
Tuning the Discount Factor in Order
to Reach Average Optimality

on Deterministic MDPs

Filipo Studzinski Perotto(B) and Laurent Vercouter

Normandy University / INSA / LITIS, Rouen, France
{filipo.perotto,laurent.vercouter}@litislab.fr

Abstract. Considering Markovian Decision Processes (MDPs), the
meaning of an optimal policy depends on the optimality criterion chosen.
The most common approach is to define the optimal policy as the one
that maximizes the sum of discounted rewards. The intuitive alterna-
tive is to maximize the average reward per step. The former has strong
convergence guarantees but suffers from the dependency on a discount
factor. The latter has the additional inconvenience of being insensitive to
different policies with equivalent average. This paper analyzes the impact
of such different criteria on a series of experiments, and then provides a
threshold for the discount factor in order to ensure average optimality
for discounted-optimal policies in the deterministic case.

Keywords: Average dynamic programming
Sensitive dynamic programming · Reinforcement learning
Markovian decision process

1 Introduction

Dynamic Programming (DP) refers to a set of algorithms that can efficiently
compute optimal policies for Markovian Decision Processes (MDPs), providing
essential foundations for Reinforcement Learning (RL) methods [22,26]. DP and
RL algorithms are fundamentally based on discounted-optimality. In this setting,
an optimal policy maximizes the sum of discounted rewards over time using a
discount factor γ.

When considering infinite time-horizon, the use of discounted rewards con-
stitutes an important key on guarantying polynomial time convergence for such
methods [2]. However, in many domains, the use of a discount factor does not
present any relation to the optimization problem itself. Typically, when facing
recurrent MDPs (where terminal states do not exist), discounting future rewards
in favor of immediate rewards can introduce a kind of “distortion” on the real
utility of a policy of actions [17,21,27].

The crawling robot problem [29] offers an illustrative example of such issue.
The robot is endowed with a single articulated arm, and some of its movements

c© Springer Nature Switzerland AG 2018
M. Bramer and M. Petridis (Eds.): SGAI-AI 2018, LNAI 11311, pp. 92–105, 2018.
https://doi.org/10.1007/978-3-030-04191-5_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04191-5_7&domain=pdf
https://doi.org/10.1007/978-3-030-04191-5_7

Tuning the Discount Factor 93

cause the displacement of the robot. The objective is finding the optimal cyclical
sequence of actions in order to make the robot walk forward as fast as possi-
ble. Rewards correspond to immediate progressions. However, depending on the
discount factor, a discounted-optimal policy can be unable to reach the max-
imum velocity. In other words, an intuitively optimal behavior can be seen as
sub-optimal under the discounted framework. In fact, the robot reaches its max-
imum speed when it enters in the recurrent cycle of states that offers the highest
average displacement per step. Other examples of this issue are given in [17]. For
such scenarios, maximizing the average reward per step is, in some sense, more
appropriate, but a key limitation of such approach is that average-optimality can-
not distinguish among policies which have the same recurrent average reward per
step, but which are not necessarily equivalent in terms of transient rewards [19].

The discussion about optimality is not new [4,8,14], and is summarized in
Sect. 2. In practice, the discounted framework had been largely preferred. Such
algorithms are easier to implement, and the polynomial convergence bounds are
guaranteed for the general case [23,34].

In fact, if the discount factor γ is sufficiently high, discounted-optimal policies
become also average-optimal. How high γ needs to be depends on each particular
setting (topology and rewards), and cannot be calculated beforehand. For that
reason, it is a hard-to-tune parameter. Without any other information, such
average optimality is only guaranteed in the limit when γ → 1 [3,4,12]. However,
the higher the discount factor, the slower the convergence of iterative methods.
When γ approaches 1, the necessary time for convergence approaches ∞ [34].

How often are discounted-optimal policies not average-optimal? The first
contribution of this paper is an analysis on the difference between discounted-
optimality and average-optimality in terms of total reward loss on the long run
depending on how γ is tuned. Using a set of experiments with random MDPs
we show that the impact of the use of too low γ values is not negligible.

How can the discount factor be optimally tuned in practice? The second con-
tribution of this paper is a method for calculating a threshold for γ in order
to ensure average-optimality to discounted-optimal policies. In this paper, as it
consists on a first approach to the problem, only deterministic MDPs will be
considered.

The rest of the paper is organized as follows. Section 2 reviews related
concepts and methods on computational sequential decision-making. Section 3
presents our contributions: an analysis about the impact in terms of reward loss
on choosing either discounted or average optimality, and the deduction of a for-
mula for identifying average-optimal discount factors. Section 4 concludes the
paper.

2 Background: Markovian Decision Processes

Markovian Decision Processes (MDPs) are in the center of a widely-used frame-
work for approaching automated control, sequential decision-making, planning,
and computational reinforcement learning problems [21,22,25,26,30,32].

94 F. S. Perotto and L. Vercouter

An MDP works like a discrete stochastic finite state machine: at each time
step the machine is in some state s, the agent observes that state and interacts
with the process by choosing some action a to perform, then the machine changes
into a new state s′ and gives the agent a corresponding reward r.

An MDP can be defined as a set M = {S,A, T,R} in the form:

M =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S = {s1, s2, ..., sn} is the finite set of states
A = {a1, a2, ..., am} is the finite set of actions
T = Pr(s′|s, a) is the transition function
R = Pr(r|s, a, s′) is the reward function

where n = |S| is the number of states, and m = |A| is the number of actions.
The transition function T defines the system dynamics by determining the

next state s′ given the current state s and the executed action a. The reward
function R defines the immediate reward r ∈ R after moving from state s to s′

with action a. Deterministic MDPs (D-MDPs) constitute the particular set of
MDPs where the transitions are deterministic, in the form T : S × A → S.

Solving an MDP means finding a policy of actions that maximizes the rewards
received by the agent, according to a given optimality criterion and a given time-
horizon. The optimality criterion is defined by an utility function U . An optimal
policy π∗ is a policy that cannot be improved:

U(s, π∗) ≥ U(s, π),∀s ∈ S,∀π ∈ Π (1)

where U(s, π) is the utility of following the policy π from the state s.
A deterministic stationary policy π is a mapping between states and actions

in the form π : S → A. The number of such policies contained in Π, the set of
possible policies, is exponential, and corresponds to |Π| = mn.

2.1 Discounted Optimality

When the stopping time h is finite and known, a simple solution consists in
evaluating policies by estimating their total rewards. The utility function U is
then equivalent to Z, the (undiscounted) sum of expected rewards:

Zh(s, π) =
h∑

t=1

Rt(s, π) (2)

where Rt(s, π) corresponds to the expected reward in time t starting from state s
and following policy π. In that case an exact optimal policy can be found through
backward recursion [2] in polynomial time, O(nmh). However, such solution can-
not be applied when the time-horizon is infinite, unbounded or unknown.

The standard approach to the infinite horizon setting consists in applying a
discount factor {γ ∈ R | 0 < γ < 1} that reduces the weight of future rewards
compared to immediate rewards in the sum. Such sum is always finite, which
guarantees the convergence of iterative methods to an optimal solution [22,32].

Tuning the Discount Factor 95

The sum of discounted rewards Vγ(s, π), starting in a given state s, following a
given policy π, and for a given discount factor γ, is:

Vγ(s, π) = lim
h→∞

h∑

t=1

γt−1Rt(s, π) (3)

Tuning the discount factor implies a trade-off: the higher γ is (closer to 1),
the better the chances of ensuring average optimality for discounted-optimal
policies, but the bigger the computational costs for calculating the solution. The
convergence time bound to compute discounted-optimal policies using iterative
methods increases with rate O(1

1−γ log 1
1−γ) [24,34]

Typical values of γ in the literature are 0.9 and 0.99. The inconvenience of
using such generic suggestions is that, in certain circumstances, when γ is too
low, discounted-optimality can lead the agent to a sub-optimal behavior in terms
of average reward. We would like to call such phenomenon a “discount trap”.

2.2 Average (or Gain) Optimality

In many domains, there is no grounded interpretation for the discount factor
γ. In addition, the value corresponding to the sum of discounted rewards is
less human readable (i.e. harder to interpret) than the average reward per step.
Moreover, in recurrent domains (where later rewards are as important as earlier
rewards) the use of low values of γ can “distort” the utility of some sequence
of actions. For such reasons, maximizing the average reward received per time
step can be preferable [9,28]. The average reward over an infinite time-horizon,
called gain, of a policy π starting on state s, is:

G(s, π) = lim
h→∞

1
h

h∑

t=1

Rt(s, π) (4)

The convenience of average-optimality compared to discounted-optimality can
be observed regarding the MDPs shown in Fig. 1. On both problems, depending
on the discount factor, the discounted-best policy can correspond to a clearly
worse solution on the long run.

Considering unichain MDPs running over an infinite time-horizon, the aver-
age reward (or gain) of a given policy π converges to a single value g indepen-
dently of the starting state [22], i.e. G(s, π) = g,∀s ∈ S. Considering multichain
MDPs, there is a convergent gain for each communicant subset of states (i.e.
for each recurrent class within the process). The major drawback of average-
optimal methods is that they have weaker convergence guarantees compared to
discounted methods, even with the strong constraint of unichainess [11]. Worse
yet, they are insensitive for distinguishing different policies with same average
reward per step [15].

96 F. S. Perotto and L. Vercouter

Fig. 1. In (i), there is a unique decision to be taken, on the middle state y. The gain
of choosing the action a is G(y, a) = 0. It corresponds to the reward on the loop of the
recurrent left state x. The gain of choosing the action b is G(y, b) = +1. It corresponds
to the reward on the loop of the recurrent right state z. Because G(y, b) > G(y, a), the
action b constitutes the average-optimal policy. The action a earns a unique and imme-
diate positive reward of 50 in time t = 1. At the same time, the action b loses 50, but
then earns an additional reward of +1 per each subsequent time-step. In time t = 101,
the policy b “reaches” the policy a, both having accumulated the same total rewards
Z101(y, a) = Z101(y, b) = +50. Then, after 101 execution steps, b becomes better than
a up to the infinity. So, considering an unbounded time-horizon (where the stopping
time h of the process is likely to be greater than 100), the policy b would be preferred.
However, given that V0.99(y, a) = +50 and V0.99(y, b) = +49, the discounted-optimal
policy for any discount factor γ ≤ 0.99 is a. In (ii), the average of the policy start-
ing on the middle state y and choosing the action a is G(y, a) = +0.45 (the average
per step on the cycle {y, z}, on the right). The action b presents G(y, b) = +0.5 (the
average per step on the cycle {y, x}, on the left) and is gain-optimal. However, given
that V0.9(y, a) = V0.9(y, b) ≈ 4.737, the discounted-optimal policy for any discount fac-
tor γ < 0.9 is a. In fact b becomes definitely better (i.e. get better total rewards) than
a after 20 execution steps and up to the infinity.

2.3 Sensitive (or Blackwell) Optimality

For a same MDP there may be several average-optimal policies which are not
necessarily equivalent. That is the case regarding the examples in Fig. 2. On
both cases, two possible policies converge to a common average reward as time
approaches infinity. They are, for that reason, indistinguishable from an average
reward point of view.

The problem is that rewards obtained in the transient path toward the recur-
rent states disappear on the infinite averaging. In the same way, the position
of each reward inside a sequence of cyclical rewards also disappears. However,
such differences are important when considering an unbounded (but finite) time-
horizon. Even though the gain of a policy π is mathematically independent of the
starting state s on the infinite, the total expected reward in a given time h is not,
i.e. G(s, π) �= 1

hZh(s, π). Such differences are generally called bias [15,17,19,28].
In fact, for a given MDP, there is a discount factor γ∗ from which the optimal

policies do not change [3]. Such common “unanimous” optimal policies corre-
spond to a sensitive-optimality [18,31].

Tuning the Discount Factor 97

Fig. 2. In (i), the gain of both possible policies is equivalent,
G(x, a) = G(x, b) = G(y) = 0, but their initial steps (in t = 1) are not equiva-
lently rewarded, R1(x, a) = −50 and R1(x, b) = +50. In this case, both policies a and
b are average-optimal, but b offers a better transient reward and would be preferred
over a. In fact, the total rewards accumulated by the policy b are greater than the
rewards accumulated by a after the first step, i.e. Zh(x, b) > Zh(x, a), ∀h ∈ Z | h ≥ 1.
In (ii), the gain of both possible policies is equivalent, G(x, a) = G(x, b) = 0, but the
policy b presents a bigger total reward compared to a every time when t is odd. Then
Zh(x, b) ≥ Zh(x, a), ∀h ∈ Z

+, and for such reason, b would be the preferred policy.

2.4 Dynamic Programming

Dynamic Programming (DP) refers to iterative optimization methods which
can be used to efficiently compute optimal policies of Markovian Decision Pro-
cesses (MDPs) when a model is given [2,22]. Value-Iteration (VI) [1] and Policy-
Iteration (PI) [13] are the two fundamental and widely used DP algorithms for
infinite time-horizon MDPs. It had been demonstrated that PI converges at least
as quickly as VI [21], and, in practice, PI has been shown to be most effective [16].

There is a significant research effort for understanding the complexity of
PI. The demonstration of its tight upper and lower bounds is still an open
problem. Considering stochastic MDPs under discounted optimality, with a fixed
discount rate 0 ≤ γ < 1, PI is proved to be strongly polynomial [10,23,34], i.e.
the number of operations required to compute an optimal policy has an upper
bound that is polynomial in the number of state-action pairs. Unfortunately,
the convergence time increases with rate O(1

1−γ log 1
1−γ) [24,34]. It constitutes

a major impediment for using high discount factors (γ → 1) in practice.
Typically, average optimization is a more difficult problem than discounted

optimization [7]. PI can need an exponential number of iterations under average-
optimality for stochastic MDPs in the general case [6]. In contrast, a determin-
istic MDP under average-optimality can be solved in strongly polynomial-time,
O(n2m) [11,20] as the well-known Minimum-Mean-Cost-Cycle problem. Exper-
imental studies suggest that PI works very efficiently in this context [5]. Recent
advances in average optimisation have been proposed in [33].

98 F. S. Perotto and L. Vercouter

3 Contribution: Average-Optimal Discount Factor

Given that low discount factor values can lead to “discount traps”, and that high
discount factor values imply exponentially high computational costs, suggestions
about how to tune such factor are needed. To the best of our knowledge, there
is no method published in the literature for doing so.

The main contribution of this paper consists then in proposing a first thresh-
old for γ in order to ensure average optimality to discounted-optimal policies,
considering the case of deterministic MDPs, and based on simple characteristics
of the target process. It means deducing a value for γ ensuring that discounted-
optimal policies will correspond to average-optimal policies for any D-MDP
which fits the given characteristics.

3.1 Tuning the Discount Factor

Let a discount trap be characterized by the situation where, for a given MDP
M, and for a given discount factor γ, there is a state s from where the gain of
discounted-optimal policies is smaller than the gain of average-optimal policies.
Formally, a discount trap exists if:

∃π ∈ Π,∃s ∈ S

{
Vγ(s, π∗) ≥ Vγ(s, π)
G(s, π∗) < G(s, π)

(5)

Let a family F of deterministic MDPs be the set of all possible D-MDPs
presenting the following identical characteristics:

F =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

n = |S| number of states
m = |A| number of actions
rmin ∈ R worst immediate reward value
rmax ∈ R best immediate reward value
δ ∈ R

+ the smallest non-zero immediate reward difference
Δ = rmax − rmin the range of the reward support

In order to avoid discount traps, the discount factor must be tuned over
a certain threshold. It is known that there exists an optimal discount factor
γ∗ from where the optimal policies do not change [3,12]. Such value can be
called the sensitive-optimal discount factor. γ is guaranteed to be over such
threshold on the limit when it approaches 1, i.e. lim γ → 1 =⇒ γ > γ∗. Another
threshold, generally smaller than γ∗, ensures that discounted-optimal policies
are also average-optimal. We would like to call it the average-optimal discount
factor, and denote it γ��.

Tuning the Discount Factor 99

When looking for the average-optimal discount factor γ�� for a given family
of D-MDPs F , we must look for the worst case within the family, i.e. the process
M ∈ F which requires the highest value of γ to ensure average-optimality for
discounted-optimal policies.

3.2 Deterministic Worst Case

Let an optimal loop L within a given D-MDP M be a cycle over a single state
s, with some action a, presenting the maximum possible reward rmax. Let an
almost optimal cycle C be a cycle containing a subset of states, having a period
|C| that can vary from 1 (a single state) to n − 1, and presenting a sequence of
|C|−1 maximum rewards rmax followed by an almost maximum reward rmax−δ.
Let a maximally penalizing path W be a path having a length |W | that can vary
from 1 (a single step) to n − 1, and presenting the worst possible reward rmin

on every step. When such 3 structures appear connected within a D-MDP, we
discover a graph topology similar to the cases presented in Fig. 3.

Fig. 3. In (i), the recurrent optimal loop on the state y can be reached by choosing the
action b on state x. It offers a better gain than the almost optimal cycle reached with
the action a in x, i.e. G(x, b) = G(y) = R(y) = rmax > G(x, a) = R(x, a) = rmax − δ.
However, a long and hardly penalizing transient path must be traversed in order to get
from x to y. Such path counts the maximum possible distance between x and y, and is
rewarded with the worst possible reward rmin at each step. The period of the almost
optimal cycle is 1 (a loop), and the size of the maximally penalizing path is n − 1. In
(ii), the almost optimal cycle constitutes the biggest possible cycle disjoint from the
optimal loop in the MDP. Its period is n − 1, which reduces the length of the path to
1. However, the gain difference is also smaller, G(x, b) = rmax > G(x, a) = rmax − δ

n−1
.

Such are the two intuitively possible worst situations within a given MDP family for
defining an average-optimal discount factor.

The infinite discounted sum of rewards on the almost optimal cycle C,
denoted Vγ(C), can be calculated by the difference between the infinite dis-
counted sum of rmax and the infinite discounted sum of δ discounted by its
position in the cycle:

Vγ(C) =
rmax

1 − γ
− γ|C|−1δ

1 − γ|C| (6)

100 F. S. Perotto and L. Vercouter

The infinite discounted sum of rewards on the path W followed by the loop
L, denoted Vγ(W), corresponds to the finite discounted sum of rmin on the max-
imally penalizing path plus the infinite discounted sum of rmax on the optimal
loop discounted by the size of the path:

Vγ(W) =
rmin(1 − γ|W |)

1 − γ
+

rmaxγ
|W |

1 − γ
(7)

When the discount factor is average-optimal, there is no discount trap.

Theorem 1. Let F be a family of D-MDPs, corresponding to the set of pro-
cesses presenting identical characteristics n,m, rmin, rmax, δ,Δ. The set of D-
MDPs within such family which requires the highest average-optimal discount
factor is characterized by: (i) an almost optimal cycle C disjoint from (ii) an
optimal loop L, both separated by a unique (iii) maximally penalizing path W .

The Theorem 1 necessarily holds because:

1. Shortening W increases Vγ(W) without changing Vγ(C).
2. Increasing rmin increases Vγ(W) without changing Vγ(C).
3. Increasing δ decreases Vγ(C) without changing Vγ(W).
4. Decreasing rmax makes Vγ(C) decrease faster than Vγ(W).

Developing the Theorem 1 results in n possible worst cases, from where the
two extremes are illustrated in Fig. 3.

3.3 Deterministic Average-Optimal Discount Factor

In order to avoid a “discount trap”, the utility of staying in an almost optimal
cycle must be worse than the utility of traveling across all the states of the
maximally penalizing path to the optimal loop. In the precedent section, two
candidate worst cases have been presented. In this section the formula for an
optimal discount factor is deduced for both examples. Such procedure allows
to confirm what is effectively the worst case. An optimal discount factor for
such worst case must necessarily be an optimal discount factor for any other
case within the same MDP family. Such formulas can be deduced by simply
developing the statement:

γ > γ�� =⇒ Vγ(W) > Vγ(C) (8)

Firstly, we consider the case presented in Fig. 3 (i), which contains a long
penalizing path. The value of the average-optimal discount factor γ�� from which
the discounted-optimal policies are also average-optimal for such D-MDP is:

Tuning the Discount Factor 101

Vγ(x, b) > Vγ(x, a)

=⇒
n−2∑

i=0

γirmin +
∞∑

i=n−1

γirmax >

∞∑

i=0

γi(rmax − δ)

=⇒ (1 − γn−1)rmin

1 − γ
+

γn−1rmax

1 − γ
>

rmax − δ

1 − γ

=⇒ rmin − γn−1rmin + γn−1rmax > rmax − δ

=⇒ γn−1rmax − γn−1rmin > rmax − rmin − δ

=⇒ γn−1Δ > Δ − δ

=⇒ γ >
n−1

√

1 − δ

Δ

Then we consider the case presented in Fig. 3 (ii), which contains a short
penalizing path. The value of the average-optimal discount factor γ�� from which
the discounted-optimal policies are also average-optimal for such D-MDP is:

Vγ(x, b) > Vγ(x, a)

=⇒ rmin + γVγ(y) > Vγ(y) − γn−2δ

1 − γn−1

=⇒ Vγ(y) − rmax + rmin > Vγ(y) − γn−2δ

1 − γn−1

=⇒ −rmax + rmin > − γn−2δ

1 − γn−1

=⇒ γn−2δ

1 − γn−1
> Δ

=⇒ γn−2δ > Δ(1 − γn−1)

=⇒ γn−2 >
−δ ± √

δ2 + 4Δ2

2Δ

=⇒ γ >
n−2

√

−δ +
√

δ2 + 4Δ2

2Δ

Effectively, the second case is the worst case, which can be algebraically
confirmed:

102 F. S. Perotto and L. Vercouter

n−2

√

−δ +
√

δ2 + 4Δ2

2Δ
>

n−1

√

1 − δ

Δ

=⇒
(

−δ +
√

δ2 + 4Δ2

2Δ

)2

> 1 − δ

Δ

=⇒ 2δ2 − 2δ
√

δ2 + 4Δ2 + 4Δ2

4Δ2
> 1 − δ

Δ

=⇒ 2δ2 − 2δ
√

δ2 + 4Δ2

4Δ2
> − δ

Δ

=⇒ 2δ2 − 2δ
√

δ2 + 4Δ2 > −4Δδ

=⇒ δ −
√

δ2 + 4Δ2 > −2Δ

=⇒ δ −
√

δ2 + 4k2δ2 > −2kδ

=⇒ k > 0

=⇒ Δ

δ
> 0

Hence, the formula for calculating the optimal discount factor is:

γ�� =
n−2

√

−δ +
√

δ2 + 4Δ2

2Δ
(9)

Figure 4 plots the function γ�� for two different settings. Parameter i indi-
cates the number of states, n = i, and the two different series represent reward
granularity δ = 1/i and δ = 1 (binary rewards).

Fig. 4. The average-optimal discount factor for n = i and reward support in [0, 1]. The
two different series represent reward granularity δ = 1/i and δ = 1 (Bernoulli).

Tuning the Discount Factor 103

3.4 Discount Trap Frequency

The choice of the optimality criterion has an impact on the calculated opti-
mal policies. When using the discounted framework, if the discount factor γ is
not sufficiently high, discounted-optimal policies could not correspond to gain-
optimal policies, and it means a worst performance in terms of total rewards in
the long run. In order to be able to measure the impact of such choice, we made
a series of experiments, verifying how often a “discount trap” is detected.

Each experiment consists in generating 10000 random D-MDPs for a given
setting (or family) i, varying the number of states n = i and the reward granu-
larity δ = 1/i. It means that the MDP size and the reward granularity are both
gradually incremented. The number of actions is fixed to m = 2, as well as the
minimum reward rmin = 0 and the maximum reward rmax = 1. We make the
parameter i vary from 2 to 50. The results presented in Fig. 5 confirm that, for
standard “naive” values of γ, like 0.9 and 0.99, the frequency of “discount traps”
is not negligible, even for such small MDPs.

Fig. 5. The frequency of discount traps, when the discounted-optimal policy is not
gain-optimal, considering γ = 0.9 and γ = 0.99. The parameter i indicates the number
of states n = i and the reward granularity δ = 1/i.

4 Conclusion

Using a set of experiences with randomly generated MDPs, we demonstrated
that the occurrence of discount traps, inherent to all mechanisms that calculate
utility functions using a discount factor, can cause sub-optimal behaviors on
several recurrent MDPs in terms of total (undiscounted) rewards, and can be
observed more often than usually suspected. In our experiments, we show that
the use of “naive” but classical values for γ can result in discounted-optimal

104 F. S. Perotto and L. Vercouter

policies which are not average-optimal in 40% of the simulations when γ = 0.9,
and almost 4% when γ = 0.99, which is far from being negligible.

In this paper, a formula for calculating an average-optimal discount factor
is deduced, given the target family of deterministic MDPs characterized by n
(the number of states), rmax and rmin (the reward bounds), and δ (the “reward
granularity”, equivalent to the smallest difference between any two rewards into
the reward function). It represents an upper bound that could be improved by
taking other characteristics into account. This paper was limited to deterministic
MDPs. The next step of the work is understanding how such γ threshold can be
defined on the stochastic case.

References

1. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton (1957)
2. Bertsekas, D.P.: Dynamic Programming and Optimal Control, 3rd edn. Athena

Scientific, Belmont (2005)
3. Blackwell, D.: Discrete dynamic programming. Ann. Math. Stat. 33(2), 719–726

(1962)
4. Cao, X.R., Zhang, J.: The nth-order bias optimality for multichain Markov decision

processes. Trans. Autom. Control 53(2), 496–508 (2008)
5. Dasdan, A.: Experimental analysis of the fastest optimum cycle ratio and mean

algorithms. Trans. Des. Autom. Electr. Syst. 9(4), 385–418 (2004)
6. Fearnley, J.: Exponential lower bounds for policy iteration. In: Abramsky, S.,

Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP
2010. LNCS, vol. 6199, pp. 551–562. Springer, Heidelberg (2010). https://doi.org/
10.1007/978-3-642-14162-1 46

7. Feinberg, E.A., Huang, J.: Strong polynomiality of policy iterations for average-
cost MDPs modeling replacement and maintenance problems. Oper. Res. Lett.
41(3), 249–251 (2013)

8. Feinberg, E.A., Huang, J.: Reduction of total-cost and average-cost MDPs with
weakly continuous transition probabilities to discounted MDPs. Oper. Res. Lett.
46(2), 179–184 (2018)

9. Gosavi, A.: A reinforcement learning algorithm based on policy iteration for average
reward: empirical results with yield management and convergence analysis. Mach.
Learn. 55(1), 5–29 (2004)

10. Hansen, T.D., Miltersen, P.B., Zwick, U.: Strategy iteration is strongly polynomial
for 2-player turn-based stochastic games with a constant discount factor. J. ACM
60(1), 1–16 (2013)

11. Hansen, T.D., Zwick, U.: Lower bounds for Howard’s algorithm for finding mini-
mum mean-cost cycles. In: Cheong, O., Chwa, K.-Y., Park, K. (eds.) ISAAC 2010.
LNCS, vol. 6506, pp. 415–426. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17517-6 37

12. Hordijk, A., Yushkevich, A.: Blackwell optimality. In: Feinberg, E.A., Shwartz, A.
(eds.) The Handbook of Markov Decision Processes: Methods and Applications,
chap. 8, pp. 231–268. Kluwer (2002)

13. Howard, R.: Dynamic Programming and Markov Processes. MIT Press, Cambridge
(1960)

https://doi.org/10.1007/978-3-642-14162-1_46
https://doi.org/10.1007/978-3-642-14162-1_46
https://doi.org/10.1007/978-3-642-17517-6_37
https://doi.org/10.1007/978-3-642-17517-6_37

Tuning the Discount Factor 105

14. Kallenberg, L.: Finite state and action MDPS. In: Feinberg, E.A., Shwartz, A.
(eds.) Handbook of Markov Decision Processes. International Series in Operations
Research and Management Science, vol. 40, pp. 21–87. Springer, Boston (2003).
https://doi.org/10.1007/978-1-4615-0805-2 2

15. Lewis, M.E., Puterman, M.L.: Bias optimality. In: Feinberg, E.A., Shwartz, A.
(eds.) The Handbook of Markov Decision Processes: Methods and Applications,
chap. 3, pp. 89–111. Kluwer (2002)

16. Littman, M.L., Dean, T.L., Kaelbling, L.P.: On the complexity of solving Markov
decision problems. In: Proceedings of the 11th UAI, p. 394402 (1994)

17. Mahadevan, S.: Average reward reinforcement learning: foundations, algorithms,
and empirical results. Mach. Learn. 22(1–3), 159–195 (1996)

18. Mahadevan, S.: Sensitive discount optimality: unifying discounted and average
reward reinforcement learning. In: Saitta, L. (ed.) Proceedings of the 13th ICML,
pp. 328–336. Morgan Kaufmann (1996)

19. Mahadevan, S.: Learning representation and control in Markov decision processes:
new frontiers. Found. Trends Mach. Learn. 1(4), 403–565 (2009)

20. Papadimitriou, C., Tsitsiklis, J.N.: The complexity of Markov decision processes.
Math. Oper. Res. 12(3), 441–450 (1987)

21. Puterman, M.: Markov Decision Processes: Discrete Stochastic Dynamic Program-
ming. Wiley, New York (1994)

22. Puterman, M., Patrick, J.: Dynamic programming. In: Sammut, C., Webb, G.
(eds.) Encyclopedia of Machine Learning, pp. 298–308. Springer (2010)

23. Kalyanakrishnan, S., Mall, U., Goyal, R.: Batch-switching policy iteration. In:
Proceedings of the 25th IJCAI. AAAI Press (2016)

24. Scherrer, B.: Improved and generalized upper bounds on the complexity of policy
iteration. Math. Oper. Res. 41(3), 758–774 (2016)

25. Sigaud, O., Buffet, O. (eds.): Markov Decision Processes in Artificial Intelligence.
iSTE - Wiley (2010)

26. Sutton, R., Barto, A.: Introduction to Reinforcement Learning. MIT Press, Cam-
bridge (1998)

27. Tadepalli, P.: Average-reward reinforcement learning. In: Sammut, C., Webb, G.
(eds.) Encyclopedia of Machine Learning, pp. 64–68. Springer (2010)

28. Tadepalli, P., Ok, D.: Model-based average reward reinforcement learning. Artif.
Int. 100(1–2), 177–224 (1998)

29. Tokic, M., Fessler, J., Ertel, W.: The crawler, a class room demonstrator for
reinforcement learning. In: Lane, C., Guesgen, H. (eds.) Proceedings of the 22th
FLAIRS, pp. 160–165. AAAI Press, Menlo Park (2009)

30. Uther, W.: Markov decision processes. In: Sammut, C., Webb, G. (eds.) Encyclo-
pedia of Machine Learning, pp. 642–646. Springer (2010)

31. Veinott, A.: Discrete dynamic programming with sensitive discount optimality cri-
teria. Ann. Math. Stat. 40(5), 1635–1660 (1969)

32. van Otterlo, M., Wiering, M.: Reinforcement learning and Markov decision pro-
cesses. In: Wiering, M., van Otterlo, M. (eds.) Reinforcement Learning. Adapta-
tion, Learning, and Optimization, vol. 12, pp. 3–42. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-27645-3 1

33. Yang, S., Gao, Y., An, B., Wang, H., Chen, X.: Efficient average reward reinforce-
ment learning using constant shifting values. In: Proceedings of the 30th AAAI.
AAAI Press/The MIT Press (2016)

34. Ye, Y.: The simplex and policy-iteration methods are strongly polynomial for the
Markov decision problem with a fixed discount rate. Math. Oper. Res. 36(4),
593603 (2011)

https://doi.org/10.1007/978-1-4615-0805-2_2
https://doi.org/10.1007/978-3-642-27645-3_1

	Tuning the Discount Factor in Order to Reach Average Optimality on Deterministic MDPs
	1 Introduction
	2 Background: Markovian Decision Processes
	2.1 Discounted Optimality
	2.2 Average (or Gain) Optimality
	2.3 Sensitive (or Blackwell) Optimality
	2.4 Dynamic Programming

	3 Contribution: Average-Optimal Discount Factor
	3.1 Tuning the Discount Factor
	3.2 Deterministic Worst Case
	3.3 Deterministic Average-Optimal Discount Factor
	3.4 Discount Trap Frequency

	4 Conclusion
	References

