
A Pointer Network Based Deep Learning
Algorithm for the Max-Cut Problem

Shenshen Gu(B) and Yue Yang

School of Mechatronic Engineering and Automation, Shanghai University,
Shanghai, China

gushenshen@shu.edu.cn

Abstract. The max-cut problem is one of the classic NP-hard combi-
natorial optimization problems. In order to solve this problem efficiently,
the paper mainly studies the topic of using the pointer network to build a
training model to solve the max-cut problem. Then, the network model is
trained with supervised learning. The experimental results show that the
network trained by this algorithm can obtain the approximate solution
to the max-cut problem.

Keywords: Max-cut problem · Pointer network · Supervised learning

1 Introduction

The max-cut problem belongs to the famous twenty-one NP (Nondeterminis-
tic Polynomial) problems that Richard M. Karp first proposed [1]. The max-
cut problem refers to finding a maximum segmentation for a given directional
weighted graph that maximizes the total weights across all edges of these two
cut sets [2].

As a typical NP hard problem in combinatorial optimization problem, the
max-cut problem has various applications in statistical physics, image process-
ing, communication network design, circuit layout design and other engineering
problems. In view of the dual important value of the theory and practice, in the
past few decades, researchers have proposed various algorithms to solve the max-
cut problem. The algorithm can be divided into two categories, one of which are
exact algorithms and the other are heuristic algorithms. The exact algorithms
include the enumeration method [3] and the branch and bound method [4] etc.
Although the optimal solution to this problem can theoretically be found by
an exact algorithm, it is often impossible to achieve it, because the computa-
tional time increases exponentially with the increase of the scale of the problem,
the search space for the problem also increases rapidly as the scale increases.
Even if the current state-of-the-art computer is used for calculation, the time for
solving the problem is not tolerable. Therefore, finding an effective approximate
heuristic algorithm is of great significance. The effective methods for solving
the max-cut problem include immune algorithm, genetic algorithm, greedy algo-
rithm, ant colony algorithm, simulated annealing algorithm, LKH algorithm [5],
c© Springer Nature Switzerland AG 2018
L. Cheng et al. (Eds.): ICONIP 2018, LNCS 11301, pp. 238–248, 2018.
https://doi.org/10.1007/978-3-030-04167-0_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04167-0_22&domain=pdf
https://doi.org/10.1007/978-3-030-04167-0_22


A Pointer Network for the Max-Cut Problem 239

etc. Compared with the exact algorithms, the heuristic algorithms can be applied
to solving large-scale problems with thousands or even tens of thousands of vari-
ables in a short period of time, so computational efficiency is improved. However,
there is a defect that cannot be ignored in the heuristic algorithms, that is, the
degree of deviation between the feasible solution and the optimal solution cannot
be accurately predicted all the time, and it is easy to fall into a local optimal
solution. Therefore, it is of great theoretical significance and application value
to study the effective algorithms for solving the max-cut problem.

Recently, deep learning based methods are becoming more and more pop-
ular due to the fact that they are capable of discovering their own heuristics
based on abundant training data automatically. For this reason, except for the
famous application in computer vision, image classification [6] and speech recog-
nition [7], deep learning based methods are now making potential progress in
solving various combinatorial optimization problems. Deep learning can repre-
sent the categories or features of the data by extracting the underlying features
of the combined optimization problem data to form more abstract high-level
features, and then using the distributed features of the data. For instance, the
famous TSP problem is successfully solved by Oriol Vinyals with RNNs [8]. The
quadratic assignment problem is effectively solved by Anto Milan with a data-
driven approach [9]. Inspired by these important ideas, a deep learning based
method to solve the max-cut problem is proposed in the paper.

The rest of this paper is organized as follows. Section 2 introduces the for-
mulation of the max-cut problem and the architecture of the pointer network.
Section 3 explains how to use the pointer network to solve the max-cut problem.
Then, Sect. 4 details the experiments and analysis. And finally, the conclusion is
given in Sect. 5.

2 Problem Formulation

In this section, the mathematical description of the max-cut problem is first
introduced and then the architecture of the pointer network model is described.

2.1 The Max-Cut Problem

G = (V,E) is a graph, where V = {1, 2, . . . n} is vertex set and E is edge set.
Suppose that wij is the weight for edge (i, j) in E. Dividing the vertex set V
into two subsets S and S′, satisfying S ∪ S′ = V and S ∩ S′ = ∅, then calling
S and S′ constitute a cut of the graph G. The value of the cut is the number of
edges with one end in S and the other end in S′, it is calculated by the following
equation:

cut (S, S′) =
∑

u∈S
v∈S′

wuv (1)

The max-cut problem consists of finding a cut in G with maximum value.



240 S. Gu and Y. Yang

In this paper, we assume that the weight on each edge is one without loss of
any generality. Our goal is to find a segment (S, S′) of the vertex set V , so that
the maximum number of edges is divided (i.e., one vertex of the edge in S and
the other vertex in S′).

2.2 The Pointer Network

Pointer network is a new type of deep neural architecture combines the popular
sequence-to-sequence learning framework [10] with a modified attention mecha-
nism [11] to learn the conditional probability of an output whose values corre-
spond to positions in a given input sequence. It was first proposed by Vinyals et
al. [8] to solve TSP problems. The neural network architecture for solving the
max-cut problems is shown in Fig. 1. The structure of the pointer network is
briefly introduced as follows

Fig. 1. Architecture of the pointer network (encoder in blue, decoder in yellow) (Color
figure online)

The Seq2seq module is mainly composed of an encoder and a decoder. The
encoder represents a variable-length input sequence as a vector of fixed dimen-
sions, and the decoder converts this vector into a variable-length output vector.
The attention mechanism that connects the encoder and the decoder allows the
decoder to query the entire sequence of encoder states, not just the last LSTM
cell state. The attention mechanism is actually using a variable-length vector to
extract relevant information from the input. It generates corresponding weights
for each element of the input sequence, indicating the degree of correlation with
the next input of the decoding section. It purposed to tell the decoder network
which input parts are more important. This method allows the decoder to focus
more on finding useful information in the encoder input sequence that is relevant
to the current output, thereby improving the quality of the output.



A Pointer Network for the Max-Cut Problem 241

In the model of this paper, RNN networks are constructed with LSTM units.
LSTM is a special recurrent neural network architecture. Compared with feed-
forward neural networks, RNN has the characteristics of cyclic connections, mak-
ing it more suitable for the modeling of sequences [12]. The sequence X is fed
to the decoder and one element is fed into each time step until the end of the
sequence. The end of the sequence is marked with a special end marker. The
model then switches to decoding mode, where each time step produces an ele-
ment in the output sequence of the decoder until the end marker appears. Until
this time, the entire process ended.

Each conditional probability of encoder and decoder can be defined as

p (yi |y1, . . . , yi−1,X ) = g (yi−1, di, ci)

di = h (di−1, yi−1, ci)
(2)

The ci vector is calculated as follows:

ci =
n∑

j=1

αi
jej (3)

Where di and ej in (2) and (3) are the hidden states of the decoder and the
encoder, respectively, and the weights αi

j are defined as:

αi
j =

exp(ui
j)

∑n
k=1 exp(ui

k)(
ui
j

)
= a (di−1, ej)

(4)

Among them, a is a feed forward neural network, and the vector ui
j is called

the attention mark of the input sequence element.
Prior to the introduction of the pointer network, there is a problem with the

model of Seq2seq combined with the attention mechanism, that is, the output
dictionary size of the encoder must depend on the length of the input sequence.
Therefore, the pointer network is used to adjust the standard attention mecha-
nism and create a pointer ui

j to the input sequence element, so that the extra
information propagated to the decoder is no longer just the final state of the
encoder [13]. Instead, using ui

j to point to the input sequence element.

ui
j = vT tanh (W1ej + W2di) j ∈ (1, . . . , n)

p (Ci |C1, . . . , Ci−1, P ) = softmax
(
ui

) (5)



242 S. Gu and Y. Yang

Where softmax normalizes vector ui
j of length n to make it an output prob-

ability distribution on the input dictionary, and v,W1,W2 are the parameters
that can be learned in the model, and C = C1, . . . , Cm is a sequence of m indices.

3 Solving the Max-Cut Problem Using the Pointer
Network

3.1 Data Structure of the Max-Cut Problem

In the max-cut problem, our goal is to find a point set S that can make the
cut (S, S′), which is the sum of the weights on the edges in E, obtain the maxi-
mum value.

Inspired by Vinyals’ idea of solving the TSP problem that uses the trained
neural network model, input the set of city node coordinates and output the
predicted probability distribution of the various nodes of these cities. For the
max-cut problem, the input to this network is the weight of the line between the
point and the point. The input is represented by a matrix, i.e. wij represents
the weight of the line between point i and point j (wij = 1 or 0, where 1 means
there exist a connection between two points and 0 means there is no connection
between two points). The output of the network is the segmentation of the vertex
set V . The output represents all points in order by 0 and 1, where points marked
“1” are placed in one set and points marked “0” are placed in the other set.

For example, let G = (V,E) be an undirected graph with seven vertices. And
the weight on edge (i, j) are set to wij (wij = wji). This problem can be written
as

f(x) = x1x2 + x1x5 + x2x5 + x2x7 + x4x5 + x4x7

xi ∈ {0, 1} , (i = 1, . . . , 7)
(6)

The input weight matrix W is

W =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 1 0 0
1 0 0 0 1 0 1
0 0 0 0 0 0 0
0 0 0 0 1 0 1
1 1 0 1 0 0 0
0 0 0 0 0 0 0
0 1 0 1 0 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

(7)

The problem’s optimal solution is x =
(
0 0 1 1 0 1 1

)T . That means
vertices x3, x4, x6, and x7 belong to one set, while vertices x1, x2, and x5 belong
to the other set.



A Pointer Network for the Max-Cut Problem 243

3.2 Datasets Generation

Our experiments use the MATLAB program to randomly generate 100 sets of
samples as a training set. Each time, ten sets of samples are extracted for train-
ing, and 100 sets of samples are generated as a test set.

3.3 Supervised Learning

Supervised learning is a method often used in machine learning. It can learn
or create a learning model through training data, and infers the output corre-
sponding to the new given instance input based on this model. The training data
consists of the input (usually a vector) of the corresponding problem and the
corresponding expected output. The output of a function can be a continuous
value (called a regression analysis) or it can be a classification label of a pre-
diction (called a classification). A task of supervised learning is to predict the
output of the function corresponding to any possible input value after observing
some typical training (input and corresponding expected output). In order to
achieve this goal, learners must generalize from existing data to non-observed
situations in a “reasonable” manner. This situation is commonly referred to as
concept learning in human and animal perceptions.

Supervised learning is, in simple terms, a classification that people often
say. Through the existing training samples, which are known data and their
corresponding outputs, they are trained to obtain an optimal model. This model
is then used to map all inputs to the corresponding outputs and make simple
judgments on the outputs to achieve correct classification. So the model has the
ability to judge and classify unknown data.

In order to solve a given problem of supervised learning (such as the max-cut
problem), the following steps must be considered.

– Initializing Network

Set up hyperparameters, for instance, the number of layers in the neural network,
learning rate, the type of neuron activation function, batch size and the method
of weight initialization.

– Loading Data

Determine the representation of the input features of the learning function. Con-
vert the input and output data formats to the desired data format.

– Producing a Network Model

Creat a sequence model, attention mechanism functions, loss functions, and opti-
mization functions.

– Training Network

Train the network model and adjust parameters.



244 S. Gu and Y. Yang

Fig. 2. Scheme of neural network

– Evaluating Network

Use the test set to assess the accuracy of the network on solving the max-cut
problem.

The total procedure of the network model is shown in Fig. 2.

4 Experiments Results and Analysis

The pointer network for solving the max-cut problem was implemented with
TensorFlow.

In order to validate the pointer network, we performed five experiments.
In these experiments, five data sets were generated randomly, with dimensions
of 10, 20, 30, 40 and 50. (the dimensions are the number of vertices). Taking
the 20-dimensional (see Fig. 3) max-cut problem as an example. The result of
20-dimensional with 1000 training times and 100 training samples is given as
follows.



A Pointer Network for the Max-Cut Problem 245

Fig. 3. Experimental results of 20-dimensional max-cut problem

Figure 3 shows the training time, the predicted solution to the tested max-cut
problem, the optimal value and the predicted value, the accuracy of the network
for the ten groups on 20-dimensional max-cut problem. The results in Tables 1
and 2 below were obtained in the same manner as Fig. 3.

As can be seen from the figure, by repeating the training of 10 sets of 20-
dimensional data, we obtained the optimal solution to the expected output “Pre-
dicted solution”, points with “1” means they were placed in one group, and points
with “0” means they were placed in the other group. “Optimal value” represents
the real optimal value of the input point set, and “Predicted value” represents
the predicted optimal value obtained after the input point set was trained by the
neural network. “Accuracy” is the ratio of “Predicted value” to “Optimal value”,
this parameter is used to indicate the quality of the trained model. “Accuracy
of sum” is the average of 10 sets of “Accuracy”.

Table 1 shows the training time of the max-cut problem model on five differ-
ent dimensions, t indicates the times of training and s indicates the number of
training samples.

Table 2 shows the solution accuracy of the max-cut problem model on five dif-
ferent dimensions with different times of training (t) and the number of training
samples (s).



246 S. Gu and Y. Yang

Table 1. Training time of the max-cut problem model

Dimensions 10 20 30 40 50

t = 1000, s = 100 5’16” 9’46” 14’09” 18’42” 23’15”
t = 1000, s = 1000 5’13” 9’36” 14’06” 18’40” 23’13”
t = 2000, s = 100 10’29” 19’31” 28’19” 37’28” 46’21”
t = 2000, s = 1000 10’25” 19’13” 28’14” 37’28” 46’28”

Table 2. Accuracy of the max-cut problem model

Dimensions 10 20 30 40 50

t = 1000, s = 100 95.2% 90.2% 85.2% 81.0% 68.7%
t = 1000, s = 1000 92.0% 91.6% 86.4% 81.3% 79.0%
t = 2000, s = 100 97.5% 88.3% 85.7% 84.3% 73.7%
t = 2000, s = 1000 95.1% 94.2% 86.1% 85.2% 81.4%

Figure 4 and the above two tables show that with the progressive increase
of the dimension of the max-cut problem, the time spent on training gradually
increases, and the accuracy of the approximate solution decreases. Then, as the
training times increase, the quality of the approximate solution is also improved.
In addition, The larger the number of training samples, the higher the accuracy
of the approximate solution.

10 20 30 40 50
Dimensions (n)

70

80

90

100

Ac
cu

ra
cy

 (%
)

t=1000, s=100
t=1000, s=1000
t=2000, s=100
t=2000, s=1000

Fig. 4. The accuracy of five dimensions max-cut problem



A Pointer Network for the Max-Cut Problem 247

5 Conclusion

In this paper, we use the pointer network to solve the max-cut problem. The pro-
posed neural network architecture is a variant of the Seq2seq model, which can
utilize RNN ordered connections to convey information and allow information
to be persisted to predict the final solution. Experiments of the max-cut prob-
lem with different dimensions demonstrate that the supervised learning based
method can obtain a nice approximate solution. This method greatly reduces the
time and cost of calculations compared to conventional algorithms. The experi-
mental results can be said to be very satisfactory, and some of the experimental
results even reached the optimal value. The results obtained from the five sets
of experiments allow us to see the advantages of solving the combinatorial opti-
mization problem using a pointer network. It indicates that the method has great
application potential in exploring combinatorial optimization problems.

Acknowledgments. The work described in the paper was supported by the National
Science Foundation of China under Grant 61876105.

References

1. Mehlhorn, K.: NP-completeness. Eatcs Monogr. Theor. Comput. Sci. 5(3), 359–376
(1984)

2. Bie, T.D., Cristianini, N.: Fast SDP relaxations of graph cut clustering, trans-
duction, and other combinatorial problem. J. Mach. Learn. Res. 7(3), 1409–1436
(2006)

3. Croce, F.D., Kaminski, M.J., Paschos, V.T.: An exact algorithm for MAX-CUT
in sparse graphs. Oper. Res. Lett. 35(3), 403–408 (2007)

4. Krishnan, K., Mitchell, J.E.: A semidefinite programming based polyhedral cut
and price approach for the maxcut problem. Comput. Optim. Appl. 33(1), 51–71
(2006)

5. Funabiki, N., Kitamichi, J., Nishikawa, S.: An evolutionary neural network algo-
rithm for max cut problems. In: International Conference on Neural Networks, vol.
2, pp. 1260–1265. IEEE (1997)

6. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: International Conference on Neural Information
Processing Systems, vol. 60, pp. 1097–1105. Curran Associates Inc. (2012)

7. Deng, L., Li, J., Huang, J.T., Yao, K., Yu, D., Seide, F., et al.: Recent advances in
deep learning for speech research at Microsoft. In: IEEE International Conference
on Acoustics, Speech and Signal Processing, pp. 8604–8608. IEEE (2013)

8. Vinyals, O., Fortunato, M., Jaitly, N.: Pointer networks. In: International Confer-
ence on Neural Information Processing Systems. MIT Press (2015)

9. Milan, A., Rezatofighi, S.H., Garg, R., Dick, A., Reid, I.: Data-driven approxima-
tions to NP-hard problems (2017)

10. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural
networks, vol. 4, pp. 3104–3112 (2014)

11. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning
to align and translate. Comput. Sci. (2014)



248 S. Gu and Y. Yang

12. Sak, H., Senior, A., Beaufays, F.: Long short-term memory recurrent neural net-
work architectures for large vocabulary speech recognition. Comput. Sci. 338–342
(2014)

13. Acuna-Agost, R., Acuna-Agost, R.: Deep choice model using pointer networks
for airline itinerary prediction. In: ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 1575–1583. ACM (2017)

14. Zhou, M.X.: A benchmark generator for Boolean quadratic programming. Comput.
Sci. (2015)

15. Barahona, F., Junger, M., Reinelt, G.: Experiments in quadratic 0–1 programming.
Math. Program. 44(1–3), 127–137 (1989)

16. Gu, S., Hao, T.: A pointer network based deep learning algorithm for 0–1 Knapsack
Problem. In: International Conference on Advanced Computational Intelligence
(ICACI 2018), pp. 357–361 (2018)

17. Gu, S., Hao, T., Yang, S.: The implementation of a pointer network model for
traveling salesman problem on a Xilinx PYNQ board. In: Huang, T., Lv, J., Sun,
C., Tuzikov, A.V. (eds.) ISNN 2018. LNCS, vol. 10878, pp. 130–138. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-92537-0 16

https://doi.org/10.1007/978-3-319-92537-0_16

	A Pointer Network Based Deep Learning Algorithm for the Max-Cut Problem
	1 Introduction
	2 Problem Formulation
	2.1 The Max-Cut Problem
	2.2 The Pointer Network

	3 Solving the Max-Cut Problem Using the Pointer Network
	3.1 Data Structure of the Max-Cut Problem
	3.2 Datasets Generation
	3.3 Supervised Learning

	4 Experiments Results and Analysis
	5 Conclusion
	References




