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Abstract. Deep convolutional neural networks (CNNs) are both com-
putationally intensive and memory intensive, making them difficult to
deploy on embedded systems with limited hardware resources efficiently.
To address this limitation, we introduce SATB-Nets, a method which
trains CNNs with segmented asymmetric ternary weights for convo-
lutional layers and binary weights for the fully-connected layers. We
compare SATB-Nets with previous proposed ternary weight networks
(TWNs), binary weight networks (BWNs) and full precision networks
(FPWNs) on CIFAR-10 and ImageNet datasets. The result shows that
our SATB-Nets model outperforms full precision model VGG16 by 0.65%
on CIFAR-10 and achieves up to 29× model compression rate. On Ima-
geNet, there is 31× model compression rate and only 0.15% accuracy
degradation over the full-precision AlexNet model of Top-1 accuracy.
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1 Introduction

Deep Neural Networks (DNNs) have inexorably pushed the amazing perfor-
mances in lots of application domains including but not limited to the speech
recognition [1,2] and computer vision, mainly including object recognition
[3,4,6,23] and object detection [7,8,10]. A particular type of networks, named
Convolution Neural Networks (CNNs), are being deployed to real world appli-
cations on smart phones and other embedded devices. However, it is difficult to
deploy these computationally intensive and memory-intensive CNNs on embed-
ded devices which are both computational resources limited and storage limited.
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1.1 Binary Weight Networks and Model Compression

To address the storage and computational issues [5,21], methods that seek to
binarize weights or activations in DNNs models have been proposed. BinaryCon-
nect [11] binarizes the weights to {+1, −1} with a single sign function. Binary
Weight Networks [12] improve the models’ capacity by adding an extra scal-
ing factor on the basis of the previous method. BinaryNet [12] and XNOR-Net
[13] binarize not only weights but also activations as extensions of the previous
methods. These models eliminate most of the multiplication operations in the
forward and backward propagations [16] and model compression rate achieves
up to 32×, but there are also considerable accuracy loss.

1.2 Ternary Weight Networks and Model Compression

Nowadays, more and more researchers are engaged in the quantization of 2-bit
neural networks especially the ternary weights quantization. Ternary weights net-
works (TWNs) [14] were introduced with the weights constrained to {−1, 0,+1}
to maximize scale model compression and minimize the precision loss of the
model as far as possible. Compared with the previous binary quantization net-
work, the accuracy loss has been reduced obviously because of the increased
weights precision. However, there are also some tricks to improve the capacity
of ternary weights networks with the different scaling factors for positive and
negative weights.

We optimize the previous methods [14,20] by proposing Segmented Asym-
metric Ternary and Binary Weights Networks (SATB-Nets) to explore higher
model capacity and model compression rate. For each layer, we segment the
weights vector space into many disjoint subspaces. In each subspace, we confine
weights to three values {+W pt

ls , 0,−Wnt
ls } for convolutional (CONV) layers and

two values {+W pb
ls ,−Wnb

ls } for fully-connected (FC) layers, which can also be
encoded with two bits and a single bit. Compared with TWNs [14] and BWNs
[11] quantization method, our SATB-Nets are able to explore the local redun-
dancy structure better and gain more stronger expressive abilities leading to
better performance. In addition, the fixed scaling factors {+W p∗

ls , 0,−Wn∗
ls } pro-

vide more possibilities for computing acceleration.

2 Segmented Asymmetric Ternary and Binary Weights
Networks

We will detailedly introduce how to obtain Segmented Asymmetric Ternary and
Binary Weights Networks (SATB-Nets) and train them efficiently in this section.

2.1 Segmentation

Product quantization (PQ) [18] partitions the vector space into many disjoint
subspaces to explore the redundancy of structures in vector space. Authors of
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[9] proposes the segmentation of the weight matrix and then the performance of
quantization in each subspace. Similarly, we partition weight matrix into several
submatrices to improve the expression ability of the quantized networks:

W = [W 1,W 2, ...,W k], (1)

Where W ∈ Rm∗n and W i ∈ Rm∗(n/k) assuming n is divisible by k. We can
quantify each submatrix W i with ternary and binary value. More segments lead
to higher model capacity but will aggressively increase the codebook size. So, by
using the same trick as described in [9], we fixed the number of segments k to 8
to keep a satisfying balance between compression rate and output precision loss
of the networks.

2.2 Asymmetric Binary Weights for Fully-Connected(FC) Layers

We constrain the full precision weights Wlsi (lth layers, sth segments and ith
parameters) to binary weights with values belong to {+W pb

ls ,−Wnb
ls }. The quan-

tization function is shown in (2).

wb
lsi = fb(wb

lsi) =

⎧
⎨

⎩

+W pb
ls wlsi ≥ 0

−Wnb
ls wlsi < 0

(2)

Here 0 is threshold and {W pb
ls ,Wnb

ls } are the scaling factors. In order to get as
well performance as possible, the minimization of Euclidian distance between
the floating-point weights Wls and binary weights W b

ls is adopted and the opti-
mization problem is transformed to (3):

⎧
⎨

⎩

W ∗
ls = arg min J(W ∗

ls) = arg min
∥
∥Wls − W b

ls

∥
∥2

2

s.t.W ∗
ls > 0;wb

lsi ∈ {+W pb
ls , 0,−Wnb

ls }; i = 1, 2, ..., n; s = 1, 2, ..., k

(3)

Substitute the binary function (2) into the formula (3), we can get the expres-
sion as (4):

J(W ∗
ls) =

∥
∥Wls − W b

ls

∥
∥2

2
=

ns∑

i∈I∗

||wlsi| − W ∗
ls|2 (4)

where I∗ ={Ip, In}, Ip = {i|wlsi ≥ 0}, In = {i|wlsi < 0}. According to (4), It is
not complicated to obtain binary weights from the floating-point weights as (5):

W ∗
ls =

1
|I∗|

ns∑

i∈I∗

|wlsi| (5)

where |I∗| denotes the number of elements in I∗ in each segment.
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2.3 Asymmetric Ternary Weights for Convolutional (CONV)
Layers

Similarly, we also constrain the floating-point weights Wlsi (lth layers, sth
segments and ith parameters) to ternary weights with values belong to
{+W pt

ls , 0,−Wnt
ls }. The quantization function is shown in (6).

wt
lsi = ft(wt

lsi|Δp
ls,Δ

n
ls) =

⎧
⎨

⎩

+W pt
ls wlsi > Δp

ls

0 −Δn
ls ≤ wlsi ≤ Δp

ls

−Wnt
ls wlsi < −Δn

ls

(6)

Here {ΔP
ls,Δ

n
ls} are the threshold and {W pt

ls ,Wnt
ls } are the scaling factors.

The optimization problem is formulated as (7):
⎧
⎨

⎩

W ∗
ls = arg min J(W ∗

ls) = arg min ‖Wls − W t
ls‖22

s.t.W ∗
ls > 0;W t

lsi ∈ {+W pt
ls , 0,−Wnt

ls }; i = 1, 2, ..., n; s = 1, 2, ..., k

(7)

Substitute the ternary function (6) into the formula (7), we can get the
expression as (8):

J(W ∗
ls) =

∥
∥Wls − W t

ls

∥
∥2

2
=

∣
∣IΔ∗

ls

∣
∣ ∗ (W ∗

ls)
2 − 2 ∗ (

ns∑

i|i∈IΔ∗
ls

|wlsi|) ∗ (W ∗
ls) + C (8)

Where IΔ∗
ls

={IΔp
ls

, IΔn
ls

}, IΔp
ls

= {i|wlsi > Δp
ls}, IΔn

ls
= {i|wlsi < −Δn

ls} and
|IΔ∗

ls
| denotes the number of elements in IΔ∗

ls
in each segment. Δp

ls and Δn
ls are

independent together. C =
∑ns

i |wlsi|2 is a {W pt
ls ,Wnt

ls }-independent constant.
Therefore, our scaling factors {W pt

ls ,Wnt
ls } can be simplified to:

W ∗
ls = arg min J(W ∗

ls) = arg min(
∣
∣IΔ∗

ls

∣
∣ ∗ (W ∗

ls)
2 − 2 ∗ (

ns∑

i|i∈IΔ∗
ls

|wlsi|) ∗ (W ∗
ls))

(9)
According to (9), It is not complicated to obtain tenary weights from the

floating-point weights as (10):

W ∗
ls =

1
∣
∣IΔ∗

ls

∣
∣

ns∑

i|i∈IΔ∗
ls

|wlsi| (10)

Here {Δp
ls,Δ

n
ls} are both positive values. There is no straightforward solu-

tions to figure out Δp
ls and Δn

ls as [17]. But values are generated from uniform
or normal distribution empirically, adopting the method mentioned in [14], the
thresholds are as following:

Δ∗
ls ≈ 0.7 ∗ 1

|I∗|
ns∑

i|i∈I∗
|wlsi| (11)
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Where I∗ = {Ip, In}, Ip = {i|wlsi ≥ 0|i = 1, 2, ..., ns}, In = {i|wlsi < 0|i =
1, 2, ..., ns}. Finally, by substituting (10) and (11) to (6), Ternary weights can
be easily obtained from the floating-point weights.

2.4 Heterogeneous Quantized Weights Structure

In order to achieve a good balance between compression rate and accuracy, we
train CNNs with ternary weights for convolutional layers and binary weights for
the fully-connected layers. On the one hand, these densely and highly redun-
dancy fully-connected layers take up most of the parameters, binarization is
more helpful in removing redundancy and higher proportion of compression. On
the other hand, [21] shows that convolutional layers require more bits of pre-
cision than fully-connected layers, so ternary weights for convolutional layers
improve the expression capacity. In addition, the quantization values of zero for
convolutional layers reduce the calculation of the multiplication to accelerate the
networks.

2.5 Train the SATB-Nets with Stochastic Gradient Descent (SGD)
Method

Stochastic Gradient Descent (SGD) algorithm is used as the training algorithm
for SATB-Nets, about which more detail is shown in Algorithm 1.

The whole training process is almost the same as normal training method,
except that segmented asymmetric ternary weights for convolutional (CONV)
layers and binary weights for the fully-connected (FC) layers are used in for-
ward propagation (step 1) and backward derivation (step 2), which is similar
to training method as BinaryConnect [11]. In order to overcome the difficulty
of convergence of models using quantized weights, we reserved the full preci-
sion floating-point weights to update weights to obtain the tiny changes in each
iteration (step 3).

In addition, Batch Normalization (BN) [24] and learning rate scaling, as two
useful tricks, are adopted. We also use momentum for acceleration.

3 Experiments

In this section, we benchmark SATB-Nets with full precision weights networks
(FPWNs), binary weights networks (BWNs) and Ternary Weights Networks
(TWNs) on the small scale datasets (CIFAR-10) and the large scale dataset (Ima-
geNet datasets). We adopt the VGG [6] networks on Cifar-10 and the AlexNet
[3] on ImageNet. To be fair, the following terms are identical: network architec-
ture, learning rate scaling procedure (multi-step), optimization method (SGD
with momentum) and regularization method (L2 weight decay). We conjecture
that SATB-Nets have sufficient expressiveness in the depth networks and adopt
the data augmentation and the sparse weights like dropout [15] to prevent over-
fitting. In addition, all the neural networks are deployed on framework of Caffe
[25]. For more detailed configurations, we can see Table 1.
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Algorithm 1. Training a DNNs with SATB-Nets. L is the number of layers
and K is the number of segments. Full precision weights for layer l and segment
s are Wls and bls and the output is als. J is the cost function of networks and
Binary(W b

ls) and Ternary(W t
ls) mean to quantize weights to binary in fully

connected layers (FC) and ternary values in convolution layers (CONV).
Begin

1. Forward propagation:
for l ← 1 to L − 1 do

for s ← 1 to K − 1 do
if CONV then

W t
ls ← Ternary(Wls)

al+1s ← f
(
W t

ls ∗ als + bls

)

end if
if FC then

W b
ls ← Binary(Wls)

al+1s ← f
(
W b

ls ∗ als + bls

)

end if
end for

end for
2. Backward derivation:
for l ← 1 to L − 1 do

for s ← 1 to K − 1 do
if CONV then

∂J
∂als

← ((W t
ls)

T ∗ ∂J
∂al+1s

) ◦ f ′

// ◦ means element-wise product
end if
if FC then

∂J
∂als

← ((W b
ls)

T ∗ ∂J
∂al+1s

) ◦ f ′

end if
∂J

∂Wls
← ∂J

∂al+1s
∗ (als)

T

∂J
∂bls

← ∂J
∂al+1s

end for
end for
3. Weights update:
for l ← 1 to L − 1 do

Wls ← Wls − η ∗ ∂J
∂Wls

bls ← bls − η ∗ ∂J
∂bls

end for
End

3.1 VGGNets on CIFAR-10

CIFAR-10 is a benchmark image classification dataset which consists of 60K
32×32 color images and Five sixths of them belong to a training set and the rest
belong to the test set. To prevent over-fitting while training VGG [6] networks,
data-augmentation is used following [4]. A random 32 × 32 crop is from the
padded images on which 4 pixels are padded each side. The cropped images
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Table 1. Networks and some hyper-parameters of them on datasets

Cifar-10 ImageNet

Networks VGG10 VGG13 VGG16 AlexNet

Weight decay 5 × 10−4 5 × 10−4 5 × 10−4 5 × 10−4

Momentum 0.9 0.9 0.9 0.9

Mini-batch size of BN 100 100 100 256

Learning rate 0.01 0.01 0.01 0.0001

Learning rate decay epochs (0.1) 50, 100, 150, 200 50, 60

Fig. 1. Validation accuracy curves of VGG16 on Cifar-10

are used for training while original images are for testing. We adopt VGG16 [6]
architecture for the experiment firstly. Beside, in order to solve the difficulty of
training so deep neural network, we initialize these networks with full-trained
full precision model.

We compare SATB-Nets with the FPWNs, BWNs and TWNs. The result
(Fig. 1 and Table 2) shows that SATB-Nets from VGG16 outperforms BWNs,
TWNs and FPWNs by 2.52%, 1.09% and 0.65% respectively. In the meanwhile,
SATB-Nets from VGG10, VGG13 and VGG16 are always outperforming BWNs
and TWNs.

To our surprise, the SATB-Nets constrained from VGG13 and VGG16 out-
perform the full precision weights networks. According to our analysis, we con-
jecture that our SATB-Nets have adequate capacity for expression and the sparse
weights networks prevent over-fitting like dropout [15].

For the more sufficient experimental verification, we expand the experi-
ment to VGG13 removing last 3 convolutional layers of VGG16 [6] and VGG10
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Table 2. Validation accuracy of VGGNet on CIFAR-10 (%)

Model FPWNs BinaryNet TWNs SATB-Nets Improvements(%)

VGG-10 90.45 88.76 89.50 90.40 −0.05/2.64/0.90

VGG-13 91.25 89.09 90.60 91.96 +0.71/2.87/1.36

VGG-16 91.50 89.63 91.06 92.15 +0.65/2.52/1.09

Table 3. Compression ratio for VGG-16 (Byte)

Layer Full-weights BinaryNet TWNs SATB-Nets

CONV 58.84 M 1.84 M 3.68 M 3.68 M

FC 494.52 M 15.44 M 30.92 M 15.44 M

Total 553.36 M 17.28 M (32×) 34.24 M (16×) 19.12 M (29×)

removing last 6 convolutional layers. The results met our expectations which
are listed in Table 2. In the meanwhile, Table 3 shows the compression ratio of
VGG-16.

3.2 AlexNet on ImageNet

We further examine the performance of SATB-Nets on the ImageNet ILSVRC-
2012 dataset, which has over 1.2M training examples and 50K validation exam-
ples. We use the AlexNet Caffe model [26] as the reference model. Beside, in
order to solve the difficulty of training so deep neural network, we initialize
these networks with full-trained full precision model.

Fig. 2. Validation accuracy curves of AlexNet on ImageNet
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Table 4. Validation accuracy of AlexNet on ImageNet(%)

Accuracy FPWNs BWNs TWNs SATB-Nets

Top-1 56.72 52.65 54.01 56.57

Top-5 80.17 74.89 76.43 78.76

Table 5. Compression statistics for AlexNet (Byte)

Layer Full-weights BinaryNet TWNs SATB-Nets

CONV 9.32 M 0.28 M 0.60 M 0.60 M

FC 234.52 M 7.32 M 14.64 M 7.32 M

Total 243.84 M 7.32 M (32×) 15.24 M (16×) 7.92 M (31×)

Our training curves are shown in Fig. 2, the complete result (Fig. 2 and Table
4) shows that SATB-Nets reaches the top-1 validation accuracy of 56.57% which
has only 0.15% accuracy degradation over full precision counterpart.

Tables 3 and 5 show the compression ratio of VGG-16 and AlexNet. SATB-
Nets achieve up to 29× and 31× model compression rate respectively which are
closed to the binary weights compression without impacting accuracy.

4 Conclusion

In this paper, we propose ternary and binary weights networks optimization
problems. Next, We propose SATB-Nets which nearly achieve up to binary com-
pression ratio. Meanwhile, experiments show that benchmarks demonstrate the
superior performance of the method which we proposed. Next step, we will apply
the method to more datasets and models to more deeply explore the relationships
between the capacity of networks and the quantized values.
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