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Preface

The 25th International Conference on Neural Information Processing (ICONIP 2018),
the annual conference of the Asia Pacific Neural Network Society (APNNS), was held
in Siem Reap, Cambodia, during December 13–16, 2018. The ICONIP conference
series started in 1994 in Seoul, which has now become a well-established and
high-quality conference on neural networks around the world. Siem Reap is a gateway
to Angkor Wat, which is one of the most important archaeological sites in Southeast
Asia, the largest religious monument in the world. All participants of ICONIP 2018 had
a technically rewarding experience as well as a memorable stay in this great city.

In recent years, the neural network has been significantly advanced with the great
developments in neuroscience, computer science, cognitive science, and engineering.
Many novel neural information processing techniques have been proposed as the
solutions to complex, networked, and information-rich intelligent systems. To dis-
seminate new findings, ICONIP 2018 provided a high-level international forum for
scientists, engineers, and educators to present the state of the art of research and
applications in all fields regarding neural networks.

With the growing popularity of neural networks in recent years, we have witnessed
an increase in the number of submissions and in the quality of submissions. ICONIP
2018 received 575 submissions from 51 countries and regions across six continents.
Based on a rigorous peer-review process, where each submission was reviewed by at
least three experts, a total of 401 high-quality papers were selected for publication in
the prestigious Springer series of Lecture Notes in Computer Science. The selected
papers cover a wide range of subjects that address the emerging topics of theoretical
research, empirical studies, and applications of neural information processing tech-
niques across different domains.

In addition to the contributed papers, the ICONIP 2018 technical program also
featured three plenary talks and two invited talks delivered by world-renowned
scholars: Prof. Masashi Sugiyama (University of Tokyo and RIKEN Center for
Advanced Intelligence Project), Prof. Marios M. Polycarpou (University of Cyprus),
Prof. Qing-Long Han (Swinburne University of Technology), Prof. Cesare Alippi
(Polytechnic of Milan), and Nikola K. Kasabov (Auckland University of Technology).

We would like to extend our sincere gratitude to all members of the ICONIP 2018
Advisory Committee for their support, the APNNS Governing Board for their guid-
ance, the International Neural Network Society and Japanese Neural Network Society
for their technical co-sponsorship, and all members of the Organizing Committee for all
their great effort and time in organizing such an event. We would also like to take this
opportunity to thank all the Technical Program Committee members and reviewers for
their professional reviews that guaranteed the high quality of the conference pro-
ceedings. Furthermore, we would like to thank the publisher, Springer, for their
sponsorship and cooperation in publishing the conference proceedings in seven vol-
umes of Lecture Notes in Computer Science. Finally, we would like to thank all the



speakers, authors, reviewers, volunteers, and participants for their contribution and
support in making ICONIP 2018 a successful event.

October 2018 Jun Wang
Long Cheng

Andrew Chi Sing Leung
Seiichi Ozawa
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Abstract. The dispute of how the human brain represents conceptual
knowledge has been argued in many scientific fields. Brain imaging stud-
ies have shown that the spatial patterns of neural activation in the brain
are correlated with thinking about different semantic categories of words
(for example, tools, animals, and buildings) or when viewing the related
pictures. In this paper, we present a computational model that learns to
predict the neural activation captured in functional magnetic resonance
imaging (fMRI) data of test words. Unlike the models with hand-crafted
features that have been used in the literature, in this paper we pro-
pose a novel approach wherein decoding models are built with features
extracted from popular linguistic encodings of Word2Vec, GloVe, Meta-
Embeddings in conjunction with the empirical fMRI data associated with
viewing several dozen concrete nouns. We compare these models with
several other models that use word features extracted from FastText,
Randomly-generated features, Mitchell’s 25 features. The experimental
results show that the predicted fMRI images using Meta-Embeddings
meet the state-of-the-art performance. Although models with features
from GloVe and Word2Vec predict fMRI images similar to the state-
of-the-art model, model with features from Meta-Embeddings predicts
significantly better. The proposed scheme that uses popular linguistic
encoding offers a simple and easy approach for semantic decoding from
fMRI experiments.

Keywords: Brain decoding · Word embedding · Neural network

1 Introduction

How a human brain represents and organizes conceptual knowledge has been
an open research problem that attracted researchers from various fields [1–3]. In
recent studies, the topic of exploring semantic representation in the human brain
has attracted the attention of researchers from both neuroscience and computa-
tional linguistic fields. Using brain imaging studies Neuroscientists have shown
that distinct spatial/temporal patterns of fMRI activity are associated with dif-
ferent stimuli such as face or scrambled face [4], semantic categories of pictures,
c© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11303, pp. 3–15, 2018.
https://doi.org/10.1007/978-3-030-04182-3_1
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including tools, animals, and buildings, playing a movie, etc. [5–10]. These exper-
imental results postulate how the brain encodes meaning of words and knowledge
of objects, including theories that meanings are encoded in the sensory-motor
cortical areas [11–13]. Such findings would also facilitate making predictions
about breakdown in the function and their spatial location in different neu-
rological disorders. Theoretical and empirical studies have been conducted to
explore categorization of animate and inanimate objects and the brain repre-
sentation of these semantic differences [14,15]. Linguists have identified different
semantic meanings corresponding to individual verbs as well as the types of a
noun that can fill those semantic meanings, for example, WordNet [16], Verb-
Net [17], and BabelNet [18]. Tom Mitchell’s group at CMU pioneered studies
that demonstrated common semantic representation for various nouns in terms
of shared brain activation patterns across subjects [19]. In [20], presented the
idea of detecting the cognitive state of a human subject based on the fMRI data
by exploring different classification techniques.

The key aspect that lies at the heart of many of the fMRI decoding studies
is the establishment of an associative mapping of the linguistic representation
of nouns or verbs and the corresponding brain activation patterns elicited when
subjects viewed these lexical items. Mitchell’s team designed a computational
model to predict the brain responses using hand-crafted word vectors as input
to map the correlation between word embeddings and brain activity involved
in viewing the words [19]. Since, Mitchell’s 25 dimensional (dim) vector that
uses fixed set of contextual dim (such as see, hear, eat etc.) will face word
sense disambiguity and our high dimensional word vectors would have better
basis for sense disambiguation as they use co-occurrence frequencies from large
corpora. For example, the lexical item “Bank” has multiple semantic senses,
such as the “bank of a river” or a “financial institution” based on the context.
In fact, this forms motivation for our proposal of word embeddings in place of
fixed context vectors. In recent times, linguistic representation of lexical items in
computational linguistics is largely through a dense, low-dimensional and con-
tinuous vector called word-embedding [21,22]. Common word embeddings are
generated from large text corpora such as Wikipedia and statistics concerning
the co-occurrence of words is estimated to build such embeddings [23,24]. Some
of the most popular word embedding models are Word2Vec [23], GloVe [25]
and Meta-Embeddings [26]. The recent popular approach FastText [24] is a fast
and effective method to learn word representations and can be utilized for text
classification. Since FastText embeddings are trained for understanding mor-
phological variations and most of the syntactic analogies are morphology-based,
FastText embeddings do significantly better on the syntactic analogies than on
semantic tasks [24]. [23] introduced continuous Skip-gram model in Word2Vec
that is an efficient method for learning high-quality distributed vector represen-
tations that capture a large number of precise syntactic and semantic word rela-
tionships. Global Vectors for word representations (GloVe) [25] model combines
the benefits of the Word2Vec skip-gram model when it comes to word analogy
tasks, with the benefits of matrix factorization methods that can exploit global
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Fig. 1. Top 10 features for the words “Apartment” (left), “Key” (center) and “Car”
(right) generated from the five word embedding methods.

statistical information. In [26], the idea of Meta-Embeddings has been proposed
and has two benefits compared to individual embedding sets: enhancement of
performance and improved coverage of the vocabulary.

Recently, the success of deep learning based word representations has raised
the question whether these models might be able to make association between
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brain activations and language. In [27], authors proposed a model that combines
the experience based word representation model with the dependency based
word2vec features. The resulting model yielded better accuracies. However, this
paper does not discuss which are most predicted voxels in various brain regions
for different word embedding models and also does not give results on brain
activations corresponding to multiple senses of a word. A recently published
article [28] that gives a strong, independent support for our proposed approach
of using word embedding representations for brain decoding models in place
of carefully hand-crafted feature vectors. This paper aims at building a brain
decoding system in which words and sentences are decoded from corresponding
brain images. However, our approach addresses, in addition, the encoding prob-
lem where we try to build a system which learns associative mapping encoding
words into corresponding fMRI images. Also, this paper uses ridge regression
whereas we used Multi-layer feed forward neural network to learn the non-linear
associative mapping between semantic features and brain activation responses.

In this paper, we propose a method to study the correlation between brain
activity involved in viewing a word and corresponding word embedding (such as
Word2Vec, GloVe, Meta-Embeddings, FastText and Mitchell’s 25 [19]). To the
best of our knowledge, this is the first time a comparative study is made of vari-
ous existing, popular word embeddings for decoding brain activation. We propose
a three-layer neural network architecture in which the input is a word embed-
ding vector and the target output is the fMRI image depicting brain activation
corresponding to the input word in line with the state-of-the-art approaches [19].

The structure of the paper is as follows. In Sect. 2, we discuss the motivation
towards using word embeddings. Section 3 describes the approach we are using
to build the model, while Sect. 4 presents comparative results of various mod-
els along with the statistical significance of the results. In Sect. 5, we give the
conclusions and future work.

2 Motivation for Using Word-Embeddings

The word embeddings like Word2Vec, Glove etc., are known to capture the
semantics of words based on the context as well as the co-occurrence of different
words. We use these as features to capture the associative relationship between
the meaning encoded in word embedding and the observed brain activation. So,
Whenever the brain looks at a word, we assume that it tries to relate the word
with some object/action, its properties, and other words with similar meaning.
We consider the following example.

We observe the top 10 similar words for Apartment, Key, and Car. We
obtain these similar words using different word embeddings which are given in
Fig. 1. In Word2Vec, the similar words are semantically similar to Apartment,
key and Car. On the other hand, GloVe and Meta-Embeddings give not only
semantically similar words but also related words like {rental, parked, accident,
insurance, etc.} for Car, {role, decisive, passwords, activation, leadership, etc.}
for Key and {furnished, rent, renovated, etc.} for Apartment. These related
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words have the higher probability in Meta-Embeddings approach compared to
those obtained with GloVe Embedding. These word embeddings are generated
using just the text data without considering any brain activity specific features.

Table 1. Top 10 features for the word “Celery” generated from the six methods

(1) (2) (3) (4) (5) (6) (7)

broccoli 0.71 eat 0.35 carrots 0.16 carrots 0.24 eat 0.19 eat 0.837 cabbage 0.74

bellpeppers 0.69 taste 0.24 onions 0.16 cabbage 0.33 taste 0.18 taste 0.346 carrots 0.74

parsley 0.69 fill 0.051 parsley 0.18 cauliflower 0.35 fill 0.012 fill 0.315 onions 0.73

cilantro 0.68 see 0.063 broccoli 0.20 onion 0.35 see 0.07 see 0.243 spinach 0.73

cabbage 0.68 clean 0.054 garlic 0.20 parsley 0.38 clean 0.018 clean 0.115 garlic 0.72

cauliflower 0.67 open 0.042 cabbage 0.21 broccoli 0.38 open 0.08 open 0.060 tomato 0.70

tomato 0.67 smell 0.189 carrot 0.21 garlic 0.38 smell 0.026 smell 0.059 potatoes 0.70

lettuce 0.67 touch 0.061 spinach 0.22 potatoes 0.40 touch 0.019 touch 0.029 parsnips 0.69

cherry 0.66 say 0.094 cauliflower 0.22 turnips 0.40 say 0.092 say 0.016 sweetroot 0.69

Brussels 0.66 hear 0.021 asparagus 0.23 lettuce 0.41 hear 0.032 hear 0.000 lemongrass 0.69

(1) Word2Vec(Top 10), (2) Word2Vec similarity (with Mitchell’s 25 words), (3) GloVe(Top 10) (4) Meta-

Embeddings (Top 10), (5) Meta-Embeddings similarity (with Mitchell’s 25 words) (Top 10) (6) Mitchell’s

25 (Top 10), (7) FastText (Top 10)

On the other hand, Mitchell’s feature vectors would be, by design, related to
stimulus-modality-specific brain regions, as the learning model associates sen-
sory features that have large weights with dominant evoked responses in related
sensory cortical areas. The word embedding methods (Word2Vec, GloVe, and
Meta-Embeddings) encode the meaning in terms of co-occurrence frequencies of
other words in the corpus and thus may not relate to various modules of the
brain the way Mitchell’s hand-crafted features are designed.

It is interesting to understand the closeness of various word embeddings with
Michell’s 25. Table 1 describes similar words for “celery” based on various word
embeddings as well as Mitchell’s 25. As word embeddings and Mitchell’s operate
on different dimensions, we checked if they have similar underlying semantics.
We estimated similarity scores for embedding vector for celery with embedding
vectors for various feature words used in Mitchell’s. Table 1 shows that the result-
ing score vector is quite similar, pointing out that the underlying similarity of
semantics between vector-based encoding and Mitchell’s. In this way, even these
methods seem to capture the meaning in a way similar to Mitchell’s scheme and
perhaps might learn to elicit appropriate brain activation.

3 Proposed Approach

In this paper, we use a 3-layer neural network architecture as shown in Fig. 2
to build a trainable computational model that predicts the neural activation
for any given stimulus word (w). Given a random stimulus word (w), we pro-
vide semantic features associated with (w) as input (generated from one of the
six different methods, namely, Word2Vec, GloVe, Meta-Embeddings, FastText,
Randomly-generated, and Mitchell’s 25 [19]). The second step involves hidden



8 S. R. Oota et al.

layer representation and is accomplished via N hidden neurons in the hidden
layer. Hidden neurons are fully connected to the input layer and the connection
weights are learned through an adaptation process. The third step predicts the
neural fMRI activation at every voxel location in the brain as a weighted sum
of neural activations contributed by each of the hidden layer neurons. More pre-
cisely, the predicted activation zv at voxel v in the brain for word w is given by

Fig. 2. 3-layer neural network architecture for decoding fMRI brain activation

zv =
N∑

j=1

cvjf(netj) + cj0 (1)

f(netj) = tanh(
M∑

i=1

cijxi + ci0) (2)

where, f(netj) is the value of the jth hidden neuron for word w, N is the number
of hidden neurons present in the model, and cvj is a learned coefficient that
specifies the degree to which the jth intermediate semantic feature activates a
voxel in the output layer.

4 Experimental Results and Observations

In this section, we describe the details of experiments conducted and the use of
various word embeddings and observations thereof. We first describe the datasets
used for our study.
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4.1 FMRI Dataset Description

We used CMU fMRI data1 of nine healthy subjects. These nine healthy subjects
viewed 60 different word-picture pairs six times each. The 60 arbitrary stim-
uli included five items from each of the 12 semantic categories (animals, body
parts, building parts, buildings, furniture, clothing, insects, kitchen items, tools,
vegetables, vehicles, other man-made items). For each stimulus, we computed a
mean fMRI image over its six repetitions and the mean of all 60 of these stimuli
was then subtracted to get the final representation image.

(a) Original (b) Word2Vec (c) Mitchell’s (d) GloVe (e) Meta-
Embeddings

(f) Random (g) FastText

Fig. 3. Predicting fMRI images for given stimulus word “Bell”

(a) Original (b) Word2Vec (c) Mitchell’s (d) GloVe (e) Meta-
Embeddings

(f) Random (g) FastText

Fig. 4. Predicting fMRI images for given stimulus word “Arm”

(a) Original (b) Word2Vec (c) Mitchell’s (d) GloVe (e) Meta-
Embeddings

(f) Random (g) FastText

Fig. 5. Predicting fMRI images for given stimulus word “Bee”

1 Available at http://www.cs.cmu.edu/∼fmri/science2008/data.html.

http://www.cs.cmu.edu/~fmri/science2008/data.html


10 S. R. Oota et al.

4.2 Architecture Used and Training Strategy

The 3-layer neural network had 100 nodes in the hidden layer. Table 2 describes
the other parameter settings for proposed model. At the input layer, we use
semantic features of stimulus word. These semantic features could be any one of
Word2Vec, GloVe, Meta-Embeddings, FastText, Randomly generated vectors,
or Mitchell’s 25 features. The reason behind using random features is to set a
baseline control study. We trained separate computational models for each of the
9 participants using all the four input encoding methods. Each trained model
was evaluated by means of a “leave-one-out” cross-validation approach in which
the model was repeatedly trained with 59 of the 60 available word stimuli and
associated fMRI images. Each trained model was then tested by requiring it to
predict the fMRI image for the one “held-out” word.

Table 2. 3-layer neural network parameter setting

Parameters Values

Hidden layer size 100

Optimizer Adam

Activation Tanh

Momentum, learning rate 0.9, 0.001

4.3 Statistical Analysis of Predicted fMRI Images

Figures 3, 4 and 5 compare the ground truth fMRI image and the corresponding
predicted fMRI images using all the six methods for the words “bell”, “arm”
and “bee”. It can be observed from the Figs. 3, 4 and 5 that the predicted fMRI
images corresponding to Word2Vec, GloVe, and Mitchell’s features look visually
similar to the actual fMRI image obtained during the empirical experiment,
whereas Random and FastText results differ significantly.

The predicted fMRI images when Meta-Embeddings are used have more
robust activation compared to that of the original fMRI images. From this we
can infer that Meta-Embeddings which use multiple data sources, not only covers
semantically similar words but also gets closer to how the brain seems to repre-
sent. However, the activation regions seem largely similar in all the approaches
except that of approaches using Random and FastText embeddings.

We use the rescaled mean squared error (R2) as a metric to measure the error
between predicted and target fMRI brain images. Kruskal-Wallis rank test was
used for comparing mean ranks across the six methods in nine subjects. The one-
way ANOVA test confirmed that there was a statistically significant difference
between Meta-Embeddings, FastText, and Randomly generated vectors. Table 3
shows mean ranks of nine subjects when using six methods. From Table 3, we
can observe that Meta-Embeddings, GloVe, and Mitchell’s features are not sta-
tistically significantly different from one another in all the nine subjects. This
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Table 3. Statistical significance (One-way ANOVA test) among the six methods
reported individually per subject

#Subject (1) (2) (3) (4) (5) (6) F statistic p-value

Subj-1 0.2867 0.5562 0.5587 0.5561 –0.05600 –0.0078 17.6136 1.332e–15*

Subj-2 0.2963 0.3169 0.3194 0.3064 –0.0600 –0.0089 16.1014 2.620e–14*

Subj-3 0.2963 0.2924 0.2972 0.2911 –0.0600 –0.0089 13.1922 8.552e–12*

Subj-4 0.4327 0.4273 0.4319 0.4253 0.3208 0.3435 7.6373 7.840e–07*

Subj-5 0.1918 0.1800 0.1883 0.1805 –0.2231 –0.5236 29.7585 1.110e–16*

Subj-6 –0.8066 –0.8213 –0.8008 –0.7797 –1.2333 –1.4631 1.4862 0.1935

Subj-7 0.2015 0.1896 0.1961 0.1924 –0.1820 –0.1564 13.5018 3.677e–08*

Subj-8 0.2270 0.2200 0.2280 0.2213 –0.1469 –0.1710 29.7879 1.110e–16*

Subj-9 0.1816 0.1751 0.1778 0.1735 –0.3220 –0.2670 15.0325 5.497e–09*

(1) Word2vec, (2) Mitchell’s 25, (3) Glove, (4) Meta-Embeddings, (5) Random, (6) FastText
*p < 0.05

Table 4. Post-hoc multiple comparison of the six embedding schemes

Post-hoc Subjects (significance)

Subj-1 Subj-2 Subj-3 Subj-4 Subj-5 Subj-6 Subj-7 Subj-8 Subj-9

(1) vs (2) 0.001** 0.8995 0.8995 0.8995 0.8995 0.8995 0.89947 0.89947 0.89947

(1) vs (3) 0.001** 0.8995 0.8995 0.8995 0.8995 0.8995 0.89947 0.89947 0.89947

(1) vs (4) 0.001** 0.8995 0.8995 0.8995 0.8995 0.8995 0.89947 0.89947 0.89947

(1) vs (5) 0.001** 0.001** 0.001** 0.001** 0.001** 0.3799 0.001** 0.001** 0.001**

(1) vs (6) 0.001** 0.001** 0.001** 0.0087** 0.001** 0.7800 0.001** 0.001** 0.001**

(2) vs (3) 0.8995 0.8995 0.8995 0.8995 0.8995 0.8995 0.8995 0.8995 0.8995

(2) vs (4) 0.8995 0.8995 0.8995 0.8995 0.8995 0.8995 0.8995 0.8995 0.8995

(2) vs (5) 0.4777 0.001** 0.001** 0.001** 0.001** 0.4069 0.0010** 0.001** 0.001**

(2) vs (6) 0.7998 0.001** 0.001** 0.0172* 0.001** 0.8050 0.001** 0.001** 0.001**

(4) vs (3) 0.8995 0.8995 0.8995 0.8995 0.8995 0.8995 0.8995 0.8995 0.8995

(4) vs (5) 0.4789 0.001** 0.001** 0.001** 0.001** 0.3325 0.001** 0.001** 0.001**

(4) vs (6) 0.8009 0.001** 0.001** 0.0219* 0.001** 0.7343 0.001** 0.001** 0.001**

(1) Word2Vec features, (2) Mitchell’s 25 features , (3) Glove features, (4) Meta-Embeddings features

(5) Randomly-generated features, (6) FastText features, **p < 0.01, *p < 0.05

leads us to conclude that all these methods have similar performance. Word2Vec
approach is statistically significantly different as compared to Mitchell’s app-
roach only in the case of subject-1 (see Table 4). The post-hoc Scheffe’s test
results in Table 4 show that R2 values of Meta-Embeddings, GloVe, Mitchell’s
and Word2Vec differ significantly from those of the FastText vectors at p =
0.001 and Random vectors at p = 0.001. No significant differences were observed
between mean ranks of the Meta-Embeddings, GloVe, Word2Vec and Mitchell’s
25 features.
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4.4 Mapping Semantics onto the Brain

To evaluate our computation model, we examine the fMRI signatures for the
features used in six methods shown in Fig. 6 for subject-2. These input fea-
tures represent the model’s learned decomposition of neural representations into
their component semantic features and depict substantial activities in differ-
ent regions of the brain. From Fig. 6, we observe that predicted activations
in multiple cortical regions using Meta-Embeddings approach seems similar to
the state-of-the-art Mitchell’s method. Some of the semantic features such as
“riding”, “see”, “say” and “fear” associated with the word “Bicycle” used in
Mitchell’s method lead to activations in the corresponding brain regions such
as the “Premotor Area”, “Occipital lobe/visual cortex”, “Superior temporal
gyrus/auditory cortex” and “Insula”. In Meta-Embeddings, features like “rid-
ing”, “spoke”, “surly” associated with the word “Bicycle” predicted similar acti-
vations as that of the Mitchell’s method. However, the models using embedding
methods such as Word2Vec and GloVe predicted activations only in the “Occipi-
tal lobe/visual cortex” and “Superior temporal gyrus/auditory cortex”. Whereas
the model using Randomly generated features failed to predict activations in the
corresponding brain regions.

4.5 Statistical Analysis Across Subjects

Kruskal-Wallis rank test was used for comparing median ranks across Word2Vec,
GloVe, Meta-Embeddings, Mitchell’s 25, Random and FastText methods per-
formed across all subjects. The one-way ANOVA test confirmed that there was
statistically significant difference between average error of predicted fMRI image
when using Word2Vec, GloVe, Meta-Embeddings, Mitchell’s 25, Random and
FastText methods (p = 0.001) with a median rank of 0.2190 for Word2Vec,
0.2477 for GloVe, 0.2434 for Meta-Embeddings, 0.2459 for Mitchell’s, −0.1281
for Random and −0.04139 for FastText. A post hoc Scheffe’s test showed that
average error of predicted fMRI image for Random and FastText methods dif-
fered significantly from those of the other four methods: Word2Vec, GloVe, Meta-
Embeddings and Mitchell’s 25 at p = 0.0010053. No significant differences were
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Fig. 6. Predicted fMRI image for the word “Bicycle”. One representative horizon-
tal slice (Taken at z = 19) for each method is displayed. From left to right: ground
truth, Meta-Embeddings, Mitchell’s, Word2Vec, GloVe and Randomly-generated fea-
tures used to learn different decoding models.
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Fig. 7. Box-plot for average error of all subjects for six methods. Horizontal lines
represent median ranks, notches represent 95% confidence interval. Median rank of
Random and FastText methods are significantly less than that of other four methods
(p = 0.0010053).

observed between median ranks of the other four word embedding methods.
From Fig. 7, we can observe that the average error for the models using embed-
dings Word2Vec, GloVe, Meta-Embeddings and features from Mitchell’s 25 is
similar and is significantly different from the average errors of the models using
FastText and Random features.

5 Conclusion

This study employs the existing popular word embeddings such as Word2Vec,
GloVe, Meta-Embeddings and FastText to scrutinize the semantic representa-
tions in brain activity as measured by fMRI. One of the main observations
from our study was that while Mitchell’s hand-crafted features were designed
to cover multi-modal activity of the brain covering several brain regions, the
corpus-based word embedding models are based on word co-occurrence based
statistics and thus lack the multi-modal context embedded in Mitchell’s feature
vector. Such general word embedding encoding schemes tend to give a strong
within-category coverage for the input words and try to project this across dif-
ferent brain regions through associative mapping learned in the 3-layer neural
network. Thus the current study can be considered a feasibility study of using
generic word embedding schemes for brain decoding rather than painstakingly
assembling hand-crafted features. Experimental results reveal that the R2 error
between Mitchell’s approach and the other schemes such as Word2Vec, GloVe
and Meta-Embeddings is small and the statistical significance of the results also
points out that both the approaches are similar in their final outcome. In future,
we would like to include both image based and word based features generated
using pretrained embeddings from different (multi-modal or multi-view) genres
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so that such feature vectors will also have an opportunity to learn mapping to
multi-modal sensory and association regions of the brain. This might give us
more insights into the mapping process of multi-modal representations to brain
response and eventually improve the decoding accuracy of brain activation with
such predictive solutions. The source code is publicly available at https://github.
com/subbareddy248/BrainDecoding so that researchers and developers can work
on this exciting problem collectively.
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Abstract. Named entity disambiguation (NED) is the task of link-
ing ambiguous mentions in text to their corresponding entities in a
given knowledge base, such as Wikipedia. State-of-the-art NED solutions
harness neural networks to generate abstract representations, i.e., embed-
dings, of mentions and entities, based on which the disambiguation pro-
cess can be achieved by finding entity with the most similar representation
to mention. Nevertheless, the coherence among mentions, and their cor-
responding entities, is yet neglected. To fill this gap, in this work, we
put forward intra, an approach effectively integrating embedding features
into a collective disambiguation framework, i.e., probabilistic graphical
model. Markov Chain Monte Carlo sampling and SampleRank algorithm
are implemented for model parameters learning and inference. We evalu-
ate intra on existing dataset against several state-of-the-art NED systems,
which validates the effectiveness of our proposed method.

Keywords: Named entity disambiguation
Probabilistic graphical model

1 Introduction

Named entity disambiguation (NED), also named as entity linking (EL), is the
task of determining true meanings for mentions in text, which is crucial to many
text processing related tasks, such as knowledge extraction, knowledge fusion
and sentiment analysis. The specific disambiguation process can be observed
from Fig. 1. Note that entities are unique identifiers of objects in the world, such
as people, organizations, and locations (e.g., Ronan Keating), while mentions
are surface forms of entities, which can appear in various forms and contain a
certain degree of ambiguity, such as abbreviations and nick names (e.g., Ronan).

Example 1. In Fig. 1, there is a piece of feedback for the movie Lady Bird.
Nevertheless, it is hard for a computer to make sense of this review due to the
c© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11303, pp. 16–27, 2018.
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ambiguity of important words (mentions), namely, Ronan, Lucas and Timothée,
in which case NED can be harnessed to resolve the ambiguous mentions.

Fig. 1. An example of entity linking.

Concretely, NED is comprised of two main stages—candidate entities gen-
eration and candidate entities ranking. While the former targets at generating
possible entities for mentions, also named as candidate entities, the latter ranks
candidate entities and outputs the true entity. Referring to Example 1, the first
stage generates candidate entities for mentions, e.g., Ronan Keating and Saroirse
Ronan for mention Ronan. Then comes the crucial part, which is to devise strate-
gies to rank the candidates and obtain the true corresponding entity, such as
Saroirse Ronan for Ronan.

With reference to the strategy for ranking candidate entities, which deter-
mines the accuracy of the whole NED process, current methods can roughly be
divided into three categories, individual [4], collective [8,11], and neural net-
work based NED methods [6,12]. Individual NED methods rank candidate enti-
ties solely based on the similarity/co-occurrence between mentions and can-
didates, which fail to capture the interactions between mentions in the same
document. Considering that mentions in the same document should conform to
a certain topic and their corresponding entities ought to be somewhat related,
collective NED methods establish relations between candidate entities and con-
struct the mention-entity graph, on which graph-based algorithm or probabilistic
graphical model (PGM) based methods are applied to output the results. Nev-
ertheless, these methods all neglect the contribution made by latent features
contained in texts of both mentions and entities, such as abstract representa-
tions, which have been proven effective by neural network based NED methods.
That being said, most of neural network based approaches focus on designing
complicated neural network structures to generate representations and capture
the similarity between mentions and candidate entities, whereas interactions
among candidate entities have been overlooked.

In a nutshell, the deficiency of current methods is two-fold. On one hand, the
coherence among candidate entities is neglected in most approaches; on another,
latent features in mention/entity texts are also not fully utilized.
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In this work, we propose to integrate latent features captured by deep neu-
ral network into a collective framework, i.e., PGM, so as to achieve effective
and efficient entity linking. Specifically, in PGM, factors are established between
mentions and entities, or among entities, which can reflect the strength of rela-
tionships via the values calculated in accordance to the pre-defined feature func-
tions, namely, popularity, name similarity, text similarity and entity relatedness.
As for model inference and learning, we implement Markov Chain Monte Carlo
(MCMC) [14] sampling and SampleRank [1] algorithms. The effectiveness of
our proposed approach is verified via empirical evaluations, along with feature
ablation test.

Contributions. The main contributions of this article can be summarized into
three ingredients:

– We propose an effective named entity disambiguation method based on
probabilistic graphical model with embedding features, intra, to facilitate
downstream applications.

– We are among the first to integrate latent features generated from neural
networks, i.e., embeddings, into a collective linking framework, i.e., PGM, so
as to achieve superior linking performance.

– intra is evaluated on a real-life dataset, and the comparative results against
other state-of-the-art approaches verify the effectiveness of intra.

2 Related Work

Early works on NED, which follow the independent methodology, tend to design
a set of useful features to calculate similarities between mentions and entities
and rank candidate entities merely according to the semantic matching score.
Although methods of this kind [4,9] can achieve good experimental results,
semantic coherences among candidate entities are neglected. Considering the
deficiencies in independent NED approaches, collective NED methods [8,11] are
put forward. This line of works assume that mentions in the same document
are semantically coherent, which should fit in the textual topic of the whole
document. Therefore, the resulting entities are also expected to have high relat-
edness and the problem is converted to finding matching pairs maximizing the
coherence.

Over recent years, neural networks have also been applied to NED. Recur-
rent neural network (RNN) [6,12], convolutional neural network (CNN) [6] and
attention mechanism [12] are harnessed to extract more effective latent features
to model mention and entity representations. The representations are then uti-
lized for similarity and relatedness computation so as to determine the most
possible candidate entities. Nevertheless, merely few works [12] integrate the
similarity score generated by neural networks into the collective disambiguation
framework, especially PGM. As is pointed out in [7], PGMs can fully express
the relations between mentions and entities or among entities via pre-defined
features, hence serving as a competitive collective liking framework. However,
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in [7], the contribution made by latent features has been neglected, which are
utilized in our work and attain superior performance.

3 Methodology

3.1 Model Representation

PGMs are probabilistic models for which graphs are harnessed to express the
conditional dependence structures between variables, among which the Markov
network, an undirected graphical model, is composed of random variables which
have the Markov property (memoryless property of a stochastic process). In
Markov network, a potential (also called a factor in factor graph) is associated
with each complete subgraph.

Fig. 2. Factor graph of named entity disambiguation.

A Markov network can represent the joint probability distribution over the
variables in the graph. The full joint distribution is obtained as follows:

P (X ) =
1
Z

∏

i

φi(X ) (1)

where X = (x1, x2, ..., xn) represent all the variables and C denote all the cliques
in the graph. A clique i is a subset of all the nodes in graph, in which the nodes
are connected. The potentials are denoted by φ and Z =

∑
x

∏
i φi(X ) is the

normalization constant (partition function), where x refers to a specific assign-
ment. Note that the product of potentials can be converted to summation by
adopting log linear model, where φi(X ) can be rewritten as elnφi(X ) or eεi(X ),
and lnφi(X ) = εi(X ) = wifi(X ). Consequently, potentials can be further repre-
sented by a set of features with associated weights, P (X ) = exp[

∑
i wifi(X )]/Z,

where fi represents the i-th feature and wi is its corresponding weight, which
will be learned during the model learning process.

With reference to the entity linking problem, we adopt the factor graph,
which is a special form of Markov network and an undirected bipartite graph
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connecting variables and factors, to model the problem. Each factor represents
a function over the variables it is connected to. In this factor graph, mentions
m1,m2, ...,mn and the corresponding entities e1, e2, ..., en are variables. The for-
mer is already known, while the latter needs to be determined. Therefore, the
joint probability is represented as:

P (Y |X ;w)=
1

Z(X )

∏

φi

eφi =
1

Z(X )

∏

φi

ewifi(X ,Y ) (2)

where Y and X represent hidden and observed variables respectively. w denotes
the parameters that need to be learned. φ is called factor here, which connects
certain observed and random variables. Similar to previous definition, the val-
ues attached to factors can be represented by a set of features with associated
weights, hence φi = wi ∗ fi(X ,Y ). Additionally, Z(X ) =

∑
y

∏
i φi(X ), where

y refer to the assignments of Y .
We further explain the factor graph representation by extending Example 1.

As can be seen in Fig. 2, there are three observed variables, namely, mentions
Ronan, Lucas and Timothée. The corresponding entities they refer to are random
variables. The values for entity variables are chosen from candidate entities,
and each assignment is called a State, such as Saroirse Ronan for Ronan, Lucas
Hedges for Lucas and Timothée Chalamet for Timothée. The State that maxi-
mizes the probability over the whole graph is considered as the final result.

3.2 Features

The features are introduced in this subsection, which are essential for calculating
the probability over the whole graph, as presented in Eq. 2. Each factor is denoted
as a white square in Fig. 2, the value of which is determined via feature functions.

Popularity. Popularity, represented as f1(m, e), is established between mentions
and entities. It denotes the frequency that an entity is referred given the name
of a mention, divided by the total frequencies of all possible candidate entities,
which reflects the possibility that a candidate entity is the true entity on the
basis of prior knowledge. Specifically, we obtain the popularity feature score by
harnessing the data provided in [7].

Name Similarity. This feature is also defined over mentions and entities, which
represents the similarity between a mention and a candidate entity solely based
on their names. Previous work [7] directly uses edit distance to calculate the
string similarity, which might not be appropriate since both mentions and entities
can appear in various forms, including random capital characters or misspellings.
As a result, in our work, we jointly embed words and entities to the same low-
dimensional vector space, so as to obtain the abstract, but more appropriate
representations. The specific process is detailed in next section. Given mention
m, candidate entity e and joint word and entity embeddings, the name similarity
f2(m, e) is defined as the cosine similarity between embed(m) and embed(e).
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Fig. 3. MCMC sampling process.

Note that if mention is composed of more than one word, embed(m) is the
averaged embedding of all the word embeddings.

Text Similarity. Defined over mentions and candidate entities, this feature
captures the similarity between the context of a mention and the description
text of an entity, which can also benefit the disambiguation process. Instead of
representing a piece of text as a sparse bag-of-words vector constructed from
all of its tokens, we obtain a continuous low-dimensional text representation by
adding up and averaging word embeddings in the context. Suppose a piece of text
T consists of t words w1, w2, ..., wt, the representation of this text is Embed(T ) =∑t

i embed(wi)/t. After obtaining the text representation of mention context Tm

and entity description Te, the text similarity f3(m, e) can be attained via cosine
similarity between Embed(Tm) and Embed(Te). Note that the entity description
is retrieved from the first paragraph of its corresponding Wikipedia page.

Entity Relatedness. This feature aims at capturing the coherence among enti-
ties. For each pair of assigned entities ei and ej , a factor is added and the feature
value is determined in accordance to the Topic-Specific PageRank values. Con-
cretely, Topic-Specific PageRank is obtained by applying random walk process
on the Wikipedia Graph [3] and we adopt the values provided by [7].

Formally, suppose tspr(ei, ej) and tspr(ej , ei) are the topic-specific pagerank
values between entity ei and entity ej . While the start point for the former
is entity ei, the latter initiates from entity ej . The value of entity relatedness
f4(ei, ej) can be calculated via summing up tspr(ei, ej) and tspr(ej , ei). Note
that if ei = ej , f4(ei, ej) = 1.
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Algorithm 1. MCMC for Inference.
Input:

mentions m = m1, m2, ..., mn, candidate entities for each mention Canm, feature
values f1, f2, f3, f4

Output:
state s with maximal probability

1: random initialization of assigned entities e0 = e01, e
0
2, ..., e

0
n and s = (m , e0)

2: for u ∈ [1, n] do

3: s
′
all ← Atom(s)

4: s
′
best ← arg max

s
′′ ∈s

′
all

(P (s
′′
))

5: if P (s
′
best) > P (s) then

6: s ← s
′
best

7: else
8: break
9: end if

10: end for

3.3 Inference and Learning

In this subsection, we will mainly introduce how to infer the results with the
factor graph model and how to learn the parameters in the model.

The simplest way to determine a set of entities e1, e2, ..., en for given mentions
m1,m2, ...,mn is to numerate all the possible assignments and choose the one
that maximizes the overall probability over the graph. Nevertheless, exhaustion
is time-consuming with the increase of candidate entities. As a consequence,
we resort to Markov Chain Monte Carlo (MCMC) sampling procedure [1] to
iteratively infer the results. Indeed, there are many other algorithms that might
improve the outcome and we will leave it as future study.

Concretely, as described in Algorithm 1, the first step is to randomly generate
an initial state, where the entities for mentions are chosen stochastically. Then
we perform atomic change, represented as Atom(), of the state, during which we
merely change the entity assignment for one mention, and accordingly a total
of s

′
all states can be obtained via atomic change of state s. That is, Atom()

is composed of n actions, where n is the number of mentions in a given state
s. In the m-th action (0 < m ≤ n), we change the entity assignment for the
m-th mention by randomly picking an entity from the candidate entities, while
keeping the entity assignments for other mentions the same as state s, and hence,
a new state is generated with only one entity assignment changed. Consequently,
Atom(s) generates n new states, denoted by s

′
all.

Among s
′
all, only the state with highest probability over the graph, s

′
best, is

kept, which is further compared with the previous state s based on the probabil-
ity over graph P (). If the probability of the optimal atomic change state s

′
best is

larger than that of previous state, s
′
best is regarded as the new s; otherwise it will

break from the original loop. The final state s contains the eventual assignment
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Algorithm 2. SampleRank with MCMC for Learning.
Input:

q : S → S: MCMC transition step
χ : S → R: corrected mapped ratio (compared to the ground truth)
D: training set

Output:
1

T

∑T
t=1 w t

1: w0 ← 0
2: for σ ∈ D do
3: random initialization of assigned entities e0 = e01, e

0
2, ..., e

0
n and s1 = (m , e0)

4: for t ∈ [1, #samples] do
5: perform a MCMC step:

st+1 ← s
′
t,best = q(st)

6: s+ = arg maxs∗∈{st,st+1} χ(s∗)
s− = arg mins∗∈{st,st+1} χ(s∗)
∇ = p(s+) − p(s−)

7: if w
′
t∇ < χ(s+) − χ(s−) and

χ(s+) �= χ(s−) then
8: w t+1 = w t + η∇
9: end if

10: if (¬accept(st+1, st,w t) then
11: st+1 ← st
12: end if
13: end for
14: end for

of entities, which are considered as the results yielded by the MCMC inference
process. The procedure is also illustrated in Fig. 3.

As for learning the parameters w = [w1, w2, w3, w4], the weights for four
various features, we adopt SampleRank algorithm [14], which is integrated in
a MCMC sampling process, to achieve efficient parameter optimization. The
algorithm updates the parameters by comparing pairs of states and an object
function for comparison, χ, is defined to calculate the score of a state when
compared with the ground-truth assignments in terms of the corrected linked
mentions. Concretely, χ(s) = #correct/#all, where #correct and #all repre-
sent the number of correctly linked mentions and all mentions respectively. The
specific training procedure is depicted in Algorithm 2, where S and R denote the
collection of all states and real numbers correspondingly. Plus, the output is the
averaged value of all weights over time step T . Line 2–5 are MCMC steps, which
are detailed in Algorithm 1, but here the new state is accepted first so as to
update the parameters, which is further processed according to line 10 and 11.
The specific update process is elaborated in line 6–9, where p refers to a vector
recording the values of different features with respect to a given state s, ∇ is
the vector recording the value differences over each feature between two states,
w

′
is the transposition of vector w, and η is the learning rate.



24 W. Zeng et al.

Notably, the core of our inference algorithm is, SampleRank [14], which aims
to minimize margin violations between arbitrary configuration pairs. Since this is
not the main contribution of this paper, we leave the details behind the rationale
to the original article.

4 Experiment

Candidate Entities Generation. Despite the fact that entity ranking method
is crucial to the overall NED performance, its previous step, candidate entities
generation, determines the upper bound of the linking accuracy. Concretely,
chances are that in the candidate generation step, the candidate entities gener-
ated for some mentions do not contain the true entity, thus leading to wrong
linking result in spite of following steps. Consequently, in our work, we adopt
the dataset provided by [11], which includes candidate entities for each mention.

Joint Entity and Word Embedding. For calculating name similarity and
text similarity features, the embeddings of words and entities are needed, which
are obtained via a joint training process. Embeddings are n-dimensional vec-
tors of concepts (words/entities) which describe the similarities between these
concepts using cosine similarity. We extend traditional skip-gram model [14],
which generates word representations that can help predict context words given
a specific word, to joint embedding model, which integrates entities and regards
entities as special form of words. Concretely, we use python package Gensim
for embedding training, and the training material is obtained from Wikipedia,
where anchor texts in the documents are replaced by entity identifiers.

Experimental Settings. The dataset we use for evaluation is AIDA-CoNLL [8],
which is composed of three parts, AIDA-train for training, AIDA-A for held-out,
and AIDA-B for testing. The corresponding number of documents are 946, 216
and 231 respectively. There are 34,956 mentions in total, in which 7,136 are NIL,
meaning that there are no corresponding entities.

Following previous work, the micro-F1 score is harnessed as evaluation met-
ric. F1 score is the harmonic value of precision and recall. While precision takes
into consideration all mentions that are linked by the system and computes the
correctness, recall, on the other hand, reflects the fraction of correctly linked
mentions over all the mentions that should be linked. Mirco denotes that the
value is averaged over the aggregation of all mentions (across all texts).

We compare intra with four other entity linking systems. DoSeR [15] inte-
grates word and entity embeddings into a collective framework, on which sophis-
ticated graph algorithm is implemented to achieve effective disambiguation
results. WAT [13] is an improved version of TagMe [2], which harnesses graph-
based and vote-based algorithms to approximate the coherence among entities.
NERFGUN [7] is the most similar to our work, whereas the latent features gen-
erated by neural networks are not taken into consideration. Babelfy [10] is a
graph-based entity linking system which uses the BabelNet semantic network for
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disambiguation, and it supports multi-lingual entity disambiguation task. Addi-
tionally, there are two more solutions [5,12] with good performance, whereas [12]
did not report the results on AIDA dataset, and the results reported in [5] were
generated by using a previous version of GERBIL, which has been pointed out
by [7] that the results might be subject to considerable changes with the update
of GERBIL. They did not offer public API’s neither, and we do not consider
them in our experiment for fair comparison.

With regard to training details of intra, the training dataset is AIDA-train,
which is iterated five times to output the optimal results. The learning rate η is
set to 0.01, the choice of which is further discussed below.

Result and Discussion. We first compare the result of intra with other state-
of-the-art systems, then explore the contribution made by each feature.

As for the Micro-F1 results over AIDA-B, it can be easily observed that intra
attains the best result over all methods. Babelfy is originally targeted at multi
lingual entity linking, thus might not be carefully tuned for NED over a specific
language. WAT and NERFGUN improve the result by 5% and 6% respectively,
which can be attributed to the well-designed collective linking algorithms and
hand-crafted features. With the introduction of word and entity embeddings,
as well as latent features in text, DoSeR further enhances F1 score by 6% in
comparison to NERFGUN. Nevertheless, it is over matched by intra with 3%,
which might be justified that the factor graph can better integrate deep latent
features with other features and yield more promising linking results (Table 1).

Table 1. Micro-F1 score over AIDA-B.

Method Babelfy WAT NERFGUN DoSeR intra

Micro-F1 0.66 0.71 0.72 0.78 0.81

We then explore the contribution made by each feature by means of removing
one feature at a time. As presented in Table 2, all four features are significant to
the overall Micro-F1 score, among which popularity and text similarity are com-
paratively more essential, since the former is crucial in most situations where the
entity referred by mention is exactly the most popular entity, and text similarity
can help eliminate irrelevant candidate entities by taking into consideration the
context information.

When it comes to the choice of hyper-parameter η, it should be resulted
from experiments on the held-out dataset, i.e., AIDA-A. Therefore, we report

Table 2. Micro-F1 score after removing certain feature.

Feature intra intra-f1 intra-f2 intra-f3 intra-f4

Micro-F1 0.81 0.52 0.72 0.59 0.71
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Table 3. Micro-F1 score on AIDA-A with different choices of η.

η 0.001 0.01 0.03 0.1

Micro-F1 0.74 0.77 0.73 0.69

the corresponding results, which reveals that smaller learning rate η = 0.001
leads to a slower learning process, despite nearly equally promising results. In
contrast, larger η makes the convergence harder to achieve and also gives rise
to inferior outcome. Consequently, we set η = 0.01 and apply it on the test set
(Table 3).

5 Conclusions

In this work, aimed at developing an efficient NED framework, we propose intra,
an approach based on PGM integrated with embedding features generated by
neural networks. The NED problem is first represented as a factor graph, and
four features are defined for the calculation of joint probability over the graph.
Then on the basis of the probabilistic graph, MCMC sampling and SampleRank
algorithms are implemented for model parameter learning and inference. We
finally evaluate intra on existing dataset against several state-of-the-art NED
systems, which validates the effectiveness of our proposed method.

Acknowledgments. This work was partially supported by NSFC under grants Nos.
61872446, 71690233 and 71331008.
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Abstract. Knowledge graph (KG) embedding, which transforms both
the entities and relations into continuous low-dimensional continuous
vector space, has attracted considerable research. A large amount of mod-
els have been proposed for knowledge graph embedding. However, most
previous approaches only regard the knowledge graph as a set of triples,
ignoring the categories of the entities. In this paper, we take advantages
of category information by modelling the category-specific embedding.
Specially, we see the interaction between the category embedding and KG
embedding as a closed loop, in which the category embedding and KG
embedding are promoted mutually. Triples along with their categories
are represented in a unified framework, in which way the embedding of
triples are category-aware. We evaluate our model on multiple real-world
KGs, and it show impressive improvements on link prediction and triple
classification compared with other baselines.

Keywords: Distributed representation
Knowledge graph representation

1 Introduction

Freebase [1], DBpedia [9] and NELL [6] are the common Knowledge Graphs
(KGs), which have become crucial resources to store structured facts and benefit
many intelligent applications, such as named entity recognition [13], web search
[12] and question answering [2]. Commonly, a typical KG stores the structured
information as multi-relational data and formalizes it as triple fact of the form
of (head entity, relation, tail entity). Each entity is represented as a node in
the KG, and the relation is the edge connecting the head entity and tail entity.
However, the entity and relation in the KG usually be represented as discrete
symbols according to the original knowledge representation, which makes the
KG hard to be used [20].
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In recent years, the KG embedding, i.e., projecting either the entries or the
relations into a continuous vector space with lower dimensions while preserving
the intrinsic structure of the original graph has aroused great research interest.
As the key branch of embedding methods, the translation-based methods, such
as TransE [3], TransG [15], TransR [10], describe the knowledge as a translation
operation from head entity to tail entity by defining a relation-specific score
function fr(h, t) to measure the plausibility of the triple in the latent space.

The previous translation-based methods are effective in representing struc-
tured data. However, most methods merely focus on the structure information,
and the semantic information located in the category of entities is largely ignored.
In this paper, we jointly learn the embedding of semantic category and KG
embedding, which incorporates the category information into the structure-based
representation learning of KG.

There are also works that incorporate the category information into KG
embedding models. SSE [8], the most relevant model to our work, employs two
manifold learning algorithm for representation learning, based on the seman-
tic smoothness assumption. The main restriction of SSE is that it supposes
that each entity happens to belong to one category, which is inconsistent with
the actual KG. Besides, TKRL [17] is a type-embodied representation learning
model, which handles the multiple category labels by projecting the entity with
type-specific matrix and modelling relation as translation operation between the
projected entities. However, if suffers from the relative high space complexity
because it assigns a specific projection matrix for each category.

To take advantages of the category information, we propose a unified frame-
work for jointly learn the embeddings of KG and entities’ categories on it.
Inspired by the work [7], we regard the category embedding and KG embed-
ding as a closed loop, where each category embedding is a multivariate Gaussian
distribution, and the embedding of each entity is generated by a Gaussian mix-
ture distribution. On the one hand, the KG embedding is used to guide the
category embedding, that is because it perserves a good structure in low dimen-
sional space [5]. On the other hand, the category embedding feedback is employed
as a category-aware constraint with intuitive that entities in the same category
should be close to others in the low-dimension space.

We summarize our contribution as follows: (1) For all we know, we are
the first to introduce the category embedding to enhance the KG embedding.
(2) The experimental results show impressive improvement on link prediction
and triple classification compared with other baselines.

2 Related Work

As the intriguing work of embedding the entities and relationships of multi-
relational in low-dimensional vector space, TransE [3] employed the score func-
tion fr(h, t) = ‖h + r − t‖ to denote the consistency of triple (h, r, t). TransE
can well model the one-to-one relations. However, if there exist more compli-
cated relations [20], TransE can not work well. To address this issue, previ-
ous studies have proposed some variants of TransE, such as TransH [18] and
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TransR [18]. Both TransR and TransH are designed to model the unique rep-
resentation of entities in distinct relations by projection methods. TransG was
a generative model that used clustering method (Chinese Restaurant Process)
to update entity vectors. As a matter of fact, a variety of category informa-
tion can be incorporated to further improve the performance of embedding task
[20]. A straightforward method to employ category information, as investigated
in [11], was to construct the triples such as (e,Belongsto, ce) and incorporate
them into ordinary training examples. SSE [8] employed two manifold learning
algorithm for finding the built-in geometric structure of the embedding space,
and enforced entities of the same category to be closer in the embedding space,
which is similar to our idea that embeddings of entities within the same semantic
category tend to be similar. TKRL [17] was also a translation-based model in
which entities were projected by type-specific matrices. Given a fact (h, r, t), it
first projected h and t using type-specific projection matrices, and then applied
a translation-based framework to model relationships. The category of entity
was also used for controlling the occurrence possibility of head and tail positions
for specific relations. For instance, negative examples of violations of entity cat-
egory constraints were excluded from training set [19], or built with relatively
low probabilities [17].

3 Methology

In this section, we introduce our approach, CEKE (Category-Embodied Knowl-
edge Graph Embedding), for jointly learning the representation of the given
knowledge graph based on the structure information and semantic category infor-
mation.

3.1 Preliminaries

Knowledge Graph which is a set of triples in form of (h, r, t), h, r ∈ E , and r ∈ R
where E is the collection of entity and R is the collection of relation. Given a
knowledge graph G = (E ,R), the problem of knowledge graph embedding aims
to transform both the entity e and the relation r into continuous low-dimensional
space [20].

As the intriguing work of embedding the entities and relationships of multi-
relational in low-dimensional vector space, TransE [3] introduced an exempli-
fication which explained the relationship r as a translation operating on the
embedding of the head entity h and tail entity t, and used the score function
fr(ei, ej) = ‖ei + r − ej‖ to denote the plausibility of (ei, r, ej). A lower score
indicates the better explanation of the triple based on the structure-based infor-
mation. In order to obtain the embeddings, a margin-based ranking loss, i.e.,

O1 =
∑

(ei,r,ej)∈G

∑

(e
′
i,r,e

′
j)∈G′

[
γ + fr(ei, ej) − fr(e

′
i, e

′
j)

]

+
(1)

is minimized.
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In this paper, we also try to jointly learn the semantic category embeddings.
Inspired by [7], each semantic category is assumed to be a Gaussian component,
which is characterized by a mean vector indicating the semantic category center
and a covariance matrix indicating the member entities’ spread. Suppose there
are K categories on the graph G. The mixing coefficient zi ∈ {1, 2, ...K} denotes
category assignment of each entity.

Definition 1. Semantic Category Embedding: The embedding of semantic
category k (k = 1, 2, ...,K) is a multivariate Gaussian distribution N(ψk, Σk),
where ψk ∈ R

d is the mean vector, and Σk ∈ R
d∗d is the covariance matrix.

3.2 Semantic Category Embedding

In order to make the embedding space embody the category information, this
paper we explicitly learn the semantic category embedding, and based on the
similar idea to assume that entities within the same category should have similar
embeddings and lie close to the class center [8].

Although there are several methods to constrain the embedding space by
leveraging the semantic category information, they don’t have explicit notation
of semantic category embedding because the main goal is KG embedding. In
this paper, we propose a jointly learning framework to integrate the KG embed-
ding and semantic category embedding in one single objective function based
on Gaussian mixture model. More specifically, the semantic category embedding
is defined as a multivariate Gaussian distribution, and the embedding of each
entity is generated by a Gaussian mixture distribution from a category zi = k,
i.e., p(ei|zi = k; ei, ψk, Σk) is also a multivariate Gaussian distribution, we have:

p(ei|zi = k; ei, ψk, Σk) = N(ei|ψk, Σk) (2)

For all the entities in E , the likelihood is defined as follows:

|E|∏

e=1

K∑

k=1

p(zi = k)p(ei|zi = k; ei, ψk, Σk) (3)

where p(zi = k) is the probability of entity ei belonging to category k, and the
mixing coefficients p(zi = k) is denoted as πik for simplicity.

We have the objective function:

O2 =
|E|∑

e=1

log
K∑

k=1

πikN(ei|ψk, Σk), s.t.

K∑

k=1

πik = 1 (4)

It is worth mentioning that we can learn the representation of the semantic
category by optimizing πik and (ψk, Σk).



32 M. Zhang et al.

3.3 Joint Embedding

Our approach consists of two main components, i.e., the knowledge graph embed-
ding and semantic category embedding. We integrated O2 into the margin-
based ranking loss (i.e. Eq. (1)) adopted in previous structure-based KG embed-
ding models, and proposed the CEKE model. To utilize the semantic category
information, we integrate them by jointly optimizing the unification objective
function:

O =
∑

(ei,r,ej)∈G

∑

(e
′
i,r,e

′
j)∈G′

[
γ + fr(ei, ej) − fr(e

′
i, e

′
j)

]

+
− λ1O2 (5)

where the first term in O makes the embedding space compatible with the
observed triples, and the second term further enforces the embedding space to be
semantically related. Hyperparameter λ1 is defined to make a trade-off between
the two cases.

We see the interaction between these two embedding tasks as a closed loop.
The knowledge embedding is initialized by TransE, and then the category embed-
ding is to be optimized. That is, two entities in the same category tend to have
similar embedding and get closer to the category center ψk. Suppose that we
now have known the mixed category indicator π′

iks and the category embedding
(ψk, Σk). Then we can optimize the embeddings of entities and relations with
the known categories embeddings. Based on the closed loop, the community
assignment Π and community embedding (ψ,Σ) can be further optimized by
the updated parameters e.

3.4 Learning Model

To jointly learn the category embedding and knowledge graph embedding, the
ultimate objection function for CEKE is defined as follows

O (e, r,Π, Ψ,Σ) = O1(e, r) − λ1O2(e,Π, Ψ,Σ) (6)

Our final optimization problem becomes:

(e∗, r∗,Π∗, Ψ∗, Σ∗) ←− arg min
∀kdiag(Σk)>0

O (e, r,Π, Ψ,Σ) (7)

where we introduce a constraint of diag(Σk) > 0 for each of k ∈ {1, 2, ...,K} in
order to avoid the singularity issue of optimizing O [7].

4 Inference

As the ultimate objective is composed of two embedding task, we firstly itera-
tively optimize (Φ, Ψ,Σ) with a constrained minimization given (e, r), and then
optimize (e, r) with an unconstrained minimization given (Φ, Ψ,Σ). The iterative
update strategy is adopted.
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Fix (e, r), optimize (Π,Ψ,Σ). In this case, the optimization problem in Eq. 7 is
simplified as the negative log-likelihood of GMM, and we can infer (Π,Ψ,Σ) via
exception maximization (EM) algorithm. The constraint is satisfied by randomly
resetting Σk > 0 and ψk ∈ R

d whenever a diag(Σk) starts to have zero, which
is suggested by [7]. We have the closed-form solution as

πik =
Nk

|E| (8)

ψk =
1

Nk

|E|∑

i=1

γikei (9)

Σk =
1

Nk

|E|∑

i=1

γik(ei − ψk)(ei − ψk)T (10)

where γik = πikN(ei|ψk,Σk)∑K

k
′=1

πik′N(ei|ψk
′ ,Σ

k
′ )

and Nk =
∑|E|

i=1 γik.

Fix (Π,Ψ,Σ), optimize (e, r). In this paper, we use a stochastic gradient
descent (SGD) algorithm to optimize the subject embedding according to Eq. 7.
Noticing that it is inconvenient to compute the gradient of e because of the sum-
mation within the logarithm therm of O2. Therefore, the upper bound of O2 is
incorporated. We have:

O
′
2 =

|E|∑

s=1

K∑

k=1

πik log N(ei|ψk, Σk), s.t.

K∑

k=1

πik = 1, (11)

and we redefine the objective function O
′

(e, r,Π, Ψ,Σ) = O1 − λ1O
′
2, and

O
′ � O. The derivatives are calculated using the back-propagation algorithm.

5 Experiments and Analysis

In this section, we conduct an empirical study to evaluate the performance of our
proposed model CEKE and other baselines on two benchmark tasks including
link prediction [3] and triple classification [14].

Data Sets. Our experiments are evaluated by four public datasets. As for the
first three datasets1, LOCATION, SPORT, and NELL186 are the subsets of
NELL, and are created by the author of Ref. [8]. The last one FB15K [4] gen-
erated from Freebase is commonly used in previous methods. We set K as the
number of label of entity in each data set. Table 1 lists the statistics of datasets.

Baseline Methods. We employ the TransE [3], TKRL [17] as baselines, we
also compare our model with SSE [8] which achieved great improvement on

1 http://www.aclweb.org/anthology/P/P15/.

http://www.aclweb.org/anthology/P/P15/
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Table 1. Statistics of datasets.

Dataset #Ent #Rel #Cat #Train #Valid #Test

LOCATION 380 8 5 430 144 144

SPORT 1,520 8 4 2,296 765 765

NELL186 14,463 18 35 31,134 5,000 5,000

FB15K 14,951 1,345 30 483,142 50,000 59,071

the same datasets by incorporating manifold regularization, denoted as (-LE/-
LLE), and the setting proposed in Ref. [11], which employed the entity category
information in a more direct way. That is, we creat a triple (e,BelongsTo, ce) for
every existing triple, where ce is the category label of entity e, and the setting is
named TrasnE-Cat. As a footnote, since all our experiments are performed on
the same datasets, we directly make a comparison between our model and the
baseline methods in Ref. [8].

5.1 Link Prediction

Link prediction is a subtask of knowledge graph completion which focuses on
completing the triple (ei, r, ej) when ei or ej is missing.

Evaluation Setting. Similar to TransE and its variants, we use three measures
as our evaluation metrics: for each test triple (ei, r, ej), the head entity ei (or the
tail entity ej) is replaced with every entity e ∈ E existing in the knowledge graph.
Then, we can get the distance values of the candidate triples. We ascendingly sort
these triples based on their scores and then obtain the original triple. Rather
than requiring the best answer, link prediction pays much more attention to
ranking a set of candidate: (1) Mean Rank (denoted as Mean): the average rank
of valid entities; (2) Median Rank (denoted as Median): the median of ranks;
3) Hist@10: the proportion of testing triple ranked in top 10 predictions.

Table 2. Experimental results on link prediction.

Datasets LOCATION SPORT NELL186 FB15K

Metrics Mean Median Hist@10Mean Median Hist@10Mean Median Hist@10Mean Median Hist@10

TransE 30.94 10.70 50.56 362.66 62.90 43.86 426.98 28.00 34.29 193.67 12.00 47.97

TransE-Cat 28.48 8.90 52.43 320.30 86.40 37.46 309.01 27.50 34.92 193.04 12.00 47.48

TransE-LE 28.59 8.90 53.06 183.10 23.20 45.83 245.80 24.00 36.64 191.83 11.00 49.72

TransE-LLE 28.03 9.20 52.36 231.67 52.40 43.18 241.83 29.00 35.15 190.36 11.00 48.61

TKRL 27.06 10.1 52.07 199.25 37.44 46.12 238.21 26.75 38.00 184.00 - 69.4

CEKE 25.85 9.09 55.20 180.83 21.50 46.57 224.09 22.05 40.17 186.41 10.30 55.66

Results. Table 2 lists the evaluation results on the test set. From the results, we
observe that: (1) CEKE consistently outperforms all baselines on all the datasets
with all the metrics. It indicates that the semantic category information do
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improve the performance on link prediction. Although using the same category in
the graph, SSE’s performance is inferior to our model, which shows the strength
of our joint learning framework.

5.2 Triple Classification

The purpose of the triple classification is to determine the correctness or incor-
rectness of a given triple (ei, r, ej). The baseline setting is same with link pre-
diction. We test our model on SPORT, LOCATION and NELL186.

Evaluation Setting. The setting for triple classification is simple: for each triple
(ei, r, ej), if the energy function is lower than the certain threshold δr, then the
triple will be classified as positive. Otherwise as negative. The common metrics
on test sets include micro-averaged accuracy with regard to each triple (denoted
as Micro), macro-averaged accuracy in the light of each relation (denoted as
Macro) and mean average precision (denoted as MAP) which also concerns the
relation-specific class.

Implementation Details. Since the three datasets have not released negative
triples in previous works, we follow the strategy used in Ref. [16] for constructing
negative samples. The thresholds δr are determined based on the validation set
by maximizing the indicator Micro-ACC.

Table 3. Experimental results on triple classification.

Datasets LOCATION SPORT NELL186

Metrics Micro Macro MAP Micro Macro MAP Micro Macro MAP

TransE 86.11 81.66 89.09 75.52 73.78 75.46 89.87 84.86 95.40

TransE-Cat 82.5 77.81 88.20 75.09 74.23 78.82 92.65 87.16 96.56

TransE-LE 86.39 81.50 89.23 79.88 77.34 81.86 92.71 87.94 97.01

TransE-LLE 87.01 83.03 89.53 80.29 77.71 82.99 94.93 94.97 96.84

TKRL 87.33 82.06 89.16 77.98 76.45 80.92 94.01 91.22 95.67

CEKE 87.69 84.78 90.23 81.02 76.93 84.02 93.31 95.80 96.30

Results. Evaluation results on the test sets are reported in Table 3. We can
draw the following conclusions from observations: (1) The proposed model CEKE
achieves superior performance compared with all the baseline methods on triple
classification task. We speculate the reason for improvements is that representa-
tions of entities within one category are usually more similar, and entities maybe
share common attributes, which helps the classification task. (2) With the con-
sideration of semantic category information the accuracy has been improved,
which further demonstrates the effectiveness and flexibility of CEKE.
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6 Conclusion

In this paper, we propose the knowledge graph embedding model CEKE which is
able to incorporate the category information. By learning the KG embedding and
category embedding in a unified framework, our model can learn the embeddings
that are aware of semantic category information. The results of our empirical
study demonstrate that CEKE obtains substantial improvements compared with
TransE and baseline methods.
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the Research Planning Project of National Language Committee (No. YB135-40) and
the Humanity and Social Science Youth Foundation of Ministry of Education of China
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Abstract. Manifold learning has attracted more and more attention in
machine learning for past decades. Unsupervised Large Graph Embed-
ding (ULGE), which performs well on the large-scale data, has been
proposed for manifold learning. To improve the clustering performance,
a novel Unsupervised Ensemble Learning based on Graph Embedding
(UEL-GE) is explored, which takes ULGE to get low-dimensional embed-
dings of the given data and uses the K-means method to obtain the
clustering results. Furthermore, the multiple clusterings are corrected by
using the bestMap method. Finally, the corrected clusterings are com-
bined to generate the final clustering. Extensive experiments on several
data sets are conducted to show the efficiency and effectiveness of the
proposed ensemble learning method.

Keywords: Ensemble learning · Image clustering
Dimension reduction · Manifold learning

1 Introduction

Image clustering plays a key role in fields of image browsing, image retrieval,
image annotation, as well as image indexing [1–5]. As we know that images are
high-dimensional data. High-dimensional data may contain complex informa-
tion, however, most of which are useless and redundant. To obtain useful knowl-
edge, it is very time-consuming and laborious to deal with high-dimensional data
directly. The higher the data dimension is, the greater the required resources will
grow exponentially, which is prone to the curse of dimensionality [6]. Therefore,
in order to efficiently acquire potential valuable information in high-dimensional
data, it is necessary to reduce the dimensionality of data. Dimensionality reduc-
tion can keep most of the information in the data while embedding high-
dimensional data into a low-dimensional space [7,8]. A large number of experi-
ments have shown that dimensionality reduction can effectively eliminate redun-
dant features, and learning tasks, such as visualization, can be easily carried out
in the low-dimensional space [9].
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Over the past few decades, with the development of manifold learning [10],
many successful methods have been proposed, such as Laplacian Eigenmaps (LE)
[11], Local Linear Embedding (LLE) [7], Isometric Feature Mapping (ISOMAP)
[8], Locality Preserving Projections (LPP) [12], Spectral Regression (SR) [13],
and Unsupervised Large Graph Embedding (ULGE) [14]. These methods have
received extensive attention and successful applications related to machine learn-
ing, data mining, as well as computer vision.

ULGE, a novel manifold learning method, adopts an anchor-based strategy
[15] and a parameter-free neighbor assignment strategy [16] to construct the sim-
ilarity matrix, which is symmetric, positive semi-definite and doubly stochastic,
with rank p (where p denotes the reduced dimension). ULGE uses a random
sampling method to select anchors. The random sampling method is simple and
has a low computational complexity. ULGE achieves significant performance on
multiple data sets. However, it is difficult for the random sampling method to
guarantee the representation of anchors. When anchors are representative, the
clustering accuracy after dimensionality reduction will be improved. On the con-
trary, when anchors cannot guarantee the representation, the clustering accuracy
will be correspondingly low and the experimental results are unstable. There is
also a great fluctuation on the clustering accuracy.

To address this issue, this paper proposes an efficient method, called Unsuper-
vised Ensemble Learning based on Graph Ebedding (UEL-GE) which combines
multiple ULGEs. Ensemble learning [17] is an active field in machine learn-
ing, which can improve the clustering performance by building and combining
multiple classifiers. The diversity of UEL-GE can be guaranteed by randomly
generating anchors and adopting K-means clustering. Comparative experiments
on five data sets show that the clustering accuracy of UEL-GE has improved
significantly compared with ULGE.

The rest of this paper is organized as follows: In Sect. 2, the framework of
the proposed method UEL-GE is investigated. In Sect. 3, a series of experiments
are carried out to show the efficiency and effectiveness of the proposed method.
The paper ends with final remark in Sect. 4.

2 Unsupervised Ensemble Learning Based on Graph
Embedding

The framework of the proposed method UEL-GE is shown in Fig. 1. Generally,
UEL-GE has two steps. In Step 1, multiple clusterings are generated by applying
ULGEs and K-means. Since the labels of obtained clusterings are messy, we
use the bestMap method [18] to correct the labels and combine the corrected
clustering to obtain the final clustering results. In the following, we first introduce
ULGE, and then show the diversity and the combination rule in UEL-GE.

2.1 ULGE

Given a sample matrix X = [x1,x2, . . . ,xn]T ∈ IRn×d with the d-dimensional
sample xi ∈ IRd and the sample number n, the goal of ULGE is to reduce the
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Fig. 1. Framework of UEL-GE

dimension of large-scale data [14]. First, ULGE adopts an anchor-based strategy
to seek m anchors, where m � n. Anchor generation is the most important
step of the anchor-based strategy. Generally, ULGE randomly selects m anchors
from the given sample set. Let U ∈ IRm×d represent the matrix of whole anchors.
Second, the distances h(xi,uj) between a sample and an anchor are calculated,
where xi is the i-th sample and uj is the j-th anchor. In order to keep the
calculation simple, ULGE uses the square of the Euclidean distance to define
h(xi,uj) = ‖xi − uj‖22. Then, a parameter-free neighbor assignment strategy is
adopted to construct a similarity matrix [14]. The strategy can be cast into the
following problem:

min
Z

m∑

j=1

h(xi,uj)zij + γ

m∑

j=1

z2ij s.t. zTi 1 = 1, zij ≥ 0 (1)

where γ is a parameter and Z ∈ IRn×m is the similarity matrix between sam-
ples and anchors, zij represents the similarity between the i-th sample and the
j-th anchor. We resort the distances h(xi,u1), . . . , h(xi,um) in ascending order
and assign them to dij (j = 1, 2, . . . , m). In other words, di1 ≤ di2 ≤ · · · ≤ dim.
According to [16], the value of γ can be set as

γ =
k

2
dik+1 − 1

2

k∑

j=1

dij (2)

where k is k-nearest anchors for the sample.
When uj is the k-nearest anchors of xi, the similarity zij is obtained by (1)

and (2). When uj is not the k-nearest anchors of xi, zij = 0. Thus, the similarity
matrix Z can be denoted as
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zij =

{
di
k+1−h(xi,uj)

∑k
l=1(d

i
k+1−di

l)
, if uj ∈ Γ(i)

0, otherwise
(3)

where Γ(i) is the set of k-nearest anchors for the sample xi.
According to Z, the symmetric, positive semi-definite, doubly stochastic sim-

ilarity matrix A can be obtained by

A = ZΔ−1ZT (4)

where Δ ∈ IRm×m is a diagonal matrix with Δjj =
∑n

i=1 zij .
In order to make the rank of A be equal to p, we should perform eigenvalue

decomposition on A [19]. Let A∗ = FpΛpFT
p , where Λp is the diagonal matrix

consisting of the first p largest eigenvalues of the matrix A, and Fp consists of
the eigenvectors corresponding to the first p largest eigenvalues.

Finally, the projection matrix W can be calculated as follows.

min
W

‖XW − Fp‖2F + α‖W‖2F (5)

where α ≥ 0 is the regularization parameter, W is the projection matrix and
‖·‖F is the Frobenius norm of a matrix.

2.2 Diversity in UEL-GE

In most clustering problems, ensemble learning has more powerful prediction
ability than a single method. In practice, it has been confirmed that a good
ensemble learning must meet the individual learners to be “good” and “differ-
ent”, “good” requires individual learners to maintain a high degree of correctness
whereas “different” requires individual learners satisfy diversity. Here, the cor-
rectness is determined by ULGE and K-means, and experiment results in [14]
verified that ULGE satisfies the correctness of ensemble learning. In addition,
the performance of K-means is obvious to all.

In what follows, we discuss the diversity in UEL-GE. Diversity is obtained
in the learning process by using four common schemes [20]: data sample pertur-
bation, input attribute perturbation, output representation perturbation, and
algorithm parameter perturbation. Here, the data sample perturbation method
is used to enhance the diversity. ULGE randomly generate anchors, which can
lead to differences in the resulting projection matrix. Furthermore, K-means is
unstable which also provides diversity.

Therefore, the correctness and diversity in the proposed ensemble learning
can be guaranteed.

2.3 Combination Rule in UEL-GE

Under the premise of ensuring correctness and diversity, ensemble learning gen-
erates multiple sets of individual learners, and then uses appropriate methods
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to combine individual learners to achieve a more significant effect than a single
learner.

According to the requirement of ensemble learning, N individual learners
that meet the correctness and the diversity are guaranteed. ULGE can get the
projection matrix W, and then the low-dimensional embedding Y can be calcu-
lated by Y = XW. The K-means method is used to cluster the low-dimensional
embedding Y to obtain the clustering c(Y). Then, each sample can be parti-
tioned to a corresponding category. However, the tags clustered by the K-means
method are messy, so it is necessary to correct the clustering results. The cor-
rection method, bestMap was proposed for dealing with this situation [18,21].
Namely,

cct(Y) = bestMap(rand c, ct(Y))(t = 1, 2, . . . , N) (6)

where rand c is a reference clustering label which is randomly selected from the
N clustering labels ct(Y) (t = 1, 2, . . . , N), and cct(Y) is the corrected clustering
results. Because the reference clustering label is randomly selected, it increases
the diversity of ensemble learning. The bestMap(rand c, ct(Y)) function maps
the clustering results ct(Y) to the data labels rand c [18].

Thus, we obtain the N corrected clusterings in low-dimensional subspaces.
Then, a vote scheme is adopted to combine these N corrected clusterings to a
final clustering. The combination strategy of the ensemble algorithm is defined
as follows:

finalC(yi) = arg max
q∈L

N∑

t=1

I(cct(yi) = q) (7)

where L = {1, 2, . . . , cnum}, cnum is the number of classes of samples X
and cct(yi) ∈ L, yi is the i-th sample of low dimensional embedding Y, and
finalC(yi) represents the final prediction value of the sample yi. Moreover, I(·)
is an indicator function, when “·” is true, the value is 1 whereas the value is 0
when “·” is false.

3 Experimental Results

In this section, the advantage of UEL-GE is validated on five data sets. In
addition, we perform K-means with the original data as the baseline and com-
pare UEL-GE with other unsupervised algorithms, such as Principal Component
Analysis (PCA) [22], LPP, SR, and ULGE.

3.1 Data Sets

We conduct experiments on five different data sets, i.e., USPS [23], DBRHD
[24], COIL100 [25], ORL [26], and UMIST [27]. Both USPS and DBRHD are
handwritten digit data sets. COIL100 is an object clustering and recognition data
set, which contains 100 different objects. ORL and UMIST are face databases.
ORL is made up of 40 distinct faces and each face has 10 different images.
UMIST consists of 575 images of 20 people. The detail description of the data
sets is listed in Table 1.
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Table 1. Detail description of data sets

Data sets Samples Features Classes

USPS 9298 256 10

DBRHD 10992 16 10

COIL100 7200 1024 100

ORL 400 1024 40

UMIST 575 1024 20

3.2 Parameter Setting

Following [14], we set the parameters in the compared methods. The reduced
dimension of all the methods is set as the number of classes in these data sets.
The neighbor sample value for both LPP and SR, and neighbor anchor value
for both ULGE and UEL-GE are set to 5. Both LPP and SR use the same
Gaussian kernel, where the parameter of bandwidth is set as 1. The regularization
parameter α in SR, ULGE, and UEL-GE is 0.01. The number of anchors m in
ULGE and UEL-GE takes 50% of the sample data set. N is set as 16.

3.3 Evaluation Metric

In order to compare the performance of these methods, the K-means method is
used to cluster the low-dimensional embedding. The clustering performance is
measured by the clustering accuracy (ACC) and the normalized mutual informa-
tion (NMI). In experiments, all the algorithms are performed ten times, and the
K-means clustering is also performed ten times after each dimension reduction.
We report the mean ACC and NMI results for all compared methods.

All the experiments are implemented in MATLAB R2014a. The concerned
experiments are running on a 3.19 GHz Intel(R) Core (TM) i5-6500 CPU com-
puter with 4GB memory and Windows 10.

3.4 Results Analysis

Tables 2 and 3 report the ACC and NMI of different methods on five data sets,
respectively. In the tables, the best method is highlighted in bold. From the
tables we can easily see that UEL-GE performs better on most data sets. The
clustering performance of UEL-GE is obviously superior to other comparative
methods. Compared with other methods, ULGE has only a weak advantage,
and is not even better than other algorithms on some datasets. When multiple
ULGEs are combined, the performance has been improved a lot.

3.5 Parameter Analysis

There are several parameters involved in our method. We mainly analyze two
important parameters, the anchor number m and the number of integrated
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Table 2. Accuracy on five data sets (%)

Data sets USPS DBRHD COIL100 ORL UMIST

Baseline 65.7±0.71 70.2±1.44 48.9±0.57 55.3±0.96 42.2±0.55

PCA 64.6±1.12 68.6±2.08 49.4±0.53 56.1±0.94 42.9±0.74

LPP 65.8±1.11 67.8±1.38 41.4±0.75 32.4±0.17 30.2±0.50

SR 65.5±1.48 73.8±1.69 52.3±0.88 61.0±0.75 54.8±1.51

ULGE 65.5±1.30 74.2±1.94 55.5±0.93 55.6±2.37 51.4±2.63

UEL-GE 68.8±3.33 77.9±3.54 59.9±0.79 59.9±2.18 57.1±4.44

Table 3. Normalized mutual information on five data sets (%)

Data sets USPS DBRHD COIL100 ORL UMIST

Baseline 61.0±0.28 68.1±0.28 77.2±0.13 77.3±0.49 65.3±0.34

PCA 59.6±0.37 67.8±0.52 77.3±0.12 77.4±0.39 65.7±0.46

LPP 63.3±0.48 66.3±0.84 74.4±0.29 56.9±0.21 48.6±0.27

SR 70.3±0.66 70.6±0.28 80.6±0.46 79.8±0.26 77.3±0.97

ULGE 70.3±0.96 71.4±0.69 82.6±0.31 77.4±1.38 72.9±1.76

UEL-GE 70.9±1.36 72.4±1.51 84.1±0.32 80.1±0.97 76.4±2.82
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Fig. 2. Performance indexes vs. the percentage of anchors to original samples,
(a) Accuracy, and (b) Running time.

individual learners N . Experiments on parameter analysis are constructed on
the USPS data set.

We assume that the anchor number m is the percentage of the sample data set.
We use ULGE to select parameter m. Figure 2(a) shows that the more anchors
we select, the better performance of ULGE we achieve. The curve is on the rise,
and when the anchor number takes 50%, the curve has a local maximum value.
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Fig. 3. Performance indexes vs. the numbers of individual learners, (a) Accuracy, and
(b) Running time.

However, Fig. 2(b) shows that the increase in the anchors will result in an increase
in running time. So, the anchor number takes 50% of the sample data set.

The number of individual learners N is determined by UEL-GE. From Fig. 3
we can see, the change under different N is not obvious. But with the increment of
N , the performance of UEL-GE increases a little and the running time increases
a lot. In our experiments, the selection of parameter N is 16.

4 Conclusions

In this paper, we propose UEL-GE which combines multiple ULGEs. Compared
with a single method, UEL-GE uses individual learners and its performance
is much better than a single method. A series of comparative experiments are
carried out to verify the performance of the proposed method. One of our future
work is to investigate another anchor generation method to replace the random
selection method. In addition, the ensemble learning in this paper is simple, in
the future, we will use an effective ensemble learning to improve the performance
of algorithm.
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Abstract. In this paper, we propose the concept of triples’ potential probability.
Typically, knowledge graph only contains positive triples. Most of knowledge
representation methods treat the replaced triples, which replace the head/tail
entities or relations with other entities or relations randomly, as negative triples.
Actually, not all triples are absolutely negative triples after substitution. It could
be a positive triple essentially, but has not been discovered yet. Considering the
problems arising from the above situation, we propose the potential probability
to solve it. First, we utilize the co-occurrence of relations and paths in the
knowledge graph to find potentially correct probabilities of some negative tri-
ples. Then we add these triples with potential probabilities to the training model.
Finally, we take the experiments on two translation-based models, TransE and
TransH, using four public datasets. Experimental results show that our method
greatly enhances the performance of the target embedding models.

Keywords: Knowledge graph � Potential probability � Knowledge embedding
Relation path

1 Introduction

Knowledge Graph (KG) maps the facts of the objective world into pieces of knowledge
[1]. It applies to intelligent Q&A [2], personalized recommendation, social networks
and other fields. Knowledge in large-scale public knowledge graphs such as FreeBase
[3], WordNet [4], ConceptNet [5] etc. is represented by triple facts such as (cake, IsA,
dessert). Knowledge graph embedding technique can transform the knowledge in KG
into a low-dimension vector while maintaining the original structure and semantic
information. Converting discrete facts into continuous vector representations is bene-
ficial to increase the flexibility of knowledge graph applications [6]. Besides, since
most of machine learning algorithms can handle the low-dimension vector as input
easily, knowledge graph embedding can reduce the difficulty of subsequent tasks, like
feature engineering or similarity calculation [7] etc.

Because the public dataset only contains golden triples, common translation-based
models generally construct negative triples by replacing the head/tail entity or relation
randomly at first. In the above example, head entity and tail entity are cake and dessert,
respectively. Then they try to distinguish positive and negative triples through a
margin-based ranking loss function. However, there are always many missing facts
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actually, even a knowledge graph with millions of triples. A so-called negative triple
we randomly generate may be a positive triple essentially.

A knowledge graph always contains relation path information which is convenient
to acquire and use. It is known that multiple-steps paths between entities can express
their sematic relationships to some extent. PTransE [8] is an algorithm that introduces
related relation path information to triples. Inspired by relation path, we propose the
concept of potential probability by utilizing the characteristic of co-occurrence in
knowledge graph data in this work. More specifically, as shown in Fig. 1, if the
path < bornIn (r1), at Location (r2) > and the relation nationality (re) have a high
probability of co-occurrence, we assume that there is a relation re with high potential
probability between e1 and e2.

In experiments, we evaluate the performance of our method on the link prediction
task, using four public datasets: FB15k, FB15k-237, WN18 and WN18RR. The
knowledge representation algorithm TransE [9] and TransH [10] which convert the
triples into low dimension vectors are our baselines. Experiments based on them show
that our method can greatly improve the performance of some of the most commonly
used translation-based models. The main contributions of this work are concluded as
follows:

• We propose a method that can be applied to common translation-based models. It
can calculate the potentially correct probability of some negative triples to improve
the effect of knowledge graph embedding.

• We only use the original data of the knowledge graph and results of each iteration,
without any external resources, which reduce the actual use-cost of the model.

• In experiment, our approach has significant improvements compared with the
baseline.

Fig. 1. Example of co-occurrence in KG.
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2 Related Work

In a sense, knowledge graph embedding is a sub-domain of network embedding.
Because it contains semantic information, knowledge graph embedding requires a more
targeted model than general network embedding [11]. After several years’ develop-
ment, knowledge embedding technique has lots of great models, which is mainly
divided into two categories, translation-based model and semantic-based matching
model.

The translation-based model generally uses a distance-based scoring function to
evaluate the correctness of a triple. TransE [9] is a classic translation-based model that
uses a simple algorithm to transform knowledge into the low dimension vectors. More
details about its score function will be discussed in Sect. 3.1. Because this algorithm is
too uncomplicated, it doesn’t do well in complex relationships (one-to-many, many-to-
one and many-to-many). To solve this problem, TransH [10] projects the head and tail
entities onto the hyperplane of the corresponding relation. Its score function is:
fr h; tð Þ ¼ h? þ r� t?k k21=2 where h? ¼ h� wT

r hwr and t?¼t� wT
r twr. Both of the

above algorithms process the knowledge in the same semantic space. TransR/CTransR
[12] projects the head and tail entities into another semantic space corresponding to its
relation. Its score function is: fr h; tð Þ ¼ Mrhþ r�Mrtk k21=2: TransD [13], which
computes faster than TransR/CTransR, not only considers the relations, but also the
influence of different types of entities on the projection matrix. Its score function is:
fr h; tð Þ ¼ � h? þ r� t?k k22 where h? ¼ Mrhh and t?¼Mrtt. TranSparse [14] proposes
two models, TranSparse (share) and TranSparse (separate), which focus on solving the
problems of heterogeneity and imbalance in KGs, respectively.

The sematic-based matching model uses a similarity-based score function to
evaluate the correctness of a fact. It maps entities and relations into an implicit semantic
space for similarity measures. Semantic Matching Energy (SME) defines a score
function of neural network to capture correlations between entities and relations by
using matrix operations. The score function is fr h; tð Þ ¼ gTleftgright. It has two semantic
matching energy functions including a linear form gg ¼ Mg1eg þMg2rþ bg [15] and a
bilinear form gg ¼ ðMg1egÞ � ðMg2rÞþ bg [16] where g ¼ left; rightf g, � is the
Hadamard product. Single Layer Model (SLM) is a baseline of NTN model [17], which
designs a nonlinear neural network to represent the score function fr h; tð Þ ¼
uTr f Mr1hþMr2tþ brð Þ. Neural Tensor Network (NTN) is an extension of SLM. It
takes into account the second-order correlations of the nonlinear neural network. The
score function is: fr h; tð Þ ¼ uTr f hTMrtþMr1hþMr2tþ br

� �
where f ðÞ is the tanh

operation, Mr 2 R
d�d�k is a three-way tensor, Mr1;Mr2 2 R

k�d are weight matrixes
and br is the bias.

Except the above models, there are others that introduce relation path information
in knowledge embedding technology. PTransE [8], which is based on TransE model,
has a more complete understanding of knowledge by introducing the relation path
information. CKRL [18] assume the existing of noise triples in KGs, and we can apply
the noise detection by various approaches including considering relation path
information.
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3 Our Method

We first define the notations used in this paper. Entities and relations are denoted by
E and R, respectively. Our goal is to encode both entities and relations in Rk. Triple
facts are represented as ðh; r; tÞ, where h denotes the head entity, r denotes a relation
and t denotes the tail entity. We use S to represent the positive triple set (triples in KG),
use S0 to represent original negative triples (triplets generated by replacing the head/tail
entity or relation randomly). And G represents the generated triples with potential
probabilities, where G�S0.

Figure 2 is a step description of our method, which explains the flow of the entire
algorithm briefly.

3.1 Training

The key idea of most current translation-based models is that the vector of the relation
r can be regarded as a translation between the head entity vector and the tail entity
vector when the triple (h, r, t) holds. For example, the score function of classic model
TransE [9] is:

f ðh; r; tÞ ¼ hþ r� tk k1=2; ð1Þ

where h, r, t are vectors of head entity, relation and tail entity, respectively. Using the
score function can measure the correctness of a triple to some extent. Other models
have some differences in calculating the score of triple facts. We hope that positive
triples’ score will close to 0, and negative triples’ score will be as large as possible
through the algorithm.

Objective Formalization. Due to the introduction of the concept of potential proba-
bility for some negative triples, we improve the margin-based ranking loss function as
follows:

L ¼
X

ðh;r;tÞ2S

X
ðh0;r;t0Þ2S0

max(0; ð1� dÞkþ f ðh; r; tÞ � f ðh0; r; t0ÞÞ; ð2Þ

Fig. 2. Flowchart of our improved knowledge embedding algorithm.
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where f is the score function of a definite model. f(h, t, r) is the score of positive triple
and f h0; t0; r0ð Þ is that of negative triple. d is potential probability if the negative triple
has, otherwise it is 0. k[ 0 is the hyper-parameter of margin. The less differences
between positive and negative triples, the higher potential probability is.

The negative triple set was generated by using the following rule:

S0 ¼ fðh0; r; tÞjh02Eg[ fðh; r; t0Þjt02Eg; ðh; r; tÞ2S ð3Þ

Note that the triple generated by the above method is called original negative triple.
It might belong to G or not. Obviously, it is not in S, which indicates that it is not
positive definitely.

3.2 Generating Negative Triples with Potential Probability

To distinguish the triples which could be positive and really negative, we introduce a
novel concept, potential probability for some original negative triple facts. It
describes the likelihood of a negative triple to be positive.

If a relation has a high frequency of co-occurrence with a path, we assume that the
relation is more likely to exist between the path’s head and tail entities. Formally, a

given path p = ðr1; r2; . . .. . .; rmÞ can be represented as Eh �!r1 . . .. . .�!rm Et, where
h 2 Eh, t 2 Et, since there are multiple entity pairs ðh; tÞ. The potential probability of
ðh; re; tÞ will be calculated as follows:

PPðh; t; reÞ ¼ Pðre � piÞ
PðpiÞ ; ð4Þ

where PðpiÞ represents the probability of path pi in KG, and operation � means re and pi
co-occurrence. The potential probability of a triple might be very large (near to 1)
sometimes, which makes it pretty close to a positive triple. Actually, differences should
be existed between them, so we try to solve this problem in following two ways.

Linear Smoothing. The first method we proposed is using two different linear
functions to decrease the large potential probabilities (We assume that small potential
probabilities are less likely to cause model errors). Linear smoothing function can be
written as follows:

LPðh; t; reÞ ¼ PPðh;t;reÞ; x\x
aPPðh;t;reÞ þ ð1� aÞx; x�x

�
ð5Þ

where a and x are hyper-parameters. To some extent, the potential probabilities which
are larger than x can be reduced through this function.

Adaptive Transformation. We expect that the scores of the positive triples will
increase, and the negative triples will become smaller after each step’s training. It can
help us distinguish the triples effectively. So, the score of positive and negative triples
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will be updated in each iteration. In the same way, we consider that the potential
probability of negative triples also need to be updated. Taking the TransE model as an
example, for a positive triple (hi, ri, ti), we assume that it generates a negative triple (hi,
ri, tj) by replacing the tail entity randomly. Replacing the head entity also works. The
change of ri in a triple before and after an iteration is represented as follows:

Dðri;tÞ ¼ hi � tkk 1=2� h0i � t0k��
1=2; t ¼ ti; tj

� � ð6Þ

where hi, ti, tj and ri are vectors of entities and relation before one iteration.
h0i; t

0
i; t

0
j; and r0i are vectors of entities and relation after the iteration.

If the changes of relation ri in positive and negative triples are very similar, we
consider that the potential probability of this negative triple should increase, otherwise
decrease. The potential probability of negative triples will be updated as follows:

AP h;t;rið Þ ¼ e
� D ri ;tið Þ�D ri ;tjð Þ
��� ���þ e

 !
	 PP h;t;rið Þ ð7Þ

where e is a hyper-parameter.

3.3 Optimization and Implementation Details

We use stochastic gradient descent (SGD) to optimize our model. In practice, we
enforce the constraints as follows:

hk k2 
 1; rk k2 
 1; tk k2 
 1: 8h; r; t ð8Þ

Taking into account the diversity of relations, we add the inverse relation during
training process like [8]. We believe that if there is a relation r from e1 to e2, a relation
r�1 should exist from e2 to e1. In addition, for any triple in the KG, we consider all
paths which length equals to 2 between the head entity and the tail entity as initial
paths. But a path could be particularly long in KG, which makes the calculation speed
of the algorithm decrease, as well as the memory of consumption become larger.
Consequently, we restrict the length of path to at most 2-steps, for it is impractical to
list all paths with various lengths.

4 Experiment and Analysis

4.1 Datasets

For evaluation, we use 4 public knowledge graph datasets: FB15k, FB15k-237, WN18,
WN18RR. FB15k is a subset of FreeBase that contains a large amount of objective
world facts. The FB15k-237 [19] is a subset of FB15k, which removes a large number of
redundant relations. Triples in FB15k-237 are reduced by more than a half ultimately.
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WN18 is a subset of WordNet, which stores many sematic relations between English
words. WN18RR [20] is a subset of WN18. It only deletes 7 relations of WN18, but it
greatly increases the difficulty of knowledge embedding. The details of datasets are in
Table 1.

4.2 Experimental Setting

We implement experiments on three strategies by using TransE and TransH as base-
lines: the potential probability without modification (PP), the potential probability
using the linear function (LP) for smoothing, as well as adaptive transformation with
each iteration (AP). Obviously, it is not difficult to apply our method to other
translation-based models.

Since the amount of data in FB15k and FB15k-237 is very large, only the relations
that contain the path with a potential probability greater than N are selected. We test
situations of N = {0.5, 0.6, 0.7, 0.8, 0.9}. Considering the calculation speed and
experimental accuracy, we choose 0.8 for FB15k and 0.5 for FB15k-237 finally. This
setting is inversely proportional to the data size of FB15K and FB15K237, which is
consistent to our expectation. We use SGD to train our model with the learning rate a
set among {0.001, 0.003, 0.01, 0.03, 0.1}. We select margin k among {0.1, 1, 2, 3, 5},
hyper-parameter e among {0.001, 0.003, 0.01, 0.03, 0.1}, a among {0.8, 0.85, 0.9,
0.95}, x among {0.5, 0.6, 0.7, 0.8, 0.9} and L1 or L2 distances. To ensure the relative
fairness, we set training epoch to 1000, batch-size to 100, embedding dimension k to 50
and use bern rules [10] for the replacement of head/tail entity in all datasets.

Since the data size of the four public datasets is not very large, the smaller learning
rate can effectively avoid overfitting. The best configuration obtained by valid set are:
a = 0.001, k = 2, a = 0.95, x = 0.8, e = 0.03 and taking L1 as dissimilarity on FB15k;
a = 0.001, k = 3, a = 0.95, x = 0.8, e = 0.01 and taking L1 as dissimilarity on FB15k-
237; a = 0.001, k = 5, a = 0.8, x = 0.5, e = 0.01 and taking L1 as dissimilarity on
WN18; a = 0.001, k = 5, a = 0.95, x = 0.8, e = 0.001 and taking L1 as dissimilarity
on WN18RR.

Table 1. Statistics of datasets.

Dataset #Relation #Entity #Train #Valid #Test

FB15k 1,345 14,951 483,142 50,000 59,071
FB15k-237 237 14,541 272,115 17,535 5,000
WN18 18 40,943 141,442 5,000 5,000
WN18RR 11 40,943 86,835 3,034 3,134
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Table 2. Evaluation results on link prediction with TransE.

Dataset FB15k FB15 k-237

Metric Mean
rank

Hits@10 Mean
rank

Hits@10

Row Filt. Row Filt. Row Filt. Row Filt.

TransE [9] 243 125 34.9 47.1 – – – –

TransE 213 104 44.32 62.06 369 239 29.22 40.85
TransE (PP) 203 107 50.5 68.38 368 234 32.24 43.96
TransE (LP) 198 102 50.51 68.36 372 237 32.08 43.88
TransE (AP) 197 102 50.67 68.21 373 239 31.97 43.72

Dataset WN18 WN18RR

Metric Mean
rank

Hits@10 Mean rank Hits@10

Row Filt. Row Filt. Row Filt. Row Filt.

TransE [9] 263 251 75.4 89.2 – – – –

TransE 231 218 78.17 90.88 3601 3587 45.05 47.86
TransE (PP) 211 200 80.63 93.65 2988 2974 46 48.95
TransE (LP) 191 179 80.59 93.41 2988 2974 46.2 49.49
TransE (AP) 196 184 80.7 93.53 2899 2885 45.93 49.11

Table 3. Evaluation results on link prediction with TransH.

Dataset FB15 k FB15k-237

Metric Mean
rank

Hits@10 Mean
rank

Hits@10

Row Filt. Row Filt. Row Filt. Row Filt.

TransH [10] 212 87 45.7 64.4 – – – –

TransH 183 62 44.53 62.3 357 195 29.11 41.07
TransH (PP) 181 62 46.52 64.51 355 195 29.6 41.42
TransH (LP) 183 63 46.11 64.32 353 193 29.55 41.69
TransH (AP) 183 63 46.46 64.18 357 196 29.78 41.8

Dataset WN18 WN18RR

Metric Mean
rank

Hits@10 Mean rank Hits@10

Row Filt. Row Filt. Row Filt. Row Filt.

TransH [10] 400 388 73 82.3 – – – –

TransH 238 226 76.78 89.71 3472 3459 42.21 44.85
TransH (PP) 227 215 77.2 89.74 2978 2904 43.96 45.9
TransH (LP) 246 234 77.43 89.76 2967 2741 43.3 45.75
TransH (AP) 221 209 77.25 89.87 3014 2933 43.84 45.01
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4.3 Link Prediction

Evaluation Protocol. Following the same protocol of [9], we use two measures as
evaluation criteria: (1) Mean Rank of positive triples, and (2) Hits@10 which refers to
the proportion of positive triples in the top ten. We use two evaluation settings, “Row”
and “Filter”. “Row” does not delete the generated negative triples appearing in the
training set, valid set or test set. And it still regards them as negative triples. Another
evaluation setting filters out all these triples before ranking.

Result. The results of link prediction experiment are shown in Tables 2 and 3. The
first line in the tables is the results of the baseline models which copy from [9, 10],
respectively. And the second line is the best results we got after trying two baseline
models ourselves. From the experimental results, we obverse that: (1) Our three ways,
which introduce the potential probability, significantly outperform in mean rank and
Hits@10 on four datasets compared with the baselines of TransE and TransH.
Experimental results show that the potential probabilities of some negative triples
provide a great supplement for knowledge embedding in KGs. (2) Inspired by TransE,
comparative experiments of mean rank (left) and Hits@10 (right) on FB15k data are

Fig. 3. Effect of knowledge embedding with different number of training triples on FB15k.

Fig. 4. Results of Hits@10 (Filter) on 4 datasets.
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presented in Fig. 3. In the picture, the effect of TransE is better than (or similar with)
other methods under the same circumstances, when the number of data is small. But
with the increase of data, our method become better and better than TransE. This
situation is more apparent in Fig. 4. The number of data in dataset gradually increases
from left to right, with the increasingly obvious differences between our three methods
and TransE in Hits@10.

5 Conclusion and Future Work

In this paper, we propose a concept of potential probability of some negative triples,
which aims to calculate the probably positive probability of some negative triples. To
measure the value objectively, we apply two algorithms, linear smoothing and adaptive
transformation. In addition, we only use the internal structure data in KGs to simplify
the calculation and method usage scenario. Experimental results indicate that adding
potential probability to some negative triples during the training process helps to
increase the effect of knowledge embedding.

We will explore the following research directions in the future: (1) Internal
structure data in KG still contain lots of information, which are worth paying more
attention. We will explore the implementation of translating calculated path informa-
tion to potential probability dynamically during the training process. It makes the
potential probability of a negative triple change dynamically, too. (2) External infor-
mation can provide a lot of relation and entity details [21]. DKRL [22], ETRL [23] and
IKRL [24] combine the entities’ textural or image information to improve the
knowledge embedding results. We will attempt to combine the external information to
enrich the description of entities and relations, which makes the calculation of the
triple’s potential probability more consistent with the objective facts.
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Abstract. Events and event relations contain high-level semantic information
behind texts. In this paper, we mainly discuss event causality relation identifi-
cation. Traditional approaches of causality relation identification rely on the
recognition of casual relationship connectives or manual features of causality
relationships, and these methods have disadvantage of low recognition coverage
and being lack of adaptive. To solve this problem, we propose a novel model
based on modeling event and event relation. We use word sequence around
event trigger as input data and use event based Siamese Bi-LSTM network to
model events by encoding the event representations into a fixed size vectors, and
then these events representations are applied in relation embedding training and
prediction. Experimental results show that the proposed method can achieve
better effect on CEC 2.0 corpus.

Keywords: Siamese network � Event relation � LSTM � CEC

1 Introduction

Natural language organized texts express higher-level semantic information through
events. Recognizing these events and the relationships between these events can help
computers easily understand the precise meaning of texts and lay a solid foundation for
the reasoning and modeling of event ontology.

We define an event as a thing happens in a certain period of time and place, in
which some actors participate and show some features of action, also accompany with
the changing of internal status [1]. An event trigger is the word that most exactly
expresses the occurrence of an event. For example: in the sentence “the earthquake
happened yesterday caused 21 wounded”. “wounded” is a trigger of event. Event
trigger is the most significant signal of event in texts.

Event can be formalized as a 6-tuple e = (A, O, T, P, S, L). We call elements in 6-
tuple event elements, and represent action, object, time, place, status, language
expression respectively. In natural language processing, we mainly focus on partici-
pants, objects, time, and location of an event. These elements present as word in natural
language and contains important information of events.

Causality relation is a kind of common and important relation between events. If an
event e1 happened, the another event e2 happens with the probability above the
threshold of causality, there is a causality relation between e1 and e2. Causality relation
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can be divided into explicit causality and implicit causality. Explicit causality denotes
those relations exist connectives exactly express the relation between events. Implicit
causality denotes those relations lack exact connectives and need to be speculated by
the contexts. In addition, there’re three relations between events beside causality
relation, which include composition relation, follow relation and concurrency relation.
If an event e can be decomposed to several sub-events ei with smaller granularity, there
exists composition relation between e and ei. If in a certain length of time, the
occurrence of event e1 follows the occurrence of the event e2 at above specified
threshold, there exists a follow relation between e1 and e2. If there are event e1 and
event e2 occur simultaneously in a certain period of time, there is a concurrency relation
between e1 and e2.

Current researches on causality relation identification are mostly based on the
feature selection, pattern matching and rule reasoning. These approaches of causality
relation identification can’t realize the context and identify the implicit causality
relation in texts.

In recent years, deep learning (DL) within the machine learning field has shown
that it can be successfully applied to reduce the data dimension by extracting deep
features of data and use those features to present better results than traditional machine
learning methods. Although there are preliminary applications of DL in many natural
language processing (NLP) tasks. There are few researches on causality relation
identification based on DL. Therefore, we propose a new method based on Siamese
network. Firstly we use Bi-LSTM network to capture the semantic information in
events and generate event representations which cover event elements and event
triggers. Then we use the element-wise difference between events to predict the
causality relation. The experimental results show that our proposed model has achieved
better performance in causality relation identification. In addition, event representations
generated by our proposed model also achieve satisfactory results in the task of event
classification.

The remained of this paper is organized as follows: we describe the related works in
Sect. 2. Our proposed model is described in Sect. 3. Section 4 presents our experi-
mental results. Finally, we conclude in Sect. 5.

2 Related Work

2.1 Siamese Network

Siamese network is a special type of neural network architecture which is widely
applied in calculating the similarity of pair of inputs like texts or pictures [2–4].
Siamese network proposed by Chopra consists of two identical neural networks with
shared parameters and the last layers of two networks are then fed to a contrastive loss
function which calculates the similarity between two inputs. Chopra’s work illustrates
the method for learning complex similarity metrics with a face verification application.
Recently, Siamese Network is also applied in NLP. Kenter [5] presented the
Siamese CBOW model based on Siamese Network. Siamese CBOW handles the task
of sentence representation by training word embedding directly, and then trains a
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sentence embedding by predicting from its surrounding sentence representations.
Muller [6] proposed their Manhattan LSTM (MaLSTM) for assessing the semantic
similarity metric between sentences. The work demonstrates that a simple LSTM is
capable of modeling complex semantics if the representations are explicitly guided.

2.2 Causality Relation Identification

Broadly speaking, causality relation identification refers to the method of knowing
whether an event causes another. By analyzing the verbs that express causality relation
in French, Garcia [7] proposed a COATIS system to extract the explicit causality
relation in French. Khoo [8] proposed an automatic method for identifying causality
relation in Wall Street Journal text using linguistic clues and pattern-matching. Girju
[9] searched for causal verbs through the Internet and WordNet to establish the Lexico-
syntactic model, which enables automatic recognition of causality relations for specific
events.

However these methods based on pattern-matching are domain-specific and require
a lot of artificial markings. Therefore, recent studies have used methods based on
machine learning and statistical probabilities to identify causality relation.

For example, Marco [10] adopted the Naive Bayesian to identify explicit causality
relation by analyzing the probabilities of words between adjacent sentences. Inui [11]
used support vector machine (SVM) to identify explicit causality relation in corpus by
using the specific language components between the indicator and the sentence. Zhong
[12] proposed a method based on cascaded model to identify explicit causality relation.

Although methods above work well, they are limited to the identification of explicit
causality relation. In fact, there’re a lot of implicit causality relations in texts. There-
fore, there are also researchers who have studied the identification of implicit causality
relation.

Fu [13] casted the causality relation identification as event sequence labeling and
proposed dual-layers CRFs model to label the causal relation of event sequence. Yang
[14] proposed correlation degree RCE to describe the probabilities between events and
set threshold as a binary prediction to predict an event pair as causality or not.

The researches of causality relation identification above are mostly based on the
feature selection, pattern matching and rule reasoning. Some scholars pay attention to
the causality connectives rather than the relation between semantic information of
events. In this paper, we propose a method to generate event representations based on
event trigger and event elements. Event representations are used to predict the causality
relation between events.

3 Proposed Model

3.1 Structure of Proposed Model

Researchers in the field of Knowledge Graph (KG) embed knowledge graph compo-
nents (entities and relations) in continuous vector space while preserving properties of
the original data, such as TransE [15], TransH [16] and TransD [17]. In TransE,
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relations are represented as translation embedding in vector space, if a triplet (subject,
relation, object) exists in KG, we want that object should be close to subject + relation,
while subject + relation should be far away from object if the triplet doesn’t exist. Once
the model has learned an embedding vector for each entity and relation, predictions will
be performed by using the same translation approach in embedding space. For
example, the prediction for a given subject-relation is generated by searching for the
nearest neighbor entity of subject + relation in vector space.

In the field of event-oriented knowledge representation, events and event relations
can be considered as special entities and relations. If we use certain methods to rep-
resent events and event relations in continuous vector space, we can also predict the
relation type between events.

Based on the ideas above, this paper proposes our proposed model based on Sia-
mese Architecture shown in Fig. 1. There are two networks Bi-LSTMa and Bi-LSTMb

which each processes one of the events in a given pair and they share parameters. We
use Bi-directional long short time memory (Bi-LSTM) networks to obtain event rep-
resentations. Then event representations generated by Siamese LSTM Network are
used to train relation embedding.

3.2 Event Representation Generation

Word embedding is the collective name for a set of language modeling and feature
learning techniques in natural language processing where words or phrases from the
vocabulary are mapped to vectors of real numbers. Word embedding proposed by
Mikolov [18, 19] can be trained to capture semantic and syntactic relationships
between words, by mapping related words to vectors that lie close in the embedding
vector space. In summary, word embedding provides us an efficient method to

Training Phrase

Shared 
ParametersBi-LSTMa

Xa Xb

ea

Y (Rela on Type)

Rela on
Embedding

Bi-LSTMb

eb

Rela on Embedding Training

Event Representa on Genera on

Fig. 1. The training process of proposed model
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represent word in vector space. In this paper, pre-trained word embedding is used to
convert words into dense vectors.

In order to represent event, we introduce a sequence model Recurrent Neural
Network (RNN). RNN is a powerful model for learning features from sequential data.
RNN model is suitable for our inputs which are sequences of words, and since neural
networks receive fixed size vectors or matrixes as input, words are converted into word
embedding before used as inputs. Bi-directional RNN (Bi-RNN) uses a finite sequence
to model sequence based on past and future contexts. This is done by concatenating the
hidden states of two RNN, one processing the sequence from left to right, the other one
from right to left. We can update the hidden state of each timestamp t as following:

hft ¼ r Wf ht�1 þUf xt þ bf
� � ð1Þ

hbt ¼ r Wbhtþ 1 þUbxt þ bbð Þ ð2Þ

ht ¼ hft � hbt ð3Þ

In formulas above, hft is the hidden state of timestamp t along the forward direction
(from left to right), hbt is the hidden state of timestamp t along the backward direction
(from right to left), ht is the hidden state at timestamp t and ⊕ denotes the concate-
nating operation between two vectors.

Although RNNs present acceptable performance in sequences processing, the
optimization of the weight matrixes is difficult because its backpropagated gradients
vanish over long sequences. LSTM networks are introduced to avoid the long-term
dependency problem. Like RNNs, LSTM sequentially updates a hidden-state
representation.

In this paper, we use Bi-RNNs with LSTM cell which is called Bi-LSTM and
introduced above to learn event representation. The learning process is shown in Fig. 2.

0 1 2 3 4 5 6 7 8 9 10

ℎ0 ℎ1 ℎ2 ℎ3 ℎ4 ℎ5 ℎ6 ℎ7 ℎ8 ℎ9 ℎ10

( e)
Fig. 2. The training process of proposed model
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In this paper, word sequences with fixed length are used as input to represent
events. Word sequences contain five words behind event triggers, event trigger word
and five words after event triggers in texts. We use “<pad>” to represent paddings in
word sequences which make length of input sequence equal. In CEC, we find that the
average distance between event triggers and event element(such as time, place and
object) are 3.4 and 96% of event elements can be covered when the length of word
sequence is eleven. So we set the length of word sequence as eleven. Firstly, word
sequence is converted to dense word embedding by embedding layer, and then input
into Bi-LSTM model. After the processing of Bi-LSTM model, we finally get hidden
set H = {h0, h1,.. h10}. The event representation e can be obtained by following for-
mula. Where ft represents the feature of event trigger and fe represents the feature of
event elements. We use hidden state h5 which is the hidden state of event trigger to
represent feature of event trigger ft. When a = 0 event representation e excludes the
feature of event elements.

e ¼ 1� að Þ � ft þ a � fe ð4Þ

In addition to the feature of event trigger, our event representation also focuses on
feature of event elements. One-hot vector ve is used to denote whether the word in
timestamp i of input sequence is event elements. Feature of event elements can be
obtained as following:

fe ¼ 1
PL

i¼0 vei

XL

i¼0
vei � hi ð5Þ

Where vei 2 {0,1} is the value in i-dimension of ve, hi is the hidden state in
timestamp i generated by Bi-RNN model which is discussed in the above, L is the
length of input sequence.

3.3 Training Relation Embedding

Given a training set S of triplets (e1, e2, r) composed of two events e1, e2 and a relation
r2R, our model learns the representations of events and relations. The basic idea in
this step is minimize the Dist(e1, e2, r) for each training example. Dist(e1, e2, r) is
calculated as following:

Dist e1; e2; rð Þ ¼ e1þ r � e2j jj j ð6Þ

In the task of relation identification, we introduce the loss function as following,
where c is a constant, rpos is the relation between e1 and e2 rneg represent the negative
relation between e1 and e2. The second item on the right of the equation is the training
example, while the third item is the corrupted example we generated in order to make
e1 − e2 be away from the corrupted event relation.

loss ¼ c� Dist e1; e2; rpos
� �þDist e1; e2; rneg

� � ð7Þ
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rneg is calculated as following:

rneg ¼ 1
N � 1

X
r2R� rposf g r ð8Þ

4 Experimental Result

4.1 Experiment Dataset

Our experimental dataset is CEC 2.0. CEC 2.0 is an event-based Chinese natural
language corpus developed by the Semantic Intelligence Laboratory of Shanghai
University. It has collected 333 newspaper reports about earthquakes, fires, traffic
accidents, terrorist attacks and food poisoning. We labeled event triggers, participants,
objects, times, places and relationships between events by using a semi-automatic
method. Statistics of events and relationships labeled exactly is shown in Table 1.

4.2 Event Causality Identification

We compare our proposed model’s results with other models shown in Table 2. Yang
[14] defined causal correction degree (RCE) to predict whether causality exists between
events. Zhong [12] proposed a cascaded model based on the bootstrapping algorithm to
identify causality relation. Girju’s method [9] is based on pattern-matching. From the
results, we find absolute increment when a increases, and the highest F-Measure is
83.82%. At the same time, we also notice that the performance decline when a > 0.2
and proposed model (a = 0.5) even achieves worse result than proposed model (a = 0).
The result demonstrates that the feature of event elements really work in the event
representations and enrich the semantic information of the event. However, if the
model focuses on event elements excessively, important information will be ignored.
Compared with other models, Proposed model (a = 0.2) has shown slight improvement
in F-Measure. The proposed model’s ability to capture the semantic information of the
event is likely to be one of the reasons of improvement in performance.

Table 1. Statistics of event types and event relation

Event type Amount Event relation type Amount

Perception 264 Follow relation 702
StateChange 996 Causality relation 806
Emergency 667 Concurrency relation 504
Statement 859 Overall 2008
Action 1121
Operation 1245
Movement 469
Overall 5621
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4.3 Event Recognition

In this paper, we apply Bi-LSTM network in proposed model to learn event repre-
sentation which can represent the content of events. To evaluate the practicality of our
representations of events generated in our proposed model, we applied the Bi-LSTM
network trained for the task of event relation identification into the task of event
classification. We use SVM classifier to classify the events in CEC.

We also compare our proposed model’s results with other models proposed for the
task of event classification shown in Table 3. Fu et al. [20] proposed classifier based on
SVM and dependency parsing. Zhao et al. [21] proposed a classifier based on maxium
entropy with defined features. Our proposed model exactly capture context information
of events, and the event embeddings perform well in the task of event classification.

5 Discussion and Conclusion

This paper presented a novel method for event causality relation identification based on
modeling events and relations on dense vector space. We use word sequence around
event triggers as input and learn event embedding by Siamese Bi-LSTM network in
relation identification task. The Bi-LSTM learns the features of event trigger and event
elements. Experimental results show that our method achieves good performance and
the best F-Measure of the causality relation arrives at 83.82%. Furthermore, we applied
Bi-LSTM network trained in relation identification to generate event representations

Table 2. Performance Comparison of all models in causality relation identification

Method Precision (%) Recall (%) F-Measure (%)

Yang’s method [14] 62.20 58.00 59.90
Zhong’s method [12] 85.39 77.53 81.27
Girju’s method [9] 73.91 88.69 80.63
Proposed model (a = 0) 79.01 80.34 79.67
Proposed model (a = 0.1) 82.07 81.16 81.61
Proposed model (a = 0.2) 83.01 84.65 83.82
Proposed model (a = 0.3) 82.51 81.62 82.07
Proposed model (a = 0.4) 82.63 79.29 80.93
Proposed model (a = 0.5) 77.04 79.89 78.44

Table 3. Performance Comparison with related works in event classification

Method Precision
(%)

Recall
(%)

F-Measure
(%)

Event representation generated by proposed
model + SVM classifier

81.10 81.16 81.01

Fu’s method [20] 71.60 67.20 69.30
Zhao’s method [21] 57.14 64.22 60.48

66 Z. Yang et al.



and use them in event classification task. The results show that event representations
perform very well and our proposed model really capture important context informa-
tion of events.

In future work, we will improve the performance and scalability of proposed model,
meanwhile we will try to apply the approach in proposed model in event reasoning and
find out more semantic information behind events and relations and dig out more event
knowledge for event-based natural language processing.
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Abstract. In this paper, we propose a novel model which exploits the
topic relevance to enhance the word embedding learning. We attempt to
leverage the hidden topic-bigram model to build topic relevance matri-
ces, then learn the Topic-Bigram Word Embedding (TBWE) by aggre-
gating the context as well as corresponding topic-bigram information.
The topic relevance weights are updated with word embeddings simulta-
neously during the training process. To verify the validity and accuracy
of the model, we conduct experiments on word analogy task and word
similarity task. The results show that the TBWE model can achieve the
better performance in both two tasks.

Keywords: Topic-bigram · Semantic enhance
Word embedding learning

1 Introduction

Natural Language Processing (NLP) tasks have always been a hot research topic
in artificial intelligence. In order to alleviate the issues of dimension disaster and
semantic gap appearing in traditional language models, where each word in
the vocabulary is represented as a long vector with only one non-zero element,
Xu et al. [23] first utilized neural networks to deal with NLP tasks by using word
embedding. Conceptually, word embedding involves a mathematical embedding
from ”one-hot” representation per word to a continuous vector space with a
much lower dimension. Since then, neural network models have been widely
applied to obtain word representations, and the representative works includes
NNLM (Neural Network Language Model) [2], the Hierarchical Neural Language
Model [16], Recurrent Neural Network [13], and the Word2Vec model [12]. The
principle is that words sharing common contexts in the corpus should be located
in close proximity in the continuous embedding space, so that the syntactic and
semantic information can be considered simultaneously.

Owing to the advance in simplicity and robustness, Word2Vec model has been
subsequently expanded. Some works tried to integrate more auxiliary informa-
tion for word embedding learning. As a results, more domain-specific word rep-
resentations can be learnt. Recent studies also considered learning topical word
c© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11303, pp. 69–81, 2018.
https://doi.org/10.1007/978-3-030-04182-3_7
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embedding based on both context and their topics [10], which was expressively
used for contextual word embeddings and document embeddings. However, they
still ignore the topic correlation and influence of word position. In this paper,
we propose a novel word embedding learning model to take the advantage of
latent semantic information, considering both the position information and the
topical correlation. We incorporate the Markovian dependency between topics of
a sequence data into the word embeddings, namely Topic-Bigram Enhanced
Word Embedding (TBWE). The basic idea of TBWE is to make the use of cor-
relation information between topics, so that context-word pairs can be modelled
by both the contextual information and topic relevance weights in the sequence
data.

Specifically, we employ the Topic-Bigram model [1] to obtain the topic rel-
evance weights. Assuming a first-order Markovian dependency, the probability
of a topic associated with each observation depends on the previous one. In this
way, given a sequence wd = [wd,1.wd,2...wd,Nd

] for trace d where wd,j denotes
j-th token, the latent topic sequence zd = [zd,1.zd,2...zd,Nd

] is associated with wd,
and zd,j ∈ {1, ...,K}. Multinomial parameters ϑh,k

d , the mixing coefficient of the
topic sequence h.k for the trace d, can be estimated to help learn better word
representation vectors. We design two TBWE models, TBWE-1 and TBWE-
2, based on CBOW and Skip-gram model [14] respectively, as shown in Fig. 1,
where topic relevance matrix Θ

zt,zt+1
i indicates the dependency weight between

topic zt and zt+1, and i is the distance between them.

Fig. 1. TBWE model, topic relevance indices the dependency weights when gener-
ating the sequence data, and we incorporate the normalized weights into (a) CBOW,
(b) Skip-gram, respectively.

As topics can capture underlying semantic information, we regard each topic
as the semantic tag, so that the topic relevance weights encode their inherent
semantic relationships in sequence data. For each word-context pair, semantic
relationships can be weighted by topic relevance weights. We propose the TBWE
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model to learn the word embeddings with position-dependent topic relevance
weights using the Stochastic Gradient Ascent (SGA) algorithm.

The main contribution of this work is to extend the Word2Vec [12] model
to incorporate topic dependency information into basic word embedding repre-
sentation, considering both the contextual words and correlation between their
underlying themes. The experiments conducted on word analogy task and word
similarity task, demonstrate that the performance of the proposed model is
improved comparing to baseline models.

2 Related Work

2.1 Neural Language Models

Neural language models use continuous representations of words to make their
predictions. Bengio et al. [2] proposed the feed-forward neural network language
model (NNLM) by using the concatenating vectors to represent the previous text
for modelling N -gram conditional probability. Then Mikolov et al. [13] proposed
recurrent neural network language model (RNNLM), using more comprehensive
contextual information to predict the word iteratively, not only the N -gram.

However word embeddings is just a by-product in above training models,
rather than the purpose. The C&W model proposed by Ronan et al. [3], which
trains word embeddings as the target firstly, scores the N -gram phrases directly
according to the occurrence frequency. Then, Mikolov et al. [12] proposed the
Word2Vec model, including two model architectures CBOW (Continuous Bag-of-
Words) and Skip-gram model, to improves the efficiency significantly by remov-
ing the hidden layer and transforming neural network structure to log linear
structure. But the computational complexity still increases with the corpus size,
where the time complexity of conditional probability is O (|V |). Mikolov then
introduced two optimization techniques for more efficient learning, namely Hier-
archical Softmax and Negative Sampling [14]. Among the neural language models
and their variations, the Word2Vec model is the most popular one. Our work
is also the extension that incorporates the topic relevance information into the
training process of Word2Vec model.

2.2 Integrating Auxiliary Knowledge

Some researchers also consider incorporating different natural language factors
into word embeddings for domain-specific analysis. Yu et al. [24] combined the
prior knowledge of the semantic relations between words in the dictionary (such
as synonyms, etc.) to train the word embeddings. The Sentiment-Specific Word
Embedding model (SSWE) [21] uses both the syntactic contexts of words and
the sentiment polarity of sentences to learn the sentiment-specific word embed-
ding based on C&W model. Hu [6] proposed the SG ++ model to help twitter
sentiment analysis by exploiting the emotion information and negation factor
of words based on the Skip-gram model. Meanwhile, many researches take the
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POS into account. Levy et al. [8] integrated the syntactic dependency into the
Skip-gram model. Liu et al. [9] averaged the word embeddings of context words
in CBOW model using POS relevance weights of each word-context pair. All the
above works only considered the syntax information, but the semantic knowledge
is still ignored.

2.3 Topic and Semantic Language Models

Topic models which learn the latent topic distributions for documents, have
been widely used in data mining, sentiment analysis and recommendation. As
a combination with the word embedding, Ren et al. [18,19] proposed the Topic
and Sentiment-enriched Word Embedding model to learn topic-enriched word
embeddings which considered the polysemy phenomenon of sentiment-baring
words, and further used for improving twitter sentiment classification. Com-
pared to using the target word only to predict context words in Skip-Gram, Liu
et al. [10] integrated topics into basic word embeddings representation so that
the topical word embeddings can model different meanings of a word with dif-
ferent context. Joint Topic-Semantic model [22] even puts topics of documents
into training for social recommendation.

Motivated by the achievement of TWE [10] and PWE [9], this paper proposes
a novel model TBWE which exploits topic dependency as the auxiliary semantic
knowledge to model each word-context pair in the sequence data. The basic idea
of TBWE is that, the topic is treated as tag associated with each word, while
word embedding is dependent on the contextual words and surrounding topics,
which means that the topic dependency of the context is also considered.

3 Our Models

3.1 CBOW and Skip-Gram

Before describing the main framework in detail, we first review the CBOW and
Skip-gram model [14], which are designed for learning word embedding more
efficient.

The CBOW model utilizes the average value of contextual word vector as
input representation, without considering the order information, shown in Eq. 1.

I (c) =
1

2k − 1

∑

wj∈c

v (wj) (1)

where c indicates the context of word w, v (wj) is the corresponding represen-
tation vector of wj , k is context window size and −k ≤ j ≤ k, j �= 0. CBOW
model utilizes the softmax regression to estimate the word prediction probability,
shown in Eq. 2.

P (w|c) =
exp

(
v (w)T · I (c)

)

∑
w′∈V exp

(
v (w′)T · I (c)

) (2)
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Given the corpus D with T tokens, the objective of CBOW is to maximize
the log probability:

Q (D) =
1
T

∑

(w,c)∈D

log (P (w|c)) (3)

Contrast to CBOW model, Skip-gram only selects one contextual word rep-
resentation as input to predict the target word every time, and the objective is
to maximize the log probability:

∑

(w,c)∈D

∑

wj∈c

log (P (wj |w))

therein,

P (wj |w) =
exp

(
v (wj)

T · v (w)
)

∑
wj

′∈V exp
(
v (wj

′)T · v (w)
) (4)

3.2 TBWE-1

Since topics represent the ultimate factors underlying a token appearance in the
sequence, the correlation between topics can better model the semantic themes
evolution, which contributes to learning more meaningful word embeddings.

TBWE-1 extends the CBOW model by incorporating topic relevance weights
to learn word embedding, shown in Fig. 1(a). In order to utilize the weight matrix
filled with topic relevance values, TBWE-1 adopts the weighted sum operation to
calculate the input representation for target words during training. Incorporate
the weight matrix into Eq. 1:

I (c)tbwe =
1

2k − 1

∑

wj∈c

(
Θ

zt,zj
i · v (wj)

)
(5)

As introduced in Sect. 1, the Θ
zt,zj
i represents the semantic relevance weight

between topic zt and zj with distance i , which can be obtained by the Topic-
Bigram model [1]. However, the multinomial parameters ϑh,k

d of Topic-Bigram
model is associated with each trace d, so we aggregate over all topic-bigrams
in the corpus, i.e., Θh,k

1 =
∑

d∈C tf · ϑh,k
d , used as the weighting matrix after

normalizing.
Considering that topic-bigram model mainly estimates the relevance param-

eters between successive words, so the position distance of the corresponding
matrix is 1. To simplify this process, weighting matrix with different distance
will adopt the same values with Θh,k

1 when initialization.

3.3 TBWE-2

Similar to TBWE-1, TBWE-2 model incorporates the topic relevance weights
when estimating word prediction probability. Specifically, the conditional proba-
bility P (wj |w) integrates the corresponding topic relevance weights and position
distance between w and wj , shown in Eq. 6.
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P
(
wj |w, zw, zwj

)
=

exp
(
v (wj)

T · v (w) · Θ
zw,zwj

i

)

∑
wj

′∈V exp
(
v (wj

′)T · v (w) · Θ
zw,zwj

i

) (6)

where
(
zw, zwj

)
are the topic tags of word pair (w,wj), and the subscript i, the

position distance, determines the weighting matrix used.
We adopt the negative sampling optimization to further improve the train-

ing speed of TBWE-2. And the conditional probability integrates corresponding
topic relevance weight like:

p
(
u|w, zw, zwj

)
=

{
σ

(
v(w)T θuΘ

zt,zt+1
i

)
, Lu (w) = 1

1 − σ
(
v(w)T θuΘ

zt,zt+1
i

)
, Lu (w) = 0 (7)

where σ is the binomial logic regression, θu is the auxiliary vector, and Lu (w)
indicates whether u = wj or not. The other notations used here are the same
defined with [14].

3.4 Optimization and Parameter Estimation

In TBWE model, we first use the Topic-Bigram model [1] to obtain topic assign-
ments for each training token, and further estimate the topic relevance weights
with position distance being 1 to initialize the weighting matrix. For the con-
sideration of simplifying model, weighting matrices with different distances are
the same before training, the value of each item is corresponding to topic-pair
dependency weight, and then updated jointly with the word representations dur-
ing learning.

For efficiency purpose, we adopt the negative sampling technique during
training in both TBWE-1 and TBWE-2 model. Learning TBWE-1 model fol-
lows the similar optimization scheme as PWE model used in [9], and the key
issue for training TBWE-1 model is to calculate the derivatives of the topic rel-
evance weighting matrices, where the partial derivative with respect to the topic
relevance weight can be computed as:

∂Q (D)
∂Θ

zt,zt+j

i

=
∂Q (D)

∂I(c)tbwe
· v (wj) (8)

As for the update of topic relevance weights in TBWE-2, we propose to apply
the stochastic gradient ascent algorithm (SGA) for parameters learning, and
gradients are calculated using the back-propagation algorithm, the corresponding
partial derivatives of the objective function are:

∇ =
∂L (D)
∂Θzw,zw̃

i

= [Lw(u) − θuΘzw,zw̃
i ] · θu · v(w̃)T (9)

then, we could update the Θzw,zw̃
i by:

Θzw,zw̃
i = Θzw,zw̃

i + η · ∇ (10)

where u ∈ {w} ∪ NEGw̃ (w) and η is the learning rate. The update process
of other two key parameters θu, v (w̃) are similar to above. More details are
described in Algorithm 1.
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Algorithm 1. Negative Sampling of TWBE-2
Input: word w and context c, topic relevance Θ1

Output: word representations (v(w̃), w̃ ∈ c)
1: Determine the distance i of (w, w̃)
2: Initialize θu, v (w̃) , Θi

3: for w̃ ∈ c do
4: sampling NEGw̃ (w)
5: e1 ← 0, e2 ← 0
6: for u ∈ {w} ∪ NEGw̃ (w) do
7: q ← σ

(

v(w̃)T · θu · Θ
zu,zw̃
i

)

8: g ← η [Lw (u)] − q
9: e1 ← e1 + g · θu · Θ

zu,zw̃
i

10: e2 ← e1 + g · θu · v(w̃)T

11: θu ← θu + g · v(w̃) · Θ
zu,zw̃
i

12: end for
13: v(w̃) ← +e1
14: Θ

zu,zw̃
i ← +e2

15: end for

4 Experiments

4.1 Experimental Setup

Experimental Corpus: In this paper, we select the English Wikipedia Corpus1

to learn topic-bigram word embedding which includes about 1.28M articles and
26.5M tokens in total. In experiments, we test our proposed models in two tasks,
word analogy task and word similarity task, for performance evaluation. And we
use the analogical reasoning dataset SYN introduced by Mikolov [12] in word
analogy task which contains approximately 9 K semantic and 10.5 K syntactic
analogy questions. The word similarity task is tested on five evaluation sets:
MC [15], RG [20], WordSim-353 [4], SimLex-999 [5], SCWS [7] and RW [11], the
five datasets will be introduced in detail in following subsection.

Experiment Setting: We first learn topic assignments with Topic-Bigram
model for each token in the corpus, and topic number is set to T = 20 and
T = 50, to compare the effect of topic number, while iterative number being
I = 500. As for word embedding, we set the dimensions to 300, learning rate
is set to 0.025, and then test the effect of TBWE model with different parame-
ters, that is, the negative sample number and context window size. We use the
accuracy as a standard to evaluate the performance of word analogy task, and
compute the Spearman rank correlation coefficient between similarity scores in
the word similarity task for comparison.

We don’t conduct comparative experiments with TWE models, which
using the word representations to learning the topic representations and word

1 http://www.psych.ualberta.ca/∼westburylab/downloads/westburylab.wikicorp.
download.html.

http://www.psych.ualberta.ca/~westburylab/downloads/westburylab.wikicorp.download.html
http://www.psych.ualberta.ca/~westburylab/downloads/westburylab.wikicorp.download.html
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representations are same with baseline Skip-gram model, thus it is quite different
with our goal of integrating topical information into word representations.

4.2 Qualitative Analysis

In order to demonstrate the characteristics of each TBWE model, we first do
the qualitative analysis on a relatively smaller dataset and manually select the
most similar words of target words, batman, florida, turing, and dancing, those
have been analysed in dependency-based word embeddings [8]. As a comparison,
we also find similar words obtained using Skip-gram model with window size is
5, where the topic number in TBWE models is 20. The results are shown in
Table 1.

Table 1 shows that the proposed TBWE-2 model results in similar sets with
Skip-gram models while totally different results are obtained in TBWE-1 model
for target word batman. And dracula ranks beyond hollywood and comics in
TBWE-1, the most likely reason is the similarity of bats image. For target words
florida and turing, our results are trying to find words with more semantic

Table 1. Target words and the Top-5 nearest neighbour words introduced by different
embeddings

Target word Skip-gram TBWE-1 TBWE-2

batman superman superman superman

miniseries adventures smallville

smallville comedy bytb

starring animated animated

bytba dracula miniseries

florida oklahoma texas lakeland

nebraska arizona minnesota

fresno alabama jacksonville

lakeland michigan alabama

lauderdale virginia pasadena

turing unsolvable computation entscheidungsproblem

undecidable brasenose hodges

hodges planing undecidable

alonzo wayback halting

halting algorithm alonzo

dancing dance dance dance

dances blues dances

folk bluegrass folk

bluegrass folk reggae

tunes jazz tunes
a bytb stands for Batman Yesterday, Today and Beyond
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similarity. It’s evident that TBWE relfect more functional aspect to describe
what the target w is, similar distinction to [8]. This observation appears with
dancing as well, capturing words representing different dance style types, not
only associated. The qualitative analysis yields that the TBWE models can
better model the semantic relationships, as expected.

4.3 Syntactic Word Analogy Task

Given a word-pair 〈A,B〉 and a single word C, the analogy task [12] would
try to find the word D whose relationship with C is similar to 〈A,B〉. For
example, given the word-pair 〈Beijing, China〉 and word Japan, word Tokyo is
the correctest answer. In word embedding space, those words with the maximum
cosine similarity to v (B)−v (A)+v (C) are selected out being the correct answers
set, represented as TopN (ṽ). Only when the TopN (ṽ) set exactly includes the
answer word in evaluation set can the question be regarded as answered correctly.

We test the word analogy task on SYN dataset, and experiment with 4 train-
ing conditions, which are contexts with window size being 5 and 10, the number
of negative sampling being 10 and 20, and two different TBWE models that
TBWE-1a and TBWE-2a with 20 topics, TBWE-1b and TBWE-2b with 50
topics. The experimental results in Table 2 indicate that TBWE-2 model with
20 topics outperforms all other models. And the better performance of TBWE
models prove that topic dependency information is beneficial for learning word
embeddings. As for comparison with PWE, which incorporates Part-of-Speech
relevance weights for learning word embeddings, TBWE models achieve better
performance because they can capture more contextual semantic information in
sequence data based on Topic-Bigram models, while syntactic information can
also been described by topic clusters to some extent.

Of the two TBWE models with different topic number, it is unexpected
that TBWE model with less topic number achieves the better performance, the
most possible reason is that too many topics would weaken the intensity of the
dependency. Interestingly, when increasing the size of context window from 5
to 10, the performance improvement of TBWE-1 model is more obvious than
the other models, in which case, TBWE-1 model can make more effective use of
contextual semantic information. However, the advantages of negative sampling
are not so significant.

Table 2. The Accuracy of different models in analogy task

Parameters Models

Window Sampling CBOW Skip PWE TBWE-1a TBWE-2a TBWE-1b TBWE-2b

5 10 0.499 0.555 0.530 0.537 0.574 0.518 0.558

10 10 0.525 0.577 0.577 0.560 0.587 0.544 0.573

5 20 0.511 0.548 0.519 0.526 0.575 0.527 0.563

10 20 0.536 0.575 0.557 0.555 0.585 0.550 0.571
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4.4 Word Similarity Task

We test the word similarity task on five evaluation sets: MC [15], RG [20],
WordSim-353 ([4]), SimLex-999 [5], SCWS ([7]) and RW [11], which contain
30, 65, 353, 999, 1,762, and 2,034 pairs of words respectively. Furthermore, the
words in WordSim-353, MC, RG are mostly frequent words, while SimLex-999,
SCWS and RW have much more rare words and unknown words (i.e., unseen
words in the training corpus) than the first three sets [17].

Following the previous works, word similarity task is another classic task to
evaluate the performance of word embedding method. In this paper, we measure
the similarity of two words wi and wj by the Spearman’s rank correlation coeffi-
cient ρ2. Firstly, we test the models with different parameters on WordSim-353
dataset, and all the experimental results are given in Table 3. Then, in the fur-
ther comparison of same settings on different datasets, we set the context window
size and the number of negative samples to be 10, the final results are shown in
Table 4. The proposed TBWE model outperforms other baseline in word sim-
ilarity tasks, including PWE and basic Word2Vec models. This further proves
that integrating the topic dependency weights can better model the sequential
context patterns, and the relevance weights between topics are useful for word
embeddings.

Through comparison and analysis of the results, it can be found out that
the performance is not always improved along with the increase of contextual

Table 3. Performance of leveraging topic dependency on the word similarity task

Parameters Models

Window Sampling CBOW Skip PWE TBWE-1a TBWE-2a TBWE-1b TBWE-2b

5 10 0.560 0.588 0.606 0.613 0.673 0.570 0.639

10 10 0.597 0.572 0.632 0.641 0.657 0.598 0.661

5 20 0.565 0.630 0.609 0.634 0.639 0.569 0.645

10 20 0.610 0.617 0.626 0.607 0.659 0.589 0.657

Table 4. Performance on different datasets, both the context window size and number
of negative sampling are set to 10

Models

Datasets CBOW Skip PWE TBWE-1a TBWE-2a TBWE-1b TBWE-2b

RG 0.609 0.521 0.582 0.604 0.632 0.582 0.628

RW 0.314 0.373 0.355 0.345 0.366 0.333 0.374

MC 0.619 0.671 0.614 0.648 0.693 0.558 0.649

SCWS 0.608 0.629 0.646 0.639 0.647 0.620 0.645

SimLex-999 0.257 0.323 0.318 0.321 0.337 0.295 0.327

2 https://en.wikipedia.org/wiki/Spearman%27s rank correlation coefficient.

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient
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window size when keeping other parameters constant, and same scenario also
occurs when increasing the number of negative samples. However, the TBWE-
2 model still achieves the best performance with different topic numbers. The
reason for the better performance may because that TBWE-2 model, which
is based on Skip-gram model, can absorb the dependency information better,
so we believe the TBWE-2 model can achieve better performance given more
dependent data for learning.

4.5 Compliexity Analysis

Compared with the typical CBOW and Skip-gram model, the TBWE model
does not modify the basic architecture for word embedding learning, only inte-
grates the needed weighting matrix of topic relevance to incorporate contextual
semantic dependency into training explicitly. The number of additional param-
eters is win × |K| × |K|, where win indicates the window size of context, and
K is the number of topics. As a contrast, the total parameters in TBWE model
is less than in TWE model (K + V ) × e. In CBOW and Skip-gram model, the
model parameters are O (e × V ), where the e is the vector dimension and V is
the vocabulary size. Considering that V is far bigger than K, TBWE model can
still guarantee the efficiency of model training.

In computational complexity, we continue to adopt the same optimization
strategy with PWE model during training in TBWE model, our models consider
both contextual topic correlation weights and position information for calculat-
ing the conditional probability, rather than the Part-of-Speech relevance weights.
Compared with typical embedding models, TBWE models require additional
parameters to record the contextual semantic information, but the computa-
tional complexity does not increase too much relatively. Note that we don’t take
the overhead of Topic-Bigram model into account.

5 Conclusion and Future Work

In this paper, we proposed a topic-bigram enhanced word embedding model,
which learns word representation with the auxiliary knowledge about topic
dependency weights. Topic relevance value in the weighting matrices is incor-
porated into word-context prediction process during the training. And we evalu-
ate our TBWE model on two typical tasks including syntactic word analogy and
word similarity tasks. The experimental results show that our models outperform
baseline models.

In the further research, we are going to consider to combine the syntactic
and semantic knowledge together to learn more informative word embeddings,
incorporating POS relevance weights into TBWE model in a more efficient way.
And we want to evaluate the model in different topic numbers and data size.
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Abstract. Translating traditional documents is quite laborious and time con-
suming for human translators owing to the voluminous nature and a complexity
of grammatical patterns. In recent times, a neural network-based machine
translation architecture such as sequence-to-sequence (seq2seq) model showed
superior performance in translation. However, it suffers out-of-vocabulary
(OOV) issue when dealing with very complex and vocabulary languages such as
Chinese characters, resulting in performance degradation. To cope with the
OOV issue, we propose a new method by combining word embedding and
character embedding to supplement loss from unknown words with character
embedding. Experimental results show that the proposed method is efficient to
translate old Korean archives (Hanja) to modern Korean documents (Hangul).

Keywords: Neural machine translation � Deep learning
Natural language processing � Seq2seq � Character-word embedding

1 Introduction

Understanding traditional documents is very important and meaningful in historical and
cultural context. Now, various national and private institutions are investing enormous
budgets to train the analysis specialists. However, it takes lots of time and budget to
build an expert group who can translate old archives into modern language. Moreover,
most of the old records in Korea were written in Chinese which were introduced to
Korea about 2000 years ago and changed into various forms through era. Even if the
experts are trained, since various languages of Northeast Asia are mixed with different
languages such as Bengali, Sanskrit, Mongolian, and Koranic, it is even difficult for the
experts to understand them completely. Unfortunately, the recent decline of interests in
traditional record researches and the aging of researchers has become a serious prob-
lem, and the analysis of traditional records will become more difficult in future.

A neural network-based machine translation model (Neural Machine Translation,
NMT) can be a solution to overcome those problems. It is composed of two recurrent
neural networks (RNN) that serve as encoder and decoder. It is called as Sequence-To-
Sequence (seq2seq) models that show the state-of-the-art performance in machine
translation. It can learn the mapping relationships between input and output languages
through end-to-end learning.
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However, this approach also has problem in dealing with languages with a very
large number of word units such as Chinese. For example, while the size of the
trainable word embedding matrix is limited, the number of words in Chinese is so
numerous. So, there is a high probability with many unknown words. Since all of these
unrecognized words are treated as unknown in the seq2seq model, they may have the
same meaning even if they are completely different meaning. This phenomenon makes
lowers translation performance as well as learning difficulty. This is called the out-of-
vocabulary (OOV) problem (Fig. 1).

There have been various studies to solve OOV problem in natural language pro-
cessing. Santos and Guimaraes (2015) got the state-of-the-art results in Portuguese and
Spanish corpus by applying character-level embedding to named entity recognition
problems along with word embedding [1]. Kim et al. (2016) showed a positive result
by constructing a neural language model using only character embedding [2]. Ma et al.
(2016) utilized several embedding techniques, including character trigrams, to learn
pre-learned label embedding in named entity recognition [3].

As word is a combination of individual characters, character embedding naturally
can cope with OOV issues. In general, the text consists of a combination of not only
words but also letters, and the meaning of the words corresponds to the composition of
the characters (e.g. Chinese). So, character-level approach is natural choice to avoid
additional word segmentation issue (Chen et al. 2015a) [4]. Therefore, applying deep-
learning techniques to the complex languages tend to favor character embedding over
word embedding (Zheng et al. 2013) [5].

In this study, to cope with OOV issues, we propose a new approach by combining
word embedding and character embedding to supplement loss from unknown words
with character embedding. Our method can improve the translation performance in the
existing seq2seq based model. To this end, we implement a NMT system based on the

Fig. 1. LSTM unit
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structure of ‘seq2seq-with-attention’ model which is trained using traditional literature
of the Choson Dynasty corpora.

2 Related Works

2.1 Long Short-Term Memory (LSTM)

Recurrent neural network (RNN) has feedback loops to store memory which is
important for sequential data. LSTM [6], a popular memory unit for RNN, enables
training with very long sequential data by applying gating mechanism, to reduce long-
term dependency problem.

Gating mechanism used in LSTM can be represented as follows:

it ¼ r Wxixt þWhiht�1 þ bið Þ ð1Þ

ft ¼ r Wxf xt þWhf ht�1 þ bf
� � ð2Þ

ot ¼ r Wxoxt þWhoht�1 þ boð Þ ð3Þ

gt ¼ tanh Wxcxt þWhcht�1 þ bcð Þ ð4Þ

ct ¼ ft � ct�1 þ it � gt ð5Þ

ht ¼ ot � tanh ctð Þ ð6Þ

where r denotes the sigmoid function 1þ e�xð Þ�1 which squashes real-value within a
range [0, 1], ‘�’ means Hadamard product. When an input xt is given at time t, input
gate it, forget gate ft, output gate ot and cell candidate (input modulation gate) gt are
calculated. If the current input has more important information compared to the pre-
vious input, then it would be close to 1 and ft would be close to 0 that makes LSTM
forget previous data and updates based on the current input. By incorporating this
mechanism, LSTM selectively stores information from long sequential data and pre-
vents long term dependency problem.

2.2 Sequence-to-Sequence Model

The basic seq2seq model consists of two recurrent neural networks that serve as
encoder and decoder. The encoder transforms the input sentence into a thought vector,
and the decoder generates the sentence from the thought vector by refining the
prominent element in the semantic expression of the input sentence [7].

The Seq2seq model uses a memory element such as a long short-term memory
(LSTM) or a gated recurrent unit (GRU) as a unit cell of the recurrent neural network to
solve the long-term dependence problem of a long sequence inputs. This memory
element learns how to manage internal information of a memory element to process a
given sequential input [8]. The training of seq2seq model is done by gradient descent to
minimize time averaged cross-entropy loss between the actual and generated words
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probability distribution. In this process, the learning of the gate parameters involved in
the internal information management of each memory element is performed.

3 Proposed Model

When translating Chinese characters, the vanilla seq2seq model has limitations in two
aspects. The first limitation is that the seq2seq model only understands the sentence in
the forward direction. (1) The Chinese sentences can have a completely different
meaning depending on the arrangement of the words, or (2) the meaning of the word
does not change, but the word arrangement is modified to emphasize the meaning. If
the sentence to be translated has a problem that corresponds to (1), there is no problem
in using the basic model. However, in case of (2), the seq2seq model is likely to output
a completely different translation result. Therefore, the proposed model constructs an
encoder of bi-directional recurrent neural network structure so that the sentence can be
understood in the forward and backward direction.

The second limitation is that the decoder of the basic seq 2seq model generates a
sentence using only one thought vector. There is a limitation in that the encoder can
refine the semantic expression of a sentence and compress it into a vector of a limited
size. Therefore, if the input sentence is long, the translation performance can be
adversely affected [9]. Therefore, the proposed model solves those limitations by
applying attention mechanism [10].

We also combine word embedding with character embedding. The word embed-
ding consists of the proper nouns extracted from the translation corpora, and the
character embedding consists of other characters.

3.1 Hybrid of Word and Character Embedding

Unlike English, Chinese is a language written in characters rather than words. Most
proper nouns in Chinese are only meaningful when the characters are combined. So
extracting proper nouns is an important task to handle very complex and huge
vocabulary languages such as Chinese characters. Therefore, constructing a word
dictionary by distinguishing proper nouns not only reduces unnecessary character
embedding processes, but also helps learning by reducing the input sequence length.

For Chinese, we extracted the proper nouns by filtering based on parentheses which
are one of the notations for specifying the proper nouns in the translation corpora we
have.

For Korean, after eliminating both Chinese characters and special characters, word
segmentation was performed using a morpheme analyzer, and a dictionary was con-
structed. The Korean morphological analyzer used in the experiment provides a POS
tagging function for proper noun. This function was used to extract proper nouns.

In this paper, we propose a new method by combining word embedding and
character embedding, which learns both proper nouns and non-proper noun word
embedding. This method is effective in reducing language redundancy by separating
proper nouns from a group of characters. In addition, we cope with the OOV problem
by supplementing the meaning of unknown proper nouns with character embedding.
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3.2 Attention Mechanism

Attention mechanism provides a method that allows the decoder to peek at the hidden
states computed in the encoder. In other words, attention makes it possible to treat them
as a dynamic memory of the input information. By doing, attention mechanism can
improve the performance for longer source sentences [10].

Attention mechanism can be summarized as three equations as follows:

ats ¼
exp score ht; hs

� �� �
PS

s0¼1 exp score ht; hs0
� �� � ð7Þ

ct ¼
X

s
atshs ð8Þ

at ¼ f ct; htð Þ ¼ tanh Wc ct; ht½ �ð Þ ð9Þ

We compare each target and source hidden states (ht and hs) and normalize 0 to 1
using Softmax. This normalized value is “attention weight” representing the relevance
between each source and target hidden state as shown in Eq. (7). And then, we get
weighted average of source states. This value is “context vector” ct in Eq. (8). Lastly,
we concatenate context vector and target hidden state, and apply projection and pass to
tanh activation. This value is “Attention Vector” at containing information of current
attention decisions in Eq. (9).

4 Experiments

The experiment verifies the validity of the proposed method by comparing with only
character embedding and combining word embedding and character embedding after
proper noun extraction. Comparisons for experiments are made under the same
conditions.

4.1 Dataset

The training data are collected from http://db.itkc.or.kr. The parallel corpus consists of
a sentence composed of Chinese characters and a sentence translated into modern
Korean. The total number of samples is 413,916 but only 223,387 samples with the
token length of 100 or less are selected for experiment. The tokenization process is
performed to construct the word dictionary of Chinese and Korean. The Chinese
characters are basically separated by one character, but words inside the parentheses
signifying the proper nouns are treated as a single word. In case of Korean, word
segmentation is performed using the KKMA morpheme analyzer [11] provided in
KoNLPy Python package.

After performing the tokenization process, a word dictionary for the token found in
the training data is constructed. The word dictionary additionally includes
a <PAD> token for padding, a <UNK> token for a word that does not exist in the

86 H. Yu et al.

http://db.itkc.or.kr


words dictionary, and an <EOS> token to indicate the end of the sentence. Each word
in the words dictionary is converted into an index in the words dictionary of the word.

4.2 Implementation Details

The encoder-decoder has two layers of 1,024 units of LSTM each, and the encoder uses
a bi-directional RNN structure. In order to train alignment between two different lan-
guages, the attention mechanism is applied to the entire input sentence. The initial state
of the encoder is initialized to zero and all initial weights are set to a uniform distri-
bution of [−0.01, 0.01]. We set the batch size as 64, vocabulary size as 40K, the
dimension of the embedding vector as 300, and the dimension of the attention unit as
512. In addition, to prevent learning deterioration due to the imbalance of the length of
sentences in the batch, buckets are constructed by grouping the data according to the
sentence length, and learning is performed separately for each bucket. The translation
model is learned by the Adam optimizer with the initial learning rate of 1e−4.

4.3 Results and Discussion

Table 1 shows translation scores of the proposed method compared to character
embedding method only. In case of using only the character embedding, the embedding
matrix for unit Chinese character is trained without the proper noun ex-traction process
for the Chinese characters. BLEU [12], ROUGE-L [13], and METEOR [14] scores are
used for quantitative performance evaluation of translation performance. Based on
these results, we claim that our method helps improve the translation performance.

5 Conclusion

We separated proper nouns from whole group of characters through proper noun
extraction process, which can reduce the language redundancy as well as length of
sequences. By virtue of combining the character embedding and the word embedding,
we can complement meaning loss in each embedding method to cope with the OOV
problem to some extent.

However, learning embedding matrices to complement each other by combining
character-word embedding is not a fundamental solution to the OOV problem. It may
not be covered by both of embedding methods when the embedded matrix does not
have enough size. Hence, hierarchical embedding with a stroke-character-word struc-
ture is required. In other words, it would be useful approach for considering the stroke-
level embedding and word-character level embedding to complement a meaning loss,
which will be investigate in near future.

Table 1. Translation scores on the Choson dynasty documents.

Condition BLEU-4 ROUGE-L METEOR

Only character embedding 0.1732 0.3894 0.2113
Combine character & word embedding (proposed) 0.2561 0.5582 0.3031
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Abstract. Word embedding, which encodes words into vectors, is an
important starting point in natural language processing and commonly
used in many text-based machine learning tasks. However, in most cur-
rent word embedding approaches, the similarity in embedding space is
not optimized in the learning. In this paper we propose a novel neighbor
embedding method which directly learns an embedding simplex where
the similarities between the mapped words are optimal in terms of min-
imal discrepancy to the input neighborhoods. Our method is built upon
two-step random walks between words via topics and thus able to better
reveal the topics among the words. Experiment results indicate that our
method, compared with another existing word embedding approach, is
more favorable for various queries.

Keywords: Nonnegative matrix factorization · Word embedding
Cluster analysis · Doubly stochastic

1 Introduction

In recent years machine learning (ML) that involves text data has found many
real-world applications [6,11,13]. Each data item in these applications is a
sequence of words and other tokens. Originally each word is represented by its
ID. However, this is not suitable for machine learning, where most common ML
algorithms admit vectors as their input. One-hot encoding is inefficient when the
vocabulary is large. Therefore word embedding which finds a low-dimensional
vectorial representation of words is a fundamental starting point.

A good word embedding method should respect the relations among the
words. It is commonly to learn an embedding vector space where the neighbor-
hoods of the words are approximately preserved. Two typical approaches include
Word2Vec [8] which maximizes the likelihood of each word given their neighbors
(or in the reversed way) and GloVe which minimizes a weighted squared loss
between the input and output pairwise relations. Some variants of Word2Vec
and GloVe have been proposed subsequently [3,5,12].
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However, embeddings learned by the above approaches may not provide opti-
mal similarities between the words. After the word vectors are obtained, their
pairwise similarities require external measures such as cosine similarity, which
can be suboptimal because the learning objective involves non-normalized word
vectors. Moreover, the negative sampling trick in Word2Vec provides only an
approximating surrogate. Theoretically it remains unknown whether the ad hoc
choice of negative distribution guarantees that the original CBOW or Skip-Gram
objectives are optimized or not.

In this paper we present a new nonnegative matrix factorization (NMF)
method and apply it to learn vectorial representation of words. Our method fac-
torizes the doubly stochastically constrained approximating matrix. In this way
we directly optimize over the normalized word vectors and provide their optimal
similarities in the embedding space in terms of least approximation discrepancy.
Unlike Word2Vec, our method does not require extra stochastic approximation
tricks or assumptions on negative distributions. We test our method on two
popularly used text data sets and compare it with the Word2Vec results. Our
results indicate that the proposed method is often more favorable for various
k-nearest-neighbor queries.

The remaining of the paper is organized as follows. In Sect. 2 we review
the word embedding problem and two existing embedding methods. Next we
present our new NMF method and show how to apply it to learn probabilistic
representation of words in Sect. 3. Our optimization algorithm is presented in
Sect. 4. Experimental setting and results are presented in Sect. 5. Then in Sect. 6
we conclude the work and discuss some future directions.

2 Brief Review of Previous Word Embedding Methods

A text corpus can be treated as a sequence of words and some other tokens such
as punctuations. Originally each word is represented by their id in the vocabu-
lary. Because many modern machine learning methods admit vectors as input,
conventionally the word ids are converted into their one-hot encodings. That
is, the i-th word in the N -sized vocabulary is represented by an N -dimensional
vector with the i-entry is 1 and the others are zeros. Obviously, such one-hot
encoding is inefficient when N is large. A low-dimensional (r-dim with r � N)
vector encoding, called word embedding, is needed for more efficient learning
tasks.

Word embeddings should respect the proximity of words in the original
sequence. A common requirement is that if two words often appear nearby, their
mapped points in the embedding space should be close. On the other hand, if
two words seldom co-occur in the same neighborhood, they should be placed
distantly in the embedding.

One way to implement the above requirement is to maximize the likelihood
of a language model. For example, the Word2Vec Skip-Gram method finds the



92 D. Sedov and Z. Yang

vectors {wt}Nt=1 of the words which maximizes

L({wt}Nt=1) =
1
T

T∑

t=1

∑

j∈N (t)

log P (wordj |wordt) , (1)

where N (t) is the neighborhood of location t and the conditional likelihood is
defined as

P (wordj |wordt) =
exp

(
wT

j wt

)
∑N

i=1 exp
(
wT

i wt

) (2)

Another approach is to approximately preserve the probability that a word
appears in the neighborhood of another word. For example, GloVe implements
the approximation by minimizing a weighted squared loss [9], assuming log-
normal noise in the observed neighboring frequencies.

3 Low-Rank Doubly Stochastic Matrix Decomposition

Although Word2Vec and GloVe are widely used, they do not provide a metric
in the embedding space for retrieval. Cosine similarity as a conventional choice
in natural language processing is often used to calculate, for example, k-nearest
neighbors of a query in the embedding space. However, the cosine similarities
between words are not optimized during the embedding learning. Therefore the
retrieval based on such an external metric may not respect the original data
distribution.

We observe that the mismatch arises mainly because the word vectors are
not normalized in the learning objective, but they are normalized in the metric
for retrieval. To overcome this problem we propose to use a new learning objec-
tive which explicitly involves the normalized word vectors. First, we employ the
doubly stochasticity constraint to normalize the similarities in the embedding
space, which enforces that each row or column of the output similarity matrix
has unitary sum. This means each word in the embedding space has equal total
similarity and denoises the imbalanced effect in the input space. Second, we find
a low-rank nonnegative matrix which factorizes the doubly stochastic matrix,
which significantly reduces the dimensionality of word vectors. Our optimiza-
tion is based on multiplicative updates which are widely used in nonnegative
matrix factorization (see Sect. 4).

Let W be the word embedding matrix (rows as word vector codes). It has
been shown that the above factorization problem can be reformulated as follows
(see Theorem 1 in [14]):

minimize
W≥0

J (W ) = D(S||Ŝ) (3)

subject to Ŝij =
r∑

k=1

WikWjk∑
v Wvk

, (4)

r∑

k=1

Wik = 1, i = 1 . . . , N. (5)
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Here D() is an information divergence measuring the discrepancy between
between the input and output proximities S and Ŝ. We adopt the Kullback-
Leibler divergence

D(S||Ŝ) =
N∑

i=1

N∑

j=1

(
Sij log

Sij

Ŝij

− Sij + Ŝij

)
(6)

because it accounts for Poisson noise and thus better for sparsity in S.
The doubly stochastic similarity matrix Ŝ in embedding space provides

a probabilistic interpretation. Let Wik = P (topick|wordi), the probability of
assigning the ith data object to the kth topic. Without preference to any par-
ticular word, we impose a uniform prior P (wordj) = 1/N over the words. With
this prior, we can compute by the Bayes’ formula

P (wordj |topick) =
P (topick|wordj)P (wordj)∑N

v=1 P (topick|wordv)P (wordv)
(7)

=
P (topick|wordj)∑N
v=1 P (topick|wordv)

. (8)

Then we can see that

Ŝij =
r∑

k=1

WikWjk∑N
v=1 Wvk

(9)

=
r∑

k=1

P (topick|wordj)∑N
v=1 P (topick|wordv)

P (topick|wordi) (10)

=
r∑

k=1

P (wordj |topick)P (topick|wordi) (11)

=P (wordj |wordi). (12)

That is, if we define a bipartite graph with the words and topics as graph nodes,
Ŝij is the probability that the ith word node reaches the jth word node via a
topic node (see Fig. 1). It is easy to verify that Ŝij = Ŝji. Therefore the output
similarity matrix Ŝ is doubly stochastic.

4 Optimization

We implement the optimization in Eqs. 3 to 5 by multiplicative updates. To
minimize an objective J over a nonnegative matrix W , we first calculate the
gradient and separate it into two nonnegative parts (∇+

ik ≥ 0 and ∇−
ik ≥ 0):

∇ik
def=

∂J
∂Wik

= ∇+
ik − ∇−

ik. (13)
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Fig. 1. Word-Topic bipartite graph for N words and r topics (r < N). The arrows
show a Word-Topic-Word random walk path, which starts at the ith word node and
ends at the jth word node via the kth topic node.

Usually the separation can easily be identified from the gradient. Then the algo-
rithm iteratively applies a multiplicative update rule

Wik ← Wik
∇−

ik

∇+
ik

(14)

until convergence. Such algorithms have several attractive properties, as they
naturally maintain the positivity of W and do not require extra effort to tune
learning step size. For a variety of NMF problems, such multiplicative updates
monotonically decrease J after each iteration and therefore W can converge to
a stationary point [15].

We cannot directly apply the above multiplicative fixed-point algorithm to
the proposed learning objective because there are probability constraints on the
W rows. Projecting the W rows to the probability simplex after each iteration
would often lead to poor local minima in practice.

Instead, we employ a relaxing strategy [18] to handle the probability con-
straint. We first introduce Lagrangian multipliers {λi}Ni=1 for the constraints:

L(W,λ) = J (W ) +
∑

i

λi

(
r∑

k=1

Wik − 1

)
. (15)

This suggests a preliminary multiplicative update rule for W :

W ′
ik = Wik

∇−
ik − λi

∇+
ik

, (16)
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where

∂J
∂W

=
[(

WTZW
)
kk

s−2
k

]
︸ ︷︷ ︸

∇+
ik

− [
2 (ZW )ik s−1

k

]
︸ ︷︷ ︸

∇−
ik

, (17)

with Zij = Sij/Ŝij and sk =
∑N

v=1 Wvk. Imposing
∑

k W ′
ik = 1 and isolating λi,

we obtain

λi =
bi − 1

ai
, (18)

where

ai =
r∑

l=1

Wil

∇+
il

, and, bi =
r∑

l=1

Wil
∇−

il

∇+
il

. (19)

Putting this λ back in Eq. 16, we obtain

Wik ← Wik
∇−

ikai + 1 − bi

∇+
ikai

. (20)

To maintain the positivity of W , we add bi to both the numerator and denom-
inator, which does not change the fixed point and gives the ultimate update
rule:

Wik ← Wik
∇−

ikai + 1
∇+

ikai + bi
. (21)

The above calculation steps are summarized in Algorithm 1. In implementation,
one does not need to construct the whole matrix Ŝ. The ratio Zij = Sij/Ŝij only
requires calculation on the non-zero entries of S.

The above algorithm obeys a monotonicity guarantee provided by the fol-
lowing theorem.

Theorem 1. Denote Wnew the updated matrix after each iteration of Algo-
rithm1. It holds that L(Wnew, λ) ≤ L(W,λ) with λi = (bi − 1)/ai.

The proof follows the Majorization-Minimization procedure [4,15,16] and is a
direct corollary of Theorem 2 in [14]. The theorem shows that Algorithm 1 jointly
minimizes the approximation error and drives the rows of W towards the prob-
ability simplex. The Lagrangian multipliers are adaptively and automatically
selected by the algorithm, without extra human tuning effort. The quantities bi
are the row sums of the unconstrained multiplicative learning result, while the
quantities ai balance between the gradient learning force and the probability
simplex attraction. Besides convenience, we find that this relaxation strategy
works more robustly than the brute-force projection after each iteration.
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Algorithm 1. Optimization algorithm of our method
Input: input similarity matrix S, number of topics r, positive initial guess of W .
Output: word embedding matrix W (rows as word vectors).
repeat

̂Sij =
r

∑

k=1

WikWjk
∑

v Wvk

Zij = Sij/̂Sij

sk =
∑N

v=1 Wvk

∇−
ik = 2 (ZW )ik s

−1
k

∇+
ik =

(

WTZW
)

kk
s−2
k

ai =

r
∑

l=1

Wil

∇+
il

, bi =

r
∑

l=1

Wil
∇−

il

∇+
il

Wik ← Wik
∇−

ikai + 1

∇+
ikai + bi

until W converges under the given tolerance

5 Experiments

To compare the performance of our method with Word2Vec, we train word
embeddings on two publicly available datasets and then construct k-nearest
neighbor tables for specific word queries. Finally, we perform qualitative anal-
ysis on these tables and show that our method is better at capturing semantic
relation between the words. The codes used in the experiments are available
online1.

Both training datasets used during the experiments represent a collection of
English Wikipedia articles. The first dataset is WikiText-2 [7], which consists of
2.5M tokens with 33K words in the vocabulary. We also include text8 dataset2,
which is almost 7 times larger than WikiText-2 and consists of 17M tokens and
254K words in the vocabulary. During the experiments, we used only top 20K
most frequent words for both datasets.

For fair comparison, we followed the same default setting in the original ver-
sion of Word2Vec3. Both methods are trained on the same set of vocabulary
words, the word embedding dimension is set to 200 and the size of word neigh-
borhood equals to 8.

The results for WikiText-2 dataset are presented in Table 1. We can see that
sometimes word neighbors produced by Word2Vec are not close semantically to
the query words, whereas our method was able to produce much better results.
For example, for the word “asteroid” the proposed method produces words like

1 https://users.aalto.fi/∼sedovd1/Matrix decomp WE/.
2 http://mattmahoney.net/dc/textdata.html.
3 https://github.com/tmikolov/word2vec.

https://users.aalto.fi/~sedovd1/Matrix_decomp_WE/
http://mattmahoney.net/dc/textdata.html
https://github.com/tmikolov/word2vec
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Table 1. Seven nearest neighbors for WikiText-2 dataset using: (top) our method and
(bottom) Word2Vec.

Word Neighbors

camera footage, shots, shooting, screen, shoot, setting, showing

zoo gorillas, bars, spiders, exhibit, Pattycake, sharing, lowland

literature literary, poets, languages, language, writings, tradition, references

moon observations, observation, Venus, solar, transit, measurements,
atmosphere

coin coins, dollar, dollars, Mint, purchase, fund, costs

leather silk, cloth, wrapped, manufactured, mud, synthetic, mills

cold warm, heat, exposed, hot, winter, falling, dry

spring winter, summer, kept, fall, brief, Over, arrival

queen ruler, mentions, kings, supreme, throne, kingdom, succession

asteroid planets, probe, orbit, spacecraft, NASA, Solar, orbits

Word Neighbors

camera reggae, synthesizers, backup, retro, boots, carriage, bouncing

zoo griffin, Avis, Reader, headpiece, earthworks, Sleat, Owl

literature Kannada, writings, Fu, tradition, poets, Vaishnava, historical

moon skeletal, reactivity, equilibrium, sodium, spectral, infrared, triangular

coin dollar, convention, solution, price, potential, program, annular

leather twigs, pipes, longitudinal, bags, triangular, tapered, gum

cold curved, snow, reaches, beak, rough, bars, loop

spring autumn, 1900s, 1940s, 1880s, 1870s, 2000s, 1800s

queen Blanche, Wentworth, diplomat, bodyguard, mathematician, relates, prince

asteroid molecule, insect, orientation, isotope, triangle, undirected, flash

“planets”, “orbit” and “spacecraft”, which are all related to cosmos, whereas
Word2Vec yields words like “molecule”, “insect” and “orientation” that share
very little in common. Moreover, it shows that the performance of Word2Vec
can be quite poor for small datasets.

Table 2 shows the results for text8 dataset. We can see that the increase
in text corpus size helps to obtain more meaningful embeddings. However,
Word2Vec tends to produce rather rare and specific neighbors for the query
words, whereas our method produces more common words. For example in case of
Word2Vec, the closest neighbors to the word “dracula” are “stoker” and “bram”,
which constitute the name of the author, who wrote the corresponding novel,
as well as “lugosi” and “bela”, which are related to the name of the actor por-
traying Dracula. On the other hand, by using our method, the close neighbors
consist of the words “frankenstein” and “godzilla”. These three words constitute
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Table 2. Seven nearest neighbors for text8 dataset using: (top) our method and
(bottom) Word2Vec.

Word Neighbors

green blue, red, white, yellow, black, color, brown

airport railway, rail, downtown, airlines, traffic, train, metropolitan

celebrity interviews, credits, kids, favorite, talent, joy, charity

microsoft windows, operating, apple, mac, os, dos, macintosh

ancient greek, middle, historical, pre, latin, medieval, tradition

byzantine emperors, dynasty, ottoman, conquered, constantinople, conquest, rulers

roman empire, church, catholic, holy, eastern, christian, ancient

dinosaur dinosaurs, prehistoric, fossils, habitat, insect, specimen, elephants

dracula frankenstein, vampire, noir, adaptations, godzilla, cyberpunk, horror

godzilla sequel, monsters, monster, adventure, anime, horror, robot

Word Neighbors

green shade, lantern, purple, onion, violet, herring, panther

airport heathrow, ferry, destinations, monorail, airline, flights, hub

celebrity britney, quiz, vh, listings, portrayals, futurama, syndicated

microsoft novell, xp, excel, hypercard, borland, netscape, macromedia

ancient hellenistic, etruscan, sumerian, vedic, mycenaean, phoenician, hellenic

byzantine achaemenid, seleucid, assyrian, justinian, hittite, heraclius, frankish

roman byzantine, frankish, aztec, claudian, gaius, aurelius, seleucid

dinosaur mammal, reptiles, lizard, dodo, zebra, bipedal, skeleton

dracula stoker, bram, vampire, lugosi, bela, poirot, remake

godzilla lugosi, toho, miniseries, bela, remake, akira, highlander

the group of the iconic horror movie monsters and are well associated with each
other.

6 Conclusion

We have proposed a new word embedding method which is based on low-rank
decomposition of doubly stochastic similarity matrix in the embedding space.
Unlike previous approaches, our method provides not only the low-dimensional
word vectors but also their pairwise similarity metric for subsequent applications
such as retrieval. The resulting similarities are explicitly optimized in terms of
least Kullback-Leibler divergence to the input similarity matrix. We have pro-
posed an optimization algorithm based on multiplicative updates for minimizing
the presented cost function. Experiment results have shown that our method
works better for two selected text corpora compared to the state-of-the-art word
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embedding method in terms of providing more meaningful k-nearest neighbors
in the embedding space.

There are several future directions. In this work we have used a batch-
mode optimization algorithm, which could be replaced by using distributed and
stochastic learning techniques, for example co-distillation [1], towards a more
scalable and more efficient method. We could also incorporate Bayesian treat-
ment of the embedding vectors, for example, using Dirichlet priors [10,14] and
automatic rank determination [17]. Moreover, the discrepancy between input
and output proximity matrices could be replaced by other learnable information
divergence [2]. In addition, our methods is ready to be applied in other domains,
for example, finding the embedding vectors of k-mers in DNA sequences.

Acknowledgment. The work is supported by Finnish Academy (grant numbers
307929 and 314177) and the Telenor-NTNU AI Lab project.
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Abstract. The prosperous online music streaming industry makes per-
sonalized music recommendation a topic worthy of extensive study. Tra-
ditional music recommendation techniques which are based on conven-
tional collaborative filtering or acoustic content features usually sufffer
from data sparsity or time-consuming computation problems, respec-
tively. In fact, online music services not only generate listening history
for each user but also accumulate a large amount of heterogeneous data
including performers, tags, ownerships and so on. Capturing underlying
user preference from the heterogeneous data to enhance music recom-
mendation is transparently promising, because on one hand these data
can mitigate the sparsity of listening history while incorporating them
into recommendation model is computationally affordable. To this end,
in this paper we propose a novel music recommendation approach. It first
models the music system as a heterogeneous music graph. Then, to make
full use of the heterogeneous data, carefully designed meta-paths are used
to dig up the information lying in the graph. Finally, we learn user pref-
erences through a combination of Bayesian Personalized Ranking model
and heterogeneous embedding representation learning. Extensive experi-
mental analysis on real-world public dataset validates that the proposed
approach outperforms the baselines, especially on cold start users.

Keywords: Music recommendation · Heterogeneous graph
Meta-path · Embedding learning

1 Introduction

With the rapid development of online music platforms, the digital music industry
now accounts for more than 50% of the global music revenue, 59% of which is
streaming in contrast to downloads [13]. To meet the great commercial demand,
the novel online personalized music recommendation service is urgently to be
developed. Traditional recommendation systems which are usually based on lis-
tening history or acoustic content features are often limited by the data sparsity
and time-consuming computation problems, leading to a degradation in recom-
mendation quality. Actually, online music services not only generate listening
c© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11303, pp. 101–113, 2018.
https://doi.org/10.1007/978-3-030-04182-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04182-3_10&domain=pdf
https://doi.org/10.1007/978-3-030-04182-3_10


102 Q. Fang et al.

history for each user but also accumulate a large amount of heterogeneous data
including performers, tags, and ownerships, which are shown in Fig. 1. Accord-
ing to the recent study [12], people tend to express themselves and make claims
about their identities through listening preferences, which are often reflected by
the attributes of songs like tags. Consequently, capturing underlying user pref-
erence from the heterogeneous data to enhance music recommendation is trans-
parently promising. Besides, there are two advantages to make full use of these
heterogeneous data. One hand, they can act as the auxiliary information to com-
plement the listening history, which could mitigate the data sparsity problem.
On the other hand, compared with extracting acoustic content features from a
large scale of audio sources, it is computationally affordable to incorporate these
metadata into the recommendation model.

User

Song

Ar st

Tag

Album

own

listen

label

mark

perform

Fig. 1. Heterogenous music graph

Existing studies [7,18,19] based on heterogeneous graphs encode different
kinds of information in the music system as well. However, they either only
pay attention to the explicit links without discovering latent interactions or are
time-consuming (e.g. attempting to exhaust all patterns in a complex graph). In
fact, if we explore the heterogeneous graph with empirically designed patterns
and then capture both the explicit and implicit information with techniques
like embedding representation learning, the recommendation is more likely to be
improved.

To this end, in this paper, we present a novel music recommendation app-
roach which learns user preference via meta-path based heterogeneous graph
embedding. Methodologically, the proposed approach first models the music
recommender system as a heterogeneous music graph. To uncover the under-
lying information hiding in the interactions among different types of entities
and edges, carefully designed meta-paths [16], which could characterize compos-
ite relations between users and songs, guide the random walks to explore the
graph by generating heterogeneous node sequences which are called preference
corpus. Inspired by the success of network embedding [6], we finally learn user
preferences through a combination of Bayesian Personalized Ranking model and
heterogeneous embedding representation learning [5]. In this way, we fuse both
the listening history and metadata into our recommendation model. To summa-
rize, our main contributions are listed as follows:
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– We formulate the user-song interactions and metadata as a heterogeneous
music graph, which benefits to the learning for user preferences.

– To fully capture user preferences, we conduct meta-path based random walks
to explore the heterogeneous music graph, and then learn the fine-grained
user preferences through heterogeneous embedding learning.

– We rigorously conduct experiments to validate the effectiveness of the pro-
posed approach in music recommendation.

2 Related Work

Most existing music recommenders can be grouped into two categories: content-
based approach, collaborative filtering (CF) based approach.

Content-based approaches typically focus on extracting and analyzing the
music audio content features like Mel Frequency Cepstral Coefficients (MFCC),
using these intrinsical features to model the similarity between new tracks and
tracks in users’ listening history [2,4,9,15]. These approaches enable the system
to generate high quality recommendation even in the case that the listening logs
are deficient. However, they are usually computationally expensive and can not
capture the preference of each user.

CF is the most common technique which not only used in the domain of music
recommendation, but also for other types of recommender systems. In contrast
to content-based methods, CF-based methods pay attention to user listening
history to generate personalized recommendations for individuals. Most previous
CF-based models are extensions of matrix factorization [1,8,17,22–24], which
have been proven to be effective. However, these approaches may suffer from the
data sparsity problem, which are inadequate for the scenario that recommending
songs to new users. To tackle the problem, some work that combines content and
CF-based approaches named hybrid approaches [14,20].

Although CF-based approaches have been proven to be effective, most of
them only studied the user-song interactions. In practice, loads of heterogeneous
data can be incorporated to further improve the recommendation performance,
including the performers, ownerships, and tags of songs. In recent literatures
[7,19], the heterogeneous data are taken into consideration, but these work is
limited by high computational cost and overlook of implicit information. Moti-
vated by the success of word/network embedding techniques [6,10], a few music
recommender systems adopt representation learning to music recommendation
[3,18]. In these work, the play sequences and metadata are exploited to model
users’ preferences and similarities of songs through embeddings. In particular,
Cheng et al. [3] develop a two-stage model which combines matrix factoriza-
tion and play sequence embedding. However, we argue that the loosely coupled
design of this method may cause a loss of information and therefore it results in
a suboptimal recommendation quality.
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Fig. 2. Overview of our proposed approach - HMR

3 Preliminaries

Before the introduction of the proposed model, we first give some illustrations
about the later mentioned concepts.

Definition 1. Heterogenous Graph: A graph G = (V,E,C) in which each node
v and each link e are associated with their mapping functions φ(v) : V → CV

and φ(e) : E → CE , respectively. denote The entity sets and relation types are
denoted by CV and CE , where |CV | + |CE | > 2.

The heterogeneous music graph used in our model (i.e. Fig. 1) is presented
with Users (U), Songs (S), Albums (Al), Artists (A) and Tags (T) as nodes,
wherein edges involve ‘listen’ (U-S), ‘own’ (Al-S and A-S), ‘perform’ (A-S),
‘mark’ (U-T), and ‘label’ (T-S) relations. By considering a heterogeneous music
graph as input, we formalize the problem of music recommendation over a het-
erogeneous music graph as follows.

Given a heterogeneous music graph G, the task of music recommendation
is to learn a ranking function for each user u. Formally, the ranking function is
defined as follows.

f : (u,G) → Ranked list :
r1(m) � ...ri(p) � ri+1(q)...

(1)

where ri(p) � ri+1(q) encodes that user u prefer song p rather than song q.

4 Proposed Model

In this section, the Heterogenous music graph based Music Recommendation
method (HMR) is presented. The proposed model is composed of two main
parts: (1) generating node sequences over the heterogenous music graph in which
listening history and metadata of songs are encoded; and (2) learning user prefer-
ences through heterogeneous embedding. The overview of our proposed method
is illustrated in Fig. 2.
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4.1 Generating Node Sequences over Heterogenous Music Graph

As the heterogeneous music graph G is usually formed in a large scale, how to
reduce the computational cost while comprehensively exploiting G is the most
concerned challenge. Besides the solutions with a holistic view that have a high
cost, a sensible alternative is meta-path [16], which has been adopted to lots of
heterogeneous mining scenarios like academic network analysis.

Table 1. Meta-paths designed for preference extraction.

Path Schema Description

P1 U
l−→ S User listens to a song

P2 U
l−→ A

pe−→ S User listens to a song performed by an artist

P3 U
l−→ Al

o−→ S User listens to a song from an album

P4 U
m−→ T

la−→ S User marks a tag to a song

P5 U
l−→ A

o−→ Al
pe−→ S User listens to a song from an album performed by an artist

∗ l−→ denotes the ‘listen’ relation,
pe−→ denotes the ‘perform’ relation,

o−→ denotes the

‘own’ relation,
m−→ denotes the ‘mark’ relation and

la−→ denotes the ‘label’ relation.

Specifically, a meta-path is denoted in the form of V1
R1−−→ V2

R2−−→ · · · Rn−1−−−→
Vn, wherein R = R1 ◦ R2 · · · ◦ Rn that defines a composite relation between
its start type V1 and end type Vl [16]. For example, the path U

l−→ A
pe−→ S

characterizes a composite relation that a user listens to a song peformed by an
artist. According to the schema of G shown in Fig. 1, we carefully design 5 types
of meta-paths presented in Table 1, which are reasonable and define complex
relations between users and songs with different types of metadata involved.
Actually, more meta-paths can be designed when more entities and relations are
included. Here we just focus on the schema of Fig. 1 for simplicity.

The designed meta-paths demonstrate the strategy of information mining
at an abstract level. In practice, we explore the heterogeneous music graph by
conducting random walks to generate concrete node sequences under the guid-
ance of meta-paths. It should be noted that, compared to the songs which have
been played for few times by a user, the frequently listened songs are more likely
to reflect the user’s preference. The random walks therefore should pay more
attention to the frequently listened songs or other entities which are repeat-
edly clicked. Here we show how meta-paths guide the random walks to generate
biased node sequences called preference corpus.
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Given a meta-path schema P = V1
R1−−→ V2

R2−−→ · · · Rn−1−−−→ Vn, the transition
probability of random walks at step k is defined as follows:

p(vk+1|vk,P) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

φ
vk (vk+1)

∑m
1 φ

vk (vm) (vk, vk+1) ∈ { l−→,
o−→,

pe−→,
m−→},

1 (vk, vk+1) ∈ { pe←−,
o←−},

1
|N

vk+1 | (vk, vk+1) ∈ { l←−,
la←−,

m←−},
0 (vk+1, vk) /∈ E.

(2)

As can be seen from Eq. (2), at each step of the random walk, the next node type
is decided by the pre-defined meta-path P. When (vk, vk+1) ∈ { l−→,

o−→,
pe−→,

m−→},
the frequently played songs, albums, artists or marked tags are more likely to
be chosen. Here we define φvk(vm) as the visited times of vk’s neighborhood.
It should be noted that meta-paths are generally used in a symmetric way. In
this paper, they are used likewise, which means Vn+1 = Vn−1. If k + 1 > n, the
meta-path will be expanded recursively (e.g. U

l−→ S
l←− U). Consequently, when

(vk, vk+1) ∈ { l←−,
la←−,

m←−}, we uniformly select successor user node. Besides, we
consider that each song is only included in one album and each album and each
song only belong to one artist. So when the relation is in←− or o←−, the transition
probability should be 1.

Guiding by the meta-paths, the explicit interactions are captured. Further-
more, with the proceeding of the random walks, entities which are not explicitly
connected in G are also linked by meta-paths. In other words, the latent inter-
actions are also perceived through information propagation in random walks,
which would be helpful in discovering users’ implicit preferences.

4.2 Learning User Preferences Through Heterogeneous Embedding

After the preference corpus has been collected, the next step is to extract the
encoded user preferences. Inspired by the success of network embedding [6], we
come up with the idea that user preferences can be learned through embedding
representation learning. As the preference corpus consists of heterogeneous data,
we feed them to the heterogenous Skip-Gram proposed by [5] for learning node
representations Y ∈ R

|V |×d. Formally, the objective function of heterogenous
Skip-Gram is defined as:

arg max
Y

∑

v∈V

∑

vm
t ∈N(vk)

log p(vm
t |vk;Y), (3)

where N(vk) is the neighbors of vk within the context w and p(vm
t |vk;Y) as the

heterogenous softmax function is defined with the formula that p(vm
t |vk;Y) =

e
yvm

t
·y

vk

∑
v∈Vt

e
yv ·y

vk , where yv is the corresponding row of Y with index of v, repre-

senting the learned embedding of node v, and Vt is the node set with type t
in G. To reveal the information hiding in the sequence, the heterogenous Skip-
Gram maximizes the likelihood of nodes co-occurrence within a context. But
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when computing the normalization factor, it only draws upon nodes in the same
type set instead of computing all nodes, which is distinct from the common
Skip-Gram model. Besides, in order to accelerate the learning, we further adopt
negative sampling [10] to avoid the complexity of computing the normalization
factors.

After the representation learning, we could recommend songs to users
through similarity computation between embeddings. However, this simple way
leads to a low performance in our validation experiments when compared with
other baselines. So we consider that a ranking model should be jointly learned
to enhance the recommendation performance.

In practice, recommended songs are usually presented as an ordered list, songs
with higher rankings in the list are more likely to be noticed. Let Pu and Nu

denote the positive (listened) and negative (not listened) song sets of user u, and
Z ∈ R

m×d and Q ∈ R
n×d denote the user and song latent matrix, respectively.

As an widely used “one-class collaborative filtering” model, Bayesian Personal-
ized Ranking (BPR) [11] aims to model the preference-order for each user by
maximizing the following posterior probability on Θ ≡ (Z,Q):

∏

u∈U

P(xui � xuj |Θ)P(Θ), i ∈ Pu, j ∈ Nu, (4)

where xu· denotes the score of user u on one of the candidate items, P(xui �
xuk|Θ) is defined as σ(xui−xuk) and the predicted preference score xui = Zu·Qi.

Algorithm 1. HMR
Input: Heterogenous music graphs G, meta-paths P, #walks per user H,

walk length l, embedding dimension d, window size w, listening
history D

Output: Recommended song list L for each user.

1 Initialize node embeddings Y and latent matrix Z and Q;
2 for path p in P do
3 for user i in Vu do
4 for j = 1 → H do
5 seq += MetaPathRandomWalk(G,p, i, l);

6 while not converged do
7 Y(Z) ← HeterogeneousSkipGram(Y,w,seq);
8 Z,Q ← BayesianPersonalizedRanking(Z,Q,D);

9 return L

To combine BPR and heterogeneous embedding learning, a practicable idea is
to share the user embeddings across two models. That means, Z bridges these two
models. On one hand, it is the user latent matrix in BPR and on the other hand
is also the user embeddings in heterogeneous Skip-Gram. By taking negative
log-form of posterior probability, the objective function of the conjunct model is
presented as follows,
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L = −
∑

u

∑

i∈Pu

∑

j∈Nu

ln(σ(xui − xuj)) +
λΘ

2
(||Z||2F + ||Q||2F )

− λG arg max
Y

|V |∑

v∈V,k=0

∑

vm
t ∈N(vk)

log p(vm
t |vk;Y,Z),

(5)

where λG is introduced to control the impact of the heterogeneous data and λΘ

controls the magnitude of Z and Q. By doing so, the user preferences lying in
the listening history and heterogeneous music graph are both integrated into Z.

To find the possible optimal parameters, we perform stochastic gradient
descent on Z and Q. The final model then can generate recommendation for
user u by computing Q · ZT

u . To summarize, the overall process of the proposed
model is presented in Algorithm 1. To the best of our knowledge, we are the first
to adopt meta-path based heterogeneous graph embedding to music recommen-
dation.

5 Experimental Results

In this section, we aim to answer the following three questions by experiments:
(1) Can HMR outperform the baselines? (2) Can HMR improve the recom-
mendation quality for cold start users. (3) How heterogeneous data impact the
performance?

5.1 Experimental Settings

Datasets. A real-world datasets, Xiami [19] are used in our experiments, which
includes 4,266 users, 11,592 artists, 30,913 albums, 66,823 songs,12,528 tags and
1,020,543 listening records. We first order all listening records for each user
by timestamp and extract 80% of the data as the training set, from which we
randomly select 10% as the validation set. For the rest 10% of the data, we con-
sider that the users and songs that appear in the training and validation sets to
obtain the test set. We pick the best parameters of compared methods according
to their best average performance on the validation set. Then we conducted the
experiments for 10 times and presented their average performances.

Comparison Methods. In order to demonstrate the superiority of our app-
roach, we compare HMR with the following methods for personalized item
ranking.

– MostPop (MP): This method generates a non-personalized recommenda-
tion for each user based on how many times songs are listened.

– BPR: This is the classical bayesian personalized ranking model [11] based
on pairwise assumption for item ranking.

– IPF: This method [21] is based on random walk and fuses users’ long and
term preferences.
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– Song2vec: This model [3] adopts word embedding techniques to model play
sequence, and embeds the song similarity into matrix factorization to boost
the latent feature learning.

Parameter Settings. For all model-based methods, the coefficient λ of penalty
terms is set as 0.01 and the dimension of latent features d is specified as 20. For
HMR, the number of walk started with each user is H = 20, the length of
each walk is l = 20, the dimension of embedding is d = 20, the window size is
w = 7, and λG = 0.5. Other settings are picked according to the performance
on validation set. Notice that all the designed meta-paths evenly generate the
preference corpus.

Evaluation Metrics. Three common metrics, Precision@K, Recall@K and
MAP@K (Mean average precision) are used to measure the recommendation
quality.

Fig. 3. Performance comparison with counterparts

5.2 Recommendation Performance

As is shown in Fig. 3, the findings can be summarized as follows.

1. In all cases, our model HMR outperforms other opponents by large margins,
showing significant improvement.

2. The embedding learning based models have advantages over conventional
models. The performances of HMR and Song2vec are both better than that
of others, which shows the effectiveness of embedding learning in extracting
implicit interactions lying in the auxiliary information.

3. In comparison to BPR, HMR shows an evident improvement. As BPR is the
basic component of HMR, the result confirms that combining the heteroge-
neous data through embedding learning can lead to a better recommendation
performance.

4. HMR also shows a superiority to Song2vec. We infer that is because HMR can
extract more latent user preference by modeling the system as a heterogeneous
music graph. Moreover, we also argue that modeling the play sequence, as
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Song2vec does, works excessively on details, which is prone to be interferered
by noises to a certain extent. Unlike Song2vec, HMR pays more attention to
metadata by means of meta-paths while conducting biased random walks to
avoid noises. In this way, the reliable metadata and listening history are both
utilized.

5.3 Performance on Cold-Start Users

The key challenge for recommender systems is to recommend items to new (cold-
start) users who have few consumption records. Music recommender systems also
suffer from this problem. In this part, we want to check if HMR can improve
the recommendation performance on cold-start users. To this end, we test the
performance of baselines on users who have less than 20 listening records.

Table 2. Performance on cold-start users

Dataset Metric MP BPR IPF Song2vec HMR Improv

Xiami Prec@10 0.388% 0.836% 0.716% 0.865% 0.948% 9.595%

Prec@20 0.284% 0.582% 0.492% 0.597% 0.701% 17.755%

Rec@10 1.706% 2.905% 2.333% 3.617% 4.172% 15.344%

Rec@20 2.174% 3.936% 2.970% 4.423% 5.004% 13.135%

MAP@10 0.00477 0.01346 0.01142 0.02257 0.02835 25.609%

MAP@20 0.00517 0.01437 0.01201 0.02310 0.03062 32.554%

According to Table 2, we could clearly observe that the proposed model
HMR outperforms other baselines in terms of the performance on cold-start
users. In particular, HMR shows great advantages on the ranking related met-
ric - MAP@K, which indicates that the generated recommendation list provides
higher ranks for songs in the test set. As expected, Song2vec also shows a decent
performance, which helps corroborate that introducing auxiliary information is
promising. Based on the result, HMR is proven to be effective on recommending
in the scenario where few listening logs are recorded.

5.4 Impact of Parameter λG

In HMR, a hyper-parameter λG is introduced to control the impact of the hetero-
geneous data. We investigate the sensitivity of λG by testing the recommendation
performance on Precision@10, Recall@10 and MAP@10 under a range of [0, 1]
with a step 0.1.

As can be observed from Fig. 4, specifically, HMR reaches the peak on Pre-
cision@10 when λG = 0.6 and gets the best performance on Recall@10 and
MAP@10 when λG = 0.7. It seems that a smaller λG may result a degradation
in recommendation quality, which is consistent with our expectation that incor-
porating heterogeneous data can strongly boost the model. However, large λG
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Fig. 4. Impact of λG

values may also turn the model down because of the overweight of the side infor-
mation. Overall, the curves are basically smooth, which shows the robustness of
incorporating the heterogeneous data.

6 Conclusion

This paper aims to utilize the heterogeneous data as auxiliary information to
enhance recommendation. Inspired by the recent advances of network embed-
ding, we propose a novel music recommendation approach called HMR. It first
generates sequences of nodes under the guidance of the specifically designed
meta-paths in which types of heterogeneous data are maximally encoded to
explore the graph. To learn the user preferences, HMR then combines repre-
sentation learning and bayesian personalized ranking learning. Experiments on
real-word datasets show that HMR significantly improves the quality of music
recommendation.
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Abstract. Knowledge graph (KG) is the most popular method for pre-
senting knowledge in search engines and other natural-language pro-
cessing (NLP) applications. However, KG remains incomplete, inconsis-
tent, and not completely accurate. To deal with the challenges of KGs,
many state-of-the-art models, such as TransE, TransH, and TransR, have
been proposed. TransE and TransH use one semantic space for entities
and relations, whereas TransR uses two different semantic spaces in its
embedding model. An issue is that these proposed models ignore the
category-specific projection of entities. For example, the entity “Wash-
ington” could belong to the person or location category depending on its
context or relationships. An entity may therefore involve multiple types
or aspects. Considering all entities in just one semantic space is there-
fore not a logical approach to building an effective model. In this paper,
we propose TransET, which maps each entity based on its type. We
can then apply any other existing translation-distance-based embedding
models such as TransE or TransR. We evaluated our model using two
tasks that involve link prediction and triple classification. Our model
achieved a significant and consistent improvement over other state-of-
the-art models.

Keywords: Knowledge graph · Translation based model
Link prediction

1 Introduction

Large knowledge graph (KG) implementations such as DBpedia [8], YAGO [15],
and Freebase [2] incorporate very large numbers of entities and attributes to
keep pace with the rate of information generation in the Web, smart systems,
and social life. KGs are used in many AI-based tasks such as inferring new knowl-
edge, question answering, relations in social-network applications, and item rec-
ommendation. Evolving with new facts while organizing and maintaining exist-
ing knowledge is an increasingly difficult task, which is why KGs are far from
complete and can be very sparsely populated.

Although existing KGs contain billions of entities and relations, they still
have gaps and may contain incorrect facts. “Link prediction” means predicting
c© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11303, pp. 114–125, 2018.
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relations/facts between entities based on existing triples in a KG. Traditionally,
KGs represent the relations/facts between their various entities as triples. A
triple can be represented as (h, r, t), where h and t are entities in the real world
and r is a relation between h and t. For example, consider the triple (Tokyo,
CapitalOf, Japan), where Tokyo, Japan are the head and tail entities, respec-
tively, and CapitalOf is the relation. The purpose of link prediction is to detect
unknown pairs of head and tail entities that are correlated via some relation.

The concept of “embedding” has also been widely used for representing words
and texts [1,11], with many embedding models having been proposed for KG
completion. Most of these models fall into one of three categories: bilinear mod-
els, neural-network-based models, and translation-distance-based models.

The translation-distance-based models have gained popularity both for their
simplicity and their effectiveness, where they have achieved state-of-the-art per-
formance. Bordes et al. [5] proposed TransE, which is the simplest and smartest
way of predicting the links in a KG. TransE was inspired by Mikolov’s skip-gram
model [10,11]. It learns vector embeddings for entities and relations, with rela-
tions being represented as translations in the embedding space. The basic princi-
ple is that h + r ≈ t, where (h, r, t) holds. Here, h, r, t are each embeddings of
h, r, t, respectively. To solve the one-to-many/many-to-one/many-to-many issues
in TransE, TransH [17] has been proposed. It involves a principle stating that
entity representations will differ based on various relations. Similarly, TransR [9]
assumes that each relation has its own embedding space. However, TransR pro-
poses using separate spaces for entities and relations.

In these proposed models, the entities’ type has been completely ignored.
In the real world, entities can be categorized in terms of several types, such as
person, movie, or organization. We can often assume that entities of the same
type should share strong similarities and that, in their relation, their type also
plays an important role. As an example, the HasNationality relation requires a
person-type head entity and a location/country-type tail entity. On the other
hand, the CapitalOf relation requires location-type entities for both head and
tail. We can imagine the existence of two different triples for these two relations:
(Washington, HasNationality, U.S.) and (Washington, CityOf, U.S.). Here, the
entity “Washington” plays two completely different roles in these two relations,
based on their type. In our model, we explicitly define the role of entity type in
a relation. We propose a model, TransET, where, for each relation r, entities are
mapped based on both type and relationship.

In this paper, our contributions are as follows: (1) we propose a model, where
we explicitly consider entity types and mapping matrices are designed by con-
sidering entity types; (2) TransET can be easily combined with other state-of-
the-art models (e.g., TransE, TransR) to produce more accurate predictions; (3)
we prepare a new dataset collected from Freebase and make it available publicly
to facilitate similar lines of research. We use this new dataset to compare our
model with existing models in experiments that demonstrate TransET’s superior
performance.
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2 Related Work

In its present state, KG technology is far from fully mature, although link pre-
diction is an effective approach to completing a KG. Various models have been
proposed to address the link-prediction issue. The models proposed to date differ
in terms of their scoring function.

First, we describe the notation used in this paper. A triple is denoted by
(h, r, t), where h is the head entity, r is the relation, and t is the tail entity.
The bold letters h, r, and t denote embeddings of h, r, and t, respectively,
in an embedding space R

n. fr(h, t) is the scoring function of the model under
consideration.

2.1 Unstructured Model (UM)

UM [3,4] is the preliminary image of TransE, considering only entities as embed-
dings. Because UM ignores relations, its scoring function is a simplification of
that used in TransE. The scoring function is given as:

fr(h, t) = ||h − t||l1/2 , (1)

where h and t are the embeddings of head and tail, respectively.

2.2 Structure Embedding (SE)

Bordes proposed the SE model [6], which introduces two different matrices to
project separately the head and tail entities for each relation. Its scoring function
is defined as follows:

fr(h, t) = ||Mrhh − Mrtt||l1/2 , (2)

where Mrh and Mrt are the projection matrices for the head and tail, respec-
tively.

2.3 TransE, TransH, and TransR/CTransR

TransE [5] learns embedding as h + r ≈ t where (h, r, t) holds. Therefore,
(h + r) is very close to t. TransE is the most popular translation-distance-
based embedding model and is both very simple and fast. The scoring function
of TransE is:

f(h, t) = ||h + r − t||l1/2 , (3)

which is low if (h, r, t) holds and is high otherwise.
Many researchers [9,17] have claimed that TransE has problems in represent-

ing one-to-many, many-to-one, and many-to-many relations, with a number of
models being proposed to address these issues.
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The first such effort was TransH [17], which represents relations by hyper-
planes. This model projects entities on the hyperplane corresponding to a rela-
tion. A single entity can have different representations on different hyperplanes.
TransH models the relation r as r on a hyperplane with the normal vector
wr . Given a triple (h, r, t), the entity representations h and t are projected on
the hyperplane of wr with the restriction that ||wr || = 1. The calculation is
expressed as:

h⊥ = h − wr
�hwr ,

t⊥ = t − wr
�twr .

(4)

The scoring function is very similar to TransE:

fr(h, t) = ||h⊥ + r − t⊥||l1/2 . (5)

TransR [9] also addressed the flaws of TransE, but in a slightly different way
than did TransH. TransR considers separate spaces for entities and relations, but
the main principle is that entities and relations are completely different types of
objects, implying that they should not occupy the same vector space. Given a
triple (h, r, t), TransR projects the entity representations h and t into the space
specific to a relation r. That is:

hr = hMr , tr = tMr , (6)

where (h, t) ∈ R
n, r ∈ R

m, and Mr ∈ R
n×m represents the projection matrix

from the entity space to the relation space for relation r. The scoring function is:

fr(h, t) = ||hr + r − tr ||l1/2 . (7)

CTransR is an extension of TransR proposed by the same authors. In this
model, entity pairs for a relation are clustered into different groups, and the
pairs in the same group share the same unique relation vector.

2.4 Other Models

For the link-prediction and triple-classification tasks, bilinear and neural-
network-based models are also popular. RESCAL [12,13] is a bilinear model,
with each relation being represented by an n-by-n matrix in an embedding space
R

n and the scores for the triples being calculated by a bilinear mapping. Another
bilinear model, proposed by Trouillon [16], uses complex numbers instead of real
numbers and takes the conjugate of the embedding of the tail entity before
calculating the bilinear mapping.

The SLM model [14], proposed by Socher, concatenates head and tail enti-
ties as an input layer to the nonlinear hidden neural layer and has the scoring
function:

fr(h, t) = u�
r f(Tr1h + Tr2t + br ), (8)

where Tr1 and Tr2 are weighting matrices and f(·) is the tanh operation.
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The NTN model [14] is an extension of the SLM model. It considers second-
order correlations as inputs to nonlinear hidden neural networks. Its scoring
function is:

fr(h, t) = u�
r f(h�Trt + Trhh + Trtt + br ), (9)

where Tr represents a three-way tensor, Trh and Trt denote weighting matri-
ces, br is the bias, and f(·) is the tanh operation. To date, NTN has proved
computationally expensive and has scalability issues.

Krompaß [7] proposed latent-variable models that consider relation and
entity type constraints. However, such models add more redundancy than do
translation-distance-based models. For this reason, they can have an overfitting
problem. Our model considers only entity type constraints, aiming to retain
simple model estimation. It exploits linear mapping and involves less parameter
overhead than the latent-variable models. Although neural-network-based mod-
els also tend to encounter overfitting, the standard advantage of such models is
that they can capture many kinds of relations.

3 Our Method

Translation-distance-based embedding models mostly follow TransE. Both
TransE and TransH assume embeddings of entities and relations within the same
space R

n. However, relations and entities are completely different objects and it
may not be appropriate to represent them in a common semantic space. Although
TransH extends modeling flexibility by employing relation hyperplanes, it does
not fully address the restrictions of this assumption. In contrast, the entities in
TransR are mapped to vectors in different relational spaces, according to their
relations. However, none of these models consider the significance of entity type.
Therefore, they cannot judge the exact role of each entity, based on its relation.
In our model, we deliberately include the type information. The entity’s type
can be incorporated easily by introducing an entity type-mapping matrix. For
the relations, the entity type information plays a significant role. For example,
the “CapitalOf ” relation would imply that both the head and the tail would be
location type entities. Using type information in a translation model can improve
the efficiency of any such model.

Because an entity may belong to several subcategories, considering all the
subcategories when modeling the type will make the model complex, thereby
increasing the time and space complexity significantly. To address this issue in
our model, we consider only the basic or most prominent type for an entity. As
an example, a “Person-type” entity could be subcategorized as an “Actor” or a
“Player.” In our model, we overlook the subcategories and retain only the most
prominent class of the entity.

Our proposed TransET model can easily be combined with other state-of-
the-art translation-distance-based models. For this purpose, we introduce an
entity-type-based projection matrix Mp ∈ R

n×n for each type of entity. For a
given triple (h, r, t), the projection matrix Mp can be different, if h and t have
a different type. This applies for both head and tail entities:
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hp = hMp , tp = tMp , (10)

where (h, t) ∈ R
n. In our model, we enforce the constraints ||h||2 ≤ 1, ||t||2 ≤ 1,

||hMp ||2 ≤ 1, and ||tMp ||2 ≤ 1. It is not mandatory to have the same dimen-
sionality for entity embeddings and entities’ type embeddings. However, in our
experiments to learn vectors and matrices, we keep the same dimensionality. The
scoring function for each specific relation r (where r ∈ R

n) is correspondingly
defined as:

fr(h, t) = ||hp + r − tp ||l1/2 . (11)

Equation 3 gives the scoring function of TransE. If we incorporate TransE
into the entities’ type-mapping matrix model, denoted by TransETTransE , then
the model’s scoring function will be given by Eq. 11. TransE has the same vector
representation for each entity. In TransET, the head and tail entities are mapped
according to their type.

In TransR, entities are mapped separately to a relation space. Equations
6 and 7 denote the embeddings and the scoring function of the TransR
method. If we incorporate TransR into the entities’ type-mapping matrix model
(TransETTransR), then the embeddings of head and tail entities become:

hr
p = (hMp)Mr , trp = (tMp)Mr (12)

and the scoring function is defined as:

fr(h, t) = ||hr
p + r − trp ||

l1/2
. (13)

The TransR mapping matrix Mr is the same for both head and tail entities.
The key difference between our proposed model (TransETTransR) and the tra-
ditional TransR is that, before projecting to a relation space, entities are mapped
via the entities’ type-mapping matrix. In the relation space, entities therefore
have vector representations based on their type and a specific relation property.

In the above discussion, we have shown how to combine TransET with TransE
and TransR. In the same way, we could combine TransET with other translation-
distance-based models.

4 Training

We define a margin-based loss function as the objective for training:

L =
∑

(h,r,t)∈S

∑

(h′ ,r,t′ )∈S′
max(0, fr(h, t) + γ − fr(h

′
, t

′
)). (14)

Here, γ is the margin, S is the set of correct triples, and S
′

is the set of
incorrect triples. Existing KGs should only contain correct triples. An S

′
is

constructed by replacing a head or a tail entity in an existing triple.
We use a stochastic gradient descent (SGD) method to minimize L. TransR

initializes the embeddings of entities and relations obtained from TransE. To
avoid overfitting of TransETTransR, we also initialize entity and relation embed-
dings with the results of TransETTransE .
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5 Experiment

Our proposed model was evaluated via two tasks: link prediction [5] and triple
classification [14]. This section discusses the experimental procedures for our
model.

Table 1. Datasets.

Dataset #E #R #Train #Valid #Test

FB10K 10,056 141 69,210 5,447 6,479

FB13 75,043 13 316,232 5,908 23,733

5.1 Datasets

In this study, we used data from Freebase [2], which is a very popular KG and
is used for various NLP experiments. Our model explicitly requires entity type
information. We therefore prepared an “FB10K” dataset from Freebase, which
contained the head and tail entities’ type information, using the following proce-
dure. We retrieved the relations, with their heads and tails, which are real-world
entities. We annotated the basic types for those head and tail entities by using
human judgment on the relations. The basic type information for real-world
entities had been collected from the schema.org1 vocabulary. According to the
definitions in schema.org, there are 10 basic types of real-world entity. Although
one entity may involve various subcategories/subtypes, we focused only on basic
entity types, aiming to keep the model simple. Freebase provides the hierar-
chical type information about entities via their type/instance field. Each entity
may involve multiple hierarchical types. For example, entity “David Schwimmer”
(Freebase ID: /m/016tbr) has 22 hierarchical types, including /people/person,
/award/award winner, /celebrities/celebrity, and /film/director.

It would be possible to consider all hierarchical types for each entity when
building the model. Unfortunately, this would raise the time and space complex-
ity enormously, as the previous example illustrates. Because a KG may contain
millions of entities and billions of relational facts, considering all hierarchical
types is simply not realistic. The datasets used in this paper can be obtained
from https://github.com/Rahman29/Conference.

In this paper, the “FB13” dataset has been employed to evaluate the triple
classification task. This dataset contains negative triples, which is helpful for
this particular task. Moreover, it has only 13 relations and we annotated the
relations with respect to basic types according to the schema.org vocabulary.
Table 1 shows the statistics for the datasets used in this paper.

1 http://schema.org.

https://github.com/Rahman29/Conference
http://schema.org
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5.2 Link Prediction

For a triple (h, r, t), the link-prediction task predicts the missing h or t, given
the relation and the other entity. The results were evaluated by ranking the
predicted head or tail entity, as calculated by the scoring function fr(h, t) for
test triples.

Table 2. Evaluation results for link prediction.

Dataset FB10K

Metric Mean Rank Hits@10

Raw Filter Raw Filter

TransE(unif) 534 351 47.05 61.90

TransE(bern) 529 346 46.35 61.75

TransR(unif) 402 278 54.96 70.68

TransR(bern) 390 248 57.30 72.82

TransETTransE(unif) 401 196 50.56(+3.51) 63.41(+1.51)

TransETTransE(bern) 374 152 51.40(+5.05) 64.43(+2.68)

TransETTransR(unif) 304 112 56.20(+1.24) 73.30(+2.62)

TransETTransR(bern) 296 110 60.40(+3.1) 74.50(+1.68)

For our experiments, we adopted the same protocol as that used in TransE.
For each testing triple (h, r, t), we corrupted it by replacing the tail t or head
h with every entity e in the KG or the current dictionary and calculated a
probabilistic score for the corrupted triple (h, r, e) or (e, r, t), respectively, in
terms of the scoring function fr(h, e). It’s the “Raw” setting protocol. Because
we have corrupted the triples randomly, this same triple may already exist in the
actual KG and would be considered correct. During the ranking, it is logically
possible that such triples may appear before the original triple. To eliminate this
issue, we intentionally remove those corrupt triples that are created by replacing
h or t randomly but that already exist in the KG before computing the rank
of each testing triple. They may exist in any of the training, valid, or testing
sets. This revised setting protocol is called the“Filter” setting. In addition, we
employ the same two sampling methods, “bern” and “unif,” that were used in
the previous studies.

Two evaluation metrics were used: average Mean Rank and Hits@10 (the
proportion of testing triples whose rank did not exceed those of the top 10
predictions). For both settings, a lower Mean Rank and a higher Hits@10 imply
a better performance.

We used the same dataset to compare our models with the baseline mod-
els. To obtain the best settings for our models, we tuned five parameters. We
selected the margin γ from the set {0.5, 1, 2}, the dimensionality of entity and
relation vectors from {50, 100}, the learning rate α from {0.001, 0.0001, 0.0005},
the number of training triples in each mini-batch from {20, 50, 300, 1440}, and
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Table 3. Relation-specific head or tail prediction examples (Filter setting).

Models TransE TransR TransETTransE TransETTransR

Relations Hits@10 Hits@10 Hits@10 Hits@10

head tail head tail head tail head tail

film in this genre 100 10.52 100 11.0 100 13.30 100 13.0

olympics participated in 40.62 100 44.90 100 45.10 100 47.28 100

directed by 94.20 95.65 96.27 96.27 94.0 95.65 97.50 97.50

films production designed 86.67 93.33 86.81 94.0 87.32 99.49 93.80 100

film release region 94.74 100 96.49 100 95.71 100 96.48 100

country 96.96 96.96 100 98.59 97.0 96.98 96.90 100

award winner 100 50.10 100 58.38 100 51.67 100 53.56

/film/film/language 7.70 91.52 15.66 97.0 10.0 91.51 15.90 96.83

the dissimilarity measure in the embedding scoring function from {L1, L2}. The
optimal configurations were γ = 1, d = 50, α = 0.0005, B = 50, and using L1

as the dissimilarity function for TransETTransE and TransETTransR. We also
had to find optimal parameter settings for TransE and TransR. For TransE, they
were γ = 1, d = 50, α = 0.001, B = 50, and using L1 as the dissimilarity func-
tion. For TransR, they were γ = 1, d = 50, k = 50 (dimensionality for relation
vectors), α = 0.001, B = 1440, and using L1 as the dissimilarity function.

Table 2 presents the results for link prediction. The values in parentheses
are the improvements over the respective base model. Our models outperformed
all other methods for both “bern” and “unif”, using the experimental dataset
with both Raw and Filter settings. The results appear to show that the “bern”
sampling method performs slightly better than the “unif” method. TransE is
the method that improved most significantly using this dataset.

For the Raw setting, TransETTransE and TransETTransR achieved 51.40%
and 60.4% of Hits@10, respectively, for “bern,” which are 5.05%, and 3.1% higher
than those for TransE and TransR, respectively. Our models showed even bet-
ter performance for the Filter setting. TransETTransE and TransETTransR

achieved 64.43% and 74.5% of Hits@10, respectively, for “bern,” which are 2.68%
and 1.68% higher than those for TransE and TransR, respectively.

Table 3 reports the Hit@10 (head/tail prediction) results for some relations.
The improvement shown by TransETTransE and TransETTransR compared
with TransE and TransR for these relations is a very promising.

As noted, the entities’ type plays a crucial role with respect to its relations.
It is therefore logical that incorporating type information could be utilized to
achieve better performance in the link-prediction task. We believe that the pro-
jection of entities based on the entities’ type-mapping matrix would improve the
performance of the proposed models. In these models, we are using entities’ type
information in addition to the entities themselves, enabling the projected vectors
to exhibit more semantic information than the vectors in TransE and TransR
models.
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5.3 Triple Classification

The triple classification task checks whether a given triple (h, r, t) is correct
or incorrect. When it was first introduced in the NTN model, it acted as a
binary classification. Because the task requires negative samples, we employed
the “FB13” dataset, which is a benchmark dataset from Freebase involving 13
relations. In this dataset, we incorporate entity type information.

To implement this task, we set a relation-specific threshold σr. For a triple
(h, r, t), if the dissimilarity score (computed by the scoring function fr) is below
the σr threshold, then the predicted triple is positive. Otherwise, the prediction
is negative. The value for σr is determined in accordance with the classification
accuracy.

Table 4. Triple classification for the FB13 dataset.

Model Accuracy (%)

TransE(unif) 70.9

TransE(bern) 81.5

TransR(unif) 74.7

TransR(bern) 82.5

TransETTransE(unif) 74.1 (+3.1)

TransETTransE(bern) 83.3 (+1.8)

TransETTransR(unif) 78.9 (+4.2)

TransETTransR(bern) 86.8 (+4.3)

Table 4 shows the evaluation results for triple classification. The parameters
and evaluation results for TransE and TransR were obtained directly from the
original papers. We see from the table that TransETTransE is more accurate
than TransE, and TransETTransR is more accurate than TransR. These results
imply that incorporating type information can improve accuracy.

6 Conclusion

In this paper, we have proposed an embedding model based on entities’ type
projection matrices. We consider only the basic entity-category label/type to
project the type of the entities. The strength of this model is that it can be com-
bined easily with other translation-distance-based models to improve accuracy
without making the models more complex. The TransET model is conceptu-
ally simple and can demonstrate highly competitive results for link prediction
and triple classification. The underlying idea of TransET was applied to the
most popular translation-distance-based models (TransE and TransR) with the
experimental results showing better performances than for the basic TransE and
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TransR models. TransET can improve the results of other translation-distance-
based models that are based on TransE. We can therefore conclude that the
entities’ type-based diversity in a KG is an important factor and that the enti-
ties’ type-mapping matrix is suitable for modeling KGs.

We exploited the negative-sampling method during the training phase using
the same approach as in TransE. We observed that same-type entities tend to
converge and form clusters, which can lead to errors in some cases. In the near
future, we aim to develop a data-sampling algorithm to address this problem.
We also intend to perform experiments on a wider variety of datasets.
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Abstract. How to effectively measure the similarity between two sentences is a
challenging task in natural language processing. In this paper, we propose a
sentence similarity comparison method that combines word embeddings and
syntactic structure. First of all, by generating the corresponding syntactic tree,
we synthetically analyze the two sentences and block them according to the
syntactic components. Secondly, we prune the syntactic tree, remove the stop
words and perform morphological restoration. Then, some important operations
will be performed, such as passive flipping, negative flipping, and so on. Finally,
the similarity of two sentence pairs is calculated by weighting the block
embeddings of the syntactic tree. Experiments show the effectiveness of this
method.

Keywords: Word embeddings � Dependency syntax tree � Sentence similarity
Syntactic structure

1 Introduction

Measuring the similarity between sentences is a basic task in natural language pro-
cessing tasks. It is widely used in various tasks such as information retrieval, text
clustering, text classification, machine translation, question answering system. The
effectiveness of these tasks or applications depends to a large extent on the accuracy of
the sentence’s similarity. Therefore, studying the similarity between sentences is a
crucial basic work in natural language processing.

The importance of different syntactic elements in the sentence is different. As we all
know, the composition of syntactic components in English sentences mainly consists of
subject, predicate, object, predicate, attributive, adverbial, object complement and
appositive. Different natural language processing tasks or applications focus on
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different syntactic components, such as the news headlines lay more emphasis on the
subject, predicate and object.

Syntactic structure is a legal representation of a meaningful sentence, and only the
expression that is consistent with the syntactic structure of the sentence makes sense.
Words are the least textual representation and represent a meaningful and linguistic
component in a sentence. The vectorized representation of words provides a basis for
the similarity of words, sentences, or larger-sized textual representations. As the basic
unit of text semantic information, words have drawn much attention from researchers.
Since traditional one-hot representation is not effective in calculating word similarity,
for example, “PC” and “computer” do not have any similarity, while they denote the
same meaning in semantics. And how to integrate the contextual semantic information
of words into their representation has always been a research focal point. Until 2013,
due to limitations of hardware technology, researchers have used statistical machine
learning methods to solve the problem of text representation. The distributed
hypothesis was proposed by Harris [1], and was further expanded by Firth [2]. With the
development of hardware technology and optimization algorithms, the distribution
hypothesis has been widely concerned.

In recent years, with the extensive application of deep learning in natural language
processing, many new models of distributed representations have been emerged. The
current word vectors are mainly based on Word2Vec, GloVe, FastText [3] or their
improved versions, which have achieved very good representation in many natural
language processing tasks. Our approach exploits the improved syntactic structure and
embeddings of sentences. Furthermore, it is also an unsupervised method, and does not
need any labelled sentence similarity data. Compared with the current mainstream
methods, our method has achieved the best results on data set of SemEval-2015 task 2.

2 Related Work

2.1 The Dependency Syntax Tree

With the integration and evolution of statistical natural language processing, the
dependency syntax analysis has been deeply discussed and wide range of applications.
The deterministic dependency that based data-driven syntactic analysis is one of the
main methods in statistical dependency analysis, in which one word to be analyzed is
taken one after another in a particular direction. Each input produces a single analysis
until the sequence. Each operation acquires a unique syntactical expression from a
defined sequence of analysis actions, sometimes with backtracking and patching. The
dependency analysis strategy is a syntax-driven and list-based deterministic approach
[4]. While the dependency parsing approach proposed by Yamada and Matsumoto [5]
and Nivre and Nilsson [6] can be regarded as a data-driven and stack-based deter-
ministic approach. In subsequent studies, Andor et al. [7] developed the SyntaxNet
system that based on arc-transformed syntactic analysis and achieved very good results
in processing of the English text. Therefore, the dependency syntax analysis based on
arc-transformed has become the popular method of constructing the dependency syntax
tree. And it is also the basis of our approach.
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2.2 Word Embeddings

Words are the smallest and meaningful language units. In recent years, the most widely
used approach is the distributed representation that based on neural networks [8], which
is also referred to as word vectors or word embeddings. This method uses neural
network technology to model the relationship between the context and the target word.
Due to the flexibility of neural networks, the biggest advantage of this approach is that
it can represent the complex contexts. Xu and Alex [9] first tried to solve the bi-gram
language model by neural network. Bengio and Senecal [10] proposed a method to
accelerate training of a neural probabilistic language model. They have obtained the
word vectors while learning the language model. Mnih and Hinton [11] proposed a
Log-Bilinear language model (LBL) based on NNLM. Its structure is a log bilinear
structure, while the NNLM model structure is a neural network structure.

The vector-based inverse language model (ivLBL) [12] has actually abandoned the
log bilinear structure although the name inherits the log bilinear language model
(LBL) structure. And the recurrent neural network based language model (RNNLM)
proposed by Mikolov [13] directly models P(wi | w1, w2, …, wi−1). The C&W model
proposed by Collobert and Weston [14] is the first to directly generate word vectors.
Mikolov et al. [15] put forward the CBOW (continuous Bag-of-Words) model and
skip-gram model. Their purpose of the two models is to obtain word embeddings in a
more efficient way, and the two models have been widely used. The literature [16]
presents a comparison between several multi-word term aggregation methods of dis-
tributional context vectors applied to the task of semantic similarity and relatedness in
the biomedical domain. Pengjin et al. [17] successfully applied the improved bag-of-
words model to text classification. Its core idea is to train a different word vector for
each type of text to improve the classification effect.

3 Sentence-Level Similarity Model

In recent years a number of sentence similarity calculation models have been put
forward. For example, the similarity between sentence pairs in is obtained by calcu-
lating the semantic similarity between words in two sentences [18]. The formula is as
follows:

SIM A;Bð Þ ¼ 1
2
ð
Pm

i¼1
ai

m
þ

Pn

j¼1
bj

n
Þ ð1Þ

where, m and n denote the number of words in sentences A and B respectively. i de-
notes the i-th word in sentence A, j denotes the j-th word in sentence B. ai represents the
highest value of similarity between the i-th word in sentence A and all words in
sentence B. bj denotes the highest value of similarity between the i-th word in sentence
B and all words in sentence A. This idea does not consider the syntax structure of the
sentence.
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Exploiting the syntactic structure of sentences is also a common method to compare
the similarities of theirs. The first step is to construct the syntactic tree of sentence pairs
and use the similarity of sentence structure components for calculating the similarity of
theirs. Based on the skeleton dependency tree, Lévy [19] discussed the sentence
similarity in which the predicate serves as the root of the tree, and words that depend on
the predicate serve as the leaf node. Literature [20] proposed a semantic-based method
to calculate the similarity of sentences. This method calculates the similarity between
two sentences by calculating the effective collocation of two sentences. The formula of
sentence-pairs similarity is as follows:

SIM Sen1; Sen2ð Þ ¼ W1 þW2

maxfPairCount1;PairCount2g ð2Þ

W1 denotes the effective matching weight of the words between Sen1 and Sen2, W2

represents the effective matching weight of the words between Sen2 and Sen1.
PairCount1 is the number of valid matches of the Sen1 to Sen2, and PairCount2 is that
of Sen2 to Sen1. This method only makes use of syntactic match of words, so it can not
consider syntactic information of sentences as a whole.

4 The Similarity Model Based on Word Embeddings
and Dependency Syntax-Tree

Word embeddings are distributed representations of words and have certain semantic
information. A meaningful sentence must conform to the syntactic structure of the
corresponding language. Therefore, it is of great significance to integrate the syntactic
structure when comparing the similarity of sentence pairs. The similarity of sentence
pairs is based on the assumption that the input sentence pairs should conform to the
grammatical relationship of the language, and we can perform various calculations on
the word embeddings more naturally. Figure 1 is the framework of the model.

4.1 The Proposed Approach

The model proposed in this paper is mainly divided into the following steps.

Step 1: Constructing the Dependency Syntax Tree

We perform arc-based dependency syntax and construct the dependency syntax tree
of a sentence. This corresponds to the Sect. 4.2, as shown in Figs. 2 and 3.

Step 2: Blocking the Sentences

According to the syntactic dependency, the sentences are divided into different
syntactic blocks, such as subject block, predicate block, object block, etc.
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Step 3: Sentence Standardization

If the predicate block is a passive tense, the sentence should be performed passive
rollover. That is, the subject block and the object block are exchanged. At the same
time, the “be” or “been” verb in the predicate block will be deleted. The step 2 and step
3 correspond to the Sect. 4.3.

S1 S2

Dependency
Syntax Analysis

Sentence Standardization

Sentence Blocks Sentence Blocks 

Root1 Root2

Similarity Calculation

Fig. 1. The framework of our model

det(boy-2, A-1)
nsubj(repaired-3, boy-2) 
root(ROOT-0, repaired-3) 
det(toy-5, the-4) 
dobj(repaired-3, toy-5)

det(toy-2, The-1)
nsubjpass(repaired-4, toy-2) 
auxpass(repaired-4, was-3) 
root(ROOT-0, repaired-4) 
case(boy-7, by-5)
det(boy-7, a-6) 
nmod(repaired-4, boy-7) 

Fig. 2. The dependencies of two sentences

130 W. Liu et al.



Step 4: Block Embeddings

The stop words (such as “by” and “the”) in the syntactic blocks will be deleted.
Using the word embeddings of multiple words in the syntactic blocks, we construct the
block embeddings of the syntactic blocks, calculate the alignment probability of the
blocks between the sentence pairs.

Step 5: Sentence Embeddings

Based on the block embeddings of the syntactic blocks, we construct the sentence
embeddings.

Step 6: Similarity Calculation

Used the euclidean distance calculation formula, it is easy to calculate the similarity
of two sentences.

4.2 Arc-Based Transformation Syntax Tree

Syntax-Tree model, which is composed of a stack, a buffer and a set of arcs, is a
transition-based dependency parser which is incrementally constructed [21]. It handles
words from left to right. These unprocessed words of sentence are put in buffer, part-of-
speech (POS) of theirs are put in a list. The processed words are pushed into stack, and
arcs describe the dependencies between words.

At the beginning, all the words of a sentence are placed in the buffer. At each step,
the parser can only do one of the three operations: op_shift, op_left_arc and
op_right_arc (as shown in Table 1).

Given an input sentence [w1,…, wn], we define a set of states S (s* denotes the start
state). However, the most important is to define the decision function D(s). According
to the state information (word, POS on top of the stack or in the buffer), D(s) will
decide to run one of the three operations (op_shift, op_left_arc, op_rig-ht_arc).

a boy repaired the toy

root

nsubjdet

dobj

det

case

det

the toy repaired a boy

root

auxpassdet

dobj

was by

auxpass

subjpass

Fig. 3. Expanded dependency syntax tree
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In order to improve the efficiency of implementation, we use two stacks, one is for
handling words and the other is to deal with their part of speech. And two buffers are
needed. Two words on the top of the stack, two in buffer and their part of speech are
considered which operation will be executed. According to corresponding operation,
the two stacks and two corresponding buffers are performed the same processing. We
use the following feature combination templates,

{stack_word1, stack_word2, buffer_word1, buffer_word2, stack_pos1, stack_pos2,
buffer_pos1, buffer_pos2},

Each combination of features corresponds to one of the three operations.
Finally we obtain the dependency tree of the words and the dependency tree of the

part of speech about a sentence. According to the obtained syntax trees, different syntax
blocks have different weights. In the syntax block, the closer the block center word is,
the higher the weight.

Figure 2 is the dependency syntax trees that generated on two sentences “A boy
repaired the toy” and “The toy was repaired by a boy”. The numbers indicate the order
in which the words appear in the sentence.

4.3 Syntactic Block and Passive Transformation

According to the dependencies of the words in the sentence, such as “boy” and “re-
paired”, the dependency tag is “nsubj”, which is dependent on subject and predicate.
Any word that points to “boy” belongs to the subject block. The division of other
syntactic blocks is similar as that of subject block (such as predicate block, object
block, etc.), as shown in Fig. 4. If the predicate block is a passive tense, and the “be” or
“been” is followed by the passive tense of the verb, then the sentence should be
passively flipped. Doing so can maximize the elimination of the difference in syntactic
structure. The “be” or “been” in the predicate will be deleted, simultaneously, the
subject block and the object block are exchanged. The label on the arc changes
accordingly. For example, the label “subjpass” should be changed to “nsubj”.

Table 1. Three operations of the parser

Operation Description

op_shift Pushes the next_word(w2) of the current_word(w1) onto the top of the stack
op_left_arc Pops two words(w1 w2) on the top from the Stack, attaches the second(w1) to

the first(w2), creates an arc pointing to the left, pushes the first word back
onto the stack

op_right_arc Pops the top two words(w1 w2) from the stack, attaches the second(w1) to the
first(w2), creates creates a right arc, and pushes the second(w1) back onto the
stack
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4.4 The Embeddings of Syntactic Block

The dependency relations between the syntactic blocks indicate the dependencies
between these syntactic blocks. For these tags, the alignment model is used to calculate
the alignment probabilities between the sentence pairs. According to different syn-
tactical components, they are spliced according to the sequence of subject, predicate,
and object. The embeddings of the syntactic block are represented by the distance-
weighted summation of word embeddings in the block. The closer the distance from the
core words in the block, the greater the weight.

Different words in a syntactic block have different degrees of importance.
According to the dependency relationship formed in the syntactic tree block, we
allocate different weights based on the distance from the center word and use weighted
summation to obtain the embeddings of the syntactic block. In this way, the dimension
of the syntactic block is the same as that of word. But the two different sets of
embeddings are distributed in different vector spaces. The syntactic block embeddings
are spliced into the sentence embeddings (as is shown in Fig. 5).

a boy repaired the toy

root

nsubj

det

nmod

det

det

the toy repaired a boy

root

det

nmod

was by

auxpass

subjpass

case

Fig. 4. The blocked dependency syntax tree

parameters

Word Embeddings

Syntactic Block 
Embeddings

Sentence Embeddings

Syntactic Block 
Embeddings

Fig. 5. The construction diagram of sentence vector

A Sentence Similarity Model 133



The similarity of embeddings in different vector spaces does not make any sense,
although their dimensions are the same. The formula for the syntax block vector is
shown in Eq. (3).

bi ¼
X

wj2c
kj � ½eðwjÞ� ð3Þ

where,
P
wj2c

kj ¼ 1, bi represents i-th syntax block of the sentence, eðwjÞ denotes the

embeddings of wj .
For example, the sentence “There are a few beautiful flowers”, after word seg-

mentation and lemmatization, it is composed of five words, “there”, “be”, “a few”,
“beautiful” and “flower”. The corresponding word embeddings are e1, e2, e3, e4 and
e5. The key word of the sentence is “flower”. So when the phrase is a word vector, the
word embeddings of “flower” is more important than others words. In short, sentence-
level vectors are not simply cumulative. Therefore, according to different tasks, syn-
tactic structure and syntactic components are used to learn more powerful vectors.

4.5 Splicing Syntactic Blocks

In order to reduce the size of the dictionary, lemmatization will be performed. For
example, different tenses of the verbs should be converted into the roots of theirs. For
“repaired”, “repairs”, “repairing”, all of them should be transformed to “repair”. If the
sentence is negative, we add a penalty factor to the syntactic block that contained
negative words. The sentence vector is constructed as shown in Eq. (4).

S ¼ ½a � k1 � block1; b � k2 � block2; c � k3 � block2� ð4Þ

block1, block2 and block1 represent the subject module, the predicate module, and the
object module, respectively. a, b and c are normalized regulators. k1, k2 and k3 are
negative adjustment factors, which take different parameter values according to the
number of negative words in the negative word dictionary (see Eq. (5)).

ki ¼ 1 even number of negative words
�1 others

�
ð5Þ

where, i = 1, 2, 3.

5 Experiments and Results Analysis

The data set for experiments has 200 data pairs that selected from the Task 2 of
SemEval-2015. The basic word embeddings used in this paper are trained by the Skip-
gram model on Wikipedia datasets. The deep learning framework is MXNet1 devel-
oped by amazon’s deep learning group. The dimension of the word embeddings is 300.

1 http://mxnet.incubator.apache.org/.

134 W. Liu et al.

http://mxnet.incubator.apache.org/


The baselines of our experiments are as follows:

(1) Word embeddings-based Summation (WE+SU), this method directly averages the
word embeddings of words that appear in sentence;

(2) Combined word embeddings and word similarity (WE+SI);
(3) Combined word embeddings and skeleton dependency tree (WE+SD);
(4) Combined word embeddings and semantic dependency tree (WE+SE);

The method of this paper is to combine word embeddings and arc-based depen-
dency syntax tree for sentence comparison (WE+ST).

The difference between the model and human judgment is treated as the evaluation
value. In addition, the absolute value of human judgment or corresponding model is
less than or equal to 1. The larger the difference is, the less similar. The larger the
difference between them, the more dissimilar they are. The smaller the difference, the
more similar they are (as is shown in Eq. (6)).

The similarity of i-th sentence pairs is calculated by the following formula:

Scorei = 1� Mi � Nij j ð6Þ

where Mi represents the similarity value of i-th sentence pairs that judged by human, Ni

is that of model’s. Under a certain model, the overall similarity value with n sentence
pairs is calculated by Eq. (7).

SIM =
1
n

Xn

i¼1

Scorei ð7Þ

where n represents the number of sentence pairs that evaluated.
It’s easy to see from Tables 2 and 3 that the WE+SU model is the worst, because

the model is simple and crude. And it does not consider syntactic structure or word
order. Therefore, it weakens the expression ability of sentence-level vectors. Obviously
the method of skeleton structure dependency (WE+SD) is better than the three methods
(WE+SU, WE+SE, and WE+SI) which do not consider the syntactic structure. Our
method (WE+ST) works best because it not only considers the syntactic structure
information of the sentence, but also utilizes the different syntactic blocks. All of the
blocks splice into sentence embeddings based on syntactic blocks that can compute
sentence similarity of different lengths effectively. In particular, for the third and fifth
test cases in Table 2, since our model has considered negative sentences and negative
emotional words, it is very close to the result of human label.

Table 2. Comparison of experimental results of various models

Models SIM

WE+SU 0.55
WE+SI 0.62
WE+SE 0.66
WE+SD 0.73
WE+ST 0.85
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6 Conclusion

This paper proposes a new sentence similarity model that based on word embeddings
and dependency syntax structure. We study the role of syntactic blocks in semantic
representations of sentence-level, and explore the dependencies of sentence blocks as
well as the passive translation of sentence clauses, and so on. In order to guarantee the
order of words in sentence to a certain extent, our model splices the constructed
syntactic block embeddings into sentence embeddings. Finally, the similarity values are
calculated by calculating the euclidean distances of the sentence pairs. The perfor-
mance of the model is measured by comparison with human judgment. And our model
has achieved the best results. However, this model does not consider all the syntactic
components, and the different syntactic blocks used in different applications are not the
same. The main task of the next step is to further consider the syntactic elements in the
syntactic structure as much as possible, and construct similarity calculation models of
sentence pairs on different natural language processing tasks.
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Abstract. This work introduces semi-coupled transform learning. Given
training data in two domains (source and target), it learns a transform in each of
the domains such that the corresponding coefficients are (linearly) mapped from
the source to the target. Since the mapping is in one direction (source to target)
but not the other way round, we call it ‘semi-coupled’. Our work is the analysis
equivalent of (semi) coupled dictionary learning. The proposed technique has
been applied in two problems. The first being image super-resolution and the
second, cross lingual document retrieval. In both the cases, our proposed
transform learning based formulation excels considerably over existing
techniques.

Keywords: Dictionary learning � Deep learning � Reconstruction

1 Introduction

There are many problems in image processing and computer vision which can be recast
in the framework for transfer learning. For example consider the example of single
image super-resolution; the objective is to create a high resolution image from a low-
resolution one. There are many signal processing (sparsity) based techniques to solve
this problem [1–3]. However in recent times, dictionary learning based approaches are
preferred owing to their improved performance. For each of the domains (high reso-
lution and low resolution) two dictionaries are learnt, such that the coefficients of low
resolution dictionary can be linearly mapped onto the high resolution dictionary [4–7].
After the training phase, when a new low resolution image is input, it learns the
corresponding coefficients from the learnt dictionary; the coefficients in turn are
mapped to that of the high resolution version by the learnt linear map. From the thus
formed high resolution coefficients, the corresponding high resolution image is
synthesized.

This formulation falls under the purview of coupled dictionary learning. Similar
approaches have been applied to other problems, e.g. photo sketch synthesis [5, 6],
RGB to Depth image matching [8], pose varying face matching [9] and visible (VIS) to
near infra-red (NIR) face matching [9]. In photo sketch matching the problem is to
match a person’s sketch to that of a digital photo – this is usually used in law
enforcement. Similar problems exists in the other domains as well – e.g. matching
between visible image collected during daylight and that of NIR image collected during
night [9].
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Although one finds most applications of coupled dictionary learning in vision
problems, it has been used in computational linguistics as well [10]. There in the
problem is cross lingual document retrieval. The query is in one language (source) and
the problem is to find the documents from the other (target) language.

Dictionary learning is a synthesis approach, i.e. it learns a basis (dictionary) that can
regenerate/synthesize the data from the learned coefficients. This work proposes an
analysis version of coupled dictionary learning. The analysis version of dictionary
learning is new and is dubbed as transform learning [11–14]/analysis sparse coding
[15]. It learns an analysis basis/transform so as to generate the coefficients when
operated on the data.

Transform learning enjoys certain theoretical advantages over dictionary learning
[11, 12]. For the same number of basis (i.e. equal sized dictionary and transform),
transform learning can capture significantly more variability in the data (by its ability to
represent more number of sub-spaces) compared to its synthesis counterpart – dic-
tionary learning. In machine learning this boils down to the problem of over-fitting and
generalizability. Given the fixed volume of data, the number of dictionary atoms
required (to capture the variability) will be larger than the number of basis in the
transform. This means that a dictionary will have more parameters to learn compared to
a transform. Which in turn means, that the dictionary learning approach would overfit
with limited amount of training data; the issue will be less pronounced in the learned
transform.

Transform learning is a new formulation. So far it has seen limited application in
solving inverse problems [11–14]. Some recent studies [15–17] have applied analysis
sparse coding for feature generation in machine learning problems. Owing to the
relative nascency of transform learning we will discuss it in the next (literature review)
section; coupled dictionary learning will also be discussed. The proposed formulation
of coupled analysis sparse coding will be described in Sect. 3. The experimental results
will be in Sect. 4. The conclusions of this work and further direction of research will be
discussed in Sect. 5.

2 Literature Review

2.1 Transform Learning

Transform learning is the analysis version of dictionary learning; it analyses the data by
learning a transform/basis to produce coefficients. Mathematically this is expressed as,

TX ¼ Z ð1Þ

Here T is the transform, X is the data and Z the corresponding coefficients.
The following transform learning formulation was proposed [11, 12] –

min
T ;Z

TX � Zk k2F þ k Tk k2F� log det T
� �

þ l Zk k1 ð2Þ

142 J. Maggu and A. Majumdar



The factor � log det T imposes a full rank on the learned transform; this prevents
the degenerate solution (T = 0, Z = 0). The additional penalty Tk k2F is to balance scale;
without this � log det T can keep on increasing producing degenerate results in the
other extreme.

In [11, 12], an alternating minimization approach was proposed to solve the
transform learning problem. This is given by –

Z  min
Z

TX � Zk k2F þ l Zk k1 ð3aÞ

T  min
T

TX � Zk k2F þ k e Tk k2F� log det T
� �

ð3bÞ

Updating the coefficients (3a) is straightforward. It can be updated via one step of
soft thresholding. This is expressed as,

Z  signumðTXÞ �max 0; absðTXÞ � lð Þ ð4Þ

Here � indicates element-wise product.
In the initial paper on transform learning [11], a non-linear conjugate gradient based

technique was proposed to solve the transform update. In the more refined version [12],
with some linear algebraic tricks they were able to show that a closed form update
exists for the transform.

XXT þ keI ¼ LLT ð5aÞ

L�1XZT ¼ USVT ð5bÞ

T ¼ 0:5R SþðS2þ 2kIÞ1=2
� �

QTL�1 ð5cÞ

The first step is to compute the Cholesky decomposition; the decomposition exists
since XXT þ keI is symmetric positive definite. The next step is to compute the full
SVD. The final step is the update step. One must notice that L�1 is easy to compute
since it is a lower triangular matrix. The proof for convergence of such an update
algorithm can be found in [13].

There are only a handful of papers on this topic. Theoretical aspects of transform
learning are discussed in [11–13]. In [14] it is used to solve inverse problems. Exactly
the same formulation has been dubbed as ‘analysis sparse coding’ when applied to
feature generation [15].

2.2 Coupled Dictionary Learning

The idea of coupled dictionary learning was proposed in [4–9]. Let there be two
domains – 1 and 2. X1 and X2 are the training data for the two domains. Coupled
dictionary learning trains two dictionaries D1 and D2 (along with their coefficients
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Z1and Z2) and linear coupling maps from domain1 to 2 – M12 and from 2 to 1 – M21.
Mathematically this is expressed as,

min
D1;Z1;D2;Z2;M12;M21

X1 � D1Z1k k2F þ X2 � D2Z2k k2F
l Z2 �M21Z1k k2F þ Z1 �M12Z2k k2F
� �

þ g Z1k k0þ Z2k k0
� � ð6Þ

Here we have abused the notations slightly; the l0-norm is defined on the vectorised
version of the Z’s. Solving (6) may apparently be a daunting task. However when
segregated into separate sub-problems, they have well known solutions such as [18].

During testing, say the signal is available in domain 1 and the corresponding signal
in domain 2 needs to be generated; such problems can arise in photo sketch synthesis
and image super-resolution. The learnt dictionary in domain 1 is used to generate the
coefficients.

min
ztest1

xtest1 � D1z
test
1

�� ��2
F þ g ztest1

�� ��
1 ð7Þ

The generated coefficients of domain 1 are now transformed to domain 2 by the learnt
linear map: ẑtest2 ¼ M21ztest1 . For classification problems usually a classifier is trained
with the coefficients Z1 and Z2. During testing (e.g. RGB to NIR matching), ẑtest2 is run
through the classifier for domain 2. For synthesis problems (e.g. super-resolution) the
high resolution image is synthesized by x̂test2 ¼ D2ẑtest2 .

3 Proposed Semi-coupled Transform Learning

Today dictionary learning is a popular representation learning tool. A little analysis
shows that for a synthesis dictionary of size m� n, with sparsity (number of non-zero
elements in Z) k, the number of sub-spaces is nCk for k-dimensional sub-spaces. For
analysis transform learning of size p� d, with co-sparsity l the number of sub-spaces is
pCl for sub-spaces of dimension d − l. If we assume equal redundancy, i.e. p = n = 2d,
and equal dimensionality of the sub-space, i.e. k = d − l, the number of analysis sub-
spaces will be n where as the number of synthesis sub-spaces are k log2ðn=kÞ (via
Stirling’s approximation); usually n� k log2ðn=kÞ. For example with n = 700, l = 300
and k = 50, the number analysis sub-spaces are 700 whereas the number of synthesis
sub-spaces are only 191.

This analysis means that for a transform and dictionary of same dimensions, an
analysis transform is able to capture significantly more variability in the data compared
to a synthesis dictionary. In other words, for a fixed training set a smaller sized
transform need to be learned compared to a dictionary. From the machine learning
perspective, given the limited training data, learning fewer parameters for the transform
has less chance of over-fitting than learning a larger number of synthesis dictionary
atoms. Hence, for limited training data, as is the case with most annotated document
retrieval problems, transform learning can be assumed to yield better generalizability
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(and hence better results) compared to dictionary learning. Hence, we propose to base
our work on coupled transform learning.

This work proposes a semi-coupled formulation; we learn a single directional map
(from source to target). Suppose there are domains – 1 and 2. Say X1 and X2 are the
corresponding training data. Semi-coupled analysis sparse coding learns two trans-
forms T1 and T2 (one for each domain) and their corresponding features Z1 and Z2, so
that the features from one of the domains can be linearly mapped (M) into the other.
Semi-coupling is practical. For example, in photo sketch identification, one needs to
find the digital photograph from a photo sketch – not the other way round. If there is a
need for bi-directionality, e.g. in RGB and NIR matching, we can always learn two
semi-coupled transforms from one domain to the other.

Mathematically our formulation is expressed as,

min
T1;T2;Z1;Z2;M

T1X1 � Z1k k2F þ T2X2 � Z2k k2F þ l Z2 �MZ1k k2F
þ k e T1k k2F þ e T2k k2F� log det T1 � log detT2

� �
þ g Z1k k1þ Z2k k1

� � ð8Þ

The alternating minimization approach is used for solving (8). It can be segregated
into the following sub-problems.

P1:min
T1

T1X1 � Z1k k2F þ k e T1k k2F� log det T1
� �

P2:min
T2

T2X2 � Z2k k2F þ k e T2k k2F� log det T2
� �

P3:min
Z1

T1X1 � Z1k k2F þ l Z2 �MZ1k k2F þ g Z1k k1

� min
Z1

T1X1ffiffiffi
l
p

Z2

� 	
� Iffiffiffi

l
p

M

� 	
Z1

����
����
2

F
þ l Z1k k1

P4:min
Z2

T2X2 � Z2k k2F þ l Z2 �MZ1k k2F þ g Z2k k1

� min
Z2

T2X2ffiffiffi
l
p

MZ1

� 	
� Iffiffiffi

l
p

I

� 	
Z2

����
����
2

F
þ g Z2k k1

P5:min
M

Z2 �MZ1k k2F

Sub-problems P1 and P2 are standard transform updates. We already know how to
update them (5a–5c). Sub-problem P3 and P4 are standard updates for sparse transform
coefficients (4); they just require one step of soft thresholding. Updating the map is
easy since P5 is a simple least square problem. This concludes the training phase.

In fully coupled transform learning, one would have to learn another linear map
from domain 2 to domain 1. As mentioned at the onset this is not required in most
cases. Even if it is required we can learn another semi-coupled transform from 2 to 1.
But learning a fully coupled transform in a single problem means one more variable
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(linear map) to solve. Given the limited training data, solving more
variables/parameters would lead to over-fitting. Hence we consciously avoid such a
formulation.

During testing, it can be applicable to two kinds of problems. In the first, one can
carry out analysis in the feature domain. For such, the coefficients in domain 2 are used
to learn a classifier. During testing the sample is given in domain 1. From which the
corresponding feature is generated by sparse coding –

ztest1  signumðT1xtest1 Þ �max 0; absðT1xtest1 Þ � l
� � ð9Þ

From the features of domain 1, the target domain features are generated by
ẑtest2 ¼ Mztest1 . These features are input to the learnt classifier for final results.

There can be a second possibility, where the analysis is carried out not on the
transform features (z-domain), but on the samples itself (x-domain). In such a case
instead of stopping at ẑtest2 , one needs to synthesize the corresponding sample. This is
done by solving the inverse problem T2x̂test2 ¼ ẑtest2 . Once x̂test2 , one can carry out further
analysis in the sample domain.

4 Experimental Results

4.1 Image Super-Resolution

For image super-resolution, we train on the CIFAR-100 dataset. These are 32 � 32
images (HR – high resolution). Our interest is in 4 (2 � 2)-fold super-resolution.
During training, we blur and down-sample the CIFAR images to 16 � 16 (LR – low
resolution). We follow a patch-based technique. The LR images form the source and
the HR the corresponding targets. From the LR images we extract 8 � 8 patches and
their corresponding 16 � 16 patches from the target HR images. On this our proposed
semi-coupled transform learning (SCTL) formulation is run.

The training is carried out on the 50K training images of CIFAR-100. The
remaining 10K test images are used for validation. The tuned parameter values we
obtained are k = 0.1, e = 1, l = 0.5 and c = 0.05.

We have compared our method with the coupled dictionary learning (CDL) for-
mulation [6]. The authors of [6] have compared with other super-resolution techniques
[3–5] and have shown to supersede them; they also improve the baseline bicubic
interpolation technique. Therefore it is enough to show that our proposed technique
(SCTL) yields better results than CDL [6].

We have carried out experiments both on greyscale and RGB images. For RGB, the
image was converted to YCbCr space. The super-resolution technique was only applied
on the illuminance channel. For the others, simple bicubic interpolation is done. The
results are shown in the following Fig. 1. If one concentrates on the sharp edges (for
example Lena’s nose), one can see that CDL images are blurred compared to our
proposed method.

Owing to limitations in space, we cannot show results on the other test images. But
the PSNR values for others (including Lena) are shown in Table 1. The results
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establish the superiority of our proposed method over CDL [6] and hence over [3–5]
(since [6] showed improvement upon them). In all cases we improve upon the state-of-
the-art by more than 2 dB – this is a significantly large improvement. To put it in
context, [6] improves upon the prior works [3–5] by 1 to 1.5 dB. Here we improve
upon the best known [6] by more than 2 dB in every case.

One notices that the performance (of both algorithms) for the grayscale image is
always better than the color counterpart. This is because in color imaging, only the
illuminance channel is properly super-resolved; the other channels are simply extrap-
olated using bicubic interpolation.

4.2 Cross Lingual Document Retrieval

In this work we follow the exact evaluation protocol outlined in [19]. We test all
algorithms on the Europarl data set of documents in English and Spanish, and a set of
Wikipedia articles in English and Spanish that contain inter language links between
them (i.e., articles that the Wikipedia community have identified as comparable across
languages). For the Europarl data set, we use 52,685 documents as training, 11,933
documents as a development set, and 18,415 documents as a final testset. Documents

Fig. 1. Original (left). CDL [6] (mid). Proposed (right)

Table 1. PSNR for Super-resolution

Image name Lena Barbara Pepper Cameraman

Color CDL [6] 30.79 28.21 29.76 27.86
Proposed 33.03 30.28 31.81 30.14

Grayscale CDL [6] 31.27 28.98 30.46 28.70
Proposed 34.55 31.17 32.68 30.85
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are defined as speeches by a single speaker, as in [20]. For the Wikipedia set, we use
43,380 training documents, 8,675 development documents, and 8,675 final test.

For both corpora, the terms are extracted by word breaking all documents,
removing the top 50 most frequent terms and keeping the next 20,000 most frequent
terms. No stemming or folding is applied. We assess performance by testing each
document in English against all possible documents in Spanish, and vice versa. We
measure the Top-1 accuracy (i.e., whether the true comparable is the closest in the test
set), and the Mean Reciprocal Rank (MRR) of the true comparable, and report the
average performance over the two retrieval directions. Ties are counted as errors.

We have compared our method against Oriented Principal Component Analysis
(OPCA) and Coupled Probabilistic Latent Semantic Analysis (CPLSA) – two best
performing methods proposed in [19]; and coupled dictionary learning (CDL) [21]. The
dimensions for the projections are given in the respective papers. For our problem
k = 0.1, e = 1, l = 1 and η = 0.05 is used for both semi coupled analysis sparse coding
and symmetrically coupled analysis sparse coding. The number of projections used is
300.

The final results are shown in Tables 2 and 3.

For these experiments, we use the unpaired t-test with Bonferroni correction to
determine the smallest set of algorithms that have statistically significantly better
accuracy than the rest. The p-value threshold for significance is chosen to be 0.05.

For the Europarl there is no statistically significant difference between OPCA and
CPLSA. CDL is significantly better than them. Our proposed techniques are even better
than CDL. There is no statistically significant different between our two algorithms.

For the Wikipedia dataset, OPCA and CDL are statistically similar; both of them
are significantly better than CPLSA. Our proposed coupled analysis sparse coding
techniques show significant improvement over OPCA and CDL. Even for this dataset

Table 2. Comparable document retrieval on Europarl

Algorithm Accuracy MRR

OPCA 0.9742 0.9806
CPLSA 0.9716 0.9782
CDL 0.9812 0.9839
Proposed 0.9954 0.9896

Table 3. Comparable document retrieval on Wikipedia

Algorithm Accuracy MRR

OPCA 0.7255 0.7734
CPLSA 0.4579 0.5130
CDL 0.7279 0.7742
Proposed 0.7868 0.8002
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there is no statistically significant difference between semi-coupled analysis sparse
coding and the symmetrically coupled counterpart.

5 Conclusion

Transform learning is a recently proposed analysis representation learning technique.
So far it has been used for solving inverse problems in signal and image processing.
Only a handful of short papers have used it for simple feature extraction. This is the
first paper that solves a domain adaptation/transfer learning type of complex machine
learning problem based on the transform learning approach.

We have showcased our result for two tasks. The first one is a synthesis problem
where the task is to super-resolve from a low resolution image. Previously coupled
dictionary based techniques have shown significant success in this problem. Our
proposed transform learning based formulation improves upon the state-of-the-art.

The second problem is an analysis problem where the task is cross lingual docu-
ment retrieval. In this task, we have shown that the proposed method surpasses the
previous state-of-the-art.

In future, we would like to extend our work to other image processing problems
(photo sketch synthesis, cross pose recognition etc.) as well as to non-image domains.
Superficially we would be interested in solving cross domain multi-media information
retrieval problems.

In very recent times (papers have been accepted but yet to be published) there have
been studies on coupled autoencoders [22] and coupled analysis/transform learning
[23, 24]. The later studies are related to our proposal. However, they have been used for
other tasks that are different from the aim of this paper.
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Abstract. Spatial invariance to geometrically distorted data is of great
importance in the vision and learning communities. Spatial transformer
network (STN) can solve this problem in a computationally efficient man-
ner. STN is a differentiable module which can be inserted in a standard
CNN architecture to achieve spatial transformation of data. STN and its
variants can handle global deformation well, but lack the ability to deal
with local spatial variation. Hence how to achieve a better manner of
spatial transformation within a neural network becomes a pressing mat-
ter of the moment. To address this issue, we design a module to estimate
the difference between the ground truth and STN output. The difference
is measured in the form of motion field. The motion field is utilized to
refine the spatial transformation predicted by STN. Experimental results
reveal that our method outperforms the state-of-the-art methods in the
cluttered MNIST handwritten digits classification task and planar image
alignment task.

Keywords: Spatial invariance · Geometrical distortion
Spatial transformer networks · Motion field
Refined spatial transformer network

1 Introduction

Deep learning has achieved great success in the field of computer vision, and has
pushed state-of-the-art results forward. Deep learning encounters a lot of oppor-
tunities but also faces many challenges at the same time. One of the challenges
is how to make neural networks spatially invariant.

In order to reduce the influence of geometric distortion, one attempt is to
design spatially invariant representation. Handcrafted features like SIFT [17],
SURF [1], BRISK [14] or features extracted by CNN [6,11,21,22] may obtain
spatial invariance in some degree. However, they may not cover critical features
c© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11303, pp. 151–161, 2018.
https://doi.org/10.1007/978-3-030-04182-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04182-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-04182-3_14


152 C. Shu et al.

we actually need. What’s more, their emphases are different making it difficult to
integrate them in an unified framework. Deep learning incorporates max-pooling
layer to get spatial invariance by merely outputting the maximum from a sub-
region. Receptive field of max-pooling layer is relatively small, neural networks
won’t achieve spatial invariance unless equipped with plenty of it. However, an
excess of max-pooling may lose some crucial details of intermediate feature maps.

Data augmentation can increase networks’ tolerance on geometric distortion
through doing spatial transformation to input data. This approach trades off a
sharp increase in the amount of training data for limited spatial invariance.

These methods don’t get to the root of the problem. Spatial Transformer
Network (STN) [10] uses sampling to warp image, as shown in the Fig. 1. This
approach is differentiable making it possible to be integrated into a neural net-
work. STN proposes a brand new way to offer spatial invariance by achieving
spatial transformation within a neural network. In this case, the network will
be able to transform input image to desired pose and shape to avoid negative
effects caused by spatial position variation and geometric distortion.

Fig. 1. An illustration of zoom-in transformation achieved by sampling. Blue lines
indicate mappings. Black points represent sampling grid. (Color figure online)

The transformation estimated by a STN or its variants is parametric. In prac-
tice, it is unlikely to eliminate all the spatial variations of the input data with
parametric transformations. To address this issue, we design a module to esti-
mate the difference between the ground truth and STN output. The difference is
measured in the form of motion field. The motion field is then used to refine the
spatial transformation predicted by STN. The motion field is non-parametric
making it more appropriate to represent nonlinear deformation in real scenes. In
order to control the smoothness and non-linearity of the motion field, bending
energy penalty and smoothness penalty are introduced as regular terms. Finally,
we verify our method’s effectiveness on the tasks of cluttered MNIST handwrit-
ten digits classification and planar image alignment, our method outperforms
state-of-the-art methods.

Our main contributions of this work can be summarized as follows:
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– We propose a novel neural network architecture which can achieve spatial
transformation of data.

– We use bending energy penalty and smoothness penalty to control smoothness
and non-linearity of estimated motion field.

– We experimentally demonstrate that refined-STN’s spatial transformation
ability is much more powerful than STN and its variants.

2 Related Work

2.1 Spatial Transformer Networks

In the field of image classification where deep learning is widely used, insertion
of STN will eliminate partial deformation which would do harm to classification
accuracy. And a state-of-the-art performance has been achieved on the CUB bird
dataset [23]. Furthermore, many neural networks [2,7,24,25] apply STN to tackle
the task of image alignment, since STN can offer an end-to-end training manner
to networks. STN adopts affine transformation, projective transformation and
thin plate spline transformation for warping. These transformations focus on
global deformation of an image, but lack the ability to deal with local distor-
tion of details. Inverse Compositional Spatial Transformer Network (IC-STN)
[15] makes improvements on the basis of STN with help of inverse compositional
Lucas and Kanada (LK) theory. IC-STN recurrently generates linear transfor-
mations using the same module, those linear transformations will work together
to warp input image. The composition of a series of linear transformations is
still linear, therefore IC-STN still suffers from inadequate spatial transformation
capacity.

2.2 Parametric Warping

The parametric transformation used by a STN or its variants can be mathemat-
ically represented by this function:

φ(p) = c + αT p +
∑

i
wifi(p) (1)

Where p is a certain position index of an image, φ(p) is its motion we need to
estimate. c + αT p represents a linear transformation, where c is a bias term and
α is a weighting coefficient.

∑
i wifi(p) approximates a nonlinear transformation

by a linear combination of a series of basis functions, where fi is a nonlinear
basis function and wi is its weighting coefficient. A basis function is a particular
basis for a function space. Every continuous function in the function space can
be represented as a linear combination of basis functions. Different forms of
basis function fi derive different image deformation methods. When fi is an “U
function”, which is (p − pi)

2 log (p − pi)
2, the corresponding approach is called

thin plate spline [3]. When fi is a“B function”, which is Ci
n(1 − p)n−ipi, the

corresponding approach is called B spline [8]. Different function spaces spanned
by different basis functions are applied to approximate nonlinear deformation
function. However, in practice, the deformation within an image is beyond fitting
capability of these parametric transformations.
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3 Refined Spatial Transformer Network

3.1 Proposed Method

To address above issues, we design a module to approximate the difference
between the ground truth and STN output. The difference is measured in the
form of motion field. This motion field is used to refine the spatial transformation
predicted by STN. The structure of our proposed network is shown in Fig. 2.

Fig. 2. The pipeline of our refined-STN method. We get a base transformation from
base transformation estimator (BTE) and a motion field from refiner. The motion field
is then used to refine the base transformation. The refined transformation is applied
to get the warped image.

Refined-STN can be roughly divided into 4 modules: base transformation
estimator, converter, sampler and refiner. The first three modules mimic a stan-
dard STN. Base transformation estimator takes source image as input and out-
puts base transformation parameters. Converter turns input base transformation
parameters into corresponding motion field, then sampler uses it to warp source
image. Transformed source image is sent into refiner. Refiner produces a motion
field which is added to the base transformation to get refined spatial transforma-
tion. The refined spatial transformation is utilized to warp the source image to
get the final result. These 4 modules will be explained in detail in the following
subsections.

Base Transformation Estimator. Base transformation estimator is a regres-
sion network which takes source image as input, and outputs base transformation
parameters. Here the base transformation we use is affine transformation. Infor-
mation is extracted from input image by convolution and max-pooling operation.
Through fully connected layer it turns into 6 parameters of affine transformation.

Converter. Converter converts obtained affine transformation parameters into
corresponding motion field by using the following equation:

[
u
v

]
=

[
a − 1 b c

d e − 1 f

] ⎡

⎣
x
y
1

⎤

⎦ (2)

Where, a ∼ f are 6 parameters of an affine transformation, (x, y) is a coor-
dinate in the image, (u, v) is the corresponding motion.
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Sampler. Sampler does transformation to the input images according to
the input motion field, it applies sampling to achieve image deformation like
STN [10]. We adopt bilinear interpolation to carry out sampling:

T(p) =
4∑

i=1

I(p̂i) |(1, 1) − |p̂i − p − w||22 (3)

Where T is the output image, I is the input image, p and p̂i are integer
coordinates on the image, and w is the motion of p, p̂i is a 4-pixel neighbor
(top-left, top-right, bottom-left, bottom-right) of p+w.

We achieve bilinear sampling by backward mapping to avoid boundary
effect [15]. Rather than mapping from the input image to the output image,
we do the opposite. Every pixel in the output image will be iteratively mapped
into the input image to find its value.

Refiner. Refiner takes transformed source image as input and outputs motion
field for refined transformation. Its structure is analogous to U-net [19], which
includes contraction operation and expansion operation to capture critic infor-
mation and skip-connection to make the most of feature maps from previous
layers. What differs from the U-net is that deconvolutional layers fill in for
up-sampling layers. In addition, we introduce bending energy penalty [9] and
smoothness penalty respectively from approximation theory and optical flow
theory [4,16]. We add them as regularization terms in the last layer of this mod-
ule to control the output motion field w:

� = α |Δw|22 +β |∇w|22 (4)

The first term is the bending energy penalty which penalizes only nonlinear
transformation since it gets zero for any linear transformation. The second term
is the smoothness penalty aiming at making motion field smoother.

They will be incorporated in the loss function that refined-STN optimizes.

3.2 Mathematical Representation of Refined-STN Pipeline

Our method can be mathematically formulated as follows. The base transforma-
tion estimator (BTE) regresses to an base transformation (affine transformation)
for each input image. [

a b c
d e f

]
= BTE(Iin) (5)

The affine transformation (the first term in the right-hand side of Eq. (6)) is
then turned into corresponding motion field (the left-hand side of Eq. (6)) by
converter. The second term in the right-hand side of Eq. (6) contains all the
coordinates in the output image.

[
u1 u2 · · ·
v1 v2 · · ·

]
=

[
a − 1 b c

d e − 1 f

] ⎡

⎣
x1 x2 · · ·
y1 y2 · · ·
1 1 · · ·

⎤

⎦ (6)
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Sampler transforms the input image according to the motion field.

IB = sampler(Iin,

[
u1 u2 · · ·
v1 v2 · · ·

]
) (7)

Transformed image (IB) is then brought into refiner to regress to another motion
field. [

u∗
1 u∗

2 · · ·
v∗
1 v∗

2 · · ·
]

= refiner(IB) (8)

Newly generated motion field is added to the original motion field to get refined
motion field. Finally, the refined motion field is used to transform the input
image into final position and shape.

IR = sampler(Iin,

[
u1 + u∗

1 u2 + u∗
2 · · ·

v1 + v∗
1 v2 + v∗

2 · · ·
]
) (9)

The process from Iin to IB mimics the pipeline of an affine-STN. After base
transformation, most geometric distortion is eliminated, but there is still a big
gap compared with what we expect. So refiner is designed to capture the gap
and fill it. At the cluttered MNIST classification experiment, the accuracy is
improved by 2.7% after refining process. At the planar face alignment exper-
iment, the refiner reduces the end-point error by 1.4181. Hence experiments
demonstrate that our design greatly improves the original STN’s ability to con-
duct spatial transformation.

4 Experiments

In this section, we will describe implement details of compared methods and our
proposed method. MNIST handwritten digits classification and planar image
alignment are two classical experiments to test spatial transformation ability of
a neural network. We will report experimental results of these two experiments
in following subsections.

4.1 Implemental Details

The structure of STN is set as: [conv(20, (5, 5)) → P] × 3 → dense(50) →
dense(6). Where conv(20, (5, 5)) denotes a 20-filter 5 × 5 convolutional layer, P
denotes a 2 × 2 max-pooling layer, D denotes a dropout layer whose rate is 0.5,
and dense(50) denotes a 50-unit fully connected layer.

The U-net we use in the refiner is set as follows: The filter sizes of all the
convolutional layers are all 3×3. The filter number of each layer begins with 32,
will double after each downsampling layer and halve after each deconvolutional
layer. 4 downsampling layers and 4 deconvolutional layers are included, they all
have a stride of 2. A ReLU nonlinearity is used after each convolutional layer.

The U-net output is brought to a bottleneck layer in the form of [conv(2, (1, 1))
to get a standard motion field. And α and β in (4) are set to 0.01 and 1. We choose
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Adam [12] as optimization method, and default parameters are used. Learning
rate is 10−4, and it will be reduced by factor of 10 when valid loss stops decreasing.
We train the network for 10 K iterations with a batch size of 256.

For classification task, the images are padded with zero turning the image
size to 64 × 64 pixels. In addition, a simple CNN as back-end to get classifica-
tion results. Its structure is: [conv(32, (3, 3)) → P → D] × 3 → dense(256) →
dense(10) → softmax. The training loss is cross entropy.

For planar image alignment task, transformed source image will be directly
output as alignment result, therefore the networks are trained in an end-to-
end fashion. The �2 error between alignment result and target image is used as
training loss.

4.2 Cluttered MNIST Classification

To prove that refined-STN can offer better spatial invariance within a classi-
fication network, we test methods on the cluttered MNIST handwriting digits
database1. This database is modified from the classical MNIST handwriting dig-
its database [13], it is cluttered with noise. The data set contains 50k image pairs
for training, 10k image pairs for validation and 10k image pairs for testing. The
image size is 60 × 60 pixels.

Table 1. Comparison of experimental performances in terms of cross entropy and
accuracy.

Method Cross entropy Accuracy

CNN 0.1560 0.9508

Affine-STN [10] 0.0954 0.9703

TPS-STN [10] 0.1152 0.9772

C-STN-2 [15] 0.0714 0.9770

C-STN-4 [15] 0.0585 0.9817

IC-STN-2 [15] 0.0813 0.9749

IC-STN-4 [15] 0.0771 0.9766

refined-FTN 0.0540 0.9910

Performances of all these methods are illustrated in Table 1. Compared with
the CNN method which has no spatial transformation ability, the rest of meth-
ods with spatial transformation ability get much higher accuracy. TPS-STN
achieves higher accuracy than Affine-STN for thin plate spline supports nonlin-
ear transformation. C-STN and IC-STN get higher accuracy than other STN
based methods proves that combination of multiple linear transformations can
truly improve spatial transformation ability. Our proposed refined-STN method

1 https://s3.amazonaws.com/lasagne/recipes/datasets/mnist cluttered 60x60
6distortions.npz.

https://s3.amazonaws.com/lasagne/recipes/datasets/mnist_cluttered_60x60_6distortions.npz
https://s3.amazonaws.com/lasagne/recipes/datasets/mnist_cluttered_60x60_6distortions.npz
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achieves best result, because it can support more complicated transformation.
Our method can be simply regraded as a combination of affine-STN and refiner.
So we can see that the accuracy is improved by 2.7% after refining process.

4.3 Planar Face Alignment

In order to exhibit our method’s powerful ability to transform an image, we apply
it in the alignment of the images before and after warping. We use images from a
human face database published by [18], and the image size is 64 × 64 pixels. We
warp them with random linear transformation and elastic deformation, as shown
in the first two rows in Fig. 3. The parameters setting of the elastic deformation

Fig. 3. An illustration of performance on human face alignment. Source images are
perturbed from target images. Methods aim to deform source images to align with
target images.
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follows [20]. Training set contains 300k image pairs and testing set contains 60k
image pairs, and 20 percent of training set is split for validation.

The same with previous experiment, Affine-STN, TPS-STN, C-STN and IC-
STN are used as baselines in this experiment. Moreover, three optical flow based
alignment methods are also introduced as baselines: (1) Optic Flow [4] is a
classical variational optical flow method which turns optical flow equation into
a linear system by using variational approach. (2) SIFT Flow [16] is derived
from optical flow methods using SIFT feature rather than brightness to evaluate
alignment accuracy. (3) LDOF [5] improves on Optic Flow, it also turns optical
flow equation into a linear system by using variational approach, additionally it
offers better initial estimation when solving the linear system. We use endpoint
error (EPE) to measure alignment accuracy, which is the Euclidean distance
between two images, averaged over all pixels. In order to avoid interference of
background, we only evaluate accuracy on the central part of each image with
the size of 40 × 40 pixels. Performances of all these methods are shown in the
Fig. 3. Besides we give quantized evaluation in the Table 2.

Table 2. Comparison of experimental performances in terms of EPE and time.

Method EPE Time

Affine-STN [10] 6.9781 0.0019s

TPS-STN [10] 6.4329 0.0031s

IC-STN-4 [15] 6.3330 0.0032s

C-STN-4 [15] 6.3193 0.0031s

SIFT Flow [16] 8.1266 0.5783s

Optic Flow [4] 6.1780 0.0994s

LDOF [5] 5.9467 0.2572s

refined-STN 5.5600 0.0034s

In terms of speed, neural network based methods are several orders of mag-
nitude faster than other methods. Optic flow method, SIFT flow method and
LDOF method all adopt an iterative scheme to deal with large displacement; nev-
ertheless, deep learning methods directly get transformation parameters through
convolution, consequently they take much less time. Although refined-STN has
more complicated structure, it gets similar speed with TPS-STN, C-STN and
IC-STN. Affine-STN is faster than other STN based methods, but it sacrifices a
lot of accuracy.

In terms of accuracy, we can see from Table 2 that SIFT flow gets largest
error since this discrete-matching based method can’t achieve sub-pixel accuracy.
Compared to STN based methods, optical flow based methods achieve better
accuracy since they support nonlinear transformation by estimating optical flow
field. We can see from the row 8, column 3 in the Fig. 3 that when encountering
large displacement, optic flow method collapses. LDOF method can deal with



160 C. Shu et al.

large displacement since it offers good initial estimation of optical flow field
before solving optical flow equation. Our refined-STN method outperforms the
rest of methods, because refiner makes our result more detailed (we can see
from Fig. 3 that refined-STN get smoother lip than others, showing that it can
handle local spatial variation well). Our method can be simply regraded as a
combination of affine-STN and refiner. So we can see that the refiner reduces
the end-point error by 1.4181.

5 Conclusion

In this paper, we design a module in convolutional neural network to refine
output of a standard STN to achieve better spatial transformation. Experi-
ments demonstrate that our design greatly improves the original STN’s ability
to conduct spatial transformation. Our proposed refined-STN method achieves
superior performance in the experiments of cluttered MNIST handwritten digits
classification and planar image alignment.

In the field of classification, stretching and distortion are common factors
that influence neural networks’ classification efficacy. Addition of a layer with
spatial transformation ability is direct and effective way to deal with this issue.

Before refined-STN, STN based methods can’t exceed optical flow based
methods, because their spatial transformation ability is limited. However,
refined-STN method outperforms optical flow based methods in terms of both
accuracy and speed. And refined-STN achieves similar speed and much better
accuracy compared with other STN based methods.
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Abstract. This work proposes a new representation learning technique
called convolutional transform learning. In standard transform learning,
a dense basis is learned that analyses the image to generate the represen-
tation from the image. Here, we learn a set of independent convolutional
filters that operate on the images to produce representations (one corre-
sponding to each filter). The major advantage of our proposed approach
is that it is completely unsupervised; unlike CNNs where labeled images
are required for training. Moreover, it relies on a well-sounded mini-
mization technique with established convergence guarantees. We have
compared the proposed method with dictionary learning and transform
learning on standard image classification datasets. Results show that our
method improves over the rest by a considerable margin.

Keywords: Representation learning · Transform learning
Convolutive models · Image classification · Alternating optimization
Proximal approaches

1 Introduction

Learning representations from the data has always been an interesting problem
for the machine learning community. A model is trained from the data to repre-
sent it in some other domain, and the learned coefficients in the other domain are
used as features for solving tasks such as classification and reconstruction. There
has been extensive research on learning good representations from data using
well-known techniques like auto-encoders [1–3], convolutional neural networks
(CNN) [4,5], dictionary learning [6–12], and more recently transform learning
[13–20].

The key idea behind CNN is to reduce drastically the number of connections
to be learned by assuming that only a few learnt convolutional filters are enough
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to analyse the entire image. This automatically leads to improved generalization
performance, and to a reduction of over-fitting effects. Nowadays, the success of
CNNs have become so pervasive that in top tier conferences more than half of the
papers are based on it. However there are some stark shortcomings. First, CNNs
cannot be learned without supervision since they are based on backpropagation.
Getting large volumes of labeled data is a challenge in many application fields
outside digital imaging, e.g. medical imaging and remote sensing. Secondly, there
is no guarantee that the learned filters are mutually different; CNN just initial-
izes them randomly and depends on the non-convergence of backpropagation
algorithm to maintain the mutual difference.

In dictionary learning, a dictionary is learned from the data such that it can
synthesize the data from the learned coefficients [6,7]. Inspired by the success
of CNN models, there has been recently an increased interest for convolutional
dictionary learning models, where the sought dictionary is expressed as convo-
lutive operators associated to kernels with various sizes and shapes [10–12]. The
field is still nascent and the performance of such techniques have yet to reach
those of CNNs.

Transform learning can be viewed as the analysis equivalent of dictionary
learning, where a basis (transform) is learned such that it analyzes the data to
generate the coefficients [13–15]. Such formulation has been mainly used for the
solution of inverse problems arising in image and signal processing; there are
only a handful of studies that use it for machine learning tasks. In [8], transform
learning (dubbed as analysis sparse coding) was used for unsupervised feature
extraction. A later work [9] imposed discriminative penalties on it. In [17], a
kernelized version of transform learning has been proposed. Deep versions of
transform learning are also getting developed [18,19].

A possible issue with the dictionary learning formulation is its synthesis
nature; in neural network terms, this would correspond to a feed-backward neu-
ral network. On the other hand, transform learning based techniques are inter-
pretable as a feed-forward neural network. Motivated by this observation, and by
the promising results obtained by convolutional models (either based on CNNs or
dictionary learning), we introduce in this work a novel transform learning strat-
egy, called convolutional transform learning. To understand our proposal, one
needs to rethink transform learning as a neural network. Instead of looking at a
transform as a basis, one can think of it as connections from the input (data) to
the representation (coefficient). With this interpretation, a conceptual extension
to a convolutional formulation is then natural. The learning of filters/weights
will be unsupervised which is an additional advantage in contrast to CNN. A
spectral barrier penalty will be employed, in order to promote the diversity of
the learned filters, expecting improved performance in terms of analysis met-
rics. Our learning procedure will be sufficiently versatile so that the proposed
formulation can easily be extended to any machine learning problem.

In the following sections, we describe the proposed formulation, the associ-
ated optimization algorithm, we present experimental results on several image-
based datasets, and finally we draw conclusions.
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2 Background

In this section, we recall the concepts of dictionary and transform learning.

2.1 Dictionary Learning

Dictionary learning is a popular approach to learn a representation from the data
in an unsupervised fashion. From the given input data S, a dictionary/basis D
and coefficients/features X are learned in such a way that the data S can be
reproduced from the learned dictionary and coefficients. Mathematically, this is
represented as

S = DX. (1)

For learning the sparse representations (D,X), the most popular technique is
probably K-SVD [7], which aims to solve the following problem:

minimize
D,X

‖S − DX‖2F such that ‖X‖0 � τ, (2)

with τ > 0 the desired level of sparsity. Other techniques, based on more sophis-
ticated priors can also be used [9–12].

2.2 Transform Learning

Dictionary learning can be seen as the task of inferring a synthesis transform from
the data. The dual task of inferring an analysis transform from the data is called
transform learning. Mathematically, this concept is expressed as ST ≈ X, where
T is the analysis transform, S is the data, and X the corresponding coefficients.
For instance, in [13], the following formulation was proposed to estimate the
matrices T and X:

minimize
T,X

‖ST − X‖2F + λ(‖T‖2F − log det T ) + β‖X‖1, (3)

with λ > 0 and β > 0. Hereabove, the − log det term imposes a full rank on
the learned transform; this prevents the degenerate solution T = 0,X = 0. The
additional penalty ‖T‖2F is to balance scale; without this the − log det term can
keep on increasing and producing degenerate results in the other extreme. Both
of these additional constraints promote the good conditioning of the learned
transform. Finally, the term ‖X‖1 imposes a sparsity constraint on the learned
coefficients.

Transform learning model is expected to be more general than dictionary
learning in its notion of compressibility. It also leads to a faster learning scheme as
the sparse coding step is simply one step of thresholding as contrast to dictionary
learning, where the sparse coding step typically involves the inversion of a linear
system. Our proposal is to extend the above formulation to the case when matrix
T encodes a convolutive structure, mimicking one layer of CNN.
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3 Proposed Approach

We now introduce our formulation of convolutional transform learning in
Sect. 3.1, the associated optimization algorithm in Sect. 3.2, and the mathemat-
ical derivations in Sects. 3.3–3.4.

3.1 Convolutional Transform Learning

Let us consider a dataset
{
s(k)

}
1�k�K

with K entries in R
N . Our convolutional

transform learning formulation relies on the key assumption that matrix T gath-
ers a set of M kernels t1, . . . , tM with M entries, i.e.

T = [t1 | · · · | tM ] ∈ R
M×M . (4)

The proposed model then reads:

(∀k ∈ {1, · · · ,K}) S(k)T ≈ Xk. (5)

Hereabove,
(
S(k)

)
1�k�K

∈ R
N×M are Toeplitz matrices associated to

(s(k))1�k�K such that:

(∀k ∈ {1, . . . , K})S(k)T =
[
S(k)t1 | · · · | S(k)tM

]

=
[
t1 ∗ s(k) | · · · | tM ∗ s(k)

]
(6)

where ∗ is a discrete convolution operator with suitable padding, and

(∀k ∈ {1, . . . , K}) Xk =
[
x
(k)
1 | · · · | x

(k)
M

]
, (7)

contains the coefficients associated to each entry k ∈ {1, . . . , K} of the dataset.
Let us denote:

X = [X�
1 | · · · | X�

K ]� ∈ R
NK×M . (8)

The goal is then to estimate (T,X) from
{
s(k)

}
1�k�K

. To this aim, we propose
to solve the following optimization problem generalizing (3) to our convolutional
learning framework:

minimize
T∈RM×M ,X∈RNK×M

F (T,X) (9)

where the objective function F is defined, for every T ∈ R
M×M and every

X ∈ R
NK×M as:
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F (T,X) =
1
2

M∑

m=1

K∑

k=1

‖tm ∗ s(k) − x(k)
m ‖22

+
M∑

m=1

K∑

k=1

(
β‖x(k)

m ‖1 + ι[0,+∞[(x(k)
m )

)

+ μ‖T‖2F − λ log det T (10)

=
1
2

K∑

k=1

‖S(k)T − Xk‖2F + μ‖T‖2F

− λ log det T + β‖X‖1 + ι[0,+∞[NK×M (X). (11)

Hereabove, function ι[0,+∞[ denotes the indicator function of the positive
orthant, equals to 0 for nonnegative entries, +∞ elsewhere. Moreover, (λ, μ, β) ∈
]0,+∞[3 are regularization parameters.

3.2 Optimization Algorithm

The resolution of Problem (9) requires an efficient algorithm for dealing with
nonsmooth functions and hard constraints. In the optimization literature, prox-
imal algorithms constitute one of the most efficient approaches to tackle such
problems [22–24]. The key tool in those methods is the proximity operator [25,26]
of a proper, lower semi-continuous, convex function ψ : RN �→]−∞,+∞] defined
as:1

(∀x̃ ∈ R
N ) proxψ(x̃) = arg min

x∈RN
ψ(x) +

1
2
‖x − x̃‖2. (12)

Problem (9) fits nicely into the framework provided by the alternating
proximal algorithm from [24,27]. For any initialization T [0] ∈ R

M×M and
X [0] ∈ R

NK×M , its iterations are as follows:

For n = 0, 1, . . .⌊
T [n+1] = proxγ1F (·,X[n])

(
T [n]

)

X [n+1] = proxγ2F (T [n+1],·)
(
X [n]

) (13)

where γ1 and γ2 are some positive constants. The convergence of sequence
(T (n),X(n))n∈N to a minimizer of F is guaranteed, as a consequence of the
convergence properties of the proximal regularization of Gauss-Seidel method
algorithm established in [24]. In the remaining of this section, we show that the
updates on both variables T and X have closed form expressions, and thus can
be computed with high precision in an efficient manner.

1 See also http://proximity-operator.net/.

http://proximity-operator.net/
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3.3 Update of T

Let n ∈ N. Then, by definition,

T [n+1] = proxγ1F (·,X[n])

(
T [n]

)
(14)

= argminT∈RM×M

1
2

K∑

k=1

‖S(k)T − X
[n]
k ‖2F

+ μ‖T‖2F − λ log det T +
1

2γ1
‖T − T [n]‖2F . (15)

Using [28], we deduce that:

T [n+1] =
1
2
Λ−1/2V

(
Σ + (Σ2 + 2λIM )1/2

)
U�, (16)

with

Λ =
K∑

k=1

(S(k))�S(k) + γ−1
1 IM + 2μIM , (17)

the singular value decomposition:

UΣV � =

(
K∑

k=1

(X [n]
k )�S(k) + γ−1

1 T [n]

)

Λ−1/2, (18)

and IM the identity matrix of RM .

Remark for Rectangular T : Let us emphasize that our approach, and the
above update can easily be generalized to the case when matrix T is rectangular,
that is T ∈ R

M1×M2 with non necessarily equality between M1 and M2. Then,
the penalization term on T should be replaced by:

(∀T ∈ R
M1×M2) R(T ) =

{
μ‖T‖2F − λ

∑M
m=1 log(λm) if T ∈ S++

M ,

+∞ otherwise,
(19)

with M = min(M1,M2), (λm)1�m�M are the singular values of T and S++
M

indicates the set of matrices T ∈ R
M1×M2 with strictly positive singular values

(i.e. T has rank equals to M). The gradient of (19) on its definition domain
reads:

(∀T ∈ S++
M ) ∇R(T ) = 2μT − λT †, (20)

with (·)† the pseudo-inverse operation (equivalent to inverse, when M1 = M2 =
M). Using Proposition 24.68 from [21], we can determine the new update for
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variable T in our algorithm: Let n ∈ N. Then:

T [n+1] = proxγ1F (·,X[n])

(
T [n]

)
(21)

= argminT∈R
M1×M2

1

2

K∑
k=1

‖S(k)T − X
[n]
k ‖2

F + μ‖T‖2
F + λR(T )

+
1

2γ1
‖T − T [n]‖2

F (22)

=
1

2
Λ−1UDiag

([
σ1 + (σ2

1 + 2λ)1/2, . . . , σM + (σ2
M + 2λ)1/2, 0, . . . , 0

])
V �

(23)

with

Λ�Λ =
K∑

k=1

(S(k))�S(k) + γ−1
1 IM1 + 2μIM1 , (24)

and the singular value decomposition:

UΣV � =

(
K∑

k=1

(X [n]
k )�S(k) + γ−1

1 T [n]

)

Λ−1, (25)

with U ∈ R
M1×M1 , V ∈ R

M2×M2 orthogonal matrices and

Σ = Diag ([σ1, . . . , σM , 0, . . . , 0]) .

The impact of log-det term in (10) is straight-forward. Such penalty allows
to ensure that the kernels are diverse enough to capture good correlations and
hence generate good features. Changing the penalty parameter associated to the
log-det term has an important impact on the learned kernels. When the kernel
size equals the number of its elements (i.e., square case), then a full rank property
is enforced on T , and in the limit case when μ tends to infinity, the operator T
is such that T−1 = 2μ

λ T .

3.4 Update of X

Let n ∈ N. Then, using the definition of the proximity operator,

X [n+1] = proxγ2F (T [n+1],·)

(
X [n]

)
(26)

= argminX∈RKN×M

1
2

K∑

k=1

‖S(k)T [n+1] − Xk‖2F

+ β‖X‖1 + ι[0,+∞[KN×M (X) +
1

2γ2
‖X − X [n]‖2F . (27)

By relying on the useful properties of the proximity operator listed in [26], we
obtain that, for every k ∈ {1, . . . , K},

X
[n+1]
k = max

(

S γ2β
γ2+1

(
X

[n]
k + γ2S

(k)T [n+1]

γ2 + 1

)

, 0

)

(28)
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where Sθ denotes the soft thresholding operator with parameter θ � 0, i.e.:

(∀u ∈ R) Sθ(u) =

⎧
⎪⎨

⎪⎩

u + θ if u < −θ

0 if u ∈ [−θ, θ]
u − θ if u > θ.

(29)

4 Numerical Results

To assess the performance of the proposed approach, we considered the following
datasets of small-to-medium size, on which we performed feature extraction.

YALE [29]. The Yale dataset contains 165 images of 15 individuals, down-
scaled to 32-by-32 pixels. There are 11 images per subject, one per different
facial expression or configuration. For our experiments, we shuffled all the sam-
ples, and took 70% for training and 30% for testing. Moreover, we generated
different train/test splits: YALE-2,. . . ,YALE-8. In a YALE-p dataset, p images
per subject are kept in train set, and 11−p images are kept in test set. So doing,
train set contains 15p images and test set contains 15(11 − p) images.

E-YALE-B [30]. The Extended Yale B database contains 2432 images with 38
subjects under 64 illumination conditions. Each image is cropped to 192-by-168
pixels, and downscaled to 48-by-42 pixels. For our experiments, we shuffled all
the samples, took 70% for training and 30% for testing.

AR-Face [31]. This database contains more than 4000 images of 126 different
subjects (70 male and 56 female). The images have various facial expressions,
the lighting varies, and some of the images are partially occluded by sunglasses
and scarves. For our experiments, we selected 2600 images of 100 individuals
(50 males and 50 females), that is 26 different images for each subject. Train set
contains 2000 images and 600 images are kept in test set. Each image has 540
features.

4.1 Classification Accuracy

We compared the proposed feature extraction approach (ConvTL – convolutional
transform learning) with transform learning (TL) [8] and dictionary learning
(DL) [7]. Since our method is unsupervised, it is only fair to compare with other
unsupervised representation learning tools. As these are all unsupervised learning
methods, we evaluated their performance by feeding the extracted features to
a supervised classifier and then computing the classification accuracy. We also
performed the classification directly on raw images (Raw). For the classification
task, we used two popular techniques: nearest neighbor (NN) and support vector
machine (SVM). Our algorithm was ran until convergence (typically 10 iterations
are sufficient), with parameters γ1 = γ2 = 1. For every tested method, the hyper-
parameters were cross-validated. The results are reported in Table 1.



170 J. Maggu et al.

We found that the proposed method (ConvTL) yields better results than
regular transform learning (TL) for all the considered datasets and classifiers,
while being better than dictionary learning (DL) on all the datasets when using
nearest neighbor classifier, and on YALE, E-YALE-B, YALE-2, YALE-6, YALE-
7, and YALE-8 when using SVM classifier.

To complete our analysis, we also compared to a convolutional neural network
(CNN) trained on raw images through a standard supervised classification proce-
dure. We used a custom CNN composed of the following layers: Conv[64×3×3]
→ ReLU → Pool[2 × 2] → BNorm → Conv[128 × 3 × 3] → ReLU → Pool[2 × 2]
→ BNorm → Dropout → FC[256] → ReLU → FC[classes] → Softmax.

According to the results reported in Table 1, the proposed ConvTL compares
favorably with the CNN. This may be related to the fact that CNNs are known
to require large training sets in order to achieve breakthrough performance,
whereas the considered datasets are small.

Another important observation is that in most of our experiments on down-
sampled data, we have observed that SVM outperforms KNN. Intuitively, when
we have a limited set of points in many dimensions, SVM tends to be very
good because it should be able to find the linear separation that should exist.
Moreover, SVM is expected to be robust to outliers since it only uses the most
relevant points to find the linear separation (support vectors). In general, if we
have large dataset in a low dimensional space then KNN is probably a suitable
choice. If we have few points in the dataset, lying in a high dimensional space,
then a linear SVM is probably better.

Our classification accuracy is comparable to the one obtained with CNN. It
should however be emphasized that the upvote for the proposed methodology is
its unsupervised way of learning convolved features in contrast to CNN, where
convolved features are learned in a supervised manner.

The learned features by the proposed method are general enough to be used
for other image processing tasks by making small changes in the formulation.

4.2 Computational Time

The proposed method is tested on small size images which are downsampled
from the original full size images. While the DL and TL methods take one to ten
seconds for learning representations, the proposed approach takes around one
minute. The difference in terms of computational time is simply related to the
fact that, in case of TL and DL, the transform requires a matrix-vector product
while in the proposed approach, convolution and deconvolution operations are
needed.

4.3 Analysis of the Learned Kernels

A given number M2 of kernels with M1 = M2
2 coefficients is learned to ideally

represent the dataset. Each kernel tm is convolved with the image s to generate
a different feature vector xm. The intra-kernel diversity is taken care by the
penalties in the proposed formulation.
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Table 1. Classification accuracy on benchmark datasets.

Dataset Raw TL DL ConvTL

NN classifier YALE 58.00 68.00 54.00 70.00
E-YALE-B 71.03 72.28 71.72 84.00
AR-Faces 55.00 53.50 54.50 56.00
YALE-2 43.40 49.63 43.70 51.85
YALE-3 49.40 48.33 47.50 55.83
YALE-4 52.38 50.48 44.76 54.28
YALE-5 51.11 53.33 44.44 54.44
YALE-6 53.33 50.67 50.67 57.33
YALE-7 60.20 61.67 53.33 66.67
YALE-8 63.60 57.78 57.78 71.11

SVM classifier YALE 68.00 78.00 80.00 88.00
E-YALE-B 93.24 94.21 95.58 97.38
AR-Faces 87.33 84.33 97.67 88.87
YALE-2 58.52 51.11 58.52 62.22
YALE-3 62.50 60.83 66.67 64.17
YALE-4 60.95 53.33 64.76 64.52
YALE-5 66.67 57.78 68.89 66.67
YALE-6 73.33 61.33 81.33 82.67
YALE-7 80.00 66.67 78.33 83.33
YALE-8 80.00 71.11 80.00 84.44

CNN classifier YALE 84.00 - - -
E-YALE-B 98.60 - - -
AR-Faces 95.50 - - -
YALE-2 62.96 - - -
YALE-3 64.17 - - -
YALE-4 67.60 - - -
YALE-5 74.44 - - -
YALE-6 76.00 - - -
YALE-7 81.67 - - -
YALE-8 82.22 - - -

Figure 1 shows the kernels learned on YALE dataset, for different sizes M2 ∈
{3, 5, 7, 9}. One can observe that the proposed algorithm is capable of learning
nontrivial and nonidentical kernels, thanks to the regularization on T present in
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(9). In particular, the results reported in Table 1 were obtained by fixing M2 = 5,
which corresponds to a good trade-off between model accuracy and complexity.

Since M1 > M2 here, the estimated T is rectangular and over-complete. The
retrieved kernels are distinct from each other, as soon as μ > 0. In contrast, if
we had considered a large number of small size kernels (i.e., rectangular case
with M1 < M2), T would have been under-complete and the number of distinct
kernels would be equals to the smallest dimension of T , that is M1; the others
being some linear combination of each other. The results for this scenario are
not presented here due to the lack of space.

Note that the initialization of T plays no role in the learning process, since
the optimization problem in (9) is convex.

(a) M2 3

(b) M2 5

(c) M2 7

(d) M2 9

Fig. 1. Kernels learned on YALE dataset.

5 Conclusion

This paper introduces a novel representation learning technique, named convo-
lutional transform learning. Comparison was performed with the off-the-shelf
dictionary learning and transform learning formulations on image classification
tasks. In the future, we plan to compare with several other representation learn-
ing techniques, namely autoencoder and its convolutional version, restricted
Boltzmann machine and its convolutional version discriminative variants of dic-
tionary and transform learning.

Our current formulation relies on an efficient alternating optimization tech-
nique with sounded theoretical guarantees. When applied to large scale problems,
the approach can nonetheless be quite time consuming, so that, in the future we
plan to parallelize portions of the algorithm with the aim to improve its com-
putational efficiency. This will allow us to compare with deeper versions of the
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aforesaid techniques on larger datasets. The next possible extension to the pro-
posed method could be making it multilayered architecture involving various size
and number of kernels in each layer. One can expect the multilayer formulation
to scale well with large number of full size images.
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Abstract. Deep learning (DL) models, e.g., state-of-the-art convolutional
neural networks (CNNs), have been widely applied into security-sensitivity
tasks, such as facial recognition, automated driving, etc. Then their vulnerability
analysis is an emergent topic, especially for black-box attacks, where adver-
saries do not know the model internal architectures or training parameters. In
this paper, two types of ensemble-based black-box attack strategies, iterative
cascade ensemble strategy and stack parallel ensemble strategy, are proposed to
explore the vulnerability of DL system and potential factors that contribute to
the high-efficiency attacks are examined. Moreover, two pairwise and non-
pairwise diversity measures are adopted to explore the relationship between the
diversity in substitutes ensembles and transferability of crafted adversarial
examples. Experimental results show that proposed ensemble adversarial attack
strategies can successfully attack the DL system with ensemble adversarial
training defense mechanism and the greater the diversity in substitute ensembles
enables stronger transferability.

Keywords: Black-box attack � Vulnerability
Ensemble adversarial attack � Diversity � Transferability

1 Introduction

Deep learning models are often vulnerable to adversarial examples: malicious inputs
modified to yield erroneous model outputs, while appearing unmodified to human
observers at inference phase [1–4]. Potential attacks include confusing vehicle behavior
in automated driving or having malicious content like malware identified as legitimate.
Yet, all existing adversarial example attacks require explicit knowledge of the model
internals or its training data (white-box). However, to search for adversarial examples of
a real world system, such knowledge may not be available. In this situation, the target
model is a black-box to the attacker. Therefore, it is quite difficult to extract information
about the decision boundary of target models, which is usually a pre-requisite to design
input perturbations that result in erroneous predictions. However, previous works have
shown that transferability exists between different models, i.e., the adversarial examples
can transfer from one model to another [1, 5–8]. Such a property can be leveraged to
perform black-box attacks. In other words, the attacker can query the target system, and
establish a substitute model based on the query results [9]. Then the attacker can
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generate the adversarial examples for the substitute model, and these adversarial
examples may transfer to disorder the target system. For example, an adversary who
seeks to penetrate a computer network rarely has access to the specifications of the
deployed intrusion detection system, however they can observe its outputs for any
chosen inputs [10]. These observed input-output pairs will be used to produce synthetic
datasets, and to train a substitute model approximating the target system. Therefore, the
adversarial examples generated by substitutes are more likely to transfer to confuse the
target system.

However, conventional attack strategies notoriously only consider to train a single
substitute to craft adversarial examples with a weak transfer capability in black-box
attack scenario, which is easily defended by existed defense mechanism [11–13].
Papernot et al. [14] have proposed ensemble adversarial training technique, which is an
extension of adversarial training [1, 15], to increase robustness of DL models against
black-box attacks. Thus, new attack strategies should be designed to explore the vul-
nerability of DL models with ensemble adversarial training.

In this paper, we propose two types of ensemble-based black-box attack strategies,
iterative cascade ensemble strategy and stack parallel ensemble strategy, to implement
more powerful black-box attacks against DL models and demonstrate that the ensemble
adversarial training does not significantly increase the robustness and security of DL
models. Besides, potential factors that contribute to the effective attacks against DL
models are examined from three perspectives: the transferability of substitutes, the
diversity of substitutes, and the number of substitutes. Ensemble adversarial black-box
attack strategies and strategy analysis will be emphatically introduced in Sect. 2. The
comparison experiment results on real world data sets and feasibility exploration are
reported in Sect. 3 and paper concludes in Sect. 4.

2 Ensemble-Based Black-Box Attack Strategy

Before introducing the attack strategies, we will briefly introduce the architecture of
substitutes and transferable adversarial examples generation algorithms used in this
paper. For the input x 2 RD, the composition of functions modeled by the substitute can
be formalized as [16]:

F xð Þ ¼ softmax fn hn; fn�1 hn�1; . . .f2 h2; f1 h1; xð Þð Þð Þð Þð Þ ð1Þ

where each function fi for i 2 1…n is modeled by a layer of neurons, each layer is
parameterized by a weight vector hi impacting each neuron’s activation. The output of
the last layer is computed by using the softmax function, which ensures that the output
vector F(x) satisfies 0 � F(x)i � 1, and F(x)1 + … + F(x)c = 1, where c is the number
of classes.

Transferable adversarial examples are generated by substitute through carefully
introducing human indistinguishable perturbations to the original examples, then these
generated adversarial examples x� 2 RD can transfer to confuse target model O, i.e.,
O x�ð Þ 6¼ O(x). Currently proposed adversarial examples generation algorithms mainly
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include gradient-based (e.g., FGSM [1], I-FGSM [2], R + FGSM [14], etc.) and
optimization-based (e.g., Carlini L1 Attack [17]), and specific details are described
below:

Fast Gradient Sign Method (FGSM) is a single-substitute attack method. It finds the
adversarial perturbation that yields the highest increase of the loss function under L1-
norm. The update equation is

x� ¼ xþ a � sign rxloss 1y;F xð Þ� �� � ð2Þ

where a controls the magnitude of adversarial perturbation, 1y is the one-hot encoding
of the ground truth label of y. I-FGSM is a straightforward way to extend the FGSM by
using a better iterative optimization strategy and R + FGSM significantly increases the
power of the FGSM by adding gaussian noise to inputs before computing the gradient.

Carlini L1 Attack is a stronger single-substitute attack method proposed recently. It
finds the adversarial perturbation r by using an auxiliary x as

r ¼ 1
2

tanh xð Þþ 1ð Þ � x ð3Þ

Then the loss function optimizes the auxiliary variable xn

minx
1
2

tanh xð Þþ 1ð Þ
����

����þ c � f 1
2

tanh xð Þþ 1ð Þ
� �

ð4Þ

The function f �ð Þ is defined as

f xð Þ ¼ max Z xð Þ1y�max Z xð Þi: i 6¼ 1y
� �

;�j
	 


ð5Þ

where Z xð Þi is the logits output for class i, and j controls the confidence gap between
the adversarial class and true class.

Yet, these single-substitute attack algorithms achieve unsatisfactory attack perfor-
mance in black-box attack scenario. Then, we attempt to ensemble multiple pre-trained
substitutes to produce adversarial examples with more powerful transferability in the
form of iterative cascade ensemble and stack parallel ensemble, as illustrated in Fig. 1.

Fig. 1. Illustration of Iterative Cascade Ensemble Strategy (a) and Stack Parallel Ensemble
Strategy (b).
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2.1 Iterative Cascade Ensemble Strategy

Iterative cascade ensemble strategy employs a cascade structure, as shown in Fig. 1(a),
where each substitute of cascade will receive adversarial examples x�j j 2 0; k½ �ð Þ gen-
erated by its preceding substitute, and output its counterparts to the next substitute.
During each iteration, the output of the k-th substitute x�k will be used as the input to the
first substitute. Output results obtained from the k-th substitute after q iterations are
final adversarial examples. Before implementing the iterative cascade ensemble strat-
egy, the adversary first requires to train k heterogeneous substitute models with various
synthetic datasets, which are constructed by observed input-output pairs and their
augmentation with Jacobian-based technique [9]. In order to obtain more effective
adversarial examples, each substitute is trained based on various architectures of deep
neural networks. Afterwards, FGSM or Carlini L1 Attack is adopted as a classic attack
algorithm for each substitute to craft adversarial examples. Finally, the adversaries can
cascade multiple pre-trained substitutes and iteratively maximize each loss of substitute
to obtain the final adversarial examples. The iterative cascade attack procedure is
outlined in Algorithm 1.

The algorithm first requires to initialize the value of all input variables e, a, k, q
(where e = a/2 and k = q), and add gaussian noise to original normal examples. For
each substitute, the standard cross entropy loss function [18] should be constructed to
compute gradient to maximize the loss function optimized for the L1 distance metric.
The gradient of loss function determines the direction which feature should be changed.
During each iteration, generated adversarial example x�k will be assigned to x�0 as input
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of the first substitute. Until the loop iteration ends, the final transferable adversarial
examples are obtained from the output of k-th substitute.

2.2 Stack Parallel Ensemble Strategy

Stack parallel ensemble strategy employs a parallel structure, as shown in the Fig. 1(b),
where each substitute of parallel will receive the original legitimate example x, and
output result x�j j 2 1; k½ �ð Þ will be combined with a linear way as new input of the k + 1
substitute. Output results obtained from the k + 1 substitute are final adversarial
examples. Before implementing the parallel ensemble strategy, the adversary first
requires to train k + 1 heterogeneous substitute models with various synthetic datasets,
which are constructed by observed input-output pairs and their augmentation with
Jacobian-based technique [9]. In order to achieve more effective adversarial examples,
each substitute is still trained based on various architectures of deep neural networks.
Afterwards, FGSM or Carlini L1 Attack is adopted as a classic attack algorithm for
each substitute to craft adversarial examples. Finally, the adversary can parallel mul-
tiple pre-trained substitutes and maximize each loss of substitute to obtain adversarial
examples. The stack parallel attack procedure is outlined in Algorithm 2.

The algorithm still requires to initialize the value of all input variables e, a, k, x�mid
(where e ¼ a=2; x�mid = 0D), add gaussian noise to original legitimate examples and
compute gradient of constructed loss function. The gradient of loss function determines
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the direction which feature should be changed. For the top-k substitutes, generated
adversarial example x�j j 2 1; k½ �ð Þ will be combined with a linear way and save to x�mid
as new input of the k + 1 substitute. The final transferable adversarial examples are
achieved from the output of k + 1 substitute.

2.3 Strategy Analysis

Empirical evidence has shown that adversarial examples appear in wide regions,
spanning a contiguous subspace of high dimensionality and a large portion of this space
is shared between different models, thus enabling transferability [1, 7, 19]. Ian
Goodfellow et al. first proposed Gradient Aligned Adversarial Subspace (GAAS) [7]
method to find multiple independent orthogonal adversarial directions to directly
evaluate the dimensionality of the adversarial subspace. The dimensionality of
adversarial subspaces is relevant to the transferability problem: the higher the dimen-
sionality, the more likely the subspaces of substitute and target model will intersect
significantly. As proposed in [7], the decision boundaries learned by both the substitute
and target model must be extremely close to each another in adversarial direction.
Adversarial direction is defined by x and x� : dadv ¼ x� � xð Þ=x� � x2, where adver-
sarial example x� (blue dot) is generated from test example (brown dot) x to be
misclassified by substitute F(x): argmine[ 0 F x� : xþ e � dadvð Þ 6¼ F xð Þ, as shown in
Fig. 2(a). That is, the cross-boundary distance (the red double-ended arrows) in
adversarial direction between the decision boundaries of substitute and target model
must be very short. In other words, the shorter the distance, the stronger transferability.

Actually, it is difficult to guarantee the trained substitute accurately approximating
the target black-box model and the adversarial direction is also not unique, which lead
to the weak transferability of crafted adversarial examples. However, if adversarial
examples remain adversarial for multiple substitutes, it is more likely to transfer to
disorder the target model, as shown in Fig. 2(b). From the Fig. 2(b), we can observe
that an adversarial example (blue dot) generated by our proposed ensemble-based
black-box attack strategies crossing the decision boundaries of k (e.g. k = 3) substitutes,
has a greater probability to cross the decision boundary of target model. This fully
illustrates the ensemble-based black-box attack strategies effectively shorten the cross-
boundary distance and improve the transferability of generated adversarial examples.

Fig. 2. Illustration of a binary misclassification procedure in the adversarial direction over a 2D
input domain. (Color figure online)
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3 Experiments

All experiments1 use Tensorflow2 framework and cleverhans library3. To demonstrate
the effectiveness and feasibility of the proposed ensemble-based black-box attack
strategy, we empirically compare the conventional single-substitute attack algorithms
described previously, e.g., FGSM, I-FGSM, R + FGSM and Carlini L1 attack, and
expose the potential factors that contribute to the high-efficiency attacks.

3.1 Setup

Four benchmark datasets for two tasks, i.e., digit recognition and traffic sign recog-
nition, are used in experiments. Details about datasets are listed in Table 1. The target
classifier as black-box model in this work are trained with training data of each dataset.
For each dataset, few unused test examples, as query inputs, are used to query target
classifier and produce synthetic datasets augmented by observed input-output pairs.
Then, diverse convolutional neural network architectures, as shown in Table 2, are
selected to train substitutes with various synthetic datasets for ensemble to implement
black-box attack tasks.

Table 1. Summary of 4 benchmark datasets

Name Training data Test data Features Labels Task

MNIST 50000 10000 28� 28� 1 10 Digit recognition
USPS 7291 2007 16� 16� 1 10 Digit recognition
GTSRB 39209 12630 32� 32� 3 43 Traffic sign recognize
BelgiumTSC 4575 2534 32� 32� 3 62 Traffic sign recognize

Table 2. Neural network architectures used in this work for substitute and target model training.
Conv: convolution layer, FC: fully connected layer, Relu: activation function

1 Codes is available at https://github.com/HangJie720/Ensemble_Adversarial_Attack.
2 https://www.tensorflow.org/?hl=zh-cn.
3 https://github.com/tensorflow/cleverhans.

Delving into Diversity in Substitute Ensembles and Transferability 181

https://github.com/HangJie720/Ensemble_Adversarial_Attack
https://www.tensorflow.org/%3fhl%3dzh-cn
https://github.com/tensorflow/cleverhans


Two diverse measurements, Success rate and Transfer rate, are redefined to
evaluate the vulnerability of DL models according to Eqs. 6. and 7.

1
nk

Xk

j¼1

Xn

i¼1
I Fj x�i

� � 6¼ Fj xið Þ� � ð6Þ

1
n

Xn

i¼1
I O x�i

� � 6¼ O xið Þ� � ð7Þ

where I �ð Þ ¼ 1 represents generated adversarial example is misclassified, and 0,
otherwise. These two metrics are used to measure the error rate of substitute and target
model respectively.

3.2 Results

This section first quantitatively analyzes the vulnerability of DL models under success
rate and transfer rate measurement. Afterwards, we empirically compare the conven-
tional single-substitute attack algorithms based on FGSM and Carlini L1 attack for
different datasets. Finally, possible factors that contribute to the higher transfer rate are
explored from two aspects, the diversity of substitutes and the number of substitutes k.

Figure 3 demonstrates that deep learning models are extremely susceptible to
adversarial examples generated by proposed ensemble-based black-box attack strate-
gies under different perturbation amplitude a.

The transferability of adversarial examples generated by each substitute and cas-
cading or paralleling any k substitutes (e.g. k = 3, 5) are illustrated in Table 3 and
Fig. 4. Experiments demonstrate that the adversarial examples crafted by iterative
cascade ensemble strategy achieve higher transfer rate than stack parallel ensemble
strategy dramatically. Both obtain superior attack performance to other single-
substitute attack algorithms. We also can observe that optimization-based algorithm
(e.g. Carlini L1 attack) provided for each substitute to iterative cascade ensemble
obtain greater transferability than gradient-based algorithm (e.g. FGSM). Figure 5

Fig. 3. Success rate and Transfer rate of adversarial examples generated by ensemble-based
black-box attack strategies under different perturbation amplitude on MNIST and GTSRB.
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demonstrates that our proposed ensemble-based black-box attack strategies are still
aggressive to target classifier trained with ensemble adversarial training defense
mechanism.

Moreover, possible factors that contribute to the higher transfer rate are explored
from two perspectives: the diversity of substitutes and the number of substitutes k.

(1) The number of substitutes k. The experiment results are shown in Fig. 6. for our
proposed ensemble-based black-box attack strategies, which indicates that the
larger the value of k, the higher transfer rate of generated adversarial examples.

(2) The diversity of substitutes. Two averaged pairwise measures [20] (the Q statis-
tics, the correlation coefficient q) and two non-pairwise measures [20] (The
entropy measure E, the Kohavi-Wolpert variance KW) are selected to analyze the
relationship between the diversity of substitute and transferability of generated
adversarial examples. Experimental results are listed in Table 4, where I, II, III
and IV represent the four strategies to generate the substitutes, such as, the sub-
stitutes are same, trained with different training sets, trained with different
architectures and trained with different training sets and architectures respectively.
Comparative experimental results demonstrate that the greater the diversity of
substitutes, the stronger the transferability of adversarial examples. Thus, all same
substitutes used in I-FGSM obtain the lowest transfer rate, as shown in Fig. 4.

Table 3. Transfer rate of adversarial examples generated by single-substitute, iterative cascade
ensemble strategy and stack parallel ensemble strategy based on FGSM and Carlini L1 attack
for different datasets.

FGSM a¼ 0:3ð Þ MNIST USPS GTSRB BelgiumTSC

Sub1 32.47% 30.44% 59.32% 58.22%
Sub2 37.00% 38.20% 55.27% 49.64%
Sub3 18.57% 25.42% 50.23% 50.12%
Sub4 19.04% 27.62% 45.55% 43.65%
Sub5 16.61% 25.29% 40.29% 49.23%
Iter_Casc (k = 3) 58.01% 53.23% 65.89% 64.68%
Stack_Paral (k = 3) 50.00% 48.27% 61.36% 60.00%
Carlini L1 attack j ¼ 0j ¼ 0ð Þ MNIST USPS GTSRB BelgiumTSC
Sub1 12.50% 10.50% 12.50% 28.20%
Sub2 12.50% 12.00% 20.50% 19.65%
Sub3 1.50% 2.50% 9.50% 2.10%
Sub4 0.50% 1.50% 5.55% 3.55%
Sub5 1.00% 0.50% 8.50% 1.20%
Iter_Casc (k = 3) 94.50% 90.00% 100.00% 100.00%
Stack_Paral (k = 3) 17.50% 20.00% 30.50% 35.00%
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Fig. 4. Transfer rate of adversarial examples crafted by disparate attack strategies on two major
classification tasks. Ensemble strategies compared with single-substitute attack algorithms based
on FGSM under differ perturbation amplitude a are shown in Fig. (a)–(d). Ensemble strategies
compared with single-substitute attack algorithms based on Carlini L1 Attack under different
confidence j are shown in Fig. (e) and (f).

Fig. 5. Weakly defense performance of target classifier trained with ensemble adversarial
training defense mechanism.
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4 Conclusion

In this paper, we propose two types of ensemble-based black-box attack strategies,
iterative cascade ensemble strategy and stack parallel ensemble strategy, to explore the
vulnerability of deep learning system. Experimental results show that our proposed
ensemble adversarial attack strategies can successfully attack the deep learning system
trained with ensemble adversarial training defense mechanism. The adversarial
examples generated by iterative cascade ensemble strategy achieve better transfer-
ability than stack parallel ensemble strategy dramatically. Both obtain superior attack
performance to other single-substitute attack algorithms. We also can observe that the
diversity in substitute ensembles is an important factor to influence the transferability of
generated adversarial examples.

Fig. 6. Transfer rate of adversarial examples crafted by iterative cascade ensemble strategy and
stack parallel ensemble strategy with different number of substitutes k.

Table 4. The relationship of diversity in substitute cascade/parallel ensembles and transfer-
ability of generated adversarial examples. (") represents the measure value of diversity is
increased, (#) represents the measure value of diversity is decreased.

MNIST Transfer Rate Diversity Measure Value
Iter_Casc (k = 3) Stack_Paral (k = 3) Q(#) q(#) Ent(") KW(")

I 16.89% 10.89% 1.0000 1.0000 0.0000 0.0000
II 20.35% 18.52% 0.8900 0.7343 0.4900 0.1089
III 40.23% 34.53% 0.6432 0.5321 0.6235 0.2336
IV 58.01% 50.00% 0.3411 0.2300 0.7800 0.3345
GTSRB Iter_Casc (k = 3) Stack_Paral (k = 3) Q(#) q(#) Ent(") KW(")
I 70.44% 66.24% 1.0000 1.0000 0.0000 0.0000
II 79.26% 72.81% 0.7100 0.6911 0.5300 0.2033
III 88.12% 80.36% 0.5302 0.3510 0.7122 0.3010
IV 95.89% 93.80% 0.2201 0.1800 0.8201 0.4700
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Abstract. Recently neural networks are obtaining state of the art
results on many NLP tasks like sentiment classification, machine transla-
tion, etc. However one of the drawbacks of these techniques is that they
need large amounts of training data. Even though there is a lot of data
being generated everyday, not all tasks have large amounts of data. One
possible solution when data is not sufficient is using transfer learning
techniques. In this paper, we explored methods of transfer learning (or
sharing the parameters) between different tasks so that the performance
on the low data resource tasks is improved. We have first tried to repli-
cate the prior results of transfer learning in semantically related tasks.
When we have semantically different tasks, we tried using Progressive
Neural Networks. We also experimented on sharing the encoder from
neural machine translator to classification tasks.

Keywords: Progressive neural networks · Transfer learning
Neural machine translator encoder

1 Introduction

Transfer learning is a paradigm in machine learning where the knowledge gained
by solving a problem related to a task or domain is applied to solve a different
but related problem. There will be a source domain (which usually has large
training data) and a target domain (which usually has small training data).
Using the knowledge learned from the source domain, transfer learning aims to
improve the performance on the target domain.

Transfer Learning techniques have been effectively used in fields like image
processing [8] and were able to achieve good results. However, in NLP, Transfer
Learning has been loosely applied and conclusions are not consistent. A previous
work [1] showed that transfer learning is helpful when the tasks are semantically
similar. But most of the time we may not find a source task with large amount
of data which is semantically similar to the target task. We experimented with
different architectures to address this difficulty. We used progressive neural net-
works and NMT and succeeded to some extent. Researchers [4] used Progressive
c© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11303, pp. 188–197, 2018.
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Neural Networks (PNN) on games with reinforcement learning and achieved near
state of the art performance. Their main idea is to use columns of architectures
trained on different datasets and use them along with a new column on the tar-
get dataset. This also prevents catastrophic forgetting while training the target
domain.

In machine translation, sequence to sequence [5] learning using neural net-
works have given state of the art results. In sequence to sequence learning, the
general architecture consists of an encoder and a decoder. The source language
sentence is given as input to encoder, which gives an encoded vector. Then that
encoded vector is given as input to the decoder which then decodes into another
language. We used the encoder of neural machine translator, which is trained on
English to Vietnamese translation for classification tasks.

The rest of the paper is organized as follows. Section 2 discusses the related
work. Section 3 describes the datasets we used for the experiments. Direct trans-
fer learning, progressive neural networks and neural machine translator are dis-
cussed in Sects. 4, 5 and 6. Conclusions and future work are described in Sects. 7
and 8.

2 Related Work

Transfer learning is being successfully applied to a variety of problems in com-
puter vision across domains and applications [8]. In NLP, researchers [1] showed
that neural network based transfer learning helped when the source and target
tasks are semantically related. They have used INIT and MULT methods while
transferring the parameters. Researchers [2] have also shown that neural net-
work based transfer learning improves the performance of models for sequence
tagging and shown that even problems across domains and applications can
benefit (though may not be significantly) from transfer learning. Researchers [3]
proposed transfer learning schemes for personalized language modelling using
LSTM’s. They have also considered low computational resources like mobile
and showed that transfer learning helps in faster training in such cases.

Researchers [4] have proposed Progressive Neural Networks to leverage trans-
fer learning and avoid catastrophic forgetting. They are immune to forgetting and
can leverage prior knowledge via lateral connections to previously learned fea-
tures. We used this architecture in NLP classification tasks and tried to improve
the performance on target datasets.

Sequence-to-sequence (seq2seq) have enjoyed great success in a variety of
tasks such as machine translation models, speech recognition, text summariza-
tion, etc. NMT system uses encoder and decoder architecture for translating
from one language to another. We have trained a NMT on English to Vietnam
language and then used its encoder for classification tasks.
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3 Datasets

The following datasets have been used by us for our experiments:

IMBD: A large dataset by IMDb for binary sentiment classification (positive vs.
negative) - 25k sentences [9]

Movie Review (MR): A small dataset by Rotten Tomatoes for binary sentiment
classification ∼ 10k sentences1.

Question Classification (QC): A small dataset for 6-way question classification
(e.g., location, time, and number) ∼ 5000 questions2.

SNLI: A large dataset for sentence entailment recognition. The classification
objectives are entailment, contradiction, and neutral ∼ 500k pairs [7].

SICK: A small dataset with exactly the same classification objective as SNLI ∼
10k pairs3.

MSRP: A small dataset for paraphrase detection.The objective is binary classi-
fication: judging whether two sentences have the same meaning ∼ 5000 pairs4.

Quora dataset: It contains duplicate questions pairs with labels indicating
whether the pair of questions request the same information ∼ 400k question
pairs5.

IWSLT English-Vietnamese corpus: We used this dataset to train NMT ∼ 133k
pairs6.

4 Direct Transfer Learning

A typical transfer learning scenario is by initializing the weights of a target task
by the weights trained on the source task and fine tuning them. First we tried
to replicate the results of the previous work [1] using INIT method. We used
the CNN and LSTM architectures as shown in Figs. 1 and 2 respectively. We
used a CNN for each sentence and after max pooling we concatenated the two
vectors and used two hidden layers and an output layer. We used filter widths
of 4, 5, 6 and 7 in CNN and 1024 units in hidden layer 1 and 2. Similarly, We
used an LSTM for each sentence and the last hidden states are concatenated
and two hidden layers and one output layer were used. We used 256 hidden
units in LSTM cell and 1024 units in hidden layer 1 and 2. For datasets with
one input sentence (IMDB and QC), we used only one CNN or LSTM. We have
trained the model on IMDB and then transferred the parameters to MR and QC

1 http://www.cs.cornell.edu/people/pabo/movie-review-data/
2 http://cogcomp.cs.illinois.edu/Data/QA/QC/
3 http://alt.qcri.org/semeval2014/task1/
4 https://www.microsoft.com/en-us/download/details.aspx?id=52398
5 https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
6 https://nlp.stanford.edu/projects/nmt/
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Fig. 1. CNN architecture Fig. 2. LSTM architecture

datasets. Similarly we have trained the model on SNLI and then transferred the
parameters to SICK and MSRP. We also trained the model on Quora and then
transferred the parameters to SICK and MSRP. Results are shown in Table 1.

When we transferred the parameters from IMDB to MR, the accuracy is
improved by 1.65% (CNN) and 1.06% (LSTM). From IMDB to QC, there is
not much change in accuracy. The reason for this is that IMDB and MR are
semantically similar datasets whereas IMDB and QC are semantically different.

Table 1. Accuracies obtained with transfer of parameters from IMDB to MR and QC
datasets and from SNLI and Quora to SICK and MSRP datasets.

Dataset Paper[1]
(without
Transfer)

Paper[1]
(with
Transfer)

Without
Transfer
(CNN)

With
Transfer
(CNN)

Without
Transfer
(LSTM)

With
Transfer
(LSTM)

MR 75.1 80.9 77.55 79.20 78.16 79.22

QC 90.8 90.40 89.45 89.33 89.40 89.86

SNLI to SICK 70.9 77.6 70.45 76.98 76.39 80.79

Quora to SICK - - 70.45 73.89 76.39 75.08

SNLI to MSRP 69 68.8 69.29 68.17 69.39 68.78

Quora to MSRP - - 69.29 69.68 69.39 69.21

Transfer of parameters from SNLI to SICK appears to be successful with
6.53% (CNN) and 4.40% (LSTM) increase in accuracy. We can observe that
there is decrease of 1.12% (CNN) and 0.61% (LSTM) from SNLI to MSRP.
SNLI and SICK are semantically similar datasets, whereas SNLI and MSRP
are not. This suggests that transfer learning is more prone to semantics. From
Quora to SICK, the accuracy has increased by 3.44% in CNN architecture and
decreased by 1.31% in LSTM architecture, while there is not much change from
Quora to MSRP in both architectures. Quora is not related to SICK or MSRP.
This implies that there may be positive or negative transfer between unrelated
datasets depending on the type of architecture used.
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5 Progressive Neural Networks

From the above experiments, it is evident that initializing and fine tuning are
helpful when the source and target tasks are semantically similar. In general it
is not always possible to get a source which is semantically similar to our tar-
get dataset. In that case if we train a model on some dataset and transfer the
parameters to the model on target dataset, we may or may not get satisfactory
performance. So we tried to address this problem using Progressive neural net-
works (PNN). Progressive networks retain a pool of pretrained models through-
out training. In this architecture, there are columns of networks. Each column
consists of a neural network. There can be many columns and each column is
initialized with a pretrained neural network and the last column is randomly
initialized. There are lateral connections between the hidden layers of each col-
umn to the hidden layer of the last column. The pretrained weights are freezed
while the lateral weights are trainable. In normal transfer learning, initializing
and fine tuning may help the target task but it will forget the source task func-
tionality. Since the pretrained weights are freezed, the source tasks functionality
is retained in these networks. Progressive networks are a step in the direction of
continual learning.

Researchers [4] applied progressive networks on reinforcement learning tasks
(Atari and 3D maze games). We have applied progressive networks to NLP tasks.
The idea is that since in this architecture, the target task is initialized with both
pretrained weights and randomly, if we do not have a semantically similar source
task, then we can still use the pretrained weights of a source task to initialize
a column with those weights. Since there are randomly initialized layers, the
target task will use whatever parameters are required from the source task and
learn the rest from updating the randomly initialized weights. The idea is that
there will not be any negative transfer and in the worst case it will give the same
results without any degradation. Also to initialize the weights from the source
task, the architecture of the target task and the source task has to be the same.
But in progressive networks, even if the source architecture is different, we can
still use the pretrained weights.

5.1 Implementation

We used two architectures, CNN and LSTM. Figure 3 shows the PNN with CNN
architecture. For source dataset, we used filter widths of 4, 5, 6 and 7 in CNN
and 1024 units in hidden layer 1 and 2. For target dataset we used filter widths
of 4, 5, 6 and 7 in CNN and 512 units in hidden layer 1 and 2. The dimensions of
lateral weights are 800 × 1024 (concatenated maxpool vector of source to hidden
layer 1 of target), 1024 × 512 (hidden layer 1 of source to hidden layer 2 of
target) and 1024 × 2/3/6 (number of labels in target dataset). PNN with LSTM
is also similar, instead of maxpooling from CNN, we used the last hidden state
of LSTM. For source dataset, we used 256 hidden units in LSTM cell and 1024
units in hidden layer 1 and 2. For target dataset we used 256 hidden units in
LSTM cell and 512 units in hidden layer 1 and 2. The dimensions of lateral
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weights are 512 × 1024 (concatenated maxpool vector of source to hidden layer
1 of target), 1024 × 512 (hidden layer 1 of source to hidden layer 2 of target) and
1024 × 2/3/6 (number of labels in target dataset). Table 2 shows the results of
PNN with CNN and LSTM.

Fig. 3. Architecture of PNN with CNN.

Table 2. Accuracies using different methods of sharing the parameters using CNN
(left) and LSTM (right).

CNN Original Direct PNN Modified
Transfer PNN

IMDB to MR 77.55 79.20 78.30 79.30
IMDB to QC 89.45 89.33 90.10 89.88
SNLI to SICK 70.45 76.98 75.61 76.22
Quora to SICK 70.45 73.89 73.10 74.76
SNLI to MSRP 69.29 68.17 70.02 70.10
Quora to MSRP 69.29 69.68 69.27 70.14

LSTM Original Direct PNN Modified
Transfer PNN

IMDB to MR 78.16 79.22 77.90 79.07
IMDB to QC 89.40 89.86 89.60 89.60
SNLI to SICK 76.39 80.79 79.66 81.60
Quora to SICK 76.39 75.08 75.88 76.54
SNLI to MSRP 69.39 68.78 68.98 69.51
Quora to MSRP 69.39 69.21 69.10 69.91

From the results, we can observe that if the tasks are not semantically sim-
ilar, direct transfer learning may degrade the performance, but the progressive
networks showed slightly improved or same performance but did not degrade.
From the results we can observe that when the tasks are semantically similar,
PNN performed worse than the direct transfer. This means that, when the tasks
are semantically similar it is more advantageous to initialize and fine tune. So
we did a slight modification to the progressive networks. Instead of freezing the
parameters from the source tasks, we made them as trainable. This modification
gave the best results of all. The idea is that if the tasks are semantically similar
then initializing and fine tuning the source task parameters actually helps. So
instead of freezing those parameters, we let them train.
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6 Neural Machine Translator

Sequence-to-sequence (seq2seq) models have enjoyed great success in a variety
of tasks such as machine translation [5], speech recognition, text summarization,
etc. NMT system first reads the source sentence using an encoder to build a
“encoded” vector, a sequence of numbers that represents the sentence mean-
ing; a decoder, then, processes the encoded vector to emit a translation. The
encoded vector thus contains sufficient lexical and semantic information to fully
reconstruct a sentence in another language.

We have experimented with encoder of a neural machine translator (NMT)
to the classification tasks. A neural machine translator [5] with 2-layer LSTMs
of 512 units with bidirectional encoder, embedding dimension of 512 and Luong
attention is used to train on IWSLT English-Vietnamese corpus (133k examples).
A Bleu score of 24.0 was obtained on the test data. Later, the trained model was
used to extract a 512 dimensional encoded vector of a sentence. The encoded
vector of dimension 512 is given as input to the feed forward neural network
with two hidden layers and one output layer. The encoded vector is taken as the
last hidden state of the LSTM. The number of units in hidden layer 1 are 1024
for each sentence and there are 1024 units in hidden layer 2. Results are shown
in Figs. 5, 6, 7, 8, 9 and 10.

6.1 PNN with NMT

In this section we exploited the Progressive neural networks by using a different
architecture altogether. We have combined the encoded vector from NMT and
CNN/LSTM architecture. Figure 4 shows the architecture with CNN. We used
filter widths of 4, 5, 6 and 7 in CNN and 1024 units in hidden layer 1 and 2. We
used the same NMT encoder as in previous section. The dimension of encoded
vector is 512 and so the dimension of the lateral weights is 1024 × 1024. Similarly
with LSTM we used the last hidden state instead of max pooling from CNN.
We used 256 hidden units in LSTM cell and 512 units in hidden layer 1 and 2.
We initialized the CNN/LSTM part randomly and also with parameters from a
model trained on source. Results are shown in Figs. 5, 6, 7, 8, 9 and 10.

From the results in Figs. 5, 6, 7, 8, 9 and 10, we can observe that on SICK
(for CNN) and MSRP datasets the accuracies are on par with the direct models.
However, on QC and MR datasets, the performance is worse than the original
one. From this we can say that the encoded vector is capturing meaning of the
sentence to a certain extent.

We can observe that there is a major increase in accuracy for MR and QC
datasets with NMT and CNN/LSTM compared to that of only encoded vector
from NMT. NMT encoded vector with direct transfer performed better or on
par with direct transfer alone on all datasets for both CNN and LSTM (except
from SNLI to SICK with LSTM). We can observe that combining encoded vec-
tor of NMT with other models gives good performance compared to individual
models alone. Thus we can say that encoded vector from NMT is giving some
complementary information to the CNN or LSTM architectures.
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Fig. 4. PNN architecture with NMT encoder and CNN.

Fig. 5. Accuracies on MR dataset. Fig. 6. Accuracies on QC dataset.

Fig. 7. Accuracies on SCIK dataset with
transfer from SNLI.

Fig. 8. Accuracies on SCIK dataset with
transfer from Quora.
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Fig. 9. Accuracies on MSRP dataset
with transfer from SNLI.

Fig. 10. Accuracies on MSRP dataset
with transfer from Quroa.

7 Conclusions

We performed various experiments on different methods of sharing the parame-
ters. Initializing and fine tuning are helpful when the source and target datasets
are semantically similar. Next we used progressive neural networks for the smaller
datasets. Instead of freezing the source parameters, it is better if we let them
train. We used the encoded vector of NMT encoder, which performed reason-
ably on some datasets. Instead of using the encoded vector alone, if we used it
in progressive network, then the performance is improved. Encoded vector from
NMT and direct transfer from source performed better than direct transfer alone.
Thus we can say that encoded vector from NMT is giving some complementary
information to the CNN or LSTM architectures.

Even though initializing and fine tuning are popular methods of sharing
the parameters, it may not help in all cases. Progressive neural networks gave
improved performance even when the datasets are not semantically similar. So
we can conclude that it is better to use progressive neural networks instead of
initializing and fine tuning the parameters.

8 Future Work

We can combine different architectures in progressive neural networks. So this
work can be further extended by experimenting with various architectures. We
have trained NMT on a smaller dataset. We can train it on a large corpus
and experiment with it. Also Google has used a Multilingual Neural Machine
Translation System [6] which is trained on more than one language to language
pair. Since it is trained on many language pairs, it might capture the meaning
of a sentence to a greater extent than a NMT trained on a one-to-one language.
We can experiment with the encoder of that model on various tasks.
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Abstract. Training of deep learning algorithms such as CNN, LSTM,
or GRU often requires large amount of data. However in real world appli-
cations, the amount of data especially labelled data is limited. To address
this challenge, we study Deep Transfer Learning (DTL) in the context
of Multitasking Learning (MTL) to extract sharable knowledge from
tasks and use it for related tasks. In this paper, we use Minimum Closed
Ball (MEB) as a flexible knowledge representation method to map shared
domain knowledge from primary task to secondary task in multitasking
learning. The experiments provide both analytic and empirical results to
show the effectiveness and robustness of the proposed MEB-based deep
transfer learning.

Keywords: Multi-task learning · Deep transfer learning
Learner-independent multi-task learning · Minimum enclosing ball

1 Introduction

For machine learning from real world applications, we often encounter lack of
data issue. For example, we have a classification task with sufficient annotation
data in one domain, but there is a related task in another domain that does not
have enough annotation data. The data distribution between the two tasks is
different. For deep learning (DL), an implementation on a real world applica-
tion needs often large amount of labelled data for training. In actual projects,
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marking high-quality data requires a large number of knowledgeable labelers,
so obtaining a sufficient number of annotation instances is extremely difficult,
time consuming, and expensive. In this sense, we consider in this work a Multi-
Task Learning (MTL) framework, where transfer learning can be conducted to
enhance the deep learning effectiveness with existing other source of data. We
call this machine learning mechanism as deep transfer learning (DTL).

MTL is inspired by the simultaneous representation of multiple tasks in daily
human activities. For example, if one knows how to identify a dog from an image,
then it would be easy to learn how to identify a cat from the image, because the
process of identifying the shape of the animal in the image is similar. Alterna-
tively, if one can play basketball or play netball, he can easily master another.
The goal of MTL is to discover the similarities between related tasks by mimick-
ing the mechanism of human brain. By sharing knowledge among related tasks,
MTL has achieved significant improvements over single-task learning (STL) in
many practical scenarios such as pattern recognition and financial forecasting.

Transfer learning (TL) is the core of MTL. In the traditional MTL study,
the task correlation evaluation and TL process are realized by constructing a
specific learner. The learning process of TL here is not transparent, because the
TL method is adapted to a specific type of learner, so the learned shareable
knowledge is not available for a new type of learner. In the context of MTL,
we apply Minimum Enclosing Ball (MEB), a learner-independent and adaptive
approach to perform deep transfer learning. In the experiment, we present both
practical applications and experimental analytic results to demonstrate adapt-
ability and efficiency, taking into account MEB between task correlation and
correlation interpretation for multi-task machine learning. Unlike previous TL
methods for a specified learner, MEB incorporates learner independencies into
MTL, thus empowering deep learners for MTL (i.e., deep transfer learning).

2 Deep Learners

Traditional machine learning very much relies on steps of feature extraction.
They transform training data, and augment it with additional features, in order
to improve learning effectiveness of machine learning algorithms. Deep learning,
inspired by information processing and communication patterns of biological
neural systems, changes this regulation by employing a cascade of multiple layers
of nonlinear processing units for feature extraction and transformation. In this
work, we three popular deep classifiers including CNN, LSTM and GRU as the
learners for deep transfer learning.

CNN [14] is one of the most widely used and most effective feed-forward
neural network classifiers in the fields of computer vision, natural language pro-
cessing, and speech recognition. The CNN model is expected to minimize the
dependence of the model on artificial features and automatically identify pat-
tern [6]. They can recognize extreme transformed patterns (such as handwritten
characters) and are robust to scaling or rotation operations.

LSTM [5] was proposed by Sepp Hochreiter and Juergen Schmidhuber to
solve the gradient explosion problem in RNN. LSTM unit is composed of a cell,
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an input gate, an output gate and a forget gate. The cell is responsible for
“remembering” values over arbitrary time intervals. Each gate is considered as a
“conventional” artificial neuron, as in a multilayer perceptron (or feedforward)
neural network. The activation function is used to compute a weighted sum in
order to control the flow of values that goes through the connections of the
LSTM. Thus, it is suitable for back-propagation.

GRU [3] was introduced by Kyunghyun Cho et al. as a gating mechanism
in recurrent neural networks. GRU is a simple variant of LSTM that shares
many of its properties. GRU has fewer parameters than LSTM. It’s performance
is often better than that of LSTM, and running speed is approximately three
times faster than LSTM.

Deep transfer learning is firstly promoted in image processing. In image pro-
cessing, low-level neural network layer extraction features are not strongly asso-
ciated with specific tasks, and these features can be shared among different tasks.
Donahue et al. [4] suggest that high-level layers are also transferable in general
visual recognition, Yosinski et al. [15] further investigated the transferability of
neural layers in different levels of abstraction. Mou et al. [9] conduct systematic
case studies and provided an illuminating picture on the transferability of neural
networks in NLP. They experimented in two different scenarios: (1) knowledge
transfer on tasks with the same semantics but different data sets; (2) knowledge
transfer between tasks with the same network topology but different semantics,
so that network structure parameters can be shared.

The same as traditional classifiers, the above deep learners can easily handle
the training and test data in the same distribution. To adopt knowledge/data
from other domain, it would be desirable to develop a learner learning, otherwise
we have to re-collect new data to rebuild model as the distribution changes. The
proposed DTL gives a learner independent TL solution to mitigate this gap.

3 MTL Framework

Let T 0 be a primary task with training data D0 = [X0, Y 0] and T k be a sec-
ondary task with training data Dk = [Xk, Y k]. Theoretically, a primary task
may have more than one correlate task, so k = 1, . . . , m. In this paper, we
assume that there is only one related task for a primary task, so k = 1. The
relatedness R0k of T 0 and T k is defined on the training set of two tasks and the
hypotheses for the related tasks as,

R0k = fR(L(D0),L(Dk),D0,Dk), (1)

where fR can be any static or dynamic relatedness measure between two correlate
tasks, such as Hamming distance or coefficient of correlation. L can be any
type of deep learner that can learn functional relatedness rather than physical
relatedness as a learning system for MTPR, for example in ηMTL [12], L is
specified as an ANN learner.

In Eq.(1), task relatedness is evaluated on L and shared knowledge is speci-
fied to L. By performing task relatedness assessment on a specific deep learner,
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it becomes more efficient to model and share knowledge using an integrated
and unified process by the learning system. On the other hand, such a learner-
dependent approach also has disadvantages that are difficult to overcome. The
shared knowledge can only be used for specific methods and the similarity mea-
sure process cannot be decoupled from DTL.

For DTL, we propose a similarity measure to improve the ability of arbitrary
deep classifiers/learner for MTL problems, which will in turn enable a learner-
independent DTL procedure. In this model, the relatedness measure is defined
as,

R0k = fR(D0,Dk). (2)

We expect to seek a physical relatedness criterion by eliminating the influence
of L to measure the “correlation” of tasks, where the correlation between two
tasks as a set of samples that can improve performance for both two tasks. Please
find the detailed interpretation of the task correlation and task relatedness in
[8,10,11].

4 MEB-based Transfer Learning

MEB is considered as the knowledge representation for a learner-flexible DTL,
because of the following observations. First, the size of the MEB itself is flexible,
and regardless of the size of the data set, all sample points are enclosed in the
smallest ball by the MEB. Second, MEB is used as a knowledge representation
method, which is independent of the specific learner, the enclosed data is not
associated with the model, and the shared knowledge can be applied to any
model.

We use an MTL which is assembled with DTL learning, which is different
from traditional TL-based MTL. This approach combines a learner-independent
DTL module with a traditional STL approach. This method is similar to com-
bining batteries of different brands as a whole. We can replace a run out battery
with any other brand battery. If we can only replace with the same brand of
battery, then the advantage of compatibility and independence will be lost.

Motivated by this, we propose a learner independent MEB-based MTL,
Li(T 1) + TL(T 1, T 2) + Lj(T 2, TL), where the DTL is independent to Li, and
MTL can be compatible with any type of learner.

We extract shared knowledge by using MEB as knowledge carrier and transfer
the knowledge between two correlated tasks. That is, DTL via MEBs neither
dependent on Li nor dependent on the MEB, so any type of deep learner can be
used for MTL by adopting TL(T 1, T 2) from the primary task.

Given dataset D0 and Dk from two correlated tasks T 0 and T k respectively,
for any subset d0 ⊂ D0 in one class, according to [1,7,13], a subspace can be
spanned by modelling a minimum enclosing ball,

B0
c,(1+ε)r = MEB(d0i ) (3)

where B0
c,(1+ε)r is able to determine if the MEB contains the new input instance.
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To verify the utility of B0
c,(1+ε)r for T k, we cast the MEB into T k data space,

and we have
B0→k

c0→k,r0→k = CAST (B0
c,(1+ε)r,D

0,Dk) (4)

where B0→k
c,(1+ε)r is the resulting MEB casting B0

c,(1+ε)r in T k data space, and the
CAST function is implemented by calculating the casting MEB center c0→k and
the casting MEB radius r0→k, respectively.

c0→k = (c0 − ck)
rk
max

r0max

, (5)

and

r0→k =
rk
max

r0max

r0. (6)

where r0max is the radius of MEB over D0, and rk
max is the radius of MEB over

Dk.
The obtained B0→k

c,(1+ε)r is expected to cast a subset Sk instances in Dk.
B0

c,(1+ε)r is judged as a sharable data space by T k, if all instances of Sk belong
to one class in T k. The instances enclosed by B0

c,(1+ε)r are the correlation data
of T 0 to T k. In this way, given ∀d0 ⊂ D0, the entire sharable feature space
is obtained as a merge of all MEBs that satisfy the correlation definition and
the smoothness assumption [2] as: given two instances located in a high-density
region, if one is enclosed in a sharable MEB, so for the other instance,

B∗
x = {b0i } ∪ {x}

Subject to b0i ∈ one of D1 class, and b0→k
i ∈ one of Dk class

d(c, xj) > r, d(c, xi) < r, and d(xi, xj) < θ.

where θ is the distance threshold indicating the data distribution density.

5 Experimental Results

We have performed experiments on UCI benchmark datasets and assess the pro-
posed approach as a case study in previous study [11]. In this paper, the industry
dataset that we used for MTL experiments is collected from the customer online
services database of China Mobile. This dataset records the reason of call-in for
customers from Henan and Yunnan province of China. We consider the classi-
fication of Henan and Yunan data as two distinct tasks in that a different data
collection criterion is applied in these two provinces. However, these two tasks
apparently are related to each other as both are about the same online customer
service. In the experiment, we employed the proposed DTL to extract learning
knowledge from one province dataset and transferred to the leaning of other
province dataset. The information of two datasets is provided in Table 1.



Deep Transfer Learning Via Minimum Enclosing Balls 203

Table 1. China Mobile customer online services database for Henan and Yunnan
provinces

Datasets #Classes #Train Samples #Test Samples

Henan 9 17891 4847

Yunnan 45 17214 4675

Table 2. Results of classification for with and without DTL in between Henan and
Yunnan provinces datasets. Final classification improvement of the tasks based on three
different deep learning, i.e., CNN, LSTM and GRU for the datasets. The two values in
each cell are the value without DTL and the value increment by the proposed DTL,
respectively.

(a) Task 2 (Yunnan) → Task 1 (Henan)

Classifier Precision Recall F1

CNN 87.56% − 1.06% 87.13% + 5.05% 87.35 + 1.89%

LSTM 82.43% + 2.73% 88.41% − 0.46% 85.32 + 1.22%

GRU 86.46% − 0.54% 88.75% + 3.06% 87.59 + 1.18%

(b) Task 1 (Henan) → Task 2 (Yunnan)

Classifier Precision Recall F1

CNN 70.31% + 1.97% 60% + 2.68% 64.75% + 2.39%

LSTM 58.18% + 4.34% 58.39% + 2.41% 58.29% + 3.36%

GRU 60.93% + 5.37% 64.17% + 1.13% 62.51% + 3.26%

5.1 With Versus Without TL

We conduct a series of experiments to test the proposed DTL by comparing the
performance with that of simple deep learning (i.e, without TL). We perform
DTL from Task 1 (Henan) to Task 2 (Yunnan), and from Task 2 (Yunnan)
back to Task 1 (Henan), respectively. We calculate and record the difference of
precision, recall, and F1 score. Table 2 shows experiment result on two calling
reason datasets. We can draw the conclusion that although MTL with DTL
does always outperform that without DTL, the proposed DTL brings positive
improvement on all tasks regardless of the type of deep classifier for MTL.

5.2 Independent Versus Dependent TL

We performed also a number of experiments for comparing the proposed DLT
with other classifier dependent TL approaches [9,15]. The comparison of the
calling reason datasets between with and without learner independent DTL for
the three evaluated criteria (precision, recall and F1 score) is conducted both
from Task 1 to Task 2 and Task 2 back to Task 1. The independent DTL (i.e.,
MEB-based) approach obtained better results than the dependent DTL. The
results of this comparison are shown in Table 3.
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Table 3. Compared results of deep transfer learning between independent and depen-
dent learner approaches.

(a) Task 2 (Yunnan) → Task 1 (Henan)

Classifier Evaluation Dependence Independence

CNN Precision 87.69% 86.5%

Recall 89.54% 92.18%

F1 Score 88.6% 89.24%

LSTM Precision 84.4% 85.15%

Recall 87.66% 87.95%

F1 Score 86% 86.53%

GRU Precision 86.79% 85.92%

Recall 89.3% 91.81%

F1 Score 88.03% 88.77%

(b) Task 1 (Henan) → Task 2 (Yunnan)

Classifier Evaluation Dependence Independence

CNN Precision 68.8% 72.28%

Recall 64.86% 62.68%

F1 Score 66.77% 67.14%

LSTM Precision 61.21% 62.52%

Recall 59.52% 60.80%

F1 Score 60.30% 61.65%

GRU Precision 63.43% 66.30%

Recall 65.72% 65.30%

F1 Score 64.55% 65.77%

5.3 Neural Network Structure

In the experiment, we used three different neural network structures, i.e., CNN,
LSTM and GRU. For CNN, a multiple-layers network structure is employed in
order to capture the global semantic information of text. Consider CNN can only
obtain local features. We reduced in all experiments the over-fitting problem of
the model and speeded up the training of the model by adding batch normaliza-
tion and drop out. Figure 1 gives the different neural network structures used in
our experiments.
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Fig. 1. Illustration of neural network structure for experiments, (a) Convolution,
(b) LSTM, and (c) GRU.

6 Conclusion and Future Work

This paper focuses on the DTL scenario, where the learning system learns the
shareable knowledge from one task and uses it to improve the final outcome of a
different but related task. The proposed deep transfer learning method has the
following advantages and disadvantages.

Independence. Deep learner independence is the main advantage of the pro-
posed DTL. We use three well studied deep learner (e.g., CNN, LSTM, and
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GRU) to verify it in call reason datasets. The experimental results show that
our method can improve the accuracy for all three learners.

Validity. Experiments conducted on industry datasets, and calling reason
datasets show that our approach can effectively extract potentially useful shared
information for improved performance in related areas. The deep transfer learn-
ing method via MEB achieves better results than the learning algorithm with-
out DTL. Furthermore, we also compare an algorithm with deep learner-
independence with one without deep learner-independence to test the technical
stability. The experimental results has shown that the proposed independent
deep transfer learning approach obtain a better performance on F1 score in
various disciplines of deep learner.

Efficiency. MEB-based DTL method has the merit of no need for re-collection
new data progress. The need of training data is transferred from one task
domain to other related task domain. However, the application of DL to two
unrelated topics in MTL is attracting more and more research interest and will
become a new research hotspot.
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Abstract. Recommender systems have drawn great attention from both
academic and practical area. One challenging and common problem in
many recommendation methods is data sparsity, due to the limited num-
ber of observed user interaction with the products/services. To alleviate
the data sparsity problem, cross-domain recommendation methods are
developed to share group-level knowledge in several domains so that rec-
ommendation in the domain with scarce data can benefit from domains
with relatively abundant data. However, divergence exists in the data
of similar domains so that the extracted group-level knowledge is not
always suitable to be applied in the target domain, thus recommenda-
tion accuracy in the target domain is impaired. In this paper, we propose
a cross-domain recommendation method with probabilistic knowledge
transfer. The proposed method maintain two sets of group-level knowl-
edge, profiling both domain-shared and domain-specific characteristics of
the data. In this way users’ mixed preferences can be profiled comprehen-
sively thus improves the performance of the cross-domain recommender
systems. Experiments are conducted on five real-world datasets in three
categories: movies, books and music. The results for nine cross-domain
recommendation tasks show that our proposed method has improved the
accuracy compared with five benchmarks.

Keywords: Recommender systems
Cross-domain recommender systems · Knowledge transfer
Probabilistic model

1 Introduction

Recommender systems are rapidly developed and widely used in e-commerce and
online shopping website [7]. These systems aim to provide recommendations to
users to help them choose products or services they need in the era of information
explosion. One basic and challenging issue is the data sparsity problem, which
greatly impairs the performance of recommender systems, leading to poor user
experience and their unsatisfactory [11]. Cross-domain recommender systems are
developed to deal with this problem in the fierce market competition [1]. One user
c© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11303, pp. 208–219, 2018.
https://doi.org/10.1007/978-3-030-04182-3_19
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may not have enough data in one domain, but have more data in another domain.
The abundance of data in another domain can assist the recommendation in a
specific target domain. By taking the advantages of data in multiple domains,
cross-domain recommender systems can exploit the relatively dense data in the
source domain to assist recommendation with scarce data in the target domain.

Cross-domain recommender systems can be clustered into three groups: cross-
domain recommender systems with side information, with partially overlapping
entities and with non-overlapping entity. Due to the privacy issue, users are
always de-identified and the correspondence between users are not available [13].
In this paper, we focus on the most commonly happened scenario: cross-domain
with non-overlapping entities. Some methods are developed to handle this prob-
lem by transferring knowledge from group-level. Users and items are clustered
into groups and knowledge is shared through group-level rating patterns. For
example, codebook transfer (CBT) clusters users and items into groups and
extracts group-level knowledge as a “codebook” [4]. Later, a probabilistic model
named rating matrix generative model (RMGM) is extended from CBT, relaxing
the hard group membership to soft membership [5]. These two methods cannot
ensure that the information on the two groups from two different domains is
consistent, and the effectiveness of knowledge transfer is not guaranteed.

Although cross-domain recommender systems have gained lots of attention
and efforts from academia, they still suffer the “negative transfer” problem [6,
8]. The main reason is that data collected from two correlated domains are
probably from two related but different distributions. Most existing methods
on cross-domain recommendation ignore the domain shifts and extract group-
level knowledge directly without considering domain-specific characteristics. The
group-level knowledge is not suited to the target domain, thus degrades the
performance of the cross-domain recommender system.

In this paper, we investigate how to improve the performance of cross-
domain recommender systems by exploring domain-specific characteristics in
each domain, which is crucial when divergence exists in the data. The proposed
method assumes that ratings are generated from two sets of group-level knowl-
edge. One is shared across multiple domains, i.e. the domain-shared knowledge,
while the other is domain-specific knowledge which is different for each domain.
Users’ mixed preferences in a target domain can be profiled with the help of
common features extracted from data in other domains and reserve some unique
features of the data from the target domain. In this way, group-level knowledge is
shared while domain-specific knowledge remained. Probabilistic model is a suit-
able and powerful way to generate two sets of rating patterns from two different
priors, and then generate the ratings. Thus, we propose a probabilistic method
for knowledge transfer in cross-domain recommendation (ProbKT). The main
contributions of this paper are as follows:

(1) A cross-domain recommendation method ProbKT is developed to enable
transferring domain-share knowledge while remaining domain-specific char-
acteristics at the same time.
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(2) ProbKT has advantages in effectively transferring knowledge in multiple
domains with similar data where divergence may exist.

(3) The proposed method ProbKT is evaluated on five real-world datasets with
nine cross-domain recommendation tasks comparing with five other non-
transfer or cross-domain recommendation methods. The results show that
our proposed method outperforms other recommendation methods in sparse
data.

The rest of the paper is organized as follows. Section 2 gives some preliminary
and a formal description of the problem. Section 3 describes our method using
probabilistic model to enable cross-domain recommendation in multiple domains.
In Sect. 4, we present our experiments on five real-world datasets containing
three data categories. Finally, in Sect. 5, conclusion is provided with some future
directions of this research.

2 Preliminary and Problem Formation

In this section, cross-domain recommendation by tri-factorization is briefly intro-
duced. The problem targeted in this paper is also formally formulated.

2.1 Cross-domain Recommendation by Tri-Factorization

Matrix factorization projects both users and items onto the same latent space
so that they are comparable, and through their inner products reconstructs the
rating matrix [3]. Similarly, the rating matrix R ∈ R

M×N (bold letters represent
matrixes) can be factorized into three matrixes (suppose there are M users and N
items). Users and items are clustered into several latent groups and in the middle
is the group-level rating pattern: R = USV T , where U ∈ R

M×K is user group
membership matrix, representing users clustered into K groups, V ∈ R

N×L is
item group membership matrix, representing items clustered into L groups and
S ∈ R

K×L is the group rating pattern matrix, i.e. the group-level knowledge.
Say rating matrixes in D domains are available, denoted as Rd. The assump-

tion of the cross-domain recommender systems is that the group-level knowledge
can be shared if these domains are similar. Thus for the D rating matrixes are
reconstructed as:

R̂d = UdS(V d)
T

(1)

2.2 Problem Formulation

In our problem setting, there is no correspondence on the users/items across the
domains and users/items are treated as completely different. We assume that on
both the source and target domains the data are explicit ratings. The problem
is formally defined as:

Given D rating matrixes RD = {R1, ...,Rd, ...,RD},Rd ∈ R
Md×Nd

, our goal
is to develop a cross-domain recommendation method to assist the recommen-
dation task of predicting the rating using knowledge in one target domain Rt
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Fig. 1. An example to explain how knowledge is shared in the ProbKT method.

from all the other rating matrixes in RD, where for each source domain data
Ud ∩ U t = ∅ and Id ∩ It = ∅.

3 Cross-domain Recommendation with Probabilistic
Knowledge Transfer

In this section, our proposed ProbKT method is to learn a joint probabilistic
model using data in multiple domains.

3.1 The Method Description

As we have seen in the tri-factorization model, the group-level knowledge can
be shared cross domains. Since users and items have no intersections, the group-
level knowledge may not be totally the same, especially when divergence exists
in data between two domains. If we force the group-level knowledge to be the
same in two domains, it is likely that ratings predicted are not accurate in
the target domain since the extracted knowledge from the source domain is
not effectively adapted. We assume that only partial group-level knowledge can
be shared between two domains. For a matrix factorization model, it is not
easy to solve the optimization problem with constraints on part of the group-
level matrix. As shown in Fig. 1, the domain-shared knowledge contributes to
data in each domain. Except that, each domain has its own domain-dependent
knowledge that contribute to its corresponding domain. In this example shown
in Fig. 1, knowledge is extracted from several datasets in movie domain and
applied to the targeted book domain. The cross-domain recommender systems
is to recommend books to users assisted by data in movie domain. Here, a
probabilistic model fits our assumption and is suitable to solve the knowledge
transfer issue for this cross-domain recommendation scenario.

Given user-item rating matrixes in D domains R = {R1, ...,Rd, ...,RD},
where Rd ∈ R

Md×Nd

in the domain d, Md is the number of users and Nd is the
number of items. In each domain, users and items are from K user groups and
L item groups. In these groups, Ks user groups are shared groups between these
domains while Ke user groups are specific groups for each domain (Ks + Ke =
K). Similar notations Ls and Le go for item groups. One rating Rd

ij represents
the rating provided by user i on item j. For this rating, it is associated with two
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Fig. 2. Graphical model representation of the ProbKT method.

latent variables: Zu
ij and Zv

ij , which represent the user-group and item-group of
this rating. There are two group-level rating patterns: φs representing domain-
shared group-level knowledge and φe representing domain-specific group-level
knowledge.

The graphical model representation is in Fig. 2. The generative process is as
follows:

(1) For domain-shared user-item joint groups (ks, ls)
Generate φs

ks,ls ∼ Dir(βs)
(2) For each domain d

(a) For domain-specific user-item joint groups (ke, le)
Generate φe

ke,le ∼ Dir(βe)
(b) For each user i = 1, ...,Md

Generate θu,di ∼ Dir(αu)
(c) For each item j = 1, ..., Nd

Generate θv,dj ∼ Dir(αv)
(d) For the rating Rd

ij

(i) Generate a user group Zu
ij ∼ Multi(θu,di )

(ii) Generate an item group Zv
ij ∼ Multi(θv,dj )

(iii) For user groups Zu
ij = 1, ...,Ks and item groups Zv

ij = 1, ..., Ls

Generate a rating Rd
ij ∼ Multi(φs

Zu
ij ,Z

v
ij

);
For user groups Zu

ij = 1, ...,Ks and item groups Zv
ij = Ls + 1, ..., L,

user groups Zu
ij = Ks + 1, ...,K and item groups Zv

ij = 1, ..., L

Generate a rating Rd
ij ∼ Multi(φe,d

Zu
ij ,Z

v
ij

)

Here, αu, αv, βe and βs are hyper-parameters of the Dirichlet priors. Through
this model, the domain-shared knowledge φs and domain-independent knowledge
φe compose the group-level knowledge φ in the target domain. The group-level
rating matrix, together with the user group membership matrix and item group
membership matrix are calculated by: Skl =

∑R0
r=1 rφklr, U t

ik = θuik, and V t
jl =

θvjl. In our experiment settings, ratings are all from {1, 2, 3, 4, 5}, thus R0 = 5.
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3.2 The Method Learning

For our probabilistic method, we have latent variable set Ω = {θu,1:
∑D

d=1 Md

,

θv,1:
∑D

d=1 Nd

, Zu,1:
∑D

d=1 MdNd

, Zv,1:
∑D

d=1 MdNd

, φe,1:D(KL−KsLs), φs,1:KL}
and parameter set Θ = {αu, αv, βs, βe}. We use Jensen’s inequality to acquire
the lower bound of the log-likelihood of our proposed probabilistic method:

log P (Rd;Θ) ≥ EQ[log P (Rd, Ω;Θ)] − EQ[log Q(Ω)] (2)

Q(Ω) is the approximating distribution governed by a set of variational
parameters Ω = {γu,1:

∑D
d=1 Md

, γv,1:
∑D

d=1 Nd

, ξu,1:
∑D

d=1 MdNd

, ξv,1:
∑D

d=1 MdNd

,
ηe,1:D(KL−KsLs), ηs,1:KL}. The distance between the lower bound and the true
log-likelihood is the KullbackLeibler (KL) divergence. The KL divergence is zero
if the distribution Q(Ω) is equal to the true posterior. Distribution Q(Ω) should
be restricted that it is tractable while at the same time allowing it to provide a
good approximation to the true posterior distribution. Usually, mean field theory
[10] is used and the distribution Q(Ω) is:

Q(Ω) =

Ks∏

k=1

Ls∏

l=1

Dir(ηs
k,l)

D∏

d=1

{
Md∏

i=1

Dir(γu,d
i )

Nd∏

j=1

Dir(γv,d
j )

K∏

k=Ks+1

L∏

l=1

Dir(ηe,d
k,l )

Ks∏

k=1

L∏

l=Ls+1

Dir(ηe,d
k,l )

Md∏

i=1

Nd∏

j=1

[Multi(ξu,di,j )Multi(ξv,di,j )]}
(3)

The optimization of minimizing the KL-divergence can be done using the
following update equations:

γu,d
i,k = αu

k +
Nd∑

j=1

Id
i,jξ

u,d
i,j,k (4)

γv,d
j,l = αv

l +
Md∑

i=1

Id
i,jξ

v,d
i,j,l (5)

In each domain d ∈ {1, ...,D}, for k ∈ {1, ...,Ks},

ξu,di,j,k =exp{ψ(γu,d
i,k ) − ψ(γ̂u,d

i ) +

Ls∑

l=1

ξv,di,j,l(ψ(ηs
k,l,Rd

i,j
) − ψ(η̂s

k,l,r))+

L∑

l=Ls+1

ξv,di,j,l(ψ(ηe,d

k,l,Rd
i,j

) − ψ(η̂e,d
k,l,r))}

(6)

where γ̂u,d
i =

∑K
k=1 γu,d

i,k , η̂s
k,l,r =

∑R0
r=1 ηs

k,l,r and η̂e,d
k,l,r =

∑R0
r=1 ηe,d

k,l,r.
For k ∈ {Ks + 1, ...,K},

ξu,di,j,k = exp{ψ(γu,d
i,k ) − ψ(γ̂u,d

i ) +
L∑

l=1

ξv,di,j,l(ψ(ηe,d

k,l,Rd
i,j

) − ψ(η̂e,d
k,l,r))} (7)

ηs
k,l,r = βs

r +

D∑

d=1

Md∑

i=1

Nd∑

j=1

Id
i,j,rξ

u,d
i,j,kξv,di,j,l (8)
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ηe,d
k,l,r = βe

r +

Md∑

i=1

Nd∑

j=1

Id
i,j,rξ

u,d
i,j,kξv,di,j,l (9)

4 Experiments

In this section, the proposed method ProbKT is evaluated. First, we introduce
the datasets and the used evaluation metrics in Sect. 4.1, followed by experimen-
tal settings and the baseline methods in Sect. 4.2. The results of the experiments
are presented in Sect. 4.3.

4.1 Datasets and Evaluation Metrics

To test our proposed method, the source domain data and the target domain data
are chosen where they are similar but still have divergence between them. The
five real-world datasets we used are: EachMovie1, Movielens1M2, LibraryThing3,
Amazon Book4 and YahooMusic5. Each of these datasets is publicly available.
Numerous experiments are conducted on those in single-domain recommenda-
tion methods, but experiments of those datasets on cross-domain recommenda-
tion methods are deficient. For AmazonBooks, we removed all users who had
given exactly the same rating for every book, as these data are not effective
for constructing a recommender system [12]. EachMovie and LibraryThing were
normalized to the range of {1, 2, 3, 4, 5} before conducting experiments. Refer to
[12] about details of the five datasets.

For all the datasets, we filtered out items that are rated less than 10 times
and users that who have rated less than 20 items. In our experiment setting,
the source domain dataset is more dense than the target domain data. 500 users
and 1000 items are randomly chosen for both the source domain and the target
domain. But for the target domain, 300 users are randomly selected to be new
customers, who are given only 5 observed ratings, and the left are put in the test
set. The details of the chosen subsets are listed in Table 1. Three categories are
in our chosen datasets, and our recommendation tasks are all the combinations
of the three categories.

Evaluation metrics are root mean square error (RMSE) and mean absolute

error (MAE): RMSE =
√∑

u,v,Xuv∈Z
(X̂uv−Xuv)2

|Z| and

MAE =
∑

u,v,Xuv∈Z
|X̂uv−Xuv|

|Z| , where Z is the test set, and |Z| is the test
ratings number.

1 http://www.cs.cmu.edu/∼lebanon/IR-lab/data.html#intro.
2 http://grouplens.org/datasets/movielens/1m/.
3 https://www.librarything.com.
4 http://jmcauley.ucsd.edu/data/amazon/.
5 https://webscope.sandbox.yahoo.com/catalog.php?datatype=r.

http://www.cs.cmu.edu/~lebanon/IR-lab/data.html#intro
http://grouplens.org/datasets/movielens/1m/
https://www.librarything.com
http://jmcauley.ucsd.edu/data/amazon/
https://webscope.sandbox.yahoo.com/catalog.php?datatype=r
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Table 1. Description of subsets in five real-word datasets

Data type Data source Domain Sparsity Average

Movie EachMovie source 96.00% 4.32

Movielens1M target 98.50% 2.91

book LibraryThing source 87.43% 3.97

AmazonBook target 97.87% 3.13

music YahooMusic 1 source 95.70% 4.14

YahooMusic 2 target 97.27% 2.66

4.2 Baselines and Experimental Settings

We use three non-transfer learning methods and two cross-domain methods for
comparison. The non-transfer learning methods were: Pearson’s correlation coef-
ficient (PCC) [2], single value decomposition (SVD) [3] and FMM [9]. The cross-
domain methods were: RMGM [5] and CBT [4]. These two cross-domain recom-
mendation methods are all developed without fully considering the domain-shift
widely existed in data of two domains. PCC is a user-based CF recommendation
method, and the neighborhoods was set to 50. The latent feature number in
SVD, FMM, CBT and RMGM was fixed at 40. In SVD, the learning rate was
set to 0.003 and the regularization factor was set to 0.015. To be fair, the number
of user groups and item groups in our proposed method are both set to be the
same at latent feature number in other methods. The number of domain-shared
user and item groups is set to be half of the total number of user/item groups.
For hyper-parameters, αs and αt are set to be 0.1 while βe and βs are set to be
0.2. Twenty random initializations in our experiments are set and the averaged
results and standard deviations are reported.

4.3 Results

The experiment results of our proposed ProbKT compared with the other five
baselines on two accuracy metrics are presented in Tables 2, 3 and 4. Overall,
ProbKT has the best performance in all the nine tasks. These results indicate
that ProbKT can extract common knowledge to share between the source and
target domain, which can help increase the recommendation accuracy in the
target domain.

Compared with non-transfer learning recommendation methods like PCC,
FMM and SVD, experiment results suggest that transfer learning in ProbKT is
effective since it can improve the recommendation. The other two cross-domain
recommendation methods CBT and RMGM, sometimes fail to improve the per-
formance of recommender systems in the target domain. According to the results,
these two methods are largely dependent on their basic method, FMM. If FMM
can make accurate recommendation in the target domain, it is likely these two
methods can transfer knowledge from the source domain to the target domain.
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Table 2. Cross-domain recommendation results on the movie target domain

Methods Source data MAE RMSE

non-trans PCC - 1.2123 1.5722

FMM - 1.3529±0.0025 1.6751±0.0019

SVD - 1.0949±0.0049 1.3489±0.0035

CDRS CBT movie 1.3772±0.0375 1.7152±0.0332

book 1.1640±0.0209 1.4429±0.0323

music 1.2094±0.0122 1.5177±0.0216

RMGM movie 1.3098±0.0188 1.6327±0.0189

book 1.1692±0.0063 1.4547±0.0075

music 1.2371±0.0135 1.5409±0.0152

ProbKT movie 0.9980±0.0016 1.2152±0.0016

book 0.9937±0.0017 1.2144±0.0021

music 0.9991±0.0027 1.2222±0.0027

Otherwise, their performance is not as good as the non-transfer learning rec-
ommendation method SVD. ProbKT, on the other hand, does not have this
concern, due to that the probabilistic model is more flexible and able to fit to
different datasets.

Compared with the other two cross-domain recommendation methods CBT
and RMGM, ProbKT also has better performance. The core part of CBT is to
directly apply extracted group-level knowledge from the source domain to the
target domain without adaptation or adjustment. RMGM replaced the hard-
membership of user/item groups in CBT to soft-membership and relaxes the con-
straints, which enhances its effectiveness of transferring knowledge. But these two
methods cannot properly deal with the divergence existed between two domains.
Through the probabilistic method we have proposed in modeling the group-
level knowledge in two parts: domain-dependent part and domain-independent
part. The domain-independent part is the knowledge that shared between two
domains. The domain-dependent part is able to capture the characteristics in
each domain and allows the method to be more flexible.

4.4 Parameter Analysis and Complexity Analysis

We analyzed how the parameters K and L affect the performance of ProbKT.
Due to the space limitation, only the result of movie as source domain and target
domain is presented. To analyze K and L, grid search is used with evaluation
metrics of both MAE and RMSE as shown in Fig. 3. The result of analysis shows
that the larger of K and L, the better of the performance of ProbKT. This fits to
the intuitive fact that more groups of user and items are, the more delicate the
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Table 3. Cross-domain recommendation results on the book target domain

Methods Source data MAE RMSE

non-trans PCC - 1.1802 1.4907

FMM - 1.0274±0.0075 1.2631±0.0082

SVD - 1.2117±0.0133 1.5283±0.0166

CDRS CBT movie 1.2001±0.0142 1.5228±0.0127

book 1.0775±0.0076 1.3489±0.0155

music 1.1024±0.0039 1.4003±0.0091

RMGM movie 1.0235±0.0077 1.2691±0.0108

book 1.0197±0.0064 1.2623±0.0102

music 1.0228±0.0043 1.2644±0.0094

ProbKT movie 0.9757±0.0044 1.1811±0.0049

book 0.9838±0.0044 1.1858±0.0050

music 0.9822±0.0054 1.1889±0.0070

Table 4. Cross-domain recommendation results on the music target domain

Methods Source data MAE RMSE

non-trans PCC - 1.4843 1.8539

FMM - 1.3040±0.0060 1.5787±0.0053

SVD - 1.4778±0.0134 1.7195±0.0181

CDRS CBT movie 1.7532±0.0208 2.0958±0.0223

book 1.5843±0.0122 1.8599±0.0182

music 1.6251±0.0329 1.9246±0.0504

RMGM movie 1.3369±0.0148 1.6216±0.0149

book 1.3670±0.0162 1.6470±0.0218

music 1.3413±0.0197 1.6261±0.0228

ProbKT movie 1.3053±0.0069 1.5030±0.0058

book 1.3050±0.0083 1.5037±0.0069

music 1.3114±0.0077 1.5072±0.0081

probabilistic method can model the users and items. However, the complexity
of the method will significantly increase with the increase of K and L. The time
consumed by different K is shown in Table 5. For simplicity, the setting of L
is set to be the same as K. The time consumption shown in Table 5 is for 20
iterations of the proposed method. For fair comparison with other baselines, we
choose 40 for both K and L for ProbKT in our comparison experiments. The
total complexity of ProbKT is O(n).
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Table 5. Time consumption with different settings of K

K MAE RMSE time(s)

K = 10 1.0464±0.0072 1.2563±0.0076 469.15

K = 20 1.0282±0.0032 1.2358±0.0035 566.04

K = 30 1.0106±0.0031 1.2198±0.0026 704.02

K = 40 0.9981±0.0023 1.2153±0.0024 848.16

K = 50 0.9922±0.0025 1.2168±0.0027 1045.00

K = 60 0.9891±0.0026 1.2190±0.0020 1239.54

K = 70 0.9861±0.0017 1.2199±0.0017 1573.37

K = 80 0.9854±0.0017 1.2207±0.0015 2228.76

K = 90 0.9838±0.0016 1.2206±0.0013 2663.10

K = 100 0.9829±0.0017 1.2209±0.0009 4691.15

Fig. 3. Results with different settings on parameter K and L.

5 Conclusion

In this paper, we develop a probabilistic method named ProbKT for cross-
domain recommendation in multiple domains. Unlike previously developed cross-
domain recommendation methods sharing group-level knowledge, our proposed
ProbKT method takes both domain-share and domain-specific knowledge into
consideration. Through generating group-level knowledge from two different pri-
ors, ProbKT relaxes the constrains of previous cross-domain recommendation
methods sharing group-level knowledge. In this way, ProbKT is more flexible
and is able to deal with data from multiple domains with divergence existed.
With the virtue of knowledge extracted from multiple source domains, ProbKT
alleviates the data sparsity problem and increases the prediction accuracy in
cross-domain recommendation. Experiments on five real-world datasets with
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nine cross-domain recommendation tasks demonstrate that our method ProbKT
achieves the best performance compared with five baselines including both non-
transfer learning and cross-domain recommendation methods. In the future, we
will try to develop methods that can deal with heterogeneous data in this prob-
lem setting. Also, a Bayesian deep learning will be established as a more delicate
method involving various user behaviors.
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Abstract. This paper studies the relationship prediction problem in
multi-network scenarios, aiming to overcome the network sparsity chal-
lenge where the labeled data (connected node pairs) are much less than
the unlabeled data (unconnected node pairs). The TAQIL framework is
proposed by using transfer learning to get knowledge from the related
source networks and then use active learning to query the labels of the
most informative instances from the oracle in the target network. A new
query function is also proposed in order to better use the parameters out-
put by the transfer learning method. The alternate use of transfer learn-
ing and active learning allows adaptive transfer of knowledge across mul-
tiple networks to mitigate cold start and meantime improve the predic-
tion accuracy with active queries in the target network. The experimental
results on both non-network datasets and network datasets demonstrate
the significant improvement in prediction accuracy compared with sev-
eral benchmark methods and related state-of-art methods.

Keywords: Collective link prediction · Transfer learning
Active learning · Heterogeneous information networks

1 Introduction

Many realistic prediction tasks are essentially relational data modeling in infor-
mation networks [5]. For example, personalized recommendation involves pre-
dicting the potential preference relationship between users and items (e.g. books,
films, products, advertisements) based on the observed relationships in the form
of users’ past clicks or ratings on items. However, the relational data in real infor-
mation networks are often sparse. In the recommendation system, the majority
of users may only rate a few items. In the online social network, the existing
social relationships could take only a small part of all the possible relationships.
Moreover, it is more difficult to infer relationships accurately especially when
the information network is new. Therefore, the network sparsity problem (or
new network problem) brings great challenges to relational data modeling and
relationship prediction.
c© Springer Nature Switzerland AG 2018
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If the nodes pairs in information networks are treated as instances and the
relationships between the nodes are treated as labels, the above task is similar
to the problem of learning from limited amount of the labeled data, where there
exists relatively insufficient labeled data (i.e. connected node pairs) but plenty
of unlabeled data (i.e. unconnected node pairs).

Transfer learning and active learning are two effective approaches to overcome
this challenge. In transfer learning [11], a high quality classifier can be trained
from data in the target domain by utilizing data from the related source domains.
On the basis of transferred data, active learning [13] can be used to query labels
for the most informative unlabeled data from an oracle in target domain, thereby
further improving the classification performance. The technique of combining
transfer learning and active learning has been widely used in [7–10,12,14,16,17].

In practice, there may exist multiple information networks with similar types.
So the prediction tasks in multiple networks are strongly correlated [4]. In this
paper, we propose a method named TAQIL (Transfer Learning with Active
Queries in Inferring Links) which combines transfer learning and active learning
to model relational data in multiple information networks. It aims to acceler-
ate the learning process, mitigate the network sparsity challenge and accurately
infer relationships in the target network.

In TAQIL, the classifier is initially trained using plenty of examples in the
source network and limited examples in the target network based on TrAdaBoost
[3] strategy. It is then used to select instances to label (based on a proposed query
function) by querying in the target network. Once labeled, the new examples are
added into the training set and the TrAdaBoost process is iterated. In this paper,
the training set and the test set are constructed using instances based on node
pairs in the network and the instances are labeled according to the relationship
between nodes.

The rest of this paper is organized as follows. Some related work are reviewed
in Sect. 2. Section 3 firstly gives the notations and problem formulation and then
describes the details of the proposed framework. The experimental results are
presented and analyzed in Sect. 4. Section 5 concludes the paper.

2 Related Work

In recent years, there have been increasing interests in combing transfer learning
and active learning. The former can improve the model by using plenty of labeled
data in the source domain with limited labeled data in the target domain; The
latter can query the labels actively in the target domain to adapt the model.

Some of the existing methods perform transfer learning and active learn-
ing alternately. The framework AcTraK in [14] builds a classifier in the source
domain to predict labels for the target domain, and queries the oracle only if
the prediction is of low confidence. In [12], a domain separator is built to distin-
guish target domain data from source domain data, and further used to query
labels of those target domain examples that are not similar to examples from
the source domain. The method in [10] trains two individual classifiers from the
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data in the source and target domains respectively, and then uses the Query By
Committee (QBC) strategy to actively select instances from the target domain.
The transfer process in [16] is achieved under the assumption that the changes in
all marginal and conditional distributions are smooth and then combined with
active learning methods.

Other methods integrate transfer and active learning into a unified frame-
work. The method of Kale and Liu [9] presents a framework to combine the
agnostic active learning algorithm and transfer learning, aiming to improve the
performance of an active learner in the target domain with labeled data from
the source domain. The framework in [2] integrates transfer and active learning
into a single convex optimization problem. It computes the weights of source
domain data and selects the samples from the target domain data simultane-
ously. Kale et al. [8] later propose a hierarchical active transfer learning method
HATL, which exploits cluster structure shared between different data domains to
perform transfer learning. Huang and Chen [7] jointly perform transfer learning
and active learning by querying the most valuable information from the source
domain when the oracle is unavailable in the target domain.

In multiple network link prediction problem, the links in the target network
are usually sparse, so data from auxiliary networks can be transferred to help
the prediction in the target network [1,18]. But it is rare to use transfer learning
and active learning together to solve this problem. The most related work to
this paper is TranFG (transfer-based factor graph) proposed by Tang et al.
[15]. It classifies the type of social relationships by learning across heterogeneous
networks and use active learning to further improve the performance of predictor.
Another related work recently published in [19] is an active transfer learning
method for recommendation system, where active learning is used to construct
entity correspondences across systems.

3 The Proposed Method

This section introduces the proposed method TAQIL (Transfer Learning with
Active Queries for Inferring Links). We define notation and problem formulation
in Sect. 3.1 and describe TAQIL in Sect. 3.2.

3.1 Problem Formulation

We first define the notations used in the paper (Table 1).
To simplify the explanation, the paper currently studies the transfer pre-

diction model between two information networks: a source network and a tar-
get network, but the framework can also be generalized to multiple networks.
Given a source network Gs with abundantly relationship data and a target net-
work Gt with limited relationship data, our objective is to learn a function
φ : (Gt|Gs) → Rt which can infer the potential relationships in Gt by leveraging
the supervised data from Gs. Here, |Er

s | >> |Er
t | and |Eu

t | >> |Er
t |. In other

words, the number of relationships in the source network is more larger than
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Table 1. Symbol definition

G An information network

Er A set of node pairs with relationship in G

Eu A set of node pairs without relationship in G

x The feature vector for a given node pair

X The set of x in G

L The labeled dataset in G, L = {xi, f(xi)}, xi ∈ X
(i = 1, ..., n), n is the number of examples

f(x) A Boolean function denoting the label of x

φ A prediction function for Eu in G

that in the target network, and the target network is sparse with an extreme
case of |Er

t | = 0.

3.2 The TAQIL Framework

The proposed TAQIL framework aims to solve the cold-start problem in inferring
links in Gt, where the relative sufficient number of labeled examples Ls in Gs

are used to train a classification model and this model is further improved with
active queries from the target network Gt. This process can be repeated for
several times.

Figure 1 illustrates the TAQIL framework across two reviewer networks:
Epinions and Slashdot. In our problem setting, the labeled data is insufficient in
the target network (Slashdot) but sufficient in the source network (Epinions). In
the Slashdot network, the oracle is available, so the unlabeled data (unconnected
node pairs) can be iteratively selected to query their labels (like or dislike). Our
objective is to leverage the labeled data in the Epinions network to help infer
the new relationships in the Slashdot network with least queries.

Fig. 1. Example of TAQIL framework across two information networks
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In TAQIL, the TrAdaBoost transfer model [3] is used as the preliminary
attempt because in the case of only a small amount of target network data Lt,
the algorithm can leverage the old source network data Ls to construct a high-
quality classification model for Gt. For active learning, we consider a variant
known as pool-based active learning and use uncertainty sampling strategy. The
traditional query function chooses the instances nearest to the classification plane
as the most informative instances (Eq. 1).

minxt∈Ut |wtxt| (1)

In order to reduce the average weighted training loss on the diff-distribution
data, TrAdaBoost outputs the hypothesis hk and its weight βk after N iteration
(k = �N/2�, ..., N). Therefore, a new query function is defined in Eq. 2 which
leverages the output of TrAdaBoost. Here, hk(xt

i) = P (ft(x) = 1|xt
i) denotes

the possibility of the connection between a pair of nodes which is represented
by xt

i. The smaller the value of Eq. 2, the more informative the instance xt
i.

In other words, the instance selected by the query function from Ut is not the
instance nearest to one classification plane, but the instance nearest to �N/2�
classification planes.

minxt
i∈Ut

|
N∑

k=�N/2�
ln(1/βk)(hk(xt

i) − 0.5)| (2)

The TAQIL framework is summarized in Algorithm 1. Notice that Ls and
Lt includes all the connected node pairs as positive examples and some of the
unconnected node pairs as negative examples. The negative examples currently
are random sampled without using semi-supervised technique. Learner is the
basic learning model and Q is the maximum number of examples labeled by the
oracle.

φ(xt
i) =

{
1,

∑N
k=�N/2�ln(1/βk)hk(xt

i) � 0.5
∑N

k=�N/2�ln(1/βk)
0, otherwise.

(3)

4 Experiment

4.1 Settings

We evaluate our proposed framework first on non-network datasets (the Mush-
room dataset from the UCI machine learning repository1 and two text datasets
20Newsgroup2 and Reuters-21578 3) and eventually on three real information
network datasets Epinions, Slashdot and MobileU 4.
1 http://www.ics.uci.edu/mlearn/MLRepository.html.
2 http://people.csail.mit.edu/jrennie/20Newsgroups/.
3 http://www.daviddlewis.com/resources/testcollections/.
4 http://arnetminer.org/socialtieacross/.

http://www.ics.uci.edu/mlearn/MLRepository.html
http://people.csail.mit.edu/jrennie/20Newsgroups/
http://www.daviddlewis.com/resources/testcollections/
http://arnetminer.org/socialtieacross/
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Algorithm 1. Description of TAQIL
Input:

Ls, Lt, Ut, Learner
Output:

The actively transfer predictor: φ
1: Call TrAdaBoost(Ls, Lt, Learner, N)
2: Get hk and βk, k = �N/2�,. . . ,N
3: for i=1,. . . ,Q do
4: Call function Query(hk, βt, Tu)
5: Select xt

q from Ut using Eq. 2
6: Query the label yt

q of xt
q from an oracle

7: Lt = Lt ∪ (xt
q, y

t
q), Ut = Ut/(x

t
q, y

t
q)

8: Call TrAdaBoost(Ls, Lt, Learner, N) again
9: Update hk and βk

10: end for
11: Calculate φ using Eq. 3

The settings in non-network datasets are consistent with the experimental
settings in [3]. For network datasets, we use Epinions as the source network, and
Slashdot and MobileU as the target network respectively.

All tasks, the datasets they used and experimental settings are listed in
Table 2. The name of edible-poisonous indicates that all the positive instances
are from the category edible, while negative ones from poisonous. The tasks 2–4
are named in the same way. In the last two tasks, positive instances are from
the positive relationships (trust or like) and negative instances are from the neg-
ative relationships (distrust or dislike). Six commonly used structural features
(common neighbors, Jaccard coefficient, in-degree, out-degree, total-degree and
Sorensen Index) [6] are calculated to describe node pairs. In experimental set-
tings, each target data is split into three subsets: 50% of the data is used for
testing, 49% of the data constitutes unlabeled data Ut and 1% of the data con-
stitutes labeled data Lt. The maximum number of the active queries is set to
150 and the number of iteration N is set to 100. All experiment results are the
average values using 10-fold cross validation.

Table 2. Datasets and experiment settings

Task Datasets Settings

|Lt ∪ Ut| Ls

1: edible-poisonous Mushroom 4,608 3,156

2: rec-sci 20Newsgroup 1,186 1,190

3: rec-talk 20Newsgroup 1,137 1,137

4: orgs-people Reuters-21578 1,016 1,046

5: Eponions2Slashdot Epinions & Slashdot 1,020 370

6: Epinions2MobileU Epinions & MobileU 1,020 314
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4.2 Comparison Methods

The following methods are compared with our method.

– Active is a classifier model based on active learning. It is trained with data
only from Lt (i.e. labeled data in the target domain) and uses uncertainty
sampling strategy.

– Active-s has the same settings with Active except that it is trained with data
from both Lt and Ls (i.e. labeled data in the source domain).

– TAQIL is our method proposed for inferring new relationships but can also
be used to classify the instances in non-network datasets.

– TAQIL-b is a baseline method which has the same settings with TAQIL
except that it uses random sampling rather than uncertainty sampling in
active queries.

– Actrack [14] is a related active transfer learning method, which selects an
essential instance to construct an inductive model from the target dataset,
and then a transfer classifier is trained with labeled data from Lt and Ls.

– HATL [8] is a state-of-art active transfer learning method, which exploits
cluster structure shared between different data domains to perform transfer
learning and to generate effective label queries during active learning.

– TranFG [15] is used to compare with our method in relationship prediction
tasks in information networks. It incorporates social theories into a factor
graph model by using transfer learning and active learning. Finally, It can
predict the types of relationships in the target network.

In the first four methods, we use Logistic Regression as the base classifier.
In Actrack and HATL, we use SVM as the base classifier due to its superior
performance.

4.3 Experimental Results

The performance curves with increasing queries of six methods (TAQIL, TAQIL-
b, HATL, Active-s, AcTrack and Active) in non-network datasets are plotted
and compared in Fig. 2. The performance curves with increasing queries of five
methods (TAQIL, TAQIL-b, TranFG, Active-s and Active) in network datasets
are plotted and compared in Fig. 3. The detailed accuracy values in all tasks of
comparative methods with 150 label queries are listed in Table 3.

Figure 2 shows that the proposed method TAQIL outperforms the competing
methods throughout the entire label query budget. As expected, Active leads to
the worst performance on most datasets due to the limited training data. The
performance of Active-s is much higher than Active because the former uses the
source domain data in the training set. When comparing TAQIL with TAQIL-b,
the proposed method is always superior to its baseline method. It verifies that
with the new query function TAQIL can select the most informative unlabeled
instance from Ut each time. The accuracy value of HATL and TAQIL is close in
Fig. 1, but the complexity of HATL is higher because it needs to get hierarchical
cluster tree over Ut and Ls before the transfer process. The performance of
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Table 3. The accuracy value of all methods with 150 label queries

Methods Task1 Task2 Task3 Task4 Task5 Task6

Active 0.8123 0.8383 0.7431 0.8062 0.7643 0.6836

Active-s 0.8863 0.9189 0.8994 0.8258 0.7948 0.7923

TAQIL 0.9504 0.9583 0.9522 0.8711 0.8896 0.8636

TAQIL-b 0.9304 0.9475 0.9403 0.8375 0.8649 0.7857

Actrack 0.8808 0.8908 0.8508 0.8295 — —

HALT 0.9203 0.9478 0.9512 0.8604 — —

TranFG — — — — 0.8908 0.8108

(a) edible-poisonous (b) rec-sci

(c) rec-talk (d) orgs-people

Fig. 2. Performance comparison on non-network datasets

AcTrack is quite lower than TAQIL. The possible reason is that Actrack only
queries the experts for the class label in case of mislabeling but TAQIL uses
TrAdaBoost to iteratively optimize the weights and uses multiple classification
planes to select the most informative example to be labeled.

Figure 3 shows similar observation that TAQIL achieves the better perfor-
mance than Active, Active-s and TAQIL-b. It even outperforms the state-of-art
method TranFG in most label query number settings. The experiment verifies
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(a) Epinions2Slashdot (b) Epinions2MobileU

Fig. 3. Performance comparison on real network datasets.

that our method is beneficial for inferring links in the new network which has
not much labeled instances.

5 Conclusion

In this paper, we propose a practical active transfer learning framework for
inferring links in multiple networks, where relationships are insufficient in both
source and target networks, and labels can be actively queried from the target
domain. The framework transfers supervised information from the source net-
work to help infer relationships in the target network. A new query function
is defined to actively query the label of the most informative example which
is the nearest one to �N/2� hyper planes output by the TrAdaBoost method.
Experiments on 6 tasks from non-network datasets and network datasets vali-
date the effectiveness of the proposed framework. Comparing with other related
active transfer learning methods, the proposed method performs better not only
in multiple network settings but also in other classification tasks.

In the future, we plan to extend the framework for transfer learning with mul-
tiple source networks. Also, other active query strategies will be experimented
under the proposed framework. Finally, the active learning strategies for han-
dling temporal drift will be studied since information networks often evolve over
time.
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Abstract. Distance metric learning is one of the most important aspects
behind the performance of numerous algorithms under the data mining
paradigm. In this article, we propose a new method for transfer metric
learning under semi-supervised setting, using the concept of relative dis-
tance constraints to exploit more information from the unlabeled data
present in the target task. We need an appropriate distance function for
extracting useful information from unlabeled data. For this purpose, we
use the concept of pairwise relative distance constraints. With the help
of few labeled data, we obtain the pair-wise similarities in the form of
inequality and equality constraints. We use the concept of Bregman pro-
jection to satisfy such constraints to the initial distance matrix that is
composed of both labeled and unlabeled data, and then construct the
appropriate K-nearest neighbor graph using this matrix, which provides
better results regardless of the dimension of the data.

Keywords: Metric learning · Transfer learning
Semi-supervised learning · Relative distance comparisons

1 Introduction

A number of data mining algorithms such as classification (K-NN) and clus-
tering (K-means) perform well if an appropriate distance matrix is provided
to them [1]. So it is very vital to have a good distance metric for satisfactory
results of any classification/clustering algorithms. Metric learning is being one
of the most researched topics in recent years and many researchers have come up
with different methods. Generally, these methods can be divided into the follow-
ing categories: (a) Supervised metric learning, which learns the metric from the
labeled data or known task; classification is a prime example of the supervised
metric learning, (b) Unsupervised metric learning, which uses the information
available within the data for example clustering and (c) Semi-supervised metric
learning can easily be understood as the combination of supervised and unsuper-
vised learning. This metric takes care of both labeled information as well as the
geometric information from the unlabeled data. A number of machine learning
c© Springer Nature Switzerland AG 2018
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algorithms such as supervised learning expect the labeled data to train their
respective models but in reality, the amount of labeled data present in the real-
world scenario is very less but the available unlabeled data is more. It is very
time-consuming, costly and tedious work to label the data manually for such
supervised model. Thus, the model which is learned does not provide proper
results. Therefore, semi-supervised metric learning is preferred over the rest of
two learning paradigms as it helps us to overcome the problem related to the
deficiency of labeled data.

In this paper, we consider circumstances similar to semi-supervised metric
learning [2] where very few labeled data is available. In multi-task learning and
transfer learning scenario, one task may have very few labeled data for learn-
ing but at the same time, it is also possible that there are some other related
tasks which have sufficient labeled data. The semi-Supervised learning framework
accomplishes the unlabeled information, on the other side, transfer learning and
multi-task learning [3] try to mitigate the scarcity of the labeled data by consid-
ering some related tasks and to help in improving the learning performance. In
other words, when a person tries to learn to ride bicycle and tricycle then, the
learning experience of riding bicycle can be used for learning tricycle.

In both transfer metric learning and multi-task learning, one task helps
another task in improving the learning performance, but both are different in
terms of having different objective functions and problem setting. There are
basically two types of tasks in the transfer learning (a) source task, (b) target
task. It is accepted that there is sufficient information in the source tasks but
in the target task, there is not enough data present. In transfer metric learning
(TML) [4] the metric and the task covariance between the source task and tar-
get task have been learned and brought together within a convex formulation.
The main aim of the transfer metric learning is to learn the metric of target
task with the assistance of source tasks without enhancing the execution of the
given source tasks. This is the primary distinction between transfer learning and
multi-task learning. However, the multi-task learning objective is to enhance the
performance of every task at the same time [4]. Based on this method, regu-
larized distance metric learning (RDML) [5] based transfer metric learning is
proposed which is the extension of the transfer learning.

The semi-supervised extension of TML named STML improves the perfor-
mance by considering the manifold assumption and clustered data. STML uses
the initial distance matrix generated using Gaussian kernel function to set up a
K-nearest neighbor graph G = (ν, ε) with local scaling [6], vertex set denoted as
ν = {1, ..., nm} related to the labeled and unlabeled data points, and the edges
represented in set ε as ε ⊆ ν × ν denoting the relationship between the data
points [4]. But, this Gaussian kernel function can not quantify appropriate dis-
tances between the data points if the available data is having high dimensions.
Therefore, this will affect the performance of this STML algorithm.

In this work, we formulate a distance function as discussed in the paper [7]
which considers relative distance comparisons in the form of constraints to
express pairwise similarity and dissimilarity between all the data points [8].
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This constraint set C is composed of equality Ceq and inequality Cneq constraints.
Our distance function also considers non-linear transformation. In order to find
out an appropriate distance function, we satisfy all such constraints onto the ini-
tial Gaussian kernel matrix using the Bregman projection [9,10]. Thus, learned
matrix is used for generating the more appropriate K-NN graph which improves
the performance of STML algorithm.

The major contributions of this paper are as follows:

– This paper proposed a transfer metric learning method under the semi-
supervised setting with the help of the relative distance constraints.

– For generating the equality and inequality relative constraints only few
labeled data is required, which makes our approach practically useful in real
scenarios.

– We used Gaussian kernel to generate initial matrix then satisfying such gener-
ated constraints onto this matrix using the Bregman projection, which help us
to generate a more appropriate distance matrix. Later, this adjusted matrix
is used for generating more appropriate K-NN graph.

– Because the K-NN graph we have is more appropriate therefore the perfor-
mance of existing STML improves.

– To evaluate the performance of our proposed approach, experimented results
are presented on two data sets: Hand written letter dataset and USPS digit
dataset.

2 Background and Related Work

Let us assume that we have a training dataset (labeled) as {(xi, yi)}n
i=1 where the

ith data point is xi ∈ R
d and the respective class label is given as yi ∈ {1, ..., C}.

Then, Regularized distance metric learning (RDML) [5] can be formulated as
follows:

Σ
min

2
n(n − 1)

∑

j,k

g(yj,k

[
1 − ‖xj − xk‖2Σ

]
) +

λ

2
‖Σ‖2F

s.t. Σ � 0

(1)

Where λ is a regularization parameter that maintains regularization term and
empirical loss. And ||Σ||F is the Frobenius norm of a matrix Σ.
And

yj,k =
{

1 ifyj = yk

−1 otherwise;

Σ � 0 indicates it is a PSD (positive semidefinite matrix) matrix, and ||xj −
xk||2Σ = (xj −xk)T Σ(xj −xk), g(c) = max(0, α−c) indicates hinge loss. Here the
value of α must be between 0 to 1. In the semi-supervised extension of transfer
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metric learning (STML) setting, let m− 1 source tasks and one Tm target task
are given then the optimization problem can be formulated as follows:

min
Σ,ωm,ω,Ω

2
nm(nm − 1)

∑

j,k

g
(
ym

j,k

[
1 − ∥∥xm

j − xm
k

∥∥2

Σm

])
+

λ1

2
‖Σm‖2F

+
λ2

2
tr(Σ̃Ω−1Σ̃T )+λ3tr(ΣmXmLXT

m) +
λ2

2
tr(Σ̃Ω−1Σ̃T ) + λ3tr(ΣmXmLXT

m)

s.t. Σ � 0

Ω =
(

1−ω
m−1 ωm

ωT
m ω

)
, Σ̃ = (Σ̃s, vec(Σm))

ω(1 − ω) ≥ (m − 1)ωT
mωm

(2)
It can be proved that the Eq. 3 follows the convex formulation [11]. The opti-
mization procedure for STML can be done by dividing it into two subproblems.
We first optimize with respect to Σm while keeping ωm and ω fix, and then
optimize ωm and ω while keeping the Σm fixed.

Keeping ωm and ω fixed and only concerning the Σm:

min
Σm

2
nm(nm − 1)

∑

j<k

g(ym
j,k[1 − ||xm

j − xm
k ||2Σm

]) +
λ1

′

2
||Σm||2F − λ2

′

2
tr(ΣmM)

+ λ3tr(ΣmXmLXT
m)

s.t. Σm � 0
(3)

Keeping Σm fixed and concerning the ωm and ω:

min
ωm,ω,f,t,hj ,rj

− t

s.t.
1 − ω

m − 1
≥ tλ1

f = UT(ωm − tψ12)
m−1∑

j=1

hj ≤ ω − tψ22

rj =
1 − ω

m − 1
− tλj ,∀j

f2
j

rj
≤ hj ,∀j

ω(1 − ω) ≥ (m − 1)ωT
mωm

(4)

Initially, it is assumed that all source tasks and target tasks are unrelated to each
other. Therefore, we keep the value of ω = 1

m and wm as zero vector. The problem
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(4) is a second-order cone programming problem (SOCP) [12] and we can solve
it very easily if the number of the task is very less.

3 Proposed Work

Our proposed method (STMLR) is mixed of semi-supervised transfer metric
learning and kernel based relative distance metric learning. The architecture of
our proposed method is shown in Fig. 1. Initially, we have two or more indepen-
dent source tasks and one target task, target task is having enough unlabeled
data but very less labeled data. Either of RDML or ITML can be used to learn
and obtain the prior metric of the source tasks. These learned source task matrix
(prior metric) will help in learning the target task matrix. First, we consider tar-
get task. Then, we use the Gaussian kernel discussed in Sect. 3.1 to obtain our
initial kernel matrix K0 of the target task. Since this initial kernel matrix does
not quantify the appropriate distances between the data points to generate the
graph, we have to find out an appropriate distance function to measure the dis-
tances between data points. Therefore, we use the relative distance constraints
generated in Sect. 3.2 onto the initial kernel matrix K0 to learn the appropri-
ate distance function. We use inner product between any data points in Kernel
space discussed in Sect. 3.3 to determine the distance between them. We seek for
a kernel matrix K after projecting the initial kernel matrix K0 onto this pairwise
constraint matrix. The log-det Bregman divergence discussed in Sect. 3.4 helps
to keep the distance between the initial kernel matrix K0 and kernel matrix K
as minimum as possible. After satisfying all the constraints using the Bregman
Projection, we get final kernel matrix K shown in Fig. 2. Now this final kernel
matrix K of the target task is used by the k-nearest neighbor algorithm to gen-
erate an appropriate graph W. We determine graph Laplacian matrix L of this
graph by subtracting the graph matrix w from the diagonal matrix of the graph,
i.e., L = D − W . This appropriate graph Laplacian matrix L is given to fourth
term λ3tr(ΣmXmLXT

m) of STML Eq. 3.

3.1 Similarity Between Data Points Using Gaussian Kernel

Let us say we have lm number of labeled data points, denoted as
{
(xm

j , ym
j )

}lm

j=1
,

and um unlabeled data points, denoted as
{
xm

j

}lm+um

j=lm+1
(i.e., a total of nm =

lm +um data points are given to us), for the target task Tm. In order to generate
similarity graph, we use the Gaussian kernel function to find out the similar-
ity between the data points. Because of its smoothing property, the choice of
Gaussian kernel is so obvious: Let us say we have given a positive definite kernel
R, then there exists its relative space of functions, P. The kernel helps us to
determine the characteristics of the functions in the space P [13]. It turns out
that if R is a Gaussian kernel, the functions in the space P are very smooth. So,
a learned function (e.g, a regression function, principal components in RKHS as
in kernel PCA) is very smooth.
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Let us consider a similarity graph G = (ν, ε) with vertex set ν = 1, ..., nm

analogous to both the labeled data points as well as the unlabeled data points
and the edge set ε ⊆ ν × ν defining the existing relationships between data
points. Now the weight of each edge between any pair of data points, xm

i and
xm

j , is calculated by using the following Gaussian kernel function.

wij =

{
exp(

−‖xm
i −xm

j ‖2

2
σiσj

) ifxm
i ∈ Nk(xm

j ) or xm
j ∈ Nk(xm

i )
0 otherwise

(5)

where ‖.‖2 is the notation for the two-norm of a vector, Nk(xm
i ) denotes the

neighborhood set of K-nearest neighbors of xm
i , and σi(σj) is the distance

between xm
i (xm

j ) and its Kth nearest neighbor.

(a) Flow chart of proposed architecture

Fig. 1. Showing flow chart of our proposed architecture

3.2 Relative Distance Constraints Ceq and Cneq

The constraints available in the constraint set C report knowledge about the dis-
tances between the data points present in the dataset D. This reported knowledge
is given by using the distance function ϕ. The motive of this distance function
is not to calculate accurate distances between any data points. But it expresses
the information in the form ϕ(p, q) < ϕ(p, r) for some p, q, r ∈ D. In particular,
constraints we have, can be viewed in two categories, i.e., C can be divided into
two sets, inequality set Cneq and equality set Ceq. The set Cneq has constraints
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(a) Before projection (b) After projection

Fig. 2. 2 dimensional representation of data before or after Bregman projection

where a point out of three points is an outlier. This means that the distance of
one point (outlier) to other two data points is much larger than that of two other
points. The set ceq has constraint where no item is an outlier, i.e., the distances
of all three items are then approximately the same. Both the constraints Ceq

and Cneq were also used in the paper [7].
For the given three data points p, q, r, the constraints in Cneq can be defined

as the following inequalities

(p ← q|r) : μϕ(p, q) ≤ ϕ(q, r) (6)

and
(q ← p|r) : μϕ(q, p) ≤ ϕ(q, r) (7)

Here, μ > 1 is some constant parameter. Similarly, the constraints in Ceq for the
data points p, q and r which are in equal distance to each other can be defined
as follows:

ϕ(p, q) = ϕ(q, r) = ϕ(p, r) (8)

3.3 Development to a Kernel Space

The constraints available in set C are extended to a kernel Hilbert space with
the function Θ : D → R

m. In this space, the inner product between any two
points p and q can be defined by using the symmetric matrix, K, that is, Kpq =
Θ(p)T Θ(q). We also assume that in this space this kernel K uses some unknown
distance function, ϕ. Thus, the inner product between any two points, p and
q, by using some unknown distance function, ϕ, in Hilbert Space is defined as
follows:

ϕ(p, q) = ‖Θ(p) − Θ(q)‖2 = Kpp − 2Kpq + Kqq (9)

Now, we consider the Eqs. (6), (7) and (8), the inequality constraints in the
kernel space. Let vp be a vector with zeros and value 1 at position p. Matrix
form for the Eq. (9) can be expressed as:

Kpp − 2Kpq + Kqq = (vp − vq)T K(vp − vq) = tr(K(vp − vq)(vp − vq)T ) (10)



Semi-supervised Transfer Metric Learning with Relative Constraints 237

where tr(T) denotes the trace of matrix T and we know the fact that K = KT ,
using the above equation we can modify Eq. (6) as:

μtr(K(vp − vq)(vp − vq)T ) − tr(K(vp − vr)(vp − vr)T ) ≤ 0

tr(Kμ(vp − vq)(vp − vq)T − K(vp − vr)(vp − vr)T ) ≤ 0

tr(K(μ(vp − vq)(vp − vq)T − (vp − vq)(vp − vr)T )) ≤ 0
tr(KCp←q|r) ≤ 0

where C(p←q|r) = μ(vp−vq)(vp−vq)T −(vp−vr)(vp−vr)T matrix representation
of corresponding constraint. For Cq←p|r for Eq. (7) can be easily formed similarly.

Using similar technique we can represent the constraints in the set Ceq. Since
the constraint Ceq implies all the points are equidistant, we can write the first
equation for the constraint (p, q, r) ∈ Ceq as

tr(KCp↔q,r) = 0 (11)

3.4 The Bregman Projection and It’s Log Determinant Divergence
in Kernel Learning

Initially, we construct initial kernel matrix K0 by using the Gaussian kernel dis-
cussed in Sect. 3.1, this matrix is projected onto the convex set of constraints.
After performing this, we get positive semi-definite matrix, K. Our main objec-
tive is to minimize the distance between K and K0 by using the Bregman diver-
gence. The Bregman divergence between K and K0 is as follows:

DΘ(K,K0) = Θ(K) − Θ(K0) − tr(ΔΘ(K0)T (K − K0)) (12)

where θ is a strictly-convex real-valued function, and ΔΘ(K0) is gradient cal-
culated at K0. If we set Θ(K) = − log det(k), i.e., the log-determinant (logdet)
matrix divergence will be:

Dld(K,K0) = tr(K,K−1
0 ) − log det(KK−1

0 ) − n (13)

4 Experimental Results

In this section, we first study semi-supervised transfer metric learning (STML)
and semi-supervised transfer metric learning with relative constraints (STMLR)
empirically, and compare their performances. We used source code offered by [4]
to implement our STMLR algorithm and also used CVX toolbox to solve the
optimization problem. All the source task metrics are learned using the RDML
algorithm. It has already been proved in the paper [4] that existing STML out-
played the ITML, RDML algorithm in terms of performance. Now, We evaluate
our proposed approach on two popular datasets, handwritten letter classifica-
tion1 and USPS digit classification2 to show the performance over the exist-
ing (STML).
1 https://archive.ics.uci.edu/ml/datasets/letter+recognition.
2 https://archive.ics.uci.edu/ml/support/Optical+Recognition+of+Handwritten+
Digits.

https://archive.ics.uci.edu/ml/datasets/letter+recognition
https://archive.ics.uci.edu/ml/support/Optical+Recognition+of+Handwritten+Digits
https://archive.ics.uci.edu/ml/support/Optical+Recognition+of+Handwritten+Digits
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4.1 Handwritten Letter Classification

We generate six binary classification tasks by considering data points corre-
sponding to the tasks from the handwritten letter classification dataset. Each
task can have approximately 1,000 positive and 1,000 negative data points. Each
data point of the task has 16 features to represent an image of the letter. To
perform the experiment, we consider the following tasks, namely, h/n, m/n, g/y,
a/o, c/e and f/t. While performing experiments, one of them becomes target
task and others become source tasks. We keep 0.5 as learning rate and constant
value for gamma priors (alpha and beta), for the classification purpose we used
the KNN classifier where k is initialized as K = 3. In order to see the effect of
varying the size of training data on the performance of both the algorithms,

Fig. 3. Performance on the handwritten letter classification with one target task and
other tasks as source tasks in STML and STMLR
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we vary the percentage of training data from 5% to 20%. The results shown in
Fig. 3 show that our approach performs better for every task in comparison to
the existing STML.

4.2 USPS Digit Classification

The USPS digit dataset contains 7,291 examples with each of 256 features. From
this dataset also, we have considered four classification tasks namely, 3/4, 4/5,
3/5 and 5/6. We use the same experiment setting as used for handwritten letter
classification dataset. Here also, results shown in Fig. 4 clearly illustrate that our
approach performs better in comparison to STML.

Fig. 4. Performance on the USPS Digit classification with one target task and other
tasks as source tasks in STML and STMLR

4.3 Discussion of Results

For both the datasets we compared our algorithm, STMLR with the existing
algorithm, STML, for the 5%, 10%, 15% and 20% of labeled data.

– For the Handwritten letter dataset we have achieved better accuracy than
the STML as shown in Fig. 3. For example In 1st task for 5%, 10%, 15%, 20%
labeled data we achieved 79%, 80.5%, 84%, 85% accuracy respectively, which
is better when compared to STML. There are five more similar tasks and for
each case STMLR performed better.
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– Also, For the USPS digit dataset we have achieved better accuracy than the
STML as shown in Fig. 4. For example In 1st task for 5%, 10%, 15%, 20%
labeled data we achieved 92%, 92%, 97.5%, 99% accuracy respectively, which
is better when compared to STML. There are three more similar tasks and
for each case STMLR performed better.

We have also conducted t-test [12] at 0.05 significance level to check whether
results obtained are statistically significant or happened by chance. Results
obtained using t-test clearly show that the obtained performance improvements
are statistically significant.

5 Conclusion

In this paper, we have proposed a semi-supervised transfer metric-learning
method to exploit more information from the unlabeled data present in the
target task. For this purpose, we have found out appropriate distance function
to measure an accurate distance between any data points available in the higher
dimension of the target task. To measure this appropriate distance function, we
used relative distance constraints and satisfied them using Bregman projection.
Results show that our approach performs better when compared to STML in
higher dimensional data also. The previously satisfied constraints can get unsat-
isfied as the projection of the constraints is not orthogonal. Therefore, in future,
we will find out an appropriate subset of constraints by using some evolutionary
algorithm (like NSGA-III, AMOSA) while satisfying multiple-objective functions
which ensure good partitioning of the data.
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Abstract. Transfer learning has been emerging recently and gaining more
attention because of its ability to deal with “small labeled data” issue in new
markets and for new products. It addresses the problem of leveraging knowledge
acquired from previous domain (a source domain with a large amount of labeled
data) to improve the accuracy of tasks in the current domain (a target domain
with little labeled data). Fuzzy rule-based transfer learning methods are devel-
oped due to the ability to dealing with the uncertainty in domain adaptation
scenarios. Although some effort is made to develop the fuzzy methods, they
only apply the knowledge of the labeled data in the target domain to assist the
model’s construction. This work develops a new method that explores and
utilizes the information contained in the unlabeled target data to improve the
performance of the new constructed model. The experiments on both synthetic
datasets and real-world datasets illustrate the effectiveness of our method, and
also give the application scope of applying it.

Keywords: Domain adaptation � Transfer learning � Machine learning
Fuzzy rules � Regression

1 Introduction

Machine learning [1] has gained a great achievement in many areas, such as finance,
military, entertainment, and so on. And many machine learning methods are developed
to handle the practical situations [2]. Although these methods work well in some cases,
there is a big obstacle that impeded the further development of the traditional machine
learning methods. This obstacle comes from an assumption that the model only works
well in the condition that the training data and testing data have the same statistical
characteristics, i.e. the same feature space and distributions. But in the data-shortage
and rapid-changing environments, the constructed model always has a poor perfor-
mance, and building a new is impossible due to the insufficient labeled data.

Human own the ability of applying the knowledge acquired previously to solve the
current task. For example, recognizing an apple will be helpful for identifying a new
fruit, such as a peach or a pear. Because of this ability, human could continuously
accumulated knowledge and adapt to the new and challenging environment. Transfer
learning has been emerging recently and becoming more and more popular due to its
ability of knowledge transfer.

© Springer Nature Switzerland AG 2018
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There are increased attention focusing on transfer learning [3], and more methods
are developed to handle the real cases in artificial intelligence to expand the application
of transfer learning [4, 5]. Some well-known examples of transfer learning include
prediction, image recognition, recommend systems, and natural language processing.
Since the development of transfer learning is based on machine learning, many notable
machine leaning models [6–8] are applied as the basic learning in the transfer leaning
methods. Additionally, researchers in deep learning exploring the transfer ability of
deep models [9]. For more information about transfer learning, there are some well-
written survey papers that summarize the current transfer learning methods and give the
clear categories to review them [10, 11].

Although transfer learning exhibits an upward trend, there is still a huge gap
between existing work and domain adaptation tasks. For instance, most of the current
transfer learning focus on solving the classification problems, but there is little work on
the regression tasks in the domain adaptation problems. Additionally, the ignorance of
the uncertainty phenomenon in the transfer learning problems weak the application
scope of the current works. Since only little labeled or no labeled data available in the
target domain, the insufficient information lead to the uncertainty in the learning and
model’s construction process. However, the application of fuzzy systems in the transfer
learning problems has shown a good results and light the way of handling the
uncertainty issues.

We have done some work at solving the domain adaptation problems in regression
tasks using fuzzy rule-based models [12, 13]. We have proposed three algorithms that
deal with three different fuzzy transfer learning cases separately. In the first case, we
consider the discrepancy of the distributions in the feature space, which will lead to the
different conditions of fuzzy rules in the source and target domain. An algorithm of
changing the input space through mappings is presented to solve the distribution gap
between two domains. In the second case, other than the feature distributions, consider
the difference in the output space, and an algorithm of changing the linear functions is
proposed to adjusting the output space to make it fitted with the target data. The third
algorithm combines the first two, modifies both the conditions and conclusion of the
fuzzy rules to make them compatible with the target domain. All the work in these
papers use the labeled target data to lead the construction of transformation mappings,
and ignore the data without labels. Here, we propose a new method that explores and
utilizes the knowledge contained in the unlabeled target data to improve the perfor-
mance of the constructed target model.

The structure of this work is as follows. Section 2 presents some basic definitions in
transfer learning, and the learning model applied in our method, Takagi-Sugeno fuzzy
model. In Sect. 3, we propose a new method, which uses both labeled and unlabeled
target data. In Sect. 4, synthetic and real-world datasets are used to analyse the per-
formance of our method and test its effectiveness in dealing with practical situations.
The final section concludes the paper and outlines future work.
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2 Preliminary

Some definitions are introduced first to given the readers the basic knowledge of
transfer learning. And then, a fuzzy rule-based system, Takagi-Sugeno fuzzy model, is
formulated.

2.1 Transfer Learning

Definition 1 (Domain) [3]: A domain is denoted by D ¼ F;P Xð Þf g, where F is a
feature space, and P Xð Þ, X ¼ x1; � � � ; xnf g, are the probability distributions of the
instances.

Definition 2 (Task) [3]: A task is denoted by T ¼ Y ; f �ð Þf g, where Y 2 R is the output,
and f �ð Þ is an objective predictive function.

Definition 3 (Transfer Learning) [3]: Given a source domain Ds, a learning task Ts, a
target domain Dt, and a learning task Tt, transfer learning aims to improve learning of
the target predictive function ft �ð Þ in Dt using the knowledge in Ds and Ts where
Ds 6¼ Dt or Ts 6¼ Tt.
Transfer learning uses the knowledge obtained from previous domains (source domain)
to help build the model for dealing with the tasks in the current domain (target domain).

2.2 Fuzzy Rule-Based Model

The basic learning model used here is the Takagi-Sugeno fuzzy model, which consists
of c rules as follows:

If x is;Ai x; við Þ then yi is Li x; aið Þ i ¼ 1; . . .; c ð1Þ

where x is the input, and yi is the output of applying the corresponding rule. vi is the
centers of the prototype (cluster), and ai determines the linear functions in the con-
clusions of the fuzzy rules. Thus, the output of the fuzzy system is y with the following
representation.

y ¼
Xc

i¼1
Ai x; við ÞLi x; aið Þ ð2Þ

The construction of the Takagi-Sugeno fuzzy model involves a learning process
based on a given labeled datasets. First, the data are divided based on Fuzzy C-means
algorithm, which could help cluster the data and find out the centers of the clusters vi.
Based on the vi, the coefficients of ai are computed through an optimization procedure.
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3 Methodology

In our previous papers, we proposed the methods of changing the input and output
spaces of the source domain to fit the current tasks. The labeled target data are used to
guide the construction of the mappings that connects the domains. But the unlabeled
target data are not used to help the construction of target model. In the transfer learning
scenarios, there are a large amount of target data without labels that also contains much
information of target domain. Therefore, how to utilize the unlabeled target data is a
critical step in enhancing the performance of transfer learning between domains.

In this work, the knowledge contained in the unlabeled target data will be explored
and applied to improve the performance of the constructed model for the target domain.
The following steps outline this fuzzy rule-based domain adaptation method, which
utilizes target data with and without labels for solving the regression tasks in target
domain.

Step 1: Train a fuzzy model (fuzzy rules) for the source domain.
In the source domain, a mass of labeled data are available. Suppose the dataset in

the source domain is denoted as D ¼ xs1; y
s
1

� �
; � � � ; xsNs

; ysNs

� �n o
, where xsk 2 Rn

k ¼ 1; � � � ;Nsð Þ is an n-dimensional variable, ysk 2 R is a continuous variable, and Ns

gives the number of labeled data. Based on the dataset D, a supervised learning process
is executed to train the source model and gain a set of fuzzy rules.

Referring to the numbers of fuzzy rules in the source and target domains, we want
to claim that the rules of source domain could be modified and transferred to solve the
target tasks as if the number of fuzzy rules in the source domain is greater than in the
target domain. Since the Takagi-Sugeno fuzzy model uses nonlinearly weighted linear
functions to fit a curve. Each cluster indicates a separate area in the input space, and the
corresponding linear function represents the action applied in that area. More clusters,
or fuzzy rules, represents more precise of the partition and action described in the
output space. Thus, it is reasonable to set an adequate number of fuzzy rules when
building a Takagi-Sugeno fuzzy model to get good performance.

We consider two cases here to indicate the relationship of the numbers of fuzzy
rules in two domains. If the source domain has no less fuzzy rules’ number than the
target domain, then the fuzzy rules of source domain could be modified and used to
handle the regression tasks in the target domain. If the source domain has less fuzzy
rules’ number than the target domain, we could adopt the strategy of retaining the
source model with rules no less than that in the target domain. Therefore, this also can
be regarded as a criteria of selecting an appropriate domain from multiple domains for
the target domain.

Therefore, determining the fuzzy rules’ number is quite important when building a
Takagi-Sugeno fuzzy model. Although we claim that using more rules to construct a
Takagi-Sugeno fuzzy model is reasonable, we still need the prior knowledge to esti-
mate the number of fuzzy rules for a specific domain or dataset. Here, we apply the
IGMM model [14] to find out the data’s structure and provide a guide to determine the
number of trained rules. IGMM implements the process of mixing Gaussian distribu-
tions to fit the data distribution, which detects the data structure in the data-based
learning process.
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After analysing the results from IGMM, a model Ms is trained based on the source
dataset D, and a set of fuzzy rules are obtained with formulation as follows:

if xsk isAi xsk; v
s
i

� �
; then ysk is Li x

s
k; a

s
i

� �
i ¼ 1; � � � ; c ð3Þ

There are c fuzzy rules, and each rule is governed by the center of cluster vsi , and the
linear function asi .

Step 2: Modify the fuzzy rules of source domain to fit the target tasks.
The target dataset H consists of two subsets: HL with labeled data, and HU with

unlabeled data. H ¼ HL;HUf g ¼ xt1; y
t
1

� �
; � � � ; xtNt1

; ytNt1

� �n o
; xtNt1þ 1

; � � � ; xtNt

n on o
,

where xtk 2 Rn k ¼ 1; � � � ;Ntð Þ is the n-dimensional input variable, ytk 2 R corresponds
to the labels for the data in HL. The numbers of data in HL and HU are Nt1 and Nt � Nt1

respectively, and satisfy Nt1 � Nt, Nt1 � Ns.

Since the distributions of xs1; � � � ; xsNs

n o
and xt1; � � � ; xtNt

n o
are different, the model

trained on D could not be used to do the prediction tasks in H.
We adopt the approach of changing the input space by constructing a mapping

between the input variables between two domains [13]. Different with our previous
method, which only applies the labeled target data to train the mapping, this work uses
the information contained in unlabeled target data to enhance the accuracy of the target
model.

After the transformation of the mapping in the input space, the fuzzy rules inMs are
changed, and target model Mt is obtained:

if xtk isAi U xtk
� �

;U vsi
� �� �

; then ytk is Li Uðxtk
� �

; asi
� �

i ¼ 1; � � � ; c ð4Þ

where U is the transformation mapping for the input space. U ¼ U1 � � �Un½ � indicates
that the mapping for each input variable is built separately, and the structures of them
are the same, which is constructed of network with one hidden layer. The detailed
structure of the mappings could refers to our previous paper [13].

To optimize the parameters in U, target data with and without labels are used to
train and modify the existing fuzzy rules. The optimized cost function is:

S ¼
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j¼1 Aj U xtk
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� �
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l¼1
ytk � ytk lð Þ� �2 � exp � xtk � xtk lð Þ�� ��� �r

þ k2
2
wTw

ð5Þ

There are three items in the cost function in (5). The first item focuses on the
labeled target data, which guides the learning process in a supervised way. The second
item intend to utilize the unlabeled data to optimize the parameters of the mappings. In
the regression problems, it is reasonable to assume that the closer data in the input
space have similar outputs. With this assumption, the outputs of unlabeled target data
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are estimated and considered to be approximate to the output of the nearest instance
with label. Thus, the h-nearest data xtk 1ð Þ � � � xtk hð Þ� 	

in HU are found for each labeled
target data xtk , and the corresponding outputs for xtk 1ð Þ � � � xtk hð Þ� 	

are expected to be
similar with the output of xtk. expð� xtk � xtk lð Þ�� �� defines the degree of the closeness to
make sure that the closer data have more approximate outputs. The third item controls
the complexity of the constructed prediction model.

4 Experiments

The synthetic datasets are applied first to validate our proposed method, and indicate
the application scope of it. Secondly, our method is used to solve some real-world
domain adaptation problems.

To evaluate this fuzzy method, the performance indexes are given in advance.
The RMSE is chosen to test the model. In addition, the generalization ability of the
constructed model is also important, so five-fold cross validation is used in the models’
construction process. To keep consistence, when testing the performance of a model in
solving the target tasks, the target dataset HU is used to estimate the ability of the
model in fitting target data.

4.1 Experiments on Synthetic Datasets

Three group of experiments are implemented using the synthetic datasets. We first
compare our fuzzy method, the baselines, and some famous methods. The second and
third groups of experiments are executed to find out the impact of the data’s structure to
the performance of the proposed method.

In each group of the experiments, three datasets with different numbers of clusters
are generated, and each time, two of them are selected as a source domain, where all
data are labeled, and a target domain, where only 1% data are labeled.

In the first group of experiments, the proposed method is compared with one
baseline, the source model, and two famous methods in transfer learning, TCA and SA.
There are three datasets: “3r”, “4r” and “5r”, and “3r” means this dataset is generated
using three clusters. Since we have three datasets, six experiments are implemented. In
Table 1, the datasets applied in each experiment are indicated in column one. For
example, “5r to 4r” means the source and target datasets assigned in this experiment are
“5r” and “4r”, separately. The second to fifth columns show the RMSE of the four
methods.

From Table 1, the performance of our method is better than the baseline, TCA, and
SA, based on the smaller values of RMSE in the six experiments.

To validate the effectiveness of applying the target data without labels, the per-
formances of the models constructed using or not using unlabeled target data HU are
compared. In addition, we consider two cases, where the structures of the data are
different, to find out the impact of data’s partition to the target model.

The boundaries of the clusters are very clear and ambiguous in the second and third
groups of experiments. The results are shown in Tables 2 and 3, separately. Table 2
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compares the performance the target models, which are built using or not using
unlabeled target data. Similarly, Table 3 compares the RMSE of the constructed target
model with and without HU . Lower values are shown in bold.

From the results in Tables 2 and 3, we can see that if the partition of data in the
input space has obvious clusters, the use of unlabeled data could enhance the model’s
accuracy notably. But if the division of data’s clusters is not clear, the application of
HU is not always an advanced result. This is because when the boundaries of input data
are ambiguous, the labeled target data may fall into the junctions of the clusters, and the
utilizing of HU , finding the h-nearest unlabeled target data for each labeled target data,
will lead to a poor performance of the target model.

4.2 Experiments on Real-World Datasets

Since most studies on transfer learning focus on classification problems, there are no
publicly used datasets for the regression tasks. In order to validate our method, and
compare with the existing methods, we select some datasets from UCI Machine
Learning Repository, and modify them for the purpose of simulating transfer learning
scenarios.

Two datasets “Protein tertiary structure” and “Housing” are considered. The
“Protein tertiary structure” contains nines input variables to predict the RMSD-size of
the residue, and the dataset is divided into two sub datasets as source and target for the

Table 1. Transferring results in different methods

Source to target RMSE of models
Baseline TCA SA Our method

5r to 4r 5.23 � 0.00 7.88 � 0.00 7.58 � 0.00 0.68 � 0.01
5r to 3r 3.67 � 0.00 4.66 � 0.00 4.65 � 0.00 1.14 � 0.05
4r to 3r 0.97 � 0.00 2.19 � 0.00 2.37 � 0.00 0.65 � 0.00
3r to 4r 0.94 � 0.00 6.10 � 0.01 6.36 � 0.00 0.72 � 0.01
3r to 5r 4.16 � 0.00 3.25 � 0.00 3.21 � 0.00 1.57 � 0.00
4r to 5r 4.67 � 0.00 5.91 � 0.02 5.45 � 0.01 1.39 � 0.01

Table 2. Target model built using/not using HU – second group

Source to target datasets RMSE of the models
Mt (without HU) Mt (with HU)

5r to 4r 1.0781 � 0.0004 1.0756 � 0.0004
5r to 3r 0.9352 � 0.0057 0.8962 � 0.0083
4r to 3r 2.1269 � 0.2059 2.0996 � 0.1718
3r to 4r 0.8876 � 0.0009 0.8457 � 0.0005
3r to 5r 2.5273 � 0.0007 2.5397 � 0.0014
4r to 5r 3.0755 � 0.0110 3.0614 � 0.0037
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purpose of transfer learning. In the dataset “Housing”, there are six features and the
output is the “MEDV”. Because it is difficult to determine the numbers of clusters for
the high-dimensional datasets, we adopt a brute-force way to try several different
numbers of clusters and close the one with the best performance. Table 4 gives the
results of the above two datasets.

The large values in “Ms on HU” in Table 4 indicate the poor performance of source
model in solving the target tasks. And the results in “Mt on HU” validate the effec-
tiveness of our method. We find that no obvious trend is shown with a change in the
number of fuzzy rules. So, in the practical situations, we adopt the strategy of going
through all numbers in the given range, and select the number of rules with best
performance when determining the number of fuzzy rules is difficult.

5 Conclusions and Future Work

This work explores the knowledge contained in the unlabeled target data to improve the
performance of the constructed model in solving the domain adaptation problems in
regression tasks. The results validate our fuzzy method. Also, the low RMSE in real-
world datasets shows the ability of our method in dealing with practical problems.

This method, however, exists a limitation that it works in the situation that the
partition of data is obvious. The utilization of unlabeled target data does not show a
significant advantage when the boundaries of the clusters in data are ambiguous.

Table 3. Target model built using/not using HU – third group

Source to target datasets RMSE of the models
Mt (without HU) Mt (without HU)

5r to 4r 2.05 � 0.30 2.11 � 0.31
5r to 3r 2.45 � 0.71 2.69 � 1.01
4r to 3r 3.00 � 2.24 2.39 � 1.32
3r to 4r 1.01 � 0.00 1.05 � 0.00
3r to 5r 5.50 � 0.51 5.45 � 0.35
4r to 5r 4.79 � 0.25 4.51 � 0.62

Table 4. Results for real-world datasets

Protein tertiary structure Housing
c Ms on HU Mt on HU c Ms on HU Mt on HU

8 50.88 �27:15 6.00 � 0.01 5 1.40 � 0.71 0.19 � 0.00
9 48.90 � 37.85 5.93 � 0.01 6 3.11 � 0.41 0.22 � 0.01
10 43.32 � 87.07 6.10 � 0.01 7 2.41 � 0.21 0.15 � 0.00
11 36.84 � 23.49 5.90 � 0.01 8 2.51 � 0.25 0.15 � 0.01
12 54.41 � 15.00 5.98 � 0.00 9 1.60 � 1.14 0.15 � 0.00
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How to expand the application scope of our method and explore more information from
unlabeled target data will be considered in the future work.
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Abstract. Deep Reinforcement Learning has made impressive advances
in sequential decision making problems recently. Constructive reinforce-
ment learning (RL) algorithms have been proposed to focus on the policy
optimization process, while further research on different network archi-
tectures of the policy has not been fully explored. MLPs, LSTMs and
linear layer are complementary in their controlling capabilities, as MLPs
are appropriate for global control, LSTMs are able to exploit history
information and linear layer is good at stabilizing system dynamics. In
this paper, we propose a “Proportional-Integral” (PI) neural network
architecture that could be easily combined with popular optimization
algorithms. This PI-patterned policy network obtains the advantages of
integral control and linear control that are widely applied in classic con-
trol systems, improving the sample efficiency and training performance
on most RL tasks. Experimental results on public RL simulation plat-
forms demonstrate the proposed architecture could achieve better per-
formance than generally used MLP and other existing applied models.

Keywords: Reinforcement learning · Deep learning · Neural network
Control theory

1 Introduction

Recently, Deep Reinforcement Learning (DRL) has made notable advances
in solving representative benchmark problems, especially in simulated control
[11,22], continuous robot control [5,9,13], Go game [24], Atari games [15] and
other sequential decision making domains. Directing an agent to interact with
the environment, the policy network of DRL is of critical importance to achieve
maximum cumulative long time reward. Generally, Convolutional Neural Net-
work (CNN) is applied in visual tasks such as high-dimensional control of robots
that utilizes raw visual images or videos as input. As for non-visual tasks, the
widely-used Multi-Layer Perceptron (MLP) is considered as a basic policy net-
work structure for many DRL algorithms. However, inductive research on the
effectiveness of policy network architecture remains to be further explored. It’s
necessary to draw importance on the policy architecture to improve agent’s per-
formance better.
c© Springer Nature Switzerland AG 2018
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Fig. 1. Several popular reinforcement learning tasks implemented in public simulation
platforms MuJoCo, OpenAI Gym and Roboschool. Including continuous control of
simulated robots, classical control problems and games, etc.

In this work, we present an effective policy network architecture that is
generic in handling benchmark RL problems from board games to simulated
control tasks. Inspired by the Proportional-Integral Controller widely used in
practical control systems, we introduce the memory mechanism of Long Short-
Term Memory (LSTM) into policy network, in which characteristic could be
found a clue to lead the agent exploits history information implicitly. With LSTM
functioning as the integral controller, the “proportional” part is modelled as the
linear projection of inputs. To better stabilize system dynamics, we use non-
linear controller additionally. It’s convenient to combine the proposed network
with many existing DRL algorithms. The consolidation of linear, nonlinear and
“integral” controllers could enhance the robustness and generalization of pol-
icy network compared with the typically applied MLP structure. Given current
state, these three branches would evaluate respectively and then their results are
combined to compute the final action.

Compared with generally applied MLPs policy networks, our history-
concerned PI architecture could improve the performance of model on various
RL tasks, especially on continuous control tasks. The key insight of our work is
that the combination of control, memory mechanism and deep learning has dis-
tinct influence on the training efficiency and generalization ability. To validate
the effectiveness of this policy network, extensive experiments are conducted on
both classic control tasks as well as complex sequential decision making prob-
lems, such as pendulum control and humanoid walking, which are wrapped as
standard RL environments in public simulation platforms such as MuJoCo [16],
OpenAI Gym [3], Roboschool. We further perform different ablation experiments
utilizing different policy optimization algorithms like Deep Deterministic Policy
Gradient (DDPG) [11], Proximal Policy Optimization (PPO) [22], Actor Critic
using Kronecker-Factored Trust Region (ACKTR) [31], etc. Our experimental
results demonstrate that the proposed architecture is capable of enhancing model
generalization as well as training efficiency compared with existing works.

In our paper, Sect. 2 introduces relevant researches about classic RL optimiza-
tion methods and generally used network architectures, as well as the embedding
of LSTM. In Sect. 3, we explain the proposed architecture in details and analyze
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its theoretical applicability. Experiment results are shown in Sect. 4, with several
ablation experiments involved.

2 Related Works

Reinforcement learning problems are basically formulated as Markov Deci-
sion Process (MDP), in which an agent interacts with dynamic environment
through trial-and-error [7]. Focusing on goal-directed learning, DRL algorithms
are proved to be applicable for many sequential decision making problems in
robotics [5,9,13], video games [15], simulations [11,21] and even self-driving sys-
tems [23]. Traditional approaches such as dynamic programming [10] and control
methods fail to solve these challenges since the delayed feedback, unknown envi-
ronment dynamics and the curse of high dimensions [7].

Constructive works on RL training process have been proposed in recent
years. Generally, there are three main branches in RL, value-based, policy-based
and actor-critic (combine both) methods. While classic value-based approaches
such as SARSA [18] and Q-learning [28] have been shown unable to converge
to policy for simple MDPs [26], recent model-free DRL algorithms have made
dramatic advances in solving continuous control tasks. DQN [15] proposed by
Google DeepMind has attracted great interest in the machine learning commu-
nity, and for stochastic policy optimization, other policy-based algorithms such
as Trust Region Policy Optimization (TRPO) [20], PPO [22], Asynchronous
Advantage Actor-critic (A3C) [14], are effective in training the agents for accu-
mulating more rewards through time. Policy gradient optimization methods only
utilize states input for end-to-end training without any prior information.

However, further exploiting the applicability of different network architec-
tures has not been fully studied. Most of the methods we discuss above adopt
standard neural networks like MLPs, single LSTMs or autoencoders as policy
network for the non-vision part, and pay their attention to optimization algo-
rithms. Few works focus on using the internal structure in the policy parame-
terization to speed up learning process [30] and adding inductive bias to pol-
icy networks [27]. [27] proposed a novel network architecture named dueling
architecture that represents separate estimators for state value function and
state-dependent action advantage function respectively. Though splitting the Q-
network into two streams, the Dueling Network can’t deal with many continuous
control tasks.

Similar work [17] proposes two applicable policy architectures: linear pol-
icy that maps from observations to actions, RBF policy that uses random
Fourier features of the observations. These two architectures can achieve rel-
atively promising performance on some continuous control tasks while still lacks
generalization for most RL problems. Work [25] demonstrates that linear policy
could make a complement to standard MLP network and this combination policy
improves the sample efficiency, episodic reward and robustness. These relevant
researches prove that the integration of linear and other specific architectures
has potential for generating more effective models.
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As a class of Recurrent Neural Networks (RNNs) architecture, LSTM is
designed to learn temporal sequences and the long-term dependencies [12]. [2]
presents a model-free RL-LSTM framework to solve non-Markovian tasks, and
[29] uses LSTM to train an end-to-end dialog systems that is optimized with
supervised learning and reinforcement learning. The inspirational application of
LSTM in RL problems demonstrate that LSTM is capable of processing inter-
nal state information and exploring the long-term dependency between relevant
events in other benchmark RL problems.

The idea of integrating LSTM with linear network and standard MLP net-
work could be much similar to the traditional feedback control approach PI
[1] which has been successfully applied to a variety of continuous control like
robotics, unmanned air vehicles [19] and other automatic systems. Inspired by
the widely used PI controller, we propose the “Proportional-Integral” policy net-
work to represent the physical interpretations of control approach. Our architec-
ture is easily to be combined with existing RL optimization algorithms and suf-
ficient experiments show this policy network could achieve remarkable results on
many benchmark tasks outperforming the results achieved by similar works [25].

3 Approach

3.1 Background

In the process of optimizing episodic reward while interacting with dynamic
environment, the agent updates the policy π according to Bellman (Optimal-
ity) Equation. We formulate the standard RL environment of a sequential deci-
sion making problem as Markov Decision Process (MDP) defined by the tuple:
M = {S,O,A,R,P, γ}, in which S ⊆ R

n is an n-dimensional state space, O the
observation space, A ⊆ R

m an m-dimensional action space, R a bounded reward
function, P a transition probability function, and γ ∈ (0, 1] a discount factor.

At every time step t, the agent is given current state st ∈ S or observation
ot ∈ O and chooses one action at from finite action set A according to the policy
πθ(at|st) parameterized by θ. In problems with visual inputs, observation ot is
directly obtained from the environment and then processed by convolutional
neural network to be fed into policy network. The performed action would affect
the subsequent state iteratively because after action taken, the environment
would return a reward value r and then transit to the next state st+1 according
to state transition probability matrix P = P (st+1|st, at). For example, in Atari
domain, the player agent perceives current video as observation information,
then chooses an action to perform and receives reward signal returned by game
emulator.

The goal of RL is to learn an optimal policy that maximizes the total
discounted reward through trading-off the exploration and exploitation. Gt is
defined as the sum of discounted reward from time-step t:
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Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . .

=
∞∑

k=0

γkRt+k+1

(1)

where discount factor γ determines the present value of future rewards and
values immediate reward above delayed reward, reward R at each time-step is a
numerical number given by the environment.

We use state value function V (s) to evaluate the long-term value of state
s and action-state value function Q(s, a) to figure out the value of state-action
pair (s, a).

V π(s) = E[Gt|St = s]
= E[Rt+1 + γV π(St+1)|St = s]

(2)

Qπ(s, a) = E[Gt|St = s,At = a, π]
= E[Rt+1 + γQπ(st+1, at+1)|St = s,At = a]

(3)

where policy π is parameterized by θ and experimentally implemented by neural
networks.

3.2 Architecture

To apply accurate and optimal control, in this section we present a novel pol-
icy network architecture consisting of three independent branches: LSTM for
exploiting hidden history information, nonlinear network for global control and
linear network for stabilizing the system dynamics. The architecture of the pro-
posed policy network is shown in Fig. 2.

Inspired by the Proportional-Integral Controller (PI) widely used in practical
control systems, LSTM is adopted to utilize long-term encoded state information
to control action at current time-step, which is similar to the control of the
historic cumulative value of error used in PI. The aim of introducing control
prior to policy is to eliminate the residual error in training process. Linear control
policy has been proved effective for particular RL problems. In addition, we use
basic MLP as nonlinear control network for its capability of global control and
the promising performance on generic policy networks.

Given current state, three branches of policy πθ(at|st) would evaluate respec-
tively and then the results are combined to compute the resulting action at
time t:

at = al
t + an

t + ar
t (4)

where al
t is the output of linear control network, an

t is the result of nonlinear
policy module and ar

t the time-dependent LSTM branch.
The key insight of our architecture is that the classic control prior knowl-

edge combined with reinforcement learning has functioned practically well on
continuous control tasks. To analyze the theoretical feasibility, we illustrate the
generic task as traditional control problem. Let the desired current state denoted
as sd

t and the actual state at time step t as st, so the temporary error would be
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Fig. 2. The pipeline of reinforcement learning and the architecture of the proposed PI
policy network.

et = st − sd
t . According to control theory, the goal of control is to eliminate the

error as much as possible.
In this formulation, given current state, the action should be:

at = fr
t + fs

t (st, s
d
t ) + fe

t

= fr
t + fs

t (st, s
d
t ) + Kp · (st − sd

t )
(5)

where fr
t is a history-concerned control term similar to the integral module in PI

controller, and fs
t is the nonlinear control branch formulated as the function of

current state and desired state, fe
t is the function of current error. As we stated

before, this error function serves as a linear control module with Kp being the
proportional terms for error et. In classic control theory, the proportional module
is used for removing the gross error by applying the difference between the
desired state and the measured state proportionally to the controlled variables.
Furthermore, the nonlinear branch fs

t works as global feedback control based on
the predicted environment state sd

t . “Integral” module fr
t is utilized to eliminate

the residual offset error by taking history error into account.
We further decompose the equation into:

at = fr
t + fs

t (st, s
d
t ) + Kp · (st − sd

t )

= fr
t + fs

t + Kp · st − Kp · sd
t

= fr
t + fn

t + f l
t

(6)

where we apply the transformation fn
t = fs

t −Kp · sd
t . The final control equation

is totally the same as Eq. (4) we propose previously where f l
t is denoted as linear

control branch Kp · st.
Experiment results demonstrate that both linear and nonlinear policy could

achieve promising performance, as shown in Fig. 3. On some specific RL tasks
like Humanoid, linear policy could obtain comparable effect with baseline MLP
network while on more tasks, it fails to perform sound results. The linear control
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Fig. 3. Averaged learning curves of linear and nonlinear policy network of 5 sets of
random seeds.

module f l
t is implemented as 1 linear layer Kp · st + b where the gain matrix Kp

and bias b are hyper-parameters need to be learned.
As part of our policy network, LSTM stores states information from previous

time steps. This concept of holding long-term encoded information to control
current action is similar to control the historic cumulative value of error used in
PI, while the specific implementation and practical implication are quite distinct
in some degree. In MDP, immediate states would play greater roles than delayed
ones, which is in accordance with the internal states of LSTM. That’s why we
adopt LSTM as the most effective component of our policy network. In the
proposed policy network, we use 1 LSTM layer with 64 hidden states to operate
sequential data. The results of PI policy with different number of LSTM layer
and hidden states are shown in experiment section.

The nonlinear network is implemented as generic MLP, and we also give
the experimentally result that single nonlinear policy could acquire. Generally
the individual nonlinear network works effectively for most of the RL tasks,
which confirms the necessity of combing this nonlinear policy with the other two
streams to further exploit.

4 Experiment

We conduct sufficient experiments on various benchmark RL tasks and widely
used simulation environments to validate the applicability and effectiveness
of the proposed policy network architecture. We mainly compare the training
results with generic MLP policy and similar SCN policy network proposed by
[25] under the same conditions. In addition, ablation experiments about the three
policy architecture individually and the complement network are performed to
confirm the capability. All these experiments are conducted under the guidance
of RL reproducibility study [6]. In this section, experiment details and results
are clearly explained.
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4.1 RL Environments

Generally used RL environments including OpenAI Gym, MuJoCo, Roboschool
that contain diverse RL tasks such as Atari games, continuous robot control and
classic control problems are shown in Fig. 1. These simulation platforms are built
with different physics engines and parameters, thus we could perform adequate
validation experiments on available tests as many as possible.

Some standard test environments such as Humanoid-v1 and Swimmer-v1 are
implemented in both MuJoCo and Gym. For example, Humanoid-v1 makes a
three-dimensional bipedal robot walk forward without falling over. The state of
this task is a 47 dimensional vector containing the position and velocity infor-
mation. The action consists of a discrete 17 dimensional torque control vector
over every joint of the humanoid robot.

4.2 Experimental Setup

As indicated before, we apply the proposed policy architecture to baseline RL
algorithms PPO, ACKTR, A3C on popular benchmark tasks that have been
widely used in the study of DRL. The test tasks consist of complicated continuous
control problems, simplified classical control problems as well as Atari games.
We mainly use the HalfCheetah-v2 and Hopper-v2 implemented in MuJoCo for
their stable and contrasting dynamics.

The comparison experiments are a series of policy networks trained from
scratch, including our control network, generic multilayer perceptron (MLP)
and Structured Control Net (SCN). To avoid bias, these three policy networks
are trained using the same algorithms with fixed hyper-parameters during the
training. Applicable training algorithms PPO, ACKTR are implemented from
OpenAI Baselines [4]. PPO is optimized by Adam optimizer [8] with initial learn-
ing rate as 3e−4, ε term as 1e−8. Particularly, in PPO generalized advantage
estimation is used with τ = 0.95 and the clip parameters is 0.2. In addition,
ACKTR uses KFAC optimizer proposed by [31], and the learning rate is 3e−4,
momentum parameter is 0.9.

In order to confirm the fairness, all the experiments we conduct use the same
set of random seeds, and the depicted learning curves are obtained by averaging
the evaluation results over five different random seeds from 1 to 5 respectively.
We train these networks for 2M timesteps over every tasks, and the mini-batch
size is fixed to 32, with fine-tuned reinforcement learning parameter discount
factor λ = 0.99. We implement these experiments in PyTorch using 12 cores
with Nvidia GeForce GTX 1060.

4.3 Results

In this section, we test three models: the proposed PI policy network, a baseline
MLP and Structured Control Network (SCN) to compare their performances.
The evaluation metrics widely applied in the reinforcement learning studies



Reinforcement Learning with Proportional-Integral Control 261

Fig. 4. Episode reward learning curves of the comparative methods: PI network, generic
MLP and SCN, averaged on five sets of random seeds.

include the learning curves of cumulative reward along timesteps, the maximum
reward and average reward over a fixed number of timesteps (Fig. 4).

The architecture of MLP used in these comparative experiments is a fully
connected layer with two hidden layers, each of which consists 64 units and
is activated by tanh function. This standard MLP-64 architecture is generally
used in many algorithms [22,31]. According to the experiment details described
in [25], the SCN is implemented as the combination of a generic three layer MLP
(remove the bias of the last linear layer) and a linear layer. We adopt tanh as the
activation function for the MLP used in SCN, and the two hidden layers of MLP
have 64 units respectively. As shown in Fig. 2, the proposed architecture contains
a LSTM with hidden size 64 and two nonlinear layers attached to the end of
LSTM, a generic MLP-16 nonlinear network, and a simple linear network. The
number of parameters of these three policy networks are quite approaching. For
fairness comparison, the value network for all these optimization algorithms and
models is fixed to be a three layer nonlinear network with one output dimension.

Comparison of Performance: The learning curves of the episode rewards are
shown in Fig. 3. More accurately, the average reward and final episode reward
are chosen to represent the model performance, as presented in Table 1. We only
show the PPO training results since the ACKTR results are quite similar.

We compute the improvement of average episode reward to depict the train-
ing efficiency. In this evaluation, our model achieved 122% averaged reward
improvement compared to generic MLP, and 126% to SCN.

Fig. 5. Episode reward learning curves of the comparative methods: 1 LSTM layer
with 64 hidden size PI and 1 LSTM layer with 128 hidden size PI, averaged on five
sets of random seeds.
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Table 1. Average and final episode rewards on various RL tasks of our model, SCN
and MLP model.

Task Average reward Final reward

Ours SCN MLP Ours SCN MLP

Ant 256 370 489 984 1205 1583

HalfCheetah 1395 1129 1390 2356 1181 2277

Hopper 1961 1854 1646 2274 2272 1449

Humanoid 892 789 662 1762 1007 866

Reacher −9.0 −10.9 −9.3 −6.7 −7.3 −6.6

Swimmer 28 29 34 37 33 49

Walker2d 2075 1052 1191 3133 1678 1895

4.4 Ablation Experiments

To test the comparative effectiveness of the three modules of PI network respec-
tively, we conduct ablation experiments that test each module separated from
a fully trained PI model. We compare these branches’ performances with an
independently trained linear policy and a nonlinear policy (MLP) with the same
size of linear and nonlinear branches in PI architecture. The training curves of
single linear and nonlinear policy have been shown in Fig. 3. Since branches of PI
policy network are jointly trained, we only compare the test rewards. The result
of linear network contained in the learned PI model outperforms effectively in
simple control tasks such as Pendulum and Walker2d when compared with single
trained linear network, and trained MLP branch achieves slightly better rewards
compared to separately trained MLP.

We also use LSTM with different number of hidden states and layers to evalu-
ate the effect of proportional branch. As show in Fig. 5, LSTM simply with more
hidden sizes couldn’t achieve better performance on many tasks. Though more
layers LSTM presents slight improvement compared with single layer LSTM, it
contains much more parameters to compute.

5 Conclusion

In this paper, a simple but effective reinforcement learning policy network archi-
tecture is proposed to introduce control theory into reinforcement learning con-
trol tasks. In general RL problems (formulated as MDP), given current state
information, the three branches of our network predict next action respectively,
which would be combined to compute the final action. This Proportional-Integral
architecture exploits the advantage of LSTM, linear control and nonlinear con-
trol, with LSTM taking advantage of history information, linear control stabi-
lizing system dynamics, nonlinear branch serving as global controller. Sufficient
comparative and ablation experiments demonstrate the proposed model outper-
form existing models on various RL tasks especially continuous control tasks.
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Abstract. Reinforcement learning (RL) is an effective method to con-
trol dynamic system without prior knowledge. One of the most important
and difficult problem in RL is how to improve data efficiency. PILCO
is a state-of-art data-efficient framework which uses Gaussian Process
(GP) to model dynamic. However, it only focuses on optimizing cumu-
lative rewards, and does not consider the accuracy of dynamic model
which is an important factor for controller learning. To further improve
the data-efficiency of PILCO, we propose an active exploration version
of PILCO (AEPILCO) which utilizes information entropy to describe
samples. In policy evaluation stage, we incorporate information entropy
criterion into long term sample prediction. With the informative policy
evaluation function, our algorithm obtains informative policy parameters
in policy improvement stage. Using the policy parameters in real execu-
tion will produce informative sample set which is helpful to learn accurate
dynamic model. Thus our AEPILCO algorithm improves data efficiency
through learning an accurate dynamic model by actively selecting infor-
mative samples with information-entropy criterion. We demonstrate the
validity and efficiency of the proposed algorithm for several challeng-
ing controller problems involving cart-pole, pendubot, double-pendulum
and cart-double-pendulum. The proposed AEPILCO algorithm can learn
controller using less trials which is verified by both theoretical analysis
and experimental results.

Keywords: Reinforcement learning · Information entropy · PILCO
Data efficiency

1 Introduction

Reinforcement Learning (RL) is a developing field in machine learning, which is
also an efficient method for autonomous learning in robotics and control without
prior knowledge. Differing from traditional supervised learning and unsupervised
learning, which is typically learning from static training samples, reinforcement
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learning learns through interacting with environment autonomously. Generally,
several interactions are required to collect knowledge about environment before
learning to control. For realistic dynamic system which is sensitive to time and
computation incremental, Too much interactions may also bring security risk.
Thus, the required number of interactions should be taken into consideration
when reinforcement learning method is applied into real robot system.

Reinforcement learning can be formalized as Markov Decision Process
(MDP). Agent continually executes action to interact with environment and
finally achieve explicit. These interaction behaviors make agent translates from
present state to next state according to transition probability model and policy.
Environment observation and feedback rewards obtained from interaction are
used to learning transition probability and proper policy until a predefined sys-
tem target is achieved. Data-efficient reinforcement learning is to find a proper
policy which can maximize the cumulative rewards with a minimal number
of interactions [2]. In data-efficient reinforcement learning, no prior knowledge
about environment is the most fundamental challenge to achieve data efficiency.
It is difficult to select an optimal policy for agent to control without an accu-
rate dynamic model. In addition, exploration and exploitation tradeoff remains
challenging for control systems.

Various effective algorithms to solve data-efficient problem are available in
literatures [7,8]. The previous proposed data-efficiency algorithms are mostly
based on model-based structure considering that model-based method has nat-
ural advantage than model-free method in dealing with data-efficiency [5]. Dyna
[10] and Dyna-2 [9] are classical papers in model based reinforcement learning
domain. There are many algorithms from the viewpoint of model structure and
stochastic optimal control [4,8]. Alternatively, there are a few recent papers com-
bining model-based learning with deep nets. [6] Moreover, Probabilistic Inference
and Learning COntrol(PILCO) algorithm is an excellent framework to achieve
data efficiency [2,3], PILCO use probability dynamic model instead of a sin-
gle determinate model. And this probability description learns the uncertainty
of dynamic model which is a important challenge of model-based reinforcement
learning method. However, PILCO focuses on maximizing cumulative rewards to
learn optimal policy parameters, and does not consider the accuracy of dynamic
model which is an important factor when learning controller.

Motivated by the aforementioned limitations, in this paper we propose active
exploration PILCO (AEPILCO) algorithm. We improve the typical PILCO with
considering the influence of dynamic model. The key of our proposed algorithm
is selecting sample set which is helpful to train dynamic model better. Due to the
accurate dynamic model, optimal policy parameter will be learned and target
will be achieved faster. To achieve this idea, information entropy is introduced
to describe sample uncertainty. Samples with high uncertainty are more helpful
to train accurate dynamic model. Thus, data efficiency is achieved in terms of
carefully learn dynamic model. Simulation experiments on several challenging
control problems verify the better data-efficient performance of AEPILCO.
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2 The PILCO Framework

PILCO considers a dynamic system with continuous state x and action u.

xt+1 = f(xt,ut) (1)

The states transition is considered as markov process. Given state xt, a dynamic
system will transfer to state xt+1 with action ut according to dynamic model
f which describes the transition probability p(xt+1|xt,ut). Define state-action
vector x̃t = [xt,ut]. The set of tuples < x̃t,xt+1 > is defined as a sample. The
state transitions obeys dynamic model. With the determined dynamic model,
once x̃t−1 is known, xt is easy to compute. Such that the current sample can be
described using the probability of next state p(xt) instead of x̃t−1.

In PILCO, the dynamic model is implemented as a gaussian process which
is completely specified by its mean function and covariance function. According
the definition of gaussian process transition probability. When system is in a
determinate state x, the predicted state x∗ with action u obeys normal distri-
bution.

p(x∗|x,u) = N(m(x,u), Σ(x,u)) (2)

Squared Exponential kernel function is selected as covariance function:

k(p,q) = σ2 exp(−‖p − q‖2
2l2

) + δσ2
ε (3)

where noise variance σε, latent function variance σ and lenght-scale l are Gaus-
sian Process hyper-parameters which is needed to be learned. The initial training
input is D = {x̃1, ..., x̃n}. The corresponding training target is its next state set
{x2, ...,xn+1} that the system will transition to. δ is Kronecker delta function
which is one if the two input p,q is equal and zero otherwise. With constant inter-
action with environment, there will more and more samples join the training data
set. Thus agent can update hyper-parameters through retrain dynamic model
with the new training data to predict next state. Moreover, PILCO assumes the
action selection obey normal distribution when system is in a determinant state.

p(u|x) = N(μ(x), σ(x)) (4)

In initialization stage, assuming policy selection obeys initial mean μ0 = 0
and covariance Σ0 = 1, with this initialization, the system execute on real envi-
ronment for initial training dataset D. Subsequently, agent use this training
dataset to learn hyper-parameters of gaussian process. In policy evaluation stage,
looking forward t steps to evaluate policy parameter θ with the learned dynamic
model and parameterized policy function π(θ). Policy evaluation accumulates
cost function value of t predicted steps and get Jπ(θ). Consider that the simulat-
ing and gradient computation is too complex, PILCO makes some assumptions
and simplification to realize it including first-order markov process and looking
forward one-step. In experiment of PILCO, authors verified the simplification of
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the calculation would not affect too much. According to one-step prediction with
determinate input derived in [11], the mean and variance is given by Eq. (5)

m(x∗) = k(x∗,xi)(K + σ2
εI)

−1y
Σ(x∗) = k(x∗,x∗) − k(x∗,xi)(K + σ2

εI)
−1k(xi,x∗)

(5)

where k(·, ·) is covariance function. K is covariance matrix of training inputs.
xi is element of training inputs X = {x̃1, ..., x̃n}. y = [x2...xn+1] is training
target. σε is noise variance which is learned in dynamic model learning process
and I is Kronecker delta matrix. In policy improvement stage, PILCO Minimizes
Jπ(θ) and (Broyde Fletcher Goldfarb Shanno)BFGS policy gradient method is
utilized to get new policy parameters θ∗ through computing dJπ(θ)/dθ. Then
execute the current optimal policy to generate new samples and return to train
new dynamic model. And repeat this processes until predefined task achieved.

3 Active Exploration PILCO

In this section, we detailly describe our active exploration PILCO algorithm.
The typical bayesian reinforcement learning framework PILCO uses Gaussian
Process to model the dynamic system. And update policy parameters through
minimizing the mean of accurate reward which is estimated by the distance
between current state and target state, then the agent focuses on exploiting
current existing policy parameter to interact with environment. However, PILCO
does not consider the accuracy of dynamic model. To deal with this problem,
we propose an active exploration PILCO algorithm to achieve data-efficiency
through actively selecting samples which is helpful to learn a more accurate
dynamic model. Specifically, information entropy is utilized to describe long-term
predicted samples. In the following subsections, We will firstly propose entropy-
based sample description method and analysis. Subsequently, we analysis how to
use information entropy method to achieve data efficiency in policy evaluation
and improvement stages. At last, we describe the entire processes of the proposed
algorithm and analysis the difference between PILCO and our AEPILCO.

3.1 Entropy-Based Sample Description

Consider that dynamic model is learned using interaction samples which depend
on parameterized policy function. The policy parameter is updated depends
on accumulated reward of t step simulations. Thus the key of learning accu-
rate dynamic model is generating informative simulated samples in policy
evaluation stage. In the following, we will introduce information entropy to
describe simulated samples. According to gaussian process assumption, the
transition probability p(xt+1|xt,ut) which describes system transition from
state xt to state xt+1 with action ut obeys normal distribution. The informa-
tion entropy of predicted state distribution p(xt+1|xt,ut) can be described as
− ∫

p(xt+1|xt,ut) log p(xt+1|xt,ut)dxt+1. This entropy describes uncertainty of
variable xt+1. High information entropy means high uncertainty. Information
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entropy is used to describe the predicted sample. When predicting samples for
efficient reinforcement learning algorithms, agent should select the samples with
largest uncertainty. Because the sample set with higher information entropy is
helpful to learn a more accurate dynamic model, the learned model based on
these high uncertainty samples has stronger generalization ability. Therefore, we
select the sample x̃t which can obtain optimal predict state xt+1 with largest
entropy. Thus the information entropy criterion:

x∗
H = arg max

xt+1

−
∫

p(xt+1|xt,ut) log p(xt+1|xt,ut)dxt+1 (6)

where x∗
H is the optimal sample with highest information entropy we needed

to sampling. xt+1 ranges over all possible states. p(xt+1|xt,ut) describes the
probability of state-action vector < xt,ut > translates to state xt+1. From the
assumption of Gaussian Process normal distribution and the first-order markov
process, the posterior probability p(xt+1|xt,ut) is specified by its mean and
covariance function described in Eq. (5).

3.2 Policy Evaluation

In AEPILCO framework, the previous real generated samples are used to learn
a basic dynamic model. Subsequently, this dynamic model is utilized to predict
a sequence of simulation samples x1,x2, ...,xt. Our objective is to maximize the
information entropy of entire predicted state distribution. Since every predicted
state obeys normal distribution, the entropy of multivariate normal distribution
having probability p(xt+1|xt,ut) can described as continuous integration which
is given by Eq. (7).

H(p) = −
∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞︸ ︷︷ ︸
t

p(xt+1|xt,ut) log p(xt+1|xt,ut)dxt+1 (7)

where xt+1 is element of state set X = (x1,x2, · · · ,xt)′ which is waiting to be
simulated. According to entropy expression for multivariate normal distribution
derived in Ref. [1]. The entropy of sample set in Eq. (7) can be rewritten as

H(p) =
N

2
+

N

2
ln(2π) +

1
2

ln (|Σ|) (8)

where Σ is covariance matrix of predicted sample set. |·| denotes determinant
and N is the number of samples. To maximum H(X) in Eq. (8), we just need to
maximize ln (|Σ(X)|). Thus the active exploration optimistic term describes as:

JE(X) = ln (|Σ(X)|) (9)

The active exploration optimization term focuses on generating informative sam-
ples. And adding this term into policy evaluation stage will helpful for learning
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accurate dynamic model. Consider that typical PILCO policy evaluation objec-
tive function only focuses on the distance between current state and target state
without consider the accuracy of dynamic model which can contribute to improve
data efficiency either. Such that we add Eq. (9) into policy evaluation of typical
PILCO. Then the AEPILCO policy evaluation objective function is

Jπ(θ) =
T∑

t=0

Ext
[c(xt)] + α

T∑

t=0

ln [Σ (xt)] (10)

we call the added optimization function item as active exploration term because
it helps for exploration. The covariance in Eq. (9) contains uncertainty informa-
tion of dynamic model. Typical PILCO is a exploitation-greedy algorithm. Thus
adding Eq. (9) is helpful for balancing exploration and exploitation.

3.3 Policy Improvement

In the following, we derive how to achieve policy improvement with our added
active exploration item in Eq. (9). In AEPILCO, the objective function in policy
evaluation is a sum of our active exploration item and typical cost function
which has been derived in PILCO. Thus, we only need compute the derivation
of Eq. (9) on policy parameters

dJE(θ)
dθ

=
d ln |Σ (x)|
d |Σ (x)|

d |Σ (x)|
dθ

(11)

where
d ln |Σ (x)|
d |Σ (x)| =

1
|Σ (x)| (12)

d |Σ (x)|
dθ

=
d |Σ (x)|
dΣ (x)

dΣ (x)
dθ

(13)

according the differential of matrix derivation to matrix

d |Σ (x)|
dΣ (x)

= |Σ|Σ−1 (14)

Thus, the derivation of added active exploration term on policy parameter θ
depends on |Σ (x)|, |Σ|Σ−1 and ∂Σ (x)/∂θ derived in Eqs. (12)–(14).

The covariance of predicted samples is derived in PILCO [3] by moment
matching approximation method which computes the first two moments of the
predictive distribution exactly.

The derivation of covariance to policy parameter is similar to ∂μ (x)/∂θ
which is derived in PILCO [3]. For ∂Σ (x)/∂θ, we compute the derivative

dΣ (xt)
dθ

= dΣ
dp(ut−1)

dp(ut−1)
dθ

= dΣ
dμu

dμu

dθ
+ dΣ

dΣu

dΣu

dθ
(15)
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where ∂Σ/∂μu and ∂Σ/∂Σu are propagated by long-term prediction and com-
puted by moment matching approximation method which is derived in [3]. The
∂μu/∂θ and ∂Σu/∂θ in Eq. (15) are derivations of mean and covariance of action
at t − 1 to policy parameter. The computation depends on the presentation of
policy which is introduced in PILCO [3].

Algorithm 1 summarizes the entire process of our active exploration PILCO.
Compared to typical PILCO, AEPILCO add active exploration term into objec-
tive function Jπ(θ) in policy evaluation stage. The PILCO framework update
policy depends on the evaluation of predicted simulations which is calculated
from dynamic model. While in our AEPILCO, For learning a more accurate
dynamic model, we extend the policy evaluation objective function by adding a
optimization term which is used to describe the predicted samples with infor-
mation entropy. Moreover, adding the optimization term is also helpful for
exploration as it can describes the sample variance. This feature is analyzed in
Subsect. 3.2. Thus, our AEPILCO can use minimal interactions to achieve a pre-
defined target with the accurate dynamic model and exploration and exploitation
balance.

Algorithm 1. Active Exploration PILCO
1: Init: Initialize random policy π with parameter θ ∼ N(μ0, Σ0). Execute policy on

real system to gather training data D.
2: Repeat:
3: learn GP dynamic model f using all data.
4: Repeat:
5: prediction: simulate system for p(x1)...p(xt)
6: policy evaluation: approximate inference, get Jπ(θ) =

T∑

t=0

Ext [c(xt)]+α
T∑

t=0

ln [Σ (xt)].

7: policy improvement: BFGS based policy improvement, get dJπ(θ)/dθ.
8: until convergence, return new policy parameter θ∗

9: π(θ) ← π(θ∗)
10: execute policy on real system to gather training data.
11: until task achieved.

Experiments and Analysis. In this section, we evaluate our AEPILCO algo-
rithm described in Sect. 3 on several challenging control tasks including bench-
mark problems and high dimensional state space problems. We utilize simulated
scenarioes provided by PILCO software package (http://mloss.org/software/
view/508/) to verify our algorithm. The package provides six simulators of imple-
mented scenarios as demonstration. All of them focus on the fundamental of
solving the differential equations of nonlinear dynamic systems. Detail deriva-
tion of their physical model can be seen in PILCO software package. We use
four of these predesigned scenarios with different dimensions of state space to
verify our algorithm. Firstly, a comparison experiment to evaluate the dynamic
model learned by AEPILCO and PILCO is presented in Sect. 3.4. Subsequently,

http://mloss.org/software/view/508/
http://mloss.org/software/view/508/
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we design a comparison Finally, we provide a parameter selection experiment
in Sect. 3.5. Lastly, time consuming experiment and analysis are presented in
Sect. 3.5. All the experiments were done on a PC with the same hardware i5
CPU(2.57 GHz), 8 GB RAM and operating system WIN-10.

3.4 Dynamic Model Efficiency Experiment

This experiment is designed to evaluate the dynamic model learned by
AEPILCO. Since the simulated samples are generated by the learned dynamic
model. And real executed samples are based on the real dynamic model. Thus
the distance of cost function values between simulated and real execute samples
can reflects the similarity of dynamic models. Small distance means that the
learned dynamic model is closer to real model.

Figure 1 shows cost function value comparison of four scenarios including
cart pole, pendubot, double pendulum and cart double pendulum. The hori-
zontal axises are steps of AEPILCO convergence trial. The vertical axises are
corresponding cost function value in each step. In order to see clearly, we show
cost function values of each step in convergent trial. The blue and red lines are
PILCO predicted mean simulation and real execute cost function value, respec-
tively. The yellow and purple lines are our AEPILCO predicted mean simulation
and real execute cost function value, respectively. Specially, simulated samples
depend on mean and covariance, the predicted mean simulations shown in Fig. 1
are mean cost value of simulated samples. In general, Fig. 1 intuitively show that
the yellow and purple lines are more similar than blue and red lines which means
the dynamic model creating yellow and purple lines is more accurate.

We use Euclidean distance to quantitatively evaluate the distance of pre-
dicted simulation and real execute cost function values. Comparison results of
pendulum and other high dimensional problems are shown in Table 1. The first
and second rows provide the dimensions of state and action space. The third and
last bold rows are the distance between real execution cost and simulated cost
using PILCO and AEPILCO respectively. For all control problems, AEPILCO
show better performance on learning dynamic model. This is mainly because
our algorithm consider the accuracy of dynamic model and add active explo-
ration item in policy evaluation stage. Consider that dynamic model is learned
using real interaction samples which depend on policy. In policy improvement
stage, policy parameters is calculated according to objective function which is
determined by rewards of simulation sample. In AEPILCO, the simulation sam-
ples are most informative due to information entropy descriptor. Thus we can
obtain informative simulation samples and policy parameters which is helpful
for learning accurate dynamic model.

3.5 Parameter Selection Experiment

This experiment is designed to analysis how parameter α in Eq. 10 affects conver-
gence speed, meanwhile, select proper parameters for each scenarios and evaluate
the data efficiency of AEPILCO.
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(c) double pendulum

30 40 50 60 70 80 90 100
steps

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

co
st

 fu
nc

tio
n 

va
lu

e

PILCO predicted
PILCO realCost
AEPILCO predicted
AEPILCO realCost

(d) cart double pendulum

Fig. 1. Comparison in terms of cost function value at convergence trial with AEPILCO
for (a) cart pole(trial #7), (b) pendubot(trial #10), (c) double pendulum(trial #6)
and (d) cart double pendulum(trial #26). Predicted cost function values are produced
by simulation samples and realCost cost function value are produced by real execute
samples. The yellow and purple lines are more similar than blue and red lines which
means the dynamic model creating yellow and purple lines is more accurate. (Color
figure online)

Table 1. Comparison of dynamic model distances on four high dimension problems

Cart pole Pendubot Double pendulum Cart double pendulum

State space R4 R4 R4 R6

Action space R R R2 R

PILCO [3] 0.3874 0.3433 1.7250 1.9974

AEPILCO 0.1013 0.0635 0.0787 0.2946

We evaluate the effection of parameter α for four scenarios. For each task,
we choose fixed α. Figure 2 shows convergence speed comparison with different
parameter α on cart pole, pendubot, double pendulum and cart double pendu-
lum. The horizontal axises are number of trials. The vertical axises are mean
cost value of last several steps at each trial. Blue lines show PILCO with no
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Fig. 2. Comparison in terms of parameter α for (a) cart pole, (b) pendubot, (c) double
pendulum and (d) cart double pendulum. Subfigures show mean cost function values
at each trial.

exploration. Others are results using AEPILCO with fixed α. The mean cost
decrease over with trials runs. Once mean cost at last few steps at each trial
approaches to zero, the agent achieve target state.

According derivation of AEPILCO in Sect. 3, the larger of α the more explo-
ration. However, too much exploration may lead to divergent. Therefore, we use
a adaptive parameter selection function:

α = α0e
−wt (16)

where α0 is the initial value of α, t is the number of trials, and w is setted accord-
ing to different scenarios. This adaptive parameter selection function enable the
agent exploration more at the first few trials and exploitation more when it
approaches the target.

Table 2 shows the needed trials to achieve targets of each scenarios. The
bold numbers are trails needed by AEPILCO. The first row is the results of
PILCO. Results illustrate that our AEPILCO algorithm performs better than
PILCO which is a no exploration algorithm. And AEPILCO with variable α
achieves better performance than others on all scenarios. Moreover, the data-
efficiency is also reflected in Fig. 1. In Fig. 1(a), (c) and (d), when PILCO’s cost
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value jumps from 0.01 to 1, the AEPILCO has already achieves problem target
state, and the cost function value tends to 0. In Fig. 1(b), AEPILCO achieves
convergence state on pendubot while the cost function value using PILCO is still
no sign of convergence. The last row in Table 2 summarizes the best improvement
scale compared to typical PILCO. In general, for all scenarios, the AEPILCO
with variable α has best performance. This is mainly because our algorithm
select informative simulations and policy parameter at each trial which results
in learning accurate dynamic model. Moreover, the adaptive parameter selection
method makes the agent exploration more at beginning of interaction. When it
get near to target the agent will exploitation more.

Table 2. Results of convergence trials using typical PILCO, AEPILCO with fixed α
and AEPILCO with variable α for four high dimension problems

Cart pole Pendubot Double pendulum Cart double
pendulum

PILCO [3] 8 15 10 34

AEPILCO with fixed α 7 10 6 26

AEPILCO with variable α 4 9 5 24

Best improvement 50% 40% 50% 29%

In terms of computational efficiency, the computation complexity of
AEPILCO does not grow too much compared to typical PILCO. Because adding
the active exploration term into policy evaluation stage corresponds to compute
one more inverse of covariance matrix in Eq. (14). Consider the small amount of
matrix, computation complexity will not significantly increase. Time comparison
results are shown in Table 3. The first two rows show the total time needed to
achieve target in each scenarios. The average time for each trial is shown in the
last two rows. Although the average time using AEPILCO is lager than PILCO,
the total time with AEPILCO is smaller than PILCO due to high data-efficiency
of AEPILCO.

Table 3. Total time comparison with PILCO and AEPILCO algorithm (first two
rows). Average time comparison for each trial with PILCO and AEPILCO algorithm
(last two rows).

Cart pole Pendubot Double pendulum Cart double pendulum

PILCO total ≈27s ≈56s ≈ 38s ≈ 134s

AEPILCO total ≈18s ≈41s ≈3s ≈112s

PILCO average ≈3.4s ≈3.7s ≈ 3.8s ≈ 3.9s

AEPILCO average ≈4.5s ≈4.6s ≈4.6s ≈4.7s
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4 Conclusion

In this paper, AEPILCO, an active exploration version of data-efficient frame-
work PILCO is proposed to further improve data efficiency. Our algorithm uti-
lizes information entropy criterion to select the most informative sample set
to learn a more accurate dynamic model. Compared to previous data-efficient
framework PILCO, our algorithm take the accuracy of dynamic model into con-
sideration which is helpful to improve data-efficiency in controller learning task.
Moreover, our AEPILCO algorithm can balance exploration and exploitation,
because the active exploration item in policy evaluation objective function con-
sists of covariance of predicted samples which describes the amount of explo-
ration. In summary, more accurate dynamic model and more balance between
exploration and exploitation can effectively improve data efficiency. Simulation
experimental results on several challenging control problems verify the effective-
ness and data-efficiency of our AEPILCO algorithm.
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Abstract. In recent years, Deep Reinforcement Learning (DRL) has
achieved unprecedented success in high-dimensional and large-scale space
tasks. However, instability and variability of DRL algorithms have an
important effect on their performance. To alleviate this problem, the
Asynchronous Advantage Actor-Critic (A3C) algorithm uses the advan-
tage function to update the policy and value network, but there still
remains a certain variance in the advantage function. Aiming to reduce
the variance of the advantage function, we propose a new A3C algorithm
called Averaged Asynchronous Advantage Actor-Critic (Averaged-A3C).
Averaged-A3C is an extension of the A3C algorithm, by averaging previ-
ously learned state value estimates to calculate the advantage function,
which contributes to a more stable training procedure and improved per-
formance. We evaluate the performance of the new algorithm through
some games on the Atari 2600 and MuJoCo environment. Experimental
results show that the Averaged-A3C algorithm effectively improves the
performance of Agent and the stability of training process compared to
the original A3C algorithm.

Keywords: Deep reinforcement learning
Asynchronous Advantage Actor-Critic · Advantage function · Average

1 Introduction

Deep Reinforcement Learning (DRL) combining Deep Learning (DL) [1] and
Reinforcement Learning (RL) [2] is a new research hot spot in the artificial
intelligence field. At present, RL has achieved remarkable results in the fields of
simulation and game theory et al. [3]. However, in the complicated task of high-
dimensional state space, the traditional RL algorithm does not perform well
and the data needs to go through complex manual pretreatment. In order to
solve this problem, using deep neural networks for effective recognition of high-
dimensional state space, it is possible to make the RL algorithms more effective
in the complex state tasks. In detail, Mnih et al. combined the Convolutional
Neural Network (CNN) in deep neural networks with the Q-learning algorithm
[4] in reinforcement learning for the first time, and proposed a Deep Q-Network
(DQN) [5].
c© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11303, pp. 277–288, 2018.
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In DRL, DQN and its variants adopt the experience replay mechanism [6]
to improve the efficiency of samples. Thus, many researchers focus on the opti-
mization of experience replay mechanism. For example, to accelerate the speed
of training and reduce computation, Minh et al. proposed Asynchronous Deep
Reinforcement Learning (ADRL) [7], which improves the traditional experi-
ence replay by adopting the asynchronous updating methods. In ADRL, the
Asynchronous Advantage Actor-Critic (A3C) algorithm uses the estimate of the
advantage function [8] to update the policy and value network. However, the
advantage function has a comparable variance and introduces bias [9], resulting
in necessitation of much more samples. Furthermore, bias may cause the algo-
rithm to fail to converge, or to converge to a poor solution that is not a local
optimum. To solve this problem, John Schulman et al. proposed the Generalized
Advantage Estimator (GAE) algorithm [9]. GAE uses the advantage function
parameterized by γGAE ∈ [0, 1] and λ ∈ [0, 1] to significantly reduce variance
while maintaining a tolerable level of bias.

In this paper, different from the idea of GAE and inspired by the idea of
Averaged-DQN [10] and asynchronous updating, a new A3C algorithm called
Averaged Asynchronous Advantage Actor-Critic (Averaged-A3C) is proposed.
To reduce the variance of the advantage function used in A3C, Averaged-A3C
is based on the idea of averaging previously learned state value estimates. The
averaging methods can reduce variance which leads to stability, then improves
Agent’s performance. In addition, we provide experimental results on selected
games of Atari 2600 and some continuous tasks of MuJoCo. Experimental results
show that Averaged-A3C algorithm can effectively improve the stability of train-
ing process and the performance of Agent because of the averaging of the advan-
tage function.

The rest of the paper is organized as follows. In Sect. 2 we discuss relevant
related work. Section 3 elaborates on the RL and A3C algorithms. In Sect. 4 we
present the Averaged-A3C algorithm. Section 5 provides an empirical evaluation
of the Averaged-A3C algorithm both in several of the Atari 2600 and MuJoCo
games. Section 6 closes the paper with our conclusions and possible future work.

2 Related Work

DRL methods can be divided into model-based reinforcement learning meth-
ods and model-free reinforcement learning methods. Moreover, model-free DRL
methods include action value fitting methods and policy gradient methods. The
action value fitting methods use the estimate of action value to update the pol-
icy [2]. Such as Deep Q-learning algorithm, it is one of the action value fitting
methods. The policy gradient methods directly improve the policy by updating
the parameters in the direction of the policy gradient [11]. Such as Actor-Critic
(AC) algorithm [12], it is an important policy gradient method.

Most of DRL models introduce an experience replay mechanism. Since the
importance of different training samples varies and experience replay uses the
sampling method of equal probability, causing useful samples cannot be effec-
tively used for the model training. To handle this problem, Schaul et al. proposed
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a deep reinforcement learning with prioritized experience replay algorithm [13]
based on priority replay sampling. The idea is to use the information such as the
immediate reward and time difference (TD error) as the priority of the samples
in the experience buffer pool.

DRL algorithms based on the experience replay mechanism including DQN
[5] and DDQN [14] have achieved great success in some high-dimensional state
space tasks, such as Atari 2600 games. However, the experience replay mecha-
nism has some inherent limitations. The premise of using the experience replay
mechanism is that a large amount of storage space is needed to store the train-
ing samples, so that the demand for storage space of such DRL algorithms is
significantly increased. And the experience replay mechanism leads to a large
amount of computation and needs to use specialized hardware acceleration, such
as graphics processor.

In response to this problem, Mnih et al. combined asynchronous methods
with deep reinforcement learning and proposed Asynchronous Deep Reinforce-
ment Learning (ADRL). ADRL replaces the traditional experience replay mech-
anism by using the asynchronous method, so that the DRL algorithm no longer
needs to store a large number of training samples. Instead of updating the
parameters of the network model after each interaction with the environment,
Agent calculates the cumulative loss after interacting with the environment sev-
eral times and updates the parameters by using the gradient descent method,
which reduces the computational cost of the DRL algorithm. The policy gradi-
ent method of A3C in ADRL uses the advantage function to calculate policy
gradient estimates and A3C achieves the best performance in ADRL.

Different from this, John Schulman et al. proposed a family policy gradient
methods called the generalized advantage estimator (GAE) [9] which can sig-
nificantly reduce variance by using parameterized advantage function. To opti-
mize control policies with guaranteed monotonic improvement, John Schulman
et al. also developed a practical algorithm, called Trust Region Policy Optimiza-
tion (TRPO) [15] by making several approximations to the theoretically-justified
scheme. GAE and TRPO can be combined in an effective way. To further sim-
plify TRPO, a new method called proximal policy optimization (PPO) [16] was
proposed. PPO enables multiple epochs of minibatch updates and it has some of
the benefits of TRPO, but it is much simpler to implement, more general, and
has better sample complexity.

In this paper, motivated by the idea of Averaged-DQN proposed by Oron
Anschel et al. [10], we present a new Averaged-A3C algorithm to reduce the
variance of the advantage function used in A3C.

3 Background

In this section, we elaborate on relevant RL background and specifically on the
A3C algorithm.
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3.1 Reinforcement Learning

In a standard reinforcement learning setting, Agent interacts with the environ-
ment in multiple discrete time steps. At each time step t, Agent receives a state
st and selects an action at from the set of possible actions A according to the
policy π. The policy π is a mapping from states st to actions at. As a feedback,
Agent receives the next state st+1 which the environment enters into after per-
forming this action at and gets a scalar reward rt. In the state st, Agent gets
the expected return Rt =

∑∞
i=0 γirt+i which represents the total accumulated

return from the time step t with a discount factor γ ∈ (0, 1]. The final goal of
Agent is to maximize the expected return Rt obtained in the state st, and to
obtain an optimal policy.

The state-action value functions Qπ (s, a) is defined as the expected return
that Agent gets in the state st and executes the action at following the policy
π. The corresponding formula is shown in Eq. (1):

Qπ (s, a) = Eπ [Rt|st = s, at = a] (1)

The state value function V π (s) represents the expected return that Agent
receives in the state st according to the given policy π, its formula is shown
in Eq. (2):

V π (s) = Eπ [Rt|st = s] (2)

In the classical reinforcement learning, the action value function will even-
tually converge and get the optimal policy by iterating Bellman equation con-
stantly. For large-scale state space, Agent is trained by learning a parameterized
state-action value function Q (s, a|θ) and θ is the parameter of the state-action
value function.

3.2 Asynchronous Advantage Actor-Critic

The A3C algorithm combines deep neural networks with AC algorithms and uses
an asynchronous method to update both the policy and the value function. A3C
does not require complex preprocessing of the raw data and enables end-to-end
learning.

There are two parts in A3C: one is value network V (s|θv), where θv is the
parameter of the value network. The other part is policy network π (at|st; θ),
where θ is the parameter of the policy network. The policy network is used to
calculate the action at taken in the given state st, and this action at is evaluated
by the value network.

The A3C algorithm uses the same weight for each state-action pair when
updating policy network parameters. That is, each state action pair is treated
equally. However, the importance of the state-action pairs is different. Some
state-action pairs can obtain high return values, while some state-action pairs
have relatively lower return values. Treating them equally will ignore the fact
that they receive different returns. In order to make full use of this effective
information, the A3C algorithm introduces an advantage function which is used
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to evaluate the advantage of the current state-action pair. It is expressed as
A (st, at|θ, θv), as shown in Eq. (3):

A (st, at|θ, θv) =
n−1∑

i=0

γirt+i + γnV (st+n|θv) − V (st|θv) (3)

In the A3C algorithm, the policy and the value function are updated after
every tmax actions or when a terminal state is reached. And in Eq. (3), n varies
from state to state and is upper-bounded by tmax. The gradient calculation of
the policy function and the value function of A3C is shown in Eq. (4) and (5),
respectively.

dθ = �θlogπ (at|st; θ) A (st, at|θ, θv) (4)

dθv =
∂ (R − V (st|θv))2

∂θv
(5)

where R is defined as the return that received by taking action at according to
the policy in the state st.

4 Averaged-A3C

Our averaged variant of the A3C algorithm is presented in Algorithm 1. The
algorithm, which we call Averaged-A3C, is an extension of the A3C algorithm.
Averaged-A3C uses the K previously learned state values estimates to produce
the advantage function. Thus the averaged advantage function is shown as follow:

A (st, at|θ, θv) =
n−1∑

i=0

γirt+i + γn 1
K

K∑

k=1

V (st+n|θvk
) − 1

K

K∑

k=1

V (st|θvk
) (6)

During the training process, we preserve the K previously learned parameters
θv of value network. The difference between Eqs. (3) and (6) is that we use K
averaged state values to estimate the state at time step t + n and t. Then they
are used to calculate the advantage function. The reason why we use K learned
previously learned state values estimates to produce the advantage function is
that it can provide more accurate estimates of state values, which has been
proved in [10] and thus leads to reduce the variance of the advantage function.

The policy and the value function are updated after every tmax actions or
when a terminal state is reached. The update performed by Averaged-A3C can be
calculated as �θ′ logπ (at|st; θ′) A (st, at|θ, θv), where A (st, at|θ, θv) is calculated
by Eq. (6). So the biggest difference between A3C and Averaged-A3C is that
Averaged-A3C uses the averaged advantage function to update the policy and
value network. As with the value-based methods, Averaged-A3C relies on parallel
actor-learners and accumulated updates for improving training stability like the
A3C algorithm. And the parameters θ of policy and θv of the value function are
separate, Averaged-A3C uses a CNN network that has one softmax output for
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Algorithm 1. Averaged Asynchronous Advantage Actor-Critic - pseudocode
for each actor-learned thread
Initialize: initialize global shared parameter vectors θ and θv, global shared counter

T = 0, thread-specific parameter vectors θ′ and θv
′, thread step counter t, asynchronous

max step size tmax, average size K

1: Initialize thread step counter t ← 1
2: repeat
3: Reset gradients:dθ ← 0 and dθv ← 0
4: Synchronize thread-specific parameters θ′ = θ and θv

′ = θv

5: tstart = t
6: Receive state st

7: repeat
8: Perform action at according to policy π (at|st; θ

′)
9: Get reward rt and new next state st+1

10: t ← t + 1
11: T ← T + 1
12: until terminal state st or t − tstart == tmax

13: R = 0 for terminal state st

14: R = 1
K

∑K
k=1 V (st|θvk

′) for non-terminal state st

15: for i ∈ {t − 1, ..., tstart} do
16: R ← ri + γR
17: Accumulate gradients wrt θ′:

18: dθ ← dθ + �θ′ logπ (ai|si; θ
′)

(
R − 1

K

∑K
k=1 V (si|θvk

′)
)

19: Accumulate gradients wrt θv
′:

20: dθv ← dθv +
∂(R− 1

K

∑K
i=1 V (si|θvk

′))2

∂θv ′
21: end for:
22: Perform an asynchronous update of θ using dθ and of θv using dθv

23: until T > Tmax

the policy π (at|st; θ) and one linear output for the value function V (st|θv), with
all non-output layers shared.

Compared to A3C, the computational effort of Averaged-A3C is K-fold more
forward passes through the value network while calculating the advantage func-
tion of actions. Using K previously learned value networks to produce the advan-
tage function of current action leads to reduce the variance of the advantage
function. So Averaged-A3C can stabilize the training process and improve the
performance of Agent.

5 Experiment

In this section, we first introduce the platform used in the experiment and the
parameter settings of the experiment. Then we evaluate the performance of the
A3C, A3C-GAE and Averaged-A3C algorithms on some selected Atari 2600
and MuJoCo games. A3C-GAE uses the idea of GAE to calculate the advantage
function in A3C, while Averaged-A3C uses the K previously learned state values
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estimates to produce the advantage function in A3C. Finally, we have carried out
a detailed analysis of stability and performance of the proposed Averaged-A3C
algorithms in discrete action space and continuous action space.

The experiments were designed to solve the following questions:
(1) Can Averaged-A3C improve the learned polices quality compared to A3C

and A3C-GAE?
(2) How does the number K of averaged advantage function affect the per-

formance of Averaged-A3C?

5.1 Experimental Environment and Setup

This article uses the Atari 2600 and MuJoCo game environment in the OpenAI
Gym as the experimental environment. OpenAI Gym is an open source toolkit
that provides a wide variety of Atari 2600 and MuJoCo game interfaces. The
study of Mnih et al. [7] has indicated that in most Atari 2600 and MuJoCo games,
A3C is significantly superior to DRL algorithms, such as DQN and DDQN. In
our experiment, we select four Atari 2600 games and four MuJoCo games to test
the performance of A3C, A3C-GAE and Averaged-A3C.

In order to compare the performance of different algorithms, all algorithms
in this paper use the same set of parameters and the Adam gradient descent
method. The parameters of the Adam gradient descent method are set as follows:
η = 0.001, β1 = 0.9, β2 = 0.99, ε = 0.001. All of the above algorithms have a
discount factor of γ = 0.99. The asynchronous update of network parameters is
performed in the following way: the parameters of the shared network model are
updated every 20 steps (frames) or at the end of the episode.

The network architecture used in A3C, A3C-GAE and Averaged-A3C is the
same as that in [7], including a convolutional layer with 16 filters of size 8 × 8
with stride 4 followed by a convolutional layer with 32 filters of size 4 × 4 with
stride 2, then followed by a fully connected layer with 256 hidden units. A3C
and Averaged-A3C have a single linear output unit representing the action-value
for each action, and two other set of outputs - a softmax output with one entry
per action representing the probability of selecting the action, and a single linear
output representing the value function. Moreover, both of the Atari and MuJoCo
experiments use the same setup in [7].

The parameter of γGAE used in A3C-GAE is set as γGAE = 0.99 and the
parameter of λ is set as λ = 0.5. There are three types of the number of aver-
aging size K in Averaged-A3C. They are K = 5, K = 10, or K = 15. For Atari
experiments, 1,000 training periods (Epoch) are used as the training period,
including 80,000 steps. Thus, a total of 80,000,000 steps are trained. As for
MuJoCo experiments, 200 training periods (Epoch) are conducted, which con-
sists of 100 episodes per training period. All experiments in this article use 8
threads to accelerate model training.
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5.2 Results of Atari

We first compared the rewards of A3C, A3C-GAE and Averaged-A3C during
each epoch of training the Agent to play Atari 2600 games, including Seaquest,
Q*bert, BeamRider, and Alien. The results are shown in Fig. 1. It is indicated
that Averaged-A3C outperforms A3C and A3C-GAE on all of four Atari 2600
games. In addition, Averaged-A3C is more stable than A3C and A3C-GAE dur-
ing the training process.
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Fig. 1. Comparisons of A3C, A3C-GAE and averaged-A3C for Atari games

Then we compared the performance of Averaged-A3C with different values of
K, that is K = 5, 10, 15, respectively. The results are shown in Fig. 2. It can be
seen that, when the number of averaged state values K is 15, the corresponding
Averaged-A3C algorithm outperforms other algorithms with smaller K. As a
result, We can turn to the conclusion that increasing the number of averaged
state values K leads to better performance and stability in Averaged-A3C.

Furthermore, we also compared the training time of A3C, A3C-GAE and
Averaged-A3C with various K. The results are summarized in Table 1. It is
illustrated that the training time of Averaged-A3C increases as the number
K increases. Since Averaged-A3C needs the calculation of average, it requires
more training time, but considering its performance improvement, the cost is
acceptable.

To confirm that Averaged-A3C can perform well after training, we compared
the performance of A3C, A3C-GAE and Averaged-A3C on four games after
training 80M frames. For each game, the training completed model will be tested
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Fig. 2. Comparisons of different values of K for Atari games

Table 1. Average Epoch training time of A3C, A3C-GAE and averaged-A3C

Algorithm A3C A3C-GAE Averaged-A3C
(K = 5)

Averaged-A3C
(K = 10)

Averaged-A3C
(K = 15)

Training
time (s)

90 122.4 129.6 172.8 223.2

Table 2. Average score of A3C, A3C-GAE and averaged-A3C after training

GAME A3C A3C-GAE Averaged-A3C

(K = 5)

Averaged-A3C

(K = 10)

Averaged-A3C

(K = 15)

SEAQUEST 965.2 (±251.4) 2504.3

(±350.5)

2412.5

(±280.2)

2857.3

(±326.4)

3251.4

(±285.3)

Q*BERT 2356.5 (±380.8) 4801.6

(±656.5)

4709.3

(±691.2)

4910.6

(±725.2)

5134.8

(±816.5)

BEAMRIDER 942 (±245.6) 2403.1

(±537.9)

2386.5

(±611.5)

2539.4

(±545.7)

2863.7

(±436.8)

ALIEN 1125.4 (±328.3) 1630.3

(±286.4)

1548.5

(±342.9)

1743.2

(±395.2)

2043.3

(±372.4)

200 times, and the initial state of each game is set to a different state, which
fully guarantees the diversity of test results. Each test will receive a score that
represents the average reward for each episode of the game. The results of the
average scores of each model in four games after 200 tests are shown in Table 2.
It’s indicated that the performance of Averaged-A3C becomes better with the
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increasing of the number of K. In addition, with increasing K, Averaged-A3C
will have a better performance than A3C and A3C-GAE after training.

To sum up, in Atari environment, Averaged-A3C is more effective than A3C
and A3C-GAE both in the training and testing process. Besides, increasing the
number of averaged state values in Averaged-A3C results in better performance
and stability with acceptable increased training time cost.

5.3 Results of MuJoCo

We also examined the performance of Averaged-A3C in some tasks of continuous
action space. These tasks were simulated in the MuJoCo environment.
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Fig. 3. Comparisons of A3C, A3C-GAE and averaged-A3C for MuJoCo games

We selected four MuJoCo games including Walker 2D, Swimmer, Hopper,
and Cheetah to compare the performance of A3C, A3C-GAE and Averaged-
A3C during the training process. Figure 3 shows the average score per episode
of these three algorithms during the training epoch. Figure 4 shows the perfor-
mance of Averaged-A3C with different K. The observations in Figs. 3 and 4
are consistent to those of Atari. As a sequence, we can also turn to the conclu-
sions that Averaged-A3C performs better than A3C and A3C-GAE, besides, the
performance of Averaged-A3C depends on the number of averaged state values.

After conducting two sets of comparative experiments, we confirmed that
Averaged-A3C can indeed achieve better performance than A3C and A3C-GAE
in Atari 2600 and MuJoCo games during the training and testing process. More-
over, the performance of Averaged-A3C is affected by the number of averaged
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Fig. 4. Comparisons of different values of K for MuJoCo games

state values K. The larger the number of K is, the better performance and stabil-
ity Agent can obtain. However, in Averaged-A3C, the suitable value of K should
be chosen according to the computational resources since the larger number of
K will require for much more training time cost.

6 Conclusion

In this paper, the Averaged-A3C algorithm is proposed, which uses K previ-
ously learned state values to calculate the advantage function with the purpose
of reducing the variance of the advantage function efficiently. We have demon-
strated that Averaged-A3C can indeed stabilize training and improve perfor-
mance in several games of Atari and MuJoCo. In addition, we also conduct
some experiments to study the effect of K on the Averaged-A3C algorithm.
Empirical experiments results show that increasing the number of averaging
previously learned state values leads to better performance. Averaged-A3C is a
simple extension that can be easily integrated with other A3C variants such as
A3C-LSTM.

In future work, investigations on the selection of K will be conducted. It means
that we may dynamically learn how many previously learned state values should
be used to average for best performance. One simple suggestion may be to corre-
late the number of K with the state TD-error. The other way is to make K become
a dynamic learnable parameter with the use of neural networks. Finally, incorpo-
rating averaging techniques within policy-gradient based methods such as GAE
and TRPO methods may further improve the performance of these algorithms.
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Abstract. The resource scheduling problem in the cloud environment has
always been a difficult and hot research field of cloud computing. The difficult
problem of online decision-making tasks for resource management in a complex
cloud environment can be solved by combining the excellent decision-making
ability of reinforcement learning and the strong environmental awareness ability
of deep learning. This paper proposes a multi-resource cloud job scheduling
strategy in cloud environment based on Deep Q-network algorithm to minimize
the average job completion time and average job slowdown. The experimental
results show that the scheduling strategy is better than the scheduling strategy
based on the standard policy gradient algorithm, and accelerate the convergence
speed.

Keywords: Cloud computing � Deep reinforcement learning � Job scheduling

1 Introduction

Resource scheduling is a difficult and hot topic in the field of cloud computing. A good
resource allocation and scheduling strategy can effectively use resources to increase the
economic benefits of suppliers while ensuring the QoS (Quality of Services, QoS).
Cloud computing resource scheduling is actually a multi-constraint, multi-objective
optimization NP-hard problem. The traditional method to solve the decision problem is
to design an efficient heuristic algorithm [1–3] with guaranteed performance under
certain conditions, which is not very versatile and practical. Therefore, reinforcement
learning [4] (RL), as a model-free learning method that can realize online adaptive
decision-making, has been applied to solve some resource allocation problems in cloud
computing systems [5–7]. Experimental results show that the key attributes of the RL
method are applicable to complex cloud computing systems. RL-based agents do not
need to perform a priori modeling of related attributes (such as workload, state tran-
sition, performance, etc.) of the underlying system in the process of learning optimal
resource allocation decisions and implementing online system control.

Researchers [8–10] abstract the resource scheduling in the cloud environment as a
sequential decision problem, turn the decision problem into an objective function
optimization problem. The paper [8, 9] proposed a novel resource allocation scheme
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based on reinforcement learning and queuing theory, which proved that it is superior to
the common resource allocation method in terms of SLA conflict avoidance and user
cost. In [10], a new job scheduling scheme based on SLA constraint-based rein-
forcement learning is proposed to minimize the completion time and average waiting
time (AWT) under VM resources and deadlines, and adopt parallel multi-agent parallel
technology to balance the exploration process. This method accelerates the conver-
gence speed of the Q learning algorithm and achieves obvious optimization results.
However, the reinforcement learning algorithm is difficult to deal with the resource
scheduling problem in the complex high-dimensional state space, and the convergence
speed is slow.

The current problem of resource management in the cloud computing field is often
manifested as the difficulty of online decision-making tasks in a complex environment,
and the appropriate solution depends on the understanding of the system’s resource
environment and job state. Inspired by [11] deep reinforcement learning has achieved
breakthroughs in end-to-end learning in games and control. We believe that the
combination of the interactive trial-and-error mechanism of reinforcement learning and
the powerful nonlinear generalization ability of deep neural networks will be a good
idea to solve the problem of cognitive decision-making in complex states. The paper
[12] transforms multi-resource job scheduling into multi-resource task packing,
abstracts resources and job state as images to represent the system’s state space, as a
neural network input, outputs the probability distribution of actions. The author trained
the model using a standard policy gradient algorithm DeepRM to obtain a multi-
resources job scheduling model under the cloud environment. The experimental results
show that the strategy can adapt to different environments and performs better than
most classic heuristic algorithms.

Based on the research [12] mention above, we propose a strategy which combines
the characteristics of cloud job scheduling and deep Q-network algorithm, to solve the
multi-resource cloud job scheduling in a complex cloud environment. In this paper, we
improve the model by optimizing the calculation method of action’s reward, using the
incremental ɛ-greedy exploration method, and using a convolutional pooling layers
input layer. The experimental results demonstrate significant improvement in the
learning curve after adopting these approaches.

The cloud platform system model adopted in this paper is shown in Fig. 1. The
system model consists of three parts (job pool, resource cluster, and intelligent resource
controller). The job pool is used to cache different job requests from different types of
users. The system abstracts various resources in the cloud environment into the form of
cluster resources, which is convenient for users to select corresponding services. The
intelligent resource controller is a key component of the system. It is responsible for
configuring the job into the resource cluster according to the scheduling strategy while
ensuring the user’s service quality and satisfying the job resource request. The con-
troller includes job monitor and resource monitor, scheduling strategy, and user quality
of service (QoS) constraints. The monitor is responsible for collecting state information

290 J. Lin et al.



for the job pool and resource cluster. The scheduling strategy is generated by deep
reinforcement learning model. QoS constraints ensure the reliability and efficiency of
cloud computing services. In summary, controller and monitors coordinate with each
other to implement intelligent configuration resources while obeying two constraints:
one must meet the user’s QoS requirements, and the other is that the resource usage
must be less than the total amount of resources available in the system.

2 Background

In recent years, the DeepMind team dedicated to deep reinforcement learning research
has successfully combined the decision-making capabilities of reinforcement learning
with the deep neural network comprehension capabilities. They proposes a Deep
Q-network algorithm [13] which use a deep convolutional neural network to fit the
optimal action-value function and successfully implements an end-to-end reinforcement
learning algorithm that learns strategies directly from high-dimensional sensor inputs.

Fig. 1. System model of the cloud platform
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The algorithm has excellent performance in game control experiments, and the model
can learn a variety of different tasks universally. Inspired by this, we try to apply the
DQN algorithm to the cloud computing resource scheduling field. Therefore, we abstract
the system’s resources and job state into images, as the input of the network, and then
combine the action reward function to train the network model to generates an adaptive
scheduling strategy. More details as follow.

DQN mainly uses two key technologies: First, it uses experience replay. By storing
the training data in the experience memory and then using the mini-batch training
method [14]. The random sampling method reduces the correlation of the data samples,
making the samples independent and improving the training performance. Second, the
fixed target network with same structure as the online network, is used to calculate the
target Q value instead of using the pre-updated online network directly. In the training
process, we adopt a delay update method which update the target network parameters
with the current online network parameter values every C training rounds. The purpose
is to reduce the correlation between target value and current value, so that the training
stability and convergence are better. Its framework is shown in Fig. 2.

TD 

Agent

Every C step reset Q~ =Q 

Observe state s

Max ~Q

Reward r

Take action

Environment

Online-network 

Target-network 

State
TD-error 

Fig. 2. Deep Q-network algorithm framework
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Throughout the entire task, agent continuously explores with the environment,
according to the Q value of each action generated by the online network, selects actions
based on the incremental ɛ-greedy policy, and generates a series of states, actions as
well as rewards. The goal is to maximize the expected cumulative discount reward. We
use a deep convolutional network to fit the optimal action-value function.

Q� s; að Þ ¼ max
p

E rt þ crtþ 1þ c2rtþ 2þ . . .jst ¼ s; at ¼ a; p
� � ð1Þ

Which is the maximum sum of reward rt discounted by c at each time, and the
behavioral strategy p = P(a|s) indicates that action a is selected in the state s. In the
training process, the mini-batch training method is used. Each training round randomly
selects M experiences from the experience memory Di = {e1,e2, …, ei}. The state s is
used as the input of the online network, and obtained the actual Q value of action a, and
the next state s′ as input to the target network, obtain the maximum Q value of all
actions in the target network, and use the following loss function to update the
Q network.

Li hið Þ ¼ E s;a;r;s0ð Þ �D Mð Þ rþ cmax
a0

Q s0; a0; h�i
� �� Q s; a; hið Þ

� �2
" #

ð2Þ

in which c is a discount factor determining the agent’s horizon, hi is the parameter of
the Q network for the i-th iteration, and h�i is the network parameter used to calculate
the target value for the i-th iteration. This network parameter uses a delay update
method. Update the target network parameters once every C training iterations, copy
the current Q network parameter values to the target Q* network, and update the
parameters of the Q network using the gradient descent method:

h hþ a rþ c max
a0

Q s0; a0; h�i
� �� Q s; a; hið Þ

� �
ð3Þ

where a is the learning rate, rþ cmax
a0

Q s0; a0; h�i
� �� Q s; a; hið Þ determines the update

direction. In our experimental design, according to the characteristics of the job
scheduling process, we use a slight variant [15] that reduces the variance of the gradient
estimates by subtracting a baseline value from each return vt. More details as follow.

3 Model

We consider a server cluster with multiple physical servers that offer d types of
resources with relate to the cloud resource allocation in this paper. A two-tuple set
{Rcpu, Rmem} is associated with cluster indicating the total amount of CPU resources
and memory resources in the cluster. T-the duration of the resource. The job will arrive
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online one after another according to the Poisson process. The scheduler chooses to
schedule one or more waiting jobs at each timestep. We assume that the resource
demand of each job is known upon arrival. What’s more, the resource profile of each
job i is represented by the vector ri = (ri,cpu, ri,mem, …, ri,d) of resources requirements,
ri,cpu represents the number of CPU resources that job i needs to occupy, ri,mem rep-
resents the number of memory resources that job i needs to occupy and Ti-the duration
of the job i. The experiment does not set the job preemption mechanism, which means
that the job will always occupy resources from the start of execution until completion.
During resource configuration, one prerequisite should be metP

i
ri;cpu � Ti�Rcpu � T;

P

i
ri;mem � Ti�Rmem � T . Moreover, we represent the server

cluster as a single collection of resources without considering effects of machine
fragmentation. While these aspects play an important role in actual job scheduling, this
simpler model contains the basic elements of multi-resource scheduling and can verify
the effectiveness of deep reinforcement learning methods in cloud resource scheduling.

3.1 State Space

We represent the state of the system - the current allocation of cluster resources and the
resource requirements of jobs in the waiting queue - as distinct images (As shown in
Fig. 3). The cluster images show the allocation of each resource to jobs which have
been scheduled for service in the next T timesteps. Different colors in the cluster state
image represent different jobs. For instance, the red job in cluster state image needs to

Fig. 3. State space (Color figure online)
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occupy two units CPU, one unit memory, and the duration of three timesteps. The job
slot images represent the resource requirements of waiting for scheduled jobs. For
instance, job slot 1 requires two units CPU, three unit memory, and the duration of two
timesteps. The state space will be represented as a binary matrix (Colored squares
represent 1. White squares represent 0) as input to the neural network. Therefore, the
state space can only fix the attributes of theM jobs that are waiting to be scheduled, and
the jobs that are not selected into the scheduling queue will be backlogged in the
backlog, waiting to be transferred to the scheduling queue. At the same time, this
method limits the scale of the action space, improving the efficiency of the model
learning process.

3.2 Action Space

At each timestep, the scheduler will admit more than one jobs into the cluster for
service in the scheduling queue containing M jobs. The action space represented as {0,
1, 2, …, M}. When a = i indicates the scheduling job i, a = 0 indicates that the agent
does not wish to schedule further jobs in the current timestep. When the selection of
this moment is completed, the cluster images move upward one timestep. The
scheduler will allocate the appropriate resources for the scheduled jobs and update the
system’s cluster resource state. However, if the remaining cluster resources cannot
satisfy the requirement of the scheduled job, the job will be rejected. Subsequently, the
same number of jobs from the backlog, will be added to the scheduling queue to keep
the action space linear in M.

3.3 Objectives and Reward Functions

The reward function guides the Agent to continuously explore with the environment
and towards the optimization objective. Different objective need to design different
reward functions. In this paper, we adapt the average job slowdown and average job
completion time as the system objective. Therefore, we set the slowdown for each job
is Sj ¼ Cj=Tj Sj� 1

� �
and the corresponding reward function is R ¼P

j2J
�1
Tj
, where Cj

is the actual completion time (between arrival and completion of execution), Tj rep-
resents the ideal completion time, J is the current set of scheduled jobs and waiting jobs
in the system. Moreover, the reward function for the average job completion time
designed as: R = −|J| where J is the number of unfinished jobs in the system in the
current timestep.
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3.4 Network Structure

We add convolutional layers and pooled layers to the network structure to enhance the
feature extraction capabilities of the network for the state space and optimize the
training. The specific network structure and parameters are shown in the Table 1.

4 Training Process

In the training process, we use 100 different arrival sequence of job, called jobsets, each
containing 60 jobs. In each training iteration, we simulate N = 20 Monte Carlo for each
jobset to explore the probabilistic space of possible actions using the current policy. The
episode terminates when all jobs finish executing. Furthermore, we record the current
state, action, reward and next state information for all timesteps of each episode, and use
the resulting data to compute the discounted cumulative reward vt, at each timestep of
each episode. In particular, in order to increase Agent’s initial exploration of the state
space, we use incremental ɛ-greedy policy to select actions (the initial value of ɛ is 0.7,
the maximum is 0.9, and the increase of each training round is 0.001). When all job
episodes of jobset are completed, we calculate the average of the cumulative discount
rewards at the same timestep for the different job episodes of the jobset, as the baseline
value bt, and then subtract baseline value from the discounted cumulative reward vt as
the evaluation of the action Drt = vt − bt. Finally, we store the state information st,
action at, action value Drt, and next state information st+1 at each timestep t of the 20 job
episodes of the jobset as an experience information (st, at, Drt, st+1), and store them in
the experience memory D. Until experiences in the experience memory reaches the set
number, the mini-batch training method is adopted, M = 32 pieces of experiences are
randomly selected from D, and the Q network parameters are updated using formula (2)
with the learning rate of 0.001. Each C training iterations copies the parameter value of
the current Q network to the target Q* network and updates the target network
parameters once. Detailed training process pseudo-code is shown as follow:

Table 1. Network structure

Layer Convolutional (input) Max-pool Fully-connected (output)

Input size 120*20 = 2400 118*18 = 2124 59*9 = 531
Filter size 2 � 2 2 � 2 ——

Stride (1,1) (2,2) ——

#Filters 8 —— ——

Activation Relu —— ——

Output size 118*18 = 2124 59*9 = 531 11 (queue length + 1)

296 J. Lin et al.



Deep Reinforcement Learning 297



5 Experiments and Analysis

5.1 Experimental Parameters

In the experiment, we use the workload setting similar to that in [12]. There are two
types resources with capacity {1r, 1r} in the cluster. Moreover, we used 100 different
arrival sequence jobsets as the training set and 20 jobsets as the test set (not appearing
in the training set). Each jobset contains 60 jobs (80% of the jobs with duration
uniformly chosen between 1t and 3t; the remaining are chosen uniformly from 10t to
15t). Each job has a primary resource which is selected randomly, and the rest is the
secondary resource. The demand for primary resources is between 0.25r and 0.5r, and
the demand for secondary resources is between 0.05r and 0.1r. Specifically, the job will
arrive online one after another according to the Poisson process. So we can change the
load of the cluster from 10% to 190% by controlling the arrival rate of the job. In each
training iteration, We simulate N = 20 episodes for each jobset. The episode terminates
when all jobs finish executing. For every 20 training iterations, we validate the model
with the test set and record the experimental data.

5.2 Result Analysis

In this section, we will use experiments to analyze and compare the effects of the DQN
algorithm used in this paper and the classical heuristic Shortest Job First algorithm,
Teris* algorithm [16], the policy gradient DeepRM in [12] to optimize the objective.
The experimental results are as follows:

As shown in Fig. 4, we can observe that in the first 100 training iterations, the DQN
and DeepRM curves are highly volatile and unstable, and the average job completion
time is higher than the heuristic SJF algorithm and the Teris* algorithm. After 200
training iterations, the curve gradually stabilized and converged., and the average job

Fig. 4. The average job completion time
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completion time was significantly lower than the SJF algorithm and the Teris* algo-
rithm. Furthermore, DQN algorithm outperforms DeepRM by reducing the average job
completion time by up to 5.2%.

The curve in Fig. 5 shows that as the training progresses, the average total reward
and the maximum total reward obtained by the agent to complete the scheduling task
continuously increase until it converges. In addition, the average reward curve grad-
ually moves closer to the maximum reward curve. The curve of Fig. 4 and the curve of
Fig. 5 have synchronicity in convergence, indicating that the value of the reward to the
agent is continuously increasing as the scheduling strategy continuously learns and
optimizes towards the objective.

Figure 6 shows the different trend of average job slowdown between 4 algorithms
under different loads. As can be seen from Fig. 6, under low load conditions, there are
little different between various algorithms with low job slowdown. However, When the
load reaches more than 90%, it can be clearly seen that the average slowdown of the
DeepRM and DQN with slow growth rate, is significantly lower than the heuristic

Fig. 5. Discounted total reward

Fig. 6. Job slowdown under different loads
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algorithms SJF and Tetris*. What’s more, Fig. 7 shows that DeepRM and DQN
algorithms tend to converge after 200 rounds of training at the load of 130%, and the
average slowdown is less than SJF and Tetris*. Meanwhile, DQN converges faster than
DeepRM, and gets smaller average slowdown.

The box plot of Fig. 8 shows the average job slowdown for each job length. We see
that the average slowdown for short jobs is significantly large than long jobs with
Tetris*, but as for DQN and DeepRM, the average slowdown for short jobs is less than
long jobs. As can be seen from [16], the scheduling strategy adopted by Tetris* is to
make full use of the available resources to allocate to more jobs. Therefore, when the
cluster load is relatively large, the short job must wait for the release of cluster
resources and cannot be scheduled in a short time. According to the slowdown formula,
we can see that waiting for the same time, the short jobs has a greater increase in
slowdown than the long jobs. Moreover, the short jobs has a relatively large proportion,
so the average job slowdown is large. DeepRM and DQN learned from experience that
reducing the slowdown of short jobs will help reduce overall slowdown. Therefore,
when scheduling the job, the agent will be more willing to allocate resources to short
jobs, reducing the waiting time for short jobs, and reducing the overall job slowdown.

In summary, the convolutional neural networks we adapted can capture the features
of the job and system resource states more effectively. Moreover, we improve the DQN
by optimizing the calculation method of action’s reward and using the incremental ɛ-
greedy exploration method. The experimental results also prove that the improved
DQN algorithm can learn scheduling strategies directly from experiences faster and
batter, and thus achieve faster convergence speed and better optimization effect than
DeepRM.

Fig. 7. Job slowdown under 130% load
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6 Conclusions and Prospects

This paper adopts the currently popular deep reinforcement learning Deep-Q network
algorithm to solve the problem of multi-resource cluster scheduling in cloud com-
puting. We adopt the convolutional neural network’s ability to perceive the system
resources, job state features, and reinforcement learning decision-making capabilities to
solve online awareness decision problems in complex cloud environments. The
experimental results show that the algorithm can learn resource scheduling strategies
directly from experience, and it is more versatile. It outperforms most classical heuristic
algorithms in performance, and it is more effective and convergent than policy gradient
algorithm.

In the future, in order to make the research more practical, we will consider more
factors that may occur in actual resource scheduling, such as multi-objective opti-
mization, dependencies between cloud jobs, fragmentation management of cluster
resources, and resource scheduling of multi-queues and multi-clusters and so on.
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Science Foundation of China (61772145, 61672174).
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Abstract. In recent years, deep reinforcement learning has developed rapidly.
Many deep reinforcement learning models are applied in various simple game
environments. There are many applications with environments far more com-
plex than simple games. Hence, the performance of the deep reinforcement
learning model should be improved in many aspects. In this paper, we explore
the effect of fast training and enhancing spatio-temporal representation in deep
reinforcement learning model. For the former aspect, we propose to utilize the
depthwise separable Convolutional Neural Network (CNN) to accelerate deep
reinforcement learning model. For the latter aspect, we introduce the convolu-
tional long short-term memory network (ConvLSTM) to improve the expression
ability of spatio-temporal feature. We verify the models in the experiments of
StarCraft II [1], a game strategy with a complex environment for reinforcement
learning. All of the agents learn a certain level game strategy, such as ‘siege’ and
‘searching’. The experimental results show that depth-wise separable CNN has a
good effect in shortening training time and the ConvLSTM has better spatial and
temporal feature representation ability to improve the performance of the agents.

Keywords: Deep learning � Reinforcement learning � StarCraft II
Game strategy

1 Introduction

Deep learning [2] originates from the artificial neural network. It is inspired by the
hierarchical network structure of inferential data in the human brain. Multilayer per-
ceptrons and back propagation algorithms were proposed. With the development of
computing hardware resources, deep learning has made great progress in the fields of
image analysis [3, 4], video analysis [5], natural language processing [6, 7], and speech
recognition [8, 9]. The basic idea of deep learning is to process data through multi-
layered network structures and nonlinear transformations to form abstract high-level
features and expose distributed data representations [10]. Therefore, deep learning
focuses on the perception and expression of data.

Reinforcement learning is inspired by the organism’s ability to respond to environ-
mental stress and effective adaptation. It uses trial and error mechanisms to interact with
the surrounding environment and uses learning strategies that maximize cumulative

© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11303, pp. 303–312, 2018.
https://doi.org/10.1007/978-3-030-04182-3_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04182-3_27&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04182-3_27&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04182-3_27&amp;domain=pdf
https://doi.org/10.1007/978-3-030-04182-3_27


rewards to learn optimal strategies [11]. It has been applied in robot control [12], games
[13, 14], simulation [15], industrial manufacturing [16], optimization and scheduling [17,
18] and other fields. The goal of reinforcement learning is to obtain maximum cumulative
rewards. In order to achieve this goal, on the one hand, it needs to “explore”. It explores
the environment during the learning process, fully grasps the environmental information,
then finds a status with higher reward, and on the other hand, it needs to “use”. It uses the
historical experience that has been learned to select the highest-reward action and shifts
the entire system to a better state. Therefore, reinforcement learning focuses on strategies
for learning to solve problems.

Deep learning has a strong ability to perceptual expression but lacks a certain
decision-making ability. Reinforcement learning has strong decision-making ability,
but its ability in perception is lacking. Therefore, the combination of the two has
complementary advantages and provides ideas for solving the cognitive and decision-
making problems in complex environments. The DeepMind team combines deep
learning with perceptual capabilities and reinforcement learning with decision-making
capabilities, and proposes deep reinforcement learning, forming a new research
direction in the field of artificial intelligence. In many challenging areas, the DeepMind
team constructed and implemented a deepening learning model at the human expert
level. These models’ construction of their own knowledge system and learning of the
environment all come directly from the original input signal, without any related
domain knowledge. Deep reinforcement learning is a very versatile end-to-end sensing
and control system.

At present, deep reinforcement learning has been applied in games [19–21],
machine vision [22, 23], robot control [24–26], parameter optimization [27, 28] and
other fields.

The efficiency of sample learning in deep reinforcement learning is extremely low,
which leads to the long training time of agents. The training process of an agent is
similar to that of video processing, and it also has the possibility of improving the
feature extraction in time and space.

In this paper, we study the strategy of accelerating the speed of model learning and
improving the model’s performance from the perspective of deep neural networks.

This paper uses depthwise separable convolutional networks which effectively
shortens the training time of some agents in the case where the performance of the
agent is not greatly reduced, and convolutional LSTM networks which improve the
performance of the agent in the game from the perspective of the neural network for
deep reinforcement training. Section 2 reviews related work in building models which
shorten the agent’s learning time and improve the performance of the agent. Section 4
describes two methods depthwise separable convolutional networks and convolutional
LSTM network. Section 5 describes the game performance by using methods of
Sect. 4. Section 6 closes with a summary and conclusion.
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2 Related Work

There has been a rising interest in deep reinforcement learning in recent years. Most of
the deep reinforcement learning algorithms can be included under the actor-critic
framework (AC) which is a traditional reinforcement learning algorithm. The deep
reinforcement learning algorithm of agents in AC is divided into two parts: Actor
module and Critic module. The Actor module inputs the state of the environment and
then outputs the action according to the learning strategy. The Critic module is adjusted
according to historical information and feedback (reward), and then the Critic module
affects the strategy of the Actor module.

DeepMind extends the AC to deep reinforcement learning and introduces TD-error
computation advantage. According to the idea of Asynchronous Reinforcement
Learning, The Asynchronous Advantage Actor-Critic is proposed (A3C) [29]. A3C has
greatly shortened the learning time of deep reinforcement learning by making full use
of hardware resources.

Unsupervised reinforcement and auxiliary learning (UNREAL) [34] based on the
A3C is another way to train the deep reinforcement learning tasks. It trains multiple
auxiliary tasks while training the A3C model, and multiple tasks complement each
other to accomplish the set goals. The UNREAL accelerates learning speed and
improves performance by setting multiple auxiliary tasks. Auxiliary and target tasks are
trained simultaneously by sharing weights.

This paper uses two kinds of deep reinforcement learning algorithms. The first one
is Advantage Actor-Critic (A2C) which is a synchronous version of A3C. It collects
data synchronously with all threads while collecting the state of the environment. The
second one is Proximal Policy Optimization (PPO) [30]. It is based on the Trust Region
Policy Optimization (TRPO) [31]. TRPO has disadvantages that are hard to ignore. It
takes a lot of effort to debug. And PPO is an approximate solution to TRPO. It achieves
a balance between ease of implementation, sampling complexity, and effort required for
debugging.

3 Game Environment

StarCraft II is the real-time strategy (RTS) game launched by Blizzard Entertainment. It
is the sequel of StarCraft I, and it is one of the most successful RTS games. In 2017,
Blizzard Entertainment co-operated with DeepMind to launch the SC2LE [1],
StarCraft II learning environment.

The environment has a huge search space. The StarCraft II game’s unit limit is 400.
If the game uses maps which size is 128 pixels * 128 pixels, without considering other
details, there is about 101685 search space. StarCraft II’s search space is 10 orders of
magnitude higher than the 10170 search space of Go. It’s too difficult.

In this paper, we use StarCraft II’s mini-game as a training environment with three
maps.
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The first map is ‘Defeat Roaches’. There are 9 Marines on one map, and 4 Roaches
on the other side of the map. The rewards are obtained by defeating the Roaches by the
Marines. The best game strategy required the Marines to defeat the Roaches one by
one.

The second map is ‘Find and Defeat Zerglings’. There are 3 Marines on the map
and some Zerglings that are fixed locations. The rewards are awarded by defeating the
Zerglings by the Marines. The best game strategy requires efficient exploration.

The third map is ‘Defeat Zerglings And Banelings’. On the map, there are 9
Marines, a group of 6 Zerglings and 4 Banelings on the other side of the map. The
rewards are obtained by defeating the Zerglings and Banelings by using the Marines.
The best game strategy is to allocate reasonably the targets that Marines need to attack.

4 Method

4.1 Depthwise Separable Convolutional Neural Network

As we all know, deep reinforcement learning tasks take a long time to train. In par-
ticular, the policy gradient method has very low sampling efficiency and requires
several millions or even billions of time steps to learn a simple task. Depthwise sep-
arable convolutions in MobileNets [32] can greatly reduce the computational cost of
convolution operations. The part of the deep reinforcement learning model that
observes the environment consists of a convolutional neural network. We introduce
depthwise separable convolutions into deep reinforcement learning and test its influ-
ence on the speed of agent’s training.

The sizes of convolution kernel used in this paper are 5 * 5 and 3 * 3, so the
theoretical computational cost of the network with depthwise separable convolutions is
0.1 times than that of the standard CNN.

In the deep reinforcement learning model training, the depthwise separable con-
volutional neural network shortens the training time of the agent without substantially
affecting the performance of the agent in the game. The time model token by training
100 M timesteps reduced from 96 h to 84 h. As shown in Table 1. The results of the
agent that is compared with the baseline given by DeepMind on StarCraft II minigame
[1] which was trained 800 M timesteps are shown in Fig. 1.

Table 1. Training time of standard CNN and depthwise separable CNN

Network Training time

Standard CNN 96 h
Depthwise separable CNN 84 h
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4.2 Convolutional Long Short-Term Memory Network

The feedforward architecture without memory is sufficient for simple tasks. In the
complex tasks, the LSTM module is usually introduced to enable the network to make
the agent have memory capabilities and have a better perception of temporal and spatial
features.

But the standard LSTM network is fully connected LSTM network, and its internal
gates rely on a computational approach that is similar to a feed-forward neural network,
which does not consider the spatial correlation and contains a large amount of spatial
data redundancy. To solve this problem, Shi X et al. proposed a convolutional LSTM
network (ConvLSTM) [33] that not only has the temporal modeling capabilities of
standard LSTM network but also extracts spatial features like a convolutional neural

0 20 40 60 80 100

Defeat Roaches

Find And Defeat Zerglings

Defeat Zerglings And Banelings

depthwise separable CNN CNN

Fig. 1. Game performance of standard CNN and depthwise separable CNN. It only shows the
mean score of the networks which is trained by the A2C algorithm. The specific values are in
Table 2. The map1 is ‘Defeat Roaches’, the map2 is ‘Find and Defeat Zerglings’, and the map3 is
‘Defeat Zerglings And Banelings’.

Table 2. Game performance of standard CNN and depthwise separable CNN

Network Algorithm Metric Score of
map1

Score of
map2

Score of
map3

CNN [1] A3C [1] MEAM 100 45 62
MAX 355 56 251

CNN [1] A2C MEAM 89 43 59
MAX 355 44 247

CNN [1] PPO MEAM 93 44 63
MAX 361 55 243

Depthwise separable
CNN

A2C MEAM 77 40 48
MAX 327 54 236

Depthwise separable
CNN

PPO MEAM 88 42 54
MAX 347 52 243
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network. It has the ability to extract features of space and time. We introduced this
module into the deep reinforcement learning model to improve the performance of the
model in the game.

The core of ConvLSTM network is the same as that of standard LSTM networks. It
takes the output of the previous layer as the input of the next layer. The difference of
them is that the ConvLSTM network uses convolution operations, which not only can
obtain temporal relationships of data, but also can extract spatial features like convo-
lutional layers.

We train agents on StarCraft II minigame and compare the game performances of
them with the baseline given by DeepMind [1] which was trained 800 M timesteps.
The results are shown in Fig. 2. The results show that the ConvLSTM network has

0 20 40 60 80 100

Defeat Roaches

Find And Defeat Zerglings

Defeat Zerglings And Banelings

ConvLSTM standard LSTM

Fig. 2. Game performance of standard LSTM network and ConvLSTM network. It only shows
the mean score of the networks which is trained by the A2C algorithm. The specific values are in
Table 3, the map1 is ‘Defeat Roaches’, the map2 is ‘Find and Defeat Zerglings’, and the map3 is
‘Defeat Zerglings And Banelings’.

Table 3. Game performance of standard LSTM network and ConvLSTM network

Network Algorithm Metric Score of map1 Score of map2 Score of map3

Standard LSTM A3C [1] MEAN 98 44 96
MAX 373 57 444

Standard LSTM A2C MEAN 95 44 91
MAX 367 57 444

Standard LSTM PPO MEAN 98 45 93
MAX 373 57 423

ConvLSTM A2C MEAN 99 46 97
MAX 375 59 462

ConvLSTM PPO MEAN 96 45 98
MAX 377 60 473
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better temporal and spatial expression compared with the standard LSTM network, and
the former has better performance.

5 Game Performance

In the minigame under the Starcraft II Reinforcement learning environment, we select
three maps to perform deep reinforcement learning model training and explores the
application of deep reinforcement learning in the game strategy. Each agent uses 32
threads for training and the training time is 100 M time steps.

In the map ‘Defeat Roaches’, the Marines learned the strategy of ‘siege’: the
marines first kill an enemy unit and kill one by one. As shown in Fig. 3(1). Agents first
attack the top enemy collectively and then attack other enemies after killing.

In the map ‘Find and Defeat Zerglings’, the Marines learned the strategy of
‘searching’: the marines explore unknown positions in clockwise order. As shown in
Fig. 3(2). In the minimap, we can see clearly that the agent first searches the lower left
corner, then searches the upper left corner, then searches the upper right corner.

In the map ‘Defeat Zerglings And Banelings’, the Marines learned the strategy of
‘attacking by order’: the marines first kill enemy units with higher damage ability, and
then kill other enemy units. As shown in Fig. 3(3). The agent first attacks the Banelings
with greater attack power but ignores the Zerglings that has already been close to itself.

In three maps, all agents learn the game strategies to achieve better performance.
These game strategies are common game strategies in the StarCraft II game.

The average score and maximum score of the depthwise separable CNN are low,
but it does not affect the learning of the game strategy in the case of effectively
reducing the training time of the agent.

Fig. 3. Game strategy
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6 Conclusion

This paper focuses on the accelerating spatio-temporal deep reinforcement learning
model for game strategy. We train the agents on the mini-game of StarCraft II’s
learning environment which is a complex learning environment. In this paper, the
depthwise separable CNN is applied to deep reinforcement learning model. Compared
with the standard CNN used in deep reinforcement learning model before, the training
time is shortened by more than 1/9. But, in terms of game strategy and performance,
depthwise separable CNN has little impact on game strategy, except slightly reducing
the score of the game. We also use ConvLSTM network in deep reinforcement learning
model to enhance the perception of spatial-temporal comprehensive features of agents.
Then we obtain better performance of the agents that used ConvLSTM than agents’
which used standard LSTM network. This indicates that introducing ConvLSTM to
replace LSTM in deep reinforcement learning model is helpful to the extraction of
environmental features. Finally, we carried out some experiments to verify the above
two points. The results of experiments show that these two conclusions are correct.
From the perspective of the deep neural network, we have realized the shortening of the
training time for the deep reinforcement learning model and the improvement of the
performance of the deep reinforcement learning model.
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Innovation Action Plan Project (No. 16511101200).

References

1. Vinyals, O., et al.: StarCraft II: A New Challenge for Reinforcement Learning. https://arxiv.
org/abs/1708.04782. Accessed 16 Aug 2017

2. Yu, K., Jia, L., Chen, Y., Xu, W.: Deep learning: yesterday, today, and tomorrow.
J. Comput. Res. Develop. 20(6), 1349 (2013)

3. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional
neural networks. In: International Conference on Neural Information Processing Systems,
pp. 1097–1105. Curran Associates Inc. (2012)

4. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.: ImageNet large scale visual
recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

5. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Li, F.F.: Large-scale video
classification with convolutional neural networks. In: IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1725–1732. IEEE Computer Society (2014)

6. Cho, K., Merrienboer, B.V., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,
Bengio, Y.: Learning phrase representations using RNN encoder-decoder for statistical
machine translation. In: Proceedings of Conference on Empirical Methods in Natural
Language Processing, Doha, Qatar, pp. 1724–1734 (2014)

7. Yang, Z., Tao, D.P., Zhang, S.Y., Jin, L.W.: Similar handwritten Chinese character
recognition based on deep neural networks with big data. J. Commun. 35(9), 184–189
(2014)

310 Y. Li and Y. Fang

https://arxiv.org/abs/1708.04782
https://arxiv.org/abs/1708.04782


8. Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition with deep recurrent neural
networks. In: IEEE International Conference on Acoustics, Speech and Signal Processing,
pp. 6645–6649. IEEE (2013)

9. Li, Y., Zhang, J., Pan, D., Hu, D.: A study of speech recognition based on RNN-RBM
language model. J. Comput. Res. Develop. 51(9), 1936–1944 (2014)

10. Sun, Z.J., Xue, L., Xu, Y.M., Wang, Z.: Overview of deep learning. Appl. Res. Comput. 29
(8), 2806–2810 (2012)

11. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction, Bradford Book. MIT
Press, Cambridge (2005). IEEE Transactions on Neural Networks 16(1), 285–286

12. Kober, J., Peters, J.: Reinforcement learning in robotics: a survey. Int. J. Robot. Res. 32(11),
1238–1274 (2013)

13. Tesauro, G.: TD-Gammon, a self-teaching backgammon program, achieves master-level
play. Neural Comput. 6(2), 215–219 (1989)

14. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J., Scheffer,
T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 282–293. Springer,
Heidelberg (2006). https://doi.org/10.1007/11871842_29

15. Fu, Q.M., Liu, Q., Wang, H., Xiao, F., Yu, J., Li, J.: A novel off policy Q(k) algorithm based
on linear function approximation. Chin. J. Comput. 37(3), 677–686 (2014)

16. Gao, Y., Zhou, R.Y., Wang, H., Cao, Z.X.: Study on an average reward reinforcement
learning algorithm. Chin. J. Comput. 30(8), 1372–1378 (2007)

17. Wei, Y.Z., Zhao, M.Y.: A reinforcement learning-based approach to dynamic job-shop
scheduling. Acta Autom. Sin. 31(5), 765–771 (2005)

18. Ipek, E., Mutlu, O., Carunana, R.: Self-optimizing memory controllers: a reinforcement
learning approach. In: International Symposium on Computer Architecture, pp. 39–50. IEEE
(2008)

19. Mnih, V., et al.: Playing atari with deep reinforcement learning. Computer Science, pp. 201–
220 (2013)

20. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518
(7540), 529–533 (2015)

21. Silver, D.: Mastering the game of Go with deep neural networks and tree search. Nature 529
(7587), 484–489 (2016)

22. Oh, J., Guo, X., Lee, H., Lewis, R., Singh, S.: Action-conditional video prediction using
deep networks in atari games. In: Proceedings of the Neural Information Processing
Systems, Montreal, Canada, pp. 2863–2871 (2015)

23. Caicedo, J.C., Lazebnik, S.: Active object localization with deep reinforcement learning. In:
IEEE International Conference on Computer Vision, pp. 2488–2496. IEEE Computer
Society (2015)

24. Lillicrap, T.P.: Continuous control with deep reinforcement learning. Comput. Sci. 8(6),
A187 (2016)

25. Duan, Y., Chen, X., Houthooft, R., Schulman, J., Abbeel, P.: Benchmarking deep
reinforcement learning for continuous control, pp. 1329–1338 (2016)

26. Gu, S., Lillicrap, T., Sutskever, I., Levine, S.: Continuous deep Q-Learning with model-
based acceleration. In: Proceeding of ICML 2016 Proceedings of the 33rd International
Conference on International Conference on Machine Learning, vol. 48, pp. 2829–2838
(2016)

27. Hansen, S.: Using deep Q-learning to control optimization hyperparameters. https://arxiv.
org/abs/1602.04062v2. Accessed 19 Jun 2016

28. Andrychowicz, M.: Learning to learn by gradient descent by gradient descent. In:
Proceedings of the Conference on Neural Information Processing Systems, Barcelona, Spain,
pp. 3981–3989 (2016)

Accelerating Spatio-Temporal Deep Reinforcement Learning Model 311

http://dx.doi.org/10.1007/11871842_29
https://arxiv.org/abs/1602.04062v2
https://arxiv.org/abs/1602.04062v2


29. Mnih, V.: Asynchronous methods for deep reinforcement learning. In: Proceedings of the
International Conference on Machine Learning, New York, USA, pp. 1928–1937 (2016)

30. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal Policy
Optimization Algorithms. https://arxiv.org/abs/1707.06347v2. Accessed 28 Aug 2017

31. Schulman, J., Levine, S., Moritz, P., Jordan, M.I., Abbeel, P.: Trust Region Policy
Optimization. Computer Science, pp. 1889–1897 (2015)

32. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision
applications. https://arxiv.org/abs/1704.04861. Accessed 17 Apr 2017

33. Shi, X., Chen, Z., Wang, H., Yeung, D.Y., Wong, W., Woo, W.: Convolutional LSTM
Network: a machine learning approach for precipitation nowcasting. In: International
Conference on Neural Information Processing Systems, pp. 802–810. MIT Press (2015)

34. Jaderberg, M., et al.: Reinforcement Learning with Unsupervised Auxiliary Tasks. https://
arxiv.org/abs/1611.05397. Accessed 16 Nov 2016

312 Y. Li and Y. Fang

https://arxiv.org/abs/1707.06347v2
https://arxiv.org/abs/1704.04861
https://arxiv.org/abs/1611.05397
https://arxiv.org/abs/1611.05397


ASD: A Framework for Generation
of Task Hierarchies for Transfer

in Reinforcement Learning

Jatin Goyal1(B), Abhijith Madan1, Akshay Narayan2, and Shrisha Rao1

1 International Institute of Information Technology, Bangalore, India
{jatin.goyal056,abhijith.m}@iiitb.org, shrao@ieee.org

2 National University of Singapore, Singapore, Singapore
anarayan@comp.nus.edu.sg

Abstract. We present ASD (Action, Sequence, and Divide), a new
framework for Hierarchical Reinforcement Learning (HRL). Present HRL
methods construct the task hierarchies but fail to avoid exploration when
tasks are to be performed in a particular sequence, resulting in the agent
needlessly exploring all permutations of the tasks. When the task hier-
archies are used as an ASD framework, the RL agent encounters better
constraints, preventing it from pursuing policies that are not valid, thus
enabling the agent to achieve the optimal policy faster. The hierarchies
created using the methods explained in this paper can be used to solve
new episodes of the same environment, as well as similar instances of
the problem. The hierarchies generated with an ASD framework can be
used to establish an ordering of tasks. The objective is to not only to
complete the tasks but also give the agent insights into the sequence of
tasks that need to be performed in order to correctly solve a problem. We
present an algorithm to generate the hierarchies as an ASD framework.
The algorithm has been evaluated on some of the standard RL domains,
namely, Taxi and Wargus, and is found to give correct results.

1 Introduction

A standard Reinforcement Learning (RL) [14] problem assumes that an agent
starts afresh with zero knowledge about the environment. The agent [1] starts
exploring and accumulating rewards for the various actions it takes and devises
a policy to solve the problem by either maximizing or minimizing the rewards
it gets, depending on the problem. In large environments, a substantial amount
of time is spent by the agent to discover the optimal solution.

In HRL [4,15], the agent exploits the environment structure to generate the
task hierarchies [10]. These hierarchies can be used to transfer the knowledge
from one domain to another which speeds up the overall learning phase, but the
agent has no knowledge as to what is the sequence of tasks that needs to be
performed, resulting in the agent needlessly evaluating every permutation of the
tasks.
c© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11303, pp. 313–325, 2018.
https://doi.org/10.1007/978-3-030-04182-3_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04182-3_28&domain=pdf
https://doi.org/10.1007/978-3-030-04182-3_28


314 J. Goyal et al.

We propose the ASD framework to address the problems. ASD is an app-
roach to HRL which divides actions into three types of nodes: Action, Sequence,
and Divide. Scaling down a version of the same problem by generating a task
hierarchy, it helps solve problems in large domains. When the hierarchy gen-
erated in smaller problems is fed as input to similar larger problems, it brings
about a significant improvement over the training cost of the new problem.

The generation of hierarchies as an ASD framework has two steps. First, we
access the solutions of the smaller problem which are stored in the form of a
Directed Acyclic Graph (DAG) [16] to hold the sequence of operations it needs
to perform. By using this structure, we generate a hierarchical sequence of tasks
(the Component Hierarchy) for that episode. The DAGs can be generated by
simulating a much smaller and simpler instance of the environment and letting
the agent perform some episodes by interacting with it (optimal policies of these
episodes can be stored in the form of a DAG). Second, we amalgamate results
from different episodes of the problem. This is done by merging component
hierarchies from different episodes into a single hierarchy.

Algorithm 1 constructs a component hierarchy when a solution to the RL
problem is given in the form of a CAT (causally annotated trajectory) [11]. We
parse the CAT by identifying the task hierarchies based on which subtasks should
be accomplished in what order and construct a hierarchical structure. The inner
nodes of the hierarchy consist of high-level tasks. The leaf nodes of the hierarchy
are the primitive actions that need to be taken in order to complete the high-level
tasks. Some sample component hierarchies are shown in Figs. 3 and 4.

Algorithm 2 merges two component hierarchies into a single hierarchy. Here,
the three types of nodes: Action, Sequence and Divide, are used to merge the
hierarchies. We start from the root nodes of the two trees and check which type of
node is present in it. Based on the type of node we merge the children such that
the sequence of execution of the subtasks is maintained in the merged hierarchy.

We tested our algorithms with the Taxi problem [8] and the Wargus
domain [11], and accurately generated the task hierarchies. For the case where
the environment is stochastic in nature, the problem is solved as a Markov
Decision Problem [2]. However, the algorithms mentioned in this paper do not
depend on the nature of the environment, i.e., it can either be deterministic
or probabilistic [6]. The algorithms can also handle conjunctive goals (both
goals can be performed with or without any order) as well as disjunctive goals
(the overall task being considered complete if either one of the subtask is com-
pleted), which is a significant improvement over the HI-MAT Algorithm [11]
which worked on a single DAG.

The key difference between HI-MAT and ASD is that HI-MAT gives task
hierarchies using only one CAT, which may not explore the complete dynamics
of the environment, whereas ASD uses multiple CATs, makes individual hierar-
chies, and then merges all the results to get one complete task hierarchy.
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2 Background and Related Work

HRL allows the agent to exploit the domain structure by splitting a task into
subtasks and solving them, which speeds the overall learning phase [1,13].

To generate a component hierarchy, we require optimal policies for numerous
instances. The policies are defined in the form of a CAT [11]. A CAT is a directed
acyclic graph that gives information about how the variables of an environment
are changed with the actions that are being taken. Consider the Taxi problem
in Fig. 1, whose objective is to pickup a passenger from a specific location and
then drop off the passenger at a particular destination. The pickup and drop
off locations are given as inputs to the agent, the variable pass.loc changes at
two locations, once during pickup, i.e., when moving from start to pickup and
then, at drop off, i.e. when moving from pickup to drop off. Similarly, pass.dest
is changed only after the agent has picked the passenger and then dropped off
at the required destination. These CATs reflect how some of the tasks contains
smaller subtasks, as seen in Fig. 1.

Fig. 1. CAT for taxi problem, where p.l = pass.loc, t.l = taxi.loc and p.d = pass.dest
[11]

HEXQ [7], VISA [9], and HI-MAT [11] are some existing approaches to get the
required task hierarchies. HEXQ generates the hierarchies based on the frequency
of change in values of variables. VISA uses Dynamic Bayesian Networks [3,12]
(DBNs) to get the required hierarchies. HI-MAT uses CATs to get the required
Hierarchies for MAXQ [4] decomposition. In HI-MAT, the CAT and DBN models
are applied to previously solved RL tasks to induce the MAXQ task hierarchies.

3 Component Hierarchies

ASD is an abbreviation of Action, Sequence and Divide, these being the three
types of nodes. These nodes are used in the component hierarchy by identifying
the sequence of subtasks which need to be completed in order to accomplish
a task. Each node has information about the variable that is changing when
an action is performed by the agent with the help of a label which is either
Sequence, Divide or Action. It also contains a task equation [11] which signifies
the task that the node needs to accomplish, the task equation also behaves as
an identifier to differentiate it from other nodes.
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Fig. 2. Component hierarchy for taxi problem [11]

Action

Action nodes signify that there are no more subtasks left, i.e., it is a primitive
action. To complete the task signified by this Action node, the agent interacts
with the environment using the primitive actions available to it (in the hier-
archies). The end state and the start state are provided in the parent node of
this subtask. The agent gives the optimal policy and total optimal reward for
reaching the end state. For example, in the component hierarchy for the Taxi
problem shown in Fig. 2, the navigation task has only four primitive actions
(North, South, East, West) which can be used to complete the task.

By marking the Action nodes in the ASD framework, the agent uses only
those actions which are available as children of that Action node. This prevents
performing some unnecessary computations (like computing costs for pickup
and dropoff for a navigation task), which speeds up the overall process for
getting the optimal policy. For example, in Taxi problem, the agent tries not to
pickup or dropoff while on route to the destination.

Sequence

Sequence nodes signify that the subtasks need to be performed sequentially. For
example in Fig. 2, the entire problem is marked as a Sequence task, with two
subtasks, pickup (task 11 in Fig. 2) and dropoff (task 7 in Fig. 2), which needs
to be performed in that order alone. Like Actions, Sequence nodes also prevent
the performing of some unnecessary computations to improve the performance
of the system. An agent on coming across a Sequence task knows what needs to
be performed first, and does not complete the second task before the first task,
as in the case of traditional Q-learning agents.
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Divide

Divide nodes signify that although the entire task of this node has been split into
subtasks, there is no required order for them to be executed, hence the optimal
policy can be any permutation of the subtasks in the hierarchy, with the present
node as root. For example, in the Wargus domain problem, the agent can mine
gold first or chop wood, both being valid ways to do it, but the agent needs to
identify the order of the subtasks, so as to get the optimal rewards. In the Taxi
problem, there are no Divide tasks since tasks are always in a Sequence and no
permutations are allowed.

4 Generating Component Hierarchies

We first automate the discovery of the task hierarchies and generate multiple
component hierarchies (smaller task hierarchies) for different instances of the
task. Next, we amalgamate these component hierarchies into a single merged
hierarchy. The hierarchies once generated need not be computed again; they
can be stored and reused repeatedly unless the dynamics of the environment is
changed; for instance, by adding a new variable. One such change would be, in
the Taxi problem, if we add a new action like Refuel which should be performed
before the fuel of the taxi runs out. This would affect the sequence of operations
that should be performed and would require retraining, but no retraining will
be required if the change is to rearrange the blocked grids in the environment
or similar, which does not affect the dynamics of the environment.

Automatic Discovery of Task Hierarchies

The algorithm needs the optimal policies of the source task, stored in the form
of a causally annotated trajectory [11] (CAT) to create task hierarchies. Since
a single CAT may not use all the actions available to it, we need multiple such
CAT which cover the entire dynamics of the environment by using all possible
actions in a valid sequence.

An example of a CAT is shown in Fig. 1 for the Taxi problem. These trajec-
tories contain information about the variables that are being changed on every
action, and how these change in values of variables tends to completion of the
given task.

A CAT is a directed acyclic graph. The CATs are made in such a way that
they all have a Start and an End node. First, the shortest path is calculated
from the Start node to the End node using Depth First Search (DFS) [5]. Also,
the in-degree of the End node is calculated and stored in the variable indegree
(line 4). If indegree is equal to 2 (line 4), then we mark the entire task as a
Sequence task since there can be only one way to complete this subtask. If it
is more than 2 (line 17), then we mark the entire subtask as a Divide subtask
since there can be more than one permutation of subtasks that are valid, and if
it is equal to 1 (line 11), we mark the subtask as an Action subtask.
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Algorithm 1. generateASDHierarchy(Ω,ω, S, V ) is used to generate
a component hierarchy from a CAT. Where Ω is the CAT, ω is the root
node of the component hierarchy, S is the start node of the CAT and V is
the end node of the CAT.
Input: CAT Ω, ASDNode ω, Start S and End V nodes of the CAT
Output: ASD Hierarchy

1 minCostPath = δ(S, V ) = min(W (p) S→ V)

2 where W (p) is the Cost of path =
∑k

i=1 w(vi−1, vi)
3 indegree = inDegree(V) //finds the number of incoming edges of a node
4 if indegree.equalsTo(2) then
5 remEdge = minCostPath.remove(0) //remove the first edge from the list of

edges
6 S = remEdge[0]
7 V = remEdge[1]
8 Create a new node of type “Sequence” and add it to the root node
9 generateASDHierarchy(Ω, ω, S, V )

10 else if indegree.equalsTo(1) then
11 Create a new node of type “Action” and add it to the root node
12 foreach Action ai ∈ Ω do
13 add ai to node as a child
14 ω.add(node)

15 else
16 Create a new node of type “Divide” and add it to the root node
17 V = V .parent
18 generateASDHierarchy(Ω, ω, S, V )

Algorithm 2. MergeHierarchies(ω1, ω2) is used to merge two compo-
nent hierarchies generated by Algorithm 1. Here ω1 and ω2 are the two
component hierarchies.
Input: ASDNode ω1, ASDNode ω2

Output: Merged ASD hierarchy
1 if (ω1.type.equalsTo(“Actions”) AND ω2.type.equalsTo(“Actions”)) then
2 ω2.children = ω1.children ∪ ω2.children
3 if (ω1.type.equalsTo(“Divide”) OR ω2.type.equalsTo(“Divide”)) then
4 ω1.type = “Divide”
5 ω2.type = “Divide”
6 foreach child ci ∈ ω1 do
7 if (¬ω2.contains(ci)) then
8 ω2.add(ci)

9 if (ω1.type.equalsTo(“Sequence”) AND ω2.type.equalsTo(“Sequence”)) then
10 foreach child ci ∈ ω1 do
11 if (¬ω2.contains(ci)) then
12 ω2.add(ci)
13 else
14 MergeHierarchies(ω1.child[i], ω2.child[i])

15 return ω2
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Case 1: If the type of task is Sequence, we first remove the minimum path present
in the CAT and update the Start and End nodes with the beginning and ending
edges of the removed edge. We create a new node of type Sequence and add it to
the hierarchy. The function generateASDHierarchy(Start, End) is recursively
called for the updated Start and End nodes. Note that these subtasks are solved
in the order of the edges appearing in the shortest path, and when the agent
sees the node as a Sequence task, it executes these subtasks in that particular
order alone.

Case 2: If the type of task is Action, then we simply read all the nodes appearing
in the path from Start to End, and add each one of them as a child of this
task. The children are a set of primitive actions that need to be performed to
accomplish the overall task of this node.

Case 3: If the type of task is Divide, then the function generate
ASDHierarchy(Start, End) is recursively called indegree − 1 times. For each
time the function is called, the End node is updated to the starting node of the
edge connecting to the End node. This is also explained in Sect. 5. When the
agent sees the node as a Divide node, it tries all permutations of the subtasks
and chooses the optimal policy.

This algorithm ends when it has reached the action path, as there are no
more recursive calls from there. The Action path is the sequence of primitive
actions that are taken by the agent to generate the optimal policy, and since it
is the longest path in the trajectory, it is always the last one selected for building
the hierarchies.

Incomplete Hierarchies

Algorithm 1 relies on optimal policies stored for making the hierarchies, but an
optimal policy stored may not contain all the primitive actions in the environ-
ment. It may not even contain an entire subtask because that was not needed for
that particular optimal policy though it might be needed for other episodes of
the same environment. Therefore the hierarchies should cover the entire dynam-
ics of the system. For example, in Fig. 3, the Hierarchy is of a Taxi problem
which does not contain the complete dynamics of the Taxi environment, as it
does not contain “West” as a primitive action, also for subtask pickup, only
“North” is available for navigation, which shows incomplete information about
the environment. To overcome this problem, we give Algorithm 2 for merging
multiple hierarchies of the same environment.

The function MergeHierarchies() in Algorithm 2 takes two hierarchies from
different instances of the same environment as inputs. The function recursively
compares the nodes and their children. First, the function compares the type
(Action, Sequence or Divide) of both the root nodes.

Case 1: If both nodes are of type Action, the function MergeHierarchies merges
the primitive actions list of both the root nodes and store in the primitive actions
list of the root node in Hierarchy2.
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Case 2: If either of the nodes is a Divide node, mark the node in Hierarchy2 as
Divide. If a subtask of the root node in Hierarchy1 is found in Hierarchy2, call
MergeHierarchies(Hierarchy1, Hierarchy2) using the similar nodes as root. For
every child in the list of subtasks of the root node in Hierarchy1, not present in
children list in Hierarchy2, append those tasks to the children list of the root
node of Hierarchy2.

Case 3: If both the nodes are of type Sequence, then children of both the nodes
are compared. Since these tasks have to be executed in a sequence, the compar-
ison done in the reverse order of execution. If the list from Hierarchy1 contains
some subtask which is not present in Hierarchy2, these subtasks are appended
to the start of the list in Hierarchy2 (because the function gives Hierarchy2 as
output). Also for the subtask found identical in both the lists of subtasks, call
MergeHierarchies(Hierarchy1, Hierarchy2) using the identical node as the root
nodes.

Fig. 3. Hierarchy 1 Fig. 4. Hierarchy 2

5 Evaluation of ASD in Standard RL Domains

Taxi Problem

Consider the 5× 5 single agent Taxi Cab domain [11]; the CAT for a solved
episode is given in Fig. 1. As given in Algorithm 1, for the Start and End
node, the shortest path is calculated and it is stored; in this case, it is Start →
dropoff → End. Consecutively, the number of edges incoming to the end node
is also calculated, i.e., the in-degree of the end node which is 2 in this case.
According to Algorithm 1, we mark this task as Sequence node and divide
the entire problem into two subtasks, 1. Start → dropoff , 2. dropoff → End
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Fig. 5. Merged result for Hierarchy 1 in Fig. 3 and Hierarchy 2 in Fig. 4

Fig. 6. Dividing tasks in a CAT according to Algorithm 1

as shown in Fig. 6. According to Algorithm 1, the edge Start → dropoff is
removed and generateASDHierarchy(Start, dropoff) is called. Algorithm 1
is followed, finding shortest path (with dropoff as the end node), which is
Start → pickup → dropoff , and the in-degree of the end node is calculated
which is 2 in this case. We then mark this subtask as Sequence and further
divide it into subtasks as shown in Fig. 7.

The edge Start → pickup is removed and generateASDHierarchy
(Start, pickup) is called recursively. Now the in-degree of the end node is 1
and as a result, this subtask is marked as Action node, and all the actions
occurring on the path from the Start node to End node are added to this
node as its children. After Actions there are no more recursive calls, hence
generateASDHierarchy(pickup, dropoff) is called and the same steps are fol-
lowed, and consecutively, component hierarchies are formed. Similar steps are
followed and the entire task of picking up and dropping off the passenger is
divided into subtasks, which are executed according to the node type, as is
mentioned in Sect. 3.

Fig. 7. Dividing tasks of Fig. 6
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Similarly, two task hierarchies are generated, as shown in Figs. 3 and 4, from
two different CATs. It can be observed that neither of them contains all the
primitive actions available to the agent. Algorithm 2 gives the protocol to merge
the knowledge of both the hierarchies. Starting from the root node (0) in both
the trees, nodes at each level are compared in both hierarchies. If both the nodes
are Sequence then we move to the next level, and if one of them is Divide then
the resulting node is also Divide. In the case of Figs. 3 and 4, both are Sequence,
so we move to node 1 in both the hierarchies; both are Sequence, so we move to
the next level. This level contains multiple nodes in both the hierarchies; first the
union of both the nodes is done and stored as the result. If two nodes contains
the same task equation, then MergeHierarchies(node1, node2) is implemented,
which follows the Algorithm 2 again. When the iteration reaches the Action
nodes, the union of the primitive actions in both the nodes is done resulting in a
node which contains actions from both the nodes and is stored in the resultant
hierarchy. As it is seen in Fig. 5, all the primitive actions in Hierarchy1 and
Hierarchy2 in Figs. 3 and 4 are merged to form action nodes in Fig. 5.

Wargus Domain Problem

Consider a 5× 5 grid for Wargus resource gathering-problem [11] where the agent
is the peasant and its objective is to chop wood, mine gold and deposit it at the
City center. The optimal policy is the steps taken to complete the task with
maximum reward.

Fig. 8. Solved RL CAT for Wargus domain

Fig. 9. Dividing tasks in Fig. 8 and making hierarchies according to Algorithm 1

For generating the component hierarchies for this problem, access to solved
instances of Wargus domain are required, an example is shown in Fig. 8, here
p.l stands for the peasant’s location, p.r is the peasant’s resource, r.w and



ASD: A Framework for Generation of Task Hierarchies 323

r.g stands for region to chop the wood and region to mine for gold. q.w
and q.g stands for quota for wood and gold respectively. Similar to the pre-
vious example, first the shortest path between Start and End is calculated,
as also the number of edges connecting to the End, which is 3 in this case.
As a result this task is marked as divide, the edge Start → Deposit is
removed and the procedure generateASDHierarchy(Start,Deposit) is recur-
sively called. The task hierarchies are shown in Figs. 8, 9 and 10. Note when
calling generateASDHierarchy(Start,Deposit) for the second Deposit node,
the Start node is changed to Goto in Deposit → Goto. This is because while
dividing the task into subtasks, first task was completed at the first Deposit
node, and the second task started from there, but unlike the Taxi problem,
there is no edge from first Deposit node to the second one, because both the
goals can be achieved in either order. So when the agent uses the merged hier-
archy for solving problems, and reaches the Divide node, it evaluates rewards
for both the actions and then decides which one to choose based on the policy
that gives the higher reward. Before generateASDHierarchy(Start,Deposit) is
called, the edge Start → Deposit is removed, after which the shortest path is
calculated, and number of edges connecting to the End node, which is 2 in this
case, as a result of which, this task is marked as Sequence, as shown in Figs. 8
and 9, similar to the Taxi Cab domain problem, and the final task hierarchies are
generated as shown in Fig. 10. Also when a task is marked as Divide, the subtask
associated with the last edge of the shortest path, is not used for any input in
task hierarchies, in this case, the tasks associated with both the Deposit → End
edges are never used to make the hierarchies, because these edges signify the
completion of that task.

Fig. 10. Dividing tasks and generating task hierarchies
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In certain instances, it is possible that the CAT may contain only one of the
subtasks (chop wood or mine gold). In such cases, the component hierarchies
would be incomplete. Also Algorithm 1 would mark this subtask as a Sequence
node. But when this component hierarchy is merged with a component hierarchy
generated for a CAT shown in Fig. 8, then according to Algorithm 2, it is clear
that when either of the two tasks at the same level are Divide while merging, then
the resulting task will also be a Divide task. The main function of Algorithm 2 is
to learn about the tasks and the actions available from multiple task hierarchies.

6 Observation and Conclusion

Both Algorithms 1 and 2 were tried on the Taxi domain problem and the Wargus
problem, and the result is that the hierarchies obtained contained the subtasks
in the right order. The CATs required to generate the Hierarchies may come
from a smaller version of the environment. For example, in the Taxi domain
problem, the required simulations were to be done on a 50× 50 grid, and we
know the optimal policies need to come from the same environment. However,
we noticed, that if we input CAT from a grid of a 5× 5, the hierarchies generated
are in accordance to the 50 × 50 grid. This is because irrespective of the size of
the domain, the sequence of actions performed to achieve a task would remain
the same.

We presented an approach to automatically induce subtasks, which cover
the entire dynamics of the system, from solved RL problems. We presented the
algorithm to generate a component hierarchy from the CATs of all the solved
instances of the problem. This will speed up the process of finding solutions in
other instances of same domain. Also, these hierarchies are reusable.

References

1. Andre, D., Russell, S.: State abstraction for programmable Reinforcement Learning
agents. In: Association for the Advancement of Artificial Intelligence, vol. 112, pp.
119–125 (2002)

2. Bai, A., Srivastava, S., Russell, S.: Markovian state and action abstractions for
MDPS via hierarchical MCTS. In: Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, IJCAI 2016, pp. 3029–3037. AAAI Press
(2016)

3. Cao, F., Ray, S.: Bayesian Hierarchical Reinforcement Learning. In: Pereira, F.,
Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Informa-
tion Processing Systems 25, pp. 73–81. Curran Associates Inc, New York (2012)

4. Dietterich, T.G.: Hierarchical Reinforcement Learning with the MAXQ value func-
tion decomposition. J. Artif. Intell. Res. 13, 227–303 (2000)

5. Franciosa, P.G., Gambosi, G., Nanni, U.: The incremental maintenance of a depth-
first-search tree in directed acyclic graphs. Inf. Process. Lett. 61(2), 113–120 (1997)

6. Getoor, L., et al.: Introduction to Statistical Relational Learning. MIT press, Cam-
bridge (2007)



ASD: A Framework for Generation of Task Hierarchies 325

7. Hengst, B.: Discovering hierarchy in Reinforcement Learning with HEXQ. In: Pro-
ceedings of the Nineteenth International Conference on Machine Learning, ICML
2002, pp. 243–250. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA
(2002)

8. Jardim, D., Nunes, L., Oliveira, S.: Hierarchical Reinforcement Learning: Learning
sub-goals and state-abstraction. IEEE, July 2011

9. Jonsson, A., Barto, A.: Causal graph based decomposition of factored MDPS. J.
Mach. Learn. Res. 7, 2259–2301 (2006)

10. Knoblock, C.A.: Hierarchical problem solving. In: Knoblock, C.A. (ed.) Generat-
ing Abstraction Hierarchies. The Springer International Series in Engineering and
Computer Science (Knowledge Representation, Learning and Expert Systems), vol.
214. Springer, Boston (1993). https://doi.org/10.1007/978-1-4615-3152-4 3

11. Mehta, N., Ray, S., Tadepalli, P., Dietterich, T.: Automatic discovery and transfer
of MAXQ hierarchies. In: Proceedings of the 25th International Conference on
Machine Learning, pp. 648–655. ACM (2008)

12. Ngo, V.A., Ngo, H., Wolfgang, E.: Monte carlo bayesian Hierarchical Reinforcement
Learning. In: Proceedings of the 2014 International Conference on Autonomous
Agents and Multi-agent Systems, AAMAS 2014, pp. 1551–1552. International
Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2014)

13. Sutton, R., Precup, D., Singh, S.: Between mdps and semi-MDPS: a framework for
temporal abstraction in reinforcement learning. Artif. Intell. 112, 181–211 (1999)

14. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An introduction, vol. 1. MIT
press, Cambridge (1998)

15. Tadepalli, P., Dietterich, T.G.: Hierarchical explanation-based Reinforcement
Learning. In: In Proceedings of the Fourteenth International Conference on
Machine Learning, pp. 358–366. Morgan Kaufmann (1997)

16. VanderWeele, T.J., Robins, J.M.: Directed acyclic graphs, sufficient causes, and
the properties of conditioning on a common effect. Am. J. Epidemiol. 166(9),
1096–1104 (2007)

https://doi.org/10.1007/978-1-4615-3152-4_3


Driving Control with Deep
and Reinforcement Learning

in The Open Racing Car Simulator

Yuanheng Zhu1,2(B) and Dongbin Zhao1,2(B)

1 Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
{yuanheng.zhu,dongbin.zhao}@ia.ac.cn

2 School of Artificial Intelligence, University of Chinese Academy of Sciences,
Beijing 100049, China

Abstract. Vision-based control is a hot topic in the field of computa-
tional intelligence. Especially the development of deep learning (DL) and
reinforcement learning (RL) provides effective tools to this field. DL is
capable of extracting useful information from images, and RL can learn
an optimal controller through interactions with environment. With the
aid of these techniques, we consider to design a vision-based robot to
play The Open Racing Car Simulator. The system uses DL to train a
convolutional neural network to perceive driving data from images of
first-person view. These perceived data, together with the car’s speed,
are input into a RL-learned controller to get driving commands. In the
end, the system shows promising performance.

Keywords: TORCS · Vision-based control · Reinforcement learning
Deep learning

1 Introduction

The Open Racing Car Simulator (TORCS)1 is an open source 3D car racing sim-
ulator. It provides realistic experience with powerful physics engines and sophis-
ticated 3D graphics. Players can not only drive cars in TORCS, but also design
their own robots with intelligent techniques [8,17]. Based on computational intel-
ligence (CI) techniques, numerous robots have been successfully developed by
researchers to play TORCS [2,12].

Most robots use real measurements from the TORCS engine as input state,
such as distance, angle, track shape, to name a few. These data are reliable and
low-dimensional, but must be provided by the TORCS engine. In contrast, when
humans play TORCS or drive real cars, they can perform well based on only
drivers’ view. In recent years, deep learning (DL) makes it feasible and easy to
process high-dimensional images [4,6,7]. Essential features can be extracted with
deep neural networks (DNNs). Inspired by that, in [3], authors try to predict
1 http://torcs.sourceforge.net/.
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driving data from the first-person view in TORCS. They collect images and
data and put them into a convolutional neural network (CNN) to train network
weights.

However, DL lacks the ability of interacting with external environment. To
achieve vision-based control in complex systems like TORCS, researchers have
been working on combining DL with reinforcement learning (RL). RL considers
how to choose a series of actions to maximize the accumulated rewards from
environment [5,9,14–16]. Researchers in [10,11,18] combine these two methods
and propose deep reinforcement learning (DRL) to play Atari games. To achieve
satisfying results, these DRL algorithms have to run plenty of trials through
interactions with environment, and most early trials end up with failures. For
vision-based autonomous driving, it is more reliable to separate action-decision
and image-perception processes apart. A driving controller should be learned
with only a small number of trials, and a perception module can be trained by
data that are collected from skilled drivers in a safe condition.

In this paper, we aim to integrate the latest RL and DL methodologies
together to design a vision-based self-driving robot in TORCS. First we use
low-dimensional, ground-truth driving data provided by the TORCS engine to
learn a driving controller with only a small number of trials. Then we train a
CNN to perceive driving data from images of first-person view. After integrating
the strategy and perception parts together, our robot only takes the first-person
view and its own speed as input, and can drive successfully. Since the framework
only involves collecting data from human drivers in a safe condition and learning
controllers with a small number of trials, it is easy and reliable to extend the
work to practical applications.

2 Problem Description in TORCS

The control variables in TORCS (Fig. 1) include ut = [δt, τt]T . δt is the steering
angle percentage, ranged by [−1, 1]. τt is the throttle or brake percentage, ranged
by [−1, 1]. t specifies the time index. As for the gear control, we use an automatic
transmission algorithm to shift the gear automatically.

For ease of analysis, the car dynamics is treated as a discrete-time system
with a fixed step dT . The evolving variables, which we term as inherent vari-
ables, include xt = [dt, at, vt]T , where dt is the deviation distance (m), at is the
deviation angle (rad), and vt is the current speed (km/h). Its evolution is deter-
mined by command ut and dynamical variables yt = [dt, at, vt, κt]T where κt is
the road curvature (m−1). The transition function is defined as xt+1 = f(yt,ut)
and it is unknown to robot designers. Due to disturbance and sensor noise, obser-
vations of xt+1 are perturbed by noise, which here we assume as Gaussian noise
ε ∼ N (0, Σε), where Σε = diag(σεd

, σεa
, σεv

).
The following cost function evaluates the driving performance at each step

ct = c(zt) = 1 − exp
(

− 1
2b2

[
ωdd

2
t + ωaa2

t + ωv(vt − v′
t)

2
])

(1)
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Fig. 1. Screenshot of TORCS.

where v′
t is an auxiliary variable that represents the desired speed (km/h) at the

current position. b, ωd, ωa, ωv are the cost coefficients. The cost variables zt are
composed of zt = [dt, at, vt, κt, v

′
t]

T . The long-term goal is to minimize the return,
which is the sum of costs during a period of time minJ = minE

[∑T
t=1 ct

]
.

The desired speed v′
t is widely used in the design of TORCS robots [1,13]. It

is calculated based on track curvature and road friction coefficient. Due to page
limit, we omit the calculation details and suggest readers to refer to [1,13].

The controller is constructed in the form of ut = π(zt|p), where p represent
controller parameters, and the target is to minimize J . Note that the controller
needs all the variable information, including not only physical variables like dt,
at, κt, but also auxiliary variable v′

t. In the open-source TORCS, these data are
available from the TORCS engine. In the next, we plan to learn the controller
parameters by RL based on real variable information, and then perceive these
variables from images by DL so that the robot can drive based on first-person
view.

3 Learn Driving Controller by Modified PILCO

3.1 Gaussian Process Model

PILCO [5], short for Probabilistic Inference for Learning COntrol, is a model-
based RL algorithm. In PILCO, the system dynamics is considered as a Gaussian
Process (GP). Suppose we have collected a group of driving data {yt,ut}. We
use ỹt = [yT

t ,uT
t ]T as training inputs, and the difference Δxt+1 = xt+1 − xt + ε

as training targets, where ε is Gaussian noise. The mean and variance of xt+1

now become μt+1 = xt + Ef [Δxt+1], Σt+1 = varf [Δxt+1].
Suppose there exist n training inputs, Ỹ = [ỹ1, . . . , ỹn], and n training tar-

gets, ΔX = [Δx1, . . . ,Δxn]. Consider the scalar target Δxi ∈ R and determinis-
tic test input ỹ∗. The predictive probability of test target Δx∗ is Gaussian with
mean and variance as
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μ∗ = Ef [Δx∗] = kT
∗ (K + σ2

ε I)
−1ΔX = kT

∗ β (2)
σ2

∗ = varf [Δx∗] = k∗∗ − kT
∗ (K + σ2

εI)
−1k∗ (3)

where k∗ = k(Ỹ, ỹ∗), k∗∗ = k(ỹ∗, ỹ∗), β = (K + σ2
εI)

−1ΔX, and K is the
Gram matrix with entries Kij = k(ỹi, ỹj). Here the kernel function k selects the
squared exponential (SE) kernel

k(ỹ1, ỹ2) = α2 exp
(

−1
2
(ỹ1 − ỹ2)T Λ−1(ỹ1 − ỹ2)

)
(4)

where α and Λ are function parameters. These parameters can be learned by
evidence maximization.

When test input is distributed, the target distribution is complicated but we
can still approximate it as a GP. Still consider the scalar target, i.e. Δxi ∈ R,
and suppose the test input satisfies ỹ∗ ∼ N (μ,Σ). The target distribution is
approximated by Gaussian Δx∗ ∼ N (μ∗, σ2

∗) where

μ∗ = βTq, σ2
∗ = α2 − tr

(
(K + σ2

εI)
−1Q̃

)
+ βT Q̃β − μ2

∗

q = [q1, . . . , qn]T , qi = α2|ΣΛ−1 + I|− 1
2 exp

(
−1

2
(ỹi − μ)T (Σ + Λ)−1(ỹi − μ)

)

and Q̃ is a n × n matrix with entries

Q̃ij =
k(ỹi, μ)k(ỹj , μ)
|2ΣΛ−1 + I| 1

2
exp

(
(ρ̃ij − μ)T (Σ +

1
2
Λ)−1ΣΛ−1(ρ̃ij − μ)

)

and ρ̃ij = 1
2 (ỹi + ỹj). The above results of scalar input can be easily extended

to multivariate case, so we omit it here.
One drawback of GP is its computational complexity. If the data set is large,

the training and predicting processes will be slow and unsuitable for real appli-
cations. We discretize the input space into non-overlapping equal-sized cells,
and each cell can store at most one data [19]. In this way, the stored data are
naturally separated and a sparse training set is obtained.

3.2 Return Evaluation

The driving controller π is specified to a linear controller with saturation

ut = π(zt) = umaxsat(wzt + b) (5)

where the saturation function is defined by sat(a) = 1
8 (9 sin(a) + sin(3a)). umax

indicates the maximum command values. For simplicity, we denote p = {w,b}.
With the controller structure in (5), it is feasible to compute mean and vari-

ance of control variables ut with a Gaussian distributed input zt. Similarly, the
probability of control variables is approximated by Gaussian with the calculated
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mean and variance. If we split the distribution of dynamical variables yt from zt

and combine with action ut, the Gaussian distribution of input ỹt = [yT
t ,uT

t ]T

is known. With the trained GP model, the probability of next-step xt+1 is pre-
dicted. Combined with the cost function given in (1), the expected cost of zt+1

is analyzed by E[ct+1] =
∫

c(zt+1)p(zt+1)dzt+1 if we further specify the desired
velocity v′

t+1.
The above process can be repeated for the next (T − 1) steps. Given road

curvatures κt, . . . , κt+T and desired velocities v′
t, . . . , v

′
t+T , the distributions of

xt+1, . . . ,xt+T and the corresponding costs are calculated. The estimated return
of a starting state xt under the current controller is analyzed and is related to
the controller parameters p in the form J =

∑t+T
k=t+1 E[c(zk)] ∝ p.

3.3 Policy Gradient Search

With the analytic solution of J , we calculate the gradient of J towards the
controller parameters p. Then policy gradient search is followed to adjust p to
minimize J . However, computing J needs not only a starting state xt, but also
external variables κt+1, . . . , κt+T and v′

t+1, . . . , v
′
t+T . We define multiple scenar-

ios with different starting states x and different κ, v′ for policy gradient search
in order to gain comprehensive performance. Once the gradient is calculated, p
can be trained by many optimization methods to minimize J .

4 RL Experiment Results

Now we apply the modified PILCO algorithm in TORCS. The track we used for
learning is CG Track 3 and it is marked by lane lines to mimic real-world roads
with one lane as illustrated in Fig. 1. The slowdown deceleration ab selects 2m/s2.
The discrete-time step selects 0.1 s. The Gaussian noise ε of the observed xt sat-
isfies ε ∼ N (0, Σε), where Σε = diag([0.01, 0.01, 1.5]2). The bounds of control
actions are umax = [1, 1]T . The width b in cost function selects 0.4. The impor-
tance weights are set to ωd = 1, ωa = 1, ωv = 400. When computing the gradient
dJ/dp with GP model, the future steps T choose 30. To store GP training data,
each dimension is divided by 20 between its lower and upper bounds according
to experimental experience. 7 scenarios are defined for calculating the gradient,
including straight cases and turning cases with different velocities, deviation
distances, and curvatures.

After 6 trials, the controller is able to complete the track and the learning
stops. Trajectories of states and actions using the final learned controller are
plotted in Fig. 2. For comparison, the desired velocity is also plotted along with
the real velocity. Small deviations only occur at the moment when the road
changes from one segment to another. And the deviations are regulated in a
short time.
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Fig. 2. Trajectories of states and actions using the final learned controller by modified
PILCO. The blue solid line in figure ‘v’ represents the car’s velocity, while the red
dash-dot line represents the desired velocity. (Color figure online)

5 Perceive Driving Data from Images by DL

In the above section, we learn a driving controller with the full access to state
variables provided by TORCS engine. As mentioned above, these data can be
perceived from the driver’s view, except the car velocity that is known to the
car. Inspired by the work of [3], in this section we use a CNN to predict the
driving data from images.

First we let a human player drive the car, and store images and driving data
every 0.1 s. The images are directly captured from the first-person view with
the size of 3 × 210 × 280 (RGB). The driving data include deviation distance,
deviation angle, road curvature, and desired velocity. To increase the diversity of
data set and improve the generalization of network, the car is driven on different
tracks with different backgrounds and lanes. At last we collect a total of 53139
images and driving data as the train set and 10699 images and driving data as
the test set.

The network uses the same architecture given in [6], except the output layer
is adjusted to suit our needs. To speed up the learning process, we use the results
of [6] to initialize the network weights. The network is trained using stochastic
gradient descent with a batch size of 64, a momentum of 0.9, and a weight decay
of 0.0005. The learning rate is initialized to 0.01 and is dropped by a factor of
0.9 every 8000 steps.
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Network is trained for a maximum of 100000 iterations. The curves of train
loss and test loss are depicted in Fig. 3. The loss curves drop dramatically once
the network starts training. That is because [6] has trained the network on a
large data set of real-world images, and we use their results to initialize our
network. The shallow layers have already had a high level of feature extraction.
With more iterations, the train loss vibrates occasionally but the test loss keeps
dropping slightly. The prediction performance of the trained CNN is illustrated
in the next section where we combine the network with the driving controller.
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Fig. 3. Loss curves of CNN along iterations.

6 Combination of RL and DL in TORCS

Now we combine the visual perception trained by DL with the controller learned
by RL, and apply them in TORCS to drive on the track of CG track 3 2. CNN
outputs are plotted in Fig. 4. For comparison, the ground-truth values are pre-
sented in the same figures. The predictions generally match the true values. But
it is noted that the curves are not as smooth as those produced by the controller
with the full access to driving data in Fig. 2. Some noticeable vibrations occur in
d and a. This phenomenon is caused by CNN errors. There are small differences
between the predicted values and the true values. Prediction errors disturb the
controller to output right commands, and sometimes even make the car move to
the opposite directions. Fortunately the prediction errors are small, so the car
will not leave the track in spite of occasionally inaccurate commands.

2 Video results are available in https://www.youtube.com/watch?v=hUpuE7qL5NQ.

https://www.youtube.com/watch?v=hUpuE7qL5NQ
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Fig. 4. Trajectories of predicted and true values in TORCS by vision-based robot.
The black thin lines indicate the predicted values by CNN, while the green thick lines
indicate the true values. (Color figure online)

7 Conclusion

In this paper, we first use a modified PILCO algorithm to learn a driving con-
troller with full access to the TORCS engine. The algorithm learns a satisfactory
controller with just several trials. Then we train a CNN to perceive driving data
from images of first-person view in a supervised learning manner. After com-
bining the two parts together, we get a vision-based robot for TORCS. It takes
images and car’s velocity as input, and drives the car well on the road.
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Abstract. Financial time series prediction and stock trading strategy
have always been the focus of research due to the generous returns. Stock
box theory is a classic investment strategy, which has been studied by
investors and scholars for many years. In this paper, we propose an adap-
tive box-normalization (ABN) stock trading strategy based on reinforce-
ment learning (RL), which improves the original box theory. In our ABN
strategy, the stock market data is independently normalized inside each
oscillation box. Given the data of each box, support vector regression
(SVR) is applied to predict the maximum rise range and maximum fall
range within a certain period in the future. Meanwhile, the genetic algo-
rithm (GA) is employed to optimize the input features of SVR via the
mean square error (MSE) of prediction. We construct the trading strate-
gies by Q-learning for the trading of single-stock and two-stock portfolio.
Finally, the trigger threshold of oscillation box is dynamically adjusted
according to the volatility of the stock price. Extensive experiments sup-
port that our proposed strategy performs well on different stock indices
and achieves promising results.

Keywords: Stock prediction · Box theory · Reinforcement learning
Genetic algorithm · Asset allocation · Quantitative trading

1 Introduction

Stock market prediction has been an important issue in the fields of finance,
engineering and mathematics due to its potential financial gain. There has been
so much work done on ways to predict stock price [1,6]. With the great advance-
ment of computer science, many recent works have utilized machine learning
methods, such as neural networks (NN) [7], Bayesian approach [9] and support
vector machine (SVM) [14], to analyze financial time series. Most work can gen-
erally be divided into two purposes. One is to forecast the future trend or exact
price of stocks [5]. Another is to construct a special quantitative trading strategy
with certain signals produced from other models [3].
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Stock box theory is a classical quantitative trading strategy. It was first
proposed in [11] and has been verified in the real stock market for many years.
Afterwards, scholars carried out a lot of research about the box theory. Wen
proposed an intelligent trading system by combining stock box theory and SVR
[15]. Two SVR estimators are first utilized to make forecasts of the upper bound
and lower bound of the oscillation box. Then a trading strategy based on the two
bound forecasts is constructed to make trading decisions. With the development
of deep learning, Zhu employed deep belief networks (DBN) to predict the upper
and lower bounds of the oscillation box [17]. Lately, Zhang proposed a new status
box method to predict stock trends [16]. The status box packages some stock
points into three categories of boxes: up box, down box and flat box, which
indicates different stock status. Then the specific trading strategy is formulated
according to the status of these boxes.

It is worth mentioning that in the study of stock box theory, stock data is
usually normalized globally in the time range of testing. But in terms of a specific
box, the data range outside the box has slight effect on the prediction results.
What’s more, because of inflation or economic development, the price of stock
index is rising year by year, which leads to a larger range of the stock data, and
the price may break through the highest critical value in the real market. As a
result, the data beyond the critical value can not be predicted well by predic-
tion models. It brings difficulties to the prediction and practical application of
box theory. In addition, the traditional box theory usually adopts fixed trigger
threshold to produce trading signals. But when the box moving forward along
time, the trigger threshold of the box is sensitive to different market conditions,
which will lead to obvious differences in the results of transaction. Finally, differ-
ent types of box trading strategies are usually made artificially. Many attempts
and parameter debugging are needed, which takes up a lot of time.

To solve the problem above, We propose an adaptive box-normalization
(ABN) stock index trading strategy, which generates trading strategy intelli-
gently through reinforcement learning (RL). Different from the traditional box
theory, we present a box-normalization method in each oscillation box, so that
the prediction model, support vector regression (SVR), can pay more attention
to the pattern and trend inside the box body. At the same time, we adjust the
forecast targets to the maximum rise range (MRR) and maximum fall range
(MFR) in the future time range. In the selection of indicators, we apply the
genetic algorithm (GA) to optimize the input features of SVR. After determin-
ing the basic parameters of prediction model, we utilize Q-learning to generate
the transaction strategy automatically based on the definition of the state of
oscillation box, including the single-stock transaction and the asset allocation
of two stock indices. Finally, we dynamically adjust the trigger threshold of the
box according to the current volatility of price, so that the box can adapt to
the market condition. Our ABN framework is proved to be effective on various
stock indices and achieves spectacular returns. Some experiments are illustrated
in this paper.
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The remainder of this paper is structured as follows. In Sect. 2, we briefly
review related work in stock box theory and RL. In Sect. 3, we describe the
architecture and detailed design of the framework. Then the experiments and
the corresponding analysis are shown in Sect. 4. Finally, some concluding remarks
are drawn in Sect. 5.

2 Related Work

2.1 Stock Box Theory

The stock box theory is a powerful tool in quantitative investment. The basic
idea of the stock box theory is that the stock price is supposed generally oscillates
within a certain period of time, which is called oscillation box. The price will
fall when it is close to the upper bound of the box and will rise when it close
to the lower bound of the box. The essence of box theory is when the stock
price effectively breaks the upper bound or the lower bound of the price box, the
price will enter another oscillation box. It means the price will start an upward
or downward trend in another box, so it is the high time to buy or sell the
stock. However, the application of box theory is usually based on experience of
investors. The difficulties are the way to identify the price box and how to make
corresponding strategies according to the state of oscillation box.

Wen proposed an automatic decision support system combining box theory
and SVR [15]. The SVR was used to make forecasts of the top and bottom of the
oscillation box. Then the trading strategy based on box theory was constructed
to make trading decisions. They investigated the performance of supposed sys-
tem on individual stocks with different movement patterns. The experimental
results showed a promising performance. In [17], researchers attempted to apply
DBN to forecast the upper and lower bounds of the oscillating box and achieved
promising results. In [16], stock data points were packaged in some successive
status boxes based on the duration and oscillation of the initial turning points.
These status boxes were classified into three categories: up box, down box and
flat box, which represent the stock quotation being in the rising trend, falling
trend and steady state in different time interval respectively.

2.2 Stock Trading Strategy Based on RL

RL is often employed to train the quantitative trading models. Common prac-
tices of RL include determining trading strategies and asset allocation strategies.
However, stock investment is not a suitable application scenario for RL because
investors’ behavior will not affect the stock market and will not directly lead
to the transfer of states. Researchers usually take two options to address this
situation. One solution is to combine the states of asset with market conditions
as an integral state of RL. In [10], the asset allocation strategy optimized with
Q-learning is shown to be equivalent to a policy computed by dynamic pro-
gramming. The approach is then tested on the task to invest liquid capital in
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the German stock market. In [8], a new stock trading method that incorporates
dynamic asset allocation in a RL framework was presented. They utilized the
temporal information from both stock recommendations and the ratio of the
stock fund over the asset. Experimental results using the Korean stock mar-
ket showed that the proposed method outperformed other fixed asset-allocation
strategies. An alternative is to maximize only the immediate reward for each
individual state. We only need a method to assign the best action to a specific
situation. In [4], a decision support algorithm which used RL in order to improve
the economic benefits of the basic seasonality strategy was proposed. Their states
of RL included only the stock market situations and they only maximized the
profit of each order to build their final strategy. In [13], researchers considered
a two-asset personal retirement portfolio and proposed several RL agents for
trading portfolio assets. They didn’t take assets into the consideration of states
as well.

3 Architecture of ABN Framework

The architecture of the ABN framework is first briefly outlined in this section.
The block diagram of the framework is shown in Fig. 1. First, stock index data
and various technical indicator data is normalized in each certain box, then the
normalized box data is used as input features for SVR model to predict the
MRR and MFR in the future period of time. At the same time, we apply GA
to optimize the input features of SVR. Then, we design the states, actions and
Reward of Q-learning according to the value and trend of MRR, and train the
final trading strategy. Accordingly, the values of MFR are considered as stop
loss signals for transactions. Finally, according to the volatility of stock price,
we dynamically adjust the trigger threshold of the box to adapt to different
market conditions.

Fig. 1. The block diagram of ABN framework

3.1 Predict MRR and MFR with SVR

In the process of moving forward the oscillation box along time, the continuous
price data and technical indicator data are normalized in each oscillation box,
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as shown in Fig. 2. The width of the box is identified as N , and the prediction
time range is defined as M . The prediction values are MRR and MFR in the
future M days. In this way of data preprocessing, we reorganize the input data
of the prediction model in each box units.

Fig. 2. Schematic diagram of box-normalization method

SVR is employed as the prediction model in our box-normalization method.
SVR performs linear regression in the high dimension feature space using ε -
insensitivity loss. At the same time, SVR strives to reduce model complexity by
minimizing ||ω||2. This can be described by introducing slack variables ξi and
ξ∗
i , where i = 1, ...n, to measure the deviation of training sample outside ε -

sensitive zone.
1
2
||ω||2 + C

n∑

i=1

(ξi + ξ∗
i ) (1)

min

⎧
⎪⎨

⎪⎩

yi − f(xi, ω) ≤ ε + ξ∗
i

f(xi, ω) − yi ≤ ε + ξi

ξi, ξ
∗
i ≥ 0, i = 1...n

(2)

This optimization problem can transform into the dual problem and solution is
given by

f(x) =
nsv∑

i=1

(αi − α∗
i )K(xi, x) (3)

Subject to 0 ≤ α∗
i ≤ C, 0 ≤ αi ≤ C

Where nsv is the number of support vectors and K is the kernel function.
In order to prevent overfitting and enhance the generalization ability of the
prediction model, we apply k-fold cross validation approach and grid search to
optimize the meta-parameters C and g of SVR.
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3.2 Optimize Input Feature with GA

The data in each oscillation box contains stock market data and technical indi-
cator data. Research demonstrated that the technical indicators can improve
the accuracy of the stock forecasts compared to that made with the original
series of closing prices [12]. In many studies of stock price prediction, the choice
of technical indicators is often based on the investment experience. There is no
well-perform method that can measure the impact of various technical indicators
on the forecast results. For this reason, we utilize GA to select suitable features
in common-use indicators to minimize the prediction mean square error (MSE)
of SVR. In our GA, the fitness function is defined as:

J = −log(PMSE) (4)

In our study, the candidate technical indicators are listed in Table 1:

Table 1. Candidate indicators

Indicator Description Indicator Description

Open price Daily open price Close price Daily close price

High price Daily highest price Low price Daily lowest price

Volume Daily turnover of stock MACD Moving average convergence
and divergence

MA6 6-day moving average MA12 12-day moving average

RSI6 6-day relative strength
index

RSI12 12-day relative strength
index

K Stochastic index K D Stochastic index D

The chromosomes of GA are represented in binary code, and the structure of
chromosome is shown in Fig. 3. Each bit represents one indicator. When the value
of the gene is 1, the corresponding indicator is selected into the feature subset.
Otherwise, the feature subset doesn’t contain that corresponding indicator. We
adopt roulette wheel selection method to choose the better father chromosomes.
In the first step of our GA, we randomly generate a pre-defined number of
chromosomes in the population of 20. The crossover rate and mutation rate are
set at 0.9 and 0.1, respectively. The iteration of generations is limited at 20.

Fig. 3. Representation of chromosomes
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3.3 Construct Trading Strategy Based on RL

After determining the definition of oscillation box and the parameters of SVR, a
completed trading strategy should be constructed. Instead of designing trading
algorithm artificially based on experience, we apply Q-learning to automatically
construct trading strategy according to the states of oscillation box. RL empha-
sizes learning the best investment decision through trial and error. The essence
of RL is the design of states, actions, and the selection of reward. In our research,
the states of Q-learning are divided according to the characteristics of MRR pre-
dicted through each oscillation box. The tree structure in Fig. 4 shows our design
of states.

Fig. 4. State binary tree of Q-learning

In the figure above, θ is regarded as the threshold of MRR to provide impor-
tant signals for the buying or selling points of the trading strategy. It is an
important judgment for future trends from the pattern of box data. d(MRR)

dt
is

the slope of MRR, which indicates consistent information about the future trend
forecasting through the continuous box. ‘Hold’ indicates whether investors hold
the stock index. The states of the oscillation box will transform only when the
above three signals change. Therefore, the time that each state maintains during
the movement of the oscillation box is uncertain.

The Q-learning of our design includes only three kinds of actions, buy, sell
and sit. And only one share of stock index is traded at a time. The profit of the
transaction is taken as the reward of our Q-learning. We always maximize only
the immediate reward for each state in this trading example. As a result, the
reward of each state will be maximized at the end of training.

As for the portfolio of two different stock indices, we extend a branch on
the original state tree for each MRR of two indices. The actions of Q-learning
change to the ratio of asset allocated to the two indices, exactly 0:0, 1:0, 0:1 and
1:1, while reward remains the same.

4 Experiment

In the hope of testing the feasibility of our ABN trading strategy, several typical
experiments are implemented in this Section. Further more, the implementation
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platform is carried out via LibSVM expected to construct SVR models [2]. The
basic experiments are developed on the S&P 500 Index ETF (SPY) data from
1993 to 2013, 80% as the training set and 20% as the test set.

4.1 Experiments with Constant Trigger Threshold of Box

In this section, we set the width of box to a fixed value and discuss the case of
our ABN strategy when N is 10. First of all, in order to highlight the advantages
of our box-normalization method, we compare it with the global normalization
in the prediction stage. Figure 5 illustrates the regression effects of different nor-
malization modes intuitively. In Fig. 5(a), when the training set and the test set
are normalized as a whole, the data in the test set may exceed the critical value
of the training set, which is very common in the stock market. This will cause
the predictions fail to fit the data in the test set. As shown in Fig. 5(b), nor-
malizing the training set and test set separately can improve this situation. But
in practical applications, it is difficult to determine the normalization range of
data in any time frame. Different time ranges will lead to different levels of data
stretching, causing large deviations in continuous data. The box-normalization
method can effectively avoid the occurrence of these two problem. As shown in
Fig. 5(c), the box-normalization method only focuses on the data in the box to
predict the future trend, and does not require other data assistance.

(a) (b) (c)

Fig. 5. Different methods of data normalization

The input features of SVR are optimized with different values of M. We count
the number of times that different indicators are selected by GA. The results
show that high price, close price, RSI6 and MACD are more important to the
prediction of MSE than other indicators. So we use them as fixed input features
of SVR in other experiments.

At the beginning of Q-learning, we set the random parameter γ to 100%,
so that the selection of action in each state is completely random. During the
training process, the γ gradually decrease to 10% with the number of iterations.
We test the training situation when N = 10,M = 10, θ = 0.02. As shown in
Fig. 6(a), the y-axis shows the total returns at the end of the transaction and the
x-axis shows the number of learning iterations. After 100 iterations, the number
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of total returns during the transaction tends to be stable and converges to a
relatively large value. It indicates that the state-action pairs in the Q table are
basically determined. Since there is still 10% randomness in trading simulation,
it will have an indeterminate effect on the subsequent states and transaction
results.

We use the trading strategy trained by Q-learning to conduct trading sim-
ulations on the training set and the test set. The results of the transaction are
shown in Fig. 6(b) and (c). Our strategy earns significantly higher returns than a
simple buy-and-hold strategy. In addition, the effect of parameter θ in the train-
ing set and test set on the final returns is shown in Fig. 6(d). It can be observed
that the optimal values of θ in the training set and the test set are approximately
the same, so we can determine the optimal value of θ in the training set without
worrying about overfitting problem.

(a) (b)

(c) (d)

Fig. 6. Construct one-stock strategy by Q-learning

In the asset allocation problem of two stock indices, we collected market
data from different industries in the United States from the year 1999 to 2018 to
conduct our experiments. Figure 7(a) shows the price curves of the two indexes.
Figure 7(b) and (c) show the returns of the strategy conducted on the training set
and test set, where the strategy is learned using Q-learning. The y-axis represents
the returns of the stock portfolio. Our strategy achieves promising returns on
training sets and test sets.

The returns of different stock portfolios on the test set are listed in Table 2.
In the table, we illustrate the description of the two stock indices, returns of each
index, returns of equal asset for two indices, and the returns of our strategy. It
can be noted that our strategy can achieve higher returns than holding two stock
indices equally.
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(a) (b) (c)

Fig. 7. Results of two-stock strategy

Table 2. Results on two-stock trading simulation

Portfolio Description Returns
of XLE

Returns of
index2

Average
returns

Returns
of ABN

XLE&XLF Energy&Financials −14.8% 30.9% 8.05% 45.1%

XLE&XLY Energy&Cyclicals −14.8% 59.5% 22.3% 31.9%

XLE&XLK Energy&Technology −14.8% 92.4% 38.8% 81.1%

XLE&XLV Energy&Health −14.8% 53.1% 19.1% 39.4%

4.2 Experiments with Adaptive Trigger

Prior to the improvement of the adaptive box strategy, we experimented with
the best value of N for predicting different time ranges M on the training set,
so as to minimize the MSE of the MRR within the predicted M days. And for
different M values, trading simulations are carried out. The results are shown in
Table 3. When the value of M is 10, the returns on SPY index reach the largest.

Table 3. Results on different values of M

Predict time
range M

2 4 6 8 10 12 14 16 18 20

Optimal N 14 16 14 12 12 12 12 12 12 12

MSE (10−4) 1.77 2.41 3.06 3.63 4.12 4.59 5.13 5.72 6.35 6.95

Returns (%) 218.4 226.6 217.8 238.9 244.2 240.6 233.0 214.7 209.1 204.1

The volatility of the stock price is calculated in a quarterly cycle, and the
volatility is expressed by the mean square deviation of price data. The change in
the volatility of SPY is shown in Fig. 8(a). Usually, when the volatility of stock
price is large, a more frequent trading strategy should be adopted. Conversely, in
the case of a relatively stable stock price, take a low-frequency trading strategy.
So when the volatility of stock price is lower than 0.02, we make the trigger
threshold θ of oscillating box 0.17; when the volatility is higher than 0.02, θ
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takes 0.14. Figure 8(b) shows the capital curve for our ABN strategy tested on
SPY. The purple line in the figure is the return of the classic dual moving average
(DMA) strategy. Our strategy gains significantly higher returns than the DMA
strategy.

(a) (b)

Fig. 8. Stock volatility and ABN trading simulation

Finally, we use the forecasted MFR value to determine stop loss and reduce
the drawdown of capital during the transaction. When MFR is less than a spec-
ified threshold, if the index is held, it will be sold immediately. We utilize the
final ABN strategy to conduct trading simulation on multiple stock indices, and
the results are shown in Table 4. It demonstrates whether it is a single-stock or
two-stock index transaction, our strategy can obtain relatively high returns.

Table 4. Trading simulations on other indices use ABN strategy

Index Return of
Buy&Hold

Return of
ABN strategy

Portfolio Average
return

Return of
ABN strategy

QQQ 265.4% 335.4% XLE&XLF 8.05% 56.7%

SMH 196.2% 368.0% XLE&XLY 22.3% 47.6%

EFA 119.6% 298.9% XLE&XLK 38.8% 90.7%

IWM 231.4% 366.5% XLE&XLF 19.1% 66.0%

5 Conclusion

In this paper, we improve the classic stock box theory and propose an ABN stock
trading strategy. Compared with the global normalization method, our box nor-
malization method illustrates better results for MRR and MFR predictions. After
optimizing the input features of SVR by GA, we utilize Q-learning to construct
trading strategies, including the strategy of single-stock and two-stock portfolio.
After establishing the basic architecture of our strategy, we dynamically adjust
the width of oscillation box based on the volatility of stock price. Finally, our
ABN strategy can obtain generous returns in the trading of single-stock and
two-stock portfolio.
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Abstract. Using advanced deep learning methods, artificial intelligence
is able to achieve unprecedented high performance in playing complex
board games. However, in conventional practice, models for different
games require separate training with domain-specific datasets, which is
not conducive to enable the full use of the correlation between tasks
and may cause unnecessary consumption of computing resources. This
paper presents a novel multi-task learning framework for the training
of deep-convolutional-neural-network-based evaluation functions for two
heterogeneous but related games – chess and shogi. Experimental results
show that the application of the proposed framework improved the pre-
diction accuracy for both networks with limited training steps.

Keywords: Neural networks · Multi-task learning · Computer chess

1 Introduction

For many years, researchers have been committed to developing and improving
artificial intelligence techniques for popular board games including chess, shogi
(a Japanese chess game) and Go. Modern game-playing programs are commonly
driven by an elaborated game tree search algorithm with a high-accuracy eval-
uation function, which is the main learning objective of this paper.

In early studies, evaluation functions were simply linear combinations of
hand-crafted features. With the development of computing devices and machine
learning techniques, accurate evaluation functions composed of deep neural net-
works have been introduced into game programming and achieved great success.
Through the training with millions of self-play games, deep-convolutional-neural-
network-based (DCNN-based) computer programs have already been proven to
be capable of beating the best human players in the world [1].

However, the application of deep neural networks also introduces huge train-
ing time and computational costs. It is a common practice to conduct training
processes for different networks individually, but this is not always the opti-
mal approach. When high-performance networks are required for solving related
c© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11303, pp. 347–358, 2018.
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tasks in multiple domains, the training costs increase at least linearly along with
the increasing number of tasks. A feasible solution to control training costs while
improving evaluation accuracy is to apply joint learning to evaluation functions
to fully exploit the inner relationship among multiple games. Through this type
of training, knowledge and expertise can be directly exchanged via common fea-
tures, while the over-fitting problem of deep networks can be further alleviated.

In this context, we present a novel multi-task learning framework, where two
DCNN-based evaluation functions for chess and shogi share a part of convolu-
tional layers and are trained simultaneously. Experimental results demonstrate
that the proposed framework improves the prediction accuracy for both networks
compared with those trained individually.

2 Related Work

2.1 Neural Networks and Board Games

In recent studies, the terms “value network” and “policy network” have been
used to denote neural-network-based (NN-based) evaluation and move prediction
functions, respectively. The value network is trained to predict the winner of a
specific game position, and the policy network learns to predict an expert move
in supervised learning or a self-play move in reinforcement learning. The two
networks together constitute the core of modern game-playing programs.

Silver et al. demonstrated through the success of AlphaGo [2] that the intro-
duction of DCNN-based policy networks is beneficial for implementing a high-
quality game simulation, and that of value networks is beneficial for acquiring a
more consistent and comprehensive understanding towards every single position
in Go. In their later studies of AlphaGo Zero [1] and AlphaZero [3], parameters
of the two networks were incorporated into a jointly trained multi-task model
and succeeded in achieving a higher prediction accuracy in less training time.

There have also been many other valuable studies focused on applying neural
networks to board games. Lai developed the chess program Giraffe [4] using a
modified version of the TD-Leaf(λ) algorithm [5] and NN-based evaluation
functions, and David et al. trained a multi-layer perceptron network in their
DeepChess [6] program to select the better of two candidate positions. However,
to the best of our knowledge, the current studies on board games have progressed
independently, and no successful multi-game learning is available for reference.

Among the widely known board games, chess shares many key elements in
definitions and playing rules with its variants, which suggests that their evalua-
tion/prediction functions share common knowledge, and conducting joint train-
ing could potentially lead to positive effects in both functions. Moreover, consid-
ering that evaluation functions directly determine the quality of search results
and have a uniform output format to enable more common features to be shared,
we present a cross-domain multi-task learning framework for training the evalu-
ation functions (value networks) for chess and shogi, and conducted preliminary
experiments to examine the effectiveness of the proposed framework.



Heterogeneous Multi-task Learning of Evaluation Functions 349

2.2 Uniformity Regularization

The uniformity regularization (UR) network was originally proposed in our pre-
vious work [7] for improving the prediction accuracy of evaluation functions,
while in this paper, an extended version of the method is applied to a novel
joint learning framework, and is essential for extracting common features from
multiple games.

On the basis of a plain value network composed of a DCNN-based feature
extractor and a fully connected output layer, UR essentially adds another output
layer that shares the same feature extractor, as shown in Fig. 1. The original out-
put layer is trained to give an evaluation score towards a certain position, while
the newly added layer is trained to discriminate if two successive positions form a
transition caused by an expert move. Then, through a uniformity regularization
loss applied to the output values of the discriminator, both the extracted features
and the evaluation scores of the value network can be regularized simultaneously.

In this paper, we also adopted this basic network structure and extended
the uniformity regularization loss to enable it to facilitate extracting common
features from multiple task domains.

Fig. 1. Value network with uniformity regularization

2.3 Multi-task Learning

According to the format of input data, multi-task learning (MTL) tasks can be
classified into homogeneous and heterogeneous tasks.

The training and test data in homogeneous MTL have a uniform feature
domain, and may be processed by multiple feature extractors or output layers
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to solve multiple tasks. Past experience shows that applying homogeneous MTL
can be advantageous in terms of predictive performance relative to learning these
tasks independently [8]. All the methods adopted in AlphaGo Zero [1], Alpha
Zero [3] and the original UR network [7] are classified as homogeneous MTL.

The data in heterogeneous MTL may originate from various task domains,
with significantly varied feature representations. Usually, without an appropri-
ate feature transfer, the predictive performance improved through joint learn-
ing is negligible or negative, even though there are strong correlations between
the tasks themselves. This presents a challenge for researchers conducting MTL
among different games.

3 Learning Framework

3.1 Data Representation

We utilized the design of DCNNs in Alpha Zero [3]. Training positions in chess
and shogi are randomly selected from preset game records and encoded as 13-
channel and 43-channel images, respectively. Each of the first 12 and 28 channels
corresponds to a type of piece. All pixels are set as 0 by default. For each grid that
contains a piece, the corresponding pixel of that channel is set as 1, otherwise.
The 29th to 42nd channels in shogi data represent prisoner pieces. The 13th and
the 43rd channels in the two types of data denote the next player to move.

Since the two games have different board sizes, to unify the dimensions of
intermediate-level feature maps, 1 extra row and 1 extra column with blank data
are inserted into the left and the bottom borders of the chess board, respectively.
Thus, the image size in every channel of input data is always 9 × 9.

3.2 Network Architecture

As shown in Fig. 2, the networks for chess and shogi share an identical design.
Both networks accept a multi-channel image as input, automatically extract
features through 32 standard convolutional residual layers [9] and a global aver-
age pooling layer, and output move discrimination or position evaluation results
through local and joint discriminators and value networks, which are made up
of a fully-connected layer. All hidden layers are activated by rectified linear unit
functions. The output of the local and joint discriminators is constrained into
the range [−1, 1] by a tanh(x), while no constraint is applied to the output of
the value networks.

All the 32 convolutional layers are equally divided into 3 main stages – low-
level, intermediate-level and high-level feature extraction. We let the parameters
of the intermediate layers be shared by the two networks, ensuring common
features can be effectively exchanged.

In this paper, we defined 3 types of experimental models, the details about
their network architectures are listed in Table 1.
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Fig. 2. Multi-task learning framework for chess and shogi

3.3 Learning Objectives

Training data are randomly sampled from game records and pre-processed, so
that every instance in the training dataset contains a quadruple 〈x, y, r, p〉. x
is a game position randomly selected from the game records. y and r are the
subsequent positions after a recorded move (e.g., an expert move in supervised
training) and a random but legal move respectively. p represents the player to
move at the turn of position x, where p = 1 and −1 for the first and the second
player, respectively.

Network models for chess and shogi share identical architecture and objec-
tive functions, and are trained simultaneously by using the same momentum
optimizers. We also attempted to train all parameters alternatively by using
multiple optimizers in previous experiments, in which high-speed training could
be temporarily realized – top-1 accuracy increased over 0.27% and 0.41% with
100 million training instances in chess and shogi, respectively – but the model
eventually converged to a relatively poor accuracy due to unstable gradients and
the abuse of duplicate data.

The learning objectives for each game are defined as follows.
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Overall Objective. The network parameters for all games are simultaneously
optimized according to an integrated objective function JMTL(θ).

JMTL(θ) =Jchess
V (θ) + Jchess

D (θ) + Jchess
UR (θ) + Jchess

JD (θ) + Jchess
JUR (θ)

+ J shogi
V (θ) + J shogi

D (θ) + J shogi
UR (θ) + J shogi

JD (θ) + J shogi
JUR (θ),

(1)

where θ denote the network parameters to be optimized, JV(θ), JD(θ) and JUR(θ)
are the loss functions for the value network, the local discriminator network, and
the local uniformity regularizer, respectively. JJD(θ) is for the joint discriminator
added to the output of the convolutional layers shared between the two games,
and JJUR(θ) is its corresponding regularization term.

Value Network. The loss function of value networks is defined as the following.
All value networks are separately trained for different games with independent
parameters.

JV(θ) =
1
n

n∑

i=1

σ(pi(V(ri) − V(yi))), (2)

where σ(x) = 1/(1 + exp (−x)) is the sigmoid function, n is the batch size of
training data, and pi represents the player to move in the ith instance. Equa-
tion (2) is based on the objective function in the training of the evaluation
function of the shogi program Bonanza [10], which won first place at the World
Computer Shogi Championship in 2006 and 2013. This function encourages that
the value of the position after an expert move V(yi) should be better than that
after a random move V(ri). This function is also used in comparison training in
chess [11].

Discriminator (Local). The loss function of the discriminator network is
defined as the difference between the certainty of a move played in a real game
record y and that of a random move r at position x. A local discriminator has
its independent parameters, and is trained exclusively for only one game.

JD(θ) =
1
n

n∑

i=1

[D(〈xi, yi〉) − D(〈xi, ri〉)) − 2]2, (3)

where 〈xi, yi, ri〉 represents the ith instance in that batch. The minimization of
Eq. (3) encourages D(〈xi, yi〉) to be 1 and D(〈xi, ri〉)) to be −1.

Discriminator (Joint). Besides the local discriminator, there is a newly added
joint discriminator (JD) for regularizing the output of the shared convolutional
layers, which also adopts Eq. (3) as its objective function. Different with local
discriminators, the output of the joint discriminator is denoted as JD(x). JD
processes different data in the two games with the same network parameters.
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Uniformity Regularizer (Local). The loss function of the local uniformity
regularizer for each game is defined based on reducing the difference in the
output results of the local discriminator network. Local uniformity regularizes
are trained separately for each game, without shared parameters.

JUR(θ) =
1
n

n∑

i=1

[(D(〈xi, yi〉) − D(〈X,Y〉))2

+ (D(〈xi, ri〉) − D(〈X,R〉))2],
(4)

where 〈X,Y〉 and 〈X,R〉 denote 2 sets of moves that contain all expert and
random moves trained in past training steps. D(〈X,Y〉) and D(〈X,R〉) are the
exponential moving average (with an initial value 0 and a decrease coefficient
α = 0.999 in this paper) of the discriminator’s output with respect to expert
and random moves, respectively. Equation (4) is a stable version of the origi-
nal UR [7]. Since all instances in training batches have been randomly shuffled
in advance, Eq. (4) is equivalent to measuring and minimizing the difference
between the discrimination results of two randomly sampled positive (negative)
samples, aiming to reduce the variance of discrimination results and maintain
the consistency of extracted features.

Uniformity Regularizer (Joint). The loss function the joint uniformity reg-
ularizer (JUR) is basically identical to its local version, but its parameters are
shared with networks for both games. The learning objective of the JUR is to
indirectly unify all extracted intermediate-level features in different games by
regularizing the discrimination results of the JD.

JJUR(θ) =
1
n

n∑

i=1

[(JD(〈xi, yi〉) − JD(〈X,Y〉))2

+ (JD(〈xi, ri〉) − JD(〈X,R〉))2],
(5)

where JD(〈X,Y〉) and JD(〈X,R〉) are 2 exponential moving average values
of the joint discriminator’s output with respect to expert and random moves
recently trained, as defined in Eq. (4).

In heterogeneous MTL, feature representations can hardly be efficiently uni-
fied by simply sharing the network parameters. To solve this problem, we apply
Eq. (5) to enable the features extracted in previous convolutional layers to be
uniformly discriminated no matter what game they come from, which aims to
shorten the distance between different feature spaces.

4 Experiments

4.1 Datasets

We collected 783,129 games from the computer chess database CCRL 40/401 on
January 14, 2018 and 868,161 games from the computer shogi server Floodgate2

1 http://www.computerchess.org.uk/ccrl/4040.
2 http://wdoor.c.u-tokyo.ac.jp/shogi/index-e.html.

http://www.computerchess.org.uk/ccrl/4040
http://wdoor.c.u-tokyo.ac.jp/shogi/index-e.html
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on December 31, 2017. In total, 750,000 game records were randomly selected
from each database and pre-processed for training, and the remaining were used
for testing. Only moves made by the winner were adopted in the training and
testing datasets. All positions in the datasets were randomly shuffled in advance.

4.2 Training Configurations

Experimental models were trained in 4 processes on a single machine with two
NVIDIA 1080Ti GPUs. A stochastic gradient descent optimizer with a momen-
tum rate of 0.9 was used. The learning rate started at 0.001 and decays every
10, 000 steps with a base of 0.99. The batch size n was set as 128. The weights in
neural networks were randomly initialized by a normal distribution with mean
0 and variance 1.

4.3 Evaluation Metrics

The top-k accuracy of predicting expert moves was adopted to evaluate the
performance of a value network in our experiments. Specifically, for a given
position x and its subsequent position y after an expert move, the output of
a value network was accurate if V (y) was in the k highest scores among all
subsequent positions of x when p = 1, or in the k lowest scores when p = −1.

4.4 Models

We defined 3 types of experimental models based on the architecture shown in
Fig. 2, with the model size of A ≈ B < C. The definitions of the feature extraction
parts in 3 types of models are listed in Table 1. The number of neurons in the
value, discriminator networks of each model was the output size shown in the
table. The input size of the joint discriminator equaled to the number of channels
in the last shared layer.

The parameters from the 9th to the 24th layer in type A, and the parameters
from the 13th to the 24th layer in type B and C were shared for chess and
shogi, while the first and the last several layers remained unshared to extract
game-specific information. There were an additional global average pooling layer
and an output head for the joint discriminator and joint uniformity regularizer
after the 24th layer in type A, B, and C.

The first several unshared layers in every type were for extracting low-level
features from the input game board, and unifying the feature representation for
different games. The input size of the first parameter-sharing layer was 5 × 5 in
A, and 3× 3 in B and C. Receiving a smaller feature map as the input of shared
layers in B and C was considered as beneficial for the unification of feature
representation. We set the number of output channels for type A, B, and C to
be 128, 256, and 384, respectively. The number of channels in every layer of type
C was twice of the number in B. This suggests that type B and C should have
a better ability to extract high-level features from the output of shared layers,
and the feature extraction ability of C should be further better than B.
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Table 1. Details of feature extraction in experimental models

Layer Type A Type B Type C

input [H=9, W=9, C=13] (chess), [9, 9, 43] (shogi)

convolutional
layers

1st – 5th [K=3 × 3, S=1, C=128] [3 × 3, 1, 192]

6th
[3 × 3, 1, 128]

[3 × 3, 2, 128] [3 × 3, 2, 192]

7th – 9th [3 × 3, 1, 128] [3 × 3, 1, 192]

10th [3 × 3, 2, 128] [3 × 3, 2, 128] [3 × 3, 2, 192]

11th – 17th [3 × 3, 1, 128]
[3 × 3, 1, 128] [3 × 3, 1, 192]18th [3 × 3, 2, 128]

19th – 24th [3 × 3, 1, 128]

bypass to global avg pool → flattening → joint discriminator

25th
[3 × 3, 1, 128]

[3 × 3, 1, 128] [3 × 3, 1, 192]

26th – 32nd [3 × 3, 1, 256] [3 × 3, 1, 384]
pooling global average pooling
flattening [1, 1, 128] [1, 1, 256] [1, 1, 384]
output to value network, local discriminator

For every type, 2 models were trained for comparison.

– Baseline models were trained with a local UR network for playing a single
game (in Fig. 1) without any shared parameters between different games.

– Proposed models were trained with the proposed MTL framework, in which
a part of parameters was shared for two games and regularized by the pro-
posed joint uniformity regularizer in Eq. (5).

4.5 Results

There were 6 experimental models trained with 200 million instances (600 million
game positions) for every game. Their prediction accuracies and training curve
are shown in Table 2 and Fig. 3. The prediction accuracies and loss values were
recorded every 3 min, and smoothed in the figures with an exponential moving
average (decrease coefficient α = 0.99).

It can be found from the table that the proposed heterogeneous MTL frame-
work performed well with type-B and type-C models, but was not compatible
with type-A models. The results suggest that the effects of the MTL of multiple
games were highly related to the network architecture. To take full advantage of
the proposed framework, it is important to apply it to a larger model and insert
sufficient unshared layers before and after the shared parameters.

After applying the proposed framework, the training of networks was accel-
erated, and the top-1 accuracies of predicting expert moves in both chess and
shogi were improved in type-B and type-C models. To a better understanding of
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(a) Type-A Models

(b) Type-B Models

(c) Type-C Models

Fig. 3. Validation loss of value networks in experimental models (left and right models
are trained for chess and shogi, respectively)
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Table 2. Prediction accuracies of experimental models

Accuracy Model Chess Shogi

Type-A Type-B Type-C Type-A Type-B Type-C

Top-1 Baseline 37.17% 36.09% 36.88% 43.40% 42.42% 43.10%

Proposed 36.85% 36.50% 37.10% 42.40% 42.46% 43.63%

Δ −0.32% +0.41% +0.22% −1.01% +0.03% +0.52%

Top-5 Baseline 81.28% 80.18% 81.02% 84.60% 83.80% 84.30%

Proposed 80.81% 80.49% 81.30% 83.73% 83.69% 84.67%

Δ −0.47% +0.30% +0.28% −0.87% −0.11% +0.37%

Table 3. Top-1 prediction accuracies of stockfish

Nodes Top-1 Acc Δ Nodes Top-1 Acc Δ

≤1,000 32.96% − ≤6,000 39.94% +0.78%

≤2,000 35.22% +2.26% ≤7,000 40.72% +0.78%

≤3,000 36.93% +1.71% ≤8,000 41.19% +0.47%

≤4,000 38.15% +1.21% ≤9,000 41.62% +0.43%

≤5,000 39.16% +1.01% ≤10,000 42.12% +0.50%

the experimental results, we tested the performance of Stockfish [12] – one of the
most advanced open-source chess programs – with about 333,000 positions ran-
domly sampled from the same test dataset as the other experimental networks.
The top-1 accuracies of stockfish were measured by comparing its “bestmove”
with each expert move in the test dataset, through the universal chess interface
(UCI) protocol implemented by python-chess3. The results are summarized in
Table 3. Since the accuracy of our network for chess listed in Table 2 is compatible
with the test dataset sampled for Stockfish, our chess evaluation function reached
a decent performance even without search. The top-1 accuracies in type-B and
type-C models increased from 36.09% and 36.88% to 36.50% and 37.10% were
approximately equivalent to searching extra 9.5% (2,507 → 2,746) and 5.7%
(2,970 → 3,140) nodes in the game tree of Stockfish, respectively.

We also investigated the effects of adding an additional discriminator to a
part of convolutional layers for local UR networks as the joint UR, but no signifi-
cant accuracy increase could be observed. This test result suggested that simply
enlarging the scale of loss functions and adding joint learning tasks were not
always effective in heterogeneous MTL, and the accuracies increased in the above
experiments were actually benefited from the partially shared feature extraction
and the joint uniformity regularization in the proposed framework.

3 https://python-chess.readthedocs.io/en/v0.22.1/index.html.

https://python-chess.readthedocs.io/en/v0.22.1/index.html
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5 Conclusion

Training deep neural networks for games requires a lot of computing resources.
At this time, there are still a few studies on how to improve training efficiency
by making full use of common knowledge among related games. We proposed
a novel heterogeneous multi-task learning (MTL) framework in this paper, and
conducted experiments of jointly trained evaluation functions for playing chess
and shogi. Preliminary experimental results demonstrated that the proposed
framework is beneficial for accelerating convergence rates and improving the
performances of both games with limited training costs. However, the networks
we tested in this paper were still not the optimal architecture for the MTL. In our
future work, we are planning to conduct comparison experiments systematically
to figure out the application scope of the proposed framework and the optimal
configuration for it.

Acknowledgement. A part of this work was supported by JSPS KAKENHI Grant
Number 16H02927 and by JST, PRESTO.
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Abstract. This paper proposes a novel Markov Decision Process (MDP)
to solve the problem of learning an optimal strategy by a Dialogue Man-
ager for a flight enquiry system. A unique representation of state is pre-
sented followed by a relevant action set and a reward model which is
specific to different time-steps. Different Reinforcement Learning (RL)
algorithms based on classical methods and Deep Learning techniques
have been implemented for the execution of the Dialogue Management
component. To establish the robustness of the system, existing Slot-
Filling (SF) module has been integrated with the system. The system
can still generate valid responses to act sensibly even if the SF module
falters. The experimental results indicate that the proposed MDP and
the system hold promise to be scalable across satisfying the intent of the
user.

Keywords: Dialogue management strategy · Reinforcement learning
Markov decision process · Slot-filling

1 Introduction

Dialogue systems are characterized as chat bots with which humans interact
on a turn-by-turn basis wherein natural language plays an essential role in the
communication [6]. With the massive development in the field of Natural Lan-
guage Understanding (NLU), it has now become feasible to develop dialogue
systems for many task oriented applications. The role of the dialogue manage-
ment component in such application oriented systems is to interact with the user
in a way that helps the user to complete the task which the system is meant
to deliver. The prime objective of the dialogue management module is to man-
age the progress of a conversation which trivially involves the following tasks
[11]: (i) to elicit necessary information from the user and to determine whether
the information obtained is adequate enough to facilitate communication with
an external application, (ii) communicating with an external application such
as a database to retrieve information that is to be communicated to the user,
(iii) presenting the information to the user which is retrieved based on the data
elicited.
c© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11303, pp. 359–372, 2018.
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There are distinct and diverse roles that different Dialogue Managers (DMs)
fulfill which can be grouped under strategic flow-control and tactic flow-control
DM. In strategic flow-control, the DM needs to learn an action-selection strat-
egy, i.e., what action should be taken at a given time-step of the dialogue. These
DMs find their applications in Topic Tracking, Form Filling [19], General Plan-
ning [1] scenarios etc. Whereas in tactic flow-control, the DM along with the
normal functioning of the dialogue need to make some tactical conversational
decisions that have some impacts in the quality of the dialogue for example,
error handling mechanisms [3], control initiative and learned tactics [15] etc. Ini-
tially, dialogue management strategy was supposedly rule-based [10] where high
degree of human intervention was required to design the component by hand.
The inclusion of Reinforcement Learning (RL) [7] in its entirety minimizes the
use of hand-crafting and reduces human effort to the point where the complete
system becomes automated from end to end. Motivated by the recent advances
in RL [2], especially the growth and availability of various Deep Reinforcement
Learning (DRL) algorithms [13] that allow for learning policies and features par-
allelly, this paper presents a traditional and DRL methodology for automatically
learning a policy by a DM in a task oriented framework.

A number of existing works suggest considering dialogue design as a MDP [8]
which explicitly means defining a stochastic environment having its own finite
representation of states, set of plausible actions, an acceptable reward model.
Hence, the goal of such an abstraction is to learn a policy that maximizes the
measure of the reward model. In this paper, a new MDP has been proposed
and developed for a flight enquiry system. Since, the proposed MDP (discussed
in Sect. 4.1) has an extensive usage of confidence scores (or say probabilities)
from the NLU module more specifically a slot-filling (SF) module, an existing
SF module has been used for the identification of different slots. Q-learning [18],
which is a model-free reinforcement learning algorithm has been employed in its
traditional and DRL variants to learn a policy. The traditional version is basically
the table implementation of the said algorithm. In the DRL approach, the Deep
Q-network (DQN), Double Deep Q-network (DDQN), DQN with Prioritized
Experience Replay (DQN-PER) and DDQN with Prioritized Experience Replay
(DDQN-PER) algorithms have been employed. A detailed analysis of the policy
learnt by the Virtual Agent (VA) on all the approaches is presented.

The key contributions of this paper are the following:

– A novel MDP is proposed in terms of states, actions and reward model which
reduces the complexity of the problem by separating the policy and the SF
aspect of the dialogue unlike earlier works as explained in Sect. 2.

– Integration of an already existing SF module to identify the slots with the
RL framework to establish the robustness of the learnt dialogue strategy.

– The paper aims to establish the fact that even if the SF module which is
used to extract relevant information from the user’s utterance is not very
robust and has shortcomings, the designed system can still meet the input
requirements of the user from the execution of the policy learnt.
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2 Related Work

This section provides a brief description on the works done so far on RL based
Dialogue Management Strategy followed by the motivation behind solving this
problem.

2.1 Background

This section presents a brief survey on Reinforcement Learning based Dialogue
Management Strategy.

In [21], authors proposed a method in which a Spoken Dialogue System,
named ELVIS, is developed to choose a dialogue strategy to interact with the
users. The reinforcement learning module implements the Q-learning algorithm
in its traditional front and the performance modeling module uses the PAR-
ADISE evaluation framework to learn the reward function used in the rein-
forcement learning. In [9], authors presented a reinforcement learning approach
for learning an optimal dialogue strategy for a spoken dialogue system named
NJFun, which helps users in finding fun places in New Jersey. They first imple-
mented NJFun system using the EIC (Exploratory for Initiative and Confirma-
tion) dialogue strategy. The dialogues obtained after executing this strategy were
used to build an empirical MDP and then an optimal strategy was learnt in this
MDP. In [17], authors developed a common software tool named Reinforcement
Learning for Dialogue Systems (RLDS) for a MDP structure and had imple-
mented it on dialogue corpora from two different real-time dialogue systems,
TOOT and ELVIS. In [4], authors developed an easy and open-sourced dia-
logue system using DRL for the restaurant domain without the use of the NLU
module. It employs the DQN algorithm for its implementation. In [5], authors
proposed a fast DRL approach that uses a network of DQN agents that skips
weight updates during exploitation of actions.

2.2 Motivation

From the literature, it is evident that several works done earlier in the con-
text of dialogues had shortcomings. The applications developed earlier based
on the traditional RL approach had tremendous amount of human labor and
interference involved right from manual hand-crafting of the rules to carry out
experiments to train the agent. Performing large scale experiments to establish
the robustness of the learnt strategy was a cumbersome process. State tracking
was difficult because the representation of the states in the MDP was complex
as more number of variables with varied range were used to capture the informa-
tion in a particular time-step. Recent works, which employed Deep RL technique
for the problem, incorporate vocabulary of the system as state representation
without the use of the SF module. So, even if the VA learns an optimal policy,
its usability is restricted because of its dependence on the vocabulary and hence
is not scalable.
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Motivated by the inadequacy of the existing system and approaches, this
paper presents a concrete and a concise representation of the MDP. We also
integrate the system with an existing SF module which liberates the system
from any constraint of the vocabulary and passes on this responsibility to the
competency of the SF model.

3 Reinforcement Learning for Dialogue Strategy

This section presents an overview of Reinforcement Learning followed by a short
description of a dialogue strategy.

3.1 An Introduction to Reinforcement Learning

Any RL setup can be typically modeled as a MDP [18] which is defined as:

(i) a set of finite states S = {si},
(ii) a set of finite actions A = {ai},
(iii) a probability transition model P (s, a, s′),
(iv) a reward model R(s, a, s′) that corresponds to the immediate reward given

to the agent for selecting an action a in state s and henceforth making a
transition to the next state s′.

So, the MDP is solved to obtain an optimal policy π∗. A policy π is defined
as π(s) → a which is a mapping from states to actions that typically depicts
the behavior of the agent. π∗ represents an optimal policy which maximizes the
cumulative reward at the end of an episode.

In this paper, we have employed DQN and it’s various variants as mentioned
below:

– DQN [13]
– DDQN [20]
– DQN - PER
– DDQN - PER [16]

3.2 Dialogue Strategy

A dialogue strategy is simply defined by the following:

(i) how to control the flow of a dialogue,
(ii) how a system will respond with queries to keep the dialogue meaningful

and rational.

The agent should be able to ask relevant questions based on the present
context of the conversation. Here, Reinforcement Learning framework [18] offers
a good way of solving the problem where the current situation of the conversation
can be represented as a state in the RL framework, the type of question asked can
be treated as the action taken by the agent. User satisfaction can be treated as a
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reward function. As it is difficult to quantify user satisfaction and it varies from
person to person, it is tough to formulate the reward function in the current
context. To circumvent the problem we have based our reward functions on
certain pretexts that are common to satisfaction from a certain aspect of the
dialogue.

4 Proposed Methodology

This section presents the proposed MDP followed by the experiments conducted
in two different frameworks, a short description of the SF module integrated,
followed by the working of the proposed system.

4.1 Proposed MDP

The VA or the Dialogue Manager (presented here) is based on a flight enquiry
system where the user has a single intent of booking a flight and wants to know
about available flight options as per his/her preference. The task of the VA is
to elicit necessary information from the user. It needs to fill the slots to make
a valid database query so as to provide necessary and apt information based on
the data elicited. Slots are basically defined as the important information that
are present in the user utterances. An example of an user utterance with its valid
slots is shown in Table 1.

Table 1. An example utterance with its valid slots

Utterance I want to fly from Pittsburgh to Denver

Slot O O O O O deptCity O arrCity

Table 2. Slots to be elicited

SLOTS deptCity arrCity deptTime depDay class

DESCRIPTION Departure City Arrival City Depart Time Depart Date Class of the flight

The necessary slots to be filled for this particular task are described in
Table 2. The state space is represented as a tuple of five variables:

[ deptCity arrCity depDay deptTime class ]

These five variables correspond to confidence scores of different slots which
are basically the probability values outputted from the SF module representing
the confidence of the module in predicting a particular slot label. Its permissible
set of values ranges from 0 to 1.
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Table 3. Action set

(a)

TYPE ASK
ACTION askdeptCity askarrCity askdeptTime askdepDay askclass askDeptandArr askDateTime

SLOTS FILLED deptCity arrCity deptTime depDay class deptCity, arrCity depDay, deptTime

(b)

TYPE REASK/CONFIRM SALUTATION
ACTION reaskdeptCity reaskarrCity reaskdeptTime reaskdepDay reaskclass closing conversation

SLOTS FILLED deptCity arrCity deptTime depDay class -

The action space constitutes of 13 actions categorized in three different classes
shown in Table 3a and b. As seen in the table, apart from having actions to fill
individual slots, there are hybrid actions to fill two slots at the same time.
Reask/Confirm actions act as a tool to fill up any capability lacked by the SF
module in terms of the confidence in understanding the information given by the
user as slots and tend to present a more natural conversational experience.

Simple Reward Model. Initially for this particular work, the reward model
formulated was in lines with a typical computer game scenario where credits are
assigned only at the end of an episode depending on the win or loss situation.
So, originally a simple and a straight-forward reward model was assumed which
is as follows:

– Case 1: The reward function at any other time-step except at the terminating
or closing step was –0.01, i.e., a negative reward is given to control the number
of steps to be taken for a particular dialogue conversation.

– Case 2: The reward function at the terminating time-step is subject to a
checking condition. The condition was to check if the confidence scores of all
the slots are greater than a particular threshold set to be 0.7. If the checking
condition is satisfied, the agent gets a reward of +1.

– Case 3: If the checking condition isn’t satisfied, the agent was given a reward
of −1.

After conducting a set of experiments with this particular reward model
(results of which are presented in Sect. 5), it was analyzed that with such an
elementary reward function, the agent or the learning algorithm didn’t converge
well enough or didn’t converge at all to learn an optimal dialogue strategy. Thus,
it was inferred that a simple reward model like this wasn’t sufficient or adequate
enough for a complicated scenario as that of dialogues where user behavior or
demand is unpredictable. So, there was a need to devise a new, more meaningful
and relevant reward model.

Proposed Reward Model. Therefore, the new reward model is designed in a
way such that the immediate credits assigned to the agent in different instances
of the dialogue are attributed differently so as to make the agent understand
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what it needs to do distinctively at different time-steps of the conversation. It is
described as:

– Case 1: The reward function at any other time-step except at the terminating
or closing step is as follows:

R(s, a, s′) = (w1 ∗ (‖ −−→
NS ‖1 − ‖ −→

CS ‖1)) − (w2) (1)

where
−−→
NS corresponds to the state vector for the new state s′. ‖ −−→

NS ‖1 is
the summation of the confidence scores of all the state variables in the state
vector which is obtained after taking an action a in state s.

−→
CS corresponds

to the state vector for the current state s. ‖ −→
CS ‖1 is the summation of the

confidence scores of all the state variables in the state vector for state s. w1

is the weight over the difference of the summation of the two state vectors
in state s and s′. w1 is used to encourage the agent to act in a way so as to
increase it’s confidence on the acquired slots. w2 is basically used to encourage
useful communication and discourage unnecessary iteration. Here, w1 = 8 and
w2 = 1.

– Case 2: The reward function at the terminating time-step is subject to a
checking condition (mentioned below). If the checking condition is satisfied,
the agent gets the reward as follows:

R(s, a, s′) = V ∗ w1∗ ‖ −→
CS ‖1 (2)

where V is the value obtained from the checking condition (greater than zero).−→
CS and w1 are same as described earlier.

– Case 3: If the checking condition isn’t satisfied, the reward function is:

R(s, a, s) = −w1 ∗ (‖ −−→
EV ‖1 − ‖ −→

CS ‖1) (3)

where
−−→
EV is the state vector for the expected value. ‖ −−→

EV ‖1 is the summation
of the maximum expected confidence scores of different slots that adds up to
be equal to 5.

The checking criteria is as follows: if the confidence scores of three individual
slots are greater than a threshold set to 0.7, partial credit of 1/3 is assigned to
the reward function, i.e., the value of V is 0.33 and thus the value of V increases
based on the number of slots satisfying the condition which is 0.67 and 1 for
four and five slots, respectively. If less than three slots satisfy the criteria at
the end of the dialogue, the value of V is zero and hence the checking condition
is not fulfilled. The system is trained on a pseudo-environment mimicking the
confidence values of the SF module and hence a threshold of 0.7 is fixed. Later,
the learned policy which is trained on the pseudo-environment is tested with a
real SF module (mentioned in Sect. 4.2).

All these proposed reward functions for this particular MDP are motivated
by the fact that it is necessary for the agent to learn different and permissible
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actions at different time-steps given the state of the dialogue and hence it needs
to be credited and penalized differently for the right and the wrong actions picked
up. The agent should be capable of picking up the conversation from any point to
act so as to acquire only the necessary information required without wasting any
number of iterations. Also, the reward model is designed to be generic so that it
finds its usability across varied domains with no changes at all. It simply depends
upon the domain it is used for and the slots on which the domain operates.

4.2 Implementation

Two variants of RL technique have been used to learn an optimal policy. One
is based on traditional table implementation of the Q-learning algorithm. The
second is the DRL based Q-learning technique, i.e., DQN, DDQN, DQN-PER
and DDQN-PER algorithms.

Q-Learning: Q-Table Approach. In the table version, initially all the state-
action values or the Q(s, a) values are initialized to zero and as the dialogue
progresses and rewards are observed for the picked up actions, the Q-table values
are updated using the Bellman Eq. [18]. The value of γ or the discount factor in
the equation is set to be 0.9 and the training is done for 1,00,000 dialogues. The
value of epsilon is set to be 0.1 which allows a very small degree of randomness in
the action-selection process. During testing, the agent picks up an action having
the highest Q(s, a) value given a state s based on the Q-table converged during
training. The results are presented in Sect. 5.

Deep Reinforcement Learning. In the DRL implementation, the architec-
ture of the neural network is as follows: 5 nodes are used in the input layer
(corresponding to the size of the state vector), followed by one hidden layer with
75 nodes and 13 nodes in the output layer corresponding to the action set. The
activation function used in the hidden layer is Rectified Linear Units to nor-
malize their weights. The DQN, DDQN, DQN-PER, DDQN-PER algorithms
are employed on the developed MDP to learn the optimal dialogue strategy.
In some of the experiments, for a better convergence of the learning algorithm,
constrained set of actions were used rather than the entire set of actions [4].
These constrained set of actions for a given state are obtained by using the SVM
classifier which presents actions with the top five probability values trained from
the dummy data prepared manually based on the state vector values. Hence,
the Q-learning updates are applied only on this valid set of actions. The other
parameters of the model are: discount factor (γ) = 0.7, minimum epsilon =
0.15, experience replay size = 100000, batch size = 32. The training is done
for 200000 dialogues. Selection of hyper-parameters has been done after care-
ful experimentation. Setting higher value of discount factor was not resulting
in the proper convergence of the algorithm, also lower epsilon values were not
sufficiently exploring the state spaces, causing the agent to get stuck in local
optima. Experience replay size and batch sizes is set according to the computa-
tional resources that are available at hand. The results are presented in Sect. 5.
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Slot-Filling Module. To extract relevant information from the user’s utter-
ance, i.e., to identify the necessary slots so as to have a relevant flight inquiry
query, an existing SF module [12] has been used. It is a deep learning model
which uses a simple Recurrent Neural Network at its core. This particular SF
module is trained on the ATIS dataset [14] which contains user utterances relat-
ing to the Air Travel Information System, wherein only a single intent of flight as
per the dataset is used with a fixed number of slots. So, the slots identified with
the help of this module are in direct sync with the slots the proposed system
aims to fill. The necessary slots identified, along with the probability scores of
the predicted labels are used by the VA for further processing.

Fig. 1. Flow diagram for the proposed system

Working of the VA. The functioning of the flight enquiry system is as fol-
lows: The VA picks up an action based on the state using the Q-table (for the
traditional implementation) or the neural network (for the DRL implementa-
tion). The action selected by the VA is presented in a text format to the user.
The user’s reply based on the VA’s response is fed to the existing SF module
to identify necessary slots mentioned above in the Sect. 4.1 and hence produce
confidence scores to be taken as a state input by the VA. Based on the actions,
rewards are generated and the model is trained to pick up right actions given a
state. The flow diagram for the proposed system is shown in Fig. 1.

5 Results and Discussion

Results of different algorithms employed in various experimental set-up are pre-
sented here.

The learning curves of the VA for the best performing set-up during training
followed by the verbalization of the best policy learnt during the testing phase
are presented below. Also, the following metrics were used to measure the per-
formance of the system for various algorithms employed: average episodic reward
which is the cumulative reward through all the time-steps at the end of a dia-
logue, average dialogue length which is basically the average system actions per
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Table 4. Quantitative Comparison of different algorithms and reward functions

Algorithm Average episodic

reward

Average dialogue

length

Training time

(in hrs)

Simple reward

model

DQN with SVM −6.89 ± 5.62 673.45 ± 564.02 71.97

DDQN with SVM −8.51 ± 5.40 791.65 ± 529.12 93.65

DDQN-PER with SVM −13.51 ± 9.15 1342.3 ± 915.20 52.56

DDQN-PER −11.26 ± 9.17 1039.07 ± 933.62 112.12

Proposed reward

model

DQN with SVM −313.25 ± 308.63 367.52 ± 315.03 40.71

DDQN with SVM −273.52 ± 271.97 330.52 ± 278.67 54.2

DQN-PER with SVM −131.80 ± 181.13 183.2 ± 182.07 18.47

DQN-PER -569.85 ± 469.48 589.03 ± 479.09 16.83

DDQN-PER with SVM 57.20 ± 7.99 7.67 ± 0.53 20.82

DDQN-PER 50.07 ± 8.11 8.09 ± 1.06 17.74

dialogue and training time1. A comparative analysis of all the learning algorithms
employed based on these metrics on two sets of reward models is presented in
Table 4.

For the Q-table implementation, the learning curve of the agent for both the
reward models is shown in Fig. 2. The figure clearly indicates that there has been
an increase in the average reward of the agent over time and hence it managed
to learn a decent policy.

Fig. 2. Learning Curve of the Agent based on the Q-Table implementation

It is evident from Table 4 that because of the larger length of the dialogues
and lower episodic reward, the simple reward model failed to converge on any
of the DRL variant algorithms employed. Figure 3 shows the learning curve of
the agent for the two best performing DRL implementations on the proposed
reward model, i.e., DDQN-PER and DDQN-PER with SVM. The highest aver-
age reward attained in both these models is that of 7 which is better compared
1 Ran on Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20 GHz, 251 GB RAM.
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to its equivalent Q-table implementation where the maximum average reward
attained is of 5. It is also visible from Table 4 that the average episodic reward
for both these models are 50.07 ± 8.11 and 57.20 ± 7.99 respectively. The
average dialogue lengths for both these models are 8.09 ± 1.06 and 7.67 ± 0.53
respectively. Therefore, it is observed that the average episodic reward is maxi-
mum and the average dialogue length is small for these two learning algorithms,
which are favorable for any dialogue conversation, as the task of the agent is to
maximize its cumulative reward at the end of an episode and it should learn to do
so in minimal number of time steps. Also, the training time for these algorithms
is comparatively less, implying that the learning algorithm indeed manages to
converge on this reward model. It is also evident from the table that other DRL
algorithms such as DQN with SVM, DDQN with SVM, DQN-PER, DQN-PER
with SVM failed to converge on this model as well because of the limitations of
these learning algorithms [13,20]. A sample conversation to demonstrate the best

(a) (b)

(c) (d)

Fig. 3. Learning Curves of the Agent for the proposed reward model: (a) DDQN-PER
curve for 1200000 iterations, (b) DDQN-PER curve for 40000 iterations, (c) DDQN-
PER curve with SVM for 1000000 iterations, (d) DDQN-PER curve with SVM for
400000 iterations
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dialogue strategy learnt is shown in Fig. 4. From the conversation, it is evident
that the agent is interactive. It focuses on filling its slot with higher confidence.
So, if the SF module has lower confidence in understanding a particular slot,
the agent with the help of reask actions acts so as to confirm from the user, the
authenticity of the identified slot.

Fig. 4. Verbalization of the Policy learnt

Instead of using a dictionary-based state representation, the system utilizes
a slot-based state representation scheme. So, the representation of the state is
unique. Merit of the system lies in the integration of SF module with dialogue
management strategy. Current set of experiments clearly illustrate that the pro-
posed MDP indeed enables the agent to learn a dialogue strategy. The snapshot
of the conversation at the testing time evidently proves that the learning process
has the merit to rectify the shortcomings of the SF segment. We are unable to
present any comparison of our approach with the state-of-the-art because as per
the best of our knowledge we have not come across an airline enquiry chat-bot
system employing RL algorithms. No literature in our view addresses the slot-
filling approach of the state vector based on probability values of an external
system and tries to tackle the uncertainties of that system which our proposed
model can successfully handle.

6 Conclusions and Future Work

This paper presents a MDP for a flight enquiry system in terms of defining state
space, action set and reward model. Traditional Q-learning as well as its DRL
variants are implemented to learn an optimal policy. The learning curves of the
VA during training followed by the quantitative analysis based on several metrics
are presented for both the approaches. The verbalization of the best dialogue
strategy learnt is presented and hence it can be inferred that the VA is managed
to learn a sensible policy to control the flow of the dialogue which justifies the
correctness of the proposed MDP.

An extensive study needs to be carried out to measure the robustness of the
system. Also, the current system focuses on processing only a single intent of the
user, i.e., finding flight availabilities. Multiple intents based on the flight domain
can be incorporated to increase the scope of the system. An effort can be made
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to benchmark the system against different SF modules to prove its strength,
i.e., given a poor SF module, the VA will be able to control the dialogue in an
intelligent manner.
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Abstract. In recent years, pattern analysis plays an important role in
data mining and recognition, and many variants have been proposed to
handle complicated scenarios. In the literature, it has been quite familiar
with high dimensionality of data samples, but either such characteristics
or large data sets have become usual sense in real-world applications. In
this work, an improved maximum margin criterion (MMC) method is
introduced firstly. With the new definition of MMC, several variants of
MMC, including random MMC, layered MMC, 2D2 MMC, are designed
to make adaptive learning applicable. Particularly, the MMC network
is developed to learn deep features of images in light of simple deep
networks. Experimental results on a diversity of data sets demonstrate
the discriminant ability of proposed MMC methods are component to be
adopted in complicated application scenarios.

Keywords: Maximum margin criterion (MMC) · Adaptive learning
Variants of MMC · MMC network

1 Introduction

As a promising step, feature extraction has become an important approach to
data mining and pattern recognition. And traditional methods usually suffer
from intrinsic limitations from characteristics of original data. The first one
refers to high-dimensionality of samples that hinders efficient calculation, and the
outstanding solutions come down to direct approach to scatter matrices decom-
position. Furthermore, there arise broad interests in large-scale data mining in
many real-world applications, and this pushes new challenge for feature analysis
and reduction. In terms of such demands, it has become a vivid research topic to
devise improved learning methods to conduct high-dimensional data with large
amount meanwhile.
c© Springer Nature Switzerland AG 2018
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In the literature, principal component analysis (PCA) [1] and linear discrim-
inant analysis (LDA) [2,3] have become popular methods for pattern analysis in
statistical learning theory. To address high-dimensional problem of original data,
there has been a common sense that reaches the eigen-decomposition of scatter
matrices with calculational tricks of sub-matrices’ multiplications [4]. Besides
traditional ratio LDA, there is another approach to do discriminant analysis
with subtraction formalism, i.g., maximum margin criterion (MMC), while null
denominator problem can be avoided [5,6]. Nevertheless, just like an old Chinese
saying goes, “There would be something else in loss if something was obtained”.
The calculational trick of sub-matrices is unavailable for MMC anymore, and
extra calculations are to be involved in general. In the previous work of ours, a
direct solution is proposed to handle the calculational limitation of large discrim-
inant scatter of high-dimensional data for MMC [7]. And discriminant analysis
can be proceeded straightforward while both Sb and Sw scatters are considered
together with preserved efficiency.

In this work, the direct MMC framework is further developed to conduct
adaptive learning, and insensitive to high-dimensionality problem of data in any
scenarios. Furthermore, several extensions of MMC are proposed to conduct
adaptive classification of different categories of data. The rest of this paper is
organized as follows. The background knowledge of direct MMC is reviewed in
Sect. 2, while the calculation efficiency is discussed in theory, followed by the
details of an improved MMC in Sect. 3. And then, several extensions of MMC is
proposed for applications of different scenarios. A set of comparison experiments
on discriminant learning are given in Sect. 4. Finally, the conclusion is draw in
Sect. 5.

2 Direct Maximum Margin Criterion

The original MMC considers the substraction of discriminant scatters of original
data. Given data set X = [x1, x2, · · · , xn] ∈ Rd×n in c classes, the Sb and Sw

scatters are defined as

Sb =
c∑

i=1

ni (mi − m) (mi − m)T = XLbX
T

Sw =
c∑

i=1

ni∑

j=1

(xij − mi) (xij − mi)
T = XLwXT

(1)

where mi and m respectively denote the mean data of i-th class and whole data,
and ni denotes the sample amount of i-th class. Besides, the discriminant scatters
can also be described in graph formula with definition of Laplacian matrices Lb

and Lw [8,9]. As a result, MMC solves the following quadratic optimization
objective to find the ideal w,

J (w) = wT (Sb − γSw) w = wT XLXT w. (2)

Here, γ indicates the trade-off parameter to balance between-class and within-
class scatters, and L refers to the graph Laplacian of MMC [7]. Obviously, the
solution to such objective can be reached via eign-decomposition of J , such as
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(Sb − γSw) w = XLXT w = λw. (3)

Compared with traditional LDA framework, it is able to avoid rank calamity of
scatters and exceed the restricted bounding of the category of samples. Never-
theless, it is hardly to be adopted to high-dimensional data, as eigen analysis of
large matrix usually leads to overflow of memory. In light of kernel-view idea, we
proposed a direct approach to efficient discriminant analysis [7], and the whole
procedure is given in Algorithm 1.

Algorithm 1. The proposed MMC algorithm
Input: Given data points X ∈ Rd×n in c classes, the desired reduced

dimensionality r.
Output: Projective directions, wi, i = 1, 2, · · · , r.
1. Calculate between-class scatter Sb and within-class scatter Sw with given
data;

2. if The dimensionality of samples < θ then
2.1 Perform spectral decomposition on Sb − γSw, and obtain projective
directions wi, i = 1, 2, · · · , r.

else
2.2 Construct the sample kernel matrix K = XT X, perform spectral
decomposition on KLK, and obtain ET KLKE = Λ;

2.3 Calculate the SVD of XEΛ− 1
2 , and obtain orthogonal matrix U and

singular matrix si, i = 1, 2, · · · , n;
2.4 Set columns of U to wi, i = 1, 2, · · · , r in reverse order.

end

end

Though MMC involves the similar discriminant scatters with LDA, the pro-
posed direct approach is quite distinctive compared with traditional ideas. To
avoid extra branches of execution, an dimensional threshold is added in MMC.
If the sample dimension is less than the given threshold, standard procedure
of MMC would be proceeded. On the contrary, an efficient calculational idea
would be adopted, and sample kernel K = XT X is constructed to reach the
kernel scatter. As a consequence, the original MMC problem is transformed to

J (e) = eT XT (Sb − γSw) Xe = eT KLKe, (4)

where K denotes the sample kernel, and e is the resulting orthogonal directions
of MMC. It is noticeable that, the size of decomposed matrix Rd×d is reduced to
Rn×n. Then, the final results can be obtained via calculational tricks of matrix
decomposition.

The most distinguishing points mainly come from step 3 and 4. In step 3,
the SVD is proceeded on XEΛ− 1

2 , namely,

XEΛ− 1
2 = USV T , (5)
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Algorithm 2. The RMMC algorithm
Input: Given data points X ∈ Rd×n in c classes, the desired reduced

dimensionality r, the dimensional threshold θ for efficient calculation,
and the number of selected samples t.

Output: Projective directions, wi, i = 1, 2, · · · , r.
1. Calculate between-class scatter Sb and within-class scatter Sw with given
data;

2. if The dimensionality of samples < θ then
2.1 Perform spectral decomposition on Sb − γSw, and obtain projective
directions wi, i = 1, 2, · · · , r.

else
2.2 Randomly select t samples A = [xa1, xa2, · · · , xat] from whole data,
construct the sample kernel matrix M = AT X, and discriminant
scatter MLMT .

2.3 Follow the similar steps of MMC, and obtain wi, i = 1, 2, · · · , r.
end

end

which is different from traditional LDA that generally do similar operation on
within-class scatter Sw. Furthermore, the obtained orthogonal vectors ui, i =
1, 2, · · · , n is sorted in descending order corresponding to discriminant power,
though they are actually adhere to the largest singular values. Thereafter, the
final projective directions wi needs to be reverse vectors of ui in step 4. In
addition, a dimensional threshold is absorbed into original MMC for adaptive
dimensionality reduction. That is, the efficient calculation approach would be
referred if dimensionality of original data is larger than given threshold.

It is demonstrated that, the proposed MMC method is competent to deal with
linear supervised learning in general, while calculational efficiency is preserved.
The computational cost mainly depends on O

(
n3

)
for spectral decomposition,

compared with O
(
d3

)
of original MMC. For convenience, such approach is called

MMC directly in this context. Nevertheless, there also exists some exceptions
that n is still large for direct calculation of big data, and efficiency is unable to be
reached. In terms of this limitation, an improved MMC is designed in this work
to make supplement of the previous work of ours. The main improvement refers
to construction of sample kernel in MMC, and a subset of whole samples are
picked up to form the kernel matrix for following step [10]. Suppose that there
are t samples are selected, the whole procedure is summarized as random MMC
(RMMC) in Algorithm 2. Obviously, the computational complexity reduces to
O

(
t3

)
in this improved procedure, and the theoretical basis can be derived.

3 Adaptive Learning of MMC

As progress of information technology, there are diversity of handled data cate-
gories and application scenarios. The goal of adaptive learning is to exploit the
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Algorithm 3. The single LMMC algorithm
Input: Given data points X ∈ Rd×n in c classes, the desired reduced

dimensionality r, the dimensional threshold θ for efficient calculation,
the median dimension m, and the number of selected samples t.

Output: Projective directions, wi, i = 1, 2, · · · , r.
1. Calculate between-class scatter Sb and within-class scatter Sw with given
data;

2. if The dimensionality of samples < θ then
2.1 Perform spectral decomposition on Sb − γSw, and obtain projective
directions wi, i = 1, 2, · · · , r.

else

2.2 Construct the random projection matrix P ∈ Rd×g, randomly select
t samples A = [xa1, xa2, · · · , xat] from whole data, and calculate the
projection matrix B = PP T .

2.3 Construct the sample kernel matrix M = AT BX, and discriminant
scatter MLMT .

2.3 Follow the similar steps of MMC, and obtain wi, i = 1, 2, · · · , r.
end

end

intrinsic patterns of data with different analysis demands in a unified framework
as possible.

3.1 Layered MMC and 2D MMC

With a multi-layer structure, it is believed that the hidden features can be
exploited by enlarging original ones from data [11]. More specifically, a median
layer is added to transform each data into a much high-dimensional space, and
reduced in following steps with general feature learning. Supposed that there is
a given data x, the transformation can be formalized as

x �→ h (x) ,Rd �→ Rg (6)

where h (·) denotes the data transformation from original space with dimension-
ality d to a much higher dimensionality g in general. Obviously, such approach is
quite identical with kernel learning framework, and can be conduced as a median
learning step, e.g.,

h (x) = Bx, B = PPT . (7)

Here, P ∈ Rd×g denotes the linear transformation directions. For the more
specific scenarios, it can be defined as a collaborative learning combined with a
nonlinear mapping f (x) and a linear projection and P , which has been employed
in extreme learning machine (ELM) [11]. Surprisingly, it is learned that there
is a little disparity among different layered approaches for MMC. The whole
procedure of layered MMC is given as LMMC algorithm.

On the other hand, there are lots of real-world applications intuitively refer to
multi-dimensional media information, e.g., images, videos, which rely on surface
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Algorithm 4. The 2D2MMC algorithm
Input: Given each 2D data xi ∈ Rα×β , i = 1, 2, · · · , n, in c classes, the desired

reduced dimensionality l and r, the dimensional threshold θ for efficient
calculation.

Output: Bi-directional projective directions,
pi, qj , i = 1, 2, · · · , l, j = 1, 2, · · · , r.

1. Calculate 2D scatters of column and row (left and right) directions:
Sbl ∈ Rd1×d1 , Sbr ∈ Rd2×d2 , Swl ∈ Rd1×d1 , Swr ∈ Rd2×d2 with given 2D data;

2. Calculate row projective directions:
if The length of height d1 < θ then

2.1 Perform spectral decomposition on Sbl − γSwl, and obtain projective
directions pi, i = 1, 2, · · · , l.

else
2.2 Construct the randomly reduced scatters with lower height as done
in MMC.

2.3 Follow the similar steps of MMC, and obtain pi, i = 1, 2, · · · , l.
end

end
3. Calculate column projective directions:
if The length of width d2 < θ then

3.1 Perform spectral decomposition on Sbr − γSwr, and obtain projective
directions qi, i = 1, 2, · · · , r.

else
3.2 Construct the randomly reduced scatters with shorter width as done
in MMC.

3.3 Follow the similar steps of MMC, and obtain qi, i = 1, 2, · · · , r.
end

end

of 2D-dimensional space. In order to handle those kinds of data directly, some 2D
based methods are to make learning succinct, e.g., two-dimensional PCA [12,13],
two-dimensional LDA [14–16]. In general, 2D raw data x ∈ Rm×n is involved to
find reflecting information between rows of images, e.g., y = xV . As the original
2D methods that calculate the single direction for feature extraction [12,14],
two-directional & two-dimensional methods, e.g., 2D2PCA [13] and 2D2LDA
[15,16], are proposed to address the limitation of single-directional learning.

In terms of this consideration, 2D2MMC is devised as a natural extension of
original MMC. The main difference between 2D2MMC and original ones is on
the fact that 2D data are referred in construction of scatters, while certain steps
need to be modified correspondingly. For a given 2D data x ∈ Rd1×d2 , it aims to
find bi-directional projections P ∈ Rd1×l and Q ∈ Rd2×r, and yields a smaller
2D data y ∈ Rl×r, e.g.,

y = PT xQ. (8)
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Algorithm 5. The single L2D2MMC algorithm
Input: Given each 2D data xi ∈ Rα×β , i = 1, 2, · · · , n, in c classes, the desired

reduced dimensionality l and r, the dimensional threshold θ for efficient
calculation.

Output: Bi-directional projective directions,
pi, qj , i = 1, 2, · · · , l, j = 1, 2, · · · , r.

1. Calculate 2D scatters of column and row (left and right) directions:
Sbl ∈ Rd1×d1 , Sbr ∈ Rd2×d2 , Swl ∈ Rd1×d1 , Swr ∈ Rd2×d2 with given 2D data;

2. Construct the random matrix P ∈ Rh1×d1 and Q ∈ Rh2×d2, and transform
original scatters into high-dimensional spaces.

3. Calculate row projective directions:
if The length of height d1 < θ then

3.1 Perform spectral decomposition on Sbl − γSwl, and obtain projective
directions pi, i = 1, 2, · · · , l.

else
3.2 Follow the similar steps of RMMC, and perform the economical
calculations with randomly select sample data. Obtain
pi, i = 1, 2, · · · , l.

end

end
4. Calculate column projective directions:
if The length of width d2 < θ then

4.1 Perform spectral decomposition on Sbr − γSwr, and obtain projective
directions qi, i = 1, 2, · · · , r.

else
4.2 Follow the similar steps of RMMC, and perform the economical
calculations with randomly select sample data. Obtain
qi, i = 1, 2, · · · , r.

end

end

The calculation of P and Q is mainly based on construction of 2D scatters with
respect to MMC, e.g.,

Sbl =
c∑

i=1

ni

(
m2

i − m2
) (

m2
i − m2

)T

Swl =
c∑

i=1

ni∑

j=1

(
x2

ij − m2
i

) (
x2

ij − m2
i

)T

Sbr =
c∑

i=1

ni

(
m2

i − m2
)T (

m2
i − m2

)

Swr =
c∑

i=1

ni∑

j=1

(
x2

ij − m2
i

)T (
x2

ij − m2
i

)

. (9)

Here, Sbl, Swl, Sbr and Swr indicate the 2D scatters with respect to left and
right directions, m2

i and m2 denote the 2D data of the i-th intra-class mean
and the total mean respectively, and x2

ij denotes the j-th 2D data belonging to
i-th class. Then, the desired P and Q can be obtained with standard process of
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MMC, e.g.,
J (p) = pT (Sbl − γSwl) p
J (q) = qT (Sbr − γSwr) q.

(10)

and the whole procedure is summarized as 2D2MMC algorithm.
Similarly, it is also feasible to employ a dimension threshold to ensure the cal-

culational efficiency, especially if large 2D data are referred, e.g., high-resolution
images. The related dimension of directional side is reduced with data kernel if
the original length (α or β) is larger than threshold θ. By an example, this can be
done with randomly selected rows (or columns) of 2D sample data. Furthermore,
it is straightforward to extend original 2D methods to layered ones. Due to lim-
ited space, only the layered 2D2MMC is discussed here. The main branches are
quite similar to LMMC algorithm, that is, row and column projections are trans-
formed into high-dimensional space firstly, and followed by MMC approach. The
differences come from the handling of high dimensionality of mapped 2D data,
which can also be conducted with solution of RMMC similarly. Instead, only one
sample data is generally selected to apply economical calculations, and partial
columns (or rows) are employed. The single layered-2D2MMC (L2D2MMC) is
summarized in Algorithm 5. As a consequence, multi-layered 2D2MMC can be
deduced easily, and is able to be proceeded in hierarchical structures of sequential
networks.

3.2 MMC Network

Inspired by convolution neural network (CNN), PCA Network (PCA-Net) is able
to learn classification features of images with a very simple deep learning network
[17]. Nevertheless, the composition of PCA-Net is only the very basic data pro-
cessing components: cascaded principal component analysis (PCA), binary hash-
ing, and block-wise histograms. In the PCA-Net architecture, PCA is adopted
to learn multistage filter banks, followed by simple binary hashing and block
histograms for indexing and pooling. With easy and efficient implementation,
PCA-Net has been widely employed to learn deep features of objects. Obvi-
ously, it is straightforward to extend PCA-Net to MMC, e.g., MMC Network
(MMC-Net).

For each image data xi ∈ Rm×n, an image patch is taken around each pixel
with size of k1 × k2 as the manners of local binary patterns (LBP) [18]. As
a consequence, there are m × n vectorized patches picked up from xi, i.e.,
xi,1, xi,2, · · · , xi,mn ∈ Rk1k2 . Assume that the mean-removed patches of each
image is indicated by X̃. Then, the class mean and intra-class scatter of k-th
category with nk images can be defined as

mk = 1
nk

∑

i∈ck

X̃i

Sφ = 1
nk

∑

i∈ck

(
X̃i − mk

)(
X̃i − mk

)T

.
(11)
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Similarly, the inter-class scatter of image patches belonging to different categories
can be defined as

Sψ =
1
nc

c∑

c=1

(mk − m) (mk − m)T
, (12)

where m indicates the mean of class means. With the repeated PCA-Net stage,
the output is composed of hashing and histogram of input images.

Fig. 1. The results of different methods on three data sets. (a) Experimental results on
SUN database. (b) Experimental results on MNIST database. (c) Experimental results
on STL-10 data set.

4 Experiments

In this section, several experiments are performed to evaluate the performance
of proposed MMC methods1. First of all, the ability of linear feature extraction
is tested, and three data sets, namely SUN scene categorization database2 [19],
MNIST digit database3 [20], and STL-10 data set [22], are involved.

In the SUN database [19], the deep features of each image are extracted by
keras toolkit4 with pre-learned VGG-16 model of imagenet, and a 512 dimen-
sional feature is obtained to describe each image. Among all categories, random
100 classes are selected to be employed in experiments, and random half images
of each class are used for training and testing, respectively. Among image data
of each digit in the MNIST data set [20], 2,000 images in training data are ran-
domly selected to form training set, while 500 images in testing data are used for
testing stage. As a consequence, the total training set are organized by 20,000
images, while testing set contains 5,000 images. Furthermore, the simple sparse
coding features of MNIST data are adopted to make an improvement for clas-
sification [21]. For STL-10 data set [22], the deep representation of each image

1 The implementations are available at: http://mch.one/resources.
2 http://vision.princeton.edu/projects/2010/SUN.
3 http://yann.lecun.com/exdb/mnist.
4 https://keras.io.

http://mch.one/resources
http://vision.princeton.edu/projects/2010/SUN
http://yann.lecun.com/exdb/mnist
https://keras.io
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with target coding is employed in experiments [23], and a 255 dimensional fea-
ture is adopted for each data. Similarly, separate 2,000 and 500 data from each
training and testing categories are randomly selected to be training and testing
set correspondingly.

Fig. 2. The results of different 2D methods on three data sets. (a) Experimental results
on ALOI database. (b) Experimental results on MNIST database.

The results on different data sets are shown in Fig. 1. For simplicity, the
amount of randomly selected samples are set to be double quantity of reduced
dimension r for RMMC algorithm. In terms of results, PCA can present stable
results for SUN and MNIST data sets, but cannot learn discriminative infor-
mation with unsupervised features. Similarly, LDA is only up to discriminant
analysis for two data sets. The results of RMMC gets close to the best ones, while
MMC is incompetent to pattern analysis compared with other linear methods
for SUN database. Especially, MMC is hardly to be proceeded for MNIST in
our experiments with both high dimensionality and large sample amount, which
can be accomplished by RMMC instead. Furthermore, RMMC is able to reach
results approximate to MMC in most cases, but much more efficiency can be
preserved. For the layered MMC algorithms, stable performance are still avail-
able, and deeper layers lead to better recognition performance except for SUN
data set.

In the second experiment, the discriminant ability of 2D features are evalu-
ated, while the ALOI5 and MNIST databases are involved. In the ALOI data
set, [24], the whole data are combined while the original order of data is disor-
dered, and then a subset of 50 categories are randomly selected to be involved
into experiments. For each category of object, separate 18 and 54 images are
randomly picked up to form a small training set compared with testing set of
remaining images. For each digit of MNIST, 2,000 and 500 images from training
and testing sets are randomly selected to be 2D data, respectively. Since most
methods give the close results in different dimensions, the bar chart is adopted
to illustrated the results in Fig. 2.
5 http://aloi.science.uva.nl.

http://aloi.science.uva.nl
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Fig. 3. The results of different 2D methods on three data sets. (a) Experimental results
on MNIST data set. (b) Experimental results on ALOI data set.

As experimental results shown, the discriminant ability of different 2D meth-
ods are quite close to each other for ALOI data set. And the best result is con-
tributed by 2DLDA with 95.89%, followed by 95.63% of 2D2PCA. Nevertheless,
it is noticeable that, 2DMMC can obtain close result 91.7%, and 2D2MMC is
able to reach 95.37%. In other words, MMC methods can attain similar perfor-
mance to other methods. For MNIST database, 2DPCA presents the best result
of 95.44%, and other methods are hardly to reach above 90%. On the contrary,
the results from 2D2LDA and 2DMMC are pessimistic among all algorithms, but
hopefully, 2D2MMC can still get close recognition results to 2D2PCA method.

In the third experiment, different dimensionality reduction methods are
adopted to learn deep neural network structures, i.g., PCA, LDA and MMC
Networks, are involved. Two data sets, MNIST and ALOI, are involved in this
experiment. For each digit in MNIST, 100 images are randomly selected from
training and testing sets, while random 30 categories are selected from ALOI
data set with reshaped size of 30 × 30. To reduce calculational complexity, three
stages only are employed to learn the filter banks, and number of filters are set
to be eight. With different size of patch sizes, it is able to disclose the intrinsic
affection on subspace neural networks. The experimental results of patch sizes of
3, 4, 5 on two data sets are shown in Fig. 3. In terms of the results, there are few
differences among three methods, and both LDA-Net and MMC-Net can reach
better results in the stage of dimensionality reduction compared with PCA-Net.
Furthermore, it seems that quite similar performance can be obtained with small
patch sizes.

5 Conclusion

As a classical learning method, MMC is quite popular in various fields of data
mining and pattern analysis, as well as its ubiquitous applications in intelligent
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computing. In this work, a direct MMC approach is given firstly, and then several
variants of MMC are designed for adaptive learning, i.g., random MMC, layered
MMC, 2D2 based MMC. Inspired by PCA Network, a MMC network method is
proposed to make simple deep learning applicable. Experiments on several data
sets demonstrate comparable performance of proposed methods for applications
of different categories of data types, and it is component to learn the associated
patterns for adaptive recognition.

Acknowledgements. The authors would like to thank Universität zu Lübeck for
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Abstract. In this paper, we propose a method for multi-task manifold
learning. For a set of tasks of dimensionality reduction, the aim of the
method is to model each given dataset as a manifold, and map it to a
low-dimensional space. For this purpose, we use a hierarchical manifold
modeling approach. Thus, while each data distribution is represented by
a manifold model, the obtained models are further modeled by a higher-
order manifold in a function space. The higher-order model mediates the
information transfer between tasks, and as a result, the performance of
each task is improved. The results of simulations show that the proposed
method can estimate manifolds approximately, even in cases in which a
tiny number of samples are provided for each task.
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1 Introduction

Multi-task learning is a paradigm of machine learning that aims to improve per-
formance by simultaneously learning similar tasks [2,28]. Many studies have been
conducted on multi-task learning, particularly supervised learning. By contrast,
there have been few studies on multi-task unsupervised learning, and only a few
studies have been conducted on multi-task clustering [28]. To date, few works
have been reported on dimensionality reduction, particularly in the context of
non-linear manifold learning. The purpose of this study is to develop a method
for multi-task manifold learning. We focus in particular on scenarios in which
the number of data samples is too small to estimate manifolds and the assistance
of other tasks is indispensable.
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A typical example is face image modeling. It is well known that face images
are modeled by a manifold [3,23]. To estimate a face manifold, we typically need
a sufficient number of photographs taken from various viewpoints with various
expressions that cover the manifold entirely. However, in practice, it is typically
difficult to obtain such an exhaustive image set of a single person. Instead, we
typically have a huge number of photographs of other people. Thus, we have
many image sets of various people, each of which consists of a small number (i.e.,
insufficient number) of photographs. In such a scenario, our aim is to improve
modeling performance by transferring the information between tasks.

To achieve the above, we use a hierarchical modeling approach in this study.
Thus, while each given dataset is modeled by a manifold, the manifold mod-
els are further modeled by a higher-order manifold in a function space. This
higher-order model mediates information transfer among the given tasks, thereby
improving the performance of manifold modeling. The proposed method con-
sists of hierarchically coupled manifold models based on the kernel smoother
(kernel-smoother-based manifold modeling: KSMM), referred to as the hierar-
chical KSMM (H-KSMM).

The remainder of the paper is structured as follows: The problem is formu-
lated in Sect. 2, and related work is introduced in Sect. 3. The proposed method
is presented in Sect. 4 and experiment results to verify it are described in Sect. 5.
A discussion of the results and the conclusions of this paper are provided in the
final section.

2 Problem Formulation

Suppose we have I tasks. Thus, we have I datasets
{
S1, . . . , SI

}
in high-

dimensional space X = R
DX , each of which consists of Ni samples. The entire

dataset is denoted as S =
⋃

i Si =
{
xn

}N

n=1
, where N =

∑
i Ni. We also describe

the entire dataset using matrix X =
(
xT

n

) ∈ R
N×DX . Furthermore, let in be the

task index of sample n and Ni the index set of samples that belong to task i.
When such datasets are provided, our first aim is to map the data to

low-dimensional space Z = R
DZ . Thus, the first aim is to estimate

{
zn

}

that corresponds to
{
xn

}
. Our second aim is to model each data distribu-

tion using a nonlinear manifold. Thus, for the ith dataset, the method models
x | z ∼ N (

fi(z), β−1I
)
, where fi : Z → X is a smooth embedding from Z to X.

Then, the image of fi becomes a nonlinear manifold Mi = fi(Z) in X. In this
work, fi is referred to as the ‘task model.’ Note that {fi} belongs to the same
function space F, because X and Z are common to all tasks in this paper.

To achieve the above aims, the following hierarchical model is assumed in
this work. Suppose that Y is another low-dimensional space for task sets, and
all task models {fi} are assigned to {yi} as low-dimensional representations.
Suppose further that g : Y → F is a smooth embedding that satisfies fi = g[yi].
Thus, the task models are further modeled by manifold L = g[Y] in function
space F. Then, all datasets are modeled as x | z,y ∼ N (

F (z,y), β−1I
)
, where

F : Z × Y → X : (z,y) �→ (
g[y]

)
(z). In this paper, F is referred to as a ‘general
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model.’ Under these assumptions, the aim of multi-task manifold learning is then
to estimate

{
zn

}
,
{
yi

}
, and F simultaneously.

3 Related Work

To date, few studies have reported multi-task learning in the context of dimen-
sionality reduction tasks, subspace methods, and manifold learning. To the best
of our knowledge obtained from a survey, multi-task principal component anal-
ysis is the only development in the literature that is expressly aimed at the
multi-task learning of subspace methods [27]. However, by extending the scope
of our survey, we can locate related methods in the field of hierarchical mod-
eling (or multi-level modeling) that aim to obtain higher-order models of tasks
[5]. Although hierarchical modeling does not aim to improve the performance of
tasks, the areas of hierarchical modeling and multi-task learning overlap, where
the former is sometimes used as an approach to the latter [9,10,29].

Among methods for unsupervised hierarchical modeling, the higher rank of
self-organizing maps (SOM2) is the most relevant work to this study [6,7]. SOM2

has been applied to several problems in multi-task learning, such as face images
of various people [14], nonlinear dynamical systems with latent state variables
[21,22], the shapes of various objects [25,26], and members of various groups
[12,13]. In this sense, SOM2 is one of the earliest examinations of multi-task
unsupervised learning for nonlinear subspaces.

Although SOM2 works like a multi-task learning method, it remains challeng-
ing to estimate manifolds when the number of samples per task is small. More-
over, SOM2 has several limitations that originate from SOM itself, such as poor
manifold representation using discretized nodes and the brute force optimization
of latent variables. In this paper, we attempt to eliminate such limitations from
SOM2 by replacing it with KSMM and extending it for the multi-task learning
paradigm.

4 Proposed Method

KSMM is used as the building block of hierarchical manifold modeling in the
proposed method. In this section, we first describe KSMM and introduce the
proposed method, called H-KSMM.

4.1 Kernel-Smoother-Based Manifold Modeling (KSMM)

Generally, nonlinear methods for dimensionality reduction are categorized into
two groups [17]. The first consists of methods that project data points from a
high-dimensional space (data space) to a low-dimensional space (visualization
space). Most dimensionality reduction methods are in this group. By contrast,
the second group consists of methods that estimate the mapping from a low-
dimensional space (latent space) to a high-dimensional space (visible space).
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As the latter group of methods aim to model the data distribution using a
manifold, we refer to the group as manifold modeling. Representative methods
of manifold modeling are generative topographic mapping (GTM) [1] and the
Gaussian process latent variable model (GPLVM) [17,18], which originate from
self-organizing maps (SOMs) [16]. To estimate a smooth manifold, GTM and
GPLVM use the Gaussian process, whereas SOM uses a kernel smoother.

KSMM uses a kernel smoother, such as the original SOM, instead of a Gaus-
sian process because this makes it easier to extend SOM2 to H-KSMM. Moreover,
to the best of our knowledge, the kernel smoother stabilizes manifold modeling
to a greater extent than the Gaussian process, particularly in challenging con-
ditions, such as the case that we consider.

Although not by this particular name, KSMM has been proposed in many
studies as a theoretical generalization of SOM [4,8,11,20,24]. According to these
studies, the cost function of KSMM is given by

E =
β

2

∑

n

∫
h(z, zn) ‖xn − f(z)‖2 p(z) dz. (1)

In (1), h(z, z′) is a non-negative smoothing kernel defined on Z, which is typically
h(z, z′) = N (

z | z′, λ2
ZI

)
. The prior of z is a uniform distribution on a unit square

space, that is, p(z) = 1 for z ∈ [−1/2,+1/2]DZ ; otherwise, p(z) = 0. In this study,
nonlinear mapping f is represented parametrically using orthonormal basis func-
tions (e.g., normalized Legendre polynomials). Thus, f(z |V) = VT ϕT(z),
where ϕ = (ϕ1, . . . , ϕL)T is the basis set and V ∈ R

L×DX is the coefficient
matrix.

Nonlinear mapping f and latent variables {zn} are alternately updated, as
in a generalized expectation maximization algorithm. To update f , coefficient
matrix V is calculated as V = A−1BX, where

A =
∫

ϕ(z)ϕT(z)h(z) p(z) dz (2)

B =
∫

ϕ(z)h(z)T p(z) dz, (3)

where h(z) =
(
h(z, z1), . . . , h(z, zN )

)T and h(z) =
∑

n h(z, zn). By contrast,{
zn

}
are updated using a gradient method so that the value of the objective

function (1) is reduced.

4.2 Hierarchical KSMM (H-KSMM)

H-KSMM consists of two hierarchically coupled KSMMs: a lower-KSMM and
higher-KSMM. The lower KSMM estimates each task model, whereas the higher-
KSMM estimates the general model.

In H-KSMM, task information is transferred in two ways. The first involves
forming a weighted mixture of the sample datasets. If task i′ is a neighbor of
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task i in latent space Y, then sample set Si′ is merged into target set Si as an
auxiliary sample set with a larger weight. By contrast, if task i′′ is far from
task i in Y, then Si′′ is merged into Si with a small (or zero) weight. Let us
denote the weight of sample n of task in with respect to target task i as ρin

(0 ≤ ρin ≤ 1). Typically, ρin ≡ ρ(yi,yin
) = exp

[
− 1

2λ2
ρ

‖yi − yin
‖2

]
, where λρ

determines the size of the neighborhood for data mixing. By contrast, the second
way of transferring task information involves forming a weighted mixture of the
task models among neighboring tasks, that is, the kernel smoothing of the task
models.

The H-KSMM algorithm is as follows:

Step 1: Suppose {zn} and {yi} have been estimated in a preceding calculation
loop (or initialized randomly in the first loop). In Step 1, ρin is calculated as
described above.

Step 2: To obtain task models {fi}, corresponding coefficient matrices {Vi}
are calculated by Vi = A−1

i BiX, where

Ai =
∫

ϕ(z)ϕT(z)hi(z) p(z) dz (4)

Bi =
∫

ϕ(z)hi(z)T p(z) dz. (5)

In (5) (4), hi(z) =
(
ρi1h(z, z1), . . . , ρiNh(z, zN )

)T, and hi(z) =∑
n ρin h(z, zn). The coefficient matrices are collectively expressed as third-

order tensor V =
(
Vi

) ∈ R
I×L×DX .

Step 3: To obtain general model F , coefficient tensor W ∈ R
I×L×DX is calcu-

lated by

W = V ×1

(
C−1D

)
(6)

C =
∫

ψ(y)ψT(y) k(y) p(y) dy (7)

D =
∫

ψ(y)kT(y) p(y) dy, (8)

where k(y) =
(
k(y, z1), . . . , k(y,yI)

)T, k(y) =
∑

i k(y,yi), and k(y,y′) and
ψ(y) are the smoothing kernel and basis functions for the higher-KSMM,
respectively. Symbol ×m denotes the tensor–matrix product of the mth mode.
Then, the general model can be represented as

F (z,y) = W ×1 ψ(y) ×2 ϕ(z). (9)
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Step 4: Using a gradient method, latent variables {yi} are updated so that
the approximated cost function of the higher-KSMM decreases in value. The
approximated cost function is given by

E(yi) =
β

2

∑

n∈Ni

‖xn − F (zn,yi |W)‖2 . (10)

The integral with respect to y is omitted to simplify the calculation. Such an
approximation is commonly used in SOM and KSMM literatures.

Step 5: Finally, latent variables {zn} are updated using the gradient method
so that the approximated cost function of the lower-KSMM decreases. The
cost function is given by

E(zn) =
β

2
‖xn − F (zn,yin

)‖2 . (11)

These five steps are repeated until the calculation converges. During the
iterations, the length constant of the smoothing kernels is gradually reduced to
avoid local minima.

(a) (b)

(c) (d)

Fig. 1. Results of the artificial dataset. A total of 200 tasks and 2 samples/task were
used for training, and 10 of 200 manifolds are shown in the figures. (a) Ground truth.
(b) H-KSMM (multi-task learning). (c) SOM2 (multi-task learning). (d) KSMM (single-
task learning).
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(a) (b)

Fig. 2. Two representative tasks extracted from Fig. 1. The two black markers represent
the data for the task.

5 Experimental Results

5.1 Artificial Datasets

The performance of the proposed method was examined using an artificial
dataset. We used one-dimensional (1D) sinusoidal shape manifolds with different
biases, which are embedded into ten-dimensional (10D) space. The solid curves
in Fig. 1(a) are the examples of the manifolds. (To draw the figure, the mani-
folds in 10D space are projected to the principal 2D space. The rest of the eight
dimensions correspond to noise.) To generate the sample sets, we added 10D
Gaussian noise ε ∼ N (010, σ

2I10), where σ = 0.2. For the training dataset, we
prepared 200 tasks, each of which consisted of Ni samples (Ni was common to all
tasks) generated randomly. We compared the results of H-KSMM (the proposed
method), SOM2, and a single task on KSMM1.

A representative result is shown in Fig. 1. In this case, each task has only two
samples. Thus, it is impossible to estimate the manifold shape using single-task
learning (Fig. 1(d)). Surprisingly, the proposed algorithm was able to capture the
outlines of the manifold shapes (Fig. 1(b)). To show details, two of the 200 tasks
are shown in Fig. 2. Because only two samples were provided to the task, single-
task KSMM estimated the manifold as a straight-line segment that connected
two data points. By contrast, H-KSMM was able to reproduce the sinusoidal
manifold shape, although its marginal area was truncated because there were
insufficient samples.

We assessed learning performance quantitatively using two methods: the root
mean square error (RMSE) between the test data and manifold, and mutual
information (MI) of the true and estimated latent variables. RMSE evaluates
the error in visible space X, whereas MI evaluates accuracy in latent space Z.
Figure 3(a) and (b) show the RMSE and MI measured using the test data on

1 For a fair comparison, we modified SOM2 so that it could represent a continuous
mapping using basis functions in the same manner as KSMM. Thus, it should be
rather referred to as KSMM2. By this modification, the result shown for SOM2 is
better than that of the original.
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(a) (b)

Fig. 3. Generalization performance of existing tasks on the test data. The horizontal
axis denotes samples/task for training. (a) Root mean square error between the data
and models. (b) Mutual information between the true and estimated latent variables.

the given tasks, respectively. The results show that H-KSMM exhibited excellent
performance, particularly when the number of samples/task was small.

Using the general model, it is not only possible to estimate the manifolds of
the given tasks, but also possible to predict manifolds of unseen tasks. Figure 4
shows the RMSE and MI for 100 new tasks. The results show that H-KSMM
has a high generalization capability, even for new tasks.

(a) (b)

Fig. 4. Generalization performance on new tasks. The horizontal axis denotes sam-
ples/task for training. (a) Root mean square error between the data and models. (b)
Mutual information between the true and estimated latent variables.

5.2 Face Image Datasets

We applied the proposed method to face image modeling. The dataset used was
a subset of the extended Cohn–Kanade (CK+) face image database [15,19]. The
data used in the experiment consisted of image sequences of 78 people, where
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Fig. 5. Results of face image modeling of H-KSMM. Face manifolds of 2 of 78 people
are shown. The red boxes represent the training data (5 samples per task) and the
green boxes represent the test data. In each box, the original face image is displayed at
the center and the corresponding landmark face is indicated on the left-hand side. The
landmark face reconstructed by H-KSMM is indicated on the right-hand side. (Color
figure online)

each sequence began with a neutral expression and proceeded to a distinct emo-
tional expression. The dataset thus contained a large number of intermediate
expressions. In this study, we used four types of sequences: anger, fear, hap-
piness, and surprise. We also used landmark data as features. Thus, each face
datum was represented by a 136-dimension vector that corresponded to the 2D
coordinates of 68 landmarks. To construct the training data, we sampled five
images randomly from each person. Thus, the entire dataset consisted of 78
tasks, each of which consisted of five samples. Note that two expressions were
often missing in each task, and it was nearly impossible to estimate the face
manifolds using single-task learning.

The results are shown in Fig. 5, which represents the face manifolds estimated
by H-KSMM depicted in 3D space spanning the first three principal components.
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H-KSMM represented the training data well (indicated by red boxes) and repro-
duced the test data successfully (indicated by green boxes). Thus, these face
manifolds successfully represented various facial expressions, even though the
data provided were insufficient.

6 Discussion and Conclusion

In this paper, we proposed a method for multi-task manifold modeling based
on the hierarchical modeling approach. Characteristics of the method are two
means of information transfer: the weighted mixture of sample datasets and the
weighted mixture of task models. The latter method of information transfer is
mediated by a higher-order model in hierarchical modeling; that is, the former
method of information transfer was executed before the manifold modeling of
each task, whereas the latter was executed after manifold modeling. Providing
a theoretical basis for these means of information transfer will form the focus of
our future work in this area.
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Abstract. Metric learning is a hot topic in machine learning. A proper
learned metric can measure the similarity between samples better and
hence significantly improves the performance of machine learning algo-
rithm. In this paper, we propose a novel enhanced distance metric learn-
ing method via Dempster-Shafer (D-S) evidence theory. We consider each
instance as an independent source of evidence and combine these pieces
of evidence by using Dempster’s rule. Firstly, with reference to the D-S
theory, we construct the balanced weight function corresponding to each
instance in the metric. Secondly, the novel competitive-cost function is
given, which can improve classifier accuracy by narrowing the inner-class
distance and increasing the inter-class distance. Finally, we implement a
series of experiments on classification by using UCI and face recognition
data sets. Experimental results validate that the proposed method can
significantly improve the performance of the classifier and the robustness
of the algorithm.

Keywords: Metric learning · Dempster-Shafer (D-S) evidence theory
Classification · Competitive-cost function

1 Introduction

Distance metric learning in feature space has always been a hot issue in machine
learning and pattern recognition in recent years. Many pattern recognition and
machine learning applications involve feature space classification and cluster-
ing. The similarity between samples determines the performance of a variety
of machine learning algorithms such as K-Nearest Neighbor (K-NN) classifica-
tion [1], Radial Basis Function Network [2] and Support Vector Machine [3] (e.g.,
In the K-NN classifier, the key is to identify the set of labeled instance that is
closest to a given test instance in the feature space - involving the estimation
of a distance metric). In order to describe the similarity between the samples,
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a mapping function based on the sample input feature space is very important.
By learning from samples, this appropriate mapping function may be the key to
the successful application of these algorithms.

Based on the above analysis, Mahalanobis distance metric learning
method [4–8] can improve the classification accuracy by changing the relative
position of the samples in the feature space. The goal of distance metric learn-
ing algorithm is to find a proper transformation of the feature space. Using the
prior information in label form, the relevant dimensions are emphasized, while
irrelevant ones are discarded. That is to say, samples belonging to the same class
should be close to each other, while those from different classes should be farther
apart. In the literature, a large number of metric learning methods have been
proposed and performed well across various learning tasks, such as relevant com-
ponent analysis (RCA) [9], principal component analysis (PCA) [10], distance
metric learning of large margin nearest neighbor (LMNN) [11], information-
theoretic metric learning (ITML) [12], logistic discriminant-based metric learn-
ing (LDML) [13], sparse distance metric learning (SDML) [14], keep it simple
and straightforward metric learning (KISS) [15], least squared-residual metric
learning (LSML) [16] and an intrinsic approach [17].

As the above analysis indicates, the main task of metric learning is to learn a
distance function that can reflect the characteristics of the sample space through
the training data. Under this distance function, the samples of the similar are
close together, and vice versa. Since the target distance function of metric learn-
ing is indispensable for various learners, traditional metric learning theories com-
bined with other fields in machine learning have formed many research hotspots.
This combination will have a significant impact on machine learning research. In
this paper, we propose a new distance metric learning method via D-S theory,
and apply the gradient descent method to solve the corresponding optimization
problem.

The paper is organized as follows. In Sect. 2, we review the basics of D-S
theory and describe the relation of our work. Section 3 describes our algorithm
model and gives the optimization objective function. The optimization algorithm
is introduced in Sect. 4. Section 5 shows the performance comparison between our
proposed method and other metric learning methods. Finally, we conclude our
main contributions in Sect. 6.

2 Preliminaries

In this section, we introduce some notations and preliminaries. D-S evidence
theory [18], originated in the 1960s, uses the discernment frame Θ to represent
the proposition set of interest, and defines a mass function m : 2Θ → [0, 1] as the
basic probability assignment function on the discernment frame. The function
satisfies the following two conditions:

m(ø) = 0,
∑

A⊆Θ

m(A) = 1 (1)
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For all proposition sets, the belief function Bel() and the plausibility function
Pl() are defined as:

Bel(A) =
∑

B⊆A

m(B), ∀A ⊆ Θ

Pl(A) = 1 − Bel(Ā), ∀A ⊆ Θ

(2)

That is, the belief function of A is the sum of the belief degrees of each subset
in A, indicating the minimum degree of uncertainty support to the establishment
of the proposition. The plausibility function indicates the extent that the propo-
sition A is not denied. [Bel(A), P l(A)] represents the uncertainty interval of
proposition set A.

Dempster also defined the well-known Dempster’s rule of combination. Let
m1 and m2 be two mass functions derived from independent items of evidence.
They can be fused via Dempster’s rule to induce a new mass function m1 ⊕ m2

defined as:
(m1 ⊕ m2)(A) = K−1

∑

Ai∩Bi=A

m1(Ai)m2(Bi) (3)

where
K = 1 −

∑

Ai∩Bi=ø

m1(Ai)m2(Bi) (4)

The evidential K-NN [19] classification rule addresses the problem of classify-
ing an unseen pattern on the basis of its nearest neighbors in a recorded data set
is addressed from the point of view of Dempster-Shafer theory. Each neighbor
xj of sample xi to be classified is considered as an item of evidence that sup-
ports certain hypotheses regarding the class membership of that pattern. The
degree of support mj

i is defined as a function of the distance dj
i between these

two vectors:
mj

i (yq) = α0fq(d
j
i )

mj
i (Θ) = 1 − α0fq(d

j
i )

(5)

where the index q indicates that the influence of dj
i may depend on the class of

xi, and yq is the label of xj and Θ is a collection of all class labels.
The evidence of the k nearest neighbors is then pooled by means of Demp-

ster’s rule of combination:

m
Γq

i ({yq}) = 1 −
∏

j∈Γq

(1 − α0fq(d
j
i ))

m
Γq

i (Θ) =
∏

j∈Γq

(1 − α0fq(d
j
i ))

(6)

This approach provides a global treatment of such issues as ambiguity and
distance rejection, imperfect knowledge regarding the class membership of train-
ing patterns. The effectiveness of this scheme as compared to the voting and
distance-weighted K-NN procedures is demonstrated using several sets of simu-
lated and real-world data.
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Based on the above work, Evidential Dissimilarity Metric Learning (EDML)
algorithm [20] was proposed that uses a low-dimensional transformation of the
input space to learn appropriate metrics M . As the result, the learned metric M
can lead xi only close to samples from the same class in the transformed space,
thus protecting the classification performance of the evidential K-NN method.
Based on EDML, we construct the competitive-cost function, which can improve
traditional K nearest classifier accuracy by narrowing the inner-class distance
and increasing the inter-class distance.

3 Metric Learning with Competitive-Cost Function

Let {(xi, yi)}n
i=1 be the labeled samples, where xi = (x1

i , . . . , x
d
i )

T ∈ R
d is a

d dimensional column vector and yi ∈ {c1, . . . , cm} is the corresponding class
label. Our goal is to learn a positive semi-definite matrix M ∈ R

d×d, which will
be used to compute the following squared distance:

D(xi,xj) = (xi − xj)T M(xi − xj) (7)

For training example xj , wj
i denotes the weight of xi, which can be simply

defined as:
wj

i = 1 − exp {−λD(xi,xj)} (8)

where λ is a given parameter that controls the distance between sample pairs.
Define a training samples set Γq(q = 1, . . . ,m), where the samples in this set

belong to the same class label cq. We can refer to Dempster’s rule to deduce a
global importance value for all training samples in Γq:

w
Γq

i =
∏

j∈Γq

[1 − exp{−λD(xi,xj)}] (9)

For q = 1, . . . ,m, the global weight w
Γq

i quantifies the evidence refined from
the training examples that supports the assertion yi = cq. In other words, it
can be viewed as a calculation of the unreliability of the hypothesis yi = cq.
The corresponding weight should be close to zero if the true value of yi is cq;
in contrast, for all r �= q, wΓr

i should be close to one. With above analysis,
we construct the competitive-cost function of the model. The competitive-cost
function consists of two terms, one for attracting samples with the same label
and the other for rejecting alien labels and making them more separated. The
two terms have a clear competitive relationship because the former narrows the
sample point directly, and the other is the opposite. We discuss each term in
order.

The first term of competitive-cost function, penalizes the larger distance
between each input and its similar sample, can be given by:

εpull =
1
2
(ωΓq

i )2 (10)
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The gradient of this term produces a pull in the input space of the linear
transformation to attract similar samples, which will penalize the distance of all
same labels and eventually bring the samples together as much as possible in
order to improve the performance of the classifier.

The second term of the competitive-cost function penalizes the small distance
between the different classes of samples. By defining the form of multiplication,
all samples that are dissimilar from the target sample category are away from
it. The second term of the competitive-cost function εpush is given by:

εpush =
1
2
(1 −

m∏

r �=q

ωΓr
i )2 (11)

The gradient of this term produces a pushing force that will push the coun-
terfeiter.

We combine the two terms εpull and εpush into a predictive cost function for
the training sample point (xi, yi) based on the assumptions presented above.
Since these two terms have a competitive effect - not only attract isomorphism,
but also exclusion isomerism. We introduce the weighted parameter μ ∈ [0, 1] to
balance these goals:

εi =
m∑

q=1

δi·q · {(1 − μ)εpull + μεpush} (12)

where
{

δi·q = 1 if yi = cq

δi·q = 0 if yi �= cq

(13)

When yi = cq, minimizing εi can force both εpull and εpush to approach zero
as much as possible. Although in our experience, the result of minimizing the
cost function is not sensitive to the value of the parameter μ, we usually choose
it by cross validation. In the following experiments, the value μ = 0.5 works
best.

For all training sample points, our goal is to find an optimal metric matrix
M . For this purpose, we use the cumulative sum of the smallest form, which can
be defined as:

arg min
M

ε = 1
n

n∑
i=1

εi

s.t. M � 0
(14)

4 Optimization

There is a constraint on the semi-definite matrix domain for the objective func-
tion Eq. 14. It can be solved by standard solvers, such as CPLEX and MOSEK.
These standard semi-definite problem solvers require an expensive computational
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cost. Fortunately, the domain of M is the cone of a positive semi-definite matrix,
which can be factorized as M = LT L. Hence, we can reformulate Eq. 7 as:

D(xi,xj) = ||L(xi − xj)||22 (15)

So the objective function Eq. 14 can be rewritten as follows

arg min
L

ε =
1
n

n∑

i=1

εi (16)

This is an “unconstrained” metric learning problem, so we use the gradient
descent method to find the optimal metric for this problem.

∂εi

∂L
=

m∑

q=1

δi·q

{
(1 − μ)

∂εpull

∂L
+ μ

∂εpush

∂L

}
(17)

In which, for q = 1, . . . ,m, the partial derivative ∂εpull

∂L of εpull to L can be
expressed as follows:

∂εpull

∂L
= ω

Γq

i

∂ω
Γq

i

∂L

= ω
Γq

i

∑

j∈Γq

(
∂ωj

i

∂L

∏

l∈Γq\j

ωl
i)

= ω
Γq

i

∑

j∈Γq

(
2λ(1 − ωj

i )L(xi − xj)(xi − xj)T
∏

l∈Γq\j

ωl
i

)
(18)

As above, ∂εpush

∂L can be calculated as:

∂εpush

∂L
= (1 −

m∏

r �=q

ωΓr
i )(−∂(

∏m
r �=q ωΓr

i )
∂L

)

= (1 −
m∏

r �=q

ωΓr
i )(−

m∑

r �=q

(
∂ωΓr

i

∂L

m∏

s �=r,q

ωΓs
i ))

= (1 −
m∏

r �=q

ωΓr
i )

(
−

m∑

r �=q

((
∑

j∈Γr

∂ωj
i

∂L

∏

l∈Γr\j

ωl
i)

m∏

s �=r,q

ωΓs
i )

)

= (1 −
m∏

r �=q

ωΓr
i )

(
−

m∑

r �=q

((
∑

j∈Γr

(2λ(1 − ωj
i )L

(xi − xj)(xi − xj)T )
∏

l∈Γr\j

ωl
i)

m∏

s �=r,q

ωΓs
i )

)

(19)

In order to speed up the convergence process, the metric matrix obtained by
the classical metric learning method can be used instead of the identity matrix
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as the initialization. We refer to the proposed method as Metric Learning via
D-S theory (MLDST). Its pseudo-code implementation is given in Algorithm 1.
The inputs to the algorithm are the starting matrix L, the data matrix, and the
corresponding parameters.

Algorithm 1. MLDST
Input: the data matrix X ∈ R

d×n; the label matrix Y ∈ R
1×n; the parameter λ; the

budget iteration number T ; the weighted parameter μ ∈ [0, 1]; the learning rate η.
Output: the metric matrix M = LT L.
1: Initialize L ∈ R

l×d; λ = 1; μ = 0.50; η = 1e − 6.
2: for t = 1,. . . ,T do
3: gradient dG = 0
4: for i = 1,. . . ,n do

5: comput
∂εpush

∂L
by solving (18).

6: comput
∂εpull

∂L
by solving (19).

7: comput ∂εi
∂L

by solving (17).

8: dG = dG + ∂εi
∂L

.
9: end for

10: L = L − η × dG
11: end for

5 Experimental Results

In order to verify the performance of the proposed method, we present a series of
experiments in this section. The experiments contain two parts. In the first part,
several data sets from the UCI Machine Learning Repository were used. The
other one is the face recognition dataset. We compare the performance of the
proposed method with RCA, PCA, LMNN, ITML, LDML, SDML and LSML.
In addition, a baseline experiment, i.e., the Euclidean method, is conducted by
using k-NN classifier with the Euclidean distance.

5.1 UCI Data Sets

We test our proposed method on four real-world datasets from UCI repository:
Iris, Wine, Seeds and Digits. In our experiments, each data set is randomly
divided into two subsets: we selected 70% of the sample as the training set,
while the rest as the test set. In order to explain the difference of various metric
learning algorithms on data sets, we run ten times on each data set and then
take the average correct rate.

Comparison and Parameter Setting. The performances of our method are
compared with the following methods.
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(1) Euclidean: Without metric learning.
(2) RCA: The number of chunks is chosen from 50 to 100.
(3) PCA: We reserve 85 to 95 percent of the principal components.
(4) LMNN: The parameter μ is chosen increasingly from 0.1 to 1 with interval

0.1.
(5) ITML: The identity matrix is set as the initial metric matrix. The γ is chosen

from 10−4 to 104.
(6) SDML: The balance parameter η is chosen increasingly from 0.1 to 1 with

interval 0.1 and the sparsity parameter μ = 0.01.
(7) LSML: The prior matrix M0 is set as an identity matrix.
(8) MLDST: For our proposed method, we set λ = 1 and μ = 0.5, as many

experiments demonstrate that the performance of these two parameters is
better.

The results of best classification accuracy for each method are listed in
Table 1, in which results obtained by Euclidean distance are also presented as
one baseline for comparison. Table 1 shows that our proposed method has a good
performance on most data sets.

Table 1. Comparison with other metric learning algorithms on the UCI repository.

Method UCI repository accuracy (ave +/− std)

Iris Wine Seeds Digits

[150/4/3] [178/13/3] [210/7/3] [1797/64/10]

Euclidean 93.24(+/−0.62) 72.02(+/−7.72) 87.61(+/−7.12) 97.51(+/−1.75)

RCA 95.33(+/−5.25) 93.23(+/−2.71) 94.36(+/−3.95) 94.49(+/−0.62)

PCA 94.16(+/−4.19) 75.23(+/−3.36) 90.84(+/−4.41) 96.15(+/−2.74)

LMNN 96.67(+/−4.47) 91.45(+/−6.02) 94.28(+/−2.85) 98.27(+/−1.51)

ITML 95.14(+/−3.71) 96.86(+/−3.11) 92.51(+/−2.15) 98.24(+/−0.67)

LDML 94.68(+/−5.11) 96.65(+/−4.79) 93.21(+/−3.38) 98.15(+/−2.13)

SDML 97.18(+/−2.17) 92.72(+/−4.61) 91.23(+/−6.52) 98.01(+/−3.30)

LSML 95.87(+/−3.56) 94.11(+/−6.36) 93.87(+/−3.73) 97.21(+/−1.94)

MLDST 97.33(+/−4.42) 97.01(+/−5.03) 94.76(+/−3.34) 98.35(+/−2.39)

Average 95.86 92.64 92.54 97.37

Detailed Analysis of the Parameter λ. Figure 1 shows that the parameter
λ controls the effect of the distance between the sample points based on the
cost function. The value should be adjusted for different data. Under normal
circumstances, a sufficiently small parameter λ may cause the distance between
the pair too large, which will affect the subsequent classification processing.
However if the λ is too large, it may also have a negative effect. Experiments
show that when λ is between 0.01 and 1, better results are obtained.
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Fig. 1. Average accuracy of the K-NN classification on the UCI repository with regard
to the parameter λ.

Detailed Analysis of the Nearest Neighbors K. We also analyze the influ-
ence of parameter K of the K-NN classification on the accuracy of the data set.
In this subsection, the procedure of experiment is almost the same as that in
Subsection 4.2. The only difference is that in this experiment, we set λ = 1 and
μ = 0.5, the number of neighbors K is selected from 1 to 15 in order to classify
the test samples in the transformed space. What is more, we compare the results
of the Euclidean distance when the values of K and the data distributions are
same. The results with different data sets are shown in Fig. 2. Figure 2 shows
that the accuracy by applying our proposed method is higher than applying the
distance of the Euclidean input space when the values of K are same. In addi-
tion, the change of K has a little effect on the result, which implies that our
proposed method is robust to K.

Data Set 2-D Visualization Results. Figure 3 shows the distributions of
wine data sets under the learned metrics where different clusters are represented
by different colors and shapes. The first line from left to right is the Euclidean
metric, PCA, LMNN, and ITML, respectively. The second line from left to right,
the methods used are LDML, SDML, LSML, and our method, respectively. To
show the distributions under the corresponding metrics, we project them to 2
dimensional spaces by PCA method. Visually, the linear separabilities of data
are improved in different degrees under our learned metric. It is also validated in
Table 1 that the classification accuracies on this data set are obviously improved.
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to the number of nearest neighbors K.

Fig. 3. Data set 2-dimension visualization results.
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5.2 Face Recognition Data Sets

We also present the proposed model with two real face recognition data sets,
ORL data set and Yale data set. ORL face recognition data set includes 40
subjects and 10 images per subject. For some subjects, the images were taken
from different times, lighting, facial expressions (open/closed eyes, smiling/not
smiling) and facial details (glasses/no glasses). All the images were taken against
a dark homogeneous background with the subjects in an upright, frontal position
(with tolerance for some side movement). Yale face recognition data set contains
165 grayscale images in 15 individuals. There are 11 images per subject, one
per different facial expression or configuration: center-light, with glasses, happy,
left-light, no glasses, normal, right-light, sad, sleepy, surprised, and wink. For
these data, we subsampled the images to 32 × 32 pixels and the dimensionality
is further reduced to 64 by PCA. Average error rates with each face recognition
data sets are presented in Table 2.

Table 2. Comparison with other metric learning algorithms on the face recognition
dataset.

Data Euclid RCA LMNN ITML LDML MLDST

Average error ORL 10.25(+/-3.43) 7.51(+/-4.89) 9.38(+/-3.01) 11.32(+/-2.62) 13.27(+/-5.34) 5.12(+/-4.65)

rate (%) YaleB 38.57(+/-10.66) 13.02(+/-4.32) 11.81(+/-1.91) 12.55(+/-3.84) 10.93(+/-2.99) 8.57(+/-3.13)

6 Conclusion

In this paper, we have proposed an enhanced metric learning method via D-S
evidence theory, and applied the gradient descent method to solve the corre-
sponding optimization problem. We test our method in two aspects. Firstly,
the proposed method is applied with four data sets from UCI repository. The
experiment results indicate the effectiveness of this method. Then the method is
applied with two face recognition data sets. The results show that our proposed
method can improve the accuracy of face recognition effectively.
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Abstract. We present a novel generative adversarial network (GAN)
model, called InsightGAN, for drug abuse detection. Our model is
inspired by two closely related works on machine learning for health-
care applications: (1) drug abuse detection has been solved by machine
learning with plentiful data from social media (where face pictures can
be easily obtained); (2) facial characteristics have been explored in men-
tal disorder diagnosis (drug addiction is also a mental disorder). In this
paper, we adopt deep learning to extract discriminative facial features
for drug abuse detection. However, in this application, the face pictures
with ground-truth labels are far from sufficient for training a deep learn-
ing model. To alleviate the scarcity of labelled data, we thus propose a
semi-supervised facial feature learning model based on GAN. Moreover,
we also develop a robust algorithm for training our InsightGAN. Exper-
imental results show the promising performance of our InsightGAN.

Keywords: Drug abuse detection · Deep learning · Social media

1 Introduction

Machine learning has been employed in many healthcare problems [8,19], due to
the recent advances in this field [17]. Since illegal drug abuse is one of the fastest
spreading public health problems in the world [15,16], drug abuse detection has
attracted worldwide researchers from multiple fields [4,6,14,30], including those
from machine learning [5,11,23,26].

Our present work on drug abuse detection is inspired by two closely related
works [1,23]. In [23], a drug abuse detection system was developed by machine
learning with plentiful data from social media (i.e. Twitter). Due to Twitter’s
wide reach and effective openness, this system acts as a bridge between people
who need help in dealing with drug addictions and the services they need. This
is crucial for reversing the growing epidemic of drug abuse [15,16], given that
people tend to hide their addictions from others for the criminalization and
stigma of illicit drug use [23]. In this paper, instead of analyzing the texts from
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Fig. 1. Flowchart of our InsightGAN model for drug abuse detection.

Twitter, we choose to explore face pictures (easily obtained from social media)
in drug abuse detection. This choice is supported by the interesting findings
from [1]. In this previous work, face pictures were used for the diagnosis of one
typical mental disorder, i.e., autism spectrum disorder (ASD), given that facial
characteristics of children with ASD were shown to have distinct differences from
those of typically developing children. Similar findings have also been reported
in [3]. Since drug addiction is also a mental disorder [30] and deep learning is
one of the most powerful tools in machine learning [13], we employ deep learning
to extract discriminative facial features for drug abuse detection in this paper.

Note that deep learning has a distinct limitation in healthcare applications.
Specifically, the ground truth labels of medical data are often very expensive to
access, and thus we are generally provided with a small labelled set for model
training. For example, in [23], only 300 tweets were manually classified into drug
abuse tweets and non-abuse tweets by two professors and three students who
have expertise in health informatics. Since the scarcity of training data tends
to cause the overfitting of a deep learning model [18], we need to overcome this
issue when leveraging deep learning in drug abuse detection.

Considering the significant advantage of generative adversarial network
(GAN) in deep feature learning [9,24], we propose a semi-supervised facial fea-
ture learning model based on GAN to alleviate the scarcity of labelled data for
drug abuse detection, which is called InsightGAN in this paper. As compared
to the conventional GAN that learns deep features in an unsupervised manner,
our InsightGAN is trained with both labelled and generated examples for semi-
supervised feature learning. Because the generated examples are used for model
training, our InsightGAN is shown to be able to alleviate the scarcity of labelled
data. Although machine learning has been widely used in drug abuse detection
[5,11,23,26], deep learning (including GAN) has been rarely used for this task.

Since Inception-ResNet v1 [31] is one of the most advancing convolutional
neural network (CNN) models [12,29,32], we use it as the discriminator network
in our InsightGAN model, as shown in Fig. 1. Moreover, we design the generator
network using a series of five fractionally-strided convolutions (see Fig. 1), which
is similar to [24]. Given that our focus is drug abuse detection (i.e. classification)
rather than face generation, the discriminator network in our InsightGAN model
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is much more complicated than the generator network. In addition, by pre-
training the extremely large discriminator network with outside data such as
MS-Celeb-1M [10] and CK+ [20], we develop a robust algorithm for training our
InsightGAN model. Many semi-supervised GAN training strategies [7,25] exist;
in this paper, only the strategy of [21] is employed by our algorithm. Note that
our model is trained in an end-to-end manner and a non-transductive classifier
can be obtained for drug abuse detection when our model is well-trained.

To evaluate our InsightGAN model, we conduct extensive experiments of
drug abuse detection (DAD) on a face dataset (denoted as DAD-Face), which
is collected from a local hospital and also from the web (e.g., the we-media
on the drug use topic, and drug abuse news of celebrities). The experimental
results show that our InsightGAN model generally yields better result than the
Inception-ResNet v1 model when the same number of labelled data are provided
for drug abuse detection. This validates that the generated examples obtained
by GAN indeed help to improve the performance of Inception-ResNet v1.

Our main contributions are summarized as follows: (1) We have proposed
a semi-supervised GAN model for drug abuse detection, which can be used to
boost the drug safety surveillance systems through Twitter. (2) We have made
the first contribution to exploring deep learning in extracting discriminative
features for drug abuse detection, to the best of our knowledge. (3) We have
developed a robust algorithm for training our InsightGAN model by pre-training
the discriminator network (Inception-ResNet v1) with outside data.

2 Related Work

2.1 Drug Abuse Detection

Illegal drug abuse is one of the fastest spreading public health problems in the
world [15,16]. To reverse the growing epidemic of drug abuse, great efforts have
been made on drug safety surveillance and drug abuse prevention. In particular,
drug abuse detection has attracted worldwide researchers from multiple fields
including medical science, chemistry, physics, and computer science [2,4,6,14,
22,30]. Specifically, a series of drug abuse testing methods have been proposed
by analyzing different types of medical data, which are collected from oral fluid
[6], urine [2], blood [22], and hair [4]. However, these drug abuse testing methods
have a limitation in real-world applications: it is of high cost to collect the
biological samples, since people tend to hide their addictions from others. This
is mainly due to the criminalization and stigma of illicit drug use [23]. As a
result, it becomes very difficult to identify vulnerable individuals, who may take
an overdose of illicit drugs, when only these testing methods are employed.

To provide a bridge between people who need help in dealing with drug
addictions and the services they need, many researchers have paid their atten-
tion to developing drug safety surveillance systems through Twitter [5,11,23,26].
Due to the wide reach and effective openness of social media (e.g. Twitter), the
spread of information about the use of illegal drugs can be detected in social
media. In particular, in [23], a drug abuse detection system was developed by
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machine learning with the texts from Twitter (labelled as drug abuse tweets and
non-abuse tweets). In this paper, instead of analyzing the texts from Twitter, we
choose to explore face pictures in drug abuse detection and propose an Insight-
GAN model for drug abuse detection. Since the face pictures are easily obtained
from social media, our InsightGAN model can be used to boost the drug safety
surveillance systems through Twitter.

2.2 Semi-Supervised Learning with GAN

GAN has been shown to yield exciting results in many applications [9,24]. Due to
the adversarial training of the generator and discriminator networks, GAN can
provide the ability of both data generation and classification. In this paper, since
our focus is drug abuse detection (i.e. classification) rather than face generation,
the discriminator network (Inception-ResNet v1) in our InsightGAN model is
much more complicated than the generator network. Considering the scarcity of
labelled data provided for drug abuse detection, we adopt two model training
strategies: (1) Semi-supervised learning is employed. That is, our InsightGAN
model is trained with both labelled and generated examples. In the literature,
there exist many semi-supervised learning strategies [7,25] for training a GAN
model. In this paper, only the strategy of [21] is adopted in our training algo-
rithm. (2) Outside data are explored in model training. Specifically, MS-Celeb-
1M [10] and CK+ [20] are used to pre-train the discriminator network (i.e.
Inception-ResNet v1). In summary, we have developed a robust algorithm for
training our InsightGAN model in an end-to-end manner.

3 The Proposed Model

3.1 Face Preprocessing

Similar to previous work on face recognition, we first preprocess the original
large face pictures to obtain standard faces as follows:

– Face Detection. We first detect a single face or multiple faces from each
original large picture using FaceNet [27].

– Facial Keypoint Detection. For each detected face, we detect 68 facial key-
points for face alignment and cropping, using the Caffe open library available
at https://github.com/qiexing/face-landmark-localization.

– Face Alignment & Cropping. With the 68 keypoints, we align each face
using a 2D affine transformation and then crop it to 160*160 pixels.

3.2 Model Architecture

For the detection of illegal drug abuse, we design a semi-supervised GAN model
based on Inception-ResNet v1 [31], which is a typical CNN model. The network
architecture of our InsightGAN model is illustrated in Fig. 1. It can be seen that
our InsightGAN model consists of two main networks: (1) the discriminator

https://github.com/qiexing/face-landmark-localization
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network, which uses Inception-ResNet v1 as a basic CNN model; (2) the genera-
tor network, which is composed of five fractionally-strided convolutions, similar
to [24]. The details of the two networks in our model are given as follows:

– Discriminator Network. The discriminator network is generally inherited
from the original Inception-ResNet v1 model. In this paper, we make mod-
ifications in two aspects: (1) The fully-connected layer of Inception-ResNet
v1 is reduced to three softmax output units, with one unit for each of the
three classes [pos., neg., fake]; (2) In the input layer, half of each mini-batch
includes the generated examples outputted by the generator network, and the
other half contains examples from the DAD-Face dataset. This setting keeps
unchanged when training the discriminator network, while only the first half
of mini-batch is used for training the generator network.

– Generator Network. The design of the generator network is inspired by
[24]. As shown in Fig. 2, the generator network consists of one project and
reshape layer and five fractionally-strided convolutional layers. Note that no
pooling layers are used here. Specifically, the input of the generator network
is a 100-dimensional random vector z drawn from a uniform distribution, and
the other six layers of the generator network have the following output sizes:
[5 × 5 pixels, 1024 channels], [10 × 10 pixels, 512 channels], [20 × 20 pixels,
256 channels], [40 × 40 pixels, 128 channels], [80 × 80 pixels, 64 channels],
[160 × 160 pixels, 3 channels]. The generated example is denoted as G(z).

Note that the discriminator network is much more complicated than the
generator network. This is consistent with the fact that our focus is drug abuse
detection (but not face generation). Since one fully-connected layer has been
added at the end of the discriminator network for the classification of [pos.,
neg., fake], we can train our model in an end-to-end manner. Moreover, since
we are provided only with labelled and generated examples (without unlabelled
examples), we can obtain a non-transductive classifier for drug abuse detection,
when our model is well-trained.
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Fig. 2. The architecture of the generator network in our InsightGAN model for drug
abuse detection. A 100-dimensional random vector z is drawn from a uniform distribu-
tion. A series of five fractionally-strided convolutions then convert this random vector
into a color image G(z) of 160 × 160 pixels.
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Algorithm 1. InsightGAN Training Algorithm
Input: The labelled examples

Parameters I, k,m
Output: D, G
1. Pre-train Inception-ResNet v1 with MS-Celeb-1M;
2. Finetune Inception-ResNet v1 with CK+;
3. Initialize the discriminator using the finetuned Inception-ResNet v1 model;
for i = 1 to I do

for j = 1 to k do

4. Draw m noise samples {z(1), ..., z(m)} from pz(z);
5. Draw m examples {x(1), ..., x(m)} from data generating distribution
pdata(x), with their labels being {y(1), ..., y(m)};

6. Update the discriminator by ascending its stochastic gradient on the
combined mini-batch of size 2m:

∇θd

1

m

m∑

s=1

[logD(x(s)|y(s)) + log(1 −
2∑

y=1

D(G(z(s))|y))];

end

7. Draw m noise samples {z(1), ..., z(m)} from pz(z);
8. Update the generator by descending its stochastic gradient on the
mini-batch of size m:

∇θg

1

m

m∑

s=1

log(1 −
2∑

y=1

D(G(z(s))|y)).

end
return D, G.

3.3 Adversarial Training

We formulate the problem of adversarial training of our InsightGAN model as
follows. To learn the generator’s distribution pg(x) over data x, we define a noise
prior pz(z) on the noise vector z, and then represent a mapping to data space
as G(z; θg), where G is a differentiable function represented by the generator
network with parameters θg. Moreover, we define the class label y(x) of data x
as: y(x) = 1 if x comes from the positive class, and y(x) = 2 if x comes from
the negative class. We thus represent the output of the discriminator network
with parameters θd as: D(x|y(x); θd), where D(x|y(x)) is the probability that x
comes from class y(x) rather than pg. The adversarial training of D and G can
be formulated as the following minimax problem:

min
G

max
D

V (G,D) = Ex∼pdata(x)[log D(x|y(x))]

+ Ez∼pz(z)[log(1 −
2∑

y=1

D(G(z)|y))] (1)
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where V (G,D) is the objective function for adversarial training, and pdata(x) is
the data generating distribution (other than the generator’s distribution pg(x)).

Note that the above minimax optimization problem is different from those
minimax problems defined in [9,21,24], since three types of examples (posi-
tive/negative/fake) are included. However, following the adversarial training
algorithms developed in these previous works, we can similarly solve Eq. (1)
using an iterative numerical approach. Specifically, we alternate between k steps
of optimizing D and one step of optimizing G, where the stochastic gradient
descent method is employed. This ensures that D is maintained near its optimal
solution, so long as G changes slowly enough.

Although the adversarial training approach can alleviate the scarcity of train-
ing data, the DAD-Face dataset is still “small” for training our InsightGAN
model, especially when the extremely large CNN model (i.e. Inception-ResNet
v1) is used as the discriminator network. As a remedy, we explore the MS-Celeb-
1M [10] and CK+ [20] datasets as outside data for model training. In particular,
MS-Celeb-1M is a large-scale face dataset of 100 K subjects and 10M face pic-
tures, and CK+ is a facial expression dataset of 2,977 face pictures from eight
emotion categories. In this paper, the MS-Celeb-1M and CK+ datasets are used
for pre-training and finetuning of the discriminator network, respectively.

By considering the adversarial training and pre-training steps together, the
complete algorithm for training our InsightGAN model is shown in Algorithm 1.

3.4 Test Process

Once our model has been well trained, we can evaluate its performance on the
test set of DAD-Face. Specifically, each test face is first preprocessed to standard
face, and then inputted into the discriminator to be classified as positive or neg-
ative (but not corresponding to the fake class). Moreover, our later experiments
also show that our InsightGAN model is very efficient during the test process.

4 Experimental Evaluation

4.1 Data Collection

For performance evaluation, we construct a face dataset called DAD-Face1, which
consists of 1,581 face pictures (pos./neg. = 784/797). To make this dataset as
large as possible, we have collected the face pictures not only from a local hos-
pital but also from the web (e.g., the we-media on the drug use topic, and drug
abuse news of celebrities). Note that the dataset collected in this way would
inevitably have noise. As a remedy, we have made great effort on quality assur-
ance during data collection, i.e., each case has been checked by two experts and
three students who have expertise in health informatics. In addition, our project
has been confirmed by the Ethics Committee of the local hospital.

1 https://github.com/JoinGitHubing/drugIdentification.

https://github.com/JoinGitHubing/drugIdentification
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4.2 Experimental Setup

To evaluate the performance of our InsightGAN model in drug abuse detection,
we make use of the following five measures: accuracy (ACC), sensitivity (SEN),
specificity (SPE), positive predictive value (PPV), and negative predictive value
(NPV). Given the number of true positives (TP), false negatives (FN), false
positives (FP) and true negatives (TN), the five metrics are defined as follows:

ACC = (TP + TN)/(TP + FN + TN + FP) (2)
SEN = TP/(TP + FN), SPE = TN/(TN + FP) (3)
PPV = TP/(TP + FP), NPV = TN/(TN + FN) (4)

For our InsightGAN model, we randomly initialize the fully-connected layer
(at the end of the discriminator) by drawing weights from a zero-mean Gaussian
distribution with standard deviation 0.01, and initialize the bias to 0. All the
other layers of the discriminator are initialized by Inception-ResNet v1 trained
with MS-Celeb-1M and CK+. Moreover, for all the convolutional layers of the
generator, we adopt the Xavier initialization. The learning rate is set to 0.0001.
The two parameters about iterations are set as I = 10, 000 and k = 1. A weight
decay of 0.0 is used. In addition, we train InsightGAN with 2 GPUs (each with
batch size m = 32) in the TensorFlow framework.

4.3 Comparison to Alternative Detection Methods

To show the effectiveness of our InsightGAN model for drug abuse detection, we
make comparison among four closely related methods: (1) InsightGAN – the pro-
posed model shown in Fig. 1; (2) Inception-ResNet v1 – the original model pro-
posed in [31]; (3) DCGAN+SVM – the method that utilizes DCGAN [24] (with
the same generator and discriminator as InsightGAN) for unsupervised feature
learning and SVM for drug abuse detection; (4) Hand-Craft Features+SVM –
the method that uses SVM for classification with hand-craft features. Note that
the first two methods adopt supervised/semi-supervised feature learning, while
the last two methods adopt unsupervised feature learning. In this paper, we
extract hand-craft features by combining two typical methods [28,33]: (1) All
the pairwise distances among the 68 keypoints (detected from each face picture)
are computed to form a 2,278-dimensional feature vector; (2) The Gabor filtering
(with 6 scales and 4 orientations) is performed on each face picture and then the
mean Gabor values within the 3*3 neighborhood of each keypoint are computed
to form a 1,632-dimensional feature vector; (3) The two groups of hand-craft
features are concentrated into a 3,910-dimensional feature vector for drug abuse
detection with SVM. Note that these two groups of hand-craft features have
been widely used for healthcare applications based on face recognition.

Table 1 shows the results obtained by different detection methods with dif-
ferent traning/test splits for drug abuse detection. We can make the following
observations: (1) By making an overall evaluation, our InsightGAN model not
only performs the best in all cases, but also yields gradually larger gains over
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the other detection methods when the size of training data decreases. In fact,
the performance of our InsightGAN model degrades the most slowly as less
labelled data is provided for model training. This means that our InsightGAN
model indeed helps to alleviate the scarcity of labelled data. In other words, we
have clearly demonstrated the effectiveness of semi-supervised GAN model in
drug abuse detection. (2) The gains achieved by our InsightGAN model over
Inception-ResNet v1 (see InsightGAN vs. Inception-ResNet v1) provide further
evidence that semi-supervised GAN is effective for drug abuse detection, since
the two deep learning models utilize the same number of training data. (3)
The supervised/semi-supervised feature learning methods (i.e. InsightGAN and
Inception-ResNet v1) generally outperform the unsupervised feature learning
methods (i.e. DCGAN+SVM and Hand-Craft Features+SVM), due to more
labelled data used for feature learning. (4) The unsupervised feature learning
method (i.e. DCGAN+SVM) yields comparable results with respect to Hand-
Craft Features+SVM, which shows the advantage of GAN in unsupervised fea-
ture learning for drug abuse detection.

Table 1. Comparison among four detection methods with different training/test splits
for drug abuse detection. All five metrics (%) are used.

Training set (pos./neg.) Test set (pos./neg.) Methods ACC SEN SPE PPV NPV

25/25 759/772 InsightGAN (Ours) 86.0 83.7 88.3 87.5 84.7

Inception-ResNet v1 74.3 87.7 52.5 66.6 88.3

DCGAN+SVM 78.5 69.5 87.4 84.3 74.5

Hand-Craft Features+SVM 76.7 63.4 80.8 74.0 71.4

50/50 734/747 InsightGAN (Ours) 87.7 89.1 86.4 86.5 89.0

Inception-ResNet v1 84.2 83.2 73.1 77.7 79.1

DCGAN+SVM 80.4 80.7 80.2 80.1 80.8

Hand-Craft Features+SVM 82.0 78.9 85.0 83.8 80.4

100/100 684/697 InsightGAN (Ours) 89.9 87.1 92.7 92.1 88.0

Inception-ResNet v1 84.4 84.8 76.8 79.5 82.5

DCGAN+SVM 82.5 80.6 84.3 83.4 81.6

Hand-Craft Features+SVM 83.8 84.9 82.6 82.8 84.8

500/500 284/297 InsightGAN (Ours) 95.6 94.9 96.4 96.1 95.2

Inception-ResNet v1 94.3 94.0 94.6 94.3 94.3

DCGAN+SVM 86.1 87.5 84.9 84.4 87.8

Hand-Craft Features+SVM 90.0 88.7 91.2 90.6 89.4

Figure 3 presents the results obtained by our InsightGAN model with dif-
ferent initializations: (1) Random – the random initialization is used; (2) MS-
Celeb-1M - our model is initialized with the outside data MS-Celeb-1M; (3)
MS-Celeb-1M & CK+ – our model is initialized with both MS-Celeb-1M and
CK+. The training set (pos./neg. = 500/500) is used for adversarial training
after model initialization. It can be seen that: (1) Our model with more power-
ful initialization leads to better results for drug abuse detection. (2) Our model
with random initialization still yield promising results, validating the effective-
ness of our adversarial training.
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Fig. 3. The results obtained by our InsightGAN model with different initializations.
The training set (pos./neg. = 500/500) is used.

We finally provide the training and test time of our InsightGAN model for
drug abuse detection. The following computer is employed: 2 Intel Xeon E5-
2609 v3 CPUs (each with 1.9 GHz and 6 cores), 2 Titan X GPUs (each with 12G
memory), and 96G RAM. For the training set (pos./neg. = 500/500), the time
of training InsightGAN is 112 min. Moreover, the time of processing a test face
is 0.03 second, i.e., our model can provide real-time detection of drug abuse.

4.4 Comparison to Alternative CNN Models

In this paper, we employ Inception-ResNet v1 as the discriminator of our Insight-
GAN model for drug abuse detection. Besides this complicated CNN model, any
other CNN model can also be used to design our network architecture. In the
following, we compare Inception-ResNet v1 to ResNet-101 [12] and VGG-16 [29]
by directly applying them to drug abuse detection (without combination to any
other models). The same setting is adopted for all CNN models, i.e., each model
is initialized using the same outside data (MS-Celeb-1M and CK+).

The comparative results are shown in Table 2, where only a single train-
ing/test split is considered. It can be seen that: (1) The three CNN models
generally yield comparable performance in the task of drug abuse detection. (2)
Inception-ResNet v1 achieves slight improvements over the well-known VGG-16

Table 2. Comparison among the three CNN models directly used for drug abuse
detection with the training set (pos./neg. = 500/500).

CNN models ACC SEN SPE PPV NPV

Inception-ResNet v1 94.3 94.0 94.6 94.3 94.3

ResNet-101 93.6 93.7 93.6 93.4 94.0

VGG-16 (VGGFace) 93.2 90.8 93.6 93.2 91.6
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that has been widely used for face recognition. Therefore, although the archi-
tecture of Inception-ResNet v1 is more complicated than that of VGG-16, we
prefer to Inception-ResNet v1 as the discriminator in this paper.

5 Conclusion

In this paper, we have proposed a novel InsightGAN model for drug abuse detec-
tion. To alleviate the scarcity of labeled data, we have designed a semi-supervised
GAN model and also developed a robust training algorithm. Experimental results
show the superior performance of our model. In the future work, we will combine
the tweets and also the faces from Twitter for drug abuse detection.
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Abstract. High-dimensional highly correlated data exist in several
domains such as genomics. Many feature selection techniques consider
correlated features as redundant and therefore need to be removed. Sev-
eral studies investigate the interpretation of the correlated features in
domains such as genomics, but investigating the classification capabilities
of the correlated feature groups is a point of interest in several domains.
In this paper, a novel method is proposed by integrating the ensemble fea-
ture ranking and co-expression networks to identify the optimal features
for classification. The main advantage of the proposed method lies in the
fact, that it does not consider the correlated features as redundant. But,
it shows the importance of the selected correlated features to improve
the performance of classification. A series of experiments on five high
dimensional highly correlated datasets with different levels of imbalance
ratios show that the proposed method outperformed the state-of-the-art
methods.

Keywords: Feature selection · High-dimensional data
Feature correlation

1 Introduction

In the era of high-throughput technologies, the term “big data” is coined to
reflect the amount of the data increasingly being generated in many fields.
The available data exceeds the ability of the existing machine learning algo-
rithms to analyse it. The complexities and challenges of data in some fields are
reflected in the generated datasets. One of these types of complex structures is
high-dimensional data which have a relatively low number samples, known as
“the curse of dimensionality” problem or p >> n. The problem of the curse
of dimensionality has become increasingly common in several domains, espe-
cially in biomedicine and genomics applications. Furthermore, the dilemma is
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exacerbated by the presence of highly correlated features and the imbalanced
data problem. In machine learning, many feature selection algorithms have been
proposed to select the important features and eliminate the unimportant ones.
However, most of these existing algorithms follow an individual feature ranking
approach which discards the existence of the correlated features including SVM-
RFE [9], LASSO [7,17]. Surprisingly, a few feature ranking algorithms based
on correlated features are proposed in the literature [5]. Feature selection for
predictive models in the presence of high-dimensional and imbalanced data with
many highly correlated covariates is a challenging problem that affects many
disciplines. Initially, researchers were unaware of the importance of correlated
covariates in interpreting predictive models. However, recent studies have been
conducted to interpret groups of highly correlated features to identify signifi-
cant functional modules, to improve classification accuracy, and to reflect on the
semantic components of these features.

Recently, we proposed an ensemble SVM (ESVM-RFE) algorithm [2] for
individual feature ranking in high-dimensional data. The ESVM-RFE uses the
ensemble strategy with the SVM [4] classifier as the base learning model. It
uses the binary SVM as a decision boundary to separate two classes, defined
by solving a quadratic optimization problem. The decision boundary is specified
by a subset of critical training samples named support vectors that lie on the
edge. Ensemble techniques have the advantage of handling the problem of the
curse of dimensionality and reducing the potential of over-fitting the training
data. The ESVM-RFE follows the ensemble and bagging concepts of random
forest and adopts a backwards elimination strategy. Also, it handles the problem
of imbalanced datasets by constructing roughly balanced bootstrap samples or
bootstrap samples biased to the minority class.

In this paper, a novel sparse feature learning algorithm (SFL-ESVM) is pro-
posed to handle the correlated features in high-dimensional data. The SFL-
ESVM algorithm consists of three components: first, it generates isolated feature
modules based on the network structure of the data. Each module contains the
correlated features, and the correlation between the modules is low. Second, our
previous study of the ESVM-RFE algorithm [2] is used to select the most impor-
tant features within each module. Finally, the selected features are aggregated
and again, ESVM-RFE is applied to select the optimal features of the modules.
Specifically, the contributions of this paper are:

1. Propose an effective ensemble feature ranking method using co-expression
networks to select optimal features for classification.

2. Provide comprehensive evaluations of our method on real-world high dimen-
sional imbalanced datasets which show the advantages of our method.

2 Related Work

Feature selection process is considered as a prerequisite step for many data
mining high dimensional datasets including genomic data. It reduces the number
of dimensions by selecting a certain number of features or genes which able to
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explain the differences between patients in regards to the type of the disease [14].
In fact, many benefits are observed from achieving a feature selection include
the ability of better understand the data with less informative features, reducing
the complexity and computation time of the learning model, removing the noisy
features and others. There are three types of feature selection approaches as
defined by Sayes et al [14]: filter, wrapper and embedded approaches. The main
difference among them that filter approach is independent of any classification
algorithm. However, wrapper and embedded use the classification algorithm in
the feature selection process. Wrapper evaluates the goodness of features using
the classification algorithm and embedded performs the feature selection during
the learning process.

Many feature selection algorithms have been proposed to select the important
features and eliminate the unimportant ones. However, most of these existing
algorithms follow an individual feature ranking approach which discards the
existence of the correlated features. Surprisingly, a few feature ranking algo-
rithms based on correlated features are proposed in the literature. The main two
approaches which proposed in literature that consider the correlated features
are: the sparse models and feature clustering methods. Sparse models including
group LASSO [11] and fused SVM [13] suffer from a correlation bias during the
feature weighting process, because they assign the weights based on the group
size [18]. Therefore, features which belong to a big group may receive small
weights. Furthermore, they are considered as parametric methods which need to
set some parameters beforehand, which is not guaranteed to hold in practical
applications [6]. Feature clustering methods determine the group features using
clustering methods, then select a limited number of features to train the models.
It is reported that this approach may remove the correlation bias [12]. But, sev-
eral issues were found in this approach: firstly, the features are clustered using
the standard parametric clustering methods which needs to optimize the num-
bers of clusters parameter. Secondly, the feature importance scores are unstable
due to a single ranking of the features in the proposed model. Finally, the prob-
lem of class imbalance problem is not handled by the existing feature selection
at the presence of highly correlated features, which may assigns a larger weights
for the features which predict the majority class. Recent work, called the fuzzy
forests method, has been proposed by [6] which uses recursive feature elimination
random forests to select the features from the correlated feature blocks. Fuzzy
forests depends on random forest feature selection which has a high computa-
tional complexity in terms of running time compared to the feature selection
method using the support vector machine [2]. Furthermore, the fuzzy forests
method does not take into account the imbalanced data problem which may
generate features which are biased towards the majority class. A drawback of
supervised clustering methods is that they do not identify the correlated features
to improve the classification performance along with the interpretation.
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3 The Proposed Method SFL-ESVM

In this section, SFL-ESVM is proposed as a feature module learning framework.
Subsection 3.1 shows how to cluster the co-expression networks to generate the
feature modules. Subsection 3.2 reviews the ESVM-RFE algorithm, and finally,
presents the proposed SFL-ESVM algorithm.

3.1 Clustering Co-Expression Networks

A very widely used method to cluster the co-expression biological networks is
hierarchical clustering and in particular, the weighted gene co-expression network
analysis (WGCNA) algorithm. The WGCNA is initially developed to find the
relevant biological modules by detecting a network of highly correlated genes
[3]. The gene co-expression network generated by WGCNA can be clustered into
groups of highly interconnected nodes.

The WGCNA uses a similarity function such as Pearson correlation to con-
struct a correlated similarity network between the genes. Then, the similarity
network is transformed into an adjacency network by taking the absolute value
of the similarity network entries and raising it to the power β. This step indi-
cates the strong correlation among genes and rejects the weak ones. Scale-free
topology criterion is used to choose the best value of parameter β. Next, the
modules are identified by searching for strongly connected genes which is known
as high topological overlap. After constructing the topological overlap network
for all pairs of genes, the hierarchical clustering algorithm uses this information
to identify the modules of correlated genes. The WGCNA has the advantage
that it does need to set the number of clusters in advance.

3.2 Review of ESVM-RFE

The ESVM-RFE [2] ranks the features by constructing an ensemble of SVM
models in each iteration of SVM-RFE using a random bootstrap subset from
the training set. Then, it aggregates all the feature rankings as an ensemble
vote. The least important features are eliminated based on multiple votes in
each iteration. This process is repeated until a specified number of features is
reached.

3.3 The Proposed SFL-ESVM Based on the Co-Expression Feature
Network

The proposed SFL-ESVM does not consider the correlated features as redundant
which must be removed. For example, in microarray gene expression data, genes
that have either similar genomic locations or molecular functions are assumed
to co-function and are highly correlated [18]. The correlation issue negatively
impacts the classical feature selection algorithms which follow an individual fea-
ture ranking process.
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Fig. 1. The flowchart of SFL-ESVM

The SFL-ESVM algorithm aims to achieve a feature selection in the presence
of the correlated features. It follows a backwards feature elimination method.
The flowchart of the SFL-ESVM algorithm is shown in Fig. 1. It is divided into
two phases: an intra-screening phase and an inter-screening phase. The intra-
screening phase is composed of multiple steps: firstly, it constructs a feature
co-expression network which captures the correlation between the features. This
step can be achieved using WGCNA or any other graph clustering method. Then,
the modules Mi of the correlated features are extracted from the feature co-
expression network using hierarchical clustering. The screening phase is applied
on each module Mi to filter out the unimportant features. It is known as intra-
screening because it operates on each module independently. For each correlated
feature module Mi, ESVM-RFE is used to generate weights for the features.
This is described in Algorithm 1. It starts with the entire set of features in the
module, and in each iteration, an ensemble SVM is trained by taking bootstrap
samples from the training dataset. The feature weights are estimated using the
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absolute value of coefficients of the support vectors for each SVM model. The
estimated feature weights are aggregated from the ensemble of SVM models and
ranked in decreasing order to remove the least important features with the small
weights. Features are eliminated over multiple iterations on each module until a
specific threshold of the number of selected features is reached.

The selected features from each module in the intra-screening phase are
aggregated and passed as an input to the inter-screening phase. The inter-
screening phase in the SFL-ESVM algorithm is to capture the interaction among
the modules. It aggregates all the surviving features from the previous phase and
applies one more ESVM-RFE to select the global surviving features.

The proposed SFL-ESVM algorithm is an appropriate solution to reduce the
correlation bias in the presence of imbalanced data. It differs from other feature
selection algorithms in the following ways: first, it makes use of the ensemble
SVM to reduce the influence of correlation bias, because in each iteration, the
ranking decision is generated from multiple SVM models on different bootstraps
and it is not related to the module size. Second, feature ranking in each iteration
is achieved on equal bootstrap samples to mitigate the effect of the imbalance
class problem. Third, bagging ensembles improve the performance in the presence
of small sample size. Fourth, it uses WGCNA to estimate the network structure
of the data, and consequently, estimate the correlated features. Finally, stability
is targeted by achieving multiple perturbations of constructing SVM models in
each iteration.

Input: training data X
Class labels y

parameter : inter-d ; // Number of selected features between modules

intra-d ; // Number of selected features from each module

b ; // Size of ensemble SVM in each iteration

E ; // The % of features to eliminate at each iteration

bagSize ; // Balanced bootstrap from training dataset

modules ← WGCNA(X) ; // the interconnected features using WGCNA

l ← length(modules);
for i ← 1 to l do

M ← modulesi;
data ← X(,M);
; // M is the correlated genes in each module

intra-features ← ESVMRFE(data, y, b, E, intra-d,bagSize);
intra-Set ← intra-Set ∪ intra-features;

end
selectedData = trainingdata[, intra-Set];
inter-features ← ESVMRFE(selectedData,y,b,E,inter-d,bagSize) ;
// inter-features: the surviving features between the modules using

Algorithm ESVM-RFE

Output: inter-features
Algorithm 1. Sparse Feature Learning algorithm (SFL-ESVM)
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Function ESVMRFE (data, class, b, E, d, bagSize)
Input: surviveIndexes = seq(1 : ncol(data))

n = nrow(data)

for d ← 1 to length(surviveIndexes) do
m = length(surviveIndexes);
survive = m − m × E ; // survive: number of features in the

current iteration

ensRes = matrix(n, b) ; // ensRes: feature’s weight of each SVM

model

for i ← 1 to b do
bag ← bootstrap(data, bagSize);
bagClass ← bootstrap(class, bagSize);
model ← svm(bag[, survivingIndexes], bagClass);
weightV ector ← transpose(model$coefs)% ∗ %model$SV ;
// Compute the weight vector

featureWeight ← weightV ector ∗ weightV ector ; // Compute

ranking criteria

ensRes ← merge(ensRes, featureWeight) ; // Accumulate

feature’s weight

end
totalWeight = rowSum(ensRes) ; // Aggregate feature’s weight

sortedWeight ← sort(totalWeight) ; // Sort the total feature’s

weight by decreasing order

sortedIndexes ← index(sortedWeight);
surviveIndexes ← surviveIndexes[sortedIndexes[1 : survive]] ;
// Eliminate features with smallest weight

end
Output: selectedData = data[, surviveIndexes]

Algorithm 2. ESVM-RFE for feature learning

4 Experiments

In this section, the experimental evaluations on high-dimensional, highly corre-
lated datasets are reported. This section analyses and compares the classification
performance of the proposed SFL-ESVM against the state-of-the-art algorithms
namely SVM-RFE [9], Fuzzy Forests [6], and Hybrid L1/2 L2 regularization
(HLR) [10]. SVM-RFE is evaluated as a baseline method, Fuzzy Forests as an
ensemble feature ranking algorithm for correlated features, and HLR from the
point of view of a sparse model for dimensionality reduction in the presence
of correlated features. It is important to note that the main purpose of these
experiments is to evaluate the potential of the proposed SFL-ESVM algorithm
to improve the classification performance in the presence of a large number of
correlated features.

Without loss of generality, linear SVM is used as a classifier to evaluate
the performance of the selected features from the compared algorithms. The
performance is measured by the widely used metric AUC under the receiver
operating characteristic (ROC) analysis. The optimal tuning parameters of the



430 A. Braytee et al.

SFL-ESVM, Fuzzy Forests, HLR and SVM-RFE approaches were identified by
five-fold cross-validation on the training set. The datasets are divided at random
such that approximately 75% is used as a training set and 25% as a test set. The
datasets are z-score normalized.

4.1 Datasets

The experiments are conducted on one dataset collected from The Children’s
Hospital at Westmead, and four public datasets. The details of these datasets
are summarised in Table 1. The common characteristics of these datasets are
highly dimensional, highly correlated, have a small number of samples and some
of them are imbalanced. A stratified random sampling function (stratified) in R
is applied on the evaluated datasets to split the data into a training and testing
set, with a quarter of the dataset considered as a testing set and the reminder
as a training set.

Table 1. Datasets

Dataset #Attributes #Instances Source

Childhood Leukaemia 22277 60 TB-CHW

DLBCL-FSCC 7129 77 [15]

Prostate cancer 6033 102 [16]

ALL/AML 7129 73 [8]

Breast cancer 8141 295 [19]

4.2 Results and Discussion

The goal of this section is to evaluate the performance of the selected features
from the compared algorithms on the real-world datasets. In the following exper-
iments, for a fair comparison of all algorithms, the AUC accuracy is estimated
using the .632+ bootstrap method [1] with 100 bootstrap samples. For each
bootstrap sample, AUC accuracy is obtained on the test dataset.

Figure 2 shows the AUC evaluated on the test dataset across a different
number of features. The figures present the results of up to 100 features because
the evaluated datasets contain a small number of samples which needs a small
number of features to avoid over-fitting. As shown in Fig. 2, the proposed SFL-
ESVM algorithm outperforms the state-of-the-art feature selection methods in
most feature sets in all datasets. The AUC classification performance is further
investigated based on the best number of selected features. As shown in Table 2,
several statistical measures are included, namely minimum, maximum, first quar-
tile, third quartile, median and mean on 100 bootstrap samples on the test data.
For example, as shown in Table 2 for the DLBCL-FSCC dataset, the best AUC
is achieved for the compared algorithms: SFL-ESVM, Fuzzy Forest, HLR and
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Table 2. The quartile and mean values of AUC accuracies of the compared algorithms
on the evaluated datasets at the best number of features.

Dataset Method Min 1st Qu Median Mean 3rd Qu Max Best features

Childhood leukaemia SVM-RFE 0.250 0.400 0.500 0.509 0.600 0.800 64

Fuzzy forest 0.250 0.387 0.450 0.448 0.500 0.700 48

HLR 0.081 0.331 0.381 0.370 0.431 0.681 30

SFL-ESVM 0.500 0.600 0.700 0.692 0.750 0.850 24

DLBCL -FSCC SVM-RFE 0.585 0.741 0.811 0.797 0.848 0.904 78

Fuzzy forest 0.647 0.743 0.810 0.800 0.854 0.897 74

HLR 0.679 0.834 0.904 0.891 0.942 0.997 74

SFL-ESVM 0.833 0.900 0.966 0.939 1.00 1.00 50

Prostate SVM-RFE 0.562 0.601 0.639 0.639 0.678 0.716 64

Fuzzy forest 0.744 0.783 0.821 0.829 0.860 0.898 68

HLR 0.690 0.730 0.730 0.745 0.769 0.807 74

SFL-ESVM 0.807 0.884 0.884 0.886 0.923 0.923 34

Breast SVM-RFE 0.505 0.659 0.710 0.701 0.738 0.818 24

Fuzzy forest 0.471 0.544 0.624 0.618 0.669 0.760 30

HLR 0.462 0.570 0.633 0.618 0.678 0.741 70

SFL-ESVM 0.556 0.677 0.727 0.716 0.772 0.818 30

ALL/AML SVM-RFE 0.683 0.754 0.754 0.784 0.826 0.826 32

Fuzzy forest 0.804 0.834 0.876 0.859 0.876 0.905 50

HLR 0.800 0.800 0.841 0.827 0.841 0.871 68

SFL-ESVM 0.815 0.928 0.958 0.953 1.00 1.00 46

SVM-RFE is 50, 74, 74, and 78 features respectively. This clearly shows that the
proposed algorithm achieves better results than the compared algorithms using
different statistical measures. Furthermore, the proposed algorithm SFL-ESVM
obtained the best accuracy results compared to the others with a small number
of features in most datasets, which leads to less computational complexity dur-
ing the training process. It can also be observed that the classification results of
the SFL-ESVM algorithm tend to be stable after increasing the selected features
above approximately 50 features in the evaluated datasets. This indicates the
stability and capability of SFL-ESVM to select a lower percentage of features
and realise good accuracy results.

On the other hand, the experimental results indicate that the feature selec-
tion methods that handle correlated features such as the proposed SFL-ESVM,
Fuzzy forest, and HLR, perform better than SVM-RFE which does not consider
the correlated features and achieves individual feature ranking. Therefore, it
demonstrates the importance of handling correlated features in high-dimensional
datasets to improve the performance of the classifiers. Finally, a statistical t-test
is also conducted between the vector results of the proposed algorithm against
state-of-the-art methods under the null hypothesis that AUC on vectors of the
used method is not significantly different to SFL-ESVM. The p-value is lower
than 0.05 which rejects the null hypothesis.
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(a) SFL-ESVM (b) HLR

(c) Fuzzy Forest (d) SVM-RFE

Fig. 2. Classification performance comparison between algorithms evaluated on Child-
hood Leukaemia dataset using the 0.632+ bootstrap method with 100 bootstrap sam-
ples across a different number of features

A further investigation is made of the selected features using the proposed
SFL-ESVM from the ALL/AML dataset to see if the proposed algorithm can
define separated clusters based on ALL and AML class outcomes. To do this,
Singular Value Decomposition (SVD) is applied to the original ALL/AML train-
ing set using all the features and project the testing samples using the first three
principal components. Then, the testing samples are visualised with different
shapes for the ALL and AML samples. A similar process is applied on the train-
ing set with the top 46 features selected by the proposed SFL-ESVM feature
selection algorithm. Without loss of generality, the top 46 features are used in
these figures. As shown in Fig. 3, it is clear that the clusters of the ALL and AML
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(a) SVD using all features (b) SVD using the top 46 features selected
by SFL-ESVM

Fig. 3. SVD on ALL/AML dataset to show the clusters of ALL and AML patients.
Black = ALL, red = AML, circle = training samples, and triangle = testing samples
(Color figure online)

classes in Fig. 3b are well separated compared to the clusters in Fig. 3a, which
overlap. This example confirms that efficacy of the proposed algorithm to select
the optimal features in the presence of complex datasets which importantly, are
able to explain the differences between different classes.

5 Conclusion

This paper proposed a novel algorithm to select the best features in the presence
of highly correlated features that improves the classification performance. The
proposed SFL-ESVM does not consider the correlated features as redundant,
rather it selects the top correlated features from each feature module using the
ESVM-RFE algorithm. Then, it aggregates all features from different modules
and again applies ESVM-RFE to rank the combined features. The proposed
algorithm can improve the classification accuracy in the presence of very complex
datasets. These datasets contain high-dimensional, highly correlated features
and a low number of samples. Extensive experiments are conducted on different
datasets. Our results show the high-performing quality of the proposed method
on benchmark datasets which outperformed the-state-of-the-art methods.
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Abstract. For online multitask learning (oMTL), when a chunk of tasks
consisting of multiple related instances is received in one batch, the
learner normally has the chance to actively order these tasks to improve
the learning efficiency. This paper proposes a quadratic ordering method
for active oMTL, where instance ordering is integrated into task order-
ing by taking each instance in one task. The proposed task and instance
quadratic ordering is able to facilitate oMTL better than single task
ordering. The orderings derived in this paper can be incorporated into
any individual oMTL algorithms for active oMTL. The performance eval-
uations on four real-word datasets demonstrate the benefits of the pro-
posed algorithms.

Keywords: Online Multitask Learning (oMTL) · Active oMTL
Quadratic ordering · Task ordering · Instance ordering

1 Introduction

Multitask learning (MTL) explores a set of offline machine learning systems
which are able to learn a number of related tasks in one batch [1]. Consider-
ing the successive tasks in real world applications often arrive one after another
over an extended period of time. Thus online multitask learning (oMTL) is more
desirable in practice, since it aims to model systems which can learn multiple
related tasks in real time by sharing common information among them. As com-
pared to the traditional online single task learning (oSTL), oMTL often achieves
better generalization performance across all tasks than separately learning each
task. Effectively using task relatedness rather than simply ignoring it makes
oMTL dramatically outperform oSTL in many real-world applications [2].

Typical oMTL algorithms do not control the order in which they learn the
tasks and instances. However, the ordering effects exist for oMTL when a chunk
of tasks are presented for learning. The different ordered sequences of these tasks
c© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11303, pp. 435–447, 2018.
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and instances can lead to the different learning consequences. For the same
training data in two different sequences, such ordering of tasks and instances
allows one to favor the learning more than the learning with random selection.
In the literature, oMTL with ordering or selection is called active oMTL [3]. The
key of active oMTL is to find from all permutations of the training data the one
that yields the best performance.

Neither task ordering nor instance ordering by itself is an optimal solution
to active oMTL. Instead, it is desirable to perform instance ordering to facil-
itate the learning of each individual task. Motivated by this, we propose task
and instance quadratic ordering for active oMTL. This work focuses on how
to simultaneously order tasks and instances efficiently in the online learning
scenario. The philosophy of our methods is to conduct quadratic ordering to
enhance learning performance. First, the strategies should be used to perform
the instance ordering on the training data. Then, a task ordering is operated
on tasks available so far. To assess the proposed four quadratic ordering meth-
ods, we apply them to the existing oMTL approaches, the experimental results
demonstrate that they can learn training data more efficiently than only task
ordering or only instance ordering. In particular, using these active learning algo-
rithms, the system can acquire a clear further reduction of necessary training
data for achieving a particular level of performance, as compared to the passive
learning algorithms.
In general, the contributions of this paper are:

1. This is the first work, to our best knowledge, where instances and tasks order-
ing are jointly investigated independent to the learning process of MTL, rather
than incorporated into an oMTL learner.

2. An efficient task and instance quadratic ordering algorithm is developed to
solve the proposed objective function, and the convergence of the algorithm
can be guaranteed. Experimental results on four real-world datasets demon-
strate the effectiveness of the proposed approach.

2 Related Work

2.1 Instance Ordering

Instance ordering has been investigated mainly for single task learning (STL).
Tong et al. [4] proposed instance ordering for the learning of support vector
machine (SVM) [5]. They used the duality between parameter space and feature
space to reduce version space as much as possible at each query. Considerable
gains are reported on learning effectiveness in both inductive and transductive
settings. Bengio et al. [6] explored curriculum learning by implementing the
strategy of learning the easiest instances first and then incrementally processing
harder instances. Their experiments reveal that such strategies lead to faster
training and higher prediction quality.

For active MTL, Kumar et al. [7] addressed the active learning of a useful
MTL tool named latent variable models and proposed an iterative self-paced
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learning algorithm for instance ordering, where each iteration simultaneously
chooses easy instances and learns a new parameter vector. The issue of active
instance selection in oMTL was addressed in [8]. Saha et al. proposed an adaptive
framework of oMTL, where an adaptive relationship matrix is built to evaluate
the relatedness among multiple tasks. By taking into account the task related-
ness, the informativeness of an incoming instance can be quantified using the
adaptive relationship matrix. In this way, the learner can employ this matrix to
actively choose the most informative instances. In essence, the approach trans-
forms MTL to STL problem by merging the instances of each task into a single
large task, and then performs only instance ordering on the merged task.

2.2 Task Ordering

Task ordering is an alternative approach that orders training data to maximize
learning performance across all tasks. It typically involves the estimation of tasks
similarity and tasks relatedness.

Ruvolo et al. [3] described a scenario, where the next task can be selected
from a pool of candidate tasks. Two general methods for active task selection
were proposed: one is based on information maximization, where the criteria for
choosing the next task focus on maximizing expected information gain about
the shared basis; the other is based on model performance, in which the next
task is selected in terms of minimizing the worst-case fit of shared basis to each
candidate task. These approaches are used in the algorithm ELLA proposed
in [9].

In [10], we proposed two task ordering algorithms: QR-decomposition Order-
ing and Minimal-loss Ordering. The QR-decomposition Ordering measures the
within-task distance of the training data, and chooses the next task with the
shortest within-task distance. The Minimal-loss Ordering computes the predic-
tive loss of the learned model, and selects the next task with the minimal loss.
Based on [10], we propose four new quadratic ordering algorithms which combine
task ordering with instance ordering in this paper.

3 Task and Instance Ordering

In the oMTL scenario, the training task or instance usually arrives one-at-a-
time, and the learner has no control on the sequence in which learning tasks are
presented for training. However, when a chunk of training data which consists
of multiple related tasks is received in one batch, the learner obviously has the
chance to actively order these tasks to improve the learning efficiency.

We assume the problem of ordering data in the following setting: at the tth
iteration, the learner receives the training data for k tasks, which are indexed
as {T1, T2, · · · , Tk}; and each task consists of ut instances, which are indexed
as {1, 2, · · · , ut}. To achieve better performance, we attempt to make the train-
ing data be learned in a particular order, which means a new permutation of
{T1, T2, · · · , Tn} and a corresponding permutation of {1, 2, · · · , ut} for each task.
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For the rest of the paper, superscripts denote the variables related to a par-
ticular task, for instance, X(T1) and y(T1) are related to task T1; and subscripts
represent the variables related to a certain instance, for example, xi and yi are
related to instance i.

The global loss L consists of the cost caused by instance ordering LI on each
task available so far, and the loss on task ordering LT . It can be formulated as

L =
k∑

j=1

LI
j + LT . (1)

The objective of the proposed task and instance quadratic ordering is to seek
a permutation of newly received training instances by minimizing the above
cumulative loss.

In Eq. (1), LT is determined by the error rate of task labelling/classification
for all instances received at t iteration. This implies that, an instance may still
be given a correct task label even if it is mis-classified within a task. Thus we
have LT ≤ ∑k

j=1 LI
j . Further, task ordering is very much dependent on the

learner’s knowledge over each individual task, as it relies on the estimation of
task relatedness. In other words, reducing the first term gives normally a smaller
second term, especially when task ordering and instance ordering share the same
ordering approach, and task learning and instance learning within task use the
same learner.

4 Proposed Quadratic Ordering

For task ordering, the effectiveness of QR-decomposition (QR) and Minimal-
loss (ML) has been demonstrated in [10]. In this work, we further investigate
the use of QR and ML for instance ordering, and develop four quadratic ordering
algorithms, which include QR-QR, QR-ML, ML-QR, and ML-QR ordering.

4.1 QR-Decomposition Task Ordering

The QR decomposition for task ordering [10] is to compare the within-task
distance of the training data, in which QR decomposition of centroid matrix
A of training data X is employed: A = QR, where Q refers to an orthogonal
matrix, and R denotes an upper triangular matrix.

Suppose that at the m-th iteration we receive training data (X(t)
new, y

(t)
new), t

denotes task t ∈ {T1, T2, · · · , Tn}. Given a data matrix X
(t)
old = [A(t)

1 , · · · , A
(t)
k ] ∈

R
d×n with A

(t)
i ∈ Rd×ui (write X

(t)
old = 0 when t is new), where A

(t)
i represents the

previously received training data for task t, ui denotes the number of instances
contained in A

(t)
i , and d is feature dimension. Suppose C(t) = Q(t)R(t) is the

QR decomposition of the centroid matrix C(t) = [m(t)
1 , · · · ,m

(t)
k ] and H

(t)
w =

[H(t)
1 , · · · ,H

(t)
k ], where H

(t)
i = [A(t)

i − m
(t)
i eT

i ] with ei ∈ (1, · · · , 1)T ∈ R
ui .
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Let the column vector X
(t)
new to be given by

X(t)
new = [x(t)

1 , x
(t)
2 , · · · , x(t)

ut
],

and

w(t)(xi) =
‖(Q(t))T (xi − mj)‖2

nj + 1
or (2)

w(t)(xi) =
‖(H(t)

w )T (I − Q(t)(Q(t))T )xi)‖2
‖(I − Q(t)(Q(t))T )xi‖2 , (3)

accordingly, as xi lies in the jth class of X
(t)
old or a new class.

The criterion for QR-decomposition ordering to choose the next task is sum-
marized as,

tnext =
argmin

t ∈ {T1, T2, · · · , Tn}w(t)(X(t)
new), (4)

where

w(t)(X(t)
new) =

1
ut

ut∑

i=1

w(t)(xi). (5)

Note that the above calculation does not require any knowledge of learning sys-
tem, thus QR-decomposition task ordering is a leaner independent task ordering
approach.

4.2 Minimal-Loss Task Ordering

The minimal-loss for task ordering is to calculate the predictive loss of learned
model, and select the next task that causes the minimal loss [10]. Here, a shared
basis L are used for modeling task relatedness and sharing useful information
among multiple tasks [9]. The model of task t is represented as a parameter vector
θ(t) that is a linear combination of the columns of shared basis L according to
the weight vector s(t): θ(t) = Ls(t).

Suppose that at the m-th iteration we receive training data (X(t)
new, y

(t)
new).

Now, let us define

X(t) = [X(t)
old X(t)

new] or X(t) = X(t)
new,

y(t) = (y(t)
old; y

(t)
new) or y(t) = y

(t)
new according as t is an old or new task. Also, let

us consider
X(t) = [x(t)

1 , x
(t)
2 , · · · , x(t)

ut
],
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as a column vectors and define

F (t)(θ) =
1
nt

nt∑

i=1

L(f(x(t)
i ; θ), y(t)

i ), (6)

D(t) =
1
2
∇2

θ,θ(F
(t)(θ))|θ=θ(t) , (7)

where L is a known loss function and f is the prediction function. Let

�(L, s, θ,D) = μ‖s‖1 + ‖θ − Ls‖2D. (8)

The strategy for Minimal-loss Ordering method to choose the next task is as
follows:

tnext =
argmin

t ∈ {T1, T2, · · · , Tn}G(L(t)
m+1), (9)

where

G(L) = ĝm(L) = λ‖L‖2F +
1
T

T∑

i=1

�(L, s(t), θ(t),D(t)). (10)

4.3 QR-QR Ordering

In the proposed QR-QR ordering, QR-decomposition is utilized to conduct task
ordering on training data, then the same algorithm is applied for instance order-
ing within each chosen task (called QR instance ordering). QR instance ordering
measures the within-instance distance of the training data, and selects the next
instance with the shortest within-class distance. We consider one instance as a
special case of a task that contains only one instance. By Eq. 4, we derive the
strategy for QR instance ordering to choose the next instance inext as,

inext =
argmin

i ∈ {1, 2, · · · , ut}w(t)(xi), (11)

where

w(t)(xi) =
‖(Q(t))T (xi − mj)‖2

nj + 1
or

w(t)(xi) =
‖(H(t)

w )T (I − Q(t)(Q(t))T )xi)‖2
‖(I − Q(t)(Q(t))T )xi‖2 ,

accordingly, as xi lies in the jth class of X
(t)
old or a new class. The procedure of

QR-QR ordering at the mth iteration is summarized in Algorithm 1.
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Algorithm 1. QR-QR Ordering Algorithm

Require: training data (X
(t)
new, y

(t)
new)

Ensure: next task tnext and next instance inext

1: /* Choose next task using QR-decomposition */
2:

tnext = ∗ argmint∈{T1,T2,··· ,Tn} w
(t)(X(t)

new) #Equation 4

3: /* For each task t, choose next instance using QR-decomposition */
4:

inext = ∗ argmini∈{1,2,··· ,ut} w
(t)(xi) #Equation 11

4.4 QR-ML Ordering

In the proposed QR-ML ordering, QR-decomposition is firstly utilized for task
ordering, the Minimal-loss criterion is applied to the instance ordering within
each selected task (called ML instance ordering).

Specifically, QR-decomposition task ordering determines the next task tnext

to be learned by Eq. 4. Within the selected task, the QR-ML ordering conducts
further instance ordering using Minimal-loss criterion, which measures the pre-
dictive loss of the learning model and selects the next instance with the minimal
loss. Again, we consider one instance as one task. We straightforwardly extend
minimal-loss task ordering, Eq. 9, for instance ordering as,

inext =
argmin

i ∈ {1, 2, · · · , ut}Gi(L
(t)
m+1), (12)

where

Gi(L) = λ‖L‖2F + �i(L, s(t), θ(t),D(t)), (13)

�i(L, s(t), θ(t),D(t)) = μ‖s‖1 + ‖θ − Ls‖2
Di

(t) , (14)

Di
(t) =

1
2
∇2

θ,θ((Fi
(t)(θ))|θ=θ(t) , (15)

Fi
(t)(θ) = L(f(x(t)

i ; θ), y(t)
i ). (16)

The procedure of QR-ML ordering at the m-th iteration is summarized in
Algorithm 2.

4.5 ML-QR Ordering

In the proposed ML-QR ordering, Minimal-loss is firstly employed for the task
ordering of training data, then QR instance ordering is applied to ranking
instances within each selected task.
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Algorithm 2. QR-ML Ordering Algorithm

Require: training data (X
(t)
new, y

(t)
new)

Ensure: next task tnext and next instance inext

1: /* Choose next task using QR-decomposition */
2:

tnext = ∗ argmint∈{T1,T2,··· ,Tn} w
(t)(X(t)

new) #Equation 4

3: /* For each task t, choose next instance using Minimal-loss */
4:

inext = ∗ argmini∈{1,2,··· ,ut} Gi(L
(t)
m+1) #Equation 12

Algorithm 3. ML-QR Ordering Algorithm

Require: training data (X
(t)
new, y

(t)
new)

Ensure: next task tnext and next instance inext

1: /* Choose next task using Minimal-loss */
2:

tnext = ∗ argmint∈{T1,T2,··· ,Tn} G(L
(t)
m+1) #Equation 9

3: /* For each task t, choose next instance using QR-decomposition */
4:

inext = ∗ argmini∈{1,2,··· ,ut} w
(t)(xi) #Equation 11

From Eq. 9, minimal-loss task determines the next task tnext to be learned.
Within the selected task, the ML-QR ordering conducts further instance ordering
using QR-decomposition criterion. The same as above, one instance is viewed as
one task, QR task ordering is extended for instance ordering as Eq. 11, by which
we choose the next instance inext with the shortest within-class distance. The
procedure of ML-QR ordering at the m-th iteration is given in Algorithm 3.

4.6 ML-ML Ordering

In the proposed ML-ML ordering, Minimal-loss is utilized for task ordering, then
ML instance ordering is performed on the instances of each selected task.

From Eq. 9, minimal-loss task ordering determines the next task tnext to be
learned. Within the selected task, ML-ML ordering conducts further instance
ordering by using ML criterion. Similarly, one instance is viewed as one task,
ML task ordering is extended for instance ordering as Eq. 12, by which we choose
the next instance inext with the shortest within-class distance. The procedure of
ML-ML ordering at the m-th iteration is given in Algorithm 4.

5 Experimental Results

We evaluated the proposed four quadratic ordering algorithms by comparing
them against four other task ordering approaches: InfoMax [3], Diversity [3],
QR-decomposition (QR) [10] and Minimal-loss (ML) [10]. We applied these eight
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Algorithm 4. ML-ML Ordering Algorithm

Require: training data (X
(t)
new, y

(t)
new)

Ensure: next task tnext and next instance inext

1: /* Choose next task using Minimal-loss */
2:

tnext = ∗ argmint∈{T1,T2,··· ,Tn} G(L
(t)
m+1) #Equation 9

3: /* For each task t, choose next instance using Minimal-loss */
4:

inext = ∗ argmini∈{1,2,··· ,ut} Gi(L
(t)
m+1) #Equation 12

methods to an existing lifelong learning algorithm (ELLA) [9] to assess their
performance.

5.1 Datasets

We conducted oMTL experiments for each algorithm on four real-world datasets:
Computer Survey, London Schools, Land Mine Detection and Facial Expres-
sion Recognition. Computer Survey is a regression dataset which has already
been widely used for the assessment of MTL algorithms [11]. London Schools
is another regression dataset which is from Inner London Education Authority,
and which has been studied in many previous MTL and oMTL works [9]. Land
Mine Detection is a classification dataset [9]. It aims to discriminate whether
or not a land mine is present in an area based on radar images. Facial Expres-
sion Recognition is also a classification dataset which comes from a recent facial
expression recognition challenge [12].

5.2 Experimental Procedure

As in [10], for each dataset, we randomly split data for 20 times in its predefined
proportion of training to testing. We repeated active oMTL experiments on
the produced data split for 1,000 times to smooth out variability. The average
results are reported for each task ordering method. In parameters setting, we
followed [3] to maximize performance on the evaluation tasks averaged over
all the task ordering methods, and used a grid-search method to choose the
value of the parameter k in {1, 2, · · · , 10}, and the ridge term Γ from the set
{e−5, e−3, e−1, e1}. The value of λ and μ are specified as e−5 and 1 respectively
through cross validation experiments.

For performance evaluation, we set observed oMTLs to achieve and maintain
a certain level of performance, then estimate, as in [3], how many less tasks (in
terms of the percentage to the total number of tasks) are demanded as compared
to the number of tasks required for oMTL on random task order. The oMTL
performance for classification tasks is measured by the area under the ROC curve
(AUC), and regression tasks by the negative root mean squared error (-rMSE).
A positive score on % Less Tasks Required indicates the ordering method has
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higher learning efficiency than random task ordering, a negative score displays
that it is less efficient, and a score of 0 reveals that it has no improvement in
learning efficiency.

5.3 Results

We compared the proposed data ordering methods: QR-QR, QR-ML, ML-ML
and QR-QR with four existing methods: InfoMax [3], QR-decomposition (QR)
[10], Diversity [3] and Minimal-loss (ML) [10]. We measured the less tasks
required during the learning process, the average less tasks required, and the
final less tasks required, as compared to random data ordering.

Fig. 1. The results of task ordering on oMTLs. Each plot shows the accuracy achieved
by each method versus the oMTL efficiency (in terms of the number of tasks, and in
comparison to random task ordering).

Figure 1 shows the oMTL experimental results of less tasks required during
the learning process for different data ordering algorithms on four real-world
datasets. As we can see, all eight data ordering methods achieve more or less
learning efficiency gain over the random data ordering, which demonstrates the
oMTL with data ordering is always more efficient than that without ordering. In
particular, the plots from QR-QR, QR-ML, ML-QR and ML-ML are displayed
on the top of the plots from QR, ML, InfoMax and Diversity for all datasets,
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which reveals that the proposed quadratic ordering algorithms have completely
outperformed the existing task ordering methods in all datasets. However, those
top four algorithms are very competitive to each other. The ML-ML method
wins on the classification oMTL of the Land Mine dataset and the regression
oMTL of the Computer Survey dataset; whereas the QL-QL algorithm is the
most efficient for the classification oMTL of the Facial Expression dataset and
the regression oMTL of the London School dataset. The best performance on
each dataset is achieved by either ML-ML or QL-QL, which reveals that using
the same method for task and instance ordering can minimize the learning loss
and increase the ability of generalization.

Table 1. Average Less Tasks Required over all performance levels.

Method Average %Less Tasks Required (Standard Deviation)

Facial Expression Land Mine London School Computer
Survey

Quadratic QR-QR 41.4(±2.9) 40.8(±3.4) 49.3(±3.0) 29.0(±3.3)

QR-ML 36.4(±3.1) 42.9(±2.9) 47.1(±3.2) 31.5(±3.5)

ML-QR 34.0(±2.8) 45.5(±3.5) 43.9(±3.3) 33.5(±3.2)

ML-ML 31.4(±3.0) 48.2(±3.4) 41.0(±3.3) 36.7(±3.4)

Single QR 27.1(±3.8) 33.5(±4.4) 37.0(±3.6) 22.6(±3.1)

ML 22.7(±3.4) 36.1(±3.2) 34.5(±4.3) 24.5(±2.9)

InfoMax 0.5(±2.6) 5.1(±3.7) 29.8(±6.8) 12.9(±3.8)

Diversity 14.6(±5.1) 29.4(±4.1) 21.0(±3.1) 18.5(±3.4)

Diff. +52.7% +33.5% +33.2% +49.7%

Average +42.2%

Table 1 presents the results, which are measured in terms of the percent less
tasks required for oMTL with data ordering, and averaged across all perfor-
mance levels. Table 2 displays the less tasks required by data ordering at the
highest performance level. In these tables, the mean and standard deviations
are reported, numbers in bold represent the best performance on the column
dataset. As we can see, the results of these two tables reveal the same behavior
as that of Fig. 1 that, InfoMax, Diversity, QR and ML were dominated in all
four datasets by the proposed QR-QR, QR-ML, ML-QR and ML-ML ordering.
Furthermore, Tables 1 and 2 give the performance difference between the best
proposed method and the best existing methods, and its average over all four
datasets. As seen, the proposed data ordering methods are in general over 40%
more efficient than the existing methods for all performance level experiemtns.
But, the superiority is increased to over 60% when the highest performance
level experiment is counted. The maximum superiority of QR-QR to QR reaches
79.4%.



446 J. Zhao et al.

Table 2. Less Tasks Required by task ordering at the highest performance level.

Method Final %Less Tasks Required (Standard Deviation)

Facial Expression Land Mine London School Computer Survey

Quadratic QR-QR 27.1(±3.0) 28.2(±3.1) 39.1(±3.2) 20.5(±3.4)

QR-ML 24.1(±3.2) 31.3(±3.3) 37.0(±3.5) 22.4(±3.4)

ML-QR 21.2(±3.0) 34.0(±3.2) 35.1(±3.4) 24.3(±3.5)

ML-ML 19.1(±3.3) 37.0(±3.2) 32.2(±3.1) 26.3(±3.2)

Single QR 15.1(±3.5) 21.2(±3.9) 25.0(±3.8) 12.8(±3.3)

ML 13.0(±3.2) 23.1(±3.5) 21.2(±3.3) 15.5(±3.9)

InfoMax -2.2(±2.9) -6.9(±3.5) 0.5(±3.8) 2.0(±3.6)

Diversity 3.1(±4.1) 8.2(±3.1) 9.0(±3.3) 8.3(±3.2)

Diff. +79.4% +60.1% +56.4% +69.6%

Average +66.3%

6 Conclusion

The novel task and instance quadratic ordering algorithms proposed by this
paper can be efficiently used for active online multitask learning. The focus
of the algorithms is on how to jointly order tasks and instances effectively in
the online setting. This paper explores the usage of QR-decomposition (QR)
and Minimal-loss (ML) for instance ordering, and designs four quadratic algo-
rithms: QR-QR, QR-ML, ML-QR, and ML-QR ordering. Experimental compar-
ative tests and quantitative performance evaluations on four real-word datasets
demonstrate that the proposed algorithms outperform all existing task ordering
methods for active oMTL. The best performance on each dataset is obtained by
either ML-ML or QL-QL, which indicates that the identical strategy for task and
instance ordering can minimize the learning loss and improve the generalization.
The orderings derived in this paper deliver a generic data ordering approach
independent to any particular oMTL algorithms, classification or regression. In
practice, they can be incorporated into any specific oMTL process for active
oMTL.
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Abstract. With the increasing number of scientific papers, it is difficult for
researchers to locate the most relevant and important keywords from the vast
majority of papers and establish the research focus and preliminaries. Based on
the commonly accepted assumption that the title of a document is always
elaborated to reflect the content of a document and consequently keywords tend
to be closely related to the title, a keyword ranking from paper titles involving
both real-time and authoritativeness is presented in this paper. We suggest
exploring paper titles as a weighted hypergraph and random walk is performed,
which considers weights of both hyper-edges and hyper-vertices to model short
documents social features as well as discriminative weights respectively, while
measuring the centrality of words in the hyper-graph to obtain the recommended
keywords. Experimental results demonstrate that the proposed approach is
robust for extracting keywords from short texts.

Keywords: Extraction � Weighted Hyper-graph � Weighting strategy
Word correlation � Random walk

1 Introduction

With the great advancement of technology and the continuous enrichment of human
knowledge, the number of scientific literature has increased rapidly. We need a specific
keyword extraction algorithm to introduce the research hotspots and basic knowledge.
The extracted keywords are not only able to reveal the knowledge composition and
structure of the current field but also combine the real-time character and the author-
itativeness. This is a well-studied problem given the complete text, however, in many
cases, due to copyright privileges, research papers databases do not have the complete
text, only metadata, such as the title and abstract [1]. It is well agreed that the title itself
is not only a high degree of summary of the research content, but also the main form of
knowledge concept expression and communication. Therefore, titles have a similar role
with keyword and they are both elaborated to reflect the content of a document.
Therefore, terms in the titles are often appropriate to be keywords. In this paper we
study the problem of predicting keywords appropriate for scientific papers, using only
the paper titles.
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The related work mainly involves the following two research areas: keyword
extraction and application based on hyper-graph. Our work mainly focuses on unsu-
pervised keyword extraction methods which can be roughly divided into three cate-
gories: keyword extraction based on statistical features, keyword extraction based on
topic model and keyword extraction based on graph. The statistical features based
approaches take statistical information into account, such as n-gram statistics, word
frequency, which can be domain-independent and do not require training data [2].
However, some important low-frequency words and semantic characteristics of topic
distribution are often neglected. Some researchers [3] considered the co-occurrence
degree and correlation between words to overcome the above limitations. Hua et al. [4]
proposed the co-occurrence distance to punish those word pairs that appear together but
far apart. Topic modeling has been proven to be useful for automatic topic discovery
from a huge volume of texts. Latent Dirichlet Allocation (LDA) is a widely used topic
model to discover subject topic, hot topic and development trend in scientific and
technical intelligence analysis, which have demonstrated great success on long texts
[5, 6]. Compared with long texts, short texts such as paper titles, have their own
characteristics and LDA cannot work very well on short texts [7, 8].

At present, text documents are always represented as an undirected graph, where
the vertices of the graph contains words of the document and the edges are assigned
values based on a statistical measure of similarity between the two vertices. Willyan
et al. [9] proposed a keyword extraction method for tweet collections and applied
centrality measures for finding the relevant vertices. The limitation of the conventional
pairwise graph based modeling is its inability to completely capture n-ary association
among multiple words. It is obvious that richer information should be considered into
the conventional graph. Wang et al. [10] proposed to take advantage of hyper-graph for
summarization, where sentences and their associations are modeled as a hyper-graph,
i.e. a generalization of the conventional graph, which is able to formulate more types of
relationships. Zhou et al. have proposed an extension for defining random walks on
hyper-graphs, which combines the weights of destination vertices and hyper-edges in a
probabilistic manner to accurately capture transition probabilities [11].

In this paper, we propose a keyword extraction approach based on weighted hyper-
graph random walk. Two basic issues addressed in this paper are: (1) how to assign
weights for hyper-edges and (2) how to assign weights for hyper-vertices for a par-
ticular hyper-edge. Hence, the main contributions of our work are: (1) an appropriate
hyper-edge weighting strategy is investigated to characterize both authority and real-
time factor; (2) the correlation degree, co-occurrence distance of each pair hyper-
vertices in a specific hyper-edge, and co-occurrence degree are established for hyper-
vertex weighting. Finally, the random walk process is performed on the hyper-graph
where the surfer could differentiate between destination vertices within a hyper-edge
depending on their features. Once the term significance scores are ready, we rank terms
in descending order of the calculated scores and the sorted terms from which the
highest ranked terms are chosen into a recommending list.
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2 Weighting Strategy for Hyper-edge and Hyper-vertex

In our work, the construction of hyper-graph is straightforward, paper titles are
regarded as hyper-edges, and the terms in the title are regarded as hyper-vertices in the
particular hyper-edge. In essence, this model regards title di as a bag of word model
which is composed of different terms, such as di = {v1, v2,…,vs}, and the collection set
of these titles D = {d1, d2, … dm} is the lexical hyper-graph.

2.1 The Weighting Hyper-graph Model

Let HG(V, E) be a hyper-graph with the hyper-vertex set V and the set of hyper-edges
E, which can be considered as a generalization of the conventional graph. A hyper-edge
e is a subset of V where [ e2Ee ¼ V . A hyper-edge e is to be incident with v when
v 2 e. Given a hyper-graph, its matrix representation H 2 RjV j�jE, called the incidence
matrix, with its entries of either 1 or 0, i.e. if v 2 e, h (v, e) = 1, h (v, e) = 0 otherwise.

Let WHG(V, E, w(e), w(v, e)) be a weighted hyper-graph where w(e):e ! R+ is the
hyper-edge weight, and w(v, e): ve ! R+ is the weight of a hyper-vertex v on a
particular hyper-edge e. The incidence matrix Hw|V|�|E| of the weighted hyper-graph is
denoted as:

hwðv; eÞ ¼ wðv; eÞ; v 2 e
0; v 62 e

�
ð1Þ

The hyper-vertex degree and hyper-edge degree are defined as:

dðvÞ ¼
X
e2E

wðeÞhðv; eÞ ð2Þ

dðeÞ ¼
X
v2V

wðveÞhðv; eÞ ð3Þ

Let Dv and De denote the diagonal matrices containing the node and the hyper-edge
degrees respectively, and W denote the diagonal matrix containing the hyper-edge
weights. Compared with the conventional hyper-graph, the weighted hyper-graph
possesses weight for both hyper-edge and hyper-vertex. This section will detail the
specific weighting strategy of hyper-edge and hyper-vertex. It is worth noting that the
di is synonymous with e, which represents a particular hyper-edge.

2.2 Weighting Strategy for Hyper-edge

The authority, real-time nature and contribution rate of the selected research objects in
the current field of study are extremely important factors for scientific research. On the
one hand, according to the source of the literature, we can determine its authority,
namely Rpaper-rank(di). Based on the classification of the literature’s importance pro-
vided by China Computer Federation (CCF) [12], different ranks of literature C are
defined, and its corresponding Rpaper-rank(di) is defined as:
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Rpaper�rankðdlÞ ¼
1; dl 2 A
2=3; dl 2 B
1=3; dl 2 C

8<
: ð4Þ

On the other hand, temporal attributes of a research paper is an important dimen-
sion to understand evolving topics and keywords. Besides, the number of times cited
by others is actually a key indicator of the relative importance of a work in science. We
therefore measure the temporal effect and the number of citations as a ranking function
Rtime-quote as follows:

Rtime�quoteðdiÞ ¼ e�
ðc�yiÞþ 1

kþ 1 ð5Þ

here c, and yi represent the current time and publication time of the literature respec-
tively, k stands for the number of citations. The weight of hyper-edge is calculated by
integrating Rpaper-rank and Rtime-quote as follows:

wðdiÞ ¼ kRpaper�rankðdiÞþ ð1� kÞRtime�quoteðdiÞ ð6Þ

here, the smoothing factor k is used to adjust the relative importance of R paper-rank (di)
and Rtime-quote (di). We experimented with different values for k which will be discussed
in the experiment section. The final title rank w(di) will be embedded in the hyper-
graph as a hyper-edge weight to reflect title’s importance over keywords.

2.3 Weighting Strategy for Hyper-vertex

In this paper, we attempt to seek the weighting strategy for hyper-vertex on a particular
hyper-edge, which considers the correlation degree, co-occurrence distance of each pair
of hyper-vertices in a specific hyper-edge, and co-occurrence degree. Table 1 sum-
marizes the notations that will be used for hyper-vertex weighting and Fig. 1 shows and
example of our weighting scheme.

Table 1. Definition of Each Notation for the Hyper-Vertex weighting

Notation Definition Notation Definition

vi hyper-vertex vi, that is a word iw(vi, dl) initial weight of vi in dl
co_dl(vi,
vj)

co-occurrence degree of vi and
vj in dl

w(vi, dl) hyper-vertex vi’s weight in dl

co(vi, vj) co-occurrence degree of vi and
vj

Nnei(vi) the number of words shared
with vj

ucori(vi,
vj)

unilateral correlation degree of
vi

n(dl) co-occurrence number of vi and
vj in dl

cor(vi,
vj)

correlation degree between vi
and vj

tf(dl, vi) the number of vi appears in dl

cow(vi,
dl)

correlation weight of hyper-
vertex vi in dl

df(vi) the number of documents that
contains vi
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Given a specific hyper-edge dl, the hyper-vertex vi and vj and their co-occurrence
co_dl (vi, vj) in dl is defined as:

co dlðvi; vjÞ ¼ ndlðvi; vjÞ � e�distdl ðvi;vjÞ ð7Þ

where ndlðvi; vjÞ denotes the number of co-occurrence of hyper-vertex vi and vj in dl
distdlðvi; vjÞ is the number of interval words between vi and vj in the dl, which is used to
penalize long distance co-occurrence.

The co-occurrence of vi and vj on the entire corpus can be defined as:

coðvi; vjÞ ¼
Xm
l¼1

co dlðvi; vjÞ ð8Þ

The correlation degree between vi and vj can be further investigated by co(vi, vj),
since this correlation degree is asymmetric, the unilateral correlation degree between vi
and vj is defined by a modified tf-idf formula as follows:

ucoriðvi; vjÞ ¼ coðvi; vjÞPn
q¼1

coðvi; vqÞ
� log2

n
NneiðvjÞ ð9Þ

T

v2,v3,v5,v4

v7,v5,v8,v3,v6

v1,v8,v11,v4

Paper 
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Citations
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W(d2)=λ×1 (1-λ)×e 1

 =0.684

iw(v3), idf(v3)

v2 v3 v5 v4

0
1

v7 v5 v8 v3 v6

0

0
1

2

iw(v3, d2)=1/5
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Fig. 1. An example of weighting strategy for hyper-edge and hyper-vertex
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Here, Nnei(vj) is the number of co-occurrence neighbors of vj. The former part
reflects the probability that humans think of vi when vj is observed. The latter part
punishes those vj that co-occur with almost every other terms, this is similar to idf. It’s
obvious that vj should rarely appear with other words except vi if vj is important to vi.

The unilateral correlation degree between vi and vj is asymmetric, we then define
the correlation degree between vi and vj in a symmetric way, which is essentially the
average value of unilateral correlation:

corðvi; vjÞ ¼ ucoriðvi; vjÞþ ucorjðvj; viÞ
2

ð10Þ

Term frequency is always adopted as local features for document, however, its
probability equals to 1 in most cases for short text, which indicates that the local feature
of short text will be neglected. In this paper, a new local weighting scheme of hyper-
vertex in a hyper-edge, namely correlation weight cow(vi, dl) is defined. Hyper-vertex
with more and higher correlations to the others in a particular hyper-edge are more
important to the hyper-edge and should be assigned a bigger weight. Therefore, we
introduce the new hyper-vertex weighting scheme, which is based on the degree of the
hyper-vertex correlation with other tokens in the same hyper-edge.

For each hyper-vertex, we define its initial weight iw(vi, dl) as the term frequency of
vi in the current dl as:

iwðvi; dlÞ ¼ tf ðdl; viÞ
jdlj ð11Þ

The correlation weight can be obtained by combining the correlation degree with
initial weight. The correlation weight of hyper-vertex vi in a specific hyper-edge dl can
be defined as:

cowðvi; dlÞ ¼ iwðviÞþ

Pjdlj
j¼1

iwðvi; dlÞ � corðvi; vjÞ

jdlj ð12Þ

The correlation weight denotes the reliability and importance of the hyper-vertex in
the hyper-edge. In order to make the features as discriminative as possible, we further
combine the correlation weight with global statistic weights in the weighting scheme
and finally the weight of hyper-vertex vi is in a specific hyper-edge dl can be calculate
as:

wðvi; dlÞ ¼ cowðvi; dlÞ � idf ðviÞ ¼ cowðvi; dlÞ � log2
m

df ðviÞ ð13Þ
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3 Random Walk Process on Hyper-graph

A randomwalk is a mathematical object, known as a stochastic or random process, which
describes a path that consists of a succession of random steps on some mathematical
space. In a simple graph, it is essentially the transition between vertices by starting at a
given vertex and moving to another neighboring vertex after each discrete time step and
then the randomly selected point sequence forms a randomwalk on the graph. The process
can bemodeled as afiniteMarkov chainM over a set of states {s1, s2,…, sn}. The transition
matrixP |V |�|V | | is always definedwith its entriesP(u, v) = Prob(st+1= v|st= u) indicating
that the chainM will be at v at time t + 1 given that it was observed at u at time t, and for
any vertex Rv p (u, v) = 1.

The hyper-graph random walk process can also be defined as a Markov chain where
the hyper-vertex set is the state set of the chain similar to a simple graph. At each time
step the surfer moves in the incident hyper-edge to another hyper-vertex. Therefore, a
more general random walk is required for hyper-graph. Bellaachia et al. [13] have
extended the random walk on weighted hyper-graph. For a hyper-graph with both
weighted hyper-edges and weighted hyper-vertex, the random walk process is as fol-
lows: starting from hyper-vertex u, a hyper-edge e incident with the current hyper-
vertex u is chosen proportional to the hyper-edge weight w(e). Then, a hyper-vertex v is
selected proportional to its weight w(e, v) within the hyper-edge e. Next, we can
calculate the transition matrix P as follows:

Pðu; vÞ ¼
X
e2E

wðeÞ hðu; eÞP
e
^2E wðe

^Þ
hwðv; eÞP
v
^2e hwðv

^
; eÞ

ð14Þ

Or in matrix notation:

P ¼ D�1
v HWeD

�1
e HT

w

Where hw(v, e) is the weight of the destination hyper-vertex v in hyper-edge e. Dv is the
diagonal matrix of the weighted degree of hyper-vertices as in formula (2). H is the
incidence matrix of a non-weighted hyper-graph. We is the diagonal matrix of the
hyper-edge weights. De is the diagonal matrix for weighted degree of hyper-edges as in
formula (3). Hw is the incidence matrix of the weighted hyper-graph.

After calculating the transition matrix P, we now explain the random walk process
as follows. First, we assign the equal positive significance score to all the hyper-
vertices. All the nodes then spread their significance scores out to their nearby
neighbors via the hyper-graph. The weights of the transitions between any two nodes
are defined by P in the following way:

v!ðiþ 1Þ ¼ aPT v!ðiÞ þ ð1� aÞ e!�
n ð15Þ

Where a is a parameter that specifies the proportion of how much a hyper-vertex
should learn from its neighbors, and how much it should learn as of equal importance
as the initial scores. According to the experience, the value of a is set as 0.15.
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The propagation process is repeated until a global stable state is achieved. Then all the
hyper-vertices have obtained their final significance scores. Once the term significance
scores are ready, we rank terms in descending order of the calculated scores and the
top-K sorted terms from which the highest ranked terms are picked as the selected
keywords set.

4 Experimental Performance and Analysis

In this section, we report experimental results. We first describe the experimental data,
and then explain the evaluating metrics. Finally, we evaluate the performance of our
approach to keyword extraction for short texts and compare our algorithms with other
baselines.

4.1 Datasets

To the best of our knowledge, there has been no standard dataset to evaluate keyword
extraction for paper titles. Hence, we built a ground truth dataset from DBLP [14],
which provides open bibliographic information on major computer science journals and
proceedings. According to the CCF specification, the recommended conferences and
journals are selected from which paper titles are obtained, coming from TPAMI,
JMLR, AAAI, NIPS, COLT, ECCV, PAKDD, ACML et al. And then 10 categories are
organized and each class contains approximately 1000 short texts as the experimental
data. The initial data format collected is as follows: the title of each paper, the year of
publication, the rank of the journal/conference, the number of citations. In the pre-
processing step, stop-words are removed from the titles and the Porter’s stemmer is
adopted [15] to remove common morphological and inflectional endings from English
words.

4.2 Evaluation Metrics

To quantitatively measure the performance of the ranking method, we take advantage
of some common evaluation metrics that are used in the information retrieval literature
such as Precision (abbreviated as Pr), Recall (abbreviated as Re) and F1-measure
precision. However, there is no ‘correct’ set of keywords for a given document set, not
even humans may agree on the keywords they extract. Therefore, to assess the per-
formance of the proposed algorithm, the following methodology was adopted: three
experts are invited to suggest an unspecified number of keywords from the documents.
And then the intersection of these sets for each topic is determined, these new datasets
contain the relevant documents denoted as {Relevant}. Finally, the evaluation metrics
can be defined as:

Pr ¼ jfRelevantg\ fRetrievedgj
jfRetrievedgj ð16Þ
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Re ¼ jfRelevantg\ fRetrivedgj
jfRelevantgj ð17Þ

F � measure ¼ 2� Pr�Re
ðPr þReÞ ð18Þ

here Pr is equal to the number of keywords that appear in at least one of the human lists
and the number of relevant documents retrieved, Re is ratio of keywords in the
intersection set of the three human lists and the number of relevant documents.
Therefore, the term in {Relevant} for Pr appears at least once in the list of keywords
given by three experts, while the term in {Relevant} for Re appear at the intersection
set of keywords given by the three experts. {Retrieved} represents the keyword set for
each retrieval, and here we set the value of |{Retrieved}| to 10. Table 2 shows an
example of the sets of keywords suggested by each expert for the topic ‘Artificial
Intelligence and Pattern Recognition’. The common keywords (intersection) among
these sets are highlighted in bold.

4.3 Experimental Results and Discussion

4.3.1 Parameter Tuning
Parameters k is the learning factor tuning the influence of R(paper-rank) (di) and Rtime-quote

(di). When k = 0, it means that the weight of paper rank is zero and only time and the
number of citations are considered. As we can see from Fig. 2, the performance is
improved in most cases in terms of all evaluation metrics and reaches a peak at
k = 0.75. This suggests these two aspects are complementary and the contribution from
the time and quote factor is more salient. It is reasonable because time information is
more sensitive than rank aspects.

4.3.2 Comparison with Other Approaches
In order to verify the effectiveness of the proposed keyword extraction algorithm based
on weighted hyper-graph random walk, we select the TF � IDF method, key word
extraction method based on the LDA, keyword extraction method based on graph
TKG2|W1/F|CE [9], keyword extraction method based on weighted hyper-graph

Table 2. Example of Keyword sets suggested by each human expert for the topic ‘Artificial
Intelligence and Pattern Recognition’.

Expert1 pattern recognition | clustering | classification | deep learning | natural
language | keyword | feature | neural network | optimization | fuzzy set | forecast |
solve | Big data | weighting | recommendation | information network

Expert2 deep learning | heterogeneous | information retrieval | key word |
recommendation | classification | clustering | fuzzy set | optimization | pattern
recognition | learning strategy | neural network | decision tree | natural language

Expert3 pattern recognition | neural network | recommendation |clustering |
classification | key word | feature | optimization | forecast | natural language | data
mining | deep learning
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random walk without considering co-occurrence distance (COW-dist) � IDF as the
baseline to compare the experimental results.

Table 3 summarizes the keywords extracted of different algorithms. Keywords over
a gray background match the set of relevant keywords, and those printed in gray appear
in at least of the sets proposed by humans. Precision, Recall and F-measure are cal-
culated, respectively. The number of topics for LDA is set as 10 while the TKG
configurations have used closeness (CC) as centrality measure. The results presented in
the table show that our approach exhibits the best performance among all the five
approaches.
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Fig. 2. Experimental result with variation of k

Table 3. Summary of the keywords extraction results for all methods

TF×IDF 2|W1/F|C
E 

(COW-dist)×IDF COW×IDF

1 encrypt security detect detect detect 
2 decrypt encrypt restore encrypt encrypt 
3 algorithm decrypt anonymous decrypt ccloud

4 encrypt cloud quantum
5 defense model decrypt protect invasion 
6 

improve 
network vulnera-

bility

network vulnerabil-

ity
trust relationship dynamic 

7 key agreement dynamic dynamic defense 
8 question algorithm public key defense sensor
9 optimize identity cloud attack distributed 
10 

security network

analysis forge trouble forecast optimize

Pr

Re 44.44%

F1- measure

LDA TKG

40% 30% 60%

44.44% 22.22%

41.90% 25.29% 51.06%

60% 70% 

55.56% 77.78% 

57.93% 73.78% 

Learning from Titles to Recommend Keywords for Academic Papers 457



Figure 3 shows the average performance of various algorithms respectively. We
can see that our method outperforms all the baselines in all three measures. The
possible reasons can be summarized as follows. The TF � IDF weighting method and
LDA based method are more suitable for long text, the occurrence number of each term
in specific title tends to be the same, and the efficiency of TF � IDF is greatly reduced.
Besides, topic models experience a large performance degradation over short texts
because of data sparsity, impeding the generation of discriminative document-topic
distributions, and the resultant topics are less semantically coherent. The relationships
among the objects are more complicated than simple pair-wise ones. The limitation that
one can observe is its inability to completely capture correlations among multiple
terms, ignoring the more types of relationships including both group ones and social
attributes. The weighted hyper-graph random walk based approach is not only able to
reveal the high-order relations between document-term, term-term, but also considers
the correlation degree, co-occurrence distance of each pair of hyper-vertices in a
specific hyper-edge, and co-occurrence degree for hyper-vertex weighting.

5 Conclusions and Future Work

In order to facilitate scientific researchers quickly and effectively select the most relevant
and important keywords from vast majority of papers, and therefore establish the research
focus and preliminaries, a keyword ranking method involving both real-time and
authoritativeness is presented. In this paper, a weighted hyper-graph is constructed where
hyper-vertices represent weighted terms and weighted hyper-edges measure the semantic
relatedness of both binary relations and nary relations among terms. The model not only
takes into account the social information tomeasure the importance of hyper-edge but also
establish the weighting scheme for a hyper-vertex in a particular hyper-edge. Finally, the
significance scores of hyper-vertices are calculated via random walk on the hyper-graph.
We believe that our approach can be expected to reach a better performance for keyword
extraction task if more relations among terms can be discovered and incorporated in the

TF×IDF LDA TKG2|W|C (COW-
dist)×IDF COW×IDF

Precision 0.378 0.343 0.512 0.527 0.681

Recall 0.402 0.311 0.496 0.519 0.684

F1-measure 0.389 0.326 0.504 0.523 0.682

0 
0.1
0.2
0.3
0.4
0.5
0.6
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0.8
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Fig. 3. Comparison of algorithm performance on English data sets
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hyper-graph. In our future work, we will further investigate the discovery and compu-
tation of various relationship existing among terms.
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Abstract. Zero-shot learning (ZSL) can be regarded as transfer learn-
ing from seen classes to unseen ones so that the later can be recognized
without any training samples. Its main difficulty lies in that there often
exists a large domain gap between the seen and unseen class domains.
Inspired by the fact that an unseen class is not strictly ‘zero-shot’ (thus
easier to recognize) if it falls into a superclass that consists of one or more
seen classes, we propose a new ZSL model, termed ZSL with superclasses
(ZSLS), that leverages the superclasses as the bridge between seen and
unseen classes to narrow the domain gap. By generating the superclasses
with k-means clustering over all seen and unseen class prototypes, we for-
mulate ZSLS as a min-min optimization problem. An efficient iterative
algorithm is also developed for model optimization. Extensive experi-
ments show that our model achieves the state-of-the-art results.

Keywords: Zero-shot learning · Domain gap · Min-min optimization

1 Introduction

Although there have been emerging advances in large-scale object recognition in
the past five years, most existing object recognition models (particularly deep
learning based ones) require hundreds of image samples to be collected from each
object class. This condition is often hard to satisfy, e.g., some object classes are
rare themselves. More worse, these object recognition models are shown to be
easy to attack [13] even if sufficient labeled samples are provided. Therefore, the
small sample size problem has recently been revisited in computer vision.

One solution to the small sample size problem is zero-shot learning (ZSL)
[3,25,26]. ZSL aims to recognize a set of new/unseen classes without any training
samples by exploiting the knowledge distilled from seen classes. All existing
ZSL models assume that each class name is embedded in a semantic space,
such as attribute space [14,17] or word vector space [7,28]. In this space, the
names of both seen and unseen classes are embedded as high dimensional vectors
called class prototypes, and their semantic relationship can be measured by the
distance between these vectors. With this semantic attribute/word space and
a visual feature space representing the appearance of an image, a ZSL model
typically learns a projection function so that both feature and semantic vectors
c© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11303, pp. 460–472, 2018.
https://doi.org/10.1007/978-3-030-04182-3_40
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are embedded in the same space. This projection is learned with the seen class
training samples only. But once learned, it is used to project the unseen class
samples, and a test sample is assigned to the nearest unseen class prototype.

The main difficulty of ZSL lies in that there often exists a large domain
gap between the seen and unseen classes. Specifically, considering the seen and
unseen classes as two domains, the projection function is learned from the seen
class domain but applied to the unseen class domain. Containing completely
different classes, a big domain gap exists; as a result, the projection is often
biased towards the seen class prototypes, i.e., the well-known projection domain
shift problem [8]. This is particularly acute when ZSL is carried out in a more
realistic setting, e.g., the recently proposed generalized ZSL setting [4], under
which both seen and unseen class samples need to be recognized during the
test time. The bias towards seen class domain makes most test samples being
classified as seen classes even if they belong to unseen classes.

To tackle the projection domain shift [8] caused by the domain gap, a num-
ber of ZSL models resort to transductive learning with not only the training
set of labelled seen class data but also the test set of unlabelled unseen class
data. According to whether the predicted labels of the test set are iteratively
used for model learning, existing transductive ZSL models can be divided into
two categories: (1) The first category [8,10,23,32] first constructs a graph in
the semantic space and then transfers to the test set by label propagation.
A variant is the structured prediction model [36] which employs a Gaussian
parametrization of the unseen class domain label predictions. (2) The second
category [11,15,18,27,30,33] involves using the predicted labels of the unseen
class data in an iterative model update/adaptation process as in self-training
[31]. However, rare attention has been paid to the combination of these two cat-
egories of transductive ZSL models in a unified framework. The reason may be
that they seem not directly related and thus are difficult to integrate.

In this paper, a unified framework is proposed to combine the above two
categories of transductive ZSL models, termed ZSL with superclasses (ZSLS).
Specifically, we align the seen class and unseen class domains by exploring shared
superclasses. The idea is simple: an unseen class is not strictly ‘zero-shot’ (thus
easier to recognize) if it falls into a superclass that contains one or more seen
classes. In this work, we take a data driven approach without the need for man-
ually defined taxonomy. That is, the superclasses are generated by k-means clus-
tering in the semantic space. Additionally, by focusing on learning a projection
function and keeping the same linear regression as in the ridge regression model
[26], we formulate transductive ZSL as a min-min optimization problem. An
efficient iterative algorithm is also developed for model optimization.

Our contributions are: (1) A novel transductive ZSL model is proposed which
aligns the seen and unsee class domains using superclasses shared across domains.
(2) We formulate transductive ZSL as a mini-min optimization problem with a
simple linear formulation that can be solved by an efficient iterative algorithm.
Extensive experiments show that our model yields state-of-the-art results. The
gain over alternative models is even bigger under the generalised ZSL setting.
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2 Related Work

Projection Learning. Relying on how the projection function is established,
existing ZSL models can be organised into three categories: (1) The first category
learns a projection function from a visual feature space to a semantic space (i.e.
in a forward projection direction) by employing conventional regression/ranking
models [1,17] or deep neural network regression/ranking models [7,28]. (2) The
second category chooses the reverse projection direction [15,26,27,34], i.e. from
the semantic space to the feature space, to alleviate the hubness problem suf-
fered by nearest neighbour search in a high dimensional space. (3) The third
category learns an intermediate space as the embedding space, where both the
feature space and the semantic space are projected to [3,35]. An exception is the
semantic autoencoder proposed in [16] which can be regarded as a combination
of the first and second categories. Our ZSLS model falls into the second cate-
gory, but it is additionally formulated for transductive learning and ZSL with
superclasses to address the domain gap problem.

Generalized ZSL. In the area of ZSL, the standard setting takes only unseen
classes for test process. However, the generalized ZSL setting [2,4,7,22,25,28]
makes a different assumption that the test samples come from both seen and
unseen classes. This is clearly more suitable for real-world application scenarios,
but also induces larger challenge into ZSL, precisely because of the projection
domain shift that existing transductive ZSL models attempt to tackle. In partic-
ular, as shown in [3], since the projection is learned using the seen classes only,
during test, most of the test images from unseen classes would be projected to
be close to the seen class prototypes, and thus misclassified. To address this
projection bias problem, novelty detection [28] has been used as a preprocessing
step to predict whether a test sample is from seen/unseen classes. Alternatively,
calibrated stacking [3] has also been proposed to postprocess the results of ZSL.
Our ZSLS model is naturally suitable for generalized ZSL: First, its transduc-
tive learning formulation enables us to adapt the projection towards the unseen
class domain. Second, the formulation of ZSL with superclasses can leverage the
superclasses as the bridge to recognize both seen and unseen classes.

ZSL with Superclasses. There has been little attention on ZSL with super-
classes. Two exceptions are: (1) [12] learns the relation between attributes and
superclasses for sematic embedding; (2) [19] uses the taxonomy to define the
semantic representation of each object class. Note that these two methods have
a limitation that the manually-defined taxonomy must be provided at advance.
In this paper, our approach is more flexible by generating the superclasses auto-
matically with k-means clustering over all seen/unseen class prototypes.

3 The Proposed Framework

3.1 Problem Definition for ZSL

Let S = {s1, ..., sp} denote a set of seen classes and U = {u1, ..., uq} denote a
set of unseen classes, where p and q are the total numbers of seen and unseen
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classes, respectively. These two sets of classes are disjoint, i.e. S ∩ U = φ.
Similarly, Ys = [y(s)

1 , ...,y(s)
p ] ∈ R

k×p and Yu = [y(u)
1 , ...,y(u)

q ] ∈ R
k×q

denote the corresponding seen and unseen class semantic representations (e.g.
k-dimensional attribute vector). We are given a set of labelled training images
Ds = {(x(s)

i , l
(s)
i ,y(s)

l
(s)
i

) : i = 1, ..., Ns}, where x(s)
i ∈ R

d×1 is the d-dimensional

visual feature vector of the i-th image in the training set, l
(s)
i ∈ {1, ..., p} is the

label of x(s)
i according to S, y(s)

l
(s)
i

is the semantic representation of x(s)
i , and Ns

denotes the total number of labeled images. Let Du = {(x(u)
i , l

(u)
i ,y(u)

l
(u)
i

) : i =

1, ..., Nu} denote a set of unlabelled test images, where x(u)
i ∈ R

d×1 is the d-
dimensional visual feature vector of the i-th image in the test set, l

(u)
i ∈ {1, ..., q}

is the unknown label of x(u)
i according to U , y(u)

l
(u)
i

is the unknown semantic rep-

resentation of x(u)
i , and Nu denotes the total number of unlabeled images. The

goal of zero-shot learning is to predict the labels of test images by learning a
classifier f : Xu → U , where Xu = {x(u)

i : i = 1, ..., Nu}.
Existing ZSL models typically learn a projection function from a visual fea-

ture space to a semantic space. To alleviate the hubness problem commonly
suffered by the nearest neighbour search in a high dimensional space, a reverse
projection learning (RPL) model was proposed in [26] to project the semantic
prototypes (stored in Ys) into the feature space as follows:

min
W

Ns∑

i=1

‖x(s)
i − Wy(s)

l
(s)
i

‖22 + λ‖W‖2F , (1)

where W ∈ R
d×k is a projection matrix, and λ is a regularization parameter.

When the best projection matrix W∗ is learnt, we can project an unseen semantic
prototype y(u)

j from the test set into the feature space as x̂(u)
j = W∗y(u)

j . The
nearest neighbor search is then performed in the feature space to predict the
label of a test image x(u)

i : l
(u)
i = arg minj ‖x(u)

i − x̂(u)
j ‖22.

3.2 ZSL with Superclasses

Although the above RPL model is shown to obtain impressive results [15,26,
32,34], it cannot tackle the projection domain shift. We thus choose to improve
the original RPL model in two aspects: (1) A transductive learning strategy is
followed by exploiting the unlabeled unseen class data to adapt the projection
toward the unseen class domain for ZSL; (2) The superclass prototypes are lever-
aged in model formulation, instead of the seen/unseen class prototypes, to align
the seen and unsee class domains using superclasses shared across domains.

Let Z = [z1, ..., zr] ∈ R
k×r denote the r superclass prototypes which are

represented with the cluster centers generated by k-means clustering over all
unseen/seen class prototypes [Ys,Yu]. The superclass label of a training seen
class sample x(s)

i is denoted as π(l(s)i ), where π(·) is the clustering mapping
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function from the seen/unseen class prototypes to the superclass prototypes.
With this superclass representation, our model is formulated as:

min
̂W

Ns∑

i=1

‖x(s)
i − Ŵz

π(l
(s)
i )

‖22 + λ‖Ŵ‖2F + γ

Nu∑

i=1

min
j

‖x(u)
i − Ŵzj‖22, (2)

where Ŵ ∈ R
d×k is the projection matrix from the superclass semantic repre-

sentation to the visual feature presentation, and γ is a weighting coefficient that
controls the importance of the first and third terms (which correspond to the
losses on the seen and unseen class samples respectively).

Different from existing transductive ZSL models that belong to either of the
two categories relying on how the test unseen class data is exploited for ZSL, we
unify these two categories within a single framework as proposed in Eq. (2), i.e.,
our model integrates transductive projection learning and superclasses shared
across domain aligning to tackle the projection domain shift problem. Moreover,
we focus on learning a projection function for ZSL, i.e., a single task is consid-
ered in our model. In contrast, most existing transductive ZSL models have to
solve two or more subtasks at once, including projection learning, label predic-
tion, and semantic embedding. This requires one or more intermediate variables
to be introduced into the ZSL models, complicating the optimization problem.
We believe that focusing on projection learning only with a simple formulation
enables our model to better overcome the projection domain shift problem.

3.3 Model Optimization

Note that the third term of the objective function in Eq. (2) is a sum of minimums
and it is thus difficult to solve the optimization problem in this equation. In the
following, we develop an iterative solver to model optimization.

Given the projection matrix Ŵ(t) at iteration t during model optimiza-
tion, we define g(t)

i = [g(t)i1 , ..., g
(t)
ir ]T for the test unseen class sample x(u)

i (i =
1, ..., Nu), where g

(t)
ij = ‖x(u)

i −Ŵ(t)zj‖22 (j = 1, ..., r). For the minimum function

ming(t)
i , we define its gradient ζ

(t)
i = [ζ(t)i1 , ..., ζ

(t)
ir ]T with respect to g(t)

i as:

ζ
(t)
ij =

{
1/n

(t)
i , if g

(t)
ij = ming(t)

i

0, otherwise
, (3)

where n
(t)
i is the number of g

(t)
ij (j = 1, ..., r) that satisfy g

(t)
ij = ming(t)

i . With
the Taylor expansion, we obtain:

min
j

‖x(u)
i − Ŵ(t+1)zj‖22 = ming(t+1)

i ≈ ming(t)
i + ζ

(t)
i

T
(g(t+1)

i − g(t)
i )

= ζ
(t)
i

T
g(t+1)

i =
r∑

j=1

ζ
(t)
ij ‖x(u)

i − Ŵ(t+1)zj‖22. (4)
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The objective function in Eq. (2) at iteration t + 1 can thus be estimated as:

G(Ŵ(t+1)) =
Ns∑

i=1

‖x(s)
i − Ŵ(t+1)z

π(l
(s)
i )

‖22 + λ‖Ŵ(t+1)‖2F

+ γ

Nu∑

i=1

r∑

j=1

ζ
(t)
ij ‖x(u)

i − Ŵ(t+1)zj‖22. (5)

Let ∂G(̂W(t+1))

∂̂W(t+1)
= 0, we obtain a linear equation:

Ŵ(t+1)A(t) = B(t), (6)

A(t) =
Ns∑

i=1

z
π(l

(s)
i )

zT

π(l
(s)
i )

+ λI + γ
r∑

j=1

Nu∑

i=1

ζ
(t)
ij zjzT

j , (7)

B(t) =
Ns∑

i=1

x(s)
i zT

π(l
(s)
i )

+ γ

r∑

j=1

Nu∑

i=1

ζ
(t)
ij x(u)

i zT
j . (8)

Let α = γ/(1 + γ) ∈ (0, 1) and β = λ/(1 + γ), we have:

Â(t) = (1 − α)
Ns∑

i=1

z
π(l

(s)
i )

zT

π(l
(s)
i )

+ βI + α
r∑

j=1

Nu∑

i=1

ζ
(t)
ij zjzT

j , (9)

B̂(t) = (1 − α)
Ns∑

i=1

x(s)
i zT

π(l
(s)
i )

+ α

r∑

j=1

Nu∑

i=1

ζ
(t)
ij x(u)

i zT
j . (10)

In this paper, we empirically set β = 0.01. The linear equation in Eq. (6) is then
reformulated as follows:

Ŵ(t+1)Â(t) = B̂(t). (11)

The proposed algorithm for ZSL with superclasses is outlined in Algorithm 1.
Note that any ZSL model can be used to obtain the initial projection matrix
Ŵ(0). In this paper, we choose the RPL model [26] for this initialization. Once
the optimal projection matrix Ŵ∗ is found by the proposed algorithm, we first
project the semantic prototypes of superclasses into the feature space, and then
predict the superclass label of a test sample x(u)

i as: arg minj ‖x(u)
i − Ŵ∗zj‖22.

We provide the time complexity analysis of the proposed algorithm as fol-
lows. Concretely, the computation of [ζ(t)ij ]Nu×r, Â(t), and B̂(t) has a time
complexity of O(rNu), O(k2Ns + k2Nu), and O(dkNs + dkNu), respectively.
Here, the sparsity of [ζ(t)ij ] is used to reduce the cost of computing Â(t) and
B̂(t). Moreover, since Â(t) ∈ R

k×k and B̂(t) ∈ R
d×k, solving Eq. (11) has a

time complexity of O(dk2). To sum up, the time complexity of one iteration is
O(rNu + (d + k)k(Ns + Nu) + dk2) (d, k, r � (Ns + Nu)). Given that the pro-
posed algorithm is shown to converge very quickly (t < 10) and the superclass
generation with k-means clustering has a time complexity of O(r(p + q)), it is
efficient even for large-scale ZSL problems.



466 Y. Huo et al.

Algorithm 1. ZSL with Superclasses
Input: Training and test sets Ds,Xu

Seen and unseen class prototypes Ys,Yu

Parameters α, r
Output: ̂W∗

1. Initialize t = 0;
2. Generate the r superclass prototypes Z by k-means clustering over [Ys,Yu];

3. Initialize ̂W(0) with the RPL model;
repeat

4. Compute ζ
(t)
ij with Eq. (3);

5. Compute ̂A(t) and ̂B(t) with Eqs. (9)–(10);

6. Update ̂W(t+1) by solving Eq. (11);
7. Set t = t + 1;

until a stopping criterion is met
8. ̂W∗ = ̂W(t).

Algorithm 2. Full ZSL Algorithm
Input: Training and test sets Ds,Xu

Seen and unseen class prototypes Ys,Yu

Parameters α, r
Output: labels of test samples
1. Solve Eq. (2) for ZSL with superclasses using Algorithm 1;

2. Generate N (x
(u)
i ) for each test sample x

(u)
i ;

3. Solve Eq. (12) with a similar iterative algorithm;

4. Predict the unseen class label of each test sample x
(u)
i .

3.4 Full ZSL Algorithm

The results of ZSL with superclasses can be used for the original ZSL task as
follows. First, we predict the top 5 superclass labels of each test unlabelled unseen
sample x(u)

i with the optimal projection matrix Ŵ∗ learned by Algorithm 1.
Second, derived from the top 5 superclass labels of x(u)

i , we obtain the set of the
most possible unseen class labels N (x(u)

i ) according to the k-means clustering
results of superclass generation. Third, we learn the projection function for the
original ZSL task by solving the following optimization problem:

min
W

Ns∑

i=1

‖x(s)
i − Wy(s)

l
(s)
i

‖22 + λ‖W‖2F + γ

Nu∑

i=1

min
j∈N (x

(u)
i )

‖x(u)
i − Wy(u)

j ‖22. (12)

We can develop an iterative solver similar to Algorithm 1 (with the same
α), and the only difference is that the gradient is computed with the constraint
j ∈ N (x(u)

i ). The full ZSL algorithm is summarized in Algorithm 2.
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Table 1. Five benchmark datasets used for performance evaluation. Notations: ‘SS’ –
semantic space, ‘SS-D’ – the dimension of semantic space, ‘A’ – attribute, and ‘W’ –
word vector. The two splits of SUN are separated by ‘|’.

Dataset # images SS SS-D # seen/unseen

AwA 30,475 A 85 40/10

CUB 11,788 A 312 150/50

aPY 15,339 A 64 20/12

SUN 14,340 A 102 707/10|645/72

ImNet 218,000 W 1,000 1,000/360

4 Experiments

4.1 Datasets and Settings

Datasets. We select five widely-used benchmark datasets for performance eval-
uation. Four of them are of medium-size: Animals with Attributes (AwA)
[17], CUB-200-2011 Birds (CUB) [29], aPascal&Yahoo (aPY) [6], and SUN
Attribute (SUN) [21]. One large-scale dataset is ILSVRC2012/2010 (ImNet),
where the 1,000 classes of ILSVRC2012 are used as seen classes and 360 classes
of ILSVRC2010 (not included in ILSVRC2012) are used as unseen classes, as in
[9]. The details of these benchmark datasets are given in Table 1.

Semantic Spaces. We form the semantic space with attributes for the four
medium-scale datasets, all of which provide the attribute annotations. The
semantic representation based on word vectors is used for the large-scale ImNet.
We train a skip-gram text model on a corpus of 4.6 M Wikipedia documents to
obtain the word2vec word vectors.

Visual Features. All recent ZSL models use visual features extracted by deep
CNN models. In this paper, we extract the GoogLeNet features which are the
1,024-dimensional activations of the final pooling layer as in [16].

Evaluation Metrics. (1) Standard ZSL: For the four medium-scale datasets,
we compute the multi-way classification accuracy as in previous works. For the
large-scale ImNet dataset, the flat hit@5 classification accuracy is computed as
in [9], where hit@5 means that a test sample is classified to a ‘correct label’ if it
is among the top 5 labels. (2) Generalized ZSL: three metrics are defined: (1)
accs – the accuracy of classifying the samples from seen classes to all seen/unseen
classes; (2) accu – the accuracy of classifying the samples from unseen classes to
all seen/unseen classes; (3) HM – the harmonic mean of accs and accu.

Parameter Settings. Our full ZSL model has only two free parameters to
tune: α ∈ (0, 1) (Eqs. (9)–(10)) and r (see Step 2 in Algorithm 1). As in [16],
the two parameters are selected by class-wise cross-validation using the training
data. Moreover, out of the five datasets, only the CUB and SUN datasets have
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multiple seen/unseen splits. We take the same 4 splits used in [1] for CUB and
the same 10 splits used in [3] for SUN, and report the average accuracies.

Compared Methods. A wide range of existing ZSL models are selected for
comparison. For either of the two ZSL settings (i.e. standard and generalized),
we pay more attention to the latest and representative ZSL models that have
achieved the state-of-the-art results in the area of ZSL.

Table 2. Comparative ZSL classification accuracies (%) on the four medium-scale
datasets under the standard ZSL setting. For the SUN dataset, the results are obtained
for the 707/10 and 645/72 splits respectively, separated by ‘|’.

Model SS Trans.? AwA CUB aPY SUN

DeViSE [7] A N 56.7 33.5 – – | –

USE [12] A N 46.4 – – – | –

DAP [17] A N 60.1 – 38.2 72.0|44.5

ESZSL [24] A N 75.3 48.7 24.3 82.1|18.7

RPL [26] A N 80.4 52.4 48.8 84.5| –

SJE [1] A+W N 73.9 51.7 – – |56.1

JLSE [35] A N 80.5 42.1 50.4 83.8| –

SynC [3] A N 72.9 54.7 – – |62.7

SAE [16] A N 84.7 61.4 55.4 91.5|65.2

LESD [5] A N 82.8 56.2 58.8 88.3| –

SCoRe [19] A N 82.8 59.5 – – | –

AMP [10] A+W Y 66.0 – – – | –

UDA [15] A+W Y 75.6 40.6 – – | –

Li et al. [18] A Y 40.1 – 24.7 – | –

SS-Voc [9] A Y 78.3 – – – | –

SMS [11] A Y 78.5 – 39.0 82.0| –

SP-ZSR [36] A Y 92.1 55.3 69.7 89.5| –

SSZSL [27] A Y 88.6 58.8 49.9 86.2| –

DSRL [32] A Y 87.2 57.1 56.3 85.4| –

TSTD [33] A Y 90.3 58.2 – – | –

BiDiLEL [30] A Y 95.0 62.8 – – | –

Our full model A Y 96.2 64.0 83.9 93.5|67.6

4.2 Results Under Standard ZSL Setting

Comparative Evaluation. The comparative results under the standard ZSL
setting are shown in Tables 2 and 3(a). For comprehensive comparison, both
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Table 3. (a) Comparative accuracies (%) on the large-scale ImNet under the standard
ZSL setting. (b) Comparative results (%) of generalized ZSL on AwA and CUB.

Model SSTrans.? hit@5
DeViSE [7] W N 12.8
ConSE [20] W N 15.5
AMP [10] W Y 13.1
SS-Voc [9] W Y 16.8
SAE [16] W N 27.2
Ours W Y 30.8

(a)

Model
AwA CUB

accs accu HM accs accu HM
ConSE [20] 75.9 9.5 16.9 69.9 1.8 3.5
APD [22] 43.2 61.7 50.8 23.4 39.9 29.5
GAN [2] 81.3 32.3 46.2 72.0 26.9 39.2
SAE [16] 67.6 43.3 52.8 36.1 28.0 31.5
Ours 67.8 58.7 62.9 41.6 38.0 39.7

(b)

transductive and non-transductive ZSL models are included. We have the fol-
lowing observations: (1) Our full ZSL model achieves the best results on all five
datasets, showing that the combination of transductive projection learning and
superclasses shared across domain aligning is indeed effective for tackling the
projection domain shift. (2) For the four medium-scale datasets (see Table 2),
the improvements obtained by our model over the second-best model vary from
1.2% to 14.2%. This actually creates new baselines in the area of ZSL, given that
most of these competitors adopt far more complicated nonlinear (even deep)
models. (3) For the large-scale ImNet (see Table 3(a)), our model achieves a
3.6% improvement over the strongest competitor [16]. This demonstrates that
our model scales up to large-scale ZSL problems.
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Fig. 1. (a) The ablation study results on the four medium-scale datasets. (b) The
t-SNE visualization of the superclasses (r = 7) on the AwA dataset.

Ablation Study. Our full ZSL model (denoted as ZSLS-ITER) has two simpli-
fied versions: (1) Without exploring the superclasses in the iterative algorithm
(Algorithm 1)), our full ZSL model degrades to the contentional ZSL model
(denoted as ZSL-ITER); (2) For α = 0, our ZSL-ITER model further degrades
to the RPL model [26]. We compare the three models under the same standard
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ZSL setting. The results in Fig. 1(a) show that: (1) Our ZSL-ITER model yields
significant gains over RPL, ranging from 8% to 43%. This provides evidence that
the transductive projection learning induced in our model indeed enables us to
narrow the projection domain shift. (2) Our ZSLS-ITER model achieves about
1–5% improvements over ZSL-ITER, validating the effectiveness of superclasses
shared across domain aligning.

4.3 Results Under Generalized ZSL Setting

Generalized ZSL has drawn much attention recently, which assumes that the
test set contains samples from both seen and unseen classes. We follow the same
setting of [4], i.e., 20% of the samples from seen classes are held out and then
mixed with the samples from unseen classes. The comparative results on the
AwA and CUB datasets are presented in Table 3(b). It can be seen that: (1)
Different ZSL models have a distinct trade-off between accs and accu, and the
overall performance is thus measured by the HM metric. (2) Our model clearly
obtains the best overall performance, mainly because of ZSL with superclasses.
This is also supported by the t-SNE visualization of the superclasses in Fig. 1(b),
where an unseen class tends to be semantically related to a seen class within the
same superclass.

5 Conclusion

In this paper, we have proposed a novel model for ZSL with superclasses. In our
model, transductive projection learning and superclasses shared across domain
aligning are integrated to tackle the projection domain shift problem. An effi-
cient iterative algorithm is also developed for model optimization. The extensive
experiments on five benchmark datasets show that the proposed model yields
state-of-the-art results under the standard and generalized ZSL settings.

Acknowledgements. This work was partially supported by National Natural Science
Foundation of China (61573363), and the Fundamental Research Funds for the Central
Universities and the Research Funds of Renmin University of China (15XNLQ01).
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Abstract. Active learning is an effective method to reduce the learn-
ing time, space and economic costs in the whole training procedure. It
aims to select more informative points from the unlabeled data pool,
label them and add them into the training set, which helps to improve
the performance of learning models. Learning models and active learning
strategies are two essential elements in the framework of active learning.
Probabilistic models such as Gaussian processes are often used as learn-
ing models for active learning, which have achieved promising results
attributed to their predictive uncertainty. In order to well model complex
data and characterize uncertainty, we employ deep Gaussian processes
(DGPs) as learning models, based on which active learning strategies
are made. Specifically, we design appropriate active learning strategies
based on DGPs for solving binary and multi-class classification tasks,
respectively. The experiments on educational and non-educational text
classification and handwritten digit recognition demonstrate the effec-
tiveness of the proposed active learning methods.

Keywords: Active learning · Probabilistic model
Deep Gaussian processes · Predictive uncertainty

1 Introduction

Enough labeled data as training set are often required in many supervised
machine learning applications such as text classification and image recognition,
which will cost lots of labor. Active learning provides an effective framework,
under which learning models can learn from small amounts of data, select infor-
mative points, label them and add them into the training set. Active learning
is an iterative process, and it hopes that the performance of the learning model
will be better and better through this process. Therefore, the ability of learning
models and the rationality of active learning selection strategies are the keys to
determine the effect of the whole active learning.

Some existing active learning methods have proved to be useful for machine
learning classification problems. The selection strategies are usually developed
by considering the characters of learning models. The support vector machine
c© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11303, pp. 473–483, 2018.
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(SVM) and Gaussian processes (GPs) are the representatives of the deterministic
and probabilistic models, respectively, on which some active learning methods
have been developed. Specifically, for SVMs, the classification results and mar-
gin information are employed for active learning where the points nearest to
the interface are selected [1–3]. For GPs, the prediction results and predictive
uncertainty from GPs are employed for active learning where the points nearest
to the interface and the points with the lowest predictive confidence are selected
[2,4–7]. Besides predictions of learners, the manifold information [2] and spatial
properties [8] of the unlabeled data have also been exploited for active learning.

In the literatures, active learning based on probability models obtained more
encouraging results than that based on deterministic models since probabilistic
models provide the uncertainty of prediction as a part of the inference process
[9–11]. The GP is one of the most famous probabilistic models, which provides an
effective Bayesian method for solving nonlinear regression and classification tasks
[12–15]. In order to improve the ability of modeling the data with complicated
structures, deep Gaussian processes (DGPs) as a kind of deep probabilistic mod-
els have been proposed, and are empirically demonstrated to be more powerful
than GPs. For learning DGPs more accurately and efficiently, various inference
methods have been developed [16–19]. Therefore, active learning methods with
DGPs are expected to be feasible and effective. On one hand, unsupervised DGPs
have the ability of extracting features, which will help active learning to obtain
extra information from the unlabeled data. On the other hand, the supervised
DGPs may have better classification performance for complex data, which will
help active learning to obtain more accurate discriminative information.

In this paper, we propose appropriate active learning methods by employ-
ing the advantages of DGPs. Specifically, we design active learning strategies
fitting well in DGPs for solving binary and multi-class classification problems,
respectively. In the proposed methods, information from the DGPs such as the
distances from points to the interface, the predictive confidence and the entropy
are reasonably used. In addition, we employ the characteristic of the unlabeled
data by using an unsupervised DGP to extract features. The experiments for
educational text classification and handwritten digit recognition show promising
results, and provide inspiration for further research of active learning.

2 DGPs as Learning Models

2.1 Gaussian Processes

The GP supposes that any finite collection of random variables still subjects to
a Gaussian distribution [12]. It models the mapping from inputs to outputs as
a GP with the mean function and covariance function. Suppose that the data
points {xn, yn}Nn=1 constitute a training set D. The output yn is assumed to
be generated from the corresponding latent function f(xn) with an independent
Gaussian noise, i.e., yn = f(xn)+εn, εn ∼ N (0, δ2nI), and the latent function is a
GP, f(x) ∼ GP(0, k(x,x′)), which captures the dependency and characteristics
of data. The covariance function k(x,x′) is the key to characterize the mapping
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from inputs to outputs. For example, the automatic relevance determination
(ARD) kernel function k(xi,xj) = σ2

fe− 1
2

∑Q
q=1 wq(xi,q−xj,q)

2
with kernel param-

eters θ = {σ2
f , w1, ...wQ} can characterize the effect of input data from different

dimensions on outputs, which is often employed to construct the covariance
matrix. Figure 1(a) shows the graphical model of a GP.

y1 y2 yN

f1 f2 fN

x1 x2 xN

(a) GP

X h1

u1

h2

u2 uL

y

(b) L-layer DGP

Fig. 1. (a) shows the graphical model of a GP with N training points. (b) shows the
graphical model of an L-layer DGP, where {ui}Li=1 are the inducing points.

Given the GP assumption for the training data, the model can be learned by
maximizing the marginal likelihood p(y|X). Then the prediction distribution of
a new point x∗ can further be derived as p(f∗|X,y,x∗) = N (μ∗,Σ∗

f ) with

μ∗ = k(x∗,X)T (K(X,X) + δ2nI)
−1y,

Σ∗
f = k(x∗,x∗) − k(x∗,X)(K(X,X) + δ2nI)

−1k(X,x∗). (1)

2.2 Deep Gaussian Processes

The DGP makes the GP deeper by adding more latent layers {hl}L−1
l=1 , each of

which acts as the output of the above layer and the input of the next layer,

p(y|hL−1) = N (hL−1, δ
2
nI),

p(hl|hl−1) = GP(hl;0, k(hl−1,h′
l−1)), l = 2, ..., L − 1,

p(h1|X) = GP(h1;0, k(x,x′)). (2)

DGPs often introduce inducing variables ul with inducing locations zl1 to release
the burden of computation. Figure 1(b) shows the graphical model of an L-layer
DGP with inducing points.

By introducing inducing points in DGPs, several approximate inference meth-
ods for DGPs were developed, such as variational inference and expectation
propagation (EP). The EP employs q(u) ∝ p(u)

∏N
n=1 t̃n(u) to approximate true

1 zl will be omitted in our paper to simplify the notation.



476 J. Fei et al.

posterior and {t̃n(u)}Nn=1 are the approximate data factors. In EP, approximate
marginal likelihood can be expressed as

log p(y|Θ) ≈ F(Θ) = φ(θ) − φ(θprior) +
∑N

n=1
log Z̃n, (3)

where log Z̃n = log Zn +φ(θ\n)−φ(θ), and Θ denotes all the model parameters.
φ is the log normalizer of a Gaussian distribution. θ, θ\n and θprior are the
natural parameters of the distributions q(u), q\n(u)2 and p(u), respectively, and
Zn =

∫
p(yn|u,Xn)q\n(u)du. Furthermore, EP stores all the approximate data

factors, which costs O(NLM2) memory.
To reduce the expensive memory of EP, the stochastic approximate EP (SEP)

[20] assumes that all the data factors are tied and uses q(u) ∝ p(u)g(u)N to
approximate p(u|X,y) where g(u) can be seen as an average data factor. In prac-
tice, SEP was found to perform almost as well as full EP while largely reducing
EP’s memory from O(NLM2) to O(LM2). The SEP approximate method uses
the following energy function as the objective likelihood,

F(Θ) = (1 − N)φ(θ) + Nφ(θ\1) − φ(θprior) +
∑N

n=1
log Zn, (4)

where θ, θ\1 and θprior are the natural parameters of the distributions
q(u), q\1(u)3 and p(u), respectively, and Zn =

∫
p(yn|u,Xn)q\1(u)du. The SEP

can make DGP scalable, in which the propagation and moment-matching pro-
cess consumes O(NLM2) time complexity for all data points. The last term of
the objective function (4) is the sum of {log Zn}Nn=1, which allows using stochas-
tic optimization and decreases the computational complexity substantially to
O(NbLM2) where Nb denotes the mini-batch size. With the approximate pos-
terior distribution optimized, the prediction distribution for a new point x∗ can
be expressed as

p(y∗|x∗,X,y) �
∫

p(y∗|x∗,u)q(u|X,y)du. (5)

Remarks. On one hand, variables X in the DGP can be either observed which
makes the DGP a supervised model, or unobserved which makes the DGP a
unsupervised model. Particularly for the unsupervised DGP, the observed vari-
able y represents observations with original features, and the latent variable X
is to be learned. Unsupervised DGPs can be used to extract abstract features
from unlabeled data. On the other hand, the likelihood of output y conditional
on f , i.e., p(y|f) can be various, which will be suitable for different tasks. We
will introduce the specific likelihood for dealing with the binary classification
and multi-class classification problems.

2 The q\n(u) is the variational cavity distribution of u and q\n(u) = q(u)/t̃n(u).
3 The q\1(u) is the variational cavity distribution of u and q\1(u) = q(u)/g(u)..
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2.3 Deep Gaussian Process Classification

Binary Classification. As GP regression model has the ability of handling
binary classification tasks, we directly use the DGP regression model for binary
classification. Particularly, in the DGP regression model, the prediction distribu-
tion p(y∗|x∗,X,y) is non-Gaussian, and we use the sign of E(y∗) as the prediction
label, where E(y∗) = argmax p(y∗|x∗,X,y).

Multi-class Classification. For multi-class classification, the vector of latent
function values at the ith point for all C classes is introduced, fi = (f1

i , ..., fC
i ).

Then a softmax can be used to express p(yi|fi), that is,

p(yi = c|fi) = exp(fc
i )/

∑

c′ exp(fc′
i ). (6)

After deriving the prediction distribution for f∗c which is defined as
p(f∗c|x∗,X,y), we use a softmax mapping on the expectation of p(f∗c|x∗,X,y)
referred to as E(f∗c) to calculate the probability of prediction labels.

p(y∗ = c|f∗) = exp(E(f∗c))/
∑

c′ exp(E(f∗c′
)). (7)

3 Active Learning Methods with DGPs

3.1 Active Learning Strategies for Binary Classification

For GP binary classification, minimizing the ratio of absolute prediction mean
and prediction variance is an effective strategy. This is equivalent to selecting the
most uncertain point for the current classifier, where the cumulative distribution
value of the point belonging to one class should be nearest to 0.5, i.e., p(y∗ ≥
0) → 0.5. For DGPs, inspired by the same idea, we design the following specific
selection criterion,

x̂ = argminx∗ |m(x∗)|/
√

σ(x∗), (8)

where m(x∗) represents the prediction mean and σ(x∗) represents the prediction
variance. Note that the difference between DGPs and GPs is that the prediction
distribution of DGPs is non-Gaussian. However in DGPs, the prediction mean
and variance can still be calculated. This criterion is rational as it chooses the
points that are nearest to the interface and have lowest predictive confidence.
This criterion combines the information from prediction mean and prediction
variance, which is referred to as DGP-MeanVar.

3.2 Active Learning Strategies for Multi-class Classification

Max entropy and max variation-ratio are two commonly used strategies for multi-
class active learning selection. For our DGP learning models, they are expressed
as two detailed selection criteria.
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1. Choose the points that maximize the predictive entropy (max entropy), that
is, x̂ = argmaxx∗H(y∗|x∗,D) with

H(y∗|x∗,D) = −
∑

c
p(y∗ = c|x∗,D) log p(y∗ = c|x∗,D). (9)

This criterion is defined as DGP-Entropy.
2. Choose the points that maximize the variation ratios (max variation-ratio),

that is, x̂ = argmaxx∗ variation − ratio[x∗], with

variation − ratio[x∗] = 1 − max
y∗ p(y∗|x∗,D). (10)

This criterion is defined as DGP-VarRatio.

3.3 Constructing Additional Features Using Unlabeled Data
by DGP

As introduced in Sect. 2, the DGP can be used as unsupervised methods. In the
framework of active learning, there are large amounts of unlabeled data. We use
the unsupervised DGP to extract features from unlabeled data. In this case,
the unobserved variable X in the DGP is to be integrated out, and the posterior
distribution of X is to be inferred. The DGP can be trained through maximizing
the marginal distribution of observations p(Y ), in which the approximate poste-
rior distribution of hidden layer variables p(hl|X,Y ) can be optimized. As latent
layers in DGPs express abstract features of complex data, we use the expecta-
tion of approximate posterior distribution for top hidden layer variables X as
additional features, and splice them with original features Y to form new fea-
tures. For active learning, we use a DGP classifier as learning models on newly
constructed features and employ the corresponding active learning strategies.
We refer this learning model as DGPfea.

4 Experiments

We conduct experiments on two different classification tasks to demonstrate the
effectiveness of active learning methods based on DGPs. One is educational and
non-educational text classification which is a binary classification, and the other
is handwritten digit recognition which is a multi-class classification.

4.1 Data Description

We evaluate our methods on two datasets, educational text and handwritten
digit data. The educational text data are collected from the Internet and labeled
manually. After some conventional text processing like word stemmer, stop word
removal and phases segments on the original text, the word2vec4 is employed to
4 Word2vec is an efficient tool for Google to represent the words as real value vectors.

The python program can be achieved using the gensim toolkit.



Active Learning Methods with Deep Gaussian Processes 479

represent words as continuous vectors. The resulting text data are composed of
2663 instances with each one having 50 attributes. The handwritten digit data
is a public dataset called USPS, which includes 10 (0–9) digits. We conduct
experiments on 2007 instances with each one having 256 attributes.
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(a) Accuracy on educational dataset
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(b) NLL on educational dataset
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(c) Accuracy on USPS dataset
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(d) NLL on USPS dataset

Fig. 2. (a) and (b) show the average accuracy and NLL on educational dataset, respec-
tively. (c) and (d) show the average accuracy and NLL on USPS dataset, respectively.
“NLL” is short for “Negative Log Likelihood”.

4.2 Experimental Settings

We compare the proposed DGP based methods with GP based methods. The
random selection counterpart for GP recorded as GP-R and DGP recorded as
DGP-R are used as baselines. For text binary classification, we randomly select
50 points as initial labeled training set and leave 666 (a quarter of the entire
data) as test data. We select 25 points to label them each time and go on for
ten times. For handwritten digit recognition, we randomly select 300 points as
initial labeled training set and leave 1007 as test data. We select 30 points to
label them each time, and go on for ten times. All the experiments are repeated
for five times, and all the reported results are the average values.
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Table 1. Average results with the standard derivation on educational dataset. The
above is the average accuracy. The below is the average negative log likelihood.

Points GP-R GP-MeanVar DGP-R DGP-MeanVar DGPfea-R DGPfea-MeanVar

50 87.76 ± 0.72 87.76 ± 0.72 88.89 ± 0.87 88.89 ± 0.87 89.32 ± 1.28 89.32 ± 1.28

100 88.93 ± 0.85 88.99 ± 0.65 89.50 ± 1.36 91.73 ± 1.52 90.17 ± 0.63 92.00 ± 1.17

150 89.87 ± 0.62 89.93 ± 1.28 90.88 ± 1.79 92.87 ± 0.77 91.22 ± 0.99 93.14 ±1.27

200 90.42 ± 0.22 91.73 ± 1.59 91.63 ± 1.29 93.99 ± 1.00 91.40 ± 0.99 93.81 ± 0.61

250 90.85 ± 0.61 92.33 ± 1.09 91.78 ± 1.39 94.14 ± 0.43 91.72 ± 1.01 94.35 ±0.66

300 91.68 ± 1.04 92.82 ± 1.07 91.95 ± 1.15 94.37 ± 0.47 91.96 ± 0.88 94.51 ± 0.65

50 −1.13 ± 0.16−1.13 ± 0.16 −0.85 ± 0.06 −0.85 ± 0.06 −0.82 ± 0.09 −0.82 ± 0.09

100 −1.05 ± 0.05 −1.01 ± 0.09 −0.98 ± 0.11 −1.03 ± 0.05 −1.03 ± 0.27 −1.11 ± 0.47

150 −0.88 ± 0.08 −0.88 ± 0.08 −0.92 ± 0.23 −1.17 ± 0.07 −1.14 ± 0.39 −1.20 ± 0.57

200 −0.76 ± 0.03 −0.88 ± 0.05 −1.01 ± 0.53 −1.22 ± 0.07 −1.12 ± 0.45 −1.27 ± 0.62

250 −0.69 ± 0.02 −0.86 ± 0.05 −1.16 ± 0.58 −1.25 ± 0.05 −1.34 ± 0.66 −1.36 ± 0.56

300 −0.64 ± 0.05 −0.86 ± 0.03 −1.10 ± 0.58 −1.29 ± 0.06 −1.30 ± 0.59 −1.43 ± 0.40

4.3 Results for Educational and Non-educational Text Classification

Figure 2(a) shows the trend of average accuracy for educational and non-
educational text classification. The DGPfea-MeanVar which uses the additional
abstract features performs best on the whole, because additional features pro-
vide more comprehensive and abundant information for training. When using
the random selection strategy, methods based on DGPs including DGPfea-R and
DGP-R obtain better performance than methods based on GPs, (i.e., GP-R).
Similarly, when employing the strategy combined with prediction mean and vari-
ance, methods based on DGPs including DGPfea-MeanVar and DGP-MeanVar
outperform that based on GPs, (i.e., GP-MeanVar). In a word, using DGPs
as learning models are better than using GPs. The reasons are listed. First,
DGPs can automatically construct complex and flexible kernels that work well
for real-world datasets. Second, the mapping from inputs to outputs of the DGP
is non-Gaussian, which is a more general modeling choice. The learning strat-
egy based on prediction mean and variance is better than the random selection
strategy as the former can select uncertain points. In addition, as the number
of selected points increases, the average accuracy of the classification becomes
higher. When the number of selected points is relatively large, such as 300, the
classification accuracy converges. Figure 2(b) shows the trend of average nega-
tive log likelihood (NLL) on educational dataset. The lower NLL of DGPs over
GPs shows a better fitting result, which is own to the deep structure of DGPs
and rational active learning strategies based on them. We also list the detailed
average values with the standard deviation in Table 1. The best experimental
results are in bold, all of which are obtained by DGPs.

4.4 Results for Handwritten Digit Recognition

Figure 2(c) shows the trend of average accuracy for handwritten digit recognition.
We omit the results of the methods, which directly use DGPs as learning models
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Table 2. Average results with the standard derivation on USPS dataset. The above is
the average accuracy. The below is the average negative log likelihood.

Points GP-R GP-Entropy GP-VarRatio DGPfea-R DGPfea-Entropy DGPfea-VarRatio

300 82.67± 0.78 82.67± 0.78 82.67± 0.78 84.77 ± 0.64 84.77 ± 0.64 84.77 ± 0.64

360 83.57± 1.65 85.31± 1.81 85.63± 1.48 84.66± 0.58 87.42 ± 0.64 86.96± 0.91

450 85.48± 0.80 87.85± 1.29 88.11± 0.38 87.99± 0.80 89.13± 0.96 89.19 ± 1.52

510 86.47± 1.25 88.58± 0.87 88.92± 1.40 88.84± 1.13 89.54± 0.57 89.73 ± 0.67

600 87.93± 1.06 88.82± 1.17 90.02± 0.57 90.05± 0.64 91.07± 0.97 91.10 ± 1.09

300 0.72± 0.01 0.72± 0.01 0.72± 0.02 0.67 ± 0.10 0.67 ± 0.10 0.67 ± 0.10

360 0.65± 0.02 0.66± 0.02 0.65± 0.02 0.60± 0.04 0.54 ± 0.02 0.57± 0.06

450 0.58± 0.02 0.58± 0.02 0.56± 0.01 0.51± 0.04 0.54± 0.11 0.49 ± 0.02

510 0.56± 0.03 0.55± 0.02 0.55± 0.01 0.48± 0.04 0.48± 0.04 0.47 ± 0.02

600 0.50± 0.01 0.50± 0.02 0.49± 0.01 0.44± 0.03 0.42± 0.03 0.42 ± 0.02

since they got bad performance. We suspect that the current DGP multi-class
classifiers with softmax are not suitable for small amount of complex data, and
we will improve the classifiers in the future work. Figure 2(d) shows the trend
of average NLL on USPS dataset. The NLL of DGPs is lower than that of GPs.
This fits the fact that the model will be more flexible with a deeper structure and
additional feature extraction. Seen from the Fig. 2(c) and (d), DGPfea-VarRatio
performs best on the whole. The methods with DGPfea as learning models using
additional features are better than those using original features. This might be
because the extracted features obtained by using additional unlabeled data give
better representations for the complex data. Additionally, the methods with
strategies of maximizing VarRatio are better than those of maximizing entropy.
Table 2 shows the detailed average value with the standard deviation for multi-
class classification tasks.

5 Conclusion

In this paper, we proposed active learning methods based on DGPs to solve
binary and multi-class classification. We evaluated our methods through experi-
ments on educational text classification and handwritten digit recognition. The
promising results have demonstrated the effectiveness of the proposed methods.
The experimental results also point the potential of DGPs for active learning on
complex data. Particularly, the ability of DGPs to construct abstract features
will help active learning to employ information from unlabeled data. In the future
work, we will study a good combination of unsupervised DGP and supervised
DGP for active learning, which may lead to more performance improvements.
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Abstract. For many text classification tasks, there is a major problem
posed by the lack of labeled data in a target domain. Although clas-
sifiers for a target domain can be trained on labeled text data from a
related source domain, the accuracy of such classifiers is usually lower in
the cross-domain setting. Recently, string kernels have obtained state-
of-the-art results in various text classification tasks such as native lan-
guage identification or automatic essay scoring. Moreover, classifiers
based on string kernels have been found to be robust to the distribu-
tion gap between different domains. In this paper, we formally describe
an algorithm composed of two simple yet effective transductive learn-
ing approaches to further improve the results of string kernels in cross-
domain settings. By adapting string kernels to the test set without using
the ground-truth test labels, we report significantly better accuracy rates
in cross-domain English polarity classification.

Keywords: Transductive learning · Domain adaptation
Cross-domain classification · String kernels · Sentiment analysis
Polarity classification

1 Introduction

Domain shift is a fundamental problem in machine learning, that has attracted
a lot of attention in the natural language processing and vision communi-
ties [2,6,11,13,29,30,32,37,39,40,42]. To understand and address this problem,
generated by the lack of labeled data in a target domain, researchers have stud-
ied the behavior of machine learning methods in cross-domain settings [12,13,29]
and came up with various domain adaptation techniques [6,11,28,39]. In cross-
domain classification, a classifier is trained on data from a source domain and
tested on data from a (different) target domain. The accuracy of machine learn-
ing methods is usually lower in the cross-domain setting, due to the distribution
gap between different domains. However, researchers proposed several domain
adaptation techniques by using the unlabeled test data to obtain better per-
formance [5,14,16,25,37]. Interestingly, some recent works [13,18] indicate that
string kernels can yield robust results in the cross-domain setting without any
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domain adaptation. In fact, methods based on string kernels have demonstrated
impressive results in various text classification tasks ranging from native lan-
guage identification [22–24,36] and authorship identification [34] to dialect iden-
tification [4,18,21], sentiment analysis [13,35] and automatic essay scoring [7].
As long as a labeled training set is available, string kernels can reach state-of-the-
art results in various languages including English [7,13,23], Arabic [4,17,18,24],
Chinese [35] and Norwegian [24]. Different from all these recent approaches, we
use unlabeled data from the test set in a transductive setting in order to signif-
icantly increase the performance of string kernels. In our recent work [19], we
proposed two transductive learning approaches combined into a unified frame-
work that improves the results of string kernels in two different tasks. In this
paper, we provide a formal and detailed description of our transductive algorithm
and present results in cross-domain English polarity classification.

The paper is organized as follows. Related work on cross-domain text clas-
sification and string kernels is presented in Sect. 2. Section 3 presents our app-
roach to obtain domain adapted string kernels. The transductive transfer learn-
ing method is described in Sect. 4. The polarity classification experiments are
presented in Sect. 5. Finally, we draw conclusions and discuss future work in
Sect. 6.

2 Related Work

2.1 Cross-Domain Classification

Transfer learning (or domain adaptation) aims at building effective classifiers
for a target domain when the only available labeled training data belongs to a
different (source) domain. Domain adaptation techniques can be roughly divided
into graph-based methods [6,31–33], probabilistic models [30,42], knowledge-
based models [3,12,16] and joint optimization frameworks [28]. The transfer
learning methods from the literature show promising results in a variety of real-
world applications, such as image classification [28], text classification [14,25,42],
polarity classification [11,30–33] and others [8].

General Transfer Learning Approaches. Long et al. [28] proposed a novel
transfer learning framework to model distribution adaptation and label prop-
agation in a unified way, based on the structural risk minimization principle
and the regularization theory. Shu et al. [39] proposed a method that bridges
the distribution gap between the source domain and the target domain through
affinity learning, by exploiting the existence of a subset of data points in the
target domain that are distributed similarly to the data points in the source
domain. In [37], deep learning is employed to jointly optimize the representa-
tion, the cross-domain transformation and the target label inference in an end-
to-end fashion. More recently, Sun et al. [40] proposed an unsupervised domain
adaptation method that minimizes the domain shift by aligning the second-order
statistics of source and target distributions, without requiring any target labels.
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Chang et al. [6] proposed a framework based on using a parallel corpus to cal-
ibrate domain-specific kernels into a unified kernel for leveraging graph-based
label propagation between domains.

Cross-Domain Text Classification. Joachims [25] introduced the Transduc-
tive Support Vector Machines (TSVM) framework for text classification, which
takes into account a particular test set and tries to minimize the error rate for
those particular test samples. Ifrim et al. [16] presented a transductive learning
approach for text classification based on combining latent variable models for
decomposing the topic-word space into topic-concept and concept-word spaces,
and explicit knowledge models with named concepts for populating latent vari-
ables. Guo et al. [14] proposed a transductive subspace representation learn-
ing method to address domain adaptation for cross-lingual text classification.
Zhuang et al. [42] presented a probabilistic model, by which both the shared
and distinct concepts in different domains can be learned by the Expectation-
Maximization process which optimizes the data likelihood. In [1], an algorithm
to adapt a classification model by iteratively learning domain-specific features
from the unlabeled test data is described.

Cross-Domain Polarity Classification. In recent years, cross-domain sen-
timent (polarity) classification has gained popularity due to the advances in
domain adaptation on one side, and to the abundance of documents from var-
ious domains available on the Web, expressing positive or negative opinion, on
the other side. Some of the general domain adaptation frameworks have been
applied to polarity classification [1,6,42], but there are some approaches that
have been specifically designed for the cross-domain sentiment classification
task [2,11–13,26,30–33]. To the best of our knowledge, Blitzer et al. [2] were
the first to report results on cross-domain classification proposing the structural
correspondence learning (SCL) method, and its variant based on mutual infor-
mation (SCL-MI). Pan et al. [32] proposed a spectral feature alignment (SFA)
algorithm to align domain-specific words from different domains into unified
clusters, using domain-independent words as a bridge. Bollegala et al. [3] used a
cross-domain lexicon creation to generate a sentiment-sensitive thesaurus (SST)
that groups different words expressing the same sentiment, using unigram and
bigram features as [2,32]. Luo et al. [30] proposed a cross-domain sentiment
classification framework based on a probabilistic model of the author’s emotion
state when writing. An Expectation-Maximization algorithm is then employed
to solve the maximum likelihood problem and to obtain a latent emotion dis-
tribution of the author. Franco-Salvador et al. [12] combined various recent and
knowledge-based approaches using a meta-learning scheme (KE-Meta). They
performed cross-domain polarity classification without employing any domain
adaptation technique. More recently, Fernández et al. [11] introduced the Distri-
butional Correspondence Indexing (DCI) method for domain adaptation in sen-
timent classification. The approach builds term representations in a vector space
common to both domains where each dimension reflects its distributional corre-
spondence to a highly predictive term that behaves similarly across domains. A
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graph-based approach for sentiment classification that models the relatedness of
different domains based on shared users and keywords is proposed in [31].

2.2 String Kernels

In recent years, methods based on string kernels have demonstrated remarkable
performance in various text classification tasks [7,10,13,18,23,27,34]. String ker-
nels represent a way of using information at the character level by measuring
the similarity of strings through character n-grams. Lodhi et al. [27] used string
kernels for document categorization, obtaining very good results. String ker-
nels were also successfully used in authorship identification [34]. More recently,
various combinations of string kernels reached state-of-the-art accuracy rates in
native language identification [23] and Arabic dialect identification [18]. Interest-
ingly, string kernels have been used in cross-domain settings without any domain
adaptation, obtaining impressive results. For instance, Ionescu et al. [23] have
employed string kernels in a cross-corpus (and implicitly cross-domain) native
language identification experiment, improving the state-of-the-art accuracy by a
remarkable 32.3%. Giménez-Pérez et al. [13] have used string kernels for single-
source and multi-source polarity classification. Remarkably, they obtain state-
of-the-art performance without using knowledge from the target domain, which
indicates that string kernels provide robust results in the cross-domain setting
without any domain adaptation. Ionescu et al. [18] obtained the best perfor-
mance in the Arabic Dialect Identification Shared Task of the 2017 VarDial
Evaluation Campaign [41], with an improvement of 4.6% over the second-best
method. It is important to note that the training and the test speech samples
prepared for the shared task were recorded in different setups [41], or in other
words, the training and the test sets are drawn from different distributions. Dif-
ferent from all these recent approaches [13,18,23], we use unlabeled data from
the target domain to significantly increase the performance of string kernels in
cross-domain text classification, particularly in English polarity classification.

3 Transductive String Kernels

String Kernels. Kernel functions [38] capture the intuitive notion of similarity
between objects in a specific domain. For example, in text mining, string kernels
can be used to measure the pairwise similarity between text samples, simply
based on character n-grams. Various string kernel functions have been proposed
to date [23,27,38]. Perhaps one of the most recently introduced string kernels is
the histogram intersection string kernel [23]. For two strings over an alphabet
Σ, x, y ∈ Σ∗, the intersection string kernel is formally defined as follows:

k∩(x, y) =
∑

v∈Σp

min{numv(x),numv(y)}, (1)

where numv(x) is the number of occurrences of n-gram v as a substring in x,
and p is the length of v. The spectrum string kernel or the presence bits string
kernel can be defined in a similar fashion [23].
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Transductive String kernels. We present a simple and straightforward app-
roach to produce a transductive similarity measure suitable for strings. We take
the following steps to derive transductive string kernels. For a given kernel (sim-
ilarity) function k, we first build the full kernel matrix K, by including the
pairwise similarities of samples from both the train and the test sets. For a
training set X = {x1, x2, ..., xm} of m samples and a test set Y = {y1, y2, ..., yn}
of n samples, such that X ∩ Y = ∅, each component in the full kernel matrix is
defined as follows:

Kij = k(zi, zj), (2)

where zi and zj are samples from the set Z = X ∪ Y =
{x1, x2, ..., xm, y1, y2, ..., yn}, for all 1 ≤ i, j ≤ m + n. We then normalize the
kernel matrix by dividing each component by the square root of the product of
the two corresponding diagonal components:

K̂ij =
Kij√

Kii · Kjj

. (3)

We transform the normalized kernel matrix into a radial basis function (RBF)
kernel matrix as follows:

K̃ij = exp
(
−1 + K̂ij

)
. (4)

Each row in the RBF kernel matrix K̃ is now interpreted as a feature vector. In
other words, each sample zi is represented by a feature vector that contains the
similarity between the respective sample zi and all the samples in Z. Since Z
includes the test samples as well, the feature vector is inherently adapted to the
test set. Indeed, it is easy to see that the features will be different if we choose to
apply the string kernel approach on a set of test samples Y ′, such that Y ′ �= Y .
It is important to note that through the features, the subsequent classifier will
have some information about the test samples at training time. More specifically,
the feature vector conveys information about how similar is every test sample
to every training sample. We next consider the linear kernel, which is given by
the scalar product between the new feature vectors. To obtain the final linear
kernel matrix, we simply need to compute the product between the RBF kernel
matrix and its transpose:

K̈ = K̃ · K̃ ′. (5)

In this way, the samples from the test set, which are included in Z, are used
to obtain new (transductive) string kernels that are adapted to the test set at
hand.

4 Transductive Kernel Classifier

We next present a simple yet effective approach for adapting a one-versus-all
kernel classifier trained on a source domain to a different target domain. Our
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Algorithm 1: Transductive Kernel Algorithm
1 Input:
2 X = (X, T ) = {(xi, ti) | xi ∈ R

q, ti ∈ {1, 2, ..., c}, i ∈ {1, 2, ..., m}} – the training
set of m training samples and associated class labels;

3 Y = {yi | yi ∈ R
q, i ∈ {1, 2, ..., n}} – the set of n test samples;

4 k – a kernel function;
5 r – the number of test samples to be added in the second round of training;
6 C – a binary kernel classifier.

7 Domain-Adapted Kernel Matrix Computation Steps:
8 Z ← {x1, x2, ..., xm, y1, y2, ..., yn};

9 K ← 0m+n; K̂ ← 0m+n; K̃ ← 0m+n; K̈ ← 0m+n;
10 for zi ∈ Z do
11 for zj ∈ Z do
12 Kij ← k(zi, zj);

13 for i ∈ {1, 2, ..., m + n} do
14 for j ∈ {1, 2, ..., m + n} do

15 K̂ij ← Kij√
Kii·Kjj

;

16 K̃ij ← exp
(
−1 + K̂ij

)
;

17 K̈ = K̃ · K̃′;

18 Transductive Kernel Classifier Steps:
19 TOV A ← 2 · 1c(T, :) − 1;
20 itrain ← 1 : m;
21 itest ← m + 1 : m + n;
22 for s ∈ {1, 2} do

23 K̈train ← K̈(itrain, itrain);

24 K̈test ← K̈(itest, itrain);
25 SOV A ← 0n,c;
26 for i ∈ {1, 2, ..., c} do

27 (α, b) ← the dual weights of C trained on K̈train with the labels
TOV A(:, i);

28 SOV A(:, i) ← K̈test · α + b;

29 P ← 0n,1; S ← 0n,1;
30 for i ∈ {1, 2, ..., n} do
31 Pi ← argmax(SOV A(i, :));
32 Si ← max(SOV A(i, :));

33 if s = 1 then
34 isort ← sort S in descending order and return the sorted indexes;
35 ikeep ← isort(1 : r);
36 Pkeep ← P (ikeep);
37 T ← T ∪ Pkeep;
38 TOV A ← 2 · 1c(T, :) − 1;
39 itrain ← itrain ∪ itest(ikeep);

40 Output:
41 P = {pi | pi ∈ {1, 2, ..., c}, i ∈ {1, 2, ..., n}} – the set of predicted labels for the

test samples in Y .
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transductive kernel classifier (TKC) approach is composed of two learning iter-
ations. Our entire framework is formally described in Algorithm 1.

Notations. We use the following notations in the algorithm. Sets, arrays and
matrices are written in capital letters. All collection types are considered to be
indexed starting from position 1. The elements of a set S are denoted by si, the
elements of an array A are alternatively denoted by A(i) or Ai, and the elements
of a matrix M are denoted by M(i, j) or Mij when convenient. The sequence
1, 2, ..., n is denoted by 1 : n. We use sequences to index arrays or matrices as
well. For example, for an array A and two integers i and j, A(i : j) denotes
the sub-array (Ai, Ai+1, ..., Aj). In a similar manner, M(i : j, k : l) denotes a
sub-matrix of the matrix M , while M(i, :) returns the i-th row of M and M(:, j)
returns the j-th column of M. The zero matrix of m × n components is denoted
by 0m,n, and the square zero matrix is denoted by 0n. The identity matrix is
denoted by 1n.

Algorithm Description. In steps 8–17, we compute the domain-adapted string
kernel matrix, as described in the previous section. In the first learning iteration
(when s = 1), we train several classifiers to distinguish each individual class from
the rest, according to the one-versus-all (OVA) scheme. In step 27, the kernel
classifier C is trained to distinguish a class from the others, assigning a dual
weight to each training sample from the source domain. The returned column
vector of dual weights is denoted by α and the bias value is denoted by b. The
vector of weights α contains m values, such that the weight αi corresponds to the
training sample xi. When the test kernel matrix K̈test of n × m components is
multiplied with the vector α in step 28, the result is a column vector of n positive
or negative scores. Afterwards (step 34), the test samples are sorted in order to
maximize the probability of correctly predicted labels. For each test sample yi,
we consider the score Si (step 32) produced by the classifier for the chosen class
Pi (step 31), which is selected according to the OVA scheme. The sorting is
based on the hypothesis that if the classifier associates a higher score to a test
sample, it means that the classifier is more confident about the predicted label
for the respective test sample. Before the second learning iteration, a number of
r test samples from the top of the sorted list are added to the training set (steps
35-39) for another round of training. As the classifier is more confident about the
predicted labels Pkeep of the added test samples, the chance of including noisy
examples (with wrong labels) is minimized. On the other hand, the classifier
has the opportunity to learn some useful domain-specific patterns of the test
domain. We believe that, at least in the cross-domain setting, the added test
samples bring more useful information than noise. We would like to stress out
that the ground-truth test labels are never used in our transductive algorithm.
Although the test samples are required beforehand, their labels are not necessary.
Hence, our approach is suitable in situations where unlabeled data from the
target domain can be collected cheaply, and such situations appear very often
in practice, considering the great amount of data available on the Web.
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5 Polarity Classification

Data Set. For the cross-domain polarity classification experiments, we use the
second version of Multi-Domain Sentiment Dataset [2]. The data set contains
Amazon product reviews of four different domains: Books (B), DVDs (D), Elec-
tronics (E) and Kitchen appliances (K). Reviews contain star ratings (from 1
to 5) which are converted into binary labels as follows: reviews rated with more
than 3 stars are labeled as positive, and those with less than 3 stars as negative.
In each domain, there are 1000 positive and 1000 negative reviews.

Baselines. We compare our approach with several methods [3,12,13,15,32,40]
in two cross-domain settings. Using string kernels, Giménez-Pérez et al. [13]
reported better performance than SST [3] and KE-Meta [12] in the multi-source
domain setting. In addition, we compare our approach with SFA [32], CORAL
[40] and TR-TrAdaBoost [15] in the single-source setting.

Table 1. Multi-source cross-domain polarity classification accuracy rates (in %) of
our transductive approaches versus a state-of-the-art baseline based on string kernels
[13], as well as SST [3] and KE-Meta [12]. The best accuracy rates are highlighted in
bold. The marker * indicates that the performance is significantly better than the best
baseline string kernel according to a paired McNemar’s test performed at a significance
level of 0.01.

Method DEK→B BEK→D BDK→E BDE→K

SST [3] 76.3 78.3 83.9 85.2

KE-Meta [12] 77.9 80.4 78.9 82.5

K0/1 [13] 82.0 81.9 83.6 85.1

K∩ [13] 80.7 80.7 83.0 85.2

K̈0/1 82.9 83.2* 84.8* 86.0*

K̈∩ 82.5 82.9* 84.5* 86.1*

K̈0/1 + TKC 84.1* 84.0* 85.4* 86.9*

K̈∩ + TKC 83.8* 83.5* 85.0* 87.1*

Evaluation Procedure and Parameters. We follow the same evaluation
methodology of Giménez-Pérez et al. [13], to ensure a fair comparison. Further-
more, we use the same kernels, namely the presence bits string kernel (K0/1) and
the intersection string kernel (K∩), and the same range of character n-grams (5–
8). To compute the string kernels, we used the open-source code provided by
Ionescu et al. [20,23]. For the transductive kernel classifier, we select r = 1000
unlabeled test samples to be included in the training set for the second round
of training. We choose Kernel Ridge Regression [38] as classifier and set its reg-
ularization parameter to 10−5 in all our experiments. Although Giménez-Pérez
et al. [13] used a different classifier, namely Kernel Discriminant Analysis, we
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observed that Kernel Ridge Regression produces similar results (±0.1%) when
we employ the same string kernels. As Giménez-Pérez et al. [13], we evaluate
our approach in two cross-domain settings. In the multi-source setting, we train
the models on all domains, except the one used for testing. In the single-source
setting, we train the models on one of the four domains and we independently
test the models on the remaining three domains.

Table 2. Single-source cross-domain polarity classification accuracy rates (in %) of our
transductive approaches versus a state-of-the-art baseline based on string kernels [13],
as well as SFA [32], CORAL [40] and TR-TrAdaBoost [15]. The best accuracy rates are
highlighted in bold. The marker * indicates that the performance is significantly better
than the best baseline string kernel according to a paired McNemar’s test performed
at a significance level of 0.01.

Method D→B E→B K→B B→D E→D K→D

SFA [32] 79.8 78.3 75.2 81.4 77.2 78.5

CORAL [40] 78.3 - - - - 73.9

TR-TrAdaBoost [15] 74.7 69.1 70.6 79.6 71.8 74.4

K0/1 [13] 82.0 72.4 72.7 81.4 74.9 73.6

K∩ [13] 82.1 72.4 72.8 81.3 75.1 72.9

K̈0/1 83.3* 74.5* 74.3* 83.0* 76.9* 74.9*

K̈∩ 83.2* 74.2* 74.0* 82.8* 76.4* 75.1*

K̈0/1 + TKC 84.9* 78.5* 76.6* 84.0* 79.6* 76.4*

K̈∩ + TKC 84.5* 78.5* 75.8* 84.2* 79.1* 76.5*

Method B→E D→E K→E B→K D→K E→K

SFA [32] 73.5 76.7 85.1 79.1 80.8 86.8

CORAL [40] 76.3 - - - - 83.6

TR-TrAdaBoost [15] 74.9 75.9 83.1 77.8 75.7 83.7

K0/1 [13] 71.3 74.4 83.9 74.6 75.4 84.9

K∩ [13] 71.8 74.5 84.4 74.9 75.1 84.9

K̈0/1 74.0* 76.0* 85.4* 77.6* 77.3* 86.0*

K̈∩ 74.2* 75.9* 85.2* 77.6* 77.3* 85.9*

K̈0/1 + TKC 76.6* 77.1* 86.4* 79.6* 80.9* 87.0*

K̈∩ + TKC 76.7* 76.8* 86.4* 79.4* 80.5* 87.0*

Results in Multi-source Setting. The results for the multi-source cross-
domain polarity classification setting are presented in Table 1. Both the transduc-
tive presence bits string kernel (K̈0/1) and the transductive intersection kernel
(K̈∩) obtain better results than their original counterparts. Moreover, accord-
ing to the McNemar’s test [9], the results on the DVDs, the Electronics and
the Kitchen target domains are significantly better than the best baseline string
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kernel, with a confidence level of 0.01. When we employ the transductive kernel
classifier (TKC), we obtain even better results. On all domains, the accuracy
rates yielded by the transductive classifier are more than 1.5% better than the
best baseline. For example, on the Books domain the accuracy of the transduc-
tive classifier based on the presence bits kernel (84.1%) is 2.1% above the best
baseline (82.0%) represented by the intersection string kernel. Remarkably, the
improvements brought by our transductive string kernel approach are statisti-
cally significant in all domains.

Results in Single-Source Setting. The results for the single-source cross-
domain polarity classification setting are presented in Table 2. We considered
all possible combinations of source and target domains in this experiment, and
we improve the results in each and every case. Without exception, the accuracy
rates reached by the transductive string kernels are significantly better than the
best baseline string kernel [13], according to the McNemar’s test performed at
a confidence level of 0.01. The highest improvements (above 2.7%) are obtained
when the source domain contains Books reviews and the target domain contains
Kitchen reviews. As in the multi-source setting, we obtain much better results
when the transductive classifier is employed for the learning task. In all cases,
the accuracy rates of the transductive classifier are more than 2% better than
the best baseline string kernel. Remarkably, in four cases (E→B, E→D, B→K
and D→K) our improvements are greater than 4%. The improvements brought
by our transductive classifier based on string kernels are statistically significant
in each and every case. In comparison with SFA [32], we obtain better results
in all but one case (K→D). Remarkably, we surpass the other state-of-the-art
approaches [15,40] in all cases.

6 Conclusion

In this paper, we presented two domain adaptation approaches that can be used
together to improve the results of string kernels in cross-domain settings. We
provided empirical evidence indicating that our framework can be successfully
applied in cross-domain text classification, particularly in cross-domain English
polarity classification. Indeed, the polarity classification experiments demon-
strate that our framework achieves better accuracy rates than other state-of-
the-art methods [3,12,13,15,32,40]. By using the same parameters across all
the experiments, we showed that our transductive transfer learning framework
can bring significant improvements without having to fine-tune the parameters
for each individual setting. Although the framework described in this paper can
be generally applied to any kernel method, we focused our work only on string
kernel approaches used in text classification. In future work, we aim to combine
the proposed transductive transfer learning framework with different kinds of
kernels and classifiers, and employ it for other cross-domain tasks.
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Abstract. Catastrophic forgetting is a tough issue when the agent faces
the sequential multi-task learning scenario without storing previous task
information. It gradually becomes an obstacle to achieve artificial gen-
eral intelligence which is generally believed to behave like a human with
continuous learning capability. In this paper, we propose to utilize the
variational Bayesian inference method to overcome catastrophic forget-
ting. By pruning the neural network according to the mean and variance
of weights, parameters are vastly reduced, which mitigates the storage
problem of double parameters required in variational Bayesian inference.
Based on this lightweight version, autoencoders trained on different tasks
are employed to self-adaptively match the corresponding task parame-
ters to tackle sequential multi-task learning problem. We show experi-
mentally on several fundamental datasets that the proposed method can
perform substantial improvements without catastrophic forgetting over
other classic methods especially in the setting where the probability dis-
tributions between tasks present more different.

Keywords: Variational Bayesian inference · Pruning · Autoencoder

1 Introduction

As a core component in artificial general intelligence (AGI), lifelong learning [1]
has gradually become an essential skill to address a variety of tasks like a human
being to learn. Traditional learning methods in machine learning community
usually require all task data collected in advance to train the model, while it is
difficult in real-world settings: tasks may not be provided simultaneously. After
learning new tasks, the agent is prone to forget the old ones without accessing
to previous data. This is called catastrophic forgetting in sequential multi-task
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setting where the neural network tends to forget the weights learned in previous
tasks after training on subsequent ones [2], which is a basic challenge to realize
AGI.

The main dilemma that we face is to make the learned model adapt to new
data without forgetting knowledge learned on the previously visited tasks. The
majority of classic solutions for this problem suffer from some disadvantages. For
example, fine-tune [3] behaves obliviousness property for old tasks since it only
uses the optimal settings of old tasks to help initialize and study for the new
tasks. As for feature extraction [4], it gives priority to reuse features obtained
from the old tasks, which will present sub-optimal results for the new tasks.
These methods can not achieve good performances for sequentially given tasks.

Whereas recent advances in machine learning have provided multiple ways
to overcome catastrophic forgetting across a variety of domains [5,6]. Fernando
et al. [7] propose an ensemble of neural networks to recombine different mod-
ules within a single network PathNet to complete different tasks. Serra et al. [8]
employ a task-based hard attention mechanism to preserve previous tasks’ infor-
mation without affecting the current task’s learning. Besides, [5] is the first to
introduce Distillation Networks and fine-tune technique to enable learning with-
out forgetting. According to this basic framework, [9] designs an extra under-
complete autoencoder to preserve the information on which the previous tasks
are mainly relying. These methods, more or less, all need to specify which task
to perform during the test phase, which is to say additional task identifiers have
to be supplied to assign the corresponding parameters for corresponding tasks.
For instance, the last fully-connected layers in [5] have to be indicated manually
for corresponding tasks.

Fortunately, some other algorithms recently have received much attention,
which can perform different tasks without identifiers. Elastic weight consolida-
tion (EWC) [2], an algorithm analogous to synaptic consolidation for artificial
neural networks, is proposed to reduce the plasticity of weights that are vital
to previously learned tasks. It only studies a set of parameters via Fisher infor-
mation to finish all tasks, which is an elegant approach in Bayesian framework
to overcome catastrophic forgetting. Additionally, Lee et al. [10] present the
incremental moment matching (IMM) to incrementally match the moment of
Gaussian posterior distribution of different tasks in Bayesian neural networks.
Nevertheless, these kind of approaches only achieve good performances on simi-
lar tasks. When the difference between task distributions becomes more larger,
they are prone to forget more information about previously learned tasks.

In this paper, our motivation is to address catastrophic forgetting problem in
a more realistic scenario where the gap between given tasks behaves more larger
than traditional settings. For this end, a Bayesian framework is presented to
remember the posterior distributions of different tasks, which actually is equiv-
alent to an ensemble of different neural networks [11]. Meanwhile, variational
inference method is introduced to approximate the posterior distributions so
that each task could be trained to their optimal values. To be more specific, bot-
tom layers near to the input are shared to catch common features between tasks,
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while top layers near to the output are trained individually for personalized solu-
tions. Rather than integrating those solutions to one representation, we consider
to keep their individual representations with additional task identifiers which
are realized by autoencoders trained together with tasks so that they are able to
help select corresponding top layers, i.e., corresponding tasks. We hence could
sequentially conduct different tasks with automatically specifying parameters,
which makes the algorithm behave more intelligent. More importantly, when the
gap between different tasks presents more larger, the correct top layers for corre-
sponding tasks will be selected more easily through these trained autoencoders.
There is even no mismatching between autoencoders and tasks, as long as the
reconstruction errors produced by each autoencoder present more different when
the task distributions are great of difference. In addition, to make a lightweight
network as well as select autoencoders more convenient, a pruning technique
based on the mean and variance of network weights is adopted to vastly reduce
the number of parameters in the network.

In summary, the main contribution of this paper is to present a self-adaptive
identifier for conducting sequentially given tasks without catastrophic forgetting.
Specifically, the proposed method achieves better performances when the new
task is more different than previously learned tasks. The proposed algorithm
can effectively utilize autoencoders with pruned weights to automatically match
the corresponding parameters, enabling a more intelligent approach to perform
sequential multiple tasks without indicating task identifiers so as to overcome
catastrophic forgetting. The rest of the paper is organized as follows: Sect. 2
presents the proposed work. Comparative experimental results are presented and
discussed in Sect. 3. Finally, concluding remarks and future work suggestions are
outlined in Sect. 4.

2 The Proposed Method

The proposed method is built upon the framework of variational Bayesian infer-
ence [11], where a reparameterization trick with unbiased Monte Carlo gradients
is utilized to optimize the parametric distribution. The weight w of neural net-
work could be transformed as:

w = μ + σε, (1)

where ε ∼ N (0, 1) and θ = (μ, σ) which comprises the mean μ and standard
deviation σ of the network. Obviously, it requires double memory and resources
than other Bayesian inference methods with neural networks, e.g. EWC algo-
rithm, which only considers to optimize the mean of each weight.

Therefore, it is natural to decrease the overhead of the system by means of
pruning the neural network based on these two parameters. More precisely, only
the top layers near to the output are pruned which helps reduce the system
overhead. And the bottom layers should be complete and frozen once the first
task has been learned since the common features between different tasks are
constructed based on these layers. At the same time, autoencoders for different
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Algorithm 1. Pruned network with self-adaptive identifiers
1: Training Phase
2: for index i = 1, 2, . . . , n do
3: Train task i with stochastic gradient descent
4: Train autoencoder AEi, and record reconstruction error Ei

5: if i = 1 then
6: Frozen bottom layers forever, and record as N1
7: end if
8: Prune top layers, and record as N2i

9: end for
10: ———————————————————————————————————–
11: Testing Phase
12: Given a task,
13: Select task identifier j = argmini Ei (i = 1, 2, . . . , n)
14: Perform task with network N1 + N2j

tasks are trained with the same training data. According to the pruned network,
autoencoders are utilized to help select corresponding top layers via reconstruc-
tion errors. Together with the frozen bottom layers, different networks are gen-
erated for corresponding tasks. We hence could automatically conduct different
tasks without specifying which parameters to load. The proposed algorithm is
presented in Algorithm 1, and we give a detailed explanation from two parts in
the upcoming subsections.

2.1 Network Pruning

In this subsection, we introduce the mean and standard deviation of weights to
show how to prune the neural network. Specifically speaking, the signal-to-noise
ratio (SNR) is employed to address this problem, which is calculated as:

SNR =
|μ|
σ

. (2)

By employing a large SNR which implies a large mean and a small standard devi-
ation, we are supposed to achieve a positive effect in measuring the significance
of weights so that the network will be pruned reasonably.

Given the SNR of weights w in descending order and pruning ratio k that
describes the number of weights to be removed, we can initialize the mask as:

λ = SNR[length(w) · (1 − k)]
mask = 1(SNR ≥ λ),

(3)

where λ records the threshold of weights to be pruned. Then the weights can be
updated with the mask:

w = w · mask. (4)

After pruning the network, the system overhead has been decreased. If we
select a high level of pruning ratio, the storage space could be vastly saved.
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More importantly, the remaining weights that we care about can perform tasks
with almost no performance degradation, which can be testified by subsequent
experiments. Since there are multiple sets of parameters to learn for different
tasks, it is more valuable to save the system overhead by pruning network.

2.2 Task Indicating

Aimed for sequential multi-task learning, bottom layers near to the input are
designed to be shared between tasks. As for top layers pruned and updated by
(4), we consider to match them to the corresponding tasks automatically.

Autoencoders here based on reconstruction errors are utilized for task iden-
tifiers. Furthermore, autoencoders are trained concurrently with normal task
learning, and their optimal weights are usually produced by minimizing the dis-
tance between the inputs and their corresponding reconstructions. Concretely,
the under-complete autoencoders (i.e., requiring the dimension of the code is
smaller than the dimension of the input) are adopted to train for different tasks.
In our setting, a two-layer network with a sigmoid activation function in the
hidden layer is used for each task.

After training autoencoders, the minimal reconstruction error among all tasks
is believed to describe the most potential autoencoder that is capable of repre-
senting the task identifier. When conducting different tasks, we could reason-
ably select the corresponding autoencoder as the task identifier for these pruned
top layers. Actually, the automation of selecting task identifier is realized by
comparing the reconstruction errors between tasks. If the gap between different
task distributions presents more larger to some extent, the correct autoencoder
for corresponding task will be picked out more easily, which means the pro-
posed method could handle this situation better to guard against catastrophic
forgetting.

3 Experiment

3.1 Experiment Setting

The proposed method is evaluated with a fully-connected neural network [784-
800-800-10], whose first layer will be frozen after training the first task. Besides,
each layer is activated by a ReLU function except the last one with softmax
function used for classification, whose basic architecture is also adopted in [10].
However, we introduce the mean and standard deviation of each weight to imple-
ment the variational Bayesian learning. The datasets used in our experiments
are summarized in Table 1. The MNIST dataset comprises 28 × 28 images of
handwritten digits. The Shuffled MNIST dataset contains the same images to
MNIST but whose input pixels of images are shuffled with a random permuta-
tion. The Split MNIST dataset is constructed by splitting MNIST into 0–4 and
5–9 as two tasks respectively.
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Table 1. Datasets used in the experiment: name, number of classes and number of
train and test samples.

Dataset Classes Train Test

MNIST 10 60000 10000

Shuffled MNIST 10 60000 10000

Split MNIST (0–4) 5 30630 5105

Split MNIST (5–9) 5 29370 4895

3.2 Experimental Results and Discussion

There are two experiments conducted to show the algorithm’s performance on
sequential multi-task learning. One experiment employs MNIST as the first task
and Shuffled MNIST as the second task, and the other invokes Split MNIST to
produce two tasks respectively. The proposed method is compared with recently
published algorithms EWC and IMM, which can perform tasks in a set of param-
eters without catastrophic forgetting.

Shuffled MNIST: As Shuffled MNIST is shuffled from MNIST, its distribution
is more similar than Split MNIST with respect to MNIST. We first consider the
Shuffled MNIST experiment to evaluate the proposed method. Table 2 illustrates
the comparable results.

Table 2. Results of Shuffled MNIST experiment.

Method Hyperparameter Test accuracy

EWC λ = 20 98.20a

IMM α = 0.33 98.30a

OUR k = 0.5 98.25
a Optimal experimental results are cited

from [10]

These approaches achieve similar results on tasks which share similar distri-
butions. For the EWC and IMM, they address catastrophic forgetting problems
in a set of parameters. For our approach, the network is pruned using SNR
with the probability of 50% except the frozen layers, which results in actually
only one set of parameters to learn. Instead of studying two sets of parameters
for two tasks separately, this pruning technique contributes to save the storage
space except two parameters (mean and standard deviation) which are inevitable
overhead in variational Bayesian learning. Overall, we achieve comparable results
compared to the EWC and IMM algorithms.

Split MNIST: Now we consider a more difficult situation where the distribu-
tions of two tasks present more different. First, the proposed method is evaluated
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Table 3. Results of Split MNIST experiment with k = 0.5.

Method Hyperparameter Test accuracy

EWC λ = 20 52.72

IMM α = 0.33 94.12

OUR k = 0.5 98.58

under the same pruning ratio, and Table 3 witnesses the results with other two
approaches.

In fact, the second task in Split MNIST experiment follows a more different
distribution than in the Shuffled MNIST experiment. It could be easily veri-
fied in Table 3 by the test accuracy of the EWC which achieves only 52.72%
compared to 98.20% in Shuffled MNIST experiment. The IMM obtains a better
result since it employs mixed posteriors with transfer learning techniques. The
proposed method obtains the best performance due to the individually trained
autoencoders whose reconstruction errors indicate corresponding tasks to con-
duct. If the gap between task distributions presents more larger, the propose
method will benefit more from these different distributions contrasted to other
approaches. Actually, the autoencoders are employed to study reconstruction
errors in different data distributions. When the task behaves more different than
previous ones, its reconstruction error is more likely to be different than others.
Therefore, the correct autoencoder could be picked out more easily to serve as the
task identifier. Apparently, the proposed method achieves the best performance
with self-adaptive autoencoders in this experiment.

Next, different pruning ratio values are designed to state the significance of
SNR for pruning network. Table 4 presents the relevant results.

Table 4. Results of Split MNIST experiment with different pruning ratio k.

Pruning ratio k 0.25 0.5 0.75 0.95

Test accuracy 98.60 98.58 98.24 97.60

As the pruning ratio increases, more weights in the network are reset to zero
values, which brings a more lightweight neural network. It is natural to suppose
that the gradually decreased performances will present since the pruning ratio
increases. However, according to Table 4, although the 95% weights of network
in top layers are replaced with zero, there is still 97.60 average accuracy for the
Split MNIST experiment. Obviously, the drawback in this pruned network is
that more system overhead is incurred by the standard deviation of each weight
in the networks. Nevertheless, it illustrates that the variational Bayesian method
with pruning technique is capable of handing different tasks with almost no per-
formance degradation. In addition, the concurrently trained autoencoders assure
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that the correct matching of different tasks’ parameters, which is a significant
step for performing sequential multiple tasks without catastrophic forgetting.

4 Conclusions

In this paper, a Bayesian framework is adopted together with variational method
to approximate the posterior distributions of different tasks. In order to resolve
the catastrophic forgetting problem, we utilize autoencoders as task identifiers
to self-adaptively select the corresponding parameters in sequential multi-task
scenario. Meanwhile, pruning technique based on SNR values contributes to a
more lightweight network, which greatly benefits for the parameters reducing in
traditional variational Bayesian learning. The proposed method is testified by
two classical experiments, and more different tasks will be expanded to study
the issue of overcoming catastrophic forgetting using the task similarity and
difference in our future works.
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Abstract. The brain encodes object relationship using correlated neural
representations. Previous studies have revealed that it is a difficult task
for neural networks to process correlated memory patterns; thus, strate-
gies based on modified unsupervised Hebb rules have been proposed.
Here, we explore a supervised strategy to learn correlated patterns in a
recurrent neural network. We consider that a neural network not only
learns to reconstruct a memory pattern, but also holds the pattern as an
attractor long after the input cue is removed. Adopting backpropagation
through time to train the network, we show that the network is able to
store correlated patterns, and furthermore, when continuously morphed
patterns are presented, the network acquires the structure of a continuous
attractor neural network. By inducing spike frequency adaptation in the
neural dynamics after training, we further demonstrate that the network
has the capacities of anticipative tracking and disentangling superposed
patterns. We hope that this study gives us insight into understanding
how neural systems process correlated representations for objects.

Keywords: Neural network · Correlated patterns
Continuous attractor neural network · Backpropagation through time
Spike frequency adaptation

1 Introduction

In reality, the brain needs to encode not only the identities of objects, e.g.,
whether an animal is cat or dog, but also the relationships between objects, e.g.,
cat and dog are both mammalian but belong to different categories. The experi-
mental data has indicated that the categorical relationships between objects are
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encoded in the correlated neural representations of the objects, in term of that
for objects belonging to the same category, their neural representations have
larger correlations than those of objects belonging to different categories [1,2].
Interestingly, in an artificial deep neural network (DNN) trained by ImageNet,
the correlation between object representations (measured by the overlap between
activities in the representation layer, i.e., the one before the read-out layer) also
reflects the semantic similarity between the objects [3,4]. To understand how
a neural system encodes the relationship between objects, it is important to
understand how neural networks learn, store, and retrieve correlated memory
patterns.

A large volume of theoretical studies has, however, pointed out that it is not
a trivial task for a neural network to process correlated memory patterns [5–8].
These studies, which are based on the classical Hopfield model that constructs
neuronal connections according to the unsupervised Hebb rule, have shown
that the correlations between patterns deteriorate memory retrieval dramati-
cally, leading to that the Hopfield network is unable to support a large memory
capacity [5]. To overcome this flaw, several strategies have been proposed, which
include: (1) a novelty-based method [6], which considers that neuronal connec-
tions are modified only when a novel pattern is presented (the novelty is defined
according to that the pattern can be retrieved or not by the current network
structure); (2) a popularity-based method [7], which modifies the Hebb rule
by reducing the contributions of those popular neurons that are active in many
memory patterns to avoid overwhelmed learning of the connections of those neu-
rons; (3) an orthogonalization-based method [8], which orthogonalizes correlated
patterns before applying the Hebb rule. All these methods are based on the unsu-
pervised Hebb learning, and each of them works well in certain circumstances,
but their biological plausibility has yet been properly justified.

In the present study, we explore the possibility of using a supervised strat-
egy to train a recurrent neural network to learn correlated patterns. Specifi-
cally, we consider a computational task, in which the network not only learns to
reconstruct the presented input pattern, but also holds the pattern as persistent
activity long after the input is removed. Mathematically, this requires that the
network holds the pattern as an attractor of its dynamics. We use backpropa-
gation through time (BPTT) [9] to train the network and demonstrate that the
network learns to store a number of highly correlated patterns. Moreover, we
find that when a set of continuously morphed patterns are presented, the net-
work acquires the structure of a continuous attractor neural network (CANN), a
canonical model for neural information processing [10]. After training, we induce
spike frequency adaptation (SFA), a popular negative feedback modulation [11],
in the neural dynamics, and find that the network holds interesting computa-
tional properties, including anticipative tracking and the capacity of disentan-
gling superposed patterns. We hope this study enriches our knowledge of how
neural systems process correlated representations for objects.
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2 The Model

As illustrated in Fig. 1, the network model we consider consists of three layers:
input, recurrent, and output layers. Neurons in the recurrent layer are connected
recurrently, whose dynamics are written as follows,

τ
dui(t)

dt
= −ui(t) +

N∑

j=1

W rec
ij xj(t) +

Nin∑

k=1

W in
ik Ik(t) + bi + σξi(t), (1)

xi(t) = tanh [ui(t)] , (2)

where ui, for i = 1, . . . , N , is the synaptic input received by neuron i in the
recurrent layer and xi the activity of the neuron. τ is the time constant. N is the
number of neurons in the recurrent layer. W rec

ij denotes the recurrent connection
strength from neuron j to i, W in

ik the feedforward connection strength from input
component k to neuron i, Ik the external input, and Nin the input dimension. bi
is a biased constant input received by neuron i. ξi(t) represents Gaussian white
noise of zero mean and unit variance, and σ the noise strength.

The neurons in the output layer read-out information by combining the neu-
ronal activities in the recurrent layer linearly, which are written as

yi(t) =
N∑

j=1

W out
ij xj(t), (3)

where yi, for i = 1, . . . , Nout, represents the activity of neuron i in the output
layer, and W out

ij the read-out connection strength from neuron j in the recurrent
layer to neuron i in the output layer. Nout = Nin holds in our model.

The Learning Procedure
Our goal is to train the network, such that the network holds the predefined
memory patterns as attractors of its dynamics. To achieve this goal, we construct
a learning task, which requires that the network output not only reconstructs
the given input pattern, but also holds the pattern long after the input cue is
removed. Mathematically, these two conditions enforce that the network learns
to hold the input pattern as an attractor of its dynamics, which mimics the
persistent activity observed in working memory in neural systems [12].

Let us consider that the network learns to memorize M patterns, referred
to as Pi, for i = 1, . . . , M , hereafter. Denote Tsti the duration of presenting
each memory pattern as an external input to the network, Tseq the duration of
the network holding the memory pattern, and Tsti << Tseq is imposed. For a
memory pattern Pi, the corresponding external input to the network is given
by, Ii(t) = Pi + ηi(t), for 0 < t < Tsti and otherwise Ii(t) = 0. Here, ηi

represent Gaussian white noises, which have the same dimensionality as the
input and its elements are independently sampled from Gaussian distributions
of zero mean and variances uniformly distributed in the range of [0, 1]. These
noises are essential for robust learning. Denote the network output to be Yi(t),
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Input Layer
Recurrent Layer

Ouput Layer

Fig. 1. Network structure. The network contains an input, a recurrent, and an output
layers. Neurons in the recurrent layer are connected recurrently.

for 0 < t < Tseq, when the pattern Pi is presented. The objective function of
the learning task is written as,

L =
M∑

i=1

∫ Tseq

0

[
Yi(t) − Pi

]2
dt, Ii(t) �= 0, for 0 < t < Tsti, (4)

where Yi(t) = f
[
Ii(t)

]
represents the nonlinear function implemented by

the network. We use the Euler method to discrete the network dynam-
ics and the objective function, and adopt backpropagation through time
(BPTT) to optimize the network parameters, including the connection weights
Win,Wrec,Wout and the bias terms b. Before training, Wout are initialized to
be zeros, Win a Gaussian distribution of zero mean and unit variance, Wrec an
orthogonal and normalized matrix, and b zeros.

Spike Frequency Adaptation
After training, we add spike frequency adaptation (SFA) in the neural dynamics
to induce extra computational properties of the network. With SFA, Eq. (1)
becomes

τ
dui(t)

dt
= −ui(t) +

N∑

j=1

W rec
ij xj(t) +

Nin∑

k=1

W in
ik Ik(t) + bi + σξi(t) − vi(t), (5)

τv
dvi(t)

dt
= −vi(t) + mui(t), (6)

where vi(t) is the current induced by SFA, a negative feedback modulation widely
observed in neural systems [11], whose effect is to suppress neuronal responses
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when they are too strong. τv is the time constant of SFA, and τv >> τ implies
that SFA is a slow process compared to neural firing. The parameter m controls
the amplitude of SFA.

3 Results

3.1 Learning to Memorize Correlated Patterns

To demonstrate that our model is able to learn correlated memory patterns,
we chose handwriting digit numbers as the inputs (see Fig. 2). These image
patterns are highly correlated (overlapped) and hence can not be memorized
by the conventional Hopfield model. We test three unsupervised strategies, and
found that the orthogonalization-based method accomplished the task, but the
other two, novelty-based and popularity-based, failed. Our supervised strategy
accomplished the task successfully (Fig. 2).

Fig. 2. Retrieval performances of different learning methods. From top to bottom:
the original ten digit numbers from the dataset of Mnist, the retrieval of the conven-
tional Hopfield model, the retrieval of the popularity-based method, the retrieval of
the novelty-based method, the retrieval of the orthogonalization-based method, and
the retrieval of our approach. Parameters: τ = 5, Tsti = 3, Tseq = 30, σ = 0.01, N =
200, Nin = Nout = 784.

3.2 Disentangling Superposed Memory Patterns

After training the network to memorize ten digit numbers, we add SFA in the
neural dynamics (see Eq. (5, 6)). In a real neural system, this corresponds to
that during learning, SFA is either frozen or too slow and can be ignored com-
pared to the fast synaptic plasticity. We check the network responses when an
image of superposed two digit numbers is presented. As illustrated in Fig. 3, the
network outputs the two digit numbers alternatively over time. The underlying
mechanism is that: (1) through training, the network has learned to memorize
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the two digit numbers as its attractors; (2) when the ambiguous image is pre-
sented, the network receives two competing input cues and evolves into one of
two attractors depending on biases; (3) because of the negative feedback from
SFA, the network state becomes unstable gradually, and under the competition
from the other cue, the network state moves into the other attractor; (4) this
progress goes on, and the network state oscillates between two attractors. Our
study suggests that a neural network can use negative feedback such as SFA to
disentangle correlated patterns.

Fig. 3. Disentangling superposed correlated memory patterns. The network was first
trained to memorize ten digit numbers as in Fig. 2. For convenience, we use colors to
differentiate different digit numbers, but in practice gray images are used. The input
is the superposed images of 1 and 2. The evolving of the network output over time
is presented. Parameters are: m = 3.4, τv = 30. Other parameters are the same as in
Fig. 2.

3.3 Learning a CANN

We show that when continuously morphed patterns are memorized, the network
acquires the structure of a CANN. Figure 4A displays the set of continuously
morphed gaussian bumps to be memorized by the network. After training, the
network leans to store each of them as attractors, in terms of that: (1) the
network evolves to one-to-one mapped stationary state when each of gaussian
bumps is presented (Fig. 4A); and (2) the network remains to be at the active
state long after the input is removed (Fig. 4B).

Properties of the Network
We check that the learned network indeed has the good computational proper-
ties of CANNs. Figure 5 shows that the network has the properties: (1) men-
tal rotation [13,14], the network exhibits the mental rotation behavior when
the external inputs abrupt change (Fig. 5A); (2) travelling wave [15], the net-
work holds a self-sustained travelling wave when SFA is strong enough (Fig. 5B);
(3) anticipation tracking [15], the network is able to track a moving input antic-
ipatively if SFA is strong enough (Fig. 5C).
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Fig. 4. Learning continuously morphed patterns to form a CANN. Totally 1000 mor-
phed gaussian-bump-like patterns are constructed. (A) Lower panel: examples of input
patterns; upper panel: examples of the learned network output. There are one-to-one
correspondence between the inputs and outputs. (B) The activity map of neurons in
the output layer. The input is removed at T = 3. The network state is sustained
after the input is removed, indicating the existence of an attractor. Parameters are:
Nin = Nout = 1000. Other parameters are the same as in Fig. 2.

Fig. 5. Properties of the learned network. (A) Mental rotation. The network state is
initially at pattern index 200. Under the drive of an external input at pattern index
360, the network state smoothly rotates from the initial to the target positions. (B)
Travelling wave. The activity map of the output layer in the travelling state. m = 0.4.
(C) Anticipate tracking. The black curve is the external moving input, and the red
curve the network state which leads the moving input. m = 0.4. Parameters are:
τv = 60, Nin = Nout = 1000. Other parameters are the same as in Fig. 2. (Color figure
online)

4 Conclusion

In the present study, we have investigated a supervised strategy to learn cor-
related patterns in neural networks, which are different from the unsupervised
ones proposed in the literature. The key idea of our method is that we enforce
the network to learn the memory patterns as its attractors. To achieve this goal,
we require that the network not only learns to reconstruct the given input pat-
tern, but also holds the pattern as persistent activity long after the input cue is
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removed. Using both synthetic and real data, we show that after training, the
network is able to store highly correlated patterns and can also acquire the struc-
ture of a CANN if continuously morphed patterns are presented. Moreover, we
induce SFA in the neural dynamics after training, and demonstrating that the
network holds interesting computational properties, including anticipative track-
ing and the capacity of disentangling superposed patterns. We hope this study,
as to a complement to other unsupervised approaches, enrich our knowledge of
how neural systems process correlated representations for objects.
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Abstract. Network representation learning (NRL), which has become
an focus of current research, learns low-dimensional vertex representa-
tions to capture network information. However, conventional NRL mod-
els either largely neglect the rich semantic information on edges and fail
to extract good features of relations, or employ complex models that have
rather high space and time complexities. In this work, we present an effi-
cient NRL model, MultNet, for Social Relation Extraction (SRE) task,
which evaluates the ability of NRL models on modeling the relationships
between vertices. We conduct extensive experiments on several public
data sets and experiments on SRE indicate that MultNet outperforms
other baseline models significantly.

Keywords: Network representation learning · Embedding
Social Relation Extraction

1 Introduction

Nowadays, networks are ubiquitous and the way to represent networks is crucial
for many downstream applications, such as vertex classification [6], clustering
[10] and information retrieval [19]. Network representation learning (NRL) is an
effective method to learn useful network representation, which embeds networks
into low-dimensional vector spaces. We denote embedding vector with the same
letters in boldface in this paper.

However, conventional network representation learning (NRL) models simply
regard each edge as a continuous or binary value when learning low-dimensional
vertex representations. In fact, there exists rich semantic information on edges.
For example, an edge between two authors in co-author network always indicates
common academic interests. Current models largely neglect these information
and fail to extract good features of relations.
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Social Relation Extraction (SRE) task is proposed to evaluate the ability
of NRL models on modeling relationships between vertices. Tu et al. [16] show
that we can use key phrases extracted from the interactive text to represent
social relations. Meanwhile, there are often multiple relational labels to demon-
strate the complicated relation between two vertices. Formally, SRE is defined
as follows:

Suppose there is a network, represented by G = (V, E), where E ⊆ (V × V )
is the edge set between vertices and V is the vertex set. Noted that edges in E
are partially labeled, which are denoted as EL. Specifically, ∀e ∈ EL, the label
set of e is denoted as l = {t(1), t(2), ...}, where every label t(i) ∈ l comes from T ,
a fixed label vocabulary. SRE aims to predict the labels on edges over unlabeled
edges in EU , where EU = E − EL represents the unlabeled edge set.

SRE cannot be well tackled by conventional NRL models. Because, as men-
tioned in [16], less work consider the rich semantic information of edges and make
elaborate predictions of relations on edges. TransNet [16] is a promising method
proposed recently for SRE, achieving state-of-the-art predictive performance.
However, relatively high time and space complexity prevent it from applying on
large scale networks.

In this paper, we attempt to propose a novel method that can efficiently adopt
rich information on edges and be applied on large scale networks. The basic idea
is that we regard the social network G as a multi-relational graph and every
label t in T that represents a type of relationship between vertices. Based on it,
we propose a novel NRL model MultNet, which embeds both vertices and labels.
MultNet has much lower time and space complexity than TransNet. Thus, our
model is practical to be applied on large scale social networks. We make extensive
experiments to evaluate MultNet, and results show that MultNet outperforms
all baselines.

2 Related Works

Network representation learning or NRL can be traced back to the feature engi-
neering for network analysis [9,13] and graph mining tasks [20]. Despite the
success of these NRL models, they all employ shallow models. However, shal-
low models are difficult to effectively capture the highly non-linear structure
in the networks [17]. Therefore, various deep NRL models have been proposed
recently. Some works attempt to learn representations from local network struc-
ture, such as Deepwalk [8], LINE [11], node2vec [4] and SDNE [17]. Some works
intend to learn the global structure and community patterns, such as CNRL
[2] and MNMF [18]. Moreover, some works try to incorporate heterogeneous
information into NRL. For example, TADW [22] and CANE [14] introduces text
information into NRL, and MMDW [15] and DDRW [5] incorporate labelling
information into NRL.

As far as we know, few researches consider to use the rich semantic infor-
mation of edges and make elaborate predictions of relations on edges. TransNet
[16] is a promising method for SRE, achieving state-of-the-art predictive per-
formance. TransNet uses two vectors for every vertex, corresponding to its tail
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representation ut and head representation uh. TransNet uses one-hot vector to
represent label set between vertices and runs an auto-encoder to embed the one-
hot vector into low-dimensional vector l. Then TransNet regards l as translation
between the heads and tails and wants uh+ l ≈ vt when (u, v, l) holds. However,
relatively high time and space complexity prevent it from applying on large scale
networks. We will make detailed complexity analysis in Subsect. 3.3.

SRE is similar to relation extraction task in Knowledge Graphs (KGs).
Knowledge representation learning (KRL) such as TransE [1] are the most widely
used methods for relation extraction in KGs. In this paper, we also use the
TransE as a baseline model. The difference between these two tasks is that there
are always no well pre-defined relation types in SRE. Besides, the ratios of multi-
labeled edges on SRE data sets are much larger than in KGs [16].

3 MultNet

In this paper, we focus on the problem of utilizing the rich semantic information
on edges efficiently. We use a set of labels to represent the rich information
on edges. Then we regard the social network G as a multi-relational graph and
every label t in label vocabulary T that represents a type of relationship between
vertices.

In this section, we describe the MultNet Architecture, along with the method
for model training. Besides, we make complexity analysis on MultNet compared
with some baselines.

3.1 Architecture

For each training instance (u, v, l) in data sets, we firstly split it into several
triplets, i.e., (u, v, t(i)), and form new data sets, where l = {t(1), t(2), ...}, t(i) ∈
T and u, v ∈ V . Note that, unlike TransNet, the vector that represents a given
vertex is the same when the vertex appears as the head or as the tail of a triplet.

The Architecture of MultNet is shown at Fig. 1. Given a training set S of
triplets (u, v, t), our model learns embedding vectors of the vertices and the
labels. The embeddings are denoted with the same letters in boldface characters.
Since the edges in social network are always undirected, we assume every label is
symmetric. That is to say, (u, v, t) is equal to (v, u, t). Therefore, we use weighted
element-wise dot product (multiplicative operation) [21] to compose vertex and
label embedding vectors and propose a novel model MultNet. Hence the score
function are defined as follow:

ft(u, v) =< u,v, t >=
m∑

i=1

uiviti, (1)

where u,v, t ∈ R
m. The score is high if (u, v, t) holds, and low otherwise.

For general evaluation, we input the score of a triplet into a sigmoid function
to represent the probability of (u, v, t) existing in G. Because the sigmoid function
sets output between 0 and 1.
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Fig. 1. The Architecture of MultNet. We split every labeled edges in social network
G into several triplets and every label t represents a type of relationship. MultNet
embeds both vertices and labels and uses multiplicative operation to get probability of
triplets existing in G.

3.2 Training

To train MultNet, we minimize a common used margin-based ranking criterion
over the training set

L =
∑

(u,v,t)∈S

∑

(u′,v′,t′)∈S′
[ft(u′, v′) − ft(u, v) + γ]+ + λ||θ||22, (2)

where [x]+ � max(0, x), γ > 0 is a margin hyper-parameter, λ is the weight of
regularization, Θ is the set of parameters, the corrupted triplet set S′ is composed
of training triplets with the head or tail or label replaced randomly. That is

S′ = {(u′, v, t)|u′ ∈ V } ∪ {(u, v′, t)|v′ ∈ V } ∪ {(u, v, t′)|t′ ∈ T} (3)

This loss function is used to encourage discrimination between training
triplets and corrupted triplets by favoring higher scores for training triplets than
for corrupted triplets.

All vertex and label vectors are first initialized from a uniform distribution
U [− 6√

m
, 6√

m
] [3]. The process of minimizing the above loss function is carried

out using stochastic gradient descent (SGD) with constant learning rate. The
training process is stopped based on the performance of our method on the
validation set.

3.3 Complexity Analysis

As shown in Table 1, we compare the number of parameters and computational
complexity of various baselines with our model. In this table, we denote m as
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the embedding vector dimension, n as the node number of Huffman trees. From
Table 1, we observe that MultNet has comparative space and time complexity as
TransE, which is much lower than TransNet and Deepwalk. Moreover, consid-
ering the high number of edges, the time and space complexity of TransNet are
both much higher than Deepwalk. Due to the low time and space complexity,
MultNet can be applied on large-scale social networks easier than TransNet.

Table 1. Complexities (the number of parameters, time complexity) of models.

Model #Parameters Time complexity

Deepwalk O(m(n + 1)|V |) O(|V | log |V |)
TransE O((|V | + |E|)m) O(|V |)
TransNet O((|V | + |T ||E|)m) O(|V | + |T ||E|)
MultNet (this paper) O((|V | + |E|)m) O(|V |)

4 Experiment

To empirically evaluate the effectiveness of MultNet on modeling relationships
between vertices, we compare our proposed model with several baselines on SRE
task on data sets that provided by [16].

4.1 Data Sets

Tu et al. [16] automatically constructed three social network data sets from
ArnetMiner. ArnetMiner [12] is an online academic website providing search
and mining services for researcher social networks. In ArnetMiner, authors col-
laborate with different researchers on different topics, and the co-authored papers
always reflect the elaborate relationships between them.

Table 2. Statistics of data sets. (ML indicates multi-label edges.)

Datasets Vertices Edges Train Test Valid Labels ML proportion (%)

Arnet-S 187,939 1,619,278 1,579,278 20,000 20,000 100 42.46

Arnet-M 268,037 2,747,386 2,147,386 30,000 30,000 500 63.74

Arnet-L 945,589 5,056,050 3,856,050 60,000 60,000 500 61.68

Tu et al. constructed the co-authored network with labeled edges in the fol-
lowing steps. Firstly, they build the label vocabulary by collecting all the research
interest phrases from the author profiles. Secondly, for each co-author relation-
ship, they filtered out the labels in vocabulary in the abstracts of coauthored
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papers and view them as the ground truth labels of the edge. Thirdly, as all
edges in co-author networks are undirected, they replaced every edge with two
directed edges in opposite directions.

In addition, Tu et al. constructed three data sets in different scales, denoted as
Arnet-S, Arnet-M (medium) and Arnet-L to better investigate the characteristics
of different models. The details are shown in Table 2.

4.2 Baselines

We compare MultNet with TransNet [16] and the typical knowledge embedding
model, TransE [1]. We use the codes provided by [16] to evaluate these two
models on various data sets.

We also employ the following conventional models as baselines. For these
NRL models, we follow the protocol of [16], treating SRE task as a multi-label
classification task. That is, we concatenate the tail and head vertexes embeddings
as the feature vector. Then we adopt one-vs-rest (ovr) logistic regression to train
a multi-label classifier and implement it by Tensorflow.

Deepwalk [8] uses random walks over networks to yield random walk
sequences. Based on the sampled sequences, Deepwalk employs Skip-Gram [7]
model to generate network representation.

LINE [11] defines the first-order and second-order proximities of networks
separately, attempting to optimizes the conditional and joint probabilities of
edges in networks.

Node2Vec [4] extends Deepwalk with a biased random walk trick and
explores the neighborhood structure more efficiently.

4.3 Results and Analysis

SRE aims to predict the missing label t for a triplet (u, v, t). In this task, the
model is asked to rank a set of candidate labels from label vocabulary, instead
of giving one best result. For each test triplet (u, v, t), we replace the label by
all possible candidates and rank these label in descending order of probabilities
calculated by σ(ft(u, v)).

We report two measures as our evaluation metrics: the average rank of all
correct labels (Mean Rank) and the proportion of correct labels ranked in top K
(Hits@K ). A good model should achieve lower Mean Rank and higher Hits@K.
In fact, corrupted triplets, which is generated in the aforementioned process of
removal and replacement, may also exist in G. These triplets should be consid-
ered as correct. Hence, we follow the evaluation protocol in [1] and remove the
corrupted triplets included in train, valid and test sets before ranking. In this
paper, we call the evaluation setting without removing operation as “Raw” and
the other as “Filter”.

In training, we select the margin γ among {0.5, 1, 2, 4}, the dimension of rep-
resentation vectors m among {20, 50, 100, 200}, and the weight of regularization
λ among {0, 0.0001, 0.0005, 0.001, 0.01}. Besides, we set the learning rate of SGD
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to 0.1 and the mini-batch size to 480. The best configurations obtained by the
validation set are: on Arnet-S, γ = 1, m = 100 and λ = 0.0005; on Arnet-M,
γ = 0.5, m = 200 and λ = 0.0005; on Arnet-L, γ = 0.5, m = 200 and λ = 0.0005.
For all data sets, we traverse all training triplets for at most 100 iterations.

Table 3. Social Relation Extraction results on Arnet-S. (× 100 for Hits@k.)

Metric Mean Rank Hits@1 Hits@5 Hits@10

Raw Filter Raw Filter Raw Filter Raw Filter

DeepWalk 20.11 18.87 12.78 18.60 35.80 39.42 50.10 51.99

LINE 24.76 23.14 11.20 14.87 31.56 32.86 43.96 45.75

Node2vec 19.55 18.56 12.84 18.22 35.60 39.07 49.56 51.66

TransE 6.21 5.29 38.15 54.89 77.66 81.77 86.34 88.46

TransNet 5.74 4.86 45.82 75.65 84.23 89.53 90.17 91.41

MultNet 5.46 4.23 47.61 79.36 86.87 90.50 91.89 92.99

Table 4. Social Relation Extraction results on Arnet-M. (× 100 for Hits@k.)

Metric Mean Rank Hits@1 Hits@5 Hits@10

Raw Filter Raw Filter Raw Filter Raw Filter

DeepWalk 84.12 79.56 7.21 10.89 19.65 21.44 28.34 30.11

LINE 96.10 93.00 5.47 7.47 16.34 17.86 23.96 25.75

Node2vec 81.54 79.85 6.84 10.92 20.13 22.77 27.55 29.96

TransE 27.84 24.33 16.81 30.87 47.56 53.34 60.35 65.23

TransNet 25.94 23.56 27.32 57.69 65.43 73.53 76.23 78.11

MultNet 24.40 21.20 27.50 59.12 66.43 74.22 78.12 80.19

Tables 3, 4 and 5 shows the SRE evaluation results. From these tables we
observe that:

1. MultNet achieves consistent improvement than all baselines on all data sets,
while has much lower time and space complexity than TransNet. It indicates
the effectiveness of MultNet on modeling and predicting relationships between
vertices.

2. Conventional NRL models have poor performance on SRE task, because they
all neglect rich semantic information over edges. It indicates the importance
of considering the elaborate edge information.

3. MultNet has almost the same time and space complexity as TransE, while
outperforms TransE significantly. It indicates the rationality of multiplicative
operation on modeling relation between vertices.
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Table 5. Social Relation Extraction results on Arnet-L. (× 100 for Hits@k.)

Metric Mean Rank Hits@1 Hits@5 Hits@10

Raw Filter Raw Filter Raw Filter Raw Filter

DeepWalk 103.40 101.77 5.21 7.10 15.80 16.92 22.97 23.99

LINE 96.70 93.51 4.76 10.84 20.53 22.48 27.88 30.45

Node2vec 81.45 80.01 7.03 10.20 19.67 22.47 29.46 31.11

TransE 26.44 24.03 18.12 29.79 47.79 53.87 61.03 64.14

TransNet 25.88 22.96 27.64 58.45 66.13 74.35 75.71 79.48

MultNet 25.07 21.86 28.71 59.86 68.12 75.50 76.09 81.00

4. MultNet only has a small drop when the number of labels and percentage
of multi-label edges turn larger, e.g. from 90% to 80% on Hits@10. This
demonstrates stability of MultNet and the good ability to handle multi-label
edges.

4.4 Parameter Sensitivity

For in-depth understanding our method, we investigate the parameter sensitiv-
ities on Arnet-S. The weight of regularization λ is crucial hyper-parameter in
MultNet to prevent overfitting. When the optimal γ has been determined, we
show the filtered Hits@10 results in Fig. 2. From Fig. 2, we observe that the
performance of MultNet rises quickly and then becomes stable. More specifi-
cally, MultNet can outperform TransE within 15 iterations and achieve stable
performance around 0.9 at Hits@10. These results indicates the validity that we
regard social network as multi-relational graph. λ should be around 0.001, when

Fig. 2. Parameter sensitivity.
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λ is relatively large, like 0.01, MultNet will be underfitting. Hence it should be
careful about choosing λ when implementing MultNet.

5 Conclusion and Future Work

We propose a novel network representation learning model MultNet for social
relation extraction task. MultNet reduces time complexity by embedding both
vertices and labels of edges into low-dimensional continues vector space to avoid
deep auto-encoder of TransNet. Our model uses multiplicative operation to
model the symmetric relations between vertices. In addition, unlike TransNet,
the vector that represents a given vertex is the same when the vertex appears as
the head or as the tail of a triplet. As a result, MultNet has less time and space
complexity and more flexibility than TransNet. Extensive experiments show that
MultNet outperforms all baselines.

Following research directions will be explored in the future: (1) We will
explore modeling heterogeneous networks, which always have various types of
vertices. (2) We will explore different regularization methods to enhance Mult-
Net. (3) We will explore some novel optimization methods to boost MulNet.
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Abstract. Nonnegative matrix factorization (NMF) has many applica-
tions as a tool for dimension reduction. In this paper, we reformulate
the NMF from an information geometrical viewpoint. We show that a
conventional optimization criterion is not geometrically natural, thus we
propose to use more natural criterion. By this formulation, we can apply
a geometrical algorithm based on the Pythagorean theorem. We also
show the algorithm can improve the existing algorithm through numeri-
cal experiments.

Keywords: Information geometry · Dimension reduction
Topic model

1 Introduction

Nonnegative matrix factorization (NMF) [15] is a dimension reduction method in
which data matrix X is approximated by a product of low rank matrices D and
C, and all components of X,D,C are nonnegative. The NMF has been applied
to many application areas such as computer vision, signal processing, and rec-
ommender systems [5,6,10,19]. The contribution of this paper is to reformulate
NMF from an information geometrical viewpoint [2] instead of a conventional
formulation. Information geometry has provided a unified interpretation for var-
ious kinds of machine learning algorithms [3]. In the case of NMF, we show
that the problem is to find a projection onto a flat subspace of probability vec-
tors. Based on the geometrical understandings, we propose a new geometrical
projection algorithm. We also show the effectiveness of the algorithm through
numerical experiments.

2 NMF and Topic Model

Suppose X is a given d×n matrix, the goal of NMF is to find a low rank approx-
imating decomposition X � DC that minimizes some cost function, where D
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and C are d × k and k × n matrices respectively and all components of D and
C are nonnegative. In this paper, we assume k(< min(d, n)) is fixed.

In order to deal with NMF within an information geometrical framework,
first we consider the normalization of each column of X so that the sum of its
components is 1, which makes it possible to regard the column as a probability
vector. Let us introduce a column-wise normalization operator Π,

Q = Π[X], Qij =
Xij∑
i′ Xi′j

. (1)

In the NMF, there is a freedom of scale, we can assume D is normalized without
loss of generality, i.e., Π(D) = D. In that case, if X = DC, it is easy to show
that it holds [9]

Π[X] = Π[D]Π[C]. (2)

Now we have a normalized version of the NMF problem, i.e., suppose we have a
positive-valued matrix Q whose columns are normalized, the problem is to find
a low rank approximation Q � PW , where P and W are also positive-valued
matrices whose columns are normalized. Hereafter we consider this normalized
version of the problem. This special case of NMF is called “topic model”, and
it has its own applications such as datamining from big text data [4,14] and
analysis of compositional data of rocks in geology [20].

The topic model is interpreted geometrically as follows. Let q1, q2, . . . , qn be
the columns of Q, and p1,p2, . . . ,pk be the columns of P . They all belong to the
space of d-valued discrete distribution p(X;p) representing Pr[X = i] = pi, i =
1, . . . , d,

S = {p(X;p) | p = (p1, p2, . . . , pd)T,

d∑

i=1

pi = 1, pi > 0, i = 1, . . . , d}. (3)

The set of vectors p1,p2, . . . ,pk defines a subset P ⊂ S,

P = {p(X;p) | p =
k∑

j=1

wjpj ,
k∑

j=1

wj = 1, wj ≥ 0, j = 1, . . . , k}, (4)

whose parameter space forms a simplex. Each vector qi ∈ S is approximated by
a point q̂i ∈ P to minimize a certain loss function l(qi, q̂i). A simple choice of l
is the squared loss

lsq(q, q̂) =
d∑

i=1

(qi − q̂i)2, (5)

while we consider the Kullback-Leibler divergence in later discussion. In any
case, when we fix P , we can define the optimal column vector wj of W for each
qj so that the loss function is minimized. Then the problem of topic model is to
optimize P as well, thus it can be written as minimizing the total amount of the
loss function with respect to both P and W

L(P,W ) =
n∑

j=1

l(qj , q̂j). (6)
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The optimization is usually performed alternatively, which optimizes one of P
and W while the other is fixed. In the following discussion, we first focus on the
optimization of W with a fixed P .

3 Projection onto an Autoparallel Submanifold

Let us briefly review the notion of dually flat structure of the manifold S that is a
special case of exponential family [2,3,16]. By differential geometrical discussion,
S has dual affine connections, e-connection and m-connection, and there exist
affine coordinate systems θ and η with respect to each connection, which are
called e-coordinate and m-coordinate respectively. In the case of the space of
d-valued discrete distributions, e-coordinate and m-coordinate are given by

θi = log pi − log

(

1 −
d−1∑

i′=1

pi′

)

, ηi = pi, i = 1, 2, . . . , d − 1. (7)

An affine subspace of each coordinate system is called e-autoparallel subman-
ifold and m-autoparallel submanifold. In particular, one dimensional case defines
an e-geodesic and m-geodesic. Here let us consider the projection from a point
q ∈ S onto a subspace M ∈ S. The e-projection is defined as a point p ∈ M
such that an e-geodesic connecting q and p is orthogonal at p with respect to
the Riemannian metric G(θ(p)) whose i, j component is defined by

Gij(θ(p)) = EX

[
∂ log p(X;p)

∂θi(p)
∂ log p(X;p)

∂θj(p)

]

, (8)

where EX denotes the expectation with respect to p(X;p). The matrix G(θ(p))
is known as the Fisher information matrix.

The following theorem gives a characterization of the projection.

Theorem 1 (Projection theorem [2]). For a dually flat manifold S and a
submanifold M ∈ S, the e-projection q̂ from a point q ∈ S onto M is given by
a critical point of the Kullback-Leibler divergence,

D[q̂, q] =
d∑

i=1

q̂i(log q̂i − log qi). (9)

In particular, if M is an m-autoparallel submanifold, the e-projection is unique
and is given by minimizing D[q̂, q]. On the other hand, the m-projection is given
by a critical point of the dual form of (9), D[q, q̂], and if M is an e-autoparallel
submanifold, the m-projection is unique and is given by minimizing D[q, q̂].

This theorem suggests that if the subspace is m-autoparallel, the e-projection
has a good property such as uniqueness.



528 S. Akaho et al.

In order to consider applying this framework to the topic model (normalized
NMF), first let us define a linear subspace of the d-valued discrete distribution
space S,

M = {p(X;p) | p =
k∑

j=1

wjpj ,

k∑

j=1

wj = 1, wi > 0, i = 1, . . . , d}. (10)

Since M is a linear subspace of m-coordinate, M is an m-autoparallel subman-
ifold of S.

From the projection theorem, it is natural to take the e-projection onto M,
which has been proposed as the extension of PCA to the statistical manifold
[1,7,18]. Note that P appeared in the topic model is a subset of M, therefore it
seems natural to take the e-projection also in the topic model. If the e-projection
from q ∈ S onto M does not belong to P, the point q̂ ∈ P minimizing the
divergence D[q̂, q] is not the e-projection onto P. However, even in such a case,
we can show that q̂ is a projection onto a boundary of P, which is also a subset
of m-autoparallel submanifold of S as summarized in the following proposition.

Proposition 1. In the dually flat manifold S, suppose k-simplex P ⊂ S defined
by a convex hull of pi (i = 1, . . . , k), then the point q̂ that minimizes D(q̂, q) for
q ∈ S is the e-projection from q to a k′-face of P, where k′ ≤ k.

Proof. Let the m-autoparallel submanifold M ⊂ S that is defined by expanding
P. The e-projection q̂ from q to M uniquely exists and it minimizes D(q̂, q). If
q̂ ∈ P, that is a desired point. Otherwise, the point q̂ that minimizes D(q̂, q) lies
on the boundary of P. The boundary consists of faces that has lower dimension
than P. Each face P ′ is also a simplex, thus we can continue the above discus-
sion recursively until the e-projection is included in a simplex. This proves the
proposition.

In usual formulation of NMF or topic models, the divergence D[q, q̂] corre-
sponding to the m-projection has been usually used in the topic model, since
the m-projection is equivalent to the maximum likelihood estimation. However,
from the discussion above, we see that the dual D[q̂, q] is a more natural loss
function from an information geometrical viewpoint.

So far we have formulated the optimization of W with a fixed P , and now
we describe that the optimization problem of P with a fixed W is also an e-
projection onto an m-autoparallel submanifold. A given matrix Q can be con-
sidered as a point of the product space Sn. On the other hand, a matrix PW
with a fixed W is a linear subspace of Sn with respect to the m-coordinate
(independent parameters among P ), where P is constrained to be probability
distribution, i.e., it is positive and column-wise normalized, Therefore, it is a
subset Q of the m-autoparallel submanifold, and it is natural again to take the
e-projection in Sn, and the corresponding divergence is the sum of divergences
D(PW,Q) =

∑n
i=1 D(q̂i, qi), where q̂i is the i-th row of PW , i.e., the objective

function is the same as the case of optimizing W with a fixed P . As similarly
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in the optimization of W with a fixed P , the e-projection does not necessar-
ily lies in Q that is a polytope in general, but it can be characterized as an
e-projection onto a face of Q. The above discussion can be summarized as the
following proposition, which is easily proved in the same way as Proposition 1.

Proposition 2. In the product space Sn, consider a convex polytope Q ⊂ S
defined by PW with a fixed W , then the point P̂ that minimizes D(P̂W,Q) is
the e-projection from Q to a face of Q whose dimension is equal or less than Q.

4 Geometrical Projection Algorithm

The merit of taking the e-projection is not only because of geometrical naturality.
We can also apply a geometrical projection algorithm based on the generalized
Pythagorean theorem that is a key theorem in the information geometry.

Theorem 2 (Generalized Pythagorean theorem [2]). Suppose S be a
dually flat manifold, and there are three points p, q, r ∈ S. If the e-geodesic
connecting p and q and the m-geodesic connecting q and r are orthogonal at q,
then the following relation holds

D[q,p] + D[r, q] = D[r,p]. (11)

In the theorem, suppose q ∈ M is the e-projection of p, and r is another point
of M, then the Pythagorean relation holds for those three points.

Suppose p1,p2, . . . ,pk are the columns of P and q is one of the columns of
Q, and a current estimation of the projection point on the simplex is represented
as q̂ =

∑
i ŵipi, where

∑
i ŵi = 1, ŵi ≥ 0. Let us consider the value defined by

γi = D[q̂, q] + D[pi, q̂] − D[pi, q]. (12)

From the generalized Pythagorean theorem, if γi = 0 for all i, it implies that
q̂ is the m-projection of q onto M. On the other hand, if γi > 0 then the m-
projection is closer to pi than q̂, and if γi < 0 then the m-projection is more
distant from pi. The proposed algorithm is based on this idea and wi is increased
or decreased in accordance with the sign of γi. More specifically, the algorithm
consists of the following steps for each q = qj , j = 1, . . . , n.

1. Initialize ŵi, i = 1, . . . , k.
2. Calculate γi by (12).
3. Update ŵi by

ŵi ← ŵif(γi), (13)

where f(u) is a monotonically increasing function that takes positive value
and f(0) = 1. A typical choice of f is f(u) = 1/(1 + exp(−αu)), where α is
a fixed constant controlling the learning step.

4. Normalize the weight by

ŵi ← ŵi
∑k

i′=1 ŵi′
. (14)
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The algorithm is originally proposed for the m-projection onto an e-
autoparallel submanifold [13,17]. The algorithm only depends on the divergence
values, and it is derivative-free.

Although the algorithm can be started from random values of ŵi, we apply
the algorithm to the results of the existing algorithm proposed by Dhillon and
Sra [8] in the numerical experiments of the next section. There are two reasons:
one is that the optimization of P is not practical for geometrical algorithm since
it is an optimization problem in much larger dimensional space and the feasible
region Q is not as simple as P for the optimization of W , and the other is that the
existing algorithm does not assume the normalized NMF, thus the normalization
step is necessary, and we observed that it does not converge to the optimum and
the geometrical algorithm can improve the performance.

The existing algorithm consists of the following update steps: to update W
for each wi, i = 1, . . . , n and j = 1, . . . , k,

wji ← wji exp
(

[PT log(qi/Pwi)]j
[PT1]j

)

, (15)

then the W is normalized, and to update P for each pi, i = 1, . . . , d and j =
1, . . . , k, l = 1, . . . , n,

pij ← pij exp
(

[log(ql/(pT
i W ))TWT]j

[1TWT]j

)

, (16)

and then the P is normalized.

5 Experiments

We performed some numerical examples to examine the performance of the geo-
metrical algorithm. Throughout the experiments, if there are small values less
than ε = 10−10 in a given matrix Q, we replace them by ε (and then renormalize
Q) in order to avoid numerical unstability to calculate log function.

In order to evaluate the improvement of the proposed method, we define the
measure of improvement by

I =
Ld − Lg

Ld
, (17)

where Ld is a loss value Eq. (6) obtained by the existing method (Dhillon and
Sra [8]) and Lg is a loss value of the proposed method (geometrical algorithm).

5.1 Synthetic Data

We randomly generate n probability vectors of dimension d by a Dirichlet dis-
tribution, and perform the existing algorithm and then apply the proposed algo-
rithm.

Dependency of Number of Samples. In the first experiment, we fix d = 50 and
the number of basis vectors k = 10, and change the number of samples n.



Geometrical Formulation of the Nonnegative Matrix Factorization 531

The experiments are performed for 10 times. Figure 1 shows the average value
of the measure of improvement I for different number of samples. It is almost
flat and decreases gradually.
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Fig. 3. Dependency of the dimensionality

Dependency of Number of Basis Vectors. In the second experiment, we fix n =
1000 and d = 10, and change the number of basis vectors k. Figure 2 shows the
average of 10 times experiments. It seems the degree of improvements increases
as k increases.

Dependency of Dimensionality. In the third experiment, we fix n = 1000 and
k = 10, and change the dimensionality d. Figure 3 shows the average of 10 times
experiments. It seems the degree of improvements decreases as k increases.
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5.2 Real Data

Associated Press Data. Associated Press data [11] is based on 2246 articles
published in Associated Press in US. For each article, the frequency of words
(total 10473) are recorded, i.e., n = 2246 and d = 10473. The topic model has
been applied to such a set of documents in order to categorize articles into topics.
More specifically, each article qj is decomposed into weighted sum of pi, each
of which is considered to represent a topic. Nonzero components of the data
matrix are about 1.1% of all components. We fixed k = 20 and performed the
algorithm. Figure 4 shows the values of the objective function, where the first 10
steps are alternating optimization of P and W by the existing algorithm and the
last 1 step represents the optimizing W by the proposed geometrical algorithm
until convergence. For this dataset, the proposed algorithm seems to improve
the performance significantly.
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Fig. 4. Associated Press data

MovieLens Data. MovieLens data [12] is a data matrix of the 1–5 ratings of
movies by 943 users. Each user gave ratings at least 20 movies and unrated
movies are scored as zero. The dimension reduction for such data is used in
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recommender systems. Based on the estimated ratings for the moves that have
not rated yet by a user, the system can recommend the movie to the user. Here
we regard n = 943 and d = 1862 and ratings are normalized so that the sum of
ratings becomes one. We fixed k = 100 and performed the algorithm. Figure 5
shows the values of the objective function, where the first 126 steps are the
existing algorithm and the last step is the optimization of W by the proposed
algorithm. The improvement is slight but as shown in the right figure (magnified
at the last part), it actually decreases the objective function.

6 Conclusion

We have presented geometrical formulation of the topic model as a special form
of NMF. By natural formulation based on a dualistic structure, we apply the
geometrical algorithm and showed it can improve the performance of the existing
algorithm through numerical experiments.

There are two major problems that are not fully solved in this paper. One is
the application of the geometrical algorithm for optimizing P with a fixed W .
We have shown that the problem can be dealt with an e-projection problem,
but it is a very high dimensional optimization and it is not practical as it is. We
need to develop an efficient algorithm. The second is the theoretical guarantee
of convergence of the geometrical algorithm. Empirically it converges in most
cases, but it is necessary to clarify the condition of convergence.
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Abstract. Modal linear regression (MLR) is a standard method for
modeling the conditional mode of a response variable using a lin-
ear combination of explanatory variables. It is effective when dealing
with response variables with an asymmetric, multi-modal distribution.
Because of the nonparametric nature of MLR, it is difficult to construct
a statistical model manifold in the sense of information geometry. In
this work, a model manifold is constructed using observations instead of
explicit parametric models. We also propose a method for constructing
a data manifold based on an empirical distribution. The em algorithm,
which is a geometric formulation of the EM algorithm, of MLR is shown
to be equivalent to the conventional EM algorithm of MLR.

Keywords: Modal linear regression · Information geometry
EM algorithm

1 Introduction

In linear regression analysis, the conditional mean of a response variable y given
predictor variable x is modeled using a linear predictor function of x. Unfortu-
nately, a well-known least squares estimator for linear regression coefficients is
highly sensitive to outliers. To alleviate this problem, numerous estimators such
as robust M-estimators [5,6] have been developed. However, the consistency
of the robust M-estimators requires the homoscedasticity and symmetricity of
a conditional error distribution given a predictor. In reality, much data exist
that do not follow these assumptions. One example is a conditional distribution
of public spending given variables that reflect the social conditions, e.g., voter
turnout, radio penetration, and bank deposits per capita. In [3], it was pointed
out that the estimation cannot be consistent unless the data follow appropriate
assumptions.
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Modal linear regression (MLR) models a conditional mode of y given x by a
linear predictor function of x. MLR relaxes the distribution assumptions for the
conventional linear regression, and is robust to outliers compared to least squares
estimates of linear regression coefficients. It was proven in [7] and [13] that their
estimators for the MLR model were consistent even when the error distribution
was asymmetric. For the above reasons, it is important to investigate the mode
estimation methods and this has been done for many years.

In general, if a probability density function of a random variable X has a unique
mode and is symmetric with respect to the mode, Pr (p − w ≤ X ≤ p + w) with
fixed w is maximized when p is the mode. Based on this property, [8] proposed an
estimator for the coefficients of MLR. An MLR model is formulated as follows:

y = x�β + ε, where Mode [ε;x] = 0. (1)

The estimator proposed by [8] is consistent when there exists w > 0, and a
probability density function of ε is symmetric in the range of 0 ± w. In [7], it is
proved that the mode estimator for the coefficients of MLR is consistent even if
the symmetry is not satisfied. In [13], an EM algorithm was proposed to estimate
the coefficients of MLR.

Geometric formulations of statistical and machine learning algorithms can
offer a deep understanding and improvement of these algorithms [1,10]. Moti-
vated by the importance of such a geometric formulation and analysis of the
modal linear regression, in this paper, we provide an information geometric per-
spective of MLR. In information geometry, we often construct a model manifold
using a parametric distribution and regard the projection of an empirical distri-
bution onto the model manifold as an estimation. In the case of linear regression,
we construct a model manifold on the basis of the assumption that an error vari-
able has a normal distribution. Because of the lack of a parametric distribution,
it is difficult to construct a model manifold that corresponds to the MLR model
using conventional approaches. There have been studies related to nonparametric
models in information geometry. In [11], it was shown that a well-defined Banach
manifold for probability measures can be constructed. In [12], a framework for a
nonparametric e-mixture estimation was proposed. In this paper, the difficulty
of constructing a model manifold is overcome by a nonparametric model, which
is identified by a finite number of parameters. We propose the construction of
a model manifold using observations, as is done when constructing an empirical
distribution in conventional approaches. Our proposal gives a geometric view of
the MLR model.

2 Modal Linear Regression

Let x ∈ R
p, y ∈ R be a set of predictor variables and a response variable,

respectively. Although least squares linear regression estimates a conditional
mean of y given x, MLR estimates a conditional mode of y given x.
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2.1 Formulation

Suppose that {xi, yi}N
i=1 are i.i.d. observations. MLR is used to model a condi-

tional mode of y given x by Mode [y;x] = x�β. Namely, y and x are related by
Eq. (1). To estimate β, a loss function of the form

l(β; y, x) = −φh

(
y − x�β

)
, (2)

is introduced [8], where φh(x) = 1
hφ

(
x
h

)
, φ(·) is a kernel function, and h is a

bandwidth parameter. Minimizing the empirical loss allows us to estimate β̂ of
the linear coefficient:

β̂ = max
β

1
N

N∑

i=1

φh(yi − x�
i β). (3)

In this paper, we assume that φ(·) denotes a standard normal density function.

2.2 EM Algorithm for MLR

The modal expectation-maximization algorithm was proposed in [13] and con-
sists of the following two steps, starting from an initial estimate β(1).
E-step: In this step, the purpose is to derive a surrogate function g(β;β(k)):

log

[
1

N

N∑
i=1

φh

(
yi − x�

i β
)]

= log

[
N∑
i=1

π
(k)
i

1
N

φh

(
yi − x�

i β
)

π
(k)
i

]
, by Jensen’s inequality

≥
N∑
i=1

π
(k)
i log

[
1
N

φh

(
yi − x�

i β
)

π
(k)
i

]
= g(β; β(k)), (4)

where π
(k)
i = φh(yi−x�

i β(k))
∑N

j=1 φh(yj−x�
j β(k))

, i = 1 . . . N.

M-step: In the M-step, the parameter β is updated to increase the value of
1
N

∑N
i=1 φh

(
yi − x�

i β
)
:

β(k+1) = argmax
β

N∑

i=1

π
(k)
i log φh(yi − x�

i β), (5)

If φ(·) is a standard normal density function, β(k+1) is

=
(
X�WkX

)−1
X�Wky, (6)

where Wk = diag
(
π
(k)
1 · · · π

(k)
N

)
. The detailed derivation and property of the

estimate β̂ are found in [13].

3 Information Geometry

Information geometry [2] is a framework to describe spaces that consist of proba-
bility density functions by means of differential geometry. We consider the space
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S of probability density functions (pdfs) in the class of the exponential fam-
ily. In this case, one of the natural measures of dispersion of two pdfs is the
Kullback-Leibler divergence D(m)(q||p), which is expressed as follows:

D(m)(q||p) = D(e)(p||q) =
∫

q(x) log
q(x)
p(x)

dx.

Here, D(e) is called the e-divergence, and D(m) is called the m-divergence.
In information geometry, a statistical inference is often regarded as a projec-

tion of an empirical distribution onto a model manifold.
The expectation-maximization (EM) algorithm [4] is one of the methods used

to find maximum likelihood estimates of parameters in a latent variable model. In
information geometry, the exponential-mixture (em) algorithm [1] corresponds
to the EM algorithm.

A manifold that consists of statistical models is called a model manifold and
denoted by M , and a manifold that consists of the empirical joint probability
distributions of observable variables and latent variables is called a data manifold
D . The purpose of the em algorithm is to find the points p∗ ∈ M and q∗ ∈ D
that minimize the KL-divergence from q∗ to p∗. In order to achieve this goal, the
em algorithm iterates the following two steps, starting from an initial guess p(1).
e-step: e-projection of p(k) ∈ M onto the data manifold D .

q(k) = argmin
q∈D

D(e)(p(k)||q).

m-step: m-projection of q(k) ∈ D onto the model manifold M .

p(k+1) = argmin
p∈M

D(m)(q(k)||p).

4 Information Geometry of MEM Algorithm

This section introduces the modal EM (MEM) algorithm [9] as a basis for the
information geometric formulation of MLR. The information geometric perspec-
tive for the MEM algorithm is useful in overcoming the difficulty of constructing
manifolds for the MLR model. Let us consider Gaussian mixture models with
known parameters. In general, even though all of the model parameters are
known, it is difficult to express the mode of the Gaussian mixture model in a
closed form. In order to obtain the mode, we need to resort to numerical opti-
mization such as with the gradient ascent method.

The MEM algorithm is an iterative method to find a local mode of a mixture
distribution in the following form:

f(x) =
K∑

i=1

πifi(x), x ∈ R
p,

⎧
⎪⎪⎨

⎪⎪⎩

πi ≥ 0,
K∑

i=1

πi = 1,

fi : Rp → R, i = 1 . . . K are pdfs,
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where all of the parameters in this model are known. The purpose of the MEM
algorithm is to find the mode of f(x), that is, x∗ = argmax

x
f(x). In [9], the

proposal was made to iterate the following two steps starting with an initial
estimate x(1).

E-step

p
(k)
i =

πifi(x(k))
f(x(k))

, i = 1 . . . K. (7)

M-step

x(k+1) = argmax
x

K∑

i=1

p
(k)
i log fi(x). (8)

4.1 Information Geometric Formulation

To provide an information geometric perspective of the MEM algorithm, we add
a latent variable Z ∈ {1 . . . K} to the mixture model f(x) =

∑K
i=1 πifi(x). The

latent variable specifies a mixture component that yields an observation x. A
joint pdf g(x, z) is expressed as follows:

g(x, z) =
K∏

i=1

[πifi(x)]δi(z) , where

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

πi ≥ 0,
K∑

i=1

πi = 1,

fi, i = 1 . . . K are pdfs,

δi(z) =

{
1 i = z,

0 i �= z.

(9)

The extension to a joint pdf expressed as Eq. (9) was introduced by [1] to treat
mixture modeling in the framework of EM. In general, an empirical density
function is constructed based on observations. For example, when observations
{xi}N

i=1 are i.i.d., an empirical density function is defined as 1
N

∑N
i=1 δ(x − xi),

where δ(·) denotes the Dirac delta function.
In the formulation of the MEM algorithm, the construction of an empirical

density function is nontrivial because there is no observation. In this paper, we
interpret the formulation of the MEM algorithm as the problem of estimating
the likelihood of the given model for a pseudo-observation, namely, we assume
that “one observation is obtained” and propose to define an empirical density
function p(x) = δ(x − m), where m denotes the pseudo-observation. We treat
it as an unknown parameter. Introducing a latent variable Z ∈ {1 . . . K}, we
extend p(x) to an empirical joint density function of X and Z as h(x, z) =
p(x)q(z | x). Introducing parameters {qi}K

i=1, the conditional density function
q(z | x) is modeled as follows:

q(z | x) =
K∑

i=1

qiδi(z), where qi ≥ 0,
K∑

i=1

qi = 1.
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Then, the empirical joint density function h(x, z ;m, q1 . . . qK) is expressed as
follows:

h(x, z ;m, q1 . . . qK) =
K∑

i=1

qiδ(x − m)δi(z), (10)

where qi ≥ 0 and
∑K

i=1 qi = 1. A data manifold D is defined as follows:

D =

{

h(x, z ;m, q1 . . . qK) | m ∈ R
p, qi ≥ 0,

K∑

i=1

qi = 1

}

. (11)

Let D (m′) be a subset of D restricted with m = m′ and D
(
{q′

i}K
i=1

)
be a subset

of D restricted with qi = q′
i, i = 1 . . . K.

D (m′) =

{

h(x, z ;m = m′, q1 . . . qK) | qi ≥ 0,
K∑

i=1

qi = 1

}

,

D
(
{q′

i}K
i=1

)
= {h(x, z ;m, q1 = q′

1 . . . qK = q′
K) | m ∈ R

p} .

We consider the formulation of the MEM algorithm to be the problem of esti-
mating a likelihood for the observation given a model. Thus, let us consider the e-
projection of a model g(x, z) onto a data manifold D , namely, minh∈D D(e)(g||h).
We minimize D(e)(g||h) by alternately optimizing m and {qi}K

i=1. The optimiza-
tion problem with respect to {pi}K

i=1 is formulated as follows:

min
h∈D (m(k))

D(e)(g||h) →

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

min
q1...qK

D(e)
(
g||h(·, · ;m = m(k), q1 . . . qK)

)
,

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

qi ≥ 0,

K∑

i=1

qi = 1.

(12)

Using the Lagrange multiplier method, the optimal solution for Eq. (12) is given
as follows:

q
(k)
i =

πifi(m(k))
f(m(k))

, i = 1 . . . K. (13)

The optimization problem with respect to m is formulated as follows:

min
h∈D

({
q
(k)
i

}K

i=1

) D(e)(g||h), (14)

which is equivalent to

max
m∈Rp

K∑

i=1

q
(k)
i log fi(m), (15)

which is equivalent to Eq. (8).
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We consider the MEM algorithm to be the problem of estimating the likeli-
hood of a given model for a pseudo-observation and optimize two parameters: the
pseudo-observation and latent variable of the mixture model. The e-projection
of a model distribution g(x, z) onto D(m(k)) gives the optimal q

(k)
i , i = 1 . . . K,

which is equal to Eq. (7) in the original MEM algorithm. The e-projection of

model distribution g(x, z) onto D

({
q
(k)
i

}K

i=1

)
makes it possible to derive the

optimal m(k+1), which is consistent with Eq. (8) in the original MEM algorithm.

Fig. 1. Diagram of em algorithm corresponding to MEM algorithm

Figure 1 shows the iteration process of the em algorithm corresponding to
the MEM algorithm. The proposed em algorithm corresponding to the MEM
algorithm is different from a conventional em algorithm for latent parameter
estimation. The difference is whether a model is unique or not. For example, in
the case of the em algorithm for estimating the parameter of a Gaussian mix-
ture model, the model includes unknown parameters. Thus, the em algorithm
for a Gaussian mixture model consists of the e-projection and m-projection,
where the former denotes the projection of a model onto a data manifold and
the latter denotes the projection of an empirical distribution onto a model man-
ifold. On the other hand, the em algorithm corresponding to MEM consists of
the e-projection only. Therefore, the proposed em algorithm for MEM is not
strictly the em algorithm, but we purposely call the proposed algorithm the em
algorithm because the MEM algorithm is derived from the EM algorithm.

5 Information Geometry of MLR Algorithm

In this section, we analyze MLR from the information geometric perspective.
We elucidate the source of the difficulty in constructing a model manifold and
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data manifold for the MLR model, and propose a framework to geometrically
formulate the MLR model.

5.1 Constructing Manifolds

In order to elucidate the source of the difficulty in constructing manifolds for the
MLR model, we consider the parameter estimation of a Gaussian mixture model
as a specific example of statistical inferences in information geometry. Suppose
that observations {xi}N

i=1 are i.i.d. and xi has a Gaussian mixture distribution
expressed as follows:

f(x;μ,Σ) =
K∑

i=1

πig(x;μi, Σi), πi ≥ 0,

K∑

i=1

πi = 1,

where g(x;μi, Σi) is the Gaussian pdf with mean μi and covariance Σi. A data
manifold is constructed based on the empirical density function 1

N

∑N
i=1 δ(x−xi).

In the parameter estimation of a Gaussian mixture model, a model manifold
is constructed based on the parametric distribution. On the other hand, there is
no assumption of parametric distributions in MLR. This makes it nontrivial to
construct a model manifold and data manifold.

5.2 Information Geometric Formulation

To construct a model manifold for the MLR model, we consider (i) the assump-
tion that Mode [ε;x] = 0 and (ii) the form of the objective function of β for the
MLR model, 1

N

∑N
i=1 φh

(
yi − x�

i β
)
. With this assumption and fact, the opti-

mization problem of Eq. (3) can be regarded as a maximization problem for
a kernel density estimate at ε = 0 of a probability density function of ε. We
propose to construct a model for the MLR as follows:

f(ε;β) =
1
N

N∑

i=1

φh (ε − εi(β)) , (16)

where εi(β) = yi − x�
i β, i = 1 . . . N , and a variable ε denotes an error variable.

We introduce a latent variable Z ∈ {1 . . . N}, which specifies a mixture compo-
nent from which an observation is obtained. The joint density function of ε and
Z is expressed as g(ε, z;β) =

∏N
i=1

[
1
N φh (ε − εi(β))

]δi(z)
. A model manifold M

is denoted by

M = {g(ε, z;β) | β ∈ R
p} . (17)

In general, an empirical density function is often constructed based on obser-
vations. In this paper, observations are used for constructing a model manifold.
Thus, from (i) the construction proposed in Sect. 4.1 and (ii) the assumption
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that Mode [ε;x] = 0, we propose to construct an empirical density function as
follows:

p(ε) = δ(ε − 0) = δ(ε). (18)

Introducing a latent variable Z ∈ {1 . . . N} to Eq. (18), we extend p(ε) to an
empirical joint density function of ε and Z as h(ε, z) = p(ε)q(z | ε). Introduc-
ing parameters {qi}N

i=1, the conditional density function q(z | ε) is modeled as
follows:

q(z | ε) =
N∑

i=1

qiδi(z), where

⎧
⎪⎪⎨

⎪⎪⎩

qi ≥ 0,

N∑

i=1

qi = 1.

Then, the empirical joint density function h(ε, z; q1 . . . qN ) is expressed as
follows:

h(ε, z ; q1 . . . qN ) =
N∑

i=1

qiδ(ε)δi(z), qi ≥ 0,

N∑

i=1

qi = 1. (19)

A data manifold D is defined as follows:

D =

{

h(ε, z ; q1 . . . qN ) | qi ≥ 0,
N∑

i=1

qi = 1

}

. (20)

Let us consider the e-projection of a model, whose parameters are β(k), onto the
data manifold:

min
h∈D

D(e)(g(·, ·;β(k))||h) →

∣
∣
∣
∣
∣
∣
∣
∣
∣

min
q1...qN

D(e)
(
g(·, ·;β(k))||h(·, · ; q1 . . . qN )

)
,

s.t. qi ≥ 0,

N∑

i=1

qi = 1.

(21)

An optimal solution for Eq. (21) is

q
(k)
i =

φh

(
yi − x�

i β(k)
)

∑N
j=1 φh

(
yj − x�

j β(k)
) , i = 1 . . . N, (22)

which is equivalent to Eq. (4).
Then, let us consider the m-projection of an empirical joint density function,

whose parameters are qi = q
(k)
i , i = 1 . . . N , onto the model manifold:

min
g∈M

D(m)(h(·, · ; q1 = q
(k)
1 . . . qN = q

(k)
N )||g). (23)
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The optimization problem expressed as Eq. (23) is equal to

max
β

N∑

i=1

q
(k)
i log φh

(
yi − x�

i β
)
, (24)

which is equivalent to Eq. (5). Figure 2 shows the process for updating the em
algorithm corresponding to the MLR model, which iterates the e-projection and
m-projection.

Fig. 2. Diagram of the em algorithm corresponding to the MLR model

6 Conclusion

In this paper, we proposed a method for constructing a model manifold and data
manifold for the MLR model. Although a model manifold is often constructed
based on a parametric distribution assumption, we proposed a method based
on observations. In the manifolds constructed by the proposed approach, we
formulated the em algorithm to estimate the coefficients of MLR models. The
result showed that the e-projection from a model with a fixed β(k) onto the
data manifold, and the m-projection from an empirical distribution with fixed
parameters qi = q

(k)
i , i = 1 . . . N onto the model manifold, led to the original

E- and M-steps of the EM algorithm for the MLR parameter estimation [13].
This work is a purely theoretical one to shed light on the well-known MLR

from the viewpoint of information geometry. The obtained results do not provide
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any computational improvement. Hence, we did not perform any computational
experiments. Our future work will include further analyses of the MLR model
based on the proposed geometric perspective, and the elucidation of its statistical
characteristics, which include robustness, consistency, and effectiveness. Because
MLR is based on the kernel density estimator, we believe that it would also be
interesting to optimize the kernel bandwidth using ideas from information geom-
etry. The theoretical evaluation of the robustness, consistency, and effectiveness
will be followed by experimental evaluations of those properties, which might
lead to novel algorithms with better properties.
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Abstract. With the boom of online video uploading, video tagging
becomes an important way for video indexing. However, text-based video
tagging methods ignore either genre labels or temporal differences of
videos, which makes results defective. Fortunately, a new type of videos
called time-sync commented videos which contains large amounts of
information commented by the users helps videos tagging. In this paper,
we propose a supervised dynamic Latent Dirichlet Allocation model uti-
lizing the variational topics of time-sync comments to extract both genre
labels and keywords as tags. We also implement experiments on large
scale real-world datasets and the effectiveness of our model are proved
both in genre label classification and keyword extraction compared with
baseline models.

Keywords: Video tagging · Time-sync commented videos
Bullet-screen comments · Keyword extraction
Multi-label classification

1 Introduction

In these years, millions of videos are uploaded everyday. To summarize these
videos, tags of videos provide users a fast primary impression of the videos.
However, the lack of tags and subjectivity of uploaders decrease both the quality
of video tags and the experience of users. Fortunately, a new form of video called
time-sync commented video become more and more popular in these years, and
their data provided a new opportunity to solve video tagging problems better.

Time-sync commented videos are videos with real-time comments associated
with playback time and content generated by users. When watching a video,
users can comment the content at any time of the video and comments will
overlay over the video directly, synchronized to the playback time. Other users
can also see these comments at the same playback time. There is an example for
c© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11303, pp. 546–559, 2018.
https://doi.org/10.1007/978-3-030-04182-3_48
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Time-sync commented videos in Fig. 1. This kind of comments are also called
bullet-screen comments [5], which make it possible to learn the temporal
semantic of videos, however, there are still some existing problems.

Most previous video tagging works which use bullet-screen comments [13,15,
16] only regard extracted keywords as tags. However, there are also some tags
that can not be obtained from keywords such as genre labels tagged by uploaders.
Thus, simply regarding extracted keywords as tags is insufficient to reflect the
content of the videos. Genre labels such as “Comedy” or“Action” tagged by
uploaders can reflect the main topic of the videos and sometimes maybe more
interested by users. It is also important to tag videos by these genre labels. For
videos that lack tags, using supervised method to learning genre labels as tags
from other tagged videos is helpful.

There is a problem that traditional supervised multi-label classification mod-
els [6,18] ignore the minor labels. For example, the genre labels of movie
your name1 in Internet Movie Database(IMDb)2 are “Drama”,“Fantasy” and
“Romance”, but other minor labels such as“Amuse” are omitted although there
are many scenes of the movie are about “Amuse”. In General, the temporal
differences in videos make the content of bullet-screen comments various and
uploaders always omit minor genre labels for brief, which also ignore the differ-
ent focuses of some fragments beyond the storyline. But comments related to
these omitted labels would disturb the learning of other genre labels.

To solve all these problems, we lead classical latent dirichlet allocation
(L DA) [1] model into our model and propose a supervised latent dirichlet alloca-
tion called Dynamic Labeled LDA (DLLDA) model to tag time-sync commented
videos. Our model utilize bullet-screen comments and genre labels of videos to
tag unlabeled videos with both genre labels and keywords. To deal with the
omitted minor genre labels, our model considers both the temporal differences
in each video and the similarity of same label among videos. By utilizing a super-
vised LDA model, we combine each genre label to a topic which guarantee the
similarity of same label among videos. And by splitting bullet-screen comments
into slides, each slide are allocate to a topic distribution which reflect the tem-
poral differences in each video. Furthermore, video-specific word distributions
are also introduced into our model to extract keywords for each video.

Fig. 1. An example for bullet-screen comments in time-sync commented videos

1 https://www.imdb.com/title/tt5311514/.
2 https://www.imdb.com/.

https://www.imdb.com/title/tt5311514/
https://www.imdb.com/
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The results of experiments shows that our model performs better both in
genre label classification and keyword extraction comparing with baseline meth-
ods, which validates the potentiality of our model in bullet-screen comments
understanding.

2 Related Work

Traditional Video Tagging Techniques. Some traditional video tagging
techniques [9,10,12] propose methods to tag whole videos mainly using identical
scenes in visual. Some other works combine both visual and textual information,
Xu et al. [14] and Chiu et al. [4] take advantages of both web-casting text and
video shots to tag events in sport lives and Chakrabarti et al. [2] use tweets to
label sport videos. However, these technics are limited in solving problem about
big events videos. It is difficult for them to handle videos with plots such as
movies and animations.

Time-Sync Commented Videos. Compared with works in traditional videos,
the researches on time-sync commented videos are comparatively rare. Yoshii
et al. [17] develop a music commentator to automatic generate music comments
using time-sync commented videos. Chen et al. [3] uses both visual and textual
features of time-sync commented videos to achieve personalized key frame recom-
mendation. Wu et al. [13] and Yang et al. [16] use bullet-screen comments to tag
videos by keywords. Similarly, Xu et al. [15] introduce a summarization model
to extract key sentences for each slide. However, without supervised knowledge,
their generated tags are extracted from user comments, which is insufficient to
reflect the content of videos. Lv et al. [5] also introduce an approach to tag
videos using bullet-screen comments. They propose a supervised method utiliz-
ing human labeled tags for each slide as training data. However, this kind of
data is rare in natural extracted data and expensive to label by experts.

Supervised LDA Model. Since the LDA [1] model is an unsupervised model,
to adapt supervised learning, a number of methods have been proposed. However,
approaches such as Semi-LDA [11], Supervised Topic Model [6], MedLDA [18]
are adaptations to solve single label classification problems. These methods have
defects such as label independency in handling multi-label classification problem.
Ramage et al. [7] propose a supervised LDA model for multi-label classification
by corresponding labels with topics. Rubin et al. [8] also solve multi-label clas-
sification problem assuming that each topic correspond to a multinomial distri-
bution over label-topics. However, as aforementioned, temporal differences are
fairly important for time-sync commented videos. For ignoring this property,
these approaches are not general enough in dealing with time-sync videos.

3 Problem Definition

In this section, we first introduce the basic properties of time-sync commented
videos and bullet-screen comments. Then we will define the problem formally.
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3.1 Properties of Bullet-Screen Comments

The first property is that bullet-screen comments often have temporal correlation
in adjacent period of time, but in a long period of time, the comments reflect the
content of the video and the correlation become weak. To model this temporal
property, we sort bullet-screen comments in a video by playback time and split
the comments into slides with same length in time. As videos with plots such as
movies and animations are usually too dramatic to model the relations between
scenes, we simply assume that slides in a video are independent.

Another property of bullet-screen comments is the aforementioned temporal
differences in Sect. 1, which indicates that some contents of a video is not limited
in the genre labels of the video. To solve this problem, we introduce a variable
to control if the current slide is related to the genre labels of the video or not.

3.2 Formal Problem Definition

As mentioned in Sect. 3.1, we split the bullet-screen comments of time-sync com-
mented videos into some isolated slides which have equal length. In our DLLDA
model, bullet-screen comments in same slides will be treated as a document
under the “bag-of-words” assumption. The notations to describe our model are
showed in Table 1.

Table 1. Notations of DLLDA model

Notations Interpretation

V Set of Videos which contains |V | videos
vi The ith video in V

C Set of videos’ bullet-screen comments

Si The list of |Si| slides of the bullet-screen comments of vi

si,j A set of |si,j | words containing all the words in jth slide of Si

wi,j,n The nth word in si,j

W Vocabulary set which contains |W| words
zi,j,n The topic of word wi,j,n

ϕ The topic-word distribution

ϕ′
i The video-specific topic-word distribution of video vi

K The total number of topics

tk The kth topic

θi,j The slide-topic distribution of slide si,j

li,j The label-related selector of slide slide si,j

Λi A one-hot binary vector to represent the genre labels of video vi

ηi The variable to control the proportion of label related slides in Si

π The hyperparameter to control the strength of labels

α The Dirichlet prior of θ

β The Dirichlet prior of ϕ and ϕ′
i

γ The Binomial prior of η
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The problems can be defined as following. By giving the video comment set
C and label Λ for video set V as training set and video comment C ′ for video
set V ′ as testing set, our model aims to find a label set Λ′ and a keyword set D
for video set V ′.

4 DLLDA Model

In this section, we propose a supervised dynamic labeled LDA model to represent
latent topics of labeled videos, classify genre labels and extract keywords from
unlabeled videos.

4.1 The Training Model

To construct our training model, we first add two special labels. The “general”
label represents general words in all comments and the“video-specific” label
represent words specific for each video such as the names of characters. Since
words in all slides may contain general words and video-specific words, these two
labels are always equal to 1 for each slide.

Then each genre label are related to a latent topic which means there is
a one-to-one relation between labels and topics ϕ, thus the supervised multi-
label classification problem can be solved with a supervised LDA model. For
the “video-specific” label mentioned above, we also introduce a video-specific
topic ϕ′ for each video, thus the keywords extraction problem is transformed to
a video-specific topic learning problem. For simplification, we set the number of
topics as k and the Kth label refers to the video-specific topic.

For each video in our training model, all the words of bullet-screen comments
and the labels of the videos are regarded as observed variables and other variables
are latent. For each word wi,j,n in a slide si,j , we assign a topic variable zi,j,n.
As mentioned in Sect. 3.1, a slide may in correlation with the labels of the video
or not. In order to model this temporal difference between slides, for each slide
si,j , we assign a binary variable li,j to determine the topic in slide si,j is in
correlation with labels Λi of the video vi or not. The variable li,j is generated
from distribution ηi. There is also a slide-topic distribution θi,j for each slide
si,j , the prior of θi,j is described bellow.

To control the strength of relationship between label related slides and the
genre labels, parameter π are introduced. If a slide si,j is label related or in other
words li,j = 1, then parameter π will determine the prior of θi,j of this slide:
θi,j ∼ Dirichlet(Λiπα + (1 − Λi)(1 − π)α) where 1 means a vector all elements
are 1. If l = 0, the prior of θ is simply set as α, which means the prior of all
topics are equal.

4.2 The Testing Model

For the testing model, we decide to adapt our DLLDA training model for testing
task. With the consideration that some slides in a video may be noisy for learn-
ing its topics, e.g. the credits of movies or animations may only have the staff
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information and these slide will disturb the result of testing. In these case, sim-
ply averaging the topic distribution of all the slides in a video is not a good idea.
To solve this problem, the bullet-screen comments of a video are regarded as a
whole document to learn topic distribution of a video. In addition, we reserve
the video-specific topic distribution to learn keywords in a video.

(a) DLLDA training model (b) DLLDA testing
model

(c) LLDA model

Fig. 2. Graphical model representations of DLLDA model and LLDA model

The probabilistic graphical model of our DLLDA model and traditional
Labeled LDA model [7] is showed in Fig. 2.

4.3 The Generation Process

As the DLLDA model has been defined, it will be used for modeling the bullet-
screen comments. The generation process of DLLDA model in training step is:

– For each topic tk,
– Draw ϕk ∼ Dirichlet(β)

– For each video vi,
– Draw ϕ′

i ∼ Dirichlet(β)
– Draw η ∼ Binomial(γ)

– For each slide si,j ,
– Draw li,j ∼ Bernoulli(η)
– If li,j = 1: draw θi,j ∼ Dirichlet(Λiπα + (1 − Λi)(1 − π)α)
– If li,j = 0: draw θi,j ∼ Dirichlet(α)

– For each word wi,j,n,
– Draw zi,j,n ∼ Multi(θi,j)
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– If zi,j,n = tk: draw wi,j,n ∼ Multi(ϕ′
i)

– Else: draw wi,j,n ∼ Multi(ϕzi,j,n
)

As for the testing step, generation process is similar to the traditional LDA
model except the generation of ϕ′ which is same as training process above.

5 Inference Algorithm

In this section, we introduce a collapsed Gibbs sampling algorithm to infer the
latent variables in our DLLDA model with the generation process mentioned
above. Gibbs sampling is a widely used Markov chain Monte Carlo (MCMC)
algorithm for approximate inference in probabilistic graphical model.

Algorithm 1. DLLDA training algorithm
Input: Videos V , each video vi ∈ V refers to a list of slides Si; each slide si,j ∈ Si

contains |si,j | words. Further more, each video also contains a set of label Λi.
Output: A topic-word distribution ϕ.

1: Initialize each variable li,j in a slide si,j and each topic zi,j,n of word wi,j,n.
2: for #sampling iterations do
3: for video vi in V do
4: Sample distribution ηi by (1)
5: for slide si,j in Si do
6: Sample li,j by (2)
7: if li,j = 0 then
8: Sample θi,j by (3)
9: else

10: Sample θi,j by (4)

11: for word wi,j,n in si,j do
12: Sample zi,j,n by θi,jϕall

13: if topic zi,j,n = tK then
14: Sample wi,j,n by (5)
15: else
16: Sample wi,j,n by (6)

17: return ϕ

At each iteration of our proposed Gibbs sampler and for each slide si,j , we
first sample the variable ηi. As η ∼ Binomial(γ), the posterior probability of ηi

can be represented as:

p(ηi|li, γ) =
m¬

i,l=1 + γ1
∑

h=0,1 m¬
i,l=h + γh

. (1)

where m¬
i,l=h represents the number of l which equals h in video vi except the

current one in slide si,j .
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Then we sample the label li,j for each slide si,j . For simplification, we define
the prior of θi,j condition on li,j = 1 as λi = Λiπα + (1 − Λi)(1 − π)α, which
denote that if a slide is related to the labels of the video, the strength of this
correlation can be adjust by this formula. Thus the probability of li,j can be
represented as:

p(li,j = 1|θi,j , ηi) =
Dir(λi)ηi

Dir(λi)ηi + Dir(α)(1 − ηi)

=

∏K
k=1

Γ (αk)
Γ (λi,k)

ηi

∏K
k=1

Γ (αk)
Γ (λi,k)

ηi +
∏K

k=1 θ
αk−λi,k

k (1 − ηi)
.

(2)

After inferencing the prior of the slide-topic distribution θi,j , to estimate
the posterior of distribution θi,j , according to Sect. 3.1, each slide in a video
is considered independent to other slides giving the parameter li,j . When the
variable li,j = 0, we have:

θi,j,k =
m¬

i,j,k + α
∑K

k=1(m
¬
i,j,k + α)

. (3)

When the variable li,j = 1, we have:

θi,j,k =
m¬

i,j,k + λi,k
∑K

k=1(m
¬
i,j,k + λi,k)

. (4)

where m¬
i,j,k represents the number of words that topics are tk in si,j , except the

current word.
We also introduce a process to sample the video-specific topic distribution

when the topic zi,j,n of a word wi,j,n is sampled as the Kth topic:

ϕ′
i,t =

m¬
ki,t

+ β
∑|W|

t=1(m
¬
ki,t

+ β)
. (5)

where m¬
ki,t

represents the number of words which topic is sampled as the video-
specific topic in video vi except the current word. And for other topics, the topic
distribution is just same as traditional LDA model:

ϕk,t =
m¬

k,t + β
∑|W|

t=1(m
¬
k,t + β)

. (6)

where m¬
k,t represents the number of words which topic is sampled as the kth

topic except the current word.
In each sample, zi,j,k can be drawn according to the probability proportional

to θi,jϕall, where ϕall is the combination of video-specific topic distribution ϕ′
i

and normal topic distribution ϕ.
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6 Experiments

In this section, we firstly conduct experiments compared with several baseline
models. Then we discuss the parameter sensitivity in Sect. 6.3, and show our
learned results in the end of this section.

6.1 Dataset

Unfortunately, the data in English time-sync commented video website such as
Viki3 are not abundant enough for our experiments. We extract a real-world
dataset from one of the most popular time-sync commented video website in
China called bilibili4, which focuses on animations and games. Our dataset con-
tains over 500 animation series including their labels as well as the bullet-screen
comments of each episode. In this paper, we simply regard one season of an ani-
mation as a video, which usually contains 13 or 26 episodes. As the bullet-screen
comments are usually noisy, the raw data we extracted must be pre-processed.

First, we remove some of the uninformed genre label e.g. “Adapted from a
comic”,“UltraShort” and “Original” which have little information about content
of videos. We also remove some video that have too few bullet-screen comments.

Next, we segment our bullet-screen comments data and remove stopwords,
symbols and emoticons in comments and merge words only different in suffix
with repeat characters. For instance, “www” and“wwwww” would be merged.

In the end of pre-processing part, we divide each bullet-screen comments of a
video into slides. As mentioned above, the slides are length sensitive. According
to our experience, we chose 1 min as the length of a slide.

After the pre-processing progress, we finally get 232 videos which correspond
to 132688 min videos. We split videos into two datasets and for each dataset, we
randomly select 80% of the videos as training set and the rest as testing set.

6.2 Experimental Setup

Before the experiment, we first discuss parameters for our model. We empiri-
cally set the Dirichlet prior α = 50/K, β = 0.01 without optimization for both
training and testing. And we set γ0 = 50, γ1 = 100 based on our observation of
the videos. For the parameter π, we will explain the parameter learning in detail
in Sect. 6.3.

To evaluate the performance of our model, we introduce three baseline mod-
els: Labeled-LDA model [7], Dependency-LDA model [8] and SW-IDF model
[16]. In addition, the iterations of all the models are set to 100.

Labeled LDA model is a model to solve multi-label classification prob-
lem and generating topics for each label. In this model, the whole bullet-screen
comments of a video are treated as an independent document.

3 https://www.viki.com/.
4 http://www.bilibili.com/.

https://www.viki.com/
http://www.bilibili.com/
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Dependency LDA model is also used to solve multi-label classification
problem. This model is a LDA-based method for multi-label document classi-
fication. The Dirichlet prior parameters α = 50/K, β = 0.01 are same as our
model and other parameters are set default.

SW-IDF model is an unsupervised keywords extraction algorithm using
bullet-screen comment data. We use this baseline model for case study to com-
pare keywords extracted by our video-specific topics.

Figure 3(a) shows variance of topics in training step of our model.

6.3 Parameter Sensitivity

In this section, we examine the optimization of the parameter π mentioned above.
It is obvious that if π = 0.5, the model will have no supervised information. To

enforce supervised information, the value of π should be much greater than 0.5.
Thus we introduce a parameter tuning experiment to evaluate π. Figure 3(b)

shows the performance of π and we can see that when π is set to 0.94, the model
performs best.

(a) The variance of topics in training step (b) Sensitivity of parameter π

Fig. 3. Graphical model representations of DLLDA model and LLDA model

6.4 Experiment Results

To evaluate the multi-label task, we choose some widely used multi-label evalua-
tion metrics. For the Jaccard index, Precision, Recall and F1-score, higher values
refer to better performance and for the Hamming loss and One error, the lower
values refer to better performance. The overall results of experiment are shown
in Table 2 and “D1” and“D2” means the two datasets mentioned in Sect. 6.1.

We can see that our DLLDA model outperforms other models in nearly all
of these metrics in two datasets. This result shows that the micro F1 score of
two baseline models are close to each other and our model outperforms the
two baselines over 20% in micro F1 score. Our model outperforms especially in
precision metrics. This is because the large amount of slides are noisy in training
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Table 2. Performance of three models in two datasets

Jaccard index Precision Recall F1-score Hamming loss One error

D1 D2 D1 D2 D1 D2 D1 D2 D1 D2 D1 D2

LLDA 0.288 0.337 0.382 0.458 0.539 0.559 0.447 0.504 0.300 0.346 0.186 0.179

D-LDA 0.292 0.280 0.382 0.383 0.553 0.511 0.452 0.438 0.300 0.318 0.196 0.206

DLLDA 0.455 0.433 0.625 0.691 0.625 0.537 0.625 0.604 0.250 0.136 0.100 0.115

data and our model consider the temporal differences which helps distinguish
noise and improve the precision of learned labels. The one error metric shows
that our method also performs better than baselines in ranking performance.

For comparison, we also use pair-t test to show the confidence of the improve-
ment. We compare the results in our DLLDA model and D-LDA model of every
animation in two datasets. The result p-values of two datasets are 0.002095 and
0.001097, which means there is a strong evidence that our model does work
better than the baseline model on average.

6.5 Case Study

In this section, we show some results to illustrate the performance of our topic
learning and keywords extraction.

Firstly, to compare the topics obtained by our DLLDA model and the baseline
Labeled LDA model [7], we randomly choose three topics and demonstrate 10
most probable words from each topic5 in Table 3. Since the relationship of labels
and topics is one-to-one, we simply use label names to represent topics.

In general, both two model generate some meaningful words. Most of the
words generated by our model have strong relationship with the topic. For the
Labeled LDA model, many words such as “Joan of Arc”,“Holy Grail” and “green
hair” only have relationship with some animation labeled with these topics. In
addition, we can notice that words such as“leading actor” and “2333”6 are really
general and have little information to reflect the content of topics.

We also compare the keywords extracted from our DLLDA model and the
baseline SW-IDF [16] model. We randomly choose three animations in our test
datasets and the result are showed in Table 4.

In the first sample, our DLLDA Model correctly extract the name of two main
character, but for the SW-IDF model, the extracted names refer to characters
from other irrelevant animations. In the second sample, some keywords extracted
by our model have strong relationship with the animation. But for the baseline
model, the most probable words wrongly focus on the taste of a kind of food
which have absolutely no relation with the animation. In the third sample, two
models get similar results and both model successfully extract some names of
main characters.

5 These words and topic names are manually translated to English by the authors.
6 A Chinese internet slang means laughing.
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Table 3. 10 most probable words of three topics generated from two models

Topic DLLDA model Labled LDA model

Topic “Battle” king, sword, online,
powerful, chop, fight,
falchion, physical
strength, infinite

summon, Glittering,
king, my king, Joan of
Arc, leading actor, sword,
tutor, Holy Grail, world

Topic “Delicacy” eat, fish, delicious,
drink, China, Japan,
meat, meal, taste,
hungry

eat, eye protection,
leading actor, 2333,
delicious, drug, meat,
lady, like, wife

Topic “Super Robot Wars” the earth, aircraft,
cannon, human beings,
universe, gundam, fly,
war, protagonist, enemy

queen, green hair, sing
song, leading actor, uncle,
sing, song, farewell, 2333,
beautiful

Table 4. 10 most probable keywords extracted from three animations by two models

Animation DLLDA model SW-IDF model

From Me to You panda, like, heroine,
Kurumi, leading actor,
husband, cute, Sawako,
second heroine, girl’s
heart

husband, wife, panda,
benefit, heart, girl,
Takashi, Natsume, hope

Croisée in a Foreign
Labyrinth

leading actor, lolita,
Yune, elder sister,
Japan, grandfather,
Kimono, China, lily,
France

eat, watery tender bean
curd, sweat, salty, leading
actor, Japan, lolita, lily,
China, younger sister

Higurashi When They Cry leading actor, Shion,
Mion, Rika, perfect,
crime, Higurashi,
Rena, breakdown, air
conditioner

Shion, leading actor,
perfect, Mion, crime,
like, Rika, 2333,
Higurashi, Ooishi

7 Conclusions

In this paper, we proposed a supervised dynamic LDA model utilizing both
genre labels and keywords to tag videos. We regard video labels as topics and
introduce a supervised LDA model. To deal with the temporal differences in
a video, we split each video into slides and introduce a selector to determine
whether the slide is related to the labels of the video. Then we use a LDA based
multi-label classification algorithm to label videos and extract keywords. The
Experiments on large real-world datasets prove our effectiveness both in genre
label classification and keyword extraction compared with baseline models.
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Abstract. In order to solve the problem that Q-learning can suffer from
large overestimations in some stochastic environments, we first propose
a new form of Q-learning, which proves that it is equivalent to the incre-
mental form and analyze the reasons why the convergence rate of Q-
learning will be affected by positive bias. We generalize the new form for
the purpose of easy adaptations. By using the current value instead of the
bias term, we present an accurate Q-learning algorithm and show that
the new algorithm converges to an optimal policy. Experimentally, the
new algorithm can avoid the effect of positive bias and the convergence
rate is faster than Q-learning and its variants on several MDP problems.

Keywords: Reinforcement learning · Q-learning · Positive bias
Accurate Q-learning

1 Introduction

Q-learning is a popular off-policy reinforcement learning algorithm proposed by
Watkins [16], which is widely used to solve optimal control problems in Markov
decision processes (MDPs) [4,17,18]. In finite state-action problems, it has been
proved that Q-learning can converge to an optimal action-value function [6,9,11],
but the convergence rate of it will be slow when the discount factor is close to one
[15]. In some stochastic environments with highly random rewards, Q-learning
will cause high statistical errors because of the max operator. The performance of
Q-learning can suffer from the significant overestimation of action values [8,10].
This is proved under the multi-armed bandit problem [1,12]. The estimated
expected return is overly optimistic which can hinder the performance.

There have been several papers appeared with proposed improvements. Bias
corrected Q-learning [10] constructs the bias-correction term and retains the
asymptotic convergence of Q-learning. This algorithm can only be used when
the number of actions is not less than 5. Another method using a single action-
value function estimate is weighted Q-learning [5], which is based on a weighted
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average of the sample means. Since the weights are computed using Gaussian
approximations for the distributions of the sample means, the calculation amount
is huge. Double Q-learning [7] uses two estimators, one is to determine the max-
imum action and the other is to provide the estimate of its value. Double Q-
learning has been shown to reduce bias but underestimate the action values
in some cases. It inspired weighted double Q-learning [19], which is based on
the construction of the weighted double estimator in order to strike a balance
between the overestimation in the single estimator and the underestimation in
the double estimator.

The main contribution of this paper is to propose the accurate Q-learning
algorithm which can avoid the negative effects of positive bias by modifying one
of the simplified Q-learning terms. We prove that the algorithm converges to the
optimal solution in the limit. We demonstrate the benefits of our algorithm for
several problems and compare our experiment results with Q-learning and its
variants.

The rest of the paper is organized as follows: In Sect. 2, we give the notations
used in this paper. In Sect. 3, we present the accurate Q-learning algorithm. We
first propose a new form which is equivalent to Q-learning update rule in Sect. 3.1
and we generalize the new form in Sect. 3.2, then we construct an accurate Q-
learning algorithm by using the current value instead of the bias term in Sect. 3.3.
In Sect. 4 we give the experimental results and illustrate the policy quantity and
convergence rate of the new algorithm. Finally, We conclude the paper and give
the future directions of our work.

2 Background

A Markov decision process is defined as a five-tuple (S,A, P,R, γ), where S is a
set of states and A is a set of actions, S and A are finite. P : S × A × S′ → [0, 1]
is the state transition distribution, where P (s, a, s′) is the probability of taking
action a in state s will lead to state s′. R : S × A → R is a reward function,
where R(s, a) is the immediate reward obtained by taking action a in state s.
γ ∈ [0, 1) is a discount factor for the E[

∑∞
t=1 γt−1R(st, at)] which represents the

difference in importance degree between current rewards and long-term returns.
A policy π : S → A specifies the action that the agent will choose in state s.

The action-value function of a policy π are represented by Qπ : S ×A → R. The
main point of MDPs is to find an optimal policy π∗ that maximizes Qπ(s, a),
which satisfies the Bellman optimality equation in MDPs [3]:

Q∗(s, a) = E{R(s, a) + γ max
a′

Q∗(s′, a′)} (1)

The key idea of Q-learning is to apply incremental estimations to Bellman opti-
mization equation [2]. The update of Q-learning can be written as

Qt+1(s, a) =
(
1 − αt(s, a)

)
Qt(s, a) + αt(s, a)

(
Rt(s, a) + γ max

a′
Qt(s′, a′)

)
(2)

where αt(s, a) ∈ (0, 1] is the learning rate parameter associated with the state-
action pair at time step t. Qt is guaranteed to converge to Q∗ if each state-action
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pair can be visited infinite times and the learning rates are chosen under the
following conditions [13,14]:

∑

t≥0

αt(s, a) = ∞,
∑

t≥0

α2
t (s, a) < ∞ (3)

3 Accurate Q-Learning

In this section, we introduce a new form of Q-learning, which proves that it is
equivalent to the incremental form and analyzes the reasons for overestimation
of action value. Then we generalize the new form and get the corresponding
update rule. We propose a new algorithm called accurate Q-learning based on
the new form and give its incremental form.

3.1 A New Form of Q-Learning

Let Qn be the action-value function used in the (n+1)th update of state-
action pair (s, a) and simplify Rn(s, a) and αn(s, a) as Rn and αn, respec-
tively. Define M as the maximum function on action-value functions that
M(s) = maxa Q(s, a). Then the update rule Eq. 2 may be written as

Qn+1(s, a) = (1 − αn)Qn(s, a) + αn

(
Rn + γMn(s′)

)
(4)

From the practical point of view, we obtain a new form of Q-learning by recurring
the update rule according to Eq. 4.

Proposition 1. For all n ≥ 0, the update rule of Q-learning may be rewritten
as

Qn+1(s, a) = Hn
0 Q0(s, a) +

n∑

i=0

Hn
i+1αi

(
Ri + γMi(s′)

)
(5)

where Hj
i is defined as

Hj
i = (1 − αi)(1 − αi+1) . . . (1 − αj), for j ≥ i (6)

and Hj
j+1 := 1.

Proof. For n = 0 we have:

Q1(s, a) = (1 − α0)Q0(s, a) + α0

(
R0 + γM0(s′)

)

Now for any k − 1 ≥ 0, let us assume that the equation Eq. 5 hold, which is

Qk(s, a) = Hk−1
0 Q0(s, a) +

k−1∑

i=0

Hk−1
i+1 αi

(
Ri + γMi(s′)

)
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Thus

Qk+1(s, a) = (1 − αk)Qk(s, a) + αk

(
Rk + γMk(s′)

)

= (1 − αk)
[
Hk−1

0 Q0(s, a) +
k−1∑

i=0

Hk−1
i+1 αi(Ri + γMi(s′))

]

+ αk

(
Rk + γMk(s′)

)

= Hk
0 Q0(s, a) + αk

(
Rk + γMk(s′)

)
+

k−1∑

i=0

Hk
i+1αi

(
Ri + γMi(s′)

)

= Hk
0 Q0(s, a) +

k∑

i=0

Hk
i+1αi

(
Ri + γMi(s′)

)

In order to reduce the influence of initialization of the action values, we let
α0 = 1, then Hk

0 Q0(s, a) = 0. When the rewards exist a considerable random-
ness, although

∑k
i=0 Hk

i+1αiRi is unbiased eventually, it is inaccurate in the early
updates. Because its value is not equivalent to the expected value of the reward.
γ

∑k
i=0 Hk

i+1αiMi(s′) may overestimate due to the inaccuracy of the value func-
tion. The unbiased estimate can be expressed as maxa∗

∑k
i=0 Hk

i+1αiQi(s′, a∗)
and we obtain the inequation:

k∑

i=0

Hk
i+1αiMi(s′) ≥ max

a∗

k∑

i=0

Hk
i+1αiQi(s′, a∗) (7)

The inequality is strict if ∃i,Mi(s′) > Qi(s′, a∗). Since Q-learning use the max
operator to determine the value of the next state, it always selects the maximum
action value. In the early stage of training, the action value it chooses always
has a positive bias compared to the expected value.

The positive bias can cause two main negative effects. One is the diffusion of
positive bias in the value function. Due to using the maximum of the estimates as
an estimate of the maximum of the true values, the overestimated action values
are always selected so that the positive biases propagate throughout the value
function. But this may not prevent Q-learning from converging to the optimal
policy. The other effect is the slow convergence of Q-learning. With the con-
tinuous training,

∑k
i=0 Hk

i+1αiRi will converge to E[R]. The bias of each action
value in this trial will be corrected, but this correction process is unbearably
slow. Due to the coefficient αn, unbiased estimates do not immediately correct
the biases, but rather require multiple visits and updates for each state action
pair. This phenomenon is especially evident when we use decaying learning rates.
With the number of times each state-action pair visited increases, αn is gradu-
ally approaching 0, the correction of bias will be unacceptable slow. This results
in very slow convergence to an optimal policy.
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3.2 Generalization

Due to using
∑k

i=0 Hk
i+1αiMi(s′), the convergence rate of Q-learning is slow,

so we intend to improve on this term. First, we propose a new form of general-
ization that facilitates the improvement of the estimator and makes it easy to
obtain update rules. Let E(s) represent the estimate of the state s. Then we can
construct a general form as

Qn+1(s, a) = Hn
0 Q0(s, a) + γEn(s′) +

n∑

i=0

Hn
i+1αiRi (8)

Proposition 2. Assume that E−1 = 0, then we have, for all n ≥ 0, Eq. 8 is
equivalent to the following incremental form:

Qn+1(s, a) = (1 − αn)
[
Qn(s, a) − γEn−1(s′)

]
+ γEn(s′) + αnRn (9)

Proof. For n = 0 we have:

Q1(s, a) = (1 − α0)
[
Q0(s, a) − γE−1(s′)

]
+ γE0(s′) + α0R0

= H0
0Q0(s, a) + γE0(s′) +

0∑

i=0

H0
i+1αiRi

Now for any k − 1 ≥ 0, let us assume that Eq. 8 hold, which is

Qk(s, a) = Hk−1
0 Q0(s, a) + γEk−1(s′) +

k−1∑

i=0

Hk−1
i+1 αiRi

Thus

Qk+1(s, a) = (1 − αk)
[
Qk(s, a) − γEk−1(s′)

]
+ γEk(s′) + αkRk

= (1 − αk)
[
Hk−1

0 Q0(s, a) +
k−1∑

i=0

Hk−1
i+1 αiRi

]
+ γEk(s′) + αkRk

= Hk
0 Q0(s, a) + γEk(s′) + αkRk +

k−1∑

i=0

Hk
i+1αiRi

= Hk
0 Q0(s, a) + γEk(s′) +

k∑

i=0

Hk
i+1αiRi
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For Q-learning, EQ
n (s) =

∑n
i=0 Hn

i+1αiMi(s) = αnMn(s) + (1 − αn)En−1(s). It
is easy to see

Qn+1(s, a) = Hn
0 Q0(s, a) + γEQ

n (s′) +
n∑

i=0

Hn
i+1αiRi

= Hn
0 Q0(s, a) + γ

n∑

i=0

Hn
i+1αiMi(s′) +

n∑

i=0

Hn
i+1αiRi

= (1 − αn)Qn(s, a) + αn

(
Rn + γMn(s′)

)

We can use Eq. 9 as the update rule of Q-learning, where En(s′) = EQ
n (s′). Com-

paring Eq. 8 with Eq. 9, it can be easily found that Hn
0 Q0(s, a)+

n∑

i=0

Hn
i+1αiRi =

(1 − αn)
[
Qn(s, a) − γEn−1(s′)

]
+ αnRn. Therefore, only the influence brought

by the change of En(s) needs to be considered when improving En(s).

3.3 Accurate Q-Learning Algorithm

Because Q-learning uses EQ
n (s) =

∑n
i=0 Hn

i+1αiMi(s), the correction pro-
cess of Q-learning is very slow and Q-learning suffers from prohibitively large
overestimations. When the next state of the state-action pair (s, a) is deter-
mined and unique, i.e., P (s, a, s′) = 1, we replace

∑n
i=0 Hn

i+1αiMi(s) with∑n
i=0 Hn

i+1αiMn(s) to obtain a new estimator EA
n (s). We propose a modified

version of Q-learning, that we call accurate Q-learning, which uses EA
n (s) =∑n

i=0 Hn
i+1αiMn(s) to estimate the action values. Bringing EA

n (s) into Eq. 9,
we can get the update rule of accurate Q-learning as

Qn+1(s, a) = (1 − αn)
(
Qn(s, a) − γEA

n−1(s
′)

)
+ γEA

n (s′) + αnRn (10)

Algorithm 1. Accurate Q-learning
1: Initialize F (s, a) = Q(s, a), ∀s ∈ S, a ∈ A, arbitrarily
2: Initialize H(s, a) ← 1, ∀s ∈ S, a ∈ A
3: Initialize s
4: loop
5: choose a from s using policy derived from Q
6: Take action a ,observe r, s′

7: Δ ← Q(s, a) − γF (s, a)
8: H(s, a) ← (1 − α(s, a))H(s, a)
9: a∗ ← arg maxa Q(s′, a)

10: F (s, a) ← (1 − H(s, a))Q(s′, a∗)
11: Q(s, a) ← (1 − α(s, a))Δ + γF (s, a) + α(s, a)R
12: s ← s′
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Accurate Q-learning algorithm, as shown in Algorithm 1, stores three func-
tions: an action-value function Q and two auxiliary functions including H and
F . Function H stores Hn

0 = (1 − α0) . . . (1 − αn) and function F stores EA
n (s′)

for all state-action pairs.
Comparing the Q-learning update rule of Eq. 9 with the one for accurate

Q-learning in Eq. 10, it can be found that the two estimators are different.∑n
i=0 Hn

i+1αiMi(s) includes all values that have been experienced before. It
is a inaccurate value with a positive bias at the early stage of training because
we use the maximum of the estimates as an estimate of the maximum of the
expected values. The values will then be decreased in the next few steps, but
the correction process is slow. In comparison,

∑n
i=0 Hn

i+1αiMn(s) uses the max-
imum value of the current value function which is used to replace the maximum
value of the previous value function. It allows the correction to propagate faster
in the value function. This may be the reason why accurate Q-learning has a
better performance than Q-learning.

In terms of computation-time complexity, accurate Q-learning is as same as
that of Q-learning at each time step — O(1). While the space complexity is only
slightly higher than Q-learning due to the two auxiliary terms that have to be
accounted for. Accurate Q-learning needs O(3 × |S| × |A|) memory space while
Q-learning only needs O(|S| × |A|).

4 Experiments

This section shows the performance of Q-learning and its improved algorithms
on roulette and grid world. The reward functions of these two experiments are
highly random. Through roulette, which is a simple single-state MDP problem,
we not only show that the performance of Q-learning can suffer from the signif-
icant positive bias but also present that the mean action values of these algo-
rithms. Through grid world we show the empirical result of accurate Q-learning
algorithm to analyze the estimation of state-action values and policy quality. In
these two experiments, the discount factor was unified to 0.95. The policy for
action selection of all algorithms was ε-greedy. The exploration parameter was
ε(s) = 1/

√
n(s), where n(s) is the number of times the state s has been visited.

4.1 Roulette

The game of Roulette is modeled as a MDP problem with one state and 171
actions, containing 170 different betting actions and one action corresponding
to forfeit. Suppose that without considering the issue of funds, the player can
choose randomly among 170 betting actions. If he bets $1 each turn, he will
get an expected payout of 1

38$36 = $0.947 and an expected loss of −$0.053. If
the player chooses to forfeit, he will get $0 and end the episode, so the optimal
action is to forfeit and the optimal action value is $0.
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Fig. 1. The mean action values over all betting actions according to Q, DQ, AQ, WQ,
WDQ(c = 10) and WDQ(k = 1) on the roulette. The learning method is step-by-step.
These data are averaged over 10 experiments.

Figure 1 shows the mean action values over all betting actions created
by Q-learning (Q), double Q-learning (DQ), accurate Q-learning (AQ), bias-
corrected Q-learning (BCQ), weighted Q-learning (WQ), weighted double Q-
learning (WDQ) with different values of parameter c = 10 and k = 1. The
learning rate is either linear learning rate 1/(n(s, a) + 1) or polynomial learning
rate 1/(n(s, a) + 1)0.8. We adopt the step-by-step update approach. Compared
with the synchronous updates used in [7], which need each state to be visited
at least once for each update, the asynchronous value iteration update is more
meaningful in the actual application because it only updates the value of a sin-
gle state at a time. During the whole learning process, the accurate Q-learning
obtains the value closest to the true value $−0.053. The other algorithms seem
to be more severely affected by the max operator. Moreover, after 100,000 trials,
the bias of estimations still exist.

Table 1 shows the mean action values after 100,000 trials. Q-learning with
a linear learning rate values all betting actions at almost $30 and it does not
gradually decrease with the increase of iteration times. Even with a polynomial
learning rate which is proven to be superior to a linear learning rate [8], the
expected rewards still have a large bias more than $12. BCQ also has a clear
positive bias on this problems. There is an not obvious underestimation in DQ.
WDQC, WQ and AQ after the 100,000 step trials converge to a good value close
to $0. It is worth mentioning that AQ is very close to the expected loss $−0.053.

Table 1. The mean action values over all betting actions on the roulette using asyn-
chronous updates.

Q DQ AQ WDQ (c=10) WDQ (k=1) BCQ WQ

Linear learning rate 28.62 −3.15 −0.38 −1.33 −2.60 9.904 −1.762

Polynomial learning rate 12.45 −3.34 −0.62 −1.80 −2.85 4.99 −1.868
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4.2 Grid World

Consider a n × n grid world MDP problem where the cells correspond to the
states of the environment. There are four possible actions (north, south, west,
east) at each state. Each action deterministically causes the agent to move to an
respective adjacent state, but keeps the current state unchanged when the agent
will walk off the grid. The starting state is set in the lower left position and the
goal state is set in the upper right. We define the reward for any actions at a
non-terminal state is r and for any actions ending an episode from the terminal
state is RT . The optimal policy ends an episode after 2n − 1 actions, so the
optimal average reward per step is E[RT ]+2(n−1)×E[r]

2n−1 . We examined the action
value in the starting state s0. Note that the optimal value of this state would be
maxa Q(s0, a) = E[RT ]γ2(n−1) + E[r]

∑2n−3
i=0 γi. We use the linear learning rate

αn(s, a) = 1/(n(s, a) + 1) in this experiment. Each time a non-terminal state
is visited, a reward of −8 or +6 will be awarded with equal probability, and a
reward of +5 will be awarded to the terminal state and the episode will be ended
immediately.
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Fig. 2. The average rewards per time step and the maximal action value in the initial
state s0 according to Q, DQ, AQ, WQ, WDQ(c = 10) and WDQ(k = 1) on the grid
world. These data are averaged over 1000 different sequences of runs.

We purposely add randomness to non-terminal state rewards in ordinary
grid world, making the environment more challenging. The first row shows the
average rewards and the second row is the maximum action value in the starting
state. The reason for choosing the action value function using the state of s0
is because this state is difficult to update. The black horizontal dotted lines in
the second row of Fig. 2 represent the optimal average rewards per step on grid
world problems with difference sizes from 3 × 3 to 6 × 6.

On all the questions shown in the Fig. 2, the maximal action value of Q-
learning in the starting state has significant overestimation and mean action
rewards is lower than others. The reason for this phenomenon is that if an
action is overestimated, then this action will always be selected. Q-learning find
that this action can not earn a expected high reward, then it will choose another
action. This will lead to a similar dilemma, eventually causing unacceptable
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slow convergence of Q-learning. On these domains, the performances of WQ,
WDQ(c = 10) and WDQ(k = 1) are similar by showing that the average rewards
are very close to each other and the rates of convergence are slow. The perfor-
mance of all algorithms suffer from the increase of the problem size. However, the
AQ still maintains a very high reward value and a low error with the maximum
action value of the s0.

On each problems, there is a big increase in the stating state action value of
AQ in the early stage of the training and affects the value of mean rewards. This
is due to the (1 − Hn

0 )Mn(s′) in the update equation, using the max operator
over the action values which is inaccurate in the early updates. Soon AQ can
converge to a approximate true value and result in very high rewards.

5 Conclusion

This paper proposes a new form of Q-learning update equation which can make
it more convenient to improve the algorithm. We use this new form to ana-
lyze the reasons for overestimation in Q-learning. In this new form, we find the
biased term in Q-learning and use the current estimate to replace it. Using the
new estimator we propose an accurate Q-learning algorithm that can converges
to the optimal policy. The experimental results show that, compared with Q-
learning and its variants, the new algorithm can avoid the performance suffer
from positive bias in some MDP problems with highly random reward functions.

The future work is to use the function approximation to scale up the accurate
Q-learning algorithm to solve the reinforcement learning problems in continuous
state space. Another direction for future work is to use the general form to get
other improved algorithms.
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Abstract. Bayesian networks (BNs) parameter learning is a challenging
task as it relies on a large amount of reliable and representative training
data. Unfortunately, it is often difficult to obtain sufficient samples in
many real-world applications. Monotonicity, as a class of prior informa-
tion, widely exist in various practical tasks. This information is helpful for
BN parameter learning. However, monotonicity is set by users tradition-
ally. In this paper, we propose a data-dependent BN parameter learning
method which can construct monotonicity constraints for BN parame-
ters automatically. Firstly, we introduce rank mutual information (RMI)
and Spearman rank correlation coefficient (RHO) to detect monotonicity
among network nodes, and then construct monotonicity constraints for
BN parameters. Finally, we transform the problem of parameter learn-
ing with monotonicity constraints into a convex Lagrange function and
obtain the global optimum solution in polynomial time. Experimental
results on real-world classification data and standard BNs show the effec-
tiveness of our proposed algorithms with limited data.

Keywords: Bayesian Networks · Parameter learning
Monotonicity extraction · Monotonicity constraints

1 Introduction

Bayesian networks (BNs) are one of the most important probabilistic graph mod-
els proposed by Pearl in 1988 [15], which combine probability theory and graph
theory for representing knowledge with uncertainty and efficient inference. Dur-
ing the last two decades, Bayesian networks have received increasing attention.
BNs have been widely used in various fields and achieve a good performance,
including fault detection [3,18], medical diagnosis [5,7], risk assessment [6,12],
etc.

Parameter learning is considered as one of the most challenging tasks [4]. It
estimates the conditional probability tables (CPTs) for network nodes to make
a BN with predefined structure fit training samples. The performance of BN
depends heavily on parameter learning, and the BN will infer unnatural results
if the estimated parameters are inaccurate [1].
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Traditional parameter learning shows good performance if training data are
sufficient [4]. Unfortunately, it is often difficult to obtain a large number of
labeled samples. Even in the big data era, the problem of data sparsity still
exists in many real-world applications. In these tasks, data distribution satisfies
the long-tailed distribution [8,17], in which a few categories occupy the major-
ity of samples while most categories have few samples. As shown by previous
researches [2,19], traditional parameter learning methods cannot perform well
without sufficient training data.

To solve this problem, expert knowledge has been introduced as prior infor-
mation for BN parameters [1,4,14]. This information help robustly and accu-
rately estimate the parameters with limited data. Among expert knowledge,
monotonicity constraints are a kind of prior knowledge to control the relation-
ship between network nodes. Generally, monotonicity constraints are derived
from the monotonic relationship of network nodes given by experts [1]. Several
researchers have focused on combining monotonic relationship with BN param-
eter learning [1,4,9]. They introduce monotonicity constraints based on expert-
defined knowledge and obtain improved performance compared with traditional
methods. However, monotonicity constraints given by domain experts in some
tasks are inconsistent with data, which reduce the performance of models. More-
over, it is difficult and costly to specify the monotonicity constraints of all BN
parameters by domain experts, especially when the number of BN parameters
is very large and the network structure of BN is complex [4].

To this end, we propose a data-dependent BN parameter learning method
which can construct monotonicity constraints for parameters. Based on some
monotonicity metrics, such as rank mutual information (RMI) [11] and Spearman
rank correlation coefficient (RHO) [13], we detect the monotonicity relationship
between network nodes, and then construct a set of monotonicity constraints
for parameters of BN. We transform the problem of parameter learning with
monotonicity constraints into a convex Lagrange function and obtain the globally
optimum solution in polynomial time.

The rest of this paper is organized as follows. Section 2 introduces preliminary
knowledge for this paper. Section 3 shows the details of the proposed parameter
learning method. Experimental results on UCI datasets and publicly available
BN repository are presented in Sect. 4. Finally, we give our conclusions for this
work in the last section.

2 Preliminaries

2.1 Bayesian Networks and Its Parameter Learning

BN can be represented by B = 〈G, θ〉, where G = 〈V,E〉 is a directed acyclic
graph (DAG), where each node Vi ∈ V corresponds with a stochastic variable
Xi and the directed edge Ei ∈ E captures the qualitative dependence relation
between stochastic variables X1, · · · ,Xn; θ is a set of conditional probability
tables (CPTs)[15]. More specifically, each parameter θijk = P (Vi = k | Πi = j)
represents the probability value of node Vi when its parent-nodes configuration
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Πi takes j-th value and its state is k-th value, where i ∈ {1, · · · , n} corresponds
to all network nodes in a BN, j ∈ {1, · · · , qi} corresponds to all the possible
configurations of Πi, and k ∈ {1, · · · , ri} corresponds to all possible states of
node Vi.

BN parameter learning is to estimate the CPTs for network nodes of BN
where the network structure is known in advance. Given a training dataset D,
parameter learning is to find the most probable CPTs that make the BN model fit
the dataset D better. Classical maximum likelihood estimation (MLE) estimate
the CPTs by maximizing the log-likelihood function

l (θ | D) =
n∑

i=1

qi∑

j=1

ri∑

k=1

Nijk log θijk, (1)

where Nijk is the number of observation data in D corresponding to parameter
θijk. MAP(Maximum a Posteriori) method considers the prior information of
the parameters by introducing a Dirichlet prior. MAP usually uses a flat prior
αijk = 1 or BDeu prior αijk = 1

ri·qi if no expert gives the hyperparameter αijk

of the Dirichlet prior [19].

2.2 Monotonicity in Bayesian Networks

In 2004, Van Der Gaag et al. [10] introduced the definition of monotonicity in
distribution for BN. A BN is said to be isotone in distribution for the node Vi

and its parent node πi if

k ≤ k′ → P (Vi ≤ c | πi = k,Πi \ πi) ≥ P (Vi ≤ c | πi = k′,Πi \ πi) , (2)

where k, k′ are two states of node πi, and c = 1, · · · , ri; if

k ≤ k′ → P (Vi ≤ c | πi = k,Πi \ πi) ≤ P (Vi ≤ c | πi = k′,Πi \ πi) , (3)

then the BN is said to be antitone in distribution for node Vi and its parent node
πi. Namely, BN is isotone in distribution for node pair 〈πi, Vi〉, if it is more likely
for the child node Vi to obtain higher-ordered values when a higher-ordered value
is assigned to the parent node πi.

2.3 Monotonicity Metrics

Several metrics have been proposed for measuring the monotonicity relation-
ship between two stochastic variables. Rank mutual information (RMI) [11] and
Spearman rank correlation coefficient (RHO) [13] are two widely used mono-
tonicity metrics in monotonicity researches [16]. RMI is a robust metric for
monotonicity, it combines the advantage of robustness of Shannon’s entropy
with the ability of dominance rough sets in extracting ordinal structures from
dataset [11]. RHO is used to estimate the correlation between two ordered vari-
ables in statistics. The estimated value ρ can reach +1 or −1, if the two variables
have a strong monotonicity relationship.
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Given a training dataset D with N samples, the rank mutual information
(RMI) between variables A and B is computed by

RMI (A,B) = − 1
N

N∑

i=1

log2

∣∣∣[xi]
≤
A

∣∣∣ ×
∣∣∣[xi]

≤
B

∣∣∣

N ×
∣∣∣[xi]

≤
A

⋂
[xi]

≤
B

∣∣∣
, (4)

where [xi]
≤
v = {xj ∈ D | xi ≤v xj} is the ordinal relation between samples in

terms of variable v and | [xi]
≤
v | is the cardinality of set [xi]

≤
v . Spearman rank cor-

relation coefficient (RHO) is a nonparametric estimation of the statistical depen-
dence between two ordinal variables. The coefficient ρ (A,B) of RHO between
variables A and B is computed by

ρ (A,B) = 1 − 6
∑N

i=1 (V (xi, A) − V (xi, B))2

N (N2 − 1)
, (5)

where V (xi, v) is the variable value of sample xi on v.

3 The Proposed Method

3.1 Construction of Monotonicity Constraints

For network node Vi and one of its parent node πi ∈ Πi, rank mutual information
(RMI) and Spearman rank correlation coefficient (RHO) can reflect the degree
of monotonicity between their associated stochastic variables. If the value of
RMI (Vi, πi) or ρ (Vi, πi) is larger than the given threshold ε (or smaller than
−ε), we can believe that parent node πi has a positive (or negative) monotonic
influence on node Vi, namely, Vi get higher state values be more (less) likely if
πi is a higher state value regardless of the configuration of other parents Πi \πi.
Without loss of generality, we assume that πi has a positive monotonic influence
on Vi in the rest of the paper, and negative monotonic influence can be defined
analogously.

We use Pi, Pi
′ to denote two parent-nodes configurations of Vi, where P =

(πi = k,Πi \ πi), Pi
′ = (πi = k′,Πi \ πi), and k ≤ k′. So the two parent-nodes

configurations satisfy the partial order Pi � Pi
′, which means that parent-nodes

configuration Pi
′ makes higher values for Vi more likely. But how to formulate

the monotonic influence for parameters of node Vi? Intuitively, there have θiP �
θiPi

′ , where θij is a discrete probability distribution for all states in node Vi.
In this paper, we follow the definition of monotonicity in Bayesian networks
(isotone in distribution) given by Van Der Gaag in [10], and use first order
stochastic dominance (FSD) to formulate the partial order relation between two
parent-nodes configurations. For any parent-nodes configurations Pi � Pi

′ of Vi,
the conditional probability distribution for Vi have

P (Vi | Pi) � P
(
Vi | Pi

′) . (6)
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Equation (6) can be formulated by the cumulative distribution function as
followed

P (Vi ≤ c | Pi) ≥ P
(
Vi ≤ c | Pi

′) ,∀c ∈ {1, · · · , ri} , (7)

namely,
c∑

k=1

θiPik ≥
c∑

k=1

θiPi
′k,∀c ∈ {1, · · · , ri} . (8)

For each node in a BN, a set of inequality constraints as Eq. (8) can be
constructed. Therefore, we have a set of monotonicity constraints Φ for BN
parameters :

hiPic (θ) =

c∑

k=1

(θiPi
′k − θiPik) ≤ 0, ∀c ∈ {1, · · · , ri} , ∀i ∈ {1, · · · , n} , ∀Pi � Pi

′. (9)

So, given the training data D, BN structure G and the threshold-value ε, we
can obtain a set of monotonicity constraints Φ.

3.2 Parameter Learning with Monotonicity Constraints

The task of parameter learning with monotonicity constraints is to maximize
the log-likelihood function l (θ | D) while also satisfying the constraints set Φ. In
order to ensure the sum of all estimated parameters for each state in a parent-
nodes configuration equal to one, we add the following constraints:

gij(θ) =
ri∑

k=1

θijk − 1 = 0, ∀i ∈ {1, · · · , n} , ∀j ∈ {1, · · · , qi} . (10)

Therefore, the parameter learning problem can be reformulated as:

min
θ

−
n∑

i=1

qi∑

j=1

ri∑

k=1

Nijk log θijk

s.t

{
hiPic (θ) ≤ 0, ∀i ∈ {1, · · · , n} , ∀c ∈ {1, · · · , ri} ,∀Pi � Pi

′,
gij (θ) = 0, ∀i ∈ {1, · · · , n} , ∀j ∈ {1, · · · , qi} . (11)

All conditional constraints are linear functions of parameters and the objec-
tive function l (θ | D) is concave since a nonnegative sum of logarithms is concave.
Hence, the Eq. (11) minimizes a convex function in a convex set, which means
the objective function of the proposed method is a constrained convex optimiza-
tion problem. As we know, constrained convex optimization problems have a
number of attractive properties, such as any local optimum is global optimum
and its optimal solution can be found in polynomial time [4]. This minimization
problem of Eq. (11) can be solved by using Karush-Kuhn-Tucker (KKT) theo-
rem. We introduce Lagrange multipliers λij for equality constraints gij(θ) and
μk for inequality constraints hiPic(θ), then have the Lagrange function

L(θ, λij , μk) = −l(θ | D) −
∑

ij

λijgij(θ) −
∑

k

μkhiPic(θ). (12)
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Therefore, the KKT conditions for Eq. (11) are
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∇θL(θ, λij , μk) = 0
gij (θ) = 0

μk · hiPic(θ) = 0
hiPic (θ) ≤ 0

μk ≥ 0

(13)

The optimal parameters can be obtained through the KKT conditions. There
are already several existing methods that have been proposed to solve this prob-
lem. In this paper, we employ the Mosek1 software to solve the constrained
convex optimization problem.

4 Experiments

To verify the performance of the proposed algorithms, we conduct a series of
experiments with real-world tasks and standard BNs. We set the threshold
ε = 0.05, and all experimental results are the average of 20 times repeated
operation. In addition, we use BDeu prior αijk = 1

ri·qi as the prior of param-
eters for the MAP method. In order to ensure the fairness to MLE method,
we set a uniform distribution on all states when the parent-nodes configuration
observation samples is zero.

4.1 Experiments on UCI Datasets

In this experiment, we collects four datasets from UCI ML repository2, including
Auto-mpg, Pima-Indian-Diabetes, Haberman, and Car. The network structure
and domain knowledge about monotonic relationship between network nodes are
shown in Fig. 1, defined by Altendorf in [1]. The continuous-valued attributes are
discretized into five intervals by the equal-frequency discretization method in our
experiments.

First, we test the performance of monotonicity metrics RMI and RHO in
detecting monotonicity. We verify the monotonicity relationship between nodes
Price, Doors, Safety and node Class in Car BN, respectively. The ground truth
data distribution and metric values are shown in Fig. 2. From the figure we
can see that the values of Class decrease with the increase of attribute Price,
which means there is a monotonically decrement relationship between Price and
Class. Obviously, Doors and Safety are monotonically increment with Class. The
attribute Safety has larger impact on the Class than the attribute Doors. The two
monotonicity metrics values accurately reflect these monotonicity information.

In order to compare the classification performance of the traditional parame-
ter learning methods with the proposed parameter learning algorithms, we split
the data into training set and test set randomly by 80% and 20%, respectively.
1 http://www.mosek.com/.
2 http://archive.ics.uci.edu/ml.

http://www.mosek.com/
http://archive.ics.uci.edu/ml
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Fig. 1. Bayesian networks structure and domain knowledge of UCI datasets.
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Fig. 2. Monotonicity relationship between nodes Price, Doors, Safety and Class in Car
dataset, respectively.

For testing the influence of the size of training sets, we use 10% training sam-
ples to 100% training samples to train the model, and then compute the test
accuracy. The experimental results are shown in Fig. 3. From the figure we can
see that the proposed algorithms significantly improve the prediction accuracy
compared with the conventional methods MLE and MAP. In addition, both of
our proposed methods can achieve comparable performance to the model (EXP-
CML) which introduces domain knowledge given by experts. Specifically, our
approach RHO-CML can achieve better performance than EXP-CML on Car,
which shows that domain knowledge given by experts may be not correct in
practical applications. For some complex tasks, experts do not necessarily know
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the exact relationship between the attributes. We should design some effective
measurements to objectively compute the monotonicity.
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Fig. 3. Average accuracy for Auto-mpg, Car, Haberman and Pima-Indian-Diabetes BN
under different sizes of training samples (curves EXP-CML, RMI-CML and RHO-CML
are completely overlapping in Fig. 3(a)).

4.2 Experiments on Standard BNs

In this experiment, we compare our algorithms with traditional MLE and MAP
methods on the standard BNs with some publicly available BN repository3. They
are widely used to evaluate the performance BN parameter learning algorithms.
These standard BNs include small networks(< 20 nodes) as well as very large
networks (100−1000 nodes). For instance, Cancer only has 5 nodes, 4 edges and
10 parameters, while Munin1 has 186 nodes, 273 edges and 15622 parameters.

We apply the forwards sampling method to generate training samples from
standard BN in this experiment, and then use the dataset to learning the param-
eters of the BN. To measure the difference between the estimated parameters θ̂
and actual parameters θ of the standard BN, we use the Kullback-Leibler (K-L)

3 http://www.bnlearn.com/bnrepository/.

http://www.bnlearn.com/bnrepository/
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divergence between them. The smaller the value of K-L divergence is, the better
the performance is. K-L divergence calculation formula as:

KL
(
θij , θ̂ij

)
=

ri∑

k=1

θijklog
θijk

θ̂ijk

. (14)

In order to ensure that the K-L divergence can be calculated if an estimated
parameter is zero, we use a small number (1 × 10−7) instead of it.

Table 1 shows the learning results of K-L divergence and standard deviation
for MLE, MAP, RMI-CML, RHO-CML in fixed 100 training samples. The Aver-
age K-L row presents the average results over all BNs, and Average Rank row
presents the average ranking over all BNs. The best results are presented in bold
and statistically significant improvements of the best results over competitors
are indicated by asterisks * (at 5% significance level). From the table, we can
see clearly that our proposed algorithms RMI-CML, RHO-CML achieve good
performance compared with others two conventional methods, and RHO-CML
achieves the best performance in most BNs. 100 training samples are sufficient
for parameter learning in small networks, so these methods achieve similar per-
formance, such as Cancer and Weather BN. The performance of our algorithms
improved obviously in large BNs, such as Hailfinder and Hepar2 BN.

In order to compare the learning performance of these methods on different
sizes of training data, we compare the learning results of binary BN Andes and
multivalued BN Water under different samples sizes ranging from 50 to 1000. The

Table 1. Learning results of K-L divergence and standard deviation for MLE, MAP,
RMI-CML, RHO-CML on the standard BNs with 100 training samples.

BN MLE MAP RMI-CML RHO-CML

Andes 0.253 ± 0.019∗ 0.066 ± 0.003∗ 0.061 ± 0.003∗ 0.053± 0.005

Asia 0.144 ± 0.090∗ 0.048 ± 0.013∗ 0.042 ± 0.017∗ 0.040± 0.019

Cancer 0.156 ± 0.171∗ 0.020± 0.010 0.020± 0.010 0.020± 0.010

Child 0.483 ± 0.084∗ 0.091 ± 0.013∗ 0.89± 0.015 0.090 ± 0.010

Earthquake 0.406 ± 0.330∗ 0.066 ± 0.034 0.066 ± 0.034 0.063± 0.037

Hailfinder 0.811 ± 0.027∗ 0.285 ± 0.008∗ 0.227 ± 0.020∗ 0.206± 0.028

Hepar2 0.490 ± 0.052∗ 0.170 ± 0.009∗ 0.169 ± 0.010∗ 0.151± 0.018

Munin1 0.569 ± 0.016∗ 0.423 ± 0.005∗ 0.409± 0.009 0.421 ± 0.023∗

Sachs 0.476 ± 0.093∗ 0.149 ± 0.018∗ 0.111± 0.015 0.122 ± 0.014∗

Survey 0.258 ± 0.128∗ 0.035 ± 0.015∗ 0.035 ± 0.015∗ 0.028± 0.015

Water 0.477 ± 0.003∗ 0.468 ± 0.001∗ 0.452 ± 0.004∗ 0.427± 0.020

Weather 0.149 ± 0.186∗ 0.020± 0.025 0.020± 0.025 0.020± 0.025

Average K-L 0.893 ± 0.010 0.153 ± 0.128 0.142 ± 0.015 0.137± 0.019

Average rank 4.000 2.750 1.833 1.417
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Fig. 4. The learning results of MLE, MAP, RMI-CML and RHO-CML for Andes and
Water BN under different sizes the training dataset.

experimental results shown in Fig. 4, which shows that the learning performance
of the four methods are all improved as the samples increases. Moreover, the
proposed algorithms always achieve the best performances which demonstrates
that the proposed methods can effectively improve the learning performance by
explore monotonicity constraints on parameters.

5 Conclusions

We propose a data-dependent BN parameter learning method which can extract
monotonicity constraints between the network parameters automatically in this
work. We use the rank mutual information or Spearman rank correlation coef-
ficient to detect the monotonicity relationship between network nodes and then
construct a set of monotonicity constraints for parameter of the BN. We trans-
form this learning problem into a convex Lagrange function and obtain a global
optimum solution. Experiments are conducted on the real-world classification
data from the UCI ML repository and the standard Bayesian networks. With
limited data, experimental results shows that our proposed algorithms achieve
a significant improvement compared to traditional methods, and even surpass
the method using expert-designed monotonicity constraints. In this work, we
only consider the monotonicity relationship between network nodes without the
degree of monotonicity. In the future, we will explore the influence of mono-
tonicity degree on BN parameter learning methods with limited and incomplete
data.
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Abstract. Rule induction method based on rough set theory (RST)
which can generate a minimal set of decision rules by using attribute
reduction and approximations has received much attention recently.
In real-life, the variation of objects, attributes and attributes’ values
affects reducts and approximations, e.g., the coarsening and refining of
attributes’ values. The goal of this paper is dynamic maintenance of
decision rules for decision attribute values’ coarsening and refining. Two
incremental rough-set based methods are proposed to deal with this
issue by updating assignment discernibility matrix dynamically with-
out recomputing the reducts from the beginning, which increases the
efficiency.

Keywords: Rough set theory · Incremental learning
Attribute reduction · Decision rule

1 Introduction

Rough set theory, originally proposed by Pawlak, provides the mathematical
formulation of the concept of approximative (rough) equality of concepts in a
given approximation space [9,13]. In real-life applications, the objects, attributes
and attributes’ values in the information system often vary with time, and rough-
set based method for rule induction has received much attention as it can acquire
a minimal set of rules from the decision system using attribute reduction and
approximations [6].

Nowadays, many rough-set based methods have been widely used in machine
learning [1,15,16], image processing [3,12] and data mining [2,4,5]. In rough set
theory, the variation of objects, attributes and attributes’ values affects reducts
and approximations of a concept in information systems. Chen et al. [7] defined
coarsening and refining of attribute values in information systems and proposed
an incremental method for updating approximations of a concept. Liu et al. [10]
c© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11303, pp. 582–592, 2018.
https://doi.org/10.1007/978-3-030-04182-3_51
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presented the strategies and mechanisms for incrementally learning knowledge in
consistent information systems in which attributes’ values change. Liu et al. [11]
proposed new strategies of dynamically updating approximations in probabilistic
rough sets. Li et al. [9] presented an incremental approach for updating approx-
imations of dominance-based rough sets approach. Chan [4] proposed a method
for updating approximations of a concept incrementally. The dynamic mecha-
nisms for updating approximations in multigranulation rough sets while refining
or coarsening attribute values was presented by Hu et al. [8]. Zheng et al. [19]
developed an incremental knowledge acquisition algorithm combining rough set
theory and rule tree. Two dynamic approaches in computing rough approxima-
tions for time-evolving information granule interval-valued ordered information
system were presented by Yu et al. [17].

Chen et al. [6] proposed an incremental method for dynamic maintenance of
decision rules for attribute values’ coarsening and refining. However, they only
considered about the variation of conditional attributes’ values with time. So
far, there are few studies on variation of decision attribute values. In this paper,
we focus on rough-set based methods for updating decision rules of the decision
system for decision attribute values’ coarsening and refining, and propose two
incremental methods which can avoid partial redundancy calculation and reduce
computation consumption. They will save a lot of time costs when solving large-
scale practical problems. The paper is organized as follows: In Sect. 2, the terms
and definitions in rough set theory are introduced. In Sect. 3, the related propo-
sitions and algorithms for dynamic maintenance of decision rules for decision
attribute values’ coarsening and refining are presented, respectively. In Sect. 4,
experimental evaluation under the datasets from UCI is given. In Sect. 5, we
conclude the whole paper.

2 Preliminaries

In this Section, some basic concepts in rough set theory are introduced.

Definition 2.1 [18]. A quadruple S = (U, A, V, f) is an information system,
where U is a nonempty finite set of objects, called the universe. A is a nonempty
set included conditional attributes C and decision attributes D. V =

⋃
a∈A Va,

Va is a domain of attribute a. f : U × A → V is an information function, which
gives values to every object on each attribute, ∀a ∈ A, x ∈ U, f(x, a) ∈ Va.

Definition 2.2 [14]. The equivalence relation on B ⊆ C is defined as follows:

RB = {(x, y) ∈ U × U |∀a ∈ B, fa(x) = fa(y)} (1)

The pair (U,R) is named as an approximation space. The equivalence relation
R induces a partition of U , U/R = {E1, E2, ..., Em}, U/RD = {D1,D2, ...,Dk}.
[x]B = {y ∈ U |(x, y) ∈ RB} denotes the equivalence class with the object x.
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Definition 2.3 [14]. If D = {d1, d2, ..., ds}, then let DiC =
{
fd1(xk), ...,

fds
(xk)

}
(xk ∈ Di,Di ∈ U/RD) denotes the characteristic value of decision class

Di. Let δ(Ei) = {DjC|Ei ∩ Dj �= ∅}(Ei ∈ U/R,Dj ∈ U/RD), which represents
the generalized decision of an equivalence class Ei.

Definition 2.4 [18]. (U,C ∪ D,V, f) is a decision system, U/RC =
{E1, E2, ..., Em},D∗ = {(Ei, Ej) : δC(Ei) �= δC(Ej)}. fak

(Ei) represents the
attribute value of objects in Ei on attribute ak, (ak ∈ A). We define the
assignment discernibility attribute set between Ei and Ej , which is denoted
by D(Ei, Ej):

D(Ei, Ej) =

{
{ak ∈ C : fak

(Ei) �= fak
(Ej)} (Ei, Ej) ∈ D∗;

∅ (Ei, Ej) /∈ D∗.
(2)

MD = (D(Ei, Ej) : i, j ≤ m) is the Assignment Discernibility Matrix (ADM )
of (U,C ∪ D,V, f).

Definition 2.5 [18]. (U,C ∪ D,V, f) is a decision system and MD =
(D(Ei, Ej) : i, j ≤ m) is the ADM. Then the assignment discernibility for-
mal is M = ∧{∨{ak : ak ∈ D(Ei, Ej)} : i, j ≤ m}. Mmin = ∨p

k=1(∧qk
s=1as)

is the minimal conjunctive formula of M . If Bk = {as : s = 1, 2, ..., qk}, then
Red = {Bk : k = 1, 2, ..., p} is assignment reduct set of (U,C ∪ D,V, f).

Computing the decision rules with the ADM is a NP problem. Thus, several
works have been done to deal with this issue. Chen et al. proposed a feasible
method (GRMDAS ) to generate the reduct from ADM [6].

Definition 2.6 [6]. The minimal discernibility attribute set (MDAS ) is defined
as Attmin = {Att0, ..., Atti, ..., Attt}, where ∀Atti ∈ Attmin,∃D(Ej , Ek), s.t.,
Atti ⊆ D(Ej , Ek), and ∀D(Ej , Ek),∃Atti ∈ Attmin, s.t., Atti ⊆ D(Ej , Ek).
∀Atti, Attj ∈ Attmin(i �= j),¬∃Atti ⊆ Attj or Attj ⊆ Atti. Atti is called a
minimal discernibility attribute.

Definition 2.7. Let S = (U,C ∪d, V, f) be an information system. f(xi, d) and
f(xk, d) are the value of xi and xk(k �= l) on the decision attribute d, respectively.
f(xi, d) �= f(xk, d). Then, Ud = {xi′ ∈ U |f(xi′ , d) = f(xi, d)}. On the one hand,
let f(xi′ , d) = f(xk, d), ∀xi′ ∈ Ud. Then we call the attribute value f(xi, d)
is coarser than f(xk, d), and we call this case as Decision Attribute Values’
Coarsening (DAV C). On the other hand, Let f(xj′ , d) = v, where ∀xj′ ∈ Ud,
v /∈ Vl. Then we call the decision attribute value f(xj , d) on the object xj′ is
finer than v, called as Decision Attribute Values’ Refining (DAV R).

3 Incremental Method for Variation of Decision
Attribute Values

In real-life applications, there are many scenarios where the class labels vary
with time, i.e., in systems where the tag is address information, the tag of the
system changes as the accuracy of the address in the new data changes. Thus,
in this paper, we focus on the variation of decision attribute values.
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3.1 An Incremental Method for Updating Decision Rules on DAVC
(IMDAVC)

In a decision system, the decision attribute value v1 on d is coarsened to v2(v1 �=
v2). Let Dv1

j ∈ U/Rd, δ(Dv1
j ) = v1, Let Dv2

j ∈ U ′/Rd, δ(Dv21
j ) = v2, E

v1 =
{Ei ∈ U/R|Ei ∩ Dv1

j �= ∅}, Ev2 = {Ei ∈ U ′/R|Ei ∩ Dv2
j �= ∅}. Let E∧ denotes

the equivalence class E after coarsening, MD denotes the ADM of the decision
system before changed, and M∧

D denotes the ADM of the decision system after
coarsening.

Proposition 3.1. MD is updated only by replacing row i and field j with empty
set, if Ei, Ej ∈ U/R, δ(Ei) �= δ(Ej), δ(E∧

i = E∧
j )

Proof: The elements of MD cannot change from empty set to nonempty set
because it’s impossible for δ(Ei) = δ(Ej) before coarsening and δ(E∧

i ) �= δ(E∧
j )

after coarsening.
For MD,D(Ei, Ej) will change, that is, D(E∧

i , E∧
j ) �= D(Ei, Ej) only if

Ei, Ej ∈ Ev1 ∩ Ev2 .

Proposition 3.2. Update rules for M∧
D.

IF Ei ∈ Ev1 ∩ Ev2 , Ej ∈ Ev1 ∩ Ev2

IF δ(E∧
i ) = δ(E∧

j ), then D(E∧
i , E∧

j ) = ∅

Proof: By Proposition 3.1, we can prove this proposition easily.

According to these propositions, an incremental algorithm for dynamic main-
tenance of decision rules for DAVC is presented as Algorithm 1. For incremen-
tally updating the assignment discernibility matrix, Algorithm 1 will be applied
on M∧

D to get the decision rules after DAVC.

Algorithm 1. An Incremental Method for Updating Assignment Discernibility
Matrix after DAVC(IMDAVC)
Input: MD, Ev1 , Ev2

Output: M∧
D

1: M∧
D ← MD

2: for each Ei in Ev1 ∩ Ev2 do
3: for each Ej in Ev1 ∩ Ev2 where j ≥ i do
4: compute δ(E∧

i ) and δ(E∧
j )

5: if δ(E∧
i ) = δ(E∧

j ) then
6: D(E∧

i , E∧
j ) = ∅

7: end if
8: end for
9: end for
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Example 3.1. A decision system is shown in the Table 1, where U =
{
x1,

x2, x3, x4, x5, x6, x7, x8

}
, C = {a1, a2, a3} = {Height,Hair, Eyes}, D = {d} =

{Nationality}, U/RC = {E1, E2, E3, E4} =
{{x1, x4}, {x2, x6}, {x3},

{
x5,

x7, x8

}}
.

By Definition 2.4, because δ(E1) �= δ(E2), so D(E1, E2) = {a1, a2, a3}.
Since δ(E1) �= δ(E3), then D(E1, E3) = {a1}. As δ(E1) �= δ(E4), we have
D(E1, E4) = {a1, a2}. Because δ(E2) �= δ(E3), so D(E2, E3) = {a2, a3}. Since
δ(E2) �= δ(E4), then D(E2, E4) = {a1, a2, a3}. As δ(E3) �= δ(E4), we have
D(E3, E4) = {a1, a2}. Then we can get the assignment discernibility matrix
MD.

MD =

⎛

⎜
⎜
⎝

∅

a1, a2, a3 ∅

a1 a2, a3 ∅

a1, a2 a1, a2, a3 a1, a2 ∅

⎞

⎟
⎟
⎠

Then we coarsen the decision attribute d of x1, x3, x5, x7 to Europe, Since
v1 = {UnitedKingdom,French}, v2 = {Europe}, then Ev1 = {E1, E3, E4},
Ev2 = {E1, E3, E4}, Ev1 ∩Ev2 = {E1, E3, E4}. By Proposition 3.2, D(E1, E4) =
∅, so we can get the M∧

D.

M∧
D =

⎛

⎜
⎜
⎝

∅

a1, a2, a3 ∅

a1 a2, a3 ∅

∅ a1, a2, a3 a1, a2 ∅

⎞

⎟
⎟
⎠

Attmin = {{a1}, {a2, a3}}, then according to the GRMDAS method, we can
get the reduct of decision system is {a1, a2}. In the end, we can get seven decision
rules which were deduced from M∧

D.

Table 1. Decision system 1

U Height Hair Eyes Nationality

x1 tall blond blue United Kingdom

x2 medium dark hazel China

x3 medium blond blue French

x4 tall blond blue Belgien

x5 short red blue United Kingdom

x6 medium dark hazel Singapore

x7 short red blue French

x8 short red blue Belgien
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3.2 An Incremental Method for Updating Decision Rules on DAVR
(IMDAVR)

In a decision system, xk(xk ∈ El) is refined on attribute d and x∨
k denotes the

object xk after refining. Let E∨
i (1 ≤ i ≤ m,m = |U/R|) denotes the equivalence

after refining. Let M∨
D denotes the ADM of the decision system after refining.

Proposition 3.3. δ(E∨
l ) � δ(E∨

i )(i �= l, 1 ≤ i ≤ m).

Proof: According to Definition 2.3, the value of xk on attribute d after refining
doesn’t belong to the domain of d before refining.

Proposition 3.4. Update rules for M∨
D.

(1) if D(Ei, El) �= ∅, then D(E∨
i , E∨

l ) = D(Ei, El)

(2) if D(Ei, El) = ∅, then computed D(E∨
i , E∨

l ) according to the Definition 2.4

(3) otherwise, D(E∨
i , E∨

j ) = D(Ei, Ej)

Proof: Since only δ(El) changed after refining, MD is updated according to
El. If D(Ei, Ej) �= ∅, since δ(Elor

l ) �= δ(E∨
i ), then D(E∨

i , E∨
l ) = D(Ei, El). If

δ(El) = δ(Ei), then we have to recompute D(E∨
i , E∨

l ).

These propositions show when to change the elements of MD and when we
need to recompute the assignment discernibility attribute set. And according
to these propositions, an incremental algorithm for dynamic maintenance of
decision rules for DAV R is presented as Algorithm 2. For incrementally updating
the assignment discernibility matrix, Algorithm 2 will be applied on M∧

D to get
the decision rules after DAVR.

Example 3.2. A decision system is shown in Table 2, where U =
{
x1, x2,

x3, x4, x5, x6, x7, x8

}
, C = {a1, a2, a3} = {Height,Hair, Eyes}, D = {d} =

{Nationality}, U/RC = {E1, E2, E3, E4} =
{{x1, x4}, {x2, x6}, {x3},

{
x5,

x7, x8

}}
.

By Definition 2.4, δ(E1) = δ(E2), so D(E1, E2) = ∅. Since δ(E1) �= δ(E3),
then D(E1, E3) = {a1}. As δ(E1) �= δ(E4), we have D(E1, E4) = {a1, a2}.
Because δ(E2) �= δ(E3), so D(E2, E3) = {a2, a3}. Since δ(E2) �= δ(E4), then
D(E2, E4) = {a1, a2, a3}. As δ(E3) �= δ(E4), we have D(E3, E4) = {a1, a2}.
Then we can get the assignment discernibility matrix (ADM).

MD =

⎛

⎜
⎜
⎝

∅

∅ ∅

a1 a2, a3 ∅

a1, a2 a1, a2, a3 a1, a2 ∅

⎞

⎟
⎟
⎠

Now we refine the decision attribute d of x2 and x5 from Asia to EastAsia,
then the index set for refined examples is {x2, x5}, by Proposition 3.4, we need
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Algorithm 2. An Incremental Method for Updating Assignment Discernibility
Matrix after DAVR(IMDAVR)
Input: Index set for refined examples:{x1, x2, ..., xk};

Assignment Discernibility Matrix(ADM) : MD.
Output: M∨

D

1: M∨
D ← MD

2: for i ← 1 to k do
3: compute El, that xi ∈ El

4: for j ← 1 to l do
5: if D(Ej , El) ≤ ∅ then
6: D(E∨

j , E∨
l ) = D(Ej , El)

7: else if D(Ej , El) = ∅ then
8: D(E∨

j , E∨
l ) = ∅

9: compute D(E∨
j , E∨

l )
10: end if
11: end for
12: for j← l+1 to |MD{:, 1}| do
13: if D(El, Ej) ≤ ∅ then
14: D(E∨

l , E∨
j ) = D(El, Ej)

15: else if D(El, Ej) = ∅ then
16: D(E∨

l , E∨
j ) = ∅

17: compute D(E∨
l , E∨

j )
18: end if
19: end for
20: end for

recompute D(E∨
1 , E∨

2 ). Since D(E∨
1 , E∨

2 ) = {a1, a2, a3}, we can get the new
ADM .

M∨
D =

⎛

⎜
⎜
⎝

∅

a1, a2, a3 ∅

a1 a2, a3 ∅

a1, a2 a1, a2, a3 a1, a2 ∅

⎞

⎟
⎟
⎠

Attmin = {{a1}, {a2, a3}}, then according to the GRMDAS method, we can
get the reduct of DS is {a1, a2}. Finally, we can get seven decision rules which
were deduced from M∨

D.

4 Complexity Analysis

Let S = (U,C∩D,V, f,G)(|U | = n, |C| = l, |D| = d, |U/RC | = m) be an decision
system, then the non-incremental approach includes five steps: calculating the
EFM, calculating the ADM and MDAS, generating the reduct, and generating
decision rules. In view of this, the computational complexity of non-incremental
approach is O(n

2

2 l) + O(m
2

2 l) + O(m
2

2 l2) + O(m
2

2 l) + O(m). The computational
complexity of incremental algorithms (IMDAVC, IMDAVR) proposed in this
paper are analyzed as follows, respectively.
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Table 2. Decision systems 2

U Height Hair Eyes Nationality

x1 tall blond blue Europe

x2 medium dark hazel Asia

x3 medium blond blue Europe

x4 tall blond blue Asia

x5 short red blue Asia

x6 medium dark hazel Europe

x7 short red blue Asia

x8 short red blue Asia

4.1 IMDAVC

In algorithm IMDAVC, there is no need to compute the EFM again, and we can
get the computational complexity of updating ADM with Ev1 and Ev2 . Thus,
the computational complexity of this algorithm is O( |Ev1∩Ev2 |

2 d) + O(m
2

2 l2) +
O(m

2

2 l) + O(m). In summary, the computational complexity of the incremental
algorithm IMDAVC is lower than that of non-incremental approach.

4.2 IMDAVR

In algorithm IMDAVR, there is no need to compute the EFM either, then we can
get the computational complexity of updating ADM with Ev. Thus, the compu-
tational complexity of this algorithm is O(|Ev|l) + O(m

2

2 l2) + O(m
2

2 l) + O(m).
Based on the above analysis, we can know that the computational complexity of
non-incremental approach is larger than that of incremental algorithm IMDAVR.

5 Experiments

Data sets from UCI1 are selected to verify the effectiveness of the algorithms. The
data sets are summarized in Table 3. In the experiment process, all continuous
attributes have undergone corresponding discretization and all missing data are
treated as fixed value for calculation. For non-incremental algorithm, the ADM
is recalculated after the decision system changes. The number of the attribute
values to be coarsened and refined were the same both for the non-incremental
and incremental algorithms. The algorithms are developed in MATLAB 2016a
on a computer with 3.2 GHz CPU, Intel core i5 and 8 GB of memory.

1 http://archive.ics.uci.edu/ml/.

http://archive.ics.uci.edu/ml/
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Table 3. Description of data sets

No. Data set Attribute Sample Class Missing value

1 audiology 69 226 24 yes

2 soybean 35 683 19 yes

3 primary-tumor 17 339 22 yes

4 movement-libras 91 360 15 no

5 handwritten 256 1593 10 no

6 arrhythmia 279 452 16 yes

5.1 Performance of Algorithm1 on DAVC

10% to 100% of each data set listed in Table 3, with step of 10 are used in the
experiments to compare the performance between non-incremental algorithm
and Algorithm 1 proposed in this paper. The results are shown in Fig. 1, in
which the x-axis represents the data sets which is from 10% to 100% of each
total data set and the y-axis represents the computation time. The attribute’s
value to be coarsened are selected randomly. After the decision attribute value
is coarsened, the number of decision classes will decrease. From Fig. 1, we can
see the Algorithm 1 proposed in this paper is much faster than non-incremental
algorithm in most data sets. Since the decision attributes are randomly selected
for coarsening, the computation time fluctuates greatly.

Fig. 1. The comparison between non-incremental algorithm and Algorithm 1.
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5.2 Performance of Algorithm2 on DAVR

10% to 100% of each data set listed in Table 3, with step of 10 are used in the
experiments to compare the performance between non-incremental algorithm
and Algorithm 2 proposed in this paper. The results are showed in Fig. 2, the
x-axis represents the data sets which is from 10% to 100% of each total data
set and the y-axis represents the computation time. The attribute’s value to be
refined is selected randomly. After the decision attribute value is refined, the
number of decision classes will increase. From Fig. 2, we can see the Algorithm 2
proposed in this paper is much faster than non-incremental algorithm in every
data sets.

Fig. 2. The comparison between non-incremental algorithm and Algorithm 2.

6 Conclusion

In this paper, we have discussed the principles for dynamic maintenance of
decision rules for decision attribute values’ coarsening and refining. Then two
incremental rough-set based methods are proposed to update the assignment
discernibility matrix dynamically without unnecessary repetitive calculations.
Compared with non-incremental method, the proposed algorithms are obviously
efficient. At last, comparative experimental results verify the effectiveness of the
algorithms proposed in this paper.
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Abstract. Label distribution learning (LDL), as an extension of multi-
label learning, is a new arising machine learning technique to deal with
label ambiguity problems. The maximum entropy model is commonly
used in label distribution learning. However, it does not consider the
correlation between the labels and is not suitable for nonlinear relation-
ships, and the prediction performance is also limited. In this paper, we
propose a label distribution learning algorithm based on ensemble neural
networks. The algorithm trains neural networks with preferences using
training sets with different label sets to construct base learners, and com-
bines the base learners with the weights, which is learned by the com-
bined learner to obtain the final learning results. Experimental results
show that the proposed algorithm is effective for label distribution data.

Keywords: Label distribution learning · Neural networks
Ensemble learning · Maximum entropy model

1 Introduction

At present, single-label learning and multi-label learning [14] are two kinds of
machine learning paradigms to deal with the problem of label ambiguity. In
single-label learning, each sample corresponds to a label. Obviously, single-label
learning does not solve the case where a sample is related to multiple labels.
Hence multi-label learning is presented. In multi-label learning, each sample is
connected to a set of labels, which solves the problem that a sample has multiple
labels. However, there are still some problems that can not be solved using multi-
label learning. For example, in some image classification tasks, if two images are
composed of the same elements, but the significance of each element in the
image is different, then the two images tend to have different meanings. But
the label set is the same in multi-label learning. In these application contexts,
what people want to know is not just what elements are included in an image,
c© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11303, pp. 593–602, 2018.
https://doi.org/10.1007/978-3-030-04182-3_52
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but more importantly, the difference in the significance of these elements. Thus,
the set of labels for a sample not only indicates whether the sample has the
labels but the significance of the labels for the samples, which is called the label
distribution classification problem. To solve this problem, Geng [3] proposed the
label distribution learning (LDL) method.

Label distribution learning supplies a method for solving the problems of
label ambiguity. However, so far, the correlation between labels is not well uti-
lized, and there is room for improving prediction performance. At the same time,
ensemble learning can transform “weak learners” into “strong learners” through
integration well. It will be a good way to improve the performance of the label
distribution learning. Based on this idea, we use ensemble neural networks to
predict the label distribution data, and set the base learners with preference
according to the characteristics of the training sets, then obtain the final learn-
ing results by the learned weights. The main contributions of this paper are
mainly the following three points,

(1) We use the combine learner to learn the correlation between labels and
effectively combine the label distribution.

(2) We use multi-layer neural networks instead of linear combination in the
maximum entropy model, which is more effective for nonlinear feature rela-
tionships.

(3) This is an attempt to solve the problem of label distribution learning
by using ensemble learning ideas. Experiments show that the method is
effective.

2 Related Work

So far, label distribution learning has been widely used to solve the label ambi-
guity problems [17]. According to the label distribution learning framework,
k-means clustering method and least squares method were used to build the
label distribution learning algorithm in [10], and a method of handling label
enhancements containing only logical label data was proposed in [5]. Further,
the label distribution learning was introduced into the problems of population
count [15]. In this way, the discrete numerical label sets were transformed into
continuous label distributions, and the adjacent samples can be used as the train-
ing samples to increase the number of training samples. Therefore, it solved the
problems of estimating the number of people in public video surveillance effec-
tively. In addition, in order to solve the problem of age estimation, it generated
label distributions by single label datasets, and increased the original training
samples, then put forward IIS-LDL [6] algorithm to further improve the age esti-
mation performance. Based on that, the article [8] had optimized the labels of
the age estimation, and used the correlation of the datasets, which increased the
performance of age estimation. Furthermore, the label distribution learning algo-
rithm was applied to facial expression recognition, and the emotion distribution
learning algorithm (EDL) [19] was proposed. The researchers treated the emo-
tion as a mixture of basic emotions, and expanded the single label into the label
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distribution to increase the categories of emotion recognition. The algorithm
was effective in emotions classification [12], and it was a further application of
the label distribution algorithms. In the recognition of the face image [18], it
also achieved a good result. A deep label distribution learning method (DLDL),
which achieved good predictive performance by using fewer training sets was pro-
posed in [2], and it had a significant effect on age estimation and head attitude
recognition.

3 Ensemble Neural Networks Framework

3.1 The Maximum Entropy Model

Let X = Rm be the instance’s features space and Y = {y1, y2, ..., yL} be the
space of label distribution. The goal of LDL is to learn the mapping func-
tion between a set of instance features and a set of labels (f = X → Y )
which can predict the label distributions for unseen instances. Given training
set S = {(x1,D1), (x2,D2), ..., (xn,Dn)}, where xi ∈ X is the instance and
Di = {d1i , d

2
i , ..., d

L
i } is the label distribution associated with xi. dy

x represents
the description of the instance x on the label y. We assume that the label set is
complete, so

∑L
j=1 dj

i = 1. The maximum entropy model is to learn a conditional
probability mass function P (x|y; θ), where θ is the parameter vector. The goal
of LDL is to find the θ that can predict a distribution similar to Di given the
instance xi. The algorithm use the Kullback-Leibler to divergence define by

KL(Pa||Pb) =
∑

j

P j
a ln

P j
a

P j
b

(1)

where P j
a and P j

b are the j-th elements of the two distributions Pa and Pb,
respectively. Accordingly, the best vector parameter θ∗ is determined as fellows

θ∗ = argminθ

∑

i

KL(Di||Pi) + λ1||θ||2F

= argminθ

∑

i

∑

j

(dyj
xi

ln
d

yj
xi

p(yj |xi; θ)
) + λ1||θ||2F

(2)

Assuming that it fellow a maximum entropy [1] model,

p(yk|xi; θ) =
1
Zi

exp(
∑

r

θkrx
r
i ) (3)

where Zi =
∑

k exp(
∑

r θkrx
r
i ). xr

i is the r-th feature of xi, and θkr is an element
in θ. Substituting Eq. 3 into Eq. 2 yields, it become that

T (θ) =
∑

i

∑

j

dyj
xi

lnyj
xi

−
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i

∑
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dyj
xi

∑
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+
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i

ln
∑

k

exp(
∑

r

θkrx
r
i ) + λ1||θ||2F

(4)
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To get the minimization of the function T (θ), it can use the limited-memory
quasi-Newton method (L-BFGS) [13]. In the maximum entropy model, the val-
ues of the labels are predicted by θkr through linear combination of feature val-
ues. This method has limitations. If the relationship between the features and
the labels does not conform to the linear relationship, a good prediction perfor-
mance cannot be achieved, and the relationship between the labels is ignored.
In order to solve this problem, this paper uses neural networks instead of θkrx

r
i ,

because neural networks have a strong ability to fit and can predict nonlinear
relationships. At the same time, the ensemble learning is used to predict the
labeling relationship. The algorithm definition is introduced in the next section.

3.2 Construct Base Learners

We assume that the networks have n hidden layers. The first dimension of
the neural networks is the number of features (m) and the dimensionality of
the hidden layers are H1,H2, ...,Hn,H0 = m. Output layer is P (Hn×L), and
W

(Hn−1×Hn)
n represents the weights matrix of the nth hidden layers of neural

networks. W
(Hn×L)
output is the weights matrix of the output layer. b

(1×Hn)
n indicates

the offset values of the nth hidden layers. b
(1×L)
output indicates the offset values of

the output layer. B
(N×Hn)
n = {b1n; b2n; ...; bL

n} indicates the matrix of the offset
values. B

(N×L)
output = {b1output; b

2
output; ...; b

L
output} indicates the matrix of the output

offset values. The activation function is the relu activation function [7]. I
(N×Hj)
j

represents the input values of the jth layer. N indicates the size of the training
batch. The relu is f = max(0, x).

The first layer of neural networks input:

I
(N×H0)
0 = {x1;x2; ...;xN} (5)

The nth hidden layer of the neural network input (n ≥ 1):

I(N×Hn)
n = relu(In−1Wn + Bn) (6)

The output layer’s output is:

Prd = softmax(InWoutput + Boutput) (7)

Let Vi be the ith output cell of the output layer, then

Prdi =
exp Vi∑
j exp(Vj)

(8)

Since the goal of LDL is to make the predicted distribution be as similar to the
true distribution as possible, the loss function should be able to measure the
similarity of two distributions. In this paper we use K-L divergence [11] as the
loss function, defined by

KL(Pa||Pb) =
∑

j

P j
a ln

P j
a

P j
b

(9)
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where P j
a and P j

b are the jth elements of the two distribution Pa and Pb respec-
tively. We assume that dl

i represents the true distribution label element of the
ith instance, Prdl

i represents the predicted label distribution element of the ith
instance. So the loss function of the algorithm is defined by

lossbase = (D||Prd) =

∑N
i=1

∑L
l=1(d

l
i ln( dl

i

Prdl
i

))

N
(10)

The combined learner is used to predict the relationship between labels, so we use
the Pearson’s correlation coefficient to measure the relationship between labels.
pk

i represents the k-th element of the prediction labels of the i-th sample. The
cost function is defined as follows:

losscombine =
L−1∑

k=1

L∑

j=k+1

(
∑N

i=1(p
k
i − p̄k)(pj

i − p̄j)
√∑N

i=1(p
k
i − p̄k)

√∑N
i=1(p

j
i − p̄j)

−
∑N

i=1(d
k
i − d̄k)(dj

i − d̄j)
√∑N

i=1(d
k
i − d̄k)

√∑N
i=1(d

j
i − d̄j)

)2
(11)

In order to ensure that the base learners are “good and different”, we designed
the following base learners and combining strategies.

(1) Set the number of base learners according to the number of labels, It can
make the base learners form the label “preference”.

(2) Calculate the dominant labels of label distributions (label distribution values
are larger). We set a threshold θ, and the labels whose values are greater
than θ are the dominant labels.

(3) Divide the training set into subsets according to the dominant labels, and the
training instances which have the same dominant labels are divided into the
same set. In this way, the training instances with the same dominant labels
will train the same base learners, so the learners can predict the dominant
labels better.

(4) Use the gradient descent method to train each base learner. For each base
learner, we divide the training subset into small batches for training. After
training a round, randomly disrupt the whole training instances’ order, and
divide the training subset again, then continue to train until the model
converges.

(5) The whole training sets are used to train the combined learner to describe
the correlation between labels. They can gain the weights of the labels, and
we use them to describe the relationship between labels. According to the
weights, we combine the base learners by the following ways:
P

(1×L)
n = {p1n, p2n, ..., pL

n} indicates the label distribution predicted by the
learner n for the instance. Q(1×L) = {Q1, Q2, ..., QL} indicates the weights
of the label predicted by the combined learner. Predictioni represents the
i-th element of the predicted distribution.
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Predictioni =

∑
j pj

iQj
∑

k

∑
h ph

kQh
(12)

The pseudo-code is shown in Algorithm 1.

Algorithm 1. The ENN-LDL algorithm
Data: training set {X, D}, parameters learn rate λ, basis learner number N ,

parameter θ
Result: the label distribution Dt

1 Train:
2 initialize θ, λ, N ;
3 calculate the dominant labels according to θ;
4 divide the training set into {S1, S2, ..., SN} by the dominant labels;
5 i = 1
6 while i �= N do
7 training base learner i with Si until loss convergence;
8 i++;

9 train the combine learner;
10 the prediction model R is obtained by combining the basis learner with Eq. 12;
11 Test:
12 return the label distribution Dt according to R;

4 Experiment

4.1 The Data Set of Label Distribution

The datasets1 are based on the true label distribution datasets collected from
yeast biochemical experiments. Each dataset corresponds to an experiment. Each
instance in the data set represents a yeast gene, which contains 2465 yeast genes.
An instance feature vector is a 24-dimensional phylogenetic profile vector. The
details of the datasets are summarized in Table 1.

Table 1. The number of labels in datasets

Dataset yeastdiau yeastheat yeastspo yeastspo5 yeastcold yeastdtt yeastspoem yeastcdc yeastelu

Samples 2465 2465 2465 2465 2465 2465 2465 2465 2465

Features 24 24 24 24 24 24 24 24 24

Labels 7 6 6 3 4 4 2 14 15

1 http://cse.seu.edu.cn/personalpage/xgeng/ldl/.

http://cse.seu.edu.cn/personalpage/xgeng/ldl/
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4.2 Evaluation Measures

In this paper, we selected three of the six evaluation indicators to evaluate the
algorithm. The names and formulas are listed in Table 2. Pj and Qj represent the
j-th element of the true label distribution and the predicted label distribution
respectively. For various evaluation measures [16], “↓” means smaller is better,
“↑” means bigger is better.

Table 2. Three evaluation measures for LDL algorithms

Name Chebyshev↓ Kullback-Leibler↓ Intersection↑
Formula d1 = maxj |Pj − Qj | d4 =

∑c
j=1 Pj ln

Pj

Qj
s2 =

∑c
j=1 min(Pj − Qj)

4.3 Experiment Setting

ENN-LDL proposed in this paper was compared with five algorithms, i.e., PT-
SVM [4], AA-kNN [6], AA-BP [6], IIS-LLD [6] and BFGS-LLD [3]. The parame-
ters setting of the compared algorithms were summarized as fellows. The number
of the neighbors k in AA-kNN was set to 4. The number of hidden layer neurons
for AA-BP were set to 60. For ENN-LDL, we set up the neural networks with
three hidden layers. The numbers of neurons were 600, 800, 600 respectively.
We used the Adam [9] optimization algorithm to optimize the model, and the
parameter was set to 1e−4. To prevent the over-fitting problem from setting the
drop layers in the hidden layers, the parameter was set to 0.8. The parameter θ
was set to 1

N . The program ran on the Tensorflow framework. The experimental
results are shown in the following tables and figures.

Table 3. The result of experiment on chebyshev

Dataset AA-BP AA-kNN PT-SVM BFGS-LLD IIS-LLD ENN-LDL

yeastcold 0.0572 ± 0.0020 0.0555 ± 0.0022 0.0574 ± 0.0056 0.0512 ± 0.0018 0.0617 ± 0.0015 0.0508 ± 0.0020

yeastspo 0.0651 ± 0.0031 0.0644 ± 0.0024 0.0629 ± 0.0164 0.0584 ± 0.0038 0.0654 ± 0.0034 0.0582 ± 0.0041

yeastspo5 0.0957 ± 0.0065 0.0962 ± 0.0044 0.0953 ± 0.0048 0.0914 ± 0.0054 0.0970 ± 0.0052 0.0904 ± 0.0052

yeastdtt 0.0450 ± 0.0018 0.0393 ± 0.0016 0.0388 ± 0.0020 0.0361 ± 0.0013 0.0492 ± 0.0012 0.0358 ± 0.0014

yeastheat 0.0535 ± 0.0032 0.0451 ± 0.0012 0.0443 ± 0.0015 0.0423 ± 0.0009 0.0525 ± 0.0007 0.0414 ± 0.0010

yeastspoem 0.0934 ± 0.0047 0.0924 ± 0.0040 0.0917 ± 0.0057 0.0869 ± 0.0052 0.0928 ± 0.0042 0.0862 ± 0.0044

yeastdiau 0.0486 ± 0.0041 0.0393 ± 0.0010 0.0446 ± 0.0031 0.0370 ± 0.0015 0.0454 ± 0.0011 0.0367 ± 0.0017

yeastelu 0.0404 ± 0.0019 0.0177 ± 0.0005 0.0170 ± 0.0006 0.0163 ± 0.0006 0.0240 ± 0.0011 0.0163 ± 0.0006

yeastcdc 0.0409 ± 0.0020 0.0177 ± 0.0010 0.0171 ± 0.0010 0.0163 ± 0.0009 0.0233 ± 0.0010 0.0162 ± 0.0009

4.4 Experimental Results

Tables 3 and 4 show the experimental results of five algorithms based on eval-
uation indicators chebyshev and intersection on nine real label distribution
datasets. Since the actual datasets are compared with the prediction effect of
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Table 4. The result of experiment on intersection

Dataset AA-BP AA-kNN PT-SVM BFGS-LLD IIS-LLD ENN-LDL

yeastcold 0.9338 ± 0.0025 0.9335 ± 0.0032 0.9340 ± 0.0064 0.9407 ± 0.0023 0.9287 ± 0.0021 0.9411 ± 0.0025

yeastspo 0.9046 ± 0.0044 0.9075 ± 0.0036 0.9089 ± 0.0188 0.9154 ± 0.0055 0.9049 ± 0.0048 0.9155 ± 0.0057

yeastspo5 0.9043 ± 0.0065 0.9038 ± 0.0044 0.9047 ± 0.0048 0.9086 ± 0.0054 0.9030 ± 0.0052 0.9096 ± 0.0052

yeastdtt 0.9478 ± 0.0020 0.9547 ± 0.0017 0.9554 ± 0.0018 0.9583 ± 0.0013 0.9431 ± 0.0010 0.9586 ± 0.0013

yeastheat 0.9228 ± 0.0053 0.9356 ± 0.0018 0.9371 ± 0.0019 0.9401 ± 0.0012 0.9242 ± 0.0012 0.9412 ± 0.0013

yeastspoem 0.9066 ± 0.0047 0.9076 ± 0.0040 0.9083 ± 0.0057 0.9131 ± 0.0052 0.9072 ± 0.0042 0.9138 ± 0.0044

yeastdiau 0.9206 ± 0.0066 0.9367 ± 0.0040 0.9283 ± 0.0042 0.9403 ± 0.0028 0.9256 ± 0.0021 0.9405 ± 0.0032

yeastelu 0.8875 ± 0.0053 0.9546 ± 0.0011 0.9561 ± 0.0013 0.9588 ± 0.0002 0.9406 ± 0.0017 0.9586 ± 0.0013

yeastcdc 0.8792 ± 0.0066 0.9527 ± 0.0027 0.9553 ± 0.0022 0.9573 ± 0.0027 0.9396 ± 0.0022 0.9573 ± 0.0029

Fig. 1. KL divergence values of different algorithms on the datasets

the five algorithms by ten-fold cross validation, the experimental results are
given in the format of “average ± standard deviation”. Here, the mean values
and standard deviation are obtained by statistics on ten experimental results.
The best results of the compared algorithms were blacked.

By analyzing the experimental results shown in Tables 3 and 4, we can con-
clude that ENN-LDL has a good performance in datasets yeastcold, yeastspo5,
yeastdtt, yeastheat, yeastdiau, yeastspoem, yeastcdc, while has the sub-optimum
performance on dataset yeastelu. Figure 1 shows the variation of KL divergence
of different algorithms on 8 data sets. We can see in the figure that the algo-
rithm can effectively improve the prediction performance of label distribution
learning. Experimental results indicate that, algorithm ENN-LDL perform bet-
ter than compared algorithms.

In order to test the influence of parameters on the performance of the algo-
rithms, we also conduct experiments on the parameter θ. The experimental
parameters are set to 1

2 , 1
3 , ..., 1

n . Due to page limitations, we only provide the
experimental analysis results of yeastdtt data on six indicators shown in Fig. 2.
From Fig. 2, we can conclude that when θ is larger, fewer samples are included in
the dominant labels, and there are fewer training samples. This can easily lead
to the lack of training data for the base learners and the phenomenon of “less
fitting”. When the θ value is small enough, it is easy to known that most labels
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intend to be classified as dominant labels, which leads to the lack of diversity of
the base learners and reduces the generalization ability. The experimental results
show that when θ is near the mean of the label distribution, the experimental
results are the best.

Fig. 2. Influence of θ with 6 indicators on dataset yeastdtt

5 Conclusion

As an extension of single-label learning and multi-label learning, label distribu-
tion learning can take more consideration of the label’s information to deal with
the label ambiguity problems. In order to improve the prediction performance
of the LDL algorithm, and utilize the relationship between labels, we adopt the
idea of ensemble learning and construct an label distribution learning model
based on ensemble neural networks (ENN-LDL). Experimental results on multi-
ple experimental datasets show that the proposed algorithm is suitable for label
distributed learning framework, and it can achieve a good performance. In the
future work, we will study relevant strategies to improve the proposed method.
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Abstract. Prototypical networks (PTNs), which classify unseen data
points according to their distances to the prototypes of classes, are a
promising model to solve the few-shot learning problem. Mimicking the
characteristics of neural systems, the present study extends PTNs in two
aspects. Firstly, we develop hierarchical prototypical networks (HPTNs),
which construct prototypes at all layers and minimize the weighted clas-
sification errors of all layers. Applied to two benchmark datasets, we show
that a HPTN has comparable, or slightly better, performances than a
PTN. We also find that after training, the HPTN generates good proto-
type representations in the intermediate layers of the network. Secondly,
we demonstrate that the classification operation via distance computa-
tion in a PTN can be replaced approximately by the attracting dynam-
ics of the Hopfield model, indicating the potential realization of metric-
learning in neural systems. We hope this study establishes a link between
PTNs and neural information processing.

Keywords: Prototype · Few-shot learning · Metric-learning
Hopfield model

1 Introduction

Recently, a deep neural network model, called prototypical networks (PTNs),
was proposed to solve the few-shot learning problem [1]. The formulation of a
PTN is based on metric-learning, as it classifies unseen data points according
to their distances to the prototypes of different classes. Moreover, these proto-
types, which are constructed by a set of support examples through an embedding
function implemented by a deep network (Fig. 1A), can be optimized via end-
to-end training. PTNs have displayed promising performances in benchmark
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datasets, and therefore have received large attention in the field. For instances,
Oreshkin et al. explored different ways of defining the distance metric between
data points [2], Sung et al. proposed an approach to learn a non-linear distance
metric [3], Ren et al. augmented PTNs with the ability of using unlabeled exam-
ples to construct prototypes [4], and Liu et al. considered a transductive setting,
which utilizes both the support and query sets to exploit the structure of class
space across episodes [5].

The metric-learning idea in PTNs is very appealing to neural information
processing, as the experimental data has indicated that neural systems categorize
and recognize objects based on their semantic similarities [6]. The goal of this
study is to investigate the potential link between PTNs and neural information
processing. Motivated by the characteristics of neural systems, we extend the
structure of PTNs in two aspects. Firstly, we know that a deep neural network
mimics the layered architecture of the ventral visual pathway (Fig. 1B), and that
in the visual system, object information are read-out at different layers, rather
than only at the last layer as in a PTN. For instance, Matsumoto et al. [6] found
that macaque monkeys can still assign stimuli to previously learned categories
even after bilateral removal of the anterior inferior temporal cortex, and the
latter is known to play an important role in object recognition. To mimic this
property, we extend a PTN by considering that class prototypes are optimized at
each layer of the network, which we call a hierarchical PTN (HPTN). Secondly,
in a neural system, all computations are carried out via the dynamics of neural
networks. The distance computation in a PTN is similar to the pattern overlap
computation in the dynamics of an attractor network (Fig. 1C). It is valuable
to explore whether a PTN can be realized by a biologically plausible attractor
network. Overall, we hope this study will give us insight into understanding
metric-learning in neural systems and shed light on developing advanced brain-
inspired computational models.

The rest of the paper is organized as follows. Section 2 introduces the idea of
HPTNs and their applications to two tasks on few-shot learning, Sect. 3 presents
a link between PTNs and attractor neural networks, and Sect. 4 gives an overall
conclusion.

2 Hierarchical Prototypical Networks

2.1 Prototypical Networks

To start, we briefly introduce the idea of PTNs. Following the fact that PTNs
were originally proposed to solve the few-shot learning problem, we describe
PTNs in the framework of few-shot learning. Specifically, we adopt the episodic
learning paradigm proposed by Vinyals et al. [7], and call the condition that K
examples for each of N classes are available in an episode to be N-way K-shot
learning. Given the support set S, i.e., the training examples, a PTN computes
the prototype of each class by the mean of the support data points belong to
that class, which is written as,
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Fig. 1. (A). The architecture of a HPTN consists of four layers, each of which is formed
by a Convolution-BatchNorm-ReLU-Pooling block. The classification probabilities at
four layers are weighted properly to decide the final classification result. (B) The ventral
visual pathway, along which object information are extracted and read-out layer by
layer. (C) Upper panel: in a PTN, classification is done by computing the distances
between the query data and prototypes; Lower panel: in an attractor neural network,
classification is done through evolving the network state to one of its attractors.

cm =
1
K

∑

(xi,yi)∈Sm

fφ(xi), (1)

where cm denotes the prototype of class m and Sm = {(xi, yi)}, for i = 1, . . . ,K,
the corresponding support set. The function fφ : RD → RM represents the
embedding function implemented by the deep network used, with φ the learnable
parameters. When a new query data x is presented, the PTN calculates its
probabilities belonging to N classes according to its distances to all prototypes,
which is written as,

pφ(y = m|x) =
exp {−d [fφ(x), cm]}∑
n exp {−d [fφ(x), cn]} , (2)

where d(·) denotes the distance measure, and Euclidean distance is used in
the present study. Through minimizing the negative log-probability J(φ) =
− log pφ(y = m|x) with respect to training examples, the PTN optimizes the
network parameters φ, such that the network generates representations that are
most suitable to classify data points based on their distance between each other.

2.2 Hierarchical Prototypical Networks

In contrast to a PTN, where prototypes are only explicitly optimized in the last
layer of the network, in a HPTN, prototypes are defined at all layers and the
network tries to minimize the weighted classification errors based on prototypes
of all layers.
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Suppose the network has L layers. Denote cl
m the prototype of class m at

layer l, which is calculated to be,

cl
m =

1
K

∑

(xi,yi)∈Sm

fφl(xi), (3)

where fφl(·) represents the embedding function implemented by the first l layers
of the network with φl is the corresponding parameters. Similarly, the class
probabilities at layer l are calculated to be,

pφl(y = m|x) =
exp

{−βld
[
fφl(x), cl

m

]}
∑

n exp
{−βld

[
fφl(x), cl

n

]} . (4)

Following the work of [2], we scale the distance metric by adding a learnable
scalar βl to each layer, which enables the HPTN to optimize the regime for each
similarity metric d

[
fφl(x), cl

m

]
.

The negative log-probability loss at layer l is given by Jl(φl) = − log pφl(y =
m|x). The overall loss function of the HPTN is defined to be

J(φ) =
L∑

l=1

αL−lJl(φl), (5)

where 0 ≤ α ≤ 1 is a discount factor. We assign larger weights to higher layers,
since normally representations at higher layers better discriminate objects. When
α = 0, it returns to a PTN.

After training, the class probabilities for an unseen data are calculated by
weighting the results from all layers, which are given by

pφ(y = m|x) =
1
Z

L∑

l=1

γL−lpφl(y = m|x), (6)

where Z is a normalization factor and γ the weighting factor. γ = α is used in
the present study, but in practice γ can also be optimized via learning.

2.3 Experimental Results

In the experiments below, we choose the network architecture to be the same
as that in [7], which consists of four stacked layers, with each layer containing a
3 × 3 convolution with 64 filters followed by batch normalization, a ReLU non-
linearity, and 2 × 2 max-pooling. Prototypes are calculated at each layer after
the ReLU operation.

Two datasets, Omniglot and miniImageNet, are used. The Omniglot dataset
has 1623 classes from 50 alphabets [8]. There are 20 examples in each class and
each of them was drawn by a different human subject. To reduce over-fitting,
data augmentation was performed with rotations in multiples of 90 degrees.
Following Vanyals et al. [7], all the gray scale images are resized to 28 × 28.
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We use 1200 characters plus rotations (4800 characters in total) for episodic
training and the rest plus rotations for testing. The miniImageNet dataset was
originally proposed by Vinyals et al. [7], which is derived from the ILSVRC-12
dataset [9]. It consists of 100 classes and each class contains 600 colored images
of size 84 × 84. In our experiments, we use the splits introduced by Ravi and
Larochelle [10], which has a different set of 100 classes including 64 for training,
16 for validation, and 20 for test, and the validation dataset is only used for
early-stopping. We find that it takes long time to calculate distances in shallow
layers due to the large dimensionality of shallow features, we therefore scale down
the original 84× 84 images to 64× 64, but the performance of PTNs is retained.
Similar to [1], we set 60-way episodes for 1-shot and 5-shot classifications in the
Omniglot task, and 30-way episodes for 1-shot classification and 20-way episodes
for 5-shot classification in the miniImageNet task.

Table 1 presents the experiment results for the Ominglot task. Since the
authors didn’t release the detailed configuration, we could not reproduce the
results in [1]. Therefore we implement PTNs by ourselves using the same hyper-
parameters as in [1] but with more training epochs. We see that the overall
performance of the HPTN is comparable to that of the PTN in [1] but better
than our implementation of the PTN. The results for the miniImageNet are
similar, see Table 2.

Table 1. Classification accuracies on Omniglot. In our implementation of PTN and
HPTN, we initialize all the parameters with the same seed. Training epochs is set to
be 200, episodic training classes is 60, learning rate is initialized to be 10−3, and we cut
the learning rate in half every 4000 episodes. No regularization was used other than
batch normalization.

Model 5-way 20-way

1-shot 5-shot 1-shot 5-shot

Neural Statistician [11] 98.1 99.5 93.2 98.1

Matching Networks [7] 98.1 98.9 93.8 98.5

PTN [1] 98.8 99.7 96.0 98.9

PTN (Ours) 98.7 99.6 95.4 98.6

HPTN 98.9 99.7 95.6 98.8

Interestingly, we observe that the classification accuracies in the intermediate
layers of the HPTN are significantly improved compared to that of the PTN
(note that in the PTN, although we did not include classification errors of the
intermediate layers in the loss function, we can still calculate their classification
performances by computing the prototypes using the support set accordingly).
As shown in Fig. 2, for the Omniglot task, the improvements of the HPTN are
around 5% in layer 2 and 3% in layer 3 compared to the PTN (Fig. 2A); for the
miniImageNet task, the improvements are around 3% in layer 2 and 5% in layer
3 (Fig. 2B). These improvements are intuitively understandable, since the HPTN
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Table 2. Classification accuracies on miniImageNet. Parameters are initialized with
the same seed. Training epochs are set to be 200. We use 30-way episodes for one-shot
classification and 20-way episodes for 5-shot classification. Learning rate is initialized
to be 10−3, and we cut the learning rate in half every 4000 episodes. No regularization
was used other than batch normalization.

Model 5-way

1-shot 5-shot

Matching Networks [7] 46.6 60.0

Meta-Learner LSTM [10] 43.4 60.6

PTN [1] 49.4 68.2

PTN (Ours) 48.6 65.5

HPTN 49.7 67.3

Fig. 2. Comparing classification accuracies at different layers of a HPTN and a PTN,
denoted by solid and dashed lines, respectively. Different layers are colour-coded. The
results are obtained by averaging over 1000 test episodes and reported with 95% confi-
dence interval. A. The Omniglot dataset, 20-way 5-shot learning. B. The miniImageNet
dataset, 5-way 5-shot learning. (Color figure online)

is trained to minimize also the classification errors in the intermediate layers of
the network (Eq. (5)). This property is appealing to a neural system, as it means
that the HPTN not only achieves an overall good classification performance, but
also generates a set of good representations of increasing complexity along the
network hierarchy. These hierarchical representations reflect that object features
are extracted from simple to complex along the network hierarchy, and that
the object information can be read-out from different layers depending on the
requirement, achieving the so-called rough-to-fine object recognition.
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3 Linking to Attractor Neural Networks

The appealing properties of PTNs/HPTNs are that, on one hand, they classify
objects based on the distances/similarities between objects (metric-learning),
and on the other hand, they provide an efficient way to optimize the repre-
sentations of objects via end-to-end supervised training. Notably, the distance
computation in a PTN/HPTN (in particular, when the Euclidean distance is
used) is analogy to the pattern overlap computation in the attractor dynamics
of a Hopfield network, and the latter is known to mimic information retrieval in
neural systems [12]. Therefore, we explore whether the classification operation
via distance computation in a PTN/HPTN can be replaced by the dynamics
of an attractor network. For illustration, we only consider that the last step of
classification by distance in a PTN is replaced by the dynamics of a Hopfield
network, but extension to multiple layers in a HPTN is straightforward.

To construct a Hopfield model, we binarize the activities in the last layer
of a PTN (±1) and define the prototypes of all classes as the patterns the
Hopfield network needs to memorize, which are denoted as μi, for i = 1, . . . , N .
We adopt two ways to construct the neuronal connections W: one uses the
conventional Hebb rule, which gives rise to W =

∑N
i μT

i μi/N , and the other
uses the orthogonal Hebb rule, which orthogonalizes the memory patterns before
applying the Hebb rule (for detail, see [13]). It is known that only the orthogonal
Hebb rule ensures that the Hopfield model holds correlated memory patterns as
its attractors ([14]). Once the Hopfield network is established, given a query
pattern, the network evolves to an attractor (corresponding to a prototype)
automatically, which outputs the class label of the input (see illustration in
Fig. 1C).

Table 3 summarizes the experimental results, which show that: (1) when the
representations are binarized (no attractor dynamics is applied yet), the perfor-
mance of the PTN is slightly decreased compared to the case of using continuous
representations; (2) when the Hopfield model with the conventional Hebb rule
is applied, the performance of the network is degraded dramatically, in partic-
ular, in the difficult 20-way learning case; (3) when the Hopfield model with
the orthogonal Hebb rule is applied, the performance of the network is still

Table 3. Classification accuracies of PTNs and a Hopfield model. Features are bina-
rized according to mean values. The embedding network is trained using the Omniglot
dataset. The hyper-parameters are the same as in Sect. 2.3.

Model 5-way 20-way

1-shot 5-shot 1-shot 5-shot

PTN 98.6 99.6 94.9 98.5

Binarized PTN 96.5 98.6 87.4 94.7

Hopfield with Hebb 89.1 92.9 25.9 27.3

Hopfield with Ortho Hebb 94.4 97.9 78.2 90.6
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decreased compared to the PTN, but the gap is not huge. Overall, our study
indicates that a prototypical network can be approximately implemented by a
biologically plausible attractor network.

4 Conclusions

In the present study, motivated by the characteristics of neural systems, we
have extended PTNs in two aspects. First, we developed HPTNs to optimize
representations for prototypes at all layers. Applied to benchmark datasets, the
overall performances of HPTNs are comparable to, or slightly better than, that
of PTNs. However, HPTNs generate much better representations for prototypes
at the intermediate layers of the network. Secondly, we explored a potential
link between PTNs and attractor neural networks by demonstrating that the
classification operation via distance in PTNs can be realized approximately by
the attracting dynamics of the Hopfield model. We hope that this study gives
us insight into understanding metric-learning in neural systems (i.e., process-
ing information based on semantic similarity) and sheds light on developing
advanced brain-inspired computational models.
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Abstract. The extraction of useful information from multi-sensors data
requires fairly involved methodologies and algorithms. We propose an
L1 regularized tensor decomposition to decrease learning sensitivities,
coupled with an adaptive one-class support vector machine (OCSVM)
for anomaly detection purposes. This new framework yields sparse and
smooth representations of the desired outcomes. An automatic parame-
ter selection method based on the euclidean metric is also proposed to
adaptively tune the kernel parameter inherent in OCSVM. These posi-
tive characteristics of tensor analysis allow us to fuse data from multi-
ple sensors and further analyze them at the same time at which infor-
mative features are being extracted. This work is challenging because
it is cross disciplinary; and thus it requires coherency to the specific
domain applications fundamentals (such as structural health monitor-
ing), on the one hand, and its diversity on machine learning techniques
on the other. Compared to the state-of-the-art approaches for learning
tensor and anomaly detection, our proposed methods work well on exper-
iments and show better performance in terms of decomposition quality
and stability of the extracted features.

Keywords: Tensor · One-class support vector machine
Online learning · Structural health monitoring · Anomaly detection

1 Introduction

Machine learning algorithms have been heavily employed in various applica-
tion domains including bioinformatics, transportation and civil infrastructure
[2,3,15]. A promising success has been reported in the literature. However, there
are various application domains such as structural health monitoring (SHM) [18]
that require development of new methodologies to analyze such excessive com-
plex data. SHM is a continuous automated monitoring process of civil infrastruc-
ture condition using data obtained from several sensors mounted the structure
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L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11303, pp. 612–624, 2018.
https://doi.org/10.1007/978-3-030-04182-3_54

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04182-3_54&domain=pdf
http://orcid.org/0000-0002-8864-0314
https://doi.org/10.1007/978-3-030-04182-3_54


Regularized Tensor Learning with Adaptive OCSVMs 613

[10,21]. The wealth of measured vibration responses values being generated by
many sensors leads to complex high dimensional, multi-way and correlated data.
This kind of multi-way form data raises many challenges to analyze and extract
informative features that can be used to learn a classification model. Moreover,
this type of data prohibits the use of a traditional decision-making classifier,
such as random forest [6] or support vector machine [8] since only positive data
samples (i.e. healthy samples) are accessible, and the instances from damage
state, if not possible, are too difficult or costly to acquire.

These exceptional complexities led to the adoption of tensor analysis which
allows the learning from such multi-way data in multiple modes at the same
time and extracting damage sensitive features. These challenges also led to the
development one-class classification models which can be constructed using one
class data.

Several methods have been proposed in the literature for learning tensor
known as tensor decomposition. However, two typical approaches are mostly
used in the literature known as CANDECOMP/PARAFAC (CP) and Tucker
decomposition [13]. This paper implements the tensor decomposition using CP
approach since it has gained much popularity over tucker decomposition and it
is the most widely used algorithm due to its ease of interpretation. Alternating
Least Squares (ALS) technique is often used to solve this kind of tensor decom-
position. However, it is well known that ALS can lead to sensitive solutions [9].
Thus, regularization methods are required to decrease this sensitivity.

This paper presents a novel algorithm to extract damage sensitive features
form multi-way tensor data based on L1 regularization to decrease ALS learning
sensitivities, and adaptive one-class SVM (OCSVM) [19] to detect and assess
damage severity.

This framework is extensively evaluated using laboratory-based and real-life
structures datasets. The evaluation shows that our L1 regularization method for
learning tensor has the capability to extract damage sensitive features which
were able to accurately detecting damage. It also reflects the fact that it has the
potential to estimate the severity of damage in the specimen using the obtained
decision values from the adaptive OCSVM. The contribution of this paper is as
follows.

– Sensing multi-way data are fused in a tensor, from which L1 regularization
method for tensor decomposition was proposed to efficiently extract damage
sensitive features.

– Damage detection and severity assessment are accomplished using adaptive
OCSVM which has the capability to construct an optimal decision boundary
without encountering the over-fitting nor the under-fitting problems.

– Experiments using data obtained from laboratory-based and real-life struc-
tures datasets show the effectiveness of our approach in damage identification
and severity assessment.

The remainder of this paper is structured as follows. Section 2 reviews some
related work. Section 3 describes our novel L1 regularization method for learning
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tensor and adaptive OCSVM algorithms, while Sect. 4 presents our experimental
results and evaluations. Finally, Sect. 5 discusses the contributions, future work
and concludes this paper.

2 Related Work

Tensor analysis has been successfully applied in many application domains such
as chemistry, social network analysis and computer vision [1,5,11], and produced
significant results. For instance, [17] applied tensor analysis for damage detec-
tion and feature selection in SHM data, but without studying the capability of
assessing the damage severity. [20] used the tensor analysis in online applications
(e.g. computer network intrusion detection) and they worked on the problem of
incrementally updating the component matrices in Tucker decomposition. How-
ever, few work reported in the literature to discuss the regularization learning of
tensor decomposition to fuse data from multiple sensors and extract the features
that has the ability to asses the severity of damage. [24] proposed a method to
incrementally update the component matrices in CP decomposition over time.
It adopts the alternating least square (ALS) method but without using any
regularization parameters.

Successful applications of one-class support vector machine (OCSVM) for
anomaly detection have been also reported in the literature. For instance, [23]
designed a robust OCSVM to eliminate the influence of outliers to the learned
boundary and used it to detect damage in a simulated structure. [14] also used
OCSVM coupled with SVM-recursive feature elimination method for error detec-
tion. Further, the authors in [23] and [14] used OCSVM to detect damage in a
rotating machinery and the results showed that the performance of the pro-
posed method is superior to the state-of-the art methods. However, the work
above focused on damage detection using data for each individual sensor which
might help in detecting the damage but not in damage severity assessment in
an unsupervised approach. They have also used the default setting of kernel
parameter in OCSVM which may also over-fit or under-fit the model.

3 Methods

3.1 Tensor Analysis

Sensing data are usually collected from several networked sensors mounted the
structure (e.g. a bridge) to measure the vibration signal over time. The data
in SHM can be considered as a three-way tensor (feature × location × time) as
described in Fig. 1. The feature in Fig. 1 is the information extracted from the
raw signals in time domain. The sensors are represented in the location matrix,
and time is data snapshots at different timestamps. Each slice along the time
axis shown in Fig. 1 is a frontal slice representing all feature signals across all
locations at a particular time.
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Fig. 1. Tensor data with three modes in SHM.

Given a tensor X ∈ �I×J×K , CP method decomposes it into three matrices
A, B and C as shown in Fig. 1. Matrix A represents the location mode, B rep-
resents feature mode and C represents time mode. In this sense, a tensor X can
be written as

X ≈
R∑

r=1

λr Ar ◦ Br ◦ Cr ≡ [λ;A,B,C] (1)

where “◦” is a vector outer product. R is the latent element, Ar, Brand Cr are
r-th columns of component matrices A ∈ �I×R, B ∈ �J×Rand C ∈ �K×R, and
λ is the weight used to normalize the columns of A,B, and C.

L1 Regularization for Learning Tensor: The main goal of CP decomposition
is to decrease the sum square error between the model and a given tensor X:

min
A,B,C

‖X −
R∑

r=1

λr Ar ◦ Br ◦ Cr‖2f , (2)

where ‖X‖2f is the sum squares of X, and the subscript f is the Frobenius norm.
It seems at first that the function presented in Eq. 2 is a non-convex problem since
it aims to optimize the sum squares of three matrices. However, the problem can
be reduced to a linear least squares problem by fixing two of the factor matrices,
and solve only the third one. Following this approach, the ALS technique can
be employed here which repeatedly solves each component matrix by locking all
other components until it converges [16].

We remark that ALS can lead to sensitive solutions and it is not in general
robust and hence motivates the need to incorporate the notion of penalty and
regularization. The incorporation of regularization and penalization parameters
into the L1 norms make it possible to achieve smooth representations of the
outcome and thus bypassing the perturbation surrounding the local minimum
problem. The algorithm for CP decomposition using regularized ALS (RALS) is
described in Algorithm 1. The L1 penalty terms ||X||L1 =

∑
· |x·| enforces the

intensity of sparsity in X.
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Algorithm 1. Regularized Alternating Least Squares for CP
Input: Tensor X ∈ �I×J×K

Output: Matrices A ∈ �I×R, B ∈ �J×R, C ∈ �K×R, and λ
1: Initialize A, B, C
2: Repeat
3: A = arg min

A

1
2
‖X(1) − A(C � B)T ‖2 + γXA ||X(1)||L1

4: B = arg min
B

1
2
‖X(2) − B(C � A)T ‖2 + γXB ||X(2)||L1

5: C = arg min
C

1
2
‖X(3) − C(B � A)T ‖2 + γXC ||X(3)||L1

(X(i) is the unfolded matrix of X in a current mode)
6: until converged

Incremental Tensor: Resolving the CP decomposition from scratch in online
applications seems impractical in case of big training set of healthy samples.
Therefore, there is an urgent need for incremental learning of tensor in online
applications to update its components matrices when addition training data
arrived. Similar to the RALS approach described in Algorithm1 and as proposed
by [24], we fix the two components A and B then update the temporal mode C,
and sequentially update the non-temporal modes A and B, by fixing the other
two.

Update Temporal Mode C:

C = arg min
C

1

2
‖X(1) − C(B � A)T ‖2 = arg min

C

1

2

∥
∥
∥
∥
∥

[

Xold(3) − Cold(B � A)T

Xnew(3) − Cnew(B � A)T

]∥
∥
∥
∥
∥

2

The new time mode Cnew can be estimated by projecting the new arrived
training sample Xnew(3) into the old matrices A and B. The new component C
is then updated as follows

C =

[
Cold

Cnew

]
=

[
Cold

Xnew(3)((B � A)T )†

]
(3)

where † represents the pseudo-inverse of a matrix

Update Non-temporal Modes A and B: The optimization functions for A and B
can be written as 1

2‖X(1)−A(C�B)T ‖2 and 1
2‖X(2)−C(B�A)T ‖2, respectively.

The resultant derivatives of these two functions w.r.t A and B and setting them
to zero are:

A =

P︷ ︸︸ ︷
X(1) − (C � B)

(C � B)T (C � B)︸ ︷︷ ︸
Q

(4)
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and

B =

U︷ ︸︸ ︷
X(1) − (C � A)

(C � A)T (C � A)︸ ︷︷ ︸
V

(5)

The computational time of (C �B) and (C � A) is costly since the resultant
matrix size is very large. Therefore the simplified version of this equation can be
estimated based on the old and new information of X(i)21

and C.

P = Pold + Xnew(1)(Cnew � B) (6)

Q = Qold + CT
newCnew ◦ BT B (7)

U = Uold + Xnew(2)(Cnew � A) (8)

V = Vold + CT
newCnew ◦ AT A (9)

3.2 Adaptive One-Class Support Vector Machine Based Spatial
Distance Algorithm

Given a set of training positive data samples X = {xi}n
i=1, where n is the number

of samples, OCSVM uses a function φ to transform these positive samples into
a high dimensional kernel space through the kernel K(xi, xj) = φ(xi)T φ(xj).
Several kernel functions have been used in support vector machines such as
Gaussian and polynomial kernels. These functions have a free critical kernel
parameter γ which determines the width of the Gaussian kernel or the degree of
the polynomial, respectively.

K-fold cross validation is often used at a training stage in order to tune
the kernel parameter. However, in case of one class training, this technique is
not possible because it selects the parameter that works only on the training
class data and thus lack for generalization (over-fitting problem). Therefore,
alternative approaches have been proposed for tuning this parameter for one
class data [4,12,22]. These techniques only work to tune the Gaussian kernel
parameter. This paper proposed a new algorithm called spatial distance (SD)
for tuning all the possible type of kernel parameters based on inspecting the
spatial locations of the edge and interior samples, and their distances to the
enclosing surface of OCSVM. Following the objective function f(γi) described
in Eq. 10, the SD algorithm selects the optimal value of the kernel parameter
γ̂ = argmax

γi

(f(γi)) which generates a hyperplane that is maximally distant from

the interior samples but close to the edge samples. Note that we define the
function f(·) as follows:

f(γi) := M{dN (xn)}
xn∈ΩIN

− M{dN (xn)}
xn∈ΩED

(10)
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where ΩIN and ΩED, respectively, represent the sets of interior and edge samples
in the training positive data points identified using a hard margin linear support
vector machine, M is the median value of the estimated normalized distances
dN . The dN is distance for any sample to the hyperplane calculated using the
following equation:

dN (xn) =
d(xn)

dπ
(11)

where dπ is the distance of a hyperplane to the origin described as dπ = ρ
‖w‖ ,

and d(xn) is the distance of the sample xn to the hyperplane obtained using the
following equation:

d(xn) =
g(xn)
‖w‖ =

∑n
i=1 αik(xi, xn) − ρ.√∑n

ij αiαjK(xi, xj)
(12)

where w is a perpendicular vector to the decision boundary, α are the Lagrange
multipliers and ρ known as the bias term learnt from OCSVM.

4 Experimental Results

This section presents two case studies to illustrate how our feature-based L1

regularization for tensor decomposition and adaptive OCSVM based SD methods
are capable to identify and estimate the structural damage severity. The core
consistency diagnostic technique (CORCONDIA) technique described in [7] was
used to determine the number of rank-one tensors R when it decomposed using
CP method. The CORCONDIA suggests R = 2 for all experimented data sets.

In all experiments, the OCSVM uses the Gaussian kernel function defined in
Eq. 13 to map the positive samples into high dimensional kernel space.

K(xi, xj) = exp
(

−‖xi − xj‖2
2γ2

)
. (13)

The SD method were also used in all the experiments to adaptively tune
the Gaussian kernel parameter. The accuracy values were obtained using the F-

Score (FS), defined as F-score = 2 · Precision × Recall
Precision + Recall

, Precision =
TP

TP + FP

and Recall =
TP

TP + FN
, where the number of true positive is abbreviated by

(TP), false positive (FP), and false negative (FN), respectively.

4.1 Case Study I: Sydney Bridge

Experiments Setup and Data Collection. Our main experiments were con-
ducted using structural vibration based datasets acquired from a network of
accelerometers mounted on the Sydney Bridge. The bridge has several joints
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each mounted by three sensors (left, right and middle). However, only one joint
was used in this study because it is the only joint was known as a cracked joint.
The data used in this study was collected over a period o nine months and it
contains 7,625 events each has 300 features representing the frequencies of each
event. The first month of the data (1800 samples) collected before the presence
of any damage were used to derive the damage sensitive features and train the
adaptive OCSVM. The remaining samples of the healthy data (before damage
and after partial/full repair) were used for testing in addition to the damage
samples.

The resultant matrices from the three sensors of the training dataset were
fused in a tensor X ∈ �1800×300×3, which was decomposed using RALS method
(see Algorithm 1) into three matrices A ∈ �3×2, B ∈ �300×2, and C ∈ �1800×2.
At the first of the experiment, we initialize the values of P,Q,U and V using
Eqs. 6, 7, 8 and 9, respectively. The matrix C was used to construct the adaptive
OCSVM model. For each arrive Xnew datum, we used Eq. 3 to calculate Cnew,
and then we update the matrices A and B following Eqs. 4 and 5, respectively.

Results and Discussions. This section presents the classification performance
of the OCSVM using the damage sensitive features extracted from the tensor
using RALS algorithm. A 98% accuracy was achieved in the test dataset using the
regularized tensor learning and the adaptive value of Gaussian kernel parameter
in OCSVM. The damage samples were successfully detected while maintaining a
low false alarm rates. On the other hand, 87% accuracy was achieved using the
non-regularized tensor learning method as the OCSVM model classified many
of the damage samples as healthy events. This is what we anticipated from the
non-regularized tensor learning method which produced unstable features that
cannot be used to accurately detect damage in the structure. Further and in
order to show the ability of our regularized tensor learning approach in assessing
the severity of the detected damage, we have calculated the decision values for
the obtained classification results which shown in Figs. 2 and 3. The horizontal
axis represents the date of the data instance and the vertical axis represents the
decision values. 5,825 events were tested in this experiment; the average value for
each ten events was used to report the health score of the structure. The first 418
green data points represent the healthy instances collected before the existence
of the damage, the next 27 red data points represent the damaged instances.
The following 75 and 65 samples (shown in orange and blue, respectively) refer
to the healthy samples after partial and full damage repair, respectively. The
average of all the decision values for each group were recorded and presented in
Figs. 2 and 3. A black line was drawn to line the average values. As can be clearly
seen from Fig. 2, the constructed OCSVM model using RALS features has the
capability to identify the damage in the structure and to asses the condition
of the joint when the mean value of the decision values clearly increased after
repair. The non-regularized tensor learning, on the other hand, failed to detect
all the damage samples and produced false alarms.
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Fig. 2. Damage identification results applied on Sydney Bridge data using regularized
tensor learning (Color figure online)

Fig. 3. Damage identification results applied on Sydney Bridge data using non-
regularized tensor learning (Color figure online)

4.2 Case Study II: A Reinforced Concrete Jack Arch

Experiments Setup and Data Collection. The data in this case study
contains 950 samples separated into two main groups, Healthy (190 samples)
and Damaged (760 samples). Each sample has 8000 attributes representing the
frequencies of each sample. The damaged cases were further sub-grouped into 4
different damaged cases (190 samples each) based on their severity.

We randomly chosen 80% of the positive data points (152 instances) to
extract the damage sensitive feature by fusing the measured responses from the
six sensors of the test positive samples into a tensor X ∈ �152×8000×6 since only
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six sensors were used in these experiments. The remaining 20% of the healthy
data was used for testing including the data collected from the four damage
cases. Similar to the previous case study, we applied RALS algorithm to decom-
pose the tensor X into three matrices A, B, and C which was used to construct
the adaptive OCSVM. For each arrive Xnew datum, we used Eq. 3 to calculate
Cnew, and Eqs. 4 and 5 to update the matrices A and B, respectively.

Results and Discussions. As can be seen in Fig. 4, although no information
of damaged events has been employed to construct the OCSVM model and only
data from the healthy events have been utilized for the purpose of training, the
trained model can successfully predict the healthy and the damaged events using
the damage sensitive features extracted from the tensor using RALS algorithm.
Further, it can be clearly observed that by increasing the damage severity, the
decision values were further decreased (i.e. the data were moving away from
the positive data points). These results demonstrate the capability of the RALS
method in detecting and assessing the evolution of damage in the structure based
on the decision values. The model accuracy of the test data was 95.7% using
RALS method for learning tensor. This suggests that the constructed adaptive
model is well generalized on unseen samples and has the ability to detect healthy
and damaged samples although the level of damage case 1 in this case study
is considerably small. Moreover, the method has also shown the capability to
identify the progression of the damage which illustrated in Fig. 4 by calculating
and showing a solid lack line to connect the mean of all the decision values for
each category.

A 81.5% accuracy, on the other hand, was achieved using the non-regularized
ALS algorithm. As shown in Fig. 4, the non-regularized method produced less
accurate damage sensitive features which yields OCSVM to miss the damage
samples related to the small cracks in the structure i.e. damage cases 1 and 2.
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(a) Regularized Learning Tensor.
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(b) Non-Regularized Learning Tensor.

Fig. 4. Damage identification results applied on lab specimen data.
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5 Conclusions

This paper presents a novel and insightful L1 regularized tensor learning coupled
with an adaptive OCSVM for online damage identification and assessment. The
online tensor analysis was used in this study as a data amalgamation technique
to combine acceleration from multiple sensors and to extract desired features.
The core consistency diagnostic technique method described in [7] was used
to determine the number of rank-one tensors R in the CP [13] method. An
adaptive OCSVM was then utilized to build a statistical model using the data
from the healthy state of the structure. OCSVM approach is well suited this
kind of applications when we lacking of damaged data instances. Gaussian kernel
method was employed in OCSVM and an automatic parameter selection method
called SD was proposed for tuning the Gaussian kernel parameter. Incremental
tensor was then applied for each arrived new datum to adiabatically update the
three tensor matrices obtained during the training stage without resolving the
problem from scratch.

Two comprehensive case studies were investigated considering different dam-
age scenarios including single and multiple damage states which were progres-
sively increasing. It was demonstrated that our RALS method generated damage
sensitive features which used by OCSVM to detect the presence of damage while
maintaining a low false positive rate on data from the healthy structure. Our
adaptive model was able to detect damage with a very small severity which
was missed using the non-regularized tensor method. Furthermore, this paper
illustrated how our RALS method generates damage sensitive features which
can also reliably monitor the progress of damage in the structure by providing
decreasing negative decision values.

These findings indicate that the application of unsupervised learning using
online tensor to extract damage sensitive features along with the implementation
of adaptive OCSVM can provide a robust method to detect and evaluate the
progress of damage, which is of great importance during structural condition
assessment.

We conclude that the availability of regularization in our framework leaves
us the modelling freedom to maneuver and adapt to each domain specific appli-
cation. Each application presents quite distinct specificity that require certain
amount of improvised inventiveness fitted to that application.
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Abstract. Multi-label dimensionality reduction is an appealing and
challenging task in data mining and machine learning. Previous works on
multi-label dimensionality reduction mainly conduct in an unsupervised
or supervised way, and ignore abundant unlabeled samples. In addition,
most of them emphasize on using pairwise correlations between sam-
ples, therefore, unable to utilize the high-order sample information to
improve the performance. To address these challenges, we propose an
approach called Semi-supervised Multi-label Dimensionality Reduction
via Low Rank Representation (SMLD-LRR). SMLD-LRR first utilizes
the low rank representation in the feature space of samples to calculate
the low rank constrained coefficient matrix, then it adapts the coefficient
matrix to capture the high-order structure of samples. Next, it uses low
rank representation in the label space of labeled samples to explore the
global correlations of labels. After that, SMLD-LRR further employs
the learned high-order structure of samples to enforce the consistency
between samples in the original space and the corresponding samples in
the projected subspace by maximizing the dependence between them.
Finally, these two high-order correlations and the dependence term are
incorporated into the multi-label linear discriminant analysis for dimen-
sionality reduction. Extensive experimental results on four multi-label
datasets demonstrate that SMLD-LRR achieves better performance than
other competitive methods across various evaluation criteria; it also can
effectively exploit high-order label correlations to preserve sample struc-
ture in the projected subspace.

Keywords: Dimensionality reduction
Multi-label Linear Discriminant Analysis · Semi-supervised learning
Low Rank Representation

1 Introduction

Different from traditional supervised learning where each sample is associated
with a single class label that denotes its semantic category. A sample, in many
real-world applications, is often annotated with multiple labels. For example,
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a news report can be tagged with multiple labels, such as economics, politics
and culture. Multi-label learning is a paradigm proposed to address these sce-
narios, and has attracted much attention in data mining and machine learning
research literature [1,2]. However, in multi-label learning, the dimensionality
of data is usually very high. Directly working on such high-dimensional data is
not only time consuming and computational unreliable [3], but may also degrade
the classification performance due to the possible existence of redundant or noise
features [4]. Dimensionality reduction, as a crucial preprocessing for many data
mining (or machine learning) tasks on high-dimensional samples [4–8], can effi-
ciently reduce the dimensionality of samples and boost the performance of the
later analysis.

In the past few decades, many multi-label dimensionality reduction methods
have been proposed in literature [9–12]. For example, Zhang et al. [11] intro-
duced a supervised multi-label dimensionality reduction method called MDDM.
MDDM learns a low-dimensional subspace by maximizing the feature-label
dependence between the original features of samples and the associated labels
of these samples under the Hilbert-Schmidt Independence Criterion [13]. Wang
et al. [14] introduced the Multi-label Linear Discriminative Analysis (MLDA)
by extending the classical Linear Discriminant Analysis (LDA) [15] via addi-
tionally utilizing label correlations. In addition, several classic techniques, such
as Canonical Correlation Analysis (CCA) [9] is also extended to handle the
multi-label problem [16]. These supervised methods are based on the sufficient
labeled training data but it is always difficult to get the labeled data in reality
[17]. Hence these methods limit their effectiveness by excluding a large amount of
unlabeled samples, which can be used to promote the performance of multi-label
dimensionality reduction [18].

To make full use of sufficient unlabeled samples and bypass the scarce labeled
ones, a few semi-supervised multi-label dimensionality reduction methods have
been proposed in recent years. For instance, Guo et al. [3] proposed a Semi-
supervised Multi-label Dimensional Reduction method (SSMLDR). SSMLDR
first tries to enlarge labeled samples by assigning pseudo labels to unlabeled sam-
ples via label propagation algorithm, it then combines all the labeled samples into
MLDA to optimize the projective matrix. Nevertheless, the labels of labeled sam-
ples may be wrongly propagated to the unlabeled ones and thus degrades the per-
formance of SSMLDR.Yuan et al. [19] proposed amethod calledMulti-label Linear
Discriminant Analysis with Locality Consistency (MLDA-LC). MLDA-LC takes
advantage of a kNN graph constructed on both labeled and unlabeled sample,
and incorporates a smoothness term into the standard MLDA for dimensionality
reduction. Yu et al. [20] proposed another approach Semi-supervised Multi-label
Linear Discriminant Analysis (SMLDA). It also extends MLDA by maximizing the
dependence between pairwise similarity derived from samples in the ambient space
and the similarity from corresponding samples in the projected subspace.However,
all of these aforementioned methods can not adequately exploit the global struc-
ture of samples. Moreover, they also can not explicitly utilize label correlations,
which is very important in multi-label learning tasks [2].



Semi-supervised Multi-label Dimensionality Reduction via LRR 627

In this paper, a novel multi-label dimensionality reduction approach called
Semi-supervised Multi-label Dimensionality reduction via Low Rank Represen-
tation (SMLD-LRR) has been proposed. Unlike existing semi-supervised linear
discriminant analysis methods that mainly focus on pairwise similarity of sam-
ples and can not use high-order label correlations, we take advantage of Low
Rank Representation (LRR) [21] to capture high-order correlations in both fea-
ture and label spaces of samples. To be specific, SMLD-LRR first computes the
coefficient matrix of samples (including both labeled and unlabeled samples) in
the feature space by LRR and then adopts the matrix to learn the high-order
structure of samples in feature space. In addition to that, SMLD-LRR explores
the global relationships among labels by using LRR again in the label space of
labeled samples. Next, SMLD-LRR utilizes the high-order similarity of samples
to further enforce the consistency of samples in the original feature space and in
the projected subspace by maximizing the dependence between them. Finally,
SMLD-LRR fuses the feature-based and semantic-based correlations, as well as
the dependence term into the MLDA framework. The empirical study on sev-
eral publicly available datasets shows that SMLD-LRR not only can find more
discriminant subspace than other related methods, but also can utilize label
correlations to preserve sample similarity in the learned subspace.

The reminder of this paper is organized in 3 sections. We first elaborate on
SMLD-LRR, then present the experiments, the analysis and conclusions.

2 Methodology

In this section, we briefly introduce the LRR, the capture of high-order structure
of samples and the exploration of high-order label correlations, and the proposed
Low Rank Representation based multi-label dimensionality reduction model.
Before that, we introduce the notations that will be used in this paper. Let
{xi,yi} be a collection of samples, where xi ∈ R

D indicates the i-th sample.
yi ∈ {0, 1}C is the label vector of the i-th sample. If sample i is annotated with
label c, yic = 1; otherwise, yic = 0. Here we assume that among N samples, the
first l samples are labeled and the left u samples are unlabeled, N = l + u. Our
goal is to learn a discriminant subspace by leveraging both labeled and unlabeled
samples.

2.1 Low Rank Representation for High-Order Sample Structure
Exploration

Low rank representation (LRR) has been recently introduced to capture the
global structure of data in multi-label data [21–24]. Since LRR is robust to
noisy or redundant features, it has been regarded as an appropriate approach to
explore the high-order structure and global mixture of the subspace structure of
samples in many applications [25]. In this paper, we take advantage of LRR to
explore the high-order structure of samples and use this structure to advance the
performance of dimensionality reduction. Assuming X = [x1,x2, ...,xN ] ∈ R

D×N
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is the feature space of both labeled and unlabeled samples. Y = [y1,y2, ...,yl] ∈
R

C×l denotes the label matrix for l labeled samples. Each sample therefore
can be reconstructed as a linear combination of bases from a dictionary A =
[a1,a2,a3, ...,aM ] ∈ R

D×M as follow:

X = AZ1 (1)

Z1 ∈ R
N×N is the coefficient matrix and Z1(·, i) ∈ R

N is the representation
coefficient vector of sample xi with respect to N samples. We also set A = X
for simplicity [22]. Note that entry in Z1(i, j) is actually the contribution of xj

to the reconstruction of xi based on A. Based on this idea, the general LRR
problem is to enforce Z1 to be low rank and solve the following optimization
problem: {

min
Z1

rank(Z1)

s.t. X = AZ1,Z1 � 0
(2)

Equation (2) is called low rank representation [21], where X is reconstructed
by the low rank constrained matrix Z1. Solving Eq. (2) is a NP hard problem,
Zhang et al. [26] suggests relax Eq. (2) as follows:

{
min
Z1

‖Z1‖∗ + λ‖E‖2,1
s.t. X = AZ1 + E,Z1 � 0

(3)

where ‖E‖2,1 =
∑n

j=1

√∑m
i=1(Eij)2 is a noise term and λ is a trade-off param-

eter. In this paper, we employ the Linearized Alternating Direction technique
with Adaptive Penalty (LADMAP) [25] to accelerate the solution of LRR, where
the time complexity is O(rn2) and r is the rank of Z1. As low rank representation
jointly finds the low-ranked coefficient matrix Z1 for all samples, it is a natural
encoding of the global structure among samples. For this reason, we adapt Z1

to measure the high-order structure of samples W, where W = (Z1 + ZT
1 )/2.

2.2 Low Rank Representation for High-Order Label Correlation
Exploitation

Classical supervised dimensionality reduction techniques often focus on single
label problem, but the data in real-life usually have multiple labels simultane-
ously. For instance, considering two images, one is labeled with “cow”, “prairie”
and “green color” while the other is annotated with “deer”, “forest” and “green
color”. Intuitively, the two images are similar from the feature aspect as they
have similar backgrounds. From the aspect of semantic labels, however, these
images are quite different because one describes a cow on the prairie and the
other shows a deer in the forest. Therefore, only by computing the feature simi-
larity between the samples can not differentiate some samples with polysemous
labels but different concepts. To avoid this dilemma, it is necessary to build
techniques that can additionally utilize semantic information for dimensionality
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reduction. Most previous multi-label dimensionality reduction methods mainly
focus on pairwise label correlations; such as pairwise label correlation computed
by cosine similarity [14,20]. Recently, Wang et al. [27] suggests that the high-
order semantic similarity between two multi-label samples can be derived from
the labels associated with these two samples by Sparse Representation (SR)
[28]. However, considering that SR [27] is optimized by separately treating each
labeled samples; thus, it may be failed to capture the global semantic relationship
between samples, which is very important as discussed above. Inspired by this,
we try to use LRR to capture the high-order label correlations between labeled
samples. Concretely, we first compute the low rank coefficients of samples based
on label space Y by LRR as suggested in Eq. 3. Then we utilize the low rank
coefficients again to define the semantic based high-order similarity of samples
S ∈ R

N×N , where S = (Z2 + ZT
2 )/2 and Z2 is the LRR coefficient matrix in

regard to labeled samples.

2.3 The SMLD-LRR Method

In this subsection, we will show how to incorporate the feature-based and label-
based high-order correlations into the standard MLDA framework so that it can
not only leverage both labeled and unlabeled samples, but can also preserve
sample similarity in the projected subspace. Let P ∈ R

D×d denotes the target
projective matrix, which projects x into a d-dimensional discriminative subspace
via PTx. MLDA defines the within-class, between-class and the total-class scat-
ter matrices as follows:

Sb =
C∑

c=1

Sc
b, Sc

b =
N∑
i=1

yic(mc − m)(mc − m)T (4)

Sw =
C∑

c=1

Sc
w, Sc

w =
N∑
i=1

yic(xi − mc)(xi − mc)T (5)

St =
C∑

c=1

Sc
t , Sc

t =
n∑

i=1

yic(xi − m)(xi − m)T (6)

Where Sb, Sw and St are the corresponding between-class, within-class and
the total class-wise scatter matrices for all the class labels, respectively. mc

denotes the centroid of the c-th class and m is the global centroid of labeled
samples, which are defined as:

mc =
∑N

i=1 yicxi∑C
c=1 yic

, m =
∑C

c=1

∑N
i=1 yicxi∑C

c=1

∑N
i=1 yic

(7)

In multi-label learning, the proper usage of label correlation usually can boost
the performance [2]. First, MLDA defines the pairwise correlation between labels
as follows:

M(c1, c2) =
YT

.c1Y.c2

‖Y.c1‖‖Y.c2‖ (8)
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where Y.c1 is the c1-th column of Y that includes all the member samples of
this label. Then MLDA replaces the Y in Eq. (8) as Ỹ = YM. Next, MLDA
optimizes the optimal projective matrix P by solving the following optimization
problem:

max
P

tr(PTSbP)
tr(PTSwP)

or max
P

tr(PTSbP)
tr(PTStP)

(9)

Where tr(·) represents the matrix trace operator. Eq. (9) is efficient when
there are sufficient labeled samples. However, in real-life applications, it is rather
difficult or impractical to collect sufficient labeled samples. Here, we extend
MLDA to a semi-supervised way and construct a semi-supervised multi-label
dimensionality reduction model like this:

min
P

tr(PTSwP)
tr(PTSbP) + αΨ(W) + βΨ(S) + γΨ(P)

(10)

where the second term Ψ(W ) is the regularization on the global structure of
labeled and unlabeled samples, the third term Ψ(S) is to take advantage of the
semantic relationship between labeled samples and the last term is to maximize
the dependence between high-order similarity of samples in the original space
and the corresponding samples in the projected subspace. α, β and γ are three
trade-off parameters. The first term is defined as follows:

Ψ(W) =
1
2

N∑
i,j=1

‖|PTxi − PTxj‖|2Wij = tr(PTXLXTP) (11)

where Wij is the weight of the edge between samples xi and xj . D is a diagonal
matrix with Dii =

∑N
j=1 Wij ;L = D − W is the graph Laplacian matrix [29].

The reason to maximize Eq. (11) is to preserve the local structure of samples in
the projective subspace.

Similar to the assumption in Wang et al. [30], in this paper, we assume that
the label of each sample can be reconstructed by the other samples, while the
reconstructs coefficients are derived from the low rank representation matrix
of sample vectors. Thus the linear reconstruction coefficients in the low rank
matrix can be used to predict the labels of unlabeled samples, since the weight
W2

ij reflects the likelihood of sample xi to have the same label as sample xj .
Based on this label reconstruction assumption, the second term of Eq. (10) is
defined as:

Ψ(S) =
1
2

N∑
i,j=1

||PTxi −
∑
j �=i

SijPTxj ||2 = tr(PTX(I − S)(I − S)TXTP)

= tr(PTXMXTP)

(12)

where Sij represents the similarity of label vector yi and yj . I ∈ R
N×N is an

identity matrix, and M = (I − S)(I − S)T . The motivation to use this term is to
replenish possible missing features of labeled samples by taking advantage of the
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semantic based sample similarity. If a labeled sample has some missing features
and its semantic neighbors have these features, this term can replenish missing
features of that sample to some extent. In addition, by using this term, we
can utilize the semantic information to induce the projective subspace learning,
which not only helps to obtain a discriminative subspace but also may alleviate
the widely spread semantic gap [31] between the low-level feature space and the
semantic label space. Another advantage of this term is that by jointly work
with the first term, the possible replenished features and semantic information
further propagate to other unlabeled samples, and thus, SMLD-LRR can learn
more discriminate features.

Note that the semantic similarity between samples always has a positive
correlation with the feature similarity [11], the last term of Eq. (10) is defined
as:

Ψ(P) = HSIC(X,Y) = (N − 1)−2tr(KHQH) (13)

K,H,Q ∈ R
N×N ,K(i, j) = K(xi,xj), Q(i, j) = Q(yi,yj) and H(i, j) = δij− 1

N .
K and Q are the kernel functions in the feature space and label space. This term
measures the dependence between similarity of samples in the original space
and the corresponding similarity in the projected subspace. In fact, this idea
is already adopted by [20], which maximizes the dependence between pairwise
samples and the corresponding samples in the learned subspace and to measure
the dependence by using Hilbert-Schmidt Independence Criterion (HSIC) [13].
As discussed before, however, since multi-label high-dimensional data often con-
tains noise or redundant features, directly calculating the pairwise similarity of
samples in such space may be not correct and thus compromise the performance
of dimensionality reduction. To bypass the risk, we maximize the dependence
between high-order similarity of samples in the original space and in the pro-
jected subspace as follows:

HSIC(X,Y,P) =
tr(KHXTPPTXH)

(N − 1)2
(14)

Here, we replace Q with XTPPTX and K = W. It is worth to note that one
advantage of adding this term is that it can further preserve local structure of
samples in the projected subspace.

Based Eq. (11)–(14), we can rewrite Eq. (10) as:

min
P

tr(PTSwP)

tr(PTSbP) + αtr(PTXLXTP) + βtr(PTXMXTP) + γtr(KHHXTPPTX)
(15)

This equation is a generalized Rayleigh quotient problem, and the optimal P is
composed of eigenvectors corresponding to the smallest d eigenvalues of SwP =
λ(Sb + αXLXT + βXMXT + γXTKHHX)P. Since the rank of Sw is much
smaller than D(N) and can be larger than C − 1, the target dimensionality d
can be larger than C − 1.
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3 Experimental Results

3.1 Experimental Setup

Datasets. The four popular multi-label datasets used in the experiments (Yeast,
Scene, Corel5k and Reference) are summarized in Table 1. These datasets are
obtained from Mulan1. For each dataset, we randomly sample 20% of the data
for training, and use the remaining 80% data for testing (unlabeled data).

Table 1. Statistic of the experimental datasets. N is the number of instances, D is the
dimensionality of instances, C is the number of distinct labels of instances, LC (Label
Cardinality) is the average number of labels for every instance.

Dataset N D C LC Domain

Yeast 2417 103 14 4.24 Gene

Scene 2407 294 6 2.158 Image

Corel5k 4395 1000 260 3.61 Image

Reference 7929 26397 15 1.15 Text

Comparing Methods. We compare SMLD-LRR against five related multi-
label dimensionality reduction approaches: MDDM [11], MLDA [14], MLDA-LC
[19], SMLDA [20] and SSMLDR [3]. The first two are supervised methods and
the last three are semi-supervised methods. These methods have been introduced
in the Introduction Section. In the experiment, we estimate the performance of
different methods by first project the high-dimensional samples into a subspace,
and then adopt the popular ML-kNN [32] to classify unlabeled samples in the
respective subspace projected by a comparing method. In addition, we intro-
duce SMLD-LRR Nc and SMLD-LRR pair to investigate the benefit of using
label correlations and high-order structure of samples. SMLD-LRR Nc excludes
label information, namely β = 0. SMLD-LRR pair substitutes the high-order
structure of samples with pairwise similarity calculating by cosine similarity.

In the experiments, unless other specified, we set the parameters of the
comparing methods according to what the author suggested in the original
papers or codes. For our method, we selected the parameters α, β and γ from
{10−6, 10−5, ...101}. We find that SMLD-LRR yields relatively stable perfor-
mance with α, γ around 10−1 and β around 10−2, and therefore we use these
values. All the experiments are repeated ten times, and both the average and
standard deviation are reported.

1 Available at http://mulan.sourceforge.net/datasets-mlc.html.

http://mulan.sourceforge.net/datasets-mlc.html
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Fig. 1. 1 − RL and AUC results of all methods on the Corel5k dataset with different
dimensions.

Table 2. Results on all datasets. boldface indicates the best (or comparable best)
results which under a pairwise t-test at 95% significance level.

Dataset Method MicF MacF 1 – RL AP AUC

Corel5k MDDM 0.100 ± 0.002 0.005 ± 0.001 0.786 ± 0.003 0.137 ± 0.003 0.791 ± 0.003

MLDA 0.113 ± 0.002 0.032 ± 0.001 0.781 ± 0.002 0.157 ± 0.002 0.787 ± 0.002

MLDA-LC 0.280 ± 0.002 0.079 ± 0.001 0.848 ± 0.001 0.317 ± 0.001 0.854 ± 0.000

SMLDA 0.280 ± 0.002 0.079 ± 0.001 0.849 ± 0.001 0.319 ± 0.002 0.853 ± 0.001

SSMLDR 0.177 ± 0.002 0.033 ± 0.002 0.788 ± 0.001 0.213 ± 0.002 0.794 ± 0.001

SMLDA-LRR Nc 0.256 ± 0.004 0.069 ± 0.002 0.817 ± 0.001 0.319 ± 0.012 0.822 ± 0.002

SMLDA-LRR pair 0.253 ± 0.001 0.068 ± 0.003 0.823 ± 0.001 0.318 ± 0.002 0.827 ± 0.000

SMLD-LRR 0.300 ± 0.002 0.095 ± 0.002 0.851 ± 0.001 0.338 ± 0.001 0.856 ± 0.001

Scene MDDM 0.460 ± 0.002 0.480 ± 0.004 0.745 ± 0.003 0.660 ± 0.003 0.804 ± 0.003

MLDA 0.427 ± 0.005 0.441 ± 0.005 0.714 ± 0.005 0.625 ± 0.004 0.776 ± 0.006

MLDA-LC 0.479 ± 0.006 0.495 ± 0.009 0.766 ± 0.009 0.683 ± 0.005 0.819 ± 0.009

SMLDA 0.494 ± 0.006 0.517 ± 0.006 0.781 ± 0.005 0.696 ± 0.004 0.832 ± 0.006

SSMLDR 0.478 ± 0.004 0.513 ± 0.004 0.752 ± 0.003 0.675 ± 0.003 0.805 ± 0.003

SMLDA-LRR Nc 0.558 ± 0.002 0.596 ± 0.003 0.822 ± 0.001 0.786 ± 0.003 0.819 ± 0.001

SMLDA-LRR pair 0.561 ± 0.002 0.611 ± 0.006 0.848 ± 0.002 0.798 ± 0.005 0.826 ± 0.002

SMLD-LRR 0.601 ± 0.001 0.638 ± 0.003 0.894 ± 0.001 0.826 ± 0.002 0.921 ± 0.001

Yeast MDDM 0.599 ± 0.001 0.379 ± 0.002 0.786 ± 0.001 0.704 ± 0.001 0.799 ± 0.001

MLDA 0.608 ± 0.001 0.403 ± 0.003 0.790 ± 0.001 0.714 ± 0.001 0.803 ± 0.001

MLDA-LC 0.609 ± 0.002 0.405 ± 0.002 0.794 ± 0.001 0.716 ± 0.001 0.806 ± 0.001

SMLDA 0.610 ± 0.001 0.403 ± 0.003 0.793 ± 0.001 0.717 ± 0.001 0.805 ± 0.001

SSMLDR 0.610 ± 0.002 0.365 ± 0.001 0.794 ± 0.001 0.717 ± 0.001 0.807 ± 0.001

SMLDA-LRR Nc 0.606 ± 0.001 0.358 ± 0.001 0.781 ± 0.000 0.701 ± 0.000 0.790 ± 0.002

SMLDA-LRR pair 0.604 ± 0.002 0.336 ± 0.003 0.780 ± 0.003 0.714 ± 0.002 0.782 ± 0.004

SMLD-LRR 0.628 ± 0.002 0.410 ± 0.003 0.808 ± 0.001 0.734 ± 0.001 0.818 ± 0.001

Reference MDDM 0.326 ± 0.003 0.049 ± 0.004 0.690 ± 0.001 0.336 ± 0.004 0.737 ± 0.001

MLDA 0.326 ± 0.003 0.049 ± 0.004 0.690 ± 0.001 0.336 ± 0.004 0.737 ± 0.001

MLDA-LC 0.344 ± 0.019 0.053 ± 0.009 0.700 ± 0.005 0.348 ± 0.023 0.748 ± 0.004

SMLDA 0.354 ± 0.001 0.053 ± 0.003 0.714 ± 0.001 0.352 ± 0.002 0.757 ± 0.001

SSMLDR 0.332 ± 0.011 0.044 ± 0.006 0.686 ± 0.004 0.336 ± 0.015 0.732 ± 0.003

SMLDA-LRR Nc 0.179 ± 0.002 0.029 ± 0.001 0.595 ± 0.000 0.283 ± 0.002 0.657 ± 0.000

SMLDA-LRR pair 0.214 ± 0.000 0.022 ± 0.000 0.596 ± 0.000 0.220 ± 0.000 0.687 ± 0.000

SMLD-LRR 0.354 ± 0.003 0.058 ± 0.000 0.713 ± 0.001 0.351 ± 0.003 0.759 ± 0.002

Evaluation Metrics. Five widely used multi-label evaluation metrics are
adopted for performance comparisons, i.e., Micro Average F1 (MicF), Macro
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Average F1 (MacF), Ranking Loss (RL), Average Precision (AP), and Area
Under the Curve (AUC). A formal definition of the first three metrics can be
found in [1]. The adapted AUC is suggested in [33]. To maintain consistency
with other evaluation metrics, in our experiments, we report 1 − RL instead of
RL. Thus, the higher the value of 1 − RL, the better the performance is.

3.2 Results on All Datasets

In this section, we conduct experiments on different types of datasets to inves-
tigate the performance of SMLD-LRR for multi-label dimensionality reduction
on Table 2. In this table, the target dimensionality (d) is fixed to C − 1, i.e., 13,
5, 259 and 14 for Yeast, Scene, Corel5k and Reference correspondingly.

From Table 2, it can be seen that SMLD-LRR outperforms the other meth-
ods, and the semi-supervised approaches are generally perform better than
the supervised ones. These results show the benefit of leveraging both labeled
and unlabeled samples. MLDA-LC, SSMLDR and SMLDA are semi-supervised
approaches, but SMLDA outperforms the former two in most cases. The possible
cause is that SMLDA introduces a dependence term to maximize the depen-
dence between the original feature space and the projected one. Both SMLDA
and SMLD-LRR introduce the dependence term, but SMLDA loses to SMLD-
LRR in many cases. The possible reason is that SMLD-LRR additionally utilizes
label information of labeled samples to preserve the local structure of samples.
In addition, we also studied the performance of directly applying ML-kNN in
the original feature space. The results are much lower than SMLD-LRR so the
corresponding results are not included in this paper for page limitation. These
comparisons show the effectiveness of the proposed method.

SMLD-LRR Nc is a degenerate case of SMLD-LRR, which obtained by
excluding label information. SMLD-LRR almost performs better than SMLD-
LRR Nc. This result demonstrate our motivation to exploit label information.
SMLD-LRR pair is obtained by using pairwise similarity of samples from SMLD-
LRR, and is almost outperformed by SMLD-LRR. This fact validates the effec-
tiveness of the proposed method in capturing high-order structure of samples.

Figure 1 demonstrates the results of comparing methods on different dimen-
sions on Corel5k; similar results were obtained for the other datasets as well.
We again see that SMLD-LRR obtains better low-dimensional subspaces than
others. These results further show the effectiveness of the proposed method.

3.3 Parameter Analysis

In this section, we test the sensitivity of SMLD-LRR w.r.t. α, β and γ. Here, we
first fix α = 10−1 and β = 10−2, and run SMLD-LRR with γ from 10−6 to 101.
Then we fix α and γ to = 10−1, and run SMLD-LRR with β = 10−6 to 101.
Finally, we fix β = 10−1 and γ = 10−1, and run SMLD-LRR with α from 10−6

to 101. Due to the limit page space, we only report 1 − RL result on Corel5k in
Fig. 2. From this figure, we can see that SMLD-LRR achieves relatively stable
and good performance when α ≈ 10−1, β ≈ 10−2 and γ ≈ 10−1. We also observe
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Fig. 2. Parameter analysis w.r.t. α, β and γ on Scene.

that when γ = 10−6, SMLD-LRR has the smallest 1 − RL. This result confirms
the contribution of preserving geometric structure of samples using high-order
label correlations.

4 Conclusions and Feature Work

In this paper, we take advantage of low-rank representation to capture high-order
correlations of samples and introduce a Semi-supervised Multi-label Dimension-
ality Reduction approach based on Low Rank Representation (SMLD-LRR).
Unlike existing methods that often require sufficient labeled samples and only
utilize pairwise similarity of samples in the feature space, we explore the high-
order structure of samples in both feature and label spaces, and utilize these
high-order similarity of samples to leverage the labeled and unlabeled samples
as well as preserve the sample structure in the projected subspace. The experi-
mental results show that SMLD-LRR outperforms other competitive methods.
In addition, it also can effectively preserve the structure of samples in the pro-
jected subspace by using high-order label correlations. In the future, we want to
define a more robust multi-label dimensionality reduction classifier under missing
labels or feature scenarios.
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Abstract. The purpose of this study is to propose a paradigm visualiz-
ing the viewpoints from datasets observed by multiple viewpoints, which
is referred to as Latent Viewpoint Visualization (LVV). Since LVV visu-
alizes similarity/dissimilarity among the viewpoints, it has many applica-
tions such as the authors’ perspective from news articles and the psycho-
logical measurements’ aspect from psychological surveys. In this study,
we propose the concept of LVV and develop a preliminary algorithm.
Furthermore, we experimentally show what kind of information can be
visualized by LVV using several datasets.

Keywords: Latent viewpoint visualization · Multi-view learning
Data integration · Grassmann manifold

1 Introduction

In news media, each media reports an event from its own viewpoint and often
gives a biased perspective. This is called media bias problem which has being
addressed by several researchers [1–3]. A similar problem is also occurring on
the internet. A search system on the Internet provides information adjusting to
a viewpoint of each user. However, this often causes a filter bubble problem, i.e.,
the search system only shows the information desired by the user [4]. Such bias of
viewpoints becomes an important issue in various fields such as recommendation
system [5–7], news aggregator [1], statistics [8], cognitive science [9].

The purpose of this study is to propose a paradigm for visualizing simi-
larity/dissimilarity among the viewpoints from a dataset observed by multiple
viewpoints. In this study, we refer to the paradigm as “Latent Viewpoint Visu-
alization (LVV)”.

Various applications can be considered for LVV. For example, when news
articles reported by several media is obtained, LVV shows that similarity between
the media’s perspective about each event. As a result, LVV can recommend
different perspectives to us. Those perspectives could lead us to fairly judge the
news sources and alleviate the media-bias.
c© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11303, pp. 638–647, 2018.
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Another example is to visualize psychological measures’ aspect from psy-
chological surveys. In psychology, a psychological state of subjects is observed
using various psychological measures whose aspects are different from each other.
Then, by visualizing the viewpoint using LVV, it becomes easier to select a psy-
chological measure suitable for the purpose, and to compare experimental results
using different psychological measures.

In order to realize the above visualization, we must address following two
issues: (i) integrating the datasets observed from various viewpoints, and (ii)
estimating the latent viewpoints from the integrated dataset.

The structure of this paper is as follows. The concept of LVV is formulated
in Sect. 2, and related works are introduced in Sect. 3. In Sect. 4, a preliminary
algorithm to instantiate LVV is proposed. Through the application of LVV to
two-real datasets, we consider what kind of information can be visualized by
LVV. Sections 5 and 6 are discussion and conclusion, respectively.

2 Problem Formulation

Suppose that N samples are observed from I different viewpoints. The observed
dataset by the i-th viewpoint is denoted by Xi ∈ R

Di×N , which consists of N
data xi

n ∈ R
Di . Here, we assume that

∑N
n=1 x

i
n = 0 holds.

Fig. 1. The concept of the Latent Viewpoint Visualization.

Figure 1 shows the concept of LVV. When {X1,X2, · · · ,XI} are given, our
aim is to integrate all of the datasets and to estimate the latent viewpoints
{v1,v2, · · · ,vI}. To this end, we adopt a 3d reconstruction method which esti-
mates three-dimensional coordinates of objects and camera-viewpoints from
images taken by different cameras [10], i.e., the latent viewpoints are modeled
as camera-viewpoints. In this work, we reconstruct M -dimensional coordinates
and viewpoints from L-dimensional corresponding points among viewpoints. Let
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Yi and Z be the L-dimensional corresponding points of i-th viewpoints and M -
dimensional points. Then, the following relationship holds between Yi and Z.

Yi ≈ PiZ, (1)

where Pi ∈ R
L×M is an orthogonal projection matrix which satisfies PiPT

i = I.
Furthermore, we assume that Xi is generated by mapping Yi through linear
transformation Wi. Here, in order to guarantee that the solution uniquely exists,
we assume that WT

i Wi = I holds. Hence, the following equation holds.

Xi ≈ WiPiZ. (2)

In this study, the latent viewpoint vi is defined as a parameter controlling a
projection direction of Pi. For example, when L = 2 and M = 3, the i-th latent
viewpoint vi becomes a normal vector of a subspace spanned by {pi

1,p
i
2}, where

pi
l is the l-th row vector of Pi. Then, vi can be represented by cross product of pi

1

and pi
2. Generally, vi is represented by a point on a Grassmann manifold which

corresponds to Pi. Grassmann manifold Gr(L,M) is the Riemannian manifold
formed by a set of L-dimensional subspaces in an M -dimensional space, and
defined as follows:

Gr(L,M) � St(L,M)/O(L), (3)

where St(L,M) = {P ∈ R
L×M |PPT = I}, which is called a Stiefel manifold,

and O(L) is a set of L×L orthogonal matrices. That is, a Grassmann manifold is
defined as a set of subspaces spanned by L orthonormal vectors. In this study, we
consider the particular case L = M − 1. Then, the Grassmann manifold and the
L-sphere in the M -dimensional space are isomorphic, i.e., the vi is represented
as a normal vector of a subspace spanned by {pi

1,p
i
2, · · · ,pi

L}.

3 Related Works

3.1 Data Integration Methods

Canonical Correlation Analysis (CCA) is one of the most basic algorithms for
integrating multiple datasets [11]. CCA integrates two datasets by expressing
the datasets in a low dimensional space so that the correlation between two
projected vectors in these datasets is maximized. In recent years, research that
integrates data among viewpoints like CCA is called multi-view learning [12]. In
multi-view learning, various methods have been proposed [12–14]. The aim of the
multi-view learning is to integrate datasets observed from different viewpoints.
Therefore, the purpose of the multi-view learning and our proposed framework,
which aims to analyze the viewpoints, is different.

3d reconstruction methods used in computer vision can also be regarded as
a data integrating method, since they estimate 3d-object from multiple camera-
images. The early work in 3d reconstruction is a factorization method which
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estimates 3d-coordinates and camera-angles from points on camera-images asso-
ciated with each other among cameras [10]. In computer vision, various 3d recon-
struction methods have been developed such as a method assuming the per-
spective projection [15], a method for reconstructing a three-dimensional object
from a large number of independent images [16]. However, these methods heav-
ily relies on the assumption the space to be three dimensional. On the other
hand, the factorization method does not consider three-dimensional constraints
when integrating data. Therefore, in this study, we develop the LVV based on
the factorization method.

3.2 Viewpoint Estimation Methods

In the literature of the viewpoint estimation, meta-visualization is one of the
related works. The meta-visualization visualizes a set of visualizations, each of
which visualizes the high dimensional dataset in a two-dimensional space [17].
The LVV also visualizes the set of visualizations, each of which is visualized
by two-dimensional space by a 3d reconstruction method. Therefore, the meta-
visualization can also be seen as a viewpoint estimation method. The differ-
ence between LVV and meta-visualization lies in the visualization method.
Meta-visualization displays the similarity of each visualization result on a two-
dimensional plane, while LVV visualizes observation targets and viewpoints in
a three-dimensional space.

4 Algorithm of the Latent Viewpoint Visualization

LVV is formulated as a constrained minimization problem to estimate the inte-
grated data Z and the latent viewpoints {vi}Ii=1:

F =
I∑

i=1

‖Xi − WiPiZ‖2F , s.t.WT
i Wi = I, PiPT

i = I. (4)

Here, ‖ · ‖F is the Frobenius norm. LVV is composed of two procedures: data
integration and viewpoint estimation.

Data Integration. Firstly, Xi is decomposed into Wi and Yi by Singular Value
Decomposition (SVD), i.e., Xi = UiΣiVT

i . Then, Wi and Yi are estimated as
follows:

Wi = Ui, (5)

Yi = ΣiVT
i . (6)

Next, in order to decompose Yi into Pi and Z, the following objective function
is minimized with the constrain PiPT

i = I:

F =
I∑

i=1

‖Yi − PiZ‖2F (7)

= ‖Y − PZ‖2F , (8)
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where Y and P are matrices constructed by concatenating Yi and Pi in the
row direction, respectively. Then, Eq. (8) is minimized by decomposing Y using
SVD. When Y is decomposed into UΣVT , P̃ and Z̃ are estimated as follows:

P̃ = UΣ
1
2 , (9)

Z̃ = Σ
1
2VT. (10)

Note that P̃ does not satisfy P̃iP̃T
i = I. Furthermore, P̃ and Z̃ have equivalent

solutions with respect to non-singular matrix Q, i.e., PZ = P̃QQ−1Z̃. Thus,
in order to satisfy P̃iQQTP̃T

i = I, we estimate Q by minimizing the following
objective function:

E =
I∑

i=1

‖P̃iQQT P̃i − I‖2F . (11)

Q is estimated by using the method of Morita et al. [18].

Viewpoint Estimation. In this procedure, we estimates vi from Pi. In this
research, we consider the case of L = M − 1. In this case, the viewpoint vi is
the normal vector for the subspace spanned by {pi

1,p
i
2, · · · ,pi

L}. Then, vi =
(vi1, vi2, · · · , viM )T can be obtained as follows:

vim = det(em,pi
1,p

i
2, · · · ,pi

L). (12)

Here, em is a standard basis. In the case of L = 2 and M = 3, Eq. (12) means
the cross product of pi

1 and pi
2.

5 Experimental Results

In order to examine that the LVV can visualize many kinds of information, we
apply the proposed algorithm to two real datasets.

5.1 Psychological Measures’ Aspect Visualization

The first dataset is the psychological surveys dataset which measures psycholog-
ical states of football players by multiple psychological scales. The dataset con-
sists of 17 psychological scales surveyed for 439 football players in the Japanese
university league [19]. These psychological scales are categorized into 10 self-
assessments and 7 coach-assessments. The self-assessments categorized are com-
posed of three types: (1) one motivation (M), (2) eight self-management skill
(SM 1–SM 8) and (3) one football skill (F). Likewise, the coach-assessments
are also composed of three types: (1) one coaching acceptance (CA), (2) two
Performance and Maintenance (PM 1–PM 2) and (3) four Perceived Coaching
Effectiveness (PCE 1–PCE 4). Each psychological survey is composed of about
4 to 13 queries of Likert scale. In the study, each query is normalized so that the
average zero, variance 1.
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Fig. 2. The psychological state of the football players integrating the psychological
scales. (a) The color means each player’s average score of the self-assessments. (b) The
color means each player’s average score of the coach-assessments. (Color figure online)

Fig. 3. The latent viewpoints of each psychological measure. The color of the psy-
chological measures means category of the measures: red self-assessments and blue
coach-assessments. (Color figure online)

Fig. 4. The psychological state of the football players observed from each psychological
scale. The color has the same meaning as in the Fig. 2. (Color figure online)
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Fig. 5. The original dataset.

Figure 2 shows the psychological states of the football players integrating the
multiple psychological scales. The result indicates that the psychological states
have two features: whether the average score of the self-assessment is high and
whether the average score of the coach-assessment is high.

The latent viewpoints of the psychological measures for the integrated
datasets are shown in Fig. 3. As shown in Fig. 3(a), the self-assessments are
distributed on a line on the sphere. This means that the self-assessments have
common aspect each other. Actually, each self-assessments have the common
feature meaning the average score of the self-assessments (Fig. 4). Likewise, the
coach-assessments also have common aspect meaning the average score of the
coach-assessments as shown in Figs. 3(b) and 4. Therefore, LVV can visualize not
only similarities between integrated samples and similarities between viewpoints
but also aspects common among several viewpoints.

Fig. 6. The viewpoint of each dimensionality reduction method. Each point means
a sample-point integrated the results of dimensionality reductions. Each triangle is
a latent viewpoint of a dimensionality reduction. (a) and (b) are the results viewing
the visualization result in three dimensions at different angles. 2d relationship of data
viewed each dimensionality reduction is shown by Fig. 7.
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Fig. 7. The relationships between the data observed by each dimensionality reduction
method’s perspective. The upper row is the visualization results of each dimensionality
reduction methods, while the lower row is the reconstruction results by LVV.

5.2 Dimension Reduction Techniques’ Perspective Visualization

When we apply various dimensionality reduction methods to a high-dimensional
dataset, each method maps the dataset to low-dimension space by their own
perspective. Therefore, we visualize the perspectives of the methods by using a
set of visualization methods for the original data shown in Fig. 5. We use the
eight methods: GPLVM, kernel PCA (kPCA), Factor Analysis (FA), ISOMAP,
LLE, Spectral Embedding (SE), Multi-Dimensional Scaling (MDS) and t-SNE.

Figure 6 shows that each dimensionality reductions are clustered into two
types: the first cluster consists of the kPCA, GPLVM, FA,SE, MDS and t-SNE;
the second cluster consists of the ISOMAP and LLE. As shown in Fig. 7, the first
cluster expresses the shape of the roll as it is, while the second cluster reduces
the dimension along the shape of the manifold. In this way, the LVV visualizes
the similarity/dissimilarity between the visualization methods.

6 Discussion

6.1 Data Integration

In the proposed method, we use a 3d reconstruction method to the dimension
reduced data. However, this approach is not necessarily appropriate, since fea-
tures truncated by the dimension reduction methods are not taken into account
by the viewpoint. Therefore, an integration method in the estimation of the
latent point of view should be developed.

There is an interesting issue of the proposed method. It is able to estimate
common features among viewpoints as the multi view learning. Especially, unlike
multi-view learning which estimates features common to all viewpoints, the pro-
posed method can estimate common features among some of the viewpoints as
shown in Fig. 3. Since there are 2I − 1 patterns of common features for I view-
points, it is difficult to automatically estimate the common features to some
of the viewpoints in multi-view learning. Therefore, the LVV approach is also
interesting as a multi-view learning.
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6.2 Viewpoint Estimation

In this paper, we demonstrate that LVV visualizes various information. However,
due to this visualization, the algorithm is compromised in flexibility despite
the fact that the viewpoint estimation is possible even in the high dimensional
case. Furthermore, although we assumed L = M − 1 in order to estimate the
viewpoints, this is also a strong constraint, since there are L−1 common features
necessarily between any two viewpoints. However, since the viewpoint can no
longer be expressed as a normal vector, the assumption L �= M − 1 make the
estimation and visualization of viewpoints difficult. These problems regarding
visualization should be addressed in our future work.

In this paper, we did not quantitative evaluate validity of the visualization
results. It is non-trivial to quantitative evaluate the results. Therefore, to set the
evaluation criteria is also remained task.

7 Conclusion

In this paper, we proposed a learning paradigm to visualize the latent viewpoints
from dataset observed by multiple viewpoints. We developed a preliminary algo-
rithm to instantiate the paradigm and applied it to the aspect analysis of psy-
chological scales and perspective analysis of dimensionality reduction methods.
Since the algorithm proposed in this paper is preliminary, it is necessary to
develop a better algorithm.
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Abstract. We present in this paper a new approach based on unsu-
pervised self organizing maps called MSSOM. This approach combines
multiple heterogeneous data sources and learns the weights of each source
at the level of clusters instead of learning the same source weights for
the whole space. This allows to improve the performances of our model
especially in applications where a local feature selection is important. We
evaluate our method using several artificial and real datasets and show
competitive results compared to the state-of-art.

Keywords: Unsupervised learning · Dimensionality reduction
Neural network · Kernel methods · Self-Organizing Map

1 Introduction

In many application areas, data of interest can be described using multiple
heterogeneous sources. Each source can contain a partial information about
the objects. With multiple information sources simultaneously available, it is
a challenging task how to conduct integrated exploratory analysis. For example,
on biological studies about genes, one objective can be the extraction of the
sequences information but also their expression profiles and their related epige-
netics markers. The main exploratory analysis approach of data is clustering.
Clustering finds subgroups of objects that are similar. It can help to guide the
analysts to understand the data, when the goal of the analysis is well defined and
captured by the clustering model. The data sources can be of different types:
numerical or complex (trees, graphs, sequences, etc.). The complex types can be
represented using similarity or dissimilarity matrices. When dealing with het-
erogeneous mixed (numerical and complex) data sources, existing approaches
transform all the data sources to one type (numerical vectors or similarity (dis-
similarity) matrices) and apply adapted clustering algorithms. Few clustering
algorithms address the problem of learning the weights associated to the sources
[19,22]. In addition, most of the clustering algorithms learn the same source
combination for all the clusters.

c© Springer Nature Switzerland AG 2018
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In this paper, we propose to address the clustering from heterogeneous mixed
sources by representing the complex data sources using kernels and by keeping
the numerical data sources without any transformation. In addition, we propose
to learn the source weights at the level of a cluster. Instead of learning the same
combination for the whole space, we learn a different kernel combination for each
cluster. This makes sense in several applications since a cluster can represent a
group or a class of objects that share the same characteristics (data sources)
and different groups can have different characteristics. For this purpose, we use
self-organizing maps (SOM) [7], which are among the most used connectionist
models for data clustering and visualization.

The paper is organized as follows: we first address the clustering problem
using multiple heterogeneous sources and present the related works to multiple
sources SOMs. Then we introduce our new multiple sources SOM algorithm
called MSSOM. We show the efficiency of our algorithm by presenting results on
artificial and real data. We conclude by giving some perspectives of this work.

2 State of Art

The basic problem of exploiting multiple information sources for unsupervised
learning approaches has been extensively studied in the literature [13,21,22].
This problem is often known as multi-view clustering which has been successfully
applied in many applications. The information sources can represent heteroge-
neous data that are of different types: digital, texts, graphs, trees, categories,
etc. Complex data can be represented using dissimilarity or similarity (kernel)
matrices. A common approach to cluster these heterogeneous data is to convert
all data types to the same type: numerical, dissimilarity or kernel matrices.

Classical clustering algorithms concatenate (or combine) all multiple sources
into a single one [21] before performing clustering. This is not appropriate in
many real world applications because the data sources may not have the same
importance and some noisy sources can deteriorate the clustering results. To
overcome such limitations, other approaches are proposed in the literature. These
approaches can be classified into three groups as proposed in [17]: co-training,
multiple kernel clustering, and subspace learning. Co-training approach [1,2,
20] alternately maximizes the mutual agreement on two distinct sources of the
unlabelled data. Multiple kernel clustering approach [19,22] proposes to learn
an optimal linear or non-linear combination of kernels for clustering. Subspace
approach [3] aims to obtain a latent subspace with low dimension shared by
multiple sources by assuming that the input sources are generated from this
latent subspace.

The SOM clustering models comprise an important unsupervised class of
competitive neural models. The output neurons of the SOM are arranged in a
specific geometrical form. Each neuron unit r in the SOM is associated to a pro-
totype vector pr = [p1r, p

2
r, ..., p

m
r ]T ∈ Rm with the same dimension as the input

vector x = [x1, x2, ..., xm]T ∈ Rm. Through an unsupervised learning process,
the output neurons become tuned and organized after several presentations of the
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data. The learning algorithm that leads to a self-organization can be summarized
in two steps. A winning or best-matching unit of the map, denoted BMU(x),
is found by using a distance or similarity measure (Euclidean distance, scalar
product, etc.) between the input and the weight vectors:

BMU(x) = arg min
r∈A

d(x, pr) (1)

where A is the set of neurons and d() is a distance measure. Then the winner and
its neighbours in the map have their weights pr(t) updated towards the current
input x:

pr(t + 1) = pr(t) + α(t)hr(t)[x − pr(t)] (2)

where αh(t) is the learning rate and hr(t) is the neighbourhood function. In
order to improve the convergence speed, a batch version of SOM is proposed
in the literature [7]. The difference with the standard SOM is that the update
step is performed after the BMU selection of each batch. The prototype vector
associated to each neuron will represent the mean of the closest inputs: for all
p ∈ P , p =

∑U
i=1 Nihi,pxi∑U
i=1 Nihi,p

where xi and Ni are respectively the mean and the
number of the inputs associated to prototype i.

Some approaches are proposed in the literature in order to deal with het-
erogeneous data sources using SOM. The most common approach is to com-
bine the different sources before using the SOM. For numerical data sources,
an augmented vector is formed by concatenating the vectors associated to each
source. This vector is presented as input to classical SOM [15]. For complex data
sources, each source is represented using a kernel function. The resulting kernels
are combined using a fixed rule without any parameters (e.g., summation or
multiplication of the kernels) and then presented to a kernel SOM.

To our knowledge, only one approach learns the combination parameters of
the data sources. It is called Multiple Kernel SOM [12]. Each data source is
represented by a kernel function and the algorithm learns the optimal linear
combination of the kernels. A convex combination of the kernels is defined by:

K(xi, xj) =
∑

d

αdKd(xi, xj) (3)

where αd ∈ [0, 1] and
∑

d αd = 1. Following the general framework of kernel
SOM, the prototypes can be written as a convex combination of the input data
in a Hilbert space (called the feature space) H:

pu =
U∑

u=1

γuiφ(xi) (4)

where the application φ : G → H is symmetric and positive. The squared dis-
tance between xi and a prototype pu is then computed by:

‖ φ(xi) − pu ‖2= k(xi, xi) − 2
n∑

j=1

γujk(xi, xj) +
n∑

s,l=1

γusγulk(xl, xs) (5)
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The multiple kernel SOM optimizes the weights in order to minimize the
following energy function:

ε((γui)ui, (αd)d) =
n∑

i=1

U∑

u=1

hBMUi,u(t) ‖ φ(xi)α − Pα
u ‖2α (6)

where φ(xi)α, Pα
u and ‖ . ‖α are used to emphasize that these quantities depend

on α. The multiple kernel SOM learns the same kernel combination for each
cluster. We propose to combine the different sources inside the algorithm and to
represent the importance of each source locally for each cluster.

3 Method

In this paper we present a new multiple data sources SOM algorithm called
MSSOM. Our algorithm can handle complex and numerical data. Complex (non
numerical) data are represented using kernels and numerical data are given as
input to the algorithm without any transformation.

3.1 MSSOM Algorithm

We propose a three layer architecture (see Fig. 1). The first layer represents the
input layer. Let be a dataset X = {x1, x2, ..., xn} where xi is described using
d sources S = {S1, S2, ..., Sd}. These sources can be represented by numerical
vectorial data or by complex data. Let be K = {K1,K2, ...,Kl} the kernels
representing the complex sources and V = {V 1, V 2, ..., V d−l} the vectors repre-
senting the numerical sources where Ki represents the complex features of the
source i and V i the numerical features of the source i + l.

The second layer is composed of SOMs computed from each source. In order
to obtain good performances, we use the batch version of SOM [7]. For the
numerical data we use the batch SOM defined in [7]. For the complex data we
propose a batch version of the Bagged Kernel SOM [10]. The Bagged Kernel SOM
[10] approach overcomes the computation cost due to kernels by using a small
part of the kernels, called a bag, to compute the map. The resulting prototypes
represent a sparse combination of the kernel values (they are composed of the
representative values).

The third layer combines the outputs of the SOMs presented in the second
layer to train the single final map. The output of each SOM represents a sim-
ilarity between the input data and the prototypes in the maps. We define a
Gaussian similarity measure si(xj , p

i
u) between xj , the jth element of X, and pi

u,
the uth prototype of the ith map. We define a function θi : X → R

Ui

, returning
the similarity between an element xj in X and all the prototypes of the SOM
for the source i such that:

θi(xj) = [si(xj , p
i
1), s

i(xj , p
i
2), ..., s

i(xj , p
i
Ui)]

for i = 1, ..., d
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Fig. 1. Multiple sources SOM architecture

Let be θ : X → R
Utotal

(with U total =
∑d

i=1 U i) a function returning a vector
composed of the similarity between an element xj in X and all the prototypes
of all the maps (see Fig. 1) defined by:

θ(xj) = [θ1(xj), θ2(xj), ..., θd(xj)] (7)

With these definitions we can create a map Sfinal using the function θ(x) as an
input. This map is defined by the Ufinal prototypes.

Let be W the three dimensional (Ufinal × d × U j)j structure containing the
weights vectors of the prototypes such that W = [w1, w2, ..., wUfinal ] with wu =
[wu,1, wu,2, ..., wu,d] and wu,i = [w1

u,i, w
2
u,i, ..., w

Ui

u,i]. We define a two dimensional
(Ufinal × d) matrix α containing the prototypes local source weights such that
α = [α1, α2, ..., αUfinal ] with αu = [αu,1, αu,2, ..., αu,d].

The BMU denoted BMU(x) of the final map Sfinal is found by using the
dot product of the input and the weight vectors:

BMU(x) = arg max
u∈Ufinal

d∑

i=1

αu,i (θi(x) · wu,i) (8)

Let H(xi, u) a neighborhood function that returns the “structural” similarity
between the BMU of the input xi and the prototype u of the map Sfinal:

H(xi, u) = exp

(
−d′(BMU(xi), u)(

1 − t
T

) ∗ σ′

)

where d′(BMU(xi), u) is the Hamming distance between the BMU and the pro-
totype u, T is the maximal number of iterations and σ′ is the radius of the
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map. We define a new objective function f that we maximize, in order to cre-
ate the final map Bfinal by learning the local source weights for each cluster
(represented by the map prototypes), as follows:

f =
N∑

j=1

Ufinal∑

u=1

d∑

i=1

H(xj , u)αu,i (wu,i.θi(xj)) (9)

We update alternatively the final prototype and the source weights using the
gradient descent method as follows:

wu,i(t + 1) = wu,i(t) + μ(t)Δwu,i

αu,i(t + 1) = αu,i(t) + μ(t)Δαu,i

where μ(t) = 1 − t
T and T is the maximal number of iterations. The gradients

of W and α are computed as follows:

Δwu,i = H(xj , u)αu,iθi(xj)
Δαu,j = H(xi, u) (wu,j .θj(xi))

The vectors wu,i and αu,i are then normalized by fixing the Euclidean norm of
the prototype weights and source weights vectors to 1.
The originality of our approach lies in including the local source weights opti-
mization in the SOM learning algorithm. The convergence of our approach
depends of the convergence of final map (the third layer). As in the multiple
kernel SOM [12], the cost induced by the learning of the α parameter is moder-
ate. In practice, we multiplied by five the number of iterations necessary to train
the classical SOM in order to insure the convergence of our learning algorithm.

3.2 Discussion

As presented before, we combine the information of the different sources using
their respective SOM inside the algorithm and create a final SOM with their
outputs. We associate to each cluster obtained in the final SOM a prototype
representing the local weights of the sources associated to the different SOMs.
Compared to the only one SOM algorithm in the literature which learns a global
source weights for all the clusters (MKSOM [12]), our algorithm learns local
weights of the data sources for each cluster. Localized multiple kernel learn-
ing approach was recently applied to k-means clustering [5,9,16]. Lei et al. [8]
proposed an approach that can be formulated as a convex optimization prob-
lem over a given cluster structure. Instead of giving the same kernel weights for
all input instances, the kernel combination is sample specific. Different kernel
weights are calculated at the sample level rather than at the group level. In
spite of the performance improvements proposed by these methods, the learning
of a very large number of parameters leads to very expensive computation. More-
over, it is difficult to interpret the obtained results. In our approach, we associate
a different sources combination to each cluster in order to distinguish it from
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the other clusters. This modelling makes sense in several application domains.
Different categories of objects do not necessarily share the same importance
of data sources. To our knowledge two approaches have been proposed in this
sense. In [18], Yang et al. incorporate the notion of group in the MKL (Multiple
Kernel Learning) framework using support vector machines for objects catego-
rization. In [11], Mu and Zou use the graph embedding framework to tune the
kernel weights that vary at the cluster level. They introduce in their work a
non-uniform MKL. Finally, our method allows to learn mixed source weights at
the cluster level in a self organizing map, which performs clustering as well as
data visualization. This is very useful since it allows to interpret and explain the
clustering results.

4 Experimentation

4.1 Datasets

We evaluate our approach called MSOM on six datasets (see Table 1). We gen-
erate two artificial datasets in order to show the interest of our approach and
we use four datasets obtained from the UCI database [4] for the evaluation.

Table 1. Overview of the considered datasets.

Dataset #Instances #Attributes #Classes

Artificial 1 800 4 4 balanced classes

Artificial 2 800 4 4 balanced classes

Dermatology 366 34 6 classes (1:112, 2:61, 3:72, 4:49, 5:52, 6:20)

E.coli 336 7 4 classes (1:143, 2:116, 3:52, 4:25)

Iris 150 4 3 balanced classes

WDBC 685 10 2 classes (1:458, 2:241)

The first artificial dataset is composed of four clusters of 4-dimensional
points. For each dimension there are two clusters that can be separated from the
other ones and so this dimension is informative for these clusters. The separated
clusters are represented by Gaussian distributions with a standard deviation
of 0.1 with two different centers (−5 and 5). The other non-separated clusters
(noise) are represented by uniform distributions between −4 and 4. For the sec-
ond artificial dataset, we use also four clusters containing 4-dimensional points.
In this dataset, each cluster has one informative dimension. As for the first gen-
erated dataset, the separated clusters are represented by Gaussian distributions
(with a standard deviation of 0.1 and a center of 1). The non-separated ones are
obtained using a uniform distribution between −5 and 0. In Table 2 we show the
informative dimensions for each cluster for both the datasets.
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Table 2. Clusters informative dimension for the first and second artificial datasets
where N stands for noise and I stands for informative.

Cluster id Informative dimension

Artificial 1
dataset

Artificial 2
dataset

0 1 2 3 0 1 2 3

0 I I N N I N N N

1 I N I N N I N N

2 N I N I N N I N

3 N N I I N N N I

4.2 Protocol

To show the ability of our approach MSSOM to handle the mixed datasets, we
used three representations of attributes (sources) in the considered datasets:

1. Datasets containing only numerical data: Each source is represented by a
numerical attribute.

2. Datasets containing only kernels: We represent each attribute of the dataset
by a Gaussian kernel defined by: K(x, y) = exp(−γ × ‖x − y‖2). In order to
select the parameter γ, we follow a simple rule defined in [6]. The value of
parameter γ is computed as follows: γ =

√
2∗U

distmax
where U is the number of

neurons and distmax represents the maximal distance between the instances.
3. Mixed datasets containing kernels and numerical data: In this case, we rep-

resent, for each dataset, some attributes using numerical values and others
using kernels.

In the following, we will note by MSSOM num the variant of our approach
where only numerical attributes are used, MSSOM kernel the one where only
kernels are used and MSSOM mix the one that uses mixed data sources.

We compare the results obtained by the different variants of our approach to
the SOM [7] which uses the numerical attributes and to MKSOM [12] which uses
the kernels. The three methods use two common parameters which are the grid
dimension and the maximal number of iterations. For all the datasets we use a
3× 3 grid and the maximal number of iterations is equal to five times the number
of instances. We used small grids in order to highlight the clustering capability
of our approach. However, our method works well with higher map sizes and
produces the same kind of results as classical SOM. The other parameters of
MKSOM are selected by doing a grid search. MSSOM and SOM methods use
the same neighbourhood function.

To measure the clustering performance, we use the Normalized Mutual Infor-
mation (NMI) and the purity measures. The NMI measures how the classes are
distributed in the clusters. A high NMI means that the clusters tend to contain
data of one class and the class tends to be in one cluster. The purity mea-
sures the distribution of classes in the clusters. A high purity means that the
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clusters tend to contain only one class of data. These measures are defined by:

NMI =
2×∑U

i=1
∑C

j=1 Nij×log
(

N
Ni×Nj

)

∑U
i=1 Ni×log(Ni

N )+∑C
j=1 Nj×log

(
Nj
N

) , purity = 1
N

∑U
i=1 maxj (Nij) where

N is the number of instances, Ni is the number of instances associated to the
cluster i, Nj is the number of the instances in class j and Ni,j is the number of
instances of class j associated to the cluster i.

4.3 Results

Figure 2 shows the performance of our methods against two state-of-art methods.
On the generated datasets as well as on the real world datasets, the different
variants of our method give the best results.

Fig. 2. Performance of the different methods on the artificial and real datasets.

As shown in Fig. 2, our method gives an NMI and a purity close to 1 for
both artificial datasets. The performance of MSSOM is not sensitive to the dif-
ferent attributes (sources) representations. This means that all the variants of
our MSSOM are able to well separate the clusters. These good results can be
explained by the ability of our method to associate an adequate source combi-
nation for each cluster instead of one combination for the whole space.

We can see that all the variants of MSSOM give good results on the real
datasets compared to the SOM state-of-art methods. For example, on the Iris
dataset, our method gives an NMI greater than 0.7 and a purity greater than
0.9 (for the three variants) when the classical SOM shows an NMI of 0.7 and
a purity lower than 0.8 and the MKSOM shows an NMI lower than 0.4 and a
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Fig. 3. Sources weights (top) and label repartition (bottom) of the final map for
the first artificial dataset (left) and the second artificial dataset (right) using the
MSSOM kernel.

Fig. 4. Visualization of the final map weights of MSSOM on the kernel version of the
first (left) and second (right) artificial datasets.

purity lower than 0.8. This confirms that learning the local source combinations
for each cluster allows to improve the clustering results.

Figure 3 shows the source weights for each unit (neuron) in the final map for
the first and second artificial datasets, as well as the distribution of the examples
among the map units (neurons). We can see that the units 0: (0, 0), 2: (0, 2), 6:
(2, 0) and 8: (2, 2) represent well the four classes. We can also see clearly that for
the four units representing the classes, the informative sources have the greatest
weights. For example, on the first artificial dataset, the unit 0 which contains
the inputs of class 0 has sources weights close to 0.4 for the first and the second
sources and close to 0.1 for the other sources. The sources with the biggest weight



658 L. Platon et al.

values correspond to the informative ones. On the second artificial dataset, the
unit 2 which contains the inputs of class 1 has approximatively a source weight
of 0.56 for the second source which is the informative one. The weight values of
the other sources are around 0.1. The MKSOM method gives the same kernel
weights for all the clusters. It gives the greatest weight for the fourth source
in the first artificial dataset, and for the second source in the second artificial
dataset. The other weight values are close to 0. This does not make sense on our
artificial datasets.

In Fig. 4 we propose a new informative visualization of our approach MSSOM,
where we represent the source weights in the final map. Each neuron in the final
map is represented by a set of four subplots (one for each source). For a given
neuron in the final map, each subplot allows to identify for each cluster its
representative neuron in the sub maps.

5 Conclusions and Perspectives

In this paper we present a new approach based on SOM which is able to combine
heterogeneous (numerical and complex) data sources and to learn the source
weights locally for each cluster. We show, using artificial datasets, that our
method can select informative sources for each cluster. We show that our method
gives good results and is competitive to other SOM approaches. Moreover, our
approach can handle hybrid data sources by representing in an efficient way the
numerical and complex datasets. Experimental results show that our approach
is not sensitive to the kind of inputs we use (kernels, numerical or mixed data).
In all the cases, we obtain approximatively the same performances. Keeping
the numerical data without transforming them to kernels reduces the time and
memory complexities of our method.

In [14] we proposed a new supervised SOM approach that uses rejection
options in order to identify potential new classes and reduce the ambiguity of
prediction. One of our future work is to propose a supervised variant of MSSOM
which will be inspired from [14]. This method will be used in a bioinformatics
project which purpose is to identify and classify non-coding RNAs. For this
purpose we will use heterogeneous data such as the sequences and the secondary
structures of the RNAs, as well as epigenomics markers. By using the rejection
option with the information of the different sources, we will be able to identify
new classes of non-coding RNAs and to characterize them.
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Abstract. In this paper we present a framework for learning models
for Recommender Systems (RS) in the case where there are multiple
implicit feedback associated to items. Based on a set of features, repre-
senting the dyads of users and items extracted from an implicit feedback
collection, we propose a stochastic gradient descent algorithm that learn
jointly classification, ranking and embeddings for users and items. Our
experimental results on a subset of the collection used in the RecSys 2016
challenge for job recommendation show the effectiveness of our approach
with respect to single task approaches and paves the way for future work
in jointly learning models for multiple implicit feedback for RS.

Keywords: Recommendation systems · Multiple implicit feedback
Dyadic prediction · Muti-task learning

1 Introduction

The aim of Recommender Systems (RS) is to present products to users by adapt-
ing the displayed offers to their taste. Recently, there was a surge of interest in
the design of efficient RS especially after the NetFlix challenge [1]; and also
because of many new problems such as the study of an accurate and scalable
RS presents. As most of the users interactions are now provided in the form
of clicks, an active line of research on RS is to learn models based on implicit
feedback. Although there is no evidence of the actual value of such feedback,
as a positive (respectively negative) feedback on an item does not necessarily
represents a user preference (respectively dislike), almost all approaches assume
that positive feedback conveys relevant information for the problem at hand.

In this work, we consider the case where there are multiple implicit feedbacks
for each items and propose a multi-target learning algorithm that enhance pre-
diction over each of these feedbacks. We cast the problem as a dyadic prediction
c© Springer Nature Switzerland AG 2018
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problem, where the aim is to predict multiple outputs for observations that are
constituted by pairs of examples formed by users and items. A classical approach
when dealing with multiple outputs is to divide the problems into simpler sub-
prediction problems and deal with them separately without considering their
relationships. However, the intuition and the consensus is that, when some tasks
are interdependent and potentially heterogeneous (that is, for instance, when
some tasks deal with classification while others deal with ranking or regression),
the learner will benefit from learning them jointly by taking into account the
shared information. Following this intuition, multi-task (MTL) approaches1 [2,3]
consider the first example of the dyad, an observation, and the second example,
a task, and propose to solve the general prediction problem by taking advantage
of the correlation between the tasks [4–7]. Most of these approaches learn a dif-
ferent model for each task using the feature representation of observation and
model the dependencies in the objective function using a shared regularization
term that enforces correlated tasks to have close models [4,5,8]. However, by
simultaneously taking into account both instances of a dyad, one can expect to
do better by building a single model and by using all the available information
at once.

Contributions. Although, dyadic prediction problems are common [9], the case
where they are associated with multiple and heterogeneous outputs is rare and
still not fully studied mainly due to the lack of data collections. In this paper,
we propose a generic method to extract a meaningful representation from mul-
tiple implicit feedback data for RS. Based on this method, we provide a dataset
built over the RecSys 2016 competition for job recommendation. The competi-
tion consisted in proposing job offers to users that would be of their interest,
with the particularity that users may have simultaneously clicked, bookmarked,
replied, and removed specific offers that they have been proposed. We adapted
the method of [10] that was initially designed for explicit feedback single task
learning to the case of multiple implicit feedbacks. To evaluate the user-offer
dyadic representations and analyze the usefulness of taking into account the
relationship between the tasks (different implicit feedback), we propose a MTL
stochastic gradient descent (SGD) algorithm that combines classification and
ranking predictors and the learning of user and item embeddings. We show that
the combination of tasks allows to considerably enhance the prediction of most
of the tasks, particularly the predictions for the clicks. Empirical comparisons of
the MTL approach with single task approach that considers each of the implicit
feedback independently shows the efficiency of the proposed strategy.

Organization of the Paper. In Sect. 2 we briefly present the RecSys 2016
challenge dataset and the features that were extracted from the implicit feed-
back. In Sect. 3 we describe the MTL learning framework considered throughout
this paper. In Sect. 4, we describe the gradient descent for jointly learning mul-
tiple heterogeneous tasks and embeddings. In Sect. 5 we present experimental
results that evaluate the effect of taking into account the dependency among the

1 https://www.ngdata.com/icml-2013-tutorial-multi-target-prediction/.

https://www.ngdata.com/icml-2013-tutorial-multi-target-prediction/
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outputs. Finally, in Sect. 6, we discuss the outcome of this study and give some
pointers for further research.

2 Feature Extraction Based on Implicit Feedback

In this Section, we briefly describe the RecSys 2016 challenge and present the
steps we followed to extract the dataset as well as the proposed learning strategy
for combining the outputs2.

The RecSys 2016 challenge3, hosted by the XING social network platform,
was defined as a ranking problem of clicks for job offers. For this competition,
four main files were made available, each containing information on users and
jobs offers. The offers that were displayed to the users are called impressions.
Each offer displayed could be interacted in four different manners, by clicking,
bookmarking, replying or deleting the offer.

In this collection, users provided implicit feedback and may have different
interactions with the same offer. In particular, a user could have clicked and also
replied to the same offer. We used both of these information to extract charac-
teristics for the pairs of users and items. We did not consider the information
concerning deleted offers as it does not help to decide whether a user is willing
to interact positively with an offer or not, which is the primary goal.

The statistics of the original interactions and impressions are summarized in
the left column of Table 1. In this table, the sparsity represents the user-offer
pairs for which there is no interaction at all. Figure 1 shows the number of users
that have positive interactions with respects to the clicks, bookmarks and replies.
Table 2 shows the number of offers displayed to users, as well as the number of
suggestions that clicked, bookmarked and replied. As expected, the vast majority
of users make very few interactions while few users interact a lot. It comes out
that the offers that are bookmarked and replied, represent less than 5% of those
that are displayed to the users, making both associated tasks challenging.

To extract relevant features, we relied on the approach described in [10],
which is a method that uses neighbors preferences and retrieves statistics about
the closest users interactions (regarding a predefined similarity). The main idea
is to compute statistics that describe the net preference of a user for a given offer.
The dyadic representation for a user-offer pair is hence composed of statistics
summarized in 15 features to which is added 2 biases.

Due to a significant amount of data available and the substantial sparsity, we
subsampled the dataset to keep only the users for which we had enough informa-
tion to extract meaningful statistics. We decided to keep users with more than 30
interactions and offers which had been interacted with at least 30 times. Follow-
ing this process, we obtained 819.226 dyadic user-offer pairs that we randomly
split into training (30% of the original dataset) and test (70% of the original
dataset) collections. The right column of Table 1 contains statistics describing
the dataset that we obtain after using the subsampling method described above.
2 We make available the extracted dataset as well as the codes for research purpose.
3 https://recsys.acm.org/recsys16/challenge/.

https://recsys.acm.org/recsys16/challenge/
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Table 1. Statistics over the original RecSys
2016 (left) and DAEMON (right) datasets. In
the latter we only consider users which had
at least 30 interactions and the offers which
had been interacted at least 30 times. (Med.
stands for median, Av. for average).

RecSys’16 DAEMON

# Users 770.859 5.949

# Offers 1.002.161 25.184

Av. nb interactions/user 7 137.71

Med. nb interactions/user 3 120

Av. nb users/offer 5 32.53

Med. nb users/offer 2 12

Av. nb displayed/user 76 115.04

Av. nb clicked/user 7 42.19

Av. nb bookmarked/user 0.27 1.38

Av. nb replied/user 0.42 3.40

Sparsity 99.991% 99.45%

Table 2. Number of offers displayed,
clicked, bookmarked and replied. All
is the sum of the three latter. The
dataset is highly imbalanced and
contains only few Bookmarked and
Replied interactions.

The rational behind the subsampling of the original dataset is twofold. First,
the users who did not interact enough are not relevant to learn a predictive model
as we lack information about them. Secondly, the method we use to extract
features [10] heavily relies on the similarity between users, which is less likely to
be high in a sparse dataset.

To compute the statistics of for pairs (user, item), as proposed in [10], we
associated to clicks, bookmarks and replies respectively the weights 1, 2 and 3,
emphasizing the fact the replying to an offer shows more interest than simply
clicking or bookmarking it.

Below we detail the exact steps followed to create representations for multiple
implicit feedbacks:

1. Create a matrix (IM) of implicit interactions of users and offers summing
over all positive interactions:

IM(u,o) =
∑

i∈I
i ∗ 1(u,o)i=1 ,

where (u, o)i = 1 means that user u interacted positively with offer o, I
represents the set of all possible interactions and i = 1, 2 or 3 for respectively
clicked, bookmarked and replied interactions;

2. Evaluate users similarities (e.g. using cosine distance) using IM . Keep top K
closest users for each users;
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3. For each dyad (u, o) for which we have a ground truth (at least one positive
interaction), compute the win/tie/loss vectors based on similar users than u
that interacted with offer o as described in [10].

4. Finally, the features associated to the dyad (u, o) is obtained by considering
5 statistics over each of the win/tie/loss vectors, namely: the mean, the stan-
dard deviation, the max, the min and the normalized number of respectively
wins, ties or losses.

3 Learning by Combining the Outputs

This section provides a formal definition of the multi-target learning framework
considered in this article. We suppose that dyads are represented in an input
space X ⊆ R

d and that the output space Y = Y1 × . . . × YT is a product of T
different output spaces corresponding each to an interaction. Further, we assume
that the pairs and their associated output (x,y) ∈ X ×Y are generated i.i.d with
respect to a fixed yet unknown joint probability distribution D = (D1, . . . ,DT ).
The aim of learning is to find a prediction function in some predefined function
set H = {h : X → Y}, that minimizes the expected risk

L(h) = E(x,y)∼D[�(h(x),y)] , (1)

where �(h(x),y) is an instantaneous loss measuring the discrepancy of the pre-
dictions over different outputs h(x) = (h1(x), . . . ,hT (x)) ∈ Y of observation
x and its desired output y = (y1, . . . ,yT ) ∈ Y. Following the Empirical Risk
Minimization principle, we achieve this aim by minimizing an empirical loss over
a training set S = (xi,yi)mi=1 of size m, where examples are be generated i.i.d
with respect to the same probability distribution D.

In the case where we consider multiple tasks, the general formulation of the
empirical loss function on a train set S can be written as follow:

Lm(h,S) =
1
m

m∑

i=1

1
T

T∑

j=1

�j(hj(xi),yi) + λΩ(h) , (2)

where �j is the loss for task j, hj is the hypothesis function for tasks j and Ω(h)
is a regularization term on the parameters of the models. In this work we aim
at minimizing multiple loss functions over all models {hj}j∈{1,...,T}.

We considered two different setups to achieve this goal:

– Single task learning (STL) where the goal is to learn each prediction function
(hj)1≤j≤T independently of the others by minimizing the associated empirical
loss;

– Multi-target learning (MTL) where the goal is to learn all prediction functions
jointly by taking into account dependencies between their outputs. While the
classical way of binding models is to use a shared regularization across the
tasks, in our approach, the multi-task is carried out by a shared representa-
tion, that is also learned during the same training phase.
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Fig. 1. The number of users with respect to the number of interactions. From left to
right, for Clicked, Bookmarked and Replied tasks.

4 SGD for Multi-target Heterogeneous Dyadic Learning

Based on the dataset extracted following the steps described in Sect. 2, we defined
a set of relevant tasks for RS. As the main source of revenue for many online
website rely on the number of clicks, the main goal remains to improve the
predictions for the clicks. In this sense, we define the following tasks:

1. A classical learning to rank task in RS for clicking interactions, where the
goal is to provide a ranking list of offers on which a user is willing to click.
As explained earlier, the main source of revenues of many website is based
on the number of clicks they register. In this scenario, it makes sense to
“specialize” the models for the predictions of clicks. We will discuss more
about this question and how we do that in practice in the definition of the
fourth task.

2. Two binary classification tasks, where the goal is to predict if a user is willing
to interact positively with specific offers in terms of bookmark and reply
interactions.

3. A representation learning task, where the goal is to learn a meaningful repre-
sentation U for users and I for items. This tasks is used as a binding between
of the different models.

Based on the definition of the four tasks described above, we can formally
re-write the loss functions for the tasks at hand as:

Lm(h, S) =Lclick
rank(h1,S) + Lbook

class(h2,S) + Lreply
class (h3,S) + Lemb

rank(U, I,S)+

λ
(||h1||22 + ||h2||22 + ||h3||22 + ||U||22 + ||I||22

)
. (3)

We define each tasks as the average of all logistic losses evaluated for each
example in the sample. In the case of pairwise ranking we note as U ⊆ N
(resp. I ⊆ N) the set of indexes over users (resp. the set of indexes over items).
Furthermore, for each user u ∈ U , we consider two subsets of offers, the offers
interacted negatively I−

u ⊂ I (the user did not click) and the offers interacted
positively I+

u ⊂ I (the user clicked) such that:

– I−
u �= ∅ and I+

u �= ∅ .
– For any pair of offers (i+, i−) ∈ I+

u × I−
u , i+ 	

u
i− mean that user u has a

preference for item i+ over item i−.
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Based on this preference relation, the ranking output yi+,u,i− ∈ {−1,+1} is
defined over a triplet (i+, u, i−) ∈ I−

u × U × I−
u as:

yi+,u,i− =

{
+1 if i+ 	

u
i−

−1 otherwise.
(4)

In the case of the ranking problem for the clicks, h1 is of the form

h1(x) = 〈w1,x〉 ,

and we say that the model w1 is making an error on a prediction when it ranks
higher a negative example over a positive example. Thus, we can compute the
error made on one triplet (i+, u, i−) ∈ I−

u × U × I−
u as

1〈w1,(u,i+)〉<〈w1,(u,i−)〉 = 1〈w1,(u,i+)−(u,i−)〉<0 . (5)

The loss function of Eq. 5 is hard to optimize but can be approximated by
a smooth surrogate function, such as the logistic loss function. We can re-write
the loss for the ranking problem over a training set S as follow

Lclick
rank(w1,S) =

1
|U|

∑

u∈U

1
|I+

u ||I−
u |

∑

(i+,i−)∈I+
u ∪I−

u

1〈w1,(u,i+)〉<〈w1,(u,i−)〉

≈ 1
|U|

∑

u∈U

1
|I+

u ||I−
u |

∑

(i+,i−)∈I+
u ∪I−

u

log(1 + e−yi+,u,i− 〈w1,(u,i
+)−(u,i−)〉) + λ1||w1||22 .

Remark 1. Note that, for a fixed user, it is possible to have a different polarity
of interactions with respect to clicks, bookmarks and replies. In other words, as
we select pairs of offers (i+, i−) regarding the clicks polarity, it is possible to
have i+ and i− both positives, or negatives, for bookmarks or replies.

In terms of binary classification with outputs yi ∈ {−1,+1}, a model h2

makes an error when its prediction differs from the ground truth y. We can
write the zero-one loss for classification as

1y ih2(x)<0, where h2(x) = 〈w2,x〉 .

Similar to the case of ranking described above, we use a logistic loss in order to
approximate the zero-one loss for the two classification tasks at hand. We also
average the loss over the two pairs. Note that the polarity can be different for
the bookmarks and replies tasks, we will note yb

i+ (respectively yb
i−) the polarity

for the positives (respectively negatives) interactions for the bookmark task for
user u ∈ U and offers (i+, i−) ∈ I2 and yr

i+ (respectively yr
i−) the polarity for

the positives (respectively negatives) interactions for the reply task:
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Lbook
class(w2,S)

=
1

|U|
∑

u∈U

1
|I+

u ||I−
u |

∑

(i+,i−)∈I+
u ∪I−

u

[1
2
1yb

i+
〈w2,(u,i+)〉<0 +

1
2
1yb

i− 〈w2,(u,i−)〉<0

]

≈ 1
|U|

∑

u∈U

1
|I+

u ||I−
u |

∑

(i+,i−)∈I+
u ∪I−

u

[1
2

log(1 + e−yb
i+

〈w2,(u,i
+)〉)

+
1
2

log(1 + e−yb
i− 〈w2,(u,i

−)〉)
]

+ λ2||w2||22,

Lreply
class (w3,S)

=
1

|U|
∑

u∈U

1
|I+

u ||I−
u |

∑

(i+,i−)∈I+
u ∪I−

u

[1
2
1yr

i+
〈w2,(u,i+)〉<0 +

1
2
1yr

i− 〈w3,(u,i−)〉<0

]

≈ 1
|U|

∑

u∈U

1
|I+

u ||I−
u |

∑

(i+,i−)∈I+
u ∪I−

u

[1
2

log(1 + e−yr
i+

〈w3,(u,i
+)〉)

+
1
2

log(1 + e−yr
i− 〈w3,(u,i

−)〉)
]

+ λ3||w3||22.

Finally, the representation learning task aims at automatically learning an
embedding for users U and an embedding for items I. We insist on two important
points here. The first one is that the embedding representations are trained
jointly with the other tasks and are used also as inputs in the other tasks.
Secondly, in a sense, the embeddings are specialized for the click task, as we
select pairs with different polarity for the clicks. We consider that the embedding
is provides a mistake if

1〈Uu,Ii+ 〉<〈Uu,Ii− 〉 = 1〈Uu,Ii+−Ii− 〉<0,

where Uu ∈ R
d denotes the vector representation for user u and Ii ∈ R

d denotes
the vector representation for item i. Again, we use the logistic loss as an approx-
imation to this error and we have

Lemb
rank(U, I,S) =

1
|U|

∑

u∈U

1
|I+

u ||I−
u |

∑

(i+,i−)∈I+
u ∪I−

u

1〈Uu,Ii+−Ii− 〉<0

≈ 1
|U|)

∑

u∈U

1
|I+

u ||I−
u |

∑

(i+,i−)∈I+
u ∪I−

u

log(1 + e−〈Uu,(Ii+−Ii− )〉

+ λ4(||Uu||22 + ||Ii+ ||22 + ||Ii− ||22).

4.1 SGD for Multi-output and Heterogeneous Tasks

As a result of the multiple loss functions defined above, we can write our het-
erogeneous multi-target learning problem as a constrained convex optimization
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where the goal is to minimize the general loss functions defined over the sum of
all losses defined above and its regularization parameters:

L(F , S) + λΩ(w1,w2,w3, u, i+, i−) → min . (6)

Algorithm 1 describe the SGD strategy we propose to optimize the parameters
of our models.

The algorithm works as follow. First, we provide the hyper-parameters val-
ues: two stopping criteria parameters, ε and the maximum number of epochs
#epochs. We also provide the learning rate η, the number of iteration per epoch
#iters and the λ1, λ2, λ3 and λ4 parameters that control the regularization
terms for respectively the clicks, bookmarks, replies and learning of the embed-
dings. Then, we randomly initialize all the weights of the models w1,w2 and w3

and the embeddings for the users U and for the offers I.
Then, the idea is the following, at each step of the algorithm, the learning is

carried out by computing the gradient of each tasks simultaneously and updat-
ing the weights of each models, and the weights of the representation U and I.
As the embeddings are initialized randomly, the first iterations of the algorithm
mainly relies on the handcrafted features. After few iterations, as quality the

Algorithm 1 . Multi-target learning based on SGD algorithm
1: Inputs:

2: (extracted, context,U, I) ∈ S #Training set
3: η (Learning rate), λ1, . . . , λ4 (Regularization)
4: ε # Stopping criterion
5: nb epochs # Maximum number of epochs
6: nb iters # Number of iterations per epochs

7: Initialize:

8: Randomly intialized: W (0) = {w(0)
1 ,w

(0)
2 ,w

(0)
3 , u(0), i+(0), i−(0)}

9: epoch = 0
10: global loss old ← 0

11: global loss new ← L(F , S) + λΩ(w1,w2,w3, u, i+, i−)
12: while global loss new − global loss old > ε and epoch < nb epochs do
13: global loss old ← global loss new
14: local loss ← 0
15: for t = 1...nb iters do
16: randomly choose: user u, positive offer i+ and negative offer i−

17: for the click interaction
18: W (t) ← W (t−1) − η · [∇L(F , S) + λΩ(w1,w2,w3, u, i+, i−)]
19: local loss(t) ← local loss(t−1) + [�clickrank(u, i+, i−)] + [�emb

rank(Uu, Ii+ , Ii−)]
+[ 1

2
�bookclass(u, i+) + 1

2
�bookclass(u, i−)] + [ 1

2
�replyclass (u, i+) + 1

2
�replyclass (u, i−)]

+λ1||w1||22 + λ2||w2||22 + λ3||w3||22 + λ4(||Uu||22 + ||Ii+ ||22 + ||Ii− ||22)
20: end for
21: global loss new ← local loss

nb iters

22: epoch = epoch + 1
23: end while
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embeddings get better, the models rely on both, the handcrafted and the embed-
dings features. Finally, after updating models and embeddings, we compute the
new general loss and compare it to the old one to evaluate if we need to continue
the descent.

Remark 2. Here we used l2 regularization for all loss functions and bind the
task using the embedding. The use of l2 regularization is a decision that can be
debated, however, it is not the focus of this study. Here the goal is to evaluate
the impact of learning jointly a representation and different models.

Remark 3. In MTL, when one want to optimize over multiple tasks jointly, the
question of the stopping criteria arise. For the SGD algorithm at hand, we defined
two different stopping criteria: (i) ε is used to measure the losses difference
between two epochs. If the difference is lower than a given threshold, say ε =
10−3, then we stop the descent and keep the weights. In our MTL scenario, we
set ε to be a shared criteria accross all tasks. It means that some tasks might
continue to update, even if they reached a point where the difference in losses
between 2 epochs is lower than ε. In other words, the task that takes the slowest
task to converge is going to set the number of iteration of the whole optimization.
(ii) max iters is used as a safeguard, in the case where the ε does not stop the
algorithm and defines the maximum number of iteration.

5 Experiments

In order to evaluate the proposed framework and the quality of the feature
extraction method, we conducted a series of experiments aimed at showing the
benefit of the jointly learning the representations and the models with SGD
strategy. We release the source code4 and the dataset for research purposes.
The aim of the experiments are twofold: (a) to empirically assess if the tasks
are effectively interdependent; (b) to evaluate the benefits of learning the tasks
jointly.

Setup and Evaluation Measures. In both frameworks, MTL and STL, we
used �2 regularized Logistic Regression implemented using SGD algorithm in
order to minimize the loss functions for the classification and pairwise ranking
tasks. The tuning of hyper-parameters has been made by cross validation over
the F1-measure of 3 hyper-parameters: the regularization parameters λ in the
range [10−1, 10−4], the class weights in the set {1, 3, 5, 7, 9} and the decision
threshold probability in {0.3, 0.35, 0.4, 0.45, 0.5}.

We evaluated the ranking results using two metrics. First, we used the area
under the ROC curve (AUC) averaged over all users, and the Mean Average
Precision at k (MAP@k). In the case of highly imbalanced datasets, a classical
classification metric is the F1-measure that is defined as the harmonic mean of
precision and recall.

4 https://github.com/asarbaev/Multi-Target-learning.

https://github.com/asarbaev/Multi-Target-learning
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Single task Multitask
F1 AUC MAP@1 MAP@5 F1 AUC MAP@1 MAP@5

Ranking
Clicking 0.51↓ 0.62↓ 0.659↓ 0.537↓ 0.54 0.65 0.708 0.584

Embedding 0.42 0.52↓ 0.427 0.318 0.46 0.54 0.421 0.314

Classification
Bookmarked 0.03↓ 0.51↓ 0.008↓ 0.005↓ 0.06 0.54 0.026 0.015

Replied 0.17 0.55↓ 0.062↓ 0.038↓ 0.16 0.58 0.083 0.05

Fig. 2. Results on classification (F1-measure) and pairwise ranking (AUC) averaged
over users for the single-task and the multi-task/stacking strategies on the DAEMON

dataset. The best results are shown in bold, and a ↓ indicates a result that is statistically
significantly worse than the best, according to a Wilcoxon rank sum test with p < 0.01.

Implementation Details and Running Time. In our implementation, the
feature space is a n-dimensional space, x ∈ R

n. n consists in 15 extracted sta-
tistical features (see Sect. 2), 16 contextual features directly extracted from the
original dataset, 30 features for the user embedding and 30 features for the
offers embedding. Thus, (w1, w2, w3) ∈ R

91, U ∈ R
#users×30 and I ∈ R

#offers×30.
The stopping criteria is set to ε = 10−3, the learning rate η = 10−6 and
#maxiters = 100. We set the number of iterations for each epochs to be the
product between the number of unique users, the minimum number of positive
interacted offers and the minimum number of negative interacted offers as

#iters = #unique users × #min nb pos × #min nb neg,

where #unique users is the number of unique users in dataset, #min nb pos
(respectively #min nb neg) represents lowest number of positives (resp. nega-
tives) clicks interactions that a user can have.

We implemented the SGD described in Algorithm 1 in Python for both, the
single task learning and MTL models. The computations for 1 epoch takes about
10 min on a single 3.2 GHz core, that is about 6.5 h for the training of all models
for MTL when considering a learning rate of η = 10−6 and a stopping criteria
set to ε = 10−3.

Models Performance Analysis. Figure 2 presents the results for all the tasks
and both approaches, heterogeneous multi-target learning and single task learn-
ing. We use a bold font to highlight the highest performance rates and a ↓ to
show that a performance is significantly worse than the best result, according
to a Wilcoxon rank sum test used at a p-value threshold of 0.01 [11]. First, and
without any surprise, the predictions performance are better for the balanced
tasks, in terms of positives and negatives examples. In both setups, the predic-
tions of clicks provides better results than any other tasks, up to 0.65 in terms
of AUC and 0.708 in terms of MAP@1. In most cases, we observe that multi-
task ranking approach achieves statistically significant improvements compared
to the single-task learning approach. While quite close regarding MAP@k mea-
sure, multi-task improves AUC measure consistently for all the tasks, apart from
the embedding learning tasks. Intuitively, the learning of the embedding in the
single task learning case is specialized for the clicks task while in the multitask
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case it bias all tasks. Regarding F1-measure, the multi-target learning approach
is also better in all tasks but in the case of replies.

6 Conclusions and Future Work

In this paper, we consider the problem of MTL dyadic prediction in a recommen-
dation systems setting. Based on the collection of the RecSys 2016 challenge for
a job recommendation, we propose a method to extract meaningful dyads rep-
resentation based on multiple implicit feedbacks and extracted DAEMON a dataset
for this task. We also propose and implement a SGD algorithm that learns jointly
over multiple heterogeneous tasks. To the best of our knowledge, this work is
the first to learn an embedding jointly with multiple heterogeneous tasks using
a SGD approach. We show that this algorithm allows a substantial improvement
over the single-target learning case. These results also bring evidence that the
proposed dataset is of interest for the problem at hand. An interesting start-
ing point for future work would be to extend the proposed heterogeneous SGD
algorithm with a shared regularization.
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Abstract. AdaBoost uses the weights assigned to samples to make
the latest weak hypothesis adapt to classification mistakes of existing
weak hypotheses. However, AdaBoost is very sensitive to the outliers
and the existing hypotheses cannot be further trained to cooperate with
the newer one. We proposed a new algorithm which prepares all weak
hypotheses from the beginning of the training and trains all of them
in parallel. Thus, the weak hypotheses are able to cooperate with each
other during training. Also, we changed the function which update the
weights of the samples to suppress the effects of the weights of outliers.
We compared the performances of the new algorithm on several error-
correcting output codes and weak hypothesis types. It was found that
the proposed PCEL improves the accuracies of multi-class classification
task in most datasets.

Keywords: Ensemble learning · AdaBoost · Multi-class classification
Error-correcting output codes

1 Introduction

Ensemble learning is one of the machine learning schemes which uses multiple
classifiers called “weak hypotheses”. Among them, AdaBoost is the most pop-
ular. AdaBoost is composed of weak hypotheses that are trained using weight-
assigned samples of which weights are calculated observing the misclassifications
of previous weak hypotheses. However, there are cases when the performance
do not improve due to the outliers. The weak hypotheses which have already
been trained are fixed, thus they cannot cooperate with the newly-added weak
hypotheses.

In this paper, we propose an ensemble method which trains all weak hypothe-
ses in parallel and allow them to cooperate with each other via the weights
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assigned to the data. We aim to improve the performance of multi-class clas-
sification using AdaBoost.OC, which employs error-correcting output codes [8].

Fig. 1. Serial training and weight assignment in conventional AdaBoost.

2 Related Work

2.1 AdaBoost.OC

AdaBoost [3] is one of the boosting algorithms which trains several classifiers
named “weak hypotheses” in a serial order. When training a new weak hypothe-
sis, the importances of the samples which were misclassified by the previous weak
hypotheses are increased, and a new weak hypothesis is made concentrating to
such samples which were difficult to classify. The final combined hypothesis is
a weighted vote of the weak hypotheses (Fig. 1). AdaBoost is an algorithm for
two-class classification task, whose weak hypotheses only need to be slightly
better than a random guess. However, when AdaBoost classifies a multi-class
classification task, it is more difficult for the weak hypotheses to achieve error
rates of 1

2 or less. Hence, AdaBoost.M2 and AdaBoost.OC [8] were proposed.
In AdaBoost.M2, weak hypotheses output a set of labels which is likely to be

correct instead of a single label corresponding to the input sample. A combined
hypothesis outputs a label which is most common in the output sets of all weak
hypotheses.

AdaBoost.OC, proposed by Schapire [8], makes weak hypotheses to output
a binary code. A weak hypothesis outputs a single bit of error-correcting output
code [2] which is set in advance for converting a multi-class classification task
to multiple two-class classification tasks. A combined hypothesis outputs a label
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whose assigned output code is closest to the actual outputs of weak hypotheses
according to the weighted Hamming distance.

Algorithm 1 shows the training procedure of AdaBoost.OC. Table 1 shows
the variables used.

In Algorithm 1, first, all weights of samples of weak hypotheses D̃t(i, l) are
initialized (line 1). Then, a new weak hypothesis h̃t(x) is trained under D̃t(i, l)
(line 4). The error rate ε̃t (line 4), the weight of a weak hypothesis αt (line 5),
and weights of samples D̃t(i, l) of the weak hypothesis are updated based upon
all other outputs (line 6) as,

D̃t+1(i, l) =
1
Zt

D̃t(i, l) · exp
(
αt

(
[yi /∈ h̃t(xi)] + [l ∈ h̃t(xi)]

))
. (1)

The parameters of the existing hypotheses are frozen, and a new hypotheses
is added. This process is repeated until a stopping criterion is met, or for prede-
termined iterations T . Finally, the combined hypothesis H(x) is organized from
all weak hypotheses (line 8).

Table 1. List of variables used in AdaBoost.OC

Variables Role

K Number of classes

M Number of samples

{(xi, yi)}M
i=1 Set of samples and their corresponding labels

D̃t(i, l) The weight of sample xi when l = h̃t(xi)

Zt A normalization factor which makes sum of D̃t+1 to 1

l ∈ {−1, +1} The label of 2-class classification tasks

[π] The notation defined to be 1 if π is true holds and 0 otherwise

h̃t(x) t-th weak hypothesis for sample x

T Maximum boosting iteration

ε̃t Error rate under D̃t

αt Weight of weak hypothesis h̃t(x) in H(x)

H(x) The combined hypothesis

Figure 1 shows the process of AdaBoost(.OC). This example uses the lin-
ear classifier as the weak hypotheses. The training data are distributed in two-
dimensional space and are for two classes. First, weak hypothesis h1 is trained,
and the weights of the samples are updated based upon its outputs. Then, h1 is
frozen and a new weak hypothesis h2 is trained under the weights of the samples.
After training, h2 is frozen and the weights of the samples are updated. Further,
another weak hypothesis h3 is trained under the updated weights of the samples.
Finally, the combined hypothesis is built from the three weak hypotheses h1, h2,
and h3.
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Algorithm 1. Adaboost.OC
Require:

{(x1, y1), . . . , (xM , yM )},xi ∈ X, yi ∈ Y
Provides:

combined hypothesis H(x)

1: Initialize D̃1(i, l) = [l�=yi]
M(K−1)

2: for t = 1, 2, . . . , T do
3: Train weak hypothesis h̃t using weight D̃t

4: Let ε̃t = 1
2

∑m
i=1

∑
l∈Y D̃t(i, l) ·

(
[yi /∈ h̃t(xi)] + [l ∈ h̃t(xi)]

)

5: Let αt = 1
2

ln
(

1−ε̃t
ε̃t

)

6: Update D̃t+1(i, l) =
D̃t(i,l)·exp(αt([yi /∈h̃t(xi)]+[l∈h̃t(xi)]))

Zt

7: end for
8: Organize combined hypothesis H(x) = argmax

l∈Y

∑T
t=1 αt[l ∈ h̃t(x)]

Fig. 2. Parallel training and mutual weight assignment in PCEL.

2.2 Aim of This Work

In conventional AdaBoost(.OC), the older weak hypotheses cannot change to
cooperate with the newer one. One way to introduce cooperation among hypothe-
ses is to train them in parallel, allowing them to communicate via weights
assigned to training data. Although there exist other algorithms focusing on
parallelization of AdaBoost such as AdaBoost.PL [7] and MULTBOOST [4],
AdaBoost.PL focuses on speedup of AdaBoost and MULTBOOST focuses on
privacy preservation.

AdaBoost, including the AdaBoost.OC, uses an exponential function for cal-
culating the weights of the samples. This enables weak hypotheses to adjust to
the weights of the samples which is hard to be classified by the others. How-
ever, when a sample is an outlier, its weight becomes very high because many
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weak hypotheses misclassifies this particular sample. This can lead to a weak
hypotheses which is harmful to the combined hypotheses.

In this paper, we propose a new algorithm which prepares all weak hypotheses
from the beginning of training and trains all of them in parallel. This algorithm
lets the weak hypotheses to be able to cooperate with each other during training.
Also, we change the function to update the weights of the samples to improve
the handling of the outliers.

3 Parallel Cooperative Ensemble Learning (PCEL)

To achieve cooperation among all weak hypotheses, we propose a method that
trains all weak hypotheses in parallel without freezing. However, the intervention
from other hypotheses should decrease when the error rate of a weak hypothesis
is low. Also, to control the sensitivity to the samples which are misclassified by
many weak hypotheses, we change the function for calculating the weights to
saturate at a modest value.

3.1 Parallel Training for Cooperation

In the proposed algorithm, all weak hypotheses are trained in parallel to coop-
erate with each other. Each hypothesis focuses on the training samples which
are misclassified by other weak hypotheses. The weights of samples for a weak
hypothesis are calculated according to the performances of the other weak
hypotheses, and this is done for all weak hypotheses in parallel. Samples that
are difficult to learn are assigned large weights by multiple hypotheses. It will
be solved by other hypotheses, achieving cooperation among them.

3.2 Sample Weight Assignment Function

The effect of the outliers can be made smaller by changing the function for
calculating the weights of samples. AdaBoost uses an exponential function for
calculating the weights. The weights of samples (D) are determined exponentially
by the weighted sum of outputs of others. Thus, the trained weak hypothesis
becomes too sensitive to the samples which is misclassified by many others.
In order to solve this issue, the proposed algorithm uses a modestly-saturating
increasing function such as the sigmoid function.

In addition, the deviation of the weights is affected by the number of weak
hypotheses. For example, if the performances of all weak hypotheses are the
same, the number of weak hypotheses which misclassify one data is in proportion
to their number. Thus, the samples which tend to be misclassified by weak
hypotheses such as the outliers will have very high weights. In this work, the
function which determines the weights of the samples is stretched in proportion
to the number of hypotheses T to keep validations of the weights of the data
constant regardless of T . Equation (2) shows the stretched sigmoid function used
in this work and Eq. (3) shows the proposed weighting function Ws.
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s(x) =
1

1 + exp(− x
T )

(2)

Ws(u, t) =
s
(∑U

υ=1[υ �= u] · αt
υ

T

(
[yi /∈ h̃t

υ(xi)] + [l ∈ h̃t
υ(xi)]

))

Zt
u

(3)

Fig. 3. Fluctuation of test accuracies in PCEL without hypothesis fixing. (Color figure
online)

3.3 Fixing Weak Hypotheses According to Their Accuracy

In the proposed method, all weak hypotheses are trained to mutually make
up for the classification error of the other weak hypotheses via weights of the
samples. However, the blue plot in Fig. 3 shows the transition of the test accu-
racies through the training epochs. There, fluctuation of accuracies is observed.
A weak hypothesis is trained with certain weights of data, which is calculated
by the other weak hypotheses in one epoch. However, the weights of the data
may be changed and can differ from the previous epoch. Then, the target of
a weak hypothesis can be changed from the previous one. Figure 3 shows the
state in which the optimum of weak hypotheses are changed frequently. If one
hypotheses is performing well, the necessity of retraining it should be low. In
such cases, weak hypotheses ought to be fixed.

In this work, we introduce a momentum γu in updating the weights of data.
This momentum is calculated linearly proportional to the loss ε̃t

u. Equation (4)
shows the modified calculation of the weights of data. By increasing γu as ε̃t

u

decreases, it is possible to fix weak hypotheses which has high accuracy rate.
Here, γu is determined according to Eq. (5).
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D̃t+1
u (i, l) =

γuD̃t
u(i, l) + (1 − γu)Ws(u, t)

Zt
u

(4)

γu = −2|ε̃u − 0.5| + 1 (5)

3.4 PCEL

The proposed algorithm is called Parallel Cooperative Ensemble Learning
(PCEL). Algorithm 2 shows the algorithm of PCEL. Table 2 shows the vari-
ables used. The u-th weak hypotheses in iteration t is h̃t

u(x). First, all weights
of the training samples for hypotheses are initialized (line 1). Then, all weak
hypotheses h̃t

u(x) learns under weights Dt
u(i, l) (line 4). Then the error rate ε̃t

u

(line 5), and the weight of weak hypothesis αt
u are updated (line 6). Next, the

weights of samples Dt
u(i, l) of weak hypothesis are updated using all other out-

puts (line 9). This loop will be run in parallel. Finally, the combined hypothesis
H(x) is organized from all weak hypotheses h̃T

u (x) (line 11).

Table 2. List of variables used in PCEL

Variables Role

h̃t
u(x) u-th weak hypothesis in iteration t

D̃t
u(i, l) Weight of samples of h̃t

u(x)

Zt
u A normalization factor which makes sum of D̃t

u+1 to 1

U Maximum boosting iteration

T Number of weak hypotheses

ε̃t
u Error rate under D̃t

u

αt
u Weight of a weak hypothesis h̃t

u(x)

HU (x) Combined hypothesis

Figure 2 illustrates the process of PCEL in contrast with Fig. 1. There are
three weak hypotheses h1, h2, and h3 from the beginning. Then, these weak
hypotheses are trained, and weights of the samples for each weak hypothesis ht

are updated based upon the outputs of all weak hypotheses except ht. Then,
the weak hypotheses are retrained under their updated weights of the samples.
Finally, the combined hypotheses is built from three weak hypotheses h1, h2,
and h3.

4 Experimental Results

This section shows the comparison between AdaBoost.OC and PCEL in the
performances of multi-class classification tasks.
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Algorithm 2. PCEL
Require:

{(x1, y1), . . . , (xM , yM )},xi ∈ X, yi ∈ Y
Provides:

combined hypothesis H(x)

1: Initialize Dt
u(i, l) = [l�=yi]

M(K−1)
(t ∈ {1, 2, . . . , T})

2: for t = 1, 2, . . . T do
3: for u = 1, 2, . . . , U do
4: Train weak hypothesis h̃t

u using weight D̃t
u

5: Let ε̃t
u = 1

2

∑M
i=1

∑
l∈Y D̃t

u(i, l) ·
(
[yi /∈ h̃t

u(xi)] + [l ∈ h̃t
u(xi)]

)

6: Let αt
u = ln

(
1−ε̃t

u
ε̃t
u

)

7: Update γu = −2|ε̃u − 0.5| + 1
8: end for

9: Update D̃t+1
u (i, l) =

γuD̃t
u(i,l)+(1−γu)s

(∑U
υ=1[υ �=u]· αt

υ
T ([yi /∈h̃t

υ(xi)]+[l∈h̃t
υ(xi)])

)

Zt
u

10: end for
11: Organize combined hypothesis H(x) = argmax

l∈Y

∑U
u=1 αT

u [l ∈ h̃T
u (x)]

Table 3. Datasets used in the experiments

Dataset Instance Feature Class ECF-ECOC Length

DNA [5] 2000 180 3 3

Iris 150 4 3 3

Vehicle 846 18 4 4

Vowel 528 10 11 12

4.1 The Datasets

Table 3 shows the datasets which were used in the experiments. Iris, Vehicle and
Vowel datasets were obtained from the UCI Machine Learning Repository [1].

4.2 Experimental Conditions

The Experiments were performed 50 times each and the average test accuracies
for AdaBoost.OC and PCEL were recorded.

Weak Hypotheses. In the experiments, we used both simple perceptron and
Multi Layer Perceptron (MLP) for weak hypotheses. They used hyperbolic tan-
gent function as activation functions, and were trained by RMSProp [9]. A MLP
has 10 units in the hidden layer. The weak hypotheses are generated as many as
the length of ECOC.
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Output Codes. The experiments used two types of output codes, which are 10
bits random output codes (Exp. 1) and ECOC generated by Error-Correcting
Factorization (ECF) [6] (Exp. 2). ECF generates ECOC considering the inter-
class distances from the dataset of each pair of classes. When there are two
classes that are more difficult to distinguish than the other pairs, ECF assigns
an ECOC which has a larger Hamming distance for this pair. The lengths of
ECF-ECOC are shown in Table 3.

4.3 Results

Tables 4 and 5 show the results of the experiments.

Accuracies. In most cases, the accuracies of PCEL surpasses those of
AdaBoost.OC. It reflects the benefits of cooperation among weak hypotheses
in PCEL, where weak hypotheses compensated for the misclassified data mutu-
ally. However, in some datasets, the accuracy of PCEL were lower.

Table 4. Experiment 1 (Random output code): mean classification accuracies and
variances.

Weak hypothesis Dataset AdaBoost.OC PCEL

Perceptron DNA 0.887 (6.5 × 10−5) 0.893 (1.4 × 10−4)

Iris 0.955 (3.1 × 10−4) 0.973 (0)

Vehicle 0.700 (8.2 × 10−4) 0.751 (3.4 × 10−4)

Vowel 0.320 (2.2 × 10−3) 0.405 (3.7 × 10−3)

MLP DNA 0.904 (1.2 × 10−4) 0.900 (8.1 × 10−5)

Iris 0.972 (2.6 × 10−5) 0.959 (1.1 × 10−4)

Vehicle 0.782 (3.2 × 10−4) 0.805 (2.1 × 10−4)

Vowel 0.869 (1.4 × 10−3) 0.946 (8.8 × 10−4)

Variance. In most cases, the accuracy variances of PCEL were lower than those
of AdaBoost.OC. This shows the strength of PCEL against outlier samples, that
can cause AdaBoost.OC to be unsuccessful when many of the frozen hypotheses
fail to classify them.

Weak Hypotheses. In most cases, the accuracies of methods which used MLPs
for the weak hypotheses surpasses those of simple perceptrons. It reflects the
benefits of the performances of the weak hypotheses. In Vowel dataset, it is
remarkable.

The choice of weak hypotheses did not affect variances.
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Table 5. Experiment 2 (ECF-ECOC): mean classification accuracies and variances.

Weak hypothesis Dataset AdaBoost.OC PCEL

Perceptron DNA 0.885 (4.3 × 10−5) 0.870 (2.6 × 10−8)

Iris 0.933 (1.7 × 10−3) 0.973 (0)

Vehicle 0.605 (1.9 × 10−4) 0.739 (6.3 × 10−6)

Vowel 0.455 (3.3 × 10−4) 0.487 (3.8 × 10−5)

MLP DNA 0.912 (2.0 × 10−5) 0.889 (3.2 × 10−5)

Iris 0.973 (0) 0.946 (9.2 × 10−5)

Vehicle 0.782 (9.2 × 10−4) 0.786 (1.6 × 10−4)

Vowel 0.923 (2.8 × 10−4) 0.975 (5.1 × 10−5)

Output Codes. The accuracies were slightly higher when random codes were
used (Exp. 1) than ECF-ECOC (Exp. 2), except for the Vowel dataset. This may
be explained by the lengths of the output codes. ECF-ECOC (Table 3) were
much shorter than random codes (10 bits) except for Vowel. As shorter code
means less number of weak hypotheses to cooperate, this might have caused the
lower performance. The suitable lengths of ECOC for use in PCEL needs to
be investigated further. As the codes were unchanged throughout the trials in
ECF-ECOC, but varied in random codes, the accuracy variance for ECF-ECOC
were lower.

5 Conclusion

In this paper, we proposed an ensemble learning algorithm based on Adaboost,
which trains the weak hypotheses in parallel. This algorithm is named PCEL. All
weak hypotheses train in parallel, and they cooperate via the weights assigned to
the training data. Besides parallelism, two significant changes have been made
from AdaBoost.OC. First is the choice of the function for calculating the weights
of data. The exponential function used in AdaBoost.OC made the training too
sensitive to outliers. Because of that, we changed the function to the sigmoid
function. Second, we added a rule which fixes weak hypotheses according to their
accuracies. Experiments showed that PCEL gave higher recognition performance
when compared with AdaBoost.OC in most cases. However, some assigned codes
brought down the performance of the other weak hypotheses and the accuracies
of a combined hypothesis became lower. In the future, we plan to propose a
method which adjusts the optimal output codes during training.
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