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Abstract. The brain encodes object relationship using correlated neural
representations. Previous studies have revealed that it is a difficult task
for neural networks to process correlated memory patterns; thus, strate-
gies based on modified unsupervised Hebb rules have been proposed.
Here, we explore a supervised strategy to learn correlated patterns in a
recurrent neural network. We consider that a neural network not only
learns to reconstruct a memory pattern, but also holds the pattern as an
attractor long after the input cue is removed. Adopting backpropagation
through time to train the network, we show that the network is able to
store correlated patterns, and furthermore, when continuously morphed
patterns are presented, the network acquires the structure of a continuous
attractor neural network. By inducing spike frequency adaptation in the
neural dynamics after training, we further demonstrate that the network
has the capacities of anticipative tracking and disentangling superposed
patterns. We hope that this study gives us insight into understanding
how neural systems process correlated representations for objects.
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1 Introduction

In reality, the brain needs to encode not only the identities of objects, e.g.,
whether an animal is cat or dog, but also the relationships between objects, e.g.,
cat and dog are both mammalian but belong to different categories. The experi-
mental data has indicated that the categorical relationships between objects are
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encoded in the correlated neural representations of the objects, in term of that
for objects belonging to the same category, their neural representations have
larger correlations than those of objects belonging to different categories [1,2].
Interestingly, in an artificial deep neural network (DNN) trained by ImageNet,
the correlation between object representations (measured by the overlap between
activities in the representation layer, i.e., the one before the read-out layer) also
reflects the semantic similarity between the objects [3,4]. To understand how
a neural system encodes the relationship between objects, it is important to
understand how neural networks learn, store, and retrieve correlated memory
patterns.

A large volume of theoretical studies has, however, pointed out that it is not
a trivial task for a neural network to process correlated memory patterns [5-8].
These studies, which are based on the classical Hopfield model that constructs
neuronal connections according to the unsupervised Hebb rule, have shown
that the correlations between patterns deteriorate memory retrieval dramati-
cally, leading to that the Hopfield network is unable to support a large memory
capacity [5]. To overcome this flaw, several strategies have been proposed, which
include: (1) a novelty-based method [6], which considers that neuronal connec-
tions are modified only when a novel pattern is presented (the novelty is defined
according to that the pattern can be retrieved or not by the current network
structure); (2) a popularity-based method [7], which modifies the Hebb rule
by reducing the contributions of those popular neurons that are active in many
memory patterns to avoid overwhelmed learning of the connections of those neu-
rons; (3) an orthogonalization-based method [8], which orthogonalizes correlated
patterns before applying the Hebb rule. All these methods are based on the unsu-
pervised Hebb learning, and each of them works well in certain circumstances,
but their biological plausibility has yet been properly justified.

In the present study, we explore the possibility of using a supervised strat-
egy to train a recurrent neural network to learn correlated patterns. Specifi-
cally, we consider a computational task, in which the network not only learns to
reconstruct the presented input pattern, but also holds the pattern as persistent
activity long after the input is removed. Mathematically, this requires that the
network holds the pattern as an attractor of its dynamics. We use backpropa-
gation through time (BPTT) [9] to train the network and demonstrate that the
network learns to store a number of highly correlated patterns. Moreover, we
find that when a set of continuously morphed patterns are presented, the net-
work acquires the structure of a continuous attractor neural network (CANN), a
canonical model for neural information processing [10]. After training, we induce
spike frequency adaptation (SFA), a popular negative feedback modulation [11],
in the neural dynamics, and find that the network holds interesting computa-
tional properties, including anticipative tracking and the capacity of disentan-
gling superposed patterns. We hope this study enriches our knowledge of how
neural systems process correlated representations for objects.
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2 The Model

As illustrated in Fig. 1, the network model we consider consists of three layers:
input, recurrent, and output layers. Neurons in the recurrent layer are connected
recurrently, whose dynamics are written as follows,

N N;
dul(t) rec — in
T = —ui(t) + S OWieeai(t) + Y WET(E) + by + 0&i(t), (1)
j=1 k=1
x;(t) = tanh [u; ()], (2)
where u;, for ¢ = 1,..., N, is the synaptic input received by neuron ¢ in the

recurrent layer and z; the activity of the neuron. 7 is the time constant. N is the
number of neurons in the recurrent layer. W/ denotes the recurrent connection
strength from neuron j to i, W the feedforward connection strength from input
component k to neuron 4, I the external input, and NV;, the input dimension. b;
is a biased constant input received by neuron i. &;(¢) represents Gaussian white
noise of zero mean and unit variance, and ¢ the noise strength.

The neurons in the output layer read-out information by combining the neu-
ronal activities in the recurrent layer linearly, which are written as

N
yilt) = Y Wita;(t), 3)
j=1
where y;, for ¢ = 1,..., Noys, represents the activity of neuron ¢ in the output

layer, and Wi‘}“t the read-out connection strength from neuron j in the recurrent
layer to neuron ¢ in the output layer. N,,; = N, holds in our model.

The Learning Procedure

Our goal is to train the network, such that the network holds the predefined
memory patterns as attractors of its dynamics. To achieve this goal, we construct
a learning task, which requires that the network output not only reconstructs
the given input pattern, but also holds the pattern long after the input cue is
removed. Mathematically, these two conditions enforce that the network learns
to hold the input pattern as an attractor of its dynamics, which mimics the
persistent activity observed in working memory in neural systems [12].

Let us consider that the network learns to memorize M patterns, referred
to as P?, for i = 1,..., M, hereafter. Denote T,; the duration of presenting
each memory pattern as an external input to the network, 7., the duration of
the network holding the memory pattern, and Ty; << Tseq is imposed. For a
memory pattern P?, the corresponding external input to the network is given
by, I'(t) = P + ni(t), for 0 < t < Ty; and otherwise I‘(t) = 0. Here, n'
represent Gaussian white noises, which have the same dimensionality as the
input and its elements are independently sampled from Gaussian distributions
of zero mean and variances uniformly distributed in the range of [0,1]. These
noises are essential for robust learning. Denote the network output to be Y*(t),
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Fig. 1. Network structure. The network contains an input, a recurrent, and an output
layers. Neurons in the recurrent layer are connected recurrently.

for 0 < t < Tseq, when the pattern P? is presented. The objective function of
the learning task is written as,

M Tseq . . .
L:§:/ [Yi(t) - P']%dt, Ti(t)#0, for 0<t<Te,  (4)
=1 0

where Y'(t) = f[I'(t)] represents the nonlinear function implemented by
the network. We use the Euler method to discrete the network dynam-
ics and the objective function, and adopt backpropagation through time
(BPTT) to optimize the network parameters, including the connection weights
Win, Wree, WUl and the bias terms b. Before training, W°"! are initialized to
be zeros, Wi a Gaussian distribution of zero mean and unit variance, W"°¢ an
orthogonal and normalized matrix, and b zeros.

Spike Frequency Adaptation

After training, we add spike frequency adaptation (SFA) in the neural dynamics
to induce extra computational properties of the network. With SFA, Eq. (1)
becomes

dui (t) = rec 2 n
T it = —ui(t)—i—ZWij xj(t)+ZWik I;g(t)—i-bi—l—afi(t)—vi(t), (5)
j=1 k=1
d"Ul' (t) -
7 S = —ui(t) + (o), (©

where v;(t) is the current induced by SFA, a negative feedback modulation widely
observed in neural systems [11], whose effect is to suppress neuronal responses
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when they are too strong. 7, is the time constant of SFA, and 7, >> 7 implies
that SFA is a slow process compared to neural firing. The parameter m controls
the amplitude of SFA.

3 Results

3.1 Learning to Memorize Correlated Patterns

To demonstrate that our model is able to learn correlated memory patterns,
we chose handwriting digit numbers as the inputs (see Fig.2). These image
patterns are highly correlated (overlapped) and hence can not be memorized
by the conventional Hopfield model. We test three unsupervised strategies, and
found that the orthogonalization-based method accomplished the task, but the
other two, novelty-based and popularity-based, failed. Our supervised strategy
accomplished the task successfully (Fig. 2).
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Fig. 2. Retrieval performances of different learning methods. From top to bottom:
the original ten digit numbers from the dataset of Mnist, the retrieval of the conven-
tional Hopfield model, the retrieval of the popularity-based method, the retrieval of
the novelty-based method, the retrieval of the orthogonalization-based method, and
the retrieval of our approach. Parameters: 7 = 5,Tst; = 3,Tseq = 30,0 = 0.01, N =
200, Nin, = Noyr = 784.

3.2 Disentangling Superposed Memory Patterns

After training the network to memorize ten digit numbers, we add SFA in the
neural dynamics (see Eq. (5, 6)). In a real neural system, this corresponds to
that during learning, SFA is either frozen or too slow and can be ignored com-
pared to the fast synaptic plasticity. We check the network responses when an
image of superposed two digit numbers is presented. As illustrated in Fig. 3, the
network outputs the two digit numbers alternatively over time. The underlying
mechanism is that: (1) through training, the network has learned to memorize
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the two digit numbers as its attractors; (2) when the ambiguous image is pre-
sented, the network receives two competing input cues and evolves into one of
two attractors depending on biases; (3) because of the negative feedback from
SFA, the network state becomes unstable gradually, and under the competition
from the other cue, the network state moves into the other attractor; (4) this
progress goes on, and the network state oscillates between two attractors. Our
study suggests that a neural network can use negative feedback such as SFA to
disentangle correlated patterns.
Input,(1,2) t=20

HEIEE

t=120 t=140 t=160 t=180 t=200 t=220

Fig. 3. Disentangling superposed correlated memory patterns. The network was first
trained to memorize ten digit numbers as in Fig. 2. For convenience, we use colors to
differentiate different digit numbers, but in practice gray images are used. The input
is the superposed images of 1 and 2. The evolving of the network output over time
is presented. Parameters are: m = 3.4, 7, = 30. Other parameters are the same as in
Fig. 2.

3.3 Learning a CANN

We show that when continuously morphed patterns are memorized, the network
acquires the structure of a CANN. Figure4A displays the set of continuously
morphed gaussian bumps to be memorized by the network. After training, the
network leans to store each of them as attractors, in terms of that: (1) the
network evolves to one-to-one mapped stationary state when each of gaussian
bumps is presented (Fig.4A); and (2) the network remains to be at the active
state long after the input is removed (Fig. 4B).

Properties of the Network

We check that the learned network indeed has the good computational proper-
ties of CANNs. Figure5 shows that the network has the properties: (1) men-
tal rotation [13,14], the network exhibits the mental rotation behavior when
the external inputs abrupt change (Fig.5A); (2) travelling wave [15], the net-
work holds a self-sustained travelling wave when SFA is strong enough (Fig. 5B);
(3) anticipation tracking [15], the network is able to track a moving input antic-
ipatively if SFA is strong enough (Fig.5C).
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Fig. 4. Learning continuously morphed patterns to form a CANN. Totally 1000 mor-
phed gaussian-bump-like patterns are constructed. (A) Lower panel: examples of input
patterns; upper panel: examples of the learned network output. There are one-to-one
correspondence between the inputs and outputs. (B) The activity map of neurons in
the output layer. The input is removed at 7" = 3. The network state is sustained
after the input is removed, indicating the existence of an attractor. Parameters are:

Nin = Nout = 1000. Other parameters are the same as in Fig. 2.
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Fig. 5. Properties of the learned network. (A) Mental rotation. The network state is
initially at pattern index 200. Under the drive of an external input at pattern index
360, the network state smoothly rotates from the initial to the target positions. (B)
Travelling wave. The activity map of the output layer in the travelling state. m = 0.4.
(C) Anticipate tracking. The black curve is the external moving input, and the red
curve the network state which leads the moving input. m = 0.4. Parameters are:
To = 60, Nin = Nout = 1000. Other parameters are the same as in Fig. 2. (Color figure
online)

4 Conclusion

In the present study, we have investigated a supervised strategy to learn cor-
related patterns in neural networks, which are different from the unsupervised
ones proposed in the literature. The key idea of our method is that we enforce
the network to learn the memory patterns as its attractors. To achieve this goal,
we require that the network not only learns to reconstruct the given input pat-
tern, but also holds the pattern as persistent activity long after the input cue is
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removed. Using both synthetic and real data, we show that after training, the
network is able to store highly correlated patterns and can also acquire the struc-
ture of a CANN if continuously morphed patterns are presented. Moreover, we
induce SFA in the neural dynamics after training, and demonstrating that the
network holds interesting computational properties, including anticipative track-
ing and the capacity of disentangling superposed patterns. We hope this study,
as to a complement to other unsupervised approaches, enrich our knowledge of
how neural systems process correlated representations for objects.
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