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Abstract. For better understanding an image, the relationships between objects
can provide valuable spatial information and semantic clues besides recognition
of all objects. However, current scene graph generation methods don’t effec-
tively exploit the latent visual information in relationships. To dig a better
relationship hidden in visual content, we design a node-relation context module
for scene graph generation. Firstly, GRU hidden states of the nodes and the
edges are used to guide the attention of subject and object regions. Then,
together with the hidden states, the attended visual features are fed into a fusion
function, which can obtain the final relationship context. Experimental results
manifest that our method is competitive with the current methods on Visual
Genome dataset.
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1 Introduction

Nowadays, with deeper understanding of images, classifying and locating objects is not
enough for some tasks, such as Visual Question Answering problems [1, 2] and Image
Caption [3, 4]. It is important to understand the relationships between the object pairs.
Through understanding the relationships we can understand not only the spatial
structure but also the semantic relationships. As a result, understanding the relation-
ships can help more precise image retrieval [5], object detection [6] and image
understanding problems [7].

With the development of neural networks, there are some fast and accurate object
detection models [8—10]. They concentrate to recognize a wide variety of objects and
regress their bounding boxes. Fast R-CNN [11] is a classic object detection algorithm.
Our paper is also based on it. However, only object categories in the image cannot fully
represent the complicated real world.

Besides the categories of multiple objects, relationships in the image can provide
rich and semantic information. Lu et al. propose to use triple structural language to
represent relationships between object pairs, such as <objectl-predicate-object2> [12].
Relationship is detected using language priors. However, this work concentrates to
detect pair-wise relationship rather than understanding the whole image. Xu et al.
propose a scene graph generation task based on iterative message passing [13]. They
train a model to generate scene graph from an image automatically to represent objects
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in the image and the complicated topological relationships between them. However,
latent visual information is ignored in their message pooling stage. To overcome this
problem, we propose a new edge context message pooling method, in which we reenter
visual features and we use node GRUs’ (Gated Recurrent Unit) [14] hidden state to
guide the attention to attend to the more important regions in the corresponding rela-
tions. In this way, latent visual information in relationships can be obtained.

On the other hand, the contribution of subject and object in sentence comprehen-
sion is not balanced in linguistics [22]. For Example, in the phrase “person holding
cup”, subject “person” is more important. When do predicate classification, if the
subject is “table”, “under” or “above” became essential. Based on this assumption, we
do importance measure after visual attention when computing edge context message.

In summary, based on Xu et al. s’ remarkable work [13], we design a node-relation
context module. The method consists of two parts: node states guided relation attention
module and a better fusion function. In the node states guided relation attention
module, we use node GRUs’ hidden state guided attention to better utilize the ignored
latent visual information. In the fusion function, we measure the contribution of the
subject and objects’ visual information as well as the hidden states in both edge
message pooling and node message pooling to obtain better context messages.

2 Related Work

2.1 Baseline Scene Graph Generation

Xu et al. [13] pass context message through node GRUs and edge GRUs iteratively so
that the prediction of objects and relationships can benefit from its neighboring context.
In the scene graph topology, a relationship triple consists of two node and one edge.
For a node, there are inbound edges and outbound edges. For an edge GRU, it receives
messages from its neighboring node GRUs. And for a node GRU, it receives message
pooling from its inbound and outbound edge GRUs. The module to generate node
messages and edge messages is called message pooling. The overview frame work is
shown in Fig. 1.

T pooling
face

T=1 T=2 T=N

woman ».» surfboard

hand »./

Fig. 1. The architecture of scene graph generation by iterative message passing [13].
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Given an image, convolution feature maps are first extracted. Afterwards, the
Region Proposal Network [11] generates the region proposals. Using the region pro-
posals, node and relationship feature maps are extracted using ROI-pooling method and
fed into corresponding GRUs. Afterwards, the hidden states are fed into message
pooling module to generate context message. After a few message passing iterations, a
scene graph is generated consisting of object categories, relationships and bounding
boxes. The training process is a multi-task learning [15].

2.2 Attention Models

Since Xu et al. [13] focused on hidden states formed context, initial visual information
is ignored during edge message pooling stage. Instead of treating all feature maps
equally, attention mechanism tries to discover different weights of image regions
according to their value. Soft attention has been widely used in machine translation
[16] and image captioning [3]. In the soft attention mechanism, the hidden state of the
LSTM(Long Short-Term Memory) [17] is used to guide attention. In our work, we use
the processed node GRU hidden states to guide the attention of the corresponding
feature maps to obtain better expression of edge context. To the best of our knowledge,
it’s the first time to apply attention module in scene graph generation.

2.3 Relationship Referring

Natural language referring expression is presented and let the model tag the objects
referring [18, 19]. Position information, color, object classes and etc. are needed.
Recently, structural language is used to referring the object pairs engaged in the
relationship expression [12, 20, 21]. Using structural language can reduce the cost of
understanding the natural language so that visual understanding task can be focused on.
Attention shift algorithm is applied to model relationship in this work. Relationship
referring task is a reverse task of scene graph generation. Scene graph generation is a
more complicated task since we need to understand all the relationships existing in the
image.

3 Node-Relation Context Module

Different from the edge message pooling method in [13], we bring back the ignored
visual features and generate a better expression of context. The structure of our module
is shown in Fig. 2.

Different from the baseline model, the convolutional feature maps of the corre-
sponding nodes (subject and object) are fed into the edge message pooling module.
Moreover, the processed hidden state is used to guide the attention generation. At last,
both hidden state context and visual context are fused to generate the final edge
context. The node-relation context module consists of two parts: node state guided
relation attention module and fusion function. We will present our method from these
two aspects.
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Fig. 2. Tlustration of the node-relation context module

3.1 Attention Module for Relationship Prediction

Considering different regions of the object pairs have different contribution to rela-
tionship classification, the hidden states of object and subject are used to guide the
attention. The concrete framework is shown in Fig. 3 where, h;, represents the hidden
state of node; at time step t and £, j, represents the hidden state of edge GRU relating
node; and node; at time step t. When node; and node; have different characters in the
relationship, #; 4, has different meanings, as expressed in Eq. 1.

| hi_jy, sub(i) = True
hH»JJ - {hjg,-,,,else (1>

where the decision function sub(i) decides if node; is subject, if true then true,
otherwise false.

We first element-wise multiply the hidden state of node GRU and edge GRU as the
guidance of the attention, shown in Eq. 2. Moreover, s;; is also taken as components of
hidden state context to embed the final context expressed in Sect. 3.2.

Sip = hi,t © hi+j.t (2)

Here, the same as the baseline model, images are fed into a VGG-16 [4] convNet.
The convolution feature maps from the last conv layer (i.e., conv5_3) are used. Roi
shifts are fed into the model to obtain the feature maps of node; through roi pooling
function, denoted as V;. V; is composed of k small regions, V; = (vi,va..., V).

Then, s;, indicates how much attention the module is placing on different regions.
A softmax function is used to gain attention distribution.

o, = softmax(s;; © V;) 3)
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Fig. 3. Node state guided relation attention

Based on the attention distribution, the weighted node feature can be gained by:

k
Ciu= Y vy (4)
=1

Due to different context, even the same node; has different attention distribution in
different relationship.

3.2 Fusion Function

After s;, and ¢;, obtained, we will fuse the context vectors. First, contributions of the
subject and object in the corresponding relation are computed.

sub_score = tanh(Ws; , + by) (5)
obj_score = tanh(W,s;, + b,) (6)

Specially, tanh function is also used in node message pooling stage instead. The
advantage of this function will be proved in ablation study (Sect. 4.2).



Scene Graph Generation Based on Node-Relation Context Module 139

Then, we fuse the subject and object components, shown in Eqgs. 7 and 8:
V_ci4js = sub_score o c;;+ obj_score o cj, (7)

8_Ciyjs = Sub_score o s;; + 0bj_score ® s;, (8)

After weight fusion, the hidden state context g_c; j, and the visual context v_c; j,
are concatenated and fed into a fully connected layer, as the final context of this
relationship.

4 Experiments

Applying our module to the baseline model [13], we can generate better context
message and obtain more accurate scene graph. We conduct experiments on large-scale
benchmark: Visual Genome [20]. This dataset is a human-annotated scene graph
dataset, containing 108,077 images. Each image involves 25 objects and 22 relation-
ships on average. In this section, we analyze our model in four parts: evaluation
metrics, ablation study, comparison with existing works and qualitative analysis. The
ablation study includes Baseline model [13], Baseline + V(visual-context), Base-
line + V(visual-context) + H(hidden-states-context, not sharing the weights), Base-
line + V(visual-context) + H(hidden-states-context) + SW (sharing weights, our
proposed final model, short as ours).

4.1 Evaluation Metrics

Given an image, the scene graph generation task includes locating the objects, pre-

dicting their categories and figuring out the relationship between each object pairs.

According to the metrics in [12], the evaluation is divided into three levels.

PREDCLS(predicate classification): Given the locations and the categories of the
objects, relationships between object pairs are
to be predicted.

SGCLs(scene graph classification):  Given the bounding boxes of the objects,
categories of the objects and the relationships
between them are to be predicted.

SGGen(scene graph generation): Locations, categories of the objects and the
relationships between the objects all need to
be predicted

The difficulty level of these three tasks is from easy to difficult. Image-wise recall
evaluation metrics, R@50 and R@100, are adopted to evaluate the three tasks. R@x is
abbreviation of Recall@x, meaning the fraction of the ground truth relationships
prediction among top x predictions in an image. Obviously, the bigger fraction of the
ground truth relationships prediction among top x predictions, the better the model
performs. The reight prediction means to classify the triple structure.
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4.2 Ablation Study

According the improvement on model message passing [13], we design module
analysis experiments to prove the superiority of our node-relation context module. In
this subsection, we perform ablative studies to analyze the contribution of each
improvement to our module, shown in Table 1.

Table 1. Evaluation results of the contribution of each improvement to our module.

Methods PREDCLs SGCls SGGen

R@50 | R@100 | R@50 R@100 | R@50 R@100
Baseline [13] 4475 |53.08 [21.72 12438 |344 424
Baseline + V 43.09 [50.96 [22.12 |24.69 |4.36 |5.53
Baseline + H 45.83 15393 2225 (2496 4.51 |5.61
Baseline + V + H 4537 |53.61 |22.37 125.05 |4.18 |5.39
Baseline + V + H + SW(ours) [45.55 1 53.66 |23.37 |26.29 |4.33 557

As we can see, though only visual context model does not perform well in task
PREDCLs, it performs well in the other two tasks. Only H-states context model per-
forms best in task PREDCLs and SGGen. Combining these two context, we obtain a
model performing best in SGCls. Though a bit of poorer than H-states context model in
task PREDCLs and SGGen, considering relatively large exceeding in task SGCls, we
make it our final model. As shown in Table 1, sharing the weights between the visual
context and hidden states context performs better. In addition, one benefit is achieved
that we can save calculation amount obviously. Our model performs best in SGCls task
and performs second best in other two tasks. Since there is a larger improvement in
SGCls task, we use Baseline + V + H + SW as our final model

To better prove the advantage of tanh function to weigh the contribution of subject
and object components, we design a comparison of some common activation functions,
including sigmoid function, ReLU (Rectified Linear Unit) and tanh, on both the
baseline model and our model. As shown in Table 2, tanh function performs best in
both the baseline models and our improved models. Due to the improvements pro-
posed, our model using tanh function performs better.

4.3 Comparison with Existing Works

Table 3 shows the performance of our model against two existing ones. We can see
that in each task, our proposed model has exceeded the existing two models. Specially,
there is a relatively large increase in task SGCls. Categories of the objects are not
offered in task SGCls. Thanks to re-entering the visual features, more valuable infor-
mation is gained to classify the objects and the relationships.
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Table 2. Evaluation results of different fusion functions, including tanh, sigmoid and relu
function to calculate weights of subject component and object component.

Methods Fusion function | PREDCLs SGCls SGGen
R@50 | R@100 | R@50 | R@100 R@50 | R@100

Baseline [13] | Sigmoid 4475 [53.08 |21.72 |24.38 |3.44 |4.24
Baseline + r | ReLU 34.03 |43.32 | 18.34 |21.37 |329 |4.28
Baseline + t | tanh 45.54 15396 |21.89 [24.62 (436 [543
Ours + s Sigmoid 4437 [51.97 |21.97 (2458 |4.36 |547
Ours + r ReLU 4422 (52,19 |22.21 (2485 |4.38 |548
Ours tanh 45.55 [53.66 |23.37 (2629 |4.33 |5.57

Table 3. Comparison with two existing models.

Methods PREDCLs SGCls SGGen

R@50 | R@100 | R@50 | R@100 | R@50 | R@100
Language priors [12] {27.88 |35.04 |11.79 |14.11 |047 |0.32
Message passing [13]|44.75 |53.08 |21.72 (2438 |3.44 |4.24
Ours 45.55 |53.66 |23.37 |26.29 |4.33 |5.57

44 Qualitative Analysis

In this section, part of the experimental results are shown below.

Figure 4 shows qualitative results using human annotated bounding boxes. The
results show that the baseline model confuses about the categories of the objects. For
example, it predicts the head of a cute owl <sheep-of-bird>, because the head looks
fury. Our model predicts <head-of-bird> instead. Since we obtain better representation
of context, it’s easier for model to distinguish the categories having similar appearance.
What is more interesting, our model predicts the man play tennis wearing “short” and
the baseline model predicts “pant”. As we know, male tennis players usually wear short
and our model can infer this from the context.

Figure 5 shows the results using the bounding box produced by RPN. Our model is
par with the baseline model. Using the region proposals, the models produce more
reasonable answers than using human annotated even if there are less objects. That’s
because the RPN network and the generation model share the same feature maps and
understand the images from similar angle. Compared with the results generated by
human annotated bounding boxes, this model tends to predict uncertain predicates such
as “has”.
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Fig. 4. Part of results from model message passing [13] and our final model, where the (a) is
human annotated bounding boxes, (b) are the results of the original model and (c) are the results
of our model. The 1** and the 3™ lines are the visualized results over the images and the 2" and
the 4™ lines are the final scene graph. The baseline model is retrained by us using the default
parameters.
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Fig. 5. Part of results from model message passing [13] and our final model, where the (a) is the
bounding boxes generated by RPN, (b) are the results of the original model and (c) are the results
of our model. The 1% and the 3™ lines are the visualized results over the images and the 2™ and
the 4™ lines are the final scene graph.
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5 Conclusions

In this paper, we propose node-relation context module, improving the performance of
scene graph generation. Through introducing the attention guided visual features, we
can find latent visual information in relationship. In addition, by using a better fusion
function and sharing the weights between subject and object components, we obtain the
importance of subject and object context components. However, during the research,
we find that the Visual Genome dataset is severely unbalanced in relationship cate-
gories and need further research.
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