
Workforce Rostering via Metaheuristics

Mary Dimitropoulaki(B), Mathias Kern, Gilbert Owusu,
and Alistair McCormick

BT Research and Innovation, Ipswich, UK
{mary.dimitropoulaki,mathias.kern,gilbert.owusu,ali.mccormick}@bt.com

Abstract. Staff scheduling and planning in a cost effective manner has
been a topic of scientific discussion for many years, driven by the need
of many organisations to fully and effectively utilise their workforce to
meet costumer demand and deliver service. Due to the varying nature of
industry sectors, problems often require tailoring for particular business
needs and types of work. This paper presents an overview of how a version
of this problem was solved in a business with a large field workforce.
The automation of this process has proved vital in ensuring that there
is the right amount of resources rostered in on each day of the week,
transforming a lengthy, manual procedure into an operation of a matter
of seconds. The paper discusses how a Simulated Annealing approach
was implemented, and provides a comparison of its performance versus
a standard Hill Climber. We also include a detailed description of how
rules and constraints were incorporated into the work, and what effect
these had on rostered attendance.

Keywords: Rostering · Heuristic search · Industrial applications of AI

1 Introduction

An abundance of work has been undertaken in the area of automation and
improvement of workforce rostering in areas such as call centres, health care
systems, civic services & utilities and hospitality & tourism [8]. The diverse
and complex dynamics of problems of this type mean that generalisation can
prove difficult. Maximising operational effectiveness is known to lead to better
customer experience and compliance to service level agreements. Prior to the
automation of scheduling, one of the first steps to achieve this is to optimise
resourcing and planning processes. Ensuring that there is a sufficient resource
available on each day is key to successful field service management, and therefore
the automation and optimisation of this process is essential. This work presents
a solution to a rostering process problem of a large workforce of field resources
via the use of metaheuristic methods.

The process of rostering resources is performed by a dedicated team and
consists of the following manual steps, which can require days to complete:

– Create roster patterns
c© Springer Nature Switzerland AG 2018
M. Bramer and M. Petridis (Eds.): SGAI-AI 2018, LNAI 11311, pp. 277–290, 2018.
https://doi.org/10.1007/978-3-030-04191-5_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04191-5_25&domain=pdf
https://doi.org/10.1007/978-3-030-04191-5_25

278 M. Dimitropoulaki et al.

– Allocate resources to roster patterns
– Update allocation and implement roster assignments

These are building blocks of employee rostering, but the challenges occur
with workload prediction, staffing requirements, shift design and allocation [15].
An important factor to note is that each business’ operational requirements such
as laws, planning periods and shift types can make this process very complex,
and thus solutions ought to be tailored accordingly [15]. This paper will focus
on assigning the ideal start week within their roster pattern for each resource.
Rosters in this context are cyclical and we will be imposing a set of modifiable
constraints (rules) with varying objectives. We are optimising the attendance
across teams of approximately 100 to 300 field resources in a typical scenario.
Roster patterns usually vary between 5 and 25 weeks in length, meaning each
field resource could be on one of 5 to 25 positions within their pattern. This
means there is a very large number of possible combinations of where the 100 to
300 resources are within their roster patterns. Over time attendance can become
unbalanced, leaving some days with more field resources than needed and others
with not enough. Shifting resources within their roster pattern will re-balance,
but it is important to take as well into account the aim to minimise changes to
individual resources and to ensure rules compliance.

The most studied and well-known rostering optimisation is the nurse roster-
ing problem, which has been solved using many approaches and methods. Some
of these are based on heuristics such as Tabu Search, Simulated Annealing and
Genetic Algorithms [5]. A comparative study of solving the NRP performed by
Kundu et al. [11] shows that constraints are best enforced through weightings,
something which will be incorporated into our work and discussed in Sect. 1.1.
They found that Simulated Annealing out-performed the Genetic Algorithm,
with the most efficient roster being cyclic. In Hadwan and Ayob [10], we also see
a similar approach in which shifts are created and then optimised via the use
of Simulated Annealing with constraints introduced as weightings. A theoretical
discussion can be found in Ernst et al. [8] who noted that the demands of differ-
ent businesses result in different approaches when it comes to the automation of
rostering. They discuss that the modules required to construct a roster vary from
organisation to organisation, as some areas require demand modelling and others
do not require task assignment. In our scenario task assignment cannot be done
in advance, and thus after the roster design phase it is vital to assign the roster
patterns to resources effectively. Once this stage has been completed, the best
combination of start weeks for the field resources within their roster patterns
is required for a balanced attendance. Scheduling and rostering in most cases
are interrelated and a combined solution can be seen as more effective, with an
example of this being achieved in [14] where this is applied to the driver roster-
ing problem. When it comes to very large organisations, it is almost impossible
to combine these two problems and thus these should be separated procedures.
The sheer size of the workforce available in our scenario does not allow individ-
ual shift allocation, and further legal constrains and agreements limit the scope
for regular changes of roster pattern. In our problem scenario, we consider the

Workforce Rostering via Metaheuristics 279

roster pattern of each resource as given and fixed but the actual position of each
resource within their roster pattern can be changed, and our aim is to find the
best current assignment of these positions to achieve the best overall attendance
balance over a certain period into the future.

Airline crew rostering is another widely studied scheduling problem. This is
an area in which we see most benefits in the automation of scheduling, with
almost a $50 million dollar cost saving per year for large airlines [1]. The most
common methods rosters are assigned to crew is via bidline systems, person-
alised rostering or bidding systems. However many challenges remain unsolved
such as crew pairing and fleet assignment [1]. Thiel [12] presents an interest-
ing solution to crew pairing through team oriented rostering, a method which
enhances team stability and team work quality, but the large amount of rosters
and combinations were found to be major issues. In our case the same prob-
lems arise as human decision makers usually cannot deal with the amount of
data available, and therefore a tool supporting such procedures is vital in more
complex organisations [12]. Other public transport rostering has been studied in
[4,7,9] in which we see applications in railway crew management, and in [14,16]
where the driver rostering problem in public bus transportations is investigated.

1.1 Problem Overview

In this our problem scenario, we consider individual geographical areas which
contain between 100 to 300 resources. Each of these geographical areas is divided
into 4 to 10 sub-areas. The typical number of roster patterns used by the
resources in each area can vary, but is typically below 15.

Roster patterns run over a given sequence of weeks. Upon the assignment of
resources to a roster pattern, they will be given a start week number specifying
their starting point within the roster pattern cycle. For example, a 13-week
pattern means that if a resource starts working on week 9 of this pattern, they
will continue working on week 10, 11, 12 and 13 followed by weeks 1 to 8.
Afterwards they will repeat this cycle with weeks, 9, 10 and so on.

Roster patterns can also contain certain types of sub-cycles which determine
the number of days worked in each week. For example, a resource could be on
a 14 week roster pattern with 7 2-week sub-cycles, with the resource working
4 days in the first week and 5 days in the second week of each sub-cycle, i.e.
working 9 days across each 2-week sub-cycle.

Over time, attendance across a longer time period can become unbalanced.
For example over a 13-week period, one Saturday can see 40 working engineers
while another Saturday can only have 25 rostered engineers. These different
Saturday starting positions would pose a serious challenge for the operational
teams, and a more stable figure of approximately 33 engineers each Saturday
would be beneficial. Such imbalances are driven by resources leaving and joining,
and by moving to different roster patterns. Proportionally, such imbalances can
be even higher when looking at particular sub-areas or certain skilled cohorts of
resources.

280 M. Dimitropoulaki et al.

We have developed an approach, and tool, to aid the process of rostering in
resources in order to balance attendance (a) at the overall area level and (b) also
within certain sub-area and skill. The ultimate aim is to keep the variation of
resource attendance seen across all Mondays over a certain future time period
to a minimum, and Tuesdays, and Wednesdays, and so on.

As mentioned previously, we impose a set of constrains when searching for
the optimal combination of roster start weeks:

(A) Hard Constraints
– Optimise attendance at skill & sub-area level by grouping resources by

this criteria.
– Resources can only move to weeks that satisfy the completion of the sub-

cycles. If a resource is currently on a 4-day week in their sub-cycle, we
can only move them to another 4-day week of a different sub-cycle.

– A specified gap between working Saturdays must be ensured.
– Restrict percentage of resources allowed to change start weeks in order to

minimise disruption and impact on their schedules.
(B) Soft Constraints1

– We group engineers by skill & sub-area to ensure optimisation both for
the overall area and across these lower level cohorts, and use weights to
determine which groups to focus on.

– Days like Saturdays are often more volatile due to the smaller number
of resources working. We thus prefer to see Saturdays more optimised,
which is ensured by a higher weighting of the Saturday resource balance
compared to other weekdays.

(C) Cost function2

The measure of attendance is given by the difference between the minimum
and maximum number of employees attending on a single weekday over the
span of all weeks in the roster pattern (e.g. all Mondays). From now on this
will be referred to as the range, and so our main goal is to minimise the
range for every day of the week.
Assume we have an attendance matrix, A, of dimension n × 7, where the
rows, i, represent the week numbers and the columns, j, represent the days.
This matrix is represented as

A =

⎛
⎜⎜⎜⎝

a11 a12 · · · a17
a21 a22 · · · a27
...

...
. . .

...
an1 an2 · · · an7

⎞
⎟⎟⎟⎠ . (1)

We take the minA and maxA for each column j, 1 ≤ j ≤ 7, to calculate
the relativity factor between these two values. This would be given by

Rangej
maxj A

=
maxj A − minj A

maxj A
,

1 Emphasis on specific areas to ensure targeted optimisation through the use of penal-
ties/weights.

2 The cost function is dependant on the different types of soft constraints.

Workforce Rostering via Metaheuristics 281

and so for example on a weekday where we have 60 as the maximum number
of resources and 50 as the minimum, the relativity would be 16%. The score
for each group of employees is given by

cost =
∑

1≤j≤7

wj

(
Rangej
maxj A

)2

, (2)

in which the relativity has been squared, resulting in smoother range values
when optimising. wj are weekday-specific weights.
The overall cost function is then given by the sum of all the scores,

Overall group cost =
G∑
i=1

(costgroupi
) , (3)

where G is the number of resource groups, or cohorts.
As mentioned previously, we have to account for volatile weekdays such as
Saturdays where the number of attending resources is significantly less than
on other days of the week, resulting in a higher relativity factor. To prevent
the score from being affected by the larger relativity, we multiply the cost
function by a penalty/weight for each day of the week.3 For example, we
can use an attendance weight vector like w = (1, 1, 1, 1, 1, 10, 10) to focus
particularly on minimising Saturday and Sunday ranges.
The next step is to split this amongst the resource groups or cohorts. Recall,
we have a single group corresponding to the attendance of all resources
across the entire area and groups/cohorts consisting of resources sharing the
same sub-area and/or skill level. In order to ensure well-balanced optimisa-
tion of ranges overall and within the smaller groups, we weigh the impacts
of these two elements differently. We have achieved good results with a 40%
weight for the optimisation across the overall areas and a 60% weight for
optimising the smaller resource cohorts.

2 Methodology

The type of optimisation problem discussed in this paper is combinatorial as
there is a finite set of solutions. Due to the size of the solution space it is not
possible to search it exhaustively, and instead we are searching for good solu-
tions close to the maximum fitness in the solution space. We have implement
and tested two different techniques, Hill Climbing and Simulated Annealing.
Heuristic approaches have been popular when it comes to crew rostering and
planning, such as in [2,3,13]. As previously mentioned and commonly discussed
in the literature, organisations have different requirements and hence a unique
implementation is often necessary for the specific problem scenario.
3 For example, a range of 10 on Saturday should not be considered the same as a

range of 10 on any other day of the week due to the smaller number of attending
resources.

282 M. Dimitropoulaki et al.

2.1 Simulated Annealing

Simulated annealing is a widely used optimisation method derived from statisti-
cal thermodynamics. Annealing is the process of heating metals beyond melting
point and then by cooling it slowly until solidified into a crystalline structure [6].

Fig. 1. Simulated annealing algorithm

An overview of the algorithm used in this tool is shown in Fig. 1. We start
the process by initialising the model using attendance data, e.g. a 13-week atten-
dance period for all resources starting from a specified date. We build this atten-
dance picture both overall for all resources and for each individual group/cohort

Workforce Rostering via Metaheuristics 283

of resources. We evaluate the fitness of the current solution, fc, and then choose
a non-fixed4 resource at random to set their start week to a random week5.
Let fn denote the value of the new fitness. Let s and s∗ denote the current
and neighbouring state/solution, respectively. The acceptance of states depends
on the value of the new fitness given after evaluation, but also the acceptance
probability, a function obtained through

P
(
fn, fc, T

)
= e

fc−fn
T , (4)

where T denotes the temperature of the system, a global time-varying parameter
used as a stopping condition. Stopping conditions in simulated annealing depend
on the cooling schedule implemented.

In order to gain a deeper understanding as to how simulated annealing algo-
rithms are formed, we will discuss the physical interpretation of this process. If
fn(s∗) and fc(s) are the “internal energies” of each state, these are equivalent
to the energies of a physical system. Ultimately, we wish to find the minimum
fn(s∗) of the system. We see in Eq. 4 that the acceptance probability P depends
on both energies and the temperature T . We require P to always be positive,
hence the method does not get stuck in a local minimum that is worse than the
global one. When T → 0,

P
(
fn, fc, T

) {
→0, for fn(s∗) > fc(s)
>0, otherwise

Hence, for sufficiently small T , the system increasingly favours moves that
minimise the energy function and avoids moves that increase this. This is where
the cooling schedule becomes important to the formulation of this method. A
cooling schedule mainly depends on the cooling rate, which should be low enough
for the probability distribution to always be near equilibrium. Simulated anneal-
ing is used to solve a wide range of problems and thus cooling schedules tend to
be unique and tailored for each requirement.

The cooling schedule in our implementation starts with an initial temperature
of T0 = 1. After each iteration we decrease it by multiplying with a cooling rate,
c = 0.99995 (i.e. T = T · c) while T > 0.01. This results in approximately 92,101
iterations.

Note that, due to the fitness function described in Eq. 2, the highest fit-
ness/internal energy we can obtain is 0. To account for this fact Eq. 4 is replaced
with

P
(
fn, fc, T

)
= e

fn−fc
T . (5)

This means that we are looking for the maximum energy fn our system can
achieve and so for P to be positive, fn(s∗) < fc(s).

For each T we generate a random number r ∈ [0, 1], and so solutions only
get accepted if P > r or fn > fc.
4 A “fixed” resource simply means that they cannot change start week.
5 Note, some resources are only allowed certain start weeks due to constraints related

to factors such as sub-cycles and consecutive Saturdays.

284 M. Dimitropoulaki et al.

Now let fo be the best score found over all iterations. If fn > fo, we set
fo = fn and update the attendance by adding the new start week for the resource
chosen at random. If solutions do not get accepted, i.e. fn ≤ fo, we return to
previous state and generate another random solution, until temperature reaches
the minimum value set.

In Fig. 2 we see how the cooling rates affect the value of the fitness. As
expected, for larger cooling rates we see the value of the maximum fitness con-
verging to zero. This is due to the fact that for larger cooling rates, the tempera-
ture takes longer to converge to the value of 0.01 (i.e. the minimum temperature
of the system chosen and thus the stopping condition) and so the number of
iterations increases.

Fig. 2. Maximum fitness values against different cooling rates for T0 = 1 and Tmin =
0.01.

By looking at the best fitness achieved for each iteration we see that fo starts
converging to zero above 20,000 iterations which can be observed in Fig. 3. We
also note that between ≈5,000 and ≈20,000 iterations, there is no significantly
better solution found and thus the fitness value stops increasing. Note that the
example used is on a specific set of test data, but we have observed the same
general behaviour for a number of test scenarios.

3 Results

As mentioned previously, to solve this problem we initially implemented a Hill
Climbing technique. In this section we discuss and compare the effectiveness of
both the basic Hill Climber and the Simulated Annealing approach. We will
also be observing how different constraints affect the results and discuss what

Workforce Rostering via Metaheuristics 285

Fig. 3. Best overall fitness, fo, against iteration numbers with T0 = 1, Tmin = 0.01
and c = 0.99995.

compromises, or choices, one can make when addressing a problem of such com-
plexity.

3.1 Hill Climber vs Simulated Annealing

Hill Climbing is a basic local search optimisation technique: we look for the best
solution in the neighbourhood of solutions similar to the current one, and do
not accept any move that worsens the overall fitness (in contrast to Simulated
Annealing). While the first run of the Hill Climber started from the original
solution, we allowed for for a number of randomised restarts thereafter.

In general, we see that both methods significantly optimise, i.e. balance,
resource attendance. For testing purposes, we will examine how these methods
compare for a particular problem scenario, based on including the following
constraints:

– Engineers are grouped by sub-area and skill, with appropriate weighting
added (i.e. 60% of weight value split within groups and 40% for the over-
all area).

– Saturdays are weighted with a penalty ×10.
– Potential new start weeks obey sub-cycle rules.

By running the tool for the overall area, we get attendance results that look
like the example shown in Table 1. We see the maximum & minimum number
of resources attending on each day of the week over a certain time period, as
well as their difference, the range. Note that, on Saturday we see a much lower
attendance, and so a range of 11 cannot be considered the same as a range of 14

286 M. Dimitropoulaki et al.

Table 1. Overall attendance before optimisation.

Day Maximum resources Minimum resources Range

Monday 172 158 14

Tuesday 192 178 14

Wednesday 200 194 6

Thursday 181 163 18

Friday 187 171 16

Saturday 37 26 11

Sunday 0 0 0

on Monday. In Table 3, we can view a breakdown of the ranges for some of the
sub-areas and skills (in this example we had 7 sub-areas). Note that skills are
split into skill level X and skill level Y.

Table 2. Optimised ranges for the overall area produced by Simulated Annealing and
the Hill Climber.

Day Simulated Annealing Hill Climber

Monday 3 4

Tuesday 5 6

Wednesday 3 4

Thursday 2 5

Friday 2 4

Saturday 1 1

Sunday 0 0

A good way to view the results after running the algorithm is to look at
the new ranges across the weekdays. In Table 2, we see the improved ranges
for the overall domain, and corresponding views exist for the smaller resource
groups determined by sub-area and/or skill. Both the Hill Climber and Simulated
Annealing produce good results in our example scenario in the overall domain,
but especially so at individual skills and work areas (see Table 3). Simulated
Annealing is generally more effective, as our experiments over a larger number of
problem scenarios have shown, in particular when more constraints were added.
It is well known that Hill Climbers can get more easily stuck in a local optimum,
whereas the Simulated Annealing approach allows for escaping such local optima.

In Table 3, we see the optimised ranges in the example sub-areas and skill
groups after both techniques, indicating that grouping by skill and sub-area
optimises both sub-area and skills. Simulated Annealing with constraints will be
discussed in more detail in the next section.

Workforce Rostering via Metaheuristics 287

Table 3. Ranges pre-optimisation and after optimisation using Simulated Annealing
and Hill Climbing in sub-areas and skills.

Day Sub-area A Sub-area B Skill level X Skill level Y

Pre SA HC Pre SA HC Pre SA HC Pre SA HC

Monday 5 3 4 5 3 4 8 3 4 7 3 3

Tuesday 4 4 5 2 3 5 7 4 6 5 3 3

Wednesday 2 1 2 1 2 2 6 2 2 5 3 3

Thursday 5 4 6 3 5 3 10 2 5 8 2 3

Friday 5 5 5 4 3 4 11 3 3 8 2 4

Saturday 4 2 6 4 3 3 8 1 1 6 1 1

Sunday 0 0 0 0 0 0 0 0 0 0 0 0

By comparing the best fitness values of the two algorithms for 20 different
geographical areas, i.e. problem instances, as shown in Fig. 4, we see that Sim-
ulated Annealing produces better scores in the majority of scenarios. The two
cases in which this was not true, the randomised restarts of the HC allowed it to
start from more promising initial solutions. Given more time, we expect the SA

Fig. 4. Best overall fitness values produced for 20 domains by simulated annealing and
hill climbing.

288 M. Dimitropoulaki et al.

algorithm to match or better the HC solutions in these scenarios as well, however
our SA solution was balanced for both speed and solution quality. Therefore we
will be focusing on the SA approach going forward.

3.2 Optimising with Constraints

In this section we will discuss the results produced by the Simulated Annealing
approach when applying the constraints discussed in Sect. 1.1. One of the hard
constraints is that a break between working Saturdays must be enforced, ensur-
ing a fair distribution of working Saturdays across all resources. In other words,
roster week changes for an individual resource must not result in a resource
working on a Saturday too soon after the previous working Saturday. We have
also studied how to set the proportion of engineers for which the starting week
can be changed, and how low this proportion can be before solution quality suf-
fers significantly. For example, a 40% threshold means that no more than 40%
of engineers can change start week.

In our first set of experiments, we have averaged results over 20 scenarios
(geographical areas). We vary the aforementioned threshold values while main-
taining a Saturday gap of 2 weeks (i.e. no work on two consecutive Saturdays).
Table 4 shows that ranges improve - reduce - significantly from a threshold value
of 10% to a value of 30%, but further reductions are rather more limited for
larger thresholds. For practical purposes, we therefore recommend a threshold
value of 30%, i.e. the algorithm will at most change 3 out of 10 resource’s roster
pattern week.

Table 4. Average of ranges for a number of skills and sub-areas for different threshold
values.

Threshold Domain Sub-area A Sub-area B Skill level Y

10 4.00 3.71 4.57 5.58

30 2.43 2.17 4.57 4.57

50 2.29 2.14 3.42 3.85

70 2.29 2.14 3.7 4.28

In our second set of experiments, we keep the threshold constant at 30% but
vary the size of the allowed Saturday gap. Enforcing a larger gap between working
Saturdays - 3 weeks - leads to a significantly worse average range at domain level.
However there is little difference between a gap of one or two weeks, and thus
we recommend a value of two weeks, ensuring no resource is required to work
two consecutive Saturdays at the point when the new improved overall solution
is implemented (see Table 5).

Workforce Rostering via Metaheuristics 289

Table 5. Average of ranges for a number of skills and work areas for different Saturday
gap values.

Saturday gap Domain

1 week 2.42

2 weeks 2.43

3 weeks 3.71

4 Discussion

In this paper, we introduced and described a rostering problem for a large work-
force of field resources, discussed two solution techniques - a Hill Climber and a
Simulated Annealing approach, and analysed and compared their performance.
It is vital to understand and handle the specific business requirements in order
to meaningfully address such real-life problem scenarios. Both algorithms con-
sistently improved the initial roster setup in all test scenarios, and Simulated
Annealing produced superior results over the more basic Hill Climber in the
majority of cases. Furthermore, we showed how the amount of necessary (ros-
ter pattern week) changes can be limited without impacting the quality of the
overall solution too much, thereby striking a balance between the need of the
business to find better roster setups and the desire of individual field resources
for minimal disruption.

The output of our approach has been used to improve the roster pattern
setup across a large workforce of several thousand field resources. As a result, a
more stable basic resource attendance has been achieved, meaning the fluctua-
tions in attendance from one week to the next have been reduced. The greatest
impact has been seen on Saturdays where we now see more similar numbers of
available resources each week, rather than alternating weeks of too much or too
little resource. This, in turn, has positively impacted - simplified - the resource
planning process, and the need to cover supply shortages with overtime has
diminished.

Going forward, we are planning to focus our research and development efforts
on four key areas. Firstly, we want to fully automate the optimisation process
so that it runs regularly and automatically flags if the quality of the current
roster setup has declined too much. Secondly, we would like to strengthen the
fairness aspect of our approach, ensuring that changes to roster pattern start
weeks are shared equally among field resources over a longer period. Thirdly, we
want to extend our approach from changing the start week within a fixed roster
pattern per resource to an approach where we can also consider changing the
roster pattern itself for a resource. And finally, we would like to further assess
the performance of the chosen Simulating Annealing solution by comparing it
to more alternatives such a Genetic Algorithm (GA) and Greedy Randomized
Adaptive Search Procedure (GRASP) approaches. All four developments will
enhance the applicability of our proposed solution in real-life scenarios.

290 M. Dimitropoulaki et al.

References

1. Barnhart, C., Cohn, A.M., Johnson, E.L., Klabjan, D., Nemhauser, G.L., Vance,
P.H.: Airline crew scheduling. In: Hall, R.W. (ed.) Handbook of Transportation
Science. International Series in Operations Research & Management Science, vol.
56, pp. 517–560. Springer, US (2003). https://doi.org/10.1007/0-306-48058-1 14

2. Brusco, M.J., Jacobs, L.W.: A simulated annealing approach to the cyclic staff-
scheduling problem. Nav. Res. Logist. (NRL) 40(1), 69–84 (1993)

3. Burns, A., Hayes, N., Richardson, M.F.: Generating feasible cyclic schedules. Con-
trol Eng. Pract. 3(2), 151–162 (1995)

4. Caprara, A., Fischetti, M., Toth, P., Vigo, D., Guida, P.L.: Algorithms for railway
crew management. Math. Program. 79, 125–141 (1997)

5. Cheang, B., Li, H., Lim, A., Rodrigues, B.: Nurse rostering problems - a biblio-
graphic survey. Eur. J. Oper. Res. 151(3), 447–460 (2003)

6. Du, K.L., Swamy, M.N.S.: Search and Optimization by Metaheuristics: Techniques
and Algorithms Inspired by Nature. Birkhäuser, Basel (2016)

7. Ernst, A., Krishnamoorthy, M., Dowling, D.: Train crew rostering using simulated
annealing. In: Caccetta, L., Teo, K.L., Sieq, P.F., Leung, Y.H., Jennings, L.S.,
Rehbock, V. (eds.) Proceedings of International Conference on Optimisation Tech-
niques and Applications, pp. 859–866 (1998)

8. Ernst, A.T., Jiang, H., Krishnamoorthy, M., Sier, D.: Staff scheduling and roster-
ing: a review of applications, methods and models. Eur. J. Oper. Res. 153(1), 3–27
(2004)

9. Gonçalves, R., Gomide, F., Lagrimante, R.: Methodology and algorithms for rail-
way crew management. IFAC Proc. Vol. 33(9), 323–328 (2000)

10. Hadwan, M., Ayob, M.: A constructive shift patterns approach with simulated
annealing for nurse rostering problem. Proceedings of 2010 International Sympo-
sium on Information Technology - Visual Informatics, ITSim 2010, p. 1 (2010)

11. Kundu, S., Mahato, M., Mahanty, B., Acharyya, S.: Comparative performance of
simulated annealing and genetic algorithm in solving nurse scheduling problem.
In: Proceedings of the International MultiConference of Engineers and Computer
Scientists, p. 1 (2008)

12. Thiel, M.P.: Team-oriented airline crew scheduling and rostering: problem descrip-
tion, solution approaches, and decision support. Ph.D. thesis, Faculty of Business
Administration and Economics at the University of Paderborn, Germany (2005)

13. Thompson, G.M.: A simulated annealing heuristic for shift scheduling using non-
continuously available employees. Comput. Oper. Res. 23(3), 275–288 (1996)

14. Valdes, V.A.V.: Integrating crew scheduling and rostering problems. Ph.D. thesis,
Alma Mater Studiorum Universita di Bologna, Italy (2010)

15. Voudouris, C., Owusu, G., Dorne, R., Lesaint, D.: Service Chain Management:
Technology Innovation for the Service Business. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-75504-3

16. Xie, L., Kliewer, N., Suhl, L.: Integrated driver rostering problem in public bus
transit. Procedia Soc. Behav. Sci. 54, 656–665 (2012)

https://doi.org/10.1007/0-306-48058-1_14
https://doi.org/10.1007/978-3-540-75504-3

	Workforce Rostering via Metaheuristics
	1 Introduction
	1.1 Problem Overview

	2 Methodology
	2.1 Simulated Annealing

	3 Results
	3.1 Hill Climber vs Simulated Annealing
	3.2 Optimising with Constraints

	4 Discussion
	References

