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Abstract. Slot-filling is one of the most crucial module of any dialogue
system that focuses on extracting relevant and necessary information
from the user utterances. In this paper, we propose variants of Long
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) mod-
els for the task of slot-filling which includes LSTM/GRU networks, Bi-
directional LSTM/GRU (Bi-LSTM/GRU) networks, LSTM/GRU-CRF
and Bi-LSTM/GRU-CRF networks. Variants of LSTM/GRU is used for
discourse modeling i.e., to capture long term dependencies in the input
sentences. A Conditional Random Field (CRF) layer is integrated with
the above network to capture the sentence level tag information. We
show the experimental results of our proposed model on the benchmark
Air Travel Information System (ATIS) dataset which indicate that our
model performed exceptionally well compared to the state of the art.
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1 Introduction

Natural Language Understanding (NLU) forms one of the most critical module
of any dialogue system. Understanding the real intention of the user and to
identify the relevant information from the user query - often referred to as slot-
filling, is fundamental for any human-computer interaction. The NLU module
typically consists of the following three tasks: Dialogue Act Classification (DAC),
Intent Detection (ID), and slot-filling. With considerable advancement of deep
learning (DL) for sentence classification such as DAC [6,7] and ID [2,18], this
paper focuses on employing DL based approach to slot filling.

Slot-filling is basically searching of user texts to extract relevant information
in order to fill predefined slots in a reference knowledge base [3,17]. Slot-filling is
often framed as a sequence labeling task, which maps an observation sequence x
= { x1, . . . , xT } to a sequence of labels y = { y1 , . . . , yT }, i.e., to acquire the
most probable slot sequence given some word sequence. An example of an user
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utterance along with its slot labels are shown in Table 1. The most extensively
used idea to solve this problem is the application of Conditional Random Fields
(CRFs) [8], where given the input sequence, the probability of a label sequence
is computed using an exponential model. Therefore, CRF produces distinct and
globally most likely label sequence and it has been applied broadly in [13,17,
20]. Machine Translation models [10] and Maximum Entropy Markov Models
(MEMMs) [16,17] are some of the other sequence labeling methods that have
been studied for this task. The recent growth and success of deep learning has
motivated to it being employed for solving the slot-filling task as well. Some of the
most notified works include [9,12,19,22,23] where variations of Recurrent Neural
Network (RNN) models have been studied extensively because of their strong
potential in modeling temporal dependencies. In this paper, we propose variants
of RNN such as LSTM [4], Bi-LSTM, GRU [1] and Bi-GRU to incorporate past
and future input features coupled with a CRF layer to model the sentence level
tag information; thus, producing state of the art results for the task.

Table 1. An example utterance with its slot

Utterance Show me flights from atlanta to washington

Slot O O O O B-fromloc.city name O B-toloc.city name

The remaining of the paper is arranged as follows: Sect. 2, presents a brief
description of the related works followed by the motivation and contribution of
this particular work. The proposed methodology has been discussed in Sect. 3.
Section 4 examines the experimental results and its analysis. Lastly, the conclu-
sion and the course for future work are discussed in Sect. 5.

2 Related Works

This section provides a brief description of the works done so far on slot-filling
followed by the motivation behind solving this problem.

2.1 Background

Different RNN architectures, including the Jordan-type and Elman-type recur-
rent networks and their variants were implemented in [12] on the ATIS dataset.
They reported a F1-score of 93.98. In another such work, [22] implemented a
variation of RNN incorporating context words as features along with some lex-
ical and non-lexical features. They reported a F1-score of 96.60 on the ATIS
dataset. In one of the works, [19] proposed a sequential convolution neural net-
work model with previous context words as features and gives attention to cur-
rent words with its surrounding context. They reported a F1-score of 95.61 on
the ATIS dataset. Variants of RNN architecture were presented in [11] that
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uses the objective function of a CRF, and thereby the RNN parameters are
trained based on this objective function, i.e., the whole set of model parameters,
including RNN parameters and transition probabilities, are trained jointly. They
reported a F1-score of 96.46.

2.2 Motivation and Contribution

Identification of the correct slots can assist an automated system to produce
an appropriate response thereby helping the system in resolving the queries of
the user. The problem becomes more challenging and difficult when the system
needs to handle more realistic, natural utterances expressed in natural language,
by a number of speakers. Irrespective of the approach being adopted, the prob-
lem is the “naturalness” of the spoken language input. Though RNNs and its
variants have been used extensively for slot-filling task but they didn’t model
label sequence dependencies explicitly. The tokens in a sentence share a depen-
dency with each other in order to capture context information which is addressed
using RNN and its variants. Based on this dependency, tags are assigned to each
tokens to model this problem. Similarly, the tags assigned to each tokens share
dependency with each other which can add valuable information for modeling
this sequence labeling problem. Therefore, in this work, we study and assess the
effectiveness of using variants of LSTM and GRU networks for slot-filling, with
significant attention on modeling label sequence dependencies.

The major contributions of this work are:

– A novel LSTM/GRU network is proposed that takes in past input features
coupled with the CRF layer to incorporate the sentence level tag information
in order to model label sequence dependencies.

– The proposed model is extended to a Bi-directional LSTM/GRU which incor-
porates the information from past and future words for prediction along with
the CRF layer.

– Experimental analysis of all the models have been presented in detail.

3 Proposed Methodology

In this section the proposed methodology which includes the baseline and pro-
posed models are described in detail.

3.1 Baseline Models

Previously, approaches such as CRF, LSTM and Bi-LSTM have been used to
model the task of slot-filling. With the introduction of GRU, it has also found
significant attention because of its comparable performance to LSTM. Therefore,
we implement each of them as our baseline models to observe their performance
and influence.
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Fig. 1. A LSTM cell

– Model 1: LSTM Networks. LSTMs are similar to RNNs with the exception
that the updates of the hidden layer in RNNs are changed by purpose-built
memory cells in LSTMs. Because of which they are comparatively good in
identifying and modeling long range dependencies in input data. A typical
LSTM cell is shown in Fig. 11. The working of the LSTM cell is as follows:

ft = σ(Wf · [ht−1, xt] + bf ) (1)
it = σ(Wi · [ht−1, xt] + bi) (2)

C̃t = tanh(WC · [ht−1, xt] + bC) (3)
Ct = ft ∗ Ct−1 + it ∗ C̃t (4)

ot = σ(Wo · [ht−1, xt] + bo) (5)
ht = ot ∗ tanh(Ct) (6)

where ft, it, ot are the forget, input and output gate, respectively. Ct−1, Ct

are cell states at time-step t − 1 and t, respectively. ht−1, ht represent hid-
den state vectors at time-step t − 1 and t, respectively. Wf ,Wi,Wo represent
hidden-forget gate, hidden-input gate, hidden-output gate matrix, respec-
tively. Logistic sigmoid function is represented by σ. Figure 2 shows a LSTM
based slot-filling model which implements the above mentioned LSTM cell
at its core. Pre-trained word embeddings have been used to represent input
words as word vectors. The output represents a probability distribution over
labels at time t.

– Model 2: GRU Networks. GRUs are similar to LSTMs but the key dif-
ference is that a LSTM has three gates particularly forget, input and output
gates whereas GRU has two gates which are reset and update gates. Analo-
gous to the LSTM unit, the GRU unit also supervises the flow of information,
but does so without using a memory unit. It simply unmasks the entire hid-
den content without any restriction. The performance of GRU is comparable

1 https://isaacchanghau.github.io/post/lstm-gru-formula/.

https://isaacchanghau.github.io/post/lstm-gru-formula/
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Fig. 2. A LSTM/GRU network

to that of LSTM, but it is computationally more efficient. Figure 32 shows a
typical GRU cell. The working of the GRU unit is as follows:

Zt = σ(Wz · [ht−1, xt]) (7)
rt = σ(Wr · [ht−1, xt]) (8)

h̃t = tanh(W · [r ∗ ht−1, xt]) (9)
ht = (1 − zt) ∗ ht−1 + zt ∗ h̃t (10)

Fig. 3. A GRU cell

where zt and rt are update and reset gates, respectively. ht−1, ht represent
hidden state vector at time-step t−1 and t, respectively. Wz,Wr represent
hidden-update gate, hidden-reset gate matrix, respectively. Logistic sigmoid
function is represented by σ . Figure 2 shows a GRU based slot-filling model
which implements the above mentioned GRU cell at its core.

2 https://isaacchanghau.github.io/post/lstm-gru-formula/.

https://isaacchanghau.github.io/post/lstm-gru-formula/
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– Model 3: Bi-directional LSTM/GRU Networks. Use of LSTM/GRU
units provides access to just past input features. Thus, utilizing a bi-
directional LSTM/GRU networks provides access to both past (through for-
ward states ) and future (through backward states) input features for a partic-
ular time frame. Figure 4 shows a bi-directional LSTM/GRU based slot-filling
model.

Fig. 4. A bi-directional LSTM/GRU network

– Model 4: CRF Networks. A basic CRF model has been implemented with
input word and its Part-of-Speech tag3 as features. Figure 5 shows a CRF
based slot-filling model. CRFs work on sentence level rather than individual
position; thus, taking the context into account. CRFs, in general have been
seen to perform reasonably good for sequence labeling task.

Fig. 5. A CRF network

3 Used Stanford PoS tagger https://nlp.stanford.edu/software/tagger.shtml.

https://nlp.stanford.edu/software/tagger.shtml
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3.2 Proposed Models

– Model 1: LSTM/GRU - CRF Networks. This particular approach com-
bines a LSTM/GRU network with a CRF network to obtain a LSTM/GRU-
CRF model as shown in Fig. 6. The idea behind such an approach is that
this network can then efficiently utilize the past input features because of
the presence of the LSTM layer followed by a CRF layer which can then add
sentence level tag information. CRF layer is shown by lines that joins succes-
sive output layers thus, predicting the current tag with the help of past and
future tags which is quite similar to a bi-directional LSTM/GRU network that
makes use of past and future input features. The output from the network is
considered to be a matrix of scores say fθ([y]K1 ). Therefore, the item [fθ](i,k)
of the matrix represents the score that is outputted from the network having
parameter θ at the k-th word, for the i-th tag, for the sentence [y]K1 . For the
CRF layer, there is a state transition matrix as parameters [A](i,j) to model
the transition from i-th to j-th state for a pair of successive time-steps. The
score of a sentence is then given by the sum of the network and the transition
scores. For more details refer [5,8].

– Model 2: Bi-LSTM/GRU - CRF Networks. Analogous to the
LSTM/GRU-CRF network, this particular model combines a bi-directional
LSTM/GRU network with a CRF model to obtain a Bi-LSTM/GRU-CRF
model shown in Fig. 7. Therefore, along with the past input features and
sentence level tag information as used in a LSTM/GRU-CRF model, the
model utilizes the future input features as well. The training algorithm for
the Bi-LSTM/GRU-CRF model is shown in Algorithm 1. For more details of
the algorithm, refer [5]. All the proposed models in this paper use a generic
Stochastic Gradient Descent forward and backward training method.

Fig. 6. A LSTM/GRU-CRF model

4 Experimentation, Results and Analysis

This section demonstrates the experimentation, results and analysis of all the
proposed approaches. Number of utterances in training, validation and testing
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Fig. 7. A Bi-LSTM/GRU-CRF model

Algorithm 1. Bidirectional LSTM/GRU-CRF model training procedure

begin
for each epoch do

for each batch do
1) bidirectional LSTM/GRU-CRF model forward pass:

forward pass for forward state LSTM/GRU
forward pass for backward state LSTM/GRU

2) CRF layer forward and backward pass
3) bidirectional LSTM/GRU-CRF model backward pass:

backward pass for forward state LSTM/GRU
backward pass for backward state LSTM/GRU

4) update parameters
end

end

end

set for the benchmark ATIS [15] dataset are shown in Table 2. Since the ATIS
dataset does not have a standard validation dataset, part of the training data
has been used for the validation purpose.

4.1 Experimentation

For implementing the DNN models, Keras4 has been used. In the input layer,
all the unique words of the corpus are given some sequence numbers which are
fed to the embedding layer. Pretrained GloVe [14] embedding trained on the
CommonCrawl corpus of dimension 300 has been used to represent input words
as word vectors. The resultant word embeddings from the input layer are fed to
the LSTM/GRU layer for discourse modeling. Number of LSTM/GRU units in
a layer is 100. A learning rate of 0.1 is used to train the models. For the baseline
models, the number of units in the dense layer is equivalent to the number of

4 https://keras.io/.

https://keras.io/
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Table 2. No. of tokens and sentences in training, validation and testing sets of ATIS
dataset

Train set Validation set Test set

# Tokens 47604 8987 9198

# Utterances 4181 797 893

unique tags in the tag-set. Next, the softmax activation is used at the output
layer and categorical crossentropy is used as the loss function.

Table 3. Results of all the baseline models

Models Accuracy F1-Score

LSTM 95.35 95.06

GRU 94.29 94.95

Bi-LSTM 96.86 96.63

Bi-GRU 95.79 95.56

CRF 72.80 68.91

4.2 Results and Analysis

Results of all the baseline models on the test set are presented in Table 3. It is
quite evident from the table and as expected the bi-directional networks per-
form better since they can model both past and future dependencies. Results
of all the proposed models are shown in Table 4. Therefore, the best performing
model as seen from the table is that of a Bi-LSTM-CRF model which attains 2%
and 26% increments over the corresponding Bi-LSTM and CRF baseline mod-
els, respectively in terms of accuracy. We have performed Welch’s t-test [21] at
5% significance level and the corresponding results are shown in Table 5. This
test signifies that the results produced by all our best performing models are
statistically significant.

Table 4. Results of all the proposed models

Models Accuracy F1-Score

LSTM-CRF 97.09 96.97

GRU-CRF 96.89 96.38

Bi-LSTM-CRF 98.15 97.94

Bi-GRU-CRF 97.71 97.44
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Table 5. p-values obtained by Welch’s t-test comparing our best performing model
with other models

Models p-values

LSTM-CRF 2.13E−28

GRU-CRF 4.87E−33

Bi-GRU-CRF 3.55E−13

Table 6. Comparison of the proposed approach with the state-of-the-art

Models F1-Score

RNNs (Mesnil et al. [12]) 93.98

RNNs (Yao et al. [22]) 96.60

R-CRF (Mesnil et al. [11]) 96.46

s-CNN (Vu [19]) 95.61

Bi-LSTM-CRF (Our Model) 97.94

Bi-GRU-CRF (Our Model) 97.44

4.3 Error Analysis

In order to analyze the weakness of the developed model, we have carried
out a thorough error analysis of the proposed model. Since the number of
unique slot labels in the ATIS corpus is 127, the representation of most of
the tags are very less i.e. the dataset is skewed having lesser occurrences of
most of the slot labels. This is one of the reasons for the errors. Example
utterance such as “which flights arrive in burbank from las vegas on satur-
day april twenty third in the afternoon”, here the words marked in bold
are wrongly tagged as “B-arrive date.day name”, “B-arrive date.month name”,
“B-arrive date.day number”, “Iarrive date.day number”. It should have been
tagged as “B-depart date.day name”, “B-depart date.month name”, “B-depart
date.day number”, “I-depart date.day number”, respectively. Similarly, “find
nonstop flights from salt lake city to new york on saturday april ninth”,
have been wrongly tagged as “B-arrive date.-day name”, “B-arrive date.month
name”, “B-arrive date.day number” whereas it should have been tagged as
“B-depart date.day name”, “B-depart date.month name”, “B-depart date.day
number”, respectively. Another such utterance “does tacoma airport offer
transportation from the airport to the downtown area” is wrongly tagged as “B-
toloc.airport name”, “I-toloc.airport name” whereas it should have been tagged
as “B-airport name”, “I-airport name”, respectively. Mostly, it was found that
the errors occurred because the model was not able to distinguish between arrival
and departure details.

Comparison with the state-of-the-art approaches. A comparative
study has been carried out between our best performing proposed model against
the state-of-the-art approaches shown in Table 6. It is evident from the table that
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our best performing model, Bi-LSTM-CRF and Bi-GRU-CRF, outperformed
various state-of-the-art approaches.

5 Conclusions and Future Work

In this paper, various model architectures are proposed for the task of slot-filling
to capture the past and future dependencies of the input sentence along with
the sentence level tag information. The proposed model outperformed various
state-of-the-art approaches on the benchmark ATIS dataset.

In future, we aim to assess the proposed models on datasets belonging to
varied domains. Also, we would like to extend our work to investigate different
deep learning techniques to increase the accuracy of our model.
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