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Abstract. Plenty of data are generated continuously due to the progress in the
field of network technology. Additionally, some data contain substantial noise,
while other data vary their properties in according to various real time scenarios.
Owing to these factors, analyzing big data is difficult. To address these prob-
lems, an adaptive kernel density estimation self-organizing neural network
(AKDESOINN) has been proposed. This approach is based on the kernel
density estimation self-organizing incremental neural network (KDESOINN),
which is an extension of the self-organizing incremental neural network
(SOINN). An SOINN can study the distribution using the input data online,
while KDESOINN can estimate the probability density function based on this
information. The AKDESOINN can adapt itself to the changing data properties
by estimating the probability density function. Further, the experimental results
depict that AKDESOINN succeeds in maintaining the performance of KDE-
SOINN, while depicting an ability to adapt to the changing data.
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1 Introduction
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Due to the expansion of network communications, data are generated continuously.
Such data are called big data, and there have been many attempts to analyze and apply
them to various research fields [1, 2, 11, 16, 24].
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Laney derived three concepts of the big data characteristics, which are as follows [18]:

Data Volume: Massive amounts of data that continue to grow after being
generated.
Data Velocity: Increasing numbers of networks are generating data continuously,
which means that the data generation velocity is very high.
Data Variety: Data in a pool can be of different types, such as time-series, real
environment, artificial environment, textual, and image data.
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These three characteristics that are considered by [18] are known as the 3Vs, and
are taken into consideration while dealing with big data.

In machine learning and data analysis research, it is necessary to estimate the
probability density. However, it is difficult to estimate the probability density of big
data due to the three reasons [22].

First, the density estimator for big data must be nonparametric because of the data
volume. Further, we observe that parametric methods are effective for handling fixed
data, because it is possible to tune the parameters of the method to obtain an optimal
performance. However, the volume of big data is not observed to be constant.
Therefore, the volume of big data cannot be analyzed in advance in order to obtain
optimal parameters for the density estimator. However, we observe that the nonpara-
metric density estimator is not troublesome, since analyzing and constructing a big data
model beforehand is not necessary for a nonparametric density estimator.

Second, the density estimator for big data must use online learning methods due to
the observed data velocity. In big data, massive amounts of data grow quickly until the
total size of data becomes gigantic. Online learning methods can be sequentially
updated using the growing data.

Third, the density estimator for big data must be robust. Data that are collected from
real environments often contain noise, which could cause overfitting and decrease
performance. Thus, robust methods are required to deal with data that contain noise.

Further, we observe that robustness is defined differently across various fields [9,
13]. In this study, we define robustness as ‘a function that provides almost the same
results as learning data without noise when learning with noisy data.’” [22]. Further, we
observe that there are two types of noise. The first type is the noise that is generated by
the environment, but that is not related to the objective distribution. Thus, this type of
noise needs to be eliminated. The second type is observed to be related to variance and
fluctuation. Therefore, this type of noise must be preserved.

The kernel density estimation self-organizing incremental neural network (KDE-
SOINN) method [22] satisfies all the three conditions for dealing with big data and is
further observed to be robust to noise. However, it cannot adapt to a changing envi-
ronment. Due to the variety of big data, the structure of data is likely to vary at any
instance. Therefore, an ability to adapt to the observed variation of data is required. In
this study, we propose a revised KDESOINN method to solve this problem. Further,
our proposed method has been termed adaptive KDESOINN (AKDESOINN) in this

paper.

2 Related Works

2.1 Kernel Density Estimation

Kernel Density Estimation (KDE) is a typical nonparametric density estimation
approach [23]. The methodology of KDE process is presented in Algorithm 1
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Algorithm 1. Kernel Density Estimation

(1) Require: training samples {xi}xie RY i=1,2,.. .,N}, K : kernel function,
H : bandwidth matrix

@) px) =3 Kulx — x;)

For the kernel function K, the Gaussian kernel is often used in an identical manner
as that in (1)

utx =) = (1 nf ) <exp(-(e- B 6= 0/2) ()

H in algorithm 1 is a parameter, which influences the performance of the estimation
function. Further, attempts have been made to optimize the estimation function [8, 10].
KDE has been investigated using several methods such as by method of setting the
number of kernels [3], gradient descent method [19], and online clustering method [17].

2.2 Self-organizing Incremental Neural Network

In the field of artificial intelligence, artificial neural networks have been recently
proposed. They are usually classified into two groups, namely, supervised and unsu-
pervised learning [25].

SOINN is an unsupervised learning method that is driven by growing neural gas
[4]. There are several kinds of SOINN, including two-layer [5], enhanced [6], and
adjusted SOINN [7]. Since the adjusted SOINN has less parameters than that of the
other SOINN:S, it is generally used in applied research [12, 14, 15].

While SOINN learns from the training data, it constructs a data network through
competitive learning. Various nodes are added or deleted from the network or they may
update their location. Further, the edges are added or deleted in a similar manner as the
nodes. Thus, the SOINN network is updated in order to approximate the distribution
using the added input data.

The flowchart of the adjusted SOINN is depicted in Fig. 1, and its procedural flow
is presented in Algorithm 2

Algorithm 2. Adjusted SOINN process

(1) Require: A: set of all neurons. C C A x A: set of all edges. N;: set of all
neighbors of neuron i. W;: weight of neuron i. A: time period to delete redundant
neurons. age,,,,: parameter to delete edges.

(2) if first time of input then

(3) A < cy,cp; randomly pick up two vectors from training data to initialize the
neuron set.

4 C—10

(5) end if

(6) while input data & exist do

(7) 51 < argminceal|& — W,||: find out the winner.

(B) 83 «— argmin e\, || — W|: find out second winner.
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Fig. 1. Flowchart of SOINN

calculate similarity thresholds T, , T,. If i got neighbors, T; is the distance to the
farthest neighbor, else the distance to the nearest neuron.

if [|E— W, || > T, or ||E — W,,|| > T, then

A — AUZ: insert & as a new neuron.

else

if (s1,52) € C: there is no edge between the winner and second winner, then
C «— CU(s1,52): add new edge into the network

end if

age(s, 5,y + 0: reset the age of (sy,s;)

age, ;y < age, i + 1(Vi € Ny,): increase age of edges connected with the
winner by 1.

AW, = €(t,)(& — W,,), AW, = €(1008)(& — W))(¥i € Ny), (1) = 1
using vartriangleWs,, AW; to adjust the winner and its neighbors

delete edges whose age is larger than age;

among these neurons which the edge deleted in last step connected to, delete
neurons having no neighbors.

end if

if input data number becomes n X A(n € N*) then

Delete neurons having less than one neighbor

end if

end while
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2.3 KDESOINN

KDESOINN is an extended version of the adjusted SOINN [22]. It determines the
structure of the network using each kernel in the node of a local network that is located
near the node. Additionally, it estimates the probability function using the sum of the
kernels. In the adjusted SOINN, only the Euclidean distance is used for calculating the
similarity thresholds. Conversely, KDESOINN calculates the threshold using
Algorithm 3.

Algorithm 3. KDESOINN threshold calculation

(1) Require: A: set of all neurons. &: new sample data. P;: set of nodes connected to
node i. p: parameter for threshold. @; € R?: positional vector of node . #;: number
of wins of node 7 in competitive learning. /: identity matrix. ®;: threshold region
of node i.

(2) calculate y; = { m%npepl,pr —will (P # ) .

ming,cq ) Hw,, - Wi” (otherwise)

() Tp, = Yiep, ti
T
@ G~ T%,Zpep,- tp (wp — wi) (wp — wi)
(5) M; — Ci+py;d
(6) threshold region ®; = (¢ — w,»)TMi‘l (E—w)<I1

KDESOINN can divide clusters more effectively than the adjusted SOINN. The
entire process of KDESOINN is presented in Algorithm 4

Algorithm 4. KDESOINN process

(1) Require: A: set of all neurons. C C A x A: set of all edges. N;: set of all
neighbors of neuron i. W;: weight of neuron i. A: time period to delete redundant
neurons. age,,,,: parameter to delete edges. P;: set of nodes connected to node i.
p: parameter for threshold. #;: number of wins of node i in competitive learning.
I: identity matrix. E(G): set of edges in graph G.

(2) if first time of input then

(3) A < cy,cy; randomly pick up two vectors from training data to initialize the
neuron set.

4 C<10

(5) end if

(6) while input data & exist do

(7) 51 «— argmin.cs||& — W,||: find out the winner.

(B) sy «— argmin e\, || — W|: find out second winner.

(9) calculate similarity thresholds @, ®,, by algorithm 3.

(10) if (& — W,,) "M, ' (&= W,,) > L or (§ = W,,) 'M'(E—W,,) > 1 then

(11) A «— AUE: insert £ as a new neuron.

(12) else

(13) if (s1,52) & C: there is no edge between the winner and second winner, then
(14) C«— CU(s1,52): add new edge into the network

(15) end if
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(16) age, s, «+ 0: reset the age of (sy,s;)

(I7) ages, i < ages, )+ 1(Vi € N;,): increase age of edges connected with the
winner by 1.

(18) AW, = €(t;,) (& — Wy, ), AW; = €(1005;) (& — W;)(Vi € Ny,), e(t) =1

(19) using vartriangleW;,, AW; to adjust the winner and its neighbors

(20) delete edges whose age is larger than age;

(21) among these neurons which the edge deleted in last step connected to, delete
neurons having no neighbors.

(22) end if

(23) if input data number becomes n x A(n € N 1) then

(24) delete neurons having no neighbor

(25) create a k-NN graph G whose set of nodes is A.

26) C— CU{(i,))|(i.j) € E(G), (j,i) € E(G)}

27) end if

(28) end while

(29) create a k-NN graph G whose set of nodes is A.

(30) C — CU{(i)(i.j) € EG), (,i) € E(G)}

3 Proposed Method

To improve KDSOINNSs ability of adapting to the changing data, algorithm 5 was used
after line 10 of Algorithm 4

Algorithm 5. Adaptive step

(1) Require: s;: first winner. s,: second winner. 1: parameter for adapting. £: new
sample data.
(2) Dy, « |s1 —&[, Dy, + |52 — ¢

(3) update s; «— 51+ %(5 —s1)

(4) update sy < 57 + Dx:ﬂibxz (€ —s2)

By applying algorithm 5, SOINN can adapt to the data as they change with time. n
is the adaptation parameter. Further, if 1 is observed to be equal to 0, the performance
of AKDESOINN is observed to be exactly the same as that of KDESOINN. If 7 is
observed to be bigger than 1, it is possible that it can fit over &. To avoid overfitting and
low performance, it is recommended to set n within the range of O to 1. The entire
process of AKDESOINN is presented in algorithm 6.

Algorithm 6. AKDESOINN process

(1) Require: A: set of all neurons. C C A x A: set of all edges. N;: set of all
neighbors of neuron i. W;: weight of neuron i. A: time period to delete redundant
neurons. ageq.: parameter to delete edges. P;: set of nodes connected to node i.
p: parameter for threshold. n: parameter for adapting. #;: number of wins of node
i in competitive learning. /: identity matrix. E(G): set of edges in graph G.
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if first time of input then

A « ¢y, cy; randomly pick up two vectors from training data to initialize the
neuron set.

C—10

end if

while input data £ exist do

§1 < argmingca& — W, find out the winner.

§3 «— argminecy\s, ¢ — We: find out second winner.

calculate similarity thresholds @, , ®,, by Algorithm 3.

if (&= W) M 1(¢—=W,) > Lor (&~ W) M, (¢~ W,,) > 1 then
Dy, — |Sl - é|7DSz — |52 - é|

. D\
update the location of s; < s1 + D"T‘ZD (&—s1)
5+ Ds,

. D;
update the location of 5, < 55 + 5 V'+"D (&—3)
5, + Dy,

A — AUE: insert & as a new neuron.

else

if (s1,52) ¢ C: there is no edge between the winner and second winner, then
C — CU(s1,52): add new edge into the network

end if

age(s, s,y + 0: reset the age of (sy,s2)

age(s, j < age(s, ) +1(Vi € Ny ): increase age of edges connected with the
winner by 1.

AWy, = €(t;,)(E — Wy,), AW; = €(100,) (£ — W;) (Vi € Ny,), e(r) =1
using vartriangleWs,, AW; to adjust the winner and its neighbors

delete edges whose age is larger than age;

among these neurons which the edge deleted in last step connected to, delete
neurons having no neighbors.

end if

if input data number becomes n X A(n € N 1) then

delete neurons having no neighbor

create a k-NN graph G whose set of nodes is A.

C — CU{(i,))|(i.)) € E(G), (i) € E(G)}

end if

end while

create a k-NN graph G whose set of nodes is A.

C — CU{(i,))|(i.)) € E(G), (i) € E(G)}

4 Experimental Study

In order to compare AKDESOINN with other methods, experimental evaluations were
performed to evaluate the robustness, calculation time, accuracy, and adaptation ability
of SOINN, KDESOINN, and AKDESOINN. The experimental environment comprised
MATLAB2017b that was used on a personal computer having an eight-core CPU at
3.40 GHz and 16.0 GB RAM.
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4.1 Fixed Gaussian Distribution

Initially, we evaluated the performance of the proposed method using a fixed Gaussian
distribution. Specific details regarding the experiment are described in Table 1.

Table 1. Information of experiment 1

Description Details

Gaussian distribution 1 | p = (1,1),0 = 0.25
Gaussian distribution 2 | p = (0,0),c = 0.25
Gaussian distribution 3 | p = (—1,—1),0 =0.25
Uniform distribution | Range of (—2,—2) to (2,2)

Number of data 1000 in each distribution
Total number: 4000

A 200

agemax 50

p 0.1

H 1

The experiment was repeated 100 times. Further, the Jensen-Shannon divergence
was used to compare the accuracy [20], and the results are presented in Table 2.

Table 2. Result of the 100 trials of experiment 1

Description Mean Variance | Total computation time [s]
SOINN 4.40E-02 | 3.63E—05 | 4.42E01
KDESOINN | 1.03E-02 | 8.68E—07 | 1.09E02
AKDESOINN | 1.10E-02 | 1.71E—06 | 1.27E02

According to Table 2, KDESOINN is observed to depict the most effective per-
formance in this experiment. Further, AKDESOINN depicts better performance than
SOINN.

4.2 Changing Gaussian Distribution

To evaluate the adaptation performance to the changing data, a Gaussian distribution
was used in the experiment. Specific details of the experiment are provided in Table 3.
The experiment was repeated 100 times, and the results were compared using the
Jensen-Shannon divergence, in a similar manner as that in experiment 1. The results of
the comparison are presented in Table 4.
According to Table 4, AKDESOINN was observed to be the most effective in
experiment 2 in terms of mean value
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Table 3. Information of experiment 2

Description Details

Gaussian distribution 1 | p = (1, 1)

Gaussian distribution 2 | p = (0,0)

Gaussian distribution 3 | p = (—1,—1)

Sigma G : 0.25 — 0.15with 0.0linterval

Uniform distribution | Range of (—2,—2) to (2,2)

Number of data 100 in each distribution
Total number 4400

A 200

agemax 50

p 0.1

H 1

Table 4. Result of the 100 trials of experiment 2

Description Mean Variance | Total calculation time [s]
SOINN 6.88E—02 | 7.72E—-05 | 52.2E01

KDESOINN | 2.04E—-02 | 2.10E-06 | 1.33E02

AKDESOINN | 1.88E—02 | 3.13E-06 | 1.73E02

5 Conclusion

In this study, AKDESOINN was proposed, not only as a robust fast online nonpara-
metric density estimator, but also as an adaptive method to the changing data. KDE-
SOINN is a method combining both KDE and SOINN and is known to outperform the
existing nonparametric density estimators in terms of robustness, calculation cost, and
accuracy. The revised KDESOINN algorithm was successful in adapting to the
changing data without depicting any performance loss.

For future studies, we could analyze the application of AKDESOINN to meteo-
rological data. Because of the extraordinary climatic conditions, analysis models need
to be updated constantly [21]. Because AKDESOINN can adapt its model online with
analyzing the data, AKDESOIN may be effective in addressing this problem of con-
stant change of large amounts of climatic data. Apart from the meteorological data,
AKDESOINN could be extensively applicable to other fields that require nonpara-
metric density estimation with a suitable adaptation ability to the changing data.
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