
Improved Kernel Density Estimation
Self-organizing Incremental Neural Network

to Perform Big Data Analysis

Wonjik Kim1(&) and Osamu Hasegawa1,2

1 Department of Systems and Control Engineering, Tokyo Institute of
Technology, Tokyo, Japan

{kim.w.ab,hasegawa.o.aa}@m.titech.ac.jp
2 Inc.SOINN, Cureindo-Building 405, Turuma8-4-30, Tamachi, Tokyo, Japan

oh@soinn.com

Abstract. Plenty of data are generated continuously due to the progress in the
field of network technology. Additionally, some data contain substantial noise,
while other data vary their properties in according to various real time scenarios.
Owing to these factors, analyzing big data is difficult. To address these prob-
lems, an adaptive kernel density estimation self-organizing neural network
(AKDESOINN) has been proposed. This approach is based on the kernel
density estimation self-organizing incremental neural network (KDESOINN),
which is an extension of the self-organizing incremental neural network
(SOINN). An SOINN can study the distribution using the input data online,
while KDESOINN can estimate the probability density function based on this
information. The AKDESOINN can adapt itself to the changing data properties
by estimating the probability density function. Further, the experimental results
depict that AKDESOINN succeeds in maintaining the performance of KDE-
SOINN, while depicting an ability to adapt to the changing data.

Keywords: Neural network � Kernel density estimation � Data analysis
Self-organizing incremental neural network

1 Introduction

Due to the expansion of network communications, data are generated continuously.
Such data are called big data, and there have been many attempts to analyze and apply
them to various research fields [1, 2, 11, 16, 24].

Laney derived three concepts of the big data characteristics, which are as follows [18]:

(1) Data Volume: Massive amounts of data that continue to grow after being
generated.

(2) Data Velocity: Increasing numbers of networks are generating data continuously,
which means that the data generation velocity is very high.

(3) Data Variety: Data in a pool can be of different types, such as time-series, real
environment, artificial environment, textual, and image data.

© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11302, pp. 3–13, 2018.
https://doi.org/10.1007/978-3-030-04179-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04179-3_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04179-3_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04179-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-04179-3_1

These three characteristics that are considered by [18] are known as the 3Vs, and
are taken into consideration while dealing with big data.

In machine learning and data analysis research, it is necessary to estimate the
probability density. However, it is difficult to estimate the probability density of big
data due to the three reasons [22].

First, the density estimator for big data must be nonparametric because of the data
volume. Further, we observe that parametric methods are effective for handling fixed
data, because it is possible to tune the parameters of the method to obtain an optimal
performance. However, the volume of big data is not observed to be constant.
Therefore, the volume of big data cannot be analyzed in advance in order to obtain
optimal parameters for the density estimator. However, we observe that the nonpara-
metric density estimator is not troublesome, since analyzing and constructing a big data
model beforehand is not necessary for a nonparametric density estimator.

Second, the density estimator for big data must use online learning methods due to
the observed data velocity. In big data, massive amounts of data grow quickly until the
total size of data becomes gigantic. Online learning methods can be sequentially
updated using the growing data.

Third, the density estimator for big data must be robust. Data that are collected from
real environments often contain noise, which could cause overfitting and decrease
performance. Thus, robust methods are required to deal with data that contain noise.

Further, we observe that robustness is defined differently across various fields [9,
13]. In this study, we define robustness as ‘a function that provides almost the same
results as learning data without noise when learning with noisy data.’ [22]. Further, we
observe that there are two types of noise. The first type is the noise that is generated by
the environment, but that is not related to the objective distribution. Thus, this type of
noise needs to be eliminated. The second type is observed to be related to variance and
fluctuation. Therefore, this type of noise must be preserved.

The kernel density estimation self-organizing incremental neural network (KDE-
SOINN) method [22] satisfies all the three conditions for dealing with big data and is
further observed to be robust to noise. However, it cannot adapt to a changing envi-
ronment. Due to the variety of big data, the structure of data is likely to vary at any
instance. Therefore, an ability to adapt to the observed variation of data is required. In
this study, we propose a revised KDESOINN method to solve this problem. Further,
our proposed method has been termed adaptive KDESOINN (AKDESOINN) in this
paper.

2 Related Works

2.1 Kernel Density Estimation

Kernel Density Estimation (KDE) is a typical nonparametric density estimation
approach [23]. The methodology of KDE process is presented in Algorithm 1

4 W. Kim and O. Hasegawa

Algorithm 1. Kernel Density Estimation

(1) Require: training samples xi xi2 R
d; i ¼ 1; 2; . . .;N

��� �
, K : kernel function,

H : bandwidth matrix
(2) p̂ xð Þ ¼ 1

N

PN
i¼1 KH x� xið Þ

For the kernel function K, the Gaussian kernel is often used in an identical manner
as that in (1)

KH x� lð Þ ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þd Hj j

q� �
� exp � x� lð ÞTH�1 x� lð Þ=2� 	 ð1Þ

H in algorithm 1 is a parameter, which influences the performance of the estimation
function. Further, attempts have been made to optimize the estimation function [8, 10].
KDE has been investigated using several methods such as by method of setting the
number of kernels [3], gradient descent method [19], and online clustering method [17].

2.2 Self-organizing Incremental Neural Network

In the field of artificial intelligence, artificial neural networks have been recently
proposed. They are usually classified into two groups, namely, supervised and unsu-
pervised learning [25].

SOINN is an unsupervised learning method that is driven by growing neural gas
[4]. There are several kinds of SOINN, including two-layer [5], enhanced [6], and
adjusted SOINN [7]. Since the adjusted SOINN has less parameters than that of the
other SOINNs, it is generally used in applied research [12, 14, 15].

While SOINN learns from the training data, it constructs a data network through
competitive learning. Various nodes are added or deleted from the network or they may
update their location. Further, the edges are added or deleted in a similar manner as the
nodes. Thus, the SOINN network is updated in order to approximate the distribution
using the added input data.

The flowchart of the adjusted SOINN is depicted in Fig. 1, and its procedural flow
is presented in Algorithm 2

Algorithm 2. Adjusted SOINN process

(1) Require: A: set of all neurons. C � A� A: set of all edges. Ni: set of all
neighbors of neuron i. Wi: weight of neuron i. k: time period to delete redundant
neurons. agemax: parameter to delete edges.

(2) if first time of input then
(3) A c1; c2; randomly pick up two vectors from training data to initialize the

neuron set.
(4) C ;
(5) end if
(6) while input data n exist do
(7) s1 argminc2A n�Wck k: find out the winner.
(8) s2 argminc2Ans1 n�Wck k: find out second winner.

Improved Kernel Density Estimation Self-organizing Incremental Neural Network 5

(9) calculate similarity thresholds Ts1 ; Ts2 . If i got neighbors, Ti is the distance to the
farthest neighbor, else the distance to the nearest neuron.

(10) if n�Ws1k k[Ts1 or n�Ws2k k[Ts2 then
(11) A A[n: insert n as a new neuron.
(12) else
(13) if s1; s2ð Þ 62 C: there is no edge between the winner and second winner, then
(14) C C[s1; s2ð Þ: add new edge into the network
(15) end if
(16) age s1;s2ð Þ 0: reset the age of s1; s2ð Þ
(17) age s1;ið Þ age s1;ið Þ þ 1 8i 2 Nsið Þ: increase age of edges connected with the

winner by 1.
(18) DWsi ¼ � ts1ð Þ n�Ws1ð Þ;DWi ¼ � 100tið Þ n�Wið Þ 8i 2 Nsið Þ; � tð Þ ¼ 1

t
(19) using vartriangleWsi ;DWi to adjust the winner and its neighbors
(20) delete edges whose age is larger than agemax
(21) among these neurons which the edge deleted in last step connected to, delete

neurons having no neighbors.
(22) end if
(23) if input data number becomes n� k n 2 N þð Þ then
(24) Delete neurons having less than one neighbor
(25) end if
(26) end while

Fig. 1. Flowchart of SOINN

6 W. Kim and O. Hasegawa

2.3 KDESOINN

KDESOINN is an extended version of the adjusted SOINN [22]. It determines the
structure of the network using each kernel in the node of a local network that is located
near the node. Additionally, it estimates the probability function using the sum of the
kernels. In the adjusted SOINN, only the Euclidean distance is used for calculating the
similarity thresholds. Conversely, KDESOINN calculates the threshold using
Algorithm 3.

Algorithm 3. KDESOINN threshold calculation

(1) Require: A: set of all neurons. n: new sample data. Pi: set of nodes connected to
node i. q: parameter for threshold. -i 2 R

d: positional vector of node i. ti: number
of wins of node i in competitive learning. I: identity matrix. Hi: threshold region
of node i.

(2) calculate ci ¼
minp2Pi wp � wi

 Pi 6¼ /ð Þ
minp2A if g wp � wi

 otherwiseð Þ
�

(3) TPi
P

i2Pi
ti

(4) Ci 1
TPi

P
p2Pi

tp wp � wi
� 	

wp � wi
� 	T

(5) Mi Ciþ qciI
(6) threshold region Hi ¼ n� wið ÞTM�1i n� wið Þ� 1

KDESOINN can divide clusters more effectively than the adjusted SOINN. The
entire process of KDESOINN is presented in Algorithm 4

Algorithm 4. KDESOINN process

(1) Require: A: set of all neurons. C � A� A: set of all edges. Ni: set of all
neighbors of neuron i. Wi: weight of neuron i. k: time period to delete redundant
neurons. agemax: parameter to delete edges. Pi: set of nodes connected to node i.
q: parameter for threshold. ti: number of wins of node i in competitive learning.
I: identity matrix. E(G): set of edges in graph G.

(2) if first time of input then
(3) A c1; c2; randomly pick up two vectors from training data to initialize the

neuron set.
(4) C ;
(5) end if
(6) while input data n exist do
(7) s1 argminc2A n�Wck k: find out the winner.
(8) s2 argminc2Ans1 n�Wck k: find out second winner.
(9) calculate similarity thresholds Hs1 ;Hs2 by algorithm 3.

(10) if n�Ws1ð ÞTM�1s1 n�Ws2ð Þ[1 or n�Ws2ð ÞTM�1s2 n�Ws2ð Þ[1 then
(11) A A[n: insert n as a new neuron.
(12) else
(13) if s1; s2ð Þ 62 C: there is no edge between the winner and second winner, then
(14) C C[s1; s2ð Þ: add new edge into the network
(15) end if

Improved Kernel Density Estimation Self-organizing Incremental Neural Network 7

(16) age s1;s2ð Þ 0: reset the age of s1; s2ð Þ
(17) age s1;ið Þ age s1;ið Þ þ 1 8i 2 Nsið Þ: increase age of edges connected with the

winner by 1.
(18) DWsi ¼ � ts1ð Þ n�Ws1ð Þ;DWi ¼ � 100tið Þ n�Wið Þ 8i 2 Nsið Þ; � tð Þ ¼ 1

t
(19) using vartriangleWsi ;DWi to adjust the winner and its neighbors
(20) delete edges whose age is larger than agemax
(21) among these neurons which the edge deleted in last step connected to, delete

neurons having no neighbors.
(22) end if
(23) if input data number becomes n� k n 2 N þð Þ then
(24) delete neurons having no neighbor
(25) create a k-NN graph G whose set of nodes is A.
(26) C C[i; jð Þ i; jð Þ 2 E Gð Þ; j; ið Þ 2 E Gð Þjf g
(27) end if
(28) end while
(29) create a k-NN graph G whose set of nodes is A.
(30) C C[i; jð Þ i; jð Þ 2 E Gð Þ; j; ið Þ 2 E Gð Þjf g

3 Proposed Method

To improve KDSOINNs ability of adapting to the changing data, algorithm 5 was used
after line 10 of Algorithm 4

Algorithm 5. Adaptive step

(1) Require: s1: first winner. s2: second winner. g: parameter for adapting. n: new
sample data.

(2) Ds1 s1 � nj j;Ds2 s2 � nj j
(3) update s1 s1þ gDs2

Ds1 þDs2
n� s1ð Þ

(4) update s2 s2þ gDs1
Ds1 þDs2

n� s2ð Þ
By applying algorithm 5, SOINN can adapt to the data as they change with time. g

is the adaptation parameter. Further, if g is observed to be equal to 0, the performance
of AKDESOINN is observed to be exactly the same as that of KDESOINN. If g is
observed to be bigger than 1, it is possible that it can fit over n. To avoid overfitting and
low performance, it is recommended to set g within the range of 0 to 1. The entire
process of AKDESOINN is presented in algorithm 6.

Algorithm 6. AKDESOINN process

(1) Require: A: set of all neurons. C � A� A: set of all edges. Ni: set of all
neighbors of neuron i. Wi: weight of neuron i. k: time period to delete redundant
neurons. agemax: parameter to delete edges. Pi: set of nodes connected to node i.
q: parameter for threshold. g: parameter for adapting. ti: number of wins of node
i in competitive learning. I: identity matrix. E(G): set of edges in graph G.

8 W. Kim and O. Hasegawa

(2) if first time of input then
(3) A c1; c2; randomly pick up two vectors from training data to initialize the

neuron set.
(4) C ;
(5) end if
(6) while input data n exist do
(7) s1 argminc2An�Wc: find out the winner.
(8) s2 argminc2Ans1n�Wc: find out second winner.
(9) calculate similarity thresholds Hs1 ;Hs2 by Algorithm 3.

(10) if n�Ws1ð ÞTM�1s1 n�Ws2ð Þ[1 or n�Ws2ð ÞTM�1s2 n�Ws2ð Þ[1 then
(11) Ds1 s1 � nj j;Ds2 s2 � nj j
(12) update the location of s1 s1þ gDs2

Ds1 þDs2
n� s1ð Þ

(13) update the location of s2 s2þ gDs1
Ds1 þDs2

n� s2ð Þ
(14) A A[n: insert n as a new neuron.
(15) else
(16) if s1; s2ð Þ 62 C: there is no edge between the winner and second winner, then
(17) C C[s1; s2ð Þ: add new edge into the network
(18) end if
(19) age s1;s2ð Þ 0: reset the age of s1; s2ð Þ
(20) age s1;ið Þ age s1;ið Þ þ 1 8i 2 Nsið Þ: increase age of edges connected with the

winner by 1.
(21) DWsi ¼ � ts1ð Þ n�Ws1ð Þ;DWi ¼ � 100tið Þ n�Wið Þ 8i 2 Nsið Þ; � tð Þ ¼ 1

t
(22) using vartriangleWsi ;DWi to adjust the winner and its neighbors
(23) delete edges whose age is larger than agemax
(24) among these neurons which the edge deleted in last step connected to, delete

neurons having no neighbors.
(25) end if
(26) if input data number becomes n� k n 2 N þð Þ then
(27) delete neurons having no neighbor
(28) create a k-NN graph G whose set of nodes is A.
(29) C C[i; jð Þ i; jð Þ 2 E Gð Þ; j; ið Þ 2 E Gð Þjf g
(30) end if
(31) end while
(32) create a k-NN graph G whose set of nodes is A.
(33) C C[i; jð Þ i; jð Þ 2 E Gð Þ; j; ið Þ 2 E Gð Þjf g

4 Experimental Study

In order to compare AKDESOINN with other methods, experimental evaluations were
performed to evaluate the robustness, calculation time, accuracy, and adaptation ability
of SOINN, KDESOINN, and AKDESOINN. The experimental environment comprised
MATLAB2017b that was used on a personal computer having an eight-core CPU at
3.40 GHz and 16.0 GB RAM.

Improved Kernel Density Estimation Self-organizing Incremental Neural Network 9

4.1 Fixed Gaussian Distribution

Initially, we evaluated the performance of the proposed method using a fixed Gaussian
distribution. Specific details regarding the experiment are described in Table 1.

The experiment was repeated 100 times. Further, the Jensen-Shannon divergence
was used to compare the accuracy [20], and the results are presented in Table 2.

According to Table 2, KDESOINN is observed to depict the most effective per-
formance in this experiment. Further, AKDESOINN depicts better performance than
SOINN.

4.2 Changing Gaussian Distribution

To evaluate the adaptation performance to the changing data, a Gaussian distribution
was used in the experiment. Specific details of the experiment are provided in Table 3.

The experiment was repeated 100 times, and the results were compared using the
Jensen-Shannon divergence, in a similar manner as that in experiment 1. The results of
the comparison are presented in Table 4.

According to Table 4, AKDESOINN was observed to be the most effective in
experiment 2 in terms of mean value

Table 1. Information of experiment 1

Description Details

Gaussian distribution 1 l ¼ 1; 1ð Þ;r ¼ 0:25
Gaussian distribution 2 l ¼ 0; 0ð Þ;r ¼ 0:25
Gaussian distribution 3 l ¼ �1;�1ð Þ;r ¼ 0:25
Uniform distribution Range of �2;�2ð Þ to 2; 2ð Þ
Number of data 1000 in each distribution

Total number: 4000
k 200
agemax 50
q 0.1
H 1

Table 2. Result of the 100 trials of experiment 1

Description Mean Variance Total computation time [s]

SOINN 4.40E−02 3.63E−05 4.42E01
KDESOINN 1.03E−02 8.68E−07 1.09E02
AKDESOINN 1.10E−02 1.71E−06 1.27E02

10 W. Kim and O. Hasegawa

5 Conclusion

In this study, AKDESOINN was proposed, not only as a robust fast online nonpara-
metric density estimator, but also as an adaptive method to the changing data. KDE-
SOINN is a method combining both KDE and SOINN and is known to outperform the
existing nonparametric density estimators in terms of robustness, calculation cost, and
accuracy. The revised KDESOINN algorithm was successful in adapting to the
changing data without depicting any performance loss.

For future studies, we could analyze the application of AKDESOINN to meteo-
rological data. Because of the extraordinary climatic conditions, analysis models need
to be updated constantly [21]. Because AKDESOINN can adapt its model online with
analyzing the data, AKDESOIN may be effective in addressing this problem of con-
stant change of large amounts of climatic data. Apart from the meteorological data,
AKDESOINN could be extensively applicable to other fields that require nonpara-
metric density estimation with a suitable adaptation ability to the changing data.

Table 3. Information of experiment 2

Description Details

Gaussian distribution 1 l ¼ 1; 1ð Þ
Gaussian distribution 2 l ¼ 0; 0ð Þ
Gaussian distribution 3 l ¼ �1;�1ð Þ
Sigma r : 0:25! 0:15with 0:01interval
Uniform distribution Range of �2;�2ð Þ to 2; 2ð Þ
Number of data 100 in each distribution

Total number 4400
K 200
agemax 50
q 0.1
H 1

Table 4. Result of the 100 trials of experiment 2

Description Mean Variance Total calculation time [s]

SOINN 6.88E−02 7.72E−05 52.2E01
KDESOINN 2.04E−02 2.10E−06 1.33E02
AKDESOINN 1.88E−02 3.13E−06 1.73E02

Improved Kernel Density Estimation Self-organizing Incremental Neural Network 11

References

1. Amimi, S., Ilias Gerostathopoulos, I,. Prehofer, C.: Big data analytics architecture for real-
time traffic control. In: 5th IEEE International Conference on Models and Technologies for
Intelligent Transportation Systems, pp. 710–715 (2017)

2. Anker, S., Asselbergs, F.W., Brobert, G., Vardas, P., Grobbee, D.E., Cronin, M.: Big data in
cardiovascular disease. Eur. Hear. J. 38(24), 1863–1865 (2017)

3. Deng, Z., Chung, F.L., Wang, S.: FRSDE: fast reduced set density estimator using minimal
enclosing ball approximation. Pattern Recognit. 41(4), 1363–1372 (2008)

4. Fritzke, B.: A growing neural gas network learns topologies. In: Advances in Neural
Information Processing Systems, vol. 7, pp. 625–632, MIT Press, USA (1995)

5. Furao, S., Hasegawa, O.: An incremental network for on-line unsupervised classification and
topology learning. Neural Netw. 19(1), 90–106 (2006)

6. Furao, S., Ogura, T., Hasegawa, O.: An enhanced self-organizing incremental neural
network for online unsupervised learning. Neural Netw. 20(8), 893–903 (2007)

7. Furao, S., Hasegawa, O.: A fast nearest neighbor classifier based on self-organizing
incremental neural network. Neural Netw. 211(10), 1537–1547 (2008)

8. Hall, P., Sheather, S.J., Jones, M.C., Marron, J.S.: On optimal data-based bandwidth
selection in kernel density estimation. Biometrika 78(2), 263–269 (1991)

9. Huber, P.J., Ronchetti, E.M.: Robust Statistics. International Encyclopedia of Statistical
Science, pp. 1248–1251. Springer Press, Berlin (2011)

10. Jones, M.C., Marron, J.S., Sheather, S.J.: A brief survey of bandwidth selection for density
estimation. J. Am. Stat. Assoc. 91(433), 401–407 (1996)

11. John, W.S.: Big data: a revolution that will transform how we live, work, and think. Int.
J. Advert. 33(1), 181–183 (2014)

12. Kawewong, A., Pimup, R., Hasegawa, O.: Incremental learning framework for indoor scene
recognition. In: Proceedings of the 27th AAAI Conference on Artificial Intelligence,
pp. 496–502. Bellevue (2013)

13. Kim, J., Scott, C.D.: Robust kernel density estimation. J. Mach. Learn. Res. 13, 2529–2565
(2012)

14. Kim, W., Hasegawa, O.: Prediction of tropical storms using self-organizing incremental
neural networks and error evaluation. In: Liu, D., Xie, S., Li, Y., Zhao, D., El-Alfy, E.S.
(eds.) Neural Information Processing. ICONIP 2017. LNCS, vol. 10636, pp. 846–855.
Springer Press, Cham (2017). https://doi.org/10.1007/978-3-319-70090-8_86

15. Kim, W., Hasegawa, O.: Time series prediction of tropical storm trajectory using self-
organizing incremental neural networks and error evaluation. J. Adv. Comput. Intell. Intell.
Inform. 22(4), 465–474 (2018)

16. Rob, K., Gavin, M.: What makes Big Data, Big Data? Exploring the ontological
characteristics of 26 datasets. Big Data & Society 3(1) (2016)

17. Kristan, M., Leonardis, A., Skočaj, D.: Multivariate online kernel density estimation with
Gaussian kernels. Pattern Recognit. 44, 2630–2642 (2011)

18. Laney, D.: 3D data management: controlling data volume, velocity, and variety. META
group research note 6, 1 (2001)

19. Bottou, L.: Large-scale machine learning with stochastic gradient descent. In: Lechevallier,
Y., Saporta, G. (eds,) Proceedings of COMPSTAT 2010, pp. 177–186. Springer Press,
Heidelberg (2010). https://doi.org/10.1007/978-3-7908-2604-3_16

20. Lin, J.: Divergence measures based on the Shannon entropy. IEEE Trans. Inf. Theory 37(1),
145–151 (1991)

12 W. Kim and O. Hasegawa

http://dx.doi.org/10.1007/978-3-319-70090-8_86
http://dx.doi.org/10.1007/978-3-7908-2604-3_16

21. Lobell, D.B., et al.: Prioritizing climate change adaptation needs for food security in 2030.
Science 319(5863), 607–610 (2008)

22. Nakamura, Y., Hasegawa, O.: Nonparametric density estimation based on self-organizing
incremental neural network for large noisy data. IEEE Trans. Neural Netw. Learn. Syst.
28(1), 8–17 (2017)

23. Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33,
1065–1076 (1962)

24. Chris, P.P.: Big knowledge from big data in functional genomics. Emerg. Top. Life Sci. 1(3),
245–248 (2017)

25. Zurada, J.M.: Introduction to Artificial Neural Systems. West, St. Paul (1992)

Improved Kernel Density Estimation Self-organizing Incremental Neural Network 13

	Improved Kernel Density Estimation Self-organizing Incremental Neural Network to Perform Big Data Analysis
	Abstract
	1 Introduction
	2 Related Works
	2.1 Kernel Density Estimation
	2.2 Self-organizing Incremental Neural Network
	2.3 KDESOINN

	3 Proposed Method
	4 Experimental Study
	4.1 Fixed Gaussian Distribution
	4.2 Changing Gaussian Distribution

	5 Conclusion
	References

