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Abstract. Deep Reinforcement Learning has made impressive advances
in sequential decision making problems recently. Constructive reinforce-
ment learning (RL) algorithms have been proposed to focus on the policy
optimization process, while further research on different network archi-
tectures of the policy has not been fully explored. MLPs, LSTMs and
linear layer are complementary in their controlling capabilities, as MLPs
are appropriate for global control, LSTMs are able to exploit history
information and linear layer is good at stabilizing system dynamics. In
this paper, we propose a “Proportional-Integral” (PI) neural network
architecture that could be easily combined with popular optimization
algorithms. This PI-patterned policy network obtains the advantages of
integral control and linear control that are widely applied in classic con-
trol systems, improving the sample efficiency and training performance
on most RL tasks. Experimental results on public RL simulation plat-
forms demonstrate the proposed architecture could achieve better per-
formance than generally used MLP and other existing applied models.

Keywords: Reinforcement learning · Deep learning · Neural network
Control theory

1 Introduction

Recently, Deep Reinforcement Learning (DRL) has made notable advances
in solving representative benchmark problems, especially in simulated control
[11,22], continuous robot control [5,9,13], Go game [24], Atari games [15] and
other sequential decision making domains. Directing an agent to interact with
the environment, the policy network of DRL is of critical importance to achieve
maximum cumulative long time reward. Generally, Convolutional Neural Net-
work (CNN) is applied in visual tasks such as high-dimensional control of robots
that utilizes raw visual images or videos as input. As for non-visual tasks, the
widely-used Multi-Layer Perceptron (MLP) is considered as a basic policy net-
work structure for many DRL algorithms. However, inductive research on the
effectiveness of policy network architecture remains to be further explored. It’s
necessary to draw importance on the policy architecture to improve agent’s per-
formance better.
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Fig. 1. Several popular reinforcement learning tasks implemented in public simulation
platforms MuJoCo, OpenAI Gym and Roboschool. Including continuous control of
simulated robots, classical control problems and games, etc.

In this work, we present an effective policy network architecture that is
generic in handling benchmark RL problems from board games to simulated
control tasks. Inspired by the Proportional-Integral Controller widely used in
practical control systems, we introduce the memory mechanism of Long Short-
Term Memory (LSTM) into policy network, in which characteristic could be
found a clue to lead the agent exploits history information implicitly. With LSTM
functioning as the integral controller, the “proportional” part is modelled as the
linear projection of inputs. To better stabilize system dynamics, we use non-
linear controller additionally. It’s convenient to combine the proposed network
with many existing DRL algorithms. The consolidation of linear, nonlinear and
“integral” controllers could enhance the robustness and generalization of pol-
icy network compared with the typically applied MLP structure. Given current
state, these three branches would evaluate respectively and then their results are
combined to compute the final action.

Compared with generally applied MLPs policy networks, our history-
concerned PI architecture could improve the performance of model on various
RL tasks, especially on continuous control tasks. The key insight of our work is
that the combination of control, memory mechanism and deep learning has dis-
tinct influence on the training efficiency and generalization ability. To validate
the effectiveness of this policy network, extensive experiments are conducted on
both classic control tasks as well as complex sequential decision making prob-
lems, such as pendulum control and humanoid walking, which are wrapped as
standard RL environments in public simulation platforms such as MuJoCo [16],
OpenAI Gym [3], Roboschool. We further perform different ablation experiments
utilizing different policy optimization algorithms like Deep Deterministic Policy
Gradient (DDPG) [11], Proximal Policy Optimization (PPO) [22], Actor Critic
using Kronecker-Factored Trust Region (ACKTR) [31], etc. Our experimental
results demonstrate that the proposed architecture is capable of enhancing model
generalization as well as training efficiency compared with existing works.

In our paper, Sect. 2 introduces relevant researches about classic RL optimiza-
tion methods and generally used network architectures, as well as the embedding
of LSTM. In Sect. 3, we explain the proposed architecture in details and analyze
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its theoretical applicability. Experiment results are shown in Sect. 4, with several
ablation experiments involved.

2 Related Works

Reinforcement learning problems are basically formulated as Markov Deci-
sion Process (MDP), in which an agent interacts with dynamic environment
through trial-and-error [7]. Focusing on goal-directed learning, DRL algorithms
are proved to be applicable for many sequential decision making problems in
robotics [5,9,13], video games [15], simulations [11,21] and even self-driving sys-
tems [23]. Traditional approaches such as dynamic programming [10] and control
methods fail to solve these challenges since the delayed feedback, unknown envi-
ronment dynamics and the curse of high dimensions [7].

Constructive works on RL training process have been proposed in recent
years. Generally, there are three main branches in RL, value-based, policy-based
and actor-critic (combine both) methods. While classic value-based approaches
such as SARSA [18] and Q-learning [28] have been shown unable to converge
to policy for simple MDPs [26], recent model-free DRL algorithms have made
dramatic advances in solving continuous control tasks. DQN [15] proposed by
Google DeepMind has attracted great interest in the machine learning commu-
nity, and for stochastic policy optimization, other policy-based algorithms such
as Trust Region Policy Optimization (TRPO) [20], PPO [22], Asynchronous
Advantage Actor-critic (A3C) [14], are effective in training the agents for accu-
mulating more rewards through time. Policy gradient optimization methods only
utilize states input for end-to-end training without any prior information.

However, further exploiting the applicability of different network architec-
tures has not been fully studied. Most of the methods we discuss above adopt
standard neural networks like MLPs, single LSTMs or autoencoders as policy
network for the non-vision part, and pay their attention to optimization algo-
rithms. Few works focus on using the internal structure in the policy parame-
terization to speed up learning process [30] and adding inductive bias to pol-
icy networks [27]. [27] proposed a novel network architecture named dueling
architecture that represents separate estimators for state value function and
state-dependent action advantage function respectively. Though splitting the Q-
network into two streams, the Dueling Network can’t deal with many continuous
control tasks.

Similar work [17] proposes two applicable policy architectures: linear pol-
icy that maps from observations to actions, RBF policy that uses random
Fourier features of the observations. These two architectures can achieve rel-
atively promising performance on some continuous control tasks while still lacks
generalization for most RL problems. Work [25] demonstrates that linear policy
could make a complement to standard MLP network and this combination policy
improves the sample efficiency, episodic reward and robustness. These relevant
researches prove that the integration of linear and other specific architectures
has potential for generating more effective models.
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As a class of Recurrent Neural Networks (RNNs) architecture, LSTM is
designed to learn temporal sequences and the long-term dependencies [12]. [2]
presents a model-free RL-LSTM framework to solve non-Markovian tasks, and
[29] uses LSTM to train an end-to-end dialog systems that is optimized with
supervised learning and reinforcement learning. The inspirational application of
LSTM in RL problems demonstrate that LSTM is capable of processing inter-
nal state information and exploring the long-term dependency between relevant
events in other benchmark RL problems.

The idea of integrating LSTM with linear network and standard MLP net-
work could be much similar to the traditional feedback control approach PI
[1] which has been successfully applied to a variety of continuous control like
robotics, unmanned air vehicles [19] and other automatic systems. Inspired by
the widely used PI controller, we propose the “Proportional-Integral” policy net-
work to represent the physical interpretations of control approach. Our architec-
ture is easily to be combined with existing RL optimization algorithms and suf-
ficient experiments show this policy network could achieve remarkable results on
many benchmark tasks outperforming the results achieved by similar works [25].

3 Approach

3.1 Background

In the process of optimizing episodic reward while interacting with dynamic
environment, the agent updates the policy π according to Bellman (Optimal-
ity) Equation. We formulate the standard RL environment of a sequential deci-
sion making problem as Markov Decision Process (MDP) defined by the tuple:
M = {S,O,A,R,P, γ}, in which S ⊆ R

n is an n-dimensional state space, O the
observation space, A ⊆ R

m an m-dimensional action space, R a bounded reward
function, P a transition probability function, and γ ∈ (0, 1] a discount factor.

At every time step t, the agent is given current state st ∈ S or observation
ot ∈ O and chooses one action at from finite action set A according to the policy
πθ(at|st) parameterized by θ. In problems with visual inputs, observation ot is
directly obtained from the environment and then processed by convolutional
neural network to be fed into policy network. The performed action would affect
the subsequent state iteratively because after action taken, the environment
would return a reward value r and then transit to the next state st+1 according
to state transition probability matrix P = P (st+1|st, at). For example, in Atari
domain, the player agent perceives current video as observation information,
then chooses an action to perform and receives reward signal returned by game
emulator.

The goal of RL is to learn an optimal policy that maximizes the total
discounted reward through trading-off the exploration and exploitation. Gt is
defined as the sum of discounted reward from time-step t:
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Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . .

=
∞∑

k=0

γkRt+k+1

(1)

where discount factor γ determines the present value of future rewards and
values immediate reward above delayed reward, reward R at each time-step is a
numerical number given by the environment.

We use state value function V (s) to evaluate the long-term value of state
s and action-state value function Q(s, a) to figure out the value of state-action
pair (s, a).

V π(s) = E[Gt|St = s]
= E[Rt+1 + γV π(St+1)|St = s]

(2)

Qπ(s, a) = E[Gt|St = s,At = a, π]
= E[Rt+1 + γQπ(st+1, at+1)|St = s,At = a]

(3)

where policy π is parameterized by θ and experimentally implemented by neural
networks.

3.2 Architecture

To apply accurate and optimal control, in this section we present a novel pol-
icy network architecture consisting of three independent branches: LSTM for
exploiting hidden history information, nonlinear network for global control and
linear network for stabilizing the system dynamics. The architecture of the pro-
posed policy network is shown in Fig. 2.

Inspired by the Proportional-Integral Controller (PI) widely used in practical
control systems, LSTM is adopted to utilize long-term encoded state information
to control action at current time-step, which is similar to the control of the
historic cumulative value of error used in PI. The aim of introducing control
prior to policy is to eliminate the residual error in training process. Linear control
policy has been proved effective for particular RL problems. In addition, we use
basic MLP as nonlinear control network for its capability of global control and
the promising performance on generic policy networks.

Given current state, three branches of policy πθ(at|st) would evaluate respec-
tively and then the results are combined to compute the resulting action at
time t:

at = al
t + an

t + ar
t (4)

where al
t is the output of linear control network, an

t is the result of nonlinear
policy module and ar

t the time-dependent LSTM branch.
The key insight of our architecture is that the classic control prior knowl-

edge combined with reinforcement learning has functioned practically well on
continuous control tasks. To analyze the theoretical feasibility, we illustrate the
generic task as traditional control problem. Let the desired current state denoted
as sd

t and the actual state at time step t as st, so the temporary error would be
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Fig. 2. The pipeline of reinforcement learning and the architecture of the proposed PI
policy network.

et = st − sd
t . According to control theory, the goal of control is to eliminate the

error as much as possible.
In this formulation, given current state, the action should be:

at = fr
t + fs

t (st, s
d
t ) + fe

t

= fr
t + fs

t (st, s
d
t ) + Kp · (st − sd

t )
(5)

where fr
t is a history-concerned control term similar to the integral module in PI

controller, and fs
t is the nonlinear control branch formulated as the function of

current state and desired state, fe
t is the function of current error. As we stated

before, this error function serves as a linear control module with Kp being the
proportional terms for error et. In classic control theory, the proportional module
is used for removing the gross error by applying the difference between the
desired state and the measured state proportionally to the controlled variables.
Furthermore, the nonlinear branch fs

t works as global feedback control based on
the predicted environment state sd

t . “Integral” module fr
t is utilized to eliminate

the residual offset error by taking history error into account.
We further decompose the equation into:

at = fr
t + fs

t (st, s
d
t ) + Kp · (st − sd

t )

= fr
t + fs

t + Kp · st − Kp · sd
t

= fr
t + fn

t + f l
t

(6)

where we apply the transformation fn
t = fs

t −Kp · sd
t . The final control equation

is totally the same as Eq. (4) we propose previously where f l
t is denoted as linear

control branch Kp · st.
Experiment results demonstrate that both linear and nonlinear policy could

achieve promising performance, as shown in Fig. 3. On some specific RL tasks
like Humanoid, linear policy could obtain comparable effect with baseline MLP
network while on more tasks, it fails to perform sound results. The linear control
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Fig. 3. Averaged learning curves of linear and nonlinear policy network of 5 sets of
random seeds.

module f l
t is implemented as 1 linear layer Kp · st + b where the gain matrix Kp

and bias b are hyper-parameters need to be learned.
As part of our policy network, LSTM stores states information from previous

time steps. This concept of holding long-term encoded information to control
current action is similar to control the historic cumulative value of error used in
PI, while the specific implementation and practical implication are quite distinct
in some degree. In MDP, immediate states would play greater roles than delayed
ones, which is in accordance with the internal states of LSTM. That’s why we
adopt LSTM as the most effective component of our policy network. In the
proposed policy network, we use 1 LSTM layer with 64 hidden states to operate
sequential data. The results of PI policy with different number of LSTM layer
and hidden states are shown in experiment section.

The nonlinear network is implemented as generic MLP, and we also give
the experimentally result that single nonlinear policy could acquire. Generally
the individual nonlinear network works effectively for most of the RL tasks,
which confirms the necessity of combing this nonlinear policy with the other two
streams to further exploit.

4 Experiment

We conduct sufficient experiments on various benchmark RL tasks and widely
used simulation environments to validate the applicability and effectiveness
of the proposed policy network architecture. We mainly compare the training
results with generic MLP policy and similar SCN policy network proposed by
[25] under the same conditions. In addition, ablation experiments about the three
policy architecture individually and the complement network are performed to
confirm the capability. All these experiments are conducted under the guidance
of RL reproducibility study [6]. In this section, experiment details and results
are clearly explained.
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4.1 RL Environments

Generally used RL environments including OpenAI Gym, MuJoCo, Roboschool
that contain diverse RL tasks such as Atari games, continuous robot control and
classic control problems are shown in Fig. 1. These simulation platforms are built
with different physics engines and parameters, thus we could perform adequate
validation experiments on available tests as many as possible.

Some standard test environments such as Humanoid-v1 and Swimmer-v1 are
implemented in both MuJoCo and Gym. For example, Humanoid-v1 makes a
three-dimensional bipedal robot walk forward without falling over. The state of
this task is a 47 dimensional vector containing the position and velocity infor-
mation. The action consists of a discrete 17 dimensional torque control vector
over every joint of the humanoid robot.

4.2 Experimental Setup

As indicated before, we apply the proposed policy architecture to baseline RL
algorithms PPO, ACKTR, A3C on popular benchmark tasks that have been
widely used in the study of DRL. The test tasks consist of complicated continuous
control problems, simplified classical control problems as well as Atari games.
We mainly use the HalfCheetah-v2 and Hopper-v2 implemented in MuJoCo for
their stable and contrasting dynamics.

The comparison experiments are a series of policy networks trained from
scratch, including our control network, generic multilayer perceptron (MLP)
and Structured Control Net (SCN). To avoid bias, these three policy networks
are trained using the same algorithms with fixed hyper-parameters during the
training. Applicable training algorithms PPO, ACKTR are implemented from
OpenAI Baselines [4]. PPO is optimized by Adam optimizer [8] with initial learn-
ing rate as 3e−4, ε term as 1e−8. Particularly, in PPO generalized advantage
estimation is used with τ = 0.95 and the clip parameters is 0.2. In addition,
ACKTR uses KFAC optimizer proposed by [31], and the learning rate is 3e−4,
momentum parameter is 0.9.

In order to confirm the fairness, all the experiments we conduct use the same
set of random seeds, and the depicted learning curves are obtained by averaging
the evaluation results over five different random seeds from 1 to 5 respectively.
We train these networks for 2M timesteps over every tasks, and the mini-batch
size is fixed to 32, with fine-tuned reinforcement learning parameter discount
factor λ = 0.99. We implement these experiments in PyTorch using 12 cores
with Nvidia GeForce GTX 1060.

4.3 Results

In this section, we test three models: the proposed PI policy network, a baseline
MLP and Structured Control Network (SCN) to compare their performances.
The evaluation metrics widely applied in the reinforcement learning studies
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Fig. 4. Episode reward learning curves of the comparative methods: PI network, generic
MLP and SCN, averaged on five sets of random seeds.

include the learning curves of cumulative reward along timesteps, the maximum
reward and average reward over a fixed number of timesteps (Fig. 4).

The architecture of MLP used in these comparative experiments is a fully
connected layer with two hidden layers, each of which consists 64 units and
is activated by tanh function. This standard MLP-64 architecture is generally
used in many algorithms [22,31]. According to the experiment details described
in [25], the SCN is implemented as the combination of a generic three layer MLP
(remove the bias of the last linear layer) and a linear layer. We adopt tanh as the
activation function for the MLP used in SCN, and the two hidden layers of MLP
have 64 units respectively. As shown in Fig. 2, the proposed architecture contains
a LSTM with hidden size 64 and two nonlinear layers attached to the end of
LSTM, a generic MLP-16 nonlinear network, and a simple linear network. The
number of parameters of these three policy networks are quite approaching. For
fairness comparison, the value network for all these optimization algorithms and
models is fixed to be a three layer nonlinear network with one output dimension.

Comparison of Performance: The learning curves of the episode rewards are
shown in Fig. 3. More accurately, the average reward and final episode reward
are chosen to represent the model performance, as presented in Table 1. We only
show the PPO training results since the ACKTR results are quite similar.

We compute the improvement of average episode reward to depict the train-
ing efficiency. In this evaluation, our model achieved 122% averaged reward
improvement compared to generic MLP, and 126% to SCN.

Fig. 5. Episode reward learning curves of the comparative methods: 1 LSTM layer
with 64 hidden size PI and 1 LSTM layer with 128 hidden size PI, averaged on five
sets of random seeds.
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Table 1. Average and final episode rewards on various RL tasks of our model, SCN
and MLP model.

Task Average reward Final reward

Ours SCN MLP Ours SCN MLP

Ant 256 370 489 984 1205 1583

HalfCheetah 1395 1129 1390 2356 1181 2277

Hopper 1961 1854 1646 2274 2272 1449

Humanoid 892 789 662 1762 1007 866

Reacher −9.0 −10.9 −9.3 −6.7 −7.3 −6.6

Swimmer 28 29 34 37 33 49

Walker2d 2075 1052 1191 3133 1678 1895

4.4 Ablation Experiments

To test the comparative effectiveness of the three modules of PI network respec-
tively, we conduct ablation experiments that test each module separated from
a fully trained PI model. We compare these branches’ performances with an
independently trained linear policy and a nonlinear policy (MLP) with the same
size of linear and nonlinear branches in PI architecture. The training curves of
single linear and nonlinear policy have been shown in Fig. 3. Since branches of PI
policy network are jointly trained, we only compare the test rewards. The result
of linear network contained in the learned PI model outperforms effectively in
simple control tasks such as Pendulum and Walker2d when compared with single
trained linear network, and trained MLP branch achieves slightly better rewards
compared to separately trained MLP.

We also use LSTM with different number of hidden states and layers to evalu-
ate the effect of proportional branch. As show in Fig. 5, LSTM simply with more
hidden sizes couldn’t achieve better performance on many tasks. Though more
layers LSTM presents slight improvement compared with single layer LSTM, it
contains much more parameters to compute.

5 Conclusion

In this paper, a simple but effective reinforcement learning policy network archi-
tecture is proposed to introduce control theory into reinforcement learning con-
trol tasks. In general RL problems (formulated as MDP), given current state
information, the three branches of our network predict next action respectively,
which would be combined to compute the final action. This Proportional-Integral
architecture exploits the advantage of LSTM, linear control and nonlinear con-
trol, with LSTM taking advantage of history information, linear control stabi-
lizing system dynamics, nonlinear branch serving as global controller. Sufficient
comparative and ablation experiments demonstrate the proposed model outper-
form existing models on various RL tasks especially continuous control tasks.
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