolution of the
course and the concept of Systemic Design Engineering as a multi-disciplinary design
approach resulting in improvements that will provide benefits for all four system types.

References

1. Walden, D., Roedler, G., Forsberg, K., Hamelin, R., Shortell, T. (eds.): INCOSE Systems
Engineering Handbook – A Guide for System Life Cycle Processes and Activities, 4th edn.
Wiley Publishing (2015)

2. Boehm, B.W.: A spiral model of software development and enhancement. Computer 21(5),
61–72 (1988)

3. Brown, T.: Change by Design: How Design Thinking Transforms Organizations and
Inspires Innovation. Harper Collins, New York (2009)

4. Buede, D.M.: The Engineering Design of Systems: Models and Methods. Wiley, New York
(2000)

5. Chen, W., Lewis, K.E., Schmidt, L.: Decision-Based Design: An Emerging Design
Perspective, Engineering Valuation & Cost Analysis, special edition on ‘‘Decision-Based
Design: Status & Promise’’ 3(2/3), pp. 57–66 (2000)

6. Dym, C.L., Agogino, A.M., Eris, O., Frey, D.D., Leifer, L.J.: Engineering design thinking,
teaching, and learning. J. Eng. Educ. 94(1) (2005)

Systemic Design Engineering 201

7. Giambalvo, J., Vance, J., Hoffenson, S.: Toward a decision support tool for selecting
engineering design methodologies. In: ASEE Annual Conference and Exposition, Colum-
bus, Ohio, 25–28 June 2017

8. Hildenbrand, T., Wiele, C.: The road to innovation: design thinking and lean development at
SAP (2013)

9. Jones, P.H.: Systemic design principles for complex social systems. In: Metcalf, G. (ed.)
Social Systems and Design, volume 1 of the Translational Systems Science Series, pp. 91–
128. Springer, Japan (2014)

10. Pahl, G., Beitz, W., Feldhusen, J., Grote, K.H.: Engineering Design: A Systematic
Approach, 3rd edn. Springer, London (2007)

11. Wade, J., Hoffenson, S., Gerardo, H.: Systemic design engineering. In: 27th
Annual INCOSE International Symposium. Adelaide, Australia, 15–20 July 2017

12. Kurtz, C.F., Snowden, D.J.: The new dynamics of strategy: sense-making in a complex and
complicated world. IBM Syst. J. 42(3), 462–483 (2003). https://doi.org/10.1147/sj.423.0462.
ISSN 0018-8670

13. Arnold, R.D., Wade, J.P.: A definition of systems thinking: a systems approach. Procedia
Comput. Sci. 44, 669–678 (2015)

14. Geertz, C.: The Interpretation of Cultures (1973)

202 J. Wade et al.

http://dx.doi.org/10.1147/sj.423.0462

Field Guide for Interpreting Engineering Team
Behavior with Sensor Data

Lorena Pelegrin1, Bryan Moser1(&), Shinnosuke Wanaka2,
Marc-Andre Chavy-Macdonald2, and Ira Winder1

1 Massachusetts Institute of Technology,
77 Massachusetts Ave, Cambridge, MA 02139, USA

{pelegrin,bry,jiw}@mit.edu
2 The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan

swanaka@s.h.k.u-tokyo.ac.jp,

marc@m.sys.t.u-tokyo.ac.jp

Abstract. The design of complex systems is a challenge with many capabilities
enabled by a recent generation of digital tools for modeling, simulation, and
interaction. Relevant studies on teamwork from coordination science, learning,
design, HCI, and serious games are briefly summarized. However, validation of
resulting behavior and emergent outcomes given these much-needed new tools
has been difficult. The recent availability of pervasive sensors may allow the
creation of experiment platforms to increase empirical data from experiments,
their scalability, and analyses towards reproducibility. This paper’s approach
treats engineering teamwork as a sociotechnical system and proposes instru-
mentation of teamwork across problem, solution, and social spaces. A quasi-
experiment was conducted, with experts in the maritime industry exploring
options for transition to natural gas infrastructure and shipping. The experiment
derives a narrative of the engineering teamwork both from ethnography and
digital sensors to uncover teamwork behavior. Thus, this work integrates dis-
parate data to create mapping rules from sensors to story. We find the approach
promising for the generation of sensor-derived stories and the potential for
deeper and scalable studies on engineering teamwork.

1 Introduction

The study of engineering, like many fields, will be changed by pervasive sensors, data,
and analytics. In particular, manual observation of engineering teams conducted by
researchers may be supplemented or even replaced by “digital fingerprints” generated
by pervasive and non-intrusive instrumentation. There is an opportunity for the
research community to utilize sensors to increase the reproducibility, scalability and
efficiency of teamwork experiments. Before researchers embrace sensors, however, a
thoughtful understanding of the sensitivity and accuracy of these new data relative to
and in combination with existing experimental methods, including ethnographic and
survey based techniques, should be considered. This field guide introduces our recent
experience in interpreting a narrative derived from a team’s digital fingerprints.

© Springer Nature Switzerland AG 2019
E. Bonjour et al. (Eds.): CSD&M 2018, Complex Systems Design & Management, pp. 203–218, 2019.
https://doi.org/10.1007/978-3-030-04209-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_17&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_17&domain=pdf
https://doi.org/10.1007/978-3-030-04209-7_17

Also, we explore how team narratives generated from sensor data can differ from direct
human observation.

The unit of analysis in this exploration is the team narrative, a record of an engi-
neering team’s collective behavior that includes moment-by-moment attention, ratio-
nale, decision making, solution generation, and solution performance. While an
engineering team may consist of multiple individuals, this research departs from prior
investigation of design teams of diverse individuals sharing common scope and
objectives, to a broader view of the “team of teams” with different (yet coupled) scope
and various agenda. A team narrative tells the story of a semi-structured design
experience, during which teams utilize their attentions, tacit knowledge, dialogue, and
tools to explore solution(s) for a given challenge.

A narrative acts as frame to gain a deeper understanding of the challenge, the teams,
and how these teams came together to interact, design, and implement solutions.
A useful narrative explains and predicts workshop performance outcomes. A researcher
may derive a teamwork narrative through primary observation of an engineering team
(i.e. watching a team in action) and by secondary observation of a team’s digital
fingerprints. We are interested in how narratives derived from digital fingerprints differ
or complement those generated by primary observation. Differences to consider are
specificity, accuracy, and teams’ affirmation of a narrative’s content.

In this paper, a framework to transform data from engineering design teamwork
into team narratives is proposed, and it is applied to some experiments. On the basis of
our experience in these experiments, we discuss what steps a researcher can take to
improve observations derived from pervasive and non-intrusive instrumentation in
complement to direct observation by humans.

The research contributions of this paper are:

1. a formalized concept of a team design walk narrative and a taxonomy of a design
experiment for understanding team dynamics;

2. a proposed experimental setup generating team narratives and a set of mapping
rules for transforming sensor data into a team narrative;

3. a demonstration of the aforementioned setup and rules, by showing some experi-
mental data and actual narratives of design.

2 Related Research

The complexity of a SoS (Systems-of-Systems) is two-fold – the technical system and
the social dynamics through which humans design, develop and use said system.
Researchers have studied how to manage system complexity and to design the SoS
successfully. For example, NASA provides general guidance and information on the
systems design process as a handbook [1]. They propose 3 processes: system design,
technical management, and product realization, and build one overarching framework
including interaction amongst these processes. Even with clear standards, as target
systems grow more complex, the human aspects, i.e. behaviors, motivations, deeply
held assumptions, thinking and decisions, may become equally significant to outcomes.
Complex problem-solving requires collaboration across many teams. In this context,

204 L. Pelegrin et al.

how should teams be organized and behave for the engineering of systems of systems?
To begin, related research in collective intelligence, learning, design studies, human-
computer interaction, and serious games are reviewed.

Collective intelligence (CI) is a group’s emergent capability, defined by Malone
et al. as “groups of individuals acting collectively in ways that seem intelligent.”
Several papers [2–4] report a psychometric methodology for quantifying CI, reflecting
how well groups perform on a diverse set of group problem-solving tasks. These
studies suggest that CI is not strongly correlated with the average or maximum indi-
vidual intelligence of group members, but is instead correlated with: the average social
sensitivity of group members; the equality in distribution of conversational turn-taking;
and the proportion of females in the group. Malone [2] also notes that some scholars
equate intelligence with learning.

Learning is associated with change in knowledge which may be gauged from
change in performance, but also change in group processes or repertoires. Sensing
knowledge changes in groups is difficult, as it may either explicit (easily codified and
observable), but other times tacit (unarticulated and difficult to communicate). Moser
[5] reviews and categorizes models of learning: models based on experiential learning
[6, 7], reflective practice [8, 9], learning as knowledge conversion [10], and expansive
learning [11]. Valkenburg [9] discusses the so-called Element of Surprise introduced by
Schoen as initiator of the reflective practice process that ultimately underpins the results
of the design process. Valkenburg argues that, for design teams, surprises become
social events. Further, Stompff et al. [12] revise Valkenburg’s model of the mechanism
of reflective practice to include surprises, things that “fall outside of the current frame”,
and require reflection. They argue that surprises are a source for team learning and
innovation.

Studies of designers in practice—“design observatories”—are a strongly empirical
approach. For example, Carrizosa et al. [13] developed a special room for the design
observatory, installing four cameras to capture designers’ behavior and work. Milne
et al. [14] installed an interactive whiteboard and attempted to capture work processes.
Törlind et al. [15] showed two uses of the design observatory, to observe social aspects
of synchronous team-based design and to understand design activity through iterative
prototyping. Similarly researchers in design thinking have conducted series of exper-
iments, often in small teams and centered on iterative prototypes using various tools
and rules of interaction [16]. A recent application extended this approach to consid-
eration of teamwork in healthcare [17].

Human-Computer Interaction (HCI) research began grounded in the premise that
computing systems had become inherently characterized by human factors [18].
Contemporary HCI researchers have studied the interaction of teams through digital
means as computer supported cooperative work, or CSCW [19, 20]. A taxonomy called
the Groupware Matrix characterizes team interaction by two dimensions: location and
time [21]. Location indicates a team’s co-location (or not), while time refers syn-
chronous (or asynchronous) interactions by individuals. A CSCW system’s position
within the Groupware Matrix has guided the classification of teamwork observations
according to this technological context.

Field Guide for Interpreting Engineering Team Behavior 205

Typically, HCI experiments had relied on small sample sizes (10–100 users),
constrained by the need to gather participants and record data [18]. Remote collabo-
ration tools have recently been able to achieve much larger sample sizes (10,000–
100,000 users), yet synchronous-collocated environments, where users must be in the
same place at the same time, are still difficult for researchers to scale. Additionally,
human cognitive phenomena previously studied in individuals have been extended to
the collective level, such as memory and learning for groups [22].

Simulations and Serious Games are similar to the complex systems architectural
decision models treated in this paper. Grogan and de Weck [23] developed an inter-
operable simulation game and applied it to infrastructure systems. Infrastructure design
involves cross-sector interactions amongst stakeholders - that is, highly collaborative
design. They conducted experiments to identify what features of a design tool lead to
more effective collaborative decisions, and they demonstrated technical data exchange
supported by integrated and synchronous tools is correlated with effective designs.
Their analysis is focused on technical aspects of the design process, and these insights
are limited in that the supporting data comes only from their own design tools.

In summary, related studies across several disciplines are relevant to the motivation
of this paper. Our examination of related research was limited given these broad
multiple sources. CI research provides us with a measure of group intelligence and
insight about what may be correlated with intelligence. Frame reflection and learning
guide us to develop sensors that can capture mental models and surprises during
teamwork. Design studies capture processes and the generation of ideas and solutions.
In contract, HCI research teaches us to measure the means for interaction across
interfaces, described as channels of technology with timing, location, and purpose.

Our approach is similar to design observatories with three contributions: problems
framed by well-articulated systems models, increased interactive visualization for real-
time exploration of complex SoS, and new sensors for data capture. This experimental
framework characterizes activity across the problem space, the solution space and the
social space for engineering teamwork. The framework takes experiment repeatability
into consideration, in order to ease the implementation of quasi-experiments and,
through improvement, increase robustness of experimental design. Moreover, inter-
active visualization based data capture, shown as a “design walk”, is applied to observe
interaction between problem and solution spaces. These sensors allow the researchers
to see all events as the solution space is explored. Further, the design walk can also
visualize the relationship between the solution space and social space. With the
addition of audio, video, and ethnographic notes, it is possible to observe meaningful
interactions amongst the three spaces.

Our research seeks to detect how team attention and activities map to the problem
space (manifested as need and, values of stakeholders), solution space (as requirements,
function and form of the technical system) and the social space (through roles, capa-
bility, motivation and power of the agents). We assert that a sociotechnical event (e.g.
awareness of a need, exposure of an assumption, a decision about the technical solu-
tion) will have effects across all 3 spaces. This assertion follows a broad view of design
as a social activity, of teamwork during complex problem solving having stakeholder,
organization, process, and product considerations [24, 25].

206 L. Pelegrin et al.

Decades of research in the social sciences provide important input to our research
approach, including many case studies, meta-analysis and so on. However, a frustration
is that these studies are often difficult or infeasible to reproduce, nor scalable to
industrial teams of teams. For example, while it is widely accepted that overall effi-
ciency in organizations is achievable with high performing teams and learning orga-
nizations [26], questions remain of what defines a high performing team and what
metrics measure organization learning. Google’s Project Aristotle, which reviewed
academic studies on how teams work, did not establish strong patterns to define the
“ideal” makeup of the team that achieves best team effectiveness [27].

Ideally, a scientific body of knowledge should be scalable to industrial relevance
and produce reproducible insights, in order to increase collective cognitive capability
by teams of teams for complex systems problems. Moreover, a final objective should
be to reveal the mechanisms inside teams working in complex problems, a
sociotechnical physics. Previous studies, including inspired ethnography, great thinkers
and insightful writers are relevant guides, yet we cannot be sure without uncovering the
underlying phenomena with reproducible experiments. Indeed, insightful case studies
might be only shadows of the underlying phenomena. This work is an early attempt to
seek the underlying science of teamwork for complexity, and the first principles of
sociotechnical systems.

3 Methods

In this section, the following methods are explained; a simple taxonomy of the design
process, an overview of the quasi experiment, and then a method to instrument the
experiment, collect data, and generate design walk narratives.

3.1 Taxonomy of Design Process and Experiment

The design challenge in this paper has goals, and design work is an activity of a teams-
of-teams (ToT) seeking feasible solutions which best achieve those goals. Goals are
defined as the desirability of what is to be accomplished, and can be expressed as
targets and metrics, often called -ilities, KPIs and so on. For complex systems prob-
lems, a design process most often includes coupled goals across multiple dimensions,
thus driving the teams to analyze options, conduct trades, and make a decision about
their preferred solutions. To generate and pick preferred solution(s) from a tradespace,
the teams may have in mind a strategy, including the prioritization of goals, a ranking
of the metrics, ways of organizing their teams’ capabilities, and a differentiated process
(compared to others’).

We consider the teams during a design process as acting and interacting across
solution, problem, and social spaces. Figure 1 shows the overview of this framework.
The solution space is explored through component design choices, in combination
generating the set of design configurations which are available. The problem space is
driven by needs, the desirability of fulfilling these needs, and how these needs inter-
relate, value traded and shared as manifested by stakeholders. The social space includes
the rules of organizational power, hierarchy, knowledge, capabilities and so on.

Field Guide for Interpreting Engineering Team Behavior 207

A team’s behavior in the social space affects their awareness, exploration, and selection
of solutions, which is their behavior as seen in the solution space. The outcome of their
selection in the solution space is expressed in the problem space, and a decision on
whether they are satisfied with the result or not is also affected by the social space.

Thus, the underlying events that make up a design process interact simultaneously
across solution, problem and social spaces. By tracking these events and interactions,
instrumented teamwork experiments attempt to reveal teams’ dynamics moment by
moment. A design walk is the path taken by the team over time to consider, generate,
evaluate, and iterate design alternatives. While along the design walk, a tradespace is
explored and exposed. We characterize the happenings moment by moment during the
design walk as sociotechnical events existing simultaneously in all three spaces.
Solution and problem spaces are connected via an assessment or analysis method - here
simulation - while they are connected to the social space by some interface, here an
interactive visualization software. Teamwork of interest takes place in the context of
this design activity.

3.2 Experimental Framework and Setup

Figure 2 shows an overview of the experimental framework & setup. There are two
types of data sources: sensors, consisting of Design Support System (DSS) logs and
microphones, and direct feedback from human participants or observers. DSS logs
include attention (to output KPIs), input & output logs, while direct feedback includes a
“surprise detector” (manual by the participant, on a spreadsheet), scratch pad for
participant use during the experiment, post-surveys, and in some cases observation and
interviews by experimenters. The microphone records the participants’ audio, though in
evolutions of this setup, we intend to also have the capability to simply detect presence
or absence of conversation; likewise it is hoped a simple “surprise detector” might be
made automatic, pervasive and non-intrusive.

In the post-survey, several questionnaires are given individually to the participants
which collect data about e.g. their strategy, agreement with the group, result etc. The
scratch pad is used to collect data about the team’s rationale in their selection in the

Fig. 1. A nomenclature for the design process, which consists of a design walk and events
occurring simultaneously in the problem, solution, and social spaces - which forms the context
for problem, solution and teamwork.

208 L. Pelegrin et al.

solution space, and surprises. The “direct feedback” in particular may be used to
generate a holistic (primary) narrative of the design walk, for analysis, supported by
sensor data. However, it is preferable to create a narrative mainly based on inexpensive,
non-intrusive sensor data - a secondary narrative. Such sensors record: (A) design
decisions made (or attention allocation to inputs), (B) attention allocation to KPIs, and
(C) design walk in the problem space. By comparing the primary and secondary
narratives, we may assess the validity of the sensor interpretation. We seek to develop
an inexpensive, pervasive, non-intrusive sensor package that can make a secondary
narrative similar in quality to a primary.

Observations are made over the course of a design experiment, sensing how
attention is allocated to different parts of the system at hand. A graphical user interface
(GUI) enables users to deliberately choose to render or activate mutually exclusive
parameters of information. Attention is “allocated” as long as the user is viewing or
activating a certain parameter. For DSS inputs (A in Fig. 2), a unit of attention is
allocated if an input parameter is changed between discrete simulation events. A sim-
ulation event occurs when a team evaluates a selected architecture using the simulator.
In the case of inputs, attention is modeled as an instantaneous blip when the “Simulate”
button is pressed. For DSS output calculation (B), attention to a particular output
parameter (e.g. Fuel Cost) is allocated continuously as long as the output is selected by
the user for viewing on the tradespace plot (C). Since the tradespace plot only has two
axes, the GUI only allows a team to view two of the seven KPIs at a time. One view of
a team’s design walk can be visualized on such a plot by how two selected output
parameters’ values change from one architecture to the next. Outputs of consecutive
architectures are connected by a line, and the solution chosen by a team, represented by
a larger circle (see Fig. 4).

Fig. 2. A conceptual diagram of the experiment setup and research flow. During design
experiments, sensors consist of DSS logs and microphones and “direct feedback” by human
participants or observers. Sensor data is displayed, and both are interpreted into narratives.

Field Guide for Interpreting Engineering Team Behavior 209

3.3 Experimental Case and Procedure

This subsection provides brief explanation of our design experiment procedure; a
detailed explanation is outside the scope of this work. The procedure consists of 6
steps: (1) pre-survey, (2) design case review, (3) tutorial about the software, (4) design
challenge, (5) collective discussion, and (6) post-survey. The target case is the fuel
upgrade of a maritime logistic system, including fleet and port. The background is that
responding to the new IMO (International Maritime Organization) MARPOL emis-
sions reduction regulation, the maritime industry needs to think about how to change
the current transportation system. Participants are mid-career practicing engineers,
divided in teams of 3, and must decide the portfolio of ship fuel type, and the number,
type and location of possible LNG bunkering facilities. The design challenge lasts
90 min. Much more information is in Pelegrin [28].

3.4 Method for Generating Team Design Walk Narratives

Figure 3 provides an overview of the process of this research, focused on generating
narratives and rules to interpret sensors. It is in the context of design experiments, as
explained earlier. An instrumented DSS and design experiment generate both direct
(human) feedback and sensor data. These can be analyzed to discover new phenomena.
The focus of this work is to improve the experimental setup, by shifting towards more
sensor data. To do this, we evaluate the ability of sensors to capture as much (or more!)
phenomena as direct feedback. Sensor data is used to generate holistic narratives of the
experiment, and compared to purely “human-based” narratives. Stepwise, some nar-
ratives are constructed using all available data and feedback; these are then shown to
participants, who anonymously rate their fidelity on a 5-point scale and comment on

Fig. 3. Overview of the experimental framework and procedure. The current work is in grey,
concerned with integrating data to generate holistic design walk narratives.

210 L. Pelegrin et al.

any errors or omissions. These validated narratives are used to create tentative “map-
ping rules” from a sensor to a fragment of the narrative that it could inform. These rules
are then used with other design experiments’ sensor data only, to generate new sensor-
based design walk narratives. These are similarly shown to participants, and we seek
any difference in score or feedback between the primary and secondary narratives.

4 Results

The following design walk narrative was generated for a team from an experiment in
March 2018 with an emphasis on “direct feedback”: written rationale, post-surveys and
interviews - supported by observation and DSS data. Figure 4 is the sensor data cor-
responding to the narrative.

Primary Narrative: This team interprets the design task literally: to reduce emissions
at low cost, though are concerned at the lack of comparison of emissions to regulation.
They also realize that waiting time should be considered, but decide to neglect the
amount of cargo moved, because of unclear interpretation of this KPI. Thus they
consider mostly NOx, CAPEX and OPEX, checking other KPIs also. Their design walk
has 3 phases. Firstly, there is some initial exploration with multiple parameters.
Secondly, they focus on LNG options and investigate bunkering facilities, finding the
best combination of location and methods. A key surprise for them is that inexpensive
truck-to-ship bunkering seems sufficient, and located in Singapore might be best.
Thirdly, they try to change fleet composition. The 2 team members from the maritime
industry seem to be like-minded, possibly because of their pre-existing relationship and
shared (hierarchical) culture. On the other hand, the third designer may be less
influential because of a cultural barrier. When recording, they usually signal
“surprise” - options better or worse than expected - yet discussions suggest they don’t

Fig. 4. A “digital fingerprint” of a team’s activity while performing a design walk.

Field Guide for Interpreting Engineering Team Behavior 211

have strong expectations, instead taking a “wait-and-see” approach when simulating.
This is consistent with higher model confidence (or less engagement), and their goal
acceptance, and shows no signs of struggling with a pre-existing mental model.
Finally, they select LNG-fueled ships, and 1 truck-to-ship bunkering facility in each of
Singapore and the Persian Gulf. The design has low emissions from LNG, but might
reduce overall cargo moved by 5%.

The narrative above was created in a holistic manner. The observer was very
familiar with the design exercise, the problem itself, and many of the participants and
their style of working. After showing the narratives anonymously to the participants, on
the whole, good fidelity scores were given (average 4 out of 5), with relatively minor
suggestions. Thus, such narratives at least seem to be accepted by the original team.

We attempt to parse the design walk into key elements, to ascertain their prove-
nance, and to identify sensors and rules that could facilitate a digitally supported
generation of narrative. The result for the above narrative is shown in Table 1. Parsed
narrative “fragments” are listed and examined for their origin - typically from human
observations or written design rationale (see the 1st and 2nd columns). The 3rd column
indicates sensors, or proposed sensors, to furnish this information in part or in whole.
Finally, the 4th column explains how the sensor might be used to provide that narrative
fragment. For instance, “low model confidence” is relatively difficult to determine, and
perhaps reported in a team’s postsurvey, yet two types of sensors may provide strong
hints: the surprise detector and input change log. Frequent or early surprises in a
design walk are plausibly correlated with lower model confidence; an input log
showing the team engaging in systematic One-At-A-Time (OAT) model-testing
behavior likewise plausibly indicates they may be evaluating the model, rather than
accepting it directly. Seven example narrative fragments are shown, and proposed rules
range from trivial to very sophisticated or perhaps impractical. However, it is note-
worthy that every identified fragment has some proposed sensor and mapping, although
several will only allow partial information (e.g. identifying “fuzziness” of requirements
from sensor data) (Fig. 5).

Three path dependent sequences are identified in Team 1’s outcomes and design
changes time series, considering the surprises identified. In the first sequence, after an
initial phase of exploration, the team fixes the Ship Portfolio choice to 20x LNG Ships
and further explores bunkering options, this phase is triggered by Surprise 1 on better
Emission Reduction than expected (i.e. an LNG fleet works well). The second path
dependent sequence is triggered by Surprise 4 on better Initial Cost and Fuel Cost
Efficiency than expected (i.e. Truck-to-Ship bunkering could be the best option with
lower costs). In this sequence the team fixes no bunkering at Persian Gulf and Japan,
along with a one Truck-To-Ship bunker in Singapore. The team then experiments with
different Ship Portfolio options. The third path dependent sequence is also triggered by
Surprise 4. In this case the team fixes one Truck-to-Ship bunker in both Persian Gulf
and Japan, and experiments with variations of Ship Portfolio options and bunkering
infrastructure in Singapore. The selected architecture by Team 1 has features of these
three path dependent sequences. Therefore, this data suggests that local Surprises 1 and
4 (Key Surprises) had global or systemic significance driving the team’s architecture
selection decision (Fig. 6).

212 L. Pelegrin et al.

Utilizing 16 rules (of which 6 are in Table 1), a secondary narrative was generated
for another sensor footprint of the design walk, shown below:

Secondary Narrative: From their attention to KPIs, the team’s goal appears to be
interpreted literally: reduce emissions at low cost, but keeping cargo moved nominal.
However, emissions attention & outcomes are slightly less disciplined than for cargo
moved and OPEX & CAPEX - the team may have made some minor change in goal
emphasis (indeed, they often return to check NOx later). But we see no clear sign of
perceiving a goal or requirement to be ambiguous or unclear. We do not suspect low
model confidence, as no One-At-a-Time (OAT) model testing behavior was observed.
We may segment the design walk into two broad phases: early on, larger KPI fluc-
tuations occurred with fleet composition, and then later they focused on options around
LNG bunkering facilities. Approximately halfway through, there was also an intensive
period of considering Singapore options, particularly for OPEX, CAPEX and cargo
moved. A “satisficing” event occurred, for a half hybrid, half LNG fleet with non-shore
bunkers - a solution subspace which was never left. It followed two key surprises: a
positive one which preceded keeping the hybrid fleet composition, and a negative one

Table 1. Selected mapping rules, from sensor data to design walk narrative

Narrative
fragment

Source of
narrative

Sensor/
proposed

Mapping rule/proposed

Model confidence Comments from
scratch sheet, post
survey,
observation

Surprise
detector, input
logy

Fequent or early surprises
may indicate conflicting
mental model; an input log
showing OAT model factor
testing is low-confidence

Prioritized
preferences for
decision

Human - design
rationale

Output log,
attention log

Avoided or preferred area of
problem space: suspect key.
Expected attention on key
variable

Phases of design
walk

Time series of
aggregated input

Input log,
output log

Look for pattern in input
action “macro” time series,
results

Preferences - KPIs
“satisfied”(e.g.
“fuel type- LNG is
good”)

Human - scratch
sheet comments

Input log,
output log,
attention log

Sequence: change input
levers, achieve “good”
output, then leave these
levers unchanged & explore
other levers; maybe change
attention

Key surprises
(learning) (e.g. “1
truck is enough!”)

Human - scratch
sheet comments
(on surprises),
post survey

Surprise
detector, input
log, output log,
attention log

After surprise, “path
dependent sequence”:
marked change in behavior -
use different input levers,
attention, maybe output
trends

Accidental result Combined output
and attention logs

Attention log,
output log

Good result, but no attention
paid to this KPI in the log

Field Guide for Interpreting Engineering Team Behavior 213

Fig. 5. Example Outputs over time (horizontal lines), Input Aggregated Changes over time,
Trade Variable Pairs consulted over time (empty dots), Surprises over time (vertical lines).

Fig. 6. Design Walk as interpreted. Blue circles and squares indicate key events.

214 L. Pelegrin et al.

when trying 3 shore bunkers, leading to the largest cost peak of the walk, after which
shore bunkers were always avoided. As this coincided with the largest cost peak. By
contrast, 9 “surprises” were detected in groups later in the walk, but they were
associated to small KPI changes, so we suspect they are considered minor. As for
degree of team consensus, a proposed audio analysis was unsuccessful, yet the walk
appears steady & unperturbed.

5 Discussion

The first, “primary” narrative exposes information from the path of exploration, which
we refer to as the design walk. Some of the path events are relevant to goals and their
attributes - interpretation and clarity, requirements and preferences; KPIs and their
prioritization are neglected. Other signals reveal phases of the design walk, charac-
terized by different primary activities, subspaces, or approaches. In turn, these phases
are marked at the boundary by surprises or learning which trigger a new phase; relative
influence, hierarchy & agreement in the social space; general approach to tool usage;
trust in the model, mental models, and their pre-existence or conflict. These terms begin
to populate a taxonomy of design walk characteristics this experimental setup can
capture, refining the simple taxonomy illustrated in Fig. 1. Comparing the terms to the
framework of Fig. 1, the social space seems underrepresented - perhaps unsurprising
since few sensors were intended to capture it so far. However, it is somewhat
encouraging that in our early feedback responses, none of the participants identified
any large gaps in the narrative, and rated high fidelity. This suggests our initial
approach can capture meaningful characteristics of a design walk.

Some of these aspects are more easily captured by the sensor footprint than others.
At this early stage, across the limited datasets surveyed (10+ in this experiment), more
easily capturable characteristics include the KPI prioritization, phases of design walk,
and the approach to tool usage, while information about goals (details or interpretation)
and social influence is among the most difficult. Model trust, mental models, and
surprises are somewhat intermediate - the sensor footprint provides some strong hints,
but not a full story. In fact, early evaluation suggests “secondary” narratives capture
many of the phenomena from the direct feedback sources, and we anticipate modest
differences in fidelity scoring between primary and secondary narratives (though data
analysis continues). However as can be seen in the examples above, secondary nar-
ratives may only hint at many characteristics, while direct feedback data is more
amenable to a stronger assertion. Between the various sensors, so far, no obvious data
inconsistencies have been found, nor any with the direct feedback data. Comparing the
sensors’ merits, we find that unsurprisingly the DSS logs are most useful so far,
perhaps particularly the attention log - however this suffers from the drawback of
forcing a 2-dimensional tradespace view. Used together with a time series of input and
output data, a rough picture of the design walk can be quickly created (see Fig. 4,
though output time series not shown). Desired improvements include an “automatic”
surprise detector, and “conversation detector” with voice recognition. This should
provide more insight into the social space.

Field Guide for Interpreting Engineering Team Behavior 215

The mapping rules and field guide are to serve two overall purposes (Fig. 3): aid
data interpretation, and improve experimental setup. Both should reduce dependence
on difficult-to-obtain human-sourced direct feedback data, succeeding primary narra-
tives with high-fidelity secondary narratives (see Fig. 2). How well does our initial stab
work towards this goal? Table 1 shows some sample rules to holistically characterize a
design walk using sensor data; they are among the more promising of 16 rules (and
growing). We note that diverse and fundamental aspects of the walk can be discussed
using sensors - the most promising rules so far may yield insight on prioritization,
model trust, phases/modes of activity, and depth of surprise/learning. Many of these
rules are low confidence, but more data, particularly validation from participant ratings,
should improve it. Interestingly, some sensor data may also be better than direct
feedback - akin to “revealed preferences”. For now, human feedback is key to intent &
the social space, and to validate sensor-based narratives.

5.1 Lessons Learned

In many ways the quasi-experiments described in this paper were important for our
research team to build capability to experiment by experimenting. We are at the
beginning of a journey to adopt recently available instrumentation and analytics
techniques into our research strategy. As such, we developed lessons learned and
awareness of limitations to carry forward into a next series of workshop experiments.

One choice for the design of experiments is to constrain less or more tightly the
teamwork goals, workshop format, and learning events. A real-world environment will
often proceed fluidly, without the sorts of experimental control that may benefit the
science of teamwork yet in turn enforce an unnatural condition. By not further spec-
ifying (constraining) both (i) the goals of the design exercise with more explicit design
targets, but also (ii) the experiment format and UI, it could be observed that teams
approached the problem in a wider variety of ways. This might provide the researchers
with a broader view of the ways that designer teams approach problems.

Though we have been considering surprises as the triggers of learning and path
dependency, it might be useful to expand the categories of learnings to include events
related to other sorts of mental model development and validation.

Another learning mechanism to be included in categories of learning is a latency
phenomenon – obtaining a new insight through surprise but not changing an archi-
tectural decision accordingly (this could be thought as “considering a change, but not
executing it”), and later on in the design walk confirming the insight with another
surprise. In other words, a surprise confirms an “initial surprise” in the same design
walk which likely drafts a mental model.

Participants wore individual voice recorders hanging as badges, with the experi-
mental intent was to obtain a clear recording of their voices and so transcript their
discussions. It has been difficult to obtain faithful indexing of the audio files with state-
of-the-art NLP software tested. Although NLP software providers claim to be able to
transcript audio speech-to-text, perform speaker indexing, separate background noise
and voice activity, as well as perform keywords extraction, and text sentiment analysis,
the conditions of the meeting (background noise of other teams, different accents,

216 L. Pelegrin et al.

microphones distant from voices, and participants talking over one another) did not
allow for sufficient speech clarity.

6 Conclusion

In this paper, a framework to transform data from engineering teamwork into team
narratives is proposed, and it is applied to a quasi-experiment. On the basis of our
experience in these experiments, we discuss what steps a researcher can take to
improve observations derived from pervasive and non-intrusive instrumentation in
complement to direct observation by humans.

The contributions of this paper are:

1. a formalized concept of a team design walk narrative and a taxonomy of a design
experiment for understanding team dynamics;

2. a proposed experimental setup generating team narratives and a set of mapping
rules for transforming sensor data into a team narrative;

3. a demonstration of the aforementioned setup and rules, by showing some experi-
mental data and actual narratives of design.

The design of complex systems is a challenge with many promises from the recent
generation of digital tools for modeling, simulation, and interaction. However, vali-
dation of resulting behavior and emergent outcomes given these much-needed new
tools has been difficult. The recent availability of pervasive sensors may allow the
creation of experiment platforms to increase empirical data from experiments, their
scalability, and analyses towards reproducibility. We find the approach promising for
the generation of sensor-derived stories and the potential for deeper and scalable
studies on engineering teamwork.

References

1. Hirshorn, S.R., Voss, L.D., Bromley, L.K.: NASA Systems Engineering Handbook (2017)
2. Malone, T.W., Bernstein, M.S.: Handbook of Collective Intelligence. MIT Press (2015)
3. Woolley, A.W., Chabris, C.F., Pentland, A., Hashmi, N., Malone, T.W.: Evidence for a

collective intelligence factor in the performance of human groups. Science, 686–688 (2010)
4. Malone, T.W., Laubacher, R., Dellarocas, C.: The collective intelligence genome. MIT

Sloan Manag. Rev. 51(3), 21 (2010)
5. Moser, H.A.: Systems Engineering, Systems Thinking, and Learning: A Case Study in Space

Industry. Springer (2013)
6. Kolb, D.: Experience as the Source of Learning and Development. Prentice-Hall, Englewood

Cliffs (1984)
7. Ross, A.N.: Knowledge creation and learning through conversation: a longitudinal case

study of a design project (2003)
8. Schon, D.A.: The Reflective Practitioner: How Professionals Think in Action, vol. 1. Basic

Books, New York (1983)
9. Valkenburg, R.: The Reflective Practice in Product Design Teams (Ph.D. thesis). Delft

University of Technology, Netherlands (2000)

Field Guide for Interpreting Engineering Team Behavior 217

10. Nonaka, I.: A dynamic theory of organizational knowledge creation. Organ. Sci. 1, 14 (1994)
11. Engeström, Y.: Learning by Expanding. Cambridge University Press (2014)
12. Stompff, G., Smulders, F., Henze, L.: Surprises are the benefits: reframing in multidisci-

plinary design teams. Des. Stud. 47, 187–214 (2016)
13. Carrizosa, K., Eris, Ö., Milne, A., Mabogunje, A.: Building the design observatory: a core

instrument for design research. In DS 30: Proceedings of DESIGN 2002, the 7th
International Design Conference, Dubrovnik, pp. 37–42

14. Milne, A., Winograd, T.: The iLoft project: a technologically advanced collaborative design
workspace as research instrument. In: DS 31: Proceedings of ICED 2003, the 14th
International Conference on Engineering Design, Stockholm, pp. 315–316 (2003)

15. Törlind, P., Sonalkar, N., Bergström, M., Blanco, E., Hicks, B., McAlpine, H.: Lessons
learned and future challenges for design observatory research. In DS 58-2: Proceedings of
ICED 09, the 17th International Conference on Engineering Design, vol. 2, Design Theory
and Research Methodology, Palo Alto, CA, USA, 24–27 August 2009

16. Yang, M.C.: Observations on concept generation and sketching in engineering design. Res.
Eng. Des. 20(1), 1–11 (2009)

17. Rosen, M.A., Dietz, A.S., Yang, T., Priebe, C.E., Pronovost, P.J.: An integrative framework
for sensor-based measurement of teamwork in healthcare. J. Am. Med. Inform. Assoc. 22(1),
11–18 (2015)

18. Lazar, J., Feng, J.H., Hochheiser, H.: Research Methods in Human-Computer Interaction.
Morgan Kaufmann (2017)

19. Baecker, R., Grudin, J., Buxton, W., Greenberg, S., Chui, M.: Readings in human-computer
interaction, towards year 2000. Libr. Inf. Sci. Res. 18(2), 187–188 (1996)

20. Wilson, P.: Computer Supported Cooperative Work: An Introduction. Springer Science &
Business Media (1991)

21. Johansen, R.: Groupware: Computer Support for Business Teams. The Free Press (1988)
22. Kirschner, P.A., Sweller, J., Kirschner, F., Zambrano, J.: From cognitive load theory to

collaborative cognitive load theory. Int. J. Comput. Supp. Collab. Learn. 1–21 (2018)
23. Grogan, P.T., de Weck, O.L.: Collaborative design in the sustainable infrastructure planning

game. In: Society for Computer Simulation International, p. 4 (2016)
24. Moser, B., Mori, K., Suzuki, H., Kimura, F.: Global product development based on activity

models with coordination distance features. In: Proceedings of the 29th International
Seminar on Manufacturing Systems, pp. 161–166 (1997)

25. Moser, B.R., Wood, R.T.: Design of complex programs as sociotechnical systems. In:
Concurrent Engineering in the 21st Century, pp. 197–220. Springer (2015)

26. Argyris, C.: Double loop learning in organizations. Harvard Bus. Rev. 5, 115–125 (1977)
27. Duhigg, C.: What Google learned from its quest to build the perfect team. NY Times

Magazine, 26 (2016)
28. Pelegrin, L.: Teamwork Phenomena: Exploring Path Dependency and Learning in Teams

during Architectural Design of Sustainable Maritime Shipping Systems [Master of Science
in Engineering and Management]. Massachusetts Institute of Technology (2018)

218 L. Pelegrin et al.

A Review of Know-How Reuse with Patterns
in Model-Based Systems Engineering

Quentin Wu1(&), David Gouyon2, Éric Levrat2, and Sophie Boudau1

1 Zodiac Aero Electric, 7, Rue des Longs Quartiers, 93100 Montreuil, France
{quentin.wu,sophie.boudau}@zodiacaerospace.com

2 Université de Lorraine, CNRS, CRAN, Faculté des Sciences et Technologies,
BP 70239, Vandoeuvre-lès-Nancy, France

{david.gouyon,eric.levrat}@univ-lorraine.fr

Abstract. The increasing complexity of systems to be developed requires
engineers to review their practices in order to improve the efficiency of engi-
neering and meet the needs of a competitive market. That is why models sup-
ported by formal or semi-formal languages are preferred to avoid the
understanding variability of natural languages. In this context, Model-Based
Systems Engineering (MBSE) made it possible to change the engineering
paradigm by putting forward a unique, shared system model. To promote its
adoption, a solution would be to allow reuse of knowledge and know-how, to
encourage engineers seizing and adapting MBSE to their needs. This paper aims
to review and evaluate the concept of patterns towards reuse in engineering,
especially in a MBSE approach.

1 Introduction

The design of increasingly complex systems is implicating longer engineering phases
and greater costs during the design lifecycle of a project. Those negative impacts are
accentuated by the current document-centred application of Systems Engineering
(SE) processes inside companies. Indeed, system development teams are working on
standalone models, communicating with other teams through documents written in
natural language. This implies a huge work concerning consistency and comprehen-
sion, as information shared through those documents has to be comprehensive and
unique, to avoid rework and non-conformity to customer expectations. So, there is a
challenge concerning the engineering efficiency (how to enhance productivity, quality,
communications, and reduce risk) needed in a highly competitive environment, where
the need is to shorten engineering cycle period.

In order to manage complexity, maintain consistency, and ensure traceability
during systems engineering, the SE community has turned to the Model-Based Systems
Engineering (MBSE) (Estefan 2008). Popularized by the International Council on
Systems Engineering (INCOSE) with the MBSE Initiative1, MBSE is defined as “the
formalized application of modelling to support system requirements, design, analysis,
verification and validation activities beginning in the conceptual design phase and

1 http://www.omgwiki.org/MBSE/doku.php (visited on 31/05/2018).

© Springer Nature Switzerland AG 2019
E. Bonjour et al. (Eds.): CSD&M 2018, Complex Systems Design & Management, pp. 219–229, 2019.
https://doi.org/10.1007/978-3-030-04209-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_18&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_18&domain=pdf
http://www.omgwiki.org/MBSE/doku.php
https://doi.org/10.1007/978-3-030-04209-7_18

continuing throughout development and later life cycle phases”. However, adoption of
MBSE takes time, as many inhibitors remain such as cultural and general resistance to
change, lack of related Knowledge and Know-How (K&KH), or the need to higher
degree of guidance and reuse.

For a wider MBSE adoption, several advances seem to be necessary concerning
organizational, methodological, and tools perspectives. In particular, from a method-
ological point of view, reuse seems to be promising. Reusing engineer’s Knowledge
and Know-How is an act of capitalization on previous experiences or projects, whether
it is on the System Of Interest (SOI) or on the Systems Engineering Activities (SEA).
But, often, those data are kept in their mind, and works have to be done to formalize
them, with the goal of sharing them so they can be reused. The expected benefits make
the assumption that reused modelling artefacts satisfy some maturity criteria to grant
that they have reached a level of quality compatible with reuse objectives.

This article reviews engineering practices which intent to capitalize on K&KH, and
to facilitate information sharing and reuse. A focus is made on reusing K&KH through
the concept of “pattern”. In this way, the second section presents reuse challenges in
engineering and related works, the third a short history on patterns, the fourth a lit-
erature review of pattern for SE, and the last section discusses on the interest of using
patterns in MBSE.

2 Challenges and Related Works

The fundamental difference between knowledge and know-how is that knowledge
provides only solutions and answers to problems and questions, whereas know-how
provides solutions but also a manner to construct these solutions (Gzara et al. 2003).
Thereby, engineer’s know-how is built from their experience, allowing them to reuse
information gathered in order to be more efficient in their tasks. However, those
“archives” are stuck in engineers’ mind, making it difficult to share them to someone
else to foster reuse (Mourtzis et al. 2016; Demian and Fruchter 2006). Yet, dynamic
information flowing among engineering teams is a critical challenge for many com-
panies who need to manage complex systems as information must be shared, com-
prehensive, and coherent among the project (Miled 2014). This aspect is very important
as it allows a better comprehension of the SOI and SEA. For example in requirement
engineering, Darimont et al. (2017) presents the results of a survey where 55–60% of
engineers use “copy & paste” and “duplication” techniques, and only 13% use “re-
quirements patterns catalogue”. As the complexity, the quantity of K&KH and also
engineering artefacts are exploding, those practices are no longer sufficient to answer
challenges of nowadays complex system development. That is why there is a need to
promote efficient way to transfer K&KH, in order to facilitate their circulation and
reuse, and this is why current expectations are to promote models over natural language
and its variability of understanding.

Research works have already been done for reuse K&KH in SE (Bollinger and Evins
2015; Barter 1998; Cloutier 2008; Cook and Schindel 2017; Gautam et al. 2007; Gzara
et al. 2003; Haskins 2005; Korff 2013; Wang et al. 2010), but as there are many different
ways to capitalize K&KH, it is important to define the targeted perimeter or the

220 Q. Wu et al.

engineering artefacts before considering reusing. Indeed, “reuse” activities in SE can be
distinguished in three different approaches: Opportunistic reuse: when the first project
was not developed with reusable capacity; Planned reuse: when the first project was
developed with reusable capacity; Variance: on a product line, common core model but
different options. Those approaches belong to the process of “knowledge transfer”which
consists of two sub-processes defined by Majchrzak et al. (2004). On the one hand, the
process by which an entity’s K&KH is captured, called “knowledge sharing”, and on the
other hand, the process by which an entity is able to locate and to use K&KH, called
“knowledge reuse”. It is important to ensure that the engineering artefact onwhich a reuse
solution is applied may be the SOI or SEA (Pfister et al. 2012).

Within existing reuse approaches for the SOI, the use of Components Off The
Shelves (COTS) consists in breaking down a problem into solvable sub-problems by
already existing components. However, the advantages of COTS are accompanied by
integration issues, early identified by Boehm and Abts (1999) which are: functionality
and performance (what it is expected to do), interoperability (no standard exists),
product evolution (risk of no longer meeting the need) and vendor behaviour (false
promises). For the reuse in SEA which aim to produce the SOI, Darimont et al. (2017)
deployed a local reuse library for each engineers and a shared reuse library for
improving reuse of requirements across projects, and Majchrzak et al. (2004) identifies
a six-stage reuse-for-innovation process, with the capacity to quickly capture and
present information on potentially reusable ideas. Other works both addressed the SOI
and SEA, such as the extension of the Constructive Systems Engineering Cost Model
(COSYSMO) by Wang et al. (2010) that consists in defining reuse categories and
weights for each of the category. While COSYSMO considers the whole, the PABRE
approach focuses on requirements management (Palomares et al. 2014) and is based on
a metamodel of Software Requirements Patterns (SRP), a method of reuse, a catalogue
of 111 SRP, and a software tool that supports the management and the use of the
catalogue.

As shown, many research works are looking to reuse K&KH to improve engi-
neering efficiency. One way that looks particularly promising is achieved through the
adoption of patterns, for both SEA and SOI, to systematize complex systems engi-
neering (Cochard 2017). As they can be used in all stages of the development cycle
(Gzara et al. 2003), reuse of patterns seems to be a very suitable form of reuse
(Schindel 2005).

3 A Little History of Patterns

Most people in the pattern community attribute the first promoter of the value of
“pattern” to Alexander et al. (1977) in a book on architecture, urban design and
community liveability. They formalized a “pattern language”, made of a myriad of
patterns that helped them to express design in terms of relationships between the parts
of a house, and the rules to transform those relationships (Coplien 1997). They began to
identify patterns with the idea that “Each pattern describes a problem which occurs
over and over again in our environment, and then describes the core of the solution to
that problem, in such a way that you can use this solution a million times over,

A Review of Know-How Reuse with Patterns 221

without ever doing it the same way twice” (Alexander et al. 1977). The same way
engineers reuse their knowledge based on their previous experience, Cloutier (2006)
point out that Alexander and his co-authors “did not invent these patterns, they came
from observation and testing; and only then were they documented as patterns”.

Since these pioneer works, the pattern approach has been introduced in various
engineering fields such as Software, Requirements, Telecommunications and Control
Systems Engineering (Cloutier 2006). Beck and Cunningham (1987) were the first to
propose object-oriented patterns in the Software community. The goal was to improve
quality and to facilitate code writing by adopting good practices. Gamma et al. (1995),
also known as the “Gang of Four”, wrote an authoritative book describing 23 Software
Design Patterns such as Composite, Iterator, Command… A Design Pattern is a gen-
eral, reusable solution to a recurring problem in the design of object-oriented appli-
cations; it describes a proven solution for solving software architecture problems. As
Design Patterns are not a finished design (concrete algorithm), but a structured
description of computer programming, it means they are independent from program-
ming languages. Design Patterns have been widely accepted, and encouraged other
domains to write patterns to capture their experience.

In the field of SE, the value of patterns appears towards the growing complexity of
systems and the difficulty to capture large body of knowledge. That is why Barter
(1998) proposes the creation of a Systems Engineering Pattern Language, which is a
collection of patterns that, when combined, address problems larger than the problems
that an individual pattern can address. In the same way, Haskins (2003) proposes the
use of SE patterns to capture the information in the Systems Engineering Body of
Knowledge (SEBOK). Other works have used the concept of pattern in SE, especially
in the Product Information System field, where Cauvet et al. (1998), Gzara (2000)
propose a methodological framework based on the reuse of patterns during all the
lifecycle, or Conte et al. (2001) who proposed patterns libraries to support a
methodological framework for the conception of product information system.

After this short history of patterns, the next section aims at improving the com-
prehension of what is a pattern in SE.

4 Patterns for Systems Engineering

It happens that similar designs are made independently by different engineers (Gaffar
and Moha 2005). This phenomenon acknowledges the fact that the same design ele-
ments exist in multiple designs, and the study and documentation of such designs foster
reuse among projects. Indeed, it prevents from “reinventing the wheel” and provides a
vocabulary for the design concepts that projects can share. This is consistent with the
notion that patterns “are not created from a blank page; they are mined” (Hanmer and
Kocan 2004). It appears that SE patterns are embedded in existing designs, and that it is
necessary to find a mechanism to identify them. Those patterns are called “buried
patterns” by Pfister et al. (2012) and represent a scientific issue. As the process of
“Mining” appears to be essential for creating Pattern Languages, various approaches
have been identified to write patterns from the element extracted from pattern mining.
According to DeLano (1998) classification, it is possible to classify mining’s processes

222 Q. Wu et al.

into three categories: Individual contributions where writers of the pattern used their
own experiences or ones from their colleagues; Second-hand contributions where
patterns are written based on interviews with experts or by guiding another person in
the writing of patterns, it can also come from borrowing patterns from the literature or
from companies in the same domain; Workshops/Meeting contributions that consists of
groups of around ten people who brainstorm the elements of a patterns, along with a
moderator and a facilitator.

When mining a pattern, depending on the language used (textual or modelling), it
appears that a minimal set of information is always provided, as a pattern seems to
possess an inherent triptych composed of {Context, Problem, Solution}. Gaffar and
Moha (2005) define a “Minimal Triangle” that defines the core meaning of a pattern
(Fig. 1). It summarizes the idea that a pattern provides a solution to a recurring problem
in a particular context. However, a general consensus enlarges the minimal elements
needed in a pattern, Barter (1998) describe a generic pattern with the minimal elements
needed to be written (Fig. 2). Cloutier and Verma (2007) conduct a survey that allow
them to list a recommended Systems Pattern Form. They also underline the fact that
concepts used in Systems Engineering represent higher levels of complexity and
abstraction that the prevailing notions of Alexander in architecture. For instance, the
architecture of the underlying concepts of control-command requires a more complex
notation than the sketch used in Alexander et al. (1977), thus Pfister et al. (2012) used
the Enhanced Functional Flow Block Diagram (eFFBD) to represent the model of their
control-command and rely on formal conceptual foundations in the form of a meta-
model.

Like models, patterns are abstractions or a set of abstractions of the reality and not a
magical solution. They allow people to solve complex problems by leveraging expe-
rience, K&KH from their predecessors. The results of a study conducted, in the Open
Source Software community, by Hahsler (2005) show that the larger the team size was,
the greater the use of patterns was for documenting changes: from 11.4% for a unique
developer to 82.2% in a team of ten or more developer. The capacity of patterns to

Fig. 1. The minimal triangle, extracted
from Gaffar and Moha (2005)

Fig. 2. Generic pattern, extracted from
Barter (1998)

A Review of Know-How Reuse with Patterns 223

deliver at each level of the development the correct amount of information for the stage
it is applied, allow its quick adoption and most importantly its active use as Hahsler
concludes in his study: “design patterns are adopted for documenting changes and thus
for communication in practice by many of the most active open source developers”.
Patterns offer the possibility to create a common lexicon between systems architects
that foster a common understanding of systems architecture, validated by experts. In
this way, the experience acquired by the software community on pattern will be
valuable, and help systems engineers to walk in their footsteps in order to develop
patterns that will foster reuse, as well as helping control the complexity of a system.

As the interest for MBSE increases, it is important to also examine the work done for
integrating the concept of pattern in this framework. The integration of the OMG System
ModellingLanguage (OMGSysML) and its consequences on how to define problems and
describe solutions are particularly interesting and will be examined in the next section.

5 Patterns for Model-Based Systems Engineering (MBSE)

Although research works have been made to assess whether the concept of pattern can
be applied in the Systems Engineering field such as Pfister et al. (2012), Cloutier
(2006), Haskins (2005), the value of patterns in a MBSE framework has not been fully
explored. Yet, it appears crucial to consider all the different needs, requirements and
constraints of the different stakeholders in the early design stages. Perceived by many
companies as a time loss, it appears that introducing or reinforcing reuse capacity in
MBSE methodologies allows the design of a new project with much less human effort,
benefiting from the reuse of the already existing system models (Shani and Broodney
2015). In this way, the capitalization and reuse of system models through the concept
of pattern can be implemented in MBSE, and thus, favour its adoption at a larger scale.

Models are abstraction or a set of abstractions of the reality (i.e. the reality can be
represented under different consistent views), which means that it can be easy to reuse a
model in a new project since no physical limitations get in the way. However,
depending on the type of reuse to do, the complexity of the system under design, and
also the heterogeneity of methodologies and tools, it appears that the adoption of
MBSE is penalized. Indeed, reusing existing modelling artefacts (even if their designs
have been made to be reusable) is harder than expected. As Korff (2013) stated, the
“biggest problem is to transfer and manage the knowledge [of] what is actually
available for re-use”. He emphasizes on the fact that it is necessary for system engi-
neers to be aware of system assets that can be defined and propagated among teams
designing complex systems. However, the creation of assets library is not sufficient, as
the purpose is to allow engineers to reuse those assets in their ongoing projects. Korff
underlines the fact that users should have the possibility to search, publish, and reuse
assets in defined libraries and catalogues, without any specific technical pre-requisite.
Contrary to Korff (2013), Paydar and Kahani (2015) do not focus on the creation of
assets but propose an approach concerning the adaptation of promising reusable assets
during a model reuse process, especially on the adaptation of OMG Unified Modeling
Language (OMG UML) activity diagrams to new use cases, in the context of web
engineering. This work proposes to semi-automatically create an activity diagram from

224 Q. Wu et al.

existing activity diagrams according to the input use case diagram. Even though this
approach is not presented in a MBSE framework, the fact that between OMG UML and
OMG SysML, use case diagrams are identical and that activity diagrams presents the
same use, allows considering a transposition in the SE field.

In the case of variant modelling in MBSE, Oster et al. (2016) propose an approach
for building and exploiting composable architectures to the design and development of
a product line of complex systems in the aerospace and defence market. They choose
OMG SysML as the core language to define descriptive models of the composable
system reference architecture and extended it to define parametric models. This
methodology allowed the product line to evolve more readily as the impact of infor-
mation propagation of adding, updating or modifying new components was automatic.
As their works consider physical layer, Di Maio et al. (2016) focus their attention on
the development of a functional architectures that can accommodate to change due to
decisions made in the logical layer for System of Systems (SoS). The results of their
study are a MBSE process that consists in the integration of a system model before the
consideration of the variants. It requires that the system model should contain both the
original configuration and the variant one. This separation is important in case of a new
technology is introduced but the older one are not abandoned yet. They also investigate
the aspects of including variant modelling into the OMG SysML, with a focus on
extending an existing and operating model to support a new variant in the case where a
similar technology is used.

The introduction of a reuse capacity in MBSE frameworks has proven to improve
engineering efficiency in engineers work. However, the steep learning curve induced
for organizations to adopt MBSE methodologies, results in the need of helping the
engineers to “quickly identify not only valid architectural solutions, but optimal value
solutions for the mission need” (Oster et al. 2016). Thus, it appears that the concept of
patterns could be an answer to this challenge. Indeed, works have been done to
introduce patterns during various phases of the engineering cycles. Gasser (2012)
described behavioural construct patterns (Fig. 3) to facilitate and systematize the
modelling of system behaviour. Instead of thinking at the level of atomic graphical
elements, he defined a structured way to represent elementary behavioural constructs.
In this way, he advocates the use of an “insert policy”, like in the construction of
Functional Flow Block Diagram (FFBD) where the resizing of the diagram is automatic

Fig. 3. Loop exit construct, extracted from Gasser (2012)

A Review of Know-How Reuse with Patterns 225

when new elements are inserted. The proposed behavioural construct patterns will
allow engineers to work in an algorithmic way of thinking, which implies a higher
modelling level that will permit to focus more on the expected behaviour than on the
aesthetics of the diagrams.

In order to help engineers to focus on what is important, patterns should guide the
development to avoid deviation. For example, Barbieri et al. (2014) proposed a process
for the development of mechatronic systems based on a SysML design pattern. Their
intent is to demonstrate that adequate guidelines for modelling can benefits the
development process by allowing an efficient traceability of all information within the
system model to trace change influences more easily. This approach proves to be
particularly helpful for facilitating the impact analysis in later lifecycle phases and for
the reuse for future projects.

Pursuing the work of Haskins (2005) on patterns, Schindel (2005) proposed an
engineering paradigm where patterns are re-usable models, that enables what he calls
Pattern-Based Systems Engineering (PBSE), where patterns can be configured or
specialized into product lines or into product systems. With the advent of MBSE, this
modelling framework has led to the creation of an INCOSE working group called
MBSE Patterns2. In this context, Schindel and Peterson (2013) developed their
approach, they see “patterns as re-usable models” and apply them to requirements and
design. At a high-level, they constitute a generic system pattern model that can be
customized according to enterprise needs, configuration, uses, so that engineers can
benefit from the concepts of MBSE without being an expert of modelling method-
ologies. Cook and Schindel (2017) applies it for the Verification and Validation pro-
cesses, and Bradley et al. (2010) in the pharmaceutical market.

6 Conclusion

As presented in the introduction, a main issue for system engineers is to shorten
engineering cycle period, and MBSE appears to be a great candidate to face this
challenge. For a wider MBSE adoption, this paper highlights the strong methodological
need to capitalize on previous projects to reuse K&KH, and focuses on the concept of
pattern, which offers the possibility to make information dynamic between stakeholders
during the development of complex systems, in order to share it and foster its reuse for
future MBSE projects.

From a methodological perspective, improvements from processes, methods and
tools should be made. It appears that the act of capitalization is not self-evident, as
patterns need to be mined, and imply the ability to detect and bring out K&KH. A first
step is to evaluate the maturity of such capitalized patterns, as done in the automated
production systems domain by Vogel-Heuser et al. (2018) on the maturity on control
modules in libraries. A second step is to improve the general maturity of reuse
approaches as done in the software domain by Manzoni and Price (2003), using for
example metrics inspired by Capability Maturity Model. A next step to improve

2 http://www.omgwiki.org/MBSE/doku.php?id=mbse:patterns:patterns (visited on 31/05/2018).

226 Q. Wu et al.

http://www.omgwiki.org/MBSE/doku.php?id=mbse:patterns:patterns

engineering effectiveness concerns the development and the adoption of MBSE soft-
ware tools that integrate patterns libraries supporting their capitalization, selection,
reuse, and update.

References

Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language. Ch. Alexander (1977). https://
doi.org/10.2307/1574526

Barbieri, G., Kernschmidt, K., Fantuzzi, C., Vogel-Heuser, B.: A SysML based design pattern for
the high-level development of mechatronic systems to enhance re-usability. In: IFAC
Proceedings Volumes (IFAC-PapersOnline), vol. 19, pp. 3431–3437. IFAC (2014). https://
doi.org/10.3182/20140824-6-za-1003.00615

Barter, R.H.: A systems engineering pattern language. In: INCOSE, pp. 350–353 (1998)
Beck, K., Cunningham, W.: Using pattern languages for object-oriented programs. In: OOPSLA-

87 Workshop on the Specification and Design for Object-Oriented Programming (1987)
Boehm, B., Abts, C.: COTS integration: plug and pray? Computer 32(1), 135–138 (1999).

https://doi.org/10.1109/2.738311
Bollinger, L.A., Evins, R.: Facilitating model reuse and integration in an urban energy simulation

platform. Procedia Comput. Sci. 51(1), 2127–2136 (2015). https://doi.org/10.1016/j.procs.
2015.05.484

Bradley, J.L., Hughes, M.T., Schindel, W.: Optimizing delivery of global pharmaceutical
packaging solutions, using systems engineering patterns. In: 20th Annual International
Symposium of the International Council on Systems Engineering, INCOSE 2010, vol. 3,
pp. 2441–2447 (2010). https://doi.org/10.1002/j.2334-5837.2010.tb01175.x

Cauvet, C., Rieu, D., Espinasse, B., Giraudin, J.-P., Tollenaere, M.: Ingénierie Des Systèmes
d’information Produit: Une Approche Méthodologique Centrée Réutilisation de Patrons. In:
Inforsid, pp. 71–90 (1998). http://dblp.uni-trier.de/db/conf/inforsid/inforsid1998.
html#CauvetREGT98

Cloutier, R.J.: Applicability of Patterns to Architecting Complex Systems, vol. 466. Stevens
Institute of Technology, Hoboken (2006)

Cloutier, R.J.: Model driven architecture for systems engineering. In: Language, no. September
(2008). http://personal.stevens.edu/*pkorfiat/CONOPS/Research/1_018.pdf

Cloutier, R.J., Verma, D.: Applying the concept of patterns to systems architecture. Syst. Eng. 10
(2), 138–154 (2007). https://doi.org/10.1002/sys.20066

Cochard, T.: Contribution à La Génération de Séquences Pour La Conduite de Systèmes
Complexes Critiques (2017)

Conte, A., Fredj, M., Giraudin, J.-P., Rieu, D.: P-Sigma: Un Formalisme Pour Une
Représentation Unifiée de Patrons. In: XIXème Congrès INFORSID, no. January, pp. 67–
86 (2001). http://liris.cnrs.fr/inforsid/sites/default/files/a366c1YfHw5cvgN2I.pdf

Cook, D., Schindel, W.: Utilizing MBSE patterns to accelerate system verification. Insight 20(1),
32–41 (2017). https://doi.org/10.1002/inst.12142

Coplien, J.O.: Idioms and patterns as architectural literature. IEEE Softw. 14(1), 36–42 (1997).
https://doi.org/10.1109/52.566426

Darimont, R., Zhao, W., Ponsard, C., Michot, A.: Deploying a template and pattern library for
improved reuse of requirements across projects. In: Proceedings—2017 IEEE 25th
International Requirements Engineering Conference, RE 2017, pp. 456–457 (2017). https://
doi.org/10.1109/re.2017.44

A Review of Know-How Reuse with Patterns 227

http://dx.doi.org/10.2307/1574526
http://dx.doi.org/10.2307/1574526
http://dx.doi.org/10.3182/20140824-6-za-1003.00615
http://dx.doi.org/10.3182/20140824-6-za-1003.00615
http://dx.doi.org/10.1109/2.738311
http://dx.doi.org/10.1016/j.procs.2015.05.484
http://dx.doi.org/10.1016/j.procs.2015.05.484
http://dx.doi.org/10.1002/j.2334-5837.2010.tb01175.x
http://dblp.uni-trier.de/db/conf/inforsid/inforsid1998.html#CauvetREGT98
http://dblp.uni-trier.de/db/conf/inforsid/inforsid1998.html#CauvetREGT98
http://personal.stevens.edu/%7epkorfiat/CONOPS/Research/1_018.pdf
http://dx.doi.org/10.1002/sys.20066
http://liris.cnrs.fr/inforsid/sites/default/files/a366c1YfHw5cvgN2I.pdf
http://dx.doi.org/10.1002/inst.12142
http://dx.doi.org/10.1109/52.566426
http://dx.doi.org/10.1109/re.2017.44
http://dx.doi.org/10.1109/re.2017.44

DeLano, D.E.: Patterns Mining. In: Rising, L. (ed.) The Pattern Handbook: Techniques,
Strategies, and Applications, pp. 87–96. Cambridge University Press, New York (1998)

Demian, P., Fruchter, R.: An ethnographic study of design knowledge reuse in the architecture,
engineering, and construction industry. Res. Eng. Des. 16(4), 184–195 (2006). https://doi.org/
10.1007/s00163-006-0010-x

Estefan, J.A.: Survey of model-based systems engineering (MBSE) methodologies. In:
INCOSE MBSE Initiative (2008). https://doi.org/10.1109/35.295942

Gaffar, A., Moha, N.: Semantics of a pattern system. In: Proceedings of the STEP International
Workshop on Design Pattern Theory and Practice IWDPTP05 (2005)

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley Longman Publishing Co. Inc., Boston (1995)

Gasser, L.: Structuring activity diagrams. In: 14th IFAC Symposium on Information Control
Problems in Manufacturing, Bucharest, Romania. IFAC (2012). https://doi.org/10.3182/
20120523-3-ro-2023.00153

Gautam, N., Chinnam, R.B., Singh, N.: Design reuse framework: a perspective for lean
development. Int. J. Prod. Dev. 4(5), 485–507 (2007). https://doi.org/10.1504/IJPD.2007.
013044

Gzara, L.: Résumé - Les Patterns Pour l’Ingénierie Des Systèmes d’Informations Produit (2000)
Gzara, L., Rieu, D., Tollenaere, M.: Product information systems engineering: an approach for

building product models by reuse of patterns. Robot. Comput. Integr. Manuf. 19(3), 239–261
(2003). https://doi.org/10.1016/S0736-5845(03)00028-0

Hahsler, M.: A quantitative study of the adoption of design patterns by open source software
developers. In: Free/Open Source Software Development, pp. 103–124. IGI Global (2005)

Hanmer, R.S., Kocan, K.F.: Documenting architectures with patterns. Bell Labs Tech. J. 9(1),
143–163 (2004). https://doi.org/10.1002/bltj.20010

Haskins, C.: 1.1.2 using patterns to share best results - a proposal to codify the SEBOK. In:
INCOSE International Symposium, vol. 13, no. 1, pp. 15–23 (2003). https://doi.org/10.1002/
j.2334-5837.2003.tb02596.x

Haskins, C.: Application of patterns and pattern languages to systems engineering. In: 15th
Annual International Symposium of the International Council on Systems Engineering,
INCOSE 2005, vol. 2, pp. 1619–1627 (2005). http://www.scopus.com/inward/record.url?eid=
2-s2.0-84883318751&partnerID=tZOtx3y1

Korff, A.: Re-using SysML system architectures. In: Complex Systems Design and Management
—Proceedings of the 4th International Conference on Complex Systems Design and
Management, pp. 257–266. Springer, Berlin (2013). https://doi.org/10.1007/978-3-319-
02812-5-19

Di Maio, M., Kapos, G.D., Klusmann, N., Allen, C.: Challenges in the modelling of SoS design
alternatives with MBSE. In: 2016 11th Systems of Systems Engineering Conference, SoSE
(2016). https://doi.org/10.1109/sysose.2016.7542937

Majchrzak, A., Cooper, L.P., Neece, O.E.: Knowledge reuse for innovation. Manage. Sci. 50(2),
174–188 (2004). https://doi.org/10.1287/mnsc.1030.0116

Manzoni, L.V., Price, R.T.: Identifying extensions required by RUP (Rational Unified Process) to
comply with CMM (Capability Maturity Model) levels 2 and 3. IEEE Trans. Softw. Eng. 29
(2), 181–192 (2003). https://doi.org/10.1109/TSE.2003.1178058

Miled, A.B.: Reusing knowledge based on ontology and organizational model. Procedia Comput.
Sci. 35, 766–775 (2014). https://doi.org/10.1016/j.procs.2014.08.159

Mourtzis, D., Doukas, M., Giannoulis, C.: An inference-based knowledge reuse framework for
historical product and production information retrieval. Procedia CIRP 41, 472–477 (2016).
https://doi.org/10.1016/j.procir.2015.12.026

228 Q. Wu et al.

http://dx.doi.org/10.1007/s00163-006-0010-x
http://dx.doi.org/10.1007/s00163-006-0010-x
http://dx.doi.org/10.1109/35.295942
http://dx.doi.org/10.3182/20120523-3-ro-2023.00153
http://dx.doi.org/10.3182/20120523-3-ro-2023.00153
http://dx.doi.org/10.1504/IJPD.2007.013044
http://dx.doi.org/10.1504/IJPD.2007.013044
http://dx.doi.org/10.1016/S0736-5845(03)00028-0
http://dx.doi.org/10.1002/bltj.20010
http://dx.doi.org/10.1002/j.2334-5837.2003.tb02596.x
http://dx.doi.org/10.1002/j.2334-5837.2003.tb02596.x
http://www.scopus.com/inward/record.url%3feid%3d2-s2.0-84883318751%26partnerID%3dtZOtx3y1
http://www.scopus.com/inward/record.url%3feid%3d2-s2.0-84883318751%26partnerID%3dtZOtx3y1
http://dx.doi.org/10.1007/978-3-319-02812-5-19
http://dx.doi.org/10.1007/978-3-319-02812-5-19
http://dx.doi.org/10.1109/sysose.2016.7542937
http://dx.doi.org/10.1287/mnsc.1030.0116
http://dx.doi.org/10.1109/TSE.2003.1178058
http://dx.doi.org/10.1016/j.procs.2014.08.159
http://dx.doi.org/10.1016/j.procir.2015.12.026

Oster, C., Kaiser, M., Kruse, J., Wade, J., Cloutier, R.: Applying composable architectures to the
design and development of a product line of complex systems. Syst. Eng. 19(6), 522–534
(2016). https://doi.org/10.1002/sys.21373

Palomares, C., Quer, C., Franch, X.: Requirements reuse with the PABRE framework. Requir.
Eng. Mag. 2014, 1 (2014)

Paydar, S., Kahani, M.: A semi-automated approach to adapt activity diagrams for new use cases.
Inf. Softw. Technol. 57(1), 543–570 (2015). https://doi.org/10.1016/j.infsof.2014.06.007

Pfister, F., Chapurlat, V., Huchard, M., Nebut, C., Wippler, J.-L.: A proposed meta-model for
formalizing systems engineering knowledge, based on functional architecture patterns. Syst.
Eng. 15(3), 321–332 (2012). https://doi.org/10.1002/sys.21204

Schindel, W.: Requirements statements are transfer functions: an insight from model-based
systems engineering. In: INCOSE International Symposium, vol. 15, no. 1, pp. 1604–1618
(2005). https://doi.org/10.1002/j.2334-5837.2005.tb00775.x

Schindel, W., Peterson, T.: Introduction to pattern-based systems engineering (PBSE): leveraging
MBSE techniques. In: INCOSE International Symposium, vol. 23, no. 1, p. 1639 (2013).
https://doi.org/10.1002/j.2334-5837.2013.tb03127.x

Shani, U., Broodney, H.: Reuse in model-based systems engineering. In: 9th Annual IEEE
International Systems Conference, SysCon 2015 - Proceedings, pp. 77–83 (2015). https://doi.
org/10.1109/syscon.2015.7116732

Vogel-Heuser, B., Fischer, J., Neumann, E.-M., Diehm, S.: Key maturity indicators for module
libraries for PLC-based control software in the domain of automated production systems. In:
16th IFAC Symposium on Information Control Problems in Manufacturing (2018)

Wang, G., Valerdi, R., Fortune, J.: Reuse in systems engineering. IEEE Syst. J. 4(3), 376–384
(2010). https://doi.org/10.1109/JSYST.2010.2051748

A Review of Know-How Reuse with Patterns 229

http://dx.doi.org/10.1002/sys.21373
http://dx.doi.org/10.1016/j.infsof.2014.06.007
http://dx.doi.org/10.1002/sys.21204
http://dx.doi.org/10.1002/j.2334-5837.2005.tb00775.x
http://dx.doi.org/10.1002/j.2334-5837.2013.tb03127.x
http://dx.doi.org/10.1109/syscon.2015.7116732
http://dx.doi.org/10.1109/syscon.2015.7116732
http://dx.doi.org/10.1109/JSYST.2010.2051748

Posters

The Systems Engineering Concept

A Practical Hands-on Approach to Systems Engineering

Henrik Balslev(&)

Certified Systems Engineering Professional (CSEP), Systems Engineering A/S,
Livjaegergade 17B, 2nd Floor, 2100 Copenhagen Oe., Denmark

hb@syseng.dk

Abstract. Systems engineering includes a range of different processes defined
by ISO 15288, which one can run depending on the requested needs. But ISO
15288 does not provide specific detailed instructions for the execution of these,
and very often systems engineering will be performed by specialists responsible
for systems engineering activities as an add-on to other project activities, rather
as an integral part of the daily life of designers and engineers.
This white paper introduces a concept for systems engineering, The Systems

Engineering Concept® (SEC), which can be used by all project participants and
not just specialists. SEC is using selected processed from ISO 15288 and in
addition IEC/ISO 81346, IEC 61355 and IEC 62023 standard series. Processes
are determined by making reverse engineering on proven methods and use these
in SEC.

© Springer Nature Switzerland AG 2019
E. Bonjour et al. (Eds.): CSD&M 2018, Complex Systems Design & Management, pp. 233–233, 2019.
https://doi.org/10.1007/978-3-030-04209-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_19&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_19&domain=pdf
https://doi.org/10.1007/978-3-030-04209-7_19

From Document Centric Approach to MBSE
Approach: BPMN, UML, SysML and Wire

Framing Implementation

David Schumacher(&)

Thales Services, 110 rue Blaise Pascal, Immeuble Viséo,
38334 Montbonnot Cedex, France

david.schumacher@thalesgroup.com

Abstract. Model Based System Engineering (MBSE) approach aims among
other to achieve the business objectives for complex/critical systems. This
approach is so intended to enhance understanding and quality. Several choices
shall be made and shall allow to build a good model which means that is usable
and understandable by all stakeholders in order to share and support complex
system requirements, business analysis, architecture, design, and verification &
validation activities.
To maximize number and various stakeholders, we though language(s) have

to be rightly selected.
So, we will discuss an example of a framework implementation based on:

BPMN, UML, SysML and wire framing in order to tempt to improve of col-
laboration, to improve impact assessments and to share the understanding in
product development between teams for two different project: IT project (web
software context) and a class III medical critical system (hardware and software
context).

© Springer Nature Switzerland AG 2019
E. Bonjour et al. (Eds.): CSD&M 2018, Complex Systems Design & Management, pp. 234–234, 2019.
https://doi.org/10.1007/978-3-030-04209-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_20&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_20&domain=pdf
https://doi.org/10.1007/978-3-030-04209-7_20

Towards a Better Modelling
and Assessment of Project Management

Maturity in Industry 4.0

Felipe Sanchez1(&), Davy Monticolo2, Eric Bonjour2,
and Jean-Pierre Micaëlli3

1 Sopra Steria, Université de Lorraine, ERPI, 5 Place de L’Iris,
92400 Courbevoie, France

felipe.sanchez@soprasteria.com
2 Université de Lorraine, ERPI, 8 Rue Bastien-Lepage, Nancy 54000, France

{davy.monticolo,eric.bonjour}@univ-lorraine.fr
3 Jean Moulin Lyon 3 University, IAE Lyon School of Management, 1C avenue

des frères Lumière, CS 78242, 69372 Lyon Cedex 08, France
jean-pierre.micaelli@univ-lyon3.fr

Abstract. Companies are currently facing substantial challenges with regard to
Industry 4.0. In order to adapt to this changing environment, companies are
moving from operations-centered business to project-driven business. This
change requires an evolution in project management. Researchers and practi-
tioners, inspired by the PMBOK (Project Management Body of Knowledge),
have created maturity models to compare and evaluate organizations, but they
did not specify any methodology to create adapted models to face this tech-
nological change. Therefore, this paper proposes an approach to understand
under on principles existing project management maturity models were based,
and how it is possible to create a new project management maturity model
applicable in the emerging framework of industry 4.0. Then, we illustrate the
new approach with the construction of a project maturity model used to measure
the planning capability. Finally, we define limitations of the model and future
research directions.

© Springer Nature Switzerland AG 2019
E. Bonjour et al. (Eds.): CSD&M 2018, Complex Systems Design & Management, pp. 235–235, 2019.
https://doi.org/10.1007/978-3-030-04209-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_21&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_21&domain=pdf
https://doi.org/10.1007/978-3-030-04209-7_21

Integrated Framework for Design
and Testing of Software for Automotive

Mechatronic Systems

Nick Van Kelecom1(&), Timothy Verstraete2, Sam Silverans1,
and Mathieu Dutré1

1 Siemens Industry Software NV, Interleuvenlaan 68, 3001 Louvain, Belgium
{nick.van_kelecom,sam.silverans,

mathieu.dutre}@siemens.com
2 University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium

Timothy.Verstraete@uantwerpen.be

Abstract. Today’s electrification and automation put a lot of pressure on
automotive OEM’s. Vehicle functions are increasingly executed by complex
mechatronic systems, feeding the need for high-efficiency multi-disciplinary
teams. Numerous car recalls confirm that establishing these teams is an unob-
vious process. A framework facilitating design, testing, engineering asset
management and planning is essential. This research presents such an envi-
sioned framework with a central development management tool, integrated with
different engineering tools to obtain vital information.
First, high level requirements are defined, whereof a software architecture can

be deduced. Based on this architecture, requirements can be remapped, refined
and implemented. In parallel, test cases are written, verifying a requirement’s
implementation. Automatic test harness generation will reduce repetitive, time-
intensive modelling. The testing status can later be centrally monitored. This
status is the initiator for new engineering tasks, managed in a Kanban board
providing a clear overview. Complete traceability through this process is
ensured.

© Springer Nature Switzerland AG 2019
E. Bonjour et al. (Eds.): CSD&M 2018, Complex Systems Design & Management, pp. 236–236, 2019.
https://doi.org/10.1007/978-3-030-04209-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_22&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_22&domain=pdf
https://doi.org/10.1007/978-3-030-04209-7_22

Complex Systems Engineering Approach
for Condition Monitoring for the Digital
Transformation: Integration into Mining

Industry Control Systems

Mariya Guerroum1,2(&), Ali El-Alaoui1,3, Laurent Deshayes1,
Mourad Zegrari1,2, Janah Saadi3, and Hicham Medromi3

1 Innovation Lab for Operations, Mohammed VI Polytechnic University,
Ben Guerir, Morocco

{Mariya.guerroum,ali.elalaoui}@um6p.ma
2 Ecole Nationale Supérieure des Arts et Métiers de Casablanca,

Casablanca, Morocco
3 Ecole Nationale Supérieure de l’Electricité et de la Mécanique,

Casablanca, Morocco

Abstract. The digital transformation of the Mining Industry is about to affect
all organizational levels, from manufacturing to maintenance. This revolution
would be impossible without a modern Information and Communication
Technologies (ICT) infrastructure. Maintenance management is a complex
process requiring an effective combination of technical and economic expertise.
This paper presents electromechanical systems condition-monitoring architec-
ture, using the Systems Engineering Approach. The main function of the system
is to extract and to identify physical parameters of the studied system for pre-
dictive maintenance strategy elaboration. The System’s architecture based on the
operational, functional and constructional visions is fundamental to define the
action scope and its features, leading to avoid production breakdowns, to
improve maintenance management and to minimize the related intervention
costs. We used SysML diagrams to model the solution and hence to materialize
the System targeting maintenance in industrial environment.

© Springer Nature Switzerland AG 2019
E. Bonjour et al. (Eds.): CSD&M 2018, Complex Systems Design & Management, pp. 237–237, 2019.
https://doi.org/10.1007/978-3-030-04209-7_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_23&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_23&domain=pdf
https://doi.org/10.1007/978-3-030-04209-7_23

Cyber Physical Systems Real Time
and Interactive Testing and Governance

Sara Sadvandi1(&), Franck Corbier2, and Eric Mevel3

1 Dassault Systèmes, 10 rue Marcel Dassault, 92940 Velizy, France
Sara.sadvandi@3ds.com

2 Dassault Systèmes, 35 rue Haroun Tazieff, 54320 Maxeville, France
Franck.corbier@3ds.com

3 Dassault Systèmes, 120 rue René Descartes, 29280 Plouzané, France
Eric.mebel@3ds.com

Abstract. Cyber Physical Systems (CPS) interconnects the cyber world of
communication and computing with the physical via reliable and secure soft-
ware’s. It asserts a critical challenge not only on development of complex
systems but also on integration and validation of system of systems (SoS). This
article develops a categorization of multiple levels of testing and defines a high
level conceptual organization of test based engineering and validation. It
introduces a real time and interactive co-execution platform that provides
heterogeneous model integration, models validation and monitoring. It presents
a generative approach for test variants management to assure dynamic changes
and the flexibility in execution and test during the project life cycle. Further, it
provides effective deployment domains.

Keywords: Cyber Physical Systems � Model-based testing � MiL
SiL � HiL � Progressive integration and validation � Test variant management
Test governance � System under tests � Real time and interactive execution
Test scenarios

© Springer Nature Switzerland AG 2019
E. Bonjour et al. (Eds.): CSD&M 2018, Complex Systems Design & Management, pp. 238–238, 2019.
https://doi.org/10.1007/978-3-030-04209-7_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_24&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_24&domain=pdf
https://doi.org/10.1007/978-3-030-04209-7_24

Machine-Executable Model-Based Systems
Engineering with Graph-Based Design

Languages

Benedikt Walter1(&), Dennis Kaiser2, and Stephan Rudolph3(&)

1 R&D MB Cars, Daimler AG, Sindelfingen, Germany
benedikt.walter@daimler.com

2 IILS mbH, Leinfelden, Germany
kaiser@iils.de

3 University of Stuttgart, IFB, Stuttgart, Germany
rudolph@ifb.uni-stuttgart.de

Abstract. Model-Based Systems Engineering (MBSE) structures the design
process in form of a V-Model. Along the V-Model, the tasks of model creation,
editing and design change propagation to maintain model consistency requires
manually much time, effort and cost. While formal languages such as the
Unified Modeling Language (UML) or the Systems Modeling Language
(SysML) are used already to represent the design process and behavioral product
aspects, the UML/SysML-models are mostly still manually assembled and
interlinked. Graph-based design languages on the basis of UML combine the
advantage of a digital representation of the design process with the advantage of
a rule-based execution. This combination of digital representation with machine-
execution boosts MBSE towards a repeatable and machine-executable V-Model.
This allows for a seamless transition from manual MBSE towards an automated
and machine-executable MBSE. The poster will highlight some of the advan-
tages of this fully digital and machine-executable MBSE in an automotive
dashboard application.

© Springer Nature Switzerland AG 2019
E. Bonjour et al. (Eds.): CSD&M 2018, Complex Systems Design & Management, pp. 239–239, 2019.
https://doi.org/10.1007/978-3-030-04209-7_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_25&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_25&domain=pdf
https://doi.org/10.1007/978-3-030-04209-7_25

Cyber-Physical System Modeling
Using a Case Study

Sara Mallah1,2(&), Khalid Kouiss3, Oualid Kamach1,2,3,
and Laurent Deshayes1,2,3

1 ILO, University Mohammed 6 Polytechnic, Ben Guerir, Morocco
sara.mallah@um6p.ma

2 LTI, ENSA, Tangier, Morocco
3 SIL, Blaise-Pacal University of Clermont Ferrand, Aubière, France

khalid.kouiss@ifma.fr

Abstract. The fad in today’s market for customer-specific products pushed the
industry to renew itself and drive value creation initiative. In fact, companies are
concerned not only about selling the product as a function, but also about selling
the value as a solution. It is reasonable to think that the creation of these new
business models involve building flexible manufacturing facilities, digitizing
and integrating inter and intra-company systems into one intelligent data man-
agement structure which allow physical and software components to interact
with each other in a myriad of ways that change with context, in spite of the
different spatial and temporal scales they operate on. This synergic interaction
can be fulfilled by accomplishing an industry 4.0 environment that aims to
transcend mechatronic systems and move to cyber-physical systems (CPS).
In this paper, we present our methodology to model CPS. The results show

promising research opportunity for implementing CPS in industry.

© Springer Nature Switzerland AG 2019
E. Bonjour et al. (Eds.): CSD&M 2018, Complex Systems Design & Management, pp. 240–240, 2019.
https://doi.org/10.1007/978-3-030-04209-7_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_26&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_26&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_26&domain=pdf
https://doi.org/10.1007/978-3-030-04209-7_26

The SERC 5-Year Technical Plan: Designing
the Future of Systems Engineering Research

Jon Wade1(&), Dinesh Verma1, Thomas McDermott1,
and Barry Boehm2

1 Stevens Institute of Technology,
Castle Point on Hudson, Hoboken, NJ 07030, USA

{jon.wade,dinesh.verma,tmcdermo}@stevens.edu
2 University of Southern California, Los Angeles, USA

boehm@usc.edu

Abstract. The Systems Engineering Research Center (SERC), a US University
Affiliated Research Center, developed the 2014–2018 Technical Plan to provide
the vehicle by which to align the SERC Vision and Research Strategy with the
US Federal Government Sponsor’s top research priorities. This paper summa-
rizes the SERC Vision, the Sponsor’s needs, and the SERC’s response to these
needs. It then describes the objectives, approach and content of the original five-
year SERC Technical Plan, and provides an overview of the results. Emerging
systems challenges are noted along with the approach that is being used to ad-
dress them in the upcoming Five Year Technical Plan. Finally, this paper de-
scribes the status of the new plan and some of the opportunities and challenges
that it provides.

© Springer Nature Switzerland AG 2019
E. Bonjour et al. (Eds.): CSD&M 2018, Complex Systems Design & Management, pp. 241–241, 2019.
https://doi.org/10.1007/978-3-030-04209-7_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_27&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_27&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_27&domain=pdf
https://doi.org/10.1007/978-3-030-04209-7_27

Understand Corporate Culture for a Better
Steering Model

Paul Maitre, Jérôme Raby-Lemoine, and François Videau(&)

Easis Consulting, 75 rue de la Fontaine au Roi, 75011 Paris, France
{pmaitre,jrabylemoine,fvideau}@easis-consulting.com

Abstract. Unpredictability being the key-word, continuous transformation is
obviously mandatory for most organizations. Transformation programs and
projects are launched at an ever-increasing pace.
Most of these transformation programs and projects are focused on Opera-

tions, IT systems, processes and indicators, and do not take into account col-
lective subconscious, unspoken thoughts and hidden facts: Corporate culture.
More surprisingly, this finding is also true for Steering model improvement

projects. Consulting firms and IT companies are designing and building new
reporting processes, Balanced Scorecards or Business Intelligence softwares
without even trying to understand what makes any organisation different one
from another: its values, its skills, its habits and behaviors.
Based on experience (of hundreds of Transformation projects), our belief is

that understanding Corporate culture within a meta-model analysis is a pre-
requisite for improving significantly the Steering model or to its components.

© Springer Nature Switzerland AG 2019
E. Bonjour et al. (Eds.): CSD&M 2018, Complex Systems Design & Management, pp. 242–242, 2019.
https://doi.org/10.1007/978-3-030-04209-7_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_28&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_28&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_28&domain=pdf
https://doi.org/10.1007/978-3-030-04209-7_28

Correction to: Systemic Design Engineering

Curriculum and Instructional Results

Jon Wade, Steven Hoffenson, and Hortense Gerardo

Correction to:
Chapter “Systemic Design Engineering”
in: E. Bonjour et al. (Eds.):
Complex Systems Design & Management,
https://doi.org/10.1007/978-3-030-04209-7_16

In the original version of the book, the spell error in third author name “Hortense
Gerado” should be corrected as “Hortense Gerardo” in chapter “Systemic Design
Engineering”. The correction chapter and the book have been updated with the change.

The updated version of this chapter can be found at
https://doi.org/10.1007/978-3-030-04209-7_16

© Springer Nature Switzerland AG 2019
E. Bonjour et al. (Eds.): CSD&M 2018, Complex Systems Design & Management, p. C1, 2019.
https://doi.org/10.1007/978-3-030-04209-7_29

https://doi.org/10.1007/978-3-030-04209-7_16
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_29&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04209-7_29&domain=pdf
https://doi.org/10.1007/978-3-030-04209-7_16
https://doi.org/10.1007/978-3-030-04209-7_29

Author Index

B
Balslev, Henrik, 233
Banach, Richard, 3
Binder, Christoph, 44
Boehm, Barry, 241
Bonjour, Eric, 235
Bonnaud, Aymeric, 56
Bonnema, G. Maarten, 145
Borth, Michael, 67
Boudau, Sophie, 219
Bouffet-Bellaud, Stéphanie, 33
Bullock, Seth, 121

C
Chavy-Macdonald, Marc-Andre, 203
Cheve, Ronald, 33
Coipeau-Maia, Vincent, 33
Corbier, Franck, 238
Correvon, Marc, 3
Coudert, Thierry, 157

D
De Valroger, Aymeric, 157
Debicki, Olivier, 3
Deshayes, Laurent, 237, 240
Doornbos, Richard, 109
Dudnik, Gabriela, 3
Dutré, Mathieu, 236

E
El-Alaoui, Ali, 237
Ernadote, Dominique, 16

F
Faudou, Raphaël, 168
Ferrogalini, Marco, 79
Foucault, Julie, 3
Fruehling, Carl, 179

G
Garnier, Jean-Luc, 97
Garnier, Thierry, 33
Gauthier, Jean-Marie, 168
Geneste, Laurent, 157
Gerardo, Hortense, 192
Gouyon, David, 219
Guegan, Alan, 56
Guerroum, Mariya, 237

H
Hoffenson, Steven, 192
Huijbrechts, Bas, 109

J
Jankovic, Marija, 97
Johnson, Angus, 121

K
Kaiser, Dennis, 239
Kamach, Oualid, 240
Khalfallah, Malik, 133
Kouiss, Khalid, 240
Kuijsten, Marco, 145

© Springer Nature Switzerland AG 2019
E. Bonjour et al. (Eds.): CSD&M 2018, Complex Systems Design & Management, pp. 243–244, 2019.
https://doi.org/10.1007/978-3-030-04209-7

https://doi.org/10.1007/978-3-030-04209-7

L
Lastro, Goran, 44
Lesecq, Suzanne, 3
Levrat, Éric, 219
Lieber, Peter, 44
Linke, Thomas, 79

M
Maitre, Paul, 242
Mallah, Sara, 240
Mareau, Nicolas, 3
McDermott, Thomas, 241
Medromi, Hicham, 237
Meléndez, Diana, 157
Mevel, Eric, 238
Micaëlli, Jean-Pierre, 235
Monticolo, Davy, 235
Moser, Bryan R., 179
Moser, Bryan, 203

N
Neureiter, Christian, 44

O
Olaru, Sorin, 97

P
Pelegrin, Lorena, 203
Potts, Matthew, 121

Q
Qasim, Lara, 97

R
Raby-Lemoine, Jérôme, 242
Rajabalinejad, Mohammad, 145
Razavi, Joe, 3
Romero Bejarano, Juan C., 157
Rudolph, Stephan, 239

S
Saadi, Janah, 237
Sadvandi, Sara, 238
Sanchez, Felipe, 235
Sartor, Pia, 121
Schuitemaker, Katja, 145
Schumacher, David, 234
Schweiger, Ulrich, 79
Ševo, Kristina, 109
Silverans, Sam, 236
Sleuters, Jack, 109

T
Tang, Jian, 168

U
Uslar, Mathias, 44

V
van Gerwen, Emile, 67
Van Kelecom, Nick, 236
van Spaandonk, Heidi, 145
Verberkt, Mark, 109
Verma, Dinesh, 241
Verriet, Jacques, 109
Verstraete, Timothy, 236
Videau, François, 242

W
Wade, Jon, 192, 241
Walter, Benedikt, 239
Wanaka, Shinnosuke, 203
Winder, Ira, 203
Wu, Quentin, 219

Z
Zegrari, Mourad, 237
Zhu, Shaofan, 168

244 Author Index

	Preface
	Introduction
	Why a CSD&M Conference?
	Our Core Academic–Industrial Dimension
	The 2018 Edition

	Conference Organization
	Conference Chairs
	General Chair
	Organizing Committee Chair
	Program Committee Co-chairs
	Program Committee
	Academic Members
	Sec11
	Sec12
	Industrial Members
	Sec14
	Sec15
	Organizing Committee
	Organizing Committee
	Sec18
	Sec19
	Invited Speakers
	Plenary sessions
	“Methods and Tools” Track
	“Design, Manufacture and Operation of Complex Products and Services” Track
	“Aeronautics” Track
	“Energy” Track
	“Healthcare Services” Track
	“Transportation & Mobility” Track

	Acknowledgements
	Contents
	Regular Papers
	Formal Methods in Systems Integration: Deployment of Formal Techniques in INSPEX
	1 Introduction
	2 INSPEX Application Use Cases
	3 The INSPEX VIB White Cane Use Case
	4 Formal Modelling and Verification in INSPEX
	4.1 Power Management Formal Modelling and Verification
	4.2 The Data Acquisition Pathway

	5 Discussion and Conclusions
	References

	Ontology-Based Optimization for Systems Engineering
	1 Introduction
	2 Prerequesites for an Automated System Design Optimization
	2.1 The Modeling Planning Process

	3 Model Variability
	3.1 Link with the MB2SE Conceptual Data Model

	4 Fulfilling the Modeling Constraints
	4.1 Operations Research and Systems Engineering
	4.2 Local Search Algorithm Tuning Delegation
	4.3 A Pragmatic Implementation of the Constraint Language
	4.4 The Ontology-Based Optimization Process

	5 Example of an Optimization-Based Systems Engineering
	5.1 Selecting the Applications
	5.2 Designing the Optimized IT
	5.3 Optimizing with the HOPEX-LocalSolver Bridge
	5.4 Performance of the Optimal Solution Search

	6 Future Work
	References

	On-Time-Launch Capability for Ariane 6 Launch System
	Abstract
	1 Context and Study Logic
	2 Delay Risks Identification
	2.1 Lessons-Learnt
	2.2 Functional Risk Analysis

	3 Delay Risk Classification and Selection
	3.1 Cost Analysis Wrt “Delay Cost and Cost Acceptability”
	3.2 Major Delay Risk Selection

	4 Delay Risk Reduction
	4.1 Mitigation Action to Reduce Delay Risk Occurrence
	4.2 Mitigation Action to Reduce Delay Risk Severity

	5 Conclusion and Way Forwards
	References

	Towards a Standards-Based Domain Specific Language for Industry 4.0 Architectures
	1 Introduction
	2 Related Work
	2.1 Domain Specific Architecture Framework
	2.2 Domain Specific Systems Engineering

	3 Approach Taken for Transfer
	3.1 Case Study Design and Requirements
	3.2 Process Model
	3.3 Domain Specific Language
	3.4 Toolbox Implementation

	4 Application of the Toolbox
	4.1 Case Study Model
	4.2 Findings

	5 Conclusions and Future Work
	References

	Assessing the Maturity of Interface Design
	Abstract
	1 Introduction
	2 Design Change Requests Data: Main Characteristics
	2.1 Available Data and Characteristic Patterns
	2.2 Potential and Limitations of an Analysis Based on the CGI

	3 Design Change Request Generation as a Heuristic Measure of Interface Design Maturity
	3.1 Change Requests and Interface Design Maturity
	3.2 Procedure to Evaluate the Maturity of Interface Design

	4 Examples
	4.1 The Perfect Project
	4.2 Late Overshoot: End of Design Declared Prematurely
	4.3 The Flat Project: A Volatile Environment

	5 Discussion
	References

	Tracking Dynamics in Concurrent Digital Twins
	Abstract
	1 Introduction
	2 Digital Twins for Process Control and Analysis
	2.1 Dynamics: A Challenge for Concurrent Digital Twins
	2.2 Safeguarding the Digital Twin’s Operations

	3 Detecting Transgressions of a Model’s Operational Space
	3.1 Probability of Findings for Model Fragments
	3.2 Monitoring Findings with Western Electric Rules

	4 Tracking for Digital Twin Maintenance
	5 Industrial Use Case
	6 Experimental Validation
	6.1 Successful Localization of Change
	6.2 Fast and Accurate Detection of Change

	7 Future Work and Conclusion
	References

	How to Boost the Extended Enterprise Approach in Engineering Using MBSE – A Case Study from the Railway Business
	Abstract
	1 Introduction
	1.1 Railways Business OEM, a System Integrator
	1.2 Railways Business OEM, a System Integrator
	1.3 Rolling Stock Systems Complexity Growth
	1.4 Rolling Stock Subsystems Complexity Growth

	2 Functional Architecture Concept Process and MBSE at Bombardier
	2.1 Functional Architecture Engineering Process and Modelling Methodology
	2.2 MBSE Tool Chain and Main Outputs
	2.3 Deployment Status

	3 Functional Architecture Concept Process and MBSE at Knorr Bremse
	3.1 Functional Architecture Engineering Process
	3.2 Modelling Methodology
	3.3 Deployment Status

	4 Rolling Stock Integrator Versus Subsystem Supplier – A Key and Complex Relationship
	4.1 State of the Art
	4.2 Extended Enterprise, the Next Generation Supply Management

	5 The BT-KB MBSE Cycle
	5.1 The BT-KB Model-Based Systems Engineering Cycle

	6 Conclusion
	References

	Model-Based System Reconfiguration: A Descriptive Study of Current Industrial Challenges
	Abstract
	1 Introduction
	2 State of the Art
	2.1 Fault Detection, Isolation and Reconfiguration
	2.2 Configuration Management and System Adaptability
	2.3 Change Prediction and Propagation in the Conceptual Design and Basic Engineering Phase

	3 Methodology
	4 Analysis of Current Industrial Challenges
	4.1 Data Related Challenges
	4.2 Modeling Issues
	4.3 Contracting and Certification
	4.4 System and Context Taxonomy

	5 Discussion and Future Work
	6 Conclusion
	References

	A Domain Model-Centric Approach for the Development of Large-Scale Office Lighting Systems
	Abstract
	1 Introduction
	2 Domain Model-Centric Approach
	2.1 Domain-Specific Languages for System Specification
	2.2 Aspect Analysis and Virtual Prototyping
	2.3 System Configuration and Code Generation
	2.4 Industrial Application

	3 Office Lighting
	3.1 Office Lighting Systems

	4 Application in Office Lighting
	4.1 Language Modularity
	4.2 Virtual Prototyping
	4.3 Generation of Configuration Settings and Code

	5 Discussion and Conclusions
	Acknowledgement
	References

	Through a Glass, Darkly? Taking a Network Perspective on System-of-Systems Architectures
	Abstract
	1 Introduction
	1.1 Prior Work

	2 Cautioning Network Perspectives on System Architectures
	2.1 Identification of Important Entities
	2.2 Evaluating Structure
	2.3 Network Perturbation
	2.4 Evaluating Vulnerability to Failure Cascades

	3 Challenges to Progress
	4 Conclusion
	References

	Generation and Visualization of Release Notes for Systems Engineering Software
	Abstract
	1 Introduction
	1.1 Paper Scope
	1.2 Addressed Problems
	1.3 Motivating Example

	2 Framework to Generate Release Notes
	2.1 Data Model to Capture Release Notes Building Blocs
	2.2 Determination of Patterns
	2.2.1 Empirical Study
	2.2.2 Study Results: Patterns Identification
	2.2.3 Model-Based Patterns Discovery Algorithm
	2.2.4 Implementation

	3 Related Work
	4 Conclusion
	References

	Safety Architecture Overview Framework for the Prediction, Explanation and Control of Risks of ERTMS
	Abstract
	1 Introduction
	2 Background
	2.1 State of the Art

	3 Method
	4 Results
	4.1 Top Functionalities
	4.2 Safety Architecture Overview Framework

	5 Discussion
	6 Conclusion
	References

	Formalization and Reuse of Collaboration Experiences in Industrial Processes
	Abstract
	1 Introduction
	2 Literature Review
	2.1 Collaboration Characterization in Industrial Processes
	2.2 Knowledge Management Applied to Collaboration in Processes

	3 Experience Feedback Process for Collaboration
	3.1 Experience Feedback Process
	3.2 Collaboration Model
	3.3 Taxonomy of Concepts
	3.4 Collaboration Experience Building
	3.5 Collaboration Experience Reuse

	4 Conclusion
	References

	An MBSE Framework to Support Agile Functional Definition of an Avionics System
	Abstract
	1 Introduction
	2 Key Principles of the Proposed Agile MBSE Approach
	2.1 Capture Intended Behaviors from Input Functional Needs
	2.2 Define System Functional Interfaces and Top-Level Functions
	2.3 Define Functional Architecture
	2.4 Simulation of Scenarios

	3 Requirements for Agile System Definition and V&V
	4 Experiments and Discussion
	4.1 Results
	4.2 Discussion

	5 Related Work
	6 Conclusion
	References

	Analyzing Awareness, Decision, and Outcome Sequences of Project Design Groups: A Platform for Instrumentation of Workshop-Based Experiments
	Abstract
	1 Introduction
	2 Research Framework
	3 Clustering Analysis
	4 Results Interpretation
	5 Conclusion
	Acknowledgements
	References

	Systemic Design Engineering
	Abstract
	1 Background
	2 Systemic Design Engineering
	3 Course Curricula
	3.1 Context – Systems Thinking
	3.1.1 Systems Perspectives
	3.1.2 Relationships
	3.1.3 Dynamics
	3.1.4 Leverage Points

	3.2 Human Centricity – Design Thinking
	3.2.1 Design Thinking Essentials
	3.2.2 Identifying Opportunities
	3.2.3 Identifying Customer Needs
	3.2.4 Preliminary Product Specifications

	3.3 Realization – Systems and Software Engineering
	3.3.1 Concept Design
	3.3.2 Concept of Operations
	3.3.3 Use Case Scenarios
	3.3.4 System Requirements
	3.3.5 Economics and Financial Analysis

	3.4 Learning Integration

	4 Pilot Results
	5 Conclusions and Further Work
	References

	Field Guide for Interpreting Engineering Team Behavior with Sensor Data
	Abstract
	1 Introduction
	2 Related Research
	3 Methods
	3.1 Taxonomy of Design Process and Experiment
	3.2 Experimental Framework and Setup
	3.3 Experimental Case and Procedure
	3.4 Method for Generating Team Design Walk Narratives

	4 Results
	5 Discussion
	5.1 Lessons Learned

	6 Conclusion
	References

	A Review of Know-How Reuse with Patterns in Model-Based Systems Engineering
	Abstract
	1 Introduction
	2 Challenges and Related Works
	3 A Little History of Patterns
	4 Patterns for Systems Engineering
	5 Patterns for Model-Based Systems Engineering (MBSE)
	6 Conclusion
	References

	Posters
	The Systems Engineering Concept
	Abstract

	From Document Centric Approach to MBSE Approach: BPMN, UML, SysML and Wire Framing Implementation
	Abstract

	Towards a Better Modelling 	and Assessment of Project Management Maturity in Industry 4.0
	Abstract

	Integrated Framework for Design and Testing of Software for Automotive Mechatronic Systems
	Abstract

	Complex Systems Engineering Approach for Condition Monitoring for the Digital Transformation: Integration into Mining Industry Control Systems
	Abstract

	Cyber Physical Systems Real Time and Interactive Testing and Governance
	Abstract

	Machine-Executable Model-Based Systems Engineering with Graph-Based Design Languages
	Abstract

	Cyber-Physical System Modeling Using a Case Study
	Abstract

	The SERC 5-Year Technical Plan: Designing the Future of Systems Engineering Research
	Abstract

	Understand Corporate Culture for a Better Steering Model
	Abstract

	Correction to: Systemic Design Engineering
	Correction to: Chapter “Systemic Design Engineering” in: E. Bonjour et al. (Eds.): Complex Systems Design & Management, https://doi.org/10.1007/978-3-030-04209-7_16

	Author Index

