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Abstract. Deep learning (DL) models, e.g., state-of-the-art convolutional
neural networks (CNNs), have been widely applied into security-sensitivity
tasks, such as facial recognition, automated driving, etc. Then their vulnerability
analysis is an emergent topic, especially for black-box attacks, where adver-
saries do not know the model internal architectures or training parameters. In
this paper, two types of ensemble-based black-box attack strategies, iterative
cascade ensemble strategy and stack parallel ensemble strategy, are proposed to
explore the vulnerability of DL system and potential factors that contribute to
the high-efficiency attacks are examined. Moreover, two pairwise and non-
pairwise diversity measures are adopted to explore the relationship between the
diversity in substitutes ensembles and transferability of crafted adversarial
examples. Experimental results show that proposed ensemble adversarial attack
strategies can successfully attack the DL system with ensemble adversarial
training defense mechanism and the greater the diversity in substitute ensembles
enables stronger transferability.
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1 Introduction

Deep learning models are often vulnerable to adversarial examples: malicious inputs
modified to yield erroneous model outputs, while appearing unmodified to human
observers at inference phase [1–4]. Potential attacks include confusing vehicle behavior
in automated driving or having malicious content like malware identified as legitimate.
Yet, all existing adversarial example attacks require explicit knowledge of the model
internals or its training data (white-box). However, to search for adversarial examples of
a real world system, such knowledge may not be available. In this situation, the target
model is a black-box to the attacker. Therefore, it is quite difficult to extract information
about the decision boundary of target models, which is usually a pre-requisite to design
input perturbations that result in erroneous predictions. However, previous works have
shown that transferability exists between different models, i.e., the adversarial examples
can transfer from one model to another [1, 5–8]. Such a property can be leveraged to
perform black-box attacks. In other words, the attacker can query the target system, and
establish a substitute model based on the query results [9]. Then the attacker can
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generate the adversarial examples for the substitute model, and these adversarial
examples may transfer to disorder the target system. For example, an adversary who
seeks to penetrate a computer network rarely has access to the specifications of the
deployed intrusion detection system, however they can observe its outputs for any
chosen inputs [10]. These observed input-output pairs will be used to produce synthetic
datasets, and to train a substitute model approximating the target system. Therefore, the
adversarial examples generated by substitutes are more likely to transfer to confuse the
target system.

However, conventional attack strategies notoriously only consider to train a single
substitute to craft adversarial examples with a weak transfer capability in black-box
attack scenario, which is easily defended by existed defense mechanism [11–13].
Papernot et al. [14] have proposed ensemble adversarial training technique, which is an
extension of adversarial training [1, 15], to increase robustness of DL models against
black-box attacks. Thus, new attack strategies should be designed to explore the vul-
nerability of DL models with ensemble adversarial training.

In this paper, we propose two types of ensemble-based black-box attack strategies,
iterative cascade ensemble strategy and stack parallel ensemble strategy, to implement
more powerful black-box attacks against DL models and demonstrate that the ensemble
adversarial training does not significantly increase the robustness and security of DL
models. Besides, potential factors that contribute to the effective attacks against DL
models are examined from three perspectives: the transferability of substitutes, the
diversity of substitutes, and the number of substitutes. Ensemble adversarial black-box
attack strategies and strategy analysis will be emphatically introduced in Sect. 2. The
comparison experiment results on real world data sets and feasibility exploration are
reported in Sect. 3 and paper concludes in Sect. 4.

2 Ensemble-Based Black-Box Attack Strategy

Before introducing the attack strategies, we will briefly introduce the architecture of
substitutes and transferable adversarial examples generation algorithms used in this
paper. For the input x 2 RD, the composition of functions modeled by the substitute can
be formalized as [16]:

F xð Þ ¼ softmax fn hn; fn�1 hn�1; . . .f2 h2; f1 h1; xð Þð Þð Þð Þð Þ ð1Þ

where each function fi for i 2 1…n is modeled by a layer of neurons, each layer is
parameterized by a weight vector hi impacting each neuron’s activation. The output of
the last layer is computed by using the softmax function, which ensures that the output
vector F(x) satisfies 0 � F(x)i � 1, and F(x)1 + … + F(x)c = 1, where c is the number
of classes.

Transferable adversarial examples are generated by substitute through carefully
introducing human indistinguishable perturbations to the original examples, then these
generated adversarial examples x� 2 RD can transfer to confuse target model O, i.e.,
O x�ð Þ 6¼ O(x). Currently proposed adversarial examples generation algorithms mainly
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include gradient-based (e.g., FGSM [1], I-FGSM [2], R + FGSM [14], etc.) and
optimization-based (e.g., Carlini L1 Attack [17]), and specific details are described
below:

Fast Gradient Sign Method (FGSM) is a single-substitute attack method. It finds the
adversarial perturbation that yields the highest increase of the loss function under L1-
norm. The update equation is

x� ¼ xþ a � sign rxloss 1y;F xð Þ� �� � ð2Þ

where a controls the magnitude of adversarial perturbation, 1y is the one-hot encoding
of the ground truth label of y. I-FGSM is a straightforward way to extend the FGSM by
using a better iterative optimization strategy and R + FGSM significantly increases the
power of the FGSM by adding gaussian noise to inputs before computing the gradient.

Carlini L1 Attack is a stronger single-substitute attack method proposed recently. It
finds the adversarial perturbation r by using an auxiliary x as

r ¼ 1
2

tanh xð Þþ 1ð Þ � x ð3Þ

Then the loss function optimizes the auxiliary variable xn

minx
1
2

tanh xð Þþ 1ð Þ
����

����þ c � f 1
2

tanh xð Þþ 1ð Þ
� �

ð4Þ

The function f �ð Þ is defined as

f xð Þ ¼ max Z xð Þ1y�max Z xð Þi: i 6¼ 1y
� �

;�j
	 


ð5Þ

where Z xð Þi is the logits output for class i, and j controls the confidence gap between
the adversarial class and true class.

Yet, these single-substitute attack algorithms achieve unsatisfactory attack perfor-
mance in black-box attack scenario. Then, we attempt to ensemble multiple pre-trained
substitutes to produce adversarial examples with more powerful transferability in the
form of iterative cascade ensemble and stack parallel ensemble, as illustrated in Fig. 1.

Fig. 1. Illustration of Iterative Cascade Ensemble Strategy (a) and Stack Parallel Ensemble
Strategy (b).
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2.1 Iterative Cascade Ensemble Strategy

Iterative cascade ensemble strategy employs a cascade structure, as shown in Fig. 1(a),
where each substitute of cascade will receive adversarial examples x�j j 2 0; k½ �ð Þ gen-
erated by its preceding substitute, and output its counterparts to the next substitute.
During each iteration, the output of the k-th substitute x�k will be used as the input to the
first substitute. Output results obtained from the k-th substitute after q iterations are
final adversarial examples. Before implementing the iterative cascade ensemble strat-
egy, the adversary first requires to train k heterogeneous substitute models with various
synthetic datasets, which are constructed by observed input-output pairs and their
augmentation with Jacobian-based technique [9]. In order to obtain more effective
adversarial examples, each substitute is trained based on various architectures of deep
neural networks. Afterwards, FGSM or Carlini L1 Attack is adopted as a classic attack
algorithm for each substitute to craft adversarial examples. Finally, the adversaries can
cascade multiple pre-trained substitutes and iteratively maximize each loss of substitute
to obtain the final adversarial examples. The iterative cascade attack procedure is
outlined in Algorithm 1.

The algorithm first requires to initialize the value of all input variables e, a, k, q
(where e = a/2 and k = q), and add gaussian noise to original normal examples. For
each substitute, the standard cross entropy loss function [18] should be constructed to
compute gradient to maximize the loss function optimized for the L1 distance metric.
The gradient of loss function determines the direction which feature should be changed.
During each iteration, generated adversarial example x�k will be assigned to x�0 as input
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of the first substitute. Until the loop iteration ends, the final transferable adversarial
examples are obtained from the output of k-th substitute.

2.2 Stack Parallel Ensemble Strategy

Stack parallel ensemble strategy employs a parallel structure, as shown in the Fig. 1(b),
where each substitute of parallel will receive the original legitimate example x, and
output result x�j j 2 1; k½ �ð Þ will be combined with a linear way as new input of the k + 1
substitute. Output results obtained from the k + 1 substitute are final adversarial
examples. Before implementing the parallel ensemble strategy, the adversary first
requires to train k + 1 heterogeneous substitute models with various synthetic datasets,
which are constructed by observed input-output pairs and their augmentation with
Jacobian-based technique [9]. In order to achieve more effective adversarial examples,
each substitute is still trained based on various architectures of deep neural networks.
Afterwards, FGSM or Carlini L1 Attack is adopted as a classic attack algorithm for
each substitute to craft adversarial examples. Finally, the adversary can parallel mul-
tiple pre-trained substitutes and maximize each loss of substitute to obtain adversarial
examples. The stack parallel attack procedure is outlined in Algorithm 2.

The algorithm still requires to initialize the value of all input variables e, a, k, x�mid
(where e ¼ a=2; x�mid = 0D), add gaussian noise to original legitimate examples and
compute gradient of constructed loss function. The gradient of loss function determines
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the direction which feature should be changed. For the top-k substitutes, generated
adversarial example x�j j 2 1; k½ �ð Þ will be combined with a linear way and save to x�mid
as new input of the k + 1 substitute. The final transferable adversarial examples are
achieved from the output of k + 1 substitute.

2.3 Strategy Analysis

Empirical evidence has shown that adversarial examples appear in wide regions,
spanning a contiguous subspace of high dimensionality and a large portion of this space
is shared between different models, thus enabling transferability [1, 7, 19]. Ian
Goodfellow et al. first proposed Gradient Aligned Adversarial Subspace (GAAS) [7]
method to find multiple independent orthogonal adversarial directions to directly
evaluate the dimensionality of the adversarial subspace. The dimensionality of
adversarial subspaces is relevant to the transferability problem: the higher the dimen-
sionality, the more likely the subspaces of substitute and target model will intersect
significantly. As proposed in [7], the decision boundaries learned by both the substitute
and target model must be extremely close to each another in adversarial direction.
Adversarial direction is defined by x and x� : dadv ¼ x� � xð Þ=x� � x2, where adver-
sarial example x� (blue dot) is generated from test example (brown dot) x to be
misclassified by substitute F(x): argmine[ 0 F x� : xþ e � dadvð Þ 6¼ F xð Þ, as shown in
Fig. 2(a). That is, the cross-boundary distance (the red double-ended arrows) in
adversarial direction between the decision boundaries of substitute and target model
must be very short. In other words, the shorter the distance, the stronger transferability.

Actually, it is difficult to guarantee the trained substitute accurately approximating
the target black-box model and the adversarial direction is also not unique, which lead
to the weak transferability of crafted adversarial examples. However, if adversarial
examples remain adversarial for multiple substitutes, it is more likely to transfer to
disorder the target model, as shown in Fig. 2(b). From the Fig. 2(b), we can observe
that an adversarial example (blue dot) generated by our proposed ensemble-based
black-box attack strategies crossing the decision boundaries of k (e.g. k = 3) substitutes,
has a greater probability to cross the decision boundary of target model. This fully
illustrates the ensemble-based black-box attack strategies effectively shorten the cross-
boundary distance and improve the transferability of generated adversarial examples.

Fig. 2. Illustration of a binary misclassification procedure in the adversarial direction over a 2D
input domain. (Color figure online)
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3 Experiments

All experiments1 use Tensorflow2 framework and cleverhans library3. To demonstrate
the effectiveness and feasibility of the proposed ensemble-based black-box attack
strategy, we empirically compare the conventional single-substitute attack algorithms
described previously, e.g., FGSM, I-FGSM, R + FGSM and Carlini L1 attack, and
expose the potential factors that contribute to the high-efficiency attacks.

3.1 Setup

Four benchmark datasets for two tasks, i.e., digit recognition and traffic sign recog-
nition, are used in experiments. Details about datasets are listed in Table 1. The target
classifier as black-box model in this work are trained with training data of each dataset.
For each dataset, few unused test examples, as query inputs, are used to query target
classifier and produce synthetic datasets augmented by observed input-output pairs.
Then, diverse convolutional neural network architectures, as shown in Table 2, are
selected to train substitutes with various synthetic datasets for ensemble to implement
black-box attack tasks.

Table 1. Summary of 4 benchmark datasets

Name Training data Test data Features Labels Task

MNIST 50000 10000 28� 28� 1 10 Digit recognition
USPS 7291 2007 16� 16� 1 10 Digit recognition
GTSRB 39209 12630 32� 32� 3 43 Traffic sign recognize
BelgiumTSC 4575 2534 32� 32� 3 62 Traffic sign recognize

Table 2. Neural network architectures used in this work for substitute and target model training.
Conv: convolution layer, FC: fully connected layer, Relu: activation function

1 Codes is available at https://github.com/HangJie720/Ensemble_Adversarial_Attack.
2 https://www.tensorflow.org/?hl=zh-cn.
3 https://github.com/tensorflow/cleverhans.
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Two diverse measurements, Success rate and Transfer rate, are redefined to
evaluate the vulnerability of DL models according to Eqs. 6. and 7.

1
nk

Xk

j¼1

Xn

i¼1
I Fj x�i

� � 6¼ Fj xið Þ� � ð6Þ

1
n

Xn

i¼1
I O x�i

� � 6¼ O xið Þ� � ð7Þ

where I �ð Þ ¼ 1 represents generated adversarial example is misclassified, and 0,
otherwise. These two metrics are used to measure the error rate of substitute and target
model respectively.

3.2 Results

This section first quantitatively analyzes the vulnerability of DL models under success
rate and transfer rate measurement. Afterwards, we empirically compare the conven-
tional single-substitute attack algorithms based on FGSM and Carlini L1 attack for
different datasets. Finally, possible factors that contribute to the higher transfer rate are
explored from two aspects, the diversity of substitutes and the number of substitutes k.

Figure 3 demonstrates that deep learning models are extremely susceptible to
adversarial examples generated by proposed ensemble-based black-box attack strate-
gies under different perturbation amplitude a.

The transferability of adversarial examples generated by each substitute and cas-
cading or paralleling any k substitutes (e.g. k = 3, 5) are illustrated in Table 3 and
Fig. 4. Experiments demonstrate that the adversarial examples crafted by iterative
cascade ensemble strategy achieve higher transfer rate than stack parallel ensemble
strategy dramatically. Both obtain superior attack performance to other single-
substitute attack algorithms. We also can observe that optimization-based algorithm
(e.g. Carlini L1 attack) provided for each substitute to iterative cascade ensemble
obtain greater transferability than gradient-based algorithm (e.g. FGSM). Figure 5

Fig. 3. Success rate and Transfer rate of adversarial examples generated by ensemble-based
black-box attack strategies under different perturbation amplitude on MNIST and GTSRB.
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demonstrates that our proposed ensemble-based black-box attack strategies are still
aggressive to target classifier trained with ensemble adversarial training defense
mechanism.

Moreover, possible factors that contribute to the higher transfer rate are explored
from two perspectives: the diversity of substitutes and the number of substitutes k.

(1) The number of substitutes k. The experiment results are shown in Fig. 6. for our
proposed ensemble-based black-box attack strategies, which indicates that the
larger the value of k, the higher transfer rate of generated adversarial examples.

(2) The diversity of substitutes. Two averaged pairwise measures [20] (the Q statis-
tics, the correlation coefficient q) and two non-pairwise measures [20] (The
entropy measure E, the Kohavi-Wolpert variance KW) are selected to analyze the
relationship between the diversity of substitute and transferability of generated
adversarial examples. Experimental results are listed in Table 4, where I, II, III
and IV represent the four strategies to generate the substitutes, such as, the sub-
stitutes are same, trained with different training sets, trained with different
architectures and trained with different training sets and architectures respectively.
Comparative experimental results demonstrate that the greater the diversity of
substitutes, the stronger the transferability of adversarial examples. Thus, all same
substitutes used in I-FGSM obtain the lowest transfer rate, as shown in Fig. 4.

Table 3. Transfer rate of adversarial examples generated by single-substitute, iterative cascade
ensemble strategy and stack parallel ensemble strategy based on FGSM and Carlini L1 attack
for different datasets.

FGSM a¼ 0:3ð Þ MNIST USPS GTSRB BelgiumTSC

Sub1 32.47% 30.44% 59.32% 58.22%
Sub2 37.00% 38.20% 55.27% 49.64%
Sub3 18.57% 25.42% 50.23% 50.12%
Sub4 19.04% 27.62% 45.55% 43.65%
Sub5 16.61% 25.29% 40.29% 49.23%
Iter_Casc (k = 3) 58.01% 53.23% 65.89% 64.68%
Stack_Paral (k = 3) 50.00% 48.27% 61.36% 60.00%
Carlini L1 attack j ¼ 0j ¼ 0ð Þ MNIST USPS GTSRB BelgiumTSC
Sub1 12.50% 10.50% 12.50% 28.20%
Sub2 12.50% 12.00% 20.50% 19.65%
Sub3 1.50% 2.50% 9.50% 2.10%
Sub4 0.50% 1.50% 5.55% 3.55%
Sub5 1.00% 0.50% 8.50% 1.20%
Iter_Casc (k = 3) 94.50% 90.00% 100.00% 100.00%
Stack_Paral (k = 3) 17.50% 20.00% 30.50% 35.00%
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Fig. 4. Transfer rate of adversarial examples crafted by disparate attack strategies on two major
classification tasks. Ensemble strategies compared with single-substitute attack algorithms based
on FGSM under differ perturbation amplitude a are shown in Fig. (a)–(d). Ensemble strategies
compared with single-substitute attack algorithms based on Carlini L1 Attack under different
confidence j are shown in Fig. (e) and (f).

Fig. 5. Weakly defense performance of target classifier trained with ensemble adversarial
training defense mechanism.
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4 Conclusion

In this paper, we propose two types of ensemble-based black-box attack strategies,
iterative cascade ensemble strategy and stack parallel ensemble strategy, to explore the
vulnerability of deep learning system. Experimental results show that our proposed
ensemble adversarial attack strategies can successfully attack the deep learning system
trained with ensemble adversarial training defense mechanism. The adversarial
examples generated by iterative cascade ensemble strategy achieve better transfer-
ability than stack parallel ensemble strategy dramatically. Both obtain superior attack
performance to other single-substitute attack algorithms. We also can observe that the
diversity in substitute ensembles is an important factor to influence the transferability of
generated adversarial examples.

Fig. 6. Transfer rate of adversarial examples crafted by iterative cascade ensemble strategy and
stack parallel ensemble strategy with different number of substitutes k.

Table 4. The relationship of diversity in substitute cascade/parallel ensembles and transfer-
ability of generated adversarial examples. (") represents the measure value of diversity is
increased, (#) represents the measure value of diversity is decreased.

MNIST Transfer Rate Diversity Measure Value
Iter_Casc (k = 3) Stack_Paral (k = 3) Q(#) q(#) Ent(") KW(")

I 16.89% 10.89% 1.0000 1.0000 0.0000 0.0000
II 20.35% 18.52% 0.8900 0.7343 0.4900 0.1089
III 40.23% 34.53% 0.6432 0.5321 0.6235 0.2336
IV 58.01% 50.00% 0.3411 0.2300 0.7800 0.3345
GTSRB Iter_Casc (k = 3) Stack_Paral (k = 3) Q(#) q(#) Ent(") KW(")
I 70.44% 66.24% 1.0000 1.0000 0.0000 0.0000
II 79.26% 72.81% 0.7100 0.6911 0.5300 0.2033
III 88.12% 80.36% 0.5302 0.3510 0.7122 0.3010
IV 95.89% 93.80% 0.2201 0.1800 0.8201 0.4700
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