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Abstract. This work proposes a further improved global robust stabil-
ity condition for neural networks involving intervalized network param-
eters and including single time delay. For the sake of obtaining a new
robust stability condition, a new upper bound for the norm of the inter-
valized interconnection matrices is established. The homeomorphism
mapping and Lyapunov stability theorems are employed to derive the
proposed stability condition by making use of this upper bound norm.
The obtained result is applicable to all nondecreasing slope-bounded acti-
vation functions and imposes constraints on parameters of neural net-
work without involving time delay.
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1 Introduction

Analysis of various dynamics of neural networks has recently become an inter-
esting research topic due to their qualitative properties that are employed to
solve various practical real-word problems related to combinatorial optimization,
image processing and control systems. When solving these types of problems by
using neural networks, one needs to establish a neural system possessing a unique
and globally asymptotically stable equilibrium point. Thus, one needs to deal
with stability of neural networks. The fact that neurons implemented by ampli-
fiers usually have finite switching speeds will result in time delays, which may
have undesired affects on the dynamics of neural networks. Another problem is
that the parameters of neural systems may involve some uncertainties, which can
also have an affect on the equilibria of neural networks. Because of these reasons,
for a proper stability analysis, the time delay in the states and uncertainties in
the network parameters need to be included in the mathematical model of neu-
ral networks. That is to say, the key requirement would be the establishment of
robust stability of neural systems which also involve time delay. When review-
ing past literature, it can be realized that many researchers published useful
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robust stability criteria for delayed neural systems, (see references [1–19]). This
paper uses Lyapunov and Homeomorphic mapping theorems to derive a novel
condition for global robust asymptotic stability.

Notations: Let z = (z1, z2, ..., zn)T . We will use |z| = (|z1|, |z2|, ..., |zn|)T .
For a given matrix E = (eij)n×n, we will use |E| = (|eij |)n×n, and λm(E) will
represent the minimum eigenvalue of E. If of E = ET , E > 0 will show that E
is positive definite. E = (eij)n×n is nonnegative matrix if eij ≥ 0,∀i, j. Assume
that E = (eij)n×n and F = (fij)n×n are nonnegative matrices. In this case,
E � F will denote that eij ≤ fij ,∀i, j. For the vector z, we will use the norm
||z||22 =

∑n
i=1 z2i , and for E, we use ||E||2 = [λmax(ET E)]1/2.

2 Preliminaries

Consider the neural network of the mathematical form

dxi(t)
dt

= −cixi(t) +
n∑

j=1

aijfj(xj(t)) +
n∑

j=1

bijfj(xj(t − τ)) + ui,∀i (1)

in this above equation, aij and bij are interconnection parameters, ci are the
neurons charging rates, xi(t) represent state of neuron i, the functions fi(·) are
the nonlinear activation functions, τ represents the time delay, ui are the inputs.

Neural system (1) can be put into an equivalent system governed by the
differential equation:

ẋ(t) = −Cx(t) + Af(x(t)) + Bf(x(t − τ)) + u (2)

where C = diag(ci), A = (aij)n×n, B = (bij)n×n, x(t) = (x1(t), x2(t), ...,
xn(t))T , u = (u1, u2, ..., un)T , f(x(·)) = (f1(x1(·)), f2(x2(·)), ..., fn(xn(·)))T .

The functions fi possess the following properties:

0 ≤ fi(x) − fi(x̃)
x − x̃

≤ ki, ∀i, ∀x, x̃ ∈ R, x �= x̃

with ki being positive constants. The functions satisfying the above conditions
are denoted by f ∈ K.

The matrices A = (aij), B = (bij) and C = diag(ci > 0) in (1) are stated by
the following intervals:

CI := {C : 0 � C � C � C, i.e., 0 < ci ≤ ci ≤ ci}
AI := {A : A � A � A, i.e., aij ≤ aij ≤ aij} (3)

BI := {B : B � B � B, i.e., bij ≤ bij ≤ bij}
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We now introduce the following lemma which is of great importance to obtaining
our main result:

Lemma 1: Let D be a positive diagonal matrix with n diagonal entries, x be any
real vector having n elements, and consider any real n × n dimensional matrix
A = (aij) with being intervalized as A � A � A. In this case, the following
inequality is satisfied:

xT AT DAx ≤ |xT |[|A∗T DA∗| + |A∗T |DA∗ + A∗T D|A∗| + A∗T DA∗]|x|

in which A∗ = 1
2 (A + A) and A∗ = 1

2 (A − A).

Proof: If A ∈ AI , then, aij can be written as

aij =
1
2
(aij + aij) +

1
2
σij(aij − aij), − 1 ≤ σij ≤ 1,∀i, j.

Assume that Ã = (ãij)n×n is a real constant matrix and whose elements are
defined as ãij = 1

2σij(aij − aij). Then, A can be written as

A =
1
2
(A + A) + Ã = A∗ + Ã

We can now express the following:

xT AT DAx = xT (A∗ + Ã)T D(A∗ + Ã)x

= xT (A∗T DA∗ + A∗T DÃ + ÃT DA∗ + ÃT DÃ)x

≤ |xT ||A∗T DA∗ + A∗T DÃ + ÃT DA∗ + ÃT DÃ||x|
≤ |xT ||A∗T DA∗||x| + |xT ||A∗T |D|Ã||x|

+ |xT ||ÃT |D|A∗||x| + |xT ||ÃT |D|Ã||x|

Since |ãij | ≤ 1
2 (aij − aij),∀i, j, it follows that |Ã| � A∗. Then, we obtain

xT AT DAx ≤ |xT ||A∗T DA∗||x| + |xT ||A∗T |D|A∗||x|
+ |xT ||A∗T |D|A∗||x| + |xT ||A∗T |D|A∗||x|

= |xT |(|A∗T DA∗| + |A∗T |DA∗ + A∗T D|A∗| + A∗T DA∗)|x|

Below are two lemmas and a fact that will be needed in the proofs:

Lemma 2 [1]: Let D be a positive diagonal matrix with n diagonal entries, x
be any real vector having n elements, and consider any real n × n dimensional
matrix A = (aij) with being intervalized as A � A � A. In this case, the
following inequality is satisfied:

xT (DA + AT D)x ≤ |xT |S|x|
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where S = (sij) such that sii = 2diaii and sij = max(|diaij + djaji|, |diaij +
djaji|) for i �= j.

Lemma 3 [2]: Let the map H(y) ∈ C0 posses two properties: H(y) �= H(z),
∀y �= z and ||H(y)||→∞ as ||y||→∞ with y ∈ Rn and z ∈ Rn. Then, H(y) is
said to be homeomorphism of Rn.

Fact 1: If A = (aij) and B = (bij) satisfy (3), then, A and B have bounded
norms, i.e., we can find some positive real constants ε and ε satisfying the
following

‖A‖2 ≤ ε and ‖B‖2 ≤ ε

3 Existence and Uniqueness Analysis

The following theorem presents the criterion which ensures that system (1) pos-
sesses a unique equilibrium point for each constant input:

Theorem 1: Let neuron activation functions belong K, and assume that the
uncertain network elements A, B and C are defined by (3). Then, delayed neural
network described by (1) possesses only one equilibrium point, if one can find a
matrix D = diag(di > 0) satisfying the following condition

Θ = 2CDK−1 − D − S − Q > 0

where K = diag(ki > 0), Q = B∗T D|B∗| + B∗T DB∗ + |B∗T DB∗| + |B∗T |DB∗,
S = (sij) is the matrix whose diagonal elements are defined by sii = 2diaii and
off-diagonal elements are defined by sij = max(|diaij + djaji|, |diaij + djaji|),
the matrix B∗ included in Q is defined as B∗ = 1

2 (B + B) and the nonnegative
matrix B∗ included in Q is defined as B∗ = 1

2 (B − B).

Proof: Consider the associated map H(x) representing neural network (2)

H(x) = −Cx + Af(x) + Bf(x) + u (4)

For every equilibrium point x∗ of (2), by definition of equilibrium equation, the
following must be satisfied

−Cx∗ + Af(x∗) + Bf(x∗) + u = 0

Apparently, when a vector x satisfies H(x) = 0, it results in the fact that
H(x) = 0 also corresponds to the equilibrium points representing the solutions of
(2). Thus, by the virtue of Lemma 3, one can conclude that neural model (2) pos-
sesses only one equilibrium point for the constant u if H(x) fulfills conditions in
Lemma 3. For any randomly selected vectors x �= y, using (4), we express

H(x) − H(y) = −C(x − y) + A(f(x) − f(y)) + B(f(x) − f(y))
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Let H(x, y) = H(x) − H(y) and f(x, y) = f(x) − f(y). Then, the previous
equation can be put in the form:

H(x, y) = −C(x − y) + Af(x, y) + Bf(x, y) (5)

Since f ∈ K, if x �= y and f(x) = f(y), (5) yields

H(x, y) = −C(x − y)

in which C = diag(ci > 0). Therefore, x − y �= 0 will ensure the condition that
H(x, y) �= 0. For x − y �= 0, f(x, y) �= 0, and D = diag(di > 0), multiplying (5)
by the nonzero vector 2fT (x, y)D leads to

2fT (x, y)DH(x, y) = −2fT (x, y)DC(x − y)
+ 2fT (x, y)DAf(x, y)
+ 2fT (x, y)DBf(x, y)

The following can be written

2fT (x, y)DAf(x, y) = fT (x, y)(DA + AT D)f(x, y)

Thus, one would obtain

2fT (x, y)DH(x, y) = −2fT (x, y)DC(x − y)
+ fT (x, y)(DA + AT D)f(x, y)
+ fT (x, y)DBf(x, y) (6)

For activation functions in K, the following can be derived

− 2fT (x, y)DC(x − y) = −
n∑

i=1

2dici(fi(xi) − fi(yi))(xi − yi)

≤ − 2
n∑

i=1

dici

ki
(fi(xi) − fi(yi))2

= −2fT (x, y)CDK−1f(x, y) (7)

Lemma 2 leads to

fT (x, y)(DA + AT D)f(x, y) ≤ |fT (x, y)|S|f(x, y)| (8)

It is worth noting that

2fT (x, y)DBf(x, y) ≤ fT (x, y)Df(x, y) + fT (x, y)BT DBf(x, y)

By using Lemma 1, one would get

fT (x, y)BT DBf(x, y) ≤ |fT (x, y)|Q|f(x, y)|
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Thus

2fT (x, y)DBf(x, y) ≤ fT (x, y)Df(x, y) + |fT (x, y)|Q|f(x, y)| (9)

Using (7)–(9) in (6) will give the following

2fT (x, y)DH(x, y) ≤ − 2|fT (x, y)||CDK−1|f(x, y)|
+ |fT (x, y)|(S + D + Q)|f(x, y)|

= −|f(x, y)|T Θ|f(x, y)|
Since Θ > 0, one can observe that

2fT (x, y)DH(x, y) ≤ −λm(Θ)||f(x, y)||22 (10)

Obviously, f(x, y) �= 0 with Θ being positive definite, that is Θ > 0, (10)
leads to

2fT (x, y)DH(x, y) < 0

where f(x, y) �= 0 guarantees condition that H(x) �= H(y) for all x �= y.
Choosing y = 0, (10) will directly result in

2(f(x) − f(0))T D(H(x) − H(0)) ≤ −λm(Θ)||f(x) − f(0)||22
It follows from the above inequality that

|2(f(x) − f(0))T D(H(x) − H(0))| ≥ λm(Θ)||f(x) − f(0)||22
yielding

||H(x) − H(0)||1 >
λm(Θ)||f(x) − f(0)||22

2||D||∞||f(x) − f(0)||∞
Using some basic properties of the vector norms, we can state

||H(x)||1 >
λm(Θ)(||f(x)||2 − ||f(0)||2 − 2||D||∞||H(0)||1)

2||D||∞
Knowing that ||H(0)||1, ||D||∞, and ||f(0)||2 have limited upper bounds will
enable us to conclude that ||H(x)|| → ∞ if ||x|| → ∞. Q.E.D.

4 Stability Analysis

Stability of neural network (1) will be studied in this section. If x∗ is defined to
denote an equilibrium point of (1), then, by means of zi(·) = xi(·) − x∗

i , neural
system (1) is replaced by a new model whose dynamics is governed by:

żi(t) = −cizi(t) +
n∑

j=1

aijgj(zj(t)) +
n∑

j=1

bijgj(zj(t − τ)) (11)
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Note that gi(zi(·)) = fi(zi(·) + x∗
i ) − fi(x∗

i ). We can easily observe that the
functions gi belong to the class K, that is, g ∈ K satisfying gi(0) = 0.

The vector-matrix form of neural system (11) is

ż(t) = −Cz(t) + Ag(z(t)) + Bg(z(t − τ)) (12)

In this new system, z(t) = (z1(t), z2(t), ..., zn(t))T , and the new nonlinear output
functions state vector is g(z(·)) = (g1(z1(·)), g2(z2(·)), ..., gn(zn(·)))T .

The stability result is given as follows:

Theorem 2: Let neuron activation functions belong K, and assume that the
uncertain network elements A, B and C are given by (3). Then, the origin of
delayed neural system described by (11) is globally asymptotically stable, if
one can find an appropriate matrix D = diag(di > 0) satisfying the following
condition

Θ = 2CDK−1 − D − S − Q > 0

where K = diag(ki > 0), Q = B∗T D|B∗| + B∗T DB∗ + |B∗T DB∗| + |B∗T |DB∗,
S = (sij) is the matrix whose diagonal elements are defined by sii = 2diaii and
off-diagonal elements are defined by sij = max(|diaij + djaji|, |diaij + djaji|),
the matrix B∗ included in Q is defined as B∗ = 1

2 (B + B) and the nonnegative
matrix B∗ included in Q is defined as B∗ = 1

2 (B − B).

Proof: The Lyapunov functional to be exploited for the proof of this theorem
is chosen as:

V (z(t)) =
n∑

i=1

(z2i (t) + 2γ

∫ zi(t)

0

digi(s)ds)

+ γ

∫ t

t−τ

|gT (z(ζ))|Q|g(z(ζ))|dζ + ξ

∫ t

t−τ

‖g(z(ζ)‖22dζ

where the di, γ and ξ are constants. V̇ (z(t)) is determined to be as

V̇ (z(t)) = −2zT (t)Cz(t) + 2zT (t)Ag(z(t)) + 2zT (t)Bg(z(t − τ))
− 2γgT (z(t))DCz(t) + 2γgT (z(t))DAg(z(t))
+ 2γgT (z(t))DBg(z(t − τ))
+ γ|gT (z(t))|Q|g(z(t))| − γ|gT (z(t − τ))|Q|g(z(t − τ))|
+ ξ‖g(z(t))‖22 − ξ‖g(z(t − τ))‖22 (13)

Let α = ‖A‖22‖C−1‖2 and β = ‖A‖22‖C−1‖2. We now observe the inequalities:

2zT (t)Ag(z(t)) − zT (t)Cz(t) ≤ α‖g(z(t))‖22 (14)

2zT (t)Bg(z(t − τ) − zT (t)Cz(t) ≤ gT (z(t − τ))BT C−1Bg(z(t − τ))
≤ β‖g(z(t − τ))‖22 (15)
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2γgT (z(t))DAg(z(t)) = γgT (z(t))(DA + AT D)g(z(t))
≤ γ|gT (z(t))|S|g(z(t))| (16)

2γgT (z(t))DBg(z(t − τ)) ≤ γgT (z(t))Dg(z(t))
+ γgT (z(t − τ))BT DBg(z(t − τ))

≤ γgT (z(t))Dg(z(t))
+ γ|gT (z(t − τ))|Q|g(z(t − τ))| (17)

− 2γgT (z(t))DCz(t) ≤ −2γgT (z(t))DCK−1g(z(t)) (18)

Inserting (14)–(18) into (13) yields

V̇ (z(t)) ≤ α‖g(z(t))‖22 + βgT (z(t))g(z(t))
− 2γgT (z(t))PCK−1g(z(t)) + γ|gT (z(t))|S|g(z(t))|
+ γgT (z(t))Pg(z(t)) + γ|gT (z(t − τ))|Q|g(z(t − τ))|
+ γ|gT (z(t))|Q|g(z(t))| − γ|gT (z(t − τ))|Q|g(z(t − τ))|
+ ξ‖g(z(t))‖22 − ξ‖g(z(t − τ))‖22

Taking ξ = β leads to

V̇ (z(t)) ≤ (β + α)‖g(z(t))‖22 − 2γgT (z(t))DCK−1g(z(t))
+ γ|gT (z(t))|S|g(z(t))| + γgT (z(t))Dg(z(t))
+ γ|gT (z(t))|Q|g(z(t))|

= (β + α)‖g(z(t))‖22 − γ|gT (z(t))|(DCK−1 − D − S − Q)|g(z(t))|
= (β + α)‖g(z(t))‖22 − γ|gT (z(t))|Θ|g(z(t))| (19)

Since Θ > 0, (19) gives

V̇ (z(t)) ≤ − (γλm(Θ) − (β + α)‖)g(z(t))‖22
Thus

γ >
(α + β)
λm(Θ)

guarantees that V̇ (z(t)) will have negative values ∀g(z(t)) �= 0, or equivalently
V̇ (z(t)) < 0 when z(t) �= 0.

Let g(z(t)) = 0. Taking z(t) �= 0 leads to

V̇ (z(t)) = −2zT (t)Cz(t) + 2zT (t)Bg(z(t − τ))
− γ|gT (z(t − τ))|Q|g(z(t − τ))| − ξ‖g(z(t − τ))‖22

Then
−zT (t)Cz(t) + 2zT (t)Bg(z(t − τ)) ≤ ξ‖g(z(t − τ))‖22
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leads to
V̇ (z(t)) ≤ −zT (t)Cz(t)

in which V̇ (z(t)) < 0 ∀z(t) �= 0. Finally, g(z(t)) = z(t) = 0 leads to

V̇ (z(t)) ≤ −ξ‖g(z(t − τ))‖22
Apparently, V̇ (z(t)) < 0 ∀g(z(t−τ)) �= 0. Hence, V̇ (z(t)) = 0 iff z(t) = g(z(t)) =
g(z(t − τ)) = 0. This also means V̇ (z(t)) < 0 when states and delayed states are
not equal to zero. The radially unboundedness the Lyapunov functional is to be
easily checked by proving V (z(t)) → ∞ when ‖z(t)‖ → ∞. Q.E.D.

5 Conclusions

This work proposed a further improved condition for the robustness of neural net-
works involving intervalized network parameters and including single time delay.
For the sake of obtaining a new robust stability condition, a new upper bound
for the norm of the intervalized interconnection matrices has been established.
The homeomorphism mapping and Lyapunov stability theorems are employed
to derive the proposed stability condition by making use of this upper bound
norm. The obtained result is applicable to all nondecreasing slope-bounded acti-
vation functions and imposes constraints on parameters of neural network with-
out involving time delay.
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